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As the volume and complexity of generated data grow, users would like to maintain the ability to

issue expressive queries on their data without sacrificing privacy. Encrypted databases are one of

the most promising approaches towards this direction. However, this efficiency comes with the price

of leaking information about the plaintext data. In this thesis, we use an algorithmic approach

to develop rigorous attacks on encrypted databases and secure protocols. In the first part of this

thesis, we consider secure protocols that allow two parties to jointly compute the similarity between

their respective high-dimensional data without revealing the data to each other. Typical secure

similarity approximation protocols first execute a sketching algorithm offline where the necessary

randomness for the computation is “leaked” by design to all the participants. We show how a

participant can generate an adversarial input so as to heavily mis-approximate the similarity and

harm the correctness of the computation. In the second part of the thesis, we study a scenario where

a client outsources to a server an encrypted database indexed by a one-dimensional attribute and

issues a sequence of k-nearest neighbor queries. An adversary (e.g., the server or man-in-the-middle)

observes which encrypted records are retrieved in response to each query and attempts to reconstruct

the plaintext values of the indexed attribute. This so-called access pattern is “leaked” by design so

as to achieve efficient performance. We prove that for ordered k-NN responses, the adversary can

approximate plaintext attribute values with considerable accuracy. For unordered k-NN responses, we

characterize the set of all valid reconstructions and present an attack that reconstructs the plaintext

attribute values with tight approximation guarantees. State-of-the-art attacks on access pattern

leakage operate under the assumption that the queries are generated uniformly at random. The last

part of this thesis shows how to overcome this unrealistic assumption by using tools from learning

theory, statistics, and optimization. Namely, we present the first leakage-based attacks for both

range and k-NN queries that make no assumptions about the data or the query distribution. We

introduce a new set of distribution-agnostic techniques which, as we demonstrate, achieve accurate

reconstruction under a broad class of query distributions.
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Chapter 1

Introduction

Thesis statement: The information leaked by systems that handle expressive queries on

encrypted data can be an avenue for sophisticated attacks. We posit that by utilizing algorithmic

techniques we can analyze the security blindspots of these privacy-preserving techniques and

quantitatively asses their limitations under minimal assumptions.

In this thesis, we use an algorithmic approach to develop and analyze rigorous attacks on encrypted

databases and secure protocols. A better understanding of the landscape of attacks will not only

warn the community about the unknown vulnerabilities of proposed schemes but also inform the

cryptographers about what to avoid and how to mitigate the discovered shortcomings.

In the first part of this thesis, we study secure protocols that allow two parties to jointly compute

the similarity between their respective high-dimensional data without revealing the data to each

other. In the second part of the thesis, we study a scenario where a client outsources to a server

an encrypted database indexed by a one-dimensional attribute and issues a sequence of k-nearest

neighbor queries. The last part of this thesis shows how to overcome unrealistic assumption such as

uniform query distribution by using tools from learning theory, statistics, and optimization. Namely,

we present the first leakage-based attacks for both range and k-NN queries that make no assumptions

about the data or the query distribution. We introduce a new set of distribution-agnostic techniques

which, as we demonstrate, achieve accurate reconstruction under a broad class of query distributions.

1
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1.1 Analysis of Secure Sketching Protocols

Quantifying similarity between high-dimensional data points is a cornerstone problem in the area of

data mining. The history of the problem goes back to 1901 with the influential work of Jaccard [94]

and has a wide range of applications in today’s software systems and services especially in the areas

of healthcare [143], law [81], finance [80], recommendation engines [84], personalization systems [50],

social networks [158], databases [159], earth science [126], link prediction [114], forensics [136]. The

wide adoption of this concept in diverse fields highlights the importance of similarity computation—

the spectrum of application is so broad that instead of listing them we refer the reader to books [109,

116, 142] describing some of the applications of similarity computation. Some of the applications

above consider similarity computation between high-dimensional data in the presence of strict privacy

requirements. As motivating examples, we consider two such areas: electronic discovery and healthcare.

Electronic discovery (or e-discovery) typically focuses on the discovery and identification of

information among privacy-sensitive electronic files as part of a lawsuit or formal investigation. It has

been reported that the area of legal forensic discovery is a $9.9 billion market [51]. The community

of technologists and legal experts in the area has formed the Electronic Discovery Reference Model

(EDRM) [5], which is a framework that describes standards for the recovery and discovery of digital

information during the legal process—e.g., criminal evidence discovery. According to the EDRM

paradigm, during the phase of “Preparation” the discovery model filters documents so as to shortlist

the ones most interesting/relevant among a voluminous collection of data. Section 1.2 of EDRM’s

directive [6] explicitly lists “Similarity Hashing” as a recommended action to shortlist privacy-sensitive

documents. Thus, similarity approximation is a vital component of this multi-billion dollar business.

The area of patient similarity has attracted attention from both industry [102] as well as the

medical community [27, 79, 143]. The emerging area of personalized medicine, where patient similarity

plays a central role, aims at treatments tailored to individual characteristics of each patient. To

achieve this goal, one needs to organize similar patients into subgroups that have the same response

to a given treatment. This approach has dramatically changed the area of pharmacogenetics [162].

From a computational perspective, entire research teams (e.g., [102]) are focusing on the problem

of patient similarity, applying advanced algorithmic techniques so as to discover groups of patients

with similar health record profiles, while aiming to provide high secrecy for the sensitive healthcare

records. Health information exchange protocols are already in place [8], allowing patient similarity
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computation across hospitals of different US states. These are two of the many important examples

highlighting not only the central role of similarity detection in important business areas, but also the

need for performing such detection using secure and robust methods, due to the sensitivity of the

analyzed data.

Secure Sketching. As computing exact similarity metrics on very large datasets is prohibitively

expensive, state-of-the-art methods seek to approximate the similarity function that needs to be

computed, by working with a succinct representation of the data that is called a sketch. Sketching is

the mainstream approach for efficiently approximating a plethora of functions and applications [22,

25, 26, 40, 44, 58, 71, 88, 89, 91, 113, 119, 122, 141, 146]. The seminal work by Feigenbaum et al. [64]

set the foundation for secure multiparty computation of approximation functions. Furthermore, the

community has made several important steps towards private computation on genomic data in a

time-efficient and scalable manner [14, 20, 43, 49, 129]. Wang et al. [155] demonstrate the potential

of secure approximations, by running a privacy-preserving similarity query for a human genome on

1 million records distributed across the U.S., in a couple of minutes. All of the above works only

consider an honest-but-curious adversary. In this thesis we extend the threat model and demonstrate

how easy it is to craft adversarial inputs for sketching algorithms within this new model.

On Crafting Adversarial Inputs. The sketching protocol as presented by Feigenbaum et

al. [64] has two phases: 1) the sketching function is applied locally by each party, and 2) the

reconstruction function is performed via secure multiparty computation. Our offline attack is

mounted on the first phase by a data owner who exploits the fact that i) the randomness of the

sketching algorithm is known to all the participants, and ii) the sketching algorithm is performed

locally. Such an adversary can steer any similarity approximation between the perturbed data and

any other data point to an incorrect output, regardless of the secure computation protocols of the

second phase. Our first attack uses simple probabilistic arguments, and is mounted on the minhash

sketching, which is deployed to measure the Jaccard similarity between two sets. Our second attack

formulates a high-dimensional constrained optimization problem, and is mounted on the cosine

sketching, which is deployed to measure the cosine similarity between two vectors.

Threat Model. In this threat model the only action the attacker is allowed to take is to change

the input data to the sketching algorithm. This is because any other alteration that concerns, a)

the steps of the locally computed sketching algorithm, b) the sketch computed, and c) the secure

protocols, can be easily detected by applying verifiable computation mechanisms [69, 137]. We focus
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our attention to the threat related to the input data of the sketching algorithm, and leave as an open

problem the task of deploying efficiently verifiable computation for the remaining steps (i.e., potential

attacks on items a, b, and c above). The input to the sketching algorithm is the very first step of the

pipeline and is provided directly by the user, therefore the protocols have no means of verifying if it

is a legitimate input or an adversarially perturbed input. This new threat model formally capture

the attack surface of malicious perturbations of the input data with the end-goal of violating the

correctness of the similarity approximation.

Motives for Mis-approximating Similarity. The motivation for such attacks can be clearly

demonstrated by considering the previously discussed examples of e-discovery and patient similarity

(among others). In the case of e-discovery the plaintiff party is interested in correctly approximating

similarity between privacy-sensitive documents so as to discover important evidence. On the contrary,

the defending party might prefer to masquerade evidence by causing mis-approximation. Applying

a perturbation attack on document similarity approximation algorithms will conceal important

documents from the shortlisted set that will be thoroughly investigated on a criminal evidence

discovery case, such an outcome violates the directive of EDRM [6]. An illustration of the power of

our proposed attacks is illustrated in Figure 1.1. In the case of patient similarity, a perturbation

attack will cause a pair of patients that have similar medical profiles to be assigned to different

subgroups. For instance, all future patients that are assigned to a subgroup with perturbed data will

receive personalized treatment that is not effective or, even worse, lethal. Such an attacker not only

causes a disrupted service on the patient similarity component of a personalized treatment engine,

but also introduces liability for the participating parties.

Figure 1.1: Illustration of the perturbation attack on an e-discovery data. The adversary can add the
5 red-colored words in the original email with id 549 and the approximate distance of our instantiation
will be 1 even though the exact distance is 0.004.
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Proposed Mitigation. To mitigate perturbation attacks we follow the standard server-aided

paradigm [98] and formulate a server-aided secure approximation architecture that requires the

participation of three parties, as opposed to two of the previous schemes. A new honest-but-curious

entity—the server—stores the common randomness which is treated as private information. A user,

who no longer knows the common randomness, is therefore forced to run a protocol with the server

to build an encrypted sketch, as opposed to the local computation of the previous model’s first phase.

During the sketching protocol the user doesn’t learn any information about the common randomness

and the server doesn’t learn any information about the user’s data. The sketch-generation takes place

only once for each data point, and the sketch can be reused for any future pairwise approximation.

Most importantly, under this new server-aided framework the users do not have direct access to the

common random input and thus they can not mount an offline perturbation attack. In this thesis, we

devise and implement new secure protocols in order to generate minhash and cosine sketches in our

proposed architecture. Given a pair of sketches1 our implementation achieves throughput of 30-600

approximations per second for data points with hundreds of dimensions.

1.2 Analysis of k-NN Queries in Encrypted Databases

Systems for Searchable Encryption (SE) [23, 36, 45, 53, 67, 96, 147, 149] allow a client to outsource

an encrypted database to a server who can subsequently answer certain types of queries by operating

solely on the encrypted data. In order to meet real-world efficiency demands, SE constructions allow,

by definition, some well-defined leakage of information.

In the case of encrypted single-keyword search [23, 36, 45, 96, 149], this leakage reveals which file

identifiers match the encrypted queried keyword—also known as access pattern leakage. The impact

of this type of leakage had not been clear for a long time and it was only until recently that the

community started to study its implications. In particular, the works of Islam et al. [93], Cash et

al. [37], and recently Zhang et al. [163], demonstrate how an attacker can utilize access patterns to

launch query-recovery attacks under various assumptions.

However, in the case of richer queries (e.g., range [63, 90, 138] and SQL [135, 139]), more severe

data-recovery attacks are possible due to the expressiveness of the query. In particular, the work

by Kellaris, Kollios, Nissim, and O’Neill [99] attacks SE-type systems that support range queries
1The parameterization, and consequently the efficiency, of the sketching instantiation depends on the approximation

guarantees.
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(e.g., [63, 85, 110]) by observing record identifiers whose plaintext values belong to the queried range.

Similarly, a recent work by Lacharité, Minaud, and Paterson [106] further explores range query

leakage to achieve exact and approximate reconstruction for the case of dense datasets with orders of

magnitude fewer queries (when compared to [99]). Finally, order-preserving encryption based systems

(e.g., CryptDB [139]) supporting even more expressive queries (such as SQL) have been shown to

be vulnerable to data-recovery attacks [59, 82, 128] even without observing any queries, just by the

setup leakage.

In this thesis, we explore the implications of another generic query leakage profile, that of k-nearest

neighbor (k-NN) queries, which return the k nearest points of a database to a given query point with

respect to a distance metric. A spatial database is engineered to model, store, and query data defined

in a geometric space. There is a plethora of systems and products (e.g., Geomesa [7], PostGIS for

PostgreSQL [3], and IBM’s Cloudant NoSQL DB Geospatial [1]) that provide scalable solutions for

handling spatial data. Proximity queries such as k-NN, appear in all of the above systems.

Support for k-NN queries on encrypted databases has drawn a lot of attention in the database

community for more than a decade [61, 70, 101, 112, 124, 133, 154, 156, 160]. Several of the above

designs, e.g. [101, 154], reveal as query leakage the k encrypted records returned to the client as

response to a k-NN query. In this thesis, we analyze what a passive adversary can achieve by only

observing the set of encrypted records returned by a sequence of k-NN queries. Our leakage-abuse

attacks achieve significant accuracy of data recovery for one-dimensional k-NN queries. Also, as

higher-dimensional data can be efficiently queried by mapping it to one-dimensional values (e.g., via

Hilbert curves) [108, 130, 145, 161], our approach is applicable to a wider family of constructions.

Our findings suggest a reevaluation of what is considered secure in the area of k-NN queries for

encrypted databases.

1.3 Analysis of k-NN & Range Queries in Encrypted Databases

Under Minimal Assumptions

In searchable encryption [45, 96, 147], a client encrypts a privacy-sensitive data collection and

outsources an encrypted database to a server that can efficiently answer search queries without ever

decrypting the database. Known constructions handle rich and expressive queries [53, 63, 95] under

the definitional framework of structured encryption (STE) [41].
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Figure 1.2: On the left there is a black-and-white picture of the Trojan horse. In the middle there
are n = 1840 sampled two-dimensional values from the original picture projected to a Hilbert curve
of order 7 so as to reduce the k-NN queries to one dimension. On the right side we demonstrate the
reconstruction of the plaintext values solely based on the query leakage under the studied assumptions.
The depicted setup has relative error 0.01% both in 1D and 2D, and k = 9.

To strike a balance between efficiency and privacy, structured encryption schemes reveal, by

design, certain information about the query and its corresponding response—this is the so-called

leakage. Despite cryptographic proofs guaranteeing that nothing more is leaked but what the designer

allowed, the implications of the legitimately leaked information have not been fully grasped yet.

The first generation of leakage-based attacks [37, 93, 163] focused on query reconstruction under

various assumptions. The next generation of attacks [83, 99, 104, 106] supported plaintext value

reconstruction by a server answering expressive queries on a one-dimensional database. In chapter 4,

we present the first efficient reconstruction methods from range and k-NN queries that do not rely

on any assumption about the query distribution or the underlying data.

We overview the limitations of four state-of-the-art attacks supported by a detailed theoretical

analysis and experimental evaluation [83, 99, 104, 106] and outline our new approach.

Uniform Query Distribution Assumption. The first value reconstruction attack for range

queries was proposed by Kellaris-Kollios-Nissim-O’Neil (KKNO) [99]. It assumes that queries are

issued uniformly at random. Lacharité-Minaud-Paterson (LMP) [106] studied the same problem for

the special case of dense databases—this is a simpler problem since reconstructing order is equivalent

to reconstructing values. The work by Grubbs-Lacharité-Minaud-Paterson (GLMP) [83] gives three

main reconstruction attacks for range queries under different assumptions: attacks Generalized-

KKNO and ApproxValue assume an underlying uniform query distribution, extend the underlying

ideas of KKNO, and present a new analysis on the query complexity; attack AOR-to-ADR does

not assume uniform queries but assumes that the attacker knows both the query distribution and an
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Plaintext Values
Reconstructed Values

Figure 1.3: Visual comparison between plaintext values of real-world private geolocation dataset
Spitz (in red) and values reconstructed by our attack Agnostic-Reconstruction-KNN on k-NN
queries under a Gaussian distribution and k = 10 (in black). Our attack achieves an approxiamate
reconstruction (1) under a non-uniform query distribution and (2) with half the queries and larger k
values compared to previous work [104].

approximation of the data distribution. Kornaropoulos-Papamanthou-Tamassia (KPT) [104] propose

reconstruction attacks for k-nearest neighbor queries under the uniform query distribution. The

above attacks, summarized in Table 1.1, set the foundations for understanding the implications of

leakage but only succeed under strong assumptions that potentially do not hold in the real world,

e.g., uniform query distribution. Thus, the following question still remains open:

“Is it possible to devise attacks that reconstruct an approximation of the plaintext values without

any assumptions about the query distribution or the data distribution?”

Our results answers this question in the affirmative and presents reconstruction techniques that

are query and data distribution agnostic. The key to achieve such a generalization lies in the search

pattern leakage which is revealed in all known STE schemes but has been overlooked so far. See

Figure 1.3 for an illustration of a reconstruction achieved by our attacks.

Table 1.1: Assumptions of state-of-the-art value reconstruction attacks and our new attacks

Value Reconstruction Query Type
Assumptions

Attack Algorithms Query Data Values in a Known Known Dense
Distribution Fixed Region Data Distribution Query Distribution Database

Chapter 3 - KPT [104] k-NN Uniform - - - -
KKNO [99] Range Uniform - - - -

GLMP [83] GeneralizedKKNO Range Uniform - - - -
GLMP [83] ApproxValue Range Uniform • - - -
GLMP [83] AOR to ADR Range Unknown - • • -

LMP [106] Range Unknown - - - •
Chapter 4 k-NN & Range Unknown - - - -
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Fundamental Limitations of Current Range Attacks. A natural approach for answering

the above question would be to extend existing algorithmic techniques to work for arbitrary query

distributions. To explore this possibility, we first give a high-level intuition of the range reconstruction

attacks KKNO, GeneralizedKKNO, and ApproxValue. Through the access pattern leakage,

which appears in the vast majority of STE schemes, the attacker can see which and how many queries

return a given encrypted record. Assume the attacker knows the space of possible plaintext values,

e.g., values from 0 to 100 representing attribute age. If range queries are generated uniformly, the

attacker expects values in the middle (e.g., age = 50) to be returned more often than values towards

the ends (e.g., age = 1). Formally, the reference probability of a value v captures the likelihood that

value v will be returned in a response to a query. It is defined as
∑
r∈Rv Pr[r], where Rv is the set of

ranges containing v and Pr[r] is the probability of querying range r. Reference probabilities can be

easily pre-computed by an attacker who knows the query distribution.

The reference probability of plaintext values for two query distributions is shown with histograms

in in Figure 1.4(b). After observing enough queries, the attacker computes the frequency of each

encrypted value in the responses and then tries to find a close match of with a pre-computed reference

probability, taking the corresponding plaintext value as a reconstruction. This technique works well

for the uniform query case as the reference probabilities (blue histogram) vary significantly over the

universe of plaintext values. However, there are fundamental limitations when trying to exend this

approach.

For instance consider the Span range query distribution, inspired by a realistic behavior from a

client, depicted as a heatmap in Figure 1.4(a), where the lower boundary of the range is on the Y -axis,

the upper boundary is on the X-axis and the color of each square denotes the probability of issuing

this query. One can visually confirm that queries around the diagonal, i.e., queries with short span,

have brighter color, hence are more likely to be issued. The reference probability for the Span query

distribution is shown with the red histogram in Figure 1.4(b). Note that the reference probabilities of

60% of potential plaintext values differ by less than 10−8. Thus, the Span query distribution causes

all state-of-the-art attacks to fail as the adversary cannot distinguish most encrypted values from

their observed frequency.

More generally, one can define query distributions where the reference probabilities are identical

so no matter how many queries are observed, the adversary cannot distinguish between potential
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(a) (b)
Figure 1.4: (a) Heatmap of the Span distribution of range queries on values from 0 to 100, where the
probability of query [a, b] is proportional to (N − b+ a)25. (b) Reference probabilities of plaintext
values under the uniform query distribution (blue histogram) and Span query distribution (red
histogram). Reconstructing the values of an encrypted database, shown with solid bars, from their
empirical reference probabilities, is easy under the uniform query distribution but hard under the
Span query distribution.

plaintext reconstructions in the information-theoretic sense. Interestingly, the fact that frequency-

based attacks fail in “smooth” distributions is used as a form of mitigation by Lacharité-Paterson [105],

who study introducing multiplicities in the records and “spreading” the frequency of among the copies.

From the above example we see that for range queries we need a radically different reconstruction

approach to generalize.

How Many Queries Return a Response? Taking a step back to rethink reconstruction

attacks, there is a piece of information that has not been fully exploited to overcome the uniform

query assumption. This is the number of queries that a return a given response, r, among the possible

range queries. Let xr be the number of lower query boundaries that can potentially return response r,

and let yr be the number of upper boundaries that can potentially return the same response, r. The

total number of queries that return response r is essentially Nr = xr · yr, but more importantly, both

xr and yr are distances between consecutive encrypted values. Therefore if we knew Nr for all r we

could set up a system of equations containing xr and yr and retrieve the distances between all values

in the database, effectively computing the values themselves.

However, the exact values of Nr are not available. Our main approach lies in estimating Nr using
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search pattern leakage (which is part of all known constructions) and then setting up carefully-crafted

optimization problems to retrieve an estimation of the underlying distances/values.

Harnessing Search-Pattern Leakage. The search pattern leakage reveals to the adversary if

two encrypted queries, called search tokens, are generated from the same query. Interestingly none

of the aforementioned state-of-the-art attacks [83, 99, 104, 106] utilize the search-pattern leakage,

considering it harmless. We argue that this leakage can be instead exploited. Suppose that 103

observed search tokens (not-necessarily distinct) return response r. If these 103 tokens are the same,

we can make a probabilistic argument that there aren’t that many queries that return r. On the

contrary, if all 103 are distinct, then there are clearly at least 103 queries, and likely more, that

return r. More formally, the problem of estimating the number of unseen outcomes from the frequency

of observed outcomes is called support size estimation and it has a rich history [28, 68, 152]. We use

non-parametric support size estimation techniques that make no assumptions about the underlying

distribution to re-think reconstruction algorithms for encrypted databases. Our techniques reconstruct

very accurately even in the case of “smooth” frequencies of retrieval due to the fact that our attacks

are based on the number of possible queries that return a response, a quantity that can be efficiently

estimated under flat frequencies, as we demonstrate in our experiments.

1.4 Contributions of This Thesis

• Chapter 2: We identify and formalize the notion of perturbation attacks against secure

multiparty approximation. We propose two attacks, the first is on the minhash sketching that is

used to approximate the similarity between two sets, and the second is on the cosine sketching

that is used to approximate the similarity between two vectors. We apply the proposed attacks

on both real and synthetic data. Following the paradigm of server-aided design, we propose

a server-aided approach that mitigates offline perturbation attacks. In our setup, a server

has exclusive access to the common randomness, and is assisting the clients in the sketch

computation. Thus, a user does not learn any information about the common random input.

Additionally, the server doesn’t learn any information about the user’s data2.

• Chapter 3: We study what a passive and persistent adversary can achieve by observing the

query leakage that only reveals which k encrypted records are retrieved for a private k-NN query
2Other than the result of the approximation of unknown inputs.
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on a database with n one-dimensional values. We study the case of unordered responses

where the adversary observes the set of k retrieved records as well as the case of ordered

responses where the adversary observes the k-tuple of retrieved records ordered in ascending

order with respect to the private query point. We assume that the private query points are

generated uniformly at random. Our exact reconstruction results are:

Ordered Responses. We show that an adversary with auxiliary information can achieve exact

reconstruction in time O(k n logn). This auxiliary information is rather unrealistic, e.g., the

lengths of the Voronoi diagram which is a conceptual partition of the space based on DB, but

our goal is to study the feasibility of exact reconstruction. Unordered Responses. We prove

that even a computationally unbounded adversary can not achieve exact reconstruction for this

generic k-NN leakage. Our impossibility proof shows that there exist an infinite number of DB

reconstructions that the observed query leakage can potentially come from, thus it is infeasible

for an adversary to deterministically output client’s DB.

Even though from the adversarial point of view the above results do not look promising (i.e.,

unrealistic auxiliary information and impossibility), there is still hope. For our main results we

show the following approximate reconstruction results:

Ordered Responses. We show an attack where the adversary has no access to auxiliary informa-

tion but still approximately reconstructs with failure probability δ the plaintext values with

relative error εR in time O(k n logn+ 1
ε2
R

(k2 n+ log 1
δ )). In the heart of this technique is an

estimator that approximates the previously-handed auxiliary information. The recovered values

are at most ±εR afar from the client’s DB values with probability at least 1− δ, where εR, δ

are tunable.

Unordered Responses. In the main result of our analysis we study the geometric structure of

infinite reconstructions, what we call feasible region. Armed with insights about the geometry

of this feasible region, we present a novel approximation approach that outputs a reconstructed

DB with a upper-bounded worst-case reconstruction accuracy. Interestingly, the bound is a

function of a characteristic quantity of the feasible region, what we call diameter of the feasible

region, and in the evaluation section we examine the interplay between the diameter and the

accuracy of the reconstruction.

• Chapter 4: We first describe how the adversary can achieve knowledge transfer from statistics
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and learning theory to reconstructing encrypted databases. By partitioning the multiset of

observed token-response pairs (t, r), the adversary can study each partition separately and draw

inferences about the number of possible tokens that return r. We benchmark the state-of-the-art

non-parametric support size estimation techniques under various (unknown to the adversary)

query distributions. Our experiments indicate that certain estimators are better under different

query distributions so we propose a new modular approach to pick the best estimation for the

sample in hand. We further derive analytical expressions for known high-order non-parametric

estimators, which is of independent interest.

Armed with techniques for estimating the number of queries that return a response, we develop

a new machinery to approximately reconstruct an encrypted database. On a high-level, each

estimation gives us information about two distances between encrypted values. But these

estimations are made independently and with a different sample sizes. We propose an efficient

new algorithm, Agnostic-Reconstruction-Range, that is based on an unconstrained

convex optimization problem so as to piece together the above independent estimations and

output estimated distances between consecutive values of the database. Our modeling gives

higher weight to estimations made after observing a larger number of queries. We test our

attack under a variety of query distributions and database densities, and show it achieves

reconstructions with good accuracy. Also, Agnostic-Reconstruction-Range outperforms

GeneralizedKKNO for the majority of tested setups under the uniform query distribution,

which is noteworthy because our algorithm is unaware of how the queries are issued and

GeneralizedKKNO is fine-tuned for the uniform case.

For the problem of reconstruction from k-NN queries, we plug our support size estimators into

the KPT algorithm to derive an estimation of the length of the Voronoi segments without

relying on the uniform query distribution. Even though in theory this direct application is

valid, due to the fact that for arbitrary query distributions the estimations are less accurate

than in the uniform case, our initial experiments demonstrated that more often than not the

resulting collection of estimated lengths is not a Voronoi diagram and thus KPT returns no

reconstruction. To remedy this problem, we propose a new and efficient approach via forming

a constrained convex optimization problem that discovers the minimum distortion of the

estimated lengths so as to force the lengths to become a valid Voronoi diagram. The formulation
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of KPT appears as a set of constraints in this new algorithm. Due to the minimum distortion

insight, our proposed Agnostic-Reconstruction-KNN always outputs a reconstruction

as opposed to the all-or-nothing approach of KPT. Furthermore, since we don’t explicitly

build the set of all possible solutions, our approach scales to larger k compared with KPT. An

illustration of a reconstruction for a real-world dataset of privacy-sensitive geolocation is shown

in Figure 1.3 . This reconstruction is achieved with half the queries compared to KPT, under

a Gaussian query distribution, and with one-dimensional relative error of 0.08%.



Chapter 2

Adversarial Inputs for

Secure Similarity Approximation

Protocols

In this chapter we introduce and study the effectiveness of adversarial inputs for secure similarity

approximation protocols. We propose concrete perturbation attacks for the well-studied minhash

and cosine sketching techniques, and measure the performance and scalability of the attacks on

both real and synthetic data, while tuning various parameters. Subsequently, we formally define

a server-aided model that mitigates the aforementioned attacks. We also propose new sketching

protocols for this architecture, building upon state-of-the-art sketching techniques. Our design and

implementation aims at speeding up the reconstruction protocols, as they constitute the part of

the overall computation that is executed most frequently—thus having the most severe impact on

overall performance. We evaluate the implementation of the proposed protocols and demonstrate

that this architecture achieves the desired scalability for the reconstruction process, with reasonable

performance.

15
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2.1 Preliminaries

k-Independent Hashing. Space and time-efficient hash functions provide rigorous guarantees

about the distribution of their values, such a family is the family of k-independent hash functions.

Let U be the domain of the inputs to the hash function and let x ∈ U be a specific input. Let

p > |U | be a prime and a0, a1, . . . , ak−1 ∈ Zp be uniformly chosen values over the prime field Zp. A

commonly used construction of a k-independent family is based on polynomials of degree k − 1:

h(x) = (αk−1x
k−1 + . . .+ α1x+ α0) mod p.

2.1.1 Secure Sketching

Exact similarity computation between two data points takes at least linear time with respect to

the size of the data, since we need to parse the data item for every comparison regardless of the

similarity function. A way to overcome this overhead is to settle with an approximation of similarity.

Definition 1. (Def. 10.1 in [121]) A randomized algorithm gives an (ε, δ)-approximation for the

value ν if the output ν′ of the algorithm satisfies, Pr(|ν′ − ν| ≤ εν) ≥ 1− δ.

We are interested in sketching techniques that are well-studied and widely applied in the area

of data-mining and information retrieval [25, 26, 40, 44, 58, 89, 113, 122, 141, 146]. A benefit of

sketching is that the succinct summary of the data, i.e., the sketch, is built once and can be reused in

future pairwise approximations. Thus the super-linear overhead occurs only during the construction

of the sketch which significantly speeds up the total time performance over a series of similarity

approximations. The notion of a sketching protocol is defined as:

Definition 2. (Def. 8 in [64]) A sketching protocol for a 2-argument function f : {0, 1}∗×{0, 1}∗ →

R is:

• A sketching function, S : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ mapping one input and a random string

to a sketch consisting of a (typically) short string.

• A (deterministic) reconstruction function G : {0, 1}∗ × {0, 1}∗ → R, mapping a pair of sketches

to an approximate output.

On inputs α, β ∈ {0, 1}n, the protocol proceeds as follows. First, Alice and Bob locally compute a

sketch σA = S(α, rcmn) and σB = S(β, rcmn) respectively, where rcmn is a common random input.
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Then, the parties exchange sketches, and both output locally f̂ = G(σA, σB). We denote by f̂(α, β)

the randomized function defined as the output of the protocol on inputs α, β. A sketching protocol as

above is said to (ε, δ)-approximate f , if f̂ (ε, δ)-approximates f .

We note that in this chapter we are interested in normalized similarity therefore the output of

the sketching protocol takes values in [0, 1]. Following the terminology of Goldreich for multiparty

computation (Section 7.2 [73]) we capture the above process with the following functionality:

FApprox

(
(α, rcmn), (β, rcmn)

)
→ (f̂(α, β), f̂(α, β)), (2.1)

where the first (resp. second) pair is the input of client CA (resp. client CB) and the output to both

parties is the (ε, δ)-approximation f̂(α, β). We note here that if the clients execute the sketching

computation with different randomness then the output of the reconstruction is meaningless1, thus

the randomness must be the same. We emphasize that α, β are user-provided inputs and their

legitimacy relies on the honesty and intention of the user.

A metric space is a set X accompanied with a distance function d : X × X → R, or simply

distance, that measures the distance between points x, y ∈ X. We are interested in the approximation

of distance functions from which we can derive the similarity. Given the similarity we can compute

the corresponding distance, and vice versa, thus the two terms are used interchangeably in the rest

of the chapter.

2.1.2 Similarity Approximation

Approximating Jaccard Similarity. The Jaccard similarity coefficient (or Jaccard index) mea-

sures the similarity between two sets. Formally, given sets S1, S2 the Jaccard similarity coefficient

and the Jaccard distance dJac are defined as:

J(S1, S2) = |S1 ∩ S2|
|S1 ∪ S2|

, dJac(S1, S2) = 1− J(S1, S2).

Minwise hashing [25, 26], or minhashing, is a technique for approximating the Jaccard index that

has been successfully applied to numerous problems (e.g., [26, 113, 122, 141, 151]). Even though the

analysis of the approximation is based on random permutations [25], in practice we use minhash
1This is equivalent to using different hash functions for the approximation of Jaccard similarity, or using different

random vectors for the approximation of the cosine similarity.
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functions that are defined as hmini (S) = minx∈S(hi(x)), where hi is a k-independent hash function.

Using κ distinct minhash functions one can build a minhash sketch, also called minhash signature,

σ(S) for input set S. Given two minhash sketches we approximate the Jaccard distance d̂Jacc as

follows:
d̂Jacc(S1, S2) = 1

κ
dH(σ(S1), σ(S2)),

σ(S) = (hmin1 (S), . . . , hminκ (S)),
(2.2)

where dH denotes the hamming distance between the two input arguments. The common random

input rcmn from Definition 2 is used to initialize the minhash functions.

Mitzenmacher et al. [122] introduced an approximation technique using odd sketches. An odd

sketch of set S, denoted as odd(S), consists of 1) a bit array T of size u and 2) a hash function

hodd : U → [0, u− 1]. In order to approximate the Jaccard similarity via odd sketches one uses the

values of the minhash sketch σ(S) = (x1,. . . ,xκ) as the input set for the odd sketch. Whenever an

item xi = hmini (S), where i ∈ [1, κ], is hashed to the odd sketch T using function hodd, the bit in

position hodd(xi) of T is flipped. We approximate the Jaccard index as follows [122]:

Ĵodd(S1, S2) = 1 + u

4κ ln
(

1− 2|odd(σ(S1))∆odd(σ(S2))|
u

)
, (2.3)

where |odd(σ(S1))∆odd(σ(S2))| denotes the number of 1s in the sketch resulted after the exclusive-or

operation over the odd sketches, κ denotes the number of independent minhash values, and u denotes

the size of the odd sketch. Jaccard distance is approximated using eq. (2.3), as d̂Jacc(S1, S2) =

1− Ĵodd(S1, S2). The common random input rcmn is used to initialize hodd and hmin1 , . . . , hminκ . Thus

all the parties of the sketching protocol (see Definition 2) generate the same hash functions.

Approximating Cosine Similarity. The work of Charikar [40] introduced the notion of

cosine sketching commonly used [58] to estimate the similarity between two vectors. Formally, let

~v1, ~v2 ∈ Rn the cosine similarity as

C(~v1, ~v2) = ~v1 · ~v2

‖~v1‖2‖~v2‖2
, dcos(~v1, ~v2) = (1− C(~v1, ~v2)) /2, (2.4)

where ‖ · ‖2 is the Euclidean norm of the vector. The resulting similarity C(~v1, ~v2) ranges from −1

to 1 which is interpreted as completely opposite and as exactly the same, respectively. The cosine
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sketching technique is based on sign random projections. Let ~v ∈ Rn be a unit vector2, then the

cosine sketch is a κ-dimensional bit vector σ(~v) = (σ1, . . . , σκ). The components σi for i ∈ [1, κ] and

the symmetric cosine sketch distance [115] are defined as:

σi =


1, if ~wiT · ~v ≥ 0

0, if ~wiT · ~v < 0,
, d̂cos(~v1, ~v2) = dH(σ(~v1), σ(~v2))

κ
, (2.5)

where ~wi ∈ Rn is sampled uniformly at random from the set of n-dimensional unit vectors. The

common random input rcmn is used to initialize the vectors ~wi, for i ∈ [1, κ].

2.1.3 Semi-Homomorphic Cryptosystems

We use the described notation to highlight that messages are encrypted under different cryptosystems.

Paillier Cryptosystem. The Paillier cryptosystem [132] is semantically secure. The term [m]

denotes the encryption of message m under the key pair KP = (PKP , SKP ); from the additive

homomorphism we have that [m1] · [m2] = [m1 +m2].

Goldwasser-Micali Cryptosystem. The Goldwasser - Micali (GM) cryptosystem [77] is

semantically secure. The term |m| denotes the encryption of the bit m under the key pair KGM =

(PKGM , SKGM ); from the homomorphism we have that |m1| · |m2| = |m1 ⊕m2|, where ⊕ is the

XOR operation.

Damgård-Geisler-Krøigaard Cryptosystem. The

Damgård-Geisler-Krøigaard (DGK) cryptosystem [47, 48] is semantically secure. The DGK cryp-

tosystem is considered to be much more efficient [21, 62, 107] than Paillier due to its small

plaintext space. The term 〈m〉 denotes the encryption of message m ∈ Zu under the key pair

KDGK = (PKDGK , SKDGK). DGK is additively homomorphic; moreover, it embeds reductions

modulo u to its homomorphic operations, therefore 〈m1〉 · 〈m2〉 = 〈(m1 +m2) mod u〉.

2.2 Threat Model

In this chapter we consider a new threat model where the adversary can maliciously perturb only her

input to the sketching algorithm which is executed offline and locally, a behavior that is challenging to
2In case the input vector is not unit we convert it by normalizing.
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detect. We form this new threat model so as to formally capture and study an algorithmic blindspot

that permits the proposed family of attacks. At a high level, this new adversary does not interfere with

the computation of the sketching, the reconstruction, and the communication, i.e., adversary follows

the prescribed protocols after the perturbation of the input data. Thus, our threat model is not the

honest-but-curious. Our adversary is not trying to learn the input of the other party, the goal is to

make his/her own data look different from what it really is with respect to the approximation. Con-

sider the following class of protocols that compute the functionality FApprox from the previous Section.

Class of Protocols for FApprox

• Step 1: Generate and distribute the common random input rcmn to all the

parties.

• Step 2: Each party inputs her data and rcmn so as to locally compute the

sketching function S.

• Step 3: Parties run an MPC protocol that outputs the result of the reconstruction

function G.

Attack Surface of FApprox. We assume that the adversary participates in the above protocol.

We distinguish two possible offline attacks on this class of protocols, the attacker can: 1) deviate from

the correct execution of the locally computed sketching, and/or 2) execute the sketching correctly,

but corrupt its output—and therefore the input to the reconstruction function G. Both attacks can be

detected using verifiable computation [69, 137], i.e., provide proof of correctness for the computation

and the output of S. Addressing such mitigations is outside the scope of our work and is left as

future work. We focus on the remaining attack surface: since cryptographic techniques exist to detect

the above attacks, the last resort for the adversary is to perturb the input to the sketching function.

Perturbing the Input to S. To capture the remaining attack surface, in the new threat model

we extend the above class of protocols by allowing the adversary to locally execute a function right

before Step 2. Specifically, the adversary executes a randomized function Perturb that takes as an

input the data point α and the common random input rcmn outputted by Step 1. Function Perturb

runs locally, without any interaction, and outputs a value α+ that will serve as the new input to the

sketching function S. We emphasize that after the execution of Perturb the adversary behaves in

a semi-honest fashion, i.e., she honestly follows the sketching function and honestly executes the
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MPC protocol. Thus, in our threat model the only malicious activity of the adversary is the local

execution of Perturb.

2.3 Perturbation Attack

In this Section we define perturbation attacks on the class of protocols defined in Section 2.2. A

successful attack on secure sketching protocols for a distance function yields a perturbed input such

that although the pair (original input, perturbed input) is close with respect to the corresponding

distance function, the approximation instantiation appears vastly distant. Thus, if one compares the

sketch of any data point that is close to the original input, to the sketch of the perturbed input the

distance is heavily mis-approximated.

To the best of our knowledge our work is the first that concretely demonstrates the pitfalls of using

common random input rcmn for secure sketching protocols. In this analysis we focus on distance

functions, analogous definitions can be formed for other functions. Note that Definition 2 deals with

two inputs α and β from distinct users, whereas the following definition deals with the input of a

single user and it perturbed version, i.e., α and α+.

Definition 3. Let FApprox be the functionality described in Equation (2.1) for a sketching approach

of a distance function d. Let Perturb(·) be the function that adversary A can apply according to the

threat model of Section 2.2. Let α ∈ X be a point of the metric space (X, d) with distance function d.

Let rcmn be the common random input to the sketching function S. Then we say that Perturb(·) is a

successful (ν, ν′)-perturbation attack for sketching function S if for any α and rcmn, Perturb(α, rcmn)

outputs a point α+ such that:

1. The true distance between α, α+ is ν, d(α, α+) = ν,

2. The approximate distance between α, α+ is ν′ according to (S,G) with input rcmn, d̂(S,G)(α, α+) =

ν′,

3. The inequality |ν′ − ν| > εν holds.

where ε is the parameter of the (ε, δ) approximation guarantees of d̂(S,G).

One might suggest that it is trivial to mount a successful perturbation attack by generating

random data and call it α+. This naive approach would successfully increase the approximate distance
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ν′ (condition 2), but it would heavily distort the original input and as a result the true distance ν

would increase as well, i.e., doesn’t satisfy the inequality of condition 3. Intuitively, for the case

where ν′ > (1 + ε)ν, condition 3 guarantees that the perturbed data “appears” more distant from

the original than it truly is even when we consider the valid approximation error ε. For the case

where ν′ < (1− ε)ν, condition 3 guarantees that the perturbed data “appears” more similar from the

original than it truly is. In our analysis we focus on the case ν′ > (1 + ε)ν, thus the adversary wants

to hide the high similarity by minimally perturbing the input. Due to the triangle inequality, if α

appears distant to α+ w.r.t. the approximation, then any data point β that is close to α will also

appear distant to α+ w.r.t. the approximation. We leave as an open problem the case where the

adversary perturbs the data so as to make highly dissimilar items look similar.

d̂Jac ≥ 0.9 d̂Jac = 1
s = 500 s = 1, 000 s = 10, 000 s = 500 s = 1, 000 s = 10, 000

κ dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time
10 0.01 1.00 0.01 0.008 1.00 0.03 0.0008 1.00 0.37 0.01 0.98 0.10 0.009 0.99 0.22 0.0009 0.99 2.52
50 0.08 1.00 0.07 0.043 1.00 0.15 0.004 1.00 1.47 0.09 0.95 1.32 0.047 0.96 3.04 0.005 0.98 38.9
100 0.15 1.00 0.14 0.082 1.00 0.30 0.008 1.00 3.00 0.16 0.89 4.07 0.090 0.92 9.23 0.009 0.96 120.1
200 0.27 1.00 0.34 0.159 1.00 0.59 0.018 1.00 5.25 0.28 0.82 12.60 0.166 0.86 27.6 0.019 0.94 380.1

Table 2.1: Evaluation of the perturbation attack on minhash sketches over synthetic data. The term
κ denotes the size of the sketch, s is the size of the set under attack, fSuccess is the frequency of success
of the probabilistic Algorithm 1. The data points shown are the average over 5,000 instantiations.
Time is measured in seconds.

On using Commitment Schemes. It appears that the perturbation attack can be avoided if

we deploy commitment schemes [72] for the data before they receive rcmn. Thus, any perturbation

will be caught due to the binding property of the construction. This mitigation indeed works only if

all data from all the users is available during the initialization of the system and no sketch is created

thereafter. In all practical scenarios, however, the system is more dynamic—users generate additional

data and join/leave at arbitrary times. If a user creates new data after the commitment phase then

this new input can be perturbed since the randomness value is already known and the new data is not

committed. One might argue that we can redistribute new randomness to all the clients periodically.

This will defend against these attacks but it implies that every party must re-compute the sketches

from scratch whenever new randomness is issued, which would go against the very reason we used

sketching techniques in the first place—to avoid processing the high-dimensional data points multiple

times.

On the Level of Distortion. Many of the occasions where secure similarity approximation

protocols are applied typically employ multiple layers of forensic investigation mechanisms or sanity
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checks. A legal document comprised of random words or a genomic expression with random data

are easy to spot. Therefore, in order to minimize the likelihood of getting detected (e.g., by another

mechanism in place or during an audit), the attacker is incentivized to minimize the amount of

changes to the input data—making the changes less incriminating and harder to detect. Extensive

transformations (e.g., substituting large amounts of data with random noise) are likely recorded in

system logs, and can be incriminating as they demonstrate malicious intent. Another illustration

of this intent comes from the case of adversarial inputs on facial recognition - wearing a mask that

covers the entire face clearly shows intent of avoiding facial recognition whereas an attacker that

is wearing a set of “adversarially” decorated 3D-printed glasses [144] can fool such a system into

matching the attacker to any maliciously-chosen individual.

Objectives of Perturbation Attacks. Note that dJac and dcos as defined in Section 2.1.2

take values from the range [0, 1]. Ideally, a successful (ν, ν′)-perturbation attack 1) maximizes the

approximate distance d̂ so as α and α+ appear as distant as possible, e.g., d̂Jac(α, α+) ≈ 1, while 2)

minimizes the true distance between α and α+, e.g., dJac(α, α+) ≈ 0. We present two such attacks

that utilize different tools, namely a randomized algorithm and constrained optimization formulation,

and provide different guarantees. We slightly abuse notation and indicate by d̂Jac and d̂cos the

approximate distance that is returned by a sketching protocol (S,G).

2.3.1 Attacking Minhash Sketches

Minhash sketches are used for approximating the Jaccard distance between sets. We propose a

perturbation attack on minhash sketches guaranteed to perform the minimum number of changes to

the original input set, thus minimizing d(α, α+). The perturbation that we apply is in the form of

adding new elements to the set.

Intuition. The adversary takes as input a set S and the common random input rcmn. The

goal is to augment S with the smallest number of new elements in order to create S+, such that

d̂Jac(S, S+) = 1. Recall that the approximate Jaccard distance between two sets is maximized when

their κ-dimensional sketches σ() differ in all dimensions, i.e., quantity d̂Jac in equation (2.2) is equal

to 1. Thus, the adversary is looking for at most3 κ new elements such that every dimension of sketch

σ(S+) is different from σ(S). We denote by t′ the number of samples drawn from the metric space.

Theorem 1. Let S be the set of s values from the range [0,m] that is given as an input to Algorithm
3There is a case where the same new element of S+ can contribute to more than one locations of the sketch σ(S+).
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Algorithm 1: Attack Perturb on Minhash Sketches
Input: Original set S, common randomness rcmn, sketch size κ, attempts t′ to augment the original set
Output: S+ s.t. d̂Jac(S, S+) = 1, dJac(S, S+) = κ

s+κ
1 Use rcmn to sample κ hash functions (h1, . . . , hκ);
2 σ(S)←

(
minx∈S(h1(x)), . . . ,minx∈S(hκ(x))

)
;

3 S+ ← S;
4 for i = 1 to t′ do
5 Sample an element zi /∈ S uniformly at random;
6 for j = 1 to κ do
7 if hj(zi) < minx∈S(hj(x)) then
8 S+ ← S+ ∪ {zi};
9 end

10 end
11 end

1. Let κ be the number of dimensions of the minhash sketch according to (2.2). Then a quasilinear

number t′ of samples are enough for Algorithm 1 to mount a successful (1, κ
s+κ )-perturbation attack

for minhash sketching with probability at least

Pr
(
{Succesful Attack}|(t′ ≥ 2c(s+ 1) ln3(s))

)
≥ 1− 6κc1/2

sc
,

for any constant c > 0 assuming the codomain of the hash function is Ω(s log4(s)).

Proof. If we augment set S with an element zi picked uniformly at random from the set [m] of

available elements, we get Pr
(
min{π(j)(S ∪ {z})} = π(j)(z)

)
= 1/(|S|+ 1) = 1/(s+ 1) where j ∈ [k]

and i ∈ [t]. Therefore we sample t elements zi in total and we test if the sample has smaller

value than the current minimum, under the j-th permutation π(j). Let Z(j)
i be a random variable

where i ∈ [t] and j ∈ [k]. Random variable Z(j)
i takes value 1 if for the i-th sample zi /∈ S holds

π(j)(zi) < min{π(j)(S)} and zero otherwise. The probability that Z(j)
i takes value 1 is:

Pr(Z(j)
i = 1) = Pr(min{π(j)(S ∪ {zi})} = π(j)(zi)

)
= 1
s+ 1

Let t be the number of distinct samples that we draw, then by Z(j) we denote the random variable

such that Z(j) =
∑t
i=1 Z

(j)
i for the chosen t. Notice that since π(j) is a permutation if t samples

from [m] are distinct, then their corresponding outputs with respect to the permutation function

are distinct; this is a part that we revisit in the proof. The probability that Z(j) = 0 means that

none of the sampled elements is smaller than the current minimum of S according to π(j). Given

this probability we can compute the probability that at least one of the sampled elements elements is
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smaller than min{π(j)(S)}.

We use the following expression of the Chernoff bound [121]:

Pr(Y ≤ (1− δ)µ) ≤ e−µδ
2/2. (2.6)

Let t = 2c(s+ 1) ln2(s) be the number of distinct samples that we draw and define δ as δ = 1√
ln(s)

.

Then the mean of Z(j) is E[Z(j)] = 2c(s+ 1) ln2(s) 1
(s+1) = 2c ln2(s) and from (2.6) we have:

Pr
(
Z(j) ≤ (1− δ)µ

)
= Pr

(
Z(j) ≤ (1− 1√

ln(s)
)2c ln2(s)

)

= Pr
(
Z(j) ≤

√
ln(s)− 1√

ln(s)
2c
√

ln(s)
√

ln3(s)
)

= Pr(Z(j) ≤ 2c(
√

ln(s)− 1) ln3/2(s))

≤ e
−(2c ln2(s))( 1√

ln(s)
)2 1

2 = e−c ln(s) = 1
sc
.

Also notice that for s > 3 we have 2c(
√

ln(s)−1) ln3/2(s) > 0, therefore Pr(Z(j) = 0) ≤ Pr(Z(j) ≤

2c(
√

ln(s)− 1) ln3/2(s)). Thus, we have Pr(Z(j) ≥ 1) = 1− Pr(Z(j) = 0) ≥ 1− 1
sc . The above event

is based on the premise that we have t = 2c(s + 1) ln2(s) distinct elements zi that are not in set

S, which give t distinct outputs with respect to π(j). For efficiency reasons though, we use a hash

function h(j) instead of a permutation π(j), thus the elements zi for i ∈ [t] do not necessarily give

distinct outputs with respect to h(j).

Formally, let h(j) : [m]→ R be a hash function with domain [m] and range R for which |R| = n.

The attacker has to choose an input xi from [m] and as a second step compute h(j)(xi) ∈ R in order

to get an element from R.

This brings up the question, how many elements do we need to sample from [m] in order to get

t = 2c(s + 1) ln2(s) distinct elements from R that do not belong to set S? We answer the above

question using a balls-and-bins argument on a given hash function h(j). The cardinality of R, that is

|R| = n, represents the number of available bins. The number of samples that we draw, that is t′,

represents the number of balls that we throw. We define as B(j)
S the set of bins that contain a ball

of the set S with respect to h(j). Let t′ ≥ t be the number of balls that we throw, we compute the

probability that t out of the total t′ balls land in distinct bins and those bins do not belong to B(j)
S .

Notice that the cardinality of B(j)
S can be at most s, therefore we compute the probability of
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landing t balls in distinct bins among the available n− s bins. Let X(j)
q be the random variable that

takes value 1 if the q-th ball lands in a bin that is empty where q ∈ [t′]; takes value 0 otherwise. Then

the probability that X(j)
q takes value 1 is Pr(X(j)

q = 1) = n−s−(q−1)
n ≥ n−s−(t′−1)

n . For simplicity we

approximate Pr(X(j)
q = 1) with the value n−s−(t′−1)

n which is a tight lower bound on the probability

that the q-th ball lands in an empty bin.

Let X(j) be the random variable that counts how many balls landed in an empty bin, then

X(j) =
∑t′

q=1X
(j)
q . Let t′ take the value t′ = t ln(s), then we have X(j) =

∑t ln(s)
q=1 X

(j)
q and its

expectation is:

E[X(j)] = E[
t ln(s)∑
q=1

X(j)
q ] =

t ln(s)∑
q=1

E[X(j)
q ]

= t ln(s)n− s− t ln(s)
n

= t ln(s)− st ln(s)
n

− t2 ln2(s)
n

.

Random variables X(j)
q for q ∈ [t′] are clearly dependent, therefore we can not use the Chernoff

bound of equation (2.6). We continue the analysis using the Poisson approximation technique [121]

so we can work with independent random variables instead. Thus we define random variable

Y
(j)
q with parameter n−s−(t′−1)

n and form their sum as Y (j) =
∑t′

q=1 Y
(j)
q that has expectation

µ = t ln(s)− st ln(s)
n − t2 ln2(s)

n . Given the sum of t′ Poisson random variables Y (j), we are interested

in bounding the probability that more than t out of the t′ have value 1. In case t < µ we can use the

following Chernoff bound for the sum of independent Poisson random variables Y (j):

Pr(Y (j) ≤ t) ≤ e−µ(eµ)t
tt

If inequality t′ < µ holds then, the following lower bound on n should also hold:

t < µ⇒ t < t ln(s)− st ln(s)
n

− t2 ln2(s)
n

⇒ n >
s ln(s) + t ln2(s)

ln(s)− 1 > s+ t ln(s). (2.7)

Thus assumption 1 is (A1) n > s+ t ln(s). Using the above Chernoff bounds we have:

Pr(Y (j) ≤ t) ≤ e−µ(eµ)t
tt

= e−t ln(s)+ ts ln(s)
n + t2 ln2(s)

n et(µ
t

)t
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= s−ts
ts
n s

t2 ln(s)
n s2c(s+1) ln(s)(µ

t
)t

= s−ts
ts
n s

t2 ln(s)
n s2c(s+1) ln(s)(t ln(s)− st ln(s)

n
− t2 ln2(s)

n
)tt−t

≤ s−ts tsn s
t2 ln(s)
n s2c(s+1) ln(s)(ln(s))t

= (s
s+t ln(s)

n + 2c(s+1) ln(s)
t −1 ln(s))t.

We further assume that n > (s+ t ln(s)) ln(s) which is stronger than (A1), so we have

(A2) n > (s+ t ln(s)) ln(s)⇒ n > (s ln(s) + 2c(s+ 1) ln4(s))

. We also use the fact that t = 2c(s+ 1) ln2(s) in order to get the following expression:

≤ (s
1

ln(n) + 1
ln(s)−1 ln(s))t = (s

1
ln(n) + 1

ln(s)−1slogs(ln(s)))t

= (s
1

ln(n) + 1
ln(s)−1s

ln(ln(s))
ln(s) )t = (s

2+ln(ln(s))
ln(n) −1)t

= (s
2+ln(ln(s))

ln(n) 2c(s+1) ln2(s)−2c(s+1) ln2(s))

= (s(2+ln(ln(s)))2c(s+1) ln(s)−2c(s+1) ln2(s))

= (s−(2+ln(ln(s)))2c(s+1) ln(s)+2c(s+1) ln2(s))−1

= 1

s2c(s+1) ln(s)
(

ln(s)−(2+ln(ln(s)))
) ≤ 1

s4c

, where we assumed that (s+ 1) ln(s)
(

ln(s)− (2 + ln(ln(s)))
)
> 2 which is true for s > 24.

Switching from the poisson approximation to the exact case (Corollary 5.9)

Pr(Y (j) ≤ t) ≤ 1
s4c ⇒

Pr(X(j) ≤ t) ≤ e
√
m

1
s4c =

e
√

2c(s+ 1) ln3(s)
s4c

<
e2c1/2s1/2 ln3/2(s)

s4c <
6c1/2
s2c .

Thus we have that
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Pr(X(j) = 0) ≤ Pr(X(j) ≤ t)⇒

Pr(X(j) ≥ 1) = 1− Pr(X(j) = 0) ≥ 1− Pr(X(j) ≤ t) = 1− 6c1/2
s2c

, where we assume that t ≥ 0.

We define as Q the random variable that takes value 1 if the output set S+ of the algorithm

builds a signature σ(S+) that is dissimilar to the signature σ(S) of the input set and takes value 0

otherwise.

Pr(Q = 1) ≥ Pr(Q = 1|
⋂

1≤j≤κ
X(j) ≥ 1) Pr(

⋂
1≤j≤κ

X(j) ≥ 1)

= Pr(Q = 1|
⋂

1≤j≤κ
X(j) ≥ 1)(1− Pr(

⋃
1≤j≤κ

X(j) ≥ 1))

, using the union bound we get:

≥ Pr(Q = 1|
⋂

1≤j≤κ
X(j) ≥ 1)(1−

κ∑
j=1

Pr(X(j) ≥ 1))

≥ Pr(Q = 1|
⋂

1≤j≤κ
X(j) ≥ 1)(1− κ · 6c1/2

s2c ) = 1 · (1− 6κc1/2
s2c )

= 1− 6κc1/2
s2c .

Attacking Synthetic Data. We demonstrate the frequency of success and the efficiency of the

perturbation attack on synthetic data. We tested setups that range across all different variables

of the problem: 1) dimension of the sketch κ ∈ {10, 50, 100, 200}, 2) size of the set under attack

s ∈ {500, 1000, 10000}, 3) desired mis-approximation d̂Jac() = 1 or d̂Jac() ≥ 0.9. Works such as [115]

deploy a sketch of 64 bits to capture similarity of a collection of 8 billion webpages. Therefore, we

think that sketches with size in the 10-200 range are indicative of what might be used in practice.

The attack is implemented in C++ where the elements of the original set are randomly generated

numbers from a universe of size 2 · 105. We used 4-wise independent hash functions, and run 5,000

instantiations for each of the above setups. As observed in Table 2.1, when the desired approximation
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is d̂Jac() ≥ 0.9, the attack succeeds in all instantiations, and its execution time is less than 1 sec in

most of the parameterizations. In this scenario it is enough for the adversary to discover smaller

minhashes for 90% of the κ entries of the minhash sketch. Thus, if there are some small minhash

values in the original sketch, the adversary can ignore those and “break” the rest of the sketch,

whereas in the case of d̂Jac = 1 the adversary is forced to continue searching so as to “break” all κ

minhashes. Overall, the frequency of success is extremely high, but there are a few cases for which

the probabilistic guarantees of Theorem 1 are not met. One explanation is that the analysis was

performed assuming that hash functions are truly random, whereas in the experiment we use 4-wise

independent hashing. Table 2.1 clearly demonstrates that the probabilistic perturbation attack on

minhash sketches succeeds in the vast majority of the instantiations and the total time ranges from

less than a second to a couple of minutes even when dealing with sets that contain thousands of

elements.

Attacking Real Data. To further verify the effectiveness of the attack we tested in real data

using the bag of words dataset of Enron emails4 which according to EDRM [5] has served for many

years as an industry-standard dataset for e-discovery. We highlight that the findings of the attack on

the synthetic data are expected to be similar to those on any real data, regardless of the context

of the document, e.g., email, legal document. This is because the hash functions used are sampled

uniformly at random and are independent of the input. In this real dataset every email is transformed

into a multiset of words where the stop-words are removed. In this context Jaccard distance captures

the similarity between any pair of emails. In our experiment we use the standard Rabin-Karp rolling

hash function modulo n = 105, 943. For simplicity we choose the size of the minhash sketch to be

κ = 5 and the value of c to be 2 (see Theorem 1). Without loss of generality, for the purposes of

this evaluation we focus on email with id-549 (denoted as set S549), with size s = 1181 words, 492 of

which are unique.

The average time to mount 100 instantiations of the attack was 2.2 seconds. Specifically, 83 out of

100 instantiations mounted successfully a (0.004, 1)-perturbation attack and terminated in less than 1

second. The remaining 17 instantiations took between 3 to 22 seconds due to the fact that at least one

of the minhash values of the original sketch was already too small (< 10). Figure 1.1 illustrates one

of the successful attacks where by adding the 5 words {pursued, glide, ralston, alluring, sensor} in the

current email, i.e., create S+
549, the approximate distance becomes 1, while the real distance is 0.004.

4https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Thus, any future comparison between S+
549 and a similar email will result in mis-approximation.

2.3.2 Attacking Cosine Sketches

Cosine sketching is used for approximating the cosine distance between vectors. We propose a

perturbation attack on cosine sketching guaranteed to output d̂cos(·) = 1, while the exact distance

between the perturbed and the original vectors depends on the solution of the formulated constrained

non-convex optimization problem. Our perturbation is in the form of adding a new vector ~x to the

original vector ~v.

Algorithm 2: Attack Perturb on Cosine Sketch
Input: ~v ∈ Rn, rcmn, κ
Output: ν, ~v+ ∈ Rn s.t. d̂cos(~v, ~v+) = 1, dcos(~v, ~v+) = ν

1 Use rcmn to sample vectors ( ~w1, . . . , ~wκ) from the unit (n− 1)-sphere
2 Solve the following optimization problem

~x = argmax
~x∈Rn

~v · (~v + ~x)
||~v||2||~v + ~x||2

subject to sgn( ~wiT~v) · ( ~wiT (~v + ~x)) ≤ 0, i = 1, . . . , κ.

ν = dcos(~v,~v + ~x)
3 return ν, ~v+ = ~v + ~x

Intuition. The adversary takes as input the original vector ~v ∈ Rn and rcmn. The goal is to

add a new vector ~x to the original ~v in order to create ~v+ such that d̂cos(~v, ~v+) = 1. Recall that the

approximate cosine distance between two vectors is maximized when their κ-dimensional sketches

σ() differ in all dimensions. Thus the addition of vector ~x to ~v must change the sign of the κ inner

products with respect to Equation (2.5) and consequently flip the bits of the sketch σ( ~v+). Overall,

the adversary wants to maximize the approximate cosine distance, handled by the constraints of the

optimization problem, and minimize the exact cosine distance, handled by the objective function of

the optimization.

In Algorithm 2 the function sgn(x) has output −1 in case x < 0 and output +1 in case x ≥ 0.

The unit (n− 1)-sphere is defined as the set of points {u ∈ Rn : ||u|| = 1}. Notice that minimizing

the exact cosine distance is equivalent to maximizing the cosine similarity as it is described in

Equation (2.4), so our problem is formed as a maximization of the cosine similarity C(~v,~v + ~x).

Algorithm 2 requires to solve a non-convex, non-linear, high-dimensional constrained optimization

problem. Furthermore the objective function presents discontinuity at point ~x = −~v, see Figure 2.1.
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Figure 2.1: An illustration of the objective function of the maximization problem of Algorithm 2
where n = 2 and ~v = (20, 10). The X-,Y -axis denote the x1 and x2 dimension of vector to be added,
~x.

Since closed form solutions are generally challenging for this setup, we approximate the solution of the

above problem using iterative algorithms from standard optimization toolboxes. Figure 2.1 visualizes

the objective function for a toy example where v ∈ R2. Due to the lack of formal guarantees about

the quality of the approximation, we present the effectiveness of the attack in a form of a remark.

Remark 1. Let ~v ∈ Rn be the vector that is given as an input to Algorithm 2. Let also ~wi ∈ Rn be

a vector sampled from the unit (n− 1)-sphere using rcmn according to Algorithm 2, where i = [1, κ].

Then, Algorithm 2 is a successful (ν, 1)-perturbation attack for cosine sketching, where ν is the

achieved similarity of the perturbed input that is returned by the algorithm.

Attacking Synthetic Data. We evaluated the performance of the attack on synthetic data

using the interior point algorithm of MATLAB [9] where the input vector ~v is an n-dimensional

vector where the value of each element is chosen uniformly at random from [0, 105]. We tested setups

that range across the different variables of the problem: 1) the number of dimensions of the vector

under attack n ∈ {500, 1000, 5000}, and 2) the size of the sketch under attack κ ∈ {10, 50, 100, 200}.

To generate vectors ~wi ∈ Rn we sampled vectors from the (n− 1)-sphere of unit radius centered at

the origin. We run the above setups with 10 different common randomness inputs rcmn and present

the mean. As one may observe in Table 2.2, the approximate distance is always d̂cos = 1 which

implies that all the returned solutions were part of the feasible region of the optimization problem.

The value of the exact cosine distance dcos between the original and the perturbed data depends

on the returned solution of the optimization problem. Note that different solution methods can

potentially result in even lower dcos values. Depending on the optimization toolbox and the number
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of dimensions the time performance may vary, in our case all the executions terminated within a

couple of minutes.

Table 2.2: Evaluation of the perturbation attack on cosine sketches over synthetic data. The data
points show the average value over 10 instantiations.

n = 500 n = 1, 000 n = 5, 000
κ dcos d̂cos dcos d̂cos dcos d̂cos

10 0.005 1 0.002 1 0.0005 1
50 0.02 1 0.01 1 0.002 1
100 0.05 1 0.02 1 0.005 1
200 0.11 1 0.06 1 0.01 1

Attacking Real Data. We demonstrate the perturbation attack of Algorithm 2 on a real

dataset5 of human gene-expression levels that can be found in the work of Notteramn et al. [131]. The

authors perform a clustering analysis on the vectors of gene-expression levels so as to capture similarity

patterns between healthy patients, patients with adenoma and patients with adenocarcinoma. It is

rather common to perform similarity-based analysis on genomic data with the goal of understanding

and diagnosing diseases at the molecular level. We highlight that the findings of the attack on

the synthetic are expected to be similar to those on any real data. This is because the generative

model of the input vector ~v does not affect the sign of the inner product with a random vector ~w.

We approximate the solution of the optimization problem using the interior point algorithm from

MATLAB [9]. We use a cosine sketch of κ = 100 dimensions and we repeat the experiment for

10 different initializations of the vectors ( ~w1, . . . , ~wκ). The input vector is denoted as ~v and it has

n = 7, 086 dimensions each of which is a gene-expression measured with a DNA microarray. We report

that all of the instantiations successfully satisfied the optimization constraints and thus resulted in

d̂cos(~v, ~v+) = 1. The average ν value was 0.0033 with a maximum value of 0.0039. Therefore, on

average we mounted a successful (0.0033, 1)-perturbation attack. One of the recorded instantiations

is illustrated in Figure 2.2 where it shows that if the adversary perturbs ~v to form ~v+ then according

to the cosine sketching initialization we have d̂cos(~v, ~v+) = 1, even though their exact cosine distance

is dcos(~v, ~v+) = 0.0036.
5http://genomics-pubs.princeton.edu/oncology/
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Figure 2.2: Illustration of the perturbation attack on a gene-expression of an adenoma patient. The
proposed attack on vector ~v outputs the perturbed ~v+ with approximate cosine distance 1 even
though the exact distance is 0.0036.

2.4 Server-Aided Approximation

In this Section we reframe the architecture of secure sketching protocols so that we can 1) still use

the well-studied sketching techniques based on the common random input rcmn, and 2) eliminate

the possibility of an offline perturbation attack. In our proposed server-aided design we introduce a

new semi-honest entity, i.e., the server S, that has exclusive access to the common random input

rcmn and assists in the sketching protocols. Compared to previous approaches, the main difference of

our design is that a client does not have direct access to the common random input. The sketching

function that was previously a local computation (as described in Section 2.2), is replaced by a

two-party protocol denoted as Sketching between the server and the client. We capture the new

functionality as follows:

Functionality FS-approx

• Input: Party CA provides vA, party CB provides vB , party S provides rcmn.

• Output: All three parties receive d̂(vA, vB).

Notice that in case client CA (similarly for client CB) observes the values of σA, then it is possible

for the CA to infer rcmn, which is an attack that defeats the purpose of the server-aided model. For

example, in the case where rcmn is used to sample k-independent hash functions then the set of

values of σA consists of the evaluations of the above hash functions. An adversary that observes the



34

output of the polynomial-based hash function can easily infer the coefficients of the hash function by

solving a system of equations [87]. In our design, protocol Sketching outputs the encrypted sketch σA

to CA so as to avoid the above type of attacks.

The Real Model. Let Π be a three-party protocol computing the functionality FS-approx.

For ease of exposition we consider the execution of Π in the presence of an adversary A as being

coordinated by a nonuniform environment Z = {Zλ}, much like [32, 92]. In the beginning Z gives

input (1λ, vA) to CA, input (1λ, vB) to CB , input (1λ, rcmn) to S, and gives z and X to A , where z

denotes an auxiliary input and X ∈ {CA, CB , S} is the corrupted party. At this point the parties

interact with each honest party behaving as instructed by Π. At the end of the protocol, adversary

A gives to Z an output which is an arbitrary function of A ’s view. Additionally, Z gets the output

of the honest parties. Finally, environment Z outputs a bit. We denote as REALΠ,A,Z(λ) the random

variable that represents the value of this bit.

The Ideal Model. In this model there is a trusted party that computes FS-approx on behalf

of the parties. Similar to the real model, environment Z gives inputs (1λ, vA) and (1λ, vB) to

parties CA and CB , respectively. It gives input (1λ, rcmn) to S, and also gives z and X to A′ where

X ∈ {CA, CB , S} indicates the corrupted party. All the parties send their input to the trusted party.

The trusted party computes FS-approx and sends d̂(vA, vB) to all the parties. In the next step A′

outputs to Z an arbitrary function of the view of A′. The honest parties also give their output to Z.

As a final step Z outputs a bit. We denote as IDEALΠ,A′,Z(λ) the random variable that represents

the value of this bit.

Definition 4. Let Π be a three-party protocol for computing FS-approx functionality. We say that Π

securely computes FS-approx in the presence of semi-honest adversaries corrupting one party if for

any PPT semi-honest adversary A there exists a PPT semi-honest adversary A′ such that, for every

polynomial size circuit family Z = {Zλ} corrupting at most one party, the following is negligible:

|Pr[REALΠ,A,Z(λ) = 1]− Pr[IDEALΠ,A′,Z(λ) = 1]|.

Notice that if the adversary were to corrupt both a client and the server then she would have

access to the common random input, and thus become capable of mounting a perturbation attack.

We note here that the server-aided approach has been successfully deployed [20, 97, 98] in various
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other problems. The proposed perturbation attacks of the previous Section are based on the fact that

all clients have offline and direct access to the common random input rcmn. Under our server-aided

design an adversary can only attempt an online attack, hoping to infer the rcmn from the value of

d̂(·), by performing a series of Sketching and Reconstruct executions. Using rate-limiting techniques

(e.g., [98]) one can mitigate such an online attack. This scenario, however, is beyond the scope of

this thesis.

Table 2.3: An overview of the protocols. For brevity we assume that the public keys of the server
PK

(S)
P , PK

(S)
GM and the client PK(C)

P , PK
(C)
GM , PK

(C)
DGK are publicly available and thus not passed as

an input to the protocols.

Protocol Client (C) Input Server (S) Input Client (C) Output Server (S) Output Summary
PrvComparison∗ a b - [t] [t=1] if a < b, [0] otherwise
EncComparison∗ SK

(C)
P , SK

(C)
GM , l [a], [b], l t - t=1 if a < b, 0 otherwise

EncComparison2 SK
(C)
P , SK

(C)
GM , l [a], [b], l - |t| |t = 1| if a < b, |0| otherwise

ChangePartyEnc∗ SK
(C)
GM SK

(S)
GM , |b| |b| - Encrypts |b| under SK(S)

GM

kIndHashing SK
(C)
P , x, k, p {ai}k−1

i=0 , p - [h] [(
∑k−1

i=0 aix
i) mod p]

EncHashing SK
(C)
P , k, p [x], {ai}k−1

i=0 , p - [h] [(
∑k−1

i=0 aix
i) mod p]

FindMin SK
(C)
GM , SK

(C)
P , l {[yi]}ni=1, l - [min] [mini yi]

UpdateOddSketch SK
(C)
GM , SK

(C)
P , SK

(C)
DGK , u, k [x], {ai}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|) - (|skt′0|, . . . , |skt′u−1|) Update odd sketch with x

SketchingCosine ~v, SK
(C)
P , SK

(C)
GM {~wi}κi=1, SK

(S)
GM (|σ1|, . . . , |σκ|) - Encr. cosine signature

SketchingOdd S, k, u, SK
(C)
GM , SK

(C)
P , SK

(C)
DGK {hmini }κi=1, hodd, p, SK

(S)
P , SK

(S)
GM (|σ1|, . . . , |σκ|) - Encr. odd-minhash signature

Composition of Building Blocks. We define separate building blocks that can be combined

and the proof of security for the overall construction can be derived using modular composition [31].

The model is called hybrid model with ideal access to functions f1, . . . , fm or simply (f1, . . . , fm)-

hybrid model . In the real life experiment we assume the existence of an incorruptible trusted party T

for evaluating f1, . . . , fm; all parties hand their input to T and they receive the corresponding output.

As a next step, the ideal evaluation of f at each step is replaced with the invocation of a protocol—we

refer the reader to [31] for a detailed exposition. In case the function returns an encrypted output,

a party passes a public key as an input and we assume that the necessary encryption algorithm is

hardwired to the corresponding function. Table 2.3 summarizes all the two-party protocols, which in

our case are executed between the server and the client. Using the above building blocks we construct

a secure two-party analogue for minhashing (via odd sketches) and cosine skething. Protocols that

are marked with ∗ in Table 2.3 are simple modification of already proposed protocols [15, 24, 153].

We note that we follow the protocol and encryption notation established by the work of Bost et

al. [24].
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Protocol kIndHash:
Client: SK(C)

P , x, k, p Server: {ai}k−1
i=0 , p, l

(1) ∀i = 1, . . . , k − 1, [xi] := E(PK(C)
P , xi) [x],...,[xk−1]−−−−−−−−→ (2) Pick random r ∈ (0, 2l+λ) ∩ Z, [r] := E(PK(C)

P , r)
(4) h′ = D(SK(C)

P , [h′]) [h′]←−− (3) [h′] := [r] · [a0] ·
∏k−1
i=1 [xi]ai mod N2

(5) d = h′ mod p (6) c = r mod p

PrvComparison
(
d,c
)

←−−−−−−−−−−→ (7) Receive [t] such that t = 1 if d < c

(8) [d] := E(PK(C)
P , d) [d]−→ (9) Output [h] = [d] · ([c])−1 · [t]p mod N2

Protocol UpdateOddSketch:
Client: SK(C)

GM , SK
(C)
P , SK

(C)
DGK , u, k Server: [x], {ai}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|)
EncHashing

(
(SK(C)

P
,k),([x],{ai}k−1

i=0 ,u)
)

←−−−−−−−−−−−−−−−−−−−−−−−→ (1) Receive [h]
ChangeEnc

(
(SK(C)

P
,SK

(C)
DGK

,k),([h])
)

←−−−−−−−−−−−−−−−−−−−−−−→ (2) Receive 〈h〉
(4) h′ = D(SK(C)

DGK , 〈h′〉)
〈h′〉←−− (3) Pick random r ∈ Zu , 〈r〉 := E(PK(C)

DGK , r) , 〈h′〉 := 〈r〉 · 〈h〉 mod N2

(5) ∀i = 0, . . . , u− 1, |mski| :=
{
E(PK(C)

GM , 0), i 6= h′

E(PK(C)
GM , 1), i = h′

|msk0|,...,|msku−1|−−−−−−−−−−−−→ (6) ∀i = 0, . . . , u− 1, |skt′i| :=
{
|skti| · |mskr+i|, i < u− r
|skti| · |mski−u+r|, i ≥ u− r

(7) Output (|skt′0|, . . . , |skt′u−1|)

Figure 2.3: Two-party protocols between a client and the server that are used as building blocks for
sketching.

2.4.1 Building Blocks

A Note on the Security Proofs. Our security proofs take the classic simulation based approach

for semi-honest adversaries on the hybrid model with ideal access to functions [31] and show that a

party’s view in a protocol execution is simulatable given its input, its output (if any), and access

to a series of ideal functionalities. On the one hand we have the hybrid world were protocols have

access to functions that are invoked by specific step of the protocol and on the other hand we have

the ideal world where the simulator lives. Thus, the participating parties learn nothing from the

protocol’s execution beyond what can be derived from their input. For the sake of brevity we don’t

denote the public keys, whenever there is an encryption we indicate which public key is used.

k-Independent Hashing over Encrypted Data. The functionality of FkIndHash is as follows.

The input of the server is the bit length l and the set of parameters of a k-independent hash

function—i.e., the coefficients {ai}k−1
i=0 , the prime p of a (k − 1) degree polynomial on Zp. The client

has the input x which is used to evaluate the polynomial on Zp. The degree of the polynomial as well

as the modulo p are considered to be known to both parties. At the end of the protocol the server

receives the evaluation of the polynomial a0 + a1x+ . . .+ ak−1x
k−1 mod p that is encrypted with

the client’s public key. We do not use a private polynomial evaluation due to the fact that we require

the output to be encrypted. The server should not learn any information about the client’s input x

and the client should not learn any information about the coefficients {ai}k−1
i=0 of the polynomial.
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Protocol EncHashing
Client: SK(C)

P , k, p Server: [x], {ai}k−1
i=0 , p

(2) ∀i = 2, . . . , k − 1, hi = D(SK(C)
P , [hi])

[h2],...,[hk−1]←−−−−−−−− (1) ∀i = 2, . . . , k − 1, Pick ri ∈ (0, 2l) ∩ Z, [hi] := [x]ri mod N2

(3) ∀i = 2, . . . , k − 1, [h′i] := E(PK(C)
P , hii)

[h′2],...,[h′k−1]
−−−−−−−−→ (4) ∀i = 2, . . . , k − 1, [xi] := [h′i]r

−i
i mod N2

(6) h′ = D(SK(C)
P , [h′]) [h′]←−− (5) Pick r ∈ Zu , [h′] := [r] · [a0] · [x]a1

∏k−1
i=2 [xii]ai mod N2

(7) d = h′ mod p (8) c = r mod p

PrvComparison
(
d,c
)

←−−−−−−−−−−→ Receive [t] such that t = 1 if d < c

(9) [d] := E(PK(C)
P , d) [d]−→ (10) Output [h] = [d] · ([c])−1 · [t]p

Protocol EncComparison
Client: SK(S)

P , SK
(S)
GM , l Server: [a], [b], l

(1) [x] := [2l] · [b] · [a]−1 mod N2

(2) Pick a random r ∈ (0, 2l) ∩ Z
(4) z = D(SK(C)

P , [z]) [z]←− (3) [z] := [x] · [r] mod N2

(5) d := z mod 2l
(6) c := r mod 2l

PrvComparison
(
d,c
)

←−−−−−−−−−−→ Receive |t′| such that t′ = 1 if c < d

(7) |zl| ← E(PK(C)
GM , zl)

|zl|−−→
(8) |rl| := E(PK(C)

GM , rl)
(10) Output t = D(SK(C)

GM , |t|)
|t|←− (9) |t| := |zl| · |rl| · |t′| · |1|

Protocol FindMin:
Client: SK(C)

GM , SK
(C)
P , l Server: {[yi]}ni=1, l

(1) Pick a rand. permutation π over {1, . . . , n}
(2) [min] := [yπ(1)]

for i = 2 to n do

(3) Receive bit ti s.t. ti = 1 if min < yπ(i)
EncComparison

(
(SKP , SKGM , l), ([min], [yπ(i)], l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(4) Pick random ri, si ∈ (0, 2l+λ) ∩ Z
[bi],[ci]←−−−− (5) [bi] := [min] · [ri] mod N2 , [ci] := [yπ(i)] · [si] mod N2

if ti is 1 then
(6a) [ci] := Refresh([bi])

else
(6b) [ci] := Refresh([ci])

end if [ci],[ti]−−−−→ (7) [min] := [ci] · ([ti] · [−1])si · [ti]−ri mod N2

end for
(8) Output [min]

Figure 2.4: Protocol EncComparison is a slight modification of the comparison protocol found
in [24, 153]. Protocol EncComparison2 is the same up to step (9) where it terminates by outputting
|t| to the Server.

Lemma 1. Protocol kIndHash correctly and securely computes FkIndHash in the (FPrvComp)-hybrid

model.

Proof. Let’s consider first the case where Client is corrupted, denoted as A ; notice that Client has

no output. Thus we only need to show that a simulator can generate the view of incoming messages

received by the A .

Adversary (or simulator) A′ is given (SK(C)
P , x, k, p) and 1λ and works as follows:

• A′ starts by simulating A .

• A′ receives [x], . . . , [xk−1] from A .
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• A′ picks a random h̃′ ∈ (0, 2l+λ) ∩ Z, encrypts it to get [h′] using PK(C)
P , and sends it to A .

• A′ receives d̃ and PK(C)
P from A which are sent to FPrvComp.

• A′ receives [d̃] from A .

• A′ outputs ⊥.

Now we show that the view of A in the simulation with A′ is indistinguishable from its view in a

hybrid execution using a series of games.

• Game-0: Same as the hybrid execution.

• Game-1: Same as Game-0 except that h′ in step (3) is replaced by with h̃′ ∈ (0, 2l+λ) ∩ Z.

In Game-0 h′ is the blinded value of
∏k−1
i=1 αix

i with random r, but in this game h̃′ is picked

uniformly at random from (0, 2l+λ) ∩ Z. Thus the distribution of h′ = r +
∏k−1
i=1 αix

i and h̃′

are computational indistinguishable.

Thus, the view of A in the simulation with A′ is indistinguishable from its view in a hybrid

execution.

Let’s consider the case where Server is corrupted. Simulator A′ is given ({ai}k−1
i=0 , p), 1λ, output

[h], and works as follows:

• A′ starts by simulating A .

• A′ generates k − 1 distinct encryptions of 1, namely {[x̃i]}k−1
i=1 , and sends them to A .

• A′ receives [h′].

• A′ encrypts bit t̃ = 1 with PK(C)
P and sends [t̃] to A .

• A′ receives c̃ from A which is sent to FPrvComp.

• A′ encrypts the bit [d̃] = 1 with PK(C)
P and sends it to A .

• Finally A′ outputs [h].

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
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• Game-1: Same as Game-0 except that the messages x, . . . , xk−1 in step (1) are replaced with

{x̃i}k−1
i=1 where all of them have value 1. By semantic security of the Paillier’s cryptosystem the

distribution of the ciphertexts {[xi]}k−1
i=1 and {[x̃i]}k−1

i=1 are computationally indistinguishable.

• Game-2: Same as Game-1 except the encrypted bit [t] returned by FPrvComp in step (7) is

replaced by the encryption of t̃ = 1. Since Server receives the ciphertext of Paillier, the messages

[t] and [t̃] are computationally indistinguishable.

• Game-3: Same as Game-2 except the encrypted value [d] sent to the Server in step (8) is

replaced by the encryption of d̃ = 1. As before, due to CPA security of Paillier the messages

[d] and [d̃] are computationally indistinguishable.

Thus, the view of A in the simulation with A′ is indistinguishable from its view in a hybrid

execution.

Update Encrypted Odd Sketch. The functionality of FUpdateOddSketch is as follows. The

input of the server consists of i) the bits of an odd sketch (skt0, . . . , sktu−1) encrypted with the

client’s public key, ii) the parameters of the (k − 1)-degree polynomial that is used as the hash

function hodd, and iii) the input x of the polynomial encrypted with client’s public key. The input of

the client is the set of secret keys. At the end of the protocol the server receives an updated odd

sketch where the bit in location hodd(x) of the sketch is flipped, while the client receives no output.

The server and the client should not learn which bit of the odd sketch is flipped or the input x of the

polynomial.

As a first step protocol EncHashing is invoked, which returns to the server the hash value

hodd(x) = (
∑k−1
i=0 aix

i) mod u encrypted with the client’s public key. As a next step we change

the encryption from Paillier to DGK, since DGK embeds reductions modulo u to its homomorphic

operations (see Section 2.1.3). Thus, the result of the blinding in step (3) is a random element from

the range [0, u− 1]. Then the server sends the blinded ciphertext 〈h′〉 to the client who decrypts it

(step (4)) and prepares an encrypted bit mask for the server. The mask is a bit string of length u

where every bit has value 0 except the bit in position h′ which has value 1. We note here that the

value of u is relatively small since it represents the length of the succinct odd sketch. Blinding the

value h with r at step (3) has the effect of shifting the only “1” value of the bit mask by r positions.

Therefore, as a final step, the server has to re-arrange the encrypted mask so as to remove the effect
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of the blinding with r. In order to cancel-out the effect of blinding, the server has to “pull” the 1

value back by r positions by applying the following transformation:

(|msk0|, . . . , |mskr−1|, |mskr|, . . . , |msku|)

 (|mskr|, . . . , |msku|, |msk0|, . . . , |mskr−1|).

The ciphertexts of the updated bit mask are multiplied with the GM ciphertexts of the input sketch,

resulting in a homomorphic XOR operation—and, therefore, the desired bit is flipped.

A similar blinding process with Paillier, as opposed to DGK, would give an element r from

the range [0, 2λ+l]. For a standard instantiation λ = 1024, which gives an impractical number of

ciphertexts in steps (5) and (6), consequently making the protocol completely impractical. Protocol

UpdateOddSketch invokes two protocols (EncHashing, ChangeEnc), performs 2u + 3 homomorphic

operations, and one roundtrip.

Lemma 2. Protocol UpdateOddSketch correctly and securely computes FUpdateOddSketch in the

(FEncHashing, FChangeEnc)-hybrid model.

Proof. Let’s assume that A corrupts the Client. Adversary A′ is given

(PK(C)
GM , SK

(C)
GM , PK

(C)
P , SK

(C)
P , PK

(C)
DGK , SK

(C)
DGK , u, k)

,and 1λ and works as follows:

• A′ starts by simulating A .

• A′ receives the input of A to function FEncHashing.

• A′ receives the input of A to function FChangeEnc.

• A′ picks a random value h̃′ from space Zu and sends its DGK encryption 〈h̃′〉 with key PK(C)
DGK

to A .

• A′ receives |msk0|, . . . , |msku−1| from A .

• A′ outputs ⊥.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.



41

• Game-1: Same as Game-0 except that h′ of step (3) is replaced with a random value h̃′

from space Zu. In Game-1 h′ is the blinded value of h with random r, but in this game h̃′ is

picked uniformly at random from Zu. Recall that in the DGK cryptosystem the homomorphic

operations are performed modulo u in the plaintext space. Thus the distribution of h′ and h̃′ is

identical.

Let’s assume that A corrupts the Server. Simulator A′ is given

(PK(C)
GM , PK

(C)
P , PK

(C)
DGK , [x], {αi}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|)) ,the output (|skt′0|, . . . , |skt′u−1|), and 1λ

and works as follows:

• A′ starts by simulating A .

• A′ receives the input of A to function FEncHashing.

• A′ receives the input of A to function FChangeEnc.

• A′ receives 〈h′〉 which is encrypted with PK(C)
DGK from A .

• A′ picks uniformly at random u random bits m̃sk0, . . . , m̃sku−1. Then A′ encrypts them with

key PK(C)
GM and sends |m̃sk0|, . . . , |m̃sku−1| to A .

• A′ outputs (|skt′0|, . . . , |skt′u−1|).

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.

• Game-1: Same as Game-0 except that the bits msk0, . . . ,msku−1 of step (5) are replaced with

a random random bits m̃sk0, . . . , m̃sku−1. Notice that server gets to see bits m̃sk0, . . . , m̃sku−1

encrypted using GM . From the CPA security of the GM cryptosystem the distribution of

|m̃ski| and |mski| is computationally indistinguishable, for all i ∈ {0, . . . , u− 1}.

Find Minimum. Initially the server assigns the first encrypted value as the current minimum

[min]. Then we compare the current minimum with the next encrypted value using the protocol

EncComp, which outputs the result of the comparison without revealing the encrypted values to the

key holder (i.e., the client). Notice, however, that if the server iterates through the ciphertexts in
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the originally given order then the client can learn the index of the minimum value. To overcome

this the server picks a random permutation π that is applied before any pairwise comparison (step

(1)). Thus the client learns the index of the minimum value with respect to the secret random

permutation that the server applied. After the execution of the comparison protocol the client returns

a re-encryption [ci] of the smallest among the input values [min], [yπ(i)], so as not to reveal to the

server which of the two ciphertexts is smaller. Re-encryption (denoted as Refresh) can be achieved by

either decrypting and re-encrypting the ciphertext, or by using the homomorphic properties of the

cryptosystem to refresh the randomness. Since the client can decrypt [min] and [yπ(i)], the server

blinds the ciphertexts using ri and si so as to create the blinded ciphertexts [bi] and [ci]. In the final

step we deal with two cases. If the result of the comparison is min < yπ(i) (i.e., ti = 1) the server

subtracts the blinding ri from the value that the client returned. Otherwise the server subtracts si.

Protocol FindMin performs n − 1 encrypted comparisons of l bit integers, 8(n − 1) homomorphic

operations and n− 1 roundtrips.

Lemma 3. Protocol FindMin correctly and securely computes FFindMin in the (FEncComp)-hybrid

model.

Proof. Let’s assume that A corrupts the Client. Adversary (or simulator) A′ is given ((PK(C)
P , SK

(C)
P ,

PK
(C)
GM , SK

(C)
GM , l) and 1λ and works as follows:

• A′ starts by simulating A .

• A′ receives the input of A to FEncComp.

• A′ sends to the A a random bit t̃i.

• A′ picks a pair of random values b̃i and c̃i from the range (0, 2l+λ)∩Z and sends their encryption

with PK(C)
P to A .

• A′ receives the ciphertexts [ci] and [ti].

• A′ repeats the above four steps n− 1 times.

• A′ outputs ⊥.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
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• Game-1: Same as Game-0 except that the output bit of the ideal function FEncComp ti in

step (3) is replaced with the random bit t̃i. From the security of FEncComp the client does

not learn any information about the values that the Server compares. Since there is no prior

information about the result of the comparison and no inferred information from ideal function,

from Client’s perspective any output of FEncComp is equally probable.

• Game-2: Same as Game-1 except the values bi and si in step (4) are replaced with a pair of

random values b̃i and c̃i from the range (0, 2l+λ) ∩ Z. In Game-1 bi is the blinded value of min

with random ri, but in this game b̃i is picked uniformly at random from 0, 2l+λ) ∩ Z. Thus the

distribution of bi and b̃i is computationally indistinguishable. Similarly in Game-1, ci is the

blinded value of yπ(i) with random si, but in this game c̃i is picked uniformly at random from

(0, 2l+λ) ∩ Z. Thus the distribution of ci and c̃i is computationally indistinguishable.

Thus, the view of A in the simulation with A′ is indistinguishable from its view in a hybrid

execution.

Now let’s assume that A corrupts the Server. Simulator A′ is given ({[yi]}ni=1, l), 1λ, the output

[min], and works as follows:

• A′ starts by simulating A .

• A′ receives the input of A to function FEncComp.

• A′ receives [bi] and [ci].

• A′ picks a pair of random values c̃i and t̃i from the range (0, 2l+λ)∩Z and sends their encryption

with PK(C)
P to A .

• A′ repeats the above three steps n− 1 times.

• A′ outputs [min].

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.

• Game-1: Same as Game-0 except that the transferred ciphertexts ci and ti before step (7) are

replaced with the encryption of the random values c̃i and t̃i with the key PK(C)
P . From the
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CPA security of the Paillier cryptosystem the distribution of [ci] and [c̃i] is computationally

indistinguishable. A similar argument holds for the distribution of [ti] and [t̃i].

2.4.2 Protocols for the Server-Aided Model

Approximating Jaccard Distance via Odd Sketches. We employ the protocols of the previous

subsection as building blocks to securely approximate Jaccard distance using the approach by

Mitzenmacher et al. [122]. As denoted in Figure 2.5, the input of the server consists of the set of

κ minhash functions {hmini }κi=1, the hash function for the creation of the odd sketch hodd, as well

as the corresponding secret keys. Recall that {hmini }κi=1 and hodd are generated using the common

randomness rcmn that can only be accessed by the server. The input of the client consists of her

data, denoted as the elements {ej}nj=1, as well as the publicly known moduli p, u, and the secret keys.

At the end of the protocol the client receives the odd sketch encrypted with the server’s public key.

Protocol SketchingOdd:
Client: {ej}nj=1, k, u, κ, SK

(C)
GM , SK

(C)
P , SK

(C)
DGK Server: {hmini = (a0, . . . , ak)}κi=1, hodd, p, SK

(S)
P , SK

(S)
GM

(1) ∀y = 0, . . . , u− 1, |skty| := E(PK(C)
GM , 0)

for i = 1 to κ do
for j = 1 to n do

kIndHash
(

(SK(C)
P

,ej ,k),(hmini ,p)
)

←−−−−−−−−−−−−−−−−−−−−→ (2) Receive [h′ij ]
end for

FindMin
(

(SK(C)
GM

,SK
(C)
P

,l),({[h′ij ]}
n
j=1,l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−→ (3) Receive [mini]

UpdateOddSketch
(

(SK(C)
GM

,SK
(C)
P

,SK
(C)
DGK

,u,k),([mini],hodd,(|skt0|,...,|sktu−1|))
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (4) (|skt0|, . . . , |sktu−1|)
end for

(5) Output encrypted sketch (|skt0|, . . . , |sktu−1|)
ChangePartyEnc

(
(SK(C)

GM
),(SK(S)

GM
,(|skt0|,...,|sktu−1|))

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Protocol SketchingCosine:
Client: ~v = (v1, . . . , vn), SK(C)

P , SK
(C)
GM Server: {~wi}κi=1, SK

(S)
GM

(1) ∀j = 1, . . . , n, [vi] := E(PK(C)
P , vj)

[v1],...,[vn]−−−−−−−→
for i = 1 to κ

(2) [d1] := Πn
j=1[vj ]wij mod N2

(3) [d0] := E(PK(C)
P , 0)

EncComparison2
(

(SK(C)
P

,SK
(C)
QR

,l),([d1],[d0],l)
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (4) Receive |ti| s.t. ti = 1 if d1 < d0

(5) Receive |σi| := |ti| encrypted under PK(S)
GM

ChangePartyEnc
(

(SK(C)
GM

),(SK(S)
GM

,|ti|)
)

←−−−−−−−−−−−−−−−−−−−−−−−→
end for

(6) Output encrypted sketch (|σ1|, . . . , |σκ|)

Figure 2.5: The sketching protocols between the server and the client for the server-aided model.

Lemma 4. Protocol SketchingOdd correctly and securely computes FSketchingOdd in the (FkIndHashing,

FFindMin, FUpdateOddSketch, FChangePartyEnc)-hybrid model.

Proof. Let’s assume that A corrupts the Client. Simulator SC is given
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({ej}nj=1, k, u, PK
(C)
GM , SK

(C)
GM , PK

(C)
P , SK

(C)
P , PK

(C)
DGK , SK

(C)
DGK)

,1λ, the output (|σ1|, . . . , |σκ|) and works as follows:

• SC receives the input of A to function FkIndHash.

• SC repeats the above step n times.

• SC receives the input of A to function FFindMin.

• SC receives the input of A to function FUpdateOddSketch.

• SC repeats the above four steps κ times.

• SC receives the input of A to function FChangePartyEnc.

• SC outputs (|σ1|, . . . , |σκ|).

The security proof based on the above simulator is straight-forward. The simulator only accesses

the ideal functionalities that are provided to FSketching-Odd.

Now let’s assume that A corrupts the Server. Simulator SS is given

({hmini = (a0, . . . , ak)}κi=1, hodd, p, PK
(S)
P , SK

(S)
P , PK

(S)
GM , SK

(S)
GM )

,1λ, and works as follows:

• SS receives the input of A to function FkIndHash.

• SS picks uniformly at random a value h̃′ij from the range (0, p) ∩ Z. Then it encrypts it using

PK
(C)
P so as to get [h̃′ij ] which is sent to A .

• SS repeats the above two step n times.

• SS receives the input of A to function FFindMin.

• SS picks uniformly at random a value m̃ini from the range (0, p)∩Z. Then it encrypts it using

PK
(C)
P so as to get [m̃ini] which is sent to A .

• SS receives the input of A to function FUpdateOddSketch.

• SS picks uniformly at random u bits, namely s̃kt0, . . . , s̃ktu−1. Then it encrypts them using

PK
(C)
GM so as to get (|s̃kt0|, . . . , |s̃ktu−1|) which is sent to A .

• SS repeats the above seven steps κ times.
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• SS receives the input of A to function FChangePartyEnc.

• SS outputs ⊥.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.

• Game-1: Same as Game-0 except that the transferred ciphertext [h′ij ] before step (2) is replaced

with the encryption of a random value h̃′ij from the range (0, p) ∩ Z. From the CPA security of

the Paillier cryptosystem the distribution of [h′ij ] and [h̃′ij ] is computationally indistinguishable.

• Game-2: Same as Game-1 except that the transferred ciphertext [mini] before step (3) is

replaced with the encryption of a random value m̃ini from the range (0, p) ∩ Z. From the CPA

security of the Paillier cryptosystem the distribution of [mini] and [m̃ini] is computationally

indistinguishable.

• Game-3: Same as Game-2 except that the transferred ciphertexts (|skt0|, . . . , |sktu−1|) before

step (4) is replaced with the encryption of a random bits (|s̃kt0|, . . . , |s̃ktu−1|). From the

CPA security of the GM cryptosystem, for every i ∈ Zu the distribution of |skti| and |s̃kti| is

computationally indistinguishable.

Approximating Cosine Distance via Cosine Sketching. We approximate cosine distance

as follows. The input of the server consists of the vectors ~wi, that are sampled uniformly at random

from the (n − 1)-sphere. The input of the client consists of her data which is represented by the

vector ~v. Note that vectors ~wi are generated using the common randomness rcmn that can only be

accessed by the server. At the end of the protocol the client receives the cosine sketch encrypted

with the server’s public key.

Lemma 5. Protocol SketchingCosine correctly and securely computes FSketchingCosine in the (FEncComparison2,

FChangePartyEnc)-hybrid model.

Proof. Let’s assume that A corrupts the Client. Simulator SC is given

(~v = (v1, . . . , vn), PK(C)
P , SK

(C)
P , PK

(C)
GM , SK

(C)
GM , PK

(S)
GM )

,1λ, the output (|σ1|, . . . , |σκ|) and works as follows:
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• SC receives [v1], . . . , [vn] from A .

• SC receives the input of A to function FEncComp2.

• SC receives the input of A to function FChangePartyEnc.

• SC picks a random bit t̃i and it encrypts it with PK(S)
GM . Then it sends |t̃i| to A .

• SC repeats the above three steps k − 1 times.

• SC outputs (|σ1|, . . . , |σκ|).

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.

• Game-1: Same as Game-0 except that the transferred ciphertext |ti| before step (5) is replaced

with the encryption of a random bit |t̃i| encrypted with PK(S)
GM . From the CPA security of the

GM cryptosystem the distribution of |ti| and |t̃i| is computationally indistinguishable.

Now let’s assume that A corrupts the Server. Simulator SS is given ({~wi}κi=1, PK
(S)
GM , SK

(S)
GM ,

PK
(C)
P , PK

(C)
GM ), 1λ, and works as follows:

• SS picks uniformly at random values ṽ1, . . . , vn from the range (0, 2l) ∩ Z. Then it encrypts it

using PK(C)
P so as to get [ṽ1], . . . , [vn] which is sent to A .

• SS receives the input of A to function FEncComp2.

• SS picks uniformly at random bit t̃i. Then it encrypts it using PK(C)
GM so as to get |t̃i| which is

sent to A .

• SS receives the input of A to function FChangePartyEnc.

• SS repeats the above four steps k times.

• SS outputs ⊥.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
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• Game-1: Same as Game-0 except that the transferred ciphertexts [v1], . . . , [vn] after step (1)

are replaced with the encryption of a random values ṽ1, . . . , ṽn from the range (0, 2l) ∩ Z with

the key PK(C)
P . From the CPA security of the Paillier cryptosystem the distribution of [vi] and

[ṽi] is computationally indistinguishable.

• Game-2: Same as Game-1 except that the transferred ciphertext |ti| after step (4) is replaced

with the encryption of a random bit t̃i with the key PK(C)
GM . From the CPA security of the

GM cryptosystem the distribution of |ti| and [t̃i] is computationally indistinguishable.

Protocol Reconstruct:
ClientA: |~σA| ClientB : |~σB | Server: SK(S)

GM
|~σA|−−−→ (1) Receive sketch |~σA|

(2) ∀i ∈ {0, . . . , κ− 1}, |σ′i| = |σAi | · |σBi |
(3) Pick a rand. perm.
π over {0, . . . , κ− 1}

(4) Permute |~σ′| w.r.t. π
|~σ′|−−→ (5) Decrypt all |~σ′|

(6) c←Count 1s in σ′
(9) Output c/κ c←− (8) Output c/κ c←− (7) Output c/κ

Figure 2.6: The reconstruction of SketchingCosine between the server and the clients. The recon-
struction for SketchingOdd is the same for steps (1)-(6); steps (7), (8) follow the reconstruction of
Equation (2.3).

Reconstruct Protocol. The power of the sketching techniques that we chose for approximating

Jaccard distance and cosine distance lies in the fact that their reconstruction function is simple and

efficient. Both techniques follow the same reconstruction process which performs an exclusive-or

operation between the two sketches, and then counts the number of 1 values (see Equations (2.3)

and (2.5)). Taking advantage of the homomorphic properties of the GM cryptosystem we build an

efficient Reconstruct protocols. See Figure 2.6.

Lemma 6. Protocol Reconstruct is correct and secure in the semi-honest model.

Proof. Notice that this is a tree party protocol between ClientA, ClientB, and the Server. Let’s

assume that A corrupts the ClientA. Simulator SCA is given
(
|~σA| = (|σA0 |, . . . , |σAκ−1|), PK

(S)
GM , κ

)
,

the output c/κ, 1λ, and works as follows:

• SCA receives |~σA| = (|σA0 |, . . . , |σAκ−1|) from A .
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• SCA performs the operation (c/κ) · κ = c.

• SCA sends c to A .

• SCA outputs c/κ.

The security proof based on the above simulator is straight-forward.

Let’s assume thatA corrupts the ClientB . Simulator SCB is given
(
|~σB | = (|σB0 |, . . . , |σBκ−1|), PK

(S)
GM , κ

)
,

the output c/κ, 1λ, and works as follows:

• SCB picks κ random bits so as to create ~̃σA = (σ̃A0 , . . . , σ̃Aκ−1).

• SCB encrypts the individual bits ~̃σA with PK(S)
GM and sends the encrypted vector to A .

• SCB receives |~σ′| from A .

• SCB performs the operation (c/κ) · κ = c.

• SCB sends c to A .

• SCB outputs c/κ.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.

• Game-1: Same as Game-0 except that the transferred ciphertexts ~σA = (σA0 , . . . , σAκ−1) before

step (1) are replaced with the encryption of a random bits ~̃σA = (σ̃A0 , . . . , σ̃Aκ−1) with the key

PK
(S)
GM . From the CPA security of the GM cryptosystem the distribution of |σAi | and [σ̃Ai ] is

computationally indistinguishable.

Finally let’s assume that A corrupts the Server. Simulator SS is given (PK(S)
GM , κ), the output

c/κ, 1λ, and works as follows:

• SS performs the operation (c/κ) · κ = c.

• SS defines c bits with value 1, i.e., σ̃′0, . . . , σ̃′c−1, and κ− c bits with value 0, i.e., σ̃′c, . . . , σ̃′κ−c.

Thus, SS creates ~̃σ′ = (σ̃′0, . . . , σ̃′κ−1), where the first c bits have value 1.

• SS picks a random permutation π′ over the set {0, . . . , κ}. Then it permutes the values of ~̃σ′

with respect to π′.
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• SS sends the permuted ~̃σ′ to A .

• SS receives c from A .

• SS outputs c/κ.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.

• Game-1: Same as Game-0 except that the κ bits ~σ′ = σ′0, . . . , σ
′
κ−1) which are the result of

step (4) are replaced with the permutation of c bits with value 1 and κ− c bits with value zero

denoted as ~̃σ′ = (σ̃′0, . . . , σ̃′κ−1). Notice that the number of bits set to 1 is the same in both ~σ′

and ~̃σ′. Also notice that the values of the vectors ~σ′ and ~̃σ′ are permuted according to random

permutations π and π′, respectively. Thus the distribution of 1s over the dimensions of the

vectors is identical.

On the Choice of Building Blocks. Since our protocols follow a modular design, one can

substitute the proposed building blocks with protocols that follow other MPC techniques so as

to further optimize the performance of our constructions. The work presented in this thesis is

meant to present to principles of this modular design and is not representative of a highly-optimized

implementation. According to the work of Bost et al. [24], comparison protocols that utilize specialized

homomorphic cryptosystems [62, 153] are more efficient when the input is encrypted. Thus, our

implementation invokes variations of the above protocols, namely EncComparison and EncComparison2.

For the comparison protocol on unencrypted inputs, Bost et al. [24] denote that a garbled circuit

approach [18] results in a more efficient implementation. In our implementation we followed the work

of Veugen [153], and therefore one can further speedup our implementation by invoking a garbled

circuit design instead. We note that well-known protocols that are purely based on garbled circuits

for functionality such as FindMin can not be deployed because the input of the FindMin is a set of

encrypted inputs (see Table 2.3). A similar argument holds for the output of kIndHashing which is

encrypted. Thus, to the best of our knowledge, the most promising speedup opportunity would be

opting for garbled circuit designs for the simplest building blocks, such as comparison.



51

2.5 Scalability Evaluation

Implementation Setup. We implemented the proposed protocols in C++ using existing libraries as

well as newly implemented building blocks. For serializing the communication between the server

and client we use Protocol Buffers [78]. All the arithmetic operations are performed with the gmp

multiple precision library [55]. We use the Advanced Crypto Software Collection [19] implementation

of the Paillier cryptosystem, and an open-source implementation of the GM cryptosystem. We

implemented the DGK cryptosystem in C++ following the design principles of [19] and the directions

of the original work [47, 48].

For the minhashing via odd sketching protocols we choose the security parameter λ = 100. Given

the scale of our experiments the k-independent hashing setup is the following: we choose k = 4 and

a prime p that is at least an order of magnitude larger than the size of the set—i.e., p ≥ 10n. As

explained in the description of protocol UpdateOddSketch, prime u of the DGK cryptosystem is set to

have the same value as the length of the odd sketch. As it is also noted in [24] the parameterization

of Paillier has to be such that the homomorphic operations do not overflow the message space. To

accomplish this instantiation we analyze the two phases of the protocol. The first phase is the

kIndHashing computation; let l′ be the maximum bit-length of the inputs x. In step (1) of protocol

kIndHashing involves (k− 1) exponentiations among which the plaintext xk−1 can have the maximum

length of l′max = (k − 1)l′ bits. Step (3) of protocol kIndHashing involves (k − 1) multiplications

and (k + 1) additions of numbers that are at most l′max bits long. Therefore it is sufficient for N to

be such that logN ≥ (k2 − k − 2)(l′/2) + 2 + λ. After the execution of kIndHashing the numbers

involved in protocols PrvComparison and EncComparison are log p bits long, since they are hash values.

Thus protocols PrvComparison and EncComparison operate on integers that are at most l = log p bits

long. Consequently, it is sufficient for N to be such that logN > log p+ λ+ 1. We satisfy the above

inequalities by choosing logN ≥ 1024.

Regarding the protocols for cosine sketching, we also choose a security parameter λ = 100. Recall

that vectors ~wi = (wi1, . . . , win) are sampled uniformly at random from the (n− 1)-sphere, so each

value wij is a real number. We can transform the above real numbers to integers by multiplying

with a constant K and rounding, allowing us to interpret wij as part of Paillier’s message space.

The purpose of the random projection is to compute the sign of the inner product thus one can

choose a relatively small K. In our implementation we choose K = 1000. Similarly to the previous



52

instantiation, the parameterization of Paillier should not overflow by the homomorphic operations of

the encrypted inner product that is performed in step (2) of protocol Sketching-Cosine. Let l be the

maximum length in bits of the entries in ~v. Then step (2) of protocol Sketching-Cosine involves the

multiplication of a logK bit long integer with an l bit long integer. Thus, it is sufficient for N to be

such that logN ≥ logK + l + n. Finally, in our implementation, both GM and DGK have moduli

that are at least 1024 bits long. The implementation of the protocols and the serialization of the

server is around 1400 lines, while the client is around 1100 lines.

Scalability. We evaluate the scalability of the server-aided design based on the described

implementation setup. In Figure 2.7 we present the recorded computation time for the sketching

protocols on a commercial laptop with 2.6 GHz Intel Core i5 CPU and 8GB DDR3 RAM.
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Figure 2.7: Subfigure (a): Time performance for varied set size of the SketchingOdd protocol. Time
averaged for a single minhash over five runs. Subfigure (b): Time performance for varied number of
vector dimensions of the SketchingCosine protocol. Time averaged for a single random projection
over five runs.

The client and server have similar time performance for the SketchingOdd protocol. This is mostly

because both parties are subject to a slowdown by a similar number of encrypt/decrypt operations.

The time performance presented in Figure 2.7-(a) is for a a single minhash value (i.e., κ = 1), and

an odd sketch of 151 bits (i.e., u = 151). Note that the computational overhead scales linearly

with κ: for κ > 1 we have the same computational overhead as the one depicted in Figure 2.7-(a),

only κ times larger. Notice, however, that the computation for each of the κ dimensions of the

sketch is independent of each other, thus the overall task is parallelizable. On the other, hand the

computational overhead of the client in protocol SketchingCosine is significantly higher than the

one of the server. This is mainly caused by the encryption of each dimension of ~v, which translates

to a large number of exponentiations taking place in step (1) of the protocol. Furthermore, the

performance of the server (time) is measured when we have a single random projection, i.e., κ = 1,
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Figure 2.8: Throughput of the server Reconstruct protocol for varied sketch sizes. Average values
over 5 runs.

thus steps (2)-(4) of SketchingCosine are repeated only once. Similar to the case of SketchingOdd,

for κ > 1 the overall task is highly parallelizable into κ tasks. The communication overhead of the

sketching protocols for various values of n is depicted in Table 2.4.

Table 2.4: Communication Overhead of Sketching. Average over 5 runs.

Protocol n
100 250 500 1000

Sketch-Odd 1112 KB 2930 KB 6218 KB 13201 KB
Sketch-ShimHash 69 KB 165 KB 324 KB 644 KB

In our design we prioritize the speedup the reconstruction protocol, since it is the protocol that is

executed multiple times throughout the lifetime of the system—once for every pairwise approximation.

On the contrary, the sketching protocol is invoked only once for every high-dimensional data point,

so as to create the sketch. Thus, using odd sketches (rather than regular minhashing) introduced,

indeed, some overhead in the overall sketching protocol but resulted in a fast and more scalable

reconstruction protocol. Generally, the reconstruction protocol from the server’s perspective is the

same, regardless of whether we are approximating Jaccard or cosine similarity, since the only task

performed by the server is to decrypt κ ciphertexts encrypted under GM. The end result is a rather

scalable performance illustrated in Figure 2.8.

2.6 Related Work

Aside from the secure sketching protocols mentioned earlier, there is a rich body of protocol that devise

a combination of semi-homomorphic cryptosystems and garbled circuits to operate on encrypted

data [15, 24, 100, 123, 157]. The work by Mironov et al. [120] introduces the model of sketching
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in adversarial environments which is different in certain ways from what we consider in our work.

Specifically, the work in [120] studies a model where a single party adversarially chooses the input

for all other parties while they approximate joint functions on the adversarially chosen input. In

their model, the adversarial inputs are provided to the parties in an on-line manner and thus the

users update the sketch incrementally without being able to store the original information, much

like in one-pass streaming algorithms. In our work, each party uses her own data which is stored

locally. Our model is different from the data stream model, and follows more closely the published

work on privacy-preserving sketches discussed above. The work by Naor et al. [127] introduces a

new adversarial model for Bloom filters. The threat model of [127] is somewhat similar to our model,

in the sense that both adversaries exploit the used randomness so as to violate the correctness of

the computation. In terms of differences, our adversary has direct access to the randomness used,

whereas for the case of [127] the adversary has only oracle access via the responses of the Bloom

filter. Furthermore in our work sketching is just the first phase of the computation and the second

phase consists of a secure computation protocol; on the contrary the work of [127] does not involve

any form of secure computation.

There is a significant body of research focusing on the attack vectors that lay in the intersection

of machine learning and privacy-preserving mechanisms [16, 34, 46, 65, 66, 118]. The line of

research closer to our proposed attack is the work on Deep Learning in adversarial settings. Some

works [12, 33, 134, 150] show how an adversary can craft her input so as to maximize the prediction

error of a deep neural network (DNN). Interestingly, in this work we show that adversarial inputs are

very effective not only with learning and classification mechanisms, e.g., DNN, but also with simple

randomized algorithms, e.g., sketching.



Chapter 3

Leakage of k-NN Queries

in Encrypted Databases

In this chapter we start by performing a theoretical feasibility study on exact reconstruction, i.e.,

recovery of the exact plaintext values of the encrypted database. For ordered responses, we show that

exact reconstruction is feasible if the attacker has additional access to some auxiliary information that

is normally not available in practice. For unordered responses, we prove that exact reconstruction is

impossible due to the infinite number of valid reconstructions. As a next step, we propose practical

and more realistic approximate reconstruction attacks so as to recover an approximation of the

plaintext values. For ordered responses, we show that after observing enough query responses, the

attacker can approximate the client’s encrypted database with considerable accuracy. For unordered

responses we characterize the set of valid reconstructions as a convex polytope in a k-dimensional space

and present a rigorous attack that reconstructs the plaintext database with bounded approximation

error. As multidimensional spatial data can be efficiently processed by mapping it to one dimension

via Hilbert curves, we demonstrate our approximate reconstruction attacks on privacy-sensitive

geolocation data. Our experiments on real world datasets show that our attacks reconstruct the

plaintext values with relative error ranging from 2.9% to 0.003%.

55
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3.1 Preliminaries

Database and its Organization. A database is a collection DB of n records. Let α, β ∈ R. We

consider records with one-dimensional values in the continuous range [α, β] on which one-dimensional

k-nearest neighbor (k-NN) queries are performed. Thus, each record has two fields: (1) a unique

identifier, idi; and (2) a value val(idi) ∈ [α, β], for i = 0, · · · , n−1. We denote with S = (s0, . . . , sn−1)

the sequence of record ids sorted in increasing order with respect to their values. Also, we write

vi = val(si). We denote with pos(idi) the position of record idi in sequence S. Finally we assume

that a database responds to a k-NN for a fixed k decided at setup-time. For the sake of simplicity of

the analysis, we assume that the mapping from records to values is injective, that is, there is a single

record in the database associated with a value.

Figure 3.1: The partition of [α, β] in Voronoi segments of ordered and unordered responses for k = 2
(left) and k = 3 (right). The curly brackets on the bottom indicate the unordered responses that
correspond to each Voronoi segments. The vertically written k-tuples indicate the ordered responses.
The term bi,j denotes the bisector between vi and vj which is also the Voronoi endpoint that separates
the corresponding neighboring Voronoi segments.

High-Order Voronoi Diagrams in One-Dimension. Given two values vi and vj of database

DB, the bisector bi,j of vi and vj is the point (vi + vj)/2. For a value vi of DB, the locus of points

of [α, β] for which vi is the nearest neighbor among the values of DB is called the Voronoi segment

of vi, denoted V (vi). The endpoints of V (vi) are bi−1,i and bi,i+1, where we conventionally define

b−1,0 = α and bn−1,n = β. The Voronoi diagram V (DB) is the partition of range [α, β] into regions

associated with the Voronoi segments of DB.

The notions of Voronoi segment and Voronoi diagram can be extended to sets and tuples of values

in DB. Given a set H of k values, we define Voronoi segment Vk(H) as the locus of points for which

the k-nearest values of every query that lands in this segment comprise set H. If H is a tuple of k

values, we define the Voronoi segment Vk(H) as the locus of points whose k-nearest values sorted

from closest to furthest comprise the tuple H. Thus, for a query that lands in the a locus Vk(H) the

server returns the corresponding identifiers of the values of H. We define the Voronoi diagram of
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order k of DB, denoted with Vk(DB), as the collection of all nonempty Voronoi segments Vk(H), for

all k-sized subsets (or tuples) H of values in DB. Finally, we denote with R the set of all possible

responses for k-NN queries on DB.

k-NN Responses. We consider two variants of k-NN queries. If the returned response is a set,

then we have an unordered response, denoted with r, which does not differentiate between closeness

among the values of r to the query point. In case the response is a k-tuple where the order of the

components indicates the closeness to the query point (from closest to furthest), then we have an

ordered response. In our analysis, both type of responses are denoted with r and the exact meaning

is either explicitly stated or can be inferred from the context. Figure 3.1 illustrates Voronoi segments

for ordered and unordered responses on a database. In our analysis we consider k that takes values

from the following range: 2 ≤ k ≤ dn2 e. In case k = 1 it is not possible to reconstruct the order of

the record identifiers due to absence of overlap in the responses. In case k ≥ dn2 e+ 1 there is at least

one pair of records that appears in all possible responses, thus order reconstruction is not possible.

We denote with Len(r) the length of the Voronoi segment Vk(r) associated with response r. For the

case of unordered responses the set of Voronoi endpoints of Vk(DB) is {b0,k, b1,k+1, . . . , bn−k−1,n−1}.

The above set of bisectors is also denoted as Bk because each bisector refers to values that are

k-positions apart wrt the ordering of S. For the case of ordered responses, the set of Voronoi endpoints

of Vk(DB) consists of the union of the sets of bisectors B1, B2, . . . , Bk.

In Sections 3.2.2 through 3.2.4 and 3.3.1 we study attacks on ordered responses and in Sections 3.2.5

and 3.3.2 through 3.3.4 we study attacks on unordered responses.

Adversarial Model. In our analysis, we assume that the adversary is passive and persistent,

that is, the adversary sees all the communication between the client and the server. The goal of

the adversary is to reconstruct the plaintext value of each record of the encrypted database by just

observing the encrypted identifiers returned as responses to k-NN queries. If the attacker recovers the

exact values, then the attack is called exact reconstruction. If the attacker recovers an approximation

of the values, then the attack is called approximate reconstruction and in our work is accompanied

by rigorous approximation guarantees. Our adversary does not have the power to issue queries or

inject data and has no prior knowledge about the distribution of the data.

Leakage Profile Under Attack. To design generic attacks that are applicable to a family

of present solutions, e.g. [101, 154], for k-NN queries, we consider a leakage profile that is typical

in this line of work. Given a fixed k the only information that our adversary sees is the query
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leakage LQ(DB) which is either the set (unordered) or the k-tuple (ordered) of the deterministically

encrypted identifiers that are retrieved for an issued query. For simplicity in the rest of the chapter

we refer to the deterministically encrypted identifiers as ‘records’. The only setup leakage LS(DB)

that we assume is the number of encrypted records, n. We note here that leaking the encrypted

record ids returned as responses to queries is a standard approach in the vast majority of encrypted

search constructions [23, 36, 45, 63, 90, 96, 101, 138, 149, 154] and to the best of our knowledge, it

can only be avoided with heavier cryptographic primitives such as ORAM [75] and response-hiding

STE [41], which negatively affect the running time and storage of the overall construction. From this

leakage profile the attacker can detect which ids correspond to the two extreme values but it is not

possible to differentiate between the ids of the first and the last value. Thus, all our reconstructions,

similarly to [99, 106], are correct up to reflection.

Assumptions for Our Attacks. For our attacks, we have three assumptions:

1. The queries observed are generated uniformly at random.

2. The database is static, no data is updated after the setup.

3. The boundaries α and β of the values are known.

Assumption 1, uniform query generation, appears in other leakage-abuse attacks [99, 106] and is

crucial for our proposed estimation techniques. An application where assumption 2 holds is the

historical geo-location trace of a user for a fixed time period, similar to the dataset in our evaluation.

Access to Auxiliary Information. In Section 3.2, we show that an attacker who has additional

knowledge can achieve exact reconstruction. In particular, for the results of Section 3.2, the adversary

is given the following auxiliary information, Aux:

• The set of all possible ordered (resp. unordered) responses to k-NN queries on DB, denoted

with R.

• The exact length of the Voronoi segment for every response in R, with is modeled by oracle

access to function Len(r) for a response r in R.

Note that set R has size n− k + 1 for unordered responses. The following lemma shows that set R

has size k(n− (k + 1)/2) + 1 for ordered responses.

Lemma 7. The number of ordered responses for k-NN queries in a database DB with n unique

values is k(n− (k + 1)/2) + 1.
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Proof. We start the proof with a relation regarding the location of bisectors with different gap. The

bisector bi,i+(λ−1) concerns the ids si and si+(λ−1) and the gap is λ− 1, similarly the bisector bi,i+λ

concerns the ids si and si+λ. Therefore we have:

vi+(λ−1) < vi+λ ⇒
vi + vi+(λ−1)

2 <
vi + vi+λ

2 ⇒ bi,i+(λ−1) < bi,i+λ

, where the first inequality comes from the definition of the sequence of sorted ids S. With a similar

argument we have:

vi < vi+1 ⇒
vi + vi+λ

2 <
vi+1 + vi+λ

2 ⇒ bi,i+λ < bi+1,i+λ

Therefore we have

bi,i+(λ−1) < bi,i+λ < bi+1,i+1+(λ−1) (3.1)

, where 0 ≤ i ≤ n− k − 1, and 1 < λ ≤ k.

Let us start with the partition that is implied by introducing the bisectors of gap k, i.e.,

b0,k, b1,1+k, . . . , dn−1−k,n−1. These bisectors form a partition of the universe of possible values,

furthermore this partition has n−k+1 segments. The above n−k+1 segments are further divided by

the introduction of the bisectors of gap k− 1, i.e., b0,k−1, b1,1+(k−1), b2,2+(k−1), . . . , bn−1+(k−1)+1,n−1.

If we apply the Equation (3.1) to the possible values of λ, i.e., 1 < λ ≤ k, we get the following set

of inequalities:

b0,k−1 ≤ b0,k ≤ b1,1+(k−1) ≤ b1,1+k ≤ b2,2+(k−1) ≤ . . . ≤ bn−1−(k−1),n−1

b0,k−2 ≤ b0,0+(k−1) ≤ b1,1+(k−2) ≤ b1,1+(k−1) ≤ b2,2+(k−2) ≤ . . . ≤ bn−1−(k−2),n−1

...

b0,1 ≤ b0,2 ≤ b1,2 ≤ b1,3 ≤ b2,3 ≤ . . . ≤ bn−2,n−1.

Thus, when we insert the set of bisectors with gap λ − 1 to the already formed partition we

introduce new segments. The exact number of new segments is equal to the number of bisectors with

gap λ− 1 since every new bisector cuts a segment in two. By applying the above observation to all
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bisectors we get:

|R| = #SegmentsBk + . . .+ #SegmentsB1 = (n−k+ 1) + (n− (k− 1)) + (n− (k−2)) + . . .+ (n− 1)

= (n− k + 1) +
k−1∑
j=1

(n− j) = (n− k + 1) + (k − 1)(2n− k)
2 = k

(
n− k + 1

2

)
+ 1.

One might say that knowledge of the above auxiliary information by the attacker is too much to

assume. Indeed, the results of Section 3.2 are primarily of theoretical interest. Nevertheless, they

provide a sufficient condition that makes exact reconstruction feasible. Also, the attack of Section 3.2

can be modified to achieve approximate reconstruction without access to the auxiliary information.

Indeed, as we show in Section 3.3 the auxiliary information can be approximated by an attacker

who observes a sufficently large number of queries. In particular, the attacker can (1) analyze the

probability of the event of observing all the possible responses and (2) rigorously estimate the lengths

of the Voronoi segments from the frequency of each response.

3.2 Exact Reconstruction

In this section, we consider exact reconstruction attacks for k-NN queries on a one-dimensional

encrypted database DB. An exact reconstruction attack is one that always and correctly retrieves

the values of the underlying encrypted database by just accessing the leakage. We assume that the

attacker has access to the auxiliary information, which we recall consists of the set R (all possible

responses to k-NN queries) and oracle access to the function Len(r) that returns the length of the

Voronoi segment associated with a response r in R. The auxiliary information subsumes Assumption 1,

which is not necessary for the results in this section. However, we still rely on Assumptions 2 (static

database), and 3 (knowledge of the range [α, β] of database values).

First, in Section 3.2.1, we present an algorithm that reconstructs the order of the records by

value given the set of all the possible responses, R, which is part of the auxiliary information.

This algorithm only needs unordered responses. Next, we study the complete exact reconstruction

attack for two cases: (i) ordered responses, for which we present an exact reconstruction attack

(Sections 3.2.2 through 3.2.4); (ii) unordered responses for which we show that exact reconstruction
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is impossible under this leakage profile (Section 3.2.5). The following two theorems summarize the

findings of this section.

Theorem 2. Let DB be an encrypted database consisting of n records with values in the range [α, β].

Assume the adversary is given the set R of all possible ordered responses to k-NN queries and oracle

access to the length Len(r) of the Voronoi segment of each response r in R. Algorithm AttackOrdered

achieves exact reconstruction of the values of DB, up to reflection, in O(k n logn) time.

Theorem 3. Let DB be an encrypted database with n records, and let k ≥ 2. Given only the leakage

of unordered responses to k-NN queries, it is impossible for any attacker (even computationally

unbounded) to achieve exact reconstruction.

Proof. Let DB have n values v0, v1, . . . , vn−1. Recall that in the case of k-NN unordered responses,

the bisectors that define the Voronoi segments are b0,k, b1,k+1, b2,k+2 up to bn−1−k,n−1. To construct

DB′ we will change the values vi in a way that the bisectors stay put. This implies that Voronoi

segments will not change. Therefore the leakage LQ(DB) = LQ(DB′) while DB 6= DB′. To compute

DB′, we set v′0 = v0 + ε and v′k = vk− ε, thus not affecting bisector b0,k. Changing v′k by −ε, however,

requires a change on v′2k by +ε so that bisector bk,2k is not affected either. This cascading effect

continues until we finally adjust v′bn/kck. Note that the range of values that ε can take is easily

computable. Specifically, it is the range from 0 to the minimum distance between any vi and vi+1 or

vi−1 for all i = 0, k, 2k, . . . , bn/kck. Since there are arbitrarily many values in this range, we have an

arbitrarily number of potential DB′ with the same Voronoi diagram.

3.2.1 Reconstructing the Order of Records

Consider a database that consists of three points x, y, z and where the set of possible unordered

responses to 2-NN queries is R = {{x, z}, {y, x}}. Clearly, the only possible order is z < x < y (up

to reflection) since x appears in both responses, i.e., overlaps, and thus x is the intermediate value.

Our algorithm ReconstructOrder is a generalization of the above idea.

In particular, Algorithm 3 initially finds the identifiers for the largest and smallest values—this is

easy since these are the only ones appearing in a single k-NN response. Then we construct the order

sequence S by finding the response r that overlaps with the k − 1 most-recently discovered entries of
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S, denoted in the algorithm as seq. The single remaining identifier is the one that finally extends the

discovered S. See Algorithm 3 for the detailed pseudocode.

Algorithm 3: ReconstructOrder
Input: Set R of unordered responses
Output: Sequence of ordered records (s0, . . . , sn−1)

1 Let Responses[j] be the set of responses containing identifier j;
2 Let id′, id′′ be the identifiers that are part of only one response in R;
3 Set s0 ← id′ and sn−1 ← id′′;
4 for all pi ∈ Responses[s0]− {s0} do
5 ind← |Responses[pi]|;
6 sind ← pi;
7 end
8 while k − 1 ≤ ind < n− 2 do
9 seq← {sind−k+1, . . . , sind};

10 Find response r from Responses[sind] s.t. |r ∩ seq| = k − 1;
11 sind+1 ← r − seq;
12 ind← ind +1;
13 end
14 return (s0, . . . , sn−1)

Theorem 4. Given the set R of all possible unordered responses to k-NN queries on an encrypted

database DB with n records, Algorithm ReconstructOrder computes the order of the records of DB

with respect to their values, up to reflection, in time O(k2 n).

Proof. The correctness of the algorithm is straight-forward. As for the complexity, assuming that

the data structure Responses is given as an input then Step 2 takes time equal to a linear scan of

the DS, i.e., O(n). The ‘for’ loop of Step 4 runs k − 1 times, inside the loop we compute the size

of the set Responses[pi] which naively takes O(k) so overall O(k2). The ‘while’ loop of Step 8 is

repeated O(n) times and inside the loop we perform the following: Step 9 is O(k), Step 10 needs

to go through the k unordered responses of Responses[sind] and compute the intersection, an action

that takes time proportional to the size of the largest set, so k repeats for O(k) intersection gives us

O(k2). Therefore, overall the ‘while’ loop has time complexity O(nk2). As a side note, if one wants

to build the data structure Responses from scratch then the complexity is a function of m which is

the size of the set of unordered responses.

Prior Work on Order Reconstruction. The work of Lacharité et al. [106] also uses order

reconstruction as a step for their attack on range queries leakage. In particular, the “sorting step”

proposed in [106] can be directly applied to the case of k-NN queries1. But just this step in [106]

takes O(k n3) time whereas our algorithm takes O(k2 n) time overall.
1Specifically, Lines 9-15 of Algorithm 2 in [106] iteratively build a set of responses that covers the entire set of

records except a single record.
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3.2.2 Overview of the Attack For Ordered Responses

Our proposed attack reconstructs the Voronoi diagram of the database values as an intermediate

step. This task consists of finding the order of the Voronoi segments and finding the location of the

Voronoi endpoints that separate the segments. As we will see, this is enough for total reconstruction.

Our attack consists of five steps, which are illustrated in Figure 3.2.

Figure 3.2: An overview of the attack based on
ordered responses where k = 2.

Step-1: Reconstruct Order of Records

and Relabel. We find the order of the records

with respect to their corresponding (unknown)

values by executing Algorithm ReconstructOrder,

presented in Section 3.2.1. This algorithm takes

as input unordered responses, thus ignoring the

order of the ids in the response tuples. The

output of this step is the n-tuple of ids of DB

sorted by value, denoted S = (s0, . . . , sn−1).

Step-2: Find Left-to-Right Geometric

Order of Voronoi Segments. We sort lexico-

graphically the response tuples of R using the

order S from the previous step. As shown in

Lemma 8, the resulting sorted sequence of re-

sponses yields the left-to-right geometric order

of the Voronoi segments.

Step-3: Find Bisectors Between

Voronoi Segments. By definition, except for

α and β, each endpoint of a Voronoi segment is a

bisector of two values from DB. In the previous

step, we discovered the neighboring relation between Voronoi segments, in this step, we further

discover which bisector corresponds to which Voronoi segment endpoint. Towards this goal, we use

Lemma 9, which shows that by comparing the ordered responses of two neighboring Voronoi segments,

we can infer which bisector separates them.

Step-4: Use Voronoi Segments’ Length to Find the Location of Bisectors. Starting
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from α, we use the left-to-right order of the Voronoi segments, and “expand” each segment by its

length so as to find the exact location of each bisector.

Step-5: Use Bisector Equations to Reconstruct Encrypted Values. At this point, we

have reconstructed the exact Voronoi diagram. In the final step of the attack, we take advantage of

the fact that bisectors impose constraints on the location of the associated values. Specifically, by

the definition of the bisector, the following equality holds bi,j = (vi + vj)/2. Notice that as long as

k ≥ 2 then the bisectors B1 = {b0,1, b1,2, . . . , bn−2,n−1} and B2 = {b0,2, b1,3, . . . , bn−3,n−1} appear as

Voronoi endpoints (see Preliminaries). Additionally, the locations of these bisectors are known from

the previous steps. Therefore, by forming a system of |B1| + |B2| = 2n − 3 linear equations with

the n unknowns v0, . . . , vn−1, the adversary reconstructs the encrypted values. Standard algorithms

for solving such a system take O(nc) time, where c ≈ 3. In Section 3.2.4, we prove that there is a

unique solution to this system and by taking advantage of the structure of the equations, we derive a

significantly faster reconstruction in O(n) time.

3.2.3 Ordering Voronoi Segments and Computing Bisectors

To complete the attack the attacker must order the Voronoi segments and compute the locations of

the bisectors separating them. As a reminder, the ordering of the underlying identifiers is derived

from Step-1 of the attack.

Lemma 8. For a database DB with n records, let S be the sequence of identifiers sorted by increasing

value. Let R be the universe of all ordered responses for k-NN queries on DB, where each response is

a k-tuple of ids of DB. We have that the left-to-right geometric order of the Voronoi segments of the

values of DB is given by the lexicographic order of the tuples of R with respect to the ordering of

identifiers given by S.

Finally, two neighboring Voronoi segments are separated by a Voronoi endpoint which is a bisector

between two values. The next lemma explains how an attacker can infer which bisector separates

two neighboring Voronoi segments.

Lemma 9. Let rleft and rright be ordered responses to k-NN queries associated with consecutive

Voronoi segments. We have that k-tuples rleft and rright differ in either:

• the last position, k, where the bisector that separates their segments refers to the values of the

record rleft(k) and the record rright(k); or
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• two consecutive positions, l and l + 1, where the bisector that separates their segments refers to

the values of records rleft(l) and rleft(l + 1).

Proof. Let val(r) denote the value of record r. Let h(val(r(i)),val(r(j))) be the locus of points that

are close to val(r(i)) than val(r(j)). Geometrically the Voronoi segment of ordered responses is

expressed as:

Vk(val(r)) =
( ⋂
id∈DB−{r(1)}

h(val(r(1)),val(id))
)
∩ . . . (3.2)

. . . ∩
( ⋂
id∈DB−{r(1),...,r(k)}

h(val(r(k)),val(id))
)
. (3.3)

Notice that the resulting line segment is the intersection of a series of loci. Since the metric space

is bounded, every Voronoi segment is bounded. Specifically, all internal Voronoi segments , i.e., we

exclude the first and last, are upper and lower bounded by two bisectors associated with two loci

that appear in the definition of Vk(val(r)). The connection between the bisectors and their loci is

a fact that we will use later in our proof. From the geometric interpretation of Vk(val(r)) we can

easily see that every locus h concerns a pair values where the first value is a record from the ordered

response r = (r(1), . . . , r(k)) and the second value is from a record id that either appears in r or

not. Given that every locus h is defined by a bisector, the above observation can be restated as: the

bisectors that upper- and lower-bound Vk(val(r)) are between a record that belongs to the ordered

response r and A) a record that does not appear in r or B) a record that appears in r. We proceed

with proof by using the above two cases as well as an inductive argument on the number of bisectors

of a k-th order Voronoi diagram when scanned from left-to-right.

Base Case. Since each record corresponds to a unique value the first bisector, which is also a

Voronoi endpoint , that is b0,1. Therefore, when scanning from left-to-right the first ordered response

is (s0, s1, s2, . . . , sk−1) and the second ordered response is (s1, s0, s2, . . . , sk−1). The claims of the

lemma are true.

Inductive Step. Let’s assume that our statement holds for m bisectors, we will prove that the

statement holds for m + 1 bisectors as well. Let rleft be the tuple of ordered responses which is

lower-bounded by the m-th bisector where the statements of our lemma are true. Let rright be the

next tuple of ordered responses that is lower-bounded by the (m+ 1)-th bisector bi,j . Thus, bisector
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bi,j separates rleft from rright. Since the values are unique it follows that we do not have an overlap

between two distinct bisectors, which in turn implies that two consecutive Voronoi segments can

differ in at most two positions of their tuples. Additionally, one of the values associated with bi,j is

part of the left ordered response and the other part of the right, more formally either si ∈ rleft and

sj ∈ rright or si ∈ rright and sj ∈ rleft. Without loss of generality we proceed assuming si ∈ rleft and

sj ∈ rright. So the question now is whether sj is also in rleft or not, we proceed with case analysis.

Case sj /∈ rleft. We know that si is part of rleft but sj is not, so there are k − 1 other ids that

appear in rleft and together with si comprise the ordered response rleft. Since the only bisector

between the segment of Vk(val(rleft)) and Vk(val(rright)) is bi,j then the above k − 1 ids that belong

to rleft also appear in the same positions in rright. Due to a previous observation we also know that

sj belongs to rright, so sj together with the k − 1 ids comprise rright. As a result the two ordered

responses only differ in a single position. This is only possible when the two ordered responses differ

in the last, i.e., k-th position. Thus, the Voronoi endpoint between them is the bisector of val(rleft(k))

and val(rright(k)).

Case sj ∈ rleft. We know that both si and sj are part of rleft, so there are k − 2 other ids that

appear in rleft and together with si and sj comprise the ordered response rleft. Since the only bisector

between the segment of Vk(val(rleft)) and Vk(val(rright)) is bi,j then the above k − 2 ids that belong

to rleft also appear in the same positions in rright. Due to a previous observation we also know that

sj belongs to rright, so sj together with the k − 2 ids appear in rright. The last remaining id from

rright can only be si. The final piece of the proof is to find the relative order of si and sj in k-tuples

rleft and rright. Since the line segment Vk(val(rleft)) lies on the side of the locus h(si, sj), we have

that the position of si in rleft is smaller than the position of sj in rleft. A similar argument for the

line segment Vk(val(rright)) shows that the position of sj in rright is smaller than the position of si

in rright. Therefore the two ids appear in the same consecutive positions in both rleft and rright, let

them be l and l + 1, but in different order. This shows that Voronoi endpoint between them is the

bisector of val(rleft(l)) and val(rleft(l + 1)) which concludes the proof.

3.2.4 From Exact Bisectors to Full Reconstruction

Given the length of each Voronoi segment, given via Aux that the attacker has access to in this

section, it is easy to compute the exact location of each bisector. In particular, starting from point α,

we use the left-to-right order of the Voronoi segments, and “expand” each Voronoi segment by its
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length. Since we found which bisector separates which Voronoi segments, we can compute the exact

location of every bisector. In the final step of the attack the adversary utilizes the exact locations of

bisectors B1 = {b0,1, b1,2, . . . , bn−2,n−1} B2 = {b0,2, b1,3, . . . , bn−3,n−1} so as to reconstruct the exact

values of DB. We use the relation between the bisector and the corresponding values in order to

form linear equations where the unknowns are the encrypted values of DB. Specifically, from the

locations of the bisectors of set B1 we can formulate a set of n − 1 equations, whereas from the

locations of the bisectors of set B2 we can formulate a set of n− 2 equations. The above two sets of

equations are labeled as L1 . . . , L2n−3 and are depicted in the following:

L1 :v0 + v1 = 2b0,1
L2 :v1 + v2 = 2b1,2

...
Ln−1 :vn−2 + vn−1 = 2bn−2,n−1

Ln :v0 + v2 = 2b0,2
Ln+1 :v1 + v3 = 2b1,3

...
L2n−3 :vn−3 + vn−1 = 2bn−3,n−1

Lemma 10. The above linear system has a unique solution.

Proof. Using elementary row operations on the augmented matrix we compute the echelon form and

thus compute the rank of the matrix. Specifically we introduce two types of echelon transformations:

Transformation (1)

Ln−1+i − Li → L′i+2

L′i+2 + Li+1 → L′i+2
1
2L
′
i+2 → L′i+2

Transformation (2)

Ln−1+i − Li+1 → L′i

L′i + Li → L′i
1
2L
′
i → L′i

where Transformation (1) takes values 1 ≤ i ≤ (n − 2), and Transformation (2) takes values

1 ≤ i ≤ 2. For example, for Transformation (1) and i = 1 we have: Ln − L1 → L′3, L
′
3 + L2 →

L′3,
1
2L
′
3 → L′3. By applying the above two transformations to all possible values of i we can construct

the new set of linear equations, L′1, L′2, . . . , L′n and get the following augmented matrix.


L′1: 1 0 0 . . . 0 0 b0,2 − b1,2 + b0,1
L′2: 0 1 0 . . . 0 0 b1,3 − b2,3 + b1,2
L′3: 0 0 1 . . . 0 0 b0,2 − b0,1 + b1,2
... . . . . . . . . . . . . . . . . . . . . .
L′n: 0 0 0 . . . 0 1 bn−3,n−1 − bn−3,n−2 + bn−2,n−1


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From the resulting augmented matrix we can verify that the rank of the matrix is n, therefore

the derived solution of the overdetermined system is unique.

Notice that each equation of the derived augmented matrix gives an expression of the corresponding

value in terms of three bisectors. For example, v0 = b0,2− b1,2 + b0,1 and v1 = b1,3− b2,3 + b1,2 etc. As

a result in AttackOrdered we don’t have to solve the system of linear equations derived by the set of

bisectors B1 and B2 which would take O(nc) time, where c ≈ 3. Instead we use directly the derived

formulas to fully reconstruct all values, which requires O(n) time, as it is captured in Lines 22-25 of

AttackOrdered. In terms of time complexity, Step 1 takes O(nk2), Step-2 takes2 O(kn log(n)), Step-3

& 4 take O(k2n), and Step-5 takes O(n) time.

Algorithm 4: AttackOrdered
Input: Auxiliary information Aux=(R, Len), where R corresponds to the ordered responses, and Len : r → R is

the length function where r ∈ R.
Output: Reconstructed encrypted values v0, . . . , vn−1

1 Rset ←Transform each k-tuple of R to a set of size k; // Step-1
2 (s0, . . . , sn−1)← ReconstructOrder(Rset);
3 Create an empty array VoronoiOrder ; // Step-2
4 Iterate through all r ∈ R and add each k-tuple

(
pos(r(1)), . . . , pos(r(k))

)
in VoronoiOrder;

5 VoronoiOrder← Sort(VoronoiOrder,’ascending’);
6 left← VoronoiOrder[1] ; // Step-3 & Step-4
7 current_r ← (sleft(1), sleft(2), . . . , sleft(k));
8 covered_area← α+ Len(current_r);
9 for all 2 ≤ i ≤ |VoronoiOrder| do

10 left← VoronoiOrder[i− 1], right← VoronoiOrder[i];
11 if k-tuples left and right differ in only one position then
12 j ← left(k);
13 bj,j+k ← covered_area;
14 else
15 Let x be the smallest position left and right differ;
16 j ← left(x), j′ ← left(x + 1);
17 bj,j′ ← covered_area;
18 end
19 current_r ← (sright(1), sright(2), . . . , sright(k));
20 covered_area← covered_area+ Len(current_r);
21 end
22 v0 ← b0,2 − b1,2 + b0,1, v1 ← b1,3 − b2,3 + b1,2; // Step-5
23 for all 2 ≤ i ≤ n− 1 do
24 vi ← bi−2,i − bi−2,i−1 + bi−1,i;
25 end
26 return v0, . . . , vn−1

2Since the total number of ordered responses is k(n − (k + 1)/2) + 1 the sorting step of that many items takes
O(kn log(n))
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3.2.5 Exact Reconstruction Impossibility for Unordered Responses

We sketch here the proof of the impossibility of exact reconstruction for the case of unordered

responses (Theorem 3). We show that for any fixed k ≥ 2, there exist arbitrarily many distinct

databases with same unordered-responses query leakage, and thus the leakage is not enough to

distinguish among them. From the leakage, we can derive the Voronoi diagram and thus the location

of all the bisectors. In our proof we demonstrate how to “displace” a carefully chosen subset of values

so as to create arbitrarily many distinct databases, one for every possible displacement value, while

maintaining the location of the bisectors.

3.3 Approximate Reconstruction

We now turn our attention to attacks that approximate the plaintext values when there is no

guarantee that all possible responses are observed by the adversary and the exact Voronoi segment

lengths are not available, i.e., no auxiliary information. Again, we consider ordered and unordered

responses. In both cases, our approximate reconstruction fails if the adversary has not observed the

set of all possible responses, R. The probability of this happening (over m uniformly distributed

queries) is summarized in the following lemma.

Lemma 11. The probability that the set of responses to m uniform k-NN queries from [α, β] does

not contain the set of all possible ordered (unordered) responses, R, is at most

|R|e−
m
β−α minr∈R Len(r) ,

where Len(r) is the length of the Voronoi segment of r.

Proof. Let Z be a random variable defined to be the number of queries required to see at least one

of each Voronoi segments. Let pi be the probability that i-th leftmost Voronoi segment is observed

by a uniformly generated query. Let Eli be the even that the i-th leftmost Voronoi segment (wrt to

their left-to-right order) is not observed in the first l queries.

Pr(Eli) = (1− pi)l ≤ e−pil
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Using the union bound we get:

Pr(Z > m) = Pr
(
∪|R|i=1E

m
i

)
≤
|R|∑
i=1

Pr(Emi ) ≤
|R|∑
i=1

e−pim ≤
|R|∑
i=1

e−m·min1≤j≤|R| pj

= |R|e−m·min1≤j≤|R| pj = |R|e−
m
β−α minr∈R Len(r)

Thus, Pr(Z < m) ≥ 1− |R|e−
m
β−α minr∈R Len(r)

With reference to Lemma 11, recall that the size of the set R of all possible responses to k-NN

queries on a database with n records is |R| = k(n − (k + 1)/2) + 1 for ordered responses and

|R| = n − k + 1 for for unordered responses. The attacker can verify whether all responses are

observed since we know n from the setup leakage and k from the query leakage. Note that for a fixed

number of queries, the smaller the length of the minimum Voronoi segment, the larger a probability

of failure of the attacks. Namely, our approximate reconstruction attack fails with the probability

given in Lemma 11 due to not having observed all the responses. However, for unordered responses,

the attack can fail for another reason as well. In particular, as discussed in Section 3.3.4, the attacker

picks its output based on an estimated k-dimensional polytope. Thus, if the estimated polytope is

empty, the attack fails.

3.3.1 Ordered Responses: Estimating Voronoi Segment Lengths

Given all possible responses R have been observed with m uniformly generated queries in [α, β], our

approximate reconstruction attack is a simple modification of attack AttackOrdered presented in

the Section 3.2.4. In particular, instead of assuming oracle access to function Len(r) at Line 20 of

AttackOrdered, we estimate Len(r) as

(β − α) · mr

m
, (3.4)

where mr is the number of queries (out of m total queries) that returned r as a response. The

resulting reconstruction attack achieves approximate reconstruction (up to reflection) with rigorous

guarantees:

Theorem 5. Let DB be an encrypted database with n records whose values are in the range [α, β].

Suppose the attacker observes the responses to m k-NN queries that are uniformly generated from

[α, β] (Assumption 1) and which contain all possible ordered responses, R. For any 0 < ε < β − α



71

and 0 < δ < 1, the variation of Algorithm AttackOrdered which estimates Voronoi segment lengths

using Equation 3.4 computes in O(m+ k n logn) time a sequence of reconstructed values such that

each reconstructed value differs from its original value by at most ε with probability at least 1− δ,

provided m is at least

max
{

180(β − α)2(k(n− (k + 1)/2) + 1)
ε2

, ,
225(β − α)2(ln 3− ln δ)

ε2

}
.

Proof. Let (Y1, . . . , Y|R|) be a multinomial distribution, that is |R| is a fixed number and we have |R|

mutually exclusive outcomes with corresponding probabilities p1, . . . , p|R|, and m independent trials.

Due to the fact that the |R| outcomes are mutually exclusive and one must occur every probability is

non-zero and
∑|R|
i=1 pi = 1. Additionally, the expectation of every Yi is E[Yi] = mpi. From Lemma 3

in [56] we have that for all ε1 ∈ (0, 1) and all R satisfying |R|/m ≤ ε21/20 we have:

Pr
( |R|∑
i=1
|Yi − E[Yi]| > mε1) ≤ 3e−mε

2
1/25 ⇒ Pr

( |R|∑
i=1
|Yi − E[Yi]| ≤ mε1) > 1− 3e−mε

2
1/25.

Let us now analyze the above probability event:

|R|∑
i=1
|Yi − E[Yi]| ≤ mε1 ⇒ |

|R|∑
i=1

(Yi − E[Yi])| ≤
|R|∑
i=1
|Yi − E[Yi]| ≤ mε1

⇒ −mε1 ≤
|R|∑
i=1

(
Yi − E[Yi]

)
≤ mε1 ⇒

( |R|∑
i=1

E[Yi]
m

)
− ε1 ≤

|R|∑
i=1

Yi
m
≤
( |R|∑
i=1

E[Yi]
m

)
+ ε1 (3.5)

Transformation to Bisector Estimation. The multinomial formulation can be adjusted to assist

to the task of bisector approximation. Let each trial correspond to a uniformly chosen query point

from [α, β], then the outcome of the trial corresponds to an ordered response from the Voronoi

diagram Vk(DB). The number of trials for the case of a multinomial was denoted by m which in the

bisector estimation is the number of queries. Therefore the number of possible outcomes |R| is the

number of Voronoi segments of order k. Notice that the probability that a response is ri is equal to

the probability pi that a uniformly chosen query point lands to the Voronoi segment Vk(ri), which in

turn is equal to the ratio of the length of the corresponding Voronoi segment to the length of the

entire bounded metric space. Specifically pi = Len(Vk(ri))/(β − α).

Let Pi,j be the set of Voronoi segments that precede bi,j , then we know that bi,j = α +



72

∑
l∈Pi,j Len(Pi,j(l)). Since |Pi,j | < R we have:

|
∑
l∈Pi,j

(Yi − E[Yi])| ≤
∑
l∈Pi,j

|Yl − E[Yl]| ≤
R∑
i=1
|Yi − E[Yi]| ≤ mε1

, and similarly to the summation of (3.5) we can derive:

( ∑
l∈Pi,j

E[Yl]
m

)
− ε1 ≤

∑
l∈Pi,j

Yl
m
≤
( ∑
l∈Pi,j

E[Yl]
m

)
+ ε1 ⇒

( ∑
l∈Pi,j

pl)− ε1 ≤
∑
l∈Pi,j

Yl
m
≤
( ∑
l∈Pi,j

pl
)

+ ε1

⇒
( ∑
l∈Pi,j

Len(Pi,j(l))
(β − α) )− ε1 ≤

∑
l∈Pi,j

Yl
m
≤
( ∑
l∈Pi,j

Len(Pi,j(l))
(β − α)

)
+ ε1

⇒
( ∑
l∈Pi,j

Len(Pi,j(l))
)
− (β − α)ε1 ≤ (β − α)

∑
l∈Pi,j

Yl
m
≤
( ∑
l∈Pi,j

Len(Pi,j(l))
)

+ (β − α)ε1

⇒ bi,j − (β − α)ε1 ≤ α+ (β − α)
∑
l∈Pi,j

Yl
m
≤ bi,j + (β − α)ε1

⇒ bi,j − (β − α)ε1 ≤ b̃i,j ≤ bi,j + (β − α)ε1 ⇒ |bi,j − b̃i,j | ≤ (β − α)ε1

Therefore the overall probability expression becomes:

Pr
(
|bi,j − b̃i,j | ≤ (β − α)ε1) > 1− 3e−mε

2
1/25.

We define ε2 = (β − α)ε1 and get:

Pr
(
|bi,j − b̃i,j | ≤ ε2) > 1− 3e−

mε2
2

(β−α)225 .

With further analysis we get:

bi−2,i − ε2 ≤ b̃i−2,i ≤ bi−2,i + ε2

bi−2,i−1 − ε2 ≤ ˜bi−2,i−1 ≤ bi−2,i−1 + ε2

−bi−1,i − ε2 ≤ −b̃i−1,i ≤ −bi−1,i + ε2


⇒ bi−2,i + bi−2,i−1 − bi−1,i − 3ε2 ≤ b̃i−2,i + ˜bi−2,i−1 − b̃i−1,i ≤ bi−2,i + bi−2,i−1 − bi−1,i + 3ε2
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⇒ vi − 3ε2 ≤ b̃i−2,i + ˜bi−2,i−1 − b̃i−1,i ≤ vi + 3ε2 ⇒ vi − 3ε2 ≤ ṽi ≤ vi + 3ε2

, where for the last substitution we used the augmented matrix described in Section 3.2.4. Finally,

we define ε = 3ε2. We also define δ as δ ≥ 3e−
mε2

2
25(β−α)2 and get:

δ ≥ 3e−
mε2

2
25(β−α)2 = 3e−

mε2
225(β−α)2 ⇒ ln δ ≥ ln 3− mε2

225(β − α)2 ⇒ m ≥ 225(ln 3− ln δ)(β − α)2

ε2

Also with some algebraic manipulation of the inequality about m from Lemma 3 in [56] we get:

|R|
m
≤ ε21

20 ⇒
|R|
m
≤ ε22

20(β − α)2 ⇒ m ≥ |R|(β − α)220
ε22

⇒ m ≥ 180(β − α)2|R|
ε2

Since |R| = k(n− (k + 1)/2) + 1 we get

m ≥ 180(β − α)2(k(n− (k + 1)/2) + 1)
ε2

.

By using the two derived inequalities about m we get:

m = max
{

180(β − α)2(k(n− (k + 1)/2) + 1)
ε2

,
225(β − α)2(ln 3− ln δ)

ε2

}

Then the out put ṽ of the algorithm satisfies the following probability expression:

⇒ Pr
(
|vi − ṽi| ≤ ε) > 1− δ.

3.3.2 Unordered Responses: Defining the Reconstruction Space

As we saw in Section 3.2.5, in the case of unordered responses, there are more than one databases

DB that map to the same query leakage LQ(DB). Our first step in developing an attack is to study

the space of potential reconstructions.

We first define the universe of all reconstructions. Let Vn be the set of n-tuples v ∈ Vn such that

v0, . . . , vn−1 ∈ [α, β] and v0 < v1 < . . . < vn−1. A reconstruction algorithm returns an n-tuple from

the set Vn. We show how Vn can be partitioned based on the concept of Voronoi diagrams of order k.
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Definition 5. Let Vn be the set of ordered n-tuples with distinct values from the range [α, β]. We

define the reconstruction relation Pk with respect to k as a subset of Vn × Vn such that if

(v, v′) ∈ Pk, also denoted as v ∼k v′, then Vk(v) = Vk(v′) where Vk(·) is the k-th order Voronoi

diagram.

To put it simply, if we have two n-tuples v, v′ where the reconstruction relation Pk holds then

they have the same k-th order Voronoi diagram. A corollary of the above definition is that the

reconstruction relation is an equivalence relation.

Definition 6. Given the reconstruction relation ∼k and v ∈ Vn, we define [v] the reconstruction

class of v, as :

[v] = {v′ ∈ Vn : v ∼k v′}.

It is easy to prove that the reconstruction class of v is also an equivalence class. From the

properties of equivalence classes we know that every two equivalence classes [v] and [v′] are either

equal or disjoint. Additionally, the set of all equivalence classes of Vn forms a partition of Vn, i.e.,

every n-tuple v ∈ Vn belongs to one and only one equivalence class. Given an equivalence class [v], a

representative for [v] is an n-tuple of [v], i.e., it is a v′ ∈ Vn such that v′ ∼k v.

One of the n-tuples of the reconstruction class is the original database, but given the considered

leakage profile our attacker does not know which one. We focus on attacks that return a representative

of the correct3 reconstruction class. The success of the reconstruction attack is measured using the

L∞ distance metric, also known as Chebyshev distance, so as to capture the largest error among all

reconstructed values. More formally:

dL∞(v, v′) = max0≤i<n(|vi − v′i|).

The next step of our analysis is to characterize the n-tuples of a given reconstruction class.

Characterization via Offsets ξ from Bisectors. In order for two n-tuples to be in the same

reconstruction class they must have the same k-th order Voronoi diagram. Therefore the Voronoi

endpoints (i.e., the bisectors) must be in the same fixed location. In this approach we model the

n-tuples of the reconstruction class using only k unknown offsets from the above fixed bisectors,

as opposed to n unknowns of a naive approach. To give an intuitive explanation of our attack we
3Other attack techniques might be possible if the attacker is willing to output an n-tuple from any (and possibly

incorrect) reconstruction class.
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proceed with an illustration of our result for k = 2, the general case where k > 2 is addressed in

Section 3.3.4.

Figure 3.3: Values v0 and v2 must be equidistant, specifically ξ0 afar, from b0,2. Using the derived equa-
tions we can express the locations of v2, v4, v6, v8 because the locations of bisectors b0,2, b2,4, b4,6, b6,8
stay fixed. Similarly, by using offset ξ1 we can express the locations of v3, v5, v7, v9.

Analyzing Case k = 2. Our goal is to characterize the space of n-tuples of a reconstruction class

given its 2nd order Voronoi diagram. We will demonstrate that we need to define unknowns for the

location of only two values and the rest of the n− 2 values can be expressed as function of these two.

The unknown variables are ξ = (ξ0, ξ1) and their geometric description follows. Let the first value v0

be ξ0 to the left of the bisector b0,2. Since the location of b0,2 is fixed, it follows that the value v2

must be ξ0 to the right of the bisector b0,2. Using the formulated equation v2 = b0,2 + ξ0 we can

express v4 so as v4 and v2 are equidistant from the fixed location of b2,4. Using the same reasoning

let v1 be ξ1 to the left of the bisector b1,3. The location of values v3, v5, v7, . . . can be expressed as a

function of the offset ξ1 and the location of the relevant bisectors. As one can easily see, by picking a

value for the unknown ξ0 we fix the location of v0 (resp. v1) which in turn has a domino effect on

the location of v2, v4, v6, . . . (resp. v3, v5, v7, . . .). Figure 3.3 highlights which values can be expressed

as a function of the unknown offsets ξ0, ξ1. Specifically for n = 10 we have:

v0 = b0,2 − ξ0
v2 = b0,2 + ξ0

v4 = 2b2,4 − v2 = 2b2,4 − b0,2 − ξ0
v6 = 2b4,6 − v4 = 2b4,6 − 2b2,4 + b0,2 + ξ0

v8 = 2b6,8 − v6 = 2b6,8 − 2b4,6 + 2b2,4 − b0,2 − ξ0

v1 = b1,3 − ξ1
v3 = b1,3 + ξ1

v5 = 2b3,5 − v3 = 2b3,5 − b1,3 − ξ1
v7 = 2b5,7 − v5 = 2b5,7 − 2b3,5 + b1,3 + ξ1

v9 = 2b7,9 − v7 = 2b7,9 − 2b5,7 + 2b3,5 − b1,3 − ξ1

The next lemma describes the closed-form of each value as function of the appropriate bisectors

and offset for any k ≥ 2.



76

Lemma 12. Let Vk(v) be the Voronoi diagram of the reconstruction class [v] with Voronoi endpoints

b0,k, . . . , bn−k−1,n−1. If an n-tuple v′ belongs to [v], there exists a k-tuple denoted as ξ where

ξ0, . . . , ξk−1 ≥ 0 such that for all 0 ≤ i ≤ n− 1:

v′i =



bi,i+k − ξi , for 0 ≤ i < k

bi mod k,i mod k+k + ξi mod k , for k ≤ i < 2k

(−1)bi/k−1c(bi mod k,(i mod k)+k + ξi mod k)+ , for 2k ≤ i ≤ n− 1

+
∑

2≤j≤bi/kc(−1)j+bi/kc2b(i mod k)+(j−1)k,(i mod k)+jk,

(3.6)

We call the k-tuple ξ = (ξ0, . . . , ξk−1) the offset vector of v′.

After characterizing the n-tuples of [v] using 2 unknowns we address the following question: What

values can ξ take so as to give an n-tuple that belongs to [v]?

Ordering Constraints. We define the ordering constraints as the inequalities that guarantee that

two consecutive values do not surpass each other, e.g., v0 ≤ v1, v1 ≤ v2 etc. By substituting the

formulas for v0, . . . , vn−1 defined in Lemma 12, we get inequalities with the unknowns ξ0 and ξ1. As

an example, for n = 10 we have the following inequalities:

v0 < v1 ⇒ −ξ0 + ξ1 < c0,1 , where c0,1 = (b1,3 − b0,2)

v1 < v2 ⇒ −ξ0 − ξ1 < c1,2 , where c1,2 = −(b1,3 − b0,2)

v2 < v3 ⇒ ξ0 − ξ1 < c2,3 , where c2,3 = (b1,3 − b0,2)

v3 < v4 ⇒ ξ0 + ξ1 < c3,4 , where c3,4 = (b2,4 − b1,3) + (b2,4 − b0,2)

v4 < v5 ⇒ −ξ0 + ξ1 < c4,5 , where c4,5 = 2(b3,5 − b2,4)− (b1,3 − b0,2)

v5 < v6 ⇒ −ξ0 − ξ1 < c5,6

, where c5,6 = 2(b4,6 − b3,5)− (b2,4 − b0,2)− (b2,4 − b1,3)

v6 < v7 ⇒ ξ0 − ξ1 < c6,7

, where c6,7 = 2(b5,7 − b4,6)− 2(b3,5 − b2,4) + (b1,3 − b0,2)

v7 < v8 ⇒ ξ0 + ξ1 < c7,8

, where c7,8 = 2(b6,8 − b5,7)− 2(b4,6 − b3,5) + (b2,4 − b1,3) + (b2,4 − b0,2)

v8 < v9 ⇒ −ξ0 + ξ1 < c8,9

, where c8,9 = 2(b7,9 − b6,8)− 2(b5,7 − b4,6) + 2(b3,5 − b2,4)− (b1,3 − b0,2)
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By examining the first four inequalities one can see that the first ξ1 ≤ ξ0 + c0,1 and the third

ξ1 ≥ ξ0 − c2,3 concern half-planes based on parallel lines with positive slope. The y-intercept of

the first is positive while the y-intercept of the third is negative. Similarly, the second inequality

ξ1 ≥ −ξ0 − c1,2 and the fourth ξ1 ≤ −ξ0 + c3,4, concern half-planes based on parallel lines with

negative slope and y-intercepts that are negative and positive, respectively. If we extend this reasoning

to the rest of the constraints we see that we can partition the ordering constraints in four categories

of half-planes, i.e., 1) slope = 1 and positive y-intercept, 2) slope = 1 and negative y-intercept 3)

slope = −1 and positive y-intercept, and 4) slope = −1 and negative y-intercept. From each of the

four categories all but one constraint are redundant. By omitting redundant constraints we do not

change the region that satisfies the constraints. To find the non-redundant one can go through the

y-intercepts of each category and remove the overlapping constraints, can be accomplished in time

O(n).

Figure 3.4: The possible values of ξ0, ξ1 in X- and Y -axis respectively for a given [v]. The feasible
region is colored with blue. The set of redundant ordering constraints are depicted with gray dotted-
lines, and the non-redundant ordering constraints with black bold-lines. The boundary constraints
are depicted with red dotted-lines.

Boundary Constraints. We need two inequalities to guarantee that the first/last value do

not surpass the boundary of the range of values, i.e., [α, β]. For the example where n = 10

we have 1) α < v0 ⇒ ξ0 < cα,0 where cα,0 = b0,2 − α, and 2) v9 < β ⇒ ξ1 > c9,β where

c9,β = 2b7,9 − 2b5,7 + 2b3,5 − b1,3 − β.

The Reconstruction Class: A Convex Polygon. The pairs of feasible offset values (ξ0, ξ1) is the set



78

of values that satisfy: 1) the four non-redundant ordering constraints as well as 2) the two boundary

constraints. Figure 3.4 gives a detailed geometric illustration of the feasible region for the running

example. Depending on the values of the database the boundary constraints can be redundant.

Generally, we denote the feasible region of reconstruction class [v] as F[v] = {ξ′ ∈ Rk : A·ξ′ ≤ c},

where each row of A · ξ′ ≤ c represents a constraint on ξ. Overall, we have:

(1) Ordering constraints: n− 1 in number,

(2) Boundary constraints: two in number,

(3) Positive-offset constraints: k constraints to guarantee that the offsets are positive.

Therefore, A is a (n+k+1)×k matrix of coefficients for the inequalities, ξ is a column vector with k

offsets, and c is the column vector with the n+k+1 constants (i.e., ca,0, cn−1,b, c0,1, c1,2, . . . , cn−2,n−1).

Since we only have linear inequalities in F[v], the region is a convex polytope.

Diameter of the Feasible Region. Given the feasible region F[v] of the reconstruction class [v],

the L∞ distance between a pair of n-tuples v′, v′′ ∈ [v] of the class is:

dL∞(v′, v′′) = max
0≤i≤n−1

({|v′i − v′′i |}) = max
0≤i≤k−1

({|ξ′i − ξ′′i |} = dL∞(ξ′, ξ′′) ≤ dL2(ξ′, ξ′′) ≤ diam(F[v])

(3.7)

where the second equality is derived by substituting the values with the offset formulas of Lemma 12.

The polytope diameter diam(·), or simply diameter, is the largest Euclidean distance between any

pair of vertices of the polytope. Therefore if the attacker is able to compute F[v] he can compute an

upper-bound of the distance of any pair of n-tuples in the reconstruction class. We note here that

the final output of the reconstruction attack is a representative v∗ of the reconstruction class [v], and

that the original database can be any n-tuple of the reconstruction class. The last key observation of

the attack is that if the attacker outputs v∗ for which the offset vector is the mean of the offsets

ξ′, ξ′′ of the diameter, then all the potential original database n-tuples are at most diam(F[v])/2

distance afar.

3.3.3 Overview of the Unordered Response Attack

We give an overview of the approximate reconstruction for k = 2. See Section 3.3.4 for a generalization.

Step 1. The attacker reconstructs the order of the records with respect to their (unknown) values

by using the algorithm ReconstructOrder. After relabeling the record ids using S = (s0, . . . , sn−1)
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the attacker computes the left-to-right order of the Voronoi segments. For the case of unordered

responses this step is straightforward and can be done by just “shifting” a k-length window over the

sequence S, e.g., the left-to-right order is {s0, . . . , sk−1}, {s1, . . . , sk}, . . . , {sn−k−1, . . . , sn−1}. For

the case of unordered responses assigning the bisectors to Voronoi endpoints is straightforward as

well. The corresponding left-to-right order of the bisectors is b0,k, b1,k+1, . . . , bn−k−1,n−1. This attack

differs significantly from the the Ordered Responses Attack in the next two steps.

Step 2: Estimate the Constraints of the Feasible Region. There are infinitely many value

n-tuples for DB that can give a fixed k-th order Voronoi diagram. The next step of our attack

characterizes the set of all such n-tuples using only k unknowns, namely the offsets ξ = (ξ0, . . . , ξk−1).

We define a set of linear constraints, namely the ordering, the boundary, and the positive-offset

constraints, imposed on the unknowns ξ so as to find the offsets assignments that correspond to

a valid n-tuple of the reconstruction class. Each constraint imposed on ξ is a half-space and the

intersection of these constraints defines the feasible region F[v]. Geometrically, F[v] is a bounded

convex k-dimensional polyhedron, i.e., a polytope. But since the constraints’ constants are not

known to the attacker we propose a way to estimate them. In particular the new algorithm estimates

the right-hand side constant of each constraint, e.g., estimation of terms cα,0, c0,1, . . . , c4,5, c5,β in

Figure 3.5.

The key observation is that each c term can be expressed as the linear combination of lengths of

Voronoi segments, e.g., in Figure 3.5 term c4,5 involves Len({s1, s2}) and Len({s3, s4}). Our estimator

uses the frequency of each unordered response to estimate the appropriate linear combination of

lengths of each constraint with rigorous probabilistic guarantees.

Step 3: Compute Convex Polytope & Output the Mean of the Polytope Diameter.

At this point we have estimated the feasible region of the offset vector ξ, depicted in Figure 3.5.

As a next step the attack utilizes a solver for the Vertex Enumeration Problem [13] which takes as

an input the linear inequalities (i.e., the constraints) and outputs the vertices on the boundary of

the feasible region F[v]. Having the coordinates of the vertices of F[v], our attack can compute the

diameter of the convex polytope. As it is shown in Theorem 6, the offset ξ∗, which is defined as

the mean of a pair of polytope-vertices that constitute the diameter, gives a representative v∗ that

has distance at most diam(F[v])/2 from all the n-tuples of the reconstruction class, including the

(unknown) original database.



80

Figure 3.5: An overview of the attack based on unordered responses for k = 2.
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3.3.4 Unordered Responses: Reconstruction for k ≥ 2

Estimating the Constraints. We define the tuple L as:

L =
(
Len({s0, . . . , sk−1}), . . . , Len({sn−k, . . . , sn−1})

)
, where Len(·) indicates the length of the Voronoi segment that is given as an input. Our goal is to

estimate the expression of each constraint and to achieve this the next (simplified) lemma is of great

importance. Specifically, the following lemma shows that each of the ordering constraints (same

argument holds for the boundary) can be expressed as a simple linear combination of ξ and L where

the coefficients are known. Since we can estimate the lengths of L using Equation (3.4) we have a

way to estimate the constraints as well. The proof performs a case analysis of the inequality vi < vi+1

based on the value of i with respect to the formulas of Lemma 12.

Lemma 13. The ordering constraint vi < vi+1 can be expressed as a function of A) the offsets

ξ = (ξ0, . . . , ξk−1) and B) the lengths of a subset of Voronoi segments. Specifically by using the

expressions of vi from Lemma 12 we get the following cases:

• if 0 ≤ i < k − 1, then vi < vi+1 can be written as:

− ξi + ξi+1 < ci,i+1, where ci,i+1 = Len({si+1, . . . , si+k})

• if i = k − 1, then vi < vi+1 can be written as:

− ξk−1 − ξ0 < ck−1,k, where ck−1,k = −
∑

1≤l≤k−1
Len({sl, . . . , sl+k−1})

• if k ≤ i < 2k − 1, then vi < vi+1 can be written as:

ξi mod k − ξi mod k+1 < ci,i+1, where ci,i+1 = Len({si mod k+1, . . . , si mod k+k})

• if i = 2k − 1, then vi < vi+1 can be written as:

ξk−1 + ξ0 < c2k−1,2k, where c2k−1,2k = Len({sk, . . . , s2k−1}) +
∑

1≤l≤k
Len({sl, . . . , sl+k−1})
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• if 2k ≤ i < n− 1 and (i+ 1) mod k 6= 0, then vi < vi+1 can be written as:

(−1)bi/k−1c(ξi mod k − ξ(i+1) mod k) < ci,i+1

, where ci,i+1 = (−1)bi/k−1c(Len({s(i+1) mod k, . . . , s(i+1) mod k+k−1})

+
∑

2≤j≤bi/kc

(−1)j+bi/kc2Len({si mod k+(j−1)k+1, . . . , s(i+1) mod k+jk−1})

• if 2k ≤ i < n− 1 and (i+ 1) mod k = 0, then vi < vi+1 can be written as:

(−1)bi/kc+1(ξi mod k + ξ(i+1) mod k) < ci,i+1

, where ci,i+1 = (−1)bi/kc+1( ∑
1≤l≤k

Len({sl, . . . , sl+k−1})
)

+ (−1)bi/kc+1Len({sk, . . . , s2k−1}) +
∑

2≤j≤bi/kc

(−1)j+bi/kc2(Len({sjk, . . . , sjk+k−1}))

The first three cases the term ci,i+1 consists of the length of a single Voronoi segment. For the fourth

case the term ci,i+1 is a linear combination of 2k − 1 length terms. For the fifth case the term ci,i+1

is a linear combination of at most b(n− 1)/kc length terms. Finally for the last case ci,i+1 is a linear

combination of at most b(n− 1)/kc+ k length terms.

Proof. We proceed by doing a case analysis on the value of i using the formulas of Lemma 12. A

useful observation for the rest of the analysis is that the Voronoi segment between consecutive

bisectors bl,l+k and bl+1,l+1+k is labeled as {sl+1, . . . , sl+k}. So the difference bl+1,l+1+k − bl,l+k is

equal to Len({sl+1, . . . , sl+k}).

Case (1) if 0 ≤ i < k − 1: Then we have:

vi < vi+1 ⇒ bi,i+k − ξi < bi+1,i+1+k − ξi+1 ⇒ −ξi + ξi+1 < bi+1,i+1+k − bi,i+k

The bisectors bi,i+k and bi+1,i+1+k are consecutive bisectors. Therefore, the difference of their

location is equal to the length of the Voronoi segment that is in-between.

− ξi + ξi+1 < Len({si+1, . . . , si+k}) (3.8)



83

Case (2) if i = k − 1: Then we have:

vk−1 < vk ⇒ bk−1,2k−1 − ξk−1 < b0,k + ξ0 ⇒ −ξk−1 − ξ0 < −(bk−1,2k−1 − b0,k)

In this case the difference is equivalent with the the sum of the lengths of the Voronoi segments

that reside in-between the two bisectors. Therefore:

(bk−1,2k−1 − b0,k) =
∑

1≤l≤k−1
Len({sl, . . . , sl+k−1})

Case (3) if k ≤ i < 2k − 1: Then we have:

vi < vi+1 ⇒ bi mod k,i mod k+k + ξi mod k < b(i+1) mod k,(i+1) mod k+k + ξ(i+1) mod k

⇒ ξi mod k − ξi mod k+1 < bi mod k+1,i mod k+1+k − bi mod k,i mod k+k

The bisectors bi mod k+1,i mod k+1+k and bi mod k,i mod k+k are consecutive bisectors. Therefore,

the difference of their location is equal to the length of the Voronoi segment that is in-between.

ξi mod k − ξi mod k+1 < Len({si mod k+1, . . . , si mod k+k}) (3.9)

Case (4) if i = 2k − 1:

Then we have:

v2k−1 < v2k ⇒ b(2k−1) mod k,(2k−1) mod k+k + ξ(2k−1) mod k < −(b0,k + ξ0) + 2bk,2k

⇒ ξk−1 + ξ0 < 2bk,2k − b0,k − bk−1,2k−1 = (bk,2k − b0,k) + (bk,2k − bk−1,2k−1)

Notice that in the difference of bisectors (bk,2k − b0,k) does not concern consecutive bisectors. In

this case the difference is equivalent with the the sum of the lengths of the Voronoi segments that

reside in-between the two bisectors. Therefore:

(bk,2k − b0,k) =
∑

1≤l≤k
Len({sl, . . . , sl+k−1})
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Using a similar argument we have:

(bk,2k − bk−1,2k−1) = Len({sk, . . . , s2k−1})

So overall we have:

ξk−1 + ξ0 < Len({sk, . . . , s2k−1}) +
∑

1≤l≤k
Len({sl, . . . , sl+k−1}) (3.10)

Remaining Cases: For the last cases we have the following expression.

vi < vi+1 ⇒ (−1)bi/k−1cξi mod k − (−1)b(i+1)/k−1cξ(i+1) mod k

< (−1)b(i+1)/k−1cb(i+1) mod k,((i+1) mod k)+k

− (−1)bi/k−1cbi mod k,(i mod k)+k+

+
∑

2≤j≤b(i+1)/kc

(−1)j+b(i+1)/kc2b((i+1) mod k)+(j−1)k,((i+1) mod k)+jk

−
∑

2≤j≤bi/kc

(−1)j+bi/kc2b(i mod k)+(j−1)k,(i mod k)+jk

If term b(i+ 1)/kc is different from bi/kc then the first sum has an extra term. The only way

these two differ is for i+ 1 to be a multiple of k, i.e., (i+ 1) mod k = 0. We analyze the remaining

two cases in the remaining of the proof.

Case (5) if i ≥ 2k and (i+ 1) mod k 6= 0: then we have that bi/kc = b(i+ 1)/kc. Consequently,

bi/k − 1c = b(i+ 1)/k − 1c. Thus:

(−1)bi/k−1c(ξi mod k − ξ(i+1) mod k) < (−1)bi/k−1c(b(i+1) mod k,((i+1) mod k)+k − bi mod k,(i mod k)+k)

+
∑

2≤j≤bi/kc

(−1)j+bi/kc2
(
b((i+1) mod k)+(j−1)k,((i+1) mod k)+jk − b(i mod k)+(j−1)k,(i mod k)+jk

)

Since ((i + 1) mod k) + (j − 1)k is equal to
(
(i mod k) + (j − 1)k

)
+ 1, the two bisectors of

the sum b((i+1) mod k)+(j−1)k,((i+1) mod k)+jk and b(i mod k)+(j−1)k,(i mod k)+jk are consecutive bisec-

tors. Similarly, since (i+ 1) mod k = i mod k + 1, the two bisectors b(i+1) mod k,((i+1) mod k)+k and

bi mod k,(i mod k)+k are consecutive bisectors. Therefore, the difference of their location is equal to the
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length of the Voronoi segment that is in-between. Thus, we have:

(−1)bi/k−1c(ξi mod k − ξ(i+1) mod k) < (−1)bi/k−1c(Len({s(i+1) mod k, . . . , s((i+1) mod k)+k−1})

+
∑

2≤j≤bi/kc

(−1)j+bi/kc2Len({s(i mod k)+(j−1)k+1, . . . , s((i+1) mod k)+jk−1})

(3.11)

Case (6) if i ≥ 2k and (i+ 1) mod k = 0: then we have that bi/kc+ 1 = b(i+ 1)/kc. We also

have that, bi/k− 1c+ 1 = b(i+ 1)/k− 1c. Since (i+ 1) mod k = 0 we also have that i mod k = k− 1.

(−1)bi/k−1c(ξi mod k + ξ(i+1) mod k)

< (−1)b(i+1)/k−1cb(i+1) mod k,((i+1) mod k)+k − (−1)bi/k−1cbi mod k,(i mod k)+k+

+
∑

2≤j≤b(i+1)/kc

(−1)j+b(i+1)/kc2b(j−1)k,jk −
∑

2≤j≤bi/kc

(−1)j+bi/kc2bk−1+(j−1)k,k−1+jk

= (−1)bi/k−1c+1b0,k − (−1)bi/k−1cbk−1,k−1+k+

+
∑

2≤j≤b(i+1)/kc

(−1)j+b(i+1)/kc2b(j−1)k,jk −
∑

2≤j≤bi/kc

(−1)j+bi/kc2bjk−1,jk−1+k

= −(−1)bi/k−1cb0,k − (−1)bi/k−1cbk−1,k−1+k + (−1)2+bi/kc+12bk,2k

+
∑

2≤j≤bi/kc

(−1)j+1+bi/kc+12bjk,jk+k − (−1)j+bi/kc2bjk−1,jk−1+k

= (−1)bi/kcb0,k + (−1)bi/kcbk−1,k−1+k − (−1)bi/kc2bk,2k +
∑

2≤j≤bi/kc

(−1)j+bi/kc2(bjk,jk+k − bjk−1,jk−1+k)

= −(−1)bi/kc(bk,2k − b0,k)− (−1)bi/kc(bk,2k − bk−1,k−1+k) +
∑

2≤j≤bi/kc

(−1)j+bi/kc2(bjk,jk+k − bjk−1,jk−1+k)

The bisectors bjk,jk+k and bjk−1,jk−1+k are consecutive bisectors. Therefore, the difference of

their location is equal to the length of the Voronoi segment that is in-between:

(bjk,jk+k − bjk−1,jk−1+k) = Len({sjk, . . . , sjk+k−1})

The remaining two bisector differences can also be expressed as lengths of Voronoi segments as
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follows:
(bk,2k − b0,k) =

∑
1≤l≤k

Len({sl, . . . , sl+k−1})

(bk,2k − bk−1,k−1+k) = Len({sk, . . . , s2k−1})

Therefore the overall expression is:

− (−1)bi/kc(ξi mod k + ξ(i+1) mod k) < −(−1)bi/kc
( ∑

1≤l≤k
Len({sl, . . . , sl+k−1})

)
− (−1)bi/kcLen({sk, . . . , s2k−1}) +

∑
2≤j≤bi/kc

(−1)j+bi/kc2(Len({sjk, . . . , sjk+k−1}))
(3.12)

A similar lemma can be formed for the boundary constraints. The values of the coefficients of

fLefti and fRighti can be easily computed since they only depend on i, n, k. The ConstraintEstimation

algorithm focuses on estimating ci,i+1 = fRighti · LT and performs the following series of actions

for each boundary and ordering constraint: given i, n, k compute the coefficients fLefti , fRighti , scan

the multiset of unordered responses U that come from uniformly generated queries and record the

observed frequency of each relevant entry of L, use the coefficients fRighti and the values in LT to

finalize the estimation of the terms ci,i+1.

Attack Algorithm. The attack algorithm utilizes algorithm ConstraintEstimation to approxi-

mate the inequalities of the feasible region, i.e., get the estimates c̃. The final set of inequalities is

captured by the expression A · ξ ≤ c̃ where by a linear scan the attacker can remove the redundant

constraints (Line 3 of the algorithm). Notice that the ordering constraints concern a pair of con-

secutive values and by substituting from Lemma 12 we finally get a constraint on a pair of offsets

that appear consecutively in the cyclical ordering ↪→ ξ0 → ξ1 → . . .→ ξk−1. Due to the periodicity

on the cyclical ordering we have 2k non-redundant ordering constraints among the total n− 1. For

n > 2k the polytope is bounded and thus the solver of the vertex enumeration problem [13] returns

the vertices of the k-dimensional polytope formed by A · ξ ≤ c̃ in O(k2 z) time, where z is the number

of vertices of the polytope. In general, z could be as large as 2k. Thus, our approach is suitable for

small values of k, which is typical in practical scenarios where k is often a small constant.

We note here that in case the estimation of the constraints is not “accurate enough”, which
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High-Level Description of ConstraintEstimation

• Input: Multiset U of responses from queries generated uniformly at random. Order S of
the ids wrt their values. Boundaries α, β.

• Step 1: Let L be the (n− k + 1)-tuple of the labels of the (unknown) lengths of the
Voronoi segments. Calculate the formula of each ordering constraint wrt ξ and compute
the coefficients fRighti of ci,i+1. Given the analytical formula of each term ci,i+1 define
Ti,i+1 to be the set of triplets (lbl, cfc, cnt), where lbl is the label of the participating
length from L, cfc is the coefficient of this lbl in the formula, and cnt is a counter
initialized to zero.

• Step 2: Similarly, calculate the analytical formulas of the terms cα,0 and cn−1,β of the
boundary constraints. Define the sets of triplets Tα,0 and Tn−1,β . Let T be the collection
of sets {Tα,0, T0,1, . . . , Tn−2,n−1, Tn−1,β}.

• Step 3: For each response r ∈ U find the sets from collection T where the term Len(r) is
part of a lbl and increase the corresponding cnt entry by one.

• Step 4: Set all estimations c̃i,i+1 to zero. For each set of collection T , go through all the
triplets. For each triplet of Ti,i+1, multiply cfc with the counter cnt and add the result to
c̃i,i+1.

• Step 5: Multiply each of the c̃i,i+1 by (β − α), divide the result by |U |, and store the
final result at c̃i,i+1.

• Step 6: Output c̃α,0, c̃0,1, . . . , c̃n−2,n−1, c̃n−1,β .

depends on the distribution of the values, the feasible region might be empty. In this case the

solver will return an empty set and the attack will fail since no offset can meet the (not adequately)

approximated constraints. Given the vertices we can compute the diameter of the polytope of F[v]

in time quadratic in the number of vertices. So as a last step our attack returns the mean of the

diameter vertices which guarantees that all the n-tuples of the class are at most diam(F[v])/2 distance

afar.

Theorem 6. Let DB be an encrypted database with n records whose values are in the range [α, β].

Suppose the attacker observes the responses to m k-NN queries uniformly generated from [α, β]

(Assumption 1) and which contain the set of all possible unordered responses, R. For any 0 < ε < β−α

and 0 < δ < 1, Algorithm AttackUnordered runs in time O(m+ k2z + z2), where z is the number of

vertices of the feasible region, F[v], and returns either ⊥ (failure) or a sequence of reconstructed values

(success) such that each reconstructed value differs from its original value by at most
diam

(
F̃[v]

)
2 + ε
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Algorithm 5: AttackUnordered
Input: Response multiset U = {r1, r2, . . .}, Boundaries α, β
Output: Reconstructed values (v∗0 , . . . , v∗n−1) or ⊥

1 S ← ReconstructOrder(U), c̃← ConstraintEstimation(U, S, α, β);
2 Compute the (n+ k + 1)× k matrix A of coefficients such that each line of A · ξ < c̃ represents
a constraint, ξ is the column vector with k offsets, c̃ is the column vector with (n+ k + 1)
entries of the constants;

3 Remove the redundant constraints from A;
4 Deploy an algorithm that solves the ‘Vertex Enumeration Problem’ with input A · ξ ≤ c̃ and
output a matrix Ξ of k columns where each row represents a vertex of the convex polytope of
the feasible region;

5 If Ξ is non-empty then compute the Euclidean distance between every pair of rows (i.e.,
vertices) of Ξ and record the pair (ξ′, ξ′′) with the maximum distance, else return ⊥;

6 Compute ξ∗ as the mean of ξ′ and ξ′′;
7 Use the offset ξ∗ = (ξ∗0 , . . . , ξ∗k−1) in the expressions of Lemma 12 to compute the
corresponding value v∗ = (v∗0 , . . . , v∗n−1);

8 return (v∗0 , . . . , v∗n−1)

with probability at least 1− δ, provided m is at least

max
{

25(β − α)2(ln 3− ln δ)
ε2

,
20(β − α)2(n− k + 1)

ε2

}

Proof. The proof of this Theorem is similar to the proof of Theorem 5, in terms of probabilistic

analysis. Let (Y1, . . . , Y|R|) be a multinomial distribution, that is |R| is a fixed number and we have

|R| mutually exclusive outcomes with corresponding probabilities p1, . . . , p|R|, and m independent

trials. From Lemma 3 in [56] we have that for all ε1 ∈ (0, 1) and all |R| satisfying |R|/m ≤ ε21/20 we

have:

Pr
( |R|∑
i=1
|Yi − E[Yi]| > mε1) ≤ 3e−mε

2
1/25

From which we can similarly derive:

( |R|∑
i=1

E[Yi]
m

)
− ε1 ≤

|R|∑
i=1

Yi
m
≤
( |R|∑
i=1

E[Yi]
m

)
+ ε1

Transformation to Constraint Estimation. The multinomial formulation can be adjusted to assist

to the task of constraint estimation. Let each trial correspond to a uniformly chosen query point

from [α, β], then the outcome of the trial corresponds to an unordered response from the Voronoi

diagram Vk(DB). The number of trials for the case of a multinomial corresponds to the number of

queries and is denoted by m. Therefore the number of possible outcomes is |R| which is the number
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of Voronoi segments of order k. Notice that the probability that a response is ri is equal to the

probability pi that a uniformly chosen query point lands to the Voronoi segment Vk(ri), which in

turn is equal to the ratio of the length of the corresponding Voronoi segment to the length of the

entire bounded metric space. Specifically pi = Len(Vk(ri))/(β − α).

We proceed by doing a case analysis on the possible values of i and how it affects the formulation of

the ci,i+1 (see Lemma 13) of the ordering constraint and consequently the probability expression of the

previous paragraph. Each outcome of the multinomial (Y1, . . . , Y|R|) corresponds to a Voronoi segment

in the left-to-right order. Roughly, the calculations of Theorem 5 are performed for summation with

|R| terms, using Lemma 13 we show that in this Theorem and for cases (1)-(5) we sum |Ci| terms

where |Ci| ≤ |R|. Therefore the analysis of Theorem 5 holds for these cases as well. Case (6) is

different and we explain how the analysis changes.

Case (1) where 0 ≤ i < k − 1. In this case the term ci,i+1 has the following formulation:

ci,i+1 = Len({si+1, . . . , si+k})

Let Ci be the set that contains the index of the Voronoi segment with ids {si+1, . . . , si+k} wrt the

ordering (Y1, . . . , Y|R|). Since |Ci| = 1 we have:

∑
l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1
|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 5 we get:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε

2
1/25.

Case (2) where i = k − 1. In this case the term ci,i+1 has the following formulation:

ck−1,k = −
∑

1≤l≤k−1
Len({sl, . . . , sl+k−1})

Let Ci be the set that contains the index of each Voronoi segment of the above expression, i.e., the

index of responses {sl, . . . , si+k−1} for 1 ≤ l ≤ k−1 wrt the ordering (Y1, . . . , Y|R|). Since |Ci| = k−1
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and all the participating lengths are unique we have:

∑
l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1
|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 5 we get:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε

2
1/25.

Case (3) where k ≤ i < 2k − 1. In this case the term ci,i+1 has the following formulation:

ci,i+1 = Len({si mod k+1, . . . , si mod k+k})

Let Ci be the set that contains the index of the Voronoi segment of the above expression, i.e., index

of {si mod k+1, . . . , si mod k+k} wrt (Y1, . . . , Y|R|). Since |Ci| = 1 we have:

∑
l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1
|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 5 we get:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε

2
1/25.

Case (4) where i = 2k − 1. In this case the term ci,i+1 has the following formulation:

c2k−1,2k = Len({sk, . . . , s2k−1}) +
∑

1≤l≤k
Len({sl, . . . , sl+k−1})

Let Ci be the set that contains the index of each Voronoi segment of the above expression, i.e., index

of {sl, . . . , si+k−1} for 1 ≤ l ≤ k wrt (Y1, . . . , Y|R|). Notice that in the above expression the length of

segment {sk, . . . , s2k−1} is counted twice. Additionally the size of the set Ci is k + 1, i.e., less than
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|R|. So if we define an ε2 such that ε2 = 2ε1 then we have:

∑
l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1
|Yi − E[Yi]| ≤ m2ε1 = mε2/2

Following similar calculations as in the proof of Theorem 5 we get:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ (β − α)ε2/2) > 1− 3e−mε

2
2/100.

Case (5) where i ≥ 2k and (i+ 1) mod k 6= 0. In this case the term ci,i+1 has the following

formulation:

ci,i+1 = (−1)bi/k−1c(Len({s(i+1) mod k+1, . . . , s(i+1) mod k+k−1})

+
∑

2≤j≤bi/kc

(−1)j+bi/kc2Len({si mod k+(j−1)k+1, . . . , s(i+1) mod k+jk−1})

Let Ci be the set that contains the index of each Voronoi segment of the above expression,

i.e., {s(i+1) mod k+1, . . . , s(i+1) mod k+k−1} and {si mod k+(j−1)k+1, . . . , s(i+1) mod k+jk−1} for 2 ≤ j ≤

bi/kc, in the ordering of (Y1, . . . , Y|R|). Notice that in the above expression all the Voronoi segments

are unique since we have (i + 1) mod k + 1 6= i mod k + (j − 1)k + 1 for integer values of i and j.

Therefore, since the size of the set Ci is upper-bounded by |R| and all segments are unique we have:

∑
l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1
|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 5 we get:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε

2
1/25.

Case (6) where i ≥ 2k and (i+ 1) mod k = 0. In this case the term ci,i+1 has the following
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formulation:
ci,i+1 = (−1)bi/kc+1( ∑

1≤l≤k
Len({sl, . . . , sl+k−1})

)
+ (−1)bi/kc+1Len({sk, . . . , s2k−1})

+
∑

2≤j≤bi/kc

(−1)j+bi/kc2(Len({sjk, . . . , sjk+k−1}))

Let Ci be the set that contains the index of each Voronoi segment of the above expression, i.e.,

index of {sl, . . . , sl+k−1} for 1 ≤ l ≤ k and {sk, . . . , s2k−1} and {sjk, . . . , sjk+k−1} for 2 ≤ j ≤ bi/kc

wrt the ordering (Y1, . . . , Y|R|). Notice that in the above expression of ci,i+1 the length of segment

{sk, . . . , s2k−1} is counted twice. Additionally the size of the set Ci is upper-bounded by |R|. So if

we define an ε2 such that ε2 = 2ε1 then we have:

∑
l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1
|Yi − E[Yi]| ≤ m2ε1 = mε2/2

Following similar calculations as in the proof of Theorem 5 we get:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ (β − α)ε2/2) > 1− 3e−mε

2
2/100.

Overall. Let us define ε = (β−α)ε2/2. From the above case analysis we conclude that the following

expression holds for all the cases:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ ε) > 1− 3e−

mε2
(β−α)225 .

We define δ as δ ≥ 3e−
mε2

(β−α)225 , and we get:

δ ≥ 3e−
mε2

(β−α)225 ⇒ ln δ ≥ ln 3− mε2

(β − α)225 ⇒ m ≥ 25(β − α)2(ln 3− ln δ)
ε2

Also with some algebraic manipulation of the inequality about m from Lemma 3 in [56] we get:

|R|
m
≤ ε21

20 ⇒
|R|
m
≤ ε22

80 ⇒
|R|
m
≤ 4ε2

80(β − α)2 ⇒ m ≥ 20(β − α)2|R|
ε2
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Since |R| = n− k + 1 we get

m ≥ 20(β − α)2(n− k + 1)
ε2

.

So with the above analysis we proved the following statement

Let m be the number of uniformly drawn query points from [α, β] for a database DB with n

unique values. Let’s assume that:

m ≥ max
{

25(β − α)2(ln 3− ln δ)
ε2

,
20(β − α)2(n− k + 1)

ε2

}

Then for any δ ∈ (0, 1) and ε ∈ (0, |β − α|) the Algorithm ConstraintEstimation returns c̃i,i+1 in

O(kn) time such that:

Pr
(
|ci,i+1 − c̃i,i+1| ≤ ε

)
≥ 1− δ

, for any 0 ≤ i ≤ n− 2.

Therefore the hyperplanes derived by the attacker (see the inequalities of Lemma 13) are a

function of the estimations c̃i,i+1 rather then actual ci,i+1. As a result we have an approximation

F̃[v] of the real F[v]. Which implies that the diameter that is computed by the output of the solver of

the Vertex Enumeration Problem is an estimate of the actual diameter. Since the location of a vertex

of the approximated polytope F̃[v] in the k-dimensional space is within an ε-ball of the corresponding

vertex of the actual polytope F[v], the estimated diameter can be at most 2ε afar with probability

1− δ Specifically:

Pr
(
|diam

(
F[v]

)
− diam

(
F̃[v]

)
| ≤ 2ε

)
≥ 1− δ

Therefore the above analysis about the constraints can be interpreted as:

From the above statement we can derive the following probability expression:

Pr
(
diam

(
F[v]

)
+ 2ε ≥ diam

(
F̃[v]

)
≥ diam

(
F[v]

)
− 2ε

)
≥ 1− δ

⇒ Pr

diam (F[v]
)

2 ≤
diam

(
F̃[v]

)
2 + ε

 ≥ 1− δ
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Let m be the number of uniformly drawn query points from [α, β] for a database DB with n
unique values. Let’s assume that:

m ≥ max
{

25(β − α)2(ln 3− ln δ)
ε2

,
20(β − α)2(n− k + 1)

ε2

}
Then for any δ ∈ (0, 1) and ε ∈ (0, |β − α|) the Algorithm ConstraintEstimation returns c̃i,i+1 in
O(kn) time such that:

Pr
(
|diam

(
F[v]

)
− diam

(
F̃[v]

)
| ≤ 2ε

)
≥ 1− δ

, for any 0 ≤ i ≤ n− 2.

Let’s assume for a second that the attack could compute the real value of the diameter, i.e.,

diam
(
F[v]

)
. Then if we denote as vDB the unknown encrypted n-tuple of values of DB we would

have the following guarantee for the output v∗ of the reconstruction:

dL∞(vDB , v∗) = max
0≤i≤n−1

|vDBi − v∗i | ≤
diam

(
F[v]

)
2 .

But since the attacker can only computed the diameter of the approximated polytope we derive:

Pr

 max
0≤i≤n−1

|vDBi − v∗i | ≤
diam

(
F̃[v]

)
2 + ε

 ≥ 1− δ

On the Size of the Diameter Since the approximation is a function of a quantity that depends

on the distribution of the data, we further study the possible values that diam(F[v]) can take. In the

next theorem we show that the 3k consecutive values that are within the smallest possible γ range

give an upper-bound on the diameter of F[v]. Thus, a small concentrated number of consecutive

values affects heavily the diameter of F[v]. We note here that the smaller the γ the higher the

number of samples required to achieve meaningful approximation guarantees since the sample size is

a function of the length of the smallest Voronoi segment, so there is an inherent trade-off.

Theorem 7. Let Vk(v) be the Voronoi diagram of reconstruction class [v], and let v′ be an n-tuple

such that v′ ∈ [v]. If there are 3k values of v′ within an γ range in [α, β] then we have diam(F[v]) ≤ 2γ.
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Proof. The proof is an induction on the number of values that are placed to the left of the group

of 3k values that are within a γ-distance. Intuitively, we show that 3k values are enough to define

constraints that form a polytope, and since the distance between this group of 3k values is upper

bounded by γ then the diameter of the derived polytope is also upper bounded by a function of γ.

A useful observation is that if all 3k values of the group are within γ-distance, then the bisectors

between any pair of these values are also within γ-distance.

Base Case. In this case there are zero values to the left of the group. Therefore the group

consists of values G = {v0, . . . , v3k−1} and the bisectors that correspond to Voronoi endpoints, and

are also within this γ-range, are b0,k, b1,k+1, . . . , b2k−1,3k−1. We now analyze the first 2k− 1 ordering

constraints.

From the first k − 1 ordering constraint we have:

v0 < v1 ⇒ −ξ0 + ξ1 < b1,k+1 − b0,k ⇒ −ξ0 + ξ1 < γ

v1 < v2 ⇒ −ξ1 + ξ2 < b2,k+2 − b1,k+1 ⇒ −ξ1 + ξ2 < γ

...

vk−2 < vk−1 ⇒ −ξk−2 + ξk−1 < bk−1,2k−1 − b1,k+1 ⇒ −ξk−2 + ξk−1 < γ

For the next ordering constraint we have:

vk−1 < vk ⇒ −ξk−1 + ξ0 < bk,2k+1 − bk−1,2k−1 ⇒ −ξk−1 + ξ0 < γ

For the next k − 1 ordering constraints we have:

vk < vk+1 ⇒ ξ0 − ξ1 < bk+1,2k+1 − bk,2k ⇒ ξ0 − ξ1 < γ

vk+1 < vk+2 ⇒ ξ1 − ξ2 < bk+2,2k+2 − bk+1,2k+1 ⇒ ξ1 − ξ2 < γ

...

v2k−2 < v2k−1 ⇒ ξk−2 − ξk−1 < b2k−1,3k−1 − b2k−2,3k−2 ⇒ ξk−2 − ξk−1 < γ

Each inequality of −ξ0 + ξ1 < γ and ξ0 − ξ1 < γ forms a half-space. Additionally, they are based

on parallel lines on the sub-space of ξ0 and ξ1. The same statement holds for −ξ1 + ξ2 < γ and

ξ1 − ξ2 < γ and the parallel lines are on subspace of ξ1 and ξ2. Following the same process we define

pairs of half-spaces and the space that satisfies all the inequalities is a polytope in the k-dimensional
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space. Additionally since each of the parallel lines in the corresponding subspace has y-intercept that

is upper bounded by γ, the diameter of the polytope has diameter that is upper-bounded by 2γ.

Inductive Step. Let’s assume that our statement holds for n values to the left of the group, we

will prove that the statement holds for n+ 1 values as well. We elaborate on observations that hold

for n values and later we show that these observations hold for the case of n+ 1 as well. First, let’s

assume without loss of generality that the order of the first value of the group is j. Therefore, the

group of values is G = {vj , vj+1, . . . , vj+3k−1}. Additionally, the group of the corresponding bisectors

is bj,j+k, bj+1,j+k+1, . . . , bj+2k−1,j+3k−1 and they are both within an γ-distance as we observed before.

Therefore, we have the following set of inequalities for their ordering constraints:

vj < vj+1 ⇒ 2bj,j+k − vj+k < 2bj+1,j+k+1 − vj+k+1

Notice that in the above inequality both the value of the term on the left-side and the value of

the term on the right-side do not change in case we add an additional new value to the left of the

group G.

Figure 3.6: The addition of a single new value to the left of the group G does not change the location
of the values and their bisectors. The only thing that changes is the labeling, i.e., sub-index, of the
values and bisectors and is indicated in red.

Specifically, if we add a new value to the left of G the values vj+k and vj+k+1 have now a different

label (i.e., different subindex) but their location in [α, β] is the same. Similarly the bisectors bj,j+k

and bj+1,j+k+1 would also have a different subindex in case we add an additional new value to the left

of G but the location of the involved values are the same. In other words the value of the left-term

of the inequality (resp. right-term) is the same in case of n+ 1 it just increases the subindices by one.
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We use this observation later in the proof.

Also due to the assumption that the statement holds for n we have:

vj < vj+1 ⇒ (−1)bi/k−1cξj mod k − (−1)b(i+1)/k−1cξj+1 mod k < γ

, which comes from Lemma 12 and the fact that the left-term (resp. right-term) of the inequality

vj < vj+1 can be expressed as a linear combination of the components of ξ and bisectors. We study

how the subindices change in case we add a new value. For the case of n values to the left of G the

non-zero components of ξ are: ξj mod k for the left term and ξj+1 mod k for the right term. In case

we add a new value we have n+ 1 values to the left of G. Thus, the non-zero components of ξ are:

ξj+1 mod k for the left-term and ξj+2 mod k for the right-term. So overall, for n+ 1 we have:

vj+1 < vj+2 ⇒ (−1)b(j+1)/k−1cξj+1 mod k − (−1)b(j+2)/k−1cξj+2 mod k < γ

, since in the previous paragraph we showed that the value of the left term is the same in both n

and n+ 1 case (just a different labeling). Therefore, for the case of n+ 1 we can form a half-space

that the left-side is a linear combination of ξ with two non-zero coefficients and the right-side is

upper bounded by γ. Next we focus on the following ordering constraint for the case of n:

vj+k < vj+k+1 ⇒ 2bj+k,j+2k − vj+2k < 2bj+k+1,j+2k+1 − vj+2k+1

Similarly to before, notice that both the value on the left-side and the value on the right-side of

the above inequality do not change in case we add an additional value to the left of the group

G. Following the same reasoning for the case of n + 1 we can form a half-space that the left-

side is a linear combination of ξj+k+1 mod k ≡ ξj+1 mod k and ξj+2k+1 mod k ≡ ξj+k+1 mod k and the

right-side is upper bounded by γ. Additionally the two discussed half-spaces are parallel since the

coefficient of the ξ terms in vj+k+1 < vj+k+2 are opposite from the coefficients in vj+1 < vj+2, that

is: (−1)b(j+k+1)/k−1c = −(−1)b(j+1)/k−1c and (−1)b(j+k+2)/k−1c = −(−1)b(j+2)/k−1c.

If we follow the above reasoning and pair the ordering constraints for the case of n to the ordering
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constraints for the case of n+ 1 we get:

vj < vj+1 ↔ vj+k < vj+k+1

vj+1 < vj+2 ↔ vj+k+1 < vj+k+2

...

vj+k−1 < vj+k ↔ vj+2k < vj+2k+1

Therefore we derive the same half-spaces for the case of n + 1, just applied on differently labeled

ξ terms. As a result for the case of n+ 1 we have a polytope in the k-dimensional space that has

diameter that is upper bounded by 2γ.

3.4 Evaluation of Approximate Reconstruction

In our evaluation, we test our reconstruction attacks on encrypted versions of databases, e.g. [101],

that reduce their two-dimensional data to one dimension via Hilbert curves [125].

Mapping 2D Data to 1D via Hilbert Curves. Organizing multidimensional data for

efficient access and indexing is a challenging problem due to the lack of a total ordering that preserves

locality. Space-filling curves [125], which map points in a high-dimensional space onto one-dimensional

points while preserving locality and proximity relations, have been thoroughly explored in spatial

data management. See, e.g., [108, 130, 145, 161]. These curves essentially span the desired higher-

dimensional space, with granularity tuned by the so-called order of the curve. The higher the order

the better the approximation of locality. The second row of Figure 3.7 shows an example of a

Hilbert curve of order 7 that spans a square in the two-dimensional space. In particular, this single

continuous line of gray color that starts at (0,0) and ends at (0, 27) gives a 27 × 27 grid of points. A

value of the DB in the two-dimensional space is projected to the closest segment of the curve. By

“untangling” the curve we get a single straight line segment where all the projected values are within

the boundaries α = 0 and β = 27 × 27 = 214. Conceptually, to run a (non-secure) k-NN query it is

enough to traverse the one-dimensional points of DB towards the left and the right of the projections

of the query point on the curve. Due to the properties of Hilbert curves, the set of k-NN on the

one-dimensional space is an approximation of the neighbors in the two-dimensional space.

Dataset & Experiment Design. The dataset SpitzLoc [4], also used in [59], consists of the
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latitude and longitude of the German Green party politician Malte Spitz over a period of six months.

A record is stored whenever the phone was connected to a cell tower, received a call or sent a text.

We used the two-dimensional data from the date ranges 1-5 Oct., 1-15 Oct., and 1-31 Oct., depicted

in Figure 3.7. In all of our experiments we used a Hilbert curve of order 7 and placed the geolocation

data in the center of the above Hilbert curve, the size n of each dataset is denoted in Table I. We

simulated the k-NN query leakage of this setup and recorded the quality of the reconstruction for

different values of k = {2, 5, 8} and number of queries m. The quality measures are the Chebyshev

distance between the original values and the reconstruction, denoted as AbsoluteError-1D, and the

max Euclidean distance computed by inverting the mapping of the curve. Each of the above setup

was repeated 20 times for m queries that were generated uniformly at random in [α, β]. We note that

we did not choose m based on the desired ε guarantee, but rather chose a value for m that is orders

of magnitude smaller so as to demonstrate that the attack needs fewer samples than the derived

bounds. The attack run on a commercial laptop and the code is written in Matlab. For the vertex

enumeration problem, we use routines from the File Exchange of MathWorks [2].

We note here that not only size but also the distribution of the data plays a significant role in

the success of our attack. This can be seen from the role of the diam(F[v]) in the quality of the

reconstruction as well as in the statement of Theorem 7. Thus, even though the number of encrypted

values in our experiments appears relatively small we can draw interesting conclusions due to values

being highly concentrated.

3.4.1 Evaluation of Unordered Response Attack

Table I gives an overview of our experiments. In the right set of columns of Table I we present

the accuracy of the reconstruction across all three datasets for the same large number of queries

whereas in the left column we attempt to significantly reduce the number of observed queries without

compromising the quality of the reconstruction. As it is expected, if the exact diameter of the

reconstruction class is large then the reconstruction error is large as well. Interestingly, the diameter

of the estimated feasible region, denoted as diameter est, is consistently close to the real one. Notice

that for smaller number of samples we have smaller success percentage which means that no feasible

region was found because the constraints were not approximated in a satisfactory accuracy. This

trend does not appear when we increase the number of observed queries, i.e., m = 800 ·106 on the right

column. To visualize the accuracy, Figure 3.7 illustrates the reconstruction output for m = 800 · 106
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Figure 3.7: Three date ranges for the month October of the publicly available mobile records with the
geolocation of the German Green party politician Malte Spitz. on the first row we demonstrate the
original dataset and in the bottom the accuracy of the reconstruction that we achieve for unordered
responses for k = 2.

and k = 2 across all three datasets. Overall, the approximate reconstruction is extremely accurate,

from 0.003% to 0.1%, not only in one dimension but also in two-dimensions as well.

Table 3.1: Evaluation of AttackUnordered on the SpitzLoc dataset

1-5 October, m = 25 · 106, n = 46 1-5 October, m = 800 · 106, n = 46
diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Success diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Successexact est avg std avg max exact est avg std avg max

k = 2 1.8 1.1 3.6 1.1 0.02% 3.0 40% 1.8 1.7 0.5 0.1 0.003% 0.9 100%
k = 5 18.3 17.9 5.7 1.6 0.03% 5.0 80% 18.3 18.3 3.4 0.2 0.02% 2.9 100%
k = 8 79.9 78.3 16.9 1.4 0.1% 7.4 100% 79.9 79.5 14.6 0.15 0.09% 6.5 100%

1-15 October, m = 70 · 106, n = 79 1-15 October, m = 800 · 106, n = 79
diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Success diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Successexact est avg std avg max exact est avg std avg max

k = 2 1.9 0.8 1.8 0.7 0.010% 3.0 45% 1.9 1.4 0.6 0.1 0.003% 0.8 100%
k = 5 6.6 6.0 1.9 0.6 0.011% 2.5 80% 6.6 6.7 0.6 0.2 0.003% 1.3 100%
k = 8 15.4 14.6 2.5 0.6 0.015% 2.9 80% 15.4 15.1 1.0 0.1 0.006% 1.2 100%

1-31 October, m = 250 · 106, n = 183 1-31 October, m = 800 · 106, n = 183
diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Success diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Successexact est avg std avg max exact est avg std avg max

k = 2 1.8 1.0 1.0 0.2 0.006% 1.4 70% 1.8 1.1 0.7 0.1 0.004% 1.0 95%
k = 5 6.4 5.0 1.4 0.3 0.008% 2.0 95% 6.4 5.6 0.7 0.1 0.004% 1.1 100%
k = 8 12.8 11.6 1.4 0.3 0.008% 2.0 95% 12.8 12.2 0.8 0.2 0.004% 1.0 100%

A Visual Example of a Larger Dataset. In Figure 1.2, we present a visualization of the

accuracy of our reconstruction for a larger dataset. On the left there is a picture of the Trojan horse
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of 341× 385 pixels, where each pixel is either black or white. To create a two-dimensional data set

we sampled pixels until we collected n = 1840 black points that are uniquely mapped on a Hilbert

curve of order 7. The middle subplot of Figure 1.2 shows how the two-dimensional plaintext values

are mapped to the corresponding Hilbert curve. The feasible region for k = 9 has exact diameter

11.62. After observing m = 109 queries our attack successfully forms an approximation of the feasible

region with diameter 7.03 which results into the reconstruction depicted in the right plot. The visual

similarity is confirmed by the absolute error in 1-D which is 2.84, i.e., relative error 1-D of 0.01%.

Even in two dimensions the absolute error is 6.15 which is equivalent to relative error in 2-D of

0.01%. For completeness we note that for this amount of queries the attack failed for 2 ≤ k ≤ 4 and

succeeded for 4 < k ≤ 9. This phenomenon is explained in the next paragraph.

Why Reconstruction for Small k is Harder. According to Table 3.1, the percentage of

failures is significantly higher for k = 2. To better understand why smaller k values require tighter

approximation guarantees, we note that by Lemma 13, each ci,i+1 term of the ordering constraint

vi < vi+1 consists of the sum of a number of lengths of Voronoi segments. Since our attack uses

estimations of the above lengths, each term comes with its corresponding error, ε. Thus, a sum of

500 length terms introduces 500 ε error since the error compounds.
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Figure 3.8: Distribution of length terms per ordering constraint for different values of k. The error
compounds as the number of length terms per constraint grows.

In Figure 3.8 we fix n = 2000 and analyze the number of length terms involved in each of the

n− 1 ordering constraints for varying values of k, independently of the DB. The minimum number

of length terms for all k values is one and corresponds to the first constraint that has only a single

length term involved. The average and maximum number of length terms are inversely proportional
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to k. As a result, the combination of small diameter (i.e., concentrated values) of the tested dataset

and the above sensitivity to the compound error results in a higher percentage of failures when k is

small.

Table 3.2: Evaluation of AttackOrdered on the SpitzLoc dataset

1-5 Oct., m = 103 1-5 Oct., m = 25 · 106

Absolute Relative Absolute Absolute Relative Absolute
Error-1D Error-1D Error-2D Error-1D Error-1D Error-2D

avg std avg max avg std avg max
k = 2 436.8 200.7 2.6% 60.9 2.9 1.1 0.01% 4.1
k = 5 452.7 193.0 2.7% 54.7 2.9 1.3 0.01% 3.7
k = 8 480.2 146.1 2.9% 61.7 2.6 1.2 0.01% 4.1

1-15 Oct., m = 104 1-15 Oct., m = 25 · 106

Absolute Relative Absolute Absolute Relative Absolute
Error-1D Error-1D Error-2D Error-1D Error-1D Error-2D

avg std avg max avg std avg max
k = 2 147.4 49.2 0.8% 25.8 2.6 0.9 0.01% 3.0
k = 5 150.6 59.1 0.9% 26.0 2.8 1.2 0.01% 3.1
k = 8 150.0 56.9 0.9% 26.0 2.8 1.0 0.01% 3.5

1-31 Oct., m = 105 1-31 Oct., m = 25 · 106

Absolute Relative Absolute Absolute Relative Absolute
Error-1D Error-1D Error-2D Error-1D Error-1D Error-2D

avg std avg max avg std avg max
k = 2 45.2 15.9 0.2% 16.6 3.2 1.1 0.01% 3.9
k = 5 47.6 18.2 0.2% 15.4 3.2 1.2 0.01% 3.8
k = 8 50.3 17.7 0.3% 15.5 3.1 1.1 0.01% 3.9

3.4.2 Evaluation of Ordered Response Attack

Table 3.2 shows the accuracy of the approximate reconstruction attack for ordered responses. For this

experiment, we simulated the query leakage by ordering the k returned ids. Note that the number of

queries is significantly reduced. Since 1) the feasible region and its diameter does not play any role

and 2) the estimation of each value is a function of only 3 bisectors, the quality of the reconstruction

is almost unaffected by the value of k. Similarly to the case of unordered responses, the accuracy of

the reconstruction grows significantly with the number of observed queries.

On Efficiency and Number of Queries. We report that having observed enough queries

our experiments took a few seconds to reconstruction the plaintext values. We also report that for

the accuracy, i.e., ε, δ, that we observed from the reconstructed output the theoretical lower bound

of our theorems required orders of magnitude more queries. Therefore even though we have rigorous

analysis for the required number of queries, our experiments demonstrate that we need a significantly

smaller number of queries in practice.



Chapter 4

Attacks on Encrypted Databases

Beyond the Uniform Query

Distribution

In this chapter we propose the first reconstruction attacks on range queries and k-NN queries that

reconstruct the underlying values without any assumptions about the query or the data distribution.

Before our proposed attacks it was unclear whether such a general leakage-based reconstruction

is possible given that all the previous attacks relied either on the uniform query distribution

assumption or the assumption that the adversary knows both the query and the data distribution.

Our generalization is achieved via a synergetic analysis of both access pattern and search pattern

leakage and our experimental results demonstrate that an attacker can achieve accurate reconstruction

under a wide variety of skewed query distributions and under various database densities without

parametrizing the algorithms and without access to any auxiliary information.

4.1 Preliminaries

A database is a collection DB of n records (idi, val(idi)), i = 0, . . . , n − 1 where idi is a unique

identifier and val(idi) is a value from the universe [α, β]. We assume discrete values so that α, β,

and val(idi) are integers and denote with N = β − α+ 1 the size of the universe. For the sake of

103
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simplicity of the analysis, we assume that the mapping from records to values is injective, that is,

there is a single record in the database associated with a value. We call density of the database

the fraction of values from the universe that are assigned to records. E.g., the density assumption

studied by Lacharité et al. [106] corresponds to density 100%. A range query consists of two values

a ≤ b from the universe and its response is the set of identifiers of the database records with values

within interval [a, b]. A k-NN query consists of a value from the universe and its response is a

set of k unordered identifiers, where k is fixed and decided at setup-time. We use the term query

to refer to the plaintext query parameter(s) and the term search token to refer to the encrypted

query parameter(s) that the client sends to the server. We define access pattern leakage the set of

encrypted records that are retrieved as part of the response to a token. We define search pattern

leakage the ability of the server to observe whether two tokens were generated from the same plaintext

query. Although there are response-hiding STE schemes that minimize the access pattern leakage by

imposing a storage overhead, the widely used constructions actually reveal the access pattern for the

sake of efficiency. To the best of our knowledge, all structured encryption schemes leak the search

pattern.

Assumptions. Our work makes no assumptions about the query distribution, data distribution,

or access to any auxiliary information about them. Our assumptions are as follows:

• Static Database. No updates, i.e., addition, deletions, take place once the database is

encrypted.

• Fixed Query Distribution. We assume that the adversary issues queries with respect to a

fixed query distribution. We emphasize that our adversary does not know any information

about the family or the parameters of the query distribution.

• Correctness. We consider schemes where the response to the issued query is correct. We do

not consider schemes that return missing responses or false positive responses, e.g., Logarithmic-

SRC [53] and “over-covers” from [63].

• One-dimensional Data Values. We do not address encrypted databases for high-dimensional

data [42].

• Known Setup. We assume that the adversary knows the number of encrypted values n, the

size of the universe of values N and the endpoints of the universe α, β.
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• Injective Mapping of Search Tokens. We assume that distinct queries, can be either a

pair of values like the range queries or a single value like the k-NN, map to distinct search

tokens. We note that there are cases where search token are comprised by a set of search

tokens, e.g., [53, 63]. In this case we view the output of the token generation algorithm as

a single token by first imposing a canonical ordering on the set and then concatenating the

tokens. We note here that the injective mapping is a property that is satisfied, to the best of

our knowledge, by all known STE encryption schemes.

Order Reconstruction. There is a plethora of techniques [83, 104, 106] in the literature that

reconstructs the order of the encrypted values using only the access pattern leakage. For simplicity

of the exposition, we assume that the adversary can successfully reconstruct the order by using the

appropriate algorithms from the above works and we instead focus on the problem of reconstructing

the plaintext values. Thus, we treat the ordering as an input to out new value reconstruction

algorithms and our techniques are not affected by how this ordering was constructed.

4.2 How to Exploit Search-Pattern Leakage

In this section, we introduce our main tool to reconstruct the plaintext values of an encrypted database

without any assumption about the data or query distribution. Given a fixed query distribution, the

repetition of search tokens, i.e., search-pattern leakage, reveals information about the total number

of search tokens that return a specific encrypted response. This key observation relates our attack to

the extensively studied problem of estimating the support size of a distribution.

We first show how to partition token-response pairs and interpret them as samples from the

unknown query distribution. Next, we benchmark two widely-used non-parametric estimators under

various query distributions. Finally, we propose a new modular estimator for our attack. Since we

obtain a different estimator per encrypted response, the next section shows how to combine the

acquired estimations to reconstruct the entire encrypted database.

4.2.1 Conditional Probability Distributions over the Leakage

In this subsection, we show how an adversary that is given a multiset of m token-response pairs

D = {(t1, r1), . . . , (tm, rm)}, can partition the tokens and analyze each group as a sample from a
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conditional probability distribution. By conditioning on the information observed from the access

pattern leakage, we group the information observed by the search pattern leakage.

Remark 2. Let D = {(t1, r1), . . . , (tm, rm)} be the multiset of tokens and their corresponding response

under an arbitrary token distribution. The mutliset of tokens with the same associated response,

i.e., Di := {tj |(tj , ri) ∈ D, ri ⊆ {id0, . . . , idn−1}}, is a sample from the conditional probability

distribution pT |R (T = t|R = ri).

Figure 4.1: To observe response r = {id1, id2, id3} the start of the query range must be in-between
v0 and v1 and the end must be in-between v3 and v4. Thus, the total number of queries that return
r is (v1 − v0) · (v4 − v3).

Range Queries. We recall again our assumption that the mapping from range queries to tokens

is injective. However, we note that our attack can be applied also to structured encryption schemes

that generate multiple tokens per query with no false positives. In this scenario the attacker creates

a canonical ordering of the collection of tokens, e.g., by lexicographical-ordering, and treats their

concatenation as a single token. Schemes with this property include the BRC and URC token

generation presented in [53], as well as the cover selection approach presented in [63]. The partition

of the token-response pairs is performed with respect to a specific response. Consider a database with

values {v0, · · · , vn−1} from a universe [α, β]. Since we do not consider schemes with false positives,

the number of distinct tokens that return a given response r = {idi, · · · , idj} is equal the product

(vi − vi−1) · (vj+1 − vj), where v−1 and vn refer to α and β, respectively. An example is depicted in

Figure 4.1.

Remark 3. For the case of range queries on an encrypted database the support size of the conditional

distribution pT |R (T = t|R = {idi, . . . , idj}), where 0 ≤ i ≤ j ≤ n−1, is the product of (1) the distance

between values vi−1 and vi and (2) the distance between values vj and vj+1, i.e., (vi−vi−1)·(vj+1−vj).

k-NN Queries. A Voronoi diagram gives a natural partition of the query space for k-NN queries.

It is known [104] that given a Voronoi diagram, the endpoints of each Voronoi segment correspond to
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bisectors between the values.

Figure 4.2: Voronoi diagram of a database with 6 values v0, . . . , v5 and 2-NN queries. Short vertical
black lines indicate distinct queries and tall vertical green lines indicate bisectors bi,i+2 for values vi
and vi+2.

Figure 4.2 shows the Voronoi diagram for 2-NN queries on a database DB with values v0, . . . , v5

from range [α, β]. The bisectors of the diagram, bi,i+2, partition the query points into intervals where

queries yield the same response. E.g., all query points between bisectors b1,3 and b2,4 yield response

{v2, v3}. In our scenario of an encrypted database, the response is a pair of identifiers. Accordingly,

we define the following partition of query tokens for k-NN queries: a search token t belongs to group

Di if its response is {idi, . . . , idi+k−1}, for i ∈ [0, n−k]. We recall here our assumption of an injective

mapping from queries to tokens, i.e., we never map two distinct queries to the same token. Therefore,

the probability distribution on k-NN queries transfers to the probability distribution on tokens.

Let T be a random variable whose possible values are the tokens for k-NN queries generated by

the client under an arbitrary token distribution. Let R be a random variable whose possible values

are the k-NN responses with respect to DB.

Remark 4. For the case of k-NN queries on an encrypted database, the support size of the condi-

tional distribution pT |R (T = t|R = {idi, . . . , idi+k−1}) is also the length of the corresponding Voronoi

segment, i.e., bi,i+k − bi−1,i+k−1.

4.2.2 Estimate Support Size of Each Distribution

In this subsection, we show how to utilize the frequency of the observed search tokens so as to estimate

the number of possible search tokens that return a specific response r, i.e., estimate the support

size of a conditional probability distribution with respect to r. In our approach, each response has

a different non-parametric estimator that is “fine-tuned” for the specific conditional probability

distribution. We focus on a single response but in the next section, we describe how an adversary

can combine the estimations for different responses to achieve reconstruction. Furthermore, the

estimation techniques described here are applied to both range and k-NN queries. To comply with



108

the notation in the literature [152] on support size estimators, in this subsection N denotes the

support size of a single query distribution, whereas in the rest of the chapter N denotes the size of

the universe of values, i.e., N = β − α+ 1.

Formulation. We assume a conditional probability distribution pT |R with respect to response

r that contains N distinct search tokens observed with probabilities πi = (π0, . . . , πN−1). The

adversary does not know the support size N or probabilities πi. The main question we address is:

Given a sample D of m search tokens (with multiplicities) from pT |R, what is the total

number of search tokens in pT |R with non-zero probability?

Let fi be the number of search tokens that are observed i times in the sample. We briefly recall

the terminology from [152]. The fingerprint of sample D is the vector F = (f1, f2, . . . , fm), where

|D| = m. Vector F is essentially the frequency of the frequencies. Then we can express the total

number of all distinct search tokens as N = f0 +
∑m
i=1 fi and the number of observed search tokens

as d =
∑m
i=1 fi. Similarly to [152], we call the the histogram of the query distribution Q over the

elements of pT |R the mapping hQ : (0, 1] → [0, N ], where hQ(π) is the number of pT |R elements

that occur in probability mass function Q with probability π. Notice that the fingerprint is defined

according to a sample while the histogram is defined according to the query distribution.

One Experiment Captures Multiple Distributions. We call a distribution property sym-

metric, or label-invariant, if it only depends on the histogram of the distribution. Thus, a symmetric

property does not depend on the labeling or the order of the search tokens. The following remark

follows from Lemma 17 in [17].

Remark 5. The support size of pT |R is a symmetric property.

Figure 4.3: An illustration of three query distributions with the same histogram. The result of a
support size estimation is the same in all three cases.

Jumping ahead, this important property comes into play in our evaluation. When we fix in our

experiments the query distribution, we implicitly fix the conditional probability distributions too.
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The symmetric property implies that from the point of view of the estimator, it makes no difference

which token maps to which fixed probability value. Thus, the result of an experiment would be the

same for every assignment of the chosen fixed probability values to tokens. As an example, the

three pmfs presented in Figure 4.3 have the same probability values but different labelings. Since

the fingerprint is the same, the support size estimation on the ordered “towers” on the left gives the

same estimation as the pmf in the middle or the bell-shaped pmf to the right.

Related Work. The problem of estimating the support size of a distribution has appeared in

several fields in different forms. Examples include the estimations of the number of English words

Shakespeare knew [60], the number of species in a population of plants or animals [30], and how many

dies were used on an ancient coin [148]. As reviewing this large body of work is beyond the scope of

this work, we refer the reader to the following surveys [28, 39, 68]. We note that naive application of

the estimators for the equiprobable case [86, 86, 111] to settings with varying probabilities has been

shown to give an estimation with negative bias [111].

In our work, instead of deploying parametric estimators that assume an underlying family of

distributions, we use a more general non-parametric approach that is distribution agnostic.

The Jackknife Method. Resampling techniques are non-parametric methods of statistical

inference that draw repeated subsamples from the original sample D. In this work we are interested

in the jackknife method originally proposed by Quenouille in [140]. In certain scenarios it is not

known how to compute an efficient unbiased estimator of a statistic of interest generally denoted

as θ. Therefore given a biased estimator θ̂ for a statistic the jackknife approach estimates the bias

via sampling with replacement from D. An estimate of the bias b̂iasJack can be used to correct the

estimator as follows:

θ̂Jack = θ̂ − b̂iasJack.

The resampling approach of the jackknife is the following: to form a new sample we leave one

observation out so as to create the subsample D(i) = (d1, . . . , di−1, di+1, . . . , dm). We denote as θ̂(i)

the estimation of θ that is computed based on D(i). The term θ̂(.) denotes the average of all possible

leave-one-out estimations, i.e., θ̂(.) =
∑m
i=1 θ̂(i)/m. The jackknife bias is defined as:

b̂iasJack = (m− 1)(θ̂(.) − θ̂) = (m− 1)( 1
m

m∑
i=1

θ̂(i) − θ̂).
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Figure 4.4: Comparison of estimators Jackknife-SelfTune and Valiant-Valiant with respect
to their relative error in support size estimation.

The multiplicative term (m− 1) in the above expression is rather counter-intuitive at first sight. One

way to interpret this term is to assume that for a fixed m the expected value of the estimator θ̂ is
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the estimand plus a bias term of the form bias = b1(θ)/m. In this case we get:

E[b̂iasJack] = (m− 1)
(
E[θ̂]− 1

m

m∑
i=1

E[θ̂(i)]
)

= (m− 1)
(
θ + b1(θ)

m
− θ − b1(θ)

m− 1

)
= b1(θ)

m
= bias

Therefore the expectation of the bias estimate is the true formula of the bias. The above exposition

concerns the first order jackknife estimator since it corrects biases of the order O(1/m). This

approach can be generalized to formulate the k-th order jackknife estimator that results in a bias

of the order O(m−k−1). There is an inherit trade-off between the bias and variance, the higher the

order of the jackknife estimator the smaller the bias and the larger the variance. Our estimators

come directly from the work of Burnham and Overton [29, 30] and where originally proposed for

estimating animal populations. The statistic that we are interested in is the total number of distinct

classes N . The initial biased estimator N̂ is the number of distinct classes observed in sample D, i.e.,

N̂ = d =
∑m
i=1 fi. The following expressions present the “bias-corrected” formula of the originally

biased estimator N̂ , the order of the jackknife describes the level of bias correction applied. For a

fixed sample size m the jackknife estimator of order i is a simple linear combination of the fingerprint

F = (f1, . . . , fm). That is the i-th order jackknife estimator can be expressed as:

N̂J(i) =
∑m
k=1 α

(i)
k fk, (4.1)

, where α(i)
k coefficients are a function of the sample size m. The jackknife estimators for N̂J(1), N̂J(2),

and N̂J(3) are:

N̂J(1) = d+ m−1
m f1, N̂J(2) = d+ 2m−3

m f1 − (m−2)2

m(m−1)f2,

N̂J(3) = d+ 3m−6
m f1 − (3m2−15m+19)

(m−1)m f2 + (m−3)3

(m−2)(m−1)mf3.

The derivation of the jackknife estimators N̂J(i) for i ∈ [4, 10] appear in the next table, these analytical

expressions may be of independent interest since they have not appeared before.

Selection of the Jackknife Order. Since we have we have the analytical expression of jackknife

estimators N̂J(i), for i ∈ [0, 10] an interesting question is how can we choose the appropriate order

i given what we observed so far? To tailor the order of the jackknife estimator given the data

in hand we deploy the order-selection technique originally proposed in [30] based on hypothesis
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Jackknife Estimators.

N̂J(4) =d+ 4m− 10
m

f1 −
6m2 − 36m+ 55

(m− 1)m f2 + 4m3 − 42m2 + 148m− 175
m(m− 1)(m− 2) f3 −

(m− 4)4

(m− 3)(m− 2)(m− 1)mf4

N̂J(5) =d+ 5m− 15
m

f1 −
10m2 − 70m+ 125

m(m− 1) f2 + 10m3 − 120m2 + 485m− 660
m(m− 1)(m− 2) f3 −

(m− 4)5 − (m− 5)5

m(m− 1)(m− 2)(m− 3)f4 + (m− 5)5

(m− 4)(m− 3)(m− 2)(m− 1)mf5

N̂J(6) =d+ 6m− 21
m

f1 −
15m2 − 120m+ 245

m(m− 1) f2 + 20m3 − 270m2 + 1230m− 1890
(m− 2)(m− 1)m f3 −

15m4 − 300m3 + 2265m2 − 7650m+ 9751
(m− 3)(m− 2)(m− 1)m f4

+ (m− 5)6 − (m− 6)6

(m− 4)(m− 3)(m− 2)(m− 1)mf5 −
(m− 6)6

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf6

N̂J(7) =d+ 7m− 28
m

f1 + −21m2 + 189m− 434
m(m− 1) f2 + 35m3 − 525m2 + 2660m− 4550

(m− 2)(m− 1)m f3 + −35m4 + 770m3 − 6405m2 + 23870m− 33621
(m− 3)(m− 2)(m− 1)m f4

+ 21m5 − 630m4 + 7595m3 − 45990m2 + 139867m− 170898
(m− 4)(m− 3)(m− 2)(m− 1)m f5 + (m− 7)7 − (m− 6)7

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf6

+ (m− 7)7

(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf7

N̂J(8) =d+ 8m− 36
m

f1 + −28m2 + 280m− 714
(m− 1)m f2 + 56m3 − 924m2 + 5152m− 9702

(m− 2)(m− 1)m f3 + −70m4 + 1680m3 − 15260m2 + 62160m− 95781
(m− 3)(m− 2)(m− 1)m f4+

+ 56m5 − 1820m4 + 23800m3 − 156520m2 + 517608m− 688506
(m− 4)(m− 3)(m− 2)(m− 1)m f5 + −28m6 + 1176m5 − 20650m4 + 194949m3 − 1029028m2 + 2920008m− 343615

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m f6+

+ (m− 7)8 − (m− 8)8

(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf7 + (−1)(m− 8)8

(m− 7)(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf8

N̂J(9) =d+ 9m− 45
m

f1 + −36m2 + 396m− 1110
(m− 1)m f2 + 84m3 − 1512m2 + 9198m− 18900

(m− 2)(m− 1)m f3+

+ (1/120)(m− 9)9 − (1/24)(m− 8)9 + (1/12)(m− 7)9 − (1/12)(m− 6)9 + (1/24)(m− 5)9 − (1/120)(m− 4)9

(m− 3)(m− 2)(m− 1)m f4+

+ (1/24)(m− 9)9 − (1/6)(m− 8)9 + (1/4)(m− 7)9 − (1/6)(m− 6)9 + (1/24)(m− 5)9

(m− 4)(m− 3)(m− 2)(m− 1)m f5+

+ (1/6)(m− 9)9 − (1/2)(m− 8)9 + (1/2)(m− 7)9 − (1/6)(m− 6)9

(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m f6 + (1/2)(m− 9)9 − (m− 8)9 + (1/2)(m− 7)9

(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf7+

+ −(m− 8)9 + (m− 9)9

(m− 7)(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf8 + (m− 9)9

(m− 8)(m− 7)(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)mf9

N̂J(10) =d+ 10m− 55
m

f1 + −45m2 + 540m− 1650
(m− 1)m f2 + 120m3 − 2340m2 + 15420m− 34320

(m− 2)(m− 1)m f3 + −210m4 + 5880m3 − 62370m2 + 296940m− 535227
(m− 3)(m− 2)(m− 1)m f4

+ 252m5 − 9450m4 + 142800m3 − 1086750m2 + 4164510m− 6427575
(m− 4)(m− 3)(m− 2)(m− 1)m f5

+ −210m6 + 10080m5 − 202650m4 + 2184000m3 − 13306545m2 + 43453200m− 59411605
(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m f6

+ 120m7 − 7140m6 + 182700m5 − 2606100m4 + 22380120m3 − 115700130m2 + 333396850m− 413066170
(m− 6)(m− 5)(m− 4)(m− 3)(m− 2)(m− 1)m f7 + −(1/2)(m− 10)10 + (m− 9)10 − (1/2)(m− 8)10

m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)(m− 6)(m− 7)f8

+ (m− 9)10 − (m− 10)10

m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)(m− 6)(m− 7)(m− 8)f9 + −(m− 10)10

m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)(m− 6)(m− 7)(m− 8)(m− 9)f10

testing. At a high-level this method tests the null hypothesis Hi : E[N̂J(i+1) − N̂J(i)] = 0 against

H ′i : E[N̂J(i+1) − N̂J(i)] 6= 0 sequentially for i ≤ 10 and choose the estimator N̂J(i′) such that

Hi′ is the first null hypothesis not rejected. We denote the above method for order selection as

Jackknife-SelfTune.

The Valiant-Valiant Estimator. The work by Valiant and Valiant [152] introduced a framework

for rigorously estimating the histogram of a discrete probability distribution from a sample. Since

we are using the estimator from [152] as is, we limit our exposition into a high-level description

of the estimator and its guarantees and we refer the reader to the original manuscript [152] for

the detailed description. The Valiant-Valiant estimator takes as an input a sample from an

unknown distribution, creates the fingerprint and then computes a plausible histogram that might

have produced the observed fingerprint. Because there are numerous histograms that explain equally

well the observed fingerprint the authors propose a method that picks the “simplest” among them.
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Theorem 8. (Corollary 1.12 [152]) There exist absolute positive constants ζ, γ such that for any

0 < ε < 1, there exists Nε such that for any N > Nε, given a sample of search tokens D of size

m > γ
ε2

N
logN sampled from any query distribution π over the domain of pT |R of size |pT |R| = N , the

Valiant-Valiant estimator outputs a N̂ such that

Pr(|N − N̂ | ≤ Nε) ≥ 1− e−N
ζ

,

provided none of the probabilities in π lie in (0, 1
N ).

It is worth noting that the above guarantees are bounds on the convergence rate and not essential

parameters for the Valiant-Valiant estimator. The algorithm itself does not depend on any of the

above parameters and its only input is a sample D of any size.
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Figure 4.5: Evaluation of the estimators is conducted under various query distributions parameterized
as a Beta probability mass function.

Evaluation of the Estimators. We conduct experiments to evaluate the performance of

the estimators Valiant-Valiant and Jackknife-SelfTune. The only input that the two non-

parametric estimators take is a sample form an unknown query distribution and based on the

frequency of the search tokens they estimate the support size. We compute the relative error of the

support size estimation under different settings:

• Query distribution. We deploy a discretized Beta probability distribution Beta(α, β) defined

under parameterizations that take values α = 1 and β = {1, 2.5, 5, 10, 17}.

• Scale of support size. Chosen from N = 105.

• Number of observed search tokens. Varying sample size.
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We differentiate in our text between the α, β that denote the boundaries of the universe of values,

see Section 4.1, from the α, β used for the Beta probability distribution by characterizing the latter as

parameters of the distribution. Figure 4.5 shows the tested parameterizations of the Beta distribution.

Beta is defined under continuous interval [0, 1] which we discretized into N segments of equal length.

Parameter β = 1 gives the uniform distribution, parameter β = 2.5 gives an almost linear decay. For

parameter β = 10, we have roughly a power law, i.e., the Pareto principle, where roughly 80% of the

mass is distributed among 20% percent of the search tokens. This behavior has been recorded in a lot

of real-world phenomena. To give some more concrete statistics, for parameters β = 2.5, 5, 10, 17 the

percentages of search tokens that: (a) have probability less than 1/N are 54%, 67%, 77%, 84% and

(b) have probability less than 1/N2 are 0.5%, 12%, 36%, 54%, respectively. For each parametrization

we tested 5 · 103 instances and in Figures 4.4 and 4.6 we report the average absolute relative error.

We recall that even though our experiments are conducted over a fixed family of distributions, e.g.,

the beta distribution, by Remark 5 our observations apply to any permutation of beta “towers” of

probability mass and thus cover a wide range of query distributions. As it can be seen in Figure 4.4

estimator Jackknife-SelfTune is more accurate than Valiant-Valiant in the majority of the

tested settings. The above measurements experimentally confirm the guarantees of Theorem 8 since a

sublinear number of queries is enough to predict the existence of unobserved search tokens except the

ones that have probability less than 1/N . Another observation is that the maximum tested number

of observed search tokens, i.e., 500N , resulted in a relative error that is close to the percentage of

search tokens with probability less than 1/N2.

102 5 102 103 5 103 104

Number of Queries (Log Scale)

0
0.05
0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e 
Er

ro
r

Beta( 1 , 1 ), N=103

Jackknife Estimator
Valiant-Valiant Estimator

103 104 5 104 105 5 105 106

Number of Queries (Log Scale)

0.05

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
Er

ro
r

Beta( 1 , 1 ), N=105

Jackknife Estimator
Valiant-Valiant Estimator

Figure 4.6: Comparison of estimators under uniform query distribution.

Interestingly, for the case of uniform query distribution the Valiant-Valiant estimator is

significantly more accurate when the number of samples is sublinear. Based on this observation



115

we propose a “modular-estimator” to achieve the best of both worlds, an agnostic non-parametric

estimator that deploys (1) the Valiant-Valiant when the query distribution is uniform and (2) the

Jackknife-SelfTune otherwise.

Algorithm 6: Modular-Estimator
Input: Multiset of m search tokens D sampled according to pT |R

Output: Estimation of the support size N̂

1 Deploy Valiant-Valiant estimator with input D and get N̂V ;

2 Compute number of collisions c← |{j < k : k ∈ [2,m], tj = tk}|;

3 Set the error parameter for the tester ε← 1/N̂V ;

4 if c/
(
m
2

)
≤ (1 + 2ε2)/N̂V then // collision prob. tester

5 return N̂V since it passed the tester

6 end

// Deploy Jackknife-SelfTune;

7 Set number of unique tokens based on fingerprint d←
∑m

i=1 fi;

8 for i← 1 to 9 do

9 Set bk ← α
(i+1)
k

− α(i)
k

, where α(i)
k

is the k-th coefficient of the jackknife estimator of order i, see

Equation (4.1);

10 N̂J(i+1) − N̂J(i) ←
∑m

k=1 bkfk // Eq. (4.1);

11 v̂ar(N̂J(i+1) − N̂J(i)|d)← d
d+1

(∑m

k=1(bk)2fk −
(N̂J(i+1)−N̂J(i))2

d

)
;

12 Formulate the test statistic Ti ←
N̂J(i+1)−N̂J(i)√

v̂ar(N̂J(i+1)−N̂J(i)|d)
for the null hypothesis

Hi : E[N̂J(i+1) − N̂J(i)] = 0;

13 Since Ti follows approximately a standard distribution, we can derive its corresponding two-sided

significance level, denoted as Pi;

14 if Pi > 0.1 then

15 return N̂J(i) since the null hypothesis Hi is not rejected

16 end

17 end

Modularity via Property Testing. Our estimator is Algorithm 6 (Modular-Estimator).

The work of Goldreich and Ron [76] introduced a property testing [74] technique called collision-

probability tester that given a sample from an unknown distribution it tests whether the sample

originated from a distribution that is ε-afar from the uniform over [1, N ]. Recent analysis by

Diakonikolas et al. [57] showed a tight upper bound on the sample complexity of O(
√
N/ε2) which

proves sample-optimality. The collision-probability tester takes as parameters the desired error ε

the sample D and the support size N as an input. Unfortunately in our setup we do not know
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N therefore in our algorithm we use the output of Valiant-Valiant as an approximation N̂ to

perform the collision-probability tester. Our approach is modular in the sense that different modules,

i.e., estimators, are used for different “shapes” of query distributions. For concreteness we chose 0.1

as the threshold of the significance level of hypothesis testing, per recommendation of [30], and a

fixed error ε for the collision-probability tester but these quantities can be tuned differently.

4.3 Revisiting Data Reconstruction Attacks

In this section, we use the techniques from Section 4.2 to develop new reconstruction attacks

on encrypted databases using both the search-pattern leakage and access-pattern leakage. Our

reconstruction algorithm for range queries (Section 4.3.1) is significantly different from previous

approaches. Our reconstruction algorithm from k-NN queries (Section 4.3.2) builds on previous work

[104] but follows a different algorithmic strategy so as to reduce the number of required samples and

also scale for larger values of k. We experimentally demonstrate the accuracy of our reconstruction

algorithms under various query distributions and densities of the database.

4.3.1 Reconstruction from Range Queries

Illustrative Example. We start by conveying the intuition of our range attack with an application

on a simple database with only three values, {v0 = 7, v1 = 15, v2 = 20} from universe [1, 30] shown

in Figure 4.7. The distances between consecutive pairs, Li = vi − vi−1, are L0 = 7, L1 = 8, L2 = 5,

L3 = 11.

Figure 4.7: Illustrative example of a database along with all the possible conditional probability
distributions and their corresponding support size.
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For simplicity, we consider first the restrictive scenario where the adversary has observed all

possible range queries. In this case, there is no need to estimate the number of range-queries that

return a specific response r′, it is enough to count the number of unique queries that return r′. In

other words, the adversary knows the exact support size for every conditional probability distribution

pT |R (T |R = r′). From Remark 3, the support size can be expressed as the product Li, Lj for the

appropriate pair i, j. The support sizes of all conditional distributions of this example are illustrated

in Figure 4.7.

To compute the n + 1 unknowns L0, L1, L2, L3, the adversary solves the following set of
(
n
2
)

equations:

L0 · L1 = 56 L1 · L2 = 40 L2 · L3 = 55

L0 · L2 = 35 L1 · L3 = 88 L0 · L3 = 77
(4.2)

One can apply the logarithmic function to transform the products to sums, i.e., x0 = log(L0), x1 =

log(L1), x2 = log(L2), x3 = log(L3). Then, using elementary row operations on the system of linear

equations one can easily compute the echelon form and show that the rank of the matrix is n+ 1,

thus there is a unique and exact reconstruction for the restrictive scenario where the adversary has

seen all possible queries. The above analysis was also presented independently in [117].

We now consider the more realistic, general scenario of an adversary who has observed a subset of

all possible search tokens, as issued by the client under a fixed query distribution that is unknown to

the adversary. From Observation 2, a token-response pair, (t′, r′), can be seen as a sample from the

conditional probability distribution pT |R (T |R = r′). Thus, the first step of the attack is to partition

the observed search tokens with respect to their returned responses, i.e., the conditional distribution

they belong to, using the method of Section 4.2.

The result of this partition gives a collection of multisets of search tokens. Each multiset is used

to estimate the support size of the corresponding distribution. We denote with L̂i,j the estimation

of the support size Li · Lj . We note here that some estimations should play a more central role

in the overall reconstruction based on the fact that we have observed more samples. For example,

the support size estimation of pT |R (T |R = r′) from a sample of size 2 is less trustworthy than the

support size estimation of pT |R (T |R = r′′) from a sample of size 103. To capture this we model a

minimization problem, where the “importance” of an estimate L̂i,j is expressed by a non-negative

weight wi,j .
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Reconstruction Algorithm. The goal of the proposed optimization is to assign values to the

lengths L0, . . . , Ln so as to minimize the weighted sum of squared errors. One option for the error

function between the estimated products and a pair of lengths is the difference between the two terms,

i.e., e1(Li, Lj) = (Li · Lj − L̂i,j). Another option for the error function is the log of the ratio, that is

e2(Li, Lj) = log
(

(Li · Lj)/L̂i,j
)

= log(Li) + log(Lj)− log(L̂i,j). If there is no sample to feed to the

estimator to produce L̂i,j , we assign default value L̂i,j = 1, therefore the ratio in e2 is well-defined

since the denominator takes positive non-zero values. Notice that both e1 and e2 output value 0

when the product of the unknowns is equal to the estimated quantity L̂i,j . Our experiments showed

that the error function of the log ratio e2(Li, Lj) has superior reconstruction quality in the majority

of the cases compared to the error function e1(Li, Lj). For simplicity of the exposition we define

new unknowns xi = log(Li) for i ∈ [0, n] which gives the following final unconstraint optimization

problem:

min
x0,...,xn

n∑
i=0

n∑
j=i+1

wi,j(xi + xj − log(L̂i,j))2 (4.3)

We set weight wi,j = max{ε, |Di,j |}, where ε is an arbitrarily small positive value and |Di,j | is the

number of tokens used for estimation L̂i,j . The values x0, . . . , xn obtained from the solution of (4.3)

are mapped to lengths as Li = 2xi . As a final step we scale the derived lengths L0, . . . , Ln to sum to

N .

Theorem 9. The unconstrained quadratic optimization problem of Equation (4.3) with constant

values wi,j , L̂i,j, and unknown values xi, is a convex function and has a unique solution.

Proof. We first show that the function in equation (4.3) is convex. Notice that the inner functions,

i.e., (xi +xj − log(L̂iLj)), can be interpreted as convex functions, i.e., strict equality in the definition

of convexity, and their composition with the quadratic function, i.e., (xi + xj − log(L̂iLj))2, output

a convex function. Furthermore it is known that the non-negative weighted sum of convex function

preserves convexity which means that the function of (4.3) is convex. Due to convexity of (4.3) every

local minima is global. The next step is to show that there exists a unique solution. Notice that

the following matrix of coefficients M derived from the partial derivatives, also appears in Line 8 of
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Algorithm Agnostic-Reconstruction-Range, and is symmetric.

M =



∑
j 6=0 2w0,j 2w0,1 . . . 2w0,n

2w0,1
∑
j 6=1 2w1,j . . . 2w1,n

. . . . . . . . . . . .

2w0,n 2w1,n . . .
∑
j 6=n 2wj,n


If we show that ~yTM~y > 0 for all vectors ~y 6= 0, then the matrix is positive definite which implies

that there is a unique solution. We want to show ~yTMy > 0. Thus:

~yTMy > 0⇒ 2~yT 1
2My > 0⇒ ~yT 1

2My > 0⇒

~yT ·



∑
j 6=0 w0,j w0,1 . . . w0,n

w0,1
∑
j 6=1 w1,j . . . w1,n

. . . . . . . . . . . .

w0,n w1,n . . .
∑
j 6=n wj,n


· ~y > 0⇒

[
y0

(∑
j 6=0 w0,j

)
+
∑
j 6=0 yjw0,j . . . yn

(∑
j 6=n wj,n

)
+
∑
j 6=n yjwj,n

]
· ~y > 0⇒

∑n
i=0

(
y2
i

(∑
j 6=i wi,j

)
+ yi

∑
j 6=i yjwi,j

)
> 0⇒

∑
0≤i<j≤n

(
wi,j(y2

i + y2
j )
)

+
∑

0≤i<j≤n (2yiyjwi,j) > 0⇒

∑
0≤i<j≤n wi,j

(
y2
i + y2

j + 2yiyj
)
> 0⇒

∑
0≤i<j≤n wi,j (yi + yj)2

> 0

, which is true since wi, j is always positive.

We derive the partial derivative with respect to xi as:

∂f

∂xi
=

∑
j 6=i

2wi,j

xi +
∑
j 6=i

(2wi,j)xj −

∑
j 6=i

2wi,j log(L̂i,j)

 .

We find the global minimum by setting all partial derivatives equal to zero. Our reconstruction

method from range queries, Range-Reconstruction, is shown in Algorithm 7.

Comparison with Attack GeneralizedKKNO [83]. We first compare the accuracy of the
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Algorithm 7: Agnostic-Reconstruction-Range
Input: Multiset of range search tokens and their responses D = {(t1, r1), (t2, r2) . . . , (tm, rm)}; ordering of the

database records I = (id0, . . . , idn−1); endpoints α and β of the database universe; arbitrary positive
constant ε

Output: Approximate reconstruction ṽ0, . . . , ṽn−1
1 for every unique response r in D do
2 Let idi ∈ r be the identifier of r with minimum rank in I;
3 Let idj ∈ r be the identifier of r with maximum rank in I;
4 Let Di,j+1 be the mulitset of all the pairs in D with response r;
5 Let weight wi,j+1 = max{ε, |Di,j+1|2};
6 Run Algorithm 6 (Modular-Estimator) on the multiset of search tokens in Di,j+1 to output estimated

support size L̂i,j+1;
7 end
8 Solve the system of linear equations below, obtained by setting the partial derivatives of Eq. (4.3) equal to zero:

∑
j 6=0 2w0,j 2w0,1 . . . 2w0,n
2w0,1

∑
j 6=1 2w1,j . . . 2w1,n

. . . . . . . . . . . .
2w0,n 2w1,n . . .

∑
j 6=n 2wj,n



x0
x1
. . .
xn

 =


∑
j 6=0 2w0,j log(L̂0,j)∑
j 6=1 2w1,j log(L̂1,j)

. . .∑
j 6=n 2wn,j log(L̂n,j)


9 Compute the approximated lengths as L0 = 2x0 , . . . , Ln = 2xn ;

10 Scale L0, . . . , Ln so as
∑n

i=0 Li = β − α+ 1;
11 Let v−1 = α− 1;
12 for i = 0, · · · , n− 1 do
13 Let ṽi = ṽi−1 + Li;
14 end
15 return ṽ0, . . . , ṽn−1;

reconstruction of our attack, Agnostic-Reconstruction-Range, to the accuracy of the state-of-

the-art reconstruction attack GeneralizedKKNO, which is the the most general (i.e., with fewest

assumptions, e.g., only uniform queries) of the three attacks proposed by Grubbs et al. [83]. In this

experiment, we generate Q = 104 range queries uniformly at random from the values in universe

[α, β] = [1, 103]. We generate the values of the encrypted DB under various database densities.

To assess the quality of the reconstruction, we use the mean square error (MSE) and the mean of

absolute error (MAE) between the original and the reconstructed database. We note here that MSE

gives a higher penalty to reconstructed values with larger error.

Recall that our algorithm is (1) not tailored to work well on a specific query or data distribution

and (2) distribution agnostic, i.e., does not need to know the data/query distribution. Hence,

we would expect GeneralizedKKNO to have an inherent advantage in this experiment since it

is specifically designed for uniform queries. The results of the experiment, shown in Figure 4.8,

indicate that this is not the case: in terms of MSE, GeneralizedKKNO is 2.5× to 17× worse than

our Agnostic-Reconstruction-Range for densities from 20% to 90%, and in terms of MAE

GeneralizedKKNO is comparable with our Agnostic-Reconstruction-Range for densities

from 15% to 75%.
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Figure 4.8: Comparison between GeneralizedKKNO and our attack, Agnostic-Reconstruction-
Range, under the uniform query distribution.

We explain the experimental results as follows. The MAE quality metric is a first order statistic,

therefore the large errors of GeneralizedKKNO are not penalized enough in the bottom plot of

Figure 4.8. To explain why the performance of GeneralizedKKNO deteriorates, we note that this

algorithm essentially maps the observed frequency to an expected frequency if the record were to have

a fixed value. For dense databases, several records will appear together in many responses and as a

result, will have very similar frequencies. This implies that multiple records map to the same plaintext

value. The experiments confirm this behavior as GeneralizedKKNO tends to map multiple records

to the same reconstructed value. To explain the outperformance of GeneralizedKKNO in the

sparse regime, recall that the support size of each conditional distribution is the product of a pair of

distances between database values. When the database is sparse, such distances are larger, hence the

support size grows quadratically with the distance. Thus, the adversary needs to see more samples

than the tested ones to increase accuracy.

Evaluation on Short Range Queries. In practical data analysis applications, focused short

range queries are more likely to occur than exploratory long queries. Also, a client who often issues

long range queries would have limited benefits from outsourcing the database. Motivated by this

observation, we have conducted experiments on short range queries. First, we explain how we
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Figure 4.9: Performance of our attack, Agnostic-Reconstruction-Range, under parameteriza-
tions of query distributiona Short-Ranges and Value-Centered.

generate short range query distributions and then we report on the experimental results.

Let |R| be the number of all possible range responses. Specifically we generate a query distribution

that we call Short-Ranges(α, β) as follows: Generate a Beta(α, β) distribution and discretize into |R|

equally spaced intervals. Recall that the cardinality of the universe of values is N . Then process the

discretized values from left-to-right and add “noise” by multiplying each probability with a random

number from [0, 1] divided by |R|. After applying a normalization step, assign in batches the “noisy”

Beta(α, β) probabilities to queries as follows: assigns the first N probabilities to queries whose range

is a single value; assign the next N −1 probabilities to queries whose range spans two values; continue

up to the range query spanning the entire universe. This process gives higher probability to short
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range queries. The higher the value of parameter β, the larger the gap between the probabilities

of short and long range queries. To understand how different Short-Ranges is from the uniform we

note that for N = 103, the mean length of a sampled range query under the uniform is 333, which

corresponds to 33% of the universe size. The query distributions Short-Ranges(1,3), Short-Ranges(1,5),

and Short-Ranges(1,20) have mean length of 142, 90, and 23, which correspond to 14.2%, 9%, and 2%

of the universe, respectively.

In this evaluation, we chose parameter β = {3, 5, 20} and N = 103. The upper row of Figure 4.9

shows the heatmap of the probability distribution for these three parameterizations but for a smaller

universe. The Y -axis, resp. X-axis, corresponds to the lower boundary, resp. upper boundary,

and the coloring of each square represents the probability of issuing this range query. As one

can see the “bright” high-probability areas are around the diagonal. The MSE plot in Figure 4.9

shows the behavior of Agnostic-Reconstruction-Range under different database densities. The

distribution Short-Ranges(1,20) is a case where one would expect the reconstruction algorithm to be

challenged due to the fact that only a few records are returned in each response. Interestingly, our

reconstruction in Short-Ranges(1,20) is significantly better than the other distributions. To explain

this, recall that the length of the range queries is really small which implies that the adversary only

observes a small number of responses. So even though a lot of the total
(
N+1

2
)
conditional probability

distributions will not observe any search token the small number of conditional distributions that are

“active” will observe a enough samples to get a very accurate estimation of their corresponding support

size. The final step of the formulated convex optimization problem in Equation (4.3) combines the

accurate estimations efficiently to derive the overall assignment of reconstructed values.

Evaluation on Queries Centered Around a Value. In this experiment we focus on range

queries that are centered around a given value. Consider the real-world scenario of an encrypted

database with medical data and assume that the client is a researcher who analyzes the medical

profile of adolescents with asthma symptoms. We expect the majority of range queries issued by the

client on the age attribute to have values within or near range [13, 19] since this is the population of

interest.

Inspired by the above scenario, we generate query distributions that we call Value-Centered(α, β),

i.e., tailored to contain a specific value of the encrypted database. Similar to the generation process

of the Short-Ranges query distributions, we discretize a beta pdf and multiply each probability of

the pmf with a random number from [0, 1] divided by |R| and as a final step, we normalize. The
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difference from the previous experiment is how we assign the resulting probabilities to range queries.

For Value-Centered we choose uniformly at random a value v′1 of the underlying database. Processing

again the probabilities-to-be-assigned from left to right, we assign the first batch of probabilities to

the range queries that return the chosen value v′1. As the next step, we sample without replacement

another value v′2 from the database and assign the next batch of probabilities to the ranges that

return v′2. This process continues until we have processed all n database values and we finally

assign the remaining probabilities to the remaining range queries. The lower row of Figure 4.9

shows the heatmap of these distribution. The “bright rectangles” show that the range queries are

“centered” around the value on the upper left corner of the rectangle. The ranges generated with

Value-Centered(1,3) better explore the universe of values which allows our reconstruction attacks

to achieve the smallest reconstruction error. The case of Value-Centered(1,10) assigns most of the

high probabilities to a subset of the ranges that contain a single value therefore the majority of the

universe is rarely explored. We report here that 14 out of the 120 runs of the Value-Centered(1,10)

were unsuccessful because the queries did not explore the universe sufficiently. In general the query

distribution Value-Centered(α, β) is makes the reconstruction more challenging than the previous

distribution, a fact that is also supported by the observed MSE which is 100× larger than the previous

experiment. This reconstruction error can potentially be reduced by adding a small set of queries of

exploratory nature scattered over the universe of values.

4.3.2 Reconstruction from k-NN Queries

In this subsection, we first discuss the limitations of the reconstruction attack AttackUnordered

from k-NN queries by Kornaropoulos et al. [104]. Next, we introduce our method, which is scalable

and supports reconstructions beyond uniform query distributions. Finally, we present experiments

about the performance of our attack on synthetic and real-world datasets.

The two new ingredients of our reconstruction algorithm are: (1) use of support size estimators

to compute an estimate of the length of each Voronoi segment without any assumption about the

underlying query distribution; and (2) formulation of an optimization problem that outputs a minimal

distortion of the estimated lengths so as to transform them to a valid Voronoi diagram to overcome

the fact that the estimated lengths of Voronoi segments are not always geometrically consistent.

Overview of AttackUnordered [104]. An insight from [104] is that even when the adversary

observes all the possible queries, or else knowns the exact length of each Voronoi segment, it is
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impossible to achieve exact reconstruction of the encrypted database (see Theorem 2 in [104]). This

is because there are arbitrarily many value assignments that have the same Voronoi diagram which

implies that the reconstruction error comes from the combination of (1) the length estimation errors

and (2) the choice of a reconstruction among the many valid ones. First, AttackUnordered

estimates the length of a Voronoi segment Len({idi, . . . , idi+k−1}) as the frequency of a response

{idi, . . . , idi+k−1} multiplied by the size of the universe of queries. This simple estimator is accurate

under the assumption that the queries are generated uniformly at random. As shown in [104], any

set of values that implies the observed Voronoi diagram satisfies three families of constrains:

• ordering constraints, i.e., vi < vi+1,

• bisector constrains, i.e., (vi + vj)/2 = bi,j , and

• boundary constraints, i.e., α < v0 and vn−1 < β.

All the above constrains form a feasible region F of potential reconstructions, which is geometrically

expressed as a k-dimensional convex polytope.

Limitations of AttackUnordered [104]. We identify here some limitations of the approach

in [104] and later show how to overcome them. The length estimation in AttackUnordered can

be performed solely with the access-pattern leakage, hence even though the adversary observes a

wealth of information from the search-pattern, this information is not utilized. Also, algorithm

AttackUnordered provides rigorous guarantees about the quality of the reconstruction, but this

precision comes with a price. The experiments of [104] show that for a successful reconstruction, it is

preferable to have (1) a large number of queries and (2) a small number of neighgbors returned, k.

Finally, the number of queries must be large enough so as the estimated lengths are so accurate that

they define a Voronoi diagram without any modification. As an example, to achieve a reconstruction

on the real-world Spitz dataset, the experiments in [104] observed more than 250 million queries. The

proposed approach in this chapter achieves a reconstruction on the same dataset with 2.5 million

queries, a 100× smaller sample size. Overall, the exact approach of AttackUnordered [104]

either succeeds with great accuracy or fails and outputs nothing. Additionally the technique in [104]

requires the explicit computation of the feasible region by computing the vertices of the feasible region

F which requires time that is linear to the number of vertices of F . We note that a k-dimensional

convex polytope has O(2k) vertices, therefore such an approach does not scale well to larger k values.

Our new approach overcomes both of the above limitations and utilizes the search-pattern leakage.
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Algorithm 8: Agnostic-Reconstruction-KNN
Input: A multiset of k-NN search tokens and their responses D = {(t1, r1), (t2, r2) . . . , (tm, rm)}, the ordering

of the records I = (id0, . . . , idn−1), as well as α, β,N
Output: Approximate Reconstruction ṽ0, . . . , ṽn−1

1 Compute the left-to-right ordering S of the responses, i.e., the Voronoi segments, using the ordering I of the
records.;

2 for every ri in S from left-to-right do
3 Define Di as the mulitset with tokens from D with response ri;
4 Call Modular-Estimator with input the multiset of tokens Di and store the estimated support size as L̂i;
5 end
6 Define the vector of estimated lengths l̂← (L̂0, . . . , L̂n−k);
7 Solve the following convex optimization problem with unknowns the vector of distortions ~δ and the vector of

offsets ~ξ:

min
~δ,~ξ

n−k∑
i=0

δ2
i

s.t. A ·
[
~δ
~ξ

]
≤B · l̂, (ordering constraint)

aTl ·
[
~δ
~ξ

]
≤bl · l̂, (lower boundary constraint)

aTu ·
[
~δ
~ξ

]
≤bu · l̂, (upper boundary constraint)

~ξ ≥0, (positive offsets constraint)
~δT l̂ =N, (sum of augmented lengths)

where A and B are matrices of constant terms derived from the ordering constraints of Lemma 14, al, bl are
vectors of constant terms for the lower boundary constraint derived from Lemma 15, and au, bu are vectors of
constant terms for the upper boundary constraint derived from Lemma 15;

8 From the distortion vector ~δ returned from the optimization problem and the estimated lengths l̂ we compute
the augmented Voronoi diagram;

9 Given the above Voronoi diagram and the offset vector ~δ returned from the optimization problem we derive the
reconstructed database by substituting on the formulas of Lemma 5 in [104];

10 return ṽ0, . . . , ṽn−1;

Our Reconstruction Algorithm. Algorithm 10 (Agnostic-Reconstruction-KNN ) out-

lines our reconstruction attack from k-NN queries. A key insight of this algorithm is using the

search-pattern leakage to estimate the length of each Voronoi segment under an any arbitrary query

distribution. We build on the attack in [104] and extend it into two new directions. Instead of expect-

ing a number of queries large enough to accurately estimate a valid Voronoi diagram, we compute

the minimum distortion for each estimated length so as the new “augmented” set of lengths comprise

a valid Voronoi diagram. We achieved this by adding distortion variables to the offset variables of

[104] and introducing a convex optimization problem where the feasible region formulation from [104]

forms the set of inequality constraints and the objective function expresses the minimization of the

distortion. Finally, in order to scale to larger values of k, we don’t require the explicit construction

of the feasible region and instead output a reconstruction from the feasible region of the augmented
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Voronoi diagram.

Observation 2 from Section 4.2 shows that an adversary with a sample D of search tokens and

their responses can partition D with respect to each of the n− k + 1 possible responses and form a

collection of samples from the conditional probability distributions. From Remark 4 we know that

the support size of a conditional probability distribution is the length of the corresponding Voronoi

segment. Our algorithm deploys the Modular-Estimator to acquire an estimation of the length

of each Voronoi segment without any assumptions about the query distribution, see Lines 2-6 in

Agnostic-Reconstruction-KNN. After this step the estimated lengths, i.e., l̂ = (L̂0, . . . , L̂n−k)

are treated as constants. We define one distortion variable δi per estimated length L̂i, for i ∈ [0, n−k].

We derive the value assignment of these variables by solving a quadratic minimization problem where

the objective function is the sum of the squares of δi, i.e., min
∑n−k
i=0 δ2

i . This design choice captures

our goal to compute the smallest possible distortion. We follow the footsteps of [104] and express

the space of valid reconstructions with respect to offsets ξi from bisectors. Overall the optimization

formulation has n− k + 1 unknowns for the distortion variables ~δ = (δ0, . . . , δn−k) and k unknowns

for the offset variables ~ξ = (ξ0, . . . , ξk−1), so a total of n+ 1 unknowns. The above objective function

can be written as ~xTM~x, where ~x is the column vector from the concatenation of ~δ and ~ξ, and M is

an all-zero matrix except the first n− k + 1 elements of the main diagonal which have value 1. Since

the matrix M is positive semidefinite, the objective function is a convex function.

Additionally the assignment of ~δ and ~ξ should be such that the collection of augmented lengths,

i.e., L̂i+δi for i ∈ [0, n−k], forms a Voronoi diagram. To express this goal we form four type of linear

constraints for the optimization problem. The first type of constraints is the ordering constraints.

These constraints can be written as A · [~δ, ~ξ]T ≤ B · l̂, where A is (n− 1)× (n+ 1) matrix of constants

and B is (n− 1)× (n− k+ 1) matrix of constants. These matrices can be derived from the analytical

formulas of Lemma 14. The second type of constraints is the boundary constraints which guarantee

that α < v0 and vn−1 < β, see Lemma 15 for the analytical formula. The third type of constraints

guarantees that the offsets are positive, i.e., ξ ≥ 0. Finally the fourth type of constraints is an

equality constraint that guarantees that the augmented lengths sum to N , i.e.,
∑n−k
i=0 (L̂i + δi) = N .
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Lemma 14. The ordering constraint vi < vi+1 can be expressed as a function of A) the offsets
ξ = (ξ0, . . . , ξk−1), B) the distortion of each Voronoi segment δ = (δ0, . . . , δn−k), and C) the
lengths of a subset of Voronoi segments L0, . . . , Ln−k. Specifically by using Lemma 8 from [104]
we get the following cases:

• if 0 ≤ i < k − 1, then vi < vi+1 can be written as:

− ξi + ξi+1 − δi+1 < ci,i+1, where ci,i+1 = Li+1

• if i = k − 1, then vi < vi+1 can be written as:

− ξk−1 − ξ0 +
∑

1≤l≤k−1
δl < ck−1,k, where ck−1,k = −

∑
1≤l≤k−1

Ll

• if k ≤ i < 2k − 1, then vi < vi+1 can be written as:

ξi mod k − ξi mod k+1 − δi mod k+1 < ci,i+1, where ci,i+1 = Li mod k+1

• if i = 2k − 1, then vi < vi+1 can be written as:

ξk−1 + ξ0 − δk −
∑

1≤l≤k
δl < c2k−1,2k, where c2k−1,2k = Lk +

∑
1≤l≤k

Ll

• if 2k ≤ i < n− 1 and (i+ 1) mod k 6= 0, then vi < vi+1 can be written as:

(−1)bi/k−1c(ξi mod k − ξ(i+1) mod k)− (−1)bi/k−1c(δ(i+1) mod k)−
∑

2≤j≤bi/kc

(−1)j+bi/kc2(δi mod k+(j−1)k+1) < ci,i+1

, where ci,i+1 = (−1)bi/k−1cL(i+1) mod k +
∑

2≤j≤bi/kc

(−1)j+bi/kc2Li mod k+(j−1)k+1

• if 2k ≤ i < n− 1 and (i+ 1) mod k = 0, then vi < vi+1 can be written as:

(−1)bi/kc+1(ξi mod k + ξ(i+1) mod k)− (−1)bi/kc+1( ∑
1≤l≤k

δl
)
− (−1)bi/kc+1(δk)−

∑
2≤j≤bi/kc

(−1)j+bi/kc2(δjk) < ci,i+1

, where ci,i+1 = (−1)bi/kc+1

 ∑
1≤l≤k

Ll

+ (−1)bi/kc+1Lk +
∑

2≤j≤bi/kc

(−1)j+bi/kc2Ljk

The first three cases the term ci,i+1 consists of the length of a single Voronoi segment. For the
fourth case the term ci,i+1 is a linear combination of 2k − 1 length terms. For the fifth case the
term ci,i+1 is a linear combination of at most b(n− 1)/kc length terms. Finally for the last case
ci,i+1 is a linear combination of at most b(n− 1)/kc+ k length terms.

Proof of Lemma 14: The proof is derived from Lemma 8 in [104] by substituting Li with

(Li + δi) for i ∈ [0, n− k].
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Lemma 15. The boundary constraints α < v0 and vn−1 < β can be expressed as a function of A)
the offsets ξ = (ξ0, . . . , ξk−1), B) the distortion of each Voronoi segment δ = (δ0, . . . , δn−k), and
C) the lengths of a subset of Voronoi segments L0, . . . , Ln−k. Specifically we have the following
cases

• for the lower boundary
ξ0 − δ0 ≤ cl, where cl = L0

• for the upper boundary
-if k ≤ n− 1 < 2k:

ξ(n−1) mod k +
n−k−1∑
j=0

δi < cu, where cu = Ln−k

-if 2k ≤ n− 1:

(−1)b(n−1)/k−1cξ(n−1) mod k + (−1)b(n−1)/k−1c
(n−1) mod k∑

j=0
δj +
b(n−1)/kc∑

j=2
2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

δm

 < cu

, where cu = β − (−1)b(n−1)/k−1cα− (−1)b(n−1)/k−1c
(n−1) mod k∑

j=0
Lj −
b(n−1)/kc∑

j=2
2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Lm



Proof. Lower Boundary Constraint: Using Lemma 5 from [104]:

α < v0 ⇒ α ≤ b0,k − ξ0 ⇒ ξ0 ≤ b0,k − α

⇒ ξ0 ≤ Len({id0, . . . , idk−1})⇒ ξ0 ≤ L0

If we replace every Li with the term Li + δi so as to consider the distortion variables δ0, . . . , δn−k we

get: ξ0 − δ0 ≤ L0

Upper Boundary Constraint:

• if k ≤ n− 1 < 2k: Using Lemma 5 from [104] we get,

vn−1 = b(n−1) mod k,(n−1) mod k+k + ξ(n−1) mod k ⇒

vn−1 = b(n−1) mod k,n−1 + ξ(n−1) mod k ⇒

vn−1 =

α+
n−k−1∑
j=0

Len(idj , . . . , idj+k−1)

+ ξ(n−1) mod k ⇒

vn−1 =

α+
n−k−1∑
j=0

Lj

+ ξ(n−1) mod k



130

The upper boundary constraint is vn−1 < β. If we replace every Li with the term Li + δi so as

to consider the distortion variables δ0, . . . , δn−k we get:

vn−1 < β ⇒α+
n−k−1∑
j=0

(Li + δi)

+ ξ(n−1) mod k < β ⇒

ξ(n−1) mod k +
n−k−1∑
j=0

δi < β − α−
n−k−1∑
j=0

Li ⇒

ξ(n−1) mod k +
n−k−1∑
j=0

δi <

n−k∑
j=0

Li −
n−k−1∑
j=0

Li ⇒

ξ(n−1) mod k +
n−k−1∑
j=0

δi < Ln−k

• if 2k ≤ n− 1: Using Lemma 5 from [104] we get,

vn−1 = (−1)b(n−1)/k−1c(b(n−1) mod k,((n−1) mod k)+k + ξ(n−1) mod k)+

+
b(n−1)/kc∑

j=2
(−1)j+b(n−1)/kc2b((n−1) mod k)+(j−1)k,((n−1) mod k)+jk ⇒

vn−1 = (−1)b(n−1)/k−1cξ(n−1) mod k+

+ (−1)b(n−1)/k−1cb(n−1) mod k,((n−1) mod k)+k+

+
b(n−1)/kc∑

j=2
(−1)j+b(n−1)/kc2b((n−1) mod k)+(j−1)k,((n−1) mod k)+jk ⇒

vn−1 = (−1)b(n−1)/k−1cξ(n−1) mod k+

+ (−1)b(n−1)/k−1c(α+
(n−1) mod k∑

j=0
Len(idj , . . . , idj+k−1))+

+
b(n−1)/kc∑

j=2
2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Len(idm, . . . , idm+k−1)

⇒

vn−1 = (−1)b(n−1)/k−1cξ(n−1) mod k+

+ (−1)b(n−1)/k−1c(α+
(n−1) mod k∑

j=0
Lj)+

+
b(n−1)/kc∑

j=2
2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Lm


The upper boundary constraint is vn−1 < β. If we replace every Li with the term Li + δi so as

to consider the distortion variables δ0, . . . , δn−k we get:
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vn−1 < β ⇒

(−1)b(n−1)/k−1cξ(n−1) mod k+

+(−1)b(n−1)/k−1c(α+
(n−1) mod k∑

j=0
(Lj + δj) +

+
b(n−1)/kc∑

j=2
2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

(Lm + δm)

 < β ⇒

(−1)b(n−1)/k−1cξ(n−1) mod k + (−1)b(n−1)/k−1c
(n−1) mod k∑

j=0
δj+

+
b(n−1)/kc∑

j=2
2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

δm


< β − (−1)b(n−1)/k−1cα− (−1)b(n−1)/k−1c

(n−1) mod k∑
j=0

Lj

−
b(n−1)/kc∑

j=2
2(−1)j+b(n−1)/kc ·


((n−1) mod k)

+(j−1)k∑
m=0

Lm



(a) (b) (c) (d)
Figure 4.10: Real-world dataset Spitz of a privacy-sensitive geolocation trace: (a) data for Otober
1-31, 2009; (b) mapping of the points to a Hilbert curve which reduces the 2D data to 1D; (c) query
distribution under attack, which consists of a permutation of a discretized Beta(α, β) distribution;
(d) another query distribution under attack, which is a Gaussian centered at the city of Hannover,
Germany.

Evaluation on the Spitz Dataset. In this experiment, we evaluate the performance of

Agnostic-Reconstruction-KNN on a public real-world data set (also used in [104]) containing

the geolocation of politician Malte Spitz.1 As in [104], we consider the geolocation data for the

period October 1 to 31, 2009 and reduce the 2D data to 1D by deploying a Hilbert curve of order 8.

The resulting discretized curve has universe of size N = 65536 and the dataset has size n = 258.
1www.zeit.de/datenschutz/malte-spitz-data-retention
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The data is shown on a super-imposed map in Figure 4.10(a) and its mapping on a Hilbert curve

is in Figure 4.10(b). The deployed query distribution is a discretized beta for varying parameters,

similar to the experiments of the previous subsection but without any noise, i.e., permuted over the

universe of queries. We illustrate this Permuted-Beta(α, β) query distribution with a heatmap on

the superimposed data in Figure 4.10(c). Finally we test a Gaussian query distribution with mean

centered at the city of Hannover in Germany and it is illustrated in Figure 4.10 (d).
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Figure 4.11: Absolute relative error of Agnostic-Reconstruction-KNN for varying query distri-
butions on the Spitz dataset.

The number of queries that the adversary observed is set to Q = 25 · 105 which is 100× smaller

sample size than the experiments conducted in [104]. Each attack was mounted 50 times and

Figure 4.11 presents the average absolute relative error. Due to the new design of our reconstruction

attack we were able to scale it to k = 50 an experiment that is not feasible from the approach

followed in [104]. As it is expected the power-law like distribution Permuted-Beta(1,10) is the hardest

to reconstruct due to the skewness and the sample size. Nevertheless the relative error ranges from

15% to 20% in this challenging scenario. The reconstruction under the Gaussian query distribution

is accurate across all values of k. An illustration this reconstruction is depicted in Figure 1.3.

Evaluation on Synthetic Dataset. We generated synthetic databases under varying densities

and query distributions for N = 103 and k = {2, 5, 10, 20, 50}. Figure 4.12 shows the average of the

mean absolute error of 100 repetitions with Q = 105. Note that for sparse databases, the distances

between the values are larger, hence the offset variables have “more room” to deviate, which increases

the size of the feasible region and as a result, the number of possible valid reconstructions. Another

factor that increases the size of the feasible region is the increase of the value k, an intuition confirmed

by the MAE for k = 50 even for the uniform case Permuted-Beta(1,1) which is easier to reconstruct.
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Figure 4.12: Performance of Agnostic-Reconstruction-KNN for varying query distributions on
synthetic data.

For densities larger than 20%, the reconstruction is usually within a distance of 20 from the plaintext

value for all the tested query distributions.

4.4 Related Work

For encrypted single-keyword search [23, 36, 38, 45, 67, 96, 147, 149] the access pattern leakage of some

leakage profiles is vulnerable to query recovery attacks, as opposed to the encrypted values. Specifically,

Islam et al. [93], Cash et al. [37], and Zhang et al. [163] give query-recovery attacks under various

assumptions. Encrypted systems with more expressive queries [139] rely on different cryptographic
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primitives, e.g., order-preserving encryption, and are vulnerable to data-recovery attacks [59, 82, 128]

using only the setup leakage. In terms of efficiency there is a series of works [10, 11, 35, 52, 54] that

study how the locality of searchable encryption affects the overall efficiency. Recent work improves

the asymptotic complexity of reconstruction from range queries under uniform query distribution or

observation of all possible queries [117].
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