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For a graph G, a zero-sum flow is an assignment of non-zero real

numbers on the edges of G such that the total sum of all edges

incident with any vertex of G is zero. A zero-sum k-flow for a graph

G is a zero-sum flow with labels from the set {±1, . . . ,±(k − 1)}. In
this paper for a graph G, a necessary and sufficient condition for

the existence of zero-sum flow is given. We conjecture that if G is

a graph with a zero-sum flow, then G has a zero-sum 6-flow. It is

shown that the conjecture is true for 2-edge connected bipartite

graphs, and every r-regular graph with r even, r > 2, or r = 3.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a directed graph. A k-flow on G is an assignment of integers with maximum absolute value

k − 1 to each edge of G such that for any vertex of G, the sum of the labels on incoming edges is equal

to that of the labels on outgoing edges. A nowhere-zero k-flow is a k-flow with no zeros.

A celebrated conjecture of Tutte says that,

Conjecture (TC) (Tutte’s 5-flow Conjecture [8]). Every bridgeless graph has a nowhere-zero 5-flow.
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Two well-known results on this conjecture are the following:

Theorem A [4]. Every bridgeless graph has a nowhere-zero 8-flow.

Theorem B [7]. Every bridgeless graph has a nowhere-zero 6-flow.

For a thorough account on the above conjecture and subsequent results, see [5,11]. In this paper we

have chosen a linear algebraic approach to look at Tutte’s Conjecture which provides a motivation to

adopt a similar conjecture for undirected graphs.

For a directed graph G of order n and size m, the incidence matrix W(G) = (wij) is an n × mmatrix

whose rows are indexed by the set of vertices of G, {v1, . . . , vn}, and columns are indexed by the set of

edges of G, {e1, . . . , em}, defined by

wij =
⎧⎨
⎩

+1 if ej is an incoming edge to vi,

−1 if ej is an outgoing edge from vi,

0 otherwise.

Similarly, for an undirected graph G, the incident matrix of G,W , is defined as follows:

wij =
{
1 if ej is incident with vi,

0 otherwise.

For a graph G, a zero-sum flow is an assignment of non-zero real numbers on the edges of G such

that the total sum of the assignments of all edges incident with any vertex of G is zero. A zero-sum

k-flow for a graph G is a zero-sum flow with labels from the set {±1, . . . ,±(k − 1)}.
Clearly, there is a one to one correspondence between a flow of a graph G and an element of the

null space ofW(G). Indeed, if [c1, . . . , cm]T is an element of the null space of G, thenwe assign the value

ci to ei and consequently we obtain a flow. This is certainly a linear algebraic approach to the “flow

problem". By this token a nowhere-zero flow is an element of null space. Therefore, in the language

of linear algebra, Tutte’s Conjecture says that if G is a graph with no cut edge, then there is an integral

nowhere-zero element in the null space of the incidence matrix of every orientation of G for which

the absolute value of each entry does not exceed 4. This linear algebraic approach to TC allows us to

formulate the following conjecture:

Let G be a simple graph with incidence matrix W . If there exists a nowhere-zero real element of

the null space of W , then there is an integral nowhere-zero element in the null space of W for which

the absolute value of each entry does not exceed 5, or equivalently,

Zero-Sum Conjecture (ZSC). If G is a graph with a zero-sum flow, then G has a zero-sum 6-flow.

Remark 1. There are some graphs which have zero-sum 6-flows but have no zero-sum 5-flows. The

following example with 9 vertices was discovered through an exhaustive search [6]. Interestingly

enough among the graphs with at most nine vertices, this is the only graph with this property.

LetG be a graph and v ∈ V(G).We say that zero-sum rule holds on v, when the sumof assignments of

all edges incident with v is zero. In this paper we show that ZSC is true for 2-edge connected bipartite

graphs and k-regular graphs, k even or k = 3.
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A bidirected graph G is a directed graph with vertex set V(G) and edge set E(G) such that each

edge-vertex incidence is assigned an orientation, either out of or into the vertex. Thus every edge is

orientedwith one of the four possible orientations. An integer-valued function f on E(G) is a nowhere-

zero bidirected k-flow if for every e ∈ E(G), 0 < |f (e)| < k, and at every vertex v, the value of f -flow

in equals the amount of f -flow out. Bouchet conjectured that every bidirected graph which admits a

nowhere-zero bidirected flow admits a nowhere-zero bidirected 6-flow, see [2]. This conjecture has

been verified by Bouchet if 6 is replaced by 216, and by Zyka if 6 is replaced by 30, see [12]. Indeed a

zero-sum k-flow of G is exactly a nowhere-zero k-flow in the bidirected graph G, where each edge is

oriented as:

Therefore ZSC is a special case of Bouchet’s Conjecture.

2. More on zero-sum conjecture

We begin this section with the following lemma.

Lemma 1. Let G be a 2-edge connected bipartite graph. Then G has a zero-sum 6-flow.

Proof. Let G be 2-edge connected bipartite graph. By Theorem B, every 2-edge connected bipartite

graph has a nowhere-zero 6-flow. Without loss of generality one may assume that the direction of all

edges is from one part of G to the other part. Now, by removing the direction of all edges we conclude

that in any vertex the zero-sum rule holds and hence the proof is complete. �

The next theorem presents a geometric interpretation for graphs having a zero-sum flow.

Theorem 1. Suppose G is not a bipartite graph. Then G has a zero-sum flow if and only if for any edge e of

G, G \ {e} has no bipartite component.

Proof. With no loss of generality, assume that G is a connected graph. First suppose that G has a

zero-sum flow. We consider two cases:

Case 1. Assume that G\{e} has two components H1 and H2. Let Hi be of order ni and sizemi for i = 1, 2.

Suppose that H1 is bipartite. Then nul(H1) = m1 − n1 + 1 (Exercise 7, p. 37, [1]), where by nul(H1), we

mean the dimension of the null space of the incidence matrix of H1. Also we have nul(H2) � m2 − n2.

Thus

nul(G \ {e}) = nul(H1) + nul(H2) � m1 + m2 − (n1 + n2) + 1 = m − n,

where n and m are the order and the size of G, respectively. On the other hand m − n = nul(G) �
nul(G\{e}). Therefore nul(G\{e}) = m − n. Since nul(G) = m − n, we conclude that each element of the

null space of G is zero on e, which is a contradiction.

Case 2. Let G\{e} be a connected graph. Suppose that G\{e} is a bipartite graph. Then nul(G\{e}) =
(m − 1) − n + 1 = m − n. Now, since nul(G) = m − n, as in Case 1, this is a contradiction.

To prove the sufficiency, first we show that for any edge e, there exists an element in the null space

of G whose corresponding entry with e is non-zero.

If e lies on an even cycle, then the assertion is immediate. If e is a cut edge of G, then since none of

the components ofG\{e} is not bipartite, henceG contains twoodd cycles joining by a path P containing

e. We assign 2 and −2 to the edges of the path, alternatively. If the label of an ending edge of the path

is 2 (−2), then we assign −1 (1) to the two edges of the cycle adjacent to this edge of the path, and

the remaining edges of the cycle are labeled by 1 (−1) and −1 (1), alternatively. Thus there exists an

element in thenull space of the incidencematrix ofGwhose entry corresponding to e is non-zero. Next,

assume that e does not lie on any even cycle but on some odd cycle, say,C. Now, we claim that there is

an odd cycleC1 in G containing e such that |V(C) ∩ V(C1)| � 1. If the claim is proved, then we obtain
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two odd cycles joining a path P which one of them contains e. Note that in the case |V(C) ∩ V(C1)| = 1,

the length of P is zero and the previous method works for showing that the existence of an element in

the null space of the incidence matrix of G whose entry corresponding to e is non-zero.

Since G \ {e} is not bipartite, there exists an odd cycle C′
not containing e. Suppose that |V(C′

) ∩
V(C)| � 2. Let u, v ∈ V(C) ∩ V(C′

). Assume that the arc uv is a path onCwhich contains e and V(uv) ∩
V(C) ∩ V(C′

) = {u, v}. SinceC′
is an odd cycle, then the two paths onC′

, determined by u and v, have

different parities. Therefore there exists an even cycle containing e which is a contradiction. Thus

|V(C) ∩ V(C1)| � 1 and the claim is proved. Let e ∈ E(G) and We, be the set of all vectors in the null

space of the incidence matrix of G whose corresponding entries of e are zero. Clearly, We is a vector

space. LetW be the null space of the incidencematrix of G. IfW ⊆ ⋃
e∈E(G) We, then sinceW is a vector

space over the infinite field R, it is well-known that there exists some edge e such thatW ⊆ We, which

is a contradiction. Thus there exists an element α ∈ W \ ⋃
e∈E(G) We and the proof is complete. �

Before proving the next lemma we need the following result.

Let G be a 3-regular graph with at most two cut edges, then G has a 1-factor, [3].

Lemma 2. Let G be a graph with no connected component, K2, such that for every v ∈ V(G), d(v) ∈ {1, 3}.
Suppose that the induced subgraph on all vertices of degree 3 has no cut edge. If h is a pendant edge of G

with a value from {−2, 4}, then there exists a function f on E(G) which agrees on h and has the following

properties:
(i) For all e ∈ E(G), f (e) ∈ {1,−2, 4}.
(ii) For every v ∈ V(G) of degree 3, the zero-sum rule holds.

(iii) If e ∈ E(G) is a pendant edge, then f (e) ∈ {−2, 4}.

Proof. Consider two copies of G, say G1 and G2. Assume that uivi, 1 � i � k are all the edges of G1,

such that ui, vi ∈ V(G1), d(vi) = 1. Also, suppose that u′
i
and v′

i
are vertices corresponding to ui and vi

(i = 1, . . . , k) in G2, respectively. Let G
∗ be a graph obtained by removing the vertices v1, . . . , vk and

v′
1
, . . . , v′

k
and joining ui and u′

i
in G1 ∪ G2, for i = 1, . . . , k. Since none of the connected components of

G is K2, G
∗ is a 3-regular graph.

First we assume that G∗ has exactly one cut edge hwith value −2. By [3], G∗ has a 1-factor M.

Since G∗ \ E(M) is 2-regular, M contains h. For every e ∈ E(M), let f (e) = −2 and for every e ∈
E(G∗)\E(M), let f (e) = 1. Now, assume that the value of h is 4. In this case first we apply the same

procedure and then we multiply each value by −2.

Next, suppose that G∗ has no cut edge. Let t be an edge incident with h. Then by a result in [9], G∗
has a 1-factor M containing t. If the value of h is −2, then we assign f (e) = 4 to any edge ofM, and for

any edge e ∈ E(G∗)\E(M), we assign f (e) = −2. If the value of h is 4, then G∗ has a 1-factorM containing

h. If e ∈ M, let f (e) = 4 and if e ∈ E(G∗)\E(M), let f (e) = −2. Now, by restricting to the edges of G, we

obtain the result.

Finally, we note that if G has at least two cut edges, then G∗ has no cut edge and this completes the

proof. �

Theorem 2. Every 3-regular graph has a zero-sum 5-flow.
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Proof. Indeed we obtain a stronger result, namely every 3-regular graph G has a zero-sum flow with

values from {1,−2, 4} and the value of every cut edge is −2 or 4. To show this we construct a rooted

tree T from Gwhere every maximal 2-edge connected subgraph of G is considered as a vertex of T and

E(T) consists of all the cut edges of G. Now, by traversing T , level by level, we find a zero-sum 5-flow

for G. We start from the root of T , H. By Lemma 2, we assign an element of {1,−2, 4} to each edge of

H and −2 or 4 to every cut edge of G incident with H such that for every v ∈ V(H) the zero-sum rule

holds. Now, we move to the next vertex level of T . Let H′ be a vertex adjacent to H in T . At this stage of

the process there exists just one cut edge of G incident with H′ which is labeled by −2 or 4.

Now, by employing Lemma 2, we label the edges of H′ and apply the same procedure as in H. By

continuing this procedure we obtain a zero-sum 5-flow for G, as desired. �

Remark 2. The following graph shows that in the above theorem, zero-sum5-flow can not be replaced

with a zero-sum 4-flow. To see this we assume to the contrary and let G have a zero-sum 4-flow. Since

the sum of three odd numbers is odd, therefore in any vertex an even value should appear. On the

other hand two even values can not be assigned to the edges incident with each vertex. This implies

that the edges with even values in G form a 1-factor and this is a contradiction, because it is a routine

work to check that G does not contain a 1-factor.

Theorem 3. Let r be even, and r � 4. Then every r-regular graph, has a zero-sum 3-flow.

Proof. Let G be an r-regular graph with r even. In this case by Theorem 3.3.9 of [10], G is 2-factorable.

If the number of 2-factors are even, then we assign value 1 to the edges of one half of 2-factors and −1

to the edges of the other half. If the number of 2-factors is odd, then we choose three 2-factors, F1, F2
and F3 and assign 2 to the edges of F1 and assign −1 to the edges of F2 and F3. Now, the number of the

remaining 2-factors is even and we return to the beginning. �

3. Nowhere-zero k-flows and zero-sum k-flows

In this section we establish a relation between a zero-sum k-flow and a nowhere-zero k-flow for a

graph.More precisely, to every graphGwe associate a new graph such that the existence of a nowhere-

zero k-flow for G is equivalent to the existence of a zero-sum k-flow for the new graph. To do this we

need some definitions.

Let G be a graph, then S(G) is a graph obtained from G by augmenting exactly one new vertex on

each edge of G. The following lemma has a simple proof and so the proof is omitted.

Lemma 3. A graph G has a nowhere-zero k-flow if and only if S(G) has a zero-sum k-flow.
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We call a graph a (2, 3)-graph if the degree of each vertex is 2 or 3.

Theorem 4. If ZSC is true for any (2, 3)-graph, then it is true for any graph.

Proof. Suppose that G is equipped with a zero-sum flow. Let v be a vertex of G with degree at least 4.

Hence there are at least two edges, say vu1 and vu2,with values of the same sign.We replace vwith two

new vertices v1 and v2 and join v1 to u1 and u2 and join v2 to the rest of the vertices adjacent to v. Now,

we add another vertex w and join w to v1 and v2. By pursuing this process we get a (2, 3)-bi-regular

graph K . By assumption K has a zero-sum 6-flow which implies that G has a zero-sum 6-flow. �

Acknowledgments

The research of the first author was in part supported by a grant from IPM (No. 87050212). The

research of the third author was supported by a grant from the office of IPM Director.

References

[1] R.A. Brualdi, H.J. Ryser, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1991.
[2] A. Bouchet, Nowhere-zero integral flows on a bidirected graph, J. Combin. Theory Ser. B 34 (3) (1983) 279–292.
[3] G. Chartrand, D.L. Goldsmith, S. Seymour, A sufficient condition for graphs with 1-factors, Colloq. Math. 41 (2) (1979)

339–344.
[4] F. Jaeger, Nowhere-zero Flow Problems, Selected Topics in Graph Theory, Academic Press, San Diego, 1988, pp. 71–95.
[5] R.L. Graham, M. Grotschel, L. Lovasz, Handbook of Combinatorics, The MIT Press/North-Holland, Amesterdam, 1995.
[6] A. Mehrabian, A Computer Search, Tech. Rep., Sharif University of Technology, Tehran, 2007.
[7] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981) 130–135.
[8] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80–91.
[9] F. von Baebler, Über die Zerlegung regulärer Streckenkomplexe ungerader Ordnung, Comment. Math. Helv. 10 (1) (1937)

275–287.
[10] D.B. West, Introduction to Graph Theory, Prentice-Hall Inc., Upper Saddle River, 2001.
[11] C.Q. Zhang, Integer Flows andCycle Covers of Graphs,Monographs and Textbooks in Pure andAppliedMathematics,Marcel

Dekker Inc., New York, 1997.
[12] O. Zyka, Nowhere-Zero 30-Flow on Bidirected Graphs, Thesis, Charles University, Praha, 1987.


