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Abstract

It is well-known that the integrality gap of the usual
linear programming relaxation for Maxcut is 2 − ǫ.
For general graphs, we prove that for any ǫ and any
fixed boundk, adding linear constraints of support
bounded by k does not reduce the gap below 2−ǫ. We
generalize this to prove that for any ǫ and any fixed
bound k, strengthening the usual linear programming
relaxation by doing k rounds of Sherali-Adams lift-
and-project does not reduce the gap below 2− ǫ. On
the other hand, we prove that for dense graphs, this
gap drops to 1 + ǫ after adding all linear constraints
of support bounded by some constant depending on
ǫ.

1 Introduction

Linear programming relaxations are a standard tool
to design approximation algorithms for hard combi-
natorial optimization problems. This well-known al-
gorithmic paradigm typically models the problem as
an integer program, solves a linear programming re-
laxation, and then uses the optimal fractional solu-
tion to construct a feasible solution for the original
problem by more or less clever rounding. The value of
the rounded solution output by the algorithm is an-
alyzed by comparing it to the value of the fractional
solution, which is a solution of the linear program.
Thus, the best approximation ratio one can hope to
prove by such an approach is, at best, the maximum
ratio between the value of the integer optimum and
the value of the optimal solution of the linear pro-
gram, aka the gap of the linear program. An approx-
imation algorithm can sometimes be improved by de-
signing better linear programs, enriching a given LP
by putting in additional constraints so as to decrease
the gap between the optimal fractional and optimal
integral solutions. This paper studies attempts at
doing such improvements for the Maxcut problem.

Maxcut, or finding the maximum cut in a graph,

is a fundamental problem of combinatorial optimiza-
tion. The standard linear programming relaxation
has an integrality gap of 2− ǫ [20]: there exist graphs
for which the number of edges of the maximum cut
is greater than the value of the linear program by a
factor of 2 − ǫ.

Much progress has been done on Maxcut by
studying semi-definite relaxations instead of lin-
ear programming relaxations. The standard semi-
definite programming relaxation has an integrality
gap of at most 1/.878... [12]; in fact, the gap is ex-
actly 1/.878... [8]. In efforts to improve the approx-
imation by decreasding the integrality gap, people
have considered adding triangular inequalities to the
semi-definite program. Unfortunately, after several
years, it was proved that this leaves a gap of at least
1/.94 [8], and in fact, that the gap is still 1/.878 [15].
(Indeed, if the unique games conjecture holds, then
1/.878 is best possible within P [16].)

This raises a natural question: How much could
additional constraints help?

In this paper, we study this question, focusing ex-
clusively on linear programs. This work was inspired
by [3, 1] and can be seen as the analog of that work,
in the context of the Maxcut problem.

We first study the strenghtening of linear pro-
grams for Maxcut obtained by adding all constraints
of bounded support. Unfortunately, our first result
is negative: we prove that the integrality gap of the
Maxcut linear program remains at 2 − ǫ, even after
adding constraints of bounded support.

The proof technique is, in our view, at least as
interesting as the result itself. Here is the high-level
idea. In order to prove that a candidate vector x
satisfies all the constraints of the LP, you focus on the
ith constraint, aT

i x ≤ bi; you construct a vector x(i)

which is easily seen to satisfy that constraint (it is a
convex combination of feasible integer solutions); you
prove that it satisfies the constraint with some slack,



aT
i x(i) − bi ≥ ǫ > 0; and you prove that |x − x(i)| is

small, so small compared to the coefficients of ai that
|aT

i (x − x(i))| must be less than ǫ. This implies that
x satisfies the constraint. One nice feature of that
proof is that it requires relatively few calculations:
in particular, we never need to write the constraints
explicitly.

We then go further and study the strenghten-
ing of linear programs for Maxcut obtained by the
lift-and-project technique of Sherali and Adams, a
systematic way of decreasing linear programming in-
tegrality gap automatically; note that the Sherali-
Adams variant is stronger than the variant of Lovasz
and Shrijver [19], which has been the primary object
of attention recently [3, 1, 6]. Unfortunately, we also
prove that the integrality gap of the Maxcut linear
program remains at 2 − ǫ even after doing a small
number of rounds of Sherali-Adams (and therefore,
also of Lovasz-Shrijver) lift-and-project (and there-
fore, also after doing the same number of rounds of
Lovasz-Shrijver lift-and-project). Note that this sec-
ond result subsumes the first result, whose proof is
only included for clarity.

To prove the second result, we apply the same
proof technique. One difficulty is that we cannot nec-
essarily, for every constraint, find a vector x(i) that
satisfies the constraint with slack. Indeed, we work
directly in the lifted LP (before the projection step),
and that linear program is not full-dimensional: some
constraints – the ones which reduce the dimension –
are tight for every feasible solution, hence no slack
is possible. In order to deal with that, we identify
a subset of variables which are linearly independent
define them in a natural manner using a probabilis-
tic interpretation of lifted variables, and use them to
define the rest of the variables.

Some special cases of Maxcut do have better
approximations. In particular, in spite of its difficulty
in general, Maxcut is easy to approximate on dense
graphs. To complement our negative results, we
prove that the integrality gap of the Maxcut linear
program drops to 1 + ǫ after a constant number of
rounds of lift-and-project, in the special case when
the underlying graph is dense.

2 Bounded support linear constraints

Let χ() denote the indicator function.
The integer cut polytope Cutk on a set U =

{x1, x2, . . . , xk} of k vertices is defined as follows. Let
F denote the set of all pairs of vertices, |F | = m =
k(k − 1)/2. Then Cutk is the set of vectors (xe)e∈F

such that
{

xe =
∑

S⊆U λSχ(e crosses cut(S, U \ S)) ∀e ∈ F

λS ≥ 0,
∑

S⊆U λS = 1

In other words, (λS) defines a distribution over cuts
of {x1, x2, . . . , xk}, and xe is the probability that e
belongs to the cut under this distribution.

Let V = {1, 2, . . . , n}. Given a graph with vertex
set V , let K be the fractional polytope of the standard
linear programming relaxation for MAXCUT:

Maximise
∑

1≤i<j≤n

Xijeij subject to :

Xij ≤ Xik + Xkj

Xij + Xik + Xkj ≤ 2

0 ≤ Xij ≤ 1

Here, the Xij ’s are the variables, and (eij) is the
indicator function of the edges of the graph.

It is known [20] that K has integrality gap 2− ǫ.
However, there exist many more valid cut inequalities
than just the ones specified in K. For example,
every cut satisfies

∑

{u,v}⊆{i,j,k,l,m} Xuv ≤ 6. It is
tempting to attempt to reduce the integrality gap by
adding such inequalities. Given a set of k vertices,
one could, at least in principle, write down every
inequality which is satisfied by all cuts of those k
vertices, i.e. every constraint of Cutk. Each such
constraint involves at most

(

k
2

)

variables, hence has

support bounded by
(

k
2

)

. For k = 3, it is known that
the constraints already specified in the definition of
K are all the constraints of Cut3.

Theorem 2.1. Let ǫ > 0 and k ≥ 4 be fixed.
Consider the linear program obtained from K by
adding all the constraints of Cutk, for every k-subset
of V . Then the integrality gap is at least 2 − ǫ.

As in [20, 3], the proof relies on large girth graphs.
We first define the vector X = (Xij) which we will
later prove to be feasible.

Definition 1. Suppose that G is a graph with vertex
set V = {1, 2, ...n} and let m = n(n − 1)/2. Let dij



denote the shortest path distance between i and j. Let
k be a fixed positive integer and let ǫ be a positive real
with ǫ ≤ 1/4. Let s = 1

2ǫ−1 log(1/ǫ)k4. Define the
following vector X ∈ Rm.
If dij < s, then

Xij =
1

2
(1 − (1 − 2ǫ)dij ) + (1 − 2ǫ)dijχ(dij odd).

And if dij ≥ s, then

Xij =
1

2
.

Intuitively, for dij < s, let P denote the path of
length dij from i to j. Then Xij is the probability
that i and j are separated in the cut of P constructed
by the following random process. Each edge of P is
deleted independently with probability 2ǫ. For each
resulting subpath of P , the vertices are placed in L
and in R in an alternating manner as we go along the
subpath, starting with a random choice of either L or
R to start the subpath. This defines a random cut of
P .

It is not hard to see by doing a short case-by-case
analysis that if G has girth 4 or more, then X is in
K. (A variant of this was used in [20]). The following
proposition is the main new part of our proof.

Proposition 2.1. If the girth of G is at least 2(k −
1)s, then, for every k-subset of vertices, X satisfies
all the constraints of Cutk.

Proof. Let QT x ≤ a be a fixed constraint of Cut(k)
in standard format, i.e., the coefficients and a are
all co-prime integers. Let U be the set of vertices
which are endpoints of some edge xe occuring with
non-zero coefficient in the constraint QT x ≤ a. By
definition of constraints of Cutk, set U consists of
at most k vertices. To prove that X satisfies the
constraint, first, we will define a certain vector X̃(U)

on U ; secondly, we will prove that X̃(U) satisfies the
constraint with a certain slackness; thirdly, we will
prove that the restriction of X to U and X̃(U) are
very close to each other; combining will prove the
Proposition.

1. In order to define X̃(U), we first construct
a tree T̃ with the following algorithm: initially we
have a forest consisting of |U | singleton trees, one for

each vertex of U . Then, while there exist two trees
in the forest within distance < s of one another in
G, connect them into a single tree with the shortest
path. (Since girth(G) ≥ 2(k−1)s, that shortest path
is unique.) We eventually get a forest {T0, T2, ...Tℓ}
covering U and such that in each tree Ti all the
distances, and in particular the distances between the
the points in Ti ∩U , are at most (k− 1)s, and by the
girth property the distances in Ti are the same as the
distances in G. Furthermore, the distance between
any two distinct trees is at least s. For i = 0, 1, ...ℓ, we
select one of the vertices of Ti, say ri, as distinguished
vertex. We link r0 to r1, r2, ...rℓ by ℓ fictitious paths
qi each of length s. This defines tree T̃ .

We then define a random process to label the
vertices of T̃ with labels 0 or 1 as follows. Each edge
of T̃ is deleted independently with probability 2ǫ. For
each resulting subtree, some vertex is arbitrarily fixed
as the root, and the vertices of the subtree are labeled
as follows. The root is given the label 0 or 1 chosen
uniformly at random. Proceeding by induction, if
vertex u is a child of vertex v in the subtree, then
u is given the label ℓ(u) = 1 − ℓ(v). This defines
the labeling. Let S be the (random) set of vertices
in V (T̃ ) which are labeled 0, and let δ(S) be the
corresponding cut vector of V (T̃ ). For i, j ∈ U , let
X̃ij = Eδ(S)ij be the probability that i and j are

separated in the cut defined by S. This defines X̃(U).
2. The constraint QT x ≤ a is (by definition

of Cut(k)) satisfied by every cut of U ; but, by
construction, X̃(U) is a convex combination of cuts
of U . It follows that X̃(U) trivially satisfies the
constraint: QT X̃(U) ≤ a. Let us be more demanding
and show that X̃(U) satisfies the constraint with a
certain slackness.

Lemma 2.1. The cut polytope Cut(k) is full dimen-
sional.

Proof. See Appendix.

Appealing to Lemma 2.1, the cut polytope can-
not lie entirely in the hyperplane of equation QT x =
a, and so there must exist a cut δ(S∗) of U for which
QT δ(S∗) 6= a; since the coefficients are integer, that
cut must be such that QT δ(S∗) ≤ a − 1. Now, it
is easy to see that the probability that cut δ(S∗) is
the cut produced by our random labeling process is
at least (2ǫ)k−1(1/2)k−1 = ǫk−1. By linearity, this



implies the desired slackness:

QT X̃(U) ≤ ǫk−1(a − 1) + (1 − ǫk−1)a = a − ǫk−1.

3. It remains to relate X̃ to X .

Lemma 2.2. Let xi, xj ∈ V (T̃ ) and d be their dis-

tance in T̃ . Then

X̃ij =
1

2
(1 − (1 − 2ǫ)d) + (1 − 2ǫ)dχ(d odd).

Proof. If no edge of the path from xi to xj in T̃ is
marked, then the labels alternate along the path,
and δ(S)xz = χ(d odd). By independence of the
marking, this event E has probability (1 − 2ǫ)d.
Otherwise, at least one edge along the path is marked,
the labels of xi and of xj are independent, and
E(δ(S)xixj

|Ē) = 1/2. That event has probability
1 − (1 − 2ǫ)d. Summing proves the lemma.

By Lemma 2.2 and the fact that small distances

agree in G and in tree T̃ , we have that Xij = X̃
(U)
ij

whenever dij < s, and moreover:

||X(U) − X̃(U)||∞
= max

ij:dij≥s
|Xij − X̃ij |

≤ |1
2
(1 − (1 − 2ǫ)s) + (1 − 2ǫ)s − 1

2
|

=
1

2
(1 − 2ǫ)s

≤ 1

2
exp (−2ǫs).

Lemma 2.3. [7] Let ρ be the maximum value of the

coefficients of the constraints of Cutk. Then ρ ≤ 2k4

.

Putting everything together, we get

QT X(U) ≤ |QT X(U) − QT X̃(U)| + QT X̃

≤ ρ

(

k

2

)

||X(U) − X̃(U)||∞ + QT X̃

≤ 2k4

k2 exp(−2ǫs) + a − (2ǫ)k−1

≤ a,

where we used the definition of s and the fact that k ≥
5 and ǫ ≤ 1/4 to infer k22k4

exp(−2ǫs) ≤ (2ǫ)k−1.
This concludes the proof of Proposition 2.1.

Proof. (of Theorem 2.1.) We fix an arbitrary ǫ with
0 < ǫ ≤ 1/4 and fix k ≥ 5. Let h = k5ǫ−1 log(1/ǫ).

Let G = G(n, p) be the random graph on n
vertices with edge probability p = C/n. Assume that
C ≥ 32ǫ−2 and n ≥ ln(20)/(1− ln(2)). The following
Lemma is a variant of results of Poljak and Tuza [20].

Lemma 2.4. With probability at least 9/10, we have

Maxcut(G)) ≤ |E(G)|(1

2
+ 2ǫ).

Proof. see Appendix.

As argued by Poljak and Tuza [20] and by
Arora, Bollobas and Lovasz [3], the expectation of
the number of cycles of length at most h − 1 in G is
less than

h−1
∑

ℓ=3

nℓ

ℓ

(

C

n

)ℓ

=

h−1
∑

ℓ=3

Cℓ

ℓ
≤ Ch

h

Thus, with probability at least 9/10, G has at most
Ch cycles of length at most h − 1. Choosing n large
enough that h ≤ 1

2 logC n, we can “kill” all these
cycles by suppressing at most

√
n edges. (Note that

this requires k ∈ O(log1/5 n), where the O hides a
factor depending only on ǫ.). Call the new graph G′.
With Lemma 2.4, we have then that, with probability
at least 8/10,

maxcut(G′)) ≤ |E(G′)|(1

2
+ 2ǫ).

Moreover, by construction G′ has girth at least h.
Consider the linear program LP (G′) which is

the strenghtening of the standard linear relaxation
of MAXCUT by including the constraints of Cutk,
and let opt be the value of this program on G′. By
Proposition 2.1, vector X from Definition 1 is feasible;
since Xij = 1 − ǫ for every adjacent pair of vertices
of G′, the objective function has value (1− ǫ)|E(G′)|
for X . Thus the integrality gap is bounded below by

maxcut(G′)

opt
≥ (1 − ǫ)|E(G′)|

(1
2 + 2ǫ)|E(G′)| ≥ 2 − 6ǫ,

concluding the proof of Theorem 2.1.

We remark that, thanks to the bound from
Lemma 2.3, we can actually strenghten the Theorem
to keep the integrality gap at 2 − ǫ for all k ≤
O(log1/5 n).



3 Lift-and-project linear constraints

3.1 The Sherali-Adams lift and project

method

Integer polytopes. Recall the definition of the cut
polytope at the beginning of section 2.

For t ≥ 0, let us define the lifted integer cut
polytope Rt(P ) as the set of vectors (x, y), x ∈ Rm,

y ∈ R(m

2 )+(m

3 )+···+( m

t+1) such that






xe =
∑

S λSχ(e crosses cut (S, V \ S))
yI =

∑

S λSχ(∀e ∈ I, e crosses cut (S, V \ S))
λS ≥ 0,

∑

S λS = 1

(Here xe is defined for every e in F and yI is defined
for every subset I of F of size at most t+1.) In other
words, (λS) defines a distribution over cuts and yI is
the probability that every edge of I belongs to the
cut under this distribution.

Fractional relaxations As in the previous section,
consider again the usual fractional polytope K, K ⊆
Rm, defined by the constraints














2 − xij − xjk − xki ≥ 0 ∀i, j, k distinct vertices
−xij + xik + xkj ≥ 0 ∀i, j, k distinct vertices
xij ≥ 0 ∀i, j distinct vertices
1 − xij ≥ 0 ∀i, j distinct vertices

It is well known that P = Conv(K ∩ {0, 1}m).
For t ≥ 0, the Sherali-Adams lifted poly-

tope Rt(K) is the set of vectors (x, y), x ∈ Rm,

y ∈ R(m

2 )+(m

3 )+···+( m

t+1) such that the following con-
straints hold. Consider a constraint aT x − b ≥ 0 of
P . Choose subsets I, J of V , with |I ∪ J | ≤ t. For
every integer cut (xe) = (δ(S)e), we have:

(aT x − b)
∏

e∈I

xe

∏

f∈J

(1 − xf ) ≥ 0.

This is a polynomial in (xe) of degree at most t + 1,
which we can rewrite as

∑

U⊆V,|U|≤t+1

αU

∏

e∈U

xβe,U

e ≥ 0, with βe,U ≥ 1.

Equivalently, for every cut δ(S) we have

∑

U⊆V,|U|≤t+1

αUχ(∀e ∈ U, e crosses cut (S, V \S)) ≥ 0.

By linearity, for every (x, y) ∈ Rt(P ) we have

∑

U⊆V,|U|≤t+1

αUyU ≥ 0.(3.1)

These inequalities (3.1) are the constraints defining
Rt(K).

Projection St(K), the polytope obtained from K
by doing Sherali-Adams lift-and-project, is the set
of vectors x ∈ Rm such that there exists a y with
(x, y) ∈ Rt(K).

Remark: The other types of lift-and-project
can similarly be cast in a probabilistic framework.
Instead of indexing y by a set of variables, index it by
a sequence of variables, thus allowing the probability
to depend on the order in which variables have
been considered. To mitigate this effect, Lovasz and
Shrijver add a constraint saying that the last two
elements of the sequence must be able to commute.

Remark: In the semi-definite variant, one adds
a constraint saying that when every element of I
has been fixed except two, the resulting y-variables
depend on the remaining two elements, and this two-
dimensional matrix must be positive semi-definite.

3.2 Lift-and-Project Theorem

Theorem 3.1. Let K be the fractional polytope of
the standard linear programming relaxation for MAX-
CUT. For every ǫ and every fixed t, the integrality gap
for the linear program obtained from K by doing the t
rounds Sherali-Adams lift-and-project is at least 2−ǫ.

Proof. To prove Theorem 3.1, as in the proof of
Theorem 2.1 we start with a high-girth graph G.
We define X = (Xij) as in definition 1, except that
s = 1 + (1/(2ǫ)) ln(2t2(2/ǫ)9t) = Θ((1/ǫ)t ln(1/ǫ)).
However, in order to define Y , we must be more
careful than in the previous section, because now
Rt(K) is not full dimensional. We will define YI in a
iterative manner, by order of increasing value of |I|.

First, for each subset U of vertices of size at most
2t+ 3, we define a distribution over cuts of U . Let i0
be the element of U of smallest index. For each subset
A of U containing i0, let pU,A be the probability
of the cut (A, U \ A) according to the following
inductive definition.Take s = Θ((1/ǫ)t ln(1/ǫ)) as
defined above.



Initial case: A = {i0}, U = {i0, i1}. Let d be
the distance between i0 and i1 in G. We proceed as
in Definition 1.
If d < s, then let

pU,A =
1

2
(1 − (1 − 2ǫ)d) + (1 − 2ǫ)dχ(d odd),

and if d ≥ s, then let pU,A = 1/2.
We also set pU,{i0,i1} = 1 − pU,{i0} (empty cut).
Other base cases: A = {i0}, 3 ≤ |U | ≤

2t + 3. We proceed as in Step 1 of the proof of
Proposition 2.1. Starting from U , we define a tree TU

and a random labeling process on TU (as in the proof
of Proposition 2.1.) We define pU,A as the probability
that (A, U \ A) is the cut produced by the random
process.

Inductive cases: |A| ≥ 2. Take some element
a of A, a 6= i0. Set

pU,A = pU\{a},A\{a} − pU,A\{a}.

(Additionally, we replace pU ′,A′ by pU ′,U ′\A′ if A′

does not contain the element of U ′ of minimum
index.)

Lemma 3.1. For every set U of size at most 2t + 3,
(pU,A)A defines a distribution over cuts of U .

Proof. We need to prove that pU,A is non-negative
and sums to 1.

We use a perturbation argument. Starting from
U , consider the tree TU and the random labeling
process on TU , as in the proof of Proposition 2.1.
For every subset A of U containing i0, define qA to
be the probability that (A, U \A) is the cut produced
by the random process on TU . By definition, (qA)A

is a distribution over cuts of U , and the minimum
probability of any cut is at least ǫ2t+2.

In the initial case |U | = 2, |A| = 1, as in the
proof of Proposition 2.1 we see that |pU,A − qA| ≤
(1/2) exp (−2ǫs).

In the general case |A| ≥ 2, developing the
recurrence formula for pU,A and seeing its similarity
with the recurrence in Pascal’s triangle, we see that
pU,A is a linear combination of

(|U|
|A|

)

terms of the

form pU ′,A′ where U ′ ⊆ U and A′ is the singleton set
containing the minimum element of U ′, with integer
coefficients bounded by t2t (the t accounts for the

possible t occurrences of the event when we replace
pU ′,A′ by pU ′,U ′\A′ .)

Since the formulas used in developing the recur-
rence hold for any distribution, using the same recur-
rence formulas for qA, we can also rewrite qA as the
same linear combination of terms of the form qA′ .

For every subset U ′ of U , if A′ is the element of U ′

of minimum index, then pU ′,A′ is obtained by running
the random process on tree TU ′ . Since TU ′ 6= TU , this
defines a probability which may be different from qA′

in general. However, the two trees only differ in the
tree paths which are longer than s, and so we have
|pU ′,A′ − qA′ | ≤ (2t + 2)(1/2) exp (−2ǫs).

Plugging this into the linear combination, we
deduce that, with

(|U|
|A|

)

≤ 22t+3,

|pU,A − qA| ≤ t23t+3(2t + 2)(1/2) exp (−ǫs) ≤

(1/2)ǫ2t+2 ≤ (1/2)qA,

where we used our lower bound on s. This implies
pU,A ≥ 0, as desired.

As for proving that
∑

A pU,A = 1, we see that
it is true for |U | = 2 and it is easy to verify it by
induction on |U |.

Now we need to define variable YI , for I any set
of at most t + 1 pairs of vertices of V . Let U be the
set of endpoints of edges in I. We define YI as the
sum, over every cut (A, U \ A) of U which contains
all edges of I, of pU,A. (Note that when |I| = 1, this
is consistent with the definition of X .)

It only remains to verify that (X, Y ) satisfies all
the constraints of Rt(K). Consider any constraint of
Rt(K), obtained from the polynomial inequality of
the lifted polytope, for example

∏

e∈I

xe

∏

f∈J

xf (xij + xjk + xki − 2) ≤ 0.

The endpoints of the edges appearing in this con-
straint span a set U of at most 2t + 3 vertices, hence
is a set on which Lemma 3.1 holds, and so there exists
a distribution of cuts on U associated to the restric-
tion of (X, Y ) to U , and so the constraint is valid for
(X, Y ).

By projection, this implies that X ∈ St(K), and
the rest of the proof goes along the same lines as for
Theorem 2.1.

This ends the proof of Theorem 3.1.



4 Gap reduction in dense graphs

The fact that dense MAXCUT has a PTAS was
discovered in the middle of the last decade [4, 9], see
also [13, 10, 11]. The known PTASs for this problem
are randomized, although they can be de-randomized,
and are usually quite involved. We give here a new
and very natural deterministic PTAS.

Let P denote the standard relaxation for MAX-
CUT: For each positive integer k, we denote by
Nk(P ) the relaxation of the cut polytope obtained
by applying k rounds of the lift-and-project operator
of Lovàsz and Schriver to P . Recall that the den-
sity d(G) of a graph G = (V (G), E(G)) is defined by

d(G) = |E(G)|
(

|V (G)|
2

)−1
. Then:

Theorem 4.1. For each ǫ > 0, d > 0, there is
an integer g = g(ǫ, d) with the property that the
relaxation Ng(P ) has integrality gap at most 1 + ǫ
on the set of graphs of density at least d.

Proof The proof uses a result of [2]. We need
some preparation to state this result. Recall that
the input to a MAX-rCSP problem (for r fixed)
consists of a set F of m distinct Boolean functions
f1, f2, . . . fm of n Boolean variables x1, x2, . . . xn,
where each fi is a function of only r of the n variables.
The answer max(F ) is the maximum number of
functions which can be simultaneously set to 1 by
a truth assignment to the variables. For a subset Q
of the variables, we let FQ denote the subset of F
which are functions of only the variables in Q (and
their negations). The following theorem is proved in
[2].

Theorem 4.2. Let r, n be positive integers, with r
fixed. Suppose ǫ is a positive real. There exists a pos-
itive integer q ∈ O(log(1/ǫ)/ǫ4) such that for any F
(as above), if Q is a random subset of {x1, x2, . . . xn}
of cardinality q, then with probability at least 9/10,
we have

|n
r

qr
max(FQ) − max(F )| ≤ ǫnr.

We shall use this theorem with a set F corre-
sponding to MAXCUT of a graph G = (V, E), (r =
2). (Here the f are indexed by the literal pairs u, v
and we have fu,v = eũ,ṽ(u(1 − v) + v(1 − u)) where
ũ, ṽ are the variables corresponding to u and v, and

(eũ,ṽ) is the indicator function of the edges of the
graph.) The theorem says in this case that we have
with probability at least 9/10,

|n
2

q2
maxcut(G(Q)) − maxcut(G)| ≤ ǫn2.(4.2)

Actually, the probability can be pushed up to 1−ǫ by
adding an extra log factor to the sample size. We fix
the density d and ǫ. We need 4.2 to hold with accu-
racy ǫd which will hold for q ∈ O(log2(1/ǫ)ǫ−4d−4).
Suppose that (U, V \U) is a partition of V for which
|δ(U)| = maxcut(G). For each subset S ∈

(

V
q

)

define

S(U) = S ∩ U . We have then
(

n

q

)

q2

n2
maxcut(G) ∼

∑

S∈(V

q )

|δ(S(U))|

≤
∑

S∈(V

q )

maxcut(G(S))

By theorem 4.2 we have that the proportion of sets
S for which

maxcut(G(S)) ≥ (1 + ǫd)
q2

n2
maxcut(G)

does not exceed ǫ. This implies, using the trivial
upper bound maxcut(G(S)) ≤ q2/2,

∑

S∈(V

q)

maxcut(G(S)) ≤
(

n

q

)

q2

n2
maxcut(G) + ǫd

(

n

q

)

q2

2

≤
(

n

q

)

q2

n2
maxcut(G)(1 + ǫ)

the last by using the density condition. Let us take
g such that the inequalities with support of size at
most q are satisfied by Ng(P ). (g = q will do.) Then
we have that for each S the value of the cut induced
on S does not exceed maxcut(G(S)). The value alg,
say, output by using the relaxation Ng(P ) satisfies
thus

alg ≤
(

n

q

)

q2

n2

∑

S∈(V

q )

maxcut(G(S))

≤ (1 + ǫ)maxcut(G)

using the preceding inequality. This concludes the
proof.



5 Conclusion

We expect that with a similar proof, one might be
able to show that the integrality gap of the Vertex
Cover LP stays at 2 − ǫ even after applying Sherali-
Adams lift-and-project (note that the proof from
[3] only applies to the weaker Lovasz-Shrijver lift-
and-project). The corresponding random process
on a tree would delete edges independently, label
both endpoints of every deleted edge with a 1 and
remove them, and alternate labels in each remaining
connected component starting from a label chosen
uniformly at random as 0 or 1. This could also
naturally extend to hypergraph vertex cover.

In general, it seems likely that the methods de-
veloped in this paper extend to proving lower bounds
for other problems as well. The most interesting open
question, of course, would be to deal with the semi-
definite programming variants of lift-and-project, but
that appears much more challenging.
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A Proof of Lemma 2.1

We prove in this appendix that the cut polytope Cutk

is full dimensional for k ≥ 5. We prove in fact that
the set of cut vectors

B =

{

δ({i, j}) : {i, j} ∈
(

[k]

2

)}

i.e., the set of cuts defined by the
(

k
2

)

distinct pairs
of vertices, is a basis of Cutk. Actually, we will prove
simultaneously that B is free and generating. We fix
an arbitrary unit vector, say eij and express it as a
function of the δ(i, j) We write

u = αδ({i, j}) + β
∑

k 6=i

δ({i, k}) + β
∑

k 6=j

δ({j, k})+

γ
∑

{k,ℓ}∩{i,j}=∅

δ({k, l})

and compute α, β, γ to get u = eij . Inspection gives

uij = 2β(n − 2)

uik = α + β(n − 2) + γ(n − 3) k 6= i

ukl = 4β + 2γ k, ℓ 6= i, j.

Thus we need β = 1
2(n−2) to get uij = 1, and then

successively γ = −2β = − 1
n−2 and α = −β(n −

2) − γ(n − 3) = − 1
2 + n−3

n−2 to annihilate the other
components of u. Thus B generates indeed. Since
the coefficient α of δ(i, j) is forced to be positive, we
see that B is free.

B Proof of Lemma 2.4

Let G = G(n, p) be the random graph on n vertices
with edge probability p = C/n and let S ⊆ V (G)
with s = |S| ≤ n/2. The value |δ(S)| of the cut
defined by S is distributed as a Binomial random
variable B(m, p) with m = s(n−s). Therefore, using
Hoeffding-Chernoff,

Pr

(

|δ(S)| ≥ n2p

4
(1 + ǫ)

)

≤ exp

(

−1

2

(n2p
4 (1 + ǫ) − s(n − s)p)2

s(n − s)p

)

≤ exp

(

− ǫ2n2p

32

)

≤ exp

(

− ǫ2Cn

32

)

This implies

Pr(maxcut(G) ≥ n2p

4
(1 + ǫ)) ≤ 2n exp

(

−n(
ǫ2C

32
)

)

≤ 1/20

for C ≥ 32ǫ−2 and n ≥ ln(20)/(1 − ln(2)). We also
have then

Pr(|E(G)| ≤
(

n

2

)

p(1 + ǫ)) ≥ 19/20

so that, with the previous inequality, and with prob-
ability at least 9/10,

maxcut(G)) ≤ |E(G)|(1

2
+ 2ǫ),(2.3)

as desired.


