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Abstract
End-to-end tracing has emerged recently as a valuable
tool to improve the dependability of distributed systems
by performing dynamic verification and diagnosing cor-
rectness and performance problems. End-to-end traces
are commonly represented as richly annotated directed
acyclic graphs, with events as nodes and their causal de-
pendencies as edges. Being able to automatically com-
pare these graphs at scale is a key primitive for tasks
such as clustering, classification, and anomaly detection.
In this paper we explore recent developments in the the-
ory of graph kernels, and investigate the feasibility of us-
ing a family of kernels based on the Weisfeiler-Lehman
graph isomorphism test [35] as an efficient and robust
graph comparison primitive. We find that graph kernels
provide a good formulation of the execution graph com-
parison problem, and present preliminary but encourag-
ing results on their ability to distinguish high-level dif-
ferences between execution graphs.

1 Introduction

End-to-end tracing has emerged in the past decade as a
valuable tool to diagnose correctness and performance
problems in distributed systems [14, 28, 30, 36, 37],
model workloads, resource usage, and timings [4, 37, 24,
9, 36], and to detect anomalous requests at runtime [4,
10, 30, 26]. By recording causally-related events across
the boundaries of components, layers, machines, and
even administrative domains, end-to-end tracing avoids
problems with more traditional component-centric log-
ging [25]. First, it eliminates the process of correlating
entries across multiple logs using ad-hoc identifiers and
inference, which can be complex, error prone, or not
even possible [4]; second, it may avoid depending on
clocks, which can be unsynchronized among machines;
third, when done with runtime support, allows for coher-
ent sampling, or the capturing of only the events that are
causally related to an initial event.

A common representation for end-to-end traces is a
labelled, directed, acyclic graph, or an execution graph.
These graphs are rich in information about the instru-
mented system: they record paths taken, timing between

events, and resource usage. They are, however, hard to
analyze manually, as an instrumented system can pro-
duce a large number of graphs, they can become large
and complex, and hard to visualize effectively.

Because of this, many previous works sought to ex-
tract value from end-to-end traces by automatically ana-
lyzing series of execution through, e.g., clustering, classi-
fication, or anomaly detection. In all of these tasks, graph
comparison appears as a recurring primitive [4, 10, 24,
30]. There is however, room to improve. Sambasivan et
al. [30] mention that off-the-shelf clustering algorithms
produced clusters that were ‘too coarse-grained and un-
predictable’, and that metrics better aligned with devel-
oper’s expectations of similarity are needed. Some of the
methods used, such as string-edit-distance of linearized
versions of the graph [4, 30], or the probabilistic context
free grammar from [10] lose parallelism and concurrency
infomation, which may be detrimental in some use cases.

In this paper we explore recent developments in the
theory of graph kernels for graph comparison, as a poten-
tial first step in addressing these limitations. In particular,
we investigate the feasibility of using a family of scal-
able graph kernels based on the Weisfeiler-Lehman iso-
morphism test as a common and flexible framework for
comparing execution graphs [35]. Our contributions are
twofold: we (i) identify the underlying similarities in ex-
ecution graph comparison methods from previous work;
and (ii) present a preliminary evaluation of four graph
kernels for execution graph comparison in the context of
clustering and one application, stratified sampling.

The rest of this paper is organized as follows. In §2,
we discuss causal tracing, graph comparison methods
utilized in previous work, and candidate methods from
graph theory. We provide a formulation for graph kernels
in §3. We perform a number of experiments and provide
evaluation in §4. In §5 we discuss the future directions of
execution graph comparison and end-to-end tracing.

2 Background and Related Work

2.1 Causal Tracing

Traditional approaches to debugging and profiling end-
to-end requests – ad-hoc analysis and per-machine log-
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ging - scale poorly in large-scale distributed systems.
Causal end-to-end tracing has emerged as a valuable
tool for improving the dependability of these systems
by recording, diagnosing and analyzing their execution
across components. End-to-end tracing frameworks cor-
relate events across multiple machines and record their
causality according to Lamport’s happens before rela-
tion [22]. A number of such frameworks exist both in
academia [4, 9, 14, 28, 37] and in industry [36, 11, 3,
38, 12], and have been used for a variety of purposes,
including diagnosing anomalous requests whose struc-
ture or timing deviate from the norm [4, 10, 30, 26]; di-
agnosing steady-state problems problems that manifest
across many requests. [28, 37, 14, 36, 30]; identifying
slow components and functions [9, 36, 24]; and mod-
elling workloads and resource usage [4, 24, 37].

A common representation for requests recorded by
such frameworks is an execution graph, a directed,
acyclic graph that describes the path of a single request
through components of a distributed system. Events that
occur during the request’s execution are represented as
nodes in the graph, with the root node representing the
start of the request. An edge from one node to a subse-
quent node only exists if the corresponding events satisfy
Lamport’s happened-before relationship [22]. Events
may have further information, such as labels, wall-clock
timing, and resource usage – which can then be attributed
to nodes and edges in the execution graphs. An individual
execution graph provides a description of a request as it
traverses a distributed system – it captures the path of the
request, performance costs incurred at the components
visited, and timings between events. Collectively, exe-
cution graphs can represent aggregate system behavior -
capturing the commonly-traversed paths, corner case ex-
ecutions, and distributions over paths and timings.

Execution graphs capture a lot of useful information,
but they are difficult to manually analyze for three rea-
sons: graphs can be large, growing to thousands of nodes;
the nodes and edges of a graph can incorporate a large
amount of information; and large graphs cannot easily
be visualized or compared. Consequently, prior work in
the area emphasizes automated approaches to comparing
and reasoning about execution graphs.

2.2 Execution Comparison in Prior work

Despite the varied end goals of prior work, a common
theme is the need to compare or cluster execution graphs.
The specific graph comparison methods utilized vary by
application, but there is broad similarity in the features
selected for comparison. In this section we look into four
examples from the literature.

Magpie [4] correlates events generated by the op-
erating system, middleware, and applications, and in-

fers causal relations between events to produce execu-
tion graphs. The authors use comparison based on a
simple string-edit-distance metric on flattened execution
graphs as a basis for execution clustering. Their approach
discards some structural and temporal information, and
whilst the technique produced reasonable results, the au-
thors acknowledged the need for tree- and graph-edit dis-
tance algorithms.

Pinpoint [10] collects execution traces as a series of
paths through the system. The authors diagnose anoma-
lies by generating a probabilistic context-free grammar
(PCFG) from the paths. They perform anomaly detec-
tion at runtime, whereby new paths are compared to the
generated model to determine the probability with which
it would be produced from the grammar. Anomaly detec-
tion worked well in experiments, but the authors note that
there are a number of realistic scenarios where it would
not work well: features must be represented in the train-
ing set for them to be considered at runtime; changes
such as software upgrade require the model to be re-
trained; and the learned model represents a superset of
observed paths.

Spectroscope [30] collects execution traces repre-
sented as process invocation trees, and diagnoses perfor-
mance changes by comparing sets of before- and after-
traces. Spectroscope assumes that a similar workload
was run before and after the performance change, and
that the performance change manifests as a change in dis-
tribution over the request structures and/or request tim-
ings. To diagnose a change, spectroscope compares the
distributions of service completion times for graphs that
are topologically identical, and compares structural dif-
ferences between executions using string-edit-distance.

Mann et al. [24] collect execution traces from datacen-
ter services, and model the latency of a service given the
child services invoked. The execution graphs recorded
do not fully capture the causal dependencies internal to a
service, so one component of the work is to deduce those
causal dependencies from a collection of training exam-
ples. The training examples are then clustered if they
have identical execution graphs. At runtime, a cluster is
selected by comparing its service timings with the clus-
ter centroids, and selecting the nearest-neighbour. A pre-
diction for the execution’s overall runtime is then given
based on the other executions in the selected cluster.

There are a few common limitations in these works.
Mann et al. and Spectroscope do clustering, but only
for graphs that are isomorphic. For graphs with differ-
ent topology, Spectroscope and Magpie use string-edit-
distance on canonicalized and linearized graphs as a met-
ric, for proper clustering in the latter, and for finding sim-
ilar clusters in the former. Both this linearization, and
the PCFG from Pinpoint lose information about the con-
currency structure of the graph, which can be important
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for many applications. We argue that these limitations
stem from the lack of graph comparison methods that are
both effective and efficient. While it is true that more gen-
eral graph kernels have been traditionally quite expensive
(§2.3), new developments in efficient graph kernels war-
rant an investigation on their suitability for this setting.

2.3 Graph Comparison Methods

Much prior work on graph comparison exists in the fields
of graph theory and machine learning [1]. Application
domains include bioinformatics [32], data mining [40],
social network analysis [21], and more [5, 6, 20]. Of
particular interest to us are techniques for graphs with
labelled nodes and edges. The size of execution graphs
can extend to thousands of nodes, but this remains small
when compared to some applications, which have graphs
in the hundreds of millions of nodes [21, 40]. This ac-
cords us flexibility for considering techniques that may
not be tractable for some application domains.

Candidate techniques include frequent subgraph min-
ing [18], maximal common subgraphs [8], graph edit
distance [29], graph isomorphism [13], and graph ker-
nels [39]. Among these, graph kernels are attractive be-
cause they can tolerate approximate matches and can in-
corporate node and edge labels, timings, and other fea-
tures in a uniform manner. Also, by formulating graph
comparison in terms of kernel functions, subsequent ap-
plications can utilize a wealth of off-the-shelf kernel
methods from the machine learning domain [15]. Recent
developments, which we describe in §3.1, have produced
graph kernels that are efficient to compute while produc-
ing results that are close to previous state-of-the-art, but
expensive, graph kernels.

3 Graph Kernels for Execution Graphs

A graph G = (V,E, `) consists of a set of ver-
tices V = {v0, v1, ..., vn}, a set of directed edges
E ⊂ V × V , and a labelling function ` : V → Σ that
assigns labels from an alphabet Σ to verticies.

When G represents an execution graph, V is con-
structed from the events of the execution, E from the
causal edges, and ` is constructed from the user-specified
labels that the execution graph records for each event.
That is, for any nodes v0 ∈ G0 and v1 ∈ G1,
` (v0) = ` (v1) implies that v0 and v1 are different occur-
rences of the same event. Commonly this means that the
events were generated by the same line of code, though
specifying event labels is a design decision at the time of
instrumentation.

3.1 Graph Kernels

Informally, a graph kernel is a function that takes two
graphs, G0 and G1 as input, and produces a numeric
value as output quantifying their similarity. It must sat-
isfy two mathematical requirements; namely, it must
be symmetric and positive semi-definite. For a rigorous
mathematical definition, see [31].

A variety of popular graph kernels exist in the lit-
erature, broadly falling into three categories: kernels
based on walks and paths [7, 19, 27], kernels based
on subgraphs [16, 34], and kernels based on subtree
patterns [23, 27]. The more recent Weisfeiler-Lehman
kernel and framework [33, 35] present generalizations
that encompass a number of previously described ker-
nels. Here, we give descriptions for the node-count ker-
nel, edge-distance kernel, as well as a description of the
Weisfeiler-Lehman framework. For an overview of other
kernels, we refer the reader to [39].

Node-count kernel The node-count kernel simply
counts mutual occurrences of labelled nodes in the
graphs

KNC (G0, G1) =
∑
u∈V0

∑
v∈V1

f (u, v)

where f (u, v) =

{
1 if `0 (u) = `1 (v) ,

0 otherwise.

Edge-distance kernel The edge-distance kernel
counts mutual occurrences of edges in the graphs. Here,
we incorporate edge weights ω into the kernel score.

KED(G0,G1) =
∑

(a,b)∈E0

∑
(c,d)∈E1

f(a,b,c,d)

where f(a,b,c,d) =


min(ωab,ωcd)

2

max(ωab,ωcd)

if `0(a) = `1(c)
and `0(b) = `1(d),

0 otherwise.

Weisfeiler-Lehman framework The Weisfeiler-
Lehman framework provides a computationally
efficient method for computing graph kernels over
successively-expanding subgraphs of the input graphs.
The framework is paramaterized by a depth d, and a
different user-specified graph kernel K. The framework
describes a method for expanding input graphs A and
B into sequences of relabelled graphs {A1, ..., Ad} and
{B1, ..., Bd}. Subsequently, the graph kernel K can be
applied to each pair of graphs in the sequences:

KWL =

d∑
i=1

αiK (Ai, Bi)
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We refer the reader to [35] for a more rigorous defini-
tion. When the Weisfeiler-Lehman framework is parama-
terized with K = KNC , this is called the Weisfeiler-
Lehman kernel. The Weisfeiler-Lehman framework is
based on the Weisfeiler-Lehman isomorphism test; as
such, for increasing values of d, the Weisfeiler-Lehman
framework itself tends towards testing for isomorphism.
In our evaluation, we include the Weisfeiler-Lehman
framework paramaterized with the node-count and edge-
distance kernels, and a depth of 3. The Weisfeiler-
Lehman kernel is an appealing choice because it presents
a computationally efficient method for operating on sub-
graphs. We select a depth of 3 so as to incorporate suf-
ficient detail for reasoning about branch points in execu-
tions.

3.2 Applicability to Prior Work

For each of the examples in §2.2, graph kernels are a vi-
able alternative for comparing the execution graphs used.
For both Magpie and Spectroscope, graph kernels such as
the edge-distance kernel could directly replace the string-
edit-distance metric they use, and it would an interesting
experimental comparison to see how they perform. In the
case of Mann et al., which compares timings only be-
tween graphs with identical topology, kernels could be a
viable alternative approach that relax the requirement to
select a single topology to compare an execution to.

Pinpoint’s context-free grammar encodes probabilis-
tic expansion rules representing the probability that any
given component will call a particular set of other com-
ponents. We present an alternative conceptualization of
this context-free grammar - that the probability of some
new execution is simply the summation of graph kernel
scores between the training set examples and the new
execution. Depending on Pinpoint’s specific implemen-
tation details, the graph kernel used could be a simple
node-count, edge-count, or a path-based kernel.

4 Evaluation

In this section we evaluate the three kernels described in
§3.1. We present two experiments whereby executions
can be separated into broad high-level categories. We
show that the graph kernels can effectively distinguish
executions from each of the clusters. We also explore
an example application of graph kernels, stratified sam-
pling.

4.1 Experimental Setup

We instrumented Hadoop map-reduce v2.04 and
YARN [2] with the X-Trace framework [14] and de-

ployed it on a small, 10-node cluster. Using this in-
strumentation, we ran jobs from the HiBench bench-
mark [17] and recorded execution graphs of the jobs. We
implemented the three kernels outlined in §3.1, and used
them to compare recorded execution graphs. For com-
parison, we also implemented distance metrics based on
total runtime and on the string-edit-distance of canoni-
calized linearizations of the graphs.
Varying Execution Topology We generated a 2.5GB
input file split across 10 HDFS data nodes with a block
size of 64MB. We sequentially ran a number of word-
count map-reduce jobs, varying the number of nodes
available for executing map-reduce tasks. For topologies
of 4, 6, 8 and 10 machines, we ran 200 executions each,
collected the resulting execution traces, and manually
clustered them according to the number of nodes that
were available in the cluster.
Varying Speculative Executions We generated a
2.5GB input file split across 10 HDFS data nodes with
a block size of 64MB. We sequentially ran a number of
wordcount map-reduce jobs across 10 machines, vary-
ing the Hadoop parameter that specifies the probability
of speculative executions being initiated. After collecting
the execution traces, we manually clustered them accord-
ing to the number of speculative executions that Hadoop
initiated. Our resulting data set includes executions with
0, 1 and 2 speculative executions.

4.2 Kernel Validation

Figure 1 shows the ability for the kernels to separate clus-
ters of executions in the two experiments. For a given
column, say, 4 vs 8, for each of the 200 executions in the
’4 machine’ group, we find the minimum distance to all
traces in the ’8-machine’ group. The boxplot shows the
distribution of this value over all executions in the source
group. All values are normalized, since it is meaningless
to compare actual scores across metrics. A metric is suc-
cessful if there is little to no overlap between the first
boxplot, of the distances within the group, and the mini-
mum distances to the other groups.

In all cases, executions from within the same clus-
ter have a low kernel distance. However, the amount of
separation varies significantly. The runtime comparison
does a good job in the varying execution topology ex-
periment, but not in the speculative execution one. This
makes sense, since speculative execution will not dra-
matically affect the runtime, whereas a topology with
fewer nodes will be able to run fewer tasks in parallel
and thus take longer. Similarly, we note that string-edit-
distance behaves poorly in the speculative executions ex-
periment. This occurs because there are numerous minor
fluctuations in the graph topology between executions,
dwarfing the small contribution of the inserted specula-
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Figure 1: Boxplots showing the separation between clusters for two experiments. Each plot compares clusters using runtime, string-
edit-distance (SED), node-count kernel (NC), edge-distance kernel (ED), and the Weisfeiler-Lehman kernel paramaterized with
depth 3 and node-count (NC(3)) or edge-distance (ED(3)) kernels.

tive execution nodes.
Both node-count kernels do well in the speculative ex-

ecution experiment, where the number of events changes,
but not so well in the varying topology, as the number of
events is more uniform: with more machines, they are
just spread across them.

For both experiments, the Weisfeiler-Lehman edge-
distance kernel produces good results, as it takes into
account both timings and topology. The higher variance
seen in some comparisons can be attributed to subtle
changes in execution graph topology that are exacerbated
by the Weisfeiler-Lehman framework. One example of
such a change is Hadoop’s policy of batching map out-
put data during the shuffle phase, which can be variable
between similar executions. Thus, the variance that we
see is not undesirable because it correctly reflects differ-
ences present in execution graphs within each cluster.

4.3 Stratified Sampling

In this section, we describe an example application using
graph kernels: stratified sampling. By recording only a
small fraction of requests, the resource overhead of cap-
turing end-to-end traces can be as little as 1%. Dapper,
for example, samples requests uniformly at random [36].
One consequence, however, is that a framework may fail
to capture infrequent but interesting requests.

The goal of stratified sampling is to bias the sampling
scheme such that dissimilar requests have a higher sam-
pling probability. Graph kernels provide a measure of
similarity that we can use to bias the decision on whether
to persist an execution. Whilst we acknowledge that di-
rectly applying graph kernels at runtime would be an in-
efficient solution, graph kernels provide a means to as-
sess potential features that could feasibly be used by trac-
ing frameworks in efficient sampling implementations.
Here, we evaluate a simple stratified sampling scheme
based on graph kernel similarity. This approach assumes
that traces would stay in memory for a period, and the
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Figure 2: Sampling probabilities for requests from the 4-, 6-,
8- and 10-node clusters as the workload proportion of the 4-
cluster varies

decision in question is whether or not to persist the trace.

Using data from the varying topology experiment,
we simulated workloads with varying proportions of re-
quests. Given a new request r, we calculate its sampling
probability based on the observed workload as p (r) =
1−mean {K (r, w) |w ∈Workload}.

Figure 2 shows the mean sampling probabilities for
executions from each cluster as the workload varies. We
vary the contribution of the 4-node cluster to the work-
load, from 5% to 95%. The remainder of the workload
is distributed evenly over the other clusters. The fig-
ure shows how the sampling probabilities for requests
from each cluster change. We observe that when the 4-
node cluster accounts for only a small proportion of the
workload, the sampling probability for 4-node requests
is highest. As we increase the workload contribution of
the 4-nodes cluster, the sampling probability for 4-node
requests decreases. Simultaneously, the sampling proba-
bilities for requests from the 6-, 8- and 10-node clusters
increase as they consequently contributed a smaller pro-
portion of the workload.

5



5 Conclusion and Future Work

In this work, we present initial results on the use of effi-
cient graph kernels for comparing execution graphs from
end-to-end tracing. While our experiments are prelimi-
nary – performed at very small scale, in controlled exper-
iments, with data processed offline and centralized – the
resuts encourage further investigation. Beyond validating
the use of graph kernels for execution graph comparison,
we intend to investigate their robustness to instrumenta-
tion loss, and also their performance on different instru-
mentations of the same system, to ultimately derive the
most effective instrumentation for the system. If found
to be suitable, graph kernels then provide a sound ba-
sis for the application of established machine learning
techniques for anomaly detection, clustering, and classi-
fication, facilitating new avenues of research for the dis-
tributed systems community, in both end-to-end tracing,
and the further applications that it enables.
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[23] P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for
molecules. Machine learning, 75(1):3–35, 2009.

[24] G. Mann, M. Sandler, D. Krushevskaja, S. Guha, and E. Even-
Dar. Modeling the parallel execution of black-box services. Hot-
Cloud, 2011.

[25] A. Oliner, A. Ganapathi, and W. Xu. Advances and challenges in
log analysis. Commun. ACM, 55(2):55–61, Feb. 2012.

[26] K. Ostrowski, G. Mann, and M. Sandler. Diagnosing latency in
multi-tier black-box services. In LADIS, 2011.
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