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Abstract

Identifying the distinctive parts of an image is a chal-
lenging task for computer vision. In contrast to previous
methods, we use human participants to discover mid-level
discriminative features. Amazon Mechanical Turk (AMT)
workers filter groups of patches to identify clusters that have
strong visual and semantic similarity. We show that SVMs
trained from human-defined discriminative patches outper-
form the patch classifiers discovered by Singh et al. and
Doersch et al. [7, 2] when used as features for classifica-
tion on the 15 scene dataset [6].

1. Introduction
Recently, several publications have demonstrated state

of the art performance at scene classification using discrim-
inative patches [7, 2, 4]. These papers introduce different
methods for identifying salient visual elements in the form
of mid-sized image patches, and training classifiers to detect
the visual phenomena observed in training patches. Singh
et al. and Juneja et al. each propose pipelines for training
discriminative patch classifiers, but both employ a library of
discovered patches to create “bags of parts” for scene clas-
sification. The methods shown in [7, 4] show state of the art
performance compared to other single features on the MIT
Scene 67 dataset. Doersch et al. shows impressive capa-
bility to discriminate between the architecture of different
European cities.

The insight of these papers is that scene and object cat-
egories can be separated from each other by observing a
small number of visual events that are highly discrimina-
tive. Unlike bag of words models, not all of the locations
are equally discriminative – only a sparse set of locations in
an image are useful for determining the category. Detectors
trained on discriminative patches can build features that are
more useful for scene classification than directly using low-
level features. This would be similar to identifying only the
most discriminatively powerful visual words, and only us-
ing those words in the bag of words codebook. Patches also
have the advantage of being larger than the typical visual
word, thus enabling them to capture a visual element that
could have higher-level semantic significance.

While there are several proposed methods to discover
discriminative patches, [7, 4], we examine an interesting
alternative to the often time consuming methods of auto-
matic discriminative patch discovery. We directly ask non-
expert humans to select visually and semantically similar

image patches. We train classifiers to recognize the human-
identified visual elements.

Other human-in-the-loop methods such as [3, 1, 5] have
demonstrated success at visual classification tasks. Humans
(often non-expert, crowdsourced humans) are commonly
used in vision algorithms at two stages (a) annotation time,
either exhaustively annotating a dataset or providing the
most informative annotations in an “active learning” frame-
work or (b) test time, coupled with a computational method
to improve human accuracy and / or reduce human effort.
In contrast, we put humans in the loop at neither annotation
time nor test time, but rather at “representation discovery”
time. The humans are directly telling the computer which
visual elements should be discriminative. This has some
similarity to part-based annotation of visual phenomena, ex-
cept that our method does not require any explicit semantic
meaning for the parts. In our experiments the humans never
even see entire training images, only sets of candidate im-
age patches. Putting humans “in the loop” at this stage in a
recognition algorithm is to the best of our knowledge unex-
plored.

2. Building Human Patches

Our starting point for building human-in-the-loop
patches is the automatic method presented in Singh et al.
We first find candidate patches within the 15 scene dataset
[6] using the code of [7, 2]. The algorithm selects 1200 ran-
dom patches from each category and for each patch finds
its 24 nearest neighbors. Each random patch and its near-
est neighbors are a candidate discriminative patch model.
Individual patches are 80x80 pixel windows represented as
2112 dimensional HoG features.

At this point the Singh et al. use an iterative cross-
validation method to discover sets of 5 patches that when
used to train a linear SVM result in discriminatively pow-
erful classifiers. Instead of this computationaly expensive
process, we present AMT workers with a page showing a
group of 25 nearest neighbor patches. We create a patch
selection task for 400 randomly selected patch groups from
each category in the 15 scene dataset. Our user interface is
shown in Fig. 1.

Using the interface in Fig. 1, we obtain 3 user responses
for each nearest neighbor group. We manually examine the
user responses to this task and only observe a few spuri-
ous responses out of thousands of HITs. This suggests that
this HIT is not attractive to cheating Turkers. We discard
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Figure 1: AMT patch cluster refinement interface. Users are pre-
sented with a group of 25 nearest neighbor patches. These user-
selected patches are used to train a model for a discriminative
patch.

redundant responses where the selected patches are nearly
the same and train discriminative patch models from the re-
maining responses. For each discriminative patch classifier,
the user selected patches are the positive examples and a
large set of randomly selected patches from other categories
are the negative examples.

3. Results for Scene Classification

Figure 2 shows the performance of scene classification
on the 15 scene dataset using automatically discovered and
human-in-the-loop discriminative patch models. In the case
of human-in-the-loop patches, we tried both linear and non-
linear SVM patch classifiers. Each set of discriminative
patch classifier generates a “bag of parts” histogram for ev-
ery image which encodes how often a particular patch was
found. A second SVM is trained to classify images into
scene categories based on these “bags of parts”. We set a
detection threshold at a confidence of -1.0, as suggested in
[7]. An equal number of patches are selected from each
scene category. Fig. 2 shows that the patches discovered
using human intervention perform better than the automat-
ically discovered patches for scene classification on the 15
scene dataset.

Interestingly, our human patch discovery method is ar-
guably cheaper to implement than the automatic method. In
our experience, it took 300 CPU hours plus 1200 AMT Hu-
man Intelligence tasks to discover patches for one scene cat-
egory using our method. It took us roughly 6000 CPU hours
to automatically discover discriminative patches for one cat-
egory. The human-generated patches method is approxi-
mately 20x faster than the iterative cross-validation method
in [7]. Using the default cost of an Amazon AWS instance

Figure 2: Scene Classification Performance of Human and Au-
tomatic Patches on the 15 scene dataset. The training set in-
cludes100 images from each of the 15 categories, and the test set
contains 80-90 images from each category. In this plot each trend
line shows the performance of a different kind of discriminative
patch. The best performing scene classifier (either χ2 or L1 kernel
SVMs) are shown for each different kind of patch. The automat-
ically generated patch models are linear SVMs (see [7]). The hu-
man generated patch models are trained using either linear or RBF
kernel SVMs.

($0.06 per instance per hour) and the cost of our AMT HITs
($0.04 per HIT), it would cost $66 to discover the human
patches and $360 to discover the automatic patches for one
of the 15 scene categories. In light of the efficiency and
accuracy shown by human patch discovery, we believe that
using humans to build mid-level patches deserves further
inquiry.
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