Applications and Storage Needs

Joel Saltz
University of Maryland, College Park
Johns Hopkins University
Overview

• Nature of Multi-resolution Applications
 – Sensor measurements, physical simulations

• Tools to Manage Storage Hierarchy
 – Mass Storage:
 • Subset and filter
 • Load small subset of data from tertiary storage into disk cache or client
 – Fast secondary storage
 • Tools for on-demand data product generation, interactive data exploration
Applications

- Applications that describe or model the physical (or biological) world
 - Why these produce huge datasets and how big will these datasets get?
 - Structural features of these datasets
 - Type of queries and processing required
Why Applications Get Big

• Physical world or simulation results
• Detailed description of two, three (or more) dimensional space
• High resolution in each dimension, lots of timesteps
 • e.g. oil reservoir code -- simulate 100 km by 100 km region to 1 km depth at resolution of 100 cm:
 – $10^6 \times 10^6 \times 10^4$ mesh points, 10^2 bytes per mesh point, 10^6 timesteps --- 10^{24} bytes (Yottabyte) of data!!!
The Tyranny of Scale
(Tinsley Oden - U Texas)
How fast will we produce data?

• Current fastest computers -- order of 10^{12} floating point operations per year
• 5 years -- 10^{15} floating point operations per second (ASCI timetable)
• Assume 10^4 floating point operations produces a byte of data
• 10^{11} bytes of data per second, approximately 10^{16} bytes (petabyte) per day
Processing Remotely Sensed Data

NOAA Tiros-N w/ AVHRR sensor

As the TIROS-N satellite orbits, the Advanced Very High Resolution Radiometer (AVHRR) sensor scans perpendicular to the satellite’s track. At regular intervals along a scan line, measurements are gathered to form an instantaneous field of view (IFOV). Scan lines are aggregated into Level 1 data sets.

Applications

Surface/Groundwater Modeling

Pathology

Volume Rendering

Satellite Data Analysis
Why Multi-Resolution?

- Producing and managing Yottabyte datasets (10\(^24\) bytes) is a dicey proposition
- Can often use variable resolution methods to reduce required datasize
- Leads to Spatial/multidimensional multi-scale, multi-resolution datasets
Coupled Ground Water and Surface Water Simulations

Multiple codes -- e.g. fluid code, contaminant transport code
Different space and time scales
Data from a given fluid code run is used in different contaminant transport code scenarios
Multiresolution Methods Lead to Irregular Datasets

“Fast Accurate”

Fault

CO₂ Flood

Water Flood

Upscaling

pinchout

Fully Implicit Model
Pathology Application Domain

- Automated capture of, computer assisted categorization and immediate worldwide access to all Pathology case material
 - microscopy, blood smears, cytogenetics, molecular diagnostic data, lab data
 - Slide data -- 0.5-10 GB (compressed) per slide Johns Hopkins -- 500,000 slides per year
 - Data acquired and stored in patches at varying magnifications

- Digital storage of 10% of slides in USA -- 50 petabytes per year
Virtual Microscope

Explore virtual slides
Invoke user image processing functions to grade tumors
Find all data that meet a given criteria (e.g. Gleason Grade)
Dataset Structure

- Spatial and temporal resolution may depend on spatial location
- Physical quantities computed and stored vary with spatial location
Processing Irregular Datasets
Example -- Interpolation

Output grid onto which a projection is carried out

Specify portion of raw sensor data corresponding to some search criterion
Software for Managing Storage Hierarchy

- Approach shared between all levels of storage hierarchy
- Active Data Repository
 - disk based processing
- DataCutter
 - data collections -- ultimately may subsume Active Data Repository
- Relationship between storage hierarchy management software and active disks
Software for Multi-resolution Data Handling

• Associative access and processing of multiresolution data structures

• Distributed memory, shared nothing, active disk and multiple data collections

• Users define
 – Objects, each comprised of data elements distributed in space
 – Methods to link each data with a spatial location
 – Spatial subsetting functions
 – Aggregation functions that combine objects within and between coordinate systems
Data Handling and Memory Hierarchy -- NPACI Software

Active Data Repository

Memory

KeLP

Disk

Mover / Meta-data

XML DTD for data set description

SRB (DataCutter)

Collection/Archive

Mover / Meta-data
Active Data Repository

- **Optimized associative access and processing of multiresolution disk based data structures**
- Targets *parallel and distributed architectures, active disk architectures*
- Modular services implemented in C++
 - Ongoing work to develop a compiler to allow users to customize services using user defined functions
- **Applications**
 - Satellite sensor data -- several types; Virtual Microscope Server, Bay and Estuary Simulation, Large scale data visualization
Loading Grids into ADR

- Partition grid into data chunks
- Each chunk associated with a bounding box
- ADR Data Loading Service
 - Distributes chunks across the disks (e.g., using Hilbert curve)
 - Constructs an R-tree index using bounding boxes of data chunks
DataCutter Architecture

• Proxy processes (disklets) filter data as it is extracted from storage
 – Active disks -- disklets as proposed by Uysal
 – Data collections -- “disklets” carry out computation close to data

• Early data filtering reduces data movement and data transfer costs

• Uysal has developed algorithms that use fixed amount of scratch memory to carry out selects, sorts, joins, datacube operations
SRB/DataCutter Implementation

Client

SRB

MCAT

DataCutter

Tertiary Storage System

Active Disks
DataCutter

Client

Segment Data

Range Query

Segment Info.

Client Interface Service

Indexing Service

Filtering Service

Filter

Filter

Data Access Service

DataCutter

Tertiary Storage System

Active Storage System

Segments: (File,Offset,Size) (File,Offset,Size)
Uysal’s Stream-based Programming Model

- Host-resident and Disk-resident code
 - *Disklets* perform bulk of the processing
 - Host-resident code manages/coordinates disklets
 - All data access/communication via streams
- Coarse grain interactions with disklets
- Restricted execution environment on disk
 - Thin operating system layer (DiskOS)
Disklets as Filters

- Resource requirements associated with remote data processing can be predicted and constrained
 - Disklets cannot initiate I/O
 - Disklets cannot allocate/free memory
 - long-term scratch-space, stream buffers
 - DiskOS automatically allocates/reclaims memory
- Easy disklet composition/migration
 - Disklets cannot determine stream source/sink
Summary

• Where very big datasets come from and inevitable structural aspects
• Example of software architecture for managing storage hierarchy
• Relationship to active storage
 – put processing close to data storage!
 – Some elements of storage hierarchy will probably be active disk based -- software architecture should be able to take advantage of this (ours does!)