Data-Driven Processing In Sensor Networks

Jun Yang
Duke University
October 12, 2007

What is a sensor network?

- Tiny, untethered nodes with severe resource constraints
 - Sensors, e.g., light, moisture, ...
 - Tiny CPU and memory
 - Battery power
 - Limited-range radio communication
 - Usually dominates energy consumption
- Nodes form a multi-hop network rooted at a base station
 - Base station has plentiful resources and is typically tethered or at least solar-powered

Sensor network applications

- Medical
- Environmental
 [Mainwaring et al., WSNA 2002]
- Urban
 [Hu et al., SenSys 2006]

What do ecologists want?

- Collect all data (to within some precision)
 - Continuous “SELECT *”: the most boring SQL query
- Fit stochastic models using data collected
 - Cannot be expressed as SQL queries

- Sorry—this talk doesn’t cover any of our favorite SQL queries (selection, join, aggregation…)

Duke Forest deployment

- Use wireless sensor networks to study how environment affects tree growth in Duke forest
 - Collaboration with Jim Clark (ecology) et al. since 2006

Model-driven data collection: pull

- Exploit correlation in sensor data
 - Representative: BBQ
 [Deshpande et al., VLDB 2004]

 Model $p(X_1, X_2, …)$
 - Base station
 - Confidence interval not tight enough?
 - Confidence interval tightened
 - Additional observations: $X_3 = x_3$

Answer correctness depends on model correctness
Risk missing the unexpected
Data-driven philosophy

- Models don’t substitute for actual readings
 - Correctness of “SELECT *” should not depend on correctness of models
 - Particularly when we are still learning about the physical process being monitored
- Models can still be used to optimize “SELECT *”

Data-driven: push

- Exploit correlation in data + put smarts in network
 - Representatives: Ken Chu et al., ICDE 2006, Conch [Silberstein et al., ICDE 2006, SIGMOD 2006]

Temporal suppression example

- Suppress transmission if |current reading – last transmitted reading| ≤ \(\varepsilon \)
 - Model: \(X^t = x^{t-1} \)
- Effective when readings change slowly
- What about large-scale changes?

Spatial suppression example

- “Leader” nodes report for cluster
 - Others suppress if |my reading – leader’s reading| ≤ \(\varepsilon \)
 - Model: \(X^t_{\text{rep}} = x^t_{\text{leader}} \)
- Effective when nearby readings are similar

Combining spatial and temporal

Spatiotemporal suppression condition = ?

- Temporal AND spatial?
 - I.e., suppress if both suppression conditions are met
 - Results in less suppression than either!
- Temporal OR spatial?
 - I.e., suppress if either suppression condition is met
 - Base station cannot decide whether to set suppressed value to the previous value (temporal) or to the nearby value (spatial)!

Outline

- How to combine temporal and spatial suppressions effectively
 - Conch [Silberstein et al., SIGMOD 2006]
- What to do about ______ — the dirty little secret of suppression
 - BaySail [Silberstein et al., VLDB 2007]
Conch = constraint chaining

Temporally monitor spatial constraints (edges)
- x_i and x_j change in similar ways \Rightarrow temporally monitor edge difference $(x_i - x_j)$
- “Difference” can be generalized
- One node is reporter and the other updater
 - Reporter tracks $(x_i - x_j)$ and transmits it to base station if its value changes
 - Updater transmits its value updates to reporter
 - i.e., temporally monitor remote input to the spatial constraint

Recovering readings in Conch

- Base station “chains” monitored edges to recover readings
- Discretize values to avoid error stacking
 - $[k\epsilon, k\epsilon + \epsilon) \rightarrow k$
 - Monitor discretized values exactly
 - Discretization is the only source of error
 - No error introduced by suppression

Conch example

- A spanning forest is necessary and sufficient to recover all readings
 - Each edge is a temporally monitored spatial constraint
 - Each tree root is temporally monitored
 - Start of chain
 - (For better reliability, more edges can be monitored at extra cost)
- Some intuition
 - Choose edges between correlated nodes
 - Do not connect erratic nodes
 - Monitor them as singleton trees in the forest

Cost-based forest construction

- Observe
 - In pilot phase, use any spanning forest to collect data
 - Even a poor spanning forest correctly collects all data
- Optimize
 - Use collected data to assign monitoring costs
 - # of rounds in which monitored value changes
 - Build a min-cost spanning forest (e.g., Prim’s)
- Re-optimize as needed
 - When actual costs differ significantly from those used by optimization

Wavefront experiment

- Simulate periodic vertical wavefronts moving across field, where sensors are randomly placed at grid points
 - Conch beats both pure temporal and pure spatial
 - Communication tree is a poor choice for monitoring; optimization makes a huge difference
Conch discussion

- Key ideas in **Conch**
 - Temporally monitor spatial constraints
 - Monitor locally—with cheap two-node spatial models
 - Infer globally—through chaining
 - Push/suppress not only between nodes and base station, but also among nodes themselves
 - Observe and optimize
- Vision for ideal suppression
 - Number of reports \propto description complexity of phenomenon

What's the catch?

Outline

- How to combine temporal and spatial suppressions effectively
 - **Conch** [Silberstein et al., SIGMOD 2006]
- What to do about **failures**—the dirty little secret of suppression
 - **BaySail** [Silberstein et al., VLDB 2007]

Failure and suppression

- Message failure common in sensor networks
 - Interference, obstacles, congestion, etc.

- Is a non-report due to suppression or failure?
 - Without additional information/assumption, base station has to treat every non-report as plain “missing”—no accuracy bounds!

A few previous approaches

- Avoid missing data: ACK/Retransmit
 - Often supported by the communication layer
 - Still no guaranteed delivery \rightarrow does not help with resolving ambiguity
- Deal with missing data
 - Interpolation
 - Point estimates are often wrong or misleading
 - Uncertainty is lost—important in subsequent analysis/action
 - Use a model to predict missing data
 - Can provide distributions instead of point estimates
 - But we have to trust the model!

BayBase: basic Bayesian approach

- Model $p(X | \Theta)$ with parameters Θ
 - Do not assume Θ is known
 - Any prior knowledge can be captured by $p(\Theta)$
- x_{obs}: data received by base station
- Calculate posterior $p(X_{miss}, \Theta | x_{obs})$
 - Joint distribution instead of point estimates
 - Quantifies uncertainty in model; model can be improved

- Problem: non-reports are treated as generically missing
 - But most of them are “engineered”
 - Non-report \neq no information!

BaySail

Bayesian Analysis of **Suppression and Failure**

- Bayesian, data-driven
- Add back some redundancy
- Infer with redundancy and knowledge of suppression scheme
Suppression-aware inference

- Temporal suppression with $\epsilon = 0.3$, prediction = last reported
- Actual: $(x_1, x_2, x_3, x_4) = (2.5, 3.5, 3.7, 2.7)$
- Base station receives: $(2.5, 3.5, 3.7, 2.7)$
- With Temporals ($r = 1$)
 - $x_1, x_2, x_3, x_4 > 0.3$
 - $|x_2 - x_3| > 0.3$
- With Timestamps + Direction Bits ($r = 1$)
 - $x_1, x_2, x_3, x_4 > 0.3$
 - $|x_2 - x_3| > 0.3$
- With Counter
 - One suppression and one failure in x_4 and x_5, not sure which
 - A very hairy constraint!

- Posterior: $p(x_{\text{mis}}, \Theta | x_{\text{obs}})$, with x_{mis} subject to constraints

Inference

- Arbitrary distributions & constraints: difficult in general
 - Monte Carlo methods generally needed
 - Various optimizations apply under different conditions
 - A simplified soil moisture model: $y_{\text{mis}} = \zeta + \phi y_{x_{\text{mis}}} + \epsilon_{x_{\text{mis}}}$
 - ζ is a series of known precipitation amounts
 - ζ is a set of known precipitation amounts
 - $\phi \in (0, 1)$ controls how fast moisture escapes soil
 - r controls the strength of the spatial correlation over distance
 - Given y_{mis}, find $p(y_{\text{mis}}, \Theta, r | y_{\text{obs}})$ subject to constraints
 - Gibbs sampling
 - Markovian = okay to sample each cluster of missing values in turn
 - Gaussian + linear constraints = efficient sampling methods

Benefit of modeling/redundancy

- No knowledge of suppression
 - Just data
 - BayBase
 - x_1, x_2, x_5
 - x_3, x_4

- Knowledge of suppression & Timestamps
 - x_1, x_2, x_3, x_4
 - x_5

- Knowledge of suppression & Timestamps + Direction Bits
 - x_1, x_2, x_3, x_4
 - x_5

Redundancy strikes back

- At app level, piggyback redundancy on each report
 - **Counter**: number of reports to base station thus far
 - Good systems idea!
 - **Timestamps**: last r timesteps when node reported
 - Not that cute…
 - **Timestamps + Direction Bits**: in addition to the last r reporting timesteps, bits indicating whether each report is caused by (actual – predicted > ϵ) or (predicted – actual > ϵ)
 - Why on earth?!

Redundancy design considerations

- Benefit: how much uncertainty it helps to remove
 - Counter can cover long periods, but helps very little in bounding particular values
- Energy cost
 - Counter < Timestamps < Timestamps + Direction Bits
- Complexity of in-network implementation
 - Coding app-level redundancy in TinyOS was much easier than finding the right parameters to tune for ACK/Retransmit!
- Cost of out-of-network inference
 - May be significant even with powerful base stations!

Inference cost

- Timestamps translate to “|…| > r” constraints (disjunction); difficult to work with; naive technique generates lots of rejected samples
- Timestamps + Direction Bits translate to a set of linear constraints; use [Rodriguez-Yam, Davis, Scharf 2004] and there are no rejections

>100x speed-up!

Major reason for adding the direction bits!
Energy cost vs. inference quality

- 30% message failure rate
- Roughly 60% suppression
- Cost: bytes transmitted (including any message overhead)
- Quality: size of 80% high-density region

Sampling is okay in terms of cost, but has trouble with accuracy

Suppression-aware inference with app-level redundancy is our best hope to get higher accuracy

BaySail discussion

- Suppression vs. redundancy
 - Goal of suppression was to remove redundancy
 - Now we are adding redundancy back—why?
 - Without suppression, we have to rely on naturally occurring redundancy ⇔ want to control where redundancy is needed, and how much

- Many interesting future directions
 - Dynamic, local adjustments to ε and degree of redundancy
 - In-network resolution of suppression/failure
 - Failure modeling
 - Provenance: is publishing received/interpolated values enough?

Concluding remarks

All models are wrong, but some models are useful
— George Box

- Data-driven approach
 - Use model to optimize, not to substitute for real data → suppression
 - Quantify uncertainty in models; use data to learn/refine → Bayesian
 - Conch: suppression by chaining simple spatiotemporal models
 - BaySail: suppression-aware inference with app-level redundancy to cope with failure (suppression’s dirty little secret)

- This model-based stuff is not just for statisticians!
 - Cost-based optimization
 - Interplay between system design and statistical inference
 - Representing and querying data with uncertainty

Acknowledgement

Adam Silberstein, Rebecca Braynard, Pankaj Agarwal, Carla Ellis, Kamesh Munagala (computer science)
Jim Clark (ecology)
Alan Gelfand, Gavin Pudding (statistics)
Greg Filpus (undergrad)
Paul Flikkema (EE, NAU)

BaySail: suppression-aware inference with app-level redundancy to cope with failure (suppression’s dirty little secret)

This model-based stuff is not just for statisticians!

- Cost-based optimization
- Interplay between system design and statistical inference
- Representing and querying data with uncertainty

Thanks!

Duke Database Research Group
http://www.cs.duke.edu/dbgroup/

Conch: suppression by chaining simple spatiotemporal models

Related work

- Sensor data acquisition/collection
 - BBQ [Deshpande et al. VLDB 2004], Snapshot [Kotidis ICDE 2005], Ken [Chu et al. ICDE 2006], PRESTO [Li et al. NSDI 2006], contour map [Xue et al. SIGMOD 2006], …

- Sensor data cleaning

- Uncertainty in databases
 - MYSTIQ [Dalvi & Suciu VLDB 2004], TrinoULDB [Benjelloun et al. VLDB 2006], MauveDB [Deshpande & Madden SIGMOD 2006], factors [Sen & Deshpande ICDE 2007], …
Conch redundancy

- Monitor more edges/nodes!

- $d = a + 5 + 10$ and $d = a + 9 + 8$ cannot both be true!

 A failure occurred—but where?

Conch recovery

- Constraints
 - True node and edge values x_t must be consistent
 - Received values x_{obs} are true
 - Non-reported values stay same (as time $t - 1$) or reports failed

- Maximum likelihood approach: roughly speaking, find x_t that maximizes $p(x_{\text{obs}} | x_t, x_{t-1})$

 - Assume independent failures with known probabilities
 $$\sum_{i \in I_t} x_i \log \frac{p_i}{1 - c_i} + \sum_{i \notin I_t} p_i \log \frac{1 - p_i}{c_i}$$

 - Assume known change probabilities
 - Can formulate as MIP

BaySail: infer with spatial correlation

- Spatial correlation definitely helps!
 - Can you tell which nodes got less help?

Error stacking

- Chaining starting point; temporally monitored

 Suppressed because $|1.9 - 1.0| \leq \epsilon = 1$

 Errors stack: $0.9 + 0.9 + 0.9 = 2.7!$

Discretization

- Chaining starting point; temporally monitored