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Coreference Resolution is a fundamental natural language processing (NLP) problem, as it attempts to resolve

which underlying discourse objects refer to one another. Further, it serves as an essential component of

many other core NLP tasks, including information extraction, question-answering, document summarization,

etc. However, decades of research have primarily focused on resolving entities (e.g., people, locations,

organizations), with significantly less attention given to events — the actions performed. This dissertation

focuses on improving event coreference. We first detail existing research, while addressing potential weaknesses

in current systems: the reliance on dozens of hand-engineered lexical features, and agglomerative-based

clustering that is limited to mention-to-mention comparisons. We develop a state-the-art relational-based

model which uses almost no features, along with a neural clustering approach that is more holistic than existing

mention-based clustering approaches. Last, we research the benefits of including entity information and further

this by resolving both entities and events. Our model is novel in demonstrating a symbiotic relationship.
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Chapter 1

Introduction

1.1 Problem Statement

Coreference resolution is the task of identifying, within a body of text, which words refer to the same underlying

discourse objects. For example, if a sentence read, “José voted for the Senator Warren because her values

best aligned with his,” a human reader would easily understand that the words “Senator Warren” and “her”

refer to the same person, whereas “José” and “his” both refer to a different entity. While this task is usually

intuitive for humans, it is difficult for computers. Yet, understanding who is whom and what is what, within

a body of text, is a crucial component for any system that aims to understand discourse and the meaning

of text. That is, having knowledge of the participants involved and the actions performed is imperative for

providing a holistic view of any narrative. Naturally, coreference resolution is not only a fundamental task

within the field of natural language processing (NLP), but it is also useful when applied toward other NLP

tasks such as information extraction [49], question answering [76], topic detection [2], summarization [26],

and more. As a simple example, if one performs a Web search for “Justin Trudeau,” some of the search results

will contain sentences which only refer to him as “Prime Minister,” “he,” or ”Trudeau,” and correctly using

this information is essential for returning information that is relevant to the user’s query. Natural language

systems continue to play an increasingly large role in our daily lives, for example: voice assistants such as

Google Home, Amazon’s Alexa, and Apple’s Siri; personalized search results; automated chatbots serving as

customer service agents; and auto-complete suggestions for writing emails. Consequently, researching and

improving coreference resolution systems is useful from both academic and industrial purposes, as it is a

complex computational problem that can yield profound real-world impact.

1
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1.2 Terminology

This dissertation explores several components of coreference resolution, so we now define the related, key

terminology that will be used throughout.

A mention is a particular word, or group of words, in a document which represents an underlying entity

or event, such as Justin Trudeau, he, or spoke. Coreference resolution is concerned with determining which

mentions co-refer to one another. Using our original example sentence about Justin Trudeau, words such as

“with,” “today,” and “about” are not mentions and thus coreference systems do not attempt to resolve them.

An entity may be a person, location, time, or an organization. The mentions which refer to them may be

named, nominal, or pronominal:

• Named mentions are represented by proper nouns (e.g., André Benjamin or Pakse, Laos)

• Pronominal mentions are represented by pronouns (e.g., she or it)

• Nominal mentions are represented by descriptive words, not composed entirely of a named entity or

pronouns (e.g., The well-spoken citizen)

An event can generally be thought of as a specific action. Quine [86] proposed that an event mention

refers to an action that is grounded to a specific time and location, and that two event mentions are co-referent

if they share the same spatiotemporal location. This definition1 has become the general consensus within

the community, and we adopt it, too. Specifically, two co-referent events must share the same properties

and participants, which must be at least reasonably implied and not explicitly contradicted. For example, in

Figure 1.1, the first sentence in document #1 and the first sentence in document #2 contain co-referent events

(“checked into” and “check into”), but neither of those event mentions co-refer with any additional mentions.

Often times, the participants may be referred to in different ways, implied, or missing altogether.

When two mentions are determined to be co-referent with each other, we can refer to them as being linked

together. Coreference resolution is concerned with linking either entities together and/or events together; that

is, entities shall not be linked to events, and doing so would be considered an incorrect link. Although one

may be interested in evaluating coreference systems by their ability to correctly link pairs of mentions [106],

coreference resolution is ultimately a clustering task, whereby we wish to group all like-mentions together, as

shown with colored boxes in Figure 1.1. Specifically, coreference systems aim to find a globally-optimal fit of

mentions to clusters, whereby every mention m in the corpus is assigned to exactly one cluster C, such that

1Hovy, et al. [48] provide an in-depth study of varying definitions.
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Lindsay Lohan checked into California’s Betty Ford 
Center Rehab Facility late Thursday, dodging arrest …
The actress had  checked-out of a similar facility, 
according to spokesman ...

Document 1

Lindsay Lohan is MIA after pretending to check into
unlicensed Calif. Rehab Center ...

Prosecutor Terry White told the post a couple hours
after a court hearing -- where Lohan’s lawyer said ...

Document #1

Document #2

Figure 1.1: Sample of a coreference resolution corpus (ECB+), depicting gold coref mentions as having shared
box colors.

every mi,mj ∈ C are co-referent with each other. If a given mi is not coreferent with any other mj , then it

should belong to its own cluster C with a membership of one.

Given a corpus of text documents, coreference resolution can be trained and evaluated on either a within-

document or cross-document basis:

• Within-document is when each mention may only link to either (1) no other mention; or (2) other

mentions which are contained in the same document. Even if the gold truth data denotes mentions from

differing documents are co-referent, this cross-document data is not used for training or testing.

• Cross-document is when the entire corpus is available for linking; a mention is eligible to be co-

referent with mentions in any other document, and the evaluation reflects the same. As described in

[100], cross-document evaluation is normally conducted by transforming the entire corpus into a single

“meta-document,” whereby all documents are simply concatenated together.

1.3 Coreference Systems

Coreference systems are predicated upon knowing which words constitute mentions. This process of identifying

entity/event mentions is the focus of a separate, distinct2 task called mention detection. The identified mentions

are used by coreference resolution models.

2Only recently have there been new efforts to combine both mention detection and coreference resolution [61, 111].
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1.3.1 Mention Detection

Mention detection has remained a fundamental NLP task for several decades [75]. Identifying mentions is

useful not only for coreference resolution but also other NLP tasks such as information retrieval, relation

extraction [64], and entity disambiguation [23]. When mention detection concerns entities (as opposed to

events), research is commonly conducted for the task of named entity recognition, which not only detects the

mention boundaries but classifies/labels each mention as being one of several possible class types (e.g., person,

organization, location).

Named Entity Recognition

The earliest work started in 1991 with the task of identifying company names [89]. In 1996, the MUC-6

conference [42] focused on Information Extraction tasks, which included coining the phrase “named entity”

and drastically increasing attention to mention detection. Early work demonstrated state-of-the-art performance

with Hidden Markov Models (HMMs) [11] and Conditional Random Fields (CRFs) [72]. Presently, the best

performing systems use neural sequence-based approaches, such as Bidirectional LSTMs [18, 47], Convolution

Neural Networks (CNNs) [69], and character-based LSTMs [1].

Event Detection

Event detection has received less research attention than named entity recognition. Recent state-of-the-art

performances are achieved with Bi-directional LSTMs [77], CNNs [35], and Global Context Layers (GCL)

[90]. Event detection is also used in conjunction with Semantic Role Labelling (SRL) [81], which addresses

a similar and more encompassing problem. Specifically, SRL is a shallow semantic parsing task, whereby

the goal is to identify each predicate in a sentence, along with its constituents and how they fill a semantic

role (e.g., Agent, Patient, Instrument, etc) [39, 85]. For example, if a sentence were “Mary sold the book to

John,” an SRL system should determine that “to sell” is the predicate (i.e., action), “Mary” is the seller (i.e.,

Agent), “the book” is the object (i.e., theme) and “John” is the receiver (i.e., recipient). SRL systems and

Event Detection systems both often rely on using many lexical and syntactical features, including those from

constituency parsers [99], dependency parsers [50], etc.
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1.3.2 Coreference Resolution

As mentioned, coreference systems aim to create the correct clusters of mentions; however, due to the large

number of possible combinations, finding a globally-optimal assignment of clusters is NP-Hard and thus

computationally intractable. In an attempt to avoid this, systems typically perform pairwise-mention predictions,

then use those predictions to build clusters. The specific modelling strategies for such approximately fall into

the following categories: (1) mention-ranking / mention-pairs; and (2) entity-level / event-level, as described

below. Each modelling paradigm offers its own strengths and weaknesses, and consequently, state-of-the-art

results are often achieved from either approach; no single paradigm is unanimously better than the other.

Mention-ranking models define a scoring function f(mi,mj) which operates on a mention mj and

possible antecedent mi, where mi occurs earlier in the document and could be null (represented by ε and

denoting that mj is not coreferent with any other mention); e.g., Wiseman, et al.’s [105]. These models aim

to find the ideal mi antecedent for every mj mention. After every mention has decided to link to ε or a

previous mention, it is common practice to define each cluster simply by joining together all mentions which

are connected by a single path. For example, if m3 predicts m2 as its antecedent, and m2 predicts m1 as its

antecedent, then {m1,m2,m3} are all connected. This assumes that the transitive property holds true, which

is a potential weakness, as there is no direct, holistic consideration given to every unique mention within a

particular cluster.

Mention-pair models score all pairs (mi,mj), in contrast to mention-ranking models which aim to find

the ideal mi antecedent for every mj . After every pair of mentions has been scored, it is common practice

to cluster mentions in an iterative fashion, one mention at a time. This approach is commonly referred to

as best-first or easy-first since each decision is based on a single “lowest cost” score (a la agglomerative

clustering). Because mention-pair models base their predictions on the information from just two mentions at a

time, they are by definition less expressive than entity/event-level models. Yet, their inference can be relatively

simple and effective, allowing them to be fast and scalable. Consequently, they have often been the approach

used by many state-of-the-art systems [31, 97].

Entity/Event-level Instead of operating on a per-mention basis, these models differ in that they focus

on building a global representation of each underlying entity or event, the basis of which determines each

mention’s membership [22, 104]. These models are attractive due to the intuitive nature of modelling each

entity with its own representation; however, challenges include (1) deciding how to represent each entity as it

is being developed; (2) decided how many entities to model.
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1.4 Contributions

In this dissertation, we research event coreference resolution for both within-document and cross-document

settings. We summarize existing research while identifying what we believe to be weaknesses. We address the

plethora of features that are commonly used in others’ systems, and we offer a state-of-the-art mention-pair

neural model (Conjoined CNN) that uses very few features (lemma embeddings and character embeddings).

While most coreference models perform agglomerative clustering on their predicted pairs of mentions, we

improve this by offering a neural clustering model that takes a more holistic approach. After carefully reviewing

our overall system’s performance, we focus on how to better use mentions’ context. Specifically, we use

structured, dependency tree representations of sentences, allowing us to glean and use useful representations

of entities. These entity embeddings, when combined with our original event coreference model, offer the best

performance yet. Further, the reverse holds true, too: using tree-based event representations, when coupled with

our original entity coreference model, yields improved results. Thus, we demonstrate a symbiotic relationship

by combining entities and events to achieve better results than that from any individual model.



Chapter 2

Background

Coreference resolution has a long, rich history of research. Although event coreference has received signif-

icantly less research attention than entity coreference, there has been continued interest ever since it was

formally introduced in the late-1990s. Both lines of research make heavy use of machine learning. Conse-

quently, this chapter first provides a succinct explanation of the relevant machine learning topics, including

neural networks (i.e., deep learning), then briefly describes two representations that are commonly used within

NLP: word embeddings and dependency parses. Last, we provide an overview of coreference resolution work.

We assume the reader has background knowledge in probability, statistics, linear algebra, and calculus.

While our aim is for this dissertation to be self-contained, providing a comprehensive expository of machine

learning, deep learning, and natural language processing (NLP) is beyond our scope. For those who desire

such information, we refer the interested reader to the excellent textbooks by Bishop [12], Jurafsky and Martin

[51], Goodfellow et al. [40], and Charniak [15].

2.1 Machine Learning

Machine Learning is a large sub-field of computer science that concerns developing models that learn to

perform a given task, for a specific set of data. Examples include predicting numeric values (e.g., stock prices),

predicting categorical choices (e.g., the tumor is benign; the object in the road is a bicyclist), clustering

data (e.g., grouping similar users together based on their movie-watching preferences). There is a plethora

of different learning objectives, environment scenarios, and types of data. Despite this enormous range of

aspects and approaches to machine learning, there are two large paradigms of algorithms that span a rich set of

7



8

models: supervised learning and unsupervised learning. Together, these two categories encompass a majority

of machine learning models.

Supervised learning is when a model uses data that is labelled/annotated with the desired output. This can

be viewed as learning a function that maps a set of inputs to a desired set of outputs (e.g., making predictions

for a certain task). Unsupervised learning is when a model uses data that is unlabelled and not annotated with

our desired objective (e.g., clustering similar users together).

As an illustrative example: all machine learning models rely on using data. When that data is provided

to a model, it is referred to as input data, and each instance of data may contain many aspects/features. For

example, say we have a dataset corresponding to weather. Perhaps we have five years worth of data, and each

instance/example represents a single day of weather. Further, say each day’s data includes four aspects/features:

(1) did it rain yesterday (value of 0 or 1); (2) is the humidity greater than 70% (value of 0 or 1); (3) is the

temperature greater than 80◦ F (value of 0 or 1); and (4) is the sun visible (value of 0 or 1). An example of

unsupervised learning is if our task is to find patterns or groups of days with similar weather, perhaps over

time. However, a supervised task could be to predict if each day will encounter rain. In this scenario, our

data would need to also include the gold truth information of if it actually rained on each day. The training

phase of our supervised model would use this gold, labelled information. However, at testing time, our model

would only have access to the original features, and its goal is to predict the correct, labelled answer. Note: it

is imperative for the training and testing data to contain disjoint data samples (i.e., days of weather); otherwise,

the model will perform falsely well, akin to a student cheating on an exam by having previously seen the exact

exam questions (testing data).

For the entirety of this dissertation, the models we develop are supervised approaches. Specifically, we

develop neural network models. We now provide a brief overview of neural network models.

2.2 Neural Networks and Deep Learning

Neural networks are machine learning models that were roughly inspired by information processing and

communication patterns in biological systems — the vast interconnected network of neurons within brains

[34, 80]. In 1943, McCollough and Pitts [36] first developed the idea of a computational “neuron” — it simply

allows for multiple input values xi (each of which is a 0 or 1) and produces an output value ŷ that is 0 or

1 (representing the neuron is quiescent or excited, respectively). This was extended by the concept of the

perceptron, a breakthrough in 1958 by Rosenblatt.
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Σ

β

Figure 2.1: A perceptron, the fundamental building block of neural networks. Arrows denote that the values at
the tail are inputs into the item at the head.

A perceptron (Figure 2.1) consists of multiple input values xi, each of which can be of any value (limited

only by the developer) and is multiplied by a weight value wi — which is also a continuous-valued number.

We then take the sum of all the weighted values and add a bias β. If this total is above 0, our perceptron emits

ŷ as 1; otherwise, it outputs ŷ as being 0, as depicted by:

f(x) =


1, if

∑
i wixi + β ≥ 0.

0, otherwise.
(2.1)

Note, the perceptron is merely a basic function, effectively identical to the canonical y = mx+ β from

algebra. Yet, despite this simplicity, the perceptron model already allows one to make predictions for particular

tasks: initially, all wi weight values and the β bias are set to random values. Then, for any given set of input

values (i.e., features, such as the four weather features listed above), the model will multiply the input by the

wi weights and ultimately emit a 0 or 1, which we refer to as ŷ. Based on the desired output y, the perceptron’s

output ŷ will either be right or wrong. If it is wrong, the wi weights and bias β should be updated so as to make

the ŷ output closer to the correct output y. If the program is given many data examples (training data), the

hope is that the perceptron will learn appropriate weights such that later, when presented with unseen testing

data, the model will produce correct predictions/classifications. While we do not detail the exact process of

updating the weights and bias, we refer the interested reader to [15].

Further, if one were interested in modelling the likelihood of not only one class/output (e.g., likelihood of

rain), but multiple, possible classes/outcomes (e.g., likelihood of rain, likelihood of snow, etc), one could use a

perceptron for each class, as shown in Figure 2.2. Each perceptron’s output corresponds to its prediction for

that class. Thus, the program predicts that the most likely outcome is the perceptron class that has the highest
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Figure 2.2: A multi-class perceptron. Each ŷi class has its own bias βi, yet we omit it here for readability.

score. In this scenario, instead of using Equation 2.1, it is standard practice to calculate a probability for each

of the K outcomes. This is done by the softmax function (Equation 2.2), which normalizes every score via

dividing each by the total sum of outcomes. Note, even if the original ŷi value were negative, taking the eŷi

makes it positive.

P (ŷi) =
eŷi∑K
i e

ŷi
(2.2)

Let each of our input data samples have N input values (i.e., x0, x1, ...xn−1), then one could interpret

each datum as existing in N -dimensional space. If we were to plot all of our training data in this space, ideally

there would exist a single decision surface which would perfectly separate our different classes of data (e.g.,

rained or not). If this is the case, our data is said to be linearly separable. Unfortunately, our aforementioned

examples of single-perceptrons and multi-class perceptrons have only had one layer of outputs. That is, each

perceptron yields our final output/predictions. While these models may be useful for a range of tasks, they are

ultimately limited in their expressive power, for they can only accurately classify linearly separable data [44].

To remedy this limitation, one can stack multiple perceptrons after one another; thus, the output of one

perceptron serves as the input into another, subsequent perceptron, which then ultimately produces a final

output. The intermediate perceptron is referred to as being a hidden unit, and its actual value is determined

by an activation function — the purpose of which is to scale the value so that it is within a reasonable range

(e.g., 0 to 1), since it will serve as input to the next layer. Common activation functions include the sigmoid

function (Equation 2.3), Rectified Linear Units (ReLU) (Equation 2.4), and hyperbolic tangent (tanh). If the

neural network contains multiple hidden perceptrons, each of which serves as input to their own respective,

subsequent perceptron, then the model is said to have a hidden layer (Figure 2.3).
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Figure 2.3: A multi-class neural network with a hidden layer, denoted by the dashed box.

σ(x) =
1

1 + e−x
(2.3)

σ(x) = max(0, x) (2.4)

The networks we have presented so far are called feed-forward neural networks. There are many other

variants, but all neural models start with input data, then subsequently transform the data by a series of

functions (i.e., activation functions), and ultimately output a value(s) pertaining to the task at hand. While

the mathematical details are not important for now, the key point is that a neural model uses a multitude of

weighted data transformations as its core computing mechanism. If the network has multiple hidden layers, it

is called a deep neural network, and the overall framework is referred to as deep learning.

It is common for deep neural models to contain thousands of non-linear transformations/functions, and

since the model at large accepts inputs and emits an output, one can view the entire neural network model

as simply one large, non-linear function. Deep Learning has effectively impacted every area of artificial

intelligence and machine learning. In fact, it has advanced the state-of-the-art performance in nearly every

area of NLP, from machine translation [16, 33], language modelling [27, 83], constituency parsing [19, 56],

question answering [28, 94], and image captioning [103, 107], just to name a few. While it is beyond the

scope of this work to include a comprehensive foundation in deep learning, we refer interested readers to the

introductory textbooks by Goodfellow, et al. [40] and Charniak [15].
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2.2.1 Loss Functions

Neural networks work due to their learned weights. That is, during the model’s training phase, weight

parameters are learned by being iteratively adjusted such that the model performs well on the training data for

a given task. The metric that determines how well/poorly the model performs at the given task is defined by

the loss function. Specifically, a loss function produces a single scalar value that represents how inaccurate the

model’s predictions were compared to the golden, correct labels. It is up to the developer to determine which

loss function to use, and commonly used ones include cross-entropy for multi-class categorical predictions

and mean-squared error for linear regression.

Once a model calculates its loss, it needs to update its weight parameters accordingly. This is done via

backpropagation, which is a core component of neural networks, and the details are beyond the scope of

this dissertation. We refer the interested reader to [93]. Independent of backpropagation is the component of

optimization, which determines the manner and degree to which each weight is updated. This affects how

quickly/slowly the model learns weights. Examples of optimization include the Adagrad [30] and Adam [55]

algorithms.

2.2.2 Convolutional Neural Networks (CNNs)

So far, all of the neural networks we have discussed have immediately used the all of the current layer’s inputs

for computing the next layer of values. However, in some applications, it can be largely beneficial to focus on

sub-regions of inputs. For example, within the field of vision, our inputs are often two-dimensional images,

represented as a matrix of continued-valued pixel values (typically scaled from their original 0-255 pixel color

value to be between zero and one). For example, in Figure 2.4, the input is a picture of a hand-written digit,

two, which is part of the famous MNIST [59] dataset.

If the task for our program were to accept the hand-written image and predict what the digit is (zero

through nine), one could use a feed-forward neural network, like ones we discussed. In particular, the input

layer could have one neuron for each of the 784 pixels in the 28x28 image. This would be highly sensitive to

input changes though; imagine, if our example image of a two were slightly moved to the left and down by a

few pixels, it would cause nearly every input neuron to be different. Or, imagine if the intensity of the image

changed ever so slightly (e.g., if the person who wrote the digit pressed harder than before), every neuron

would change, which would make learning difficult. Alternatively, it would be best if our model were robust

to small changes in the inputs, were better at recognizing local patterns (e.g., there is a swirly characteristic
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in the lower-left region), and could use those patterns for making global predictions (e.g., the digit is a two).

Looking at small, regional patterns is more robust than directly using every individual input pixel because

regions, relative to one another, will likely behave similarly across all images of a given digit. A convolutional

neural network (CNN) is designed to address these exact issues. Here, we provide a succinct overview of how

they work, and we refer the interested reader to more thorough explanations [15, 52, 113].

A CNN learns regional patterns by using a convolutional kernel (also called convolutional filter), which is

a two-dimensional weight matrix that is smaller in size than the original input (e.g., a size of 3x3 is common).

As depicted in Figure 2.4, the convolutional kernel is repeatedly multiplied (dot product) by successive regions

of the original input, in a sliding window fashion. For any one particular instance of multiplying the kernel

by the input, we use an activation function, which outputs a single scalar value. Thus, after all successive

applications of the kernel have been multiplied against the original input, we will have a one-dimensional

array/vector of scalar values called a feature map. We compress this information into the most meaningful bits

via a process called pooling. One of the most common pooling techniques is MaxPooling, which simply emits

the maximum value from the vector. We are now left with a single scalar again.

Instead of using only one convolutional filter (a matrix of weights that is learned), one can simultaneously

apply N different convolutional filters. Thus, instead of resulting in just a single scalar value from having

performed pooling, we are left with a vector of length N . This vector can then be used to make a final

prediction towards the goal (e.g., which digit is it?). In keeping with all other neural networks, based on our

objective function, our weights are updated via backpropagation.

There are many variants and nuanced elements to this outlined CNN approach, such as optionally per-

forming this convolutional process multiple times (stacked) before making the final prediction, deciding

how to slide the convolutional kernel across the input (e.g., sliding it over one pixel at a time, or skip a few

pixels, and when to stop sliding, etc.), selecting the activation function, bias, and initialization, the size of the

convolutional kernel, etc. Nonetheless, the overall process remains the same. Further, instead of only operating

on two-dimensional images, it is common to use CNNs for natural language processing, too. In this scenario,

one often represents each word (e.g., word embedding) as its own row in the input matrix, usually in the linear

fashion the words appeared in the corpus. The columns correspond to individual features for each word. For

example, if one were modelling a word its context (three words that appear before and after it), where each

word is represented by a 300-length word embedding, then the matrix would be of size 7x300.



14

Input Convolutional
Kernels

Feature
Maps

Pooling

σ

Softmax
Prediction

2

Figure 2.4: The canonical architecture for a Convolutional Neural Network (CNN).

2.3 Language Representations

First, we describe the difference between a word token and a word type. A word token refers to a specific

instance of a word that is used in text, whereas a word type refers to its global existence/representation. For

example, if a sentence were “Run Spot, run”, there are three word tokens (i.e. run, spot, run), but only two

word types (i.e., run, spot).

2.3.1 Word Embeddings

Representing words is a necessity for all of NLP, regardless of the task at hand. Since words are the primary

ingredient and main currency in NLP, the representations thereof naturally play a large role. The seminal

research of word embeddings can be traced back to the vector space model by Salton et al. in 1975 [91]. This

was one of the early works that popularized attempts to represent each word (or document) as a fixed-length

vector. There are many approaches to learn word representations, from distributional representations, clustering-

based representations, and distributed representations, with the latter being the most popular and successful.

Specifically, distributed representations aim to represent each word as a fixed-length, low-dimensional (e.g.,

100-400 dimensions), continuous-valued vector. Each dimension of the embedding represents a latent feature

of the word, ideally capturing the most important syntactic and semantic properties.

In the early 2000s, researchers began to use neural networks to create word embeddings, largely due to

Bengio et al. [7] work in developing the first large-scale neural network language model. Most impactful

was the word2vec model by Mikolov et al. [73] in 2013. In short, word2vec, and many other models, learns

embeddings for each word by considering words’ contexts and co-occurrence patterns. One can use different
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learning objectives to create the embeddings, such as trying to predict each given word by merely looking at

its neighboring context — the continuous bag-of-words (CBOW) method. Another highly popular algorithm,

which we use for this dissertation, is GloVe [82]. In short, GloVe aims to construct word embeddings that

capture meaning by using word co-occurrence ratios, rather than the raw counts of words. It is possible to run

the GloVe algorithm either on one’s own corpus (such as the corpus we use), or to use pre-computed word

embeddings after having run GloVe on very large (840-billion word corpora) — which the GloVe authors

provide for free use. One of the benefits of the former approach is that the embeddings are relevant to one’s

actual dataset; one of the benefits of the latter is that it has more data to learn from, although the domain may

differ. Regardless, a property of all modern word embeddings (e.g., word2vec and GloVe) is that words that

are more similar to one another will ideally have embeddings that proportionally reflect such. Both word2vec

and GloVe construct embeddings for word types, yet many modern approaches also do so for individual word

tokens, since specific context matters.

2.3.2 Recurrent Neural Networks (RNNs)

In addition to the previously mentioned neural network architectures (feed-forward and convolutional),

recurrent neural networks are also an incredibly popular architecture. While they may be used for a wide-

variety of tasks, we will provide a brief overview of them by concerning the task of language modelling. As a

reminder, language modelling concerns computing a probability distribution for any sequence of words (e.g., a

sentence). In doing so, it has the ability to calculate the most probable next word, given some prior context.

One approach to predicting the next word of a sequence is to use a feed-forward neural network: the input

could be the N words of the sequence so far, and the target output is the next word. A serious issue is that each

prediction is treated independently from the previous — as if we are starting from scratch on each successive

input, despite the fact that the input differs from the previous input by only one word. Thus, there is no concept

of maintaining a current state as we predict each word. RNNs address this issue by basing each prediction not

only on its current input but also on the hidden/latent state from the previous prediction, as depicted in Figure

2.5 by the hi blue, hidden state boxes. This feedback loop of information gives rise to the recurrent part of the

network’s name.

While RNNs often perform well for tasks that involve sequential information, like language modelling, they

have limitations in factoring in long-range dependencies [9, 46]. Long-short Term Memory Networks (LSTMs)

[47] are a variant of RNNs that address this issue by adding “gating” units to the network, effectively allowing

the model to selectively “forget” and “remember” certain elements of the information as it is sequentially
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Figure 2.5: A Recurrent Neural Network (RNN) architecture. x’s represent the input, such as “The dog ran fast”
could be values for x1, x2, x3, x4, respectively. h’s represent the hidden states, and y’s represent the predicted
output values.
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According	to	People,	Lindsay	Lohan,	the	actress	from
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.

Figure 2.6: An example dependency parse. Each arrow’s tail corresponds to the governing word, and the
arrowhead corresponds to the word that depends on it, via the listed relation.

processed through the network. Currently, LSTM-based models are the de facto standard for processing

sequential information. For a more thorough explanation and foundation, we recommend [15, 40].

2.3.3 Dependency Parsing

Although we, as humans, represent and communicate language as a sequence of words, the underlying

structure is compositional. Dependency Parsing is one of the useful ways to compose a sentence by its words.

Specifically, it determines which words depend on which other words, and it explicitly labels the relationship,

too. For example, in a simple sentence of The dog ran fast, one dependency relation is to identify that dog

depends on the verb ran, and its relation is nsubj — illustrating that it is serving as the subject to the verb.

Figure 2.6 illustrates the dependency parse for an example sentence, yet for readability, we omit the relations

(which would be listed on the arrow connections between each word). Dependency Parses have been shown to

be highly useful for a range of tasks, especially those concerning natural language understanding [3, 13, 63].
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2.4 Coreference Resolution

The seminal research can be traced back to the MUC conferences which focused on entity-based coreference

for limited scenarios such as terrorist attacks, plane crashes, resignations, etc. [5, 49]. Since this beginning,

coreference systems have used a wide variety of models, and we now summarize some of the most impactful

systems.

2.4.1 Entity Coreference

In 2010, Raghunathan et al. [87] used seven manually-defined “sieves”/passes over the corpus to conservatively

resolve entity mentions. The sieves are boolean features, and examples include checking if the candidate

mentions: exactly match, have matching lexical heads, compatible modifiers, have matching pronouns. This

rule-based system yielded state-of-the-art results on the ACE 2004 corpus. In the same year, Haghighi and

Klein [43] created a generative entity-level model that explicitly represents syntactic, semantic, and discourse

constraints, and it provided the best results on the subsequent ACE 2005 corpus. In 2014, Durrett and Klein

[32] created a model that used a structured conditional random field (CRF) to perform both named entity

resolution and coreference resolution.

The earliest deep learning approach was by Sam Wiseman et al. [105], who trained a simple, non-linear

mention-ranking model that attempts to learn distinct feature representations for anaphoricity detection and

antecedent ranking. Sam Wiseman, et al. later developed an entity-level model that uses latent representations

from a recurrent neural network (RNN) [104]. Clark and Manning also built both a mention-ranking model

[21] and an entity-level model [22]; the former used reinforcement learning to find the optimal loss weights,

and the later model merged mention-pair representations to form entity-level representations.

Lee et al. [61] were the first to demonstrate a complete end-to-end model that performs both mention

detection and coreference resolution. Further, like our research, they use a relatively small number of lexical

features, which we discuss in Section 4.3. Lee, et al. extended this model by using richer pre-trained word

embeddings [83] and also by using a coarse-to-fine attention-mechanism to consider potential mention

boundaries [62]. Zhang et al. [112] extended Lee et al.’s work by jointly optimizing both mention detection

and clustering.
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2.4.2 Event Coreference

In 2010, Bejan and Harabagiu [6] developed a nonparametric Bayesian model that used many lexical features,

class features (e.g., part-of-speech, word classes, event classes, time, etc), WordNet features, and semantic

features. In 2015, Cybulska and Vossen [25] used a decision tree with an ontology that captures varying

granularity levels of locations, times and human participants, and event durations. Unfortunately, the authors

used a different ECB+ testing set than that of others, along with different mentions.

In 2015, Yang, et al.’s developed a Hierarchical Distant-Dependent Chinese Restaurant Process (HDDCRP)

model [108]. In short, it used logistic regression on many features, then performed clustering in a Gibbs

sampling, hierarchical manner. Choubey and Huang [20] used a feed-forward neural network to iteratively

group together event mentions, expanding based on the presence of their respective arguments. Kenyon-Dean,

et al. [53] learn event-level cluster-influenced embeddings for mentions. Specifically, they use a feed-forward

neural network to make pairwise mention predictions, but based on their custom loss function, the mentions’

embeddings are updated so that ones that co-refer will have embeddings more similar to one another. More

details about these systems are listed in Section 4.1.

Recently, NIST’S TAC Workshops have focused on event coreference, while making use of their own KBP

2015-2017 corpora. The KBP corpora are not publicly available, and they only concern within-doc coreference.

Notable research includes novel, non-deep learning approaches: using manually-defined features and external

knowledge bases (e.g., Illinois Wikification, Freebase, etc.) to construct mention vectors, then using cosine

similarity for coreference resolution [81]; using Markov Logic Network with dozens of well-crafted hand-

defined rules and features [67]; and using Conditional Random Fields (CRF) [66].

2.5 Event and Entity Coreference Resolution

There is little research that concerns coreference for both entities and events. Rahman and Ng [88] used

event-related information to aid entity coreference. Using a mention-pair model, they created a feature to

represent the semantic role of the two mentions being considered, based on their respective verb pairs. This

played a small role in their overall system, as they also used external, world knowledge, and features based

on the noun pairs. Humphreys, et al. [49] was the first to include entity information for event resolution, as

their system constructed a discourse ontology. However, due to lack of gold truth data, they could not evaluate

their system. In 2007, He’s Master’s Thesis [45] focused on five semantic categories within the domain of

medical texts. Lee, et al. [60] used Stanford’s CoreNLP [71] to resolve entities, then resolve events afterwards.
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Task Base Model Corpus WD-F1 CD-F1 Authors Year

Entity Multi-sieve* ACE 2004 58.4 – Raghunathan et al. [87] 2010
Entity Graphical* ACE 2005 53.0 – Haghighi and Klein [43] 2010

Entity CRF* CoNLL-2012 61.71 – Durrett and Klein [32] 2014
Entity FFNN CoNLL-2012 63.39 – Sam Wiseman et al. [105] 2015
Entity LSTM CoNLL-2012 64.21 – Sam Wiseman et al. [104] 2016
Entity FFNN CoNLL-2012 65.29 – Clark and Manning [22] 2016
Entity RL CoNLL-2012 65.73 – Clark and Manning [21] 2016
Entity LSTM CoNLL-2012 68.8 – Lee et al. [61] 2017
Entity LSTM CoNLL-2012 69.2 – Zhang et al. [112] 2018
Entity LSTM + ELMo CoNLL-2012 70.4 – Lee et al. [62] 2018

Event Cosine Sim.* KBP 2015 39.0 – Peng et al. [81] 2016
Event MLN* KBP 2015 40.08 – Lu et al. [67] 2016
Event CRF* KBP 2016 33.08 – Lu and Ng [66] 2016

Event Bayesian* ECB 48.6† 52.1† Bejan and Harabagiu [6] 2010
Event DT* ECB+ – 60† Cybulska and Vossen [25] 2015
Event HDDCRP* ECB+ 66.8 58.7 Yang et al. [108] 2015
Event FFNN ECB+ 68.9 63.6 Choubey and Huang [20] 2016
Event FFNN ECB+ 81† 69† Kenyon-Dean, et al. [53] 2018

Both Sieves ECB – 54.2/54.8 Lee, et al. [60] 2012

Table 2.1: Overview of coreference resolution systems. WD-F1 denotes within-document CoNLL F1 score.
CD-F1 denotes cross-document CoNLL F1 score. * denotes it is not a deep learning model. † denotes the scores
are not comparable to the other systems that use the same corpus, either due to using a different evaluation set
or metric. CRF represents a conditional random field. FFNN represents a feed-forward neural network. LSTM
represents a long short-term memory network. MLN represents a Markov Logic Network. DT represents a
decision tree. The Lee, et al. [60] system listed at the bottom receives 54.2 F1 for entities, and 54.8 for events.

Mentions were treated agnostic to their type (entity or event), allowing for fluid merging and mixing of clusters.

2.5.1 Summary of Coreference Systems

In summary, entity coreference has been researched more heavily than event coreference, and deep learning

approaches, while on the rise, have been mostly applied to entity coreference. Further, comparing any two

systems can be difficult, as it relies on testing on the same data and having used the exact same mentions

(gold vs predicted). The NIST-TAC Workshops have also hosted a wave of event coreference research for their

KBP 2015-2017 corpora. However, the corpora only concern within-document event coreference and are not

publicly available, whereas our focus also includes the more realistic scenario of cross-document references.

For a summary of the systems mentioned here, please see Table 2.1.
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Event Corpora

3.1 KBP 2015-2017

In the previous chapter, we highlighted a few systems that use the KBP corpora. However, the KBP corpora

only concern within-document coreference and have significantly fewer documents than the ECB+ corpus.

Further, the corpora are produced by NIST as part of their TAC workshops, and access to the data is limited

to past workshop participants. For these reasons, we do not use KBP for our research. As a brief overview

though, the KBP 2015’s English training set consists of 158 documents with 6,538 event mentions that span

3,335 unique events. The English test set consists of 202 documents with 6,438 event mentions that span

4,125 unique events. Half of the corpus concerns Newswire (New York Times) articles, whereas the half is of

discussion forums. KBP 2017 concerns 500 documents in total, which encompasses 8,039 unique events [38].

3.2 ECB+

We use the ECB+ corpus [24], which is the largest available dataset with annotations for event coreference.

It extends the original ECB [6] corpus by exactly twice as much, and like the ECB, its documents are from

the Google News Archive1. The ECB+ contains annotations for both within-document and cross-document,

along with annotations for both entities and events. It is comprised of 43 distinct topics (Topics #15 and #17

do not exist), totaling 982 documents. Each topic is divided into two sub-topics. Each sub-topic is distinct, and

all of its documents concern the exact same news story. However, both sub-topics for a particular topic are

1http://news.google.com

20



21

Train Dev Test Total
# Documents 462 73 447 982
# Sentences 7,294 649 7,867 15,810

# Mentions-1 1,938 386 2,837 5,161
# Mentions-2 142 52 240 434
# Mentions-3 18 – 25 43
# Mentions-4 6 – 7 13

Table 3.1: ECB+ Corpus statistics, where Mentions-N represents mentions that are N-tokens in length.

highly similar. For example, Topic 1a concerns Lindsay Lohan’s checking into a rehab center named Betty

Ford Center, which is located in Newport Beach, California. Topic 1b concerns Tara Reid’s checking into

a rehab center named Promises Treatment Center, which is located in Malibu, California. Each sub-topic

typically contains approximately 10 documents, and each document is approximately 10 sentences in length.

We maintain the same train/development/test splits as previous researchers:

• Training set: Topics 1 - 22

• Development set: Topics 23 - 25

• Testing set: Topics 26 - 45

The corpus statistics are listed in Table 3.1, where it is clear that the majority of gold mentions are one

token in length (e.g, announced). The creators of the corpus assert that of the 15,810 sentences, they only

place full faith in 1,840 of them. These 1,840 trustworthy sentences contain 5,058 event mentions:

• The Training Set has 2,117 event mentions

• The Development Set has 327 event mentions

• The Testing Set has 2,614 event mentions

These 5,508 event mentions encompass 779 unique events: 171 (22%) of which are singletons, and 608

(78%) are non-singletons. To constitute a unique event, the corresponding event mentions must all have

contexts that allow one to reasonably conclude that they all occurred at the same time, location, and involved

the same participants. If any of this information is missing but can be reasonably implied, the mentions

are coreferent. Otherwise, they are not. As mentioned, the corpus annotates entities and events. Further, the

entities are denoted with more fine-grained labels: location, time, human participant (e.g., Lindsay Lohan), or

non-human participant (e.g., car).



Chapter 4

Event Coreference Resolution

We are interested in improving the performance of event coreference resolution for both within-document and

cross-document environments. Past event coreference systems typically rely on using many manually-defined

features, some of which are computationally expensive to compute and potentially inaccurate. In Section 4.2,

we review this issue. In Section 4.3, we develop a novel mention-pair model (CCNN) which uses significantly

fewer features than existing systems and frames the problem from a relational standpoint. In Section 4.4, we

introduce our novel neural clustering model, which uses the CCNN’s predictions to holistically cluster event

mentions. Our CCNN mention-pair model and Neural Clustering model combine to deliver state-of-the-art

results in event coreference and runs in just a few minutes on a single GPU (e.g., NVIDIA Titan X).

4.1 Related Work

The majority of our research uses the ECB+ corpus [24], which we further describe in Section 3.2. This rich

corpus provides annotations for both entities and events, yet, as mentioned, most research focuses on using

either events or entities, not both. There are three papers which research cross-document event coreference

and make use of the ECB+ corpus; naturally, these three systems are the most relevant and comparable to our

research.

• The Hierarchical Distance-dependent Chinese Restaurant Process (HDDCRP) model by Yang et al.

[108]

• Iteratively-Unfolding approach by Choubey and Huang [20]

22
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• Resolving Event Coreference with Supervised Representation Learning and Clustering-Oriented Regu-

larization (CORE) [53]

4.1.1 HDDCRP Model

Yang et al.’s HDDCRP model [108] takes a mention-pair approach: they use logistic regression to train feature

parameters θ (see Section 4.2) across all pairs of mentions. This regression model serves as the similarity

function in Equation 4.1. Then, in a Chinese-restaurant-process fashion, they probabilistically link together

mentions based purely on the scores provided by this similarity function. That is, the value of f(mi,mj) is

directly correlated with the probability of (mi,mj) being chosen as a linked pair. Then, identical to Bengtson’s

and Roth’s work [10], the HDDCRP model forms clusters by tracing through all linked pairs. All mentions that

are reachable by a continuous path become assigned the same cluster. This hinges on the transitive property of

coreference. For example, if (m1,m3), (m3,m5) and (m5,m6) are each individually linked via the scoring

function, then a cluster Ci = {m1,m3,m5,m6} is formed, even though (m1,m5) or (m3,m6) may have had

very low similarity scores. We aim to improve this shortcoming, as detailed in Section [TODO fix refs]

fθ(xi, xj) ∝ exp{θTψ(mi,mj)} (4.1)

The hierarchical aspect of HDDCRP comes from their performing coreference on a within-document basis

first, then using these formed clusters as the starting clusters for cross-document coreference. This approach is

highly effective, in part because the cross-document scenario has drastically more candidate pairs than the

within-doc; thus, positive co-referent pairs comprise a lower percentage of the total possible pairs, yielding a

“needle-in-the-haystack” problem. If we were to perform coreference on a cross-document scenario without

any prior within-doc clustering, the task would be more difficult.

4.1.2 Neural Iteratively-Unfolding Model

Choubey and Huang [20] introduced the first neural model for event coreference. Their system is also a

mention-pair model, and coreferences are predicted by a feed-forward network. The novelty of their system

is that they (1) supplemented every event mention with SRL information (argument time and location); and

(2) performed additional cluster merging based on two hard-threshold rules — merge clusters if they contain

any pair of mentions that either share a governing entity or have contexts that are similar beyond a particular

threshold.
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The authors assert that when using the ECB+ corpus, within-doc coreference did not benefit from using

mention context, which is an important finding. However, similar to the weakness of the HDDCRP model, they

merge clusters which contain any mention-pair whose predicted score is below a given threshold, independent

of mentions’ relation to the cluster at large.

4.1.3 CORE

Resolving Event Coreference with Supervised Representation Learning and Clustering-Oriented Regularization

(CORE) [53] also takes a mention-pair approach, whereby every pair of mentions is fed into a feed-forward

neural network; the novelty is that the middle hidden-layer is explicitly adjusted according to the cluster to

which each mention belongs. That is, each unique cluster (coreference chain) will cause all its mentions to

have hidden embeddings that are similar to one another, while mentions in different clusters will become

dissimilar. Using the inferred hidden embeddings, the system then performs agglomerative clustering.

This approach is possible because the training set of the corpus provides gold annotations for which men-

tions should all co-refer. Thus, input mentions’ embeddings are mapped to hidden representations that adhere

to this similarity-property. However, at test time, the system obviously cannot use gold cluster information,

as that is the task at hand. Testing performance thus hinges on (1) having mentions that are similar to the

ones seen during training; and, (2) having a similar number of unique clusters as in train; (3) having similar

prediction scores as that from the development set. The latter points are necessary because any drastic change

will affect inferred hidden embeddings and their respective distance scores.

4.1.4 Convolutional Neural Networks (CNN)

Since we want our model to automatically discover the most useful mention-pair features, or subsets thereof, we

turn to CNNs, which are known for the ability to effectively and robustly use sub-regions of inputs (see Section

2.2.2). Convolutional Neural Networks (CNNs) are one of the most common neural network architectures, and

they have provided compelling results for many NLP tasks, including sentence classification [54], machine

translation [37], dependency parsing [109], mention detection [17, 78, 79], and relation classification [29, 110]

just to name a few.
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HDDCRP [108] Choubey [20] CORE [53]
Mention Features

String Match X
Part-of-Speech (POS) X X

Token Similarity X
Word Embeddings X

Lemma Embeddings X X
WordNet X
Position X

Cluster Comparison X
Participant Features

SRL-based X X
Time X X

Location X X
Context Features

Word Similarity X X X
POS X

Document Embeddings X

Table 4.1: The categories of features most commonly used by coreference systems, and we explicitly denote
the usage by the three models most similar to our system.

4.2 Common Event Coreference Features

Coreference resolution systems typically use a plethora of features — usually ten to fifty manually-created

ones (e.g., boolean value representing if the two candidate mentions both contain context words that share the

same part-of-speech). Systems generally create features based on the mentions themselves, their context, and

occasionally the participants/arguments identified from SRL systems. In Table 4.1, we summarize the features

used in the three most relevant event coreference systems. Note: each category listed could encompass several

smaller, fine-grained features. For example, the CORE paper’s features include checking if the two candidate

mentions: (1) have the same first token; (2) the same last token; (3) have all tokens the same; (4) have contexts

that are identical in their 1st two words, last two words, all 4 words, etc. Yet, we group all of these features

together and merely denote it as one X for “token similarity” and one X for context “word similarity.”

4.3 Conjoined Convolutional Neural Network

4.3.1 Motivation

As discussed in Section 1.3.2, the common paradigms for coreference resolution include mention-ranking,

mention-pair, and entity/event-level. While not a single one of these is undeniably superior to the rest, we were
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motivated to develop a mention-pair model for the following reasons: entity/event-level models operate by

building a single representation for each underlying entity/event, which is predicated upon knowing how many

unique entities/events exist within each document(s) — this effectively encompasses both tasks of scoring

mention coreference and clustering. While this may seem like an attractive property, it can be difficult [104] to

(1) estimate a priori how many unique events exist; and (2) devise a neural, event-level representation that is

robust to adjustments as events are added and removed from each cluster.

Mention-ranking models circumvent these difficulties by distinctly scoring mentions separately from any

subsequent clustering. However, mention-ranking models can be effectively reduced to mention-pair models,

with the added complexity of needing to explicitly model the likelihood that any given mention does not

co-refer with any other mention (i.e., is a singleton). For example, a mention-ranking model decides the

likelihood that a mention is a singleton or not, and in the latter case, it links the mention mj to the mention mi

that appears earlier in the text which has the best coreference score — this part is identical to the mention-pair

framework of looking at all possible pairs and picking the mentionmi that matches best with the given mention

mj . If one had an abundance of annotated data, we would argue that event-level or mention-ranking models

would be a strong choice; however, given the relatively limited amount of annotated coreference data that

exists, we are interested in developing a mention-pair model. Further beneficial, mention-pair models tend to

be rather straight-forward and with reasonable computational complexity. We want our model to:

• rely on few hand-crafted features (e.g., WordNet or FrameNet), ideally by merely providing our system

the raw text and let it learn how to represent the mentions

• model the relationship between two given mentions, as opposed to explicitly defining relational features

(e.g., Jaccard Similarity between bag-of-word context windows)

• be robust to out-of-vocabulary items during test time

A Conjoined Convolutional Neural Network aligns with our interests.

4.3.2 Background

Conjoined Networks (a.k.a. Siamese Networks) are two identical neural networks that are joined together to

produce a similarity score — representing the likelihood that the two inputs are the same. Each neural network

accepts distinct inputs. The networks are said to be conjoined because they share the same weights, have a

single loss function, and thus work together as one network that learns a task. Conjoined Networks were first
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introduced by Bromly and LeCun [14] for the task of determining if two signatures were from the same person

or not. The benefits of tying the weights are that: (1) it ensures that similar inputs will be mapped appropriately,

otherwise, they could be mapped to hidden representations that are dissimilar from their input representations;

and (2) it forces the network to be symmetric. This is critical, as the network’s similarity function should be

independent of the ordering of its input pair. If we abstractly represent the Conjoined Network as a function,

then:

CN(fi, fj) ≡ CN(fj , fi)

Note, the exact architecture of neural networks that we choose to conjoin could be of any type — feed-

forward, recurrent, convolutional, etc. We now discuss our choice: convolutional networks.

4.3.3 Model

Our model is a Conjoined Convolution Neural Network (CCNN). Each input pair corresponds to a pair of event

mentions, and the output corresponds to how similar the mentions are to each other. Using conjoined networks

allows our model to learn relationships (i.e., similarities) between mentions. Since our model does not explicitly

rely on learning actual input values, but rather the similarity between the abstract representations of inputs, our

system is theoretically robust to out-of-vocabulary (OOV) event mentions at test time. Related, Conjoined

Neural Networks have been shown to perform well in low-resource situations [41]. Using convolution as

our choice of conjoined network architecture allows our model to appropriately weight sub-regions of input

embedding features and the relationships thereof.

Input Features

Our CCNN needs each mention to be represented by its own feature embedding, and we deliberately use no

hand-defined relational features that are common in other coreference systems (e.g., binarized same-gender

or same-speaker, Jaccard similarity of mentions’ context, cosine similarity of context word embeddings).

First, we pre-process our corpus by using Stanford CoreNLP Toolkit [70] to extract the part-of-speech tags

and lemma for every word, along with the dependency parse of every sentence. We also import GloVe word

embeddings [82] (the 42-billon token crawl). Having done so, we can extract the following five features for

every pair of mentions:

• Part-of-Speech: We experimented with (1) representing our corpus by replacing every word by its cor-

responding POS tags, then running an LSTM over the corpus to construct token-based POS embeddings;
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and (2) representing each POS tag as a random vector and using them as 1-hot embedding lookups. The

latter worked better (likely due to the variance of context, which we address later), so all POS-feature

results use such.

• Lemmatization: We use the pre-trained GloVe word embedding that corresponds to the lemma of every

word token. For example, if the word is running, the lemma is run, and we use GloVe’s embedding for

run.

• Dependency Lemma: Similar to the above feature, but instead of using the lemma of the mention’s

word, we use the GloVe embeddings of the lemma of the dependency parent and dependency children.

In case of having multiple dependency parents or children, we experimented with: (1) using an average

of all; (2) using the word that is the longest; (3) using the word that belongs to any other entity or event

mention. The average performed best, so we report results for such.

• Character Embeddings: We experimented with: (1) pre-training GloVe on a character-tokenized

representation of a large Google News corpus; (2) using randomly initialized character embeddings. The

former performed better, so we report its results.

• Word Embeddings: pre-trained GloVe word embeddings (we tried both the 42-billion and 840-billion

crawls, and the former had better results more often, but it was essentially negligible).

We account for mentions’ having varying token lengths by summing their tokens in place, thus representing

each mention as a fixed-length vector. For example, if the mention were Barack Obama, we would sum the

embeddings of Barack and Obama. Averaging gave worse results, possibly because it loses more information

than summing.

Architecture

The full architecture is shown in Figure 4.1. We define the full embedding for a given token t as temb =

tf1 ⊕ tf2 ⊕ . . . ⊕ tfn , where ⊕ represents vector concatenation and tfi represents a specific input feature

vector. We use the context of mention m by including the N words before and after m. Thus, our input for

mention m is a matrix M , where each row corresponds to a token temb of length d, and, a la Kim [54], we

zero-pad unfilled context windows.

Let M represent the full matrix corresponding to mention m. If we are using lemma embeddings (with 300

dimension vectors) and character embeddings (with 400 dimension vectors), along with a context window size
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Figure 4.1: The Conjoined Convolutional Neural Network’s (CCNN’s) Architecture. A pair of event mentions
is input into the network, and the output is the likelihood of the two mentions being co-referent.

of 3 words before and after the mention, our matrix M will be of size 7x700. Equivalently, M ∈ R(2N+1)×d.

Further, let M(i,j),(k:l) represent the sub-matrix of M from (i, j) to (k, l). We define a kernel with dimensions

(h,w), where h < (2N + 1) and w < d. This allows the kernel to operate on sub-sections of the embeddings.

The kernel has an associated weight matrix w ∈ Rh×w. Starting at a given index (i, j) within mention matrix

M, a feature ci is defined as:

ci = f(wTM(i:i+h−1),(j:j+w−1) + b) (4.2)

where b ∈ R is an added bias term. The kernel iteratively slides over every possible sub-section of mention

matrix M (stride of 1), yielding a feature map c ∈ R(2N−h)×(d−w−1). The Lambda function calculates the

L2 distance (Equation 4.3) of each half’s univariate vector and emits a prediction of the two mentions being

co-referent or not.

L2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

=

√√√√ n∑
i=1

(xi − yi)2
(4.3)

Loss / Optimization

Our model’s goal is to maximize discriminability of different event mentions, while enforcing features to be as

similar as possible when they are of the same event. Thus, we define our output prediction to be a similarity

score s, where s = 0 when the two input mentions should co-refer, and s = 1 when they should not. Unlike

many neural networks that aim to predict a discrete category, we are predicting a distance score. We use
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contrastive loss, a distance-based loss function shown in Equation 4.4 [65].

L(x1, x2, y) =
1

2N

N∑
n=1

[(y)d2 + (1− y) ∗ (max(m− d, 0))2]

where d = L2(CCNN(x1),CCNN(x2)) and m = the ceiling distance score

(4.4)

We use the Adam algorithm [55] for optimization.

4.3.4 Experiments

Corpora

We use ECB+, as it is the premier event coreference corpus and contains both within-doc and cross-doc

annotations. We adhere to the standard data splits: development set is topics 23-25, and the test set is topics

26-45. Traditionally, topics 1-22 are used as training. Since our NC model relies on our CCNN’s predictions,

we remove topics 19-22 from the training set and instead use them as development sets for our NC models.

Note: the KBP corpora contain only within-doc annotations and are not publicly available.

Mention Detection

Determining which words constitute a mention is the first sub-task of coreference resolution and is often

a separate line of research called event detection. To fairly evaluate our coreference system against the

other existing cross-document event coreference systems, we extract precisely the same mentions as they —

otherwise, any performance gains may be attributed to simply having more accurately identified mentions.

Thus, we use the same mentions as Yang et al. [108] and Choubey and Huang [20]; mentions were produced

from training a semi-Markov CRF [92] on the ECB+ training set, with a loss function defined by [108].

Within-Document and Cross-Document

We train and evaluate our CCNN on both within-document and cross-document scenarios. The former is

straightforward: only mentions contain in the same document will be considered. For the cross-document

scenario, we follow suit with most other research by considering mention pairs that are explicitly in different

documents. Thus, these two scenarios concern disjoint pairs of mentions, but together, they concern every

possible pair of mentions within the corpus.
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Hyper-parameters

The CCNN’s hyper-parameters used for the test set were selected based on which values yielded the best

performance on the development set. Specifically, we used 2 layers of convolution, 10 epochs of training,

a context window size of 0 (discussed in Section 4.4.8), 5 negative training examples per positive training

example, a batch size of 64, a dropout rate of 0.4, and 32 convolution filters. The training data was down-

sampled to a 5:1 ratio because of the strong class imbalance (most input pairs are not co-referent).

Ensemble

There are stochastic elements to our CCNN, such as the initial, random weights and our shuffling the training

data between each epoch. This causes slight variations in our results. In an attempt to minimize these variations,

we perform an ensemble approach, whereby our final event-pair predictions are based on combining the

predictions (on a per-pair basis) across 50 individual runs.

Evaluation Metrics

Our CCNN makes pairwise, continuous-valued predictions, which will serve as input to our NC. Thus, any

evaluation here can be viewed as intermediate results en route to our final clustering performance. What

ultimately matters is how well our CCNN orders/ranks its predicted pairs; the better the ranked list, the better

the NC will perform. Thus, to measure performance, we can set a threshold such that all items with a score

less than the threshold are considered to be predicted as positive pairs that should co-refer, and items above

the threshold are negative pairs that should not co-refer. In transforming our predictions to boolean-valued

predictions, we can measure our overall accuracy (e.g. “how many pairs are correct?”). Yet, this is not too

meaningful or fine-grained because most pairs should not co-refer, so one can have a misleadingly high

accuracy score by merely reporting no pairs should co-refer. Alternatively, let TP represent our returned true

positives, FN represent our returned false negatives, and FP represent our returned false positives. Then,

recall, precision, and F1 are defined as:

recall =
TP

TP + FN
and precision =

TP

TP + FP
and F1 =

2 ∗ precision ∗ recall
precision+ recall
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Figure 4.2: The CCNN’s mention-pair performance, using all combinations of features. Scores reported are F1.

4.3.5 Results

Using gold truth clusters, we can measure the performance of mention-pair models by their accuracy in

predicting if two given mentions should co-refer or not. Figure 4.2 shows our CCNN’s results with every

possible combination of features. Notably, we see that using Lemma Embeddings and Character Embeddings

together yield the highest results. Considering SameLemma is always a depressingly strong baseline, it should

be no surprise that lemma embeddings are useful. When used in conjunction with character embeddings,

we believe they serve as complementary features — the former provides semantic information while the

latter provides syntactic information. Specifically, the character embeddings feature is similar to using String

Edit Distance as a feature — merely calculating how many character-changes one would need to make to

convert one mention to another. To see why this is useful, imagine we had two mentions: “5 a.m. earthquake”

and “earthquake.” While the lemma embedding for 5 a.m. will completely alter the mention’s overall lemma

embedding, the character embedding for each mention will be very similar, thus encouraging our CCNN to

give them a high similarity score. In theory, a model should be able to learn which of its features are unhelpful

and appropriately give them little-to-no weight. However, due to our corpus being relatively small, and due to

the high variability in golden coreference chains, we assert that: (1) it is hard for any coreference model to

learn appropriate weights for many features; and (2) systems should start using as few features as possible.

The cross-document scenario involves many more mention-pair predictions than the within-document

scenario (8,939 vs 775, for the small development set), and thus many more candidates and lower % of

golden coreferent pairs. Thus, one may expect a lower cross-document performance. However, due to the

larger training size, and due to the more parallel lexical representation in the cross-document scenario, our

cross-document mention-pair performance exceeds within-document.

In Table 4.2, we report the CCNN’s best performing results (Lemma + Character Embeddings), along with
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Precision Recall F1
Within-Document

SameLemmaany 53.9 48.0 50.8
SameLemmaall 50.3 46.3 48.2

LibSVM 51.2 52.0 51.6 (0.01)
FFNN 50.3 59.8 54.6 (0.5)
CCNN 51.5 68.2 58.7 (0.8)

Cross-Document
SameLemmaany 55.6 54.1 54.8
SameLemmaall 53.1 51.0 52.0

LibSVM 58.6 59.1 58.8 (0.02)
FFNN 55.3 62.0 58.5 (0.6)
CCNN 55.8 71.2 62.8 (0.6)

Table 4.2: Models’ mention-pair (not clustering) performance on the development set. This can be viewed as
intermediate results, as these mention-pair predictions are used by our clustering algorithm. Each score is the
average of 50 runs, with standard dev. denoted in ( ).

Context
Size

Within-
Document

Cross-
Document

0 58.7 62.8
1 58.4 62.1
3 57.9 60.7
5 57.1 60.5

Table 4.3: F1 performance on the ECB+ Development Set while varying CCNN’s context-window size (how
many words on each side of the event mention to include in CCNN’s input.)

how it compares against other strong classifiers: SameLemmaany simply denotes any two mentions as being

co-referent if any of their words have the same lemma, which has proven to be a historically strong baseline.

Similarly, SameLemmaall denotes any two mentions as being co-referent if all of their words have the same

lemma. LibSVM and a Feed-Forward Neural Net (FFNN). The FFNN uses 2 hidden layers of size 300 and

100, ReLU activation, and Adam optimization. These baselines receive the same input embeddings as our

CCNN. In addition, we measure performance as we vary the training size, as shown in Figure 4.3. The results

suggest that more training data is needed, furthering our assertion that it is imperative to not include too many

features in a system, as doing so would add additional complexity to the already-limited data.

In an attempt to measure the effect of context, we experimented with providing our CCNN different

context-window sizes, while fixing the features to be the optimal lemma + character embeddings. As shown in

Table 4.3, results on the ECB+ Development Set indicate that increasing the amount of context monotonically

decreases performance. This may seem counter-intuitive, as context provides more information; yet, our model

is unable to soundly use this information. This agrees with the results of Choubey [20], whereby context,

especially for the within-document scenario, did not improve results. We address this further in Chapter 5.



34

Figure 4.3: The effect the size of training has on the ECB+ development set performance.

4.3.6 Error Analysis

First, it is important to realize that what matters most is the ranked ordering that our CCNN provides, not

the actual prediction values. Since our Neural Clustering will take the CCNN continuous-valued predictions

as inputs for its clustering, not boolean, hard-valued coreference decisions (e.g, 0 or 1), it has the ability to

learn how to use these predictions and what range of values are meaningful. Thus, we should evaluate the

ranked order of the CCNN prediction list, while using any threshold that yields the highest F1 score. When

doing so for the cross-document scenario of 8,939 individual mention pairs, the optimal threshold yields 86

false positives and 569 false negatives. Of these, I manually expected all false positives and 100 of the false

negatives, while categorizing the types of errors we made. Examples of the false positives and false negatives

are shown in Tables 4.4 and 4.5, respectively. Note: while any given coreference-pair error could often times

fit within multiple categories, I counted it only towards the category I deemed most appropriate.

Among the false positives, the Context-Dependent category concerns cases where our system wrongly

thought two mentions co-refer because the mentions had identical (or near-identical) lexical representations

(e.g., announced and announced). Clearly, factoring in the context, in particular, the entities involved, would

have helped. Likewise, the Similar Meanings category is when our system wrongly linked mentions due to their

having similar lemma embeddings, and including context could have helped. Wide-Reading is when an event

is roughly subsumed by the other event, and because they are very similar, our system wrongly linked them
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False Positives
Context-Dependent (30%)

Example 1

The 55-year-old Scottish actor will replace Matt Smith, who announced
in June that he was leaving the sci-fi show later this year.
Peter Capaldi has been announced as the new Doctor Who, the 12th actor to
take up the coveted TV role.

Similar Meanings (38%)

Example 2 Frederick C. Larue, a top Nixon campaign official who passed money from a
secret White House fund, died Saturday at a hotel in Biloxi, Miss.

Wide-Reading (14%)

Example 3 Peyton manning helped inspire the Indianapolis Colts to their eighth straight
win as they overcame Jacksonville this season.

Unclear (13%)

Example 4
Microsoft today issued an emergency update to plug a critical security
hole present in all version of its browser, a flaw hackers have used to steal
data from millions of Windows users.

Syntax (3%)

Example 5
Creighton defeats Drake 65-53 in MVC tournament.
In Saturday’s semi-finals, Creighton will play no. 5 seed Indiana state, which
defeated Evansville 51-50 on Friday.

Too Difficult for Me (2%)

Example 6
Submarine cable problem disrupts telecom services in Alexandria .
Vodafone has been affected by a damage in one of the fiber cables going
from the Ramsis Communication Center all the way to Sadat City.

Table 4.4: Examples of CCNN’s False Positives from the ECB+ Development Set, grouped by categories of
errors.
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False Negatives
Semantics (42%)

Example 1 Hansbrough scored 20 points Thursday night, breaking North Carolina’s
career scoring record, and the tar heels beat visiting Evansville, 91-73 .
Hansbrough sets scoring record in victory .

Unclear (20%)

Example 2

Hewlett-Packard’s purchase of electronic data systems could mean
tougher competition for IBM and its 10,500 triangle employees.
The all-cash deal, announced Tuesday, represents HP’s biggest gamble
under the leadership of Mark Hurd.

Colloquial Variations (16%)

Example 3

Industry experts told The Times that two sub-sea cables went down just
off Alexandra, causing mass disruption.
Millions of people across the Middle East and Asia have lost access to the
Internet after two undersea cables in the Mediterranean suffered severe damage.

Longer Names (14%)

Example 4
An earthquake with a preliminary magnitude of 4.6 was recorded in the North
Bay this morning, according to the U.S. Geological Survey.
A 4.6-magnitude earthquake was recorded near Healdsburg .

Pronouns (8%)

Example 5
President Obama announces nominee for surgeon general.
Today, President Barack Obama announced his intent to nominate Regina M.
Benjamin as surgeon general, department of health and human services.

Table 4.5: Examples of CCNN’s False Negatives from the ECB+ Development Set, grouped by categories of
errors.

together as being the same. Unclear is when I am unsure why our system linked together two mentions; the

combination of lemma embeddings and character embeddings are unfortunately oddly close. In the provided

example, the event mentions “plug” and “used” both have exactly four characters, and since that number is

low, and both words share a “u,” our averaged character embeddings are similar to each other. Syntax is when

the event mentions’ words are lexically similar to each other, causing their character embeddings to be similar.

The final category is when the context alone is insufficient for me to determine if the mentions should co-refer,

so it is no surprise that our system incorrectly predicts them.

Concerning the false negatives, the semantics category is again the most common error. Here, we miss

mention pairs that have the same meaning, as our lemma and character embeddings did not capture such —

and using context could have helped us. In contrast, our semantic false positive errors were due to our linking

two mentions thought to have the same meaning (based on their embeddings), yet again, factoring in context

could have helped. The unclear false negatives are cases when I am unsure why our system failed to link

the mentions — sometimes the lemma embeddings are too disparate, sometimes our character embeddings

are so. Colloquial Variations is when the mentions are understandably difficult to handle, as the wording
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would require external, human-level knowledge. These, along with the longer names and pronouns categories,

are highly difficult. For example, slang phrases like “stepped into the role” and “hired” are co-referent, and

capturing such seems non-intuitive, as it might require access to external knowledge bases (e.g., paraphrases).

4.4 Neural Clustering

4.4.1 Motivation

It is common practice for coreference systems determine their final clusters via agglomerative clustering

[58, 108]. Agglomerative Clustering first assigns each mention to its own singleton cluster then repeatedly

merges the two distinct clusters which contain the shortest-distance mention pairs. Although this is a strong

baseline, there are three main weaknesses:

1. One must define a stopping threshold α.

2. Any given α hinges on the data being uniform across documents. In reality, distances between mention-

pairs could vary significantly between documents and topics.

3. Each cluster merge is based solely on two individual mentions, yet these mentions may not be represen-

tative of the cluster at large.

HDDCRP and Iterative-Folding (Choubey) both contain issue #3, as detailed in Sections 4.1.1 and 4.1.2,

respectively.

4.4.2 Model

We use the strengths of agglomerative clustering while replacing its shortcomings. Instead of predicting

individual mention-pair merges, we learn a function f(Cx, Cy) that predicts the likelihood of merging clusters.

Let d(mi,mj) be the mention-pair distance predicted by our CCNN model, where mi ∈ Cx, and mj ∈ Cy.

Function f(Cx, Cy) is based on four simple features:

• min-pair distance: minmi,mj
d(mi,mj)

• avg-pair distance:
∑

mi,mj
d(mi,mj)

‖Cx‖‖Cy‖

• max-pair distance: maxmi,mj
d(mi,mj)
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• candidate cluster size: ‖Cx‖+‖Cy‖∑
z ‖Cz‖

The first three features serve to better represent the cluster at large (issue #3 from above). For example,

when evaluating a cluster C1, it may have the same minimum mention-pair distance score with two candidate

clusters C2 and C3. Yet, the average and maximum distance scores reveal which clusters have more similar

mentions. The candidate cluster size feature represents the size percentage of our considered merge, relative to

all mentions. This helps prevent clusters from growing too large, addressing issue #1 from above.

4.4.3 Architecture

We define f as a feed-forward neural network which predicts a softmax probability of a positive cluster merge.

We used 1 hidden layer of 25 units, ReLU activation without dropout, a learning rate of 0.001, and Adam

optimization. Our loss function was weighted binary cross-entropy, to account for the class imbalance situation

(most pairs of clusters should not be merged together).

4.4.4 Training

At test time, our system incrementally merges clusters, starting with each cluster having just one mention

(in the within-document scenario). Since we will encounter decisions to merge clusters of varying sizes, we

need to train our clustering model on such scenarios. Within the gold training data, there is obviously no

single canonical ordering to which co-referent mentions formed a cluster; thus, we need to generate synthetic

cluster-merge data to represent positive and negative examples of when clusters of varying sizes should be

merged. Specifically, for training, we generate a positive example by randomly sampling a golden cluster and

splitting the cluster into two random subsets (see Algorithm 1). The above four features are calculated for

these two subsets of clusters, and the target output is a positive case. Likewise, we generate negative examples

by sampling random subsets from disjoint golden clusters.

4.4.5 Evaluation

At test time, we use Neural Cluster to evaluate every possible (Cx, Cy) cluster pair in an easy-first manner.

That is, at each iteration, we merge the (Cx, Cy) pair that yielded the highest likelihood of a positive merge.

Then, we re-evaluate all cluster-pairs and repeat until the model no longer predicts a merge. Thus, unlike the

aforementioned models, we do not require additional stopping parameters.
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Result: constructs training of size N
training = {};
while |training| < N do

pick two random golden clusters C1, C2;
let Cj , Ck = get subset(C1);
let Cl, Cm = get subset(C2);
training.add((Cj ,Ck) features, True));
training.add((Cj ,Cl) features, False));

Function get subset(cluster Ci)
let Cx, Cy = {};
pick a random size S ⇐ |Ci|;
while |Cx|+ |Cy| < S do

randomly pick m ∈ Ci and m 6∈ {Cx, Cy};
place m in random cluster Cx or Cy;

return Cx and Cy;
Algorithm 1: Construct NC Training Data

Within-Document

The within-document scenario is straight-forward: the NC performs clustering with CCNN’s within-document

pairwise predictions.

Cross-Document

Cross-document resolution is a superset of the within-document task; it uses all coreference chains, regardless

if mentions in a cluster were originally from the same document or not. Our cross-document and within-

document systems are identical, except: (1) we train a separate CCNN only on mention-pairs which are

from different documents; (2) instead of initializing our clustering with all singleton clusters, we use our

within-document NC predictions as starting clusters; (3) at each iteration, we only consider merging clusters

(Cx, Cy) if Cx and Cy contain mentions from disjoint sets of documents. Our cross-document NC only uses

cross-document mention pairs distances for its decisions. Thus, cross-document merging will never merge two

within-document clusters from the same document.

Metrics

Instead of evaluating mention-pairs, we are now interested in evaluating clusters. The three most commonly

used metrics are MUC, B3, and CEAFe. Of these, there is no canonical best, as they all address different

aspects [74, 101]:

MUC [102] measures the accuracy of the coreference links, as it counts the minimum number of edge-

insertions/deletions necessary to obtain the gold clustering from the predicted clustering. This is akin to String
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Edit Distance, but for links. Notably, since it is link-based, MUC does not factor in singleton mentions which

do not cluster with other mentions.

B3 [4] measures the proportion of overlap between the predicted and golden coreference chains, yielding

precision and recall scores – ultimately B3 returns the average over the scores across all mentions. While this

accounts for singletons, unlike MUC, it also potentially uses events/entities of the same coreference chain

more than once.

CEAFe [68] is an event-/entity- level metric that finds an optimal alignment between the predicted chains

and gold coreference chains by maximizing a similarity objective, which in turn is used to calculate precision

and recall.

Since no single metric is best, the CoNLL F1 score was created, which is the average F1 score from each

of the aforementioned three metrics. This is the standard metric used by coreference systems, so we follow

suit. Further, we use the official scorer script (v8.01) [84] that was provided at past CoNLL workshops.

4.4.6 Results

Having run our full system, CCNN + NC, we can once again evaluate our clustering performance on the

development set to see the effects of different features (see Figure 4.4. Since the NC takes as input the CCNN’s

predictions, and its performance hinges on how well the CCNN performs, we expect to see no significant

differences between CCNN’s results and NC’s in terms of the relative impact of particular feature combinations

– any difference in order is only due to variance between runs. Not unsurprisingly, we see that using lemma

embeddings + character embeddings yields the best performance, so we use this feature combination on the

test set for final evaluation. In Table 4.6, we report our performance on the ECB+ test set compared to other

systems. Notably, our CCNN performs better than other baselines, and NC always performs better than the

standard agglomerative clustering approach. In general, cross-document CoNLL F1 scores will be naturally

lower than within-document, unlike when evaluating on a pairwise-mention basis. This is simply because

there is more room for error on a cluster-wide basis, evident by cross-document MUC scores (a mention-based

metric) being higher than within-document MUC scores, but B3 and CEAF (cluster-based) having lower

scores than within-document.
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Figure 4.4: The clustering performance of our flagship CCNN + Neural Clustering system, using all combina-
tions of features. Scores reported are CoNLL F1.

Within-Document Cross-Document
MUC B3 CEAF CoNLL F1 MUC B3 CEAF CoNLL F1

SameLemmaany 40.4 66.4 66.2 57.7 66.7 51.4 46.2 54.8
HDDCRP [108] 53.4 75.4 71.7 66.8 73.1 53.5 49.5 58.7

Choubey [20] 62.6 72.4 71.8 68.9 73.4 61.0 56.5 63.6
FFNN+AGG 61.6 73.6 69.1 68.1 (0.14) 74.8 55.3 60.2 63.4 (0.21)

FFNN+NC 62.5 73.2 70.8 68.8 (0.17) 76.1 56.0 60.4 64.2 (0.18)
CCNN+AGG 65.2 74.2 69.0 69.5 (0.16) 75.8 55.8 62.7 64.8 (0.21)

CCNN+NC 67.3 73.3 69.6 70.1 (0.20) 77.2 56.3 62.0 65.2 (0.22)
CCNN+NC (ensemble) 67.7 73.6 69.8 70.4 (0.13) 78.1 56.6 62.1 65.6 (0.17)

Table 4.6: Coreference Systems’ clustering performance on the ECB+ test set, using the predicted mentions
and testing procedure from Choubey and Huang [20]. Our CCNN models use only the Lemma + Character
Embedding features. FFNN denotes a Feed-Forward Neural Network Mention-Pair model. AGG denotes
Agglomerative Clustering. Our models’ scores represent the average from 50 runs, with standard deviation
denoted by ( ).
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4.4.7 Comparison to Other Systems

Using the same mentions as Choubey and Huang [20], our flagship CCNN+NC system outperforms all models,

despite using few features (see Table 4.6). In particular, our clusters tend not to amass too many mentions,

whereas other systems may merge two disjoint, spurious clusters due to having just a few shared related

mentions. Regardless of the model, cross-document coreference clustering involves many more mentions than

within-doc, naturally yielding a larger margin for clustering errors and thus lower CoNLL F1 scores.

4.4.8 Conclusions

We have shown that it is possible to yield state-of-the-art results on the ECB+ corpus while using just a

few features. We suspect this is exacerbated by the relatively small amount of training data that exists for

coreference. Further, we identified weaknesses in current agglomerative-based clustering approaches, which

we improve upon with our more holistic, neural-based clustering (NC). Despite these improvements, it is clear

from our system’s errors that using context can improve performance, which is the focus of our next chapter.



Chapter 5

Joint Entity and Event Coreference

5.1 Motivation

Our primary focus is to event resolution, and the last chapter posits that results can be improved by using

context better, including entity information. Figure 5.1 illustrates two examples from the ECB+ corpus: (a)

sentences with event mentions that are difficult for coreference resolution, but their respective, associated

entities are relatively easy to resolve. Thus, using entity information, in theory, could assist event coreference;

and (b) the reverse situation, whereby the entity mentions are difficult for coreference resolution, but their

respective, associated events are easy to resolve. Using event information could assist entity coreference.

Therefore, we wish to represent our sentences in a manner that allows for both entity and event information

to be organically captured and represented, without needing to explicitly define manually-created features

like past systems (e.g., a boolean value if event mentions have governing dependency relations with the same

lexical head).

5.2 Adding Sequential Context

Before we attempt to explicitly capture and use entity information, we first address the related, encompassing

issue of using context better. Our CCNN compares two mentions’ context in exact order – regardless of the

convolutional kernel size, any given instance of the kernel is comparing the exact sub-embedding space of

one mention to another. For example, if we were using a context-window size of three, then our system starts

by using a filter over the word that appears three words before mention1, and three words before mention2.

43
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Police	said	Lo	Presti	had	incriminated	himself.

Saints	put	Bush	on	I.R.

One	of	the	key	suspected	Mafia	bosses	arrested	yesterday	has	incriminated	himself.

The	New	Orleans	Saints	relegated	Reggie	Bush	to	the	injured	list	on	Wednesday.	

Figure 5.1: Example sentences from the ECB+ corpus, illustrating the theoretic benefits of jointly resolving
both entities and events. Entity mentions are denoted by colored boxes, and ones with the same colors are
coreferent. Event mentions are denoted by an italicized font. The top two sentences serve as an example of
when entity coreference is easy but event coreference is challenging — the words put and relegated can have
drastically different meanings. The bottom two sentences serve as an example of when entity coreference is
difficult but event coreference is easy.

Although CNNs are particularly good at being robust to pattern variations, even sentences that convey identical

meaning may often have drastically different lexical representations; sometimes the important words may

appear three words before a mention in one sentence, but perhaps two words in another sentence. Moreover,

the exact words themselves may differ between two sentences. Thus, we argue that the lexical distortion in

sentences with coreferent event mentions is simply too large.

For example, let c1 represent the context for mention m1, and let c2 represent the context for m2. For

any two words w1 ∈ c1 and w2 ∈ c2, where w1 = w2 (lexically), we simply measure the absolute difference

in context position. Specifically, in Figure 5.2, the co-referring event mentions are highlighted blue, and the

context positions are listed with red numbers. The useful word Lohan changed from being position −1 to

position −8 (a difference of 7), and People changed from 8 to −11 (a difference of 19).

Among all event mention-pairs in the training set, only 11% of pairs are coreferent. When concerning

only the coreferent pairs, we can construct context windows of five words (on both sides of the mentions).

Most (74%) of coreferent mentions’ context words do not appear in both mentions’ contexts; in other words,

only 26% of the mention pairs’ collective context words appear in both mentions’ contexts. Of this 26%, we

can compute the distribution of the word position differences (i.e., lexical distortion), which we illustrate in

Figure 5.3. Naturally, if the distances were all zero, our CCNN would have no trouble leveraging the relevant

contextual words. If distances are greater than zero, or if the words are even much different between contexts,

our CCNN will have less of a signal to use.

In an attempt to remedy this linear sensitivity to word order, we run a Bidirectional LSTM model on

our corpus, with the hope that it is more robust to wide-range context and less sensitive to word reordering.

Specifically, after running the LSTM, we extract the concatenated 300-length hidden layer embeddings for
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Lindsay Lohan checked into Betty Ford Center , her rep told People Magazine .

According to People , Lindsay Lohan , the actress from Mean Girls , checked into

rehab at Betty Ford again .

C1

C2

-1-2 1 2 3 4 5 6 7 8 9

-2 -1

1 2 3 4 5

-3-5 -4-6-7-8-9-10-11-12-13

Figure 5.2: Example of common lexical distortion (word re-ordering) that exists within sentences.

Figure 5.3: Distribution of lexical distortion (word re-ordering) distances between relevant words in coreferent
sentences. Among coreferent event mention pairs, 74% of their context words do not exist within both mentions’
context. This graph corresponds to the 26% of words that do.
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Within-Document Cross-Document
MUC B3 CEAF CoNLL F1 MUC B3 CEAF CoNLL F1

SameLemmaany 40.4 66.4 66.2 57.7 66.7 51.4 46.2 54.8
HDDCRP [108] 53.4 75.4 71.7 66.8 73.1 53.5 49.5 58.7

Choubey [20] 62.6 72.4 71.8 68.9 73.4 61.0 56.5 63.6
FFNN+AGG 61.6 73.6 69.1 68.1 (0.14) 74.8 55.3 60.2 63.4 (0.21)

FFNN+NC 62.5 73.2 70.8 68.8 (0.17) 76.1 56.0 60.4 64.2 (0.18)
CCNN+AGG 65.2 74.2 69.0 69.5 (0.16) 75.8 55.8 62.7 64.8 (0.21)

CCNN+NC 67.3 73.3 69.6 70.1 (0.20) 77.2 56.3 62.0 65.2 (0.22)
CCNN+NC (ensemble) 67.7 73.6 69.8 70.4 (0.13) 78.1 56.6 62.1 65.6 (0.17)
Bi-LSTM-CCNN+NC 63.4 72.0 68.9 68.1 (0.2) 75.3 57.2 58.1 63.5 (0.21)

Table 5.1: Coreference Systems’ clustering performance on the ECB+ test set, using the predicted mentions
and testing procedure from Choubey and Huang [20]. Same results as reported in Table 4.6, but appended with
results of having used Bi-directional LSTM embeddings + character embeddings as input to our CCNN

each token in our corpus. We use these embeddings, along with the character embeddings, as input to our

CCNN (thus replacing GloVe’s pre-computed lemma embeddings). Unfortunately, this does not offer any

improvement, as reported in Table 5.1. We also experimented with supplementing our best-performing lemma

+ character embedding features with our newly-created LSTM embeddings; however, performance decreased

slightly.

5.3 Structured Context

5.3.1 Motivation

In our daily lives, human language is represented sequentially (e.g., in verbal communication and in written

text, such as our corpus); however, the underlying structure is compositional, so it is often useful to repre-

sent language as hierarchical, tree-like structures for computer models. While the reasons and methods for

constructing such structures are well-studied by linguists [57], at the very least, NLP may benefit from tree

structures due to the: (1) hierarchical representations allowing for increasing levels of abstraction [8, 93]; and

(2) allowance of exploiting compositional units [95, 96, 98].

5.3.2 Dependency Parse Trees

As mentioned in Section 2.3.3, dependency parse trees model each sentence with respect to which words

depend on which, and the connections are directed, unordered, and labelled by a relation. Given two sentences

that contain co-referent events, their linear representations may be wildly different (as discussed), but their
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Ford

told

checked rep magazine

PeopleLohan

Lindsay into

Betty

Center .

checked

People rehab

According

to

Lindsay Betty

FordLohan again

atintoactress

the Girls

Meanfrom

.

Lindsay	Lohan	checked	into	Betty	Ford
Center,	rep	told	People	Magazine.	

According	to	People,	Lindsay	Lohan,	the	actress	from
Mean	Girls,	checked	into	rehab	at	Betty	Ford	again.

Figure 5.4: Dependency parse trees for two sentences that contain co-referent event mentions checked into
and checked into, illustrating the similar structure, despite their sequential sentence representations being
significantly different. Mentions that are coreferent with each other are displayed with the same colored boxes.

dependency parse trees will likely have less variability. For example, in Figure 5.4 we see two sentences from

the previous example have similar structures, including: the coreferent events checked into and checked into

both have dependent children Lindsay Lohan and Betty Ford.

5.3.3 TreeLSTMs

In an attempt to capture meaningful embeddings for each word (node) based on its placement in the dependency

parse tree, we turn to TreeLSTMs [98]. In short, TreeLSTMs are similar to traditional LSTMs in that they

aim to capture representations of each word unit based on the context, while being able to handle long-range

dependencies. However, instead of being restricted to linearly ordered data, it is designed to work with tree

structures. Specifically, we use the Child-Sum TreeLSTM variant, which works as follows: We represent

each sentence by its dependency parse tree, which was parsed by Stanford Core NLP [70]. Each word j is

represented as a node in the tree. Akin to traditional LSTMs, each node j has a corresponding input vector xj ,

along with:

• an input gate ij

• an output gate oj

• a hidden state hj

• a memory cell mj

Unlike traditional LSTMs, our TreeLSTM’s gating and memory cell updates are dependent on every child

node. Related, it has one forget gate fjk for each child node k, which allows for selectively using information
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from each child. Our input vectors xj are initialized with the same GloVe embeddings that we used in our

CCNN experiments. For any particular node j, let C(j) denote its set of children. The TreeLSTM’s transition

functions are defined as:

h̃j =
∑

k∈C(j)

hk

ij = σ(W (i)xj + U (i)h̃j + b(i))

fjk = σ(W (f)xj + U (f)hk + b(f))

oj = σ(W (o)xj + U (o)h̃j + b(o))

uj = tanh(W (u)xj + U (u)h̃j + b(u))

cj = ij � uj +
∑

k∈C(j)

fjk � ck

hj = oj � tanh(cj)

(5.1)

Fortunately, dependency parse trees are naturally rooted with event mentions — verbs are the top-most

governing word token, on which all other words depend. Thus, for any two event mentions in our corpus, we

can construct two TreeLSTMs, one for each event’s corresponding sentence. The roots of the trees can then be

measured in terms of their similarity, and we can assert that more similar roots correspond to coreferent event

mentions. To enforce this property, we set our target to be a multi-class prediction ŷ corresponding to if the

two event roots are coreferent or not1, defined by:

h× = hL � hR

h+ = |hL − hR|

hs = σ(W (×)h× +W (+)h+ + b(h))

p̂θ = softmax(W (p)hs + b(p))

ŷ = rT p̂θ

(5.2)

In words, ŷ is a similarity score based on the distance and angle between the two root nodes’ hidden

states/embeddings. This can ultimately be viewed as a conjoined model, as there is only one unique TreeLSTM

model, and both copies share tied weights and work toward the single task of coreference prediction. The

objective function measures the KL-divergence between the predicted ŷ multi-class score and the gold truth’s

1denoted by [0,1] or [1,0] for being coreferent or not, respectively.
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score y:

J(θ) =
1

m

m∑
k=1

KL(p(k)‖p̂(k)θ ) +
λ

2
‖θ‖22 (5.3)

where m represents the total number of training pairs, and k denotes the kth pair of sentences.

5.4 Event Coreference

5.4.1 Experiments

We wish to use our Conjoined Child-Sum TreeLSTM to predict if two event mentions are coreferent or not.

Since our model is defined to work with predicting only root nodes, this would leave us without predictions for

all other event mentions that are at non-root locations (many sentences contain more than one event). However,

when the network updates its weights, this includes updating all children’s weights, not just the root nodes. For

this reason, at testing time we can compare any two event mentions, regardless of their location in the tree, by

using their hidden states. Specifically, our prediction score is the cosine similarity between the hidden states

ha and hb:

cosine similarity(ha, hb) =

n∑
i=1

haihbi√
n∑
i=1

h2ai

√
n∑
i=1

h2bi

(5.4)

When an event mention has multiple tokens, we follow suit with our previous experiments by summing all

embeddings in place. At training time, we are limited to using only the pairs of sentences that have dependency

parse tree roots that are annotated by our corpus as being event mentions; although all roots should be event

mentions, the ECB+ corpus does not comprehensively, perfectly annotate every word token, and since we need

gold truth data to know if the roots should co-refer or not, this limits us to using a subset of the training data.

Specifically, in Table 5.2 we list the amount of ECB+ data available for use in our various experiments.

5.4.2 Results

While we hoped that a tree structure representation would yield improved performance and not need any

explicit features, the pairwise mention results in Table 5.3 demonstrate this is not the case. This model used no

character embeddings or any explicit signal/features beyond the pre-trained GloVe word embeddings.
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Within-Document Cross-Document

# Mention
Pairs

# Mention
Pairs with

Entity Paths

# Unique
Sentences

# Mention
Pairs

# Mention
Pairs with

Entity Paths

# Unique
Sentences

Train 5,922 2,960 580 73,925 38,625 730
Dev 775 428 117 8,939 4,980 137
Test 8,512 3,947 794 87,415 42,466 958

Table 5.2: ECB+ corpus statistics. When representing each sentence as a dependency parse tree, not every
event mention has an entity as a child. The number of event mention pairs that do are listed as “# Mention
Pairs with Entity Paths.” Our Conjoined TreeLSTM model operates on pairs of sentences, and the training set
for it only considers sentences that are rooted at event mentions that are annotated in our corpus.

Within-Document Cross-Document
Development

(39 pairs)
Test

(285 pairs)
Development
(1,004 pairs)

Test
(8,190 pairs)

SameLemmaany 52.63 69.93 54.51 57.52
CCNNavg 55.22 70.88 56.87 59.01
CCNNens 54.55 71.34 56.93 58.96

TreeLSTM 76.92 58.74 57.02 53.36

Table 5.3: Models’ mention-pair F1 performance after having all trained on the exact same subset of ECB+
Training: the event mentions that are roots of dependency parsed sentences. The number of sentence pairs on
which we evaluated is listed in parenthesis for each corresponding data split.

From Table 5.2, we can see that our training size is relatively small, especially considering that we only

trained on unique sentence pairs. Figure 5.5 shows the effects of the training size, whereby it is clear that our

model would improve with more data. Related, our model is optimizing to predict pairs of sentence trees based

on their roots, so when the weights are adjusted via backpropagation, nodes deep within the tree (e.g., near leaf

nodes) will naturally receive a weaker signal from the objective function. Figure 5.6 illustrates this weakness,

as event mentions that exist at lower depths tend to have much lower accuracy (root mentions have a depth of

one, and each successive child has an increased depth number). Note, the diagonal has strong performance

because those sentence pairs are nearly identical with each other, and some the pairs at the lowest depth have

very few mention pairs (e.g., only 1 pair), so those results are less significant. Nonetheless, a trend exists in

that lower depth yields worse performance.
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Figure 5.5: TreeLSTM’s Mention-Pair F1 performance on the ECB+ Test Set while varying the training size.
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Figure 5.6: Mention-Pair F1 performance on the ECB+ Test Set, measured on a per-depth basis. A Depth of 1
corresponds to event mentions at the root of trees. The lower-depth pairs are sparse, with only a few pairs for
representation.
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Within-
Document

Cross-
Document

P(event coref) 0.11 0.17
P(entity coref) 0.30 0.33

P(event coref | entity coref) 0.24 0.34
P(entity coref | event coref) 0.65 0.68

Table 5.4: Given dependency parse tree representations of the ECB+ corpus, we compute coreference statistics
for event mentions and their associated, dependent entities. Using gold annotations, we see a symbiotic
relationship whereby knowledge of entities coreference strongly increases the likelihood of event coreference,
and vice versa.

5.5 Event + Entity Coreference

5.5.1 Motivation

Based on the previous experiments’ results, along with findings from the previous chapter, we are motivated to:

(1) create/use more training data; (2) improve coreference of mentions at lower tree-depth; and (3) explicitly

incorporate entity information.

In an attempt to estimate the potential benefits from using entity information toward the task of event

coreference, we can compute basic statistics and probabilities from the ECB+ Training Set. In particular, let

us continue with using the dependency parse trees for every sentence. For every given event mention in the

tree, we can traverse down through all of its dependents until we reach an entity mention. If there are multiple

entity mention dependents, we pick the one with the lowest tree depth (we define the event mention to have a

depth of zero). If there are multiple entity mentions at the same, minimal depth, we use all of that exist at this

minimal depth. We consider this entity/entities to be associated with the event mention. For example, in Figure

5.7, the top tree has an event checked into, and its associated entity is Lindsay Lohan because it has a depth of

one, whereas the other descendent entities in the tree have a higher depth (e.g., Betty Ford has a depth of two,

and the entity People is not reachable and thus not considered). The bottom tree has an event checked into, and

it has three associated entities because all three of them have the same, minimal depth of one: People, Linsday

Lohan, and Betty Ford.

Now, given any two event mentions, we can compare their respective entity mentions, with the hope that

there will be a correlation between the likelihood of entities being coreferent and their corresponding events

being coreferent. This limits us to using only the ECB+ sentences that contain annotations for entities and

events. Using the gold truth ECB+ annotations, Table 5.4 illustrates that there exists a strong correlation.

Specifically, for the within-document mentions, the apriori probability that any two events are coreferent is
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Lindsay	Lohan

Ford

told

checked rep magazine

PeopleLohan

Lindsay into

Betty

Center .

checked

People rehab

According

to

Lindsay Betty

FordLohan again

atintoactress

the Girls

Meanfrom

.

Lindsay	Lohan	checked	into	Betty	Ford
Center,	rep	told	People	Magazine.	

According	to	People,	Lindsay	Lohan,	the	actress	from
Mean	Girls,	checked	into	rehab	at	Betty	Ford	again.

Event	Mention:

Sentence:

Entity	Mention(s):

depth	0

depth	1

depth	2

depth	3

Sentence:

depth	0

depth	1

depth	2

depth	3

depth	4

Lindsay	Lohan

Event	Mention: checked	into

Entity	Mention(s):

checked	into

People Betty	Ford

Figure 5.7: Dependency parses for two sentences, illustrating that for any given event mention, its associated
entity mention(s) are only those that are reachable via the shortest path (i.e., the minimal depth). In the bottom
example, three entities tie for having a depth of one, so all are used.
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0.11. If we consider the entities that are associated with events, there is a 0.30 probability that the entities

are coreferent. However, if we look at only the pairs for which entities co-refer, their governing events

are coreferent with a probability of 0.24. Thus, the knowledge of entities being coreferent increases the

likelihood of their governing events being coreferent by more than twice as much. Similarly, given that two

event mentions are coreferent, their dependent entities are more than twice as likely to be coreferent than if

we had no knowledge of the events. This correlation exists for both within-document and cross-document

environments.

5.5.2 Experiments

We address the first two motivating points by adjusting our training data. Instead of training only on the

dependency parses of complete sentence pairs, we additionally train on every sub-tree that is rooted at an event

mention. This provides more training data and ameliorates the issue of having poor performance on events that

are located further down the tree (high depth numbers). Now, every event mention will be the root of its own

TreeLSTM, both at training and testing time.

We now address the third motivating point: when performing event coreference, we create a function

that is based on our CCNN’s event-based prediction and the events’ associated entity mentions’ TreeLSTM

embeddings:

f(event1, event2) = α ∗ s1 + (1− α) ∗ s2 (5.5)

Where s1 is our CCNN’s prediction for event1 and event2, and s2 is the L2 distance between the TreeLSTM’s

hidden embeddings corresponding to event1’s associated entities and event2’s associated entities. If any event

has multiple entities (due to being at the same, minimal depth), we sum all of their embeddings in-place before

computing the L2 distance. Since we explicitly use events’ associated entities, we are limited to using only

those event mentions that have dependent entities, per the ECB+ annotations. Thus, these experiments are not

directly comparable to past results, since it concerns a subset of the original data. Using the development set,

we fine-tune all parameters, including α.

Last, in addition to using our CCNN for event coreference, then supplementing it with entity embeddings

from the TreeLSTM, we performed coreference from the opposite perspective: we used our CCNN for entity

coreference (which serves as a baseline), then we supplemented it with events embeddings from the TreeLSTM,

which were then joined into the following equation:
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Within-Document Cross-Document
Development
(347 pairs)

Test
(4,565 pairs)

Development
(3,959 pairs)

Test
(44,949 pairs)

SameLemmaany 50.00 48.39 60.16 47.03
CCNNavg 62.58 51.91 67.95 54.05
CCNNens 63.41 51.90 69.23 54.39

CCNNens + TreeLSTM 64.50 53.22 70.17 54.87

Table 5.5: Event coreference mention-pair F1 performance for various models, all of which were trained on
the exact same subset of ECB+ Training: event mentions that have dependency paths to entities. The number
of event-mention pairs on which we evaluated is listed in parenthesis for each corresponding data split.

Within-Document Cross-Document
Test

(13,679 pairs)
Test

(48,291 pairs)
SameLemmaany 46.84 43.95

CCNNavg 48.11 44.20
CCNNens 48.87 44.36

CCNNens + TreeLSTM 50.40 45.93

Table 5.6: Entity coreference mention-pair F1 performance for various models, all of which were trained on
the exact same subset of ECB+ Training: entity mentions that are dependent on annotated events. The number
of entity-mention pairs on which we evaluated is listed in parenthesis for each data split.

f(entity1, entity2) = α ∗ s1 + (1− α) ∗ s2 (5.6)

Where s1 is our CCNN’s prediction for entity1 and entity2, and s2 is the L2 distance between the

TreeLSTM’s hidden embeddings corresponding to entity1’s governing event and entity2’s governing event.

5.5.3 Results

In Table 5.5, we demonstrate that using entity information improves event coreference, both on a within-

document and cross-document basis. Similarly, in Table 5.6, we show that using event information improves

entity coreference. Note, the number of entity-mention testing pairs differs from the number of event-mention

testing pairs simply because there are more entity nodes than event nodes. We remind the reader that an event

may often have multiple entities as dependent children, yet we test every pair of event mentions exactly once,

independent of its number of entities.



56

5.6 Discussion

In this chapter, we illustrated the need for incorporating context better, the theoretical potential of using

structured representations, and the empirical benefits of leveraging such, along with using information from

both entities and events. Entity coreference was not the focus of our research, so we believe there is further

room for improvement toward this task – especially regarding pronoun resolution.

For both entity and event coreference, the mention-pair results only show a small improvement for the

cross-document setting. We attribute this to the nature of the corpus, whereby many sentences in differing

documents are nearly identical with one another. Thus, just using lemma embeddings of the event mentions

yields high performance. Further evidence of this is made clear when one looks at the true positives and false

negatives of our original CCNN event coreference system: of the false negative event pairs, there is no longer

a strong correlation between entity and event coreference like we saw in Table 5.4. The event pairs that our

CCNN correctly predicted (true positives) maintained the aforementioned correlation; yet, the ones we missed

did not. So, leveraging entity information had limited potential in further improving our system.

Naturally, in other real-life scenarios, documents are free to discuss anything and non-coreferent event

mentions may often use the same verbs. For example, if two randomly selected documents used the word

announced, there should not be a strong apriori probability that the two event mentions, announced, are

coreferent with each other. If a corpus with more varied content were created, we strongly believe that the

benefits of using entity information would be even further pronounced.

Furthering this line of work, there are a few areas we believe could offer promise: in addition to jointly

using entity and event information, there might be benefits of jointly resolving both entity and event coreference.

One can imagine an iterative process that converges in its estimates of coreference, while membership is

being successively refined. Perhaps using latent variable models would be a sound choice. Very recent

advances in language modelling, namely via Transformers [27], have illustrated outstanding ability in using

natural language context. Since coreference hinges on intelligently factoring in nuanced, long-term context

dependencies, we believe Transformers would be fruitful to use. Just a few days ago, new research has

shown strong progress in representing tree structures with RNNs [95]. While coreference resolution is an

incredibly difficult and large problem, we believe our work, along with the new models discussed here, holds

the strongest promise for continued advances: that is, eliminating hand-crafted features, representing language

via tree structures, wisely handling context, and using both entity and event information – while ideally jointly

resolving both.



Chapter 6

Conclusions

In this dissertation, we researched event coreference resolution for both within-document and cross-document

settings. We surveyed literature and outlined weaknesses in existing systems, which we then systematically

addressed. Unlike current models, which commonly rely on dozens of hand-engineered features, we devel-

oped a CCNN mention-pair model that yields state-of-the-art results while using only two features: lemma

embeddings and character embeddings. We provided an analysis of other useful features (word embeddings,

dependency parents/children, and part-of-speech tags). Further, we identified weaknesses in the de facto

standard agglomerative-based clustering approaches, which we improve upon with our more holistic, neural-

based clustering (NC). Namely, instead of merging clusters on a per-mention basis, we learn to merge on a

cluster-basis, which is more robust spurious mentions and prevents clusters from growing erroneously large.

Having thoroughly examined our results and categorized our errors, we were motivated to further improve

our system by using context better. In particular, we noted that structured representations can offer significant

benefits over traditional, linear representations of text. We used dependency parse trees to represent our

sentences, and we used Conjoined TreeLSTMs to model the likelihood of any two event mentions being

coreferent. Having noted that performance decreases as we concern event mentions that are at lower depths in

the dependency trees, we enhanced our TreeLSTM approach by modelling sub-trees. This allows for a more

direct feedback signal from our objective function, as every event mention becomes the root of its own sub-tree.

Last, we used the hidden tree embeddings of entities, in conjunction with our CCNN model, to further improve

our coreference performance. Thus, we demonstrate a symbiotic relationship by combining entities and events

to achieve better results than that from any individual model.
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Appendix A

Appendix

The following is a sample of three documents from Topic 1 of the ECB+ corpus. We have removed the

sentences that were not annotated. Words that comprise a mention are surrounded by [ ] brackets, and prefaced

with a unique identify (e.g., ent8) signifying if they are an entity or event. The number part of the prefaced

identifier has no meaning other than denoting which mentions co-refer with each other.

Document: 1 1ecbplus.xml

Title: ent8[Lindsay Lohan] v195[leaves] ent10[Betty Ford] , v196[checks into] ent197[Malibu rehab] .

First published : June 13 , 2013 4 : 59 pm EDT .

Body: ent8[Lndsay Lohan] has v195[left] ent10[the Betty Ford Center] and is v196[moving] to ent197[a rehab

facility in Malibu , Calif] . , ent198[Access Hollywood] has v199[confirmed] . A ent200[spokesperson] for

ent201[the Los Angeles Superior Court] confirmed to ent198[access] that a ent202[judge] v203[signed] an

order ent204[yesterday] v205[allowing] the v196[transfer] to ent197[Cliffside] , ent197[where] ent8[she] will

v206[continue] with her ent18[90 - day] court - mandated v19[rehab] . ent8[Lohan] ’ s ent37[attorney , Shawn

Holley] , v207[spoke] out about the v196[move] . “ ent8[Lindsay] is v208[grateful] for the treatment ent8[she]

v181[received] ent10[at the Betty Ford Center] . ent8[She] has v209[completed] ent8[her] course of treatment

there and v210[looks forward] to v206[continuing] ent8[her] treatment and v211[building] on the foundation

v212[established] ent10[at Betty Ford] , ” ent37[Holley] v213[said] in a v214[statement] to ent198[Access]

. The ent8[actress] v9[checked into] ent10[the Betty Ford Center] in ent215[May] as part of a v216[plea]

v217[deal] v218[stemming from] ent8[her] ent86[June 2012] ent219[car] v87[accident] v25[case] .
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Document: 1 2ecbplus.xml

Title: May 2 , 2013 , 1 : 12 pm . ent56[Lawyer] : ent8[Lindsay Lohan] v11[checks into] ent12[rehab facility] .

Updated 4 : 08 p . m . ET .

Body: ent8[Lindsay Lohan’s] ent56[attorney] v61[said] ent132[Thursday] the ent8[actress] v11[checked into]

a ent12[southern California rehab facility] ent12[that] a state official said is v70[unlicensed] to v240[perform]

the type of v19[treatment] a ent241[judge] v242[required] ent8[her] to v181[receive] . ent56[Mark Jay Heller]

v243[told] a judge that ent8[Lohan] was v244[settling in] at ent12[Morningside Recovery , a treatment facility

in Newport Beach] . “My ent8[client] is v62[ensconced] in the ent63[bosom] of that ent12[facility] right

now , ” ent56[Heller] v228[argued] after a ent55[prosecutor] v229[objected] to ent8[Lohan’s] v145[choice]

of ent136[rehab facilities] . ent8[“She’s] in ent12[rehab] right now . Nothing bad is v245[going to happen]

. ” . ent123[TMZ] v122[reported] ent8[Lohan] was v73[shopping] at an ent246[electronics store] while

ent8[her] ent56[attorney] was in ent247[court] , and that ent8[she] never v248[entered] ent12[Morningside] .

ent177[White] said he was “completely v249[blindsided”] by ent8[Lohan’s] v11[placement] at ent12[Morningside]

because ent56[Heller] had previously v235[agreed] to v250[send] the ent8[actress] to a different ent237[facility]

that had been v238[vetted] .

Document: 1 1ecb.xml

Body: Another day in Hollywood ; another star in rehab . Word comes from ent5[People Magazine] and other

celebrity news outlets that ent0[Tara Reid] , 33 , ent0[who] v193[starred] in “ American Pie ” and appeared

on U.S. TV show “ Scrubs , ” has v1[entered] ent2[the Promises Treatment Center in Malibu , California]

- the same ent2[facility] that in the past has been the rehab facility of choice for many a hollywood star .

ent5[People] v194[said] Reid ’s representative ent3[Jack Ketsoyan] v4[confirmed] the ent0[actress] ’s v1[stay]

ent2[at Promises] .
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