Using CavePainting to Create Scientific Visualizations

David B. Karelitz Daniel F. Keefe David H. Laidlaw

Brown University

Leg e nd QTcity_nwagnitFlde

Preview

Figure 1: We extended CavePainting, a system for drawing in VR,
to aid design tasks in the scientific visualization domain by allowing
designers to easily preview designs in an immersive environment. Figure 2: Legends are used to link drawn icons to data. Velocity

This figure contains one prototype of a particle designed to show Magnitude, the datatype represented by this legend is shown just
pressure as the width of the head, and velocity as the position of thepelow the green line. User drawn icons are added above the line,

tentacles with faster particles having more streamlined tentacles.and a preview of the final icons or particles is shown below it.
The legend used to generate this image is shown in Figure 2

Abstract The CavePainting system allows users to directly draw 3D forms
in virtual reality using a six degree-of-freedom tracker. The user

We present an application of a virtual reality (VR) tool to the prob- Manipulates a bru_sh to generate a str_oke of color and texture. These

lem of creating scientific visualizations in VR. Our tool allows a Strokes can be edited and combined into compound strokes.

designer to prototype a visualization prior to implementation. The

system evolved from CavePainting [Keefe et al. 2001], which al-

lows artists to draw in VR. We introduce the concept of using an

interactive legend to link a visualization design to the visualization 1.1 Motivation

data. As opposed to existing methods of visualization design, our

method enables the researcher to quickly experiment with multiple e existing artery application visualizes complex fluid flow using

visualization designs - without having to code each one. We applied particles. The particles showed only the path the particle would take

this system to the visualization of coronary artery flow data. through the flow; however, simply iooking at the path of a particle
was not enough to give a comprehensive image of the flow. The

1 Introduction flow is chara_cterized by multiple values at each point _within the
flow. The main problem then became how to show multiple values

. . . o in a single particle. [Sobel et al. 2002]

According to Senay and Ingnatius, “The primary objective in data . .) .

visualization is to gain insight into an information space by map- _The traditional method of designing particles is to sketch some

ping data onto graphical primitives” [Senay and Ignatius 1994]. d€signs on paper, implement them, and then evaluate them. The

The first step in this process is often a quick sketch of the elements Maln problem with designing VR images on paper is that paper de-

of the visualization. When designing visualizations for VR, sketch- Sign does not fully characterize what the resulting visualization will

ing on paper does not capture the immersive nature of VR. Further- 100K like in a VR environment. For example, choosing colors for

more, implementing each design often takes hours or even days asV_R is difficult to do on paper since the prOJ_ected colors are _often

visualization styles are coded, examined, and evaluated. The goald'mand unsaturated. Furthermore, any design on paper is still a 2D

of our system is to reduce the iteration time for designing a visual- 4€sign, and 3D designs on a 2D medium may have problems when

ization to a few minutes. We accomplish this by allowing an artist Viewed in immersive 3D. Our system operates between the paper

to sketch a visualization in VR, and then apply that to the actual 9€sign and the actual implementation, and provides a medium in

visualization data. The end resultis a hastened research cycle; eaci/hich to easily test a design. Paper designs are still useful as a start-

design can be implemented and evaluated in a matter of minutes. N9 Point, but refining a base design can proceed much faster with
our system than with the design and implementation cycle normally

*Department of Computer Science, Brown University, Providence, RI employed. Using our system, a researcher can take a paper design,
02912,{dbk,dfk,dhl @cs.brown.edu sketch the design in 3D, and view the final result.

A

Texturs

r—

Texture

Figure 3: A CavePainting stroke comprises a path and a style. ThereFigure 4: The width of a stroke is first modified by selecting the
are two paths and two styles in this example, the blue base and thewidth attribute. This causes the stroke to become transparent, and
green wing. Parts of the style, such as width, texture, color, and the path, the yellow line along the length of the stroke, to be drawn.
alpha, as depicted above, can be selected and modified using thisSThe new width of the stroke at the yellow ring is the distance be-
view. tween the path and the paintbrush.

1.2 Our Approach texture and alpha are at their default values of no texture and no

: _— ; transparency respectively.
Legends were used to combine CavePainting strokes with the data Strokes are edited by first selecting the property to be modified

being visualized. CavePainting strokes added to the legend indicate th loded vi f 2 SOk in Fi 3 Th
how the final visualization element changes in response to a par_usmg € exploded View of a Stroke as seen In Figure 5. 1here are

ticular data type. The lower portion of the legend shows miniature two types of interaction when modifying a stroke. When modifying

versions of the final visualization element. There is one legend per Fhe pl’v'dth O;ﬁ strtcﬁke, thte stroﬁe becotrﬂes tr_argerJaren: ?n?hthg pa:]h
data attribute visualized. is shown. Then the system chooses the point closest to the brush,

The previous system used for visualizing artery flow data re- and makes the width of the stroke at that point the distance between

quires each different visual style to be explicitly coded, and as a ﬂ;]e p?th and the ?rlﬁp a;)s ser:an 'g Flgl(;_re .4' g}olorl IS m?d'f'.e? by
result, adding new styles or more information to the visualization shooting a ray out of the brush and modifying the closest point on

often takes days or weeks. With our system, the researcher is ablethe path to that ray, as seen in Figure 5.
to sketch the legend for a visualization and see the result almost

instantly. 2.2 Data

The data we are using approximates a bifurcated coronary artery
2 Methods using a large slightly curved arterial pipe with a smaller pipe joined
at an angle. The data is the result of a numerical simulation using
The system is based on three critical components. The first compo-this model. The complete dataset is time varying and simulates a
nent, the stroke, is the drawing primitive for generated icons. The single pulse of fluid from the heart. It contains multiple datatypes
second component is the legend, which links icons to actual data. at each point, such as pressure, velocity, and vorticity.
The third component is the interpolated particles generated by the

system. 2.3 Linking Strokes to Data

2.1 CavePainting Strokes Legends were chosen to link example icons to the data being visu-
alized. There is one legend for each datatype in the dataset. The
Again, the basic element in our system is the stroke. A stroke con- legend, as seen in Figure 7, consists of three parts. The first part is
sists of two main parts, the path of the stroke, which is defined by the icon for the legend which contains the data type associated with
the path of a 3D tracker through space, and the style of a stroke. Thethe legend and the direction of increasing data value. In this case
stroke style consists of a form and style properties. A stroke’s form pressure is increasing to the right. The user draws example icons
is a cross section of the final stroke. In our program, we support above the legend, e.g. the two large birds. Once an icon is added to
a flat cross section, which results in a ribbon, and a circular cross the legend, a preview of example particles appears, e.g. the smaller
section, which results in a tube. Style properties are contained in birds below the line. The preview shows how the icon changes for
forms, and are organized into layers, with each layer having tex- the datatype of the legend, and assumes all other datatypes are at
ture, color, and transparency. Color and transparency are definedhalf value.
along the length of a stroke, so different parts of a stroke can have In order to generate a final particle, there are three steps. First,
different colors. Strokes can also be combined to form compound each legend examines the example icons it contains to determine
strokes or icons. In this case the system stores an offset path inwhich attributes of the icon should change in response to this data
each form, and applies that offset to the path of the stroke to obtain type. Second, each legend generates a sparse placeholder icon that
the final shape and position of that part of the compound stroke. contains only those attributes that change in response to its partic-
In Figure 3 two forms are visible, the straight base, and the curved ular data type. Finally, the sparse placeholder icons are combined
wing. Each form has width, texture, color, and alpha styles, though with an initial icon to generate the final icon. In cases where more

N
pressure
L
Iy A

Figure 5: The color of a stroke is modified by selecting the color Figure 7: This legend maps the color of the birds to pressure.
attribute of a stroke, then spraying the stroke with the new color. Again, the user-drawn strokes are above the line, and the final icons
The yellow ring indicates the current position on the stroke. The are below.

same interaction is used for editing the transparency of a stroke,

with white being opaque and black transparent.

A

Jelocity_magnitude

&
’) » V4

Figure 6: This legend was used to map speed to wingspan. TheFigure 8: This example visualization shows bird icons that change
user-drawn icons appear above the line; below it are some samplesyingspan in response to velocity, and color in response to pressure.
of the final particles. This snapshot was taken at a low pressure point.

than one datatype submits a change to the final icon, the changes

are interpolated. In the bird example, The pressure legend gener-

ates sparse strokes containing only the color of the bird base. The

velocity legend generates a sparse stroke containing a path for the>9Nify a faster velocity; pressure was mapped to the size of the
bird wing. These two elements are merged with a copy of one of Squid's head.

the example strokes to form the final particle. .)
The second set of particles created were modeled after birds, as

seen in Figures 8 and 9. The birds show velocity as the shape of the
3 Results wings, outstretched for fast, and folded in for slow; they show pres-
sure as color, with red as high pressure and blue as low pressure.

We used the system to design particles for the visualization of the The legends used to create bird icons are also shown in Figures 6

artery data. The CavePainting system excels at creating organicand 7.

forms, so we chose some organic creatures — fish and birds — as a

basis for the particle design. Both particles were created to simul- Some other particle designs were tried, such as leaves and rain-

taneously show two data types: velocity and pressure. Overall, it drops. There were two main problems with these designs. First, the

took about half an hour to generate each visualization. icons were much too complex, and only a few could be shown at
The first particles were squid with some trailing tentacles, as seenreasonable frame rates. The second problem was that the example

in Figure 10. Speed was mapped to the shape of the tentacles; constrokes were not sufficiently different, hence it was near impossible

tracted tentacles signify a slower velocity and streamlined tentaclesto determine the actual data values represented by the icon.

On the other hand, the birds turned out much better than we
anticipated. It was very easy to tell the position of the wings by
looking at the particle, and since the birds were not very long, the
problem of intersecting particles was minimized. Furthermore, the
color change in response to pressure was extremely easy to see, and
the pressure value could be inferred from examining a single bird.
Compared to the squid, the birds were able to show two values si-
multaneously using a single particle.

4.2 Speed and Flexibility

The relationship between speed and flexibility in our system was
one of our paramount problems. The goal was to allow enough
flexibility in particle design, yet still be able to generate enough
particles so their interaction with each other could be understood.
In informal testing, our system was able to generate about twenty-
five percent as many particles as a hard-coded implementation of a
) o o o similar particle design. While this was fewer than we had hoped for,
Figure 9: This is another snapshot of the bird icons, this time at a jt was still enough to allow testing of future particle designs. There
high pressure point. is definitely room for improvement in this area, with one possible
approach being to offload the interpolation of the particles to the
graphics card.

4.3 Problems with Implicit Determination of Interpola-
tion Variables

The main problem with this system was that it implicitly tried to de-
termine what properties of a stroke to changed for each data type.
This was necessary since particles would tend to gravitate towards
an average particle if all the particle properties from each data type
were averaged to generate the final particle. Implicitly determin-
ing what to interpolate for each data type was problematic because
the user invested more thought in the particle design than in actu-
ally drawing the picture. One possible solution would be to have
the user draw the particle, then explicitly choose what parts of the
particle to interpolate for each data type. Although both result in
correct interpolation, it is easier and takes less time to explicitly
choose which attributes of a stroke to interpolate than to draw the
) o]) icon correctly.

Figure 10: This icon shows squids moving through the flow. Veloc- However, a much more difficult challenge exists: ensuring that
ity is mapped to the shape of the tentacles - slow yields compactedparticles have the same stroke structure and stroke direction. Un-
tentacles and fast yields streamlined tentacled. Pressure is mappegbrtunately, this imposes limitations on the design process of a par-
to the width of the squid’s head. ticle. Mainly, the designer must be aware of the implementation of
the system in order to use it effectively. The simplest solution is to
try and correlate the endpoints of the stroke, or the initial direction

4 Discussion of the endpoints of the stroke. Interpolating particles with differ-
ent stroke structure can be accomplished by splitting and merging

4.1 Evaluation of the particles strokes. When and how to perform these actions has yet to be ex-
plored.

We postulated that the squid particles would represent velocity well The consistent theme among all these problems is how much
because the particles exhibit movement well. There was a major the user should explicitly instruct the system versus how much the
unanticipated problem with the squid’s initial design. When many system can infer from the users actions. This is a very delicate issue,
squid were in close proximity, the tentacles overlapped and it be- with the overriding goal being to minimize the amount of time the
came extremely difficult to determine which tentacles belonged to designer must spend drawing a particle. If explicitly telling the
which squid. This problem was alleviated with dynamic lighting, system what to do takes less time than doing it in a way that the
though that had the consequence of altering the colors. Since colorsystem understands, then explicitness is the better solution.
was not used in this visualization, this was an acceptable solution.
Another viable solution would have been to either apply a texture
to the tentacles or to change the color in the middle of the tentacles.5 Conclusion

The second problem with the squids was that it was difficult to
determine the relative size of a single squid’s head, and in turn the Designing visualizations for multi-valued, time-varying data is a
relative pressure at a single point. It was still possible to see generalvery hard problem requiring many iterations of the design, imple-
pressure trends, but it was near impossible to determine a pressurenentation, and critique cycle. Furthermore, designs are tradition-
value at a single point. Overall, the squids were well suited to visu- ally done on paper, and not in the target medium. This works for
alizing velocity, but not pressure. Thus the visualization was not an some types of visualizations, but is much less effective when the
improvement over the initial particles. final medium is an immersive display. Paper simply cannot capture

the nuances of an immersive display as well as a design done in the
target medium.

Our system provides the designer with a tool to quickly judge
how well a particular design will work in the target environment.
It is not designed to replace paper designs as it still takes longer to
draw a design in our system than on paper, but it does allow the
designer to preview a design before the costly step of coding it. As
long as implementing a design is the costly step in completing a
visualization, every effort should be made to reduce the number of
times a design is implemented; our system is one step towards the
goal of reducing the number of implementations to just one.

References

KEEFE, D., ACEVEDO, D., MoscovVIcH, T., LAIDLAW, D., AND
LaVioLA, J. 2001. Cavepainting: A fully immersive 3d artistic
medium and interactive experience. Rroceedings of the 2001
Symposium on Interactive 3D Graphi@5—93.

SENAY, H., AND IGNATIUS, E. 1994. A knowledge-based sys-
tem for visualization design. IEEEE Computer Graphics and
Applications 36-47.

SOBEL, J., FORSBERG A., ZELEZNIK, R., LAIDLAW, D. H.,
PIVKIN, I., KARNIADAKIS, G.,AND RICHARDSON, P. 2002.
Particle flurries for 3d pulsatile flow visualization. IEEE Vi-
sualization Conference Poster Sessionreview.

