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Chapter 1

Introduction

To achieve a method that robustly learns a reconstruction of three-dimensional objects from photos

taken “in the wild,” with the goal of controllable image generation, the issue of pose variability must

be given special consideration. In general, we often lack supervision for all variables that exist in such

data (i.e., lighting, texture, pose, etc.). To devise a method that will allow for the parametrization

and manipulation of such variables, it is helpful to include a parts-based decomposition of the target

object’s three-dimensional structure that can be shared between different instances of the object.

This intermediate structure not only assists in learning the variations in shape of these objects, but

also allows for user control over pose during inference.

For our primary method and its variations, we consider a setting with only mask supervision.

This is a related problem to shape from silhouette, which traditionally involves rigid objects, known

camera parameters, and a voxelization strategy. Our method allows for the variation of object pose,

requires no camera parameters, and produces an analytic intermediate representation rather than

a discrete, voxel-based one. Recent work approaching the problem of 3D reconstruction of objects

with variable pose rely on voxel prediction [6], which can conflate three-dimensional spaces across

instances in the unposed camera setting, and a deep voxel-based representation [30] which provides

too much freedom to recover coherent 3D spaces (Fig. 4.2).

Our choice of a 3D anisotropic Gaussian mixture as the latent representation of the object’s

structure provides a coarse geometric description with the ability to capture the object’s range of

articulated poses. These are low dimensional to infer, have an analytically-differentiable projection

model under perspective cameras, are composable for parts, can represent position, scale, and rota-

tion to model part pose transforms, and are simple to self-supervise. Even then, directly inferring

the Gaussian parameters across instances is difficult. Instead, we employ a canonical 3D Gaussian

set plus per-instance and per-Gaussian transformation parameters that describe camera and object

pose for each instance. Through training via 2D silhouette reconstruction, our representation and

losses associate object parts with Gaussians, despite not having any part-level supervision.

For evaluation, we control input variation using synthetic (rendered) data that contains varying

camera pose, object pose, and illumination, and show that a low-dimensional per-instance structure
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can improve 3D coherence. Using the learned Gaussians within 2D RGB generation, we show

disentangling of pose, view-dependent texture, and shading variation caused by lighting differences.

This lets us insert objects at arbitrary viewing angles into backgrounds with matched appearance.

We also explore variations on our method which seek to further strengthen 3D coherence and better

unify the Gaussian representation and generated output. Through a graphical interface that allows

for direct manipulation of the individual Gaussians, we demonstrate our method’s capabilities in

providing expressive, intuitive control over object image generation.



Chapter 2

Related Works

Image and object generation and insertion. GANs have shown tremendous progress in

learning-based whole image generation [5, 48, 50], including disentangling latent features [32, 21, 13].

Beyond whole images, research has investigated how to learn to generate and add 2D objects to a

given background [44], including 2D object shape generation [19] also via bounding boxes [46],

completing bounding boxes with texture [7], learning to warp 2D foregrounds [24] and insert 2D

objects [31]. Instead, we represent object shape and pose by learning an explicit 3D representation

that allows controllable image generation.

Unsupervised keypoint and part detection. Gaussians are related to keypoints and parts.

Learning these is possible with supervision [25, 33, 29] and without. Here, Thewlis et al . [42, 41] use

equivariance under 2D image transformations like warping to predict object keypoints; however, this

requires the transformations to be known. To address this, Jakab et al . [8] learn keypoints in a self

supervised way by reconstructing an object’s appearance and geometry from different viewpoints.

To make these intuitive, Jakab et al . later use a skeleton prior (e.g ., face, eyes, nose) to guide

a discriminator [9]. This has been extended to video prediction with realistic motion [14]. Some

methods use Gaussians within their pipelines. Lorenz et al. [26] predict unconstrained 2D activation

maps per part for unsupervised part discovery, then estimate 2D Gaussian parameters from these

to mark keypoints. Instead, we directly learn a set of 3D Gaussians to describe the shape and pose

of an instance.

3D object representations. Learned representations exist for taking 3D input data like point

clouds [1], volumes [36], or meshes [45, 11, 3] and generating 3D output data. These include tech-

niques to fit sets of Gaussians to 3D shapes using 3D supervision [4], and by combining 3D supervision

with multi-view silhouette losses [47]. Some works use pre-defined detailed canonical 3D meshes for

2D images [52], e.g., to learn surface parameterizations [18]. Other works learn representations

from 2D input data via 3D representations, but require camera information to be given at train-

ing time [27]. For instance, DeepVoxels [38] projects RGB values on known camera rays to learn

an deep voxel space that reproduces 2D inputs when projected and decoded. Other works require
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object-specific pose information, such as human skeletal data [17]. Without camera poses, Lei et

al. build surface parametrizations for rigid 3D objects [20].

For image generation, few works take only 2D input and no camera or object pose information

for supervision—this is hard as there is no explicit constraint on the 3D space. Liao et al. use cube

and sphere mesh proxies to represent multiple simple scene objects [22]. Schwarz et al. generate

radiance fields for synthetic 3D objects [36]. HoloGAN uses deep voxels within an implicit rotation

space [30], and PlatonicGAN uses discrimination on random rotations to learn a generative voxel

space [6]. Different geometry and appearance proxies have different trade-offs, e.g., voxels can

capture shape detail but are a high dimensional space to predict; our 3D Gaussian proxy is coarse

but low dimensional and can capture transformable parts.



Chapter 3

Method
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Figure 3.1: Learning a K-part 3D Gaussian representation with only mask supervision m. Green:
For each instance, we predict 3D anisotropic Gaussians by combining a canonical representation
with scale, rotation, and translation transforms. Yellow: We project these down to 2D Gaussians
in an analytically-differentiable way, then sample these into K maps. g conditions network Gm to
generate a detailed mask m′ as a reconstruction of m. Blue: To learn a meaningful and smooth 3D
space, we self supervise reconstruction by forcing a random rotation of our estimated 3D Gaussians
to also produce a plausible mask m̂′ and for its 3D Gaussian prediction to be consistent after the
inverse rotation. Orange: We penalize reconstruction losses on masks and promote realism via
adversarial discrimination.

We wish to reconstruct parts-based models for objects as a set of Gaussian proxies. To accomplish

this, we will use supervision only via performing the task of mask reconstruction. We train a network

to predict a set of 3D anisotropic Gaussians as coarse proxies for the objects’ shape and pose, where

each Gaussian emerges to loosely represent one part of the object; the mean defines the position

and its covariance defines the rotation and scale of the part. Prediction is trained by projecting

Gaussians into a perspective camera and transforming them into a detailed mask via a GAN. In this
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process, we recover a canonical Gaussian representation for the object, from which specific pose and

shape transforms are estimated per image instance.

Input masks and anisotropic 3D Gaussians. We start with a dataset of 256×256 binary seg-

mentation masks m ∈M of an object under varying unknown camera parameters and object poses.

We also require a given number K of unnormalized anisotropic 3D Gaussians {Gk}Kk=1 (Fig. 3.1).

Each Gaussian Gk has mean vector µk ∈ R3 and covariance matrix Σk ∈ R3×3 with its density

declared as:

Gk(x) = exp
(
−(x− µk)>Σ−1k (x− µk)

)
. (3.1)

Camera. We declare a general perspective pinhole camera with intrinsic matrix K, rotation R,

and translation t such that camera matrix P is represented as K[R, t]. To project a 3D anisotropic

Gaussian into our camera’s image plane to produce a 2D anisotropic Gaussian, we use analytically-

differentiable projection function π [39]. This is valid for perspective cameras, unlike orthographic [6]

or para-perspective [47] projection models that are less applicable to real-world cameras. In our

experiments, K is fixed across instances and approximately matches that in the data.

Canonical Gaussians. Given a 256-dimensional constant [12] as input, we use a fully connected

network EGc to predict the canonical 3D Gaussians Gck each parameterized by a mean and covariance

(µc,Σc) (Fig. 3.1, green, top).

Per-instance Gaussian transforms. Given an input mask m, we extract a latent vector repre-

senting pose z ∈ R8 via a convolutional encoder network Em. Then, from z, we use a fully connected

network to predict two transformations: 1) A camera transformation TO that moves the camera

with respect to the canonical model; in our experiments, we mainly consider a yaw rotation Rφ. 2)

K Gaussian local transformations Tk consisting of scale, translation, and rotation (sk, tk,θk) with

each in R3 (Fig. 3.1, green, bottom).

Given the canonical parameters (µck,Σ
c
k), we obtain the per-instance Gaussians Gk with param-

eters (µk,Σk) via:

µk = Rφ(µck + tk)

Σk = (RφRθkUkskSk)(RφRθkUkskSk)>, (3.2)

where Rθk is the rotation matrix form of θk, and Sk and Uk are obtained via eigenvalue decom-

position of Σc
k: Σc

k = (UkSk)(UkSk)>. Sk is a diagonal matrix. The square of its (j, j)-th entry

represents the j-th eigenvalue of Σk. This allows us to control the scale and rotation of each indi-

vidual Gaussian via the matrices Uk and Sk.

Estimating Σ. Näıvely predicting the values in the Gaussian covariance matrices Σk as free pa-

rameters does not satisfy the positive definiteness requirements for a covariance matrix. Instead, we

leverage the eigendecomposition of Σ = VUV>, where U is the diagonal matrix of eigenvalues with

strictly positive values on the diagonal, and V is an orthogonal matrix formed by the eigenvectors

of Σ. We use a fully connected network to predict the diagonal values in U. To ensure that they

are positive, we use a sigmoid activation at the final layer, and also add a small ε = 0.01 for strict

positiveness. Similarly, we predict the columns of V using a fully connected network. In this case,
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we want V to be orthonormal. As such, we adopt the following process: First, we predict two vectors

v1 and v′2 and obtain v2 as the cross product of v1 and v′2. Then, the third vector v3 is obtained

as the cross product of v1 and v2. Finally, the i-th column of V is obtained by normalizing vi.

In addition, learning covariances with 32-bit float types caused issues; 64-bit double produced more

stable training.

Conditional mask synthesis. Even a large number of Gaussian proxies will not reconstruct fine

mask detail. As such, we use a conditional mask generator Gm to add back the detail using up-

sampling transposed convolutions (Fig. 3.1, yellow). Given the 3D Gaussians for an instance, we

project them to 2D Gaussians on the image plane of our camera: π(Gk) = (µπk ,Σ
π
k ). Then, using the

2D version of Eq. 3.1, we sample the density of each projected Gaussian on a raster grid to create K

Gaussian maps {gk}Kk=1. These are input to Gm to condition the synthesis of predicted mask m′,

which is the learned reconstruction of m. We enforce a stronger effect in Gm by using layer-wise

conditioning via Gaussian maps at 322, 642, 1282, and 2562 resolutions.

3.1 Losses

We encourage our network to reconstruct an object using multiple losses, with overall energy to

minimize given by:

L(EGc , Em, Gm, Dm) = λ1LRec + λ2Lg + λ3LĜ + λ4Lĝ + λ5LAdv + λ6LFM (3.3)

Reconstruction loss. We encourage synthesized mask m′ to reconstruct input instance mask m

with an L1 loss: LRec(m,m′) = ‖m−m′‖1.

Density loss. Even though they cannot represent fine detail in m, we still wish for all projected

Gaussians to 1) cover regions of the mask without overlap, and 2) cover as much of the mask as

possible. We encourage this via:

Lg(m, g) =
∥∥m− ΣKk=1gk

∥∥
1
. (3.4)

The sum over sampled 2D Gaussians is equivalent to a grayscale version of the colored parts visual-

ization in Figure 3.2. Here, both inputs are in the range [0, 1], and we take g at our mask resolution

of 256×256.

Self-supervised transform mask loss. We wish for the 3D space expressed through our re-

covered object Gaussians and camera transform parameters in TO to be consistent across varying

camera views even though we only have mask supervision. Thus, we randomly sample a 3D trans-

formation TR, again mainly as a yaw rotation, and apply it via Eq. 3.2 to produce rotated 3D

Gaussians Ĝ = (µ̂, Σ̂). As before, these are then projected via π to 2D parameters (µ̂
π
, Σ̂π), then

sampled into 2D maps ĝ, and finally via Gm to generate a mask m̂′ (Fig. 3.1, blue).

As m̂′ does not correspond to a known input instance, we cannot directly enforce LRec. Instead,

we encourages the projected novel view Gaussians ĝ to be consistent with the synthesized novel view

m̂′ via a second density loss: Lĝ(m̂′, ĝ) = ‖m̂′−
∑K
k=1 ĝk‖1. Without this loss, g can describe well

the input mask m, but the rotated ĝ may not describe well the generated mask m̂′.
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a) Ours b) No LRec c) No Lg d) No LĜ e) No Gc f) Free Tk

Input
mask m

Gaussians
G as g

Reconst.
mask m′

Rotate 240◦

Ĝ as ĝ

Rotate 240◦

reconst.
mask m̂′

IoU N 83.96 65.09 82.98 84.75 86.62 73.16
DSSIM H 6.22 14.20 6.83 6.16 5.32 10.94

Figure 3.2: Ablations for Giraffe. Note: Input masks vary per column as certain effects are only
visible at particular angles; Gaussian colors vary across columns. (a) Our full loss model. (b)
Without a reconstruction loss on m′, the Gaussians only approximately correspond to the input
mask. (c) Without a density loss on g, the Gaussians do not well represent the input mask, yet Gm

still produces the correct mask from these less ‘coherent’ Gaussians. (d) Not ‘closing the loop’ in the
self-supervised loss hurts self occlusion cases or when the 2D Gaussian layouts are not sufficient to
recover 3D information. (e) Not using a canonical representation fails to rotate Gaussians recovered
for thin front/back views. (f) Not reasonably bounding the per-instance transforms allows nonsense
canonicals.

Table: Over the test set, mean IoU×100 and DSSIM×100 of reconstructed masks vs. ground truth
masks at specific camera angles. Our qualitative results show these metrics do not tell the whole
story.
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Dataset Mask K = 1 K = 3 K = 6 K = 12

θ = 0◦ θ = 40◦ θ = 80◦ θ = 120◦ θ = 160◦

Figure 3.3: Left: Varying K produces levels of abstraction over the object’s shape and pose and so
over generation control. At low K, only the major features are represented such as legs and neck.
At higher K, details like individual legs (K = 12, top) and leg parts (calf, thigh) appear with the
detail required to model the pose variation, e.g., in Manuel (bottom), the right leg moves more in
the animation and gains a knee at K = 12. Right: Randomly sampling sparser datasets still recovers
the coarse 3D structure of the input object. Rows 0, 1, 2, use 1

16 , 1
32 , 1

64 , of images in the training
set; approximately 140, 70, and 35 images respectively. Colorings are different across rows.

Self-supervised transform inverse 3D Gaussian loss. We can also pass m′ back through our

3D Gaussian prediction stages (Fig. 3.1, green) to recover an estimate of the proxies under random

transform TR. Then, we can invert this transform and penalize a loss against our initial estimate of

the 3D Gaussians. With slight notation abuse: LĜ(G, Ĝ′) = ‖G − T−1R (η(m̂′))‖1, where η predicts

3D Gaussians for a mask.

Adversarial loss. Training using only reconstruction losses tends to produce blurry images, so

we adopt an adversarial training strategy. Gm attempts to generate realistic masks to fool a dis-

criminator Dm, while Dm attempts to classify generated masks separately from real training masks.

Within this, we also discriminate against our self-supervised transform masks m̂′: these should also

fool Dm. We use a hinge-GAN loss LAdv for better training stability [23, 43, 28]:

LAdv(Gm, Dm) = Em̂′ [min(0,−Gm(m̂′)− 1)]+ (3.5)

2Em[min(0, Gm(m)− 1)] + Em′ [min(0,−Dm(m′)− 1)].

To reconstruct the 3D shape within a consistent world space, along with m and m′, we find that

it is sufficient to give the discriminator a mask m̂′ generated from only one random rotation per

instance (as similarly found by Henzler et al. [6]), rather than multiple random rotations.

Feature match loss. We improve sharpness by enforcing that real and generated images elicit

similar deep feature responses in each layer l of the discriminator D
(l)
M [35, 49]:

LFM(Dm) = Em,m′,m̂′

[
ΣLl=1

∥∥D(l)
m (m̂′)− D̄(l)

m (m)
∥∥2
2

+
∥∥D(l)

m (m′)− D̄(l)
m (m)

∥∥2
2

]
, (3.6)

where D̄
(l)
m is the moving average of feature activations in layer l, and L is the number of layers.

Constraining pose and shape. We bound µk to [−1, 1] and the diagonal values of Σc
k to

[0.01, 0.51]. We prevent any Gaussian from being too small/too large; this encourages learning

to use all Gaussians. To remove implausible canonical Gc, we constrain Tk = (sk, tk,θk) to pro-

duce per-instance G that remain somewhat close to Gc while still giving freedom to accommodate
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shape and pose changes (Figure 3.2). Discriminating masks generated from Gc is also possible, with

self-supervision via random transforms, and may help relax per-instance transform constraints.

3.2 Mask texturing

3D Gaussian proxies could apply to various scenarios, e.g., as a conditioning rig to an image gener-

ation task [40]. We demonstrate object posing and inserting into an existing image (Fig. 4.1). For

this, we condition a separate second GAN on the mask and Gaussians, and on a background image

to let us approximately match the scene lighting.

Given a database of RGB images i ∈ I and corresponding binary masks m ∈ M, we wish

to learn a generative model of texture inside the mask conditioned on the background. First, we

compute the background image ib = i� (1−m) and the foreground image if = i�m, where � is

the element-wise product. Next, we use an appearance encoder Ei to extract a latent representation

zi ∈ R8 for the foreground texture: zi = Ei(if ); this lets us sample foregrounds at test time. We

tile zi and concatenate it with the background image ib, and pass it into a U-Net-like network

Gi to generate texture. In Gi’s encoding phase, we layer-wise condition via zi. In Gi’s decoding

phase, we concatenate the Gaussian maps g obtained from m and apply layer-wise conditioning

as per Gm. The final image i′ is created from the output of Gi with the original background:

i′ = Gi(ib, zi, g)�m+ ib.

Losses. We train our network by minimizing an energy:

Li(Gi, Ei, Di,m) = β1Li
Rec + β2Li

p + β3Li
KL + β4Li

Adv + β5Li
FM + β6Li

zRec. (3.7)

Reconstruction loss. We encourage the synthesized image i′ to be an identity of the input image

i. We use the L1 loss: Li
Rec(i, i

′) = ‖i− i′‖1.

Perceptual loss. We encourage fine-grain detail by using a VGG16 perceptual loss [10] from the

second convolutional block (φ2 :=’conv22’): Li
p(i, i

′) = ‖φ2(i)− φ2(i′)‖1
KL loss. To structure zi for test-time sampling, we predict mean and variance vectors for zi, sam-

ple one using the re-parametrization trick [15], then enforce that it comes from a Normal distribution

using the KL divergence loss.

Latent reconstruction loss. The KL loss does not ensure that Gi decodes zi into diverse images.

To prevent zi from being ignored, we add a novel encoder E′i to reconstruct zi from i′, and enforce

a reconstruction loss via: Li
zRec = ‖zi − zi′‖1. When back-propagating gradients from Li

zRec, we

update all generation parameters apart from those in Ei. This avoids Ei and Gi hiding the latent

code information without producing diverse images [51].

Adversarial losses. Finally, we also train Di,m to discriminate (i,m) from (i′,m) such that the

RGB image and mask are correlated, and we use Di,m to penalize a feature matching loss between

(i,m) and (i′,m).
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3.3 Discussion

Importance of losses and components (Figure 3.2). Removing the reconstruction losses on

m′ allows a mask to only approximately correspond to the Gaussians as long as it satisfies the

discriminator and Lg. Removing the density loss on g causes less ‘coherent’ Gaussians: they are not

forced to represent the generated mask, yet Gm can still produces a high detail mask from these

Gaussians. Finally, the transform inverse loss ‘closes the loop’ for the self supervision and helps

maintain 3D space consistency and mask quality, especially under cases when penalizing the 2D

maps ĝ′ alone cannot accurately predict 3D, such as when objects have strong rotation-dependent

self occlusion.

Canonical Gc encourages a meaningful 3D space as each instance should be consistent with other

instances. Directly estimating per-instance Gaussians fails for thin front/back views as the self-

supervised rotation must only be consistent with Lg and discrimination LAdv,FM (Fig. 3.2e), instead

learning a non-linear space that only rotates between front/back views. Further, estimating µ,Σ

values without the const+FC layers [12] led to worse performance.

Quantitatively, we compute IoU and DSSIM between ground truth and generated masks across

a range of angles (Fig. 3.2, bottom). While removing LĜ or Gc improve the metrics slightly, qualita-

tively our final model is more coherent: parts can flicker in and out without LĜ , and the 3D space

is less coherent without Gc.
Varying K and dataset size. We provide K at training time, which is simple to estimate by

hand for many objects, e.g., one each for the body and head, one for each limb. As K varies, our

density losses over random rotations encourage detail where it is required (Fig. 3.3, left). Too few K

diminish pose or shape; too many K leads to redundant Gaussians. As we set a minimum size, these

appear as ‘little dots’ (Fig. 3.3, right) and can be ignored without affecting downstream tasks. For

more control, a user could pre-define the canonical Gc from which a set of per-instance deformations

is learned. We also shows how the Gaussians are still usefully recovered as input data decreases 64×
in number (Fig. 3.3, right), though with less mask detail.



Chapter 4

Experiments

4.1 Learning Gaussian proxies for shape and pose from

masks

Datasets. We render RGB images and masks using path tracing with ten real-world 360◦ HDR

lighting maps of outdoor natural environments for realistic lighting and self-shadowing. For each

image, we randomly rotate the camera around the up vector at a fixed distance from the object, to

match settings in the literature [30]. We use four datasets without pose variation and of increasing

shape complexity (Maple, Airplane, Carla, and Pegasus), and four animated datasets with pose

variation (Bee, Giraffe, Manuel, Old Robot). These include hovering and flapping wings, walking,

neck bending, and dancing (each with 110-400 frames; see video). We randomly sample animation

frames: poses are not matched across views or in any temporal or rotation order, and we discard

object and camera poses during training. We use 1,000/2,000 images for static/animated datasets,

with a random 90/10% training/test split.

Training and hyperparameters. We train mask and texture generators for 200 epochs on 2

RTX 2080 TI GPUs. We use the ADAM optimizer with a learning rate of 1e− 4, and β = 0.5. For

static datasets, we predict the yaw rotation Rφ per instance to affect the canonical Gaussians. For

the mask hyper-parameters, we set λ1 = 100, λ2 = 100, λ3 = 100, λ4 = 100, λ5 = 1, λ6 = 10. We

chose λ1, λ2, λ3. λ4 over the interval [0, 10, 50, 100]. For Giraffe with slower animation, λ3 = 10 and

λ4 = 50 led to a slightly better Gaussians. For texture hyper-parameters, we fix β1 = 100 β2 = 0.5

β3 = 0.01 β4 = 1 β5 = 10 β6 = 0.1.

Baselines. To show the value of model components, we compare to HoloGAN [30], Platonic-

GAN [6], and Liao et al. [22], and provide methods with just masks and just RGB foregrounds.

Each uses 3D proxies to generate images. HoloGAN and PlatonicGAN use voxels: the HoloGAN

bottleneck has 64-dim. deep appearance vectors in 163 voxels that are projected to 2D and decoded,

while PlatonicGAN directly predicts a 643 RGBA voxel space per instance to handle variation. As

12
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Figure 4.1: Explicitly recovering camera, shape, and pose allows interactive 3D Gaussian manipu-
lation to generate novel instances.

a constraint, HoloGAN employs a weaker (but flexible) latent reconstruction loss vs. our projec-

tion and pixel-wise reconstruction loss. PlatonicGAN also uses a pixel-wise reconstruction loss and,

via projection, this can be related to unposed voxel carving when given masks as inputs. Liao et

al. estimate multiple 3D primitives (cubes or spheres) as proxies for objects with simple geometry.

Results—mask only. This setting compares the ability to reconstruct a 3D camera and object

space. For the static datasets (Fig. 4.2), HoloGAN’s deep voxels reconstruct the input masks, but its

latent rotation space can be incoherent with masks at incorrect angles. PlatonicGAN’s voxel spaces

are naturally 3D and with shape detail, but suffer some incorrect rotations and include spurious or

missing geometry. Our approach infers plausible coarse 3D structure that controls high-quality 2D

mask generation.

For the animated datasets, methods must accommodate instance pose variation, and all baselines

perform worse. HoloGAN has both part errors (incorrect leg placement) and a low-coherence 3D

space (rotation is not smooth). PlatonicGAN’s shapes are incorrectly reconstructed, with missing or

misplaced legs and spurious content: even though the method estimates per-instance shape, without

a canonical model these are incorrectly corresponded in the 3D estimation task, combining parts of

objects from across poses. Our method by construction has a canonical 3D Gc and transformable

parts, producing a coherent 3D camera and coarse posable object space.
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On masks IoU×100 N DSSIM×100 H

Ours 81.97 9.35
PlatonicGAN [6] 77.29 21.29

On RGB KID×100 H FID×100 H

Ours (via masks) 9.16 ± 0.60 117.81
PlatonicGAN [6] 49.7 ± 0.89 375.26
HoloGAN [30] 32.72 ± 0.87 298.35
Liao et al. [22] 34.2 ± 0.84 292.89

Table 4.1: Metrics are computed per dataset and then mean averaged.

Results—foreground only. Here, the reconstruction task is more complex, with additional tex-

ture and lighting variation. Even for static scenes, HoloGAN struggles to generate high-quality

appearance, and the resulting 3D spaces for dynamic scenes mix all input variations or fail to cor-

rectly rotate the image (Fig. 4.2, Maple). PlatonicGAN successfully generates detail, but again

these have object geometry errors and the predicted voxel coloring only approximates the intended

output (Fig. 4.2, all). Liao et al. generated instances are of broadly good quality, though the pose

is entangled with the camera rotation and texture is low resolution and less consistent. As might be

expected, our approach demonstrates that using additional mask information to separate shape and

appearance allows conditioning higher-fidelity 2D texture generation with disentangled 3D camera,

pose, and lighting consistency.

Quantitative results. PlatonicGAN and our method infer explicit 3D spaces. As such, we com-

pute IoU and DSSIM on masks at a known camera angle and compare to test-set ground truth

masks: if a method forms a coherent 3D camera and object space, then masks will match (Tab. 4.1).

For methods that infer implicit 3D spaces (without meaningful angles), we compute KID and FID

on generated RGB foregrounds (KID/FID are pre-trained for RGB via ImageNet).

Real-world data. We show the benefits of a mid-level 3D structure via the managed control of

variation available in synthetic data. Many other variations exist in real-world datasets. To show

this gap, we demonstrate our method on highly-varied MS COCO data (Fig. 4.3). Here, our 3D space

and Gaussians are plausible, even though there is significant quality variation in the hand-drawn

input masks especially for front/back views; better masks would improve this [16].
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Figure 4.2: Rows in each block: Reconstructed Gaussians, masks, and RGB images, across three output angles and with
any texture-specific latent variables fixed, with comparisons to HoloGAN [30] and PlatonicGAN [6] run on just masks
and just RGB foregrounds. Note that HoloGAN only infers a latent ‘angle’, making mapping to an explicit 3D space
not possible. Top block of five rows: Datasets of objects of fixed pose showing increasing shape complexity: Maple,
Airplane, Carla, Pegasus. Bottom block of five rows: Datasets of animated objects with varying pose showing increasing
shape complexity: Bee, Giraffe, Manuel, Old Robot.
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θ = 0◦ θ = 40◦ θ = 80◦ θ = 120◦ θ = 160◦ θ = 200◦

Figure 4.3: Our method can produce plausible 3D Gaussians from low-quality and highly-varied
masks from MS COCO.

4.2 Learning Gaussian proxies for shape and pose from

RGBA foreground

Inferring 3D Gaussians from mask images presents several issues. One, the pose of a silhouette can

often appear ambiguous, as a 180◦ rotation of an object can produce a near-identical silhouette in

some cases. Illusions such as The Spinning Dancer demonstrate the difficulty that even humans

have perceiving a consistent rotation direction from the silhouette of a spinning object. Our model

can often be confused by pose ambiguity of the input mask and generate correspondingly ambiguous

results (Fig. 4.5). Furthermore, we discovered that while the texture generator converges faster

when conditioned by the inferred Gaussian maps, these maps have little to no effect on the generated

texture once finished training.

4.2.1 Method

Motivated both by the limitations of mask-only input and by the disconnect discovered between

inferred Gaussians and texture generation, we designed an alternative method for generating textured

object images by conditioning on RGBA foreground images (Fig. 4.4). The architecture remains

largely the same as in section 3, except for the following changes:

Input and output. The network takes as input RGBA images i of object foregrounds. In the

red, green, and blue channels, pixels belonging to the background are set to zero, and the alpha

channel is set to the object mask. The network’s generator Gi accordingly produces RGBA images

i′ of the same composition as the input.

https://en.wikipedia.org/wiki/Spinning_dancer
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Figure 4.4: A modified method from section 3 using RGBA foreground i in place ofm. The encoding
network Ei produces two separate latent vectors, one to condition the fully-connected network
predicting per Gaussian transforms, and one to condition the foreground generator Gi. Here, the
network jointly learns shape and texture, where generation of the alpha channel is an equivalent
task to predicting m. A perceptual loss Li

p similar to that found in section 3.2 is introduced, as well
as a reconstruction loss Lz between zG and ẑG.

Foreground encoder. The encoding network Ei produces two separate latent vectors, zT and

zG, through the use of two divergent fully-connected layers appended to the end of the convolutional

network. The former latent vector is used to infer the Gaussian transformation parameters Tk and

To, while the latter is tiled and concatenated with the projected Gaussian maps g and fed into Gi.

Additional losses. In the same manner as the generator described in section 3.2, we encourage

detailed texture generation with a perceptual loss Li
p using the RGB channels of i and i′. Addition-

ally, to restrict the network from encoding object shape into zG, and thus bypassing the Gaussian

prediction network, we apply a zG reconstruction loss LGzRec(zG, ẑG) = ‖zG − ẑG‖1. All together,

this gives us the loss combination:

L(EGc , Ei, Gi, Di) = λ1LRec + λ2Lg + λ3LĜ + λ4Lĝ + λ5LAdv + λ6LFM + λ7Li
p + λ8LGzRec

4.2.2 Results.

Training on the giraffe dataset, we see that the network is able to reproduce the input image well,

but often struggles to generate convincing results when the camera is rotated (Fig. 4.6). The

generated shape can become distorted, with the head of the giraffe being a particularly challenging

component to render. The pose of the inferred Gaussians sometimes does not correspond with the

generated image’s pose. Texture generation is also inconsistent, with lighting changing noticeably

during rotation (see third example in Fig. 4.6).

One of the Gaussians in the canonical representation learned by the network is placed away from

the giraffe’s body and orbits as a small sphere. When this Gaussian aligns with the neck under

certain rotations, it can influence generation. Otherwise, it is neglected by the network. Though
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Figure 4.5: It is sometimes difficult to disambiguate a pose as back-to-front or front-to-back from
only a silhouette. In this example, the model takes as input a back-to-front mask (left), produces
Gaussians describing a front-to-back giraffe (center), and textures the generated mask as an inde-
terminate mix between the two poses (right).

it is unsatisfying that the network chooses to discard one of the available Gaussians, it should be

noted that such neglected Gaussians can be pruned from the network after training.

4.2.3 Discussion

This experiment demonstrates the strengths of inferring mask and texture separately. It is evidently

easier for a single network to learn one of these problems than to learn them together. In addition

to this, the advantages we hoped to demonstrate with this method failed to materialize. There is no

indication that the cues for pose provided by input texture rather than silhouette alone were used

by the network. The same instances of front-to-back and back-to-front ambiguity we observed in

our original method can be found here as well.

It is possible that the network is simply underpowered for the task at hand. Creating separate

encoder networks for zG and zT may lead to better results, as zG is intended to encode texture while

zT must encode something related to the shape of the object.

4.3 Ray marching Gaussian densities

In our primary method, the 3D Gaussian set is analytically projected into 2D Gaussian parameters,

then rendered into individual Gaussian maps that are fed into the mask generator. This method

is unable to produce occlusion, an important visual cue for depth ordering that could assist the

network in cases of pose ambiguity.

One way we might create occlusion is through a process similar to the painter’s algorithm: We

sort the Gaussians by the distance between their µ vector and the camera center, and render the 2D

Gaussian projections from nearest to farthest, multiplying by one minus the sum of the previously

rendered Gaussians as we go. This procedure can be thought of as rendering 2D Gaussian planes

parallel to the image plane. However, while sorting is implemented in the TensorFlow framework
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Input θ = 0◦ θ = 36◦ θ = 72◦ θ = 108◦ θ = 144◦ θ = 180◦

Figure 4.6: Generating RGBA foreground images from RGBA input. Though the network is able
to recreate the input image with reasonable accuracy, rotating the Gaussians produces inferior
generations.



20

and allows for gradients to pass through, it does not produce informative gradients itself that could

guide learning of Gaussian visibility. Even when using “soft” sorting functions such as [2] that are

fully differentiable, the issue remains that this planar approximation for Gaussian visibility does not

model object-part visibility well; rotating the camera can cause Gaussians to dramatically “flicker”

in and out of view as sort order changes, while the true object parts they represent are at least

partially visible throughout the rotation.

Rhodin et al . [34] propose an analytically differentiable model with transmittance for rendering

isotropic 3D Gaussians, but the isotropic constraint is crucial to producing a closed-form solution

for computing transmittance at any point along a ray cast through the Gaussian densities.

4.3.1 Method

To implement a model incorporating transmittance for the rendering of anisotropic 3D Gaussians,

we utilize volumetric ray marching. Formally, we define the density at position x to be the sum of

Gaussians in G:

Density(x) =
∑
Gk∈G

Gk(x) (4.1)

where Gk(x) remains the same as defined in eq. 3.1. The transmittance from a camera center o, in

the direction n, and at a distance s is then defined in accordance to the Beer-Lambert law of light

absorption:

T (o,n, s) = exp

(
−
∫ s

0

Density(o + tn) dt

)
(4.2)

The total radiance LGk of a Gaussian Gk along a ray, with ambient radiance Le, is defined as

LGk(o,n) =

∫ ∞
0

T (o,n, s) · Gk(o + sn) · Le ds (4.3)

To approximate T , we take n steps of size α along the ray parametrized by o and n:

T̂ (o,n, α, n) = exp

− n∑
j=0

Density(o + (j · α)n) · α

 (4.4)

=

n∏
j=0

exp (−Density(o + (j · α)n) · α) (4.5)

Approximating LGk follows the same logic:

L̂Gk(o,n, α, n) =

n∑
i=0

T̂ (o,n, α, i) · Gk(o + (i · α)n) · Le · α (4.6)

=

n∑
i=0

 i∏
j=0

(
exp (−Density(o + (j · α)n) · α)

)
· Gk(o + (i · α)n) · Le · α

 (4.7)

An efficient implementation of this summation stores transmittance in a variable for accumulation

by successive multiplications at each iteration.
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Attempting to render the 3D Gaussians in this manner at the full resolution of 256× 256 proved

too computationally intensive, with multiple hours spent per epoch. To alleviate the computational

burden of ray marching, we rendered each Gaussian map at a resolution of 32 × 32 and obtained

maps of sizes 64 × 64, 128 × 128, and 256 × 256 through bicubic interpolation. Because of the

generally smooth appearance of Gaussian densities, interpolating from a low-resolution is reasonable

(Fig. 4.7). For the values of α, n, and Le, we used 0.15, 20, and 1.0, respectively.

256× 256 128× 128 64× 64 32× 32

Figure 4.7: Ray marching Gaussian densities at successively lower resolutions and using bicubic
interpolation to rescale them to the size of 256× 256 (sizes at tops of images indicate the resolution
in which they were rendered using ray marching). We see that the smooth appearance of the
Gaussians makes them suitable for low-dimensional rendering and rescaling. Note: The parameters
for these Gaussians were not learned but hard-coded for purposes of demonstration.

4.3.2 Results

In general, we found that the network struggled to learn a useful representation for mask generation

(Fig. 4.8). Gaussians were grouped to the center of the camera’s field of view and lacked an

informative shape to guide the generator. Besides a clear distinction between the neck and body of

the giraffe, object parts were not well-differentiated by the Gaussian prediction unit. The generator

was required to extrapolate large features of the output shape from these ambiguous Gaussian maps.

The mask does not fail to rotate with the camera, but inconsistent shape prevents any interpretation

of the output as a coherent 3D space.

4.3.3 Discussion

Ray marching Gaussian densities is a much more complex method of producing 2D maps than the

projection of 3D to 2D Gaussian parameters. This additional complexity may make the learning

of the 3D representation considerably harder. Testing different parameters and new losses may

make this method more successful. However, even after greatly reducing the resolution in which the

3D Gaussians are ray marched, training takes roughly three times as long as our original method.

Deriving a closed-form solution to the transmittance of anisotropic Gaussian densities similar to [34]

would greatly improve the tractability of this method.
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Input θ = 0◦ θ = 36◦ θ = 72◦ θ = 108◦ θ = 144◦ θ = 180◦

Figure 4.8: Mask generation conditioned upon ray marched Gaussian densities for four different
input masks. Images of the Gaussian sets in this figure have not been inverted so as to remain
consistent with the additive mixing of colored light.



Chapter 5

Graphical User Interface

Figure 5.1: A Flask web app interface for interaction with the model.

A key advantage of our method is its ability to produce a coarse 3D representation which can

be easily manipulated to express the shape and pose of the generated object. To fully demonstrate

this feature of our network, we present a graphical user interface operated through the user’s web

browser that allows for intuitive interaction with the Gaussian parameters and generative networks

(Fig. 5.1).

5.1 Controls

The left canvas of the interface has two modes. The first allows the user to draw and translate a

bounding box designating the region where the object is generated. The second mode allows the

23
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user to translate, rotate, and scale the individual Gaussians, with each of these sub-modes toggled

by specific key presses. Rotation of the Gaussians is achieved via the Arcball input technique

[37]. Rotation of the camera is controlled by a slider below the canvas. Background images can be

uploaded by the user, and the different trained models available can be selected through a drop-down

menu.

The right canvas of the interface displays the composited output of the network. The user can

toggle whether a semi-transparent overlay of the generated mask is visible. This overlay translates

and scales with the bounding box, guiding for the target position of texture generation.

An array of buttons found on the left side of the interface define various actions relating to the

models. The “Sample landmarks” button selects an input mask from a directory at random, and

infers a 3D Gaussian set corresponding to that mask. The “Generate mask” button generates a mask

for the given Gaussian set. The “Sample z” button randomly samples a new zi vector conditioning

the texture generator. The “Generate texture” button generates texture for the current mask and

background defined by the bounding box. The “Generate mask and texture” button generates the

mask image and texture image at once. The “Generate all” button samples the landmarks, generates

the mask, and generates the texture image (zi remains constant unless “Sample z” is pressed or a

new model is selected).

Flask server

TensorFlow 
model

HTML/JS Interface

Background image

2D Gaussian parameters

Bounding box

Generated mask

Generated texture

3D Gaussian parameters

Figure 5.2: The structure of the Flask web app interface. Projection and rendering of the 3D
Gaussians are handled in JavaScript on the client side while the TensorFlow model runs on the
Flask server.

5.2 Structure

Computation in our application is divided across its two parts: the front end HTML/JavaScript

interface and the back end Flask server (Fig. 5.2). On the client side, a WebGL shader program

takes 3D Gaussian parameters passed from the Flask server and implements the perspective camera

projection function π. The resulting projected 2D Gaussian parameters are written to a texture, and

are extracted from that texture outside of the shader program and stored as JavaScript variables.

https://flask.palletsprojects.com/en/1.1.x/
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These parameters are then available both to be sent back to the server for use in the TensorFlow

model, and as input for a separate WebGL shader program for rendering the Gaussians in the

webpage. Implementing both the projection program and 2D Gaussian renderer as WebGL shaders

enables smooth, real-time manipulation of the Gaussians.



Chapter 6

Conclusion

The method presented in this paper demonstrates how a coarse 3D representation can be learned

from unposed 2D images with only mask supervision through the task of object image generation.

By simplifying the representation our model learns to a set of 3D Gaussians, we differ from previous

work that seeks instead to explicitly model 3D features from natural images. Our low-dimensional

Gaussian parameterization not only learns more consistent 3D spaces, but allows for immediate

interaction and manipulation by the user during inference.

While successful in these respects, our method also lacks certain desired features. The model is

easily confused by ambiguously posed silhouettes, leading to conflicts between the inferred Gaus-

sians and the generated image. Attempting to strengthen the connection between the 3D Gaussian

representation and generated output, we experimented both with the joint learning of shape and

texture, as well as utilizing a transmittance-enabled rendering function that can produce occlusion.

Both of these attempts did not achieve the desired effect and call for further experiments.

A possible future direction of this work is the association of more information with each of the

individual Gaussians. As the method stands now, both the mask and texture generators receive

the Gaussians simply as projected 2D maps. For both generators, associating depth with these

Gaussian maps would assist in interpreting the pose of the Gaussian representation and generating

accurate output. Furthermore, the texture generator receives only a single vector zi for describing

the texture of the entire object. Associating texture vectors to each Gaussian individually would

enable modularity and greater flexibility in texture synthesis.
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