

Who

I’m an assistant professor at Brown
University

 interested in Networking, Operating
Systems, Distributed Systems

www.cs.brown.edu/~rfonseca

Much	 of	 this	 work	 with	 George	 Porter,	 Jonathan	 Mace,	 Raja	 Sambasivan,	 Ryan	
Roelke,	 Jonathan	 Leavi?,	 Sandy	 Riza,	 and	 many	 others.	

In the beginning…
… life was simple

–  Activity happening in one thread ~ meaningful
–  Hardware support for understanding execution

•  Stack hugely helpful (e.g. profiling, debugging)

–  Single-machine systems
•  OS had global view
•  Timestamps in logs made sense

•  gprof, gdb, dtrace, strace, top, …

Source:	 Anthropology:	 Nelson,	 Gilbert,	 Wong,	 Miller,	 Price	 (2012)	
	

But then things got complicated
•  Within a node

–  Threadpools, queues (e.g., SEDA), multi-core
–  Single-threaded event loops, callbacks,

continuations
•  Across multiple nodes

–  SOA, Ajax, Microservices, Dunghill
–  Complex software stacks

•  Stack traces, thread ids, thread local
storage, logs all telling a small part of the
story

Dynamic dependencies

Netflix “Death Star” Microservices Dependencies @bruce_m_wong	

Hadoop Stack

•  .

Source:	 Hortonworks	

Callback Hell

h?p://seajones.co.uk/content/images/2014/12/callback-‐hell.png	

End-to-End Tracing

•  Capture the flow of execution back
–  Through non-trivial concurrency/deferral

structures
–  Across components
–  Across machines

End-to-End Tracing

Source:	 X-‐Trace,	 2008	

End-to-End Tracing

Source:	 AppNeta	

End-to-End Tracing
20
06
	

20
04
	

20
02
	

20
05
	

20
10
	

20
07
	

20
12
	

20
14
	

20
13
	

Twi?er	
Prezi	

SoundCloud	
HDFS,	 Hbase,	

Accumulo,	 Phoenix	
Google	
Baidu	
Ne_lix	
Pivotal	
Uber	

Coursera	
Facebook	

Etsy	
…	
	 	 	

…	 20
15
	

AppNeta	
AppDynamics	
NewRElic	

End-to-End Tracing

•  Propagate metadata along with the
execution*
–  Usually a request or task id
–  Plus some link to the past (forming DAG, or call

chain)
•  Successful

–  Debugging
–  Performance tuning
–  Profiling
–  Root-cause analysis
–  …

 *	 Except	 for	 Magpie	

•  Propagate metadata along with the
execution

Causal Metadata Propagation

Can be extremely useful and valuable
But…

requires instrumenting your system

(which we repeatedly have found to be doable)

Of course, you may not want to
do this [

•  You will find IDs that already go part of the
way

•  You will use your existing logs
–  Which are a pain to gather in one place
–  A bigger pain to join on these IDs
–  Especially because the clocks of your machines are

slightly out of sync
•  Then maybe you will sprinkle a few IDs

where things break
•  You will try to infer causality by using

incomplete information

“10th Rule of Distributed System
Monitoring*”

“Any sufficiently complicated distributed
system contains an ad-hoc, informally-
specified, siloed implementation of causal
metadata propagation.”

*This	 is,	 of	 course,	 inspired	 by	 Greenspun’s	 10th	 Rule	 of	 Programming	

]

Causal Metadata Propagation
•  End-to-End tracing

–  Similar, but incompatible contents

•  Same propagation
–  Flow along thread while working on same activity
–  Store and retrieve when deferred (queues,

callbacks)
–  Copy when forking, merge when joining
–  Serialize and send with messages
–  Deserialize and set when receiving messages

Causal Metadata Propagation

•  Not hard, but subtle sometimes
•  Requires commitment, touches many

places in the code
•  Difficult to completely automate

–  Sometimes the causality is at a layer above the
one being instrumented

•  You will want to do this only once…

Causal Metadata Propagation

… or you won’t have another chance

Modeling the Parallel Execution of Black-Box
Services. Mann et al., HotCloud 2011 (Google)

�
8VHU�

UHTXHVW �

�

�

�

�

� �

�

��

��

��

��

��

��

��

��

�� �� ��

��

��

��

��

�

��

��

��

��

�� �� ��

��

VWDUW 6

UHWXUQ

6

Figure 1: (top) The trace (call tree) of a service with
relatively large stack. Note that it is impossible to tell
the ordering of methods 9 through and 17 that are all
called from service 8. (bottom) Induced execution flow
(defined in Section 4) for service 8 describing its calls
to children services (9 - 17). Unlike the above figure,
edges indicate temporal dependencies, e.g service 11
starts only after services 9 and 10 have returned. We use
a virtual node marked as “S” to denote a synchronization
point.

Another line of work, which relies on latency models
to diagnose performance problem is by Sambasivan et al
[10]. They showed very interesting experimental results
on applying simple latency models to detect performance
problems. In contrast in this paper we concentrate on
latency models and show their comparative accuracy.

3 Latency Analysis

A service is an arbitrary, potentially multi-threaded, pro-
gram, running in a data center that can issue RPCs to
children services. To avoid confusion we will refer to
the issuing service as parent. The goal of this work is to
build a model for the parent latency given the latencies
of its children. Unlike [14], the value of the model isn’t
the raw predictions per se, but rather to gain a deeper un-
derstanding of a service which can be later used in eval-
uation of what-if scenarios and root cause analysis.

A distributed profiling tool collects a set of traces,
where each trace is an augmented call tree for a service
invocation. Each node in the call tree represents a RPC
to a child service that generally would be running on a
different machine or even in a different data center. Each
node contains metadata about the service and the context

of the request, such as the method name of service exe-
cuted, size of request and response, and timing informa-
tion. Figure 1 (top) depicts a trace where a user request
initiated a sequence of calls. An edge in the graph indi-
cates that one service called the other, e.g. parent service
1 calls children services 2,3, and 4.

Formally, for a particular invocation I of a par-
ent service we assume the set of children services
m

1

,m

2

. . .mk. We define the following functions on a
particular trace: LI(mi) the latency of method mi, and
PI(mi) the preprocessing that the service had to do be-
fore RPC mi can be called. The preprocessing time for
RPC mi is estimated as the time difference before the
latest RPC that finishes before mi and the start of mi.
During training, the system has access to the actual par-
ent latency LI and learns an estimator ˆ

LI over LI(mi)

and PI(mi).
The most simple models for the overall service la-

tency are: (1) purely sequential children: ˆ

LI =P
mi

LI(mi) + PI(mi) (2) purely parallel children:
ˆ

LI = maxmi(LI(mi) + PI(mi)). If either of these
models worked well then further analysis would be un-
necessary. However, our experiments show that both of
these methods have very poor accuracy indicating that
there is indeed non-trivial internal flow structure, that
controls the latency (see Table 1 in Section 5).

3.1 Linear Regression

The latency prediction problem can also be formulated
as a classical regression problem: predict the latency of a
parent service given latencies of children services. As a
baseline model, we use the least squared error criterion to
find the best model parameters w: ˆ

LI =

P
i wiLI(mi).

Note that the linear regression model itself encodes no
information regarding relative order or dependencies be-
tween children services. Further, as opposed to our ap-
proach, it fails to generalize to detect the case when the
services that were never been a performance bottleneck,
suddenly become one, yet experiments show that it is a
useful baseline.

3.2 Critical Paths

A critical path is defined as a subset of RPC calls to chil-
dren services, such that decreasing the latency of any
of the calls decreases the overall latency. Essentially,
the critical path represents the blocking relationships be-
tween a sequence of siblings in a call tree.

To build a critical path model we use the following
greedy search. Given a collection of calls {mi} for a
partial trace I, we find the RPC mi1 that is the last to
end before the service returns and include it in the path.

2

The Dapper Span model doesn’t natively distinguish the causal
dependencies among siblings

Causal Metadata Propagation

•  Propagation currently coupled with the data
model

•  Multiple different uses for causal metadata

A few more (different) examples

•  …
•  Timecard – Ravindranath et al., SOSP’13
•  TaintDroid – Enck at al., OSDI’10
•  …

Retro

•  Propagates TenantID across a system for
real-time resource management

•  Instrumented most of the Hadoop stack
•  Allows several policies – e.g., DRF,

LatencySLO
•  Treats background / foreground tasks

uniformly

Jonathan	 Mace,	 Peter	 Bodik,	 Madanlal	 Musuvathi,	 and	 Rodrigo	 Fonseca.	 Retro:	
targeted	 resource	 management	 in	 mule-‐tenant	 distributed	 systems.	 In	 NSDI	 '15	

Pivot Tracing

•  Dynamic instrumentation + Causal
Tracing

•  Queries ! Dynamic Instrumentation !
Query-specific metadata ! Results

•  Implemented generic metadata layer,
which we called baggage
Jonathan	 Mace,	 Ryan	 Roelke,	 and	 Rodrigo	 Fonseca.	 Pivot	 Tracing:	 Dynamic	
Causal	 Monitoring	 for	 Distributed	 Systems.	 SOSP	 2015	

Instrumented System

Tracepoint

PT Agent

PT AgentPivot Tracing
Frontend

Query{

Advice

Tracepoint w/ advice

Message bus

Baggage propagation

Tuples

Execution path

from pivot tables and pivot charts [��] from spreadsheet pro-
grams, due to their ability to dynamically select values, func-
tions, and grouping dimensions from an underlying dataset.
Pivot Tracing is intended for use in both manual and auto-
mated diagnosis tasks, and to support both one-o� queries for
interactive debugging and standing queries for long-running
system monitoring. Pivot Tracing can serve as the foundation
for the development of further diagnosis tools. Pivot Tracing
queries impose truly no overhead when disabled and utilize
dynamic instrumentation for runtime installation.

We have implemented a prototype of Pivot Tracing for Java-
based systems and evaluate it on a heterogeneousHadoop clus-
ter comprising HDFS, HBase, MapReduce, and YARN. In our
evaluation we show that Pivot Tracing can e�ectively identify
a diverse range of root causes such as so�ware bugs, miscon-
�guration, and limping hardware. We show that Pivot Tracing
is dynamic, extensible to new kinds of analysis, and enables
cross-tier analysis between any inter-operating applications
with low execution overhead.

In summary, this paper has the following contributions:
• Introduces the abstraction of the happened before join ()
for arbitrary event correlations;

• Presents an e�cient query optimization strategy and im-
plementation for at runtime, using dynamic instrumen-
tation and cross-component causal tracing;

• Presents a prototype implementation of Pivot Tracing in
Java, applied to multiple components of the Hadoop stack;

• Evaluates the utility and �exibility of Pivot Tracing to
diagnose real problems.

�. Motivation
�.� Pivot Tracing in Action

In this section we motivate Pivot Tracing with a monitoring
task on the Hadoop stack. Our goal here is to demonstrate
some of what Pivot Tracing can do, and we leave details of its
design, query language, and implementation to Sections �, �,
and �, respectively.

Suppose we want to apportion the disk bandwidth usage
across a cluster of eight machines simultaneously running
HBase, Hadoop MapReduce, and direct HDFS clients. Sec-
tion � has an overview of these components, but for now it
su�ces to know that HBase, a database application, accesses
data through HDFS, a distributed �le system. MapReduce,
in addition to accessing data through HDFS, also accesses
the disk directly to perform external sorts and to shu�e data
between tasks.

We run the following client applications:

FS������ Random closed-loop �MB HDFS reads
FS������� Random closed-loop ��MB HDFS reads
H��� ��kB row lookups in a large HBase table
H���� �MB table scans of a large HBase table
MR������� MapReduce sort job on ��GB of input data
MR�������� MapReduce sort job on ���GB of input data

By default, the systems expose a few metrics for disk con-
sumption, such as disk read throughput aggregated by each
HDFS DataNode. To reproduce this metric with Pivot Trac-
ing, we de�ne a tracepoint� for the DataNodeMetrics class to
intercept the incrBytesRead(int delta)method, and we run
the following query, in Pivot Tracing’s LINQ-like query lan-
guage [��]:
Q1: From incr In DataNodeMetrics.incrBytesRead

GroupBy incr.host,
Select incr.host, SUM(incr.delta)

�is query causes each machine to aggregate the delta argu-
ment each time incrBytesRead is invoked, grouping by the
host name. Each machine reports its local aggregate every
second, from which we produce the time series in Figure �a.

�ings get more interesting, though, if we wish to mea-
sure the HDFS usage of each of our client applications. HDFS
only has visibility of its direct clients, and thus an aggregate
view of all HBase and all MapReduce clients. At best, ap-
plications must estimate throughput client side. With Pivot
Tracing, we de�ne tracepoints for the client protocols of
HDFS (DataTransferProtocol), HBase (ClientService), and
MapReduce (ApplicationClientProtocol), and use the name
of the client process as the group by key for the query. Fig-
ure �b shows the global HDFS read throughput of each client
application, produced by the following query:
Q2: From incr In DataNodeMetrics.incrBytesRead

Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName SUM(incr.delta)

�e -> symbol indicates a happened-before join. Pivot Trac-
ing’s implementation will record the process name the �rst
time the request passes through any client protocol method
and propagate it along the execution.�en, whenever the exe-
cution reaches incrBytesRead on a DataNode, Pivot Tracing
will emit the bytes read or written, grouped by the recorded
name. �is query exposes information about client disk
throughput that cannot currently be exposed by HDFS.

Figure �c demonstrates the ability for Pivot Tracing to
group metrics along arbitrary dimensions. It is generated by
two queries similar to Q2 which instrument Java’s FileInput-
Stream and FileOutputStream, still joining with the client
process name. We show the per-machine, per-application
disk read and write throughput of MR������� from the
same experiment. �is �gure resembles a pivot table where
summing across rows yields per-machine totals, summing
across columns yields per-system totals, and the bottom right
corner shows the global totals. In this example, the client
application presents a further dimension along which we
could present statistics.

Query Q1 above is processed locally, while query Q2 re-
quires the propagation of information from client processes
to the data access points. Pivot Tracing’s query optimizer in-
stalls dynamic instrumentationwhere needed, and determines

�A tracepoint is a location in the application source code where instrumenta-
tion can run, cf. §�.

� ����/�/��

So, where are we?

•  Multiple interesting uses of causal
metadata

•  Multiple incompatible instrumentations
–  Coupling propagation with content

•  Systems that increasingly talk to each
other
–  c.f. Death Star

1973

IP

•  Packet switching had been proven
–  ARPANET, X.25, NPL, …

•  Multiple incompatible networks in
operation

•  TCP/IP designed to connect all of them
•  IP as the “narrow waist”

–  Common format
–  (Later) minimal assumptions, no unnecessary

burden on upper layers

Obligatory ugly hourglass picture

IP	

TCP,	 UDP,	 …	

Applicaeons	

Access	 Technologies	

Causality tracking Resource Tracing

Causal Metadata propagation Instrumented Queues,
Thread, Messaging libs

Taint Tracking
DIFC

Performance Guarantees
Distributed QoS
AccountingEnd-to-end tracing

Debugging
Dependency Tracking
Anomaly Detection
MonitoringData Provenance

Consistent updates
Consistent snapshots

Vector Clocks
Predecessors

...Security

Instrumented	
Applicaeons	

“Meta-‐applicaeons”*	 	

*Causeway	 (Chanda	 et	 al.,	 Middleware	 2005)	 used	 this	 term	 	

Proposal: Baggage

•  API and guidelines for causal metadata
propagation

•  Separate propagation from semantics of data
•  Instrument systems once, “baggage

compliant”
•  Allow multiple meta-applications

Why now?

•  We are losing track…
•  Huge momentum (Zipkin, HTrace, …)

–  People care and ARE doing this

•  Right time to do it right

Baggage API

•  PACK, UNPACK
–  Data is key-value pairs

•  SERIALIZE, DESERIALIZE
–  Uses protocol buffers for serialization

•  SPLIT, JOIN
–  Apply when forking / joining
–  Use Interval Tree Clocks to correctly keep track of data

Paulo	 Sérgio	 Almeida,	 Carlos	 Baquero,	 and	 Victor	 Fonte.	 Interval	 tree	 clocks:	 a	 logical	
clock	 for	 dynamic	 systems.	 In	 Opodis	 '08.	

Big Open Questions
•  Is this feasible?

–  Is the propagation logic the same for all/most of
the meta applications?

–  Can fork/join logic be data-agnostic? Use
helpers?

•  This is not just an API
–  How to formalize the rules of propagation?
–  How to distinguish bugs in the application vs

bugs in the propagation?
•  How to get broad support?

Example Split / Join

•  We use Interval Tree Clocks for an
efficient implementation

B	 =	 10	

read	 10k	

B	 =	 [10,20]	

read	 20k	

B	 =	 [10,5]	

read	 5k	

B	 =	 [10,20,5]	

read	 8k	

B	 =	 [10,20,5,8]	

Paulo	 Sérgio	 Almeida,	 Carlos	 Baquero,	 and	 Victor	 Fonte.	 Interval	 tree	 clocks:	 a	 logical	
clock	 for	 dynamic	 systems.	 In	 Opodis	 '08.	

