
A Northbound API for Sharing SDNs
Andrew D. Ferguson
adf@cs.brown.edu

Arjun Guha
arjun@cs.cornell.edu

Chen Liang
chen_liang@brown.edu

Rodrigo Fonseca
rfonseca@cs.brown.edu

Shriram Krishnamurthi
sk@cs.brown.edu

PANE’s Northbound API

The Need to Share SDNs Resolving Conflicts

Evaluation Examples

Decomposing Network Control and Visibility

Prototype Implementation
•	Applications running in home, campus, datacenter, and wide-area
networks can benefit from direct interaction with the control-plane

Share S 2 {P} ⇥ {F} ⇥ {Priv} A share gives principals some privileges to affect a set of flows.
Principal P ::= (user, host, app) A triple consisting of an application, running on a host by a user.
Flow F ::= hsrcIP=n1, dstIP=n2, A set of packets with shared properties: source and destination IP address,

proto=n3, srcPort=n4, dstPort=n5i transport protocol, and source and destination transport ports.
Privilege Priv ::=CanDeny n | CanAllow n The privileges to allow or deny traffic for up to n seconds (optional).

| CanReserve n | CanRateLimit n The privileges to reserve bandwidth or set rate-limits, up to n MB.
| CanWaypoint {IP} | CanAvoid {IP} The privileges to direct traffic through or around particular IP addresses.

Message Msg ::=P : {F} : S ! (Req Tspec A message from a principal with a request,
| Hint Tspec | Query) hint, or query using a share.

Time Spec Tspec ::= from t1 until t2 An optional specification from time t1 until t2.
Request Req ::=Allow | Deny Request to allow/deny traffic.

| Reserve n | RateLimit n Request to reserve n MB or rate-limit to n MB.
| Waypoint IP | Avoid IP Waypoint/avoid traffic through a middlebox with the given IP address.

Query Query ::=TrafficBetween srcIP dstIP | ... Query the total traffic between two hosts.
Hint Hint ::=Duration t | ... Hint that the flow’s duration is t.

Table 1: PANE definitions (top) and end-user API (bottom). There is also a simple API to create shares and delegate privileges.

Implementation and Evaluation PANE is implemented as a Haskell program. It primarily uses OpenFlow 1.0 to configure
switches; it also uses Open vSwitch commands, and OpenFlow slicing extensions to configure queues.

Ekiga Ekiga is an open source video conferencing application which we modified to ask the user for the anticipated duration of
video calls. Ekiga uses this information to schedule a bandwidth reservation between the caller’s host and either the network gateway
or the recipient’s host. If a desired reservation cannot be scheduled, the user is notified that the call quality may be sub-optimal.

SSHGuard SSHGuard detects brute-force attacks by monitoring logs and installing local firewall rules (e.g., via iptables). We
modified SSHGuard to send Deny messages to the PANE controller. Because PANE controls the local network, it can block malicious
traffic at the edge. Not only does this offload work from the end-host’s network stack, it also protects internal network traffic that
may have suffered by sharing a link along which a denial-of-service attack is taking place.

ZooKeeper ZooKeeper provides consistent, available, shared state among a quorum of replicated servers. For resiliency in the face
of network failures, ZooKeeper servers may be distributed throughout a datacenter; therefore, quorum messages may be delayed
by heavy traffic on shared links. Because ZooKeeper’s role is to provide coordination for other services, such negative effects are
undesirable. We modified ZooKeeper to make bandwidth reservations using PANE. In our benchmark, we found that competing
traffic dramatically reduced ZooKeeper’s performance: average latency quadrupled from 1.55ms to 6.46ms. When, upon startup,
each member of the ensemble made a PANE reservation for 10 Mbps of guaranteed minimum bandwidth for messages with other
ZooKeeper servers, average latency dropped down to 2.02ms.

Hadoop We augmented a Hadoop 2.0.3 pre-release to use PANE. By using PANE, our version of Hadoop is able to reserve guaranteed
bandwidth for its operations. The first set of reservations occurs during the shuffle: each reducer reserves bandwidth for transferring
data from the mappers. The second set reserves bandwidth when writing the final output back to HDFS. These few reservations
protect the majority of network transfers which occur during the lifetime of a Hadoop job.

We executed three 40 GB sort jobs in parallel on a network of 22 machines (20 slaves and two masters) connected by a Pronto
3290 switch controlled by PANE. Hadoop currently has the ability to prioritize or weight jobs using the scheduler, but this control
does not extend to the network. In our benchmark, the first two jobs were provided with 25% of the cluster’s memory resources,
and the third, acting as the “high priority” job, was provided with 50%. The benchmark was run in two configurations: in the first,
Hadoop made no requests using PANE; in the second, our modified Hadoop requested guaranteed bandwidth for each large flow.

Averaged across three runs, the high priority job’s completion time decreased by 19% when its bandwidth was guaranteed.
Because it completed more quickly, the lower priority jobs’ runtime also decreased, by an average of 9%, since Hadoop’s work-
conserving scheduler re-allocates freed memory resources to remaining jobs.

References
[1] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krishnamurthi. Hierarchical Policies for Software Defined

Networks. In HotSDN ’12.

[2] Andrew D. Ferguson, Arjun Guha, Jordan Place, Rodrigo Fonseca, and Shriram Krishnamurthi. Participatory Networking. In Hot-ICE ’12.

2

•	These applications may require both read access to determine
current network properties and conditions, and write access to
adjust the configuration of the network itself
•	To prevent anarchy, a northbound API which provides this access
must overcome two challenges: 1) how to decompose control
and visibility? and 2) how to resolve conflicts?
•	Our prototype introduces participatory networking, implemented
by an OpenFlow controller called PANE

Hadoop: Extending Scheduler Weights into the Network

Example: Bandwidth Scheduling

ZooKeeper: Guaranteed Bandwidth for Lower Latency

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.0001 0.001 0.01 0.1 1

P(
X

<=
 x

)

Latency of DELETE Operations (s)

Pre
Post

PANE

•	A distributed service
providing shared, con-
sistent, available state
•	Each operation requires
agreement of a quorum
of servers
•	Configured an ensemble of five ZooKeeper servers connected to
a PANE-controlled OpenFlow switch, plus a benchmarking client
•	This CDF shows the latency of operations on an isolated network
(Pre); when ZooKeeper competes with other traffic (Post); and
when ZooKeeper requests guaranteed bandwidth (PANE)

OpenFlow Module

Share Tree

HFT Compilation
Linearization

Conflict Resolution

Authorization

Policy Tree

Network
Information
Base (NIB)

PANE user requests

Switches

1

2

•	We have developed a prototype
implementation of our API as an
OpenFlow-based SDN controller
•	The PANE controller implements
user requests after authorization
(1) and conflict-resolution (2)
•	PANE has been running our lab’s
network since Feb. 2012, and
comes with a Java library for client
applications (examples on Github)

•	An open implementation of MapReduce, Hadoop’s scheduler
supports weighted fair-sharing across jobs in the cluster
•	However, these weights do not extend into the network currently;
bandwidth is allocated by TCP’s traditional approach
•	We augmented Hadoop to reserve bandwidth in proportion to
each job’s weight, and benchmarked three simultaneous sort jobs
weighted 2:1:1. Completion time decreased by 19% for the top-
weighted job, and by 9% for the others due to work-conservation

PANE’s definitions (top) and end-user API (bottom). An API
to create shares and delegate privileges is also provided

QoS in a Home Firewalls in a Campus Circuits in a Datacenter

6 11 18

•	The API uses shares to describe a slice
of network control
•	Each share states who (principals) can
say what (privileges) about which flows
in the network (flowgroup)

Flowgroup

Principals Privileges
src=128.12/16 ⋀ dst.port ≤1024

Alice
Bob

deny, allow
bandwidth: 5Mb/s

limit: 10Mb/s
hint

query

•	The privileges PANE exposes are requests, hints, and queries
•	Requests are for resources and affect the state of the network,
hints provide information the controller may use to improve the
network configuration, and queries read the state of the network

Root
share

x y

w z

•	Shares are hierarchically organized
in a ShareTree that constrains the
flowgroups and privileges
•	As in a capability system, principals
may create new sub-shares and
grant access to other principals

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

AllowGMB=10
?+S

GMB=10GMB=30

0 +P

GMB=30•	Requests and hints become
policy atoms, which affect
specified traffic and are
placed in the Policy Tree
•	The Policy Tree specifies
the outcome for all packets
•	Conflicts between policy atoms are resolved by conflict-resolution
operators (such as +P above) which exist at all nodes in the tree
•	For efficiency, PANE compiles the policy tree into OpenFlow
match tables, using a variant of the NetCore algorithm

pane.cs.brown.edu

Time

Ba
nd

w
id
th

Reservation Limitar

t

CHAPTER 2. OVERVIEW 8

1 root: NewShare aliceBW for (user=Alice) [reserve <= 10Mb] on rootShare.
2 root: Grant aliceBW to Alice.
3 Alice: reserve(user=Alice,dstPort=80) = 8Mb on aliceBW from +20min to +30min.
4 root: NewShare bobAC for (dstHost=10.0.0.2) [deny = True] on rootShare.
5 root: Grant bobAC to Bob.
6 Bob: deny(dstHost=10.0.0.2, srcHost=10.0.0.3) on bobAC from now to +5min.
7 Bob: deny(dstHost=10.0.0.4, srcHost=10.0.0.3) on bobAC.

Figure 2.2: Sample interaction between three principals and PANE.

1 root: NewShare aliceBW for (user=Alice) [reserve <= 10Mb] on rootShare.
2 root: Grant aliceBW to Alice.
3 Alice: reserve(user=Alice,dstPort=80) = 8Mb on aliceBW from now to +10min.
3 Alice: reserve(user=Alice,dstPort=80) = 8Mb on aliceBW from +20min to +30min.

Figure 2.3: Sample interaction between three principals and PANE.

arranged in the same hierarchy as the share tree, forming a policy tree. A policy tree is a declarative data structure that

represents the desired global policy for the network. PANE materializes this policy in the network by installing rules

in the switches that implement an equivalent policy (Chap. 6).

Policy atoms thus exist in the context of a share, and are bound by the shares’ privileges and flowgroup. However,

policy atoms may conflict. For example, one policy atom may deny all HTTP flows, while another allows HTTP

flows. These atoms may even exist on different shares. The PANE share tree is flexible: it supports oversubscription,

and allows several shares to express policies for overlapping flowgroups. A key novelty of PANE is a principled and

intuitive conflict-resolution algorithm for hierarchical policies.

We develop Hierarchical Flow Tables (HFTs) to materialize PANE’s policy tree. HFTs provide a model for resolv-

ing conflicts in a hierarchy of policies, and a formally-verified compiler from such hierarchies to flow tables suitable

for OpenFlow switches. In particular, HFTs use conflict resolution operators within and between each node in the hier-

archy to flexibly resolve conflicts. We describe the design of PANE’s operators, and the semantics and implementation

of HFTs in Chap. 5.

Request Processing Having summarized PANE’s key ideas, we now describe at a high level the processing of a

single request, as depicted in Figure 2.1. When an authenticated principal sends the controller a message, perhaps

requesting a resource for a flowgroup in a particular share, PANE first checks that the request is admissible per the

share’s flowgroup and privileges – Check 1 in the figure.

If this first check passes, PANE then checks to see if it is compatible with the state of the network – Check 2. This

check involves all accepted requests (i.e., policy atoms) in the policy tree, and the physical capabilities of the network.

For example, a bandwidth reservation requires a circuit between two endpoints with sufficient bandwidth and switch

queues. This check requires compiling the current policy tree, augmented with the request itself. If this check passes,

the request is incorporated into the tree, and the controller can install the policy onto the network. This process also

Here, Alice uses PANE to reserve future bandwidth. The network
admin only needs to delegate the privilege; PANE does the rest.

