
Retro: Targeted Resource Management in Multi-tenant
Distributed Systems

Jonathan Mace1, Peter Bodik2, Rodrigo Fonseca1, Madanlal Musuvathi2
1Brown University, 2Microsoft Research

Abstract
In distributed systems shared by multiple tenants, effec-
tive resource management is an important pre-requisite
to providing quality of service guarantees. Many systems
deployed today lack performance isolation and experi-
ence contention, slowdown, and even outages caused by
aggressive workloads or by improperly throttled main-
tenance tasks such as data replication. In this work we
present Retro, a resource management framework for
shared distributed systems. Retro monitors per-tenant
resource usage both within and across distributed sys-
tems, and exposes this information to centralized resource
management policies through a high-level API. A pol-
icy can shape the resources consumed by a tenant using
Retro’s control points, which enforce sharing and rate-
limiting decisions. We demonstrate Retro through three
policies providing bottleneck resource fairness, dominant
resource fairness, and latency guarantees to high-priority
tenants, and evaluate the system across five distributed sys-
tems: HBase, Yarn, MapReduce, HDFS, and Zookeeper.
Our evaluation shows that Retro has low overhead, and
achieves the policies’ goals, accurately detecting con-
tended resources, throttling tenants responsible for slow-
down and overload, and fairly distributing the remaining
cluster capacity.

1 Introduction
Most distributed systems today are shared by multiple
tenants, both on private and public clouds and datacenters.
These include common storage, data analytics, database,
queuing, or coordination services like Azure Storage [6],
Amazon SQS [3], HDFS [36], or Hive [41]. Multi-tenancy
has clear advantages in terms of cost and elasticity.

However, providing performance guarantees and iso-
lation in multi-tenant distributed systems is extremely
hard. Tenants not only share fine-grained resources within
a process (such as threadpools and locks) but also re-
sources across multiple processes and machines (such
as the disk and the network) along the execution path
of their requests. As a result, traditional resource man-
agement mechanisms in the operating system and in the
hypervisor are ineffective due to a mismatch in the man-
agement granularity. Moreover, tenant-generated requests
not only compete with each other but also with system-

0

500 requesti)

0

500
iii) queue

0

12
disk opii)

0

500
lockiv)

0 5 10time (min)

la
te
nc
y
(m
s)

A B C

Figure 1: i) Latency for a client reading 8kB files from
HDFS [36] is impacted by different workloads that A) repli-
cate HDFS blocks, B) list large directories, and C) make new
directories, each overloading the disk, threadpool, and locks
respectively. ii) latency of DataNode disk operations, iii) latency
at NameNode RPC queue, iv) latency to acquire NameNode
“NameSystem” lock.

generated tasks, such as replication and garbage collec-
tion, for shared resources. In addition, the bottleneck re-
sponsible for degrading the performance of a tenant can
change in unpredictable ways depending on its input work-
load, the workload of other tenants and system tasks, the
overall state of the system (including caches), and the
(nonlinear) performance characteristics of underlying re-
sources. See Figure 1 for an example. It does not help
that the APIs to these services are often complex, with
HDFS, for example, having over 100 calls in its client
library [19], making static workload models intractable.

We address these challenges with Retro, a resource
management framework whose core principle is to sepa-
rate resource management policies from the mechanisms
required to implement them. Retro enables system de-
signers to state, verify, tune, and maintain management
policies independent of the underlying system implemen-
tation. As in software defined networking, Retro policies
execute in a logically-centralized controller with Retro
mechanisms providing a global view of resource usage
both within and across processes and machines.

The goal of Retro is to enable targeted policies that
achieve desired performance guarantee or fairness goals
by identifying and only throttling the tenants or system
activities responsible for resource bottlenecks. Retro pro-
vides three abstractions to simplify the development of
such policies. First, it groups all system activities – both
tenant-generated requests and system-generated tasks –
into individual workflows, which form the units of re-
source management. Retro attributes the usage of a re-

source at any instant to some workflow in the system.
Second, Retro provides a resource abstraction that uni-
fies arbitrary resources, such as physical storage, network,
CPU, thread pools, and locks, enabling resource-agnostic
policies. Each resource exposes two opaque performance
metrics: slowdown, a measure of resource contention, and
a per-workflow load, which attributes the resource usage
to workflows. Finally, Retro creates control points, places
in the system that implement resource scheduling mecha-
nisms such as token buckets, fair schedulers, or priority
queues. Each control point schedules requests locally, but
is configured centrally by the policy.

Retro advocates reactive policies that dynamically re-
spond to the current resource usage of workflows in the
system, instead of relying on static models of future re-
source requirements. These policies continuously react to
changes in resource bottlenecks and input workloads by
making small adjustments directing the system towards
a desired goal. Such a “hill climbing” approach enables
policies that are robust to both changes in workload char-
acteristics and nonlinear performance characteristics of
underlying resources.

We evaluate Retro abstractions and design principles by
implementing two fairness policies – reactive version of
bottleneck resource fairness [12] and dominant resource
fairness [13] – and LATENCYSLO, that enforces end-to-
end latency targets for a subset of workflows. We use
these policies on a Retro implementation for the Hadoop
stack, comprising HDFS, Yarn, MapReduce, HBase and
ZooKeeper. All three policies are concise (about 20 lines
of code) and are agnostic of Hadoop internals. We exper-
imentally demonstrate that these policies are robust and
converge to desired performance goals for different types
of workloads and bottlenecks.

The targeted and reactive policies of Retro rely on
accurate, near real-time measurements of resource us-
age across all workflows and all resources in the system.
Through a careful design of mostly-automatic instrumen-
tation and aggregation of resource usage measurements
our implementation of Retro for the Hadoop stack incurs
latency and throughput overhead of 0.3% to 2%.

The goal of Retro is to be a general resource man-
agement framework that is applicable to arbitrary dis-
tributed systems. Our experience applying Retro to five
distributed systems – HDFS, Yarn, MapReduce, HBase,
and ZooKeeper – validates our design. Applying Retro to
a new system required modest amounts of system-specific
instrumentation – between 50 and 200 lines of code. The
rest of the Retro framework required no changes. More-
over, resource management policies that we originally
developed for HDFS were directly applicable to other
systems, validating the robustness of Retro abstractions.

In summary, our key contributions are:
• Unifying abstractions of workflows, resources, and

DN

RS NM

CCC
DN

RS NM

CCC
…

NN HM ZK Yarn

DN

RS NM

C

C

C

DN

RS NM

C

C

C

…

NN HM Yarn ZK

ZK

ZK

…

Yarn ZK

ZK

ZK

×
x

NN HM

DN

RS NM

C

C

C

DN

RS NM

C

C

C

DN

RS NM

C

C

C

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

Yarn RM

HDFS

NN

HBase

Master

ZK

ZK

ZK

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

HBase RS

HDFS DN

Local storage

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

O
th

e
r

re
so

u
rc

e
s

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

Yarn RM

HDFS

NN

HBase

Master

ZK

ZK

ZK

HBase RS

HDFS DN

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

HBase RS

HDFS DN

Local storage

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn Container

MapReduce

Yarn NM

O
th

e
r

re
so

u
rc

e
s

Figure 2: Typical deployment of HDFS, ZooKeeper, Yarn,
MapReduce, and HBase in a cluster. Gray rectangles repre-
sent servers, white rectangles are processes, and white circles
represent control points that we added. See text for details.

control points, that enable concise policies that are
system-agnostic and resource-agnostic;
• Demonstrating the feasibility of Retro in a complex

Hadoop stack, including a low-overhead, pervasive,
per-workflow resource tracking and aggregation for
a wide variety of resources;
• Targeted and reactive policies for providing latency

SLOs, bottleneck resource fairness, and dominant
resource fairness;
• A centralized controller that allow policies to enforce

performance goals at different control points without
requiring explicit coordination.

2 Motivation and challenges
This section motivates Retro by describing the challenges
of resource management in a multi-tenant distributed sys-
tem. As this paper presents Retro in the context of the
Hadoop stack, we first provide a high-level overview of
Hadoop components. The results of this paper generalize
to other distributed systems as well.

2.1 Hadoop architecture
Figure 2 shows the relevant components of the Hadoop
stack. HDFS [36], the distributed file system, consists
of DataNodes (DN) that store replicated file blocks and
run on each worker machine, and a NameNode (NN)
that manages the filesystem metadata. Yarn [42] com-
prises a single ResourceManager (RM), which communi-
cates with NodeManager (NM) processes on each worker.
Hadoop MapReduce is an application of Yarn that runs its
processes (application master and map and reduce tasks)
inside Yarn containers managed by NMs. HBase [17]
is a data store running on top of HDFS that consists of
RegionServers (RS) on all workers and an HBase Mas-
ter, potentially co-located with the NameNode or Yarn.
Finally, ZooKeeper [21] is a system for distributed coor-
dination used by HBase.

MapReduce job input and output files are loaded from
HDFS or HBase, but during the job’s shuffle phase, inter-
mediate output is written to local disk by mappers (by-
passing HDFS) and then read and transferred by NodeM-
anagers to reducers. Reading and writing to HDFS has the

2

NameNode on the critical path to obtain block metadata.
An HBase query executes on a particular RegionServer
and reads/writes its data from one or many DataNodes.

2.2 Resource management challenges

Any resource can become a bottleneck Figure 1
demonstrates how the latency of an HDFS client can be
adversely affected by other clients executing very differ-
ent types of requests, contending for different resources.
In production, a Hadoop job that reads many small files
can stress the storage system with disk seeks, as workload
A in the figure, and impact all other workloads using the
disks. Similarly, a workload that repeatedly resubmits a
job that fails quickly puts a large load on the NN, like
workload C, as it has to list all the files in the job input
directories. In communication with Cloudera [43], they
acknowledge several instances of aggressive tenants im-
pacting the whole cluster, saying “anything you can imag-
ine has probably been done by a user”. Interviews with
service operators at Microsoft confirm this observation.
Multiple granularities of resource sharing On the one
hand, concurrently executing workflows share software
resources, such as threadpools and locks, within a process,
while on the other hand, resources, such as the disk on
Hadoop worker nodes, are distributed across the system.
The disk resource, for example, is accessed by DN, NM,
and mapper/reducer processes running across all workers.
Systems have many entry points (e.g., HBase, HDFS, or
MapReduce API) and maintenance tasks are launched
from inside the system. Finally, enforcing resource usage
for long-running requests requires throttling inside the
system, not just at the entry points.
Maintenance and failure recovery cause congestion
Many distributed systems perform background tasks that
are not directly triggered by tenant requests but com-
pete for the same resources. E.g., HDFS performs data
replication after failures, asynchronous garbage collection
after file deletion, and block movement for balancing DN
load. In some cases, these background tasks can adversely
affect the performance of foreground tasks. Jira HDFS-
4183 [18] describes an example where a large number of
files are abandoned without closing, triggering a storm
of block recovery operations after the lease expiration
interval one hour later, which overloads the NN. Guo et
al. [16] describe a failure in Microsoft’s datacenter where
a background task spawned a large number of threads,
overloading the servers. On the other hand, some of these
tasks need to be protected from foreground tasks. Guo et
al. [16] describe a cascading failure resulting from over-
loaded servers not responding to heartbeats, triggering
further data replication and further overload.
Resource management is nonexistent or noncompre-
hensive Systems like HDFS, ZooKeeper, and HBase
do not contain any admission control policies. While

Yarn allocates compute slots using a fair scheduler, it
ignores network and disk, thus, an aggressive job can
overload these resources. Interviews with service oper-
ators at Microsoft indicate that productions system of-
ten implement resource management policies that ignore
important resources and use hardcoded thresholds. For
example, a policy might assume that an open() is 2x
more expensive than delete(), while the actual usage
varies widely based on parameters and system state, result-
ing in very inaccurate resource accounting. The policies
are often tweaked manually, typically after causing per-
formance issues or outages, or when the system or the
workloads change. Writing the policies often requires inti-
mate knowledge of the system and of the request resource
profile, which may be impossible to know a priori.

3 Design
The main goal of Retro is to enable simple, tar-
geted, system-agnostic, and resource-agnostic resource-
management polices for multi-tenant distributed systems.
Examples of such policies are: a) throttle aggressive ten-
ants who are getting an unfair share of bottlenecked re-
sources, b) shape workflows to provide end-to-end latency
or throughput guarantees, or c) adjust resource allocation
to either speed up or slow down certain maintenance or
failure recovery tasks.

Retro addresses the challenges in §2.2 by separating the
mechanisms of measurement and enforcement of resource
usage from high-level, global resource management poli-
cies. It does this by using three unifying abstractions –
workflows, resources, and control points – that enable
logically centralized policies to be succinctly expressed
and apply to a broad class of resources and systems.

3.1 Retro abstractions

Workflow Resource contention in a distributed system
can be caused by a wide range of system activities. Retro
treats each such activity as a first-class entity called a
workflow. A workflow is a set of requests that forms the
unit of resource measurement, attribution, and enforce-
ment in Retro. For instance, a workflow might represent
requests from the same user, various background activities
(such as heartbeats, garbage collection, or data load bal-
ancing operations), or failure recovery operations (such as
data replication). The aggregation of requests into a work-
flow is up to the system designer. For instance, one system
might treat all background activities as one workflow but
another might treat heartbeats as a distinct workflow from
other activities, if the system designer decides to provide
a different priority to heartbeats.

Each workflow has a unique workflow ID. To properly
attribute resource usage to individual workflows, Retro
propagates the workflow ID along the execution path of all
requests. This causal propagation [11, 37, 40, 34] allows

3

Retro to attribute the usage of a resource to a workflow
at any point in the execution, whether within a shared
process or across the network.
Resources A comprehensive resource management pol-
icy should be able to respond to a contention in any re-
source – hardware or software – and attribute load to work-
flows using it. A key hypothesis of Retro is that resource
management policies can and should treat all resources,
from thread pools to locks to disk, uniformly under a
common abstraction. Such a uniform-treatment allows
one to state policies that respond to disk contention, say,
in the same way as lock contention. Equally importantly,
this allows gradually expanding the scope of resource-
management to new resources without policy change. For
instance, a storage service might start by throttling clients
based on their network or disk usage. However, as the
complexity of the service increases to include sophisti-
cated meta-data operations, the service can start throttling
by CPU usage or lock-contention. On the other hand, the
challenge in providing such a unifying abstraction is to
capture the behavior of varied kinds of resources with
different complex non-linear performance characteristics.

To overcome this challenge, Retro captures a resource’s
current first-order performance with two unitless metrics:
• slowdown indicates how slow the resource is cur-

rently, compared to its baseline performance with no
contention;
• load is a per-workflow metric that determines who

is responsible for the slowdown.
As a simple example, consider an abstract resource

with an (unbounded) queue. Let Qw,i be the queueing
time of the ith request from workflow w in a time inter-
val and let Sw,i be the time the resource takes to service
that request. During this interval, the load by w is ΣiSw,i
and the slowdown is Σw,i(Qw,i +Sw,i)/Σw,iSw,i. Note, the
denominator of the slowdown is the time taken to process
the requests if the queue is empty throughout the interval.

The reactive policies in Retro allow these metrics to
provide a linear approximation of the complex non-linear
behavior. The policies continuously measure the resource
metrics while making incremental resource allocation
changes. Operating in such a feedback loop enables sim-
ple abstractions while reacting to nonlinearities in the
underlying performance characteristics of the resource.

Resources in real systems are more complex than the
simple queue above. Our goal is to hide the complex-
ities of measuring the load and slowdown of different
resources in resource libraries that are implemented once
and reused across systems. See §4.2 for details.

An important implication of this abstraction is that it is
not possible to query the capacity of a resource. Instead,
a policy can treat a resource to have reached its capacity
if the slowdown exceeds some fixed constant. Directly
measuring true capacity is often not possible because of

many request types supported (e.g. open, read, sync, etc.
on a disk) and because of effects of caching or buffering,
workflow demands do not compose linearly. Also, due to
limping hardware [10], estimating the current operating
capacity is next to impossible.

Control points To separate the low-level complexities
of enforcing resource allocation throughout the distributed
system, we introduce the control point abstraction. A con-
trol point is a point in the execution of a request where
Retro can enforce the decisions of resource scheduling
policies. Each control point executes locally, such as de-
laying requests of a workflow using a token bucket, but is
configured centrally from a policy.

While a control point can be placed directly in front
of a resource (such as a thread pool queue), it can more
generally be located anywhere it is reasonable to sleep
threads or delay requests, such as in HDFS threads send-
ing and receiving data blocks. The location of control
points should be selected by the system designer while
keeping a few rules in mind. A control point should not
be inserted where delaying a request can directly impact
other workflows, such as when holding an exclusive lock.
Conversely, some asynchronous design patterns (such as
thread pools) present an opportunity to interpose control
points, as it is unlikely that a request will hold critical
resources yet potentially block for a long period of time.

Each logical control point has one or more instances.
A point with a single instance is centralized, such as a
point in front of the RPC queue in HDFS NameNode. Dis-
tributed points, such as in the DataNode or its clients, have
many, potentially thousands of instances. Each instance
measures the current, per-workflow throughput which is
aggregated inside the controller.

To achieve fine-grained control, a request has to peri-
odically pass through control points, otherwise, it could
consume unbounded amount of resources. To illustrate
this, consider a request in HBase that scans a large re-
gion, reading data from multiple store files in HDFS. If
Retro only throttles the request at the RegionServer RPC
queue, a policy has only one chance to stop the request;
once it enters HBase, it can read an unbounded amount of
data from HDFS and perform computationally expensive
filters on the data server-side. By adding a point to the
DataNode block sender, we can control the workflow at
the granularity of 64kB HDFS data packets. More gener-
ally, the longer the period of time a request can execute
without passing through a control point, the longer it will
take any policy to react. This is similar to the dependence
between the longest packet length Lmax and the fairness
guarantees provided by packet schedulers [31, 38].

3.2 Architecture
Figure 3 outlines the high-level architecture of Retro and
its three main components. First, Retro has a measure-

4

Control pointsResources

Distributed enforcement

Pervasive measurement

Workflows

R
et

ro
 C

on
tr

ol
le

r A
P

I

P
ol

ic
y

P
ol

ic
y

P
ol

ic
y

Figure 3: Retro architecture. Gray boxes are system components
on the same or different machines. Workflows start at several
points and reach multiple components. Intercepted resources ()
generate measurements that serve as inputs to policies. Policy
decisions are enforced by control points (#).

ment infrastructure that provides near-real-time resource
usage information across all system resources and com-
ponents, segmented by workload. Second, the logically
centralized controller uses the resource library to translate
raw measurements to the load and slowdown metrics, and
provides them as input to Retro policies. Third, Retro
has a distributed, coordinated enforcement mechanism
that consistently applies the decisions of the policies to
control points in the system. We discuss the design of the
controller in the following paragraphs. In §4 we describe
the measurement and enforcement mechanisms in detail,
and in §5 we present the implementation of three policies.

Logically centralized policies In current systems, re-
source management policies are hard-coded into the sys-
tem implementation making it difficult to maintain as the
system and policies evolve. A key design principle be-
hind Retro is to separate the mechanisms (§4) from the
policies (§5). Apart from making such policies easier to
maintain, such a separation allows policies to be reused
across different systems or extended with more resources.

Borrowing from the design of Software Defined Net-
works and IOFlow [39], Retro takes the separation a step
further by logically centralizing its policies. This makes
policies much easier to write and understand, as one does
not have to worry about myopic local policies making
conflicting decisions. In this light, we can view Retro as
building a “control plane” for distributed systems, and
providing a separation of concerns for policy writers and
system developers and instrumenters.

Retro exposes to policies a simple API, shown in Ta-
ble 1, that abstracts the complexity of individual resources
and allows one to specify resource-agnostic scheduling
policies, as demonstrated in §5. The first three functions
in the table correspond to the three abstractions explained
above. In addition, latency(r,w) returns the total time
workflow w spent using resource r. throughput(p,w)
measures the aggregate request rate of workflow w through
a (potentially distributed) throttling point p, such as the
entry point to the RS process. Finally, policies can affect

workflows() list of workflows
resources() list of resources
points() list of throttling points

load(r,w) load on r by workflow w
slowdown(r) slowdown of resource r
latency(r,w) total latency spent by w on r

throughput(p,w) throughput of workflow w at point p
get rate(p,w) get the throttling rate of workflow w

at point p
set rate(p,w,v) throttle workflow w at point p to v

Table 1: Retro API used by the scheduling policies. We omit
auxiliary calls to set, for example, the reporting interval and
smoothing parameters, as well as to obtain more details such as
operation counts, etc.

the system through Retro’s throttling mechanisms.

4 Implementation
4.1 Per-workflow resource measurement

End-to-end ID propagation At the beginning of a re-
quest, Retro associates threads executing the request with
the workflow by storing its ID in a thread local variable;
when execution completes, Retro removes this associa-
tion. While the developer has to manually propagate the
workflow ID across RPCs or in batch operations, we use
AspectJ to automatically propagate the workflow ID when
using Runnable, Callable, Thread, or a Queue.
Aggregation and reporting When a resource is inter-
cepted, Retro determines the workflow associated with
the current thread, and increments in-memory counters
that track the per-workflow resource use. These coun-
ters include the number of resource operations started
and ended, total latency spent executing in the resource
and any operation-specific statistics such as bytes read
or queue time. When the workflow ID is not available,
such as when parsing an RPC message from the network,
the resource use is attributed to the next ID that is set
on the current thread (e.g., after extracting the workflow
ID from the RPC message). Retro does not log or trans-
mit individual trace events like X-Trace or Dapper, but
only aggregates counters in memory. A separate thread
reads and reports the values of the counters to the central
controller at a fixed interval, currently once per second.
Reports are serialized using protocol buffers [14] and sent
using ZeroMQ [2] pub-sub. The centralized controller ag-
gregates reports by workflow ID and resource, smoothes
out the values using exponential running average, and
uses the resource library to compute resource load and
slowdown.
Batching In some circumstances, a system might batch
the requests of multiple workflows into a single request.
HDFS NameNode, HBase RegionServers, and ZooKeeper
each have a shared transaction log on the critical path of

5

write requests. In these cases, we create a batch workflow
ID to aggregate resource consumption of the batch task
(e.g., the resources consumed when writing HBase trans-
action logs to HDFS). Constituent workflows report their
relative contributions to the batch (e.g., serialized size of
transaction) and the controller decomposes the resources
consumed by the batch to the contributing workflows.
Automatic resource instrumentation using AspectJ
Retro uses AspectJ [25] to automatically instrument all
hardware resources and resources exposed through the
Java standard library. Disk and network consumption is
captured by intercepting constructor and method calls on
file and network streams. CPU consumption is tracked dur-
ing the time a thread is associated with a workflow. Lock-
ing is instrumented for all Java monitor locks and all im-
plementers of the Lock interface, while thread pools are
instrumented using Java’s Executors framework. The
only manual instrumentation required is for application-
level resources created by the developer, such as custom
queues, thread pools, or pipeline processing stages.

AspectJ is highly optimized and weaves the instrumen-
tation with the source code when necessary without addi-
tional overheads. In order to avoid potentially expensive
runtime checks to resolve virtual function calls, Retro in-
strumentation only intercepts constructors to return proxy
objects that have instrumentation in place.

4.2 Resource library
Retro presents a unified framework that incorporates in-
dividual models for each type of resource. Management
policies only make incremental changes to request rates
allocated to individual workflows; for example, if the
CPU is overloaded, a policy might reduce total load on
the CPU by 5%. Therefore, as long as we correctly detect
contention on a resource, iteratively reducing load on that
resource will reduce the contention. Our models, thus,
capture only the first-order impact of load on resource
slowdown.
CPU We query the per-thread CPU cycle counter
when setting and unsetting the workflow ID on a
thread (using QueryThreadCycleTime in Windows and
clock_gettime in Linux) to count the total number of
CPU cycles spent by each workflow. The load of a work-
flow is thus proportional to its usage of CPU cycles. To
estimate the slowdown, we divide the actual latency spent
using CPU by the optimal latency of executing this many
cycles at the CPU frequency. Since part of the thread exe-
cution could be spent in synchronous IO operations, we
only use CPU cycles and latency spent outside of these
calls to compute CPU slowdown. If frequency scaling is
enabled, we could use other existing performance coun-
ters to detect CPU contention [1].
Disk To estimate disk slowdown, we use a subset of disk
IO operation types that we monitor, in particular, reads

and syncs. For example, given a time interval with n
syncs and b bytes written during these operations, we
use a simple disk model that assumes a single seek with
duration Ts for each sync, followed by data transfer at full
disk bandwidth B. We thus estimate the optimal latency
as l = nTs +b/B and slowdown as s = t/l, where t is the
total time spent in sync operations. To deal with disk
caching, buffering, and readahead, we only count as seeks
the operations that took longer than a certain threshold,
e.g., 5ms. We use similar logic for reads and to estimate
the load of each workflow.

Network The load of a workflow on a network link is
proportional to the number of bytes transferred by that
workflow. We ignore data sent over the loopback inter-
face by checking remote address when the connection is
set up, inside our AspectJ instrumentation. We currently
do not measure the actual network latency and thus es-
timate the network slowdown based on its utilization by
treating it as a M/M/1 queue. Thus a link with utiliza-
tion u has a slowdown 1 + u/(1− u). It is feasible to
extend Retro by encoding a model of the network (topol-
ogy, bandwidths, and round trip times), and network flow
parameters (source, destination, number of bytes), to es-
timate the network flow latency with no congestion [30].
Comparing this no-congestion estimate with measured
latency could be used to compute network slowdown.

Thread pool The load of a workflow on a thread pool
is proportional to the total amount of time it was using
threads in this pool. Since we explicitly measure queu-
ing and service time of a thread pool operation, we can
directly compute the slowdown as total execution time
(queuing plus service) divided by service time.

Locks A write lock behaves similarly to a thread pool
with a single thread, and we explicitly measure the queu-
ing time of a lock operation and the time the thread was
holding the lock. Slowdown is thus the total latency of
lock operation (from requesting the lock until release)
divided by the time actually holding the lock.

Load of a read-write lock depends on the number
of read and write operations, for how long they hold
the lock, and the exact lock implementation. While
there has been previous work on modeling locks using
queues [24, 22, 32], none of them exactly match the Reen-
trantReadWriteLock used in HDFS. Instead, we approxi-
mate the capacity or throughput of a lock, T (f ,w,r), in
a simple benchmark using three workflow parameters:
fraction of write locks f , and average duration of write
and read locks w and r. See Figure 4 for a subset of the
measured values; notice that the throughput is nonlinear
and non-monotonic. We use trilinear interpolation [23]
to predict throughput for values not directly measured.
Given a workflow with characteristic (f ,w,r) and current
lock throughput t, we estimate its load on the lock as

6

100

1000

10000

100000

1000000

0.01 0.1 1

lo
c
k
 t
h
ro

u
g
h
p
u
t
[o

p
s
/s

e
c
]

f, probability of write lock

w=0.1, r=0.01 w=0.1, r=1

w=0.1, r=10 w=10, r=10

Figure 4: The throughput of Java ReentrantReadWriteLock (y-
axis) as a function of three parameters: probability of a write
lock operation (x-axis), average duration of read and write locks
(see legend, time in milliseconds).

t/T (f ,r,w). E.g., a workflow making 1000 lock requests
a second with its estimated max throughput of 5000 oper-
ations a second, would have a load of 0.2.
4.3 Coordinated throttling
Retro is designed to support multiple scheduling schemes,
such as various queue schedulers or priority queues. In
the current implementation of Retro, each control point
is a per-workflow distributed token bucket. Threads can
request tokens from the current workflow’s token bucket,
blocking until available. Queues can delay a request from
being dequeued until sufficient tokens are available in
the corresponding workflow’s bucket. For a particular
control point and workflow, a policy can set a rate limit
R, which is then split (behind the scenes) across all point
instances proportionally to the observed throughput. Retro
keeps track of new control point instances coming and
going – e.g., mappers starting and finishing – and properly
distributes the specified limit across them.

So long as each request executes a bounded amount of
work, even using a single control point at the entrance to
the system is enough for Retro to enforce usage of indi-
vidual workflows. However, as described in Section 3.1,
requests have to periodically pass through control points
to guarantee fast convergence of allocation policies. Even
without any control points in the system, each resource
reports how many times it has been used by a particular
workflow. For example, loading a single HDFS block of
64MB would result in approximately 1000 requests to
the disk, each reading 64kB of data. These statistics help
developers identify blocks of code where requests execute
large amount of work and where adding control points
helps break down execution and significantly improves
convergence of control policies.

In the Hadoop stack, we added several points: in the
HDFS NameNode and HBase RegionServer RPC queues,
in the HDFS DataNode block sender and receiver, in
the Yarn NodeManager, and in the MapReduce mappers
when writing to the local disk. Each of these points has a
number of instances equal to the number of processes of
the particular type.

1 // identify slowest resource
2 S = r in resources() with max slowdown(r)
3 foreach w in workflows()
4 demand[w] = load(S, w)
5 capacity += (1−α)∗demand[w]
6
7 fair = MaxMinFairness(capacity, demand)
8
9 foreach w in workflows()

10 if (slowdown(S) > T
11 && fair[w] < demand[w]) // throttle
12 factor = fair[w] / demand[w]
13 else // probe for more demand
14 factor = (1 + β)
15
16 foreach p in points()
17 set_rate(p, w, factor*get_rate(p, w))

Algorithm 1: BFAIR policy, see §5.1.

Notice that we do not need to throttle directly on re-
source R to enforce resource limits on R. Assume that a
workflow is achieving throughput of Np at point p and has
load LR on R. By setting a throttling rate of αNp for all
points, we will indirectly control the load on R to αLR.

5 Policies
This section describes three targeted reactive resource-
management policies that we used to evaluate Retro.
Specifically, these policies enforce fairness on the bottle-
neck resource (§5.1), dominant-resource fairness (§5.2),
and end-to-end latency SLOs (§5.3). All of these polices
are system-agnostic, resource-agnostic, and can be con-
cisely stated in a few lines of code. These are not the only
policies that could be implemented on top of Retro; in fact,
we believe that the Retro abstractions allow developers to
write more complex policies that consider a combination
of fairness and latency, together with other metrics, such
as throughput, workflow priorities, or deadlines.

5.1 BFAIR policy
The BFAIR policy provides bottleneck fairness [13, 12];
i.e., if a resource is overloaded, the policy reduces the
total load on this resource while ensuring max-min fair-
ness for workflows that use this resource. This policy can
be used to throttle aggressive workflows or to provide
DoS protection. It provides coarse-grained performance
isolation, since workflows are guaranteed a fair-share of
the bottlenecked resource.

The policy, described in Algorithm 1, first identifies
the slowest resource S in the system according to the
slowdown measure (line 2). Then, the policy runs the
max-min fairness algorithm with demands estimated by
the current load of workflows (line 4) and resource ca-
pacity estimated by the total demand reduced by 1−α to
relieve the bottleneck if any (line 5).

The policy considers S to be bottlenecked if its slow-
down is greater than a policy-specific threshold T. If this
is the case and the fair share fair[w] of workflow w is

7

1 // estimate resource demands
2 foreach w in workflows()
3 foreach r in resources()
4 demand[r,w] = (1+α)∗load(r,w)
5
6 // update capacity estimates
7 cap = current capacity estimates
8 foreach r in resources()
9 tot_load = Σwload(r,w)

10 if(slowdown(r) > Tr) //reduce estimate
11 cap[r] = min(cap[r], tot_load);
12 else // probe for more capacity
13 cap[r] = max((1+β)*cap[r], tot_load);
14
15 share = DRF(demand, cap)
16 foreach w in workflows()
17 if (share[w] >= 1) continue
18 foreach p in points()
19 set_rate(p, w, share[w]*get_rate(p,w))

Algorithm 2: RDRF policy, see §5.2.

smaller than its current load (line 11), the policy throttles
the rate by a factor of fair[w]/demand[w]. Here, the
policy assumes a linear relationship between throughput
at control points and the load on resources. If either the re-
source is not bottlenecked or if a workflow is not meeting
its fair share (line 13), the policy increases the throttling
rate by a factor of 1+β to probe for more demand.

Notice that this policy performs coordinated throttling
of the workflow across all the control points; by reducing
the rate proportionally on each point, we quickly reduce
the load of the workflow on all resources. Parameters
α and β control how aggressively the policy reacts to
overloaded resources and underutilized workflows respec-
tively. Notice that this policy will throttle only if there is
a bottleneck in the system; we can change the definition
of a bottleneck using the parameter T.

5.2 RDRF policy
Dominant resource fairness (DRF) [13] is a multi-
resource fairness algorithm with many desirable prop-
erties. The RDRF policy (Algorithm 2) calls the origi-
nal DRF function at line 15 which requires the current
resource demands and capacities of all resources. In a
general distributed system, we cannot directly measure
the actual resource demand of a workflow, but only its
current load on a resource. A workflow might not be able
to meet its demand due to bottlenecks in the system.

The RDRF policy overcomes this problem by being
reactive: making incremental changes and reacting to how
the system responds to these changes. At any instant, the
policy conservatively assumes that each workflow can
increase its current demand by a factor of α (line 4).
This increased allocation provides room for bottlenecked
workflows to increase the load on resources.

Similarly, the policy uses the slowdown measure to
estimate capacity. At line 10, when the current slowdown
exceeds a resource-specific threshold, the policy reduces

1 foreach w in H
2 miss(w) = latency(w) / target_lat(w)
3 h = w in H with max miss(w)
4
5 foreach l in L // compute gradients
6 g[l] = Σr (latency(h,r) * log(slowdown(r))
7 * load(r,l) / Σw load(r,w))
8
9 foreach l in L // normalize gradients

10 g[l] /= ∑kg[k]
11
12 foreach l in L
13 if(miss(h) > 1) // throttle
14 factor = 1-α*(miss(h)-1)*g[l]
15 else // relax
16 factor = (1 + β)
17
18 foreach p in points()
19 set_rate(p, l, factor*get_rate(p, l))

Algorithm 3: LATENCYSLO policy, see §5.3.

its capacity estimate to the current load. On the other hand,
if the slowdown is within the threshold (line 12) and the
current capacity estimate is lower than the current load,
the policy increases the capacity estimate by a factor of β

to probe for more capacity.
Given estimates of demand and capacity, the DRF()

function returns share[w], the fraction of w’s demand
that was allocated based on dominant-resource fairness.
If share[w]< 1, we throttle w at each point p proportion-
ally to its current throughput at p.

5.3 LATENCYSLO policy
In the LATENCYSLO policy, we have a set of high-
priority workflows H with a specified target latency SLO
(service-level objective). Let L (low-priority) be the re-
maining workflows. The goal of the policy is to achieve
the highest throughput for L, while meeting the latency
targets for H. We assume the system has enough capacity
to meet the SLOs for H in the absence of the workflows
L; in other words, it is not necessary to throttle H. To
maximize throughput, we want to throttle workflows in L
as little as possible; e.g., if a workflow in L is not using
an overloaded resource, it should not be throttled.

Consider a workflow h in H that is missing its target la-
tency. If multiple such workflows exist, the policy choses
the one with the maximum miss ratio (line 3). Let tw
be the current request rate of workflow w and consider
a possible change of this rate to tw ∗ fw. The resulting
latency lh of h is some (nonlinear) function of the relative
workflow rates fw of all workflows. The LATENCYSLO
computes an approximate gradient of lh with respect to
fw and uses the gradient to move the throttling rates in the
right direction. Based on the system response, the policy
repeats this process until all latency targets are met.

We derive an approximation of lh which results in an
intuitive throttling policy. Consider a resource r with a
current slowdown of Sr, load Dw,r for workflow w, and

8

total load Dr = ∑w Dw,r. If Lh,r is the current latency of h
at r, the baseline latency is Lh,r/Sr when there is no load
at r, by the definition of slowdown. We model the latency
of h at r, lh,r as an exponential function of the load dr
that satisfies the current (dr = Dr) and baseline (dr = 0)
latencies, and obtain lh,r = Lh,r ∗ Sdr/Dr−1

r . Finally, we
model the latency of h, lh = ∑r lh,r as the sum of latencies
across all resources in the system.

Assuming that a fractional change in a workflow’s
request rate results in the same fractional change in
its load on the resources, we have dr = ∑w Dw,r ∗ fw.
The gradient of lh,r with respect to fw at dr = Dr is
∂ lh,r/∂ fw = Lh,r ∗ logSr ∗Dw,r/Dr. This is a very intu-
itive result: the impact of workflow w on the latency of
h is high if it has a high resource share, Dw,r/Dr, on a
resource with high slowdown, logSr, and where workflow
h spends a lot of time, Lh,r.

Algorithm 3 uses this formula for the gradient calcula-
tion (line 6). The policy throttles workflows in L based
on the normalized gradients after dampening by a factor
α to ensure that the policy only takes small steps. If all
workflows in H meet their latency guarantees, the policy
uses this opportunity to relax the throttling by a factor β .

6 Evaluation
In this section we evaluate Retro in the context of the
Hadoop stack. We have instrumented five open-source sys-
tems – HDFS, Yarn, MapReduce, HBase, and ZooKeeper –
that are widely used in production today. We use a wide va-
riety of workflows, which are based on real-world traces,
widely-used benchmarks, and other workloads known to
cause resource overload in production systems.

Our evaluation shows that Retro addresses the chal-
lenges in §2.2 when applied simultaneously to all these
stack components. In particular, we show that Retro:
• applies coordinated throttling to achieve bottleneck

and dominant resource fairness (§6.1 and §6.3);
• applies policies to application-level resources, re-

sources shared between multiple processes, and re-
sources with multiple instances across the cluster;
• guarantees end-to-end latency in the face of work-

loads contending on different resources, uniformly
for client and system maintenance workflows (§6.2);
• is scalable and has very low developer and execution

overhead (§6.4);
• throttles efficiently: it correctly detects bottlenecked

resources and applies targeted throttling to the rele-
vant workflows and control points.

We do not directly compare to other policies, since
to our knowledge, no previous systems offer this rich
source of per-workflow and per-resource data. Many of
previous policies, such as Cake [44], could be directly
implemented on top of Retro.

ut
ili

za
tio

n
pr

at
io

1

0

1

0

1

0

1

0

1

0

1

4

16

64

0 2 4 6 8 10 12 14

sl
ow

do
w

n

Disk CPU NN Queue Network

0

0.4

0.8

1.2

di
sk

th
ro

ug
hp

ut
[G

B
/s

]

0 2 4 6 8 10 12 14
time [min]

A

RW64MB

SCAN

SORT

READ8KB

SCAN-CACHED

READ8KB
RW64MB

SCAN-CACHED
SCAN

SORT

time [min]

0 2 4 6 8 10 12 14
time [min]

Figure 5: BFAIR policy as described in the text.

6.1 BFAIR in Hadoop stack
In Figure 5, we demonstrate the BFAIR policy success-
fully throttling aggressive workflows without negatively
affecting the throughput of other workflows. The three
major workflows are: SORT, a MapReduce sort job;
RW64MB, 100 HDFS clients reading and writing 64MB
files with a 50/50 split; and SCAN, 100 HBase clients
scanning large tables. These workflows bottleneck on
the disk on the worker machines. The two minor work-
flows are: READ8KB, 32 clients reading 8kB files from
HDFS; and SCAN-CACHED, 32 clients scanning tables
in HBase that are mostly cached in the RegionServers.
We perform this experiment on a 32-node deployment
of Windows Azure virtual machines; one node runs the
Retro controller, one node runs HDFS NameNode, Yarn,
ZooKeeper, and HBase RegionServer, the other thirty are
used as Hadoop workers. Each VM is a Standard A4 in-
stance with 8 cores, 14GB RAM and a 600GB data disk,
connected by a 1Gbps network.

At the beginning of the experiment, we start READ8KB,
SCAN-CACHED, and SORT together, and delay start
of SCAN and RW64MB. Figure 5(top) shows the disk
throughput achieved by each workflow; notice how the
throughput changes as different workflows start, for ex-

9

F6F4 F5

ut
ili

za
tio

ny
ra

tio

F4 PHBaseyscanU F5 PHDFSymkdirU F6 PcacheyscanU

F4

F5

F60.5

1
0.5

1
0.2

1

0.1

1

10

0 5 10 15 20 25 30sl
o-

no
rm

al
iz

ed
ylc

y

timey[min]

0

5

10

15

0 5 10 15 20 25 30

sl
ow

do
w

n

HBaseyQueueHDFSyNNyQueue
HDFSyNNyLock

CPU
Disk

F4 F5 F6

0.1

1

10

100

1000

sl
o-

no
rm

al
iz

ed
ylc

y
F1 F2

F3PHDFSyread8kU PHBaseyrowU PcachedyrowU

timey[min]

Figure 6: LATENCYSLO policy as described in text. Top-left figure shows high priority workflow latencies without LATENCYSLO.
Bottom-left figure shows resource slowdown during experiment. Top-right figure shows high priority workflow latencies with
LATENCYSLO. Bottom-right sparklines show control point utilizations for background workflows.

ample, throughput of SORT drops from 750MB/sec to
100MB/sec. Figure 5(center) shows the slowdown of a
few different resources. Disk is the only constantly over-
loaded resource, reaching slowdown of up to 60. While
slowdown of other resources also occasionally spikes, this
happens only due to workload burstiness. In Figure 5(bot-
tom), we show sparklines of the workflow utilization ra-
tios – the achieved throughput relative to the allocated
rate at a particular control point. A ratio of 1 means that
the workflow is being actively rate-limited; a ratio of 0
means that the workflow is never rate-limited. For SORT,
we show ratios at two control points: the DN BlockSender
(black, used by mapper to read data from the DN) and
mapper output (dashed red, used by mapper to write its
output to local disk). For RW64MB, we show ratios at
two control points: the DN BlockSender (black, used to
read data from HDFS DNs) and the DN BlockReceiver
(dashed red, used to write data to HDFS DNs).

In phase A we enable the BFAIR with overload thresh-
old T=25. Quickly, the disk throughput of the three major
workflows equalizes at about 300MB/sec, thus achiev-
ing fairness on the bottlenecked resource. Also, the disk
slowdown fluctuates at around 25 (navy blue line in the
slowdown graph) because the policy starts throttling the
major workflows.

The utilization ratio sparklines provide further insight.
RW64MB is the most aggressive workflow and conse-
quently it is fully throttled (ratio of 1) at all of the control
points. While not as aggressive, SCAN is also throttled
though less. Depending on the phase of the map-reduce
computation, we throttle SORT while reading input (black)
and/or when writing output (red dashed). Finally, as ex-
pected, the two minor workflows are not throttled as much,
or at all, because the fairness allocates their full demand.
Furthermore, SCAN-CACHED is completely unthrottled

as it has no disk utilization.
These results highlight how Retro enables coordinated

and targeted throttling of workloads. No other system
we are aware of would achieve these results, as Retro
coordinates the same resource through different control
points – for example, disk is controlled not only by HDFS
block transfer (used by SCAN, RW64MB, READ8KB and
the job input to SORT), but also by the SORT mapper
output that accesses disk directly, bypassing HDFS. Retro
only throttles the relevant workloads, leaving the small
read and scan workloads mostly alone.

6.2 LATENCYSLO
We demonstrate that the LATENCYSLO policy can en-
force a) end-to-end latency SLOs across multiple work-
flows and systems, and b) SLOs for both front-end clients
and background tasks. We perform these experiments on
an 8-node cluster; one node runs the Retro controller, one
node runs HDFS NameNode, Yarn, ZK, and HBase Mas-
ter, the other 6 are used as Hadoop workers and HBase
RegionServers.
Enforcing multiple guarantees In this experiment we
simultaneously enforce SLOs in HBase and HDFS for
three high priority workflows with intermittently aggres-
sive background workflows. The three high priority work-
flows are: F1 randomly reads 8kB from HDFS with 500ms
SLO, F2 randomly reads 1 row from a small table cached
by HBase with 25ms SLO, and F3 randomly reads 1 row
from a large HBase table with 250ms SLO. The back-
ground workflows are: F4 submits 400-row HBase table
scans, F5 creates directories in HDFS, and F6 submits
400-row HBase table scans of a cached HBase table.

Figure 6(top-left) demonstrates the request latencies
of the three high priority workflows, normalized to their
SLOs. During each of the three phases of the experiment,
a background workflow temporarily increases its request

10

Thb4latency
T14throughput
T24throughput

0 3 6 9 12 15 18

th
ro

ug
hp

ut
4[

k4
re

q/
s]

la
te

nc
y4

[s
ec

]
time4[min]

0.8

0.4

0.6

0.2

0

3

2

1

0
0 1 2 3 4 5

th
ro

ug
hp

ut
4[

M
B

/s
]

time4[min]

0.2

0

0.1

80

60

40

20

0

Thp4latency
Tr4throughput

Figure 7: LATENCYSLO rate-limits replication to enforce a
100ms SLO for Thp (left). LATENCYSLO enforces a 50ms la-
tency for heartbeats (right).

rate, affecting the latency of the high priority workflows.
In the first stage, F4 increases its load and F1 and F2 miss
their SLO. In the second stage, F5 increases its load and
F1 misses its SLO by a factor of 10. In the last stage, F6
increases its load and F2 and F3 miss their SLOs by factors
of 10 and 500 respectively. Figure 6(bottom-left), shows
the slowdown of different resources as the experiment
progresses: at first F4 table scans cause disk slowdown,
then F5 causes HDFS NameNode lock and NameNode
queue slowdown, and finally F6 causes CPU and HBase
queue slowdown as its data is cached.

We repeat the experiment using LATENCYSLO to en-
force the SLOs of F1, F2 and F3. Figure 6(top-right) shows
that the policy successfully maintains the SLOs by throt-
tling the background workflows at a number of control
points within HDFS and HBase. Figure 6(bottom-right)
shows the sparklines of the workflow utilization ratios
– the achieved throughput relative to the allocated rate
at a particular control point, similar to Figure 5. We see
that LATENCYSLO only rate-limits the background work-
flows during their specific overload phases.

These results highlight how LATENCYSLO selectively
throttles workloads based on their contribution to the SLO
violation. Retro can enforce SLOs for multiple workflows
across software and hardware resources simultaneously.
Background workflows Thanks to the workflow ab-
straction, LATENCYSLO is equally applicable to provid-
ing guarantees for high priority background tasks, such as
heartbeats, or to protecting high priority workflows from
aggressive background tasks such as data replication.

Figure 7(right) demonstrates the effect of two work-
flows T1 and T2 on the latency of datanode heartbeats, Thb.
The heartbeat latency increases from 4ms to about 450ms
when T1 and T2 start renaming files and listing directories,
respectively, causing increased load the HDFS namesys-
tem lock. Whilst Thb and T2 only require read locks, T1
requires write locks to update the filesystem, thus block-
ing heartbeats. When we start SLO enforcement at t=13,
the policy identifies T1 as the cause of slowdown, throt-
tles it at the NameNode RPC queue, and achieves the
heartbeat SLO.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

re
s
o

u
rc

e
 s

h
a

re

time [min]

read4M, disk read4M, network

list, disk list, network

Figure 8: Resource share for experiment described in §6.3.

In Figure 7(left), LATENCYSLO rate-limits low-
priority background replication Tr, to provide guaranteed
latency to high priority workflow Thp submitting 8kB
read requests with 100ms SLO. At t=1, we manually
trigger replication of a large number of HDFS blocks;
subsequently, LATENCYSLO rate-limits Tr. High-priority
replication (single remaining replica) could use a separate
workflow ID to avoid throttling.

6.3 RDRF in HDFS
To demonstrate RDRF (Figure 8), we run an experiment
with two workflows – READ4M with 50 clients reading
4MB files, and LIST with 5 clients listing 1000 files in a
directory – accessing the HDFS cluster remotely sharing a
1Gbps network link. The dominant resource for READ4M
is disk and for LIST it is the network, since it is reading
large amounts of data from the memory of the NameNode.

We start READ4M at t=0 and add LIST at t=5, with shar-
ing weights of 1. Between time 5 and 10, RDRF throttles
READ4M to achieve equal dominant shares across both
of these workflows (60% on disk and network). After
increasing the weight of READ4M to 2 at t=10, the domi-
nant shares change to 80% and 40%, respectively.

Despite knowing neither the demands of each workflow,
nor the capacity of each resource, RDRF successfully
allocates each workflow the fair share of its dominant
resource. The experiment demonstrates how slowdown is
viable as a proxy for resource capacity, and coupled with
reactive policies, enables us to overcome some limitations
of an existing resource fairness technique.

6.4 Overhead and scalability of Retro
Retro propagates a workflow ID (3 bytes) along the exe-
cution path of a request, incurring up to 80ns of overhead
(see Table 2) to serialize and deserialize when making
network calls. The overhead to record a single resource
operation is approximately 340ns, which includes inter-
cepting the thread, recording timing, CPU cycle count
(before and after the operation), and operation latency,
and aggregating these into a per-workflow report.

To estimate the impact of Retro on throughput and
end-to-end latency, we benchmark HDFS and HDFS in-
strumented with Retro using requests derived from the

11

Operation Latency
Deserialize metadata 80ns
Read active metadata 9ns
Serialize metadata 46ns
Record use one resource operation 342ns

Table 2: Costs of Retro instrumentation

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

1.2

1

0.8

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

HDFS
HDFS w/ Retro

1.2

1

0.8

Figure 9: Normalized latency (left) and throughput (right) for
HDFS NameNode benchmark operations along with error bars
showing one standard deviation.

HDFS NNBench benchmark. See Figure 9 for throughput
and end-to-end latency for five requests types. Open opens
a file for reading; Read reads 8kB of data from a file; Cre-
ate creates a file for writing; Rename renames an existing
file and Delete deletes the file from the name system (and
triggers an asynchronous block delete). Of the request
types, Read is a DataNode operation and the others are
NameNode operations. In all cases, latency increases by
approximately 1-2%, and throughput drops by a similar 1-
2%. Variance in latency and throughput increases slightly
in HDFS instrumented with Retro. These overheads could
be further significantly reduced by sampling, i.e., tracing
only a subset of requests or operations.

We evaluate Retro’s ability to scale beyond the clus-
ter sizes presented thus far with an 200-VM experiment
on Windows Azure (Standard A2 instances). Figure 10
shows slowdown and aggregate disk throughput for four
workflows when BFAIR is activated (at t=1.5) and per-
workflow weights are adjusted (at t=4). Each workflow
ran a mix of 64MB HDFS reads and writes, with 800,
1200, 1600, and 2000 closed-loop clients respectively.
Before the policy is activated we observe the expected im-
balance in disk throughput caused by the differing number
of clients in each workflow. When the policy is activated
at t=1.5, the workflows quickly converge to an equal share
of disk throughput, and the slowdown decreases to the
target of 50. At t=4, two of the clients are given a weight
of 2 and the policy quickly establishes the new fair share.

We evaluate the scalability of Retro’s central controller
in terms of its ability to process resource reports. In a
benchmark where each report contains resource usage for
1000 workflows, the controller can process on the order
of 10,000 reports per second. Assuming 10 resources per
machine, the controller could thus support up to 1000

0

25

50

75

0

0.4

0.8

1.2

0 1 2 3 4 5 6

S
lo

w
do

w
n

D
is

k[
T

hr
ou

g
hp

ut
[[G

B
/s

]

Time[[min]

client[×[800
client[×[1200

client[×[2000
disk[slowdown

client[×[1600

Figure 10: Retro’s BFAIR policy on a 200-node cluster with four
workflows and overloaded disks. BFAIR is enabled at t=1.5 with
a target slowdown of 50; client weights are adjusted at t=4.

0 5 10 15 20 25 30
Timed[days]

1M

10M

100M

1G

10G

100G

N
et

w
or

kd
T

h
ro

ug
h

pu
td[

by
te

s/
s] Total Retro

Figure 11: Total network throughput for a several-hundred node
production Hadoop cluster and network throughput of Retro, cal-
culated from 1 month of traces. Retro’s bandwidth requirements
are on average 0.1% of the total throughput.

machines. In this setup, each machine would use about
600kB/sec of network bandwidth to send the reports. Fig-
ure 11 shows calculated network overhead that would be
imposed by Retro on a production Hadoop cluster com-
prising several hundred nodes over a period of a month.
We calculate the network traffic that would be generated
by Retro based on traces from this production cluster. The
figure shows that Retro would account for an average of
0.1% of the network traffic present. Furthermore, since
Retro aggregation only computes sums and averages, we
can aggregate hierarchically (e.g. inside each machine and
rack), further reducing the required network bandwidth
and thereby supporting much larger deployments.

Whilst Retro requires manual developer intervention
to propagate workflow IDs across network boundaries
and to verify correct behavior of Retro’s automatic instru-
mentation, our experience shows that this requires little
work. For example, instrumenting each of the five sys-
tems required only between 50 and 200 lines of code; for
example to handle RPC messages. Instrumenting resource
operations happens automatically through AspectJ.

7 Discussion
In Retro, we made the decision to implement both re-
source measurement and control points at the application
level. While applying Retro in the OS, hypervisor, or
device driver level could provide more accurate measure-
ments and fine-granularity enforcement, our approach has
the advantages of fast and pervasive deployment, and of

12

not requiring specially built OS or drivers (we deployed
Retro in both Windows and Linux environments). Retro’s
promising results indicate that OS’s, and distributed sys-
tems in general, should provide mechanisms to facilitate
the propagation of workflow IDs across their components.

Retro is extensible to handle custom resources. For ex-
ample, in systems with row-level locking we cannot treat
each lock/row as an individual resource because the num-
ber of resources might be unbounded. Instead, we could
define each data partition as a logical resource, which
would significantly reduce the number of resources in
the system. ZooKeeper uses a custom request processing
pipeline, which is not part of Java standard library. We
treat ZooKeeper queues as custom resources and estimate
their load and slowdown.

The current implementation of Retro has several lim-
itations. First, some resources cannot be automatically
revoked once a request has obtained them and have to
be explicitly released by the system. For example, this
applies to memory, sockets, or disk space. A developer
could implement application-specific hooks that Retro
could use to reclaim resources. Second, because the rates
of distributed token buckets are updated only once a sec-
ond, when workload is very variable, this might reduce the
throughput of the system. Using different local schedulers,
such as weighted fair queues [35] and reservations [15]
would alleviate this problem.

8 Related work
In [26] we introduced the design principles behind Retro,
as well as a preliminary implementation of resource mea-
surement for HDFS. This paper presents a complete
framework by adding the centralized controller, resource
management policies, and distributed control points, eval-
uated across five different distributed systems.
Multi-resource scheduling Several research projects
tackle multi-resource allocation, such as Cake [44],
mClock [15], IOFlow [39], and SQLVM [27]. These
frameworks are specific to particular systems, such as
storage or relational databases. Retro improves on top of
these by providing the workflow, resource, and control
point abstractions, which allow it to handle a wide range
of resources and system activities, and enforce policy
decisions across the whole system.

Cake provides isolation between low-latency and high-
throughput tenants using HBase and HDFS. However, it
treats HDFS as a single resource, and cannot target spe-
cific resource bottlenecks and workflows that overload
these resources. mClock is a disk IO scheduler that could
be implemented as a Retro control point. IOFlow pro-
vides per-tenant guarantees for remote disk IO requests
in datacenters but does not schedule other resources such
as threadpools, CPU, and locks. SQLVM [27] provides
isolation for CPU, disk IO, and memory for multiple rela-

tional databases deployed in a single machine, but does
not deal with distributed scenarios.

In the data analytics domain, task schedulers such as
Mesos [20], Yarn [42], or Sparrow [29] use an admission
control approach to allocate individual tasks to machines.
In these frameworks, each task passes through the sched-
uler before starting its execution, the scheduler can place
it to an arbitrary machine in the cluster and after starting
execution, the task is not scheduled any more. In typical
distributed systems, requests do not pass through a single
point of execution and routing of a request through the
system is driven by complex internal logic. Finally, to
achieve fine-grained control over resource consumption,
requests have to be throttled during its execution, not only
at the beginning. These frameworks thus do not directly
apply to scheduling in general distributed systems. On
the other hand, Retro requires no knowledge of internal
design of the system and provides fine-grained throttling
using control points on the request execution path.
End-to-end (resource) tracing Banga and Druschel ad-
dressed the mismatch between OS abstractions and the
needs of resource accounting with resource containers [4],
which, albeit in a single machine, aggregate resource us-
age orthogonally to processes, threads, or users. Our end-
to-end propagation of workflow IDs shares mechanisms
with taint tracking [28] and several causal tracing frame-
works [5, 8, 9, 11, 34, 37, 40]. Retro does not, however,
record causality or traces, but rather uses the workflow in-
formation to attribute resource usage. Whodunit [7] uses
causal propagation to record timings between parts of a
program, and provides a profile of where requests spent
their time. Timecard [33] also propagates cumulative time
information in the request path between a mobile web
client and a server, and uses this in real time to speed up
the processing of requests that are late. Retro, in contrast,
records aggregate resource profiles by workflow and uses
these to enforce flexible high-level policies.

9 Conclusion
Retro is a framework for implementing resource man-
agement policies in multi-tenant distributed systems.
Retro tackles important challenges and provides key
abstractions that enable a separation between resource-
management policies and mechanisms. It requires low
developer effort, and is lightweight enough to be run in
production. We demonstrate the applicability of Retro to
key components of the Hadoop stack and develop and
evaluate three targeted and reactive policies for achieving
fairness and latency targets. These policies are system-
agnostic, resource-agnostic, and uniformly treat all sys-
tem activities, including background management tasks.
To the best of our knowledge, Retro is the first framework
to do so. We plan to extend the control points to provide
fair scheduling, prioritization, and load balancing.

13

References
[1] Intel Performance Counter Monitor – A better way to mea-

sure CPU utilization. http://intel.ly/1C23e67.
[2] F. Akgul. ZeroMQ. Packt Publishing, 2013.
[3] Amazon web services. http://aws.amazon.com/.
[4] G. Banga, P. Druschel, and J. C. Mogul. Resource con-

tainers: a new facility for resource management in server
systems. In OSDI ’99, pages 45–58, Berkeley, CA, USA,
1999. USENIX Association.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for Request Extraction and Workload Modeling.
In Proc. USENIX OSDI, 2004.

[6] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al.
Windows Azure Storage: a highly available cloud stor-
age service with strong consistency. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 143–157. ACM, 2011.

[7] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit:
Transactional Profiling for Multi-Tier Applications. In
EuroSys’07, Lisbon, Portugal, March 2007.

[8] A. Chanda, K. Elmeleegy, A. L. Cox, and W. Zwaenepoel.
Causeway: System support for controlling and analyzing
the execution of multi-tier applications. In Proc. Middle-
ware 2005, pages 42–59, November 2005.

[9] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox.
Pinpoint: Problem Determination in Large, Dynamic, In-
ternet Services. In Proc. International Conference on
Dependable Systems and Networks, 2002.

[10] T. Do, H. S. Gunawi, T. Do, T. Harter, Y. Liu, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. The
case for limping-hardware tolerant clouds. In 5th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud),
2013.

[11] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica. X-trace: A pervasive network tracing framework. In
Proceedings of the 4th USENIX Conference on Networked
Systems Design & Implementation, NSDI’07, Berke-
ley, CA, USA, 2007. USENIX Association.

[12] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-
resource fair queueing for packet processing. In Proceed-
ings of the ACM SIGCOMM 2012 Conference on Appli-
cations, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages 1–12,
New York, NY, USA, 2012. ACM.

[13] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
fair allocation of multiple resource types. In USENIX
NSDI, 2011.

[14] Google Protocol Buffers. http://code.google.
com/p/protobuf/.

[15] A. Gulati, A. Merchant, and P. J. Varman. mClock: Han-
dling Throughput Variability for Hypervisor IO Schedul-
ing. In R. H. Arpaci-Dusseau and B. Chen, editors, Pro-
ceedings of OSDI, pages 437–450. USENIX Association,
2010.

[16] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang,
Y. Luo, T. Bergan, M. Musuvathi, Z. Zhang, and L. Zhou.
Failure recovery: When the cure is worse than the disease.
In Presented as part of the 14th Workshop on Hot Topics
in Operating Systems, Berkeley, CA, 2013. USENIX.

[17] HBase. http://hbase.apache.org.

[18] HDFS-4183. http://bit.ly/1l4uWbu.

[19] HDFS API. http://bit.ly/1cxFTD9.

[20] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A plat-
form for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, Berkeley,
CA, USA, 2011. USENIX Association.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale sys-
tems. In Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, volume 8, 2010.

[22] T. Johnson. Approximate analysis of reader/writer queues.
IEEE Trans. Softw. Eng., 21(3):209–218, Mar. 1995.

[23] H. Kang. Computational Color Technology. Press Mono-
graphs. Society of Photo Optical, 2006.

[24] S.-I. Kang and H.-K. Lee. Analysis and solution of non-
preemptive policies for scheduling readers and writers.
SIGOPS Oper. Syst. Rev., 32(3):30–50, July 1998.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In Proceed-
ings of the 15th European Conference on Object-Oriented
Programming, ECOOP ’01, pages 327–353, London, UK,
UK, 2001. Springer-Verlag.

[26] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. To-
wards general-purpose resource management in shared
cloud services. In 10th Workshop on Hot Topics in System
Dependability (HotDep 14), Broomfield, CO, Oct. 2014.
USENIX Association.

[27] V. R. Narasayya, S. Das, M. Syamala, B. Chandramouli,
and S. Chaudhuri. Sqlvm: Performance isolation in
multi-tenant relational database-as-a-service. In CIDR’13.
www.cidrdb.org, 2013.

[28] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation
of exploits on commodity software. In Proceedings of
the 12th Annual Network and Distributed System Security
Symposium (NDSS ’05), Feb. 2005.

[29] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Spar-
row: Distributed, low latency scheduling. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 69–84, New York, NY,
USA, 2013. ACM.

[30] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical vali-
dation. In ACM SIGCOMM Computer Communication
Review, volume 28(4), pages 303–314. ACM, 1998.

14

http://intel.ly/1C23e67
http://aws.amazon.com/
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://hbase.apache.org
http://bit.ly/1l4uWbu
http://bit.ly/1cxFTD9

[31] A. K. Parekh and R. G. Gallagher. A generalized processor
sharing approach to flow control in integrated services
networks: the multiple node case. IEEE/ACM Transactions
on Networking (TON), 2(2):137–150, 1994.

[32] L. C. Puryear and V. G. Kulkarni. Comparison of stability
and queueing times for reader-writer queues. Perform.
Eval., 30(4):195–215, 1997.

[33] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakr-
ishnan. Timecard: Controlling user-perceived delays in
server-based mobile applications. In SOSP ’13, pages
85–100, New York, NY, USA, 2013. ACM.

[34] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: detecting the unexpected in
distributed systems. In NSDI’06, Berkeley, CA, USA,
2006. USENIX Association.

[35] M. Shreedhar and G. Varghese. Efficient fair queuing using
deficit round-robin. Networking, IEEE/ACM Transactions
on, 4(3):375–385, 1996.

[36] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. In Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on,
pages 1–10. IEEE, 2010.

[37] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dap-
per, a large-scale distributed systems tracing infrastructure.
Technical report, Google, Inc., 2010.

[38] D. Stiliadis and A. Varma. Latency-rate servers: a gen-
eral model for analysis of traffic scheduling algorithms.

IEEE/ACM Transactions on Networking (ToN), 6(5):611–
624, 1998.

[39] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,
A. Rowstron, T. Talpey, R. Black, and T. Zhu. IOFlow: A
Software-defined Storage Architecture. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 182–196. ACM, 2013.

[40] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-
Malek, J. Lopez, and G. R. Ganger. Stardust: Tracking
activity in a distributed storage system. SIGMETRICS
Perform. Eval. Rev., 34(1):3–14, June 2006.

[41] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive – a
petabyte scale data warehouse using Hadoop. In ICDE’10,
pages 996 –1005, march 2010.

[42] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages 5:1–
5:16, New York, NY, USA, 2013. ACM.

[43] A. Wang. Personal communication.

[44] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and
I. Stoica. Cake: Enabling High-level SLOs on Shared

15

	Introduction
	Motivation and challenges
	Hadoop architecture
	Resource management challenges

	Design
	Retro abstractions
	Architecture

	Implementation
	Per-workflow resource measurement
	Resource library
	Coordinated throttling

	Policies
	BFair policy
	rDRF policy
	LatencySLO policy

	Evaluation
	BFair in Hadoop stack
	LatencySLO
	rDRF in HDFS
	Overhead and scalability of Retro

	Discussion
	Related work
	Conclusion

