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Abstract The accuracy of optical flow estimation algorithm-
s has been improving steadily as evidenced by results on
the Middlebury optical flow benchmark. The typical formu-
lation, however, has changed little since the work of Horn
and Schunck. We attempt to uncover what has made re-
cent advances possible through a thorough analysis of how
the objective function, the optimization method, and modern
implementation practices influence accuracy. We discover
that “classical” flow formulations perform surprisingly well
when combined with modern optimization and implementa-
tion techniques. One key implementation detail is the medi-
an filtering of intermediate flow fields during optimization.
While this improves the robustness of classical methods it
actually leads to higher energy solutions, meaning that these
methods are not optimizing the original objective function.
To understand the principles behind this phenomenon, we
derive a new objective function that formalizes the median
filtering heuristic. This objective function includes a non-
local smoothness term that robustly integrates flow estimates
over large spatial neighborhoods. By modifying this new ter-
m to include information about flow and image boundaries
we develop a method that can better preserve motion details.
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1 Introduction

The field of optical flow estimation is making steady progress
as evidenced by the increasing accuracy of current methods
on the Middlebury optical flow benchmark [6]. After nearly
30 years of research, these methods have obtained an im-
pressive level of reliability and accuracy [48,49,51,55,59].
But what has led to this progress? The majority of today’s
methods strongly resemble the original formulation of Horn
and Schunck (HS) [22]. They combine a data term that as-
sumes constancy of some image property with a spatial ter-
m that models how the flow is expected to vary across the
image. An objective function combining these two terms is
then optimized. Given that this basic structure is unchanged
since HS, what has enabled the performance gains of mod-
ern approaches?

The paper has three parts. In the first, we perform a s-
tudy of current optical flow methods and models. The most
accurate methods on the Middlebury flow dataset make d-
ifferent choices about how to model the objective function,
how to approximate this model to make it computational-
ly tractable, and how to optimize it. Since most published
methods change all of these properties at once, it can be dif-
ficult to know which choices are most important. To address
this, we define a baseline algorithm that is “classical”, in
that it is a direct descendant of the original HS formulation,
and then systematically vary the model and method using
different techniques from the art. The results are surprising.
We find that only a small number of key choices produce
statistically significant improvements and that they can be
combined into a very simple method that achieves accura-
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cies near the state of the art. More importantly, our analysis
reveals what makes current flow methods work so well.

Part two examines the principles behind this success. We
find that one algorithmic choice produces the most signifi-
cant improvements: applying a median filter to intermediate
flow values during incremental estimation and warping [48,

]. While this heuristic improves the accuracy of the recov-
ered flow fields, it actually increases the energy of the ob-
jective function. This suggests that what is being optimized
is actually a new and different objective. Using observations
about median filtering and L1 energy minimization from Li
and Osher [29], we formulate a new non-local term that is
added to the original, classical objective. This new term goes
beyond standard local (pairwise) smoothness to robustly in-
tegrate information over large spatial neighborhoods. We
show that minimizing this new energy approximates the o-
riginal optimization with the heuristic median filtering step.
Note, however, that the new objective falls outside our defi-
nition of classical methods.

Finally, once the median filtering heuristic is formulated
as a non-local term in the objective, we immediately recog-
nize how to modify and improve it. In part three we show
how information about image structure and flow boundaries
can be incorporated into a weighted version of the non-local
term to prevent over-smoothing across boundaries. By in-
corporating structure from the image, this weighted version
does not suffer from some of the errors produced by median
filtering and better preserves motion boundaries. Figure 1 il-
lustrates optical flow estimates for a range of methods from
a “basic” HS method to our newly proposed Classic+NL
method.

In summary, the contributions of this paper are to (1) an-
alyze current flow models and methods to understand which
design choices matter; (2) formulate and compare several
classical objectives descended from HS using modern meth-
ods; (3) formalize one of the key heuristics and derive a new
objective function that includes a non-local term; (4) mod-
ify this new objective to produce a state-of-the-art method.
In doing this, we provide a “recipe” for others studying op-
tical flow that can guide their design choices. Finally, to en-
able comparison and further innovation, we provide a public
MATLAB implementation [!].

At the time of writing our conference paper [4 1] (March
2010), the resulting approach was ranked 1% in both angu-
lar and end-point errors in the Middlebury evaluation. At the
writing of the paper (Sep. 2012), the method, Classic+NL,
ranks 13" in both AAE and EPE. Several recent and high-
ranking methods directly build on Classic+NL, such as lay-
ered models [43], methods with more advanced motion pri-
or models [16,24], and efficient optimization schemes for
the non-local term [26]. Compared to the conference ver-
sion [41], this paper includes many more detailed results of
both the basic and the improved models.

2 Previous Work

It is important to separately analyze the contributions of the
objective function that defines the problem (the model) and
the optimization algorithm and implementation used to min-
imize it (the method). The HS formulation, for example, has
long been thought to be highly inaccurate. Barron et al. [7]
reported an average angular error (AAE) of ~30 degrees
on the “Yosemite” sequence. This confounds the objective
function with the particular optimization method proposed
by Horn and Schunck. Horn and Schunck noted that the
correct way to optimize their objective is by solving a sys-
tem of linear equations as is common today. This was im-
practical on the computers of the day, hence they used a
heuristic method. In factm Barron et al. note that the orig-
inal HS derivatives were implemented crudely and report a
modified version of HS with AAE around 11 degrees. When
optimized with today’s methods, the HS objective achieves
surprisingly competitive results despite the expected over-
smoothing and sensitivity to outliers [17]. The reported ac-
curacy of a method is jointly determined by the objective
function, the optimization techniques, the implementation
details, and the parameter tuning/learning (cf. [33,44]). We
review papers in the context of the first three aspects below.

Models: The global formulation of optical flow intro-
duced by Horn and Schunck [22] relies on both brightness
constancy and spatial smoothness assumptions, but suffer-
s from the fact that the quadratic formulation is not robust
to outliers. Black and Anandan [10] address this by replac-
ing the quadratic error function with a robust formulation.
Subsequently, many different robust functions have been ex-
plored [12,28,42] and it remains unclear which is best. We
refer to all these spatially-discrete formulations derived from
HS as “classical.” We systematically explore variations in
the formulation and optimization of these approaches. The
surprise is that the classical model, appropriately implement-
ed, remains fairly competitive.

There are many formulations beyond the classical ones
that we do not consider here. Significant ones use orient-
ed smoothness [34,42,48,58,59], rigidity constraints [47,

], or image segmentation [9,27,54,60]. While they de-
serve similar careful consideration, we expect many of our
conclusions to carry forward. Note that one can select a-
mong a set of models for a given sequence [32], instead of
finding a “best” model for all the sequences.

Methods: Many of the implementation details that are
thought to be important date back to the early days of op-
tical flow. Current best practices include coarse-to-fine es-
timation to deal with large motions [8, |3], texture decom-
position [47,49] or high-order filter constancy [4,12,20,28,

] to reduce the influence of lighting changes, incremen-
tal warping [8], warping with bicubic interpolation [28,49],
temporal averaging of image derivatives [21,49], graduat-
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Fig. 1 Estimated optical flow on the Middlebury test “Army” sequence. Left to right: (a) an old implementation of the Horn & Schunck (HS)

method [

], (b) a new implementation with current practices, (c) a modern implementation of a robust version, (d) an improved model that uses

a non-local spatial term to robustly integrate information over a large spatial neighborhood, (e) ground truth from the Middlebury website (the
quality of the “ground truth” is lower than the actual one because of compression), and (f) the first frame. Color coding as in [6], shown in Fig. 4 (c).

ed non-convexity [ 1] to minimize non-convex energies [ 10,
], and median filtering after each incremental estimation
step to remove outliers [49].

This median filtering heuristic is of particular interest as
it makes non-robust methods more robust and improves the
accuracy of all methods we tested. The effect on the objec-
tive function and the underlying reason for its success have
not previously been analyzed. Least median squares estima-
tion can be used to robustly reject outliers in flow estima-
tion [5], but previous work has focused on the data term.

Related to median filtering, and our new non-local term,
is the use of bilateral filtering to prevent smoothing across
motion boundaries [53]. This approach separates a variation-
al method into two filtering update stages, and replaces the
original anisotropic diffusion process with multi-cue driv-
en bilateral filtering. As with median filtering, the bilateral
filtering step changes the original energy function.

Models that are formulated with an L1 robust penalty
are often coupled with specialized total variation (TV) opti-
mization methods [57]. Here we focus on generic optimiza-
tion methods that can apply to any model and find that the
estimated flow fields are as accurate as the reported results
for specialized methods.

Despite recent algorithmic advances, there is a lack of
publicly available, easy to use, and accurate flow estimation
software. The GPU4Vision project [2] has made a substan-
tial effort to change this and provides executable files for
several accurate methods [47,48,49,51]. The dependence on
the GPU and the lack of source code are limitations. We
hope that our public MATLAB code will not only help in un-
derstanding the practices of optical flow, but also let others
exploit optical flow as a useful tool in computer vision and
related fields.

3 Classical Models

As is common to “classical” methods we only address the
two-frame optical flow estimation problem. We write the

classical optical flow objective function in its spatially dis-
crete form as

E(u,v)=> {pp(L1(i,j) — L(i+u;j,j+vi;) (1)
1,

+A[ps(wiy — wig1,j)+ ps(uij — Ui jy1)
+ps(Vij — vig1,5) + ps(vij — vije1)l},

where u and v are the horizontal and vertical components of
the optical flow field to be estimated from images /; and I,
A is a regularization parameter, and pp and pg are the da-
ta and spatial penalty functions. We consider three different
penalty functions: (1) the quadratic HS penalty p(z) = 2?;
(2) the Charbonnier penalty p(z) = Va2 + €2 [13], a differ-
entiable variant of the absolute value, the most robust convex
function; and (3) the Lorentzian p(z) = log(1+ %), which
is a non-convex robust penalty used in [10]. We refer to the
robust formulation with the Lorentzian penalty as BA (short
for Black and Anandan). Note that this classical model is
related to a standard pairwise Markov random field (MRF)
based on a 4-neighborhood [18].

In the remainder of this section we define a baseline
method using several techniques from the literature. This is
not the “best” method, but includes modern techniques and
will be used for comparison. We only briefly describe the
main choices, which are explored in more detail in the fol-
lowing section and the cited references.

Quantitative results are presented throughout the remain-
der of the text. In all cases we report the average end-point
error (EPE) on the Middlebury training and test sets, de-
pending on the experiment. Given the extensive nature of
the evaluation, only average results are presented in the main
body, while the details for each individual sequence are pro-
vided at the end of the paper.

3.1 Baseline methods

To gain robustness against lighting changes, we follow [49]
and apply the Rudin-Osher-Fatemi (ROF) structure texture
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decomposition method [38] to pre-process the input sequences
and linearly combine the texture and structure components
(in the proportion 20:1). The parameters are set according
to [49].

Optimization is performed using a standard incremental
multi-resolution technique (e. g., [10, 13]) to estimate flow
fields with large displacements. The optical flow estimated
at a coarse level is used to warp the second image toward the
first at the next finer level, and a flow increment is calculated
between the first image and the warped second image. The
standard deviation of the Gaussian anti-aliasing filter is set
to be \/%, where d denotes the downsampling factor. Each
level is recursively downsampled from its nearest lower lev-
el. In building the pyramid, the downsampling factor is not
critical as pointed out in the next section and here we use the
settings in [42], which uses a factor of 0.8 in the final stages
of the optimization. We adaptively determine the number of
pyramid levels so that the top level has a width or height of
around 20 to 30 pixels. At each pyramid level, we perform
10 warping steps to compute the flow increment.

At each warping step, we linearize the data term once,
which involves computing terms of the type %I 2 (z+uf jJt+
vl’f ;)» where 0/0x denotes the partial derivative in the hori-
zontal direction, ©* and v* denote the current flow estimate
at iteration k. As suggested in [49], we compute the deriva-
tives of the second image using the 5-point derivative filter
15[~180 —8 1], and warp the second image and its deriva-
tives toward the first using the current flow estimate by bicu-
bic interpolation. We then compute the spatial derivatives of
the first image, compute the average of these and the corre-
sponding warped derivatives of the second image (cf. [21]),
and use these in place of %. For pixels moving out of the
image boundaries, we set both their corresponding temporal
and spatial derivatives to zero. After each warping step, the
flow update is computed, and then we apply a 5 x 5 median
filter to the newly computed flow field to remove outlier-
s [49].

For the Charbonnier (Classic-C) and Lorentzian (Classic-
L) penalty function, we use a graduated non-convexity (GNC)
scheme [ 1] as described in [42]. First, we replace the robust
penalty functions by quadratic penalty functions and obtain
a quadratic formulation of the objective function, Eq(u, v).
Then we linearly combine the quadratic penalty function
with the desired robust penalty function and gradually change
the weighting of the two terms to reach the desired robust

penalty function. In practice, we use a three-stage GNC scheme,

with the objective functions for the first, second, and third
stages being Eq(u,v), 2 (Eg(u,v)+E(u,v)),and E(u, v)
respectively. The output of a previous stage serves as the ini-
tialization to the next stage. The standard deviations of the
corresponding quadratic penalty function are set to be 1 for
the Charbonnier penalty and, for the Lorentzian, are taken
to be the same as the o value used in the Lorentzian func-

Avg. Rank  Avg. EPE
Classic-C 34.8 0.408
HS 49.0 0.501
Classic-L 42.7 0.530
Classic-C-brightness N/A 0.726
HS-brightness N/A 0.759
Classic-L-brightness N/A 0.603
HS [42] 66.2 0.872
BA (Classic-L) [42] 59.6 0.746
Adaptive [48] 28.5 0.401
Complementary OF [59] 31.6 0.485

Table 1 Models. Average rank and end-point error (EPE) on the Mid-
dlebury fest set using different penalty functions. Two state-of-the-art
methods in Dec. 2010 are included for comparison. The ranking in-
formation was obtained at the writing of the paper (Sep. 2012). Please
refer Table 11 for the EPE results on each sequence.

tion. The same regularization weight A is used for both the
quadratic and the robust objective functions.

3.2 Baseline results

The regularization parameter \ is selected among a set of
candidate values to achieve the best average end-point error
(EPE) on the Middlebury training set. For the Charbonnier
penalty function, the candidate set is [1, 3, 5, 8, 10] and 5
is optimal. The Charbonnier penalty uses e = 0.001 for both
the data and the spatial term in Eq. (1). The Lorentzian uses
o = 1.5 for the data term, 0 = 0.03 for the spatial term,
and A = 0.06. These parameters are fixed throughout the
experiments, except where mentioned.

Table | summarizes the EPE results of the basic mod-
el with three different penalty functions on the Middlebury
test set, along with the two top performers at the time of
performing the evaluation (considering only published pa-
pers when the evaluation table was generated). The clas-
sic formulations with two non-quadratic penalty function-
s (Classic-C) and (Classic-L) achieve competitive result-
s despite their simplicity. The baseline optimization of HS
and BA (Classic-L) results in significantly better accuracy
than previously reported for these models [42]. Note that
the analysis also holds for the training set (Table 2).

Because Classic-C performs quite well despite its sim-
plicity, we set it as the baseline below. Note that our baseline
implementation of HS has a lower average EPE than many
more sophisticated methods. The HS implementation here
incorporates many algorithmic and implementation detail-
s not present in the original HS method; the core idea of
quadratic data and spatial terms however remains the same.
In our naming convention, one can think of the HS method
here as Classic-Q, meaning that it is the same as the Classic-
C method except that the data and spatial penalty terms are
quadratic.
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Avg. EPE  significance  p-value
Classic-C 0.298 — —
HS 0.384 1 0.0078
Classic-L 0.319 1 0.0078
Classic-C-brightness 0.288 0 0.9453
HS-brightness 0.387 1 0.0078
Classic-L-brightness 0.325 0 0.2969
Gradient 0.305 0 0.4609
Gaussian + Dx + Dy 0.290 0 0.6406
Sobel edge magnitude [45] 0.417 1 0.0156
Laplacian [28] 0.430 1 0.0078
Laplacian1:1 0.301 0 0.6641
Gaussian pre-filtering (c = 0.5) 0.281 0 0.5469
Texture4:1 0.286 0 0.5312
Unnormalized texture 0.298 0 0.3750

Table 2 Pre-Processing. Average end-point error (EPE) on the Mid-
dlebury training set for the baseline method (Classic-C) using different
image pre-processing techniques. Significance is always with respec-
t to Classic-C. Please refer to Tables 12 and 13 for the detailed results
on each training sequence.

4 Practices Explored

We now systematically vary the baseline approach by in-
corporating different ideas that have appeared in the litera-
ture, with the goal of illuminating which of these ideas are
significant. This analysis is performed on the Middlebury
training set by changing only one property at a time. Sta-
tistical significance is determined using a Wilcoxon signed
rank test [52] between each modified method and the base-
line Classic-C method; a p value less than 0.05 indicates a
significant difference. Each section below presents detailed
comparisons of all these methods and then summarizes the
results in a simple “take away message” about what we think
are the “best practices” based on the data.

4.1 Image Pre-Processing

While it is common to talk about the brightness constan-
cy assumption as a core feature of most optical flow algo-
rithms, in practice many other constancy assumptions have
been used. It is common, for example, to pre-filter the im-
ages in a variety of ways ranging from simple smoothing
to edge detection. For each method, we optimize the reg-
ularization parameter A for the training sequences. The re-
sults are summarized in Table 2, with details of the meth-
ods applied to individual training sequences given in Ta-
bles 12 and 13. The baseline uses a non-linear pre-filtering
of the images (ROF) to reduce the influence of illumination
changes between frames [49]. Table 2 shows the effect of
using no pre-processing, resulting in the standard brightness
constancy model (*-brightness). Classic-C-brightness ac-

tually achieves lower EPE on the training set than does Classic-

C but significantly higher error on the test set (Table 1). This
disparity suggests overfitting to the training data and leaves
open the question as to whether the standard brightness con-
stancy assumption, formulated robustly, may still compete

with various types of filter/structure constancy given appro-
priate training data.

Simpler alternatives, such as filter response (or high-order)
constancy [12,42] can serve the same purpose as ROF tex-
ture decomposition. A variety of pre-filters have been used
in the literature, including derivative filters, Laplacians [15,

], and Gaussians. Edges have also been emphasized using
the Sobel edge magnitude [45].

Gradient only imposes constancy of the gradient vector
at each pixel as proposed in [12]; i.e., it robustly penalizes
Euclidean distance between image gradients. We use cen-
tral difference filters (Dz = [—0.5 0 0.5] and Dy = Da™).
Gaussian+Dx+Dy assumes separate brightness, horizontal
derivative, and vertical derivative constancy. A weighted com-
bination of robust functions applied to each term is used as
in [42]. Neither of these methods differ significantly from
the baseline texture decomposition (Classic-C). Two meth-
ods are significantly worse: the Sobel edge magnitude [45]
and Laplacian pre-filtering (5 x 5) as used in [28]. Sobel
edge magnitude appears to not work well on some of the
sequences, particularly the synthetic ones, and may not be
suitable for a general flow estimation method. Laplacian
pre-filtering (5 x 5) as used in [28] produces good results on
“RubberWhale”, but poor ones on the synthetic sequences.
Note that the parameters for the FusionFlow method [28]
were mainly tuned using the “RubberWhale” sequence. The
evaluation results suggest room for improving the Fusion-
Flow method by a better pre-processing technique. Gaus-
sian pre-filtering (0 = 0.5) performed well on the synthet-
ic sequences, but poorly on real ones. Finally, the texture-
structure blending ratio is 20:1 in [49] but 4:1 in [51]. We
find that (Texture4:1) performs better (but not significant-
ly) on the synthetic sequences with a little degradation on the
real ones. By default, the blended result from texture decom-
position is normalized to [—1,1] in [49] and [0, 255] in our
experiment. Not doing this normalization (Unnormalized
texture) has little effect.

For the Laplacian pre-filtering, we find combining the
filtered image with the original image, in the proportion 1:1,
improves accuracy significantly (Laplacianl:1). Similar to
the ROF texture decomposition, such an approach boosts the
high frequency while suppressing the low frequency compo-
nents that contain the lighting change.

Good Practices: Some form of image filtering is useful but
simple derivative constancy is nearly as good as the more
sophisticated texture decomposition method.

4.2 Coarse-to-Fine Estimation and Graduated
Non-Convexity (GNC)

We vary the number of warping steps per pyramid level and
find that 3 warping steps gives similar results as using the
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Avg. EPE  significance  p-value
Classic-C 0.298 — —
3 warping steps 0.304 0 0.9688
Down-0.5 0.298 0 1.0000
w/o GNC 0.354 0 0.1094
Bilinear 0.302 0 0.1016
w/o TAVG 0.306 0 0.1562
Central derivative filter 0.300 0 0.7266
7-point derivative filter [13] 0.302 0 0.3125
Deriv-warp 0.297 0 0.9531
Bicubic-II 0.290 1 0.0391
Deriv-warp-II 0.287 1 0.0156
Warp-deriv-II 0.288 1 0.0391
C-L (A = 0.6) 0.303 0 0.1562
L-CA=2) 0.306 0 0.1562
GC-0.45 (A = 3) 0.292 1 0.0156
GC-0.25 (A = 0.7) 0.298 0 1.0000
MF 3 x 3 0.305 0 0.1016
MF7 x 7 0.305 0 0.5625
2x MF 0.300 0 1.0000
5x MF 0.305 0 0.6875
w/o MF 0.352 1 0.0078
Classic++ 0.285 1 0.0078

Table 3 Model and Methods. Average end-point error (EPE) on the
Middlebury training set for the baseline method (Classic-C) using dif-
ferent algorithm and modeling choices. Please refer to Table 14 for the
detailed results on each sequence.

baseline 10 (Table 3), except on “Urban3”, which is domi-

fine. Some form of GNC is useful even for a convex robust
penalty like Charbonnier because of the nonlinear data term.

4.3 Interpolation Method and Derivatives

We find that the baseline bicubic interpolation is more ac-
curate than bilinear (Table 3, Bilinear), as already report-
ed in previous work [49]. Removing temporal averaging of
the gradients (w/o TAVG), using a Central difference filter
[-1 0 1]/2, or using a 7-point derivative filter [-1 9 —
45045 —91]/60 [13] all reduce accuracy compared to the
baseline, but not significantly.

The baseline method computes the image derivative by
first computing the derivative of the second image, warp-
ing the intermediate result toward the first image, and then
averaging the warped result with the spatial derivative of
the first image. Another approach is to first warp the sec-
ond image toward the first image, compute the derivatives
of the warped image, and then perform the temporal aver-
aging with the spatial derivatives of the first image [13]. We
find the second approach produces similar results (Deriv-

nated by large motion and occlusions (see Table 14 for sequence- Warp). However, the derivatives computed in either way are

specific results). For the coarse-to-fine pyramid, [42] uses
a downsampling factor of 0.8 during non-convex optimiza-
tion. A traditional downsampling factor of 0.5 (Down-0.5),
however, has nearly identical performance. Note that a larg-
er factor means that the pyramid levels are more similar in
size and, for a pyramid with top bottom levels of the same
size, results in more pyramid levels.

Previously, Brox et al. [12] have reported that a down-
sampling factor of 0.95 produces much better results than
0.5. Note that for each iterative warping estimation step,
Brox et al. use successive over-relaxation (SOR) to itera-
tively solve their linear system of equations and stop the it-
eration before convergence. With a downsampling factor of
0.95, they effectively increase the number of iterative warp-
ing steps performed by the algorithm, and this likely help-
s the overall algorithm converge. For our implementation,
we solve the linear system of equations using the MATLAB
built-in backslash function and obtain converged results for
each iterative warping estimation step. Under such a setting,
we find that the downsampling factor has little influence on
the performance.

Removing the GNC procedure for the Charbonnier penal-
ty function (w/o GNC) results in higher EPE on most se-
quences and higher energy on all sequences (Table 5). This
suggests that the GNC method is helpful even for the convex
Charbonnier penalty function due to the nonlinearity of the
data term.

Good Practices: The downsampling factor does not mat-
ter when using a convex penalty; a standard factor of 0.5 is

inconsistent with those implicitly interpolated by the bicubic
interpolation. Bicubic interpolation interpolates not only the
image but also the derivatives [36]. Because the MATLAB
built-in function interp2 is based on cubic convolution [25]
and does not provide the derivatives used in interpolation,
we use the spline-based implementation in [36]. With the
new implementation (Bicubic-II), the three different ways
to compute the derivatives give very similar EPE results, all
better than the MATLAB built-in function. However, the one
with consistent derivatives (Bicubic-II) gives the lowest en-
ergy solution, as shown in Table 4.

Good Practices: Use spline-based bicubic interpolation with
a 5-point filter. Compute the derivative during the interpola-
tion to obtain the lowest energy solutions. Temporal aver-
aging of the derivatives is probably worthwhile for a small
computational expense.

4.4 Penalty Functions

We find that the convex Charbonnier penalty performs bet-
ter than the more robust, non-convex Lorentzian on both the
training and test sets. We test using the Charbonnier for the
data term and Lorentzian for the spatial term (C-L) and vice
versa (L-C). The two approaches perform better than using
the Lorentzian for both terms but worse than using the Char-
bonnier for both terms.

One reason might be that non-convex functions are more
difficult to optimize, causing the optimization scheme to find
a poor local optimum. Another reason might be the MAP
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Sum Venus  Dimetrodon = Hydrangea  RubberWhale = Grove2  Grove3 Urban2  Urban3
Bicubic-IT 8.761 0.552 0.734 0.835 0.481 1.656 2.167 1.061 1.275
Deriv-warp 8917  0.559 0.745 0.840 0.484 1.682 2.201 1.073 1.333
Warp-deriv. 9.035  0.563 0.745 0.845 0.486 1.694 2.238 1.117 1.347

Table 4 Eq. (1) energy (x 109) for the optical flow fields computed on the Middlebury training set, evaluated using spline-based bicubic interpo-

lation [

——Charbonnier

Generalized Charbonnier (0.45)
“““““ Generalized Charbonnier (0.25)
- - - -Lorentzian

20

Fig. 2 Different penalty functions for the spatial terms: Charbonnier
(e = 0.001), generalized Charbonnier (a = 0.45 and @ = 0.25), and
Lorentzian (¢ = 0.03).

estimator actually favors the “wrong” penalty functions [35,
1.

We investigate a generalized Charbonnier penalty func-
tion p(z) = (22 + €2)? that is equal to the Charbonnier
penalty when a = 0.5, and non-convex when a < 0.5
(see Fig. 2). We optimize the regularization parameter \ a-
gain. We find a slightly non-convex penalty with a = 0.45
(GC-0.45) performs consistently better than the Charbon-
nier penalty, whereas more non-convex penalties (GC-0.25
with a = 0.25) show no improvement.

Good Practices: The less-robust Charbonnier is preferable
to the highly non-convex Lorentzian and a slightly non-convex
penalty function (GC-0.45) is better still.

4.5 Median Filtering

Figure 3 illustrates the median filtering step within the coarse-
to-fine incremental estimation process. The baseline 5 x 5
median filter (MF 5 x 5) is better than both MF 3 x 3
[49] and MF 7 x 7 but the difference is not significant (Ta-
ble 3). When we perform 5 x 5 median filtering twice (2x
MF) or five times (5x MF) per warping step, the results are
worse. Finally, removing the median filtering step (w/o M-
F) makes the computed flow significantly less accurate with
larger outliers as shown in Table 3 and Fig. 4.

One interesting result with HS is that repeatedly apply-
ing median filtering (20 times) at every warping step im-
proves the HS formulation and the improvement is statisti-
cally significant (HS 20x MF in Table 17).

Good Practices: Median filtering the intermediate flow re-
sults once after every warping iteration is the single most

]. Note the derivatives consistent with the interpolation method (Bicubic-II) produce the lowest energy solution.

important implementation detail here; 5 x 5 is a good filter
size.

4.6 Best Practices

Combining the analysis above into a single approach means
modifying the baseline to use the slightly non-convex gen-
eralized Charbonnier and the spline-based bicubic interpo-
lation. This leads to a statistically significant improvement
over the baseline (Table 3, Classic++). This method is di-
rectly descended from HS and BA, yet updated with the
current best optimization practices known to us. This sim-
ple method ranks 32" out of 73 methods in both EPE and
AAE on the Middlebury test set at the writing of the paper
(Sep. 2012). However, as we will see soon, this method is
somehow not “simple”. Instead of the original objective, a
different objective is being optimized with the median filter-
ing step. The same is true for the reported results of both HS
and BA.

)

(a) With median filtering (b) Without median filtering (c) Key

Fig. 4 Estimated flow fields on sequence “RubberWhale” using
Classic-C with and without (w/o MF) the median filtering step. (a)
(w/ MF) energy 502, 387, (b) (w/o MF) energy 449, 290, (c) color
key [6]. The median filtering step helps reach a solution free from out-
liers but with a higher energy.

5 Models Underlying Median Filtering

Our analysis reveals the practical importance of median fil-
tering during optimization. This effectively denoises the in-
termediate flow fields, preventing gross outliers, and mak-
ing even non-robust methods like HS more robust. We ask
whether there is a principle underlying this heuristic?

One interesting observation is that flow fields obtained
with median filtering have substantially higher energy than
those without (Table 5 and Fig. 4). If the median filter is
helping to optimize the objective, it should lead to lower
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Fig. 3 The median filtering is performed after every incremental warping step (i. e., once at every image pyramid level). The output of the median
filtering is upsampled and used as the initial estimate for the next larger pyramid level.

Sum Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3  Urban2  Urban3
Classic-C~ 9.388  0.589 0.748 0.866 0.502 1.816 2.317 1.126 1.424
w/o GNC  9.689  0.593 0.750 0.870 0.506 1.845 2.518 1.142 1.465
w/o MF 8.044  0.517 0.701 0.668 0.449 1.418 1.830 1.066 1.395

Table 5 Eq. (1) energy (x 109) for the optical flow fields computed on the Middlebury training set, evaluated using convolution-based bicubic
interpolation [25]. Note that Classic-C uses graduated non-convexity (GNC), which reduces the energy, and median filtering, which increases it.

energies. Higher energies and more accurate estimates sug-
gest that incorporating median filtering changes the objec-
tive function being optimized.

The insight that follows from this is that the median fil-
tering heuristic is related to the minimization of an objective
function that differs from the classical one. In particular the
optimization of Eq. (1), with interleaved median filtering,
approximately minimizes

E(u,v) = 2)
> {pD(Il(i,j) = Io(i+ uij, J + vij))
T Mps (i — wip1,g)+ ps (i — wige1)

+ps(vi,j = vit1,5) + ps(vij — Uz‘,j+1)]}

REOIEDY

4.j (7,5 ENG

(Jwi g — wir jo| + |vig — vir jr),

where A; ; is the set of neighbors of pixel (7, j) in a possi-
bly large area and A is a scalar weight. The term in braces
is the same as the flow energy from Eq. (1), while the last
term is new. This non-local term [14,19] imposes a particu-
lar smoothness assumption within a specified region of the
flow field'. Here we take this term to be a 5 x 5 rectangular

! Bruhn et al. [13] also integrated information over a local region in
a global method but did so for the data term.

Fig. 5 From left to right, neighborhood structure for the center (red)
pixel for the standard pairwise model, the unweighted non-local mod-
el, the unweighted non-local model with a larger neighborhood, and
the weighted non-local model. The standard pairwise model connect-
s a center pixel with its nearest neighbors, while the non-local term
connects a pixel with many pixels in a large spatial neighborhood. By
assigning larger weights (thicker red edges) to neighbors that are more
likely to be on the same surface (blue circles), the weighted non-local
model incorporates spatial scene structure information.

region to match the size of the median filter in Classic-C.
Figure 5 shows the neighborhood for the standard pairwise
model and the non-local term.

It is usually difficult to directly optimize the objective (2)
with a large spatial term. A common practice is to relax the
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objective with an auxiliary flow field as
Ea(u,v,0,9) = 3)
>~ {po(11(0,3) ~ Tali+ wig, + i)
v +A[ps (Ui j — wit1,5)+ ps(uij — wij+1)
+ps(vij — Vig1,5) + ps(vij — Ui,j-H)]}
HAc(l[u—all* + v - ¥|*)

B>

4,3 (i',5")EN,;

(|ti,5 — i jo| + |0i g — Dir jr),

where G and v denote an auxiliary flow field and A¢ is a
scalar weight. A third (coupling) term encourages i, v and
u, v to be the same (cf. [48,57]). Here the notation implies
a pixelwise sum of squared errors between the auxiliary and
main flow fields.

The connection to median filtering (as a denoising method)

derives from the fact that there is a direct relationship be-
tween the median and L1 minimization. Consider a simpli-
fied version of Eq. (3) with just the coupling and non-local
terms, where

Ba)=Acllu—aPan Y Y

5,5 (4,5 )ENG,;

|G, 5 — i o] (4)

While minimizing this is similar to median filtering u, there
are two differences. First, the non-local term minimizes the
L1 distance between the central value and all flow values in
its neighborhood except itself. Second, Eq. (4) incorporates
information about the data term through the coupling equa-
tion; median filtering the flow ignores the data term.

The formal connection between Eq. (4) and median fil-
tering” is provided by Li and Osher [29] who show that min-
imizing Eq. (4) is related to a different median computation
ﬁg?’l) — median(Neighbors*) U Data) Q)
where Neighbors®) = {a{"),} for (7', ') € N ; and a(©) =
u as well as

[N [ Aw
R e Vel £

Data = {ui,j, Uy, j + %,uid + 2;\76{\7 s
where |V ;| denotes the (even) number of neighbors of (4, j).
Note that the set of “data” values is balanced with an equal
number of elements on either side of the value u; ; and that
information about the data term is included through u; ;. Re-
peated application of Eq. (5) converges rapidly [29].
Observe that, as A\ /A¢ increases, the weighted data
values on either side of u; ; move away from the values of

2 Hsiao et al. [
way.

] established the connection in a slightly different

Neighbors and cancel each other out. As this happens, E-
g. (5) approximates the median at the first iteration

ﬁglj) ~ median(Neighbors'®) U {ui;}). (6)

Eq. (3) thus combines the original objective with an ap-
proximation to the median, the influence of which is con-
trolled by Ax/Ac. Note in practice the weight Ao on the
coupling term is usually small or is steadily increased from
small values [49,57]. We optimize the new objective (3) by
alternately minimizing

Eo(u,v) =Y {pD(Il(i,j) — I(i+uig, j+ i)
irj
+Aps (i j — wit1,5)+ ps(uij — wij+1)
+ps(vij — vit1,5) + ps(vij — Uz‘,j+1)]}
FAo([lu—a]* + [|v - 9]]%) (7
and
En(0,9) = Ac([lu—af]? + [|[v — ¥[]?) ®)

EOIEDY

3,5 (i/,5)ENG,;

(|ij — @i jo| + |5 — Dir jr])-

We find that optimization of the coupled set of equations is
superior in terms of EPE performance than optimization of
the objective (2).

The alternating optimization strategy first holds 1, ¥ fixed
and minimizes Eq. (7) w.r. t. u, v. Then, with u, v fixed, we
minimize Eq. (8) w.r.t. @1, V. Note that Egs. (4) and (8) can
be minimized by repeated application of Eq. (5); we use this
approach with 5 iterations. We perform 10 steps of alter-
nating optimizations at every pyramid level and change \¢
logarithmically from 10~ to 102. During the first and sec-
ond GNC stages, we set u, v to be 11, V after every warping
step (this replacement step helps reach solutions with low-
er energy and EPE than without performing this step; see
Classic-C-A-noRep in Tables 6 and 7). In the end, we take
1,V as the final flow field estimate. The other parameters
are A =5, \y = 1.

Alternately optimizing this new objective function (Classic-
-C-A) leads to similar results as the baseline Classic-C (Ta-
ble 6). We also compare the energy of these solutions using
the new objective and find the alternating optimization pro-
duces the lowest energy solutions, as shown in Table 7.

We find that approximately optimizing the new objective
by changing \¢ logarithmically from 10~% to 10~ has s-
lightly better EPE results but higher energy solutions (Classic-
C-A-II). We also try replacing the absolute value by the
Charbonnier penalty function and using the conjugate gra-
dient descent method [3] to solve Eq. (4) but obtain results
with slightly worse EPE performance and higher energy.
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Avg. EPE  significance  p-value
Classic-C 0.298 — —
Classic-C-A 0.305 0 0.8125
Classic-C-A-noRep 0.309 0 0.5781
Classic-C-A-11 0.296 0 0.7188
Classic-C-A-CGD 0.305 0 0.5625

Table 6 Average end-point error (EPE) on the Middlebury training set
is shown for the new model with alternating optimization (Classic-C-
A). Please refer to Table 15 for the detailed EPE results on each training
sequence.

In summary, we show that the heuristic median filtering
step in Classic-C can now be viewed as energy minimiza-
tion of a new objective with a non-local term. The explic-
it formulation emphasizes the value of robustly integrating
information over large neighborhoods and enables the im-
proved model described below.

6 Improved Model

By formalizing the median filtering heuristic as an explicit
objective function, we can find ways to improve it. While
median filtering in a large neighborhood has advantages as
we have seen, it also has problems. A neighborhood cen-
tered on a corner or thin structure is dominated by the sur-
round and computing the median results in oversmoothing
as illustrated in Fig. 1.

Examining the non-local term suggests a solution. For a
given pixel, if we know which other pixels in the area belong
to the same surface, we can weight them more highly. The
modification to the objective function is achieved by intro-
ducing a weight into the non-local term [ 14, 19]:

PP

43 (7,5')EN;,;

L
wi 7 ([ — Gy jr| + 055 — i jr]),  (9)

where wi ]J represents how likely pixel ¢’ j' is to belong to

the same surface as 7, j.

Of course, we do not know wzl ]] /, but can approximate
it. We draw ideas from [39,53,56] to define the weights ac-
cording to their spatial distance, their color-value distance,
and their occlusion state as

w

A
i IR R G| ) & (0 Vi Kl GAY )
b cenp{ - MAREAR TR A0

where I(i, j) is the color vector in the Lab space, n. is the
number of color channels, o7 = 7,05 = 7, and the occlu-
sion variable o(i, j) is calculated using Eq. (22) in [39] as

. . . ) 2
o(i,j)=exp —dz(lvﬂ) B (I(ZJ)*I(l+“ivj’]+vivﬂ'))
’ 203 202 ’

an

(d (e)

Fig. 6 Neighbor weights of the proposed weighted non-local term at
different positions in the “Army” sequence. We use color, spatial dis-
tance, and occlusion cues to determine whether the neighboring pixels
are likely to belong to the same surface. Among these cues, color is the
most powerful.

where d(i, j) is the one-sided divergence function, defined
as

o (div(i,j), div(i,j) <0
d = 12
(i) { 0, otherwise (12)
in which the flow divergence div (i, j) is
Aiv(i, ) = 5ol d) + 5-oli)) (13)

where a% and a% are respectively the horizontal and vertical
flow derivatives. The occlusion variable o(4, j) is near zero
for occluded pixels and near one for non-occluded pixels.
We set the parameters in Eq. (11) as 04 = 0.3 and o, = 20;
this is the same as in [39].

Examples of such weights are shown for several 15 X
15 neighborhoods in Figure 6; bright values indicate high-
er weights. Note the neighborhood labeled d, correspond-
ing to the rifle. Since pixels on the rifle are in the minority,
an unweighted median oversmooths (Classic++ in Fig. 1).
The weighted term instead robustly estimates the motion us-
ing values on the rifle. A closely related piece of work is
[37], which uses the intervening contour to define affinities
among neighboring pixels for the local Lucas and Kanade
[31] method. However it only uses this scheme to estimate
motion for sparse points and then interpolates the dense flow
field.

We approximately solve for @i (and similarly V) using
the following weighted median problem

min g

AY:
w; 7§ — ], (14)
u

" (i, EN; ;ULdL5)
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Sum Venus  Dimetrodon ~ Hydrangea  RubberWhale = Grove2  Grove3 Urban2  Urban3
Classic-C 13.013 0.817 0.903 1.202 0.674 2.166 3.144 1.954 2.153
Classic-C w/o MF 14.629  0.886 0.945 1.299 0.725 2.315 3.513 2.234 2712
Classic-C-A 12489  0.784 0.889 1.139 0.666 2.064 2.976 1.922 2.049
Classic-C-A-noRep ~ 13.076  0.790 0.894 1.165 0.670 2.092 3.143 2.005 2.317
Classic-C-A-II 13.308  0.830 0.915 1.235 0.686 2.223 3.247 1.990 2.182
Classic-C-A-CGD 13.466  0.833 0.909 1.224 0.674 2.213 3.357 2.020 2.236

Table 7 Eq. (3) energy (x 109) for the computed flow fields on the Middlebury training set. The alternating optimization strategy (Classic-C-A)

produces the lower energy solutions than the median filtering heuristic.

Avg. EPE  significance  p-value
Classic+NL 0.221 — —
Classic+NL-Full 0.222 0 0.8203
Classic+NL-Fast 0.221 0 0.3125
RGB 0.240 1 0.0156
HSV 0.231 1 0.0312
LUV 0.226 0 0.5625
Gray 0.253 1 0.0078
w/o color 0.283 1 0.0156
w/o occ 0.226 0 0.1250
w/o spa 0.223 0 0.5625
o2 =5 0.221 0 1.0000
oo = 10 0.224 0 0.2500
A= 0.236 0 0.1406
A= 0.244 0 0.1016
11 x 11 0.223 0 0.5938
19 x 19 0.220 0 0.8750

Table 8 Average end-point error (EPE) on the Middlebury training set
is shown for the the improved model and its variants. Please refer to
Table 16 for the detailed results.

using the formula (3.13) in [
Full). Note if all the weights are equal, the solution is just the
median. In practice, we can adopt a fast version (Classic+NL)
without performance loss: Given a current estimate of the
flow, we detect motion boundaries using a Sobel edge detec-
tor and dilate these edges with a 5 x 5 mask to obtain flow
boundary regions. In these regions we use the weighting in
Eq. (10) in a 15 x 15 neighborhood. In the non-boundary
regions, we use equal weights in a 5 X 5 neighborhood to
compute the median.

To further reduce the computation, we can adopt a two-
stage GNC process and perform 3 warping steps per pyra-
mid level. This fast version (Classic+NL-Fast) has nearly
the same overall performance, with a slight decline in per-
formance on the “Urban3” sequence, which has large mo-
tions; with an iterative warping scheme, large motions re-
quire more iterations.

Tables 8 and 9 show that the weighted non-local ter-
m (Classic+NL) improves the accuracy on both the train-
ing and the test sets, especially in the motion boundary re-
gions. Note that the fine detail of the “rifle” is preserved in
Figure 1(e). At the writing of this paper (Sep. 2012), Clas-
sic+NL ranks 13" in both AAE and EPE. Figures 7 and 8
show some of the results on the Middlebury dataset.

Computational time. The running time on the test “Urban”
sequence is about 1.5 minutes for HS, 6 minutes for Clas-
sic++, about 8 minutes for Classic+NL, about 26 minutes
for Classic+NL-Full, and about 1.6 minutes for Classic+NL-

] for all the pixels (Classic+NL-

Avg. Rank  Avg. EPE  Avg. EPE near boundary
Classic++ 32.7 0.406 0.980
Classic++Gradient 33.5 0.430 1.042
Classic+NL 17.2 0.319 0.689
Classic+NL-Full 17.5 0.316 0.676

Table 9 Average end-point error (EPE) on the Middlebury zest set for
the Classic++ model with two different preprocessing techniques and
its improved model. Please refer to Table 11 for the detailed EPE re-
sults, Figs. 11 and 12 for the screen shots of the Middlebury public
table.

Fast in MATLAB on a 64-bit Linux desktop with 8G of
memory. The additional cost from HS to Classic++ comes
from the GNC stage and the non-convex penalty function.
The additional cost from Classic++ to Classic+NL comes
from the weighted median filtering step for detected motion
boundaries. Applying the weighted median operation on all
the pixels (Classic+NL-Full) increases the running time by
more than three times with little performance gain. Using
fewer iterations (Classic+NL-Fast) can significantly reduce
the computational cost with little performance loss, espe-
cially on sequences with small motion. Note that we solve
the weighted median problem at each pixel individually and
do not reuse the sorting results from neighboring pixels. Fu-
ture work should consider reformulating the weighted medi-
an filtering so that a convolution-type operation can be used
to reduce the computational costs.

We study some variants of the weighted non-local term
(Classic+NL). Table 8 shows the importance of each term in
determining the weight and influence of the parameter set-
ting on the final results. Using different color spaces results
in some performance decline. Using grayscale pixel values
(Gray) or not using the static image information (w/o col-
or) results in significant degradation in performance. With-
out occlusion (w/o occ) or spatial distance (w/o spa) cues
does not degrade the performance significantly. The method
is robust to the setting of o for the color cue and 5 and 10
perform similarly as the default 7. The default A is 3, while 1
and 9 result in some loss in performance. We also study the
maximum size of the neighborhood for the non-local term
and find 11 x 11 gives similar performance while 19 x 19 is
slightly better.

Results on the MIT dataset.

To test the robustness of these models on other data, we
applied HS, Classic-C, and Classic+NL to sequences from
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(a) “Old” HS [42] (b) “New” HS (c) Classic++

-

(e) Ground truth

(d) Classic+NL (f) First frame

Fig. 7 Results on the Middlebury test set. Top to bottom: “Teddy”, “Wooden”, and “Grove”. Classi+NL uses information from the color image to
detect and preserve fine motion details. Note that the ground truth from the Middlebury website has been compressed and has low quality than the

actual one.

the MIT dataset [30], and compared the estimated flow field-
s to the human labeled ground truth. Note only five of the
eight test sequences in [30] are available on-line; these are
tested here.

Fig. 9 and Table 10 show the results on these sequences,
which are very different in nature from the Middlebury set
and include an outdoor scene as well as a scene of a fish tank.
The results are compared with the CLG method [13] used in
[30]. It is important to point out that the CLG method was
tuned to obtain the optimal results on the test sequences. Our
method had no such tuning and we used the same parameters
as those used in all the other experiments. This suggests that
training on the Middlebury data results in a method that gen-
eralizes to other sequences. The only place where this fails
is on the “fish” sequence where there is transparent motion
in a liquid medium; the statistics in this sequence are very
different from the Middlebury training data.

Average Table Hand Toy Fish CameraMotion
CLG [13,30] 1.239 0976  4.181 0456  0.196 0.385
HS 2.129 1.740  6.108  0.620  1.309 0.869
Classic-C 1.345 1.064 3428 0482  1.061 0.690
Classic+NL 1.106 0.91 2.75 0.487  0.772 0.611

Table 10 Results on the MIT dataset [30]. Average end-point error
(EPE). The CLG [!3] method was tuned for each sequence [30].

Closely-related work: Werlberger et al. [50] independent-
ly propose a non-local term for optical flow estimation and
the spatial term is similar to our non-local term. They use
normalized cross correlation as the data term to deal with
lighting changes and optimize their objective function by a
primal-dual method. Their work is motivated by the success
of the non-local regularization [14] in image restoration and
stereo. Our work is inspired by the success for the heuris-
tic median filtering step in flow estimation and we formalize
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(e) First frame

(d) Classic+NL (e) Ground truth

Fig. 8 Results on other Middlebury test sequences.

w
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Al

(b) Classic-C

a) HS
Fig. 9 Results on MIT sequences.

the median filtering heuristic as adopting a non-local regu-
larization term.

Limitations: Classic+NL produces larger errors in occlu-
sion regions on some sequences, such as “Schefflera” shown
in Fig. 10. The classical flow formulation assumes that ev-
ery pixel at the current frame has a corresponding pixel at the
next frame. However this assumption breaks down in region-

il

(¢) Classic+NL

gl

(f) First fram

i I

(d) Classic+NL (e) Ground truth

" e - gl

(e) First frame

(d) Ground truth

s of occlusion. Pixels that are occluded by some foreground
objects in one frame do not have corresponding pixels in the
next, resulting in large errors with classical formulations. In
contrast, a layered model [46] may provide a principled way
to reason about occlusions. The motion model developed in
this paper has enabled the a recent layered approach [43]
to achieve a consistent improvement over the Classic+NL
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(b) Ground truth (c) Estimated flow field

(a) First frame

Fig. 10 Occlusions are not modeled by Classic+NL and may cause
problems in the estimated flow field. Dark pixels in the ground truth
indicate occlusions.

method, in particular near occlusion and motion boundary
regions.

7 Conclusions

When implemented using modern practices, classical optical
flow formulations produce competitive results on the Mid-
dlebury training and test sets. To understand the “secrets”
that help such basic formulations work well, we quantita-
tively studied various aspects of flow approaches from the
literature, including their implementation details. Among the
best practices, we found that using median filtering to de-
noise the flow after every warping step is key to improving
accuracy, but that this increases the energy of the final re-
sult. Exploiting connections between median filtering and
L1-based denoising, we showed that algorithms relying on
a median filtering step are approximately optimizing a d-
ifferent objective that regularizes flow over a large spatial
neighborhood. Understanding this enables us to design and
optimize improved models that weight the neighbors adap-
tively in an extended image region. The MATLAB code is
publicly available [1].
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Table 11 Models. Average end-point error (EPE) on the Middlebury optical flow benchmark (zest set). The ranking information was at the writing
of the paper (Sep. 2012).

Rank  Average Army  Mequon  Schefflera ~ Wooden Grove  Urban  Yosemite  Teddy
HS 49.0 0.501 0.12 0.25 0.45 0.24 0.95 0.83 0.24 0.93
Classic-C 348 0.408 0.10 0.23 0.45 0.20 0.88 0.47 0.16 0.77
Classic-L 427 0.530 0.10 0.24 0.47 0.21 0.92 1.23 0.20 0.87
HS-brightness N/A 0.759 0.21 0.89 1.13 0.42 0.93 0.70 0.18 1.61
Classic-C-brightness N/A 0.726 0.39 0.95 1.12 0.42 0.87 0.48 0.13 1.45
Classic-L-brightness N/A 0.603 0.17 0.64 0.84 0.32 0.90 0.48 0.13 1.34
HS [42] 66.2 0.872 0.22 0.61 1.01 0.78 1.26 1.43 0.16 1.51
BA (Classic-L) [42] 59.6 0.746 0.18 0.58 0.95 0.49 1.08 1.43 0.15 1.11
Adaptive [48] 28.5 0.401 0.09 0.23 0.54 0.18 0.88 0.50 0.14 0.65
Complementary OF [59] 31.6 0.485 0.10 0.20 0.35 0.19 0.87 1.46 0.11 0.60
Classic++ 32.7 0.406 0.09 0.23 0.43 0.20 0.87 0.47 0.17 0.79
Classic++Gradient 335 0.430 0.08 0.17 0.49 0.21 0.94 0.55 0.17 0.83
Classic+NL 17.2 0.319 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49
Classic+NL-Full 17.5 0.316 0.08 0.24 0.28 0.15 0.63 0.49 0.16 0.50

Table 12 Models and pre-processing. Average end-point error (EPE) on the Middlebury training set for the classical model and different penalty
functions. By default, the input sequences were preprocessed using ROF texture decomposition; “brightness” means no preprocessing is performed.
The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3 Urban2  Urban3 signif.  p-value
Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —
Classic-C-brightness 0.288 0.268 0.166 0.215 0.134 0.146 0.584 0.352 0.437 0 0.9453
HS 0.384 0.337 0.219 0.189 0.118 0.204 0.688 0.463 0.853 1 0.0078
HS-brightness 0.387 0.335 0.226 0.252 0.154 0.185 0.639 0.564 0.743 1 0.0078
Classic-L 0.319 0.294 0.193 0.175 0.095 0.166 0.648 0.374 0.604 1 0.0078
Classic-L-brightness 0.325 0.292 0.207 0.274 0.145 0.158 0.588 0.451 0.484 0 0.2969

Table 13 Pre-Processing. Average end-point error (EPE) on the Middlebury training set for the baseline method (Classic-C) using different
pre-processing techniques. The regularization weight A parameter was tuned for each method to achieve optimal performance. The statistical
significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus  Dimetrodon  Hydrangea  RubberWhale = Grove2 ~ Grove3  Urban2  Urban3 signif.  p-value
Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —
Gradient 0.305 0.288 0.141 0.167 0.092 0.165 0.614 0.385 0.588 0 0.4609
Gaussian 0.281 0.268 0.146 0.226 0.141 0.137 0.582 0.335 0.413 0 0.5469
Gaussian + Dx + Dy 0.290 0.280 0.126 0.174 0.105 0.154 0.588 0.470 0.420 0 0.6406
Dx + Dy 0.301 0.286 0.122 0.166 0.099 0.161 0.616 0.443 0.518 0 1.0000
Sobel edge[45] 0.417 0.334 0.149 0.184 0.130 0.194 0.757 0.451 1.135 1 0.0156
Laplacian [28] 0.430 0.374 0.170 0.176 0.096 0.175 0.756 0.464 1.232 1 0.0078
Laplacian 1:1 0.301 0.296 0.179 0.193 0.109 0.157 0.606 0.349 0.520 0 0.6641
Texture 4:1 0.286 0.271 0.159 0.175 0.100 0.154 0.587 0.349 0.490 0 0.5312
Unnormalized texture 0.298 0.279 0.152 0.166 0.092 0.158 0.623 0.348 0.563 0 0.3750

Table 14 Model and Methods. Average end-point error (EPE) on the Middlebury training set for the baseline model (Classic-C) using different
algorithm and modeling choices. The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline
(Classic-C).

Average Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3 Urban2  Urban3 signif.  p-value
Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —
3 warping steps 0.304 0.283 0.122 0.163 0.095 0.150 0.622 0.357 0.644 0 0.9688
Down-0.5 0.298 0.280 0.152 0.166 0.092 0.158 0.626 0.349 0.562 0 1.0000
Down-0.95 0.298 0.281 0.151 0.168 0.099 0.165 0.661 0.339 0.523 0 0.9375
w/o GNC 0.354 0.303 0.160 0.171 0.105 0.183 0.835 0.316 0.759 0 0.1094
Bilinear 0.302 0.284 0.144 0.167 0.099 0.160 0.637 0.363 0.563 0 0.1016
w/o TAVG 0.306 0.288 0.149 0.167 0.093 0.163 0.647 0.345 0.593 0 0.1562
Central 0.300 0.272 0.156 0.169 0.092 0.159 0.608 0.349 0.597 0 0.7266
7-point [13] 0.302 0.282 0.168 0.171 0.091 0.163 0.601 0.360 0.584 0 0.3125
Deriv-warp 0.297 0.283 0.153 0.165 0.092 0.159 0.636 0.333 0.552 0 0.9531
Bicubic-IT 0.290 0.276 0.132 0.152 0.083 0.142 0.624 0.338 0.571 1 0.0391
Deriv-warp-II 0.287 0.264 0.155 0.152 0.085 0.145 0.616 0.333 0.546 1 0.0156
Warp-deriv-II 0.288 0.267 0.155 0.151 0.085 0.147 0.630 0.328 0.542 1 0.0391
C-L(A=0.6) 0.303 0.290 0.158 0.171 0.094 0.158 0.611 0.367 0.579 0 0.1562
L-C(A=2) 0.306 0.281 0.174 0.173 0.096 0.164 0.662 0.343 0.557 0 0.1562
GC-0.45 (A = 3) 0.292 0.280 0.145 0.165 0.092 0.154 0.612 0.340 0.546 1 0.0156
GC-0.25 (A = 0.7) 0.298 0.283 0.128 0.169 0.094 0.150 0.617 0.353 0.594 0 1.0000
MF 3 x 3 0.305 0.287 0.155 0.168 0.094 0.162 0.616 0.372 0.583 0 0.1016
MF7 x 7 0.305 0.281 0.152 0.173 0.095 0.174 0.676 0.330 0.557 0 0.5625
2x MF 0.300 0.279 0.152 0.167 0.093 0.163 0.650 0.339 0.555 0 1.0000
5x MF 0.305 0.278 0.152 0.171 0.093 0.172 0.682 0.329 0.561 0 0.6875
w/o MF 0.352 0.307 0.168 0.199 0.113 0.217 0.705 0.423 0.684 1 0.0078
Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555 1 0.0078
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error avg.| GT im0 im1 GT im0 jml GT imd im1 GT im0 jml GT im0 jml GT im0 im1 GT im0 jml GT im0 jml
rank] al disc untext| all disc untext|] al disc untext| all disc untext| all disc untext| all disc untext| all disc untext| al

MDP-Flow2 [74] 42|0.08+ 0212 0.073) 0.151 0.481 0.111|0.201 0.401 0.141) 0.155 0.801+ 0.08c| 0.635 0.93c 0.43c|0.261 0.761 0233|0112 0125 0.17 11| 0.381 0.791 0.441
ADF [71] 5.0|0.08+ 0225 0.061)0.185 0525 0145|0284 07147 0.173|0.16150.9125 0.07 1 |0.69121.0312 0.475|0.43 11 0.91¢ 0.285|0.1215 0.125 0.20+12/ 0.432 0.882 0635
IROF++ [61] 92|0.08+ 0.235 0.075)0.21170.68150.17 13|/ 0.2810 0.635 0.1918] 0.155 0.73100.0913| 0.603 0.89+ 0.425|0.43111.08100.31 12/ 0.10+ 0.125 0124|0475 0.935 06811
Layers++ [38] 595|008+ 0212 0.075) 0.197 0.555 0.1713| 0.20+1 0.401 0.1812) 0.3+ 0.582 0.071|0.481 0.70+1 0332|0.4720 1.015 0.3313/0.1535 01431 0.24 32| 0.45+ 0.882 0.72 14
nLayers [50] 10.2) 0071 0.191 0.061|0.2220 0.594 0.1929) 0.255 0.545 0202 0.155 0.8413 0.085| 0.532 0.8z 0.343|0.4415 0.842 0.3010{0.13230.13190.2013| 0.475 0977 0673
Sparse-NonSparse [58](13.7) 0.08+ 0.23: 0.07:|02220073201821|0.28 10 05432 0.1913) 014+ 0.717 0.08c|0.57110.99110.4811)0.492¢ 1.065 0.3215|0.1430 0.111 0.2845|0.4% 10 0.983 0.73 17|
ALD-Flow [72] 13.8| 0071 0212 0.061|0.197 06413 0.134|0.30+7 07315 0.153|0.1722 09230 0.071|0.7821 1.1421 0.59 21| 0.335 1.302 0.211|0.1215 0.125 0.2845/0.54 15 1.1921 0.7317
COFM [62] 13.9)0.08+ 0.262: 0.061| 0.183 06235 0143|0307 0741201913 0.155 0.8621 0.071|0.79x2 1,141 07435 0.355 0.873 0.285|0.1430 0.125 0.2845/0.4910 0.945 0.7113
TC-Flow [47] 1422|0071 0212 0.061|0.151 0594+ 0.111|0.312007825 0.141|0.16150.8621 0.085|0.75131.11120.54 15/0.42 10 14023 0.254| 01139 0.125 0.2930/0.6224 1.3525 0.93 5
Efficient-ML [64] 14.2] 0.084+ 0225 0.061|0.23300.73220.1821)0.3222075200.18 12| 0.14+ 0729 0.085| 0.605 0883 0.435|0.57331.11140.3524{0.14500.13190.2535/| 0.483 090+ 0635
LSM [40] 14.8| 0.08+ 0235 0.075|0.22200.73220.1821)0.2810 0.649 0.1913| 0.14+ 0.705 0.0913| 0.6865 0.973 0.4811|0.5025 1.065 0.3313{0.153 0.125 0.2930/0.5013 0.9911 0.7317
Ramp [55] 15-”'@‘ 02414 0.075|0.2117 072200181 0.277 0627 0.1913| 0.155 0.717 0.0913| 0.665 0973 0.4913]0.5127 1.09110.3423|0.1535 0.126 0.3053| 0.485 0.965 0.72 14|
Classic+ML [31] 16.6' 0.08+ 0233 0.075|0.22200 742 0.1821|0.2914 06512 0.19 45/ 0.155 0.73100.0913| 0.847 0.935 0.473|0.52231.12150.3313|0.1645 0.1312 0.29 50| 0.49 10 0.983 0.7421
TW-L1-MCT [88] 16.3'@1 0233 0.075|0.24330772:0.192|0.322 07622 0.19 15| 0.14+ 0694 0.0913|0.7214 1.0312 0.60 22| 0.5431 1.10130.3524] 0.119 0.125 0.2013|0.54 15 1.04 15 0.84 25
Direct ZNCC [70] 17.510.0915 0.2513 0.075| 0.197 0.7013 0.134|0.43301.003 0.153| 0131 0.551 0085|0862 1.237 0.7332(0.53301.22170.383(|0.14300.1312 0.27 42| 0.4435 0.9911 0.441
IROF-TV [55] 18.4)10.0915 0.251530.0822|0.22 20 0.77 25 0.1929) 0.30 7 0.70 15 0.19 15| 0.1825 0.93 32 0.11 25| 0.3 15 1.04 14 0.56 13| 0.44 15 16943 0.31 12| 0.095 0.111 0.124|0.50131.0817 0.7317
MDP-Flow [28] 19.4)10.0915 0.25130.08 22| 0.197 0.542 0.1821) 0.24+ 0.555 020 0.1615 09125 0.0913/0.7415 1.06 15 0.61 2¢|0.46 123 1.027 0.3524/0.1215 0.14 31 017 11|0.78 41 1.68 14 0.97
OF-Mol [48] 21.3| 0.08+ 02335 0.075|0.2842 09945 0.2036|0.28 10 0.645 0.1915/0.16 16 0.80 14 0.09 13 0.7515 1.1220 0.50 14| 0.52 25 1.09 11 0.33 18] 0.16 45 0.13 19 0.30 53] 0.56 21 1.08 17 0.75 23
Sparse Occlusion [56] |21.3(0.0915 0.2414 0.0822|0.2220 06310 0.1929)0.3823 0.91 27 0.1812|0.17 22 0.8520 0.09 13/ 0.7513 1.09 15 0.473| 0.34+ 1.005 0.265|0.22530.22630.2845/0.53171.1312 0672
OFH [39] 21.4)|0.10250.25150.0931| 0.197 0691 0.145|0.43301.0235 0.175|0.1722 1.0835 0.085|0.8730 1.25220.7332|{0.43 11 16943 0.3215| 0.104 0.13120.1814|0.5923 1.4025 0.74 21
TrajectoryFlow [58] |22.2)|0.10250.262¢ 0.075|0.2014 07322 0134|037 0.9425 0.153| 0,431 0673 0.071|0.8224 12327 0.5415|0.663% 1.4231 0.4454)0.1645 0.1451 0.3751|0.58 22 1.2522 0.79 24
NL-TW-NCC [25] 22.4)|0.10250.2624 0.08 22| 0.22200.7220 0.1512|0.3525 0.8525 0.165| 0.1558 0.705 0.0913|0.7922 1.1624 0.51 15| 0.7841 1.3825 0.48 8] 0.1645 0.1541 0.2657|0.5520 1.16 20 0.554
CostFitter [41] 2250102502730 0.0822|0.2014 06310 0.1512| 0.225 0.455 0.1812(0.1930 08825 0.1232| 0505 0.905 0.281|0.7540 11915 0.5040)0.2152 0.2471 0.4053) 0.46+ 1.0213 0625
SimpleFlow [51] 239|0.09150.24 14 0.08 22| 0.24 33 0.7830 0.20 35| 0.43 30 0.96 31 0.21 31| 0.16 15 0.77 12 0.09 13| 0.71 13 1.04 14 0.55 13| 1.47 57 15939 0.7651]0.1323 0.125 0.2227)|0.50 15 1.04 15 0.72 14
Occlusion-TV-L1 [67] |25.1|0.081 0262 0.075|0.2220 0742 0.1821|0.513 115420 0.21 5101825 0.91 25 0.10 25| 0.87 501,252 0.72 2| 04720 13825 0.36 25| 010+ 0126 0.112|0.834 1.7845 0.96 38
Adaptive [20] 27.0/0.0915 0.262+ 0.061|0.23300.78300.1821|0.5440 1.19450.21 31| 0.18250.91 2 0.1025|0.8833 1.2520 0.73 32| 0.5025 1.2820 0.31 12] 0.14 30 0.16 45 0.22 27| 0.65 25 1.37 27 0.79 24
Adapt-Window [34] |28.2|0.10250.24140.0951| 0.197 0.59: 0.1512| 0.277 0.642 0.17&|0.18250.82470.11 25| 0.7415 1.07 17 0.56 13| 1.7865 1.73 45 0.9561)0.2253 0.16 43 0.4585/0.70 32 1.28 23 0.88 =2|
DPOF [18] 28.3|0.12430.33430.0822|0.26 37 0.803¢ 0.2035| 0.24+ 0.49+ 0.20|0.19300.831530.13 35| 0.665 0.9810 0.404|1.1142 1.41300.57 4] 0.2559 0.14 31 0.5589)|0.51 15 1.0213 0.543
ACK-Prior [27] 2900115202513 0.095 01835 0.59+ 0.13+|0.277 0645 0165|0155 0.78130.0913|0.8224 1.1421 0.7125{ 1.9053 1.9053 0.9954) 0.2357 0.17 54 0.4953) 0.77 32 1.44 22 0.91 54
C y OF [21]|29.5]0.1132 0.2831 0.1041| 0.183 06310 0.123|0.31200.75200.1812{0.1930 0.97 33 0.12 2| 0.97 4+ 1.3140 1.0049| 1.7865 1.7345 0.87 58] 0.119 0.125 0.2227|0.68 29 1.4830 0.95 37|
ComplOF-FED-GPU [38]|31.0)0.1132 0.2835 0.10 41| 0.21 17 0.7830 0148|0322 0.792¢ 0.175|0.19350 0.99 3¢ 0.1125]0.89 3¢ 1.2535 0.73 32| 1.2551 1.74 45 0.64 45| 0.14 30 0.13 12 0.30 53| 0.64 26 1.50 22 0.83 =7
Classic++ [32] 31.4)10.0916 0.2513 0.075|0.23300.7830 0.1929)0.4330 1.0033 0.22 34| 0.203¢ 1.11 39 0.10 25/ 0.87 30 1.30 37 0.66 25| 0.47 20 16240 0.33 13| 0.17 50 0.14 31 0.32 55/ 0.79 42 1.64 40 0.92 35
Aniso. Huber-L1 [22] [31.5/0.10250.2831 0.0822{0.314 088 0.28450.564 11335 0.2947)0.2054 09230 0.1335|0.84 27 1.2025 0.70 27| 0.396 123145 0.286|0.17500.1541 0.27 42|0.642 1.36 5 0.79 4|
TriangleFlow [30] 342|D_.:<2 0.29350.0931|0.26 57 0.9543 0.17 15/ 0.47 77 1.07 35 0.18 12| 0.16 16 0.87 24 0.0913|1.07 52 1.47 57 1.1053] 0.87 43 1.3927 0.57 44| 0.1535 0.1954 0.2331|0.63 25 1.33 24 0.84 25|

Fig. 11 Screen shot of Middlebury EPE table at the writing of the paper (Sep. 2012). There are 73 methods in total and only the higher-ranking
ones are shown.

Table 15 Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the non-local term and alternating
optimization (Classic-C-A) and its improved models. The statistical significance is tested using the Wilcoxon signed rank test between each
method and the baseline (Classic-C).
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A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them

Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
angle [Hidden texture) [Hidden texture) [Hidden texture) [Hidden texture) {Synthetic) Synthetic) Synthetic) (Stereo)
error avg.| GT im0 im1 GT im0 jml GT imD im1 GT im0 jml GT im0 jml GT im0 im1 GT im0 jml GT im0 jml

rank| al disc untext| all disc untext] al disc untext| all disc untext| all disc untext| all disc untext| all disc untext| al disc untext

nLayers [50] 6.8 | 2801 7.421 2202|2714 7.245 2550|2615 6243 245280 2302 1275 1.162| 2301 3.021 1.701| 2622 6951 2.092|2.29133.4613 1.8917| 1.38+ 3.065 1.294
MDP-Flow2 [74] T.0|3.2315 7935 25605)1.921 6641 1521|2452 5912 1.552|3.051315.8191.517| 2775 3.50+ 2165|286+ 8585 27010 2.00= 3.5015 1.599|1.282 25672 0.89:
ADF [71] 992|298+ 8327 2285|2273 8359 1.815|3.55159.74162.1715|3.1524 16.825 1.295| 2.644 3.556 1.812|3.025 9.084+ 2.384|2.29133.48152.07 2| 1.345 3.035 1.113
Layers++ [38] 11203116 8225 27913 2.437 7022 22415) 243+ 5771 21847 2431 9711 1151 2352 3.021 1964|3812 11413322 x|2.74:5 4013323523/ 1.455 3.054 1.7% 1
IROF++ [61] 121317 1086910 2.619|279159.61152.33 13| 3.439 88611 238 22|2.87 15 14.8131.5215| 2.747 3.577 2.199|3.20109.7011 2.71 11| 1.965 3.4512 1.225(1.8012 4.06 14+ 2.50 0
ALD-Flow [72] 1222|2822 7862 2161 |2.841310.113 1863|3737 10412 1.674|3.102016.825 1.28+| 2695 3603 1.853| 2795 11.317 2.325|2.07 10 3.255 3.1042|2.03155.1120 1.94 12
Efficient-ML [64] 13.3| 3.015 8295 2.305|3.122010.321 2.4020|3.83209.97 153 2.0813|2.7611 14.4 11 1.453| 2644 3515 2.077| 3.066 8232 2.495|2.53233.7324 2.4630[1.9113 3.325 2.40 13
Sparse-NonSparse [58])13.5| 3.145 875122.7616(3.0226 10623 2.432¢|3.4512 89612236 0| 2866 13.77 1.426|2.85153.75132.3312)3.2811 9405 2.7312|2.422¢ 3.315 26935 1.475 3.075 1.867
LSM [40] 146 3.127 8629 2.7515|3.0025 10.522 2.44 25| 3.439 8.851023519| 2.665 13.66 1.447|2.8210 3.689 2.3614/3.3814 9419 2.8115/2.69333.52192.843| 1.595 3.35101.80 11
TC-Flow [47] 14702915 8.004 2346|2182 87710 1521|3842 10725 1.491|3.1321 16624 1.4512| 2.782 3.7312 1.96+| 3.087 11,413 2667 1.945 3.43113.2053/3.0625 7.04 25 4.08 &5
Ramp [55] 15.213.18128.8314 2.7314|2.8921 10.1 19 2.4425| 3.277 8.437 2382|274 10 1429 1.4612|2.82103.69112.2910|3.37 13 9317 2.9313|2.6231 3.38103.1932| 1.547 3.217 22415
COFM [62] 164|317 109902 2457|2415 8345 1929|3775 1052025430 2719 14915 1.193(|3.08193.92133.2543|3.83 23 10.914 3.1523| 2.2015 3.357 2.91 1|1.62 10 2.561 2.0913
Classic+NL [31] 17.213.2014 87211 2.81 20/ 3.02 26 10.623 2.44 25| 3.46 15 8.849 23822|2.7812 14.3101.4612|2.83 12 3.689 231 11|3.4015 9.095 2.76 15| 2.87 40 3.82 25 2.86 40| 1.67 11 3.53 11 2.2613
TWV-L1-MCT [58] 17.4| 3.162 8488 2.7113)3.2853 10829 2.6033)3.9525 10.5202.38 22| 2695 13.95 1.459|2.94153.79121 263 x|3.50189.7512 3.06 1| 2.08 11 3.357 2.292%(1.9515 3.8813 2.71 23
SimpleFlow [51] 19.9)3.35179.20132.9824|3.1830 10.727 2.71 36| 5.06 30 12628 270 31| 2.9515 15.1 16 1.58 22| 2.91 14 3.79 14 2.47 20| 3.5920 94910 2.99 19| 2.39 2 3.46 13 2.24 25| 1609 3.5612 1.575
Direct ZNCC [70] 21.0{3.502: 89515 2.7012| 2469 92114 1.837|5.205 13.251 1613|2485 10.22 1.4915|3.32 27 4.34 25 2.60 24| 4.6035 14635 431 45| 2.62 51 3.64 23 3.0945|1.95 6 4.70 16 1.58¢
CostFitter [41] 21.3|3.84 7 9642 3.06 6| 2.5512 8.095 2.0312| 2.69+ 647+ 1.885|3.6633 16.8251.8831| 2.623 3.345 1996|4.0528 11.015 3.6535|4.1661 7.1872 46662 1.161 3.369 0.871
OF-Mol [48] 21.8|3.19138.76132.77 17| 3.8440 14044 26935|3.44 11 8785 2.39|2.9815 15813 1.5319|2.96 16 3.8917 2.34 13| 3.4015 9306 2.7312)2.8335 3.9233 298 47|2.4620 4 98 12 2.89 =5
MDP-Flow [26] 21.9'@21 945233.1028) 2455 7.364 24121 3.216 8315 2783431825 17.832 1.7026|3.03 17 3.87 16 2.60 24| 3.43 17 12622 2.81 15| 2.19 15 3.88 31 1.60 10/4.13 3 9.96 42 3.85 43|
IROF-TV [35] 22.5|3.4020 9292029523 2.9924 11,151 2.53 ) 3.81199.81 17 2.4427|3.252 16.925 1.78 29| 3.27 25 4.1022 2.93 35| 4.47 3¢ 16.043 3.53 31 1.7035 3.214 1.125(1.51134.7517 21913
Sparse Occlusion [56] |24.7|3.6224 9.12152.9021|2.9222: 9.0813 2.5631|4.492 11826 2.11 14| 3.1422 15.819 1.5721|3.26 25 4 22 27 236 14|3.52 13 10.914 2667 |5.1076.32653.1551|2.0217 49213 1.715
OFH [35] 250039030 97725 3.6240|2.841511.0302.0413)5.52 5 14.435 1.899|3.522820.5421.602|3.1821 4.061 2.8232|{3.862¢ 14132 3.5932) 1.775 3622 1.8114|2.6423 7.0828 2.15 14
NL-TW-NCC [25] 25.0|3.89299.1617 298 24|2.87209.69 15 1.99 10|4.4425 11.625 1.765| 2644 11.835 1.4815|3.49 % 4604 2.47 20| 4.67 42 13.527 4.2645)|2.8335 4.57 51 2.84 77| 2.62 22 6.00 24 2.25 17|
TrajectoryFlow [58] |25.2|3.71259.92:027717|2.61139.9515 1815|4592 12625 1685|2655 1254+ 1.459|3.4854.69512.4219|4.19351 13.326 4.1842)2.87 04,1140 4.3351|2.56 21 57021 3.00 23
Occlusion-TV-L1 [67] |25.8/3.59239.612¢2.6411|2.9323 10623 2.4121|6.1635 1523 2.7051|13.3227 17.02 1.6825|3.3831 44434 2.82 32| 3.105 13225 2689|2.17133.52 19 1.466|4.6345 11.1 352 3.53 35
C y OF [21] 26.6'&{211.25&4.045 2511197717 1.744|3.932 1062204 11|3.87% 1884 2.193|3.1720 4.0012 2.92 35| 4.64 40 13.820 3.64 54 2.17 13 3.369 2.51 51|3.08 7 7.04 2 3.65 33
Adaptive [20] 27.6'@169.4322 2283|3.1023 11,4332 4625|6.5840 15.741 2.52 2| 3.1422 15.617 1.56 20| 3.67 45 4.4635 3.484513.3212 13.02¢ 2.384|2.7637 43945 1.9313|3.58 33 8.18 32 2.88 25|
ACK-Prior [27] 28.0/4.1935 9.27 19 3.60 35| 2.40¢ B.217 1.653 | 3.405 8.9612 1.847|2.87 13 14.411 1.4473.36304.1525 3.07 39|6.35 50 16.1 45 4.90 50| 42152 4.80 55 6.0365[3.28:0 5.99 23 2.82
DPOF [18] 23.5'@49 12.6453.3030|3.57 % 10623 3.12 45| 3.095 7.505 2.3213|3.06 13 14.813 1.8230|3.212:4.1825 2.7951|4.4754 12521 3.33 77| 4.0960 39233 6.9659|2.09 19 43915 1.749
Adapt-Window [34] 30.4|m559.32:‘ 3.5437| 2425 7.975 1.9910|3.47 12 8.99 12 2.0512| 3.5530 17.022 1.97 32| 3.3 25 4.21 25 2.82 32| 5.93 52 14.8 37 4.83 4| 4.32 63 45153 5.30{3.27 20 5.89 22 3.16
ComplOF-FED-GPU [35] 31.3'@3@ 1133 3.7041|3.25351 13.0382.1614/4.06 24 11.224 1.9510|3.9157 19.23% 2.0133|3.2022 4.1523 2.64 23] 4.61 39 16.1453.9057| 29845 3.77 26 3.6957|2.8524 744302531
Aniso. Huber-L1 [22] 33.1|ﬂ510.151 3.0827|4.36 45 13.033 3.77 47| 592 43 15.3 33 3.60 45| 3.5 22 15.9 22 2.04 3| 3.38 31 4.4535 2.47 20| 3.8825 12.92: 2.74 12| 3.37 50 4.36 47 2.85 3331625 7.52 31 2.90 =
Classic++ [32] 34.9|ﬁ‘99.672r2.91 22|3.283312.135 2,61 54| 5.4635 14.13¢ 3.0035|3.6332 20240 1.70%|3.24 24 4 34 0 260 24| 4.6541 16.0433.6033|3.09473.94 % 3.2855|4.64 4 1044 3.71
TW-L1-improved [17] 35.5'@159.6352.6213 28211077 22315|6.503 15.8422.7333|3.803521.345 1.7623)3.3425 43833 2.39 15| 5.97 55 18,154 5.6755)| 3.57 52 4.9255 3.43 55(4.01 35 9.84 11 3.44 54

Fig. 12 Screen shot of Middlebury AAE table at the writing of the paper (Sep. 2012). There are 73 methods in total and only the higher-ranking
ones are shown.

Table 16 Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the weighted non-local term and its
variants. The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic+NL).

44.

45.

46.

47.

Average Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3  Urban2  Urban3 signif.  p-value
Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384 — —
Classic+NL-Full 0.222 0.252 0.135 0.156 0.074 0.097 0.469 0.214 0.382 0 0.8203
Classic+NL-Fast 0.221 0.233 0.117 0.151 0.076 0.098 0.464 0.210 0.421 0 0.3125
RGB 0.240 0.243 0.131 0.155 0.081 0.109 0.501 0.236 0.468 1 0.0156
HSV 0.231 0.245 0.131 0.152 0.074 0.110 0.492 0.222 0.424 1 0.0312
LUV 0.226 0.241 0.131 0.149 0.074 0.104 0.460 0.223 0.427 0 0.5625
Gray 0.253 0.253 0.133 0.158 0.086 0.125 0.547 0.242 0.479 1 0.0078
w/o color 0.283 0.258 0.128 0.157 0.087 0.155 0.633 0.303 0.543 1 0.0156
w/o occ 0.226 0.243 0.131 0.152 0.073 0.103 0.488 0.230 0.386 0 0.1250
w/o spa 0.223 0.237 0.132 0.154 0.073 0.102 0.475 0.213 0.398 0 0.5625
o2 =5 0.221 0.240 0.131 0.151 0.073 0.104 0.466 0.208 0.392 0 1.0000
o2 = 10 0.224 0.238 0.132 0.153 0.073 0.102 0.485 0.228 0.384 0 0.2500
A= 0.236 0.245 0.151 0.164 0.080 0.120 0.430 0.243 0.459 0 0.1406
A= 0.244 0.249 0.137 0.160 0.091 0.111 0.577 0.201 0.426 0 0.1016
11 x 11 0.223 0.240 0.131 0.151 0.074 0.103 0.451 0.234 0.397 0 0.5938
19 x 19 0.220 0.238 0.132 0.154 0.073 0.103 0.470 0.210 0.384 0 0.8750
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Table 17 Additional results for HS. Average end-point error (EPE) on the Middlebury fraining set. The statistical significance is tested using the
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