A Northbound API for Sharing SDNs

S
‘
Gl Y

Andrew D. Ferguson

BROWN l@lﬁ adf@cs.brown.edu

The Need to Share SDNs

arjun@cs.cornell.edu

» Applications running in home, campus, datacenter, and wide-area
networks can benefit from direct interaction with the control-plane

QoS in a Home Circuits in a Datacenter

Firewalls in a Campus

* These applications may require both read access to determine
current network properties and conditions, and write access to
adjust the configuration of the network itself

» To prevent anarchy, a northbound API which provides this access
must overcome two challenges: 1) how to decompose control
and visibility? and 2) how to resolve conflicts?

» Our prototype introduces participatory networking, implemented
by an OpenFlow controller called PANE

Decomposing Network Control and Visibility

* The API| uses shares to describe a slice Flowgroup
Of netWOrk COntrOI src=128.12/16 A dst.port <1024
o Principals | Privileges
» Each share states who (principals) can . deny, allow
.. . Alice bandwidth: 5Mb/s
say what (privileges) about which flows Bob limit; 10Mb/s
in the network (flowgroup) query

* The privileges PANE exposes are requests, hints, and queries

* Requests are for resources and affect the state of the network,
hints provide information the controller may use to improve the
network configuration, and queries read the state of the network

—— Root - Shares are hierarchically organized
Share in a ShareTree that constrains the
I [— flowgroups and privileges

* As In a capability system, principals

- y/JTl
e = gy Create new sub-shares and
wi—T | 211 grantaccess to other principals

Arjun Guha Chen Liang

Resolving Conflicts

Rodrigo Fonseca
chen_liang@brown.edu rfonseca@cs.brown.edu

* Requests and hints become
policy atoms, which affect
specified traffic and are
placed in the Policy Tree

* The Policy Tree specifies
the outcome for all packets

(dstPort=80, GMB=10)

(srcIP=10.0.0.1,Allow)

- Contlicts between policy atoms are resolved by conflict-resolution
operators (such as +P above) which exist at all nodes in the tree

» For efficiency, PANE compiles the policy tree into OpenFlow
match tables, using a variant of the NetCore algorithm

PANE’s Northbound API

Share S € {P} x {F} x {Priv}
Principal P ::= (user, host, app)
Flow F ;.= (srclP=n1, dstIP=n,
proto=ns, srcPort=n4, dstPort=ns)
Priv

A share gives principals some privileges to affect a set of flows.
A triple consisting of an application, running on a host by a user.
A set of packets with shared properties: source and destination IP address,
transport protocol, and source and destination transport ports.
::= CanDeny n | CanAllow n The privileges to allow or deny traffic for up to n seconds (optional).
| CanReserve n | CanRateLimit n The privileges to reserve bandwidth or set rate-limits, up to n MB.
| CanWaypoint {/P} | CanAvoid {/P} The privileges to direct traffic through or around particular IP addresses.
Message Msg =P :{F}:S — (Req Tspec A message from a principal with a request,
| Hint Tspec | Query) hint, or query using a share.
Time Spec Tspec ::=from t; until ¢2 An optional specification from time ¢; until ¢2.
Request Req ::=Allow | Deny Request to allow/deny traffic.
Request to reserve n MB or rate-limit to n MB.
Waypoint/avoid traffic through a middlebox with the given IP address.
Query the total traffic between two hosts.
Hint that the flow’s duration is ¢.

PANE’s definitions (top) and end-user API (bottom). An API
to create shares and delegate privileges is also provided

Privilege

| Reserve n | RateLimit n

| Waypoint /P | Avoid /P
Query Query ::= TrafficBetween srcIP dstIP | ...
Hint Hint ::=Durationt | ...

Example: Bandwidth Scheduling

Shriram Krishnamurthi

k@cs brown edu pane.cs.brown.edu

Prototype Implementation

* We have developed a prototype
implementation of our APl as an
OpenFlow-based SDN controller

PANE user requests
{ Share Tree }4—
Authorization /?----)-(---> <.

! - The PANE controller implements
HFT Compilation | | user requests after authorization
(1) and conflict-resolution (2)

Policy Tree
Conflict Resolution

" Network
Information}—»
Base (NIB)
s X ;
2
OpenFlow Module

T
{
Switchesé: I]' ! X :é

| * PANE has been running our lab’s
network since Feb. 2012, and

comes with a Java library for client

applications (examples on Github)

Evaluation Examples

Here, Alice uses PANE to reserve future bandwidth. The network
admin only needs to delegate the privilege; PANE does the rest.

Bandwidth

Time

1 root: NewShare aliceBW for (user=Alice) [reserve <= 10Mb] on rootShare.

2 root: Grant aliceBW to Alice.

3 Alice: reserve (user=Alice,dstPort=80) = 8Mb on aliceBW from now to +10min.

3 Alice: reserve (user=Alice,dstPort=80) = 8Mb on aliceBW from +20min to +30min.

ZooKeeper: Guaranteed Bandwidth for Lower Latency

1

* A distributed service 09 | -
providing shared, con- _ o7
. . X 06}
sistent, available state ¥V o5}
_ _ X 04¢
» Each operation requires ol P Pre _
] S Post ----------
agreement of a quorum 8 R P A PANE o -
Of ServerS 0.0001 0.001 0.01 0.1 1

Latency of DELETE Operations (s)

» Configured an ensemble of five ZooKeeper servers connected to
a PANE-controlled OpenFlow switch, plus a benchmarking client

» This CDF shows the latency of operations on an isolated network
(Pre); when ZooKeeper competes with other traffic (Post); and
when ZooKeeper requests guaranteed bandwidth (PANE)

Hadoop: Extending Scheduler Weights into the Network

* An open implementation of MapReduce, Hadoop’s scheduler
supports weighted fair-sharing across jobs in the cluster

* However, these weights do not extend into the network currently;
bandwidth is allocated by TCP’s traditional approach

* We augmented Hadoop to reserve bandwidth in proportion to
each job’s weight, and benchmarked three simultaneous sort jobs
weighted 2:1:1. Completion time decreased by 19% for the top-
weighted job, and by 9% for the others due to work-conservation

