ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS

Master’s Thesis Proposal
by
Daniel Acevedo Feliz

Brown University February 4, 2000
Presentation Outline

1.- Motivation and definitions.
2.- Problem to be solved.
3.- Hypothesis.
4.- System description.
5.- Testing.
6.- Timeline.
7.- Contributions.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
Motivation

Brown University excavations at the Great Temple of Petra (Jordan) since 1993.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS

1.- Motivation and definitions.
2.- Problem to be solved.
3.- Hypothesis.
4.- System description.
5.- Testing.
6.- Timeline.
7.- Contributions.
1. Motivation and definitions.
2. Problem to be solved.
3. Hypothesis.
4. System description.
5. Testing.
6. Timeline.
7. Contributions.

--- Collaborators:

Martha Joukowsky (Lead Archaeologist, Brown Univ. Great Temple Excavations, Petra (Jordan))

David Laidlaw (CS Assistant Professor)

Eileen Vote (PhD candidate Dept. Old World Archaeology and Art)

Talal Akasheh (Dean of Research and Graduate Studies, Hashmite University (Jordan))

--- Committee:

John Hughes (CS Professor)

Nancy Pollard (CS Assistant Professor)

David Laidlaw (CS Assistant Professor)

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
GIS: Geographical Information System

"A set of tools for collecting, storing, retrieving and displaying spatial data for a particular set of purposes." (Burrough P.A., 1986)
Why 3D GIS?

VR Interface:

- Desktop
- Cave
- HMD
- Workbench

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
Archaeologists must make important judgments about the object to record, characteristics of those objects and their relationship to the site and the culture they came from.

A dig system is established to record the information needed for analysis.

After information is recorded, it is analyzed using various databases, statistical analyses, laboratory procedures.
The Problem ...

- Large 3D dataset.
- Difficulty of a direct analysis of tabular data.
- Researchers need to be able to extract conclusions and relations.
- Limited type of queries because of visualization issues.
The Problem ...

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
A Proposed Solution ...

- **Use VR.**
- VR+GIS obvious combination.
- Helps in understanding the context of the data.
- Freedom of movement through the dataset.
- Immersion in the "3D dataset virtual world".
- Eventually...
 - More complex queries.
 - From "data-viewer" to advanced GIS functionality.
 - Alternative to more complex data-mining strategies.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
Background

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
A Virtual Reality interface to a GIS application will allow archaeologists to easily identify and successfully analyze more complex interrelationships from the field-data.

+ Classical approach.
+ Workstation.
+ Workbench.
+ Cave.

The use of different working environments will allow us to compare the different user interfaces and evaluate the success of the project.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
System components

- GIS end.
- Connection VR-GIS.
- VR end.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
GIS application

1.- Motivation and definitions.
2.- Problem to be solved.
3.- Hypothesis.
4.- System description.
5.- Testing.
6.- Timeline.
7.- Contributions.

- ESRI’s ArcView.
- EarthLab.

"GROSSO MODO"

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
VR-GIS Connection

- ArcView’s Internet Map Server.
- Web client.
- ArcView’s Avenue™.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
User’s Scenario (1/2)

- Become familiar with the site.
- See the trenches.
User’s Scenario (2/2)

- See the loci.
- See artifact information.
Evaluation

- Tests and user study.

- Tests for:
 - Environment navigation
 - GIS operations

- Pilot studies and User study:
 - Experienced archaeologists.
 - Three different interfaces.
 - General impressions and specific timed tasks.
Schedule

- February Web client, model of the Temple, topographical data.
- March Walking interface using the Wand.
- April Avenue scripts and first VR-GIS interface.
- May Data visualization models.
- June Intra-theme visualization models. Pilot study I.
- July LOD implementation. Flight interface.
- August Advanced GIS queries. Pilot study II.
- September User study and final presentation.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
Contributions

- The first VRGIS application for archaeology research.
- User study across 3 different working environments.
- New interfaces for GIS applications.
- Navigation and LOD techniques.

ARCHAVE: A Virtual Reality Interface for Archaeological 3D GIS
"Impact"

- Complete system to investigate new GIS interfaces.
- Integration of this system with artifact and architecture reconstruction software.
- Intra and inter-site collaboration.