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Abstract

This thesis examines measures of sample complexity as a means to evaluate the
effectiveness and reliability of machine learning algorithms. We give an overview
of VC-dimension, Rademacher complexity, and variations of those measures. We
introduce the Cartesian Empirical Maximum Discrepancy (CEMD) framework,
which applies Rademacher-like bounds to learning functions over combinatorial
data. We use this method to evaluate algorithms for removing noise from au-
dio files. We also introduce a progressive sampling algorithm that incorporates
Rademacher complexity to the task of function selection, and we test that method
on the problem of selecting between audio compression formats.
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1 Introduction and Motivation

Machine learning (ML) is one of the fastest growing fields both in computer science
research and in the technology industry. Machine learning algorithms are rapidly im-
proving in terms of accuracy, runtime, and generality, and those algorithms are applied
to a broader range of applications. In particular, advances in deep learning have dra-
matically improved the accuracy and applicability of machine learning methods. Many
of these methods achieve empirically impressive results, but they lack guarantees about
the quality of those results. As ML is applied to domains with higher stakes — such as
piloting self-driving cars, diagnosing medical conditions, and predicting the likelihood
of an accident or illness for insurance — the need for statistical confidence in these an
algorithm’s predictions intensifies. In this thesis, we explore and expand upon theo-
retical bounds for how well ML algorithms perform on unknown data with the goal of
better understanding the successes and limitations of ML algorithms.

Rigorous analysis of machine learning algorithms provides helpful probabilistic bounds
that guarantee how likely an algorithm’s success will generalize to a new set of samples.
However, those bounds often require strong assumptions about the training and testing
data. We examine a core assumption used in most machine learning theory: the require-
ment that training and testing samples are identically and independently distributed
(i.i.d.). In particular, we extend a framework that analyzes the complexity of machine
learning hypotheses for i.i.d. to samples to also be able to analyze combinatorial data.

A combinatorial sample (which is more rigorously defined later) is a data point that
that consists of tuples of certain components. That is, a combinatorial data point
can be defined solely by its components, and those components can be mixed and
matched to create new data points. Rather than the data points being chosen i.i.d.,
the components are sampled i.i.d., and they are matched together in tuples to form
combinatorial samples. For example, in a hypothetical app that predicts whether two
individuals are romantically compatible, an algorithm would assign a compatibility
score to each pair of people. The pair would be a combinatorial sample with each
person as one of its two components. It is combinatorial because one of the people
could be swapped out with another, and the new pair would still be a valid data point
for compatibility.

Under traditional methods of analysis that bound the how well a compatibility algo-
rithm generalizes to new data, each sample (or potential match) must be sampled i.i.d.
at random. This means that each individual is unlikely to be drawn in more than one
match. The hypothetical app creators would need to choose each pair independently
from previous pairs, which means that the people they choose are unlikely to be con-
sidered for more than one pairing. In practical applications, this limits the effectiveness
of using generalization bounds: often availability of data is the limiting factor, and
samples must be created by recombining components of other data points. Our app
creators can’t obtain enough participants in their study to only consider each person
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with only one other person, and they need to evaluate multiple pairings for each indi-
vidual in order to have enough pairings without requiring too many participants. In
this case, applying theory to real-world problems would be easier if we could relax the
requirement that the combined samples are drawn i.i.d. to simply require that each
component is drawn i.i.d. Then, we could apply bounds to algorithms which combine
data in these ways, and provide better assurances about the quality of these results.

In this thesis, we discuss how data-dependent uniform convergence bounds can be
expanded to the combinatorial domain and apply those concepts to algorithm selection
problems in the audio domain. We introduce necessary background material in learning
theory in Section 2. In Section 3 we introduce the Cartesian domain for learning
problems and expand Rademacher-like bounds to that domain. We explore the audio
denoising problem in Section 4 and discuss an architecture for applying our theoretical
work to choosing an audio denoiser. We apply more standard Rademacher complexity
bounds to the task of codec selection in Section 5 and give a sampling-based approach
for determining the best function for a given encoding task. Finally, we examine open
questions and inspiration for future work in Section 6.

2 Preliminaries

In order to discuss bounds on generalization for certain non-i.i.d. random variables,
we first introduce several key measurements of learning complexity. In Section 2.1 we
introduce Probably Approximately Correct (PAC) learning, the theoretical foundation
of machine learning that defines what makes a concept “learnable.” In Sections 2.2 and
2.3, we introduce the VC-Dimension and Rademacher Complexity, which are prominent
measurements of learning complexity. Then, we discuss the Maximum Discrepancy in
Section 2.4, a Rademacher-like bound that forms the basis of our framework. In Section
2.5, we give an overview of the Rademacher Chaos Complexity, which is a preexisting
adaptation of Rademacher-like bounds to certain kinds of combinatorial data.

2.1 PAC-Learning

In machine learning, theoretical results underlie many practical advances in the field.
Many past notable advances in the field couple impressive empirical performance with
rigorous mathematical bounds on how well those algorithms perform. However, re-
cent advances in deep learning have produced astounding results with little theoretical
backing, so it is especially important now to continue advancing the theoretical side of
machine learning to match the application-oriented side. In order to approach the task
of bounding generalization of machine learning algorithms, we need a unified framework
for considering the success of an algorithm. The most meaningful bounds for learning
algorithms focus on uniform convergence, where all points of a function are guaranteed
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Figure 1: Trade-offs with the expressiveness of hypothesis classes in regression, from
Johnson [2013].

to converge to some mean with at least a certain rate of convergence. These motivate
the PAC-learning framework, which bounds the probability and severity of failure to
converge to a correct hypothesis.

Valiant [1984] establishes a working definition of learnability by machines in his pivotal
paper, “Theory of the Learnable.” He uses the idea of a hypothesis class H to represent
all possible hypotheses or decision-making processes that can be determined by the
algorithm. For example, H for the perceptron algorithm is the set of linear separators
passing through the origin. For linear regression algorithms with a set of basis functions,
H contains all possible linear combinations of the basis function.

Definition 2.1. A hypothesis class H is PAC-learnable if there exists an algorithm
A that for any distribution D of samples, given ε, δ > 0 and access to poly(1

ε
, 1
δ
) i.i.d.

random examples from D with labels, with probability at least 1− δ returns a hypothesis
h ∈ H with error (or probability of mis-classification) at most ε.

In other words, given sufficiently many examples (depending on the desired ε and δ),
there is no greater than δ probability that the samples were atypical enough to mislead
the algorithm into producing a hypothesis with error greater than ε. The δ captures
the “probably,” and the ε captures the “approximately.”

PAC-learning is the foundation upon which the rest of theoretical machine learning
was built. PAC-learning provides a language for formal bounds. However, the PAC-
learning framework is restrictive because it requires that any distribution of samples
must be learnable. In this thesis, we examine data-dependent bounds that relax this
requirement and allows us to formally assess learning algorithms in other contexts.
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2.2 VC-Dimension

One of the most important problems that theoretical ML evaluates is how likely a
model is to overfit to its data. Overfitting occurs when a ML algorithm creates a model
that performs well on the given training data but fails to generalize to new testing
samples. More expressive or complex ML models can fit more complicated trends in
the data; however, they are more prone to overfitting. This means that complicated
models require larger amounts of data to avoid overfitting. For example, support vector
machines with radial basis kernels can perfectly fit any dataset (when the kernels are
sufficiently narrow), but they often learn arbitrary patterns that do not generalize to
new data. On the other hand, linear separators rarely perform much worse on testing
data than training data, but they can only fit the most simple patterns in a dataset. By
measuring the expressiveness of a ML model, we can predict the tendency of a model
to overfit.

Figure 1 illustrates the trade-offs of using hypothesis classes of different complexities.
The left-most panel uses an inexpressive hypothesis class that fails to learn the most
interesting trends of the data. The center panel is just right: it learns the trend of the
data without overfitting to the noise. The right-most panel uses too expressive of a
hypothesis class for the data because it overfits to the data, and learns trends that do
not generalize well to more data points.

Measurements like VC-Dimension, proposed by (and named after) Chervonenkis and
Vapnik [1971], are used to measure the complexity of a hypothesis class. In general,
a more complex hypothesis class learns hypotheses that can be more tailored to the
data. This makes complex or expressive hypothesis classes more prone to overfitting.
Measurements of learning complexity can be used to derive generalization bounds, which
bound the difference between training and testing errors.

The VC-Dimension is based on combinatorial properties of a hypothesis class in the
classification domain. It measures the expressiveness of the hypothesis class. To explain
VC-Dimension, we first define several terms.

Definition 2.2. A hypothesis class H, with h : X → {−1,+1} for h ∈ H, shatters a
set of n points S ∈ X n if ∀S ′ ⊆ S, ∃h ∈ H such that:

h(s) =

{
+1 s ∈ S ′

−1 s ∈ S \ S ′

That is, a hypothesis class H shatters a set of points if any labeling of those points has
a hypothesis in H that correctly labels each point. We incorporate this definition into
our definition of VC-Dimension.

Definition 2.3. The VC-Dimension of a hypothesis class H, VC(H) is the size of
the largest set that can be shattered by H. That is:

VC(H) = max
d
{d ∈ N : ∃S ∈ X d s.t. H shatters S}
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Figure 2: Linear separators in R2 shattering three points, from Burges [1998]

For example, Figure 2 illustrates why the VC dimension of 2-dimensional linear sepa-
rators is 3. Linear separators in R2 can shatter a set of 3 points because there exists
a linear separator that fits any labeling for these three points. The VC dimension of
2-dimensional linear separators is 3 because no four points in R2 can be shattered by
them.

Based on the combinatorial properties of VC-Dimension, the generalization error of a
hypothesis can be bounded. The generalization error represents how well a learned
hypothesis generalizes to examples it has not seen yet, which is represented as the
difference between the average loss on training examples and the expected or true loss
on new examples. Because VC-Dimension is applied to the classification domain here,
we use a 0/1 loss function `, which evaluates whether the algorithm correctly classified
a given sample: `(h(x), y) = 1 {h(x) 6= y}, for classification hypothesis h ∈ H, example
x ∈ X , and label y ∈ {−1,+1}.

Theorem 2.1. Let H be a hypothesis class. Let h∗ represent the true hypothesis we
try to learn. For any classification algorithm obtaining h ∈ H trained on m labeled
samples, {(z1, h∗(z1)), . . . , (zm, h∗(zm))} drawn from distribution D, the following holds
with probability at least 1− δ for δ ∈ (0, 1):

E
D

[`(h(z), h∗(z))]︸ ︷︷ ︸
true loss

− 1

m

m∑
i=1

`(h(zi), h
∗(zi))︸ ︷︷ ︸

training loss

≤

√
1

m

[
VC(H)

(
log

(
2m

VC(H)

)
+ 1

)
− log

(
δ

4

)]

The VC-dimension succeeds in quantifying the complexity of a hypothesis class and
relating it to overfitting and generalization error. However, these combinatorial bounds
are distribution-free — they ignore qualities of the distribution of the data — which
leads to loose bounds. Alternatively, the Rademacher complexity is distribution-dependent
and can therefore create more tight bounds.
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2.3 Rademacher Complexity

Rademacher Complexity (RC) is a measure of the expressiveness of a function class.
As introduced by Bartlett and Mendelson [2002], Rademacher Complexity takes the
distribution of samples into account, allowing for tighter bounds on generalization than
those based only on combinatorial properties of the hypothesis class, like those of VC-
dimension.

For example, Rademacher Complexity outperforms VC-dimension when data are con-
centrated on a linear subspace and we wish to label the data with a linear classifier. VC
bounds are dependent on the high-dimensional domain where the data could lie, while
Rademacher Complexity bounds are dependent on the lower-dimensional subspace. By
ignoring the distribution of the data, VC-dimension bounds are worse because they
ignore the problem-specific information that the distribution conveys.

RC measures the ability of a hypothesis class to correlate to randomly labeled samples.
By correlate, we mean that we find the hypothesis that makes the fewest number of
mistakes when attempting to fit a labeled dataset. To do so, i.i.d. Rademacher random
variables σi denote labels of −1 or +1 with equal probability for each example i. For
each assignment of labels, the hypothesis that best correlates to the labels is selected.

We first define the Empirical Rademacher Complexity using the notation of Mitzen-
macher and Upfal [2017], which measures the ability to correlate to a fixed set of
samples.

Definition 2.4. The Empirical Rademacher Complexity (ERC) for sample S =
{z1, . . . , zm} over a hypothesis class H such that h : S → R for h ∈ H is:

R̃m(H, S) = E
σ

[
sup
h∈H

1

m

m∑
i=1

σih(zi)

]
where σ ∈ {−1,+1}m is a vector of random variables chosen i.i.d. and uniformly.

While the previous definition assesses the power of a function class to correlate to some
sample of data, it still fails to take the distribution of that sample into account. To
do so, we define the Rademacher Complexity, which computes the expectation over a
distribution.

Definition 2.5. The Rademacher Complexity (RC) over a hypothesis class H for
distribution D is:

Rm(H,D) = E
S←Dm

[
R̃(H, S)

]
= E

S←Dm

[
E
σ

[
sup
h∈H

1

m

m∑
i=1

σih(zi)

]]
where S = {z1, . . . , zm} is a set of m samples chosen i.i.d. from D and where σ ∈
{−1,+1}m is a vector of random variables chosen i.i.d. and uniformly.
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From these definitions, tighter bounds than those induced by VC-dimension are induced.
Below, we give probabilistic bounds on the generalization error based on both the ERC
and the RC.

Theorem 2.2. Let H be a set of functions representing the errors of hypotheses such
that h : X → [0, 1], ∀h ∈ H, where X represents the feature space. Let S = {z1, . . . , zm}
be a sample of X drawn from distribution D. Then, the following each hold ∀h ∈ H
and ∀δ ∈ (0, 1) with probability at least 1− δ:

E
D

[h(z)]︸ ︷︷ ︸
true loss

− 1

m

m∑
i=1

h(zi)︸ ︷︷ ︸
training loss

≤ 2R̃m(H, S) + 3

√
ln(1/δ)

m
(1)

E
D

[h(z)]− 1

m

m∑
i=1

h(zi) ≤ 2Rm(H,D) +

√
ln(1/δ)

m
(2)

While these bounds are much tighter than those provided by VC-dimension, they are
difficult to compute given the exponential number of terms that must be summed over
and given the difficulty of finding the supremum from hypothesis class of potentially
infinite size. To alleviate this, Massart’s Lemma [Massart, 2000] bounds the ERC for
finite-sized hypothesis classes, making it easier to use those generalization bounds.1

Lemma 2.1. [Massart’s Lemma] Assume that |H| is finite for hypothesis class H.
Given a sample S = {z1, . . . , zm}, let:

B = max
h∈H

√√√√ m∑
i=1

f(zi)2

Then:

R̃m(H, S) ≤
B
√

2 ln |H|
m

For the generalization bound in Theorem 2.2 to hold, we require a hypothesis class of
functions that output values on the interval [0, 1]; however, for these bounds to be useful,
they must to be applicable in learning problems where completely different kinds of
hypotheses are learned. The Contraction Lemma makes that possible by bounding the
Rademacher Complexity when certain kinds of functions are applied to the hypothesis
class [Shalev-Shwartz and Ben-David, 2014].

1Although we do not discuss those techniques in this thesis, Massart’s Lemma can effectively be
used to bound the ERC of infinite hypothesis classes that satisfy certain characteristics through the
use of covering numbers.
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Lemma 2.2. [Contraction Lemma] If φ : R→ R is a ρ-Lipschitz function (that is,
if |φ(x)− φ(y)| ≤ ρ|x− y|), then:

Rm(φ ◦ H,D) ≤ φRm(H,D)

These results can be used to relate the Rademacher Complexities over more complicated
learning problems by choosing a Lipschitz loss function and bounding the RC of that
function applied to the hypothesis class.

2.4 Maximum Discrepancy

Maximum Discrepancy (MD) and Empirical Maximum Discrepancy (EMD) offer sim-
ilar measures of complexity to Rademacher Complexity and Empirical Rademacher
Complexity, which were also developed by Bartlett et al. [2002]. While Maximum Dis-
crepancy bounds are less well-known than Rademacher Complexity, MD bounds better
extend to our generalization from i.i.d. samples to combinatorial samples.

Maximum Discrepancy is calculated in a similar manner as Rademacher Complexity.
They differ in that MD is given two sets S and S ′ of predetermined sizes, one that has
+1 weights and one that has −1 weights. Both aim to find the function that best fits
the weights assigned to the samples.

Definition 2.6. The Empirical Maximum Discrepancy (EMD) for samples S =
{z1, . . . , zm} and S ′ = {z′1, . . . , z′m} over a hypothesis class H such that h : S → R for
h ∈ H is:

D̃m(H, S, S ′) = sup
h∈H

1

m

[
m∑
i=1

h(zi)−
m∑
i=1

h(z′i)

]

We extend the empirical definition by choosing the sets from the distribution.

Definition 2.7. The Maximum Discrepancy (MD) over a hypothesis class H for
distribution D is:

Dm(H,D) = E
S,S′←Dm

[
D̃m(H, S, S ′)

]
= E

S,S′←Dm

[
sup
h∈H

1

m

[
m∑
i=1

h(zi)−
m∑
i=1

h(z′i)

]]
where S = {z1, . . . , zm} and S ′ = {z′1, . . . , z′m} are sets of m samples chosen i.i.d. from
D.

Similar generalization bounds to those of Rademacher Complexity exist for the EMD
as well. Unlike with Rademacher Complexity, we require that the number of samples is
2m to ensure that we can partition the samples into two equally-large sets of size m for
the EMD computation. While this is not a substantial burden for EMD bounds, when
we give a similar bound for our framework, this doubling plays a larger role.
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Theorem 2.3. Let H be a set of functions representing the errors of hypotheses such
that h : X → [0, 1], ∀h ∈ H, where X represents the feature space. Let S = {z1, . . . , zm}
and S ′ = {zm+1, . . . , z2m} be samples of X drawn from distribution D. Then, the
following each hold ∀h ∈ H and ∀δ ∈ (0, 1) with probability at least 1− δ:

E
D

[h(z)]︸ ︷︷ ︸
true loss

− 1

2m

2m∑
i=1

h(zi)︸ ︷︷ ︸
training loss

≤ 2D̃m(F , S, S ′) +
3

2

√
ln(1/δ)

m
(3)

EMD is easier to compute than ERC it does not need to take an expectation over values
of σ. However, EMD is harder to approximate because it has no analogue to Massart’s
Lemma 2.

2.5 Rademacher Chaos Complexity

De la Peña and Giné [1999] measure the complexity of algorithms that learns from com-
binatorial data with the Rademacher Chaos Complexity (RCC). RCC analyzes learning
algorithms whose inputs consist of unordered k-combinations of examples drawn i.i.d.

RCC can be used to bound the difference between training error and true error on algo-
rithms that predict compatibility between a combination of elements. For example, one
could predict the romantic compatibility between pairs of people, where both potential
partners come from the same dating pool. RCC also lends itself well to graphical prob-
lems: each edge can be represented as a pair of vertices, so samples of edges can be
expressed naturally as combined data. It can be used for link prediction and to predict
edges in a graph.

While this model succeeds in expanding Rademacher-like bounds to some non-i.i.d.
data sources, it fails to cover cases where the tuples of samples we learn on come from
different sets: our Cartesian EMD framework addresses those issues. In addition, RCC
also requires strict properties of the hypothesis class: notably, the labels output by every
hypothesis must have an expected value of 0 for any given distribution over examples.
These functions must still be centered around 0 in expectation given one component
of combinatorial data, which is unusual to find. For this reason, it fails to find many
practical applications in machine learning.

2Maximum Discrepancy, however, does have its own version of Massart’s Lemma.
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Figure 3: A comparison of combinatorial pairs drawn i.i.d. versus Cartesian-i.i.d.

3 Cartesian EMD

The VC-dimension, Rademacher Complexity, and Maximum Discrepancy bounds pre-
viously described all assume that samples used to train the learning algorithms are
drawn i.i.d. Cousins [2018] introduces the Cartesian Empirical Maximum Discrepancy
(CEMD) framework, which allows us to analyze algorithms that train on combinato-
rial data with i.i.d. components. This section introduces the model and discusses key
theoretical results that are applied in the following section.

3.1 Cartesian Data

Cartesian data are samples which can be represented as a combination of distinct
components. Those components are drawn separately from different distributions and
combined to form a combinatorial sample.3 Our model considers Cartesian data such
that the components of each point are drawn i.i.d., but that the combined point may
not be. We define what this means rigorously.

Definition 3.1. Let X1, . . . ,Xk be domains for each sample component with respective
distributions D1, . . . ,Dk. For 1 ≤ i ≤ k and for some mi ∈ Z+, let Si be a set of
mi samples in Xi drawn i.i.d. from Di. Then S ⊆ S1 × · · · × Sk is a Cartesian-
i.i.d. sample of X1 × · · · × Xk. S is a complete Cartesian-i.i.d. sample if
S = S1 × · · · × Sk, which we denote as S ← Dm, where D = D1 × · · · × Dk and
m = (m1, . . . ,mk). 4

3The words combinatorial and Cartesian tend to have similar meanings here. In general, we use
Cartesian to refer to data points where components are drawn from different sources and combinatorial
to describe any data points that can be represented as combinations of any components.

4S ← Dm means that we sample mi elements in Si ← Di for each i ∈ {1, . . . , k} and let S =
S1 × · · · × Sk.
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For k = 2, combinatorial data can be thought of intuitively as edges of a bipartite
graph. The nodes in each partition represent data points of each component, and an
edge linking a node from each partition represents the combination of those components.
If the sample is complete, then the analogous graph is a complete bipartite graph.

Figure 3 demonstrates how Cartesian-i.i.d. combinatorial data allows for many more
samples to be produced from the same components than when the samples are drawn
i.i.d. for k = 2. For combinatorial data composed of two different components, this
contrasts which data points are used if samples are drawn i.i.d. or Cartesian-i.i.d.. In
the left panel, samples are drawn i.i.d, so each sample requires two new components to
be drawn i.i.d. On the right side, the samples are Cartesian-i.i.d because the individual
components are drawn i.i.d, and all combinations of them are considered.

Studying the generalization of algorithms that are trained on Cartesian-i.i.d data al-
lows for many learning problems on combinatorial data to be bounded. Rademacher
Chaos Complexity allows placing bounds on algorithms that use samples that combine
components drawn from the same set (that is, X1 = X2 = · · · = Xk). Cartesian EMD
further expands the data domain where learning can occur to include combinatorial
data whose components are drawn from distinct sets. Some examples of these domains
are given below:

• In the denoising domain, algorithms are trained to take noisy audio, video, or
image files as input and output a cleaned file with the noise removed. Noisy files
are often constructed by combining the corresponding clean file with artificially-
generated or recorded noise. To analyze this learning problem using Rademacher
complexity, the clean file and the noise file that comprise each sample must to-
gether be drawn i.i.d.; that means that no clean or noise file can be used in more
than one training data point. By our analysis with the CEMD, we can draw
samples Cartesian-i.i.d. and thus reuse our clean and noise data. We discuss this
application in depth in the next section.

• Algorithms which estimate compatibility among tuples of data are easily analyzed
with combinatorial data as input. That is, given a tuple of data points, the
algorithm returns a real number estimating how compatible the two points are.
For example, trying to predict the romantic potential of couples in a heterosexual
or two-party dating context could have input data modeled as a pair of two
individual data components sourced from separate distributions. To minimize
the total number of people involved in the training of the algorithm, each person
can be involved in multiple pairs that are all analyzed, and the generalization of
the algorithm can be bounded with CEMD. (For a homosexual or single-party
dating context, the pair are drawn from the same set, and Rademacher Chaos
Complexity is a more appropriate measure of complexity.)

• In computer vision, training datasets can be amplified in size by applying ran-
domly chosen transformations to the image, such as translations, reflections, and
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added noise. All resulting images are added to the training set. Krizhevsky et al.
[2012] used this to increase the amount of data in the pivotal AlexNet paper that
applied neural networks to the task of image recognition. Given the vast quantity
of data needed for accuracy in the visual domain, these techniques allow algo-
rithms to operate on more data than would be feasible to obtain individually and
label. This can be modeled as combinatorial data problem where input images
are the combination of an original image and a transformation.

3.2 CEMD Definition

The Cartesian EMD is a generalization of the EMD by Cousins [2018] to the combi-
natorial domain, so that input data points can be Cartesian-i.i.d. rather than entirely
i.i.d. We define it rigorously:

Definition 3.2. Let S, S ′ ⊂ X1× · · · ×Xk be complete Cartesian-i.i.d. samples. Let H
be a hypothesis class with h : X1×· · ·×Xk → R for h ∈ H. The Cartesian Empirical
Maximum Discrepancy (CEMD) for S and S ′ over H is:

C̃(H, S, S ′) = sup
h∈H

[
1

|S|
∑
z∈S

h(z)− 1

|S ′|
∑
z′∈S′

h(z′)

]

Like the EMD and ERC, we can also define a non-empirical version of the complexity
that obtains the samples from a distribution.

Definition 3.3. Let m,m′ ∈ Z+k represent the number of each component sampled for
two different samples from distribution D = D1× · · · ×Dk. Let H be a hypothesis class
with h : X1 × · · · × Xk → R for h ∈ H. The Cartesian Maximum Discrepancy
(CMD) for m and m′ over H is:

Cm,m′(H,D) = E
S←Dm,S′←Dm′

[
C̃(H, S, S ′)

]
= E

S←Dm,S′←Dm′

[
sup
h∈H

[
1

|S|
∑
z∈S

h(z)− 1

|S ′|
∑
z′∈S′

h(z′)

]]

3.3 Generalization Error Bounds

Like other methods of measuring hypothesis complexity, CEMD was defined with the
purpose of obtaining a probabilistic generalization error bound.

Theorem 3.1. Let H be a function class representing errors of hypotheses such that
h : X1×· · ·×Xk → R for h ∈ H. For some vector m representing the number of samples
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Figure 4: A comparison of Cartesian data points. From left to right, the graphs rep-
resent (1) a completely Cartesian sample, (2) a partial sample, and (3) a block sample
with c1 = 2 and c2 = 3.

drawn from each k components, let S ← D2m be a complete Cartesian-i.i.d. sample. Let
S ′ ⊂ S contain only the k-tuples of components from the first ki components sampled
for each 1 ≤ i ≤ k, and S ′′ ⊂ S contain only those second ki components sampled. The
following holds with probability at least 1− δ for any δ ∈ (0, 1).

sup
h∈H

ED [h(z)]︸ ︷︷ ︸
true error

− 1

|S|
∑
z∈S

h(z)︸ ︷︷ ︸
training error

 ≤ C̃(H, S ′, S ′′) +
3

2

√√√√ln

(
1

δ

) k∑
i=1

m−1i

Note that |S| = 2k|S ′| = 2k|S ′′|. While this bound is similar in to the one presented
for the regular EMD, the requirement that we use 2k times more combinations for
training than we use for CEMD approximation reduces the tightness of our bound
more substantially.

3.4 Partial and Block Sampling

The CEMD framework above governs samples drawn completely Cartesian-i.i.d. While
that assumption applies in cases where the data contain values for all possible tuples of
components, some circumstances call for combining some elements of each component
with some of other components, to amplify the data without obtaining an uncontrollable
amount. We refer to choosing samples that are Cartesian-i.i.d. but not completely-
Cartesian-i.i.d. as partial sampling. Block sampling occurs when the samples all occur
in certain clusters of fixed size. The differences between these types of samples are
illustrated in Figure 4. We introduce the Generalized CEMD to handle these cases,
with a very similar definition to the CEMD.
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Definition 3.4. Let S, S ′ ⊂ X1×· · ·×Xk be Cartesian-i.i.d. samples (that are not neces-
sarily complete). Let H be a hypothesis class with h : X1×· · ·×Xk → R for h ∈ H. The
Generalized Cartesian Empirical Maximum Discrepancy (GCEMD)Cousins
[2018] for S and S ′ over H is:

G̃(H, S, S ′) = sup
h∈H

[
1

|S|
∑
z∈S

h(z)− 1

|S ′|
∑
z′∈S′

h(z′)

]

We can obtain a generalization bound for partial sampling based on this quantity in
certain cases. We require that the two sets S ′ and S ′′ used to compute the GCEMD are
symmetrical. For ease of notation, let (j1, . . . , jk) ∈ S if the tuple containing the jith
element of component i for each component i is in S. For the two sets to be symmetrical,
we insist that a tuple corresponding to indices (j1, . . . , jk) ∈ S ′ for 1 ≤ ji ≤ mi if and
only if the tuple corresponding to (j1 + m1, . . . , jk + mk) ∈ S ′′. In the bipartite graph
analogy for k = 2, that means that S is composed of two completely separate bipartite
graphs that are isomorphic, or have the exact same structure.

Theorem 3.2. Let H be a function class representing errors of hypotheses such that
h : X1×· · ·×Xk → R for h ∈ H. For some vector m representing the number of samples
drawn from each k components, let S ← D2m be a complete Cartesian-i.i.d. sample. Let
S ′ ⊂ S contain only the k-tuples of components from the first mi components sampled
for each 1 ≤ i ≤ k, and S ′′ ⊂ S contain only those second mi components sampled.
The following holds with probability at least 1− δ for any δ ∈ (0, 1).

sup
h∈H

ED [h(z)]︸ ︷︷ ︸
true error

− 1

|S|
∑
z∈S

h(z)︸ ︷︷ ︸
training error

 ≤ G̃(H, S ′, S ′′)+3

2

√√√√ln

(
1

δ

) k∑
i=1

mi∑
p=1

(
|{x ∈ S : xi = p}|

|S|

)2

In the case of this generalized form when we use block sampling, this theorem gives
a specialized result. A partial sampling is a block sampling when we divide Cartesian
samples into n disjoint groups based on their components. That is, we can partition
elements of each component i into sets of size some ci = mi

n
. Then, we match a single

set of each component to form a block and take all possible combinations of elements
within those sets. Therefore, each block consists of

∏k
i=1 ci total combinatorial samples.

Note that |S| = n
∏k

i=1 ci. Thus:

|{x ∈ S : xi = p}| =
∏k

`=1 c`
ci

=
|S|
mi

We can therefore simplify the inequality from Theorem 3.2 for this case to obtain the
identical bound as in Theorem 3.1:

sup
h∈H

[
E
D

[h(z)]− 1

|S|
∑
z∈S

h(z)

]
≤ G̃(H, S ′, S ′′) +

3

2

√√√√ln

(
1

δ

) k∑
i=1

m−1i
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4 Audio Denoising Experiments

To test the ability of our Cartesian EMD to impose tight generalization bounds on
learning problems trained on combinatorial samples, we apply the CEMD to the prob-
lem of audio denoising. An audio denoising algorithm takes as input an audio file with
added noise and attempts to remove the noise from the file. In a learning context,
training data consists of a noisy audio file and a cleaned version of the file, which acts
as a “label” that represents the correct output of the algorithm.

For Rademacher-based analysis, we must assume that all clean and noisy files used
for training are drawn i.i.d. The noise used to corrupt each clean file is unlikely to
be reused within a training sample. In a practical domain, this may not be feasible:
training effective denoisers requires vast amounts of data, and reusing clean samples
and added noise in different combinations may be necessary to obtain sufficient data.
In this case, it makes sense to model it as a learning problem over combinatorial data,
where one component is the clean audio and the other is the added noise. Therefore,
creating bounds on learning audio denoising algorithms is a natural application of the
CEMD.

4.1 Audio Denoising Domain

In this section, we introduce and define the audio denoising problem. Audio denois-
ing has already been explored extensively within electrical engineering and computer
science. While researchers previously approached audio denoising from a signal pro-
cessing background, the recent successes of neural nets have led to a new wave of audio
denoising algorithms that outperform older algorithms[Rethage et al., 2018]. Because
numerous specialists have created audio denoising algorithms already, our audio de-
noising problem aims to choose the best of the preexisting algorithms for a given set of
data rather than to create a new algorithm from scratch.

While audio files can be corrupted in numerous ways, we focus solely on the effects of
additive noise in this thesis. Let AC , AN , and AA represent the sets of clean audio
samples, noisy audio samples, and audio noise respectively. Any audio samples can be
thought of as a sequence of numbers in [0, 1] representing the tonal pressures that are
present at each time step. Audio files can be constructed by additively merging two
files, which we denote as z1 + z2 for z1, z2 ∈ AC ∪ AN ∪ AA. Because noisy samples
are constructed from clean samples and additive noise, for each zN ∈ AN , there exists
zC ∈ AC , zA ∈ AA such that zN = zC + zA. An audio denoising algorithm is some
φ : AN → AC . It can be equivalently expressed in terms of the additive noise rather
than the noisy input file as φ′ : AC ×AA → AC where φ′(zC , zA) = φ(zC + zA).

In order to measure the success of a denoising algorithm on a noisy file, let E :
AC × AC → [0, 1] measure the error between a file cleaned by the algorithm and
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Figure 5: A visualization of the audio denoising process.

the true clean file we compare it to. To learn over hypothesis classes that can be input
to Rademacher-like bounds, we learn from hypotheses h : AC × AA → [0, 1] where
h(zC , zA) = E(zC , φ

′(zC , zA)), which represents the difference between the cleaned ver-
sion of the combined sample and the true clean version when denoising function φ is
used. Figure 5 illustrates the audio denoising process in a more visual manner.

For a finite set H = {h1, . . . , h`} representing the losses corresponding corresponding
to ` denoising algorithms {φ′1, . . . , φ′`}, we learn a weighted denoising model. We train
the model with a training set S of pairs with S ⊆ AC × AA. A simple model could
be trained to select among the denoising algorithms the single algorithm we expect to
perform best. However, there are several other methods to learn a better denoising
function under the CEMD framework.

4.1.1 Learning a Weighted Denoising Model

One way to learn a denoising function given several functions to begin with is to learn
an optimal combination of the solutions returned by several denoising algorithms. Our
weighted algorithm returns the convex combination of the outputs of different denois-
ing algorithms to optimally denoise a set of data. That is, we learn h∗ ∈ conv(H)5

5conv(H) represents the convex hull of a finite set H = {h1, . . . , h`}. That is:

conv(H) = {
∑̀
i=1

aihi : ∀i, ai > 0 and
∑̀
i=1

ai = 1}
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with corresponding φ∗′ such that φ∗′(zC , zA) =
∑`

j=1w
∗
jφ
′
j(zC , zA) for w∗ ∈ [0, 1]` and∑`

j=1w
∗
i = 1 that minimizes:∑

(zC ,zA)∈S

h∗(zC , zA) =
∑

(zC ,zA)∈S

E(zC , φ
∗′(zC , zA))

This is also equivalent to learning the vector w∗ that minimizes that quantity.

Initially, we use a normalized mean squared error for E . Because each audio file can be
expressed in the time domain as a sequence of numbers in [0, 1], such an error can be
easily computed over the sequences. Moreover, minimizing the sum of mean squared
errors means that we can find w∗ using a convex quadratic program.

We can use this error of the output over the different algorithms as our hypothesis class
for CEMD analysis. We discuss this in more detail in Section 4.2.

4.1.2 Perceptual Audio Models

While a normalized square error is mathematically convenient and sensible for com-
paring two sequences of arbitrary data, other measures of distance are better tailored
to audio data. Because audio files are almost always intended for human listening, we
can redefine success for denoising algorithms to be how clean an audio file sounds to
a human listener rather than how close the audio vector is to the cleaned audio file.
To measure that, we explore perceptual audio models, which attempt to measure how
clearly humans hear different sounds.

Perceptual audio models quantify how much a human listener can notice changes to
different audio frequencies. Psychoacoustics is a field that examines how individuals
perceives sound, and perceptual audio models applies knowledge of pyschoacoustics to
process audio files without compromising human perception of the sound. A central
idea in perceptual models is noise masking, which occurs when the clean audio sig-
nals dominate the added noise from the algorithm in terms of human perception; that
is, listeners only hear the certain strong frequencies that drown out other similar fre-
quencies [Jayant et al., 1993]. Some perceptual models are subjective, meaning that
they measure audio quality based on human ratings of sound quality, where listeners
assess how much a modified signal resembles the reference signals. Others, like PEAQ
(perceptual evaluation of audio quality) are objective, and are based more directly on
psychoacoustic principles without relying on human-supplied data[Thiede et al., 2000].

Perceptual audio models are involved in designing compression algorithms that avoid
making sacrifices to one’s listening experience. Because MP3 is a lossy compression
scheme, an audio file can be tightly compressed, but some data is permanently lost in
the process. The creators of the MP3 scheme designed the encoding algorithm to remove
as much audio data as possible without significantly compromising a user’s listening
experience [Library of Congress, 2017]. To do so, the MP3 algorithm determines which
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signals are masked by other signals and safely removes the data needed to store those
inaudible signals.

In future work, we plan on incorporating these perceptual techniques as a weighted
mean squared error between frequency vectors. That way, we can more choose denoising
functions that maximize audio quality for human observers.

4.2 Experimental Architecture

To assess the usability of our Cartesian EMD bounds, we compare the success of our
algorithm when trained over two different types of samples. First, we train our weighted
denoising algorithm over samples drawn i.i.d. and bound the generalization of the algo-
rithm with Empirical Rademacher Complexity bounds. Then, we train the algorithm
on samples drawn Cartesian-i.i.d. and bound generalization with CEMD bounds. We
then compare the empirical errors and the theoretical bounds of the two by measuring
how well each generalized and for how tight the bounds were.

When we compute the ERC and CEMD for generalization bounds, finding the supre-
mum over the conv(H) seems intractable because the number of convex combina-
tions is are infinite. However, it can be shown that R̃(H, S) = R̃(conv(H), S) and
C̃(H, S, S ′) = C̃(conv(H), S, S ′). Thus, it suffices to find R̃(H, S) and C̃(conv(H), S, S ′),
whose suprema can be found by simply iterating over the finite number of functions in
the function class[Shalev-Shwartz and Ben-David, 2014].

We coded the project in Java.6 We acquired audio denoising algorithms primarily from
code published online from well-regarded publications on audio denoising. Here are the
algorithms we used:

• Rethage et al. [2018] created A Wavenet for Speech Denoising, which included
a pre-trained neural network trained on speech data with added observed and
artificial noise.

• RNNoise is a simple recurrent neural network framework produced by Mozilla.
Its source code provides a light-weight pre-trained neural network implemented
in Python. A publication is forthcoming.

• NoNoise is a noise-removal tool on Github that does not use neural networks and
relies more on signal processing techniques.

In order to choose the weighted algorithm that best denoises the data, we use IBM’s
CPLEX to solve the quadratic program (QP) induced by the minimization of the nor-
malized mean squared error of w∗.

6The code repository for this project, which includes code for audio denoising and codec selection,
is at https://github.com/chsanford/AudioEMD.
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5 Codec Selection Experiments

In addition to applying distribution-dependent uniform convergence bounds to the prob-
lem of audio denoising, we also use those bounds to tackle the similar problem of audio
compression. To do so, we wish to determine which codec — a schema that converts a
file to compressed format and back — best fulfills certain criteria, such as the amount
of time needed to compress the file, how much smaller the compressed file is than the
original, and the fidelity of the decompressed file’s contents to those of the original file.
To ensure statistical significance in the codec we select, we use Rademacher bounds.

In the function selection domain, a meta-algorithm aims to select a function to complete
a task to maximize some objective value over a wide range of input data. Meta-
algorithms in this domain can eliminate or prune proposed algorithms if the results so
far lead to high confidence that the algorithm either fails the constraints or performs
worse than another algorithm that meets the constraints. Being able to place tight
bounds on the objective value of the candidate functions means that the performance
of functions and their satisfaction of the constraints can be proven more quickly, which
leads to a more efficient meta-algorithm. We see this as an appropriate domain to
combine Rademacher bounds with sampling strategies to determine which candidate
algorithm is best. In particular, we examine the codec selection domain, where functions
encode and decode files to efficiently compress them without losing a significant amount
of data.

5.1 Codec Selection Domain

The codec selection problem aims to choose an encoding scheme for a domain like audio,
video, or images that meets certain criteria and maximizes an objective dependent on
those criteria. For this project, we examined the audio domain and created a sampling
procedure that determines which audio compression scheme performs best in terms of
factors like the size of the compressed file and the similarity between the original file and
the decompressed version. Unlike the previous experiment, we use audio data without
added noise — the goal is simply to compress and decompress clean audio files.

Gupta and Roughgarden [2017] examined this kind of problem from a PAC-learning
approach. They bounded the performance of different algorithms using bounds based
on pseudo-dimension, which applies the concepts of VC-dimension to regression rather
than classification problems. We built upon their model by replacing their pseudo-
dimension bounds with Rademacher bounds in order to take the distribution of data
into account to tighten the bounds.

Rather than simply finding a function that outperforms others with high confidence,
we further expanded their model by also seeking functions that must meet certain
constraints. For example, in the audio domain, we might seek a compression algorithm
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that minimizes the amount of memory needed for the compression file while requiring
that a compressed and decompressed file is sufficiently similar to the original file.

For our model, the encoding schemes are represented as a class of functions H with
h : X → Y where X is the set of input objects to encode and Y is a representation of
the encoding along with useful meta-data about the transformation. We also have a
set of criteria which describe the performance of the function C with c : Y → [0, 1] for
c ∈ C that assess the performance of a function in some aspect. In the audio domain,
H contains compression schemes like MP3 and Ogg while C contains measurements like
the ratio of the size of the original file to the size of the compressed file. We measure
the success of an encoding with an objective V : Y → R such that V (y) is a linear
combination of c(y) for c ∈ C. We also seek functions that satisfy some set convex
combination of linear inequality constraints in terms of the criteria: let W ⊆ X be the
region of the function’s domain such that those constraints are satisfied. Thus, we seek
h∗ ∈ H such that with high probability for x drawn from X over some distribution:

h∗(x) = arg max
h∈H

{V (h(x)) : x ∈ W}

We use empirical Rademacher complexity in the next section to discuss a progressive
sampling algorithm that prunes functions in H that with high probability perform
poorly by the objective or are not in the valid constraint region.

5.2 Progressive Sampling with Pruning

Our Progressive Sampling with Pruning (PSP) procedure samples inputs to the codec
function uniformly at random in batches of increasing size. It is based on the progressive
sampling method introduced by Riondato and Upfal. Riondato and Upfal [2015] Our
technique differs in that we use the results of the progressive sampling to eliminate from
consideration, or prune, functions whose results will be insufficient with high confidence.
Based on the results of each batch, we empirically estimate the means of c(h(x)) for
criterion c and hypothesis h over samples x. We bound the means with high probability
with Rademacher complexity and prune functions which (1) with high confidence lie
outside of W or (2) with high confidence has a smaller mean value of V (h(x)) than
V (h′(x)) for some other f ′ that is in W with high confidence.

The algorithm is parameterized by δ and ε, whose meanings are analogous to those
in PAC-Learning framework (Section 2.1). δ represents our level of certainty in each
bound. That is, we require that each bound holds with probability 1− δ. ε represents
how bounded we expect our results to be prior to making a conclusion. That is, if the
argument terminates, with probability 1 − δ, we can identify the best codec function,
and that function’s objective value varies by at most ε.

We repeat this process over batches which double in size after each iteration. Because
each batch has more samples than the previous one, it can place tighter bounds than
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the preceding ones can, thus allowing it to be more confident in its empirical means.
We then disqualify more functions because we conclude with confidence that certain
functions outperform other functions due to the shrinking confidence intervals. This
means that fewer functions need to be run on each subsequent batch of inputs, which
limits the number of unnecessary encoding steps. The algorithm terminates when there
is exactly one remaining function that satisfies the constraints, when it is shown that
no function satisfies the constraints, or when no more samples are available. Therefore,
the algorithm finds the function with the smallest objective subject to the constraints
with high confidence. We give pseudo-code for the algorithm in an attached figure:

Algorithm 1 PSP(S, s0,H, C, V,W , ε, δ)

Input: samples S, initial batch size s0, hypothesis class H, criterion set C, objective
V , constraint space W , confidence ε ∈ {0, 1}, failure probability δ ∈ {0, 1}
Output: optimal hypothesis ĥ ∈ H, empirical criteria estimatesêĥ,c, criteria confi-

dence intervals Êĥ,c, upper objective bound u

Êh,c := [0, 1] for all h ∈ H, c ∈ C
n := blog2(

|S|
s0

+ 1)c [maximum number of iterations]
for i ∈ {0, . . . , n− 1} do

Let Si be 2i · s0 unused samples from S
for c ∈ C, h ∈ H do [current batch]

êh,c := 1
|Si|
∑

x∈Si
c(h(x))

Êh,c := Êh,c∩ [êh,c−2R̃(c◦H, Si)−3
√

ln(2n|C|/δ)/2|Si|, êh,c+ 2R̃(c◦H, Si) +

3
√

ln(2n|C|/δ)/2|Si|]
Let ĥ := max{h ∈ H : Êh,. ⊆ W} [best hypothesis so far]
for h ∈ H do

if Êh,. ∩W = 0 or max(V (Êh,.)) ≤ min(V (Êĥ,.)) then
remove h from H

if H = ∅ then
error No valid h satisfies constraints W

else if |H| = 1 or min(V (Êĥ,.)) ≥ maxh ∈ H(V (Êh,.)) then

u := maxh∈H V (Êh,.)) return (ĥ, êĥ,., Êĥ,., u)

error Insufficient Sample size for δ − ε guarantee

Based on the algorithm, we obtain theoretical guarantees about the usefulness of the
results.

Theorem 5.1. Suppose we run PSP(S, s0,H, C, V,W , ε, δ) and obtain (ĥ, êĥ,., Êĥ,., u).
Then, the following always holds:

1. The confidence rectangle of the criteria for ĥ lies within the constraint space:
Êĥ,. ⊆ W.
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The following hold with probability 1− δ:

2. The true mean of each criteria for a given function lies within our confidence
rectangle:

E
x

[
c(ĥ(x))

]
∈ Êĥ,c ∀c ∈ C

3. The objective of the true mean lies within our confidence interval for the objective:

E
x

[
V (c(ĥ(x)))

]
∈ V (Êĥ,.)

for c as a vector of all criteria functions in C.

4. The expected objective lies within a confidence is no less than ε worse than optimal
and is no better than the upper bound:

E
x

[
V (c(ĥ((x)))

]
∈ [E

x
[V (c(h∗((x)))]− ε, u]

for h∗ being the optimal hypothesis that satisfies the constraints, defined as:

h∗ = arg max
h∈H

{E
x

[V (c(h∗((x)))] : E
x

[c(h∗(x))] ∈ Êh∗,c ∀c ∈ C}

5.3 Experimental Results

We coded the Progressive Sampling with Pruning algorithm in Java. Our codebase is
sufficiently general to apply the PSP algorithm to a wide range of domains; one simply
needs to implement our interfaces and abstract classes for Function, Criterion, and
Sample to fit a desired domain.

We applied the algorithm to the codec selection domain. The function class H corre-
sponds to compression algorithms. For this example, we choose between LAME MP3
encoders of different variable bit-rates — each one has a rating between V0 and V9
representing the how many bits are used to encode segments of audio [Hegemann et al.,
2017]. V0 has the highest bit-rate, which means it features the highest quality sound
yet also reduces the file size the least; V9 has the lowest bit-rate and thus has the lowest
quality and the smallest output files.

We can also compare variable bit-rate (VBR) codec schema with constant bit-rate
(CBR) and average bit-rate (ABR) schema. VBR schemes dynamically choose how
many bits to compress, which tends to give the best results because more bits can be
used to compress complex segments of audio than simple segments. CBR algorithms
use the same amount of bits for each segment, which means that complex segments may
lose key sounds, and simple segments may have too much redundancy; however, CBR
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schema guarantees an exact compression ratio. ABR is a compromise between the two
that aims for a certain compression ratio while allowing for some variance in bit-rate.

We considered several kinds of criteria for C, which are meant to measure qualities of
the compression algorithms that users would care about:

• PEAQ Objective Difference (c1) measures the difference between two audio files
as perceived by humans. This is an objective model because it is based on compu-
tational models of the ear rather than perception scores from individual tests. We
discuss these models in Section 4.1.2. Because we ultimately care about whether
humans can distinguish an audio file corrupted by compression from the original
file, measurements that pay attention to human perception are especially impor-
tant. We compute PEAQ using the GSTPEAQ codebase created by Holters and
Zölzer [2015].

• Root Mean Squared Error (c2) treats the two audio files as vectors of numbers
in [−1, 1] and computes a normalized L2-distance between the two. While this
criterion is mathematically simple, it fails to account for the fact that differences
between audio in certain frequencies may not be perceived by listeners.

• Root Mean Squared Log Error (c3) takes the root mean squared error of the
normalized logarithms of the elements of the audio vector. We logarithmically
rescale the pulses of each pressure because we measure loudness for humans on a
logarithmic scale: 60 decibels is 10 times louder than 40 decibels, which is in turn
10 times louder than 20 decibels. This criterion gives us an error metric that is
slightly more linked to human perception of audio.

• Compression Ratio (c4) represents the ratio of size of the compressed audio file
to the size of the original audio file. Smaller values indicate that a compression
algorithm is effective at reducing the size of a given audio file.

• Compression Time (c5) is the time in seconds needed for the compression algo-
rithm to compress the audio file. Because all criteria must output values in [0, 1],
we actually take the minimum of the compression time and 1 — this is a reason-
able assumption because all compression schemes we have observed so far take
much less time than one second.

• Decompression Time (c6) is the same as Compression Time, except that it mea-
sures the amount of time needed to decompress the file back to WAV format.

From these criteria, we can construct an objective V that is a linear combination of
these criteria. We decided that our objective should minimize the compression ratio
and PEAQ difference with equal weights because accuracy of sound and amount of
compression are key components for creating audio. That is, for a sample x and a
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Figure 6: Bounds on the objective V1(x) = −c1(h(x)) − c4(h(x)) for each step of the
PSP algorithm for audiobooks.

function h, V1(h(x)) = −c1(h(x)) − c4(h(x)).7 However, this objective is just one
way of quantifying the effectiveness of an audio compression algorithm. We also test
two other variants: V2(h(x)) = −c1(h(x)) solely attempts to minimize PEAQ while
V3(h(x)) = −c4(h(x)) only wants to minimize the compression ratio. Future users
could modify this objective to be other combinations of criteria depending on what the
listener values in a compression algorithm.

We also can implement constraints for our model with these criteria. For our applica-
tion, we require that we each algorithm does not take too long to encode and decode
samples. In this case, we want to only choose codec function h ∈ H if we are confi-
dent that compression and decompression each take no more than 0.5 seconds, or that
êh,c5 ≤ 0.5 and êh,c6 ≤ 0.5. While these conditions are mostly trivial, they allowed us to
test the constraint functionality, and we found that all of our compression algorithms
satisfied this after several rounds.

For the tests, we let ε = 0.1 and δ = 0.05.

5.3.1 Tests on Audiobooks

To test the model, we ran it on ten-second clips from open source audio books on
LibriVox[McGuire]. We collected over 25000 samples in that manner. When running
the progressive sampling algorithm, we started by using 100 samples in the first round

7We flip the signs because our algorithm requires that we have an objective function to maximize.
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Figure 7: Bounds on the objective V2(x) = −c1(h(x)) for each step of the PSP algorithm
for audiobooks.

and doubling that quantity until terminating after 12800 samples were used on the
eighth round. Notably, our algorithm did not actually isolate the best encoding function
— that would require more data. However, it succeeded in creating tight confidence
intervals and in using those intervals to eliminate the worst function given our objective.

Figure 6 shows the empirical means and confidence intervals for the objective V1 for
each iteration and each compression scheme. While the means stay relatively stable,
the bounds tighten with each iteration. Note that the V9 algorithm is eliminated after
the seventh iteration because its confidence interval no longer intersects with the so-far
optimal algorithm, V1. Given further iterations and more data, more algorithms could
be eliminated as the bounds continue to tighten.

We can also visualize the bounds on our other proposed objectives. The difficulty of
separating the performance of algorithms depends on the concentration of the objective
values. In Figure 7, the empirical estimates of mean PEAQ divergence that comprise
V2 are very spread out, so the tightening bounds cease to overlap quickly. We can
eliminate all but one suboptimal function this way. On the other hand, the estimates
for V3, which depends solely on compression ratio, in Figure 8 are more concentrated
near zero and therefore fail to ever obtain tight enough intervals to separate functions.

5.3.2 Tests on Music

We also tested the algorithm on small segments pulled from music files. The music
dataset contains the complete orchestral works of Debussy, conducted by Yan Pascal
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Figure 8: Bounds on the objective V3(x) = −c4(h(x)) for each step of the PSP algorithm
for audiobooks.

Tortelier; the complete discography of hard rock band Led Zeppelin; and the 2000–2013
discography of progressive rock band Explosions in the Sky. We explored objectives over
PEAQ divergence and compression ratios over a wider range of codecs; in addition to
testing nine variants of VBR codecs, we also tested CBR codecs with fixed bit-rates of
320, 246, 128, and 64.

To visualize trends in these codecs, we compare PEAQ divergence and compression
ratio in Figure 9. Each point represents those criteria values for a sample encoded with
a given function. Note that we scale up the compression ratio for this experiment in
order to increase the variance of the metric without compromising accuracy; because
WAV files are encoded at a bit-rate of 750 and because the highest bit-rate encoded by
an MP3 is 320, we scaled each compression ratio by 750

320
to spread out the data more

while keeping all ratios within the interval [0, 1]. We observe an inversely relationship
with respect to compression ratio and PEAQ values as functions change. This makes
sense because using more bits to encode a file leads to a smaller difference in sound
between the original file and the decompressed file. Because they have fixed bit-rates,
the CBR schemes have constant compression ratios, but vary widely in sound fidelity.
The most accurate CBR schemes (256 and 320 bits) have zero perceived difference
between the input and output files, but they have very high compression ratios.

In this more complicated case, we chose an objective that balances compression ratios
and PEAQ divergences to choose a codec that effectively trades off between the two
and does not simply maximize one of them. With the objective, V4(x) = −c1(h(x)) −
2c4(h(x)), we can quickly eliminate codecs like the CBRs with bit-rates 320 and 256,
as shown in Figure 10. The VBR encoding scheme V2 emerges as the scheme that best
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Figure 9: A scatter-plot of scaled compression ratios versus PEAQ divergences for music
segments when encoded by a wide range of codecs.
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Figure 10: Bounds on the objective V4(x) = −c1(h(x))− 2c4(h(x)) for each step of the
PSP algorithm for music.
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trades off compression ratio and PEAQ, although it struggles to rule out other schemes
because the trade off between the two criteria leads to similar objective values across a
range of codecs.

For future experiments, we can use more data points to shrink the bounds further,
to eliminate more compression algorithms, and to find the optimal encoding function
with high certainty. We can additionally accelerate the rate of elimination by choosing
more metrics like PEAQ that have significant differences in values for each compression
function and incorporating them into the objective function. We also will test the
audiobook data on a CBR codecs and compare those results to that of the music data
on the balanced objective.

6 Conclusion and Open Questions

The Cartesian EMD framework we discuss allows rigorous generalization bounds to
be applied to a wider range of machine learning problems. We relax the assumption
that all samples must be chosen i.i.d, and create bounds that work for combinatorial
data. Denoising problems are a domain that lends themselves well to this analysis. We
also apply Rademacher-like bounds to create a sampling technique that works well for
selecting between compression algorithms.

The following questions are potentially interesting next steps to explore for the CEMD:

• Which other applications would work nicely for CEMD bounds? How can we
introduce rigorous learning theory to problems that currently learn from combi-
natorial data?

One application we plan to explore is codec selection using subjective perceptual
audio models based on scores assigned by human listeners. We can treat the
human rating of audio divergence as a component of each data point, because
people are inconsistent in their ability to distinguish sounds. We can use CEMD
bounds on pairs of listeners and audio files to evaluate the best encoding function
while accounting for variances in human perception.

• Can CEMD bounds be used for progressive sampling with pruning to provide
bounds over algorithm selection problems that are trained over combinatorial
data? In particular, can we apply our PSP algorithm to the audio denoising
problem?

• The codec selection problem also seems to be a natural application for multi-armed
bandits. It poses a slightly different question than the task of function selection.
While our PSP algorithm encodes every file with every encoding scheme, the
bandit approach would determine a single encoding function for each file. This
may require more data, but it may also provide better bounds. How would an
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algorithm like UCB1 compare to our PSP algorithm in determining which codec
is optimal for the criteria we give?

• How can the CEMD be more easily predicted? Rademacher Complexity can
be estimated using covering numbers, and this technique may be extensible to
CEMD.
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