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Today’s tools to improve the reliability and manageability of networks can be generally clas-

sified into two different classes: before-the-fact network verification and after-the-fact network

troubleshooting. Unfortunately, neither of the two classes can individually make the network fully

reliable and predictable due to fundamental limitations.

Recently, there have been proposals to make the verification and troubleshooting constantly work

together in a continuous cycle. The cycle involves verifying network-wide properties with latest

network configurations, then monitoring the runtime network state and localizing the root cause once

some network issue happens, and changing configurations in response.

However, state-of-the-art tools in this cycle cannot be used in large real-world production

networks. This is because these tools fail to take some important realistic challenges into account.

For example, modeling an enterprise-scale network’s behavior is non-trivial. A wrong model impacts

the verification accuracy. For another example, handling complex header transformations due to

multiple encapsulations is difficult, thus making existing troubleshooting efforts impractical to locate

deep root causes.

This dissertation introduces two practical tools fit into this cycle and address important limitations

of previous works. Meanwhile, we propose a general and flexible network behavior model. The first

tool, Titan, focuses on verification. It consumes configurations to be deployed and answers questions

the operators have regarding the reachability of routes and packets under failure cases. We show that

Titan performs orders of magnitude faster than the state-of-the-art tools and achieves near-100%

verification accuracy on a production global WAN.

Our second work, dShark, mainly targets troubleshooting. dShark is a general and scalable

framework for analyzing in-network packet traces collected from distributed devices. With dShark,

operators can quickly express their intended analysis logic without worrying about scaling and some



b

practical challenges including header transformations and packet capturing noise.

Our third work, Simon, focuses on offering network operators a general and flexible programming

model on top of a stream of network events. With this model, operators can probe the network behavior

with queries interactively or compose scripts for repetitive tasks, monitoring of invariants. We present

the design of Simon and discuss its implementation and use.



Towards Reliable and Predictable Networks

by

Da Yu

M. Sc., Brown University, 2015

M. Eng., Peking University, 2013

B. Eng., Sun Yat-sen University, 2011

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2019



c© Copyright 2019 by Da Yu



This dissertation by Da Yu is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Rodrigo Fonseca, Director

Recommended to the Graduate Council

Date
Theophilus A. Benson, Reader

Brown University

Date
Ming Zhang, Reader

Alibaba Group

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii



Acknowledgments

The journey to pursue a PhD degree was precious experience in my life. Along the journey, many

people deserve my sincere gratitude for their help and contribution. First, I would like to give thanks

to my PhD adviser Prof. Rodrigo Fonseca. It would not have been possible to have this dissertation

without the unwavering support from him. His guidance, encouragements and inspiration will always

be with me. The things I learned from him, no matter from an academic or personal side, will always

be an invaluable treasure for the rest of my life.

Besides my advisor, I would like to thank my committee members: Theophilus A. Benson and

Ming Zhang. Their boundless support and invaluable advice helped shape my final dissertation. In

addition, I am also grateful to the rest of the professors who provided me guidance, advice and

collaborations, among which are Tim Nelson, Shriram Krishnamurthi, Roberto Tamassia, Tim Kraska,

Carstan Binnig, Stanley B Zdonik and Orran Krieger.

I am fortunate enough to have several internship opportunities during my PhD. These internships

gave me real insight from an industry perspective and helped me accumulate invaluable knowledge to

finish my thesis. Also, they allowed me to work, collaborate and learn from a set of amazing, talented

researchers. More specifically, Yibo Zhu, Hongqiang Liu and Ennan Zhai made substantial and

positive impacts on my research. I also have to thank Alvin Auyoung, Sujata Banerjee, Chi-yao Hong,

Sourabh Jain, Xin Wu, Behnaz Arzani and Lihua Yuan for their mentorship and many enlightening

discussions. They made my experience here unforgettable and productive.

I am extremely grateful to all my collaborators and co-authors through these years, Luo Mai,

Yiming Li, Raja R. Sambasivan, Shuwen Sun, Karl Deng and Tianrong Zhang. It was a joyful

experience to work with them. Their friendship, discussions and efforts had provided me with

iv



productive and fruitful collaborations and publications.

I also need to thank Prof. Wushao Wen, who was my undergraduate research advisor at Sun

Yat-sen University. Wushao guided me to the research and encouraged me to pursue a PhD. Prof.

Sihan Qing, Lucas Hui and Siu-Ming Yiu offered me endless support, advice and encouragements

when I was a master student in Peking University. Without any of their help, I wouldn’t have gotten

the chance to study at Brown University.

One of the most amazing experiences at Brown was my time down at the systems lab. The

encouragement and discussions from Andrew Ferguson and Marcelo Martins was instrumental to my

accomplishment when I was junior. I would like to especially thank Jeff Rasley and Jonathan Mace,

for the friendship, for the interesting discussions and for the constructive advice I was given. In

addition, I would like to thank the rest of my lab-mates who made the lab a great place to stay, think,

and discuss: Ray Zhou, Junyang Chen, Michael Markovitch, Nicholas DeMarinis, LinnanWang,

Usama Naseer, Saim Salman, Yuchen Yang, Sumukha Tumkur Vani, George Hongkai Sun, and Ryan

Roelke.

The time I spent at Brown was made more valuable by my fellow friends. A big thanks goes out

to Zhiqiang Sui, Cheng Xie, Chenggang Wu, Zhile Ren, Qi Xin, Guan Wang, Longjun Tan, Qing

Tian, Yi Zhang and many more for staying by my side when things were tough.

Last, I would like to express the deepest and most sincere gratitude to my family. Without their

constant love, continuous help and unconditional support, none of these would be possible. Their

encouragement always came around and uplift my spirits when I was down. I am forever indebted

to my parents for their selfless love throughout my entire life. Thank you for supporting me even

though it meant being on the other side of the world from home for so many years. I dedicate the

success of this journey as milestone to them.

v



Bibliographic Notes

This dissertation is based on research I have done between 2013 and 2019 with a number of

outstanding collaborators. Part of the material on TITAN in Chapter 2 appears in a paper co-authored

with people from Alibaba Group and Tsinghua University, among whom are Fangdan Ye, Yahui

Li, Ennan Zhai, Hongqiang Harry Liu, Chunsheng Wang, Xiaodong Ma, Xin Wu, Duncheng She,

Qing Ma, Biao Cheng, Zhiliang Wang, Rodrigo Fonseca and Ming Zhang. The work on analyzing

in-network packet traces in Chapter 3 is discussed on a paper co-authored with people from Microsoft,

among whom are Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng, and

Lihua Yuan [120]. The network monitoring tool in Chapter 4 is introduced on a paper co-authored

with Tim Nelson, Yiming Li, Rodrigo Fonseca, and Shriram Krishnamurthi [81].

vi



Contents

List of Figures xi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Before-the-fact Network Verification . . . . . . . . . . . . . . . . . . . . 5

1.2.2 After-the-fact Network Diagnosis . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Network Behavior Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 TITAN: Scalable and Faithful BGP Configuration Verification 10

2.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 A brief introduction of the WAN of Alibaba . . . . . . . . . . . . . . . . . 10

2.1.2 Need of configuration verification in Alibaba . . . . . . . . . . . . . . . . 11

2.1.3 Challenges in existing solutions . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Device behavior model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Configuration Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Reachability on control- and data-planes . . . . . . . . . . . . . . . . . . . 16

2.3.2 Intuitive example of topology condition . . . . . . . . . . . . . . . . . . . 16

2.3.3 Topology condition encoding . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



2.3.4 The reachability of routes . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.5 The reachability of packets . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.6 Optimizations for scalability . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.7 Link state protocols and redistribution . . . . . . . . . . . . . . . . . . . . 23

2.4 Behavior Model Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Building faithful behavior models is hard . . . . . . . . . . . . . . . . . . 24

2.4.2 Behavior model tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Deployment Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Real world vendor-specific behaviors . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Real world configuration errors . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 TITAN’s performance in the wild . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2 Comparing with existing tools . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 DSHARK: A General, Easy to Program and Scalable Framework for Analyzing In-

network Packet Traces 36

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Analysis of in-network packet traces . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Broadly applicable for trace analysis . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Robust in the wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Fast and scalable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 DSHARK Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 A concrete example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 DSHARK programming model . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



3.3.4 Support for various groupings . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.5 Addressing packet capture noise . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 DSHARK Components and Implementation . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Grouper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.3 Query processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.4 Supporting components in practice . . . . . . . . . . . . . . . . . . . . . . 54

3.5 DSHARK Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 DSHARK component performance . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 End-to-end performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 SIMON: Scriptable Interactive Monitoring for Networks 64

4.1 Background and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Simon in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Why Reactive Programming? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 A Simon Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Additional Case-Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusion 81

5.1 Network Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Network Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Network Behavior Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix



5.5.1 Network Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.2 Verification during Network Evolving . . . . . . . . . . . . . . . . . . . . 84

x



List of Figures

1.1 The continuous cycle to make networks more reliable . . . . . . . . . . . . . . . . 3

2.1 Turnaround time to verify reachability with existing work (Minesweeper) on 6.5%

of Alibaba’s WAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 TITAN’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 A device behavior model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Route update & RIB with topology conditions . . . . . . . . . . . . . . . . . . . . 17

2.5 Packet & FIB with topology conditions . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 A simplified real example of a latent vendor-specific-behavior (VSB) . . . . . . . . 24

2.7 Time to simulate one IP prefix with different k . . . . . . . . . . . . . . . . . . . . 30

2.8 Time to verify one IP prefix with system overhead . . . . . . . . . . . . . . . . . . 30

2.9 Turnaround time to verify one IP prefix . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Maximum length of the topology condition formula of each prefix . . . . . . . . . 30

2.11 Effectiveness of pruning with different k . . . . . . . . . . . . . . . . . . . . . . . 30

2.12 Formula length for reachability checking per prefix . . . . . . . . . . . . . . . . . 30

2.13 Verification accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.14 Ext-RIB loading time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.15 VSB localizing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 A real packet’s journey from another cloud provider to Microsoft Azure . . . . . . 37

3.2 DSHARK architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 The interference of packet capturing noise to a drop localizer . . . . . . . . . . . . 50

xi



3.4 Effectiveness to detect loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Effectiveness to profile an software load balancer (SLB) . . . . . . . . . . . . . . . 56

3.6 Single parser performance with different packet headers . . . . . . . . . . . . . . . 58

3.7 Single grouper performance with different average group sizes . . . . . . . . . . . 58

3.8 Single query processor performance with different query functions . . . . . . . . . 59

3.9 DSHARK’s performance on multiple servers . . . . . . . . . . . . . . . . . . . . . 60

4.1 SIMON’s workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 An example in SIMON to handle ICMP events . . . . . . . . . . . . . . . . . . . . 68

4.3 Selection of Reactive Operators and built-in SIMON helper functions. . . . . . . . 72

xii



Chapter 1

Introduction

Thesis Statement Existing network-reliability tools can be categorized into before-the-fact verifica-

tion tools and during-the-fact network diagnosis tools. Neither of them is able to solely make the

network highly available and reliable due to their goals and scope. Integrating these two categories

into a continuously-working cycle can fully leverage their strengths and mitigate their weaknesses.

Deploying such cycle into practice can make the network continuously converge to a reliable and

predictable state.

1.1 Overview

More and more companies currently deploy their services on thousands of servers globally. These

servers are connected by switches, routers, cables and fiber optics to form large-scale intra- and inter

data center networks. On top of these servers, services (e.g. search, storage, MapReduce, etc) strongly

rely on the performance and reliability of the underlay networks. A small network configuration

error [82] can cause millions of users to go offline, which may lead to millions in lost revenue. As a

result, for network administrators who manage these large-scale networks owned by a single-party

(e.g. companies, ISPs, etc), high reliability is the one of the fundamental requirements.

However, it is non-trivial to achieve this goal in practice. There are many factors that can cause

network failures. Configuration errors and link or device failures are the two most common reasons

1
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that result in unexpected data-plane forwarding (e.g. loop, detour, blackhole). Buggy implementations

of middleboxes (e.g. imbalanced load balancer, NAT collisioned gateway, etc) happen occasionally.

They make the network functions misbehavior. As a result, locating, understanding and fixing these

issues that result in complains from overlay services (e.g. packet drops, failure to meet service-level-

objectives (SLOs)) is challenging for the network operators.

In recent years, various management tools have been proposed to either ensure network reliability

or ease the operators to manage their networks. The state of the art can be mainly divided into two

classes: before-the-fact network verification tools (e.g. [12, 28, 30, 35]) and after-the-fact network

issue debuggers (e.g. [8, 38, 39, 108, 109]):

• Before-the-fact network verification tools are typically designed to prevent incidents result-

ing from network configurations errors. These tools, in principle, build a model representing

the behaviors of network devices based on their configurations, and then check whether this

model meets the properties of interest, such as reachability, device equivalence, and absence of

routing loops. This type of solution has two limitations: 1) they cannot detect issues triggered

at runtime, and 2) they are not able to detect network failures resulting from software and

hardware bugs.

• After-the-fact network issue debuggers aim to help network operators analyze and locate

the root causes of network failures, after a failure occurs. Complementing the before-the-fact

and during-the-fact efforts, these debuggers can help the network operators locate the network

issues resulting from configuration, software and hardware bugs. This solution mainly focus

on unexpected data-plane forwarding after the network issue happens.

Despite the fact that the state-of-the-art efforts have made significant contributions, they are not

able to solely make the network achieve high availability and management transparency. Fundamen-

tally, their goals and scopes are limited by the class they belong to. For example, before-the-fact

network verification prevents service downtime by proactively checking the correctness of network

configuration (rather than firmware and software bugs); and after-the-fact network troubleshooting is

mainly responsible for locating root causes like bugs after service outages occur.
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Before-the-Fact 
Verification 

Titan

After-the-Fact 
Diagnosis 

dShark

Network 
Issues

Network Behavior Model
Simon

Figure 1.1: The continuous cycle to make networks more reliable

To steer the network toward a fully reliable and predictable state, instead of improving tools

in each of the above categories, recently, there have been proposals [106] to make the verification

and troubleshooting constantly work together in a continuous cycle. In the cycle, the two categories

are complementary to each other. It cycle starts from verifying network-wide properties with the

latest network configurations to be pushed, then monitoring the run-time network state with these

configurations deployed. The monitoring can locate the root cause once some network issue happens,

and change configurations in response.

However, such a cycle, even equipped with the state-of-the-art tools, can not be used in real-world

production networks. This is because these tools fail to take some important realistic challenges

into account. For example, it is difficult to correctly model an enterprise-scale network’s behavior

in practice; however, all the existing network verification tools assume their network models are

generated correctly. For another example, handling complex header transformation in real-world

is hard, thus making the state-of-the-art network diagnosis efforts impractical to locate deep root

causes.
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1.2 Thesis Goals and Contributions

This thesis aims to make this cycle practical for large-scale networks managed by a single-party

(e.g. companies, ISPs), providing a simple and general model that makes it easier for the network

administrators to understand their network and drive their network to a reliable and predictable

state. We hope the cycle can help them prevent, locate, understand and fix unexpected data plane

forwarding caused by configuration errors, link/device failures and network function misbehaviors.

We first present two tools in this cycle by addressing practical challenges (as shown in Figure 1.1)

that limit the real deployment of the state-of-the-art tools. This cycle consists of two individual

systems: TITAN, a scalable and faithful BGP configuration verification tool and DSHARK, a general,

easy to program and scalable framework for diagnosing network issues. With this cycle, network

operators can first verify the network configurations with TITAN before they are really deployed,

and then monitor and locate the root causes once network issues occur with DSHARK. The network

operators fix the errors in response and start the cycle over. While these tools don’t address or solve

all possible problems that may arise in networks, they address an important set of issues. With

continuous iterations of the cycle, the network evolves towards a reliable and predictable state.

In practice, the cycle is extremely helpful for the daily network management in cloud-service

providers. Specifically, when the network operators change their network configurations to meet their

business requirements (e.g. add new peers to an ISP to increase capacity), they can use TITAN to verify

whether network-wide properties are still retained before the real deployment. During the deployment

process, sometimes, outages may happen due to device failures [37]. At this time, the network

operators may need to immediately stop the network change plan and roll the configurations back to

the state before the deployment. Meanwhile, failure device can be fast located by DSHARK. Through

DSHARK’s programming model, the operators should have enough information and understanding

of the network issue. Sometimes the network operators need to isolate the failed device. Similarly,

they write new configurations and use TITAN to verify before pushing them to the devices again.

We designed and ran these tools in the environment of two large-scale networks with global scale,

specifically Alibaba and Microsoft Azure.
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On top of the cycle, we offer an intuitive, general and flexible network behavior model. This

model regards the running network as a stream of network events. By observing and manipulating

this stream, network operators are able to monitor, analyze or even catch network violations. More

specifically, network operators can probe this stream to refresh their understandings with the latest

network events interactively like traditional software debugging tool (e.g., GDB). Or they can

compare current network behaviors with the one in their mind to find violations. Once found, they

can write and compose scripts for repetitive tasks, monitoring of variables (e.g., RIB, FIB) to locate

the root causes.

1.2.1 Before-the-fact Network Verification

TITAN is a scalable and faithful network configuration verification tool which effectively addresses

the scalability and faithfulness challenges that the state-of-the-art tools face. It achieves fast and

correct verification with failure case coverage in large networks.

Scalability. TITAN offers checks on reachability related properties for both route updates and packets

under arbitrary k (link or device) failures in one run. It is a simulation-based verification tool that

is orders of magnitude faster than the state-of-the-art tools [12, 31]. It achieves this with a novel

technique, topology condition encoding (§2.3.3). When simulating the propagation of route updates

or packets, TITAN incrementally encodes, with a logical formula, the topologies under which a route

update or packet can reach a device, or under which a rule exists in the RIB/FIB. TITAN leverages this

encoding for its substantial scalability improvement in two ways. First, TITAN can simultaneously

treat all no-more-than-k failure cases by checking if the propagated formula covers these cases, rather

than simulating the network for combinatorial times (e.g., Batfish), where most computations are

redundant. Second, TITAN traces the process of route update or packet propagation, so that it can cut

unnecessary propagation branches whose topology condition is impossible or out of consideration

(larger than k failures). This pruning cannot be done by current logical-formula-based tools since the

latter do not have the access of the intermediate states during route or packet propagation [12, 31].

Furthermore, because TITAN simulates the route functions rather than representing them as complex

logical functions (e.g., Minesweeper), its verification over a simple logical formula is much faster



6

than solving an SMT problem with complex functions.

Faithfulness. To perform its simulation, TITAN needs models of the behavior of routers. Unfor-

tunately, there is significant variation in how real routers implement various aspects of protocols,

and, as we found, using a uniform, canonical model of router behavior can produce results which

are substantially wrong. We approach this by iteratively specializing router models. TITAN builds

a behavior model tuner for detecting the flaws of the behavior models in verification. There are

two challenges to build such a tuner. First, it is infeasible to validate behavior models of TITAN

against the actual device behaviors under arbitrary cases. Instead, our strategy is to validate behavior

models under all cases that appear in production. For an existing device SKU (Stock Keeping Unit),

we find all places in production where the SKU sits and validate TITAN’s model by comparing

the reachability TITAN computes and the one obtained from the real network. For a new device

SKU, we build testbeds or emulations [65] to cover all cases it will encounter in production. The

second challenge is how to locate the root cause of a reachability mismatch to facilitate model repairs.

With existing network monitoring methods, it is possible to localize the root cause to a wrong place

because the impact brought by vendor-specific behaviors (VSBs) can only be observed far away

from the root cause location (§2.4.2). To discover differences between its model and the real device,

TITAN combines all the attributes of a route relevant for routing into an extended RIB. Furthermore, it

abstracts each device to a behavior model that contains three stages: “ingress policy”, “route selector”

and “egress policy”. TITAN is able to locate the first place the mismatch happens in the granularity of

these stages. As a result, TITAN usually accurately locate a VSB within O(10) configuration lines.

After that, developers can easily find the corresponding configuration block and produce patches to

improve the verification accuracy.

1.2.2 After-the-fact Network Diagnosis

DSHARK is a scalable packet analyzer that allows for the analysis of in-network packet traces in near

real-time and at scale. DSHARK provides a streaming abstraction with flexible and robust grouping of

packets: all instances of a single packet at one or multiple hops, and all packets of an aggregate (e.g.,

flow) at one or multiple hops. DSHARK is robust to, and hides the details of, compositions of packet
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transformations (encapsulation, tunneling, or NAT), and noise in the capture pipeline. DSHARK offers

flexible and programmable parsing of packets to define packets and aggregates. Finally, a query (e.g.,

is the last hop of a packet the same as expected?) can be made against these groups of packets in a

completely parallel manner.

The design of DSHARK is inspired by an observation that a general programming model can

describe all the typical types of analysis performed by the network operators or summarized in prior

work [108]. Programming DSHARK has two parts: a declarative part, in JSON, that specifies how

packets are parsed, summarized, and grouped, and an imperative part in C++ to process groups

of packets. DSHARK programs are concise, expressive, and in languages operators are familiar

with. While the execution model is essentially a windowed streaming map-reduce computation,

the specification of programs is at a higher level, with the ‘map’ phase being highly specialized

to this context: DSHARK’s parsing is designed to make it easy to handle multiple levels of header

transformations, and the grouping is flexible to enable many different types of queries. As shown

in §3.3, a typical analysis can be described in only tens of lines of code. DSHARK compiles this

code, links it to DSHARK’s scalable and high-performance engine and handles the execution. With

DSHARK, the time it takes for operators to start a specific analysis can be shortened from hours to

minutes.

DSHARK’s programming model also enables us to heavily optimize the engine performance

and ensures that the optimization benefits all analyses. Not using a standard runtime, such as Spark,

allows DSHARK to integrate closely with the trace collection infrastructure, pushing filters and

parsers very close to the trace source. We evaluate DSHARK on packet captures of production traffic,

and show that on a set of commodity servers, with four cores per server, DSHARK can execute typical

analyses in real time, even if all servers are capturing 1500B packets at 40Gbps line rate. When

digesting faster capturing or offline trace files, the throughput can be further scaled up nearly linearly

with more computing resources.

We summarize DSHARK’s contributions as follows: 1) DSHARK is the first general and scalable

software framework for analyzing distributed packet captures. Operators can quickly express their

intended analysis logic without worrying about the details of implementation and scaling. 2) We
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show that DSHARK can handle header transformations, different aggregations, and capture noise

through a concise, yet expressive declarative interface for parsing, filtering, and grouping packets.

3) We show how DSHARK can express 18 diverse monitoring tasks, both novel and from previous

work. We implement and demonstrate DSHARK at scale with real traces, achieving real-time analysis

throughput.

1.2.3 Network Behavior Model

Although the cycle equipped with TITAN and DSHARK is powerful enough to make the network

more reliable and predictable by verifying network reachability and checking unexpected data-plane

forwarding, network operators still needs a high-level and general monitoring model to refine their

understanding of the latest network state. More specifically, most of the time, network issues are

reported by the performance degradation of applications. Applications, sometimes, only provide

end-to-end information, which can provide limited help for network troubleshooting. At this time,

network operators don’t know what properties to verify or what queries to make to the systems

like TITAN and DSHARK. They might need to have an interactive network monitor to see the latest

network events to allow them iteratively understand what they should do.

SIMON is a scriptable, interactive network monitor equipped with a simple, general and flexible

network behavior model to solve such problem. SIMON has visibility into data-plane events (e.g.,

packets arriving at and being forwarded by switches), control-plane events (e.g., OpenFlow protocol

messages), north-bound API messages (communication between the controller and other services;),

and more, limited only by the monitored event sources. Since SIMON is interactive, users can use these

events to iteratively refine their understanding of the system at SIMON ’s debugging prompt, similar

to using traditional debugging tools. Moreover, SIMON does not presume the user is knowledgeable

about the intricacies of the controller in use.

The downside of an interactive debugger is that its use can often be repetitious. SIMON is thus

scriptable, enabling the automation of repetitive tasks, monitoring of invariants, and much else. A

hallmark of SIMON is its reactive scripting language, which is embedded into Scala (scala-lang.org).

As we show in Chapter 4, reactivity enables both power and concision in debugging. Furthermore,
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having recourse to the full power of Scala means that SIMON enables kinds of stateful monitoring

not supported in many other debuggers. In short, SIMON represents a fundamental shift in how we

debug networks, by bringing ideas from software debugging and programming language design to

bear on the problem.



Chapter 2

TITAN: Scalable and Faithful BGP

Configuration Verification

We propose TITAN, the first scalable and faithful BGP configuration verification tool that can be

deployed in a production level global WAN. The WAN supports various types of online services.

This work was done in collaboration with Alibaba, a major online cloud service provider.

2.1 Background and Motivation

In this section, we first introduce the WAN of Alibaba and the motivations to use configuration

verification. This WAN is representative of the other companies since it is large and complex to carry

traffic from services between data centers globally. We then present the challenges we met when

using existing tools on this WAN.

2.1.1 A brief introduction of the WAN of Alibaba

Alibaba has a global-scale WAN to support their various types of online services, including cloud

services, web services, online video, searching, and so forth. This WAN connects multiple data

centers and edge sites globally. The WAN has two tiers: local backbones and a global backbone. In

the local tier, metropolitan area networks (MANs) are deployed to interconnect data centers and edge

10
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Figure 2.1: Turnaround time for verifying the reachability property with Minesweeper on a subset
(6.5%) of the WAN of Alibaba.

sites in the same city via eBGP; in the global tier, a backbone network is used to connect the MANs

via eBGP. Different sites of the backbone network use iBGP on top of IS-IS for exchanging routing

information and use eBGP to peer with external ISPs. In addition, for policy and security purposes,

the MANs contain a large amount of ACL rules on data plane. With the fast growth of the business

demands, the size of the WAN is almost doubled each year.

2.1.2 Need of configuration verification in Alibaba

Correctly configuring a large scale WAN is, unsurprisingly, hard and error-prone. Due to the potential

huge impacts on business if network incidents happen on WAN, making sure the configurations are

correct before pushing them into production is one of the most important tasks for the network group

in Alibaba. In the state-of-art, we have several options to check the network configurations:

Verification vs emulation. Network emulators like CrystalNet [65] enable the network operators to

proactively validate network behaviors in a high-fidelity emulated environment. Compared with veri-

fication, network emulation has two issues which makes the configuration verification irreplaceable.

First, network emulation needs vendors to provide their device firmwares within virtual machines or

containers, while we found it is practically hard to get such support from all vendors at present. Sec-

ond, running real switch software requires large amount of computing resources (e.g., $100 per hour

for emulating one data center [65]). Since routers in WAN typically have much more sophisticated

firmware than data center switches, relying on emulation is extremely expensive. Therefore, we find

that a more pragmatic and comprehensive way to validate a network is to first use emulation offline

(in low frequency) to validate device firmware, and then use verification online (in high frequency)

to validate logic in the configurations.
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Configuration verification vs FIB verification. Existing work in network verification falls into two

broad categories: configuration verification and FIB verification. Configuration verification checks

whether the logic of network configurations meets the network operators’ intended properties (e.g.,

Minesweeper [12], Batfish [31], ERA [28], etc). Compared with FIB verification (e.g., NoD [69],

Anteater [13], Veriflow [54], HSA [50], etc) configuration verification not only offers more com-

prehensive verification results (e.g., considering failures), but also proactively detects configuration

errors, before adopting potentially buggy configurations in the network [12]. This ‘before-the-fact’

validation lead us to prefer the configuration verification approach.

2.1.3 Challenges in existing solutions

As our first attempt, we tried several existing mainstream configuration verification tools on the WAN

of Alibaba. Nevertheless, we find that existing solutions can hardly work effectively due to two major

practical challenges.

The first challenge is that existing solutions have poor scalability in the WAN. Taking Minesweeper [12]

as an example, we ran it on a workstation equipped with 32 CPU cores and 256 GB memory and

verified several subnets with different sizes of the WAN. Figure 2.1 shows the time spent to verify

a single query on a subnet N1 (only about 6.5% of the entire WAN of Alibaba). As we can see

in Figure 2.1a, the time increases exponentially as we increase the fraction of routers within N1,

reaching 2.5 hours. Therefore, the total verification time on the entire WAN can easily become

intractable, and, to make matters worse, there can be thousands of queries to fully verify a network.

There are several specific reasons why Minesweeper is slow in the WAN. First, the WAN contains a

large number of IP prefixes, which is expensive to handle in logical formulations [12]. For instance,

as shown in Figure 2.1b, the verification time can be reduced if we remove prefixes in N1; second,

the WAN has many BGP peering sessions due to the “one-peer-per-link” design strategy for fault

tolerance, and Figure 2.1c shows that a large number of peering sessions can inflate the verification

time on N1.

The second challenge is that it is hard to get faithful models of network devices due to VSBs,

which, in turn, significantly undermines the correctness of the verification results. Specifically, our
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first attempt deployed the state-of-the-art verification tools in the WAN of Alibaba, but got many

incorrect results. For example, Batfish and Minesweeper give incorrect verification results in the VSB

case shown in Figure 2.6a. Before we consider the impacts from VSBs, the verification results also

have poor accuracy: 79% prefixes have less than 60% accuracy rate compared with the ground-truth

(Figure 2.13). Thus, it is hard for a verification tool to get correct results in a complex network

consisting of routers from diverse vendors without taking VSBs into account.

It is critical to address the preceding two challenges to deploy a configuration verification system

in production, with correctness, failure coverage and scalability in computation.

2.2 Overview

TITAN provides services to network operators for verifying whether a set of configurations have

violations on some particular reachability properties or not; meanwhile, it constantly compares the

routes it computes from its current device behavior models and online configurations against the

routes in real networks, to find flaws in its current behavior model and facilitate the operators to fix

these flaws. Therefore, TITAN’s architecture has two parts, as shown in Figure 2.2.

In the front-end, the configuration verifier (blocks outside the gray area) combines the current

online configuration and the proposed configuration changes from operators to generate the target

configuration to be verified. According to the SKU of each device of the network, it obtains each

device’s behavior model and feeds them with the target configuration to generate the target network

model. After that, the verification block queries the target network model to answer operator’s

reachability questions (§2.3).
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In the backend, the behavior model tuner (components in the gray box) continuously collects

online configurations and network information, including routing table (RIB) and route updates. The

tuner, on one hand, passes these configurations to each device’s behavior model to generate the online

network model. On the other hand, it calls the validator to check whether there are any mismatches

between the model it computes and the network information it collects. When a mismatch is found,

the tuner localizes to a small configuration snippet, so that a human can easily understand. Network

operators normally write a small patch to fix the flaw in corresponding device models (§2.4). Note

that despite Figure 2.2 only showing the comparison against the production network, we augment

this with comparisons against testbed and emulation environments.

Next, we explain two important concepts: device behavior model and network model.

2.2.1 Device behavior model

Generally, as shown in Figure 2.3, a device behavior model consists of two pipelines for processing

route updates on control plane and packets on data plane respectively (we use the word “message” to

refer to a route update or a packet). A concrete device behavior model is generated from the device

configuration and the vendor specific behavior modeler of the device type. TITAN builds vendor

specific configuration parsers and behavior modelers for all types of devices that could appear in

production networks.

Each processing pipeline has three sequential components: ingress policy, route selector and

egress policy, as shown in Figure 2.3. Ingress and egress policies are essentially match-action tables

that define whether to forward or drop a message and/or how to modify a message based on the

pattern of the message. For instance, on the control plane, a BGP router can have an ingress policy

which drops route updates from a particular peer, and on the data plane, a router can have an egress
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ACL rule that drops UDP packets on a particular interface. The route selector encodes the core logic

of routing protocols on the control plane or the forwarding logic on the data plane. For instance, in

a BGP router, the route selector decides how to prioritize routes from different peers for the same

subnet and sends the best route to the peers of this router; on the data plane, it matches a packet to a

rule in the FIB based on longest prefix or other built-in logic and selects next hop(s) to forward the

packet.

For different vendors and different device SKUs, the specific behavior of ingress and egress

policies and the logic inside route selectors can be distinct. Therefore, TITAN must build device

behavior models adaptively.

2.2.2 Network model

After obtaining all the behavior models of network devices, TITAN connects them according to the

network topology. If two devices have a link between them, their ingress and egress modules in their

behavior models are connected together in both directions. The resulting graph is called network

model.

In a network model, TITAN first makes route announcements from the edges of the network

model. Each route update is processed by the control plane pipeline it meets, so that it is propagated

across the network model. The RIB of each device is established once the propagation process is

done. The FIB then is derived from the RIB. With the complete RIB and FIB, the reachability of a

given message can be easily evaluated by combining relevant logical rules along the pipelines the

message encounters.

The process of verifying reachability on a network model is similar to existing simulation-

based verification tools (e.g., Batfish [31]). Nonetheless, TITAN’s uniqueness lies in that it does not

mechanically mimic the real networks, but encodes topology conditions along with the messages to

construct RIBs and FIBs. This significantly boosts the scalability to verify reachability under failure

cases, as we will discuss in next section.
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2.3 Configuration Verifier

This section shows how TITAN performs reachability verifications and achieves the tremendous

improvement in scalability.

2.3.1 Reachability on control- and data-planes

According to the requirements from operators, TITAN checks reachability of both routes and packets.

On one hand, TITAN justifies whether the route to a given subnet can reach a group of network

devices after the route propagation process. This is useful for debugging control plane configurations

such as BGP peering, routing policies, etc. On the other hand, TITAN verifies whether packets

towards a given subnet can start from a group of network devices and reach the gateway router of the

subnet. Note that “the route of a subnet can reach device A” does not necessarily mean “a packet can

reach the subnet’s gateway router from A” because of multiple reasons such as data plane ACL rules

and longest prefix matching.

2.3.2 Intuitive example of topology condition

We first use an intuitive example to explain the concept of topology condition encoding, which is the

key to TITAN’s good scalability in verification with failure cases.

Whether a device sends or receives a message depends on the up or down status of particular links.

Figure 2.4 shows a simple BGP network. We use a tuple (Subnet, AS Path, Nexthop, TopoCond)

to denote a BGP update with corresponding topology condition. A topology condition is a logic

formula composed by binary link aliveness variables (an). For example, a1 = True means Link1 is

up. At step À, C receives a BGP update originated from A, (N, 100, A, a1), if Link1 is alive. At this

step, a1 is the topology condition which must be true for C to get the route update from A. Similarly,

at steps Á and Â, the route updates m2 and m3 also have their topology conditions: m3’s topology

condition is a2 ∧ a3, as B must first receive the route under a2 and then forward to C under a3.

After receiving messages (m1 and m3), C writes them into its routing table (RIB) (step Ã). Rules

in the RIB are directly inherited from the topology conditions in the messages. C’s RIB has two rules
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(r1 and r2), whose topology conditions are inherited from m1 and m3 respectively. Following BGP,

C ranks all received routes and only forwards the best to its peer D (and B). In this case, C ranks r1

higher because it has a shorter AS Path. If r1 exists, C sends m4 to D. Otherwise, it sends m5 (step

Ä). Note m5’s topology condition is the negation of r1’s in conjunction with r2’s. This means under

the case that r1 does not exist in C’s RIB but r2 does. Finally, D receives m4 and m5 and builds its

RIB (r3 and r4) with the corresponding conditions (step Å).

After this route propagation process, it is straightforward to check the route reachability from A

to D. For example, the topology condition for D to receive at least one route for Subnet N is r3’s

topology condition or r4’s topology condition. It is also easy to find the failure case with the least

link failures which causes unreachability from A to D. In this case, failure of Link 4 (¬a4) makes D

unreachable from A.

Note that in this example TITAN has to simulate the propagation of more messages than would

be propagated in the network, because of the multiple paths between the source and destinations

of a path. In the worst case, there could be an exponential number of such paths. Luckly, in many

practical topologies this doesn’t happen, and in Section 2.3.6 we detail aggressive pruning rules that

keep the problem tractable at the full scale of the WAN in Alibaba.

2.3.3 Topology condition encoding

Topology condition encoding in messages . Formally, given a route update m, we use a logical

formula (I(m,A)) to decode the topology condition that message (m) reaches the ingress pipeline of

device A. Similarly, we use E(m,A) to refer to the topology condition that message (m) is sent to
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the egress pipeline of device A. I(m,A) and E(m,A) are composed by the link aliveness variables.

Topology condition encoding in RIB/FIB . In real networks, a device will select routes from what

it receives to build up its RIB. From Figure 2.4 example, we have two observations: (i) the ranking of

the routes only depends on the properties of the routes, independent with the topology conditions;

and (ii) a lower ranked route will be selected if the ones in higher ranks are missing in the device.

Therefore, we extend the real world RIB to have all received routes of a device with ranking and

their corresponding topology condition.

In Figure 2.4, one implicit condition for inserting m1 and m3 into C’s RIB is that they pass C’s

ingress policy. The ingress policy only considers the attributes of the route updates and is independent

of topology conditions. Therefore, r1 and r2 can keep m1 and m3’s topology conditions respectively

if they survive after C’s ingress filtering.

In general cases, a rule in RIB is directly derived from a route update. However, in practice,

route aggregation, which merges several small subnet routes into a single larger subnet routes, is

common. To handle route aggregation, TITAN reads the trigger conditions of route aggregation from

configurations and separately handle the cases with and without route aggregation. For instance, if

the configuration indicates that routes for “10.0.1.0/32” (with ingress topology condition I1) and

“10.0.1.1/32” (with ingress topology condition I2) will be aggregated to a single route for “10.0.1.0/31”

once both of them are received. We put following rules in the RIB:

ragg = (10.0.1.0/31, ∗, ∗, I1 ∧ I2)

rsub1 = (10.0.1.0/32, ∗, ∗, I1 ∧ ¬I2)

rsub2 = (10.0.1.1/32, ∗, ∗,¬I1 ∧ I2)

Note that ragg, rsub1 and rsub2 are exclusive with each other in topology conditions. Despite in

theory this method to handle route aggregation can lead exponential number of case combinations,

we find it works well in practice because operators usually explicitly write a moderate number of

aggregation triggering cases in the configuration and forbid automatic route aggregations for the



19

controllability to routes.

2.3.4 The reachability of routes

The reachability of a route r to a network device D means that whether D can receive a route r ulti-

mately when the control plane protocols have converged. The operators can specify a particular route,

e.g., (“10.0.1.0/31”, 100-200-300, C), or a pattern representing a group of routes, e.g., (“10.0.1.0/31”,

*, *) which means any route to subnet “10.0.1.0/31” no matter the AS path or the next-hop, to verify

the reachability.

In TITAN, the key step to verify route reachability under failures is to derive topology conditions

for each route update and each rule in RIB/FIB.

Iteratively deriving topology conditions of routes . We use three simple rules to iteratively derive

the topology conditions of all route updates, rules in RIB and FIB:

(i) From RIB to egress: Suppose ri denotes a rule in RIB and r1, . . . , ri−1 are rules to the same

destination subnet with higher priority than ri. The topology condition to send a route update (mi)

from ri to egress policy pipeline is ¬R(r1)∧ . . .∧¬R(ri−1)∧R(ri), in which R(r) is the topology

condition of rule r in the RIB. For example, in Figure 2.4, the topology condition of m5 is computed

according to this rule. Note that one implicit condition for the transition from a RIB rule to a route

update is that the route selector decides to send a route to the egress interface.

(ii) From egress to other side’s ingress: For a route update m with topology condition E(m,S)

in S’s egress, the topology condition for m to reach D’s ingress (D is a peer of S) is I(m,D) =

E(m,S) ∧ al where l is the link from S to D. For example, in Figure 2.4, the topology condition of

m3 is derived from m2 based on this rule. Note that one implicit condition for the transition from

egress to otherside’s ingress is that m passes the egress policy of S.

(iii) From ingress to RIB: For a route update m with topology condition I(m,D) in D’s ingress,

the route selector applies a route sorting algorithm to put m into RIB as rule ri with topology

condition I(m,D) if no route aggregation is triggered. For instance, in Figure 2.4, r1 and r2’s

topology conditions are from m1 and m3. Otherwise, route aggregation will be applied and new rules

will be available in RIB hereafter as described earlier. Again, one implicit condition for the transition
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from ingress to RIB is that m passes D’s ingress policy.

With the preceding three simple rules, starting from the configured routes (with True topology

condition) in the RIBs of the gateway routers of all subnets, TITAN can iteratively derive the route

updates and the RIBs with their corresponding topology conditions. The whole route propagation

process ends when no router has any new route updates to send.

During the route propagation process, one critical issue is to handle “late higher priority routes”.

Specifically, topology condition of a route update generated from a low priority RIB rule depends on

high priority rules. Therefore, if a lower prioritized rule arrives at a device first, it is possible that it is

announced with an incorrect topology condition. The solution to this issue is to track the propagation

of each route and make an adjustment to topology condition of the lower priority route by “anding”

the negation of the new, higher prioritized rule’s topology condition. Then we announce the new rule

with its new topology condition.

Computing route reachability under failures . Obviously, when the route propagation converges,

it is easy to see whether a subnet exists in the RIB of a device. Moreover, because every RIB rule in

TITAN has a topology condition, operators can also check whether there exists a failure case that

makes routes unreachable to a device under k failure links. If there exists, we can conclude that the

reachability is not resilient with up to k link failures. Therefore, given the candidate rules r1, . . . , rn

and their topology conditions R(r1), . . . , R(rn), the topology condition which makes at least one

rule exist is V = R(r1) ∨ . . . ∨ R(rn). By leveraging logic solver (e.g., Z3), we can easily get

the minimum number of False variables to make V be False [5, 6]. For instance, in Figure 2.4, the

topology condition for D to receive at least one route to subnet N is V = (a1∧a4)∨(¬a1∧a2∧a3∧a4).

We can see that if a4 is False, V will be False.

2.3.5 The reachability of packets

Operators also need to judge the reachability of a packet with a destination from a group of network

devices to the gateway of the destination subnet. Although, as we mentioned, route reachability

does not mean packet reachability, route reachability to a destination is the necessary condition of

packet reachability. Hence, the first step to verify packet reachability is to finish the route propagation
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Figure 2.5: Packet & FIB with topology conditions.

process and generate FIB from RIB in each device. As we presented in §2.3.3, each FIB rule takes

the topology condition from its corresponding RIB rule. Figure 2.5 shows the packet propagation

process with topology conditions. We omit packets from C to A through B due to space limit. As we

can see, every device’s FIB inherits its RIB’s topology conditions as in Figure 2.4.

Iteratively deriving topology conditions of packets . Similar to a route update, a packet also has a

topology condition to reach the ingress or the egress of a device behavior model’s data plane pipeline.

The topology condition of packets can also be derived iteratively with two simple rules:

(i) From FIB to egress: Suppose r1, . . . , rn are rules that match a packet p’s destination, and they

are ranked from high priority to low 1. p will hit the highest ranked rule and get forwarded to the

rule’s nexthop – if it is an ECMP rule with multiple nexthops, each nexthop will have a copy of p.

Suppose I(p, S) is the topology condition for p to enter S’s ingress, and R(ri, S) is the topology

condition of ri for existing in S, the topology condition for p to enter S’s egress interface indicated

by ri is E(p, S)i = I(p, S) ∧ ¬(R(r1, S) ∨ . . . ∨ R(ri−1, S)) ∧ R(ri). For example, at Step À in

Figure 2.5, a packet p0 from D to subnet N can hit two rules in D’s FIB and p1 and p2 represent p0

with different topology conditions by hitting different rules.

(ii) From egress to otherside’s ingress: For a packet p with topology condition E(p, S) in S’s egress,

the topology condition for p to reach nexthop D’s ingress is I(p,D) = E(p, S) ∧ al where l is the

link from S to D. For example, at step Á in Figure 2.5, p3 and p4 are generated by this rule.
1There can be rules with different subnet granularity matching the destination. Based on the longest prefix matching

strategy, we first rank rules based on their subnet granularity and put smaller subnet granularity to higher priority. We keep

the rank of the rules in the same subnet as what they are in the RIB.
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FIB’s topology condition is fixed during the packet propagation, since packets, unlike route

updates, cannot change RIB/FIB in routers. Hence, similar to Step À, p3 and p4 hit r1 in C, generating

p5 and p6 at step Â. Note that in TITAN a packet can also be symbolic. The only difference is that

topology conditions are attached to each packet branch during symbolic execution. We omit the

details due to space limit.

Computing packet reachability under failures . After the packet propagation process, there can

be multiple copies of the packet with different topology conditions reaching the gateway of the

destination subnet. Similarly, we can combine all topology conditions and check whether there exists

a failure case with less than k failures which eliminates the reachability of the packet.

2.3.6 Optimizations for scalability

One potential concern is that tracing topology conditions in the route or packet propagation could

grown exponentially, due to logic implications of multiple paths, route aggregations, or ECMP.

However, we take the following strategies that make TITAN scale substantially. Section 2.6.1 shows

the effectiveness of these strategies at the scale of the full WAN of Alibaba.

Dropping more-than-k-failure conditions : If the topology condition of a route has already con-

tained more than k negation of link aliveness, the route will be dropped because we only care about

the failure cases with no more than k link failures. Since k is typically small (e.g., k=3) compared

with the total number of links, this strategy can significantly reduce the number of propagation

branches to explore.

Dropping impossible conditions : It is also easy to judge whether a formula is always False for

further pruning. For example, in Figure 2.5, we stop considering p6 at step Ã because its topology

condition is always False.

Simplifying condition formulas : There are at most the number of links variables in a topology

condition formula. In addition, a route update or a packet usually only pass through a small number

of links. Hence, the number of independent variables in a topology condition is typically small,

so that a topology condition can be simplified to a short formula. We can archive great memory

efficiency from such simplification.
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Another concern in the pruning strategies is the impact of “late high ranked rules”. Specifically,

if we announce a low ranked rule first and make the amendment to its topology condition later,

whether the pruning decisions we have already made before are still valid. Fortunately, the answer

is yes: suppose r is the low ranked rule, and R(r,D) is its old topology condition when it is first

announced. Later, after the high ranked route r′ comes, r’s topology condition will be modified to

R(r,D) ∧ ¬R(r′, D). If r has already been dropped at D, R(r,D) has either more than k negative

variables or is always False. Modifying R(r,D) to R(r,D) ∧ ¬R(r′, D) can neither reduce the

number of negative variables nor make R(r,D)∧¬R(r′, D) be True (if R(r,D) is False). Therefore,

the pruning decisions remains valid after topology condition amendments.

2.3.7 Link state protocols and redistribution

The preceding reachability verification process is designed for distance or path vector routing

protocols like BGP. Besides BGP, the backbone network in the WAN of Alibaba is a single big AS,

which uses IS-IS to distribute routes to loopback IPs of BGP routers to establish iBGP sessions. We

use a graph based method like ARC [35] to first verify loopback IP reachability over IS-IS under k

failures. If the IS-IS configurations fail to pass the verification, operators need to fix the errors in

IS-IS first. Otherwise, all the route redistributions from IS-IS will be treated as static routes with

initial topology condition set as True. Because IS-IS has already passed the reachability verification

under k failures, we simply assume iBGP sessions are always up during the BGP verification process.

2.4 Behavior Model Tuner

In §2.3, we see the faithfulness of network models serves as the foundation of verification correctness:

even a small logic flaw in network model is likely to cause incorrect results (see §2.5). In this section,

we describe how TITAN leverages its device behavior model tuner to continuously detect flaws caused

by VSBs and achieve high fidelity verification results.
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Figure 2.6: A simplified real example of a latent VSB: Vendor A does not remove the community
number from its BGP updates by default, while Vendor B does. Our model follows Vendor A’s
behavior.

2.4.1 Building faithful behavior models is hard

To build a faithful behavior model for a device, one should master the configuration language of the

device’s vendor and how the device’s firmware implements the behaviors indicated in configurations.

However, the second requirement is particularly hard due to several pragmatic challenges.

Standards can be ambiguous . RFC’s specification usually defines protocol behaviors with am-

biguous words like “should” or “may”, causing different vendors to implement the corresponding

configuration policy in diverse ways.

Standards can be incomplete . Ideally, RFCs should be comprehensive enough to cover all the

cases of protocol execution; however, the fact is not. Due to the incompleteness of RFC specification,
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vendors define their own default behaviors based on their own safety concerns and understandings.

Vendor’s implementation can be incomplete . Furthermore, despite RFCs define a large number of

protocol behaviors, the majority of vendors only realize them partially, and different vendors might

choose different parts in implementation.

Because of the preceding pragmatic challenges, we design the behavior model tuner in TITAN as

a systematic and automatic way to build behavior models in a vendor-specific manner and find and

fix logic flaws in the behavior models.

2.4.2 Behavior model tuner

We have to use black-box testing methodologies to compare the behaviors of our model with real

devices, since vendors typically do not share the details of their implementation in all aspects and

cases. The basic idea to find flaws in current device behavior models is to compare whether the model

can have the same output with the same input as a real device in different network environments.

Nevertheless, there are several critical challenges to realize this simple idea:

Unpredictable VSB areas . Despite from historical experiences, operators know some areas are

likely to have VSBs like remove-private-as, new VSB areas are being discovered now and

then in practice. Therefore, we cannot just make a list of all potential VSB areas to check proactively.

Instead, we need to broadly check the behavior models and find new VSB areas. Hence, we try to

create various environments to check our models rather than constructing several special cases for

particular VSBs. We also try to localize the root cause if a mismatch between our model and real

devices is found rather than assuming it is caused by any known VSBs.

Coverage of comparison cases . A device needs a context to perform a behavior. For instance, a

BGP router needs to receive proper routes to perform route aggregation. Or it needs to get updates

with private ASes in the path to perform remove-private-as. Even for a single type of device

and a single route protocol, there are too many cases to cover in general to fully validate whether a

device behavior model matches the actual behavior of real devices.

Our pragmatic strategy to address the coverage issue is to make sure we first cover all cases that a

device faces in production. Therefore, the behavior model validator (Figure 2.2) keeps monitoring the
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VSB Description Affected dev.
#

patch-lines
default ACL Whether permitting data packets that match no explicit ACL. 87.5% 40
default route

policy
Whether accepting route updates that match no explicit policy. 82.83% 39

(ext) community
Whether including (extended) communities in route updates by

default.
63.91% 46

route
redistribution

Whether redistributing default route (0.0.0.0/0). 13.26% 30

AS loop Whether allowing AS number repetitions in AS Path. 8.63% 26
remove private

AS
Whether removing all private ASes from AS path. 7.38% 66

self-next-hop
Whether using self as next-hop when announcing iBGP updates to

VPN peers.
6.52% 13

local AS Whether adding new AS into AS path during AS migration. 1.32% 17

Table 2.1: Detected VSBs and their impacts.

online configuration and the route propagation of the production network and continuously compares

the route propagation it computes from current behavior model with the real network. Alerts are

raised if a difference is detected. Then the behavior model validator locates the root cause of this

difference.

This strategy works surprisingly well in practice. One reason is that the WAN in Alibaba is

complex, so that the major types of devices can have various deployment scenarios, which allows

their behavior models to be validated with enough diversity over time. Besides, for new type of

devices that have not been deployed in production yet, we rely on testbed or emulation to construct

the deployment scenarios of the devices. Fortunately, the number of deployment scenarios for new

device is typically small for the common “gradual upgrade” purpose.

Localization of root causes . First, it is possible to localize root causes at a wrong place if we merely

use existing monitoring methods and data to detect mismatches. Because a VSB’s impact might

only be observed far from the real root cause place. For instance, in Figure 2.6a, R2 (Vendor B) by

default removes communities from the BGP updates it sends, while other routers (Vendor A) do

not. Figure 2.6b shows the RIBs of the four routers. Prefix 10/8 in R4’s RIBs has a mismatch, but

R3’s are identical. Naturally, one might think the root cause is R3 or R4. However, it is R2, which

can only be discovered if we look at the community of each route in R2 and R3’s RIBs. In order to

accurately locate the root cause, we create a concept called “extended RIB (ext-RIB)” which includes
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all attributes of each route that can make impacts in route selection. We compare ext-RIBs rather

than real RIBs directly from devices for root cause localization.

Second, even with ext-RIBs, some VSBs are still latent. For example, in Figure 2.6b, ext-RIBs

for prefix 20/8 are identical in all routers. If 10/8 does not exist, the only way to detect the VSB

is in the route updates from R2 to R3 (Figure 2.6a); thus, besides ext-RIB, we also collect route

updates received by the routers and use BGP monitoring protocol [102] to check the process details.

This enables the tuner to precisely locate VSBs between ingress policy and route selector.2 After

that, the operators write patches embedded in corresponding device behavior models to make them

faithful. All of these methodologies are necessary to accurately locate the root causes, since VSBs

are prevalent in all steps of route processing.

Scalability of model validation . Comparing all IP prefixes’ propagation process is not traceable in

the network. We split configurations into blocks that each presents a single policy or behavior. We

then build an automatic way to suggest moderate number of prefixes that can cover most configuration

blocks, similar to the “equivalent class” idea in ATPG [124].

Deployment status . Now, we have deployed the behavior model tuner for BGP on control plane.

We plan to apply similar ideas to other control plane protocols and data plane. Current deployment

finds not only model flaws caused by VSBs, but also software bugs in the model development.

2.5 Deployment Experience

TITAN has been deployed in production and used in daily basis on the WAN in Alibaba. In this

section, we present VSBs and configuration errors TITAN found in real world.

2.5.1 Real world vendor-specific behaviors

Table 2.1 lists some major VSBs TITAN found in production which significantly influence the results

of configuration verification. The column of “Affected dev.” shows the fraction of devices that

potentially face this VSB, and “# patch-lines” means the lines of code to patch the behavior model.

2The information between route selector and egress is still under development
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We pick some example VSBs from Table 2.1 to explain their impact.

Default policy . “default ACL” and “default route policy” affect the most of devices in the WAN.

Both of them refer to the vendor’s default action (permit or deny). If a route update (or packet) does

not match any explicit route policy or ACL rule in a device, permitting or denying this route update

(or packet) is totally up to this device’s vendor default action.

Community in BGP updates . The VSB example in Figure 2.6 is the “(ext) community” VSB.

Some vendors drop the extended communities at default, while others keep. Unaware of this type

of VSB, a verification tool may generate a RIB different from the real-world one, like R4’s RIB in

Figure 2.6.

AS migration . The configuration of “local AS” is designed for changing a router’s AS number

(a.k.a. AS migration). At the beginning of an AS migration, operators typically want to keep the old

AS number to a router’s existing peers for maintaining the BGP session. They configure the old AS

number as “local AS”. In the BGP updates of the router under migration, some vendors just put the

old AS number in the BGP path, but others put both new and old. This affects the length of AS path

which is used in many routers as a metric to select the best route. Therefore, this VSB ultimately

impacts reachability judgment when verifying an AS migration plan.

iBGP peering via VPN . Normally, if a router A1 learns a route with next-hop B from its iBGP peer

A2, A1 uses B as the next-hop of the route in its RIB. However, if A1 and A2’s iBGP session is on

top of VPN, some vendor automatically enables “self-next-hop” on A2, such that the next-hop A1

learns is A2 instead of B. As A1 may have different control plane or data plane policies to A2 versus

to B, whether enabling the “self-next-hop” also affects the reachability verification results.

2.5.2 Real world configuration errors

TITAN has been used to continuously monitor the correctness of online configurations and verify the

configuration updates on the WAN. We now share some representative configuration errors from the

hundreds of errors we found.

Wrong attributes in BGP updates. The operators in Alibaba attach BGP updates with various

attributes (e.g., med, community, etc.) during the propagation process to meet network business
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requirements in Alibaba. For example, at some devices, we filter the community information to make

sure they only accept and process the intended BGP routes.

Misconfiguration in changing these attributes (add, modify and remove) is common in the WAN

before we develop TITAN. Missing attributes or incorrectly attached attributes may cause routers to

make incorrect decisions. With TITAN, the operators significantly prevent such errors by reasoning

about the reachability property in the WAN. For example, the operators expect a given router should

talk to another, whereas in fact it doesn’t. TITAN is able to show such an unreachability with detailed

information that includes the propagation path of this route and where and why it is blocked.

Errors caused by incorrect BGP neighbor updates. In the network updates, operations like

adding or deleting BGP neighbors are quite common but highly risky—any small error may cause

disaster. For example, unwittingly or incorrectly removing a critical BGP node would cause a large

amount of traffic to re-route, significantly degrading the service quality.

With TITAN, the operators can first simulate the target network before they apply the updates.

Then, they could run TITAN to check whether the prior reachability properties still hold. By doing

so, the operators can easily find this type of configuration errors ahead of time. We notice that after

using TITAN, the errors resulting from incorrect BGP neighbor updates have been totally prevented.

Configuring device group incorrectly. To reduce the complexity of managing the WAN, many

functionally-similar routers—e.g., playing the same roles, locating in the same cluster, and serving

for the same service—are configured into device groups. The network operators push identical

configurations to the routers within the same device group.

Unwittingly or incorrectly adding devices to an incorrect device group may cause severe problems,

especially during failures. The operators in Alibaba have used TITAN to find many “device grouping”

errors in the WAN by checking the role equivalence: routers in the same device group should always

receive the same route updates and have the same network state.
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2.6 Performance Evaluation

In this section, we present some key performance numbers directly from the deployed system to

unveil the real running status of TITAN. We also compare the verification performance of TITAN with

two state-of-the-art verification tools in conducted experiments. We run all evaluations on a server

with Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz (32 logical cores), 256GB RAM and 1T SSD.

2.6.1 TITAN’s performance in the wild

Verification performance . Figure 2.7 shows the CDF of the time to simulate the propagation

process of one IP prefix in TITAN over the entire WAN. Specifically, 98% IP prefixes can be done

within one second. When k becomes large (e.g., k = 3), the 90-percentile time cost increases to

around 17 seconds.

Once the simulation is done for all prefixes, operators can verify whether network properties are

held under normal and failure cases by solving the topology conditions corresponding to each route.

Figure 2.8 shows the CDF of the time to verify route reachability queries by the solver. It includes the

time to verify the logical formula by the solver and some system overhead (e.g., RPC, data loading
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Network properties Route reachability Packet reachability

Reachability

k = 0 481s 245s
k = 1 770s 304s
k = 2 1523s 715s
k = 3 10496s 3989s

Role equivalence 13s -

Table 2.2: Time to verify the entire WAN in Alibaba with TITAN
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and parsing time). We observe TITAN can answer these queries in a quite light-weight way after the

initial route propagation. The most complicated query under the failure case (k = 3) is answered

within 8s. Figure 2.9 shows the end-to-end latency for verifying one IP prefix. Even for k = 3 the

median is < 10s.

Pruning (§2.3) keeps the logic formula simple in the topology encoding. Figure 2.10 shows the

distribution of topology condition formula length. We observe that the maximum formula size in

TITAN is only about O(10, 000). When k = 3, on average, only 2% of conditions survive during

the propagation process, as shown in Figure 2.11. 61%, 27% and 10% of conditions are cut due to

larger-than-k, impossible condition and policies respectively. As shown in Figure 2.12, once the

propagation is done, the longest size of the composed reachability formula for k = 3, fed into the

solver is 137,078.

In addition to the performance evaluation for individual IP prefixes, we also show the overall

performance in real-life verification scenarios. We evaluate the end-to-end verification latency in

two scenarios: (i) route reachability verification with network operators’ expectations and packet

reachability verification for all pairs of devices; (ii) equivalence verification of two devices. TITAN

takes 30 seconds on average to load all topology and configuration information. Table 2.2 shows

it can finish all-pair packet reachability verification around 4 hours even with k = 3. The device

equivalence verification is super fast, which is about 13 seconds on average.
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Verification accuracy. We measure the verification accuracy by comparing TITAN’s outputs with

operator’s expectation and figuring out the wrong side if a mismatch happens. We define “prefix

accuracy” as the fraction of reachability properties (e.g., reach or not reach a target) that is correctly

computed by TITAN. Figure 2.13 shows the CDF of the prefix accuracy in the WAN. We observe

that before we deploy the behavior model tuner, the accuracy of verification is fairly low: 50% of the

prefixes have 50% accuracy or lower. The verification accuracy was significantly boosted 6 months

later. After TITAN discovered and fixed many VSBs, 95% of the prefixes announced in Alibaba have

reached 100% accuracy. The remaining inaccuracy is caused by data error or incomplete input fed by

the external system, rather than the quality of TITAN’s behavior model.

Behavior model tuner performance . To present the overhead of our behavior model tuner, we pick

200 IP prefixes in the WAN. These prefixes not only cover the most important services of Alibaba,

but also are active to serve for millions of users. We measure each prefix in details to show the

performance and overhead of the behavior model tuner.

Figure 2.14 shows the CDF of the time to load ext-RIB from a real device. In this process, TITAN

needs to contact the target router and pull the network state back. As we can see, the loading time

is 222 ms and 382 ms in 50% and 90% percentile respectively. Even for the prefix with largest

propagation scope, the loading time is less than 800 milliseconds.

We measure the memory cost of this process. Loading ext-RIB for one IP prefix from one device

is around 1 KB. The total memory cost for all these 200 prefixes is around 840 MB.

After the ext-RIBs are loaded, TITAN checks and locates VSBs. We evaluate the time cost of this

process in Figure 2.15. In most (90%) cases, TITAN takes less than 1 second.

2.6.2 Comparing with existing tools

We compare TITAN with Batfish [31] and Minesweeper [12] on verification performance with

conducted experiments.

Experiment setup . Because Batfish and Minesweeper cannot verify the entire WAN due to the

scalability issue, we pick two subnets from the WAN—a small one with 20 routers and a medium

one with 80 routers—and use the three tools to verify them for performance comparison. We perform
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Network properties TITAN Minesweeper Batfish

Reachability

k = 0 3s 1555s 28s
k = 1 4s 3573s 6299s
k = 2 5s 4733s > 24h
k = 3 14s 7430s > 24h

Role equivalence 3s 203s -

Table 2.3: Time comparison in the small subnet.

Network properties TITAN Minesweeper Batfish

Reachability

k = 0 14s 84043s 683s
k = 1 22s > 24h > 24h
k = 2 43s > 24h > 24h
k = 3 176s > 24h > 24h

Role equivalence 4s > 24h -

Table 2.4: Time comparison in the medium subnet.

two types of reachability verifications. The first is packet reachability. We verify packet reachability

between each pair of routers in the network. We use 50 threads to perform verification of different

device pairs in parallel for all three approaches. The second is device equivalence. We verify if

two selected routers receive the same routes and build the same RIB. We use a single thread in this

scenario.

Packet reachability. Table 2.3 shows the result in the small subnet. TITAN takes 3 seconds to finish

the reachability verification whereas Minesweeper and Batfish need 1, 555s and 28s respectively.

Without considering any link failures, TITAN’s RIB and FIB generation process is similar to Batfish.

The main reason why TITAN outperforms Batfish so much even when k = 0 is that Batfish consumes

much time on the constraint solver (like NoD [69]) it relies on.

When considering failure cases with different k, time cost for TITAN are increasing slightly to

14s. The time cost for the other two works increases dramatically. For instance, Minesweeper needs

thousands of seconds and Batfish takes more than 24 hours when k = 3.

In the medium subnet, TITAN performs orders of magnitude faster than Minesweeper and Batfish.

Similar to the performance in the small subnet, TITAN takes less than 3 minutes whereas Batfish and

Minesweeper need more than one day under different k as shown in Table 2.4.

We also evaluate the maximum length of the topology condition formula of each prefix in these

two networks. Answering the reachability of a given route, in most cases, TITAN needs to solve
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logic formulas of size 242 and 543 when k = 3 in the small and medium subnets respectively while

Minesweeper reaches 230,403 and 4,786,577.

The above evaluation results clearly demonstrate the huge advantage of TITAN in scalability to

verify network configuration with failure cases.

Device equivalence . Given two devices, TITAN can verify whether they receive the same route

updates and build the same RIB/FIB. The equivalence property needs not consider the failure case

since verifying this property is not required to be valid under failures. Table 2.3 and Table 2.4 show

TITAN takes less than 4s to verify this property whereas Minesweeper needs 203s and > 24 hours

respectively. We did not evaluate Batfish since its code does not have this feature.

2.7 Related Work

Early efforts (e.g., rcc [29] and iMinerals [11]) focused on analyzing individual routing protocols’

misbehavior (e.g., BGP) to locate the configuration error.

Data plan verification. To verify diverse protocols’ misconfiguration, data plane verification

approaches were proposed (e.g., NoD [69], Anteater [13], Veriflow [54], HSA [50], Delta-net [43],

and SymNet [104]); however, data plane verification work can only check a given data plane snapshot,

rather than proactively checking the entire control plane dynamics. Different from the above work,

VMN [86] can verify networks with middleboxes; and P-Rex [45, 100] verifies MPLS networks.

Control plane verification. In recent years, configuration verification approaches were proposed to

offer control plane-level checking [12, 28, 31, 35, 70, 90, 112, 114]. These solutions can be classified

into three categories:

(i) Simulation-based verification: Batfish [31], C-BGP [90] and FastPlane [70] take as input

network configuration and multiple given environments, simulate control plane, and finally generate

the corresponding data planes. They, then, leverage the existing data plane work (mentioned above)

to check misconfiguration. Simulation-based efforts suffer from scalability issue to consider failure

cases in large networks.

(ii) Graph-based verification: Efforts like ARC [35] model configurations as a directed graph,
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and then use graph-based algorithms to verify the network properties. ARC is fast, but has limitations

to encode complicated BGP routing policies.

(iii) Logical-formula-based verification: ERA [28] and Minesweeper [12] establish network

models based on entire configuration, and then convert network properties verification into BDD

and SMT problems, respectively. Bagpipe [114] shares the similar ideas, but only focuses on BGP

configuration verification. Although TITAN does not do symbolic route verification, we only target

the routes defined in the configurations. This difference is not the main reason that makes TITAN

outperform. Compared with TITAN, the above tools struggle on solving large, complex logical

formulas that are directly modeled from the control plane; TITAN merely traces the propagation of

routes and packets, so that it can prune during the process and only solves an MinSAT problem on a

simple and small logic formula.

Configuration synthesis and repair. Network configuration synthesis techniques are complemen-

tary to verification. Propane [13] and PropaneAT [14] are focused on BGP configuration synthesis.

SyNET [26] and Zeppelin [105] synthesize configuration for general protocols and fault-tolerant

router configurations, respectively. NetComplete [27] automatically completes partial configurations.

HARC [33] repairs buggy configurations.



Chapter 3

DSHARK: A General, Easy to Program

and Scalable Framework for Analyzing

In-network Packet Traces

We propose DSHARK, a general, easy to program and scalable framework designed for in-network

packet traces analysis. This work was done in collaboration with Microsoft Azure.

3.1 Motivation

DSHARK provides a scalable analyzer of distributed packet traces. In this section, we describe why

such a system is needed to aid operators of today’s networks.

3.1.1 Analysis of in-network packet traces

Prior work has shown the value of in-network packet traces for diagnosis [92, 129]. In-network

packet captures are widely supported, even in production environments which contain heterogeneous

and legacy switches. These traces can be described as the most detailed “logs” of a packet’s journey

through the network as they contain per-packet/per-switch information of what happened.

It is true that such traces can be heavyweight in practice. For this reason, researchers and

36
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Figure 3.1: The example scenario. We collect per-hop traces in Microsoft’s network (Y and ISP-
Y-switch) and do not have the traces outside Microsoft’s network except the ingress and egress of
ISP-Y-switch. The packet format of each numbered network segment is listed in Table 3.1.

Number Header Format

Headers Added after Mirroring Mirrored Headers

À ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP
Á ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP
Â ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP
Ã ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP
Ä ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
Å ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
Æ ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP
Ç ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

Table 3.1: The packet formats in the example scenario. Different switch models may add different headers
before sending out the mirrored packets, which further complicates the captured packet formats.

practitioners have continuously searched for replacements to packet captures diagnosis, like flow

records [21, 22], or tools that allow switches to “digest” traces earlier [40, 79, 108]. However, the

former necessarily lose precision, for being aggregates, while the latter requires special hardware

support which in many networks is not yet available. Alternatively, a number of tools [7, 38, 97] have

tackled diagnosis of specific problems, such as packet drops. However, these also fail at diagnosing

the more general cases that occur in practice (§3.2), which means that the need for traces has yet to

be eliminated.

Consequently, many production networks continue to employ in-network packet capturing

systems [113, 129] and enable them on-demand for diagnosis. In theory, the operators, using packet

traces, can reconstruct what happened in the network. However, we found that this is not simple in

practice. Next, we illustrate this using a real example.
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3.1.2 A motivating example

In 2017, a customer on Microsoft Azure reported an unexpected TCP performance degradation on

transfers to/from another cloud provider. The customer is in the business of providing real-time video

surveillance and analytics service, which relies on stable network throughput. However, every few

hours, the measured throughput would drop from a few Gbps to a few Kbps, which would last for

several minutes, and recover by itself. The interval of the throughput drops was non-deterministic.

The customer did a basic diagnosis on their end hosts (VMs) and identified that the throughput drops

were caused by packet drops.

This example is representative – it is very common for network traffic to go through multiple

different components beyond a single data center, and for packets to be transformed multiple times

on the way. Often times the operators do not control both ends of the connections.

In this specific case (Figure 3.1), the customer traffic leaves the other cloud provider, X’s network,

goes through the ISP and reaches one of Microsoft’s switches that peers with the ISP (À). To provide

a private network with the customer, the traffic is first tagged with a customer-specific 802.1Q label

(Á). Then, it is forwarded in Microsoft’s backbone/WAN in a VXLAN tunnel (Â). Once the traffic

arrives at the destination datacenter border (Ã), it goes through a load balancer (SLB), which uses

IP-in-IP encapsulation (Ä,Å), and is redirected to a VPN gateway, which uses GRE encapsulation (Æ,

Ç), before reaching the destination server. Table 3.1 lists the corresponding captured packet formats.

Note that beyond the differences in the encapsulation formats, different switches add different headers

when mirroring packets (e.g., ERSPAN vs GRE). On the return path, the traffic from the VMs on

servers in Microsoft Azure is encapsulated with VXLAN, forwarded to the datacenter border, and

routed back to X.

When the network operators in Microsoft are called up for help, they must answer two questions

in a timely manner: 1) are the packets dropped in Microsoft’s network? If not, can they provide any

pieces of evidence? 2) if yes, where do they drop? While packet drops seem to be an issue with many

proposed solutions, the operators still find the diagnosis surprisingly hard in practice.

Problem 1: many existing tools fail because of their specific assumptions and limitations. As
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explained in §3.1.1, existing tools usually require 1) full access to the network including end

hosts [7, 38]; 2) specific topology, like the Clos [97], or 3) special hardware features [40, 62, 79, 108].

In addition, operators often need evidence for “the problem is not because of” a certain part of the

network (in this example, Microsoft’s network but not ISP or the other cloud network), for pruning

the potential root causes. However, most of those tools are not designed to solve this challenge.

Since all these tools offer little help in this scenario, network operators have no choice but

to enable in-network capturing and analyze the packet traces. Fortunately, we already deployed

Everflow [129], and are able to capture per-hop traces of a portion of flows.

Problem 2: the basic trace analysis tools fall short for the complicated problems in practice.

Even if network operators have complete per-hop traces, recovering what happened in the network is

still a challenge. Records for the same packets spread across multiple distributed captures, and none

of the well-known trace analyzers such as Wireshark [2] has the ability to join traces from multiple

vantage points. Grouping them, even for the instances of a single packet across multiple hops, is

surprisingly difficult, because each packet may be modified or encapsulated by middleboxes multiple

times, in arbitrary combinations.

Packet capturing noise further complicates analysis. Mirrored packets can get dropped on their

way to collectors or dropped by the collectors. If one just counts the packet occurrence on each hop,

the real packet drops may be buried in mirrored packet drops and remain unidentified. Again, it is

unclear how to address this with existing packet analyzers.

Because of these reasons, network operators resort to developing ad-hoc tools to handle specific

cases, while still suffering from the capturing noise.

Problem 3: the ad-hoc solutions are inefficient and usually cannot be reused. It is clear that the

above ad-hoc tools have limitations. First, because they are designed for specific cases, the header

parsing and analysis logic will likely be specific. Second, since the design and implementation have

to be swift (cloud customers are anxiously waiting for mitigation!), reusability, performance, and

scalability will likely not be priorities. In this example, the tool developed was single threaded and

thus had low throughput. Consequently, operators would capture several minutes worth of traffic and

have to spend multiples of that to analyze it.
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Group
pattern Application Analysis logic In-nw

ck. only
Header
transf.

Query
LOC

One
packet
on one

hop

Loop-free detection[40]
Detect forwarding loop

Group: same packet(ipv4[0].ipid, tcp[0].seq) on one hop
Query: does the same packet appear multiple times on the same hop No No 8

Overloop-free detection[129]
Detect forwarding loop involving tunnels

Group: same packet(ipv4[0].ipid, tcp[0].seq) on tunnel endpoints
Query: does the same packet appear multiple times on the same endpoint Yes Yes 8

One
packet on
multiple

hops

Route detour checker
Check packet’s route in failure case

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: is valid detour in the recovered path(ipv4[:].ttl) No Yes* 49

Route error
Detect wrong packet forwarding

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: get last correct hop in the recovered path(ipv4[:].ttl) No* Yes* 49

Netsight[40]
Log packet’s in-network lifecycle

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: recover path(ipv4[:].ttl) No* Yes* 47

Hop counter[40]
Count packet’s hop

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) on all switches
Query: count record No* Yes* 6

Multiple
packets

on
one
hop

Traffic isolation checker[40]
Check whether hosts are allowed to talk

Group: all packets at dst ToR(SWITCH=dst ToR)
Query: have prohibited host(ipv4[0].src) No No 11

Middlebox(SLB, GW, etc) profiler
Check correctness/performance of middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: is middlebox correct(related fields) Yes Yes 18†

Packet drops on middleboxes
Check packet drops in middleboxes

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post middlebox
Query: exist ingress and egress trace Yes Yes 8

Protocol bugs checker(BGP, RDMA, etc)[129]
Identify wrong implementation of protocols

Group: all BGP packets at target switch(SWITCH=tar SW)
Query: correctness(related fields) of BGP(FLTR: tcp[-1].src|dst=179) Yes Yes* 23‡

Incorrect packet modification[40]
Check packets’ header modification

Group: same packet(ipv4[-1].ipid, tcp[-1].seq) pre/post the modifier
Query: is modification correct (related fields) Yes Yes* 4�

Waypoint routing checker[40, 80]
Make sure packets (not) pass a waypoint

Group: all packets at waypoint switch(SWITCH=waypoint)
Query: contain flow(ipv4[-1].src+dst, tcp[-1].src+dst) should (not) pass Yes No 11

DDoS diagnosis[80]
Localize DDoS attack based on statistics

Group: all packets at victim’s ToR(SWITCH=vic ToR)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No Yes* 18

Multiple
packets

on
multiple

hops

Congested link diagestion[80]
Find flows using congested links

Group: all packets(ipv4[-1].ipid, tcp[-1].seq) pass congested link
Query: list of flows(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 14

Silent black hole localizer[80, 129]
Localize switches that drop all packets

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

Silent packet drop localizer[129]
Localize random packet drops

Group: packets with duplicate TCP(ipv4[-1].ipid, tcp[-1].seq)
Query: get dropped hop in the recovered path(ipv4[:].ttl) No* Yes* 52

ECMP profiler[129]
Profile flow distribution on ECMP paths

Group: all packets at ECMP ingress switches(SWITCH in ECMP)
Query: statistics of flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* No 18

Traffic matrix[80]
Traffic volume between given switch pairs

Group: all packets at given two switches(SWITCH in tar SW)
Query: total volume of overlapped flow(ipv4[-1].src+dst, tcp[-1].src+dst) No* Yes* 21

Table 3.2: We implemented 18 typical diagnosis applications in DSHARK. “No*” in column “in-network checking
only” means this application can also be done with end-host checking with some assumptions. “Yes*” in column “header
transformation” needs to be robust to header transformation in Microsoft’s network, but, in other environments, it might not.
“ipv4[:].ttl” in the analysis logic means DSHARK concatenates all ivp4’s TTLs in the header. It preserves order information
even with header transformation. Sorting it makes path recovery possible. †We profiled SLB. ‡We focused on BGP route
filter. �We focused on packet encapsulation.

After observing these problems in a debugging session in production environment, we believe

that a general, easy-to-program, scalable and high-performance in-network packet trace analyzer can

bring significant benefits to network operators. It can help them understand, analyze and diagnose

their network more efficiently.

3.2 Design Goals

Motivated by many real-life examples like the one in §3.1.2, we derive three design goals that we

must address in order to facilitate in-network trace analysis.
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3.2.1 Broadly applicable for trace analysis

In-network packet traces are often used by operators to identify where network properties and

invariants have been violated. To do so, operators typically search for abnormal behavior in the large

volume of traces. For different diagnosis tasks, the logic is different.

Unfortunately, operators today rely on manual processing or ad-hoc scripts for most of the tasks.

Operators must first parse the packet headers, e.g., using Wireshark. After parsing, operators usually

look for a few key fields, e.g., 5-tuples, depending on the specific diagnosis tasks. Then they apply

filters and aggregations on the key fields for deeper analysis. For example, if they want to check all

the hops of a certain packet, they may filter based on the 5-tuple plus the IP id field. To check more

instances and identify a consistent behavior, operators may apply similar filters many times with

slightly different values, looking for abnormal behavior in each case. It is also hard to join instances

of the same packet captured in different points of the network.

Except for the initial parsing, all the remaining steps vary from case to case. We find that there

are four types of aggregations used by the operators. Depending on the scenario, operators may want

to analyze 1) each single packet on a specific hop; 2) analyze the multi-hop trajectory of each single

packet; 3) verify some packet distributions on a single switch or middlebox; or 4) analyze complicated

tasks by correlating multiple packets on multiple hops. Table 3.2 lists diagnosis applications that are

commonly used and supported by existing tools. We classify them into above four categories.

DSHARK must be broadly applicable for all these tasks – not only these four aggregation modes,

but also support different analysis logic after grouping, e.g., verifying routing properties or localizing

packet drops.

3.2.2 Robust in the wild

DSHARK must be robust to practical artifacts in the wild, especially header transformations and

packet capturing noise.

Packet header transformations. As shown in §3.1.2, these are very common in networks, due to

the deployment of various middleboxes [91]. They become one of the main obstacles for existing
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tools [80, 108, 129] to perform all of the diagnosis logic (listed in Table 3.2) in one shot. As we

can see from the table, some applications need to be robust to header transformations. Therefore,

DSHARK must correctly group the packets as if there is no header transformation. While parsing the

packet is not hard (indeed, tools like Wireshark can already do that), it is unclear how operators may

specify the grouping logic across different header formats. In particular, today’s filtering languages

are often ambiguous. For example, the “ip.src == X” statement in Wireshark display filter may match

different IP layers in a VXLAN-in-IP-in-IP packet and leads to incorrect grouping results. DSHARK

addresses this by explicitly indexing multiple occurrences of the same header type (e.g., IP-in-IP),

and by adding support to address the innermost ([-1]), outermost ([0]), and all ([:]) occurrences of a

header type.

Packet capturing noise. We find that it is challenging to localize packet drops when there is

significant packet capturing noise. We define noise here as drops of mirrored packets in the network

or in the collection pipeline. Naı̈vely, one may just look at all copies of a packet captured on all hops,

check whether the packet appears on each hop as expected. However, 1% or even higher loss in the

packet captures is quite common in reality, as explained in §3.1.2 as well as in [116]. With the naı̈ve

approach, every hop in the network will have 1% false positive drop rate in the trace. This makes

localizing any real drop rate that is comparable or less than 1% challenging because of the high false

positive rate.

Therefore, for DSHARK, we must design a programming interface that is flexible for handling

arbitrary header transformations, yet can be made robust to packet capturing noise.

3.2.3 Fast and scalable

The volume of in-network trace is usually very large. DSHARK must be fast and scalable to analyze

the trace. Below we list two performance goals for DSHARK.

Support real-time analysis when collocating on collectors. Recent efforts such as [129] and [92]

have demonstrated that packets can be mirrored from the switches and forwarded to trace collectors.

These collectors are usually commodity servers, connected via 10Gbps or 40Gbps links. Assuming

each mirrored packet is 1500 bytes large, this means up to 3.33M packets per second (PPS). With
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high-performance network stacks [1, 95, 116], one CPU core is sufficient to capture at this rate.

Ideally, DSHARK should co-locate with the collecting process, reuse the remaining CPU cores and

be able to keep up with packet captures in real-time. Thus, we set this as the first performance goal –

with a common CPU on a commodity server, DSHARK must be able to analyze at least 3.33 Mpps.

Be scalable. There are multiple scenarios that require higher performance from DSHARK: 1) there

are smaller packets even though 1500 bytes is the most typical packet size in the production network.

Given 40Gbps capturing rate, this means higher PPS; 2) there can be multiple trace collectors [129]

and 3) for offline analysis, we hope that DSHARK can run faster than the packet timestamps. Therefore,

DSHARK must horizontally scale up within one server, or scale out across multiple servers. Ideally,

DSHARK should have near-linear speed up with more computing resources.

3.3 DSHARK Design

DSHARK is designed to allow for the analysis of distributed packet traces in near real time. Our goal

in its design has been to allow for scalability, ease of use, generality, and robustness. In this section,

we outline DSHARK’s design and how it allows us to achieve these goals. At a high level, DSHARK

provides a domain-specific language for expressing distributed network monitoring tasks, which runs

atop a map-reduce-like infrastructure that is tightly coupled, for efficiency, with a packet capture

infrastructure. The DSL primitives are designed to enable flexible filtering and grouping of packets

across the network, while being robust to header transformations and capture noise that we observe

in practice.

3.3.1 A concrete example

To diagnose a problem with DSHARK, an operator has to write two related pieces: a declarative

set of trace specifications indicating relevant fields for grouping and summarizing packets; and an

imperative callback function to process groups of packet summaries.

Here we show a basic example – detecting forwarding loops in the network with DSHARK. This

means DSHARK must check whether or not any packets appear more than once at any switch. First,
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network operators can write the trace specifications as follows, in JSON:

1 {

2 Summary: {

3 Key: [SWITCH, ipId, seqNum],

4 Additional: []

5 },

6 Name: {

7 ipId: ipv4[0].id,

8 seqNum: tcp[0].seq

9 },

10 Filter: [

11 [eth, ipv4, ipv4, tcp]: { // IP-in-IP

12 ipv4[0].srcIp: 10.0.0.1

13 }

14 ]

15 }

The first part, “Summary”, specifies that the query will use three fields, SWITCH, ipId and seqNum.

DSHARK builds a packet summary for each packet, using the variables specified in “Summary”.

DSHARK groups packets that have the same “key” fields, and shuffles them such that each group is

processed by the same processor.

SWITCH, one of the only two predefined variables in DSHARK,1 is the switch where the packet

is captured. Transparent to operators, DSHARK extracts this information from the additional head-

er/metadata (as shown in Table 3.1) added by packet capturing pipelines [113, 129].

Any other variable must be specified in the “Name” part, so that DSHARK knows how to extract

the values. Note the explicit index “[0]” – this is the key for making DSHARK robust to header

transformations. We will elaborate this in §3.3.3.

In addition, operators can constrain certain fields to a given value/range. In this example, we

specify that if the packet is an IP-in-IP packet, we will ignore it unless its outermost source IP address

is 10.0.0.1.

In the network, we assume that ipId and seqNum can identify a unique TCP packet without

1The other predefined variable is TIME, the timestamp of packet capture.
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specifying any of the 5-tuple fields.2 Operators can choose to specify additional fields. However,

we recommend using only necessary fields for better system efficiency and being more robust to

middleboxes. For example, by avoiding using 5-tuple fields, the query is robust to any NAT that does

not alter ipId.

The other piece is a query function, in C++:

1 map<string, int> query(const vector<Group>& groups) {

2 map<string, int> r = {{"loop", 0}, {"normal", 0}};

3 for (const Group& group : groups) {

4 group.size() > 1 ?

5 (r["loop"]++) : (r["normal"]++);

6 }

7 return r;

8 }

The query function is written as a callback function, taking an array of groups and returning an

arbitrary type: in this case, a map of string keys to integer values. This is flexible for operators – they

can define custom counters like in this example, get probability distribution by counting in predefined

bins, or pick out abnormal packets by adding entries into the dictionary. In the end, DSHARK will

merge these key-value pairs from all query processor instances by unionizing all keys and summing

the values of the same keys. Operators will get a human-readable output of the final key-value pairs.

In this example, the query logic is simple. Since each packet group contains all copies of a packet

captured/mirrored by the same switch, if there exist two packet summaries in one group, a loop

exists in the network. The query can optionally refer to any field defined in the summary format. We

also implemented 18 typical queries from the literature and based on the experience in production

networks. As shown in Table 3.2, even the most complicated one is only 52 lines long. For similar

diagnosis tasks, operators can directly reuse or extend these query functions.
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Figure 3.2: DSHARK architecture.

3.3.2 Architecture

The architecture of DSHARK is inspired by both how operators manually process the traces as

explained in 3.2.1, and distributed computing engines like MapReduce [23]. Under that light,

DSHARK can be seen as a streaming data flow system specialized for processing distributed network

traces. We provide a general and easy-to-use programming model so that operators only need to

focus on analysis logic without worrying about implementation or scaling.

DSHARK’s runtime consists of three main steps: parse, group and query (Figure 3.2). Three

system components handle each of the three steps above, respectively. Namely,

• Parser: DSHARK consumes network packet traces and extracts user-defined key header fields

based on different user-defined header formats. Parsers send these key fields as packet sum-

maries to groupers. The DSHARK parsers include recursive parsers for common network

protocols, and custom ones can be easily defined.

• Grouper: DSHARK groups packet summaries that have the same values in user-defined fields.

Groupers receive summaries from all parsers and create batches per group based on time

windows. The resulting packet groups are then passed to the query processors.

• Query processor: DSHARK executes the query provided by users and outputs the result for

final aggregation.
2In the network and common implementation, IP ID is chosen independently from TCP sequence number. This may

not always be true [110].
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DSHARK pipeline works with two cascading MapReduce-like stages: 1) first, packet traces are

(mapped to be) parsed in parallel and shuffled (or reduced) into groups; 2) query processors run

analysis logic for each group (map) and finally aggregate the results (reduce). In particular, the parser

must handle header transformations as described in §3.2.2, and the grouper must support all possible

packet groupings (§3.2.1). All three components are optimized for high performance and can run in a

highly parallel manner.

Input and output to the DSHARK pipeline. DSHARK ingests packet traces and outputs aggregated

analysis results to operators. DSHARK assumes that there is a system in place to collect traces from

the network, similar to [129]. It can work with live traces when collocating with trace collectors,

or run anywhere with pre-recorded traces. When trace files are used, a simple coordinator (§3.4.4)

monitors the progress and feeds the traces to the parser in chunks based on packet timestamps. The

final aggregator generates human-readable outputs as the query processors work. It creates a union

of the key-value pairs and sums up values output by the processors (§3.4).

Programming with DSHARK. Operators describe their analysis logic with the programming inter-

face provided by DSHARK, as explained below (§3.3.3). DSHARK compiles operators’ programs into

a dynamic-linked library. All parsers, groupers and query processors load it when they start, though

they link to different symbols in the library. DSHARK chooses this architecture over script-based

implementation (e.g., Python or Perl) for better CPU efficiency.

3.3.3 DSHARK programming model

As shown in the above example, the DSHARK programming interface consists of two parts: 1)

declarative packet trace specifications in JSON, and 2) imperative query functions (in C++). We

design the specifications to be declarative to make common operations like select, filter and group

fields in the packet headers straightforward to the operators. On the other hand, we make the query

functions imperative to offer enough degrees of freedom for the operators to define different diagnosis

logic. This approach is similar to the traditional approach in databases of embedding imperative

user-defined functions in declarative SQL queries. Below we elaborate on our design rationale and

on details not shown in the example above.
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“Summary” in specifications. A packet summary is a byte array containing only a few key fields of

a packet. We introduce packet summary for two main goals: 1) to let DSHARK compress the packets

right after parsing while retaining the necessary information for query functions. This greatly benefits

DSHARK’s efficiency by reducing the shuffling overhead and memory usage; 2) to let groupers know

which fields should be used for grouping. Thus, the description of a packet summary format consists

of two lists. The first contains the fields that will be used for grouping and the second of header fields

that are not used as grouping keys but are required by the query functions. The variables in both lists

must be defined in the “Name” section, specifying where they are in the headers.

“Name” in specifications. Different from existing languages like Wireshark filter or BPF, DSHARK

requires an explicit index when referencing a header, e.g., “ipv4[0]” instead of simply “ipv4”. This

means the first IPv4 header in the packet. This is for avoiding ambiguity, since in practice a packet

can have multiple layers of the same header type due to tunneling. We also adopt the Python syntax,

i.e., “ipv4[-1]” to mean the last (or innermost) IPv4 header, “ipv4[-2]” to mean the last but one IPv4

header, etc.

With such header indexes, the specifications are both robust to header transformations and

explicit enough. Since the headers are essentially a stack (LIFO), using negative indexes would allow

operators to focus on the end-to-end path of a packet or a specific tunnel regardless of any additional

header transformation. Since network switches operate based on outer headers, using 0 or positive

indexes (especially 0) allows operators to analyze switch behaviors, like routing.

“Filter” in specifications. Filters allow operators to prune the traces. This can largely improves the

system efficiency if used properly. We design DSHARK language to support adding constraints for

different types of packets. This is inspired by our observation in real life cases that operators often

want to diagnose packets that are towards/from a specific middlebox. For instance, when diagnosing

a specific IP-in-IP tunnel endpoint, e.g., 10.0.0.1, we only care IP-in-IP packets whose source IP

is 10.0.0.1 (packets after encapsulation), and common IP packets whose destination IP is 10.0.0.1

(packets before encapsulation). For convenience, DSHARK supports “*” as a wildcard to match any

headers.

Query functions. An operator can write the query functions as a callback function that defines
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the analysis logic to be performed against a batch of groups. To be generally applicable for various

analysis tasks, we choose to prefer language flexibility over high-level descriptive languages. There-

fore, we allow operators to program any logic using the native C++ language, having as input an

array of packet groups, and as output an arbitrary type. The query function is invoked at the end of

time windows, with the guarantee that all packets with the same key will be processed by the same

processor (the same semantics of a shuffle in MapReduce).

In the query functions, each Group is a vector containing a number of summaries. Within each

summary, operators can directly refer the values of fields in the packet summary, e.g., summary.ipId

is ipId specified in JSON. In addition, since it is in C++, operators can easily query the internal service

REST APIs and get control plane metadata to help analysis, e.g., getting the topology of a certain

network. Of course, this should only be done per a large batch of batches to avoid a performance hit.

This is a reason why we design query functions to take a batch of groups as input.

3.3.4 Support for various groupings

To show that our programming model is general and easy to use, we demonstrate how operators can

easily specify the four different aggregation types, which we extend to grouping in DSHARK, listed

in §3.2.1.

Single-packet single-hop grouping. This is the most basic grouping, which is used in the example

(§4.2). In packet summary format, operators simply specify the “key” as a set of fields that can

uniquely identify a packet, and from which switch (SWITCH) the packet is collected.

Multi-packet single-hop grouping. This grouping is helpful for diagnosing middlebox behaviors.

For example, in Microsoft’s data center, most software-based middleboxes are running on a server

under a ToR switch. All packets which go into and out of the middleboxes must pass through that

ToR. In this case, operators can specify the “key” as SWITCH and some middlebox/flow identifying

fields (instead of identifying each packet in the single-packet grouping) like 5-tuple. We give more

details in §3.5.1.

Single-packet multi-hop grouping. This can show the full path of each packet in the network. This

is particularly useful for misrouting analysis, e.g., does the traffic with a private destination IP range
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Figure 3.3: Packet capturing noise may interfere with the drop localization analysis.

Case Probability w/o E2E info w/ E2E info

No drop (1− a)(1− b) Correct Correct
Real drop a(1− b) Correct Correct

Noise drop (1− a)b Incorrect Correct
Real + Noise drop ab Incorrect Incorrect

Table 3.3: The correctness of localizing packet drops. The two types of drops are independent because the
paths are disjoint after A.

that is supposed to stay within data centers leak to WAN? For this, operators can just set packet

identifying fields as the key, without SWITCH, and use the [-1] indexing for the innermost IP/TCP

header fields. DSHARK will group all hops of each packet so that the query function checks whether

each packet violates routing policies. The query function may have access to extra information, such

as the topology, to properly verify path invariants.

Multi-packet multi-hop grouping. As explained in §3.2.2, loss of capture packets may impact the

results of localizing packet drops, by introducing false positives. In such scenarios DSHARK should be

used with multi-packet multi-hop groupings, which uses the 5-tuple and the sequence numbers as the

grouping keys, without ipId. This has the effect of grouping together transport-level retransmissions.

We next explain the rationale for this requirement.

3.3.5 Addressing packet capture noise

To localize where packets are dropped, in theory, one could just group all hops of each packet, and

then check where in the network the packet disappears from the packet captures on the way to its

destination. In practice, however, we find that the noise caused by data loss in the captures themselves,

e.g., drops on the collectors and/or drops in the network on the way to the collector, will impact the
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validity of such analysis.

We elaborate this problem using the example in Figure 3.3 and Table 3.3. For ease of explanation

we will refer the to paths of the mirrored packets from each switch to the collector as β type paths

and the normal path of the packet as α type paths. Assume switch A is at the border of the network

and the ground truth is that drop happens after A. As operators, we want to identify whether the

drop happens within the network. Unfortunately, due to the noise drop, we will find A is dropping

packets with probability b in the trace. If the real drop probability a is less than b, we will misblame

A. This problem, however, can be avoided if we correlate individual packets across different hops in

the network as opposed to relying on simple packet counts.

Specifically, we propose two mechanisms to help DSHARK avoid miss-detecting where the packet

was dropped:

Verifying using the next hop(s). If the β type path dropping packets is that from a switch in the

middle of the α path, assuming that the probability that the same packet’s mirror is dropped on two

β paths is small, one can find the packet traces from the next hop(s) to verify whether A is really the

point of packet drop or not. However, this mechanism would fail in the “last hop” case, where there

is no next hop in the trace. The “last hop” case is either 1) the specific switch is indeed the last on the

α path, however, the packets may be dropped by the receiver host, or 2) the specific switch is the last

hop before the packet goes to external networks that do not capture packet traces. Figure 3.3 is such

a case.

Leveraging information in end-to-end transport. To address the “last hop” issue, we leverage

the information provided by end-to-end transport protocols. For example, for TCP flows, we can

verify a packet was dropped by counting the number of retransmissions seen for each TCP sequence

number. In DSHARK, we can just group all packets with the same TCP sequence number across all

hops together. If there is indeed a drop after A, the original packet and retransmitted TCP packets

(captured at all hops in the internal network) will show up in the group as packets with different IP

IDs, which eliminates the possibility that the duplicate sequence number is due to a routing loop.

Otherwise, it is a noise drop on the β path.

This process could have false positives as the packet could be dropped both on the β and α path.
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This occurs with probability of only a × b – in the “last hop” cases like Figure 3.3, the drops on

β and α path are likely to be independent since the two paths are disjoint after A. In practice, the

capture noise b is� 100%. Thus any a can be detected robustly.

Above, we focused on describing the process for TCP traffic as TCP is the most prominent

protocol used in data center networks [8]. However, the same approach can be applied to any other

reliable protocols as well. For example, QUIC [60] also adds its own sequence number in the packet

header. For general UDP traffic, DSHARK’s language also allows the operators to specify similar

identifiers (if exist) based on byte offset from the start of the payload.

3.4 DSHARK Components and Implementation

We implemented DSHARK, including parsers, groupers and query processors, in >4K lines of C++

code. We have designed each instance of them to run in a single thread, and can easily scale out by

adding more instances.

3.4.1 Parser

Parsers recursively identify the header stack and, if the header stack matches any in the Filter section,

check the constraints on header fields. If there is no constraint found or all constraints are met, the

fields in the Summary and Name sections are extracted and serialized in the form of a byte array. To

reduce I/O overhead, the packet summaries are sent to the groupers in batches.

Shuffling between multiple parsers and groupers: When working with multiple groupers, to

ensure grouping correctness, all parsers will have to send packet summaries that belong to the

same groups to the same grouper. Therefore, parsers and groupers shuffle packet summaries using a

consistent hashing of the “key” fields. This may result in increased network usage when the parsers

and groupers are deployed across different machines. Fortunately, the amount of bandwidth required

is typically very small – as shown in Table 3.2, common summaries are only around 10B, more than

100× smaller than an original 1500B packet.

For analyzing live captures, we closely integrate parsers with trace collectors. The raw packets
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are handed over to parsers via memory pointers without additional copying.

3.4.2 Grouper

DSHARK then groups summaries that have the same keys. Since the grouper does not know in

advance whether or not it is safe to close its current group (groupings might be very long-lived or

even perpetual), we adopt a tumbling window approach. Sizing the window presents trade-offs. For

query correctness, we would like to have all the relevant summaries in the same window. However,

too large of a window increases the memory requirements.

DSHARK uses a 3-second window – once three seconds (in packet timestamps) passed since

the creation of a group, this group can be wrapped up. This is because, in the network, packets that

may be grouped are typically captured within three seconds.3 In practice, to be robust to the noise

in packet capture timestamps, we use the number of packets arriving thereafter as the window size.

Within three seconds, a parser with 40Gbps connection receives no more than 240M packets even

if all packets are as small as 64B. Assuming that the number of groupers is the same as or more

than parsers, we can use a window of 240M (or slightly more) packet summaries. This only requires

several GB of memory given that most packet summaries are around 10B large (Table 3.2).

3.4.3 Query processor

The summary groups are then sent to the query processors in large batches.

Collocating groupers and query processors: To minimize the communication overhead between

groupers and query processors, in our implementation processors and groupers are threads in the

same process, and the summary groups are passed via memory pointers.

This is feasible because the programming model of DSHARK guarantees that each summary

group can be processed independently, i.e., the query functions can be executed completely in parallel.

In our implementation, query processors are child threads spawned by groupers whenever groupers

have a large enough batch of summary groups. This mitigates thread spawning overhead, compared

with processing one group at one time. The analysis results of this batch of packet groups are in the

3The time for finishing TCP retransmission plus the propagation delay should still fall in three seconds.
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form of a key-value dictionary and are sent to the result aggregator via a TCP socket. Finally, the

query process thread terminates itself.

3.4.4 Supporting components in practice

Below, we elaborate some implementation details that are important for running DSHARK in practice.

DSHARK compiler. Before initiating its runtime, DSHARK compiles the user program. DSHARK

generates C++ meta code from the JSON specification. Specifically, a definition of struct Summary

will be generated based on the fields in the summary format, so that the query function has access

to the value of a field by referring to Summary.variable name. The template of a callback function

that extracts fields will be populated using the Name section. The function will be called after the

parsers identify the header stack and the pointers to the beginning of each header. The Filter section is

compiled similarly. Finally, this piece of C++ code and the query function code will compile together

by a standard C++ compiler and generate a dynamic link library. DSHARK pushes this library to all

parsers, groupers and query processors.

Result aggregator. A result aggregator gathers the output from the query processors. It receives

the key-value dictionaries sent by query processors and combines them by unionizing the keys and

summing the values of the same keys. It then generates human-readable output for operators.

Coordinate parsers. DSHARK parsers consume partitioned network packet traces in parallel. In

practice, this brings a synchronization problem when they process offline traces. If a fast parser

processes packets of a few seconds ahead of a slower parser (in terms of when the packets are

captured), the packets from the slower parser may fall out of grouper moving window (§3.4.2),

leading to incorrect grouping.

To address this, we implemented a coordinator to simulate live capturing. The coordinator

periodically tells all parsers until which timestamp they should continue processing packets. The

parsers will report their progress once they reach the target timestamp and wait for the next instruction.

Once all parsers report completion, the coordinator sends out the next target timestamp. This

guarantees that the progress of different parsers will never differ too much. To avoid stragglers, the

coordinator may drop parsers that are consistently slower.
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Over-provision the number of instances. Although it may be hard to accurately estimate the

minimum number of instances needed (see §3.5) due to the different CPU overhead of various packet

headers and queries, we use conservative estimation and over-provision instances. It only wastes

negligible CPU cycles because we implement all components to spend CPU cycles only on demand.

3.5 DSHARK Evaluation

We used DSHARK for analyzing the in-network traces collected from Microsoft’s production net-

works4. In this section, we first present a few examples where we use DSHARK to check some typical

network properties and invariants. Then, we evaluate the performance of DSHARK.

3.5.1 Case study

We implement 18 typical analysis tasks using DSHARK (Table 3.2). We explain three of them in

detail below.

Loop detection. To show the correctness of DSHARK, we perform a controlled experiment using

loop detection analysis as an example. We first collected in-network packet traces (more than 10M

packets) from one of Microsoft’s networks and verified that there is no looping packet in the trace.

Then, we developed a script to inject looping packets by repeating some of the original packets with

different TTLs. The script can inject with different probabilities.

We use the same code as in §4.2. Figure 3.4 illustrates the number of looping packets that are

injected and the number of packets caught by DSHARK. DSHARK has zero false negative or false

positive in this controlled experiment.

Profiling load balancers. In Microsoft’s data center, layer-4 software load balancers (SLB) are

widely deployed under ToR switches. They receive packets with a virtual IP (VIP) as the destination

and forward them to different servers (called DIP) using IP-in-IP encapsulation, based on flow-level

hashing. Traffic distribution analysis of SLBs is handy for network operators to check whether the

traffic is indeed balanced.
4All the traces we use in evaluation are from clusters running internal services. We do not analyze cloud customers

traffic without permission.
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Figure 3.5: Traffic to an SLB VIP has been distributed to destination IPs.

To demonstrate that DSHARK can easily provide this, we randomly picked a ToR switch that has

an SLB under it. We deployed a rule on that switch that mirrors all packets that go towards a specific

VIP and come out. In one hour, the collectors of EverFlow captured more than 30M packets in total.5

Our query function generates both flow counters and packet counters of each DIP. Figure 3.5

shows the result – among the total six DIPs, DIP5 receives the least packets whereas DIP6 gets the

most. Flow-level counters show a similar distribution. After discussing with operators, we conclude

that for this VIP, load imbalance does exist due to imbalanced hashing, while it is still in an acceptable

range.

Packet drop localizer. Noise can affect the packet drop localizer. This example shows the effec-

tiveness of using transport-level retransmission information to reduce false positives (§3.3.5). We

5An SLB is responsible for multiple VIPs. The traffic volume can vary a lot across different VIPs.
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implemented the packet drop localizer as shown in Table 3.2, and used the noise mitigation mecha-

nism described in §3.3.5. In a production data center, we deployed a mirroring rule on all switches

to mirror all packets that originate from or go towards a small set of servers, and fed the captured

packets to DSHARK. We first compare our approach, which takes into account gaps in the sequence of

switches, and uses retransmissions as evidence of actual drops, with a naı̈ve approach, that just looks

at the whether the last captured hop is the expected hop. Since the naı̈ve approach does not work

for drops at the last switch, including ToR and the data center boundary (Tier-2 spine) switches, for

this comparison we only considered packets whose last recorded switch were leaf (Tier-1) switches.

The naı̈ve approach reports 5599 suspected drops while DSHARK detects 7. The reason that makes

the two numbers different is that the trace itself contains capturing noise. The drops detected by

DSHARK are real, because they generated retransmissions with the same TCP sequence number.

To assess the effectiveness of our noise mitigation, we replayed the trace while randomly dropping

capture packets with increasing probabilities. DSHARK reports 5802, 5801, 5801 and 5784 packet

drops under 0%, 1%, 2% and 5% probabilities respectively. We admit there is still a possibility that

we miss the retransmitted packet, but, from the result, it is very low (0.3%).

3.5.2 DSHARK component performance

Next, we evaluate the performance of DSHARK components individually. For stress tests, we feed

offline traces to DSHARK as fast as possible. To represent commodity servers, we use eight VMs

from Microsoft Azure, each has a Xeon 16-core 2.4GHz vCPU, 56GB memory and 10Gbps virtual

network. Each experiment is repeated for at least five times and we report the average. We verify the

speed difference between the fastest run and slowest run is within 5%.

Parser. The overhead of the parser varies based on the layers of headers in the packets: the more

layers, the longer it takes to identify the whole header stack. The number of fields being extracted

and filter constraints do not matter as much.

To get the throughput of a parser, we designed a controlled evaluation. Based on the packet

formats in Table 3.1, we generated random packet traces and fed them to parsers. Each trace has 80M

packets of a given number of header layers. Common TCP packets have the fewest header layers
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Figure 3.7: Single grouper performance with different average group sizes.

(three – Ethernet, IPv4, and TCP). The most complicated one has eight headers, i.e., Ä in Table 3.1.

Figure 3.6 shows that in the best case (parsing a common TCP packet), the parser can reach

nearly 3.5 Mpps. The throughput decreases when the packets have more header layers. However,

even in the most complicated case, a single-thread parser still achieves 2.6 Mpps throughput.

Grouper. For groupers, we find that the average number of summaries in each group is the most

impacting factor to grouper performance. To show this, we test different traces in which each group

will have one, two, four, or eight packets, respectively. Each trace has 80M packets.

Figure 3.7 shows that the grouper throughput increases when each group has more packets. This

is because the grouper uses a hash table to store the groups in the moving window (§3.4.2). The more

packets in each group, the less group entry inserts and hash collisions. In the worst case (each packet

is a group by itself), the throughput of one grouper thread can still reach more than 1.2 Mpps.

Query processor. The query processor performs the query function written by network operators
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Figure 3.8: Single query processor performance with different query functions.

against each summary group. Of course, the query overhead can vary significantly depending on the

operators’ needs. We evaluate four typical queries that represent two main types of analysis: 1) loop

detection and SLB profiler only check the size of each group (§4.2); 2) the misrouting analysis and

drop localization must examine every packet in a group.

Figure 3.8 shows that the query throughput of the first type can reach 17 or 23 Mpps. The second

type is significantly slower – the processor runs at 1.5 Mpps per thread.

3.5.3 End-to-end performance

We evaluate the end-to-end performance of DSHARK by using a real trace with more than 640M

packets collected from production networks. Unless otherwise specified, we run the loop detection

example shown in §4.2.

Our first target is the throughput requirement in §3.2: 3.33 Mpps per server. Based on the

component throughput, we start two parser instances and three grouper instances on one VM.

Groupers spawn query processor threads on demand. Figure 3.9 shows DSHARK achieves 3.5 Mpps

throughput. This is around three times a grouper performance (Figure 3.7), which means groupers run

in parallel nicely. The CPU overhead is merely four CPU cores. Among them, three cores are used

by groupers and query processors, while the remaining core is used by parsers. The total memory

usage is around 15 GB.

On the same setup, the drop localizer query gets 3.6 Mpps with similar CPU overhead. This is

because, though the query function for drop localizer is heavier, its grouping has more packets per
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Figure 3.9: DSHARK performance scales near linearly.

group, leading to lighter overhead (Figure 3.7).

We further push the limit of DSHARK on a single 16-core server. We start 6 parsers and 9 groupers,

and achieve 10.6 Mpps throughput with 12 out of 16 CPU cores fully occupied. This means that even

if the captured traffic is comprised of 70% 64B small packets and 30% 1500B packets, DSHARK can

still keep up with 40Gbps live capturing.

Finally, DSHARK must scale out across different servers. Compared to running on a single

server, the additional overhead is that the shuffling phase between parsers and groupers will involve

networking I/O. We find that this overhead has little impact on the performance – Figure 3.9 shows

that when running two parsers and three groupers on each server, DSHARK achieves 13.2 Mpps on

four servers and 26.4 Mpps on eight servers. This is close to the numbers of perfectly linear speedup

14 Mpps and 28 Mpps, respectively. On a network with full bisection bandwidth, where traffic is

limited by the host access links, this is explained because we add parsers and groupers in the same

proportion, and the hashing in the shuffle achieves an even distribution of traffic among them.

3.6 Discussion and Limitations

Complicated mappings in multi-hop packet traces. In multi-hop analysis, DSHARK assumes

that at any switch or middlebox, there exist 1:1 mappings between input and output packets, if the

packet is not dropped. This is true in most parts of Microsoft’s networks. However, some layer 7

middleboxes may violate this assumption. Also, IP fragmentation can also make troubles – some
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fragments may not carry the TCP header and break analysis that relies on TCP sequence number.

Fortunately, IP fragmentation is not common in Microsoft’s networks because most servers use

standard 1500B MTU while the switches are configured with larger MTU.

We would like to point out that it is not a unique problem of DSHARK. Most, if not all, state-of-art

packet-based diagnosis tools are impacted by the same problem. Addressing this challenge is an

interesting future direction.

Alternative implementation choices. We recognize that there are existing distributed frame-

works [20, 23, 123] designed for big data processing and may be used for analyzing packet traces.

However, we decided to implement a clean-slate design that is specifically optimized for packet

trace analysis. Examples include the zero-copy data passing via pointers between parsers and trace

collectors, and between groupers and query processors. Also, existing frameworks are in general

heavyweight since they have unnecessary functionalities for us. That said, others may implement

DSHARK language and programming model with less lines of code using existing frameworks, if

performance is not the top priority.

Offloading to programmable hardware. Programmable hardware like P4 switches and smart

NICs may offload DSHARK from CPU for better performance. However, DSHARK already delivers

sufficient throughput for analyzing 40Gbps online packet captures per server (§3.5) in a practical

setting. Meanwhile, DSHARK, as a pure software solution, is more flexible, has lower hardware

cost, and provides operators a programming interface they are familiar with. Thus, we believe that

DSHARK satisfies the current demand of operators in Microsoft. That said, in an environment that is

fully deployed with highly programmable switches,6 it is promising to explore hardware-based trace

analysis like Marple [79].

3.7 Related Work

DSHARK, to the best of our knowledge, is the first framework that allows for the analysis of distributed

packet traces in the face of noise, complex packet transformations, and large network traces. Perhaps

6Unfortunately, this can take some time before happening. In some environments, it may never happen.
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the closest to DSHARK are PathDump [108] and SwitchPointer [109]. They diagnose problems by

adding metadata to packets at each switch and analyzing them at the destination. However, this

requires switch hardware modification that is not widely available in today’s networks. Also, in-band

data shares fate with the packets, making it hard to diagnose problems where packets do not reach

the destination.

Other related work that has been devoted to detection and diagnosis of network failures includes:

Switch hardware design for telemetry [40, 56, 62, 68, 79]. While effective, these work require

infrastructure changes that are challenging or even not possible due to various practical reasons.

Therefore, until these capabilities are mainstream, the need to for distributed packet traces remains.

Our summaries may resemble NetSight’s postcards [40], but postcards are fixed, while our summaries

are flexible, can handle transformations, and are tailored to the queries they serve.

Algorithms based on inference [10, 36, 38, 41, 48, 72, 76, 97, 98, 129]. A number of works use

anomaly detection to find the source of failures within networks. Some attempt to cover the full

topology using periodic probes [38]. However, such probing results in loss of information that often

complicates detecting certain types of problems which could be easily detected using packet traces

from the network itself. Other such approaches, e.g., [72, 76, 97, 98], either rely on the packet

arriving endpoints and thus cannot localize packet drops, or assume specific topology. Work such as

EverFlow [129] is complementary to DSHARK. Specifically, DSHARK’s goal is to analyze distributed

packet captures fed by EverFlow. Finally, [9] can only identify the general type of a problem (network,

client, server) rather than the responsible device.

Work on detecting packet drops. [19, 24, 25, 42, 44, 47, 57, 63, 71, 75, 77, 83, 115, 121, 126–128]

While these work are often effective at identifying the cause of packet drops, they cannot identify

other types of problems that often arise in practice e.g., load imbalance. Moreover, as they lack

full visibility into the network (and the application) they often are unable to identify the cause of

problems for specific applications [8].

Failure resilience and prevention [4, 17, 18, 32, 51, 58, 66, 67, 85, 89, 93, 99, 119] target resilience

or prevention to failures via new network architectures, protocols, and network verification. DSHARK

is complementary to these works. While they help avoid problematic areas in the network, DSHARK
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identifies where these problems occur and their speedy resolution.



Chapter 4

SIMON: Scriptable Interactive

Monitoring for Networks

We present SIMON, an interactive, scriptable network monitor tool equipped with a simple, general

and flexible network behavior model. The design of SIMON has been implemented and evaluated in

a Mininet-emulated environment.

4.1 Background and Overview

Software-Defined Networking greatly increases the power that operators have over their networks.

Unfortunately, this power comes at a cost. While logically centralized controller programs do simplify

network control and configuration, the network itself remains an irrevocably distributed system. Bugs

in network behavior are not eliminated in an SDN, but are merely lifted into controller programs.

SDNs also introduce new classes of bugs that do not exist in traditional networks, such as flow-table

consistency issues [87, 94].

Even in a relatively simple environment such as Mininet [61], it can be frustrating to understand

SDN controller behavior. Simple errors can be deceptively subtle to test and debug. For instance,

if an application sometimes unnecessarily floods traffic via packetOut messages, the network’s

performance can suffer even though connectivity is preserved. Similarly, Perešı́ni et al. [87] note a

64
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class of bugs that result in a glut of unnecessary rules being installed on switches, without changing

the underlying forwarding semantics. Efforts that focus only on connectivity, such as testing via ping,

can disguise these and other problems.

Fortunately, SDN also offers opportunities for improving how we test, debug, and verify networks.

Invariant checking tools such as VeriFlow [55] and NetPlumber [49] are a good first step. However

these tools, while powerful, are limited in scope to the network’s forwarding information base,

and errors involving more (such as the above unnecessary-flooding error) will escape their notice.

Even total knowledge of the flow-table rules installed does not suffice to fully predict network

behavior; as Kuźniar, et al. [59] show, different switches have varying foibles when it comes to

implementing OpenFlow, with some even occasionally disregarding barrier requests and installing

rules in (reordered) batches. Thus, operators need tools that can inspect more than just forwarding

tables and can determine whether the network (on all planes) respects their goals.

SIMON (Scriptable Interactive Monitoring) is a next step in that direction. SIMON is an interactive

debugger for SDNs; its architecture is shown in Figure 4.1. SIMON has visibility into data-plane events

(e.g., packets arriving at and being forwarded by switches), control-plane events (e.g., OpenFlow

protocol messages), northbound API messages (communication between the controller and other

services; e.g., see Section 4.5), and more, limited only by the monitored event sources (Section 4.4).

Since SIMON is interactive, users can use these events to iteratively refine their understanding of

the system at SIMON’s debugging prompt, similar to using traditional debugging tools. Moreover,

SIMON does not presume the user is knowledgeable about the intricacies of the controller in use.
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Figure 4.1: SIMON’s workflow. Events are captured from the network by monitors, which feed into
Simon’s interactive debugging process.
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The downside of an interactive debugger is that its use can often be repetitious. SIMON is thus

scriptable, enabling the automation of repetitive tasks, monitoring of invariants, and much else. A

hallmark of SIMON is its reactive scripting language, which is embedded into Scala (scala-lang.

org). As we show in Section 4.2, reactivity enables both power and concision in debugging.

Furthermore, having recourse to the full power of Scala means that SIMON enables kinds of stateful

monitoring not supported in many other debuggers. In short, SIMON represents a fundamental shift

in how we debug networks, by bringing ideas from software debugging and programming language

design to bear on the problem.

4.2 Simon in Action

For illustrative purposes, we show SIMON in action on an intentionally simplistic example: a small

stateful firewall application. (We discuss more complex applications in Section 4.5.) A stateful

firewall should allow all traffic from internal to external ports, but deny traffic arriving at external

ports unless it involves hosts that have previously communicated.

Debugging With Events

Consider a basic implementation that performs three separate tasks when an OpenFlow packetIn

message is received on an internal port:

1. It installs an OpenFlow rule to forward internally-arriving traffic with this packet’s source and

destination;

2. It installs an OpenFlow rule forwarding replies between those addresses arriving at the external

port; and

3. It replies to the original packetIn with a packetOut message so that this packet will be properly

forwarded.

If the programmer forgets (3), packetOuts are never sent, and packets that arrive before FlowMod

installation will be dropped. Since the OpenFlow rules are installed correctly, this bug will not be

caught by flow-table invariant checkers like VeriFlow. Connections eventually work, but the bug is

scala-lang.org
scala-lang.org
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noticeable when pinging external hosts. Faced with this issue, an operator may ask: What happened

to the initial ping? To investigate, we first enter the following at SIMON’s prompt:

1 val ICMPStream=Simon.nwEvents().filter(isICMP);

2 showEvents(ICMPStream);

The first line reactively filters SIMON’s stream of network events (Simon.nwEvents()) to remove

everything but ICMP packet arrivals and departures. All streams produced are constantly updated by

SIMON to maintain consistency, and so new ICMP packet arrivals will automatically be directed to

ICMPStream. We might also achieve this effect with callbacks (Section 4.3), but at the cost of far more

verbose code where we most want concision: an interactive prompt. Although the filter operation

here is analogous to a pcap filter, we will show that SIMON provides far more flexibility.

In the second line, the showEvents function spawns a new window that prints events arriving on

the stream it is given, allowing further study without cluttering the prompt. The window displays the

following1 when h1 pings h2 twice on a linear, 1-switch, 2-host topology with h1 and eth1 internal:

1 ICMP packet from h1 to h2 arrives at s1 on eth1

2 ICMP packet from h1 to h2 arrives at s1 on eth1

3 ICMP packet from h1 to h2 departs from s1 on eth2

We conclude that the initial packet is dropped by the firewall (or, at least, delayed until well after

the second ping is received). The next question is: Did the program send the appropriate OpenFlow

messages to configure the firewall?

To answer this question, we need to examine OpenFlow events that are related to ICMP packets.

To do this, we use SIMON’s powerful cpRelatedTo function (“control-plane related to”). It takes a

packet and produces a stream of all future OpenFlow messages related to that packet: PacketIn and

PacketOut messages containing the packet, as well as FlowMod messages whose match condition

the packet satisfies. We also use the flatMap stream operator; here it invokes cpRelatedTo on each

ICMP packet and merges the results into a single stream (Figure 4.2 illustrates this operation on a

separate, more general example). We write:

1 showEvents(ICMPStream.flatMap(cpRelatedTo))

1Edited for clarity; SIMON displays events as JSON by default.
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ICMPStream

ICMPStream.flatMap(cpRelatedTo)

cpRelatedTo(     )

cpRelatedTo(     )

cpRelatedTo(     )

pktIn flowModpktIn flowMod pktOutpktIn pktOut

pktIn flowMod

pktIn pktOut

pktIn flowMod pktOut

Figure 4.2: General illustration of finding related packets with cpRelatedTo and using flatMap to
combine the resulting streams. Red rectangle, blue square, and green oval represent incoming ICMP
packets. Each has related PacketIn, PacketOut, and/or FlowMod messages (indicated by text under
the original symbol). cpRelatedTo places these messages into a separate stream for each original
packet. flatMap then merges the streams into one stream of ICMP-related OpenFlow messages,
keeping their relative ordering intact.

SIMON shows that, while the expected pair of FlowMods are installed for the initial packet, no

corresponding packetOut is received. This explains the incorrect behavior.

Debugging via Ideal Models

The operator could have also detected the bug by describing what a stateful firewall should do,

independent of implementation, and having SIMON monitor the network and alert them if their

assumptions are violated. There are three high-level expectations about the forwarding behavior of a

stateful firewall:

1. It allows packets arriving at internal ports;

2. It allows packets with source S and destination D arriving at external ports if traffic from D to

S has been previously allowed; and

3. It drops other packets arriving at external ports.

Note that none of these expectations are couched in terms of packetOut events or flow tables; rather

they describe actual forwarding behavior that users expect to see. Also, they are stateful, in that the

second and third expectations refer to the history of packets previously seen.
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We can implement monitors for these expectations in SIMON. To keep track of the firewall’s

state, we create a mutable set of pairs of addresses called allowed. We then use SIMON’s built-in

rememberInSet operator to keep the set up-to-date:

1 Simon.rememberInSet(ICMPStream, allowed,

2 {e: NetworkEvent =>

3 if(isInInt(e))

4 Some(new Tuple2(e.pkt.eth.dl_src,

5 e.pkt.eth.dl_dst))

6 else None});

We pass in a stream of events (here, ICMP packet events), the set to be mutated (allowed), and a

function that says what, if anything, to add to the set for each event in the stream. Now, as ICMP

packets arrive on the internal interface, their source-destination pairs will be automatically added

to the set. The isInInt (“is incoming on internal”) function is just a helper defined in SIMON that

returns true on packets arriving on internal interfaces. {e: NetworkEvent => ...} is Scala syntax for

defining an anonymous function over network events.

We are now free to write the three expectations using SIMON’s expectNot function, which takes

a source stream (here, the ICMP stream), along with a function that says whether or not an event

violates the expectation, and a duration to wait. It then returns a stream that emits an ExpectViolation

if a violating event is seen before the duration is up and otherwise emits an ExpectSucceed event. The

third expectation is most interesting. First we define a helper that recognizes external packets whose

destination and source are not in allowed2:

1 def isInExtNotAllow(e: NetworkEvent): Boolean = {

2 e.direction == NetworkEventDirection.IN &&

3 e.sw == fwswitchid && fwexternals(e.interf) &&

4 !allowed((e.pkt.eth.dl_dst, e.pkt.eth.dl_src))

5 }

fwswitchid and fwexternals are configurable parameters that indicate which switch acts as a firewall

and which interfaces are considered external. Now we create a stream for this expectation, saying

that whenever a packet should be dropped, we expect not to see it exiting the switch:

2SIMON’s event field names (e.g., pkt.eth.dl_dst) follow the standard pcap format (www.tcpdump.org).

www.tcpdump.org
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1 val e3 = ICMPStream.filter(isInExtNotAllow).flatMap(

2 e => Simon.expectNot(ICMPStream, isOutSame(e),

3 Duration(100, "milliseconds")));

We elide the first and second expectations for space, but they are similar. The isOutSame function

accepts an incoming packet event and produces a new function that returns true on events that are

outgoing versions of the same packet.

After defining all three expectation streams, we merge them into a single stream that emits events

whenever any expectation is violated. As before, we can call showEvents on this stream. Other code

can also use the stream to modify state, trigger actions on the network, or even feed into new event

streams. Moreover, as we discuss in Section 4.5, once expectations have been written they can be

re-used to check multiple applications.

4.3 Why Reactive Programming?

We now explain the advantages of reactive programming for network monitoring in more detail.

Recall this expression from earlier:

1 showEvents(ICMPStream.flatMap(cpRelatedTo))

Now consider how one might implement it without reactivity. A natural solution is to use synchronous

calls:

1 val seen = new Set();

2 while(true) {

3 val e = getEvent();

4 if(isICMP(e))

5 seen += e;

6 for(orig: seen) {

7 if(relatedTo(orig, e))

8 println(e);

9 }

10 }

Not only is this much more involved, it also quickly becomes untenable because synchronous
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calls will block. Instead, asynchronous communication is needed. Callbacks are a standard way to

implement asynchrony, but even with library support for callback registration, we get something like:

1 def eventCallback(e: Event) {

2 if(isICMP(e))

3 Simon.nwEvents().subscribe(

4 makeRelatedToCallback(e));

5 }

6 def makeRelatedToCallback(e: Event): Event => Unit {

7 e2 => if(relatedTo(e, e2)) println(e2);

8 }

9 Simon.nwEvents().subscribe(eventCallback);

In general, this approach can produce a tangle of callbacks registering even more callbacks ad

nauseum. We could avoid this with careful maintenance of state throughout a single callback.

However, that only moves the complexity into the callback’s internal state, which harms reusability,

compositionality, and clarity of the debugging script.

Callbacks also force an inversion of a program’s usual control logic: external events push to

internal callbacks; this can be confusing, especially when integrating with existing code. Instead,

reactive programs maintain the perspective that the program pulls events. The necessary callbacks

to maintain this abstraction are handled automatically by the language, and consistency between

streams is maintained without any programmer involvement. (The canonical example of this is the

way a spreadsheet program automatically updates a cell if other cells it depends on change. The

same is true of streams in reactive programs.) In effect, reactive programming lets the programmer

structure their program as if they were writing with synchronous calls that return values subsequent

computations can consume, leading to a compositional programming style (which has already been

used successfully in SDN controllers, most notably by Voellmy, et al. [111]).

Moreover, the ability to name streams, compose them with other streams, and re-use them as

values is not something callbacks can easily provide. For these reasons, reactive programs tend to be

concise, which makes monitoring—with the full power of a programming language behind it—brief

enough to use at the debugging prompt.

There are at least two other applications of SIMON’s streams that are worth mentioning:
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Interacting with the Network As we alluded to in Section 4.2, streams can be easily fed into

arbitrary code. For instance, suppose we wanted to write a monitor that sends continuous pings to

host 10.0.0.1. We create a stream that detects ICMP traffic exiting the network, and feed that stream

into code that sends the next ping via subscribe:

1 ICMPStream.filter(

2 e => e.sw == fwswitchid &&

3 e.direction == NetworkEventDirection.OUT)

4 .subscribe( _ => "ping 10.0.0.1" ! );

(The ! operation, from Scala’s process library, executes the preceding string as a shell command.)

Caching Stream History By default, SIMON’s event streams do not remember events they have

already dealt with, but sometimes visibility into the past is important. Users can apply the cache

operator to obtain a stream that caches events as they are broadcast, so that new subscribers will see

them. While this incurs a space overhead, it also enables omniscient debugging scripts that can see

into the past of the network, before they were run.

filter Applies a function to every event in the stream, keeping only events on which the function returns true.
map Applies a function to every event in the stream, replacing that event with the function’s result.

flatMap Like map, the function given returns a stream for each event, which flatMap then merges.
cache Cache events as they are broadcast, allowing subscribers to access event history.
timer Emit an event after a specified delay has passed.

merge Interleave events on multiple streams, producing a unified stream.
takeUntil Propagate events in a stream until a given condition is met, then stop.
subscribe Calls a function (built-in or user-defined) whenever a stream emits an event.

expect Accepts a stream to watch, a delay, and a function that returns true or false on events. Produces a
stream that will generate exactly one event: an ExpectViolation or the first event on which the function
returned true.

expectNot Similar to expect, but the function describes events that violate the expectation.
cpRelatedTo Accepts a packet arrival event and returns the stream of future PacketIns and PacketOuts that contain

the packet, as well as FlowMods whose match condition the packet would pass.
showEvents Accepts a stream and spawns a new window that displays every event in the stream.

isICMP Filtering function, recognizes ICMP traffic. (Similar functions exist for other traffic types.)
isOutSame Accepts an incoming-packet event and produces a function that returns true for outgoing-packet events

with the same header fields.

Figure 4.3: Selection of Reactive Operators and built-in SIMON helper functions. The first table con-
tains commonly-used operators provided by Reactive Scala (reactivex.io/documentation/
operators.html). The second table contains selected SIMON helper functions we constructed
from reactive operators to support the examples shown in Sections 4.2 and 4.5.

reactivex.io/documentation/operators.html
reactivex.io/documentation/operators.html
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4.4 A Simon Prototype

As depicted in Figure 4.1, SIMON’s architecture separates the sources of network events from event

processing. We implement a fully functional prototype of SIMON’s event processing component,

and in this paper evaluate it by monitoring a Mininet-emulated SDN running different networks

and controller applications. The current sources of events in our prototype rely on the visibility into

the network afforded by Mininet, but the event processing framework and scripts do not. While an

immediate contribution is the ability to monitor and debug arbitrary SDN environments running in

Mininet—our original motivation was the frustration of doing just this—in Section 4.7 we discuss

other potential sources of events that would enable SIMON in real networks.

We implement SIMON event processing atop Scala, using Scala’s ReactiveX library (reactivex.

io) to manage streams and events. SIMON’s debugging prompt is the Scala command-line interface3

plus a suite of additional functions we wrote for processing and reacting to events. Users can either

use the prompt by itself, or load external scripts from the REPL.

Figure 4.3 contains a selection of ReactiveX operators (top), as well as a selection of built-in

helper functions for network debugging and monitoring (bottom). These functions are built from

ReactiveX operators and are sufficient for the examples of Sections 4.2 and 4.5. If needed, additional

functions can be written the same way; SIMON’s helper functions are themselves scriptable.

Prototype Monitors SIMON’s event processing is independent of the types of events it receives,

but of course the scripts and debugging power depend on the specific input event streams. SIMON

receives events from monitor components through a JSON interface.

Our current prototype uses two types of monitors: a pcap monitor that captures both data plane

and OpenFlow events, and an HTTP monitor that we use to capture REST API calls to a firewall

running atop the Ryu controller (Section 4.5). Both monitors use JnetPcap 1.4 (jnetpcap.com), a

Java wrapper for libpcap, and exploit the fact that we can capture all packets from Mininet. We use the
3Also called a REPL, short for “read-eval-print loop”. A REPL is an interactive prompt where expressions can be

evaluated and programs run. Though sometimes called an “interpreter” loop, it can equally well interface to a compiler, as

it does here.

reactivex.io
reactivex.io
jnetpcap.com
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APIs provided by JnetPcap and Floodlight (www.projectfloodlight.org/floodlight/)

to deserialize data-plane data and control-plane data. The HTTP monitor currently assumes that the

API calls will be contained in the first data packet of the TCP connection, which holds true for our

tests.

The monitors use multiple threads to capture packets, which are timestamped by the kernel when

captured. Due to the scheduling order of the threads, however, events may become accessible to

SIMON out of order, so we implement a holding buffer to allow reordering of the packets. Empirically,

a buffer of 50ms is enough to provide more than 96% of the packets in order. Because of the way the

buffer is implemented, we change the interarrival time distribution of the packets seen by SIMON

slightly, which has (minor) implications to reactive operators that depend on timeouts, such as expect

and expectNot. In Section 4.7 we discuss a more general handling of time needed to apply SIMON to

real networks.

4.5 Additional Case-Studies

We evaluate SIMON’s utility by applying it to three real controller programs: two that implement

shortest-path routing and a firewall application with real-time configurable rules. The firewall and

one of the shortest-path applications are third-party implementations that are used in real networks.

All are necessarily more complex than the basic stateful firewall of Section 4.2. However, unlike the

previous example, none of these applications sends data-plane packets to the controller. Rather, the

controller responds to northbound API events, network topology changes, etc.

Shortest-Path Routing We first examine a pair of shortest-path routing controllers. The first was the

final project for a networking course designed by two of the authors. The second is RouteFlow [96],

a complex application that creates a virtual Quagga (quagga.net) instance for each switch and

emulates distributed routing protocols in an SDN.

The shortest-path ideal model in SIMON keeps up-to-date knowledge of the network’s topology

and runs an all-pairs-shortest-path algorithm to determine the ideal path length for each route.

When the user sends a probe, the model starts a hop-counter appropriate to the probe’s source and

www.projectfloodlight.org/floodlight/
quagga.net
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destination, and decrements the counter as the probe traverses the network. A non-zero counter at

the final hop indicates a path of unexpected length, and the ideal model issues a warning. Note that

the ideal model does not determine a distinct shortest path that packets must follow. Rather, the

model is tolerant of variations in the exact paths computed by each application, so long as they are

indeed shortest (by hop count). The shortest-path computation takes roughly 100 lines of code; the

remaining model uses under 80 lines.

This example highlights an advantage of SIMON’s approach: we were able to re-use the same

ideal model for both implementations; once a model is written, its assumptions can be applied

to multiple programs. Also, creating the ideal model did not require knowledge of RouteFlow or

Quagga, but merely a sense of what a shortest-path routing engine should do. Of course, our model

is a proof of concept, and assumes a single-area application of OSPF with known weights.

Ryu Firewall We also created an ideal model for the firewall module released with the Ryu

controller platform (osrg.github.io/ryu). This module accepts packet-filtering rules via

HTTP messages, which it then enforces with corresponding OpenFlow rules on firewall switches.

These OpenFlow rules are installed proactively (i.e., the application installs them without waiting for

packets to appear), but the rule-set is modified as new messages arrive.

To capture these rule-addition and -deletion messages, we took advantage of SIMON’s general

monitor interface to add a second event source, one that listens for HTTP messages to the controller.

By creating a model aware of management messages, rather than depending on the OpenFlow

messages created by the program, our SIMON model was able to check whether traffic-filtering

respected the current firewall ruleset.

4.6 Related Work

We relate SIMON to other work along the four axes that characterize it: interactivity, scriptability,

reactivity, and visibility into network events.

Scriptable Debugging Scriptable debuggers are not new; many have been proposed, starting with

Dalek [84], which can automate repetitive tasks in gdb. Dalek’s scripts are event-based, as in SIMON,

osrg.github.io/ryu
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but Dalek is callback-centric rather than reactive. MzTake [74] brought reactive programming

to scriptable debugging. SIMON’s use of the Scala command-line interface is partly inspired by

MzTake’s use of the DrScheme interface. Expositor [53] adds time-travel features to scriptable

debugging, i.e., it allows users to view (and act on) events that have occurred in the past. SIMON

has the capability to do the same, but we have not yet fully explored this direction. Expositor is also

interactive, with a reactive programming style. All of these tools are designed for traditional program

debugging, and so their notion of event visibility is different from SIMON’s (e.g. method entrance

and exit rather than network events).

Data-Plane Invariant Checking There has been significant work on invariant checking for the data

plane. Anteater [73] provides off-line invariant checking about a network’s forwarding information

base. VeriFlow [55] extends the ideas of Anteater with specialized algorithms to allow real-time

verification, ensuring invariants are respected as the rules in a live network changes. Beckett et

al. [15] use annotations in controller programs to enable dynamic invariants in VeriFlow. Although

powerful, these tools are limited to checking invariants about the rules installed on the network. For

instance, the example of Section 4.2 would not be expressible in these tools, since the forwarding

rules installed by the buggy program violate no invariants. SIMON does not require knowledge or

annotation of controller program code to function, and its visibility is not limited to flow-tables.

Batfish [30] checks the overall behavior of network configurations, including routing and other

factors that change over time. Like the above tools, it uses data-plane checking techniques, but the

invariants it checks are not limited only to the data-plane. Batfish provides off-line configuration

analysis, rather than on-line monitoring and debugging as SIMON does.

Network Monitoring and Debugging The NetSight [39] suite of tools has several goals closely

aligned with SIMON. Chief among these tools is an interactive network debugger, ndb, which

provides detailed information on the fate of packets matching user-provided filters on packet history.

ndb is not scriptable, however, and its filters are limited to describing data-plane behavior, although

control-plane context is attached to packet histories it reports. NetSight’s postcard system allows

it to differentiate between packets based on payload hashes, rather than using only packet header
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information (as our prototype monitor does); this means it provides more fine-grained packet history

information than SIMON currently can. The matching invariant checker, netwatch, contains a

library of invariants, such as traffic isolation and forwarding loop-freedom, and raises an alarm if

those invariants are violated, along with the packet-history context of the violation. These invariants

are limited in general to data-plane behavior; in contrast, SIMON provides visibility into all planes of

the network.

Narayana, et al. [78] accept regular expressions (“path-queries”) over packet behavior and encode

them as rules on switches, avoiding the collection of packets that are not interesting to the user. This

is in contrast to both NetSight and SIMON, which process all packets. However, the path-queries tool

is neither interactive nor scriptable, and has visibility only into data-plane behavior.

OFRewind [118] is a powerful, lightweight network monitor that records key control plane events

and client data packets and allows later replay of complete subsets of network traffic when problems

are detected. While it is neither scriptable nor interactive to the level SIMON provides, its replay can

be an excellent source of events for analysis with SIMON.

FortNOX [88] monitors flow-rule updates to prevent and resolve rule conflicts. It provides no

visibility into other types of events, is not scriptable and has no interactive interface.

Y! [117] is an innovative tool that can explain why desired network behavior did not occur.

Such explanations take the form of a branching backtrace, where every possible cause of the desired

behavior is refuted. Obtaining such explanations requires program-analysis as well as monitoring,

whereas SIMON has utility even if the controller is treated as a black box. Y! does not provide

interactivity or scriptability.

Other Network Debugging Tools A number of other tools provide useful debugging information

without monitoring. Automated test packet generation [125] produces test-cases guaranteed to fully

exercise a network’s forwarding information base. SDN traceroute [3] uses probes to discover how

hypothetical packets would be forwarded through an SDN. The tool functions similarly to traditional

traceroute, although it is more powerful since it allows arbitrary packet-headers to be tested. These

also lack either an interactive environment or scriptability, and none leverage reactive programming.
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SIMON’s ideal-model description bears some resemblance to the example-based program synthe-

sis approach of NetEgg [122]. However, NetEgg synthesizes applications from individual examples

of correct behavior; ideal models fully describe the shape of correctness.

STS [101] analyzes network logs to find minimal event-sequences that trigger bugs. Although

logs may include OpenFlow messages and other events, STS’s notion of invariant violation is limited

to forwarding state. Thus SIMON is capable of expressing richer invariants, although it does not

attempt to minimize the events that led to undesired behavior. As STS focuses on log analysis, it

provides neither scriptability nor interactive debugging.

4.7 Discussion

Reactive Programming Section 4.3 discusses how reactive programming is a natural fit to deal

with the inherent streaming and concurrent nature of network events. However, not all programmers

and operators will feel comfortable with it. SIMON is flexible in this regard and allows any observable

to invoke event-processing callbacks at any point in a script, and progressively incorporate reactive

features.

SIMON beyond Mininet SIMON as presented is agnostic to, but only as useful as, the source of

events that it sees as input. In this paper we prototyped SIMON using omniscient packet captur-

ing enabled by Mininet. Given that Mininet allows the faithful reproduction of many networking

environments and SDN applications, this is already valuable.

There are, however, many other potential sources of events that can make SIMON applicable to

real networks. On a live network, port-mirroring solutions such as Big Switch’s Big Tap [16] can

serve as sources of events, and an OpenFlow proxy like FlowVisor [103] can intercept OpenFlow

messages. It is also straightforward to feed SIMON with events from logs, such as pcap traces, which

are routinely captured in test and production networks. NetSight’s [39] packet history files can also be

used a source of events to SIMON. Finally, SIMON’s interactivity and scriptability offer an excellent

complement to OFRewind [118]’s replay capabilities, which offer a hybrid between online and offline

monitoring.
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SIMON can also compile portions of debugging scripts that involve flow-table invariants to

existing checkers such as VeriFlow [55] or HSA [52].

Narayana et al. [78] make a distinction between two types of monitors: “neat freaks,” which

record a narrow range of events but support correspondingly narrow functionality, and “hoarders,”

which record all events available. Our prototype monitor is a hoarder; it captures all network events,

which are then filtered at the prompt or in a script. While this is practical in a prototype deployment

it is less so in a real network under load. A solution would be to “neaten” SIMON by analyzing how

scripts process event streams and, where possible, proactively circumscribing what traffic must be

captured.

Incomplete Information Some sources of events will not provide all packets in the network.

Mirroring ingress and egress ports only, for example, allows for end-to-end checks in SIMON

programs, but not hop-by-hop. Sampling (e.g. sFlow [113] and Planck [92]) makes it infeasible to

witness the same packet be forwarded by different switches along a path, as sampling is uncoordinated.

Incorporating these with SIMON (e.g. via inference) is an interesting future challenge.

Dealing with Time Most networks can synchronize clocks to acceptable accuracy, but SIMON has

to be prepared to deal with occasional timing inconsistencies. Our prototype naı̈vely orders packet

events by their timestamps after a small reordering buffer, but in real networks we will need to

extend SIMON’s notion of time. Some scripts are only concerned with logical time; for these, SIMON

only needs to potentially reorder events to be consistent with causal order. For these, SIMON has

to maintain an internal notion of time, driven by the timestamps in the input streams, but properly

corrected to be consistent with causal ordering. By observing pairs of causally related events in both

directions among two sources, SIMON can compute correction factors and bounds for the different

time sources in the network.

Other Application Areas SIMON applies to a wide range of situations beyond the illustrative

examples seen here. For instance, SIMON could monitor a load-balancing application, sending events

on a warning stream whenever balancing failed.

More broadly, networks that are not entirely controlled by a logically centralized program—e.g.,



80

networks with middleboxes—cry out for black-box methods that are nevertheless stateful. SIMON

can even be used to debug problems in a non-SDN network, although it may be harder to pinpoint the

cause of observed anomalies. SIMON also allows stateful debugging at the border between networks,

even when one or more are not SDNs. Because it does not assume that flow-tables suffice to fully

predict behavior, it can also be useful in detecting consistency errors [87, 94] or switch behavior

variation [59].



Chapter 5

Conclusion

5.1 Network Verification

We introduced TITAN, a scalable and faithful BGP configuration verification system for the global-

scale WAN in Alibaba. TITAN verifies the reachability related properties under arbitrary k failures in

one run, while it is orders of magnitude more efficient than the state-of-the-art. In addition, TITAN

discovers vendor-specific behaviors (VSBs) in a real-time way, which tunes the faithfulness of our

network behavior model. The network operators in Alibaba have used TITAN on a daily basis to

check network configuration errors on Alibaba’s global-scale WAN.

5.2 Network Diagnosis

We presented DSHARK, a general and scalable framework for analyzing packet traces collected from

distributed devices in the network. DSHARK provides a programming model for operators to specify

trace analysis logic. With this programming model, DSHARK can easily address complicated artifacts

in real world traces, including header transformations and packet capturing noise. Our experience in

implementing 18 typical diagnosis tasks shows that DSHARK is general and easy to use. DSHARK

can analyze line rate packet captures and scale out to multiple servers with near-linear speedup.

81
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5.3 Network Behavior Model

We presented SIMON, an interactive, scriptable network monitor tool equipped with a simple, general

and flexible network behavior model. The model takes a stream of network events as input and offers

network operators an easy way to understand and manage the network. On one hand, operators can

interactively query the model to refresh their understanding with the latest network events. On the

other hand, operators can define correct network behavior expectations to check the ones in real life.

Any expectation violations are raised and form another stream. This stream can be fed into SIMON’s

behavior model as well. Similarly, operators can interactively or write other expectations to further

investigate.

5.4 Limitations

This thesis mainly introduced three tools that address some practical challenges which limit the real

deployment of the state-of-the-art tools. While these tools don’t solve all possible problems that

may arise in networks, they address an important set of issues. This is a step to make the cycle more

practical and deployable that would help network operators achieve their goal for a high reliable and

predictable network.

TITAN mainly solves the scalability and faithfulness problems which are commonly exist in

existing work. Although it is, to the best of our knowledge, the first tool that has been successfully

deployed in Alibaba’s production-scale global WAN, it is still limited by the scope that all verification

tools have. TITAN is capable of finding configuration errors rather than software, firmware and

hardware issues. In addition, TITAN’s goal is to verify network-wide properties in a WAN. This

makes its design mainly focus on distance or path vector routing protocols like BGP, which are

the main protocols in a WAN. To verify other link state protocols like IS-IS, OSPF might need to

leverage some other methods like ARC [35].

DSHARK is a general analysis framework which is especially designed for in-network packet

traces. Comparing with existing work [39, 129], it mainly solves some complicated artifacts in real
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world traces, including header transformations and packet capturing noise. DSHARK targets on locate

after-the-fact root causes which make unexpected data-plane forwarding. More specifically, DSHARK

is able to detect network issues resulted from link/device failures and software or firmware errors.

One limitation of DSHARK is that it needs the network operators to have enough information about

the query. For example, operators need to know which flow and which header fields they should

target at. Meanwhile, they also need to know what logic should be put into their queries.

SIMON is a network monitor tool equipped with a simple, general and flexible network behavior

model. The goal of SIMON targets at offering an interactive and scriptable network model to help

network operators better understand the current network state. Since it is a general monitoring model,

its capability and visibility is largely relied on the input traces collected by external systems [39, 129].

Another limitation of SIMON is its scalability. In SIMON’s model, it regards all network events as a

stream and allow network operators to observe and manipulate. In practice, it is non-trivial to achieve

this. I leave these limitations as one of my future work.

5.5 Future Work

Besides making SIMON practical and deployable in a large-scale, I make several directions as my

future work:

5.5.1 Network Repair

One of the missing pieces to make the network fully auto-drive while maintaining in a high available

and reliable state is to automatically repair or update the control and data planes. More specifically,

once some network incidents happen, an effective repair and mitigation mechanism can pull the

network back to a correct state or mitigate the impacts of the incidents.

CPR [34] generates a minimum update plan to make the network move from the current state to

a given state. Network operators can define an expected state in a high-level way once some network

outages happen. However, most of the time, it is non-trivial for network operators to define a correct

and complete network state in practice.
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zUpdate and Dionysus [46, 64] take one step further. Instead of an abstract control plane

representation, they allow network operators to provide some high level network properties (e.g.. zero

packet drops), and then generate update or repair plan that does not violate these properties based on

the current configurations. Statesman [107] manages the data plane state in data center networks. It

schedules concurrent data plane updates and solves the dependencies and conflicts. However, existing

tools are not general enough. They are either limited by the context (e.g.. a software-defined-network

or data center network) or only focus on one specific problem (e.g.. zero packet loss).

5.5.2 Verification during Network Evolving

Network are constantly evolving due to different updates such as hardware maintenance or business

requirement changes. In order to make the network in a high available state, each update plan needs

to be made, reviewed and executed carefully. Otherwise, some unforeseen transient problems may

raise. For example, shut down switches without draining traffic properly may bring load spikes or

congestions.

Existing verification [12, 30] tools mainly focus on verifying network properties on a stable

network state. Recently, people start to care about the transient errors in practice, since the errors may

bring some data leakage or performance degradations. zUpdate [64] is the next step in this direction.

However, zUpdate is designed and deployed in simple scenario and requirement data center networks.

Besides, it mainly focuses on verifying generated update plans will cause transient packet drops. In

practice, beside this, the update plan verification should take more factors into consideration, such as

network isolation, load balancing etc. We believe a scalable and comprehensive update plan verifier

can help the network operators avoid such errors.
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packets in data center networks. In ACM CoNEXT, pages 481–495, 2016.

[69] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George Varghese.

Checking beliefs in dynamic networks. In 12th USENIX Symposium on Networked System

Design and Implementation (NSDI’15), 2015.

[70] Nuno P. Lopes and Andrey Rybalchenko. Fast bgp simulation of large datacenters. In 20th In-

ternational Conference on Verification, Model Checking, and Abstract Interpretation(VMCAI),

2019.

[71] Liang Ma, Ting He, Ananthram Swami, Don Towsley, Kin K Leung, and Jessica Lowe. Node

failure localization via network tomography. In ACM SIGCOMM IMC, pages 195–208, 2014.

[72] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas Anderson. User-level internet path

diagnosis. ACM SIGOPS Operating Systems Review, 37(5):106–119, 2003.



94

[73] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and

Samuel T. King. Debugging the data plane with Anteater. In Conference on Communications

Architectures, Protocols and Applications (SIGCOMM), 2011.

[74] Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shriram Krishnamurthi, and

Steven P. Reiss. The design and implementation of a dataflow language for scriptable debug-

ging. Automated Software Engineering Journal, 2006.

[75] Matt Mathis, John Heffner, Peter O’Neil, and Pete Siemsen. Pathdiag: Automated TCP

diagnosis. In PAM, pages 152–161, 2008.

[76] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Trumpet: Timely and

precise triggers in data centers. In Proceedings of the 2016 ACM SIGCOMM Conference,

SIGCOMM ’16, pages 129–143, New York, NY, USA, 2016. ACM.

[77] Radhika Niranjan Mysore, Ratul Mahajan, Amin Vahdat, and George Varghese. Gestalt: Fast,

unified fault localization for networked systems. In USENIX ATC, pages 255–267, 2014.

[78] Srinivas Narayana, Jennifer Rexford, and David Walker. Compiling path queries in software-

defined networks. In Workshop on Hot Topics in Software Defined Networking, 2014.

[79] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat Arun, Moham-

mad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. Language-directed hardware

design for network performance monitoring. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication, pages 85–98. ACM, 2017.

[80] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David Walker. Compiling path

queries. In 13th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 16), pages 207–222, Santa Clara, CA, 2016. USENIX Association.

[81] Tim Nelson, Da Yu, Yiming Li, Rodrigo Fonseca, and Shriram Krishnamurthi. Simon:

Scriptable interactive monitoring for sdns. In Proceedings of the 1st ACM SIGCOMM



95

Symposium on Software Defined Networking Research, SOSR ’15, pages 19:1–19:7, New

York, NY, USA, 2015. ACM.

[82] Lily Hay Newman. How a tiny error shut off the internet for parts of the us. Wired, Nov 2017.

Accessed Jan 1st, 2018.

[83] Nagao Ogino, Takeshi Kitahara, Shin’ichi Arakawa, Go Hasegawa, and Masayuki Murata.

Decentralized boolean network tomography based on network partitioning. In IEEE/IFIP

NOMS, pages 162–170, 2016.

[84] Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho. Dalek: A GNU, improved

programmable debugger. In Usenix Technical Conference, 1990.

[85] Christoph Paasch and Olivier Bonaventure. Multipath TCP. Communications of the ACM,

57(4):51–57, 2014.

[86] Aurojit Panda, Ori Lahav, Katerina J. Argyraki, Mooly Sagiv, and Scott Shenker. Verifying

reachability in networks with mutable datapaths. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2017.
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Nilton Araujo Corrêa, Sidney Cunha de Lucena, and Robert Raszuk. Revisiting routing control

platforms with the eyes and muscles of software-defined networking. In Workshop on Hot

Topics in Software Defined Networking, 2012.

[97] Arjun Roy, Jasmeet Bagga, Hongyi Zeng, and Alex Sneoren. Passive realtime datacenter fault

detection. ACM NSDI, 2017.

[98] Arjun Roy, Jasmeet Bagga, Hongyi Zeng, and Alex Sneoren. Passive realtime datacenter fault

detection. In ACM NSDI, 2017.

[99] Liron Schiff, Stefan Schmid, and Marco Canini. Ground control to major faults: Towards a

fault tolerant and adaptive SDN control network. In IEEE/IFIP DSN, pages 90–96, 2016.



97

[100] S. Schmid and J. Srba. Polynomial-time what-if analysis for prefix-manipulating mpls

networks. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pages

1799–1807, April 2018.

[101] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or, Jefferson

Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock, Hrishikesh B. Acharya,

Kyriakos Zarifis, and Scott Shenker. Troubleshooting blackbox SDN control software with

minimal causal sequences. In Conference on Communications Architectures, Protocols and

Applications (SIGCOMM), 2014.

[102] J. Scudder, R. Fernando, and S. Stuart. BGP Monitoring Protocol (BMP). RFC 7854, IETF,

June 2016.

[103] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martı́n Casado, Nick McKe-

own, and Guru Parulkar. Can the production network be the testbed? In Operating Systems

Design and Implementation, 2010.

[104] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet: Scalable

symbolic execution for modern networks. In ACM SIGCOMM (SIGCOMM), August 2016.

[105] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. Synthesis of fault-tolerant dis-

tributed router configurations. POMACS, 2(1):22:1–22:26, 2018.

[106] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan Arefin.

A network-state management service. SIGCOMM Comput. Commun. Rev., 44(4):563–574,

August 2014.

[107] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan Arefin.

A network-state management service. In Proceedings of the 2014 ACM Conference on

SIGCOMM, SIGCOMM ’14, pages 563–574, New York, NY, USA, 2014. ACM.

[108] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Simplifying datacenter network

debugging with pathdump. In OSDI, pages 233–248, 2016.



98

[109] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed network monitoring and

debugging with switchpointer. In 15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pages 453–456, Renton, WA, 2018. USENIX Association.

[110] J. Touch. RFC6864: Updated Specification of the IPv4 ID Field. https://tools.ietf.

org/html/rfc6864, February 2013.

[111] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A language for high-level

reactive network control. In Workshop on Hot Topics in Software Defined Networking, 2012.

[112] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo, Jennifer Rexford, Vivek

Nigam, Andre Scedrov, and Carolyn L. Talcott. FSR: formal analysis and implementation

toolkit for safe interdomain routing. IEEE/ACM Transactions on Network (ToN), 20(6):1814–

1827, 2012.

[113] Mea Wang, Baochun Li Li, and Zongpeng Li. sFlow: Towards resource-efficient and agile

service federation in service overlay networks. In IEEE ICDCS, pages 628–635, 2004.

[114] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and

Zachary Tatlock. Scalable verification of border gateway protocol configurations with an

SMT solver. In ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), 2016.

[115] Chathuranga Widanapathirana, Jonathan Li, Y Ahmet Sekercioglu, Milosh Ivanovich, and

Paul Fitzpatrick. Intelligent automated diagnosis of client device bottlenecks in private clouds.

In IEEE UCC, pages 261–266, 2011.

[116] Wenji Wu and Phil DeMar. Wirecap: A novel packet capture engine for commodity nics

in high-speed networks. In Proceedings of the 2014 Conference on Internet Measurement

Conference, IMC ’14, pages 395–406, New York, NY, USA, 2014. ACM.

https://tools.ietf.org/html/rfc6864
https://tools.ietf.org/html/rfc6864


99

[117] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. Diag-

nosing missing events in distributed systems with negative provenance. In Conference on

Communications Architectures, Protocols and Applications (SIGCOMM), 2014.

[118] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann. OFRewind: Enabling

record and replay troubleshooting for networks. In USENIX Annual Technical Conference,

2011.

[119] Andreas Wundsam, Amir Mehmood, Anja Feldmann, and Olaf Maennel. Network trou-

bleshooting with mirror VNets. In IEEE GLOBECOM, pages 283–287, 2010.

[120] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng, and Lihua

Yuan. dshark: A general, easy to program and scalable framework for analyzing in-network

packet traces. In 16th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 19), pages 207–220, Boston, MA, 2019. USENIX Association.

[121] Minlan Yu, Albert G Greenberg, David A Maltz, Jennifer Rexford, Lihua Yuan, Srikanth

Kandula, and Changhoon Kim. Profiling network performance for multi-tier data center

applications. In USENIX NSDI, 2011.

[122] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. NetEgg: Programming network policies by

examples. In Workshop on Hot Topics in Networks, 2014.

[123] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi,

Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark: A unified engine for big data

processing. Commun. ACM, 59(11):56–65, October 2016.

[124] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic test

packet generation. In 8th International Conference on Emerging Networking Experiments and

Technologies (CoNEXT), 2012.



100

[125] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic Test

Packet Generation. In International Conference on emerging Networking EXperiments and

Technologies (CoNEXT), 2012.

[126] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the characteristics and origins

of internet flow rates. ACM SIGCOMM Computer Communication Review, 32(4):309–322,

2002.

[127] Yin Zhang, Matthew Roughan, Walter Willinger, and Lili Qiu. Spatio-temporal compressive

sensing and internet traffic matrices. ACM SIGCOMM Computer Communication Review,

39(4):267–278, 2009.

[128] Yao Zhao, Yan Chen, and David Bindel. Towards unbiased end-to-end network diagnosis.

ACM SIGCOMM Computer Communication Review, 36(4):219–230, 2006.

[129] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan, Dave

Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-level telemetry in

large datacenter networks. In Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication, SIGCOMM ’15, pages 479–491, New York, NY, USA, 2015.

ACM.


	List of Figures
	Introduction
	Overview
	Thesis Goals and Contributions
	Before-the-fact Network Verification
	After-the-fact Network Diagnosis
	Network Behavior Model


	Titan: Scalable and Faithful BGP Configuration Verification
	Background and Motivation
	A brief introduction of the WAN of Alibaba
	Need of configuration verification in Alibaba
	Challenges in existing solutions

	Overview
	Device behavior model
	Network model

	Configuration Verifier
	Reachability on control- and data-planes
	Intuitive example of topology condition
	Topology condition encoding
	The reachability of routes
	The reachability of packets
	Optimizations for scalability
	Link state protocols and redistribution

	Behavior Model Tuner
	Building faithful behavior models is hard
	Behavior model tuner

	Deployment Experience
	Real world vendor-specific behaviors
	Real world configuration errors

	Performance Evaluation
	Titan's performance in the wild
	Comparing with existing tools

	Related Work

	dShark: A General, Easy to Program and Scalable Framework for Analyzing In-network Packet Traces
	Motivation
	Analysis of in-network packet traces
	A motivating example

	Design Goals
	Broadly applicable for trace analysis
	Robust in the wild
	Fast and scalable

	dShark Design
	A concrete example
	Architecture
	dShark programming model
	Support for various groupings
	Addressing packet capture noise

	dShark Components and Implementation
	Parser
	Grouper
	Query processor
	Supporting components in practice

	dShark Evaluation
	Case study
	dShark component performance
	End-to-end performance

	Discussion and Limitations
	Related Work

	Simon: Scriptable Interactive Monitoring for Networks
	Background and Overview
	Simon in Action
	Why Reactive Programming?
	A Simon Prototype
	Additional Case-Studies
	Related Work
	Discussion

	Conclusion
	Network Verification
	Network Diagnosis
	Network Behavior Model
	Limitations
	Future Work
	Network Repair
	Verification during Network Evolving



