Detailed Human Shape and Pose from Images
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Abstract erative models of image structure. Most of these models,
however, are quite crude and, for example, model the hu-
Much of the research on video-based human motion cap-man body as an articulated tree of simple geometric primi-
ture assumes the body shape is kn@mpriori and is rep- tives such as truncated coné&. [Arguably these generative
resented coarsely (e.g. using cylinders or superquaddcs t models are a poor representation of human shape.
model limbs). These body models stand in sharp contrast As an alternative, we propose the use of a graphics model
to the richly detailed 3D body models used by the graphics of human shape that is learned from a database of detailed
community. Here we propose a method for recovering such3D range scans of multiple people. Speci cally we use
models directly from images. Speci cally, we represent the the SCAPE (Shape Completion and Animation of PEople)
body using a recently proposed triangulated mesh modelmodel [1] which represents both articulated and non-rigid
called SCAPE which employs a low-dimensional, but de- deformations of the human body. SCAPE can be thought
tailed, parametric model of shape and pose-dependent de-of as having two components. Tpese deformation model
formationsthatis learned from a database of range scans ofcaptures how the body shape of a person varies as a func-
human bodies. Previous work showed that the parameterstion of their pose. For example, this can model the bulging
of the SCAPE model could be estimated from marker-basedof a bicep or calf muscle as the elbow or knee joint varies.
motion capture data. Here we go further to estimate the pa- The second component ishape deformation modethich
rameters directly from image data. We de ne a cost function captures the variability in body shape across people using a
between image observations and a hypothesized mesh antbw-dimensional linear representation. These two models
formulate the problem as optimization over the body shapeare learned from examples and consequently capture a rich
and pose parameters using stochastic search. Our resultsand natural range of body shapes, and provide a more de-
show that such rich generative models enable the automatidailed 3D triangulated mesh model of the human body than
recovery of detailed human shape and pose from images. previous models used in video-based pose estimation.
The model has many advantages over previous de-
formable body models used in computer vision. In partic-
1. Introduction ular, since it is learned from a database of human shapes
it captures the correlations between the sizes and shapes of
We address the problem of markerless human shape andlifferent body parts. It also captures a wide range of hu-
pose capture from multi-camera video sequences using anan forms and shape deformations due to pose. Modeling
richly detailed graphics model of 3D human shape (Fig- how the shape varies with pose reduces problems of other
urel1). Much of the recent work on human pose estimation approaches associated with modeling the body shape at the
and tracking exploits Bayesian methods which require gen-joints between parts.



2. Related Work

We exploit the SCAPE model of human shape and pose
deformation [] but go beyond previous work to estimate
the parameters of the model directly from image data. Pre-
vious work [1] estimated the parameters of the model from
a sparse set of 56 markers attached to the body. The 3D lo-
cations of the markers were determined using a commercial
motion capture system and provided constraints on the body
shape. Pose and shape parameters were estimated such that
A/ the reconstructed body was constrained to lie inside the
Figure 1. SCAPE from images.Detailed 3D shape and pose of a measured marker locations. T_his prior \_Nork assumed that
human body is directly estimated from multi-camera imagiada & 3D scan of the body was available. This scan was used to
Several recovered poses from an image sequence of awaubng S place the markers in Correspondence with the surface model
ject are shown. of the subject.

We go beyond the original SCAPE paper to estimate the
) ) ) o ) pose and shape of a person directly from image measure-

While recent work in the machine vision community has ments. This has several advantages. In particular, video-
focused on recovering human kinematics from video, We 5564 shape and pose capture does not require markers to be
argue that there are many motivations for recovering Shapeplaced on the body. Additionally, images provide a richer
simultaneously. For example, anthropomorphic measure-gq e of information than a sparse set of markers and hence
ments can be taken directly from the recovered body model,qyide stronger constraints on the recovered model. Fur-
and may be useful for surveillance and medical applica- thermore, we show shape recovery from multi-camera im-
tions. For some graphics applications,_ having direct &CCES ages for subjects not present in the shape training set.
to the shape model for a particular subject removes an addi- ~ preyious methods have established the feasibility of esti-
tional step of mapping kinematic motions to 3D models. mating 3D human shape and pose directly from image data

Our current implementation estimates the parameters ofpyt have all suffered from limited realism in the 3D body
the body model using image silhouettes computed from models employed. A variety of simpli ed body models
multiple calibrated cameras (typically 3-4). The learned haye been used for articulated human body pose estimation
model provides strong constraints on the possible recov-ang tracking including cylinders or truncated cones (e.g.
ered shape of the body which means that pose/shape estg)) and various deformable models such as superquadrics
mation is robust to errors in the recovered silhouettes. Our[g' 14, 20] and free-form surface patchek7. These mod-
generative model predicts silhouettes in each camera viewg|s do not t the body shape well, particularly at the joints
given the pose/shape parameters of the model. A fairly stan-yng were typically built by hand1f] or estimated in a
dard Chamfer distance measure is used to de ne an image&:gjipration phase prior to tracking,[17, 20]. Detailed
likelihood and optimization of the pose/shape parameterspyt xed, person-speci ¢, body models have been acquired
is performed using a stochastic search technique related tggm range scans and used for trackifipy tting them to
annealed particle Itering, 8]. Our results show that the  yoxel representations; this approach did not model the body
SCAPE model better explains the image evidence than doegt the joints.

a more traditional coarse body model. Kakadiaris and Metaxas used generic deformable mod-

We provide an automated method for recovering poseels to estimate 3D human shape from silhouette contours
throughout an image sequence by using body models withtaken from multiple camera viewd ]| and tracked these
various levels of complexity and abstraction. Here we ex- shapes over multiple frame$J]. Their approach involved
ploit previous work on 3D human tracking using simpli- a 2-stage process of rst tting the 3D shape and then track-
ed body models. In particular, we take the approach of ing it. In contrast, pose and shape estimation are performed
Deutscher and Reid3] which uses anneal particle lter-  simultaneously in our method. Their experiments focused
ing to track an articulated body model in which the limbs on upper-body tracking in simpli ed imaging environments
are approximated by simple cylinders or truncated cones.in which near-perfect background subtraction resultsaoul
This automated tracking method provides an initialization be obtained.

for the full SCAI_DE model_ optimizatio_n. _ By_ providing a In related work Plankers and Fuaq de ned a “soft”
reasonable starting pose, it makes optimization of thé/fair body model using 3D Gaussian blobs arranged along an
high-dimensional shape and pose space practical. articulated skeletal body structure. The relative shapes

Results are presented for multiple subjects (none presenof these “metaballs” were de ned priori and were then
in the SCAPE training data) in various poses. scaled for each limb based on an estimated length and width



parameter for that limb. Left and right limbs were con- SCAPE from Images

strained to have the same measurements. The surface of
the body model was then de ned implicitly as a level sur- [ 3D scans | [ images |
face and an iterative optimization method was proposed to | e : , - :
. . egistration | | Silhouettes I
t each limb segment to silhouette and stereo data. Most
experiments used only upper body motion with simpli ed [ Body parts | [Crude pose |
imaging environments, though some limited results on full
body tracking were reported id§. SCAPE SCAPE 3D body
space estimation model
Also closely related to the above methods is the work of

Hilton et al. [10] who used a VRML body model. Their LEARN FIT
approach required the subject to stand in a known pose forFigure 2. Algorithm Overview. A learning phase is used to build
the purpose of extracting key features from their silhauett the 3D body model from range scans and follows the approach
contour which allowed alignment with the 3D model. Their proposed in]]. Our contribution provides a m_ethod for tting the
model has a similar complexity to ours 20K polygons) pose and shape parameters of the model to image data.
but lacks the detail of the learned SCAPE model. 3. SCAPE Body Model
In these previous models the limb shapes were modeled e brie y introduce our implementation of the SCAPE
independently as separate parts. This causes a number ¢fody model and point the reader tj ffor details. Our
problems. First, this makes it dif cult to properly model  approach to 3D human shape and pose estimation has two
the shape of the body where limbs join. Second, the decou-main phases (Figur®: A learning phase in which the hu-
pling of limbs means that these methods do not model poseman shape space is modeled, and a tting phase in which
dependent shape deformations (such as the bulging of thgyody model parameters are estimated to match the observed
biceps during arm exion). Additionally none of these pre-  ghape in images.
vious method automatically estimated 3D body shape using  The rst phase involves learning the SCAPE model from
learned models. Learning human body models has many3p scans acquired using a Cyberware whole body scanner
advantages in that there are strong correlations between thand merged into triangular meshes. The meshes are divided
size and shape of different body parts; the SCAPE modelinto two sets (Figure): A pose setontaining the same
captures these correlations in a relatively low-dimeraion  sypject in 70 diverse poses, anday shape sefontaining
body model. The result is a signi cantly more realistic 10 people with distinctive body shape characteristicsdstan
body model which both better constrains and explains im-ing in roughly the same standard pose. The former is used
age measurements and is more tolerant of noise. In previougo model pose-induced variations of shape, while the latter
work, generic shape models could deform to explain erro- js ysed to model shape variation between different people.
neous image measurements (e.g. one leg could be made \ve de ne atemplate mesi a canonical standing pose
fatter than the other to explain errors in silhouette extrac that is present in both data sets. The template mesh is
tion). With the full, learned, body model, information from  hole- lled and subsampled to contain 25,000 triangles with
the entire body is combined to best explain the image data,1 2 500 vertices. The remainiitgstance meshese brought
reducing the effect of errors in any one part of the body; the jnto full correspondence with the template mesh using a
resulting estimated shape always faithfully represen&an  non-rigid mesh registration techniquél[ A skeleton re-
ural human body. The SCAPE representation generalizesconstruction algorithmi] is applied to thepose seto seg-
(linearly) to new body shapes not present in the training set ment the template mesh into 15 body parts and to estimate
) . joint locations.
Finally, there have been several non-parametric methods  g-aApg Overview. The template meshacts as a ref-
for estimating detailed 3D body information using voxXel o .ance mesh that is morphed into other poses and body

_representanons and space carviigq S, _13]' Wh”e_ ex- shapes to establish correspondence between all meshes.
ible, such non-parametric representations require furthe | (x1;X2;x3) be a triangle belonging to the template

processing for many applications such as jointangle extrac oo andy:: y2: ya) be a triangle from an instance mesh.
tion or graphics animation. The lack of a parametric shapeyys ge ne the two edges of a triangle startingat as
model means thatitis dif cult to enforce global shape prop- = _ . X1:] =2:3

. . . ] — A ’ — £, 0.
erties across frames (e.g. related to the height, weight and 11.o qeformation of one mesh to another is modeled as

gender of the subjec_t). Voxel repres_entatlons are typicall 5 sequence of linear transformations applied to the treangl
seen as an intermediate representation from which one Carédges of the template mesh:

t other models B, 21]. Here we show that a detailed para-
metric model can be estimated directly from the image data. y=RDQ x Q)



setand the template mesh, we construct a low dimensional
linear model of the shape deformation using principal com-
ponent analysis (PCA). Eadd matrix is represented as a
column vector and is approximated@g. ( )= U +

where is the mean deformatiort) are the eigenvectors
given by PCA and is a vector of linear coef cients that
characterizes a given shape. We keep the rst 6 eigenvectors
i which account foil80% of the total shape variance. Note

Figure 3. 3D Body Meshes.Two example meshes from the pose that the Shape_cogf cients fqr a speci ¢ person can be re-
set, the template mesh, and two example meshes from the body?OVered by projecting the estimated deformafioonto the

shape set (left to right). PCA subspace.
Finally, a new mesly, not present in the training set,

can be synthesized given the rigid rotatidRsand shape
coef cients by solving

i

whereQ isa3 3linear transformation matrix speci ¢ for
this triangle corresponding to non-rigid pose-induceadef
mations such as muscle bulginD. is a linear transforma-
tion matrix corresponding to body shape deformations an

X
g YR )=argmin  jjRDu; ()Q (R) x ™

is also triangle speci c. FinallyR is a rigid rotation matrix (4)
applied to the articulated skeleton and speci c to the body This optimization problem can be expressed as a linear sys-
part containing the triangle. tem that can be solved very ef ciently.

Rigid deformations. Given an instance mesh the rigid
alignmentR for each body parb can be easily computed 4, Stochastic Optimization
in closed form given the known point correspondences be-
tweeny and the template mesh][ During the tting phase, estimating body shape and pose
Non-rigid pose-dependent deformationsSince the 70  from image data involves optimization over the rigid limb
meshes in thpose sebelong to the same person as the tem- transformationsR, linear shape coef cients, and global
plate, their body shape deformation transformatibnare ~locationT of the body in the world coordinate system. We
simply3 3identity matrices. Given the rigid alignmentbe- compactly represent the rotation matrices R using 37 Euler
tween meshes, the residual transformat@poan be solved  jointangles (after dropping some DOFs for non-spherical
for by Opt|m|z|ng the deformation registering the temp|ate jOintS). We search for the Optlmal value for the state vector

edges x with the instance mesh edgey: s = (;r; T ) within a framework ofsynthesis and evalua-
X tion. For a predicted state a mesh is generated using Eq.
Q=argmin  jjRQ x yij? 2 rendered to the image view given known camera calibration
Q and compared to extracted image features.

where the summation is over the edges of all trianglesinthe ~ State prediction is handled within an iterated importance
mesh (with some abuse of notation). sampling framework{]. We represent a non-parametric

During video-based tracking, we will encounter new state space probabil?ty distrib_ution for s_tfﬂeand image
body poses not present in the training database and need tdatal asf(s)  p(ljs) p(s). W'”,L N particles and asso-
predict the pose-dependent deformation of the mesh. ConCfiated normalized weighfss;; g, . We note that we do
sequently we use the 70 training examples to learn the coefNot make any rigorous claims about our probabilistic model,
cients of a linear mapping from rigid body poses repre- rather we view the formulation here as enabling an effective
sented byR to pose-dependent deformatid@s(R). Then ~ Method for stochastic search.

for any new pose we can predict the associated deformation, Ve de ne a Gaussian importance functigi)(s) from
Non-rigid body shape-dependent deformations.For which we draw samples at iteratitrof the search. This is

each of the 10 instance meshes of different people in thelNitialized @ (s)) as a Gaussian centered on the pose de-
body shape sewe estimate the rigid alignmeR between termined by the initialization method (sectidrl) and the

parts and use this to predict the pose-dependent defommatio Mean body shape (parameters zero). Particles are gen-
Q with the linear mapping from above. Then the shape- erated by randomly sampling fromand normalizing the

depended deformatid is estimated as likelihood by the importances;  g(s); i = ;é:,'))
X This process is made effective in an iterative fash-
D =argmin jjRDQ x yij 2 3) ion which allows g to become increasingly similar
D

to f. At iteration k + 1, an importance function

Leamning the SCAPE model.Given the body shape de-  g**% is obtained from the particle set at iteratidn

formationsD between different subjects in thedy shape ~ gk*D =~ N IN (s, (),



To avoid becoming trapped in local optima, predicted
particles are re-weighted using an annealed version of the

(k)
likelihood function:f ®)(s) = p(ljs) * p(s), wheret®
is an annealing temperature parameter optimized so that apt
proximately half the samples get re-sampled.

4.1. Initialization

There exist a number of techniques that can be used to
initialize the stochastic search; for example, pose ptietdtic
from silhouettes19], voxel carving skeletonizatiorb], or
loose-limbed body modelslf]. Here we employ an ex-
isting human tracking algorithn®] based on a cylindrical / ’j
body model. The method is initialized in the rst frame {{ ) ¢
from marker data, and the position and joint angles of the %i ,Jfﬂ " o
body are automatically tracked through subsequent frames. (a) (b) (c) (d) (e)

The method uses an annealed particle Itering technique for Figure 4. Cost function. (a) original imagel (top) and hypoth-
inference, uses fairly weak priors on joint angles, enferce esized meshi (battom);(b) image foreground silhouetie” and
non-interpenetration of limbs and takes both edges and siI-meSh silhouett® =, with 1 for foreground and 0 for background;

houettes int C Th q it d ioint (c) Chamfer distance mapd' andC", which are 0 inside the
ouettes into account. The recovered position and join rsm'silhouette; the opposing silhouette is overlaid transpiye (d)

gles together with the mean body shape parameters are Us€ghntour maps for visualizing the distange mae3;per pixel sil-
toinitialize the stochastic search of the SCAPE parameters poyette distance fro* toF' given by ,Fi' Cj (top), and

] fromF' toF" givenby | F; Cp' (bottom).
5. Image Cost Function

We introduce a cost functigo(l js) to measure how well 6. Results
a hypothesized model tsimage observations. Here we rely
only on image silhouettes which have been widely used in Figure5 shows representative results obtained with our
human pose estimation and tracking. The generative frame method. With 3 or 4 camera views we recover detailed mesh
work presented here, however, can be readily extended tgnodels of three different people in various poses and wear-
exploit other features such as edges or optical ow. ing sports and street clothing; none of the subjects were

Our cost function is a measure of similarity between two Present in the SCAPE training set. In contrast, voxel carv-
silhouettes. For a given camera view, a foreground silhou-ing techniques require many more views to reach this level
etteF' is Computed using standard background Subtractionof detail. The results illustrate how the SCAPE model gen-
methods. This is then compared with the idealized silhou- €ralizes to shapes and poses not present in the training data
etteFH , generated by projecting a hypothesized mesh |ntoWh|le we have not performed a detailed analysis of the
the image p|ane_ We pena”ze pixe|s in non_over'apping effects of Clothing, our results appear relatively robust t
regions in one silhouette by the shortest distance to thechanges in the silhouettes caused by clothes. As long as
other silhouette (cf.]9]) and vice-versa. To do so, we pre- Some parts of the body are seen un-occluded, these provide
compute a Chamfer distance map for each silhou€tte, strong constraints on the body shape; this is an advantage of
for the hypothesized model ar@' for the image silhou- @ learned shape model.

ette. This process is illustrated in Figute Results for an entire sequence are shown in Figure
The predicted silhouette should not exceed the imageEven though the optimization was performed in each frame
foreground silhouette (therefore minimizieg' C'), while ~ independently of the others frames, the body shape re-

atthe same time try to explain as much as possible of it (thusmained consistent between frames. In general, our frame-
minimizingF' C"). Both constraints are combined intoa Work is capable of explicitly enforcing shape consistency

cost function that sums the errors over all image pigels between frames. We can either process several frames in a
1 X batch fashion where the shape parameters are shared across
logp(ljs) = — anH Cr|)+(1 a)FF') c;‘ . (5) frames or employ a prior in tracking that enforces small
1L changes in shape over time; this remains future work.

wherea weighs the rst term more heavily because the im-
age silhouettes are usually wider due to the effects of €loth
ing. When multiple views are available, the total cost is  Figure7 presents the results obtained for one frame in

taken to be the average of the costs for the individual views. each camera view used. First, we note that the optimization

6.1. Comparison with the Cylindrical Body Model



Figure 5. SCAPE-from-image results.Reconstruction results based on the views shown for oneanalévo female subjects, in walking
and ballet poses, wearing tight tting as well as baggy dastiftop) Input images overlaid with estimated body modehiddle) Overlap
(yellow) between silhouette (red) and estimated modek(blbottom)Recovered model from each camera view.

YT

Figure 6. First row: Input imagesSecond row: Estimated mesh model$hird row: Meshes overlaid over input images. By applying
the shape parameters recovered from 33 frames to the tenméesth placed in a canonical pose, we obtained a shape devpati vertex
of 8:8 5:3mm, computed as the mean deviation from the average locatieadf surface vertex.

can tolerate a signi cant amount of noise in the silhouettes much the predicted silhouette overlapped the actual fore-
due to shadows, clothing and foreground mis-segmentationground precisior) and how much of the foreground was
Second, the gure illustrates how the tted SCAPE body explained by the modetécall).

model is capable of explaining more of the image fore-
ground silhouettes than the cylindrical model. This can po- | 33frames || Precision| Recall |
tentially make the likelihood function better behaved foe t Cylinder Model || 91:07% | 75:12%
SCAPE model. To quantify this, we have computed how SCAPE Model || 8813% | 85:09%




Figure 8. Top: Convergence from coarse trackindgottom:
Convergence from a distant initial pose. In both cases thie op
mization is based on 4 views.

Figure 9. T-pose.Pose useful for extracting anthropometric mea-
surements once shape was recovered from images.

Figure 7. Same pose, different camera views€ach row is a dif-

ferent camera viewl! column: image silhouette®™ column: shape in an appropriate pose for extracting anthropometric
3D cylindrical model. 3 column: overlap between image si- measurements. From the T-pose in Figinge can easily
houettes and cylindrical model” column: 3D shape modes™ measure the height and arm span for each shape.
column: overlap between image silhouettes and SCAPE model.
| 33frames [ Actual | Mean | StDev |
The cylindrical model has 3% better precision because it Height (mm) || 1667 | 1672 | 15
is smaller and consequently more able to overlap the image Arm Span (mm)|| 1499 | 1492 | 16

silhouettes. On the other hand, the SCAPE model has 10% ) o
better recall because it is able to modify the shape to better The actual values for the height and arm span are within

explain the image silhouettes. half a standard deviation from the estimated values, with a
deviation of less tharimm. For reference, one pixel in our
6.2. Convergence images corresponds to abdmm.
Other measurements that could also be estimated are leg
We illustrate the process of convergence in Figdiia length, abdomen and chest depths, shoulder breadth etc. by

two different scenarios. The top row contains a real ex- measuring distances between relevant landmark positions
ample of converging from the mean PCA shape and theon the template mesh, or mass and weight by computing the
pose estimated by the cylindrical tracker to the nal t of mesh volume. This suggests the potential use of the method
pose and shape to silhouettes. The bottom row shows synfor surveillance and medical applications.

thetically generated silhouettes using a SCAPE model with

shape parameters close to the initialized shape but with 86.4. Computational Cost

distant pose. Except for the right leg which was trapped in
local optimum, the likelihood formulation was able to at-
tract the body and the right arm into place.

Most of the computing time is taken by the likelihood
evaluations. Our stochastic search is over a 40-D pose space
plus a 6-D shape space and we perform as many as 1,500
likelihood evaluations for one frame to obtain a good t.
Our implementation in Matlab takes almost a second per

Once the shape parameters have been estimated in eadiypothesis. Half of that time is taken by a linear system
frame, we can then place the mesh with the correspondingsolver for reconstructing the 3D mesh, and half is taken by

6.3. Anthropometric Measurements



rendering it to a Z-Buffer to extract silhouettes in 4 views. [2] A. Balan, L. Sigal and M. Black. A quantitative evaluatio

Hardware acceleration together with partitioned sampling of video-based 3D person trackingS-PETSpp. 349-356,

and a lower resolution mesh for early iterations would re- 2005.5

duce the computing time. [3] G. Cheung, T. Kanade, J. Bouquet, and M. Holler. A real
time system for robust 3D voxel reconstruction of human
motions.CVPR 2:714-720, 20003

7. Discussion and Conclusions [4] K. M. Cheung, S. Baker, and T. Kanade. Shape-from-
silhouette across time: Part Il: Applications to human mod-

We have presented a method for estimating 3D human eling and markerless motion trackingCV, 63(3):225-245,
pose and shape from images. The approach leverages a  2005.3
learned model of pose and shape deformation previously [5] C. Chu, O. Jenkins, and M. Mataric. Markerless kinemati

used for graphics applications. The richness of the model model and motion capture from volume sequendc@¥PR
provides a much closer match to image data than more  1:475-482, 20033, 5

common kinematic tree body models. The learned repre- [6] S. Corazza, L. Mindermann, A. Chaudhari, T. Demattio, C
sentation is signi cantly more detailed than previous non- Cobelli and T. P. Andriacchi. A markerless motion capture

system to study musculoskeletal biomechanics: Visual hull
and simulated annealing approacinnals Biomed. Eng.
34(6):1019-1029, 200&, 3

rigid body models and captures both the global covaria-
tion in body shape and deformations due to pose. We have
§h0wn how a _Standard bady tracker can be used to initial- F] J. Deutscher, M. Isard, and J. MacCormick. Automatic
ize a stochastic search over shape and pose parameters of ° .. .- caiibration from a single Manhattan imageCV,
this SCAPE model. Using the best available models from pp. 175-205, 20022, 4
the graphics community we are better able to explain im- [g] j. Deutscher and I. Reid. Articulated body motion captur
age observations and make the most of generative vision by stochastic searctCV, 61(2):185-205, 20041, 2
approaches. Additionally, the model can be used to extract [9] D. M. Gavrila and L. S. Davis. 3D model-based tracking of
relevant biometric information about the subject. humans in action: A multi-view approad@VPR pp. 73-80,
Here we worked with a small set of body scans from 1996.2 _ _
only ten subjects. We are currently working on using scans [10] A. Hilton, D. Beresford, T. Gentils, R. J. Smith, W. Sun,
of over a thousand people to achieve a much richer model of an(T J- lllingworth. Wh°|e'l|3°dy mOdF”'nglngF;]eos’fle fr‘?m
human body shapes. Recovering a richer model will mean multi-view |mag.es 1o populate virtual worldsIhe Visua
. . . . . Computer16(7):411-436, 2008
estimating more linear shape coef cients. To make this

tati IIv feasibl developi determimist [11] I. Kakadiaris and D. Metaxas. 3D human model acquisitio
computationally I€asibie, we are deveioping a determmis from multiple views.IJCV, 30(3):191-218, 19982

optimization method to replace the stochastic search usechz] | Kakadiaris and D. Metaxas. Model-based estimatitai
here. Currently we have not exploited graphics hardware human motionPAMI, 22(12):1453-1459, 200@.
for the projection of 3D meshes and the computation of the [13] |. Mmikic, M. Trivedi, E. Hunter, and P. Cosman. Human

cost function; such hardware will greatly reduce the com- body model acquisition and tracking using voxel d&l&V,
putation time required. 53(3):199-233, 2003

Here we did not impose constraints on the shape vari-[14] A. Pentland and B. Horowitz. Recovery of nonrigid matio
ation over time. In future work, we will explore the ex- and structurePAMI, 13(7):730-742, 19912

traction of a single consistent shape model from a sequencd!®] R. Plankers and P. Fua. Articulated soft objects fatee-
of poses. Additionally, we will add interpenetration con- based body madelindCCV, 1:394-401, 20012

: : : : 16] R. Plankers and P. Fua. Tracking and modeling people in
straints while estimating the SCAPE parameters. [
9 P video sequence€£VIU, 81(3):285-302, 20013

Our long term goal is to exceed the level of accuracy [17] B. Rosenhahn, U. Kersting, K. Powel, and H.-P. Seidel.
available from current commercial marker-based systems Cloth X-ray: Mocap of people wearing textileSDAGM,

by using images which theoretically provide a richer source pp. 495-504, 20062

of information. We expect that, with additional cameras [18] L. Sigal, B. Sidharth, S. Roth, M. Black, and M. Isardagk-

and improved background subtraction, the level of detailed ing loose-limbed peopleCVPR 1:421-428, 20045

shape recovery from video will eventually exceed that of [19] C. Sminchisescu and A. Telea. Human pose estimation

marker-based systems. from silhouettes a consistent approach using distancé leve
sets WSCG Int. Conf. Computer Graphics, Visualization and
Computer Vision2002.5
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