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Facility-placement and route-planning optimization problems aim to minimize the cost of providing

a service to a set of clients. These problems arise frequently in a variety of contexts across computer

science and operations research. Some of the most classic and well-studied of these including k-

Center and the Traveling Salesperson Problem (TSP), though versatile, fail to adequately

model the fact that actual service-providers have limited capacities. Facilities and vehicles have

limited size (e.g. hospitals and buses can only hold so many people) as well as limited resources (e.g.

staff, supplies, fuel, fleet size etc.), so are often unable to serve all clients at once. Most placement and

route-planning algorithms cannot easily be extended to accommodate these considerations without

drastic sacrifices to performance.

In this thesis, we present approximation algorithms that provide guaranteed near-optimal so-

lutions to these types of planning problems. Moreover, our algorithms are specifically designed

for metrics that model transportation networks: planar and bounded-genus graphs, graphs with

bounded treewidth, and graphs with bounded highway dimension. We capitalize on the structure of

these metrics to improve the performance of our algorithms.

We first consider Capacitated Domination problems, which aim to minimize the number of

facilities required to serve all clients without exceeding facility capacities. For fixed capacities, we

present an approximation scheme for planar graphs. Next, we address Capacitated Vehicle

Routing, in which vehicles can only visit a limited number of clients in each trip. For arbitrary

capacities, we improve the best-known approximation ratio for vehicle routing in trees. For fixed ca-

pacities, we design the first approximation schemes for vehicle routing in planar graphs and graphs of

bounded highway dimension. Finally, we present a framework for designing vehicle-routing approx-

imation schemes in tree metrics that can be customized to address many different vehicle-routing

problems. In particular, the framework accommodates such constraints as vehicle distance (e.g.

those imposed by fuel limits or driver fatigue), vehicle capacity, fleet size, and client regret.
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Chapter 1

Introduction

Facility placement and vehicle routing describe a category of optimization problems that address

the very common goal of planning how a given service can best meet the demand imposed by a set

of clients at locations. This generality allows many disparate objectives to be modeled, including

provider-centric objectives to minimize service expenses (e.g. vehicle mileage, fuel consumed, vehicles

needed, buildings constructed, staff hired, etc.), client-centric objectives to minimize inconvenience

(e.g. travel distance, waiting time, missing deadlines, etc.), and objectives that combine these.

In most real-world planning problems, the vehicles and facilities have limited sizes, resources,

and staff, so it is often infeasible for all clients to be served by a single facility, vehicle, or trip. Much

of the research on these problems has not taken these real-world limits into consideration—and for

good reason: even without considering capacities, these problems are already NP-hard, and are thus

unlikely to be solved efficiently on even moderately large instances.

Although these problems are hard to efficiently solve exactly, a near-optimal solution often suf-

fices. One approach to this relaxation is to design heuristics that in practice may provide good

solutions, quickly, but have no guarantee on performance and often perform poorly on large in-

stances. Another approach is to design approximation algorithms, which have provable performance

guarantees that don’t depend on instance size. Heuristics may outperform approximation algo-

rithms on small instances, but approximation algorithms are often the only way to find near-optimal

solutions for large instances.

Many facility-placement and vehicle-routing problems cannot even be efficiently approximated

1
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well1. However, many actual transportation networks have a fairly predictable structure. Making

assumptions about the structure of the network can greatly simplify vehicle-routing problems and

often allows for better approximation guarantees. That is, the complexity of vehicle problems in

general does not adequately capture the complexity of these problems on the networks for which

these problems are relevant!

In this thesis, we show that some facility-placement and vehicle-routing problems that model

the real-world constraints of vehicles, drivers, and clients can be near-optimally approximated in the

networks that model transportation networks. Specifically, we address problems that can model real-

world constraints, including Capacitated r -Domination, Capacitated Vehicle Routing, and

Minimum Makespan Vehicle Routing for graphs that model transportation networks, including:

graphs of bounded treewidth, graphs of bounded genus, and graphs of bounded highway dimension.

In this thesis, we design approximation algorithms and prove performance guarantees for these

problems in these metrics.

1.1 Motivation

In this section, we motivate the work of this thesis.

1.1.1 Problem Relevance

Building new facilities (e.g. schools, hospitals, fire stations, company branches, etc.) costs taxpayers

and investors many millions of dollars, so it is important to plan their locations carefully to avoid

unnecessary costs. Once facilities have been established, vehicle-routing costs continue to constitute

a large portion of business and public expenses. The savings from even slight improvements can

be substantial. Recognizing this opportunity for improvement, organizations are turning toward

algorithmic solutions.

As an illustrative example, in 2016 the Boston Public School district spent $110 million dollars

(11% of the district’s entire budget) on transportation costs [90]. In 2017, they hosted the Boston

Public School’s Transportation Challenge, seeking public proposals for optimizing bus routes, in an

attempt to reduce busing costs and redirect the savings to other education needs.
1Under the assumption that P 6= NP
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1.1.2 Modeling Transportation Networks

We claim that vehicle-routing problems are more appropriately studied in the metrics for which

they are relevant. In particular, we use graphs of bounded treewidth, graphs of bounded genus, and

graphs of bounded highway-dimension to model transportation networks.

Although trees and graphs of bounded treewidth (or branchwidth) have simple structure that do

not adequately model many road networks (for example, the grid street plans of cities like New York

or Washington DC tend to have rather high treewidth), they remain a relevant class of graphs for

studying vehicle-routing problems. Trees model many mining and logging networks, where the cost of

adding redundancy is prohibitively expensive or destructive [74]. Similarly, shipping transportation

along a shoreline with inland rivers is also modeled by a tree [69]. Furthermore, many buildings

such as hotels, hospitals, warehouses, offices, and supermarkets are designed to have long branching

corridors lined with rooms or goods [69]. Such layouts have very low treewidth. Commuter-rail

networks for many cities (e.g. Boston or Washington DC) also have very low treewidth as they are

primarily designed to transport people into and out of the city, rather than to connect distant suburbs

to each other. Vehicle-routing problems arise naturally in all of these settings (e.g. restocking grocery

shelves, coordinating room service for a large hotel, transporting ore out of mines, etc.).

Additionally, from a theoretical standpoint, understanding the complexity of the problem on

trees bounds the complexity of the problem for other metrics. Designing algorithms for trees and

bounded-treewidth graphs can also offer insight into designing algorithms for more complex graphs,

and as we will see, some algorithms work by reducing the problem to bounded-treewidth instances.

Many vehicles (e.g. cars, trains, people, etc.) are physically restricted to move along the surface of

the earth, which makes planar graphs natural candidates for modeling their transportation networks.

This model is complicated by the use of bridges and tunnels which introduce non-planarities, in which

edges may cross without actually intersecting each other. If there are few such non-planarities, the

network can be modeled as a bounded-genus graph. Often these non-planarities can be localized in

such a way that algorithms can ‘work around’ them [20].

Finally, highway dimension is a parameter that was specifically designed to capture a common

trait of many transportation networks: shortest paths connecting points that are far from each other

tend to pass through at least one of a small number of hubs. This has been experimentally shown

to hold for US road networks [18, 19]. Therefore graphs of bounded highway dimension are relevant
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to the study of vehicle-routing problems.

1.1.3 Performance Guarantees

We design approximation algorithms with provable performance guarantees. Specifically, our al-

gorithms find near-optimal solutions, which we define to mean approximation schemes and small

constant-factor approximations. Facility-location and vehicle-routing problems often arise in public

works projects and in business planning. An important aspect of this type of planning is creat-

ing a realistic budget. This requires having at least a ballpark estimate of the associated costs.

Approximation algorithms can provide these estimates.

In practice, exact algorithms can only be used to solve relatively small instances. Heuristics may

be used for large instances, but their performance can be quite poor. Approximation algorithms

often outperform heuristics for large instances. Provable approximations also provide lower bounds

to solution costs which can be used to better understand the performance of other algorithms.

1.2 Thesis Overview

We give a brief overview of the techniques and results presented in this thesis.

1.2.1 Outline of Results

Capacitated r -Domination is the problem of opening the smallest number of facilities such that

each client is assigned to a facility within a distance r and the number of clients assigned to each

facility does not exceed its capacity. In Chapter 2 we present a polynomial-time approximation

scheme (PTAS) for Capacitated r -Domination in unit-weight planar graphs when the distance

r and the maximum capacity q̂ are fixed. Our algorithm extends Baker’s framework [13] for approx-

imation schemes in planar graphs to the capacitated setting. Specifically, directly applying Baker’s

framework results in some facilities being overcapacitated. We allow this overcapacitation temporar-

ily, and then perform a post-processing smoothing step that reassigns clients to achieve a feasible

solution.

Capacitated Vehicle Routing is the problem of routing a set of vehicle tours from a depot

so that they collectively cover all clients, the client demand covered by each vehicle does not exceed

its capacity, and the sum of the tour lengths is minimized. In Chapter 3 we present some general
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techniques for designing Capacitated Vehicle Routing approximation schemes when the vehicle

capacity Q is bounded. Specifically we introduce an error allowance that can be afforded for every

pair of consecutive clients u and v in a solution. This error is proportional not only to the distance

between u and v, but also proportional to their distances to the depot. Furthermore, Capacitated

Vehicle Routing with fixed capacities can be solved in polynomial time in graphs of bounded

treewidth (or branchwidth), using a dynamic-programming algorithm. Putting these pieces together,

we present a framework that reduces the goal of designing approximation schemes for Capacitated

Vehicle Routing to that of designing metric embeddings into graphs with bounded treewidth

such that distances are preserved up to the client-to-client error allowance. We show how such an

embedding reduction can also be used for variants including Multi-Depot Capacitated Vehicle

Routing and Capacitated Vehicle Routing with Penalties.

In Chapter 4 we present a quasi-polynomial-time approximation scheme (QPTAS) for Capac-

itated Vehicle Routing in planar and bounded-genus graphs when the vehicle capacity Q is

fixed. Our algorithm recursively decomposes the input graph using separators composed of shortest

paths. It then uses the client-to-client error allowance to designate portals along these separators

such that a solution can afford to take detours in order to cross the separators at the portals. By

polylogarithmically bounding the number of portals and depth of the recursion, the QPTAS follows

from a dynamic-programming algorithm over the decomposition.

In Chapter 5 we improve this result to a polynomial-time approximation scheme (PTAS). We

present a randomized metric embedding for planar graphs into bounded-treewidth graphs that pre-

serves distances in expectation up the client-to-client error allowance. We then show how to deran-

domize the embedding so that the Capacitated Vehicle Routing solution cost is guaranteed to

be near-optimal.

In Chapter 6 we give a PTAS for Capacitated Vehicle Routing with fixed capacities in

graphs of bounded highway dimension. This result follows from designing a (deterministic) metric

embedding of graphs of bounded highway dimension into graphs of bounded treewidth such that the

distances are preserved up to the client-to-client error allowance. We extend this embedding to the

multiple-depot setting, which gives an analogous PTAS for Multi-Depot Capacitated Vehicle

Routing as well as fixed-parameter approximations for k-Center and k-Median in graphs of

bounded highway dimension.

Capacitated Vehicle Routing with general (arbitrary) capacities is a considerably more
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difficult problem. In Chapter 7 we present a 4/3 approximation algorithm for tree metrics, which is

the best known approximation ratio and is in fact tight with respect to the best-known lower bound.

The algorithm proceeds by iteratively finding sets of tours whose cost is within a 4/3 factor of their

contribution to the lower bound. We show that if clients remain, such a set of tours can always be

found. The union of these tour sets gives a 4/3-approximate solution.

In Chapter 8 we present a framework for designing polynomial-time approximation schemes

for many vehicle-routing problems in trees, including Minimum Makespan Vehicle Routing

and Min-Max Regret Routing, as well as bicriteria PTASs for problems including Distance-

Constrained Vehicle Routing, Capacitated Vehicle Routing, and School Bus Routing.

The framework works by partitioning the tree into clusters such that there exists a near-optimal

solution that has simple structure with respect to the clusters. In particular, there exists a solution

in which only a small number of vehicles serve clients in any given cluster. This clustering greatly

restricts the set of potential solutions to consider without adding too much to the optimal solution

cost. We present a dynamic-programming algorithm that then finds a near-optimal solution in

polynomial time.

1.2.2 Techniques

One of the general techniques used throughout this thesis is finding ways to simplify the input

metric without introducing too much error. If the metric is sufficiently simplified, the problem can

then be solved optimally (or near-optimally) in the simpler instance. If the simplification does not

introduce too much error, an optimal solution in the simplified metric can then be mapped back to

a near-optimal solution in the input graph. This introduces a trade off between error and runtime:

the simpler the metric, the faster the runtime of solving the problem, but the greater the error of

the resulting solution.

We use this technique in the design of our approximation schemes, and our algorithms demon-

strate this trade off. For Capacitated r -Domination, our PTAS extends Baker’s framework,

which splits the input graph into subgraphs, solves the induced problem on each subgraph, and

then combines the local solutions to form a global solution (see Chapter 2). Here, the branchwidth

of the subgraphs is inversely proportional to the error introduced, and the runtime is exponential

in the branchwidth. That is, to achieve smaller error, the subgraph branchwidth and thus runtime

must be larger. For Capacitated Vehicle Routing, our QPTAS in planar graphs chooses portals
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along separators through which to route the solution (see Chapter 4). The runtime is exponentially

dependent on the number of portals per separator, and smaller error requires more portals. Our

PTASs for Capacitated Vehicle Routing in planar graphs and bounded highway dimension

graphs use metric embeddings into graphs of bounded treewidth that preserve distances up to the

client-to-client error allowance (see Chapters 5 and 6). The treewidth of these embeddings depends

inversely on the error: achieving smaller error requires a larger treewidth. Finally, in the framework

we present for vehicle-routing problems in trees, the tree is partitioned into clusters (see Chapter 8).

To achieve smaller error, the clusters must be smaller, which increases the complexity of the cluster

structure and the runtime of the dynamic program.

Another general technique we use is bounding the problem parameters. For example, several of

our approximation schemes for Capacitated Vehicle Routing require fixed or bounded capacity

Q, our Multi-Depot Capacitated Vehicle Routing results requires a bounded number of

depots ρ, and our Capacitated r -Domination PTAS requires bounded r . We also give results for

instances with bounded graph parameters such as treewidth ω, genus g, and highway dimension η.

We then give algorithms whose performance is measured in terms of these parameters. This in some

sense isolates what is difficult about these problems for arbitrary constraints and general metrics. For

example, in our approximation scheme for Capacitated Vehicle Routing in graphs of bounded

highway dimension, given a fixed ε > 0, Q > 0, and η > 0, there is a polynomial-time algorithm

that finds a (1 + ε)-approximate solution for Capacitated Vehicle Routing in instances with

capacity Q and highway dimension η. Though this algorithm can be used on arbitrary instances,

as η becomes arbitrarily large, so does the degree of the polynomial (as is to be expected since

Capacitated Vehicle Routing is APX-hard in general metrics, even for Q = 3 [11]).

1.3 Definitions and Notation

In this section we introduce the general definitions and notation that are used throughout this thesis.

We defer defining problem-specific notation and terms until the relevant chapters.

1.3.1 Basic Graph Notation

We use G = (V,E) to denote an undirected graph G with vertex set V and edge set E. We use `G

to denote the edge lengths of G, and unless otherwise noted we assume that `G(e) ≥ 0. When G is
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unambiguous, we often remove it from the subscript. For a subgraph or edge set F , we define `(F )

to be the sum
∑
e∈F `(e).

We use [k] to denote the set {1, 2, ..., k}.

A path P is a sequence of vertices P = v1, v2, ..., v|P | such that for every i ∈ [|P | − 1], (vi, vi+1)

is an edge in E. The length `(P ) of path P is the sum of the lengths of these edges. Vertices v1 and

v|P | are called the endpoints of P , and P is a v1-to-v|P | path.

The edge lengths define a metric on the vertex set V . That is, for every u, v ∈ V , dG(u, v) =

`G(P [u, v]) where P [u, v] denotes the shortest path from u to v. The shortest-path metric satisfies

the triangle inequality, and we assume that if e = (u, v) is an edge in E, then `G(e) = dG(u, v).

Again, when G is unambiguous, we omit it from the subscript. For a set X ⊆ V , we say that the

distance d(v,X) between vertex v and X is the distance minx∈X d(v, x) to the closest member of X.

We define the distance d(X,Y ) between two sets similarly.

The diameter of a graph G, denoted diam(G), is the maximum distance maxu,vdG(u, v) over all

vertices u and v. The aspect ratio of a graph G is the ratio of the maximum to minimum distances

in the graph, namely diam(G)
minu6=vdG(u,v) .

All-pairs shortest paths can be easily computed in polynomial time, so we assume throughout

this thesis that we have access to all (precomputed) distances.

A tour π is a closed path. That is, for some v ∈ V , π is a v-to-v path. We say that tour π starts

and ends at v. A cycle is a non-empty tour in which no edge is traversed more than once.

For an undirected graph G = (V,E) with subset of edges, F ⊆ E, we define the boundary of F ,

denoted ∂G(F ), to be the set of vertices in V incident both to edges in F and E \ F . For a subset

of vertices, S ⊆ V , we define the cut of S, denoted δG(S), to be the set of edges in E incident both

to vertices in S and V \ S, and we define the frontier ∂G(S) to be the set of vertices in S incident

to edges in δG(S) (refer to Figure 1.1). Again, when G in unambiguous, we omit the subscript.

1.3.2 Graph Classes

We now formally define the specific graph classes that we address in this thesis.

Trees

A tree is a graph T that contains no cycles. Often the tree is rooted at some root vertex r. If v is a

non-root vertex in a rooted tree T , the parent of v, denoted p(v), is the vertex adjacent to v in P [v, r]
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(a) cut and frontier (b) boundary

Figure 1.1: (a) Vertices in S ⊆ V are shown in white; edges of cut δG(S) are highlighted gray;
vertices of frontier ∂G(S) are circled. (b) Edges in F ⊆ E are highlighted gray; vertices of boundary
∂G(F ) are circled.

(the shortest v-to-r path). The parent of r is not defined. Similarly, u is a child of v if v = p(u).

Vertices with no children are called leaves. The ancestors of v are all vertices in P [v, r], including v

and r, and the descendants of v are all vertices u such that v is an ancestor of u, including v itself.

The subtree rooted at v, denoted Tv is the subgraph of T induced by the descendants of v.

A binary tree is a rooted tree in which every vertex has exactly two or zero children.

Embeddings and Drawings

A metric embedding of a guest graph G into a host graph H is a mapping φ(·) of the vertices of G

to the vertices of H.

A drawing (which is also called an embedding) of a graph G = (V,E) on a surfaceM is a mapping

φ(·) of each v in V to a distinct point φ(v) on M and each edge (u, v) ∈ E to a continuous arc on

M between φ(u) and φ(v) that does not contain φ(w) for any w ∈ V \ {u, v}. An edge crossing in a

drawing is a point p /∈ φ(V ) on M such that two distinct arcs contain p.

To avoid confusion, in this thesis, we use the word embedding only to describe metric embeddings,

and use drawing to describe the mapping of a graph onto a surface.

Planar and Bounded Genus Graphs

The genus of a graph G is the smallest integer k such that G can be drawn on a genus-k surface

without edge crossings. A genus-zero graph G is called planar since it can be drawn on the plane

(or equivalently on the surface of a sphere) with no edge crossings.

A planar graph with n vertices has O(n) edges.



10

Branchwidth and Treewidth

There are various notions of the width of a graph.

A tree decomposition of a graph G = (V,E) is a tree T in which each node of T (called a bag)

consists of a set of vertices in G, such that the following hold:

• Every vertex v ∈ V is in some bag in T ,

• for every edge e = (u, v) ∈ E there is some bag b in T such that u and v are both in b, and

• for every v ∈ V , the subgraph of T induced by the bags that contain v is connected.

The width of a tree decomposition is the size of the largest bag minus one. The treewidth of a

graph G is the minimum width among all tree decompositions of G. The treewidth is a measure of

how treelike the graph is. It is not hard to see that the treewidth of a tree is one, and the treewidth

of a complete graph is |V | − 1.

It is often useful to transform a tree decomposition into a nice tree decomposition. In a nice tree

decomposition, each leaf bag contains a single vertex and each non-leaf bag of the decomposition is

one of three types:

• An introduce bag b has one child b′, such that b = b′ ∪ {v} for some vertex v /∈ b′. The vertex

v is introduced at b.

• A forget bag b has one child b′, such that b = b′ \ {v} for some vertex v ∈ b′. The vertex v is

forgotten at b.

• A join bag b has two children b1 and b2 such that b = b1 = b2.

A tree decomposition can be converted into a nice tree decomposition with the same width in

polynomial time [34].

A collection of sets X is called a laminar family if for all X1, X2 ∈ X , either X1 ⊆ X2, X2 ⊆ X1

or X1 ∩X2 = ∅.

A recursive partition [40] (also called a recursive decomposition) of a set X is a rooted binary

tree T in which each node corresponds to a cluster C ⊆ X, such that:

• The root node corresponds to cluster C = X, and

• for every node corresponding to a cluster C0, the clusters C1 and C2 corresponding to its child

nodes form a partition of C0.
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The clusters in a recursive partition form a laminar family.

A branch decomposition of a graph G = (V,E) is a recursive partition of E in which the leaf

clusters are singleton edge sets. The boundary of a cluster C in a branch decomposition is the set

of vertices incident to edges both in C and not in C. The width of a branch decomposition is the

size of the largest cluster boundary. The branchwidth of a graph G is the minimum width over all

branch-decompositions of G.

Branchwidth and treewidth are closely related and have been proved, for any graph, to be within

a small constant multiplicative factor of each other [88].

The tree structure of branch and tree decompositions make them very well suited for dynamic-

programming algorithms. In particular, it often suffices to consider the way a solution interacts with

vertices in each bag (for tree decompositions) or cluster boundary (for branch decompositions). If

the width is small, the possible interactions can be enumerated efficiently.

Highway Dimension

Given an x ∈ R+ and a vertex v ∈ V we use Bx(v) = {u ∈ V |d(u, v) ≤ x} to denote the ball with

radius x centered at v. We use the definition of highway dimension from Feldmann et al. [47]: The

highway dimension of a graph G is the smallest integer η such that for every x ∈ R+ and v ∈ V ,

there is a set of at most η vertices in Bcx(v) such that every shortest path in Bcx(v) of length at

least x intersects this set. Here, c is a small fixed constant greater than four. Note that the highway

dimension of a graph depends on this choice of c (see Section 6.1.1).

The doubling dimension of a graph G is the smallest integer θ such that for every vertex v and

radius x, a ball B2x(v) of radius 2x centered at v can be covered by at most 2θ balls of radius x.

That is, there is a set of vertices {v1, v2, ..., v2θ} such that B2x(v) ⊆
⋃

1≤i≤2θ
Bx(vi).

1.3.3 Approximation Algorithms

We use OPT to denote an optimum solution for an optimization problem and cost(OPT ) to denote

its cost. For a minimization problem, an α-approximation algorithm is an algorithm that finds a

solution with cost at most α · cost(OPT ) (also called an α-approximate solution). We say that an

algorithm is polynomial-time if the running time is O(nc) for some constant c, where n is the size

of the input.
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A polynomial-time approximation scheme (PTAS) is a family of algorithms, indexed by ε, such

that for every ε > 0, a (1 + ε)-approximate solution is found in O(nc) time, where c can depend

on ε (but not on n). An efficient polynomial-time approximation scheme (EPTAS) is a PTAS

that runs in time O(f(ε)nc) where c does not depend on ε. A fully-polynomial-time approximation

scheme (FPTAS) is a PTAS that runs in time polynomial both in n and 1
ε . A quasi polynomial-time

approximation scheme (QPTAS) is an approximation scheme that runs in time O(nlogc(n)) where

the degree of n may depend polylogarithmically on n.

An (α, β)−bicriteria approximation algorithm for a minimization problem with some constraint

value k and optimum solution OPT is an algorithm that finds a solution of cost at most α·cost(OPT )

that is feasible for constraint value βk. For example, in Capacitated Vehicle Routing, such an

algorithm would find a solution of cost at most α · cost(OPT ) in which each tour covers at most βQ

clients.

A heuristic is a technique for finding a feasible solution in a shorter amount of time than what

is required to solve the problem exactly. Though such solutions can often be found in a reasonable

amount of time, the quality of these solutions is not guaranteed to be near-optimal. While heuristics

are usually problem-specific, metaheuristics are problem-independent approaches to finding feasible

solutions. Metaheuristics include local-search strategies, ant colony optimization, and evolutionary

algorithms.

We will not define complexity classes in detail in this thesis, but we remind readers that under the

assumption that P 6= NP , NP -hard problems have no polynomial-time exact algorithms and APX-

hard problems have no polynomial-time approximation schemes. A problem that is parameterized

by k is fixed-parameter tractable (FPT) if there exists an exact algorithm that runs in time f(k)nO(1),

where n is the size of the input and f is some computable function. Under the exponential-time

hypothesis, a problem that is W [1]-hard when parameterized by k is not in FPT, and no such

algorithm exists. An approximation algorithm for a problem parameterized by k is a fixed-parameter

approximation (FPA) if its runtime is f(k)nO(1) for some computable function f that does not depend

on n.



Chapter 2

A PTAS for Capacitated

r -Domination in Planar Graphs

2.1 Introduction

In this chapter, we address the Capacitated r -Domination problem, which is a generalization

of the classic Dominating Set problem that accommodates integral demands, capacities, and

distances. We present a PTAS for instances on planar graphs in which the domination distance and

the capacities are bounded.

Dominating Set is a classic NP-complete optimization problem that takes as input an undi-

rected graph G with vertex set V and finds a dominating set Sdom ⊆ V such that every vertex

v ∈ V is either in Sdom or adjacent to a vertex in Sdom and such that |Sdom| is minimized. Beyond

facility location, Dominating Set has applications in resource allocation [51] and social network

theory [95].

The r -Domination problem generalizes Dominating Set. For a positive integer r , the r -
Domination problem is to find a dominating subset Sdom ⊆ V such that every vertex v ∈ V

is within a hop-distance r of some vertex in Sdom and |Sdom| is minimized. The r -Domination

problem is an optimization version of the (k,r )-Center decision problem of determining for a given

k and r whether there is a set of k vertices (centers) such that every vertex is at most a distance

r from the nearest center. It is straightforward to see that Dominating Set is a special case of

13
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r -Domination in which r = 1.

We consider capacitated versions of Dominating Set problems, in which the capacity of vertices

(i.e. the number of neighbors that a vertex in the dominating set can cover) is restricted. The

capacitated Dominating Set problem, Capacitated Domination, takes as input demand and

capacity values for every vertex, and finds a dominating set Sdom of minimum size such that every

vertex in V has its demand covered by vertices in Sdom, the total amount of demand covered by any

vertex in Sdom does not exceed its capacity, and any vertex can only cover itself or its neighbors (i.e.

the closed neighborhood)1. We similarly define Capacitated r -Domination with the difference

being that any vertex can only cover vertices within a hop-distance r .
In this chapter we present a PTAS for Capacitated r -Domination in planar graphs, when

both r and the maximum capacity are bounded. We formalize this in the following theorem.

Theorem 1. For any ε > 0 and positive integers r and q̂, there exists a polynomial-time algorithm

that, given an instance of Capacitated r -Domination on a planar graph with maximum capacity

q̂, finds a solution of cost at most 1 + ε times the optimum cost.

Note that by setting r = 1, an analogous PTAS for Capacitated Domination follows as a

corollary.

We use Baker’s framework for planar graphs (see Section 2.3) to achieve this result. Baker’s

framework depends on splicing together local solutions to form a global solution. The challenge

in extending this framework to capacitated problems is that splicing feasible (capacity-respecting)

local solutions may generate an infeasible (capacity-exceeding) global solution. To address this, we

show how to smooth a capacity-exceeding global solution into a capacity-respecting global solution.

Additionally, we modify the traditional Baker framework to bound the cost of this smoothing process.

Finally, Baker’s framework also depends on being able to efficiently solve instances on graphs of

bounded branchwidth. We introduce the first known dynamic programming algorithm to solve

Capacitated r -Domination in planar graphs of bounded branchwidth.

2.1.1 Related Work

For Dominating Set in general graphs, an O(lnn)-approximation is known [64]. It has also been

shown that unless NP ⊂ TIME(nlog logn), Dominating Set cannot be approximated within a factor
1In one common variant of the problem, a vertex can cover its own demand ‘for free’ and the capacity only limits

coverage of neighbors.
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of (1 − ε) lnn [45], thus a PTAS is unlikely to exist. For restricted graph classes such as unit disk

graphs [85], bounded-degree graphs [29], and planar graphs [81], improvements on this bound have

been found. In particular, the planar case is known to admit a PTAS using the framework established

by Baker [13] and described below.

For r -Domination in general graphs, a lnn-approximation is known [16]. Planar graphs and

map graphs are known to admit a PTAS, again using Baker’s approach [37].

Capacitated Domination was shown to be W[1]-hard for general graphs when parameterized

by both treewidth and solution size [38]. Moreover, this hardness result extends to planar graphs,

and the bidimensionality framework does not apply to this problem [22].

Kao et al. characterize Capacitated Domination by several attributes [66]. The weighted

version has real, non-negative vertex weights whereas the unweighted version has uniform vertex

weights. The unsplittable-demand version requires that the entire demand of any vertex is covered

by a single vertex in the dominating set, while the splittable-demand version allows demand to be

covered by multiple vertices in the dominating set. The soft-capacity version allows multiple copies

of vertices to be included in the dominating set (effectively scaling both the capacity and the weight

of vertex by any integral amount) whereas the hard -capacity version limits the number of copies of

each vertex (usually to one). Lastly, the capacities and demands can be required to be (non-negative)

integral.

For the soft-capacity version, several results are known. For general graphs, Kao et al. present a

(lnn)-approximation for the weighted unsplittable-demand case, a (4 lnn+2)-approximation for the

weighted splittable-demand case, a (2 lnn+ 1)-approximation for the unweighted splittable-demand

case, and a (∆)-approximation for the weighted splittable-demand case, where ∆ is the maximum

degree in the graph [66, 67]. As these are generalizations of the classic Dominating Set problem,

there is little room for improvement for these approximations on general graphs.

Capacitated Domination with soft capacities in trees is NP-hard but admits a PTAS [67].

For soft capacities in planar graphs, Kao and Lee developed a constant-factor approximation algo-

rithm [65]. Additionally, Kao and Chen present a pseudo-polynomial-time approximation scheme

for the weighted splittable-demand case by first showing how to solve the problem on graphs of

bounded treewidth and then applying Baker’s framework [67].

Substantially fewer results have been published on Capacitated Domination with hard ca-

pacities. In this work we consider the unweighted, splittable-demand, hard-capacity version
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of Capacitated r -Domination with integral capacities and demands. When r = 1, our PTAS

(stated in Theorem 1) is the hard-capacity complement of the PTAS presented by Kao and Chen

for soft-capacities [67].

Very few results have been published for Capacitated r -Domination. For points on a unit

sphere, a heuristic using network flow was developed [79]. In the closely related Capacitated

k-Center problem, the number of centers, k, is given and the objective is to minimize the max-

imum distance of a vertex to a center, subject to each center having a limited number of clients

(vertices) assigned to it. For uniform capacities and unit demand, a 6-approximation is known [73]

for edge-weighted graphs. Note that k-Center and r -Domination are two different optimization

perspectives of (k,r )-Center.

2.2 Preliminaries

Recall, that for an undirected graph G = (V,E) and subset of edges F ⊆ E, the boundary of F ,

denoted ∂G(F ), is the set of vertices in V incident both to edges in F and E \ F . For a subset of

vertices, S ⊆ V , the cut of S, denoted δG(S), is the set of edges in E incident both to vertices in S

and V \ S, and the frontier ∂G(S) is the set of vertices in S incident to edges in δG(S).

Our problems define demand functions dem : V → Z∗ and capacity functions q : V → Z∗ on the

vertex set V . The capacity (resp. demand) of a set of vertices is the sum of the constituent vertex

capacities (resp. demands). Namely, for S ⊆ V , q(S) =
∑
v∈S q(v) and dem(S) =

∑
v∈S dem(v).

Let dhop(u, v) denote the hop-distance (number of edges in shortest path) from u to v. If

dhop(u, v) ≤ r we say that u and v are r -neighbors and Nr (v) = {u | dhop(u, v) ≤ r } is the

(closed) r -neighborhood of v.

For a given demand function dem(·), capacity function q(·), and hop-distance r , an assign-

ment A is a multiset of facility-client pairs (u, v) with u, v ∈ V such that dhop(u, v) ≤ r and

∀v ∈ V, |{(x, v) ∈ A : x ∈ V }| ≤ dem(v) (i.e. v appears as a client at most dem(v) times). It

is convenient for our algorithm to define assignments in such a way that client demand is never

exceeded. Note that in this chapter we denote edge (u, v) as euv to distinguish edge notation from

facility-client pair notation.

An assignment is proper or capacity-respecting if ∀u ∈ V, |{(u, x) ∈ A : x ∈ V }| ≤ q(u) (i.e.

u appears as a facility at most q(u) times). An assignment is covering or demand-meeting if
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∀v ∈ V, |{(x, v) ∈ A : x ∈ V }| = dem(v). The total unmet demand for an assignment is t(A) =∑
v∈V (dem(v)− |{(x, v) ∈ A : x ∈ V }|). Observe that if A is covering then t(A) = 0. A given

assignment A has dominating set (or facility set) Sdom(A) = {u ∈ V : (u, v) ∈ A} and cost

cost(A) = |Sdom(A)|. The objective of Capacitated r -Domination is to find a proper, covering

assignment A such that cost(A) is minimized.

Conceptually, in a solution to Capacitated r -Domination, A describes an assignment of

vertices to r -neighbors such that the demand of every vertex is met and the capacity of every vertex

is not exceeded. This generalizes Capacitated Domination in which r = 1 which itself generalizes

the classic Dominating Set problem in which every vertex v has dem(v) = 1 and q(v) =∞.

We use superscripts to denote the multiplicity of a facility-client pair in an assignment. For

example {(u, v)4, (w,w)} assigns four units of demand from the vertex v to the vertex u and one

unit of demand from w to itself.

We use A1 ]A2 to denote the multiset union operation in which multiplicities are additive. For

example {(u, v)2, (u,w)} ] {(u, v)3, (w, v)} = {(u, v)5, (u,w), (w, v)}.

2.3 Baker’s Framework

Our PTAS (presented in Section 2.4.1) is based on Baker’s framework for designing PTASs in planar

graphs [13]. For a given problem, the framework decomposes the input graph into subgraphs of

bounded branchwidth. In each of these subgraphs, the induced subproblem can be solved efficiently.

A global solution is then formed by combining the local subgraph solutions. The error incurred

by splicing local solutions together can be charged to the interface between these subgraphs, and a

shifting argument is used to bound this error.

We now present Baker’s framework in more detail by demonstrating how it has been applied

to Dominating Set (and soft-Capacitated Domination) on planar graphs [65, 81]. The input

graph is partitioned into levels (vertex subsets) defined by minimum hop-distance (breadth-first

search) from an arbitrary root v0. The resulting subgraph induced by k consecutive levels has O(k)

branchwidth. The graph is decomposed into subgraphs of k consecutive levels such that every two

adjacent subgraphs overlap in two boundary levels (see Figure 2.1a). There are at most k different

options (called shifts) for dividing the graph into k-level subgraphs in this way. For each shift,

Dominating Set is solved for each (bounded-branchwidth) subgraph with the slight modification
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that the demand from the vertices of the topmost and bottommost levels of each subgraph is ignored.

Note that these vertices can still be included in the local subgraph solutions. These local solutions

can be found in 2O(k)n time and a global solution is found by taking the union of the local solutions.

Ignoring the demand of the outermost levels prevents over-counting the demand requirements of

the vertices that appear in multiple subgraphs (i.e. the levels in which adjacent subgraphs overlap),

while still allowing these vertices to cover demand from inner levels in the subgraph. By construction,

adjacent subgraphs overlap by exactly two levels, so a vertex appears on the outermost level of at

most one subgraph. In particular, any demand ignored by one subgraph will be covered by an

adjacent subgraph. Taking the union of subgraph solutions ensures then that all demand is covered.

We can bound the error incurred by this algorithm by observing the following. Because demand of

the outermost subgraph levels is ignored, an optimum global solution, OPT , induces local solutions

OPTi on each subgraph Gi. However the algorithm finds an optimum solution SOLi for each such

subgraph, so the cost of SOLi is at most the cost of OPTi. Consider the global solution SOL found

by the algorithm by taking the union of the SOLi. Observe that,

cost(SOL) ≤
∑
i

cost(SOLi) ≤
∑
i

cost(OPTi)

The sum of the costs of these local subgraph solutions, however, is bounded by the cost of OPT

plus the cost of the subset of OPT that intersects the boundary levels, since these members of the

solution are counted twice. By a simple averaging argument, for some shift this extra cost must be

a small fraction (O(1/k)) of the total cost of OPT .

The problem with extending this approach to hard capacities emerges when a vertex in a bound-

ary level is included in the solutions for two different subgraphs. For the classic Dominating Set

problem, these vertices have unbounded capacities so taking the union of subgraph solutions is still

feasible. Similarly, for soft-Capacitated (r )-Domination, vertex capacities are allowed to be dou-

bled. Since the cost of these doubled vertices is small, the algorithm can afford to pay double for

them. However, for hard-Capacitated (r )-Domination these vertices pose a problem. Taking

the union of feasible subgraph solutions may overload these boundary vertices (i.e. exceed their

capacities), and the hard-capacity setting does not allow simply paying extra to use these vertices

multiple times (see Figure 2.1b).

We address this issue by redirecting the assignment of overloaded vertices to underloaded vertices
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elsewhere in the graph. The algorithm may have to do this for every solution vertex that appears on

the boundary levels. Unfortunately, the above bound on the sum of costs of subgraph solutions SOLi

does not bound the cost of the solution vertices of SOL that appear on boundary levels. We address

this problem by modifying the way the graph is decomposed into subgraphs: instead of setting a

single value k such that all subgraphs are uniformly defined by k consecutive levels, as is typical

in Baker’s framework, we set two values k1, k2 and alternate between two types of subgraphs in the

decomposition: subgraphs defined by k1 levels and subgraphs defined by k2 levels. By charging all

overloaded vertices to only one type of subgraph, we can bound the cost of the reassignment of these

vertices by an appropriate choice of k1 and k2.

…
	

…
…

…
	

k 

(a) Baker Subgraphs

v 

(b) Overloaded Vertex

…
	

…
	

…
	

…

k 

(c) Slabs and Patches

Figure 2.1: (a) Subgraphs consist of k consecutive BFS levels. (b) An arc from u to v indicates that
(u, v) is a (facility, client) pair in the assignment. If q(v) = 3 the upper-subgraph assignment (gray
arcs) and lower-subgraph assignment (black arcs) are each proper, but the union of solutions is not
proper since vertex v is overloaded. (c) Patches are depicted by rectangles and slabs are depicted
by rounded shapes.

2.4 PTAS

In this section we present our PTAS result for Capacitated r -Domination in planar graphs, given

by Theorem 1.
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2.4.1 Description of PTAS

Our algorithm extends the approach introduced by Baker [13] and described in Section 2.3. A

breadth-first search from an arbitrary root vertex, v0, partitions the graph into m levels (defined by

hop-distance from v0) such that the subgraph induced by any k consecutive levels has branchwidth

at most 2k.

We set up the following notation for decomposing the graph into subgraphs. For all i, j, k such

that 0 ≤ i < k, and 0 ≤ j ≤ bmk c, let G
i
j denote the subgraph induced by levels jk + i through

(j+1)k+i−1 andHi
j denote the subgraph induced by levels (j+1)k+i−2r through (j+1)k+i+2r−1.

For a fixed k and i we call Gij the jth slab and Hi
j the jth patch (see Figure 2.1c). We call k the slab

height and i the slab shift.

Consecutive slabs do not overlap each other and each slab has branchwidth at most 2k. Each

patch occurs at the interface between two consecutive slabs2, overlapping with 2r levels from each

adjacent slab. For fixed r , each patch has constant branchwidth (at most 8r ).
The algorithm proceeds as follows. Independently solve Capacitated r -Domination restricted

to each slab and each patch (with demands modified as described below). Then take the union of

solutions over all slabs and patches. Since patches overlap the slabs, if a dominating vertex from a

proper patch solution is also a dominating vertex from a proper slab solution, the union of solutions

may no longer be proper. In fact the capacities required for some patch vertices have been potentially

doubled. The algorithm alleviates this excess strain on patch vertices by reassigning the demand to

underfull vertices elsewhere in the graph. We refer to this process as smoothing.

Analogously to the algorithm for the uncapacitated version described above, for each slab Gij

and each patch Hi
l , modify the problem so that the vertices of the r -topmost and r -bottommost

levels have no demand (excluding the top of the first slab and the bottom of the last slab). Since

patches overlap the 2r -bottommost and 2r -topmost levels of slabs, every vertex still has its demand

covered by at least one subgraph containing it. The branchwidth of the slab is at most 2k, so for

any fixed k the dynamic-programming algorithm described in Section 2.5 can be used to generate a

solution to the modified problem on the slab in polynomial time.

Let AGij denote the optimal assignment for the modified Capacitated r -Domination for slab

2Note that in order to keep the patches themselves from overlapping, we must ensure that k ≥ 4r .
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Gij and let AHij denote the optimal assignment for patch Hi
j . Combining slab and patch assign-

ments gives Ãi =
(⊎

j AGij
)
]
(⊎

j AHij
)
. Since Ãi may no longer be a proper assignment, the

algorithm uses a smoothing procedure, Smooth, to generate a final solution A′i. Smooth first re-

moves facility-client pairs from an input assignment A until it is proper. It does so by repeatedly

finding an overloaded vertex v and removing a pair (v, u) from A until no overloaded vertex can be

found. Smooth then reassigns any remaining unmet demand to underfull vertices in the graph with

excess capacity by repeatedly finding alternating paths in the induced assignment graph (described

in Lemma 2). This reassignment process is described in detail in the following lemmas. Finally, the

algorithm returns the assignment A′i with the minimum cost among all choices of shift i.

2.4.2 Lemmas for Theorem 1

Working toward proving Theorem 1, we analyze the algorithm proposed above and prove the fol-

lowing lemmas.

Lemma 1. Given a graph G with demand function dem(·), capacity function q(·), and vertex subset

S ⊆ V , if a proper, covering assignment exists for Capacitated 1-Domination, then q(S) +

dem(∂(S)) ≥ dem(S).

Proof. Assume that such a proper, covering assignment exists. For any subset of vertices S ⊆ V ,

the demand from non-frontier vertices of S must be met by vertices in S. Since a solution exists,

S must have sufficient capacity. That is, dem(S \ ∂(S)) ≤ q(S). Furthermore, dem(S \ ∂(S)) =

dem(S)− dem(∂(S)). This gives, dem(S)− dem(∂(S)) ≤ q(S), and the result follows.

Lemma 2. Given a proper assignment A′ with unmet demand t(A′) > 0, if a proper, covering

assignment exists for Capacitated 1-Domination, then a new proper assignment A′′ can be found

in linear time such that cost(A′′) ≤ cost(A′) + 1 and t(A′′) < t(A′).

Proof. Let U be the set of vertices with unmet demand. We assume that these vertices are at full

capacity, otherwise simply assign such an underfull vertex, v, to itself and satisfy the lemma by

letting A′′ = A′ ] {(v, v)}. We also assume that a vertex v ∈ U spends its entire capacity toward

meeting its own demand, so (v, v) occurs q(v) times in A′. We can always reassign v’s capacity in

this way without increasing overall unmet demand or the size of A′.

Use assignment A′ to define an arc set on V such that (u, v) ∈ A′ indicates an arc from facility

u to client v, and for every vertex u, the outdegree ∆−(u) is at most q(u). The dominating set
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Sdom(A′) is {v : ∆−(v) > 0}, and a covering assignment is one in which, for every vertex u, the

indegree ∆+(u) equals dem(u).

Consider the directed assignment graph A defined by this arc set. We can assume that A has

no directed cycles (except for self-loops), otherwise every arc in such a cycle can be changed to a

self-loop without changing the total unmet demand or the size of A′.

Since a proper, covering assignment exists, there must be a set W of vertices that are not at full

capacity.

Let G′ = (V ′, E′) denote G = (V,E) augmented with self-loops at every vertex. Formally,

V ′ = V and E′ = E ∪ {vv : v ∈ V }. We define a semi-alternating directed path P = p0, p1, ..., pl

to be a path in G′ such that ∀i pipi+1 ∈ E′ and (pi, pi+1) /∈ A′ ⇔ (pi+1, pi+2) ∈ A′. That is, P is a

path through G′ that alternates between forward arcs in the assignment graph A and edges in G′

that are not forward arcs in A (see Figure 2.2).

We show that there exists such a semi-alternating directed path P = p0, p1, ..., pl from a vertex

p0 ∈ U to a vertex pl ∈W . Such a path can be found in linear time using breadth-first search from

vertices with insufficient demand met.

Assume to the contrary that no such path exists. Let U+ be the set of all vertices v ∈ V such

that there exists a semi-alternating directed path from u to v for some u ∈ U . Clearly U ⊆ U+,

and by assumption U+ ∩W = ∅, so all vertices of U+ are at full capacity. Since each vertex in U

spends all of its capacity on meeting its own demand, it has no outgoing arcs in A , so the first edge

of every semi-alternating directed path originating at some u ∈ U is not a forward arc in A . (If

the first edge of the path is a self loop in A , it must have a subpath with the same endpoints that

is also semi-alternating and whose first edge is not in A ). Therefore all of u’s neighbors are in U+

so u cannot appear on the frontier ∂G′(U+) and U ∩ ∂G′(U+) = ∅. Similarly, any arcs of A into

vertices in ∂G′(U+) must start in V ′ \ U+ otherwise U+ could be extended to include neighbors of

such vertices.

Since all of the demand of every vertex in ∂G′(U+) is met, and all arcs of A into ∂G′(U+) start

in V ′ \ U+, we infer that V ′ \ U+ contributes a total of dem(∂G′(U
+)) toward meeting the demand

of U+. Furthermore all vertices in U+ are at full capacity and there are no outgoing arcs of A in

δG′(U
+) so U+ contributes a total of q(U+) toward meeting its own total demand. Yet U ⊆ U+

so U+ contains unmet demand. Therefore q(U+) + dem(∂G′(U
+)) < dem(U+) which by Lemma 1

contradicts our feasibility assumption.
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Given a semi-alternating directed path P = p0, p1, ..., pl from a vertex p0 ∈ U to a vertex pl ∈W ,

we know that (p0, p1) is not in A′ since p0 is in U and does not contribute to meeting any neighbor’s

demand. We also assume that (pl−1, pl) is not in A′ since if the path ends in an assignment arc we

can append a self-loop. Reassign the arcs along this path as follows:

A′′ = (A′ \ {(p1, p2), (p3, p4), ..., (pl−2, pl−1)}) ] {(p1, p0), (p3, p2), ..., (pl−2, pl−3), (pl, pl−1)}

This gives q(A′′) ≤ q(A′) + 1. All of the demand previously met along path P is still met

although potentially by a different source, but A′′ also meets one additional unit of previously

unmet demand at vertex p0 (see Figure 2.2). Therefore the resulting proper assignment A′′ satisfies

t(A′′) < t(A′).

p0 p1 p2 p3 p4 p5 p6 

p0 p1 p2 p3 p4 p5 p6 

Figure 2.2: Black arrows depict assignment arcs and dotted gray lines depict edges of G′. The
upper path shows a semi-alternating directed path P = p0, p1, p1, p2, p3, p3, p4, p5, p6, p6. The lower
path shows the result of arc reassignment.

We now prove that the lemma can be extended to Capacitated r -Domination.

Lemma 3. Given a graph G = (V,E) and a proper assignment A′ with unmet demand t(A′) > 0, if a

proper, covering assignment exists for Capacitated r -Domination then a new proper assignment

A′′ can be found in polynomial time such that cost(A′′) ≤ cost(A′) + 1 and t(A′′) < t(A′).

Proof. Construct G∗ = (V,E∗) from G by adding an edge between every pair of r -neighbors. That
is, E∗ = E ∪ {euv | dhop(u, v) ≤ r } where dhop(·) is hop-distance in G. Any assignment A for

Capacitated r -Domination in G is also an assignment for Capacitated 1-Domination in G∗,

and vice versa. Therefore applying Lemma 2 to G∗ (using the same demand and capacity functions)

results in a new assignment with the desired properties.

The final requirement before proving Theorem 1 is an algorithm for solving Capacitated r -
Domination optimally in instances of bounded branchwidth. We state this result now and defer

the proof until Section 2.5.
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Theorem 2. For any positive integers r and ω, Capacitated r -Domination on instances with

branchwidth ω can be solved exactly in nO(rω) time.

2.4.3 Proof of Theorem 1

We now prove Theorem 1 which we restate here for convenience.

Theorem 1. For any ε > 0 and positive integers r and q̂, there exists a polynomial-time algorithm

that, given an instance of Capacitated r -Domination on a planar graph with maximum capacity

q̂, finds a solution of cost at most 1 + ε times the optimum cost.

Proof. Let OPT denote an optimal assignment for Capacitated r -Domination. For a fixed

shift i let OPTGij = OPT ∩ Gij be the intersection of the optimal assignment with the jth slab

and SOLGij denote the optimal assignment for the modified problem on the jth slab. Similarly, let

OPTHij = OPT ∩Hi
j be the intersection of the optimal assignment with the jth patch and SOLHij

denote the optimal assignment for the modified problem on the jth patch.

Because we modify the problem to ignore demand from the r outermost levels of a slab (resp.

patch) OPTGij (resp. OPTHij ) is a covering assignment for the modified problem on Gij (resp. Hi
j)

since all of the demand on the non-outermost levels will be covered by OPTGij (resp. OPTHij ).

Therefore cost(SOLGij ) ≤ cost(OPTGij ) and cost(SOLHil ) ≤ cost(OPTHil ).

Our algorithm first determines the union, Ã, of assignments on slabs and patches. The size of

this union is at most the sum of the sizes of the assignments for each slab and each patch. The

algorithm then removes and reassigns at most q̂ assignment pairs for each duplicated vertex in the

union (where q̂ is the value of the maximum capacity). Duplicated vertices can only occur within

the levels of the patches. By Lemma 3 each reassignment adds at most one vertex to the dominating

set. Let A′ be the final assignment output by the algorithm. Therefore

cost(A′) ≤
∑
j

cost(SOLGij ) + q̂
∑
j

cost(SOLHij )

≤
∑
j

cost(OPTGij ) + q̂
∑
j

cost(OPTHij )

≤ cost(OPT ) + q̂
∑
j

cost(OPTHij )

The final inequality comes from the slabs, and therefore also their intersections with OPT , being
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disjoint. Let i∗ be the shift that minimizes the sum,
∑
j cost(OPTHij ), of the intersection of patches

with the optimal dominating set Sdom(OPT ).

If
∑
j cost(OPTHi∗j

) were to exceed (4r /k)cost(OPT ) then the sum of patch intersections over

all shifts,
∑
i

∑
j cost(OPTHij ) would exceed 4r cost(OPT ) since i∗ was chosen from k possible shifts

to give the minimum such sum. But each vertex in Sdom(OPT ) occurs in a patch for at most 4r
different shifts so can contribute at most 4r to the sum, giving

∑
i

∑
j cost(OPTHij ) ≤ 4r cost(OPT ).

Therefore,
∑
j cost(OPTHi∗j

) ≤ (4r /k)cost(OPT ), giving

cost(A′) ≤ cost(OPT ) + (4r q̂/k)cost(OPT )

Setting k to 4r q̂/ε gives a (1 + ε)-approximation.

The slabs can be solved in nO(kr ) time and patches can be solved in nO(r 2) time using the

dynamic program described in Section 2.5. The algorithm then performs at most εq̂n reassignments,

each of which can be computed in linear time. This process is repeated k times, giving an overall

runtime dominated by nO(r 2q̂/ε), which, for fixed r , q̂, and ε, is polynomial.

2.4.4 Corollaries and Extensions

In fact, the PTAS of Theorem 1 can be improved for Capacitated Domination (the special

case of r = 1). If there is also a bound d̂em on the maximum demand, a much simpler dynamic

programming algorithm can be used to solve instances of bounded branchwidth (see Section 2.5.2).

Theorem 3. For any positive integers ω, q̂, and d̂em, Capacitated Domination on instances

with branchwidth ω, maximum capacity q̂, and maximum demand d̂em can be solved exactly in

(q̂ · d̂em)O(ω)n time.

Note in particular that such an algorithm is FPT when parameterized by ω, q̂, and d̂em, as the

degree of the polynomial no longer depends on any of these. This immediately yields the following

EPTAS as a corollary.

Theorem 4. For any positive integers q̂ and d̂em, there exists an EPTAS for Capacitated Dom-

ination on instances with maximum capacity q̂ and maximum demand d̂em.

We observe that the capacity of a vertex never need exceed the sum of the demands in its closed

neighborhood and the demand of a vertex can never exceed the sum of the capacities in its closed
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neighborhood. Therefore to achieve the EPTAS of Theorem 4 it is sufficient for any two of the

following to be bounded: maximum capacity, maximum demand, maximum vertex degree.

Capacitated Vertex Cover

In Capacitated Vertex Cover there is a capacity function q : V → Z∗ on the vertices of G and a

demand function dem : E → Z∗ on the edges of G. Under the constraint that edge-demand can only

be met by its own endpoints, the objective is to find a set of vertices Sdom of minimum size such

that every edge has its demand covered by vertices in Sdom and each vertex in Sdom covers a total

amount of demand that does not exceed its capacity. Capacitated Vertex Cover generalizes

the traditional Vertex Cover problem in which each vertex has unlimited capacity and each edge

has a demand of one. Furthermore, Capacitated Vertex Cover is identical to Capacitated

Domination with the demand on edges instead of on vertices. In the following corollary, we show

that we can reduce Capacitated Vertex Cover to Capacitated Domination to achieve a

PTAS for the former.

Corollary 1. For any positive integer q̂ there exists an EPTAS for Capacitated Vertex Cover

with maximum capacity q̂ in planar graphs.

Proof. Consider the following reduction from Capacitated Vertex Cover to Capacitated Dom-

ination. Let G′ be the graph formed by bisecting every edge of G. Specifically, we define a new

graph G′ with edge set E′, vertex set V ′, demand function dem : V ′ → Z∗, and capacity function

q : V ′ → Z∗, as follows:

For every edge euv ∈ E, add edges euw and ewv to E′ and add vertices u, v, w to V ′. Additionally,

set capacities to q′(u) = q(u), q′(v) = q(v), and q(w) = 0, and set demands to dem′(w) = dem(e) and

dem′(u) = dem′(v) = 0. This provides the necessary conditions to solve Capacitated Domination

on G′.

It is easy to see that a dominating set of G′ exactly corresponds to a vertex cover of G. Setting

the bisecting vertex to have zero capacity guarantees that these vertices will not be chosen in the

minimum dominating set. When the maximum capacity is bounded by q̂, an EPTAS for Capac-

itated Vertex Cover follows as a corollary to Theorem 4, by noting that edge demand cannot

exceed the sum of the capacity of its endpoints, so maximum demand is bounded by 2q̂.
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2.5 Solving Capacitated r -Domination for Bounded Branch-

width

In this section we describe a dynamic-programming algorithm for solving Capacitated r -Domination

in graphs with bounded branchwidth and maximum capacity q̂. Even though an algorithm for Ca-

pacitated Domination follows from this algorithm, we additionally present a much simpler and

more efficient dynamic program for this problem when the maximum demand is also bounded by

some d̂em.

2.5.1 Dynamic Program for Capacitated r -Domination

In any proper, covering assignment A, each facility-client pair (u, v) ∈ A indicates one unit of

demand at vertex v is met by one unit of capacity at vertex u within a distance r . We call the

shortest v-to-u path in G the (directed) resolution3 path for this unit of demand. We design an

algorithm that finds the resolution paths corresponding to an optimal assignment.

Although designing a dynamic program for Capacitated Domination is fairly straightforward,

there are two main challenges with designing one for Capacitated r -Domination. First (as

described in Demaine et al. for uncapacitated r -Domination) the resolution paths can wind up

and down the branch decomposition tree, so the algorithm needs a way to convey information across

levels [37]. The second challenge is that, even though the capacity of a vertex v on the boundary

of a cluster may be bounded, the number of resolution paths that cross the boundary at v may be

quite large, and unlike the uncapacitated version, we cannot merge these paths. We address these

challenges by extending the dynamic program used for the uncapacitated version [37].

Consider an assignment A and the corresponding resolution paths. For each cluster in the branch

decomposition, some number of these resolution paths cross the cluster boundary at each boundary

vertex. Each such path has a direction (crossing into or out of the cluster) and a magnitude (path

length remaining until facility is reached). Our dynamic-programming table, DP , is indexed by

configurations (C, hC) where C is a cluster and hC is a function that specifies how many paths of

each direction and magnitude cross at each vertex of a cluster boundary.

Specifically, the algorithm enumerates all functions of the form hC : ∂(C) × [−r , r ] → [0, q̂n],

where hC(v, i) indicates the number of resolution paths that cross C at v with magnitude |i| and
3We adopt this word from Demaine et al. [37]
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direction sign(i). If i < 0 the path crosses into C and if i > 0 the path crosses out of C. Note that

the sign only indicates the direction of the next vertex in the resolution path and not necessarily the

direction of the endpoint of the path (a path may enter and/or leave the cluster again elsewhere).

If i = 0 the resolution path ends at v, so hC(v, 0) > 0 indicates that v itself is in the dominating set.

Therefore hC(v, 0) equals |{(v, u) ∈ A : u ∈ V }| and must not exceed q(v).

We say that assignment A is consistent with hC , if hC exactly describes how the resolution

paths corresponding to A cross the boundary of cluster C. The DP entry at index (C, hC) is the set

C ∩ Sdom(A) with minimum cardinality over all proper, covering assignments A that are consistent

with hC . The algorithm proceeds level-by-level through the decomposition, starting at the leaves

and continuing rootward.

The leaves of the decomposition correspond to single edges in the graph. For the leaf cluster C

of edge euv, a configuration is valid if it meets the following criteria.

• Any resolution path crossing into C at u (resp v) with i hops remaining must cross out of

C at v (resp u) with i − 1 hops remaining. That is, for i < 0, hC(u, i) ≤ hC(v,−i − 1) and

hC(v, i) ≤ hC(u,−i− 1).

• The resolution paths crossing C at u (resp v) must include a path for each unit of demand at

u (resp v). That is, ΣihC(u, i) ≥ dem(u) and ΣihC(v, i) ≥ dem(v).

• The number of paths ending at u (resp v) cannot exceed the capacity of u (resp v). That is,

hC(u, 0) ≤ q(u) and hC(v, 0) ≤ q(v).

Moving rootward, we show how to determine the table entry for a parent cluster given the table

entries for the child clusters. Consider a parent cluster C0 with child clusters C1 and C2. We divide

the cluster boundaries into four regions and handle each region separately.

Let ∂1,2 = (∂(C1) ∩ ∂(C2)) \ ∂(C0); ∂0,1 = (∂(C0) ∩ ∂(C1)) \ ∂(C2); ∂0,2 = (∂(C0) ∩ ∂(C2)) \ ∂(C1);

and ∂0,1,2 = ∂(C0) ∩ ∂(C1) ∩ ∂(C2) (refer to Figure 2.3).

Indices (C1, hC1) and (C2, hC2) are compatible with (C0, hC0) if the following hold:

• Resolution paths crossing ∂1,2 cross into one cluster and out of the other, so hC1 and hC2 agree

on magnitude and disagree on sign. That is, hC1(v, i) = hC2(v,−i), ∀i, v ∈ ∂1,2.

• Resolution paths crossing ∂0,1 cross the C1 boundary the same way they cross the C0 boundary,

so hC0 must agree with hC1 . That is hC0(v, i) = hC1(v, i), ∀i, v ∈ ∂0,1. The same holds for ∂0,2.
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Figure 2.3: Depiction of parent (C0) and children (C1 and C2) boundary partitioning.

• Resolution paths crossing vertices on ∂0,1,2 are more difficult to address.

– All three clusters must agree on the number of resolution paths ending on ∂0,1,2, so

hC1(v, 0) = hC2(v, 0) = hC0(v, 0), ∀i, v ∈ ∂0,1,2.

– Each resolution path that crosses out of (resp into) C0 must correspond to a path crossing

out of (resp into) either C1 or C2, so hC0(v, i) ≤ hC1(v, i) + hC2(v, i).

– Similarly, each path that crosses C1 (resp C2) must correspond to a path crossing either

C0 in the same direction or C2 (resp C1) in the opposite direction, so hC1(v, i) ≤ hC0(v, i)+

hC2(v,−i) and hC2(v, i) ≤ hC0(v, i) + hC1(v,−i).

– Finally, the net total of crossings in and out must agree. That is hC0(v, i)− hC0(v,−i) =

hC1(v, i) + hC2(v, i)− hC1(v,−i)− hC2(v,−i).

The entry for each valid configuration is the set of vertices in the cluster that are resolution

path endpoints. For leaf cluster C corresponding to edge (u, v), this is {w ∈ {u, v} | hC(w, 0) > 0}.

To determine the entry for configuration (C0, hC0) the algorithm searches over all compatible pairs

(C1, hC1) and (C2, hC2) and finds DP (C1, hC1) ∪DP (C2, hC2) such that the cardinality is minimized.

Let CG0
denote the cluster containing all edges of input graph G0 and let h∅ be the trivial empty

function. An optimal proper, covering dominating set is stored in DP (CG0 , h∅).

The assignment itself can then be found by setting the capacity of all vertices not in the dominat-

ing set to zero and then using the smoothing technique described in Section 2.4.1 to assign demand

to the vertices in the dominating set.

We now prove how the dynamic-programming algorithm described above satisfies Theorem 2,

which we restate here.
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Theorem 2. For any positive integers r and ω, Capacitated r -Domination on instances with

branchwidth ω can be solved exactly in nO(rω) time.

Proof. We proceed by induction on the branch decomposition.

Our base cases are the leaves of the decomposition. Let edge (u, v) be such a leaf cluster, C. The

three criteria we impose on the base case configurations are rationalized as follows:

• We can assume all resolution paths are simple since they are shortest paths, so we can ignore

resolution paths that enter and exit a cluster at the same vertex. Any resolution path that

enters at umust exit (or end) at v, shortening the remaining path length by one. For i < 0, each

of the hC(u, i) paths entering C at u must be accounted for in the hC(v,−i− 1) paths exiting

(or ending) at v. So hC(v,−i− 1) ≥ hC(u, i) and a symmetric argument shows hC(u,−i− 1) ≥

hC(v, i).

• We require that for each unit of demand at a given vertex there is a resolution path originating

from that vertex. We account for these paths in the base case, so the number of all paths

passing through a vertex is at least the size of the demand, giving ΣihC(u, i) ≥ dem(v) and

ΣihC(u, i) ≥ dem(u).

• Finally, we impose the obvious restriction that the number of resolution paths that end at a

vertex cannot exceed the capacity of that vertex, giving hC(u, 0) ≤ q(v) and hC(u, 0) ≤ q(u).

The cost of any configuration for C is the number of vertices w in {u, v} for which hC(w, 0) > 0,

which can be determined in constant time.

To show the inductive step, we consider a cluster C0 and assume that an optimal dominating

set for a resolution-path-respecting assignment has been found by the dynamic program for its child

clusters C1 and C2. To determine the entry in the table for index (C0, hC0) the algorithm searches

over all compatible pairs (C1, hC1) and (C2, hC2) and finds DP (C1, hC1) ∪DP (C2, hC2) such that the

cardinality is minimized. This cardinality is the sum of the cost of the child clusters minus the

cost (number of vertices in the dominating set) of the intersection of the child clusters (to avoid

double-counting).

To verify our notion of configuration compatibility, consider the following cases:

• If v ∈ (∂(C1)∩ ∂(C2)) \ ∂(C0) then any resolution path crossing out of C1 at v must correspond

to a path of the same length crossing into C2 at v, and vice versa. Therefore any compatible
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configurations must have hC1(v, i) = hC2(v,−i), ∀i.

• If v ∈ (∂(C0) ∩ ∂(C1)) \ ∂(C2), then any resolution path crossing out of (resp. into) C0 at v

must also cross out of (resp. into) C1 at v. Therefore any compatible configurations must have

hC0(v, i) = hC1(v, i), ∀i.

• Similarly, if v ∈ (∂(C0) ∩ ∂(C2)) \ ∂(C1), hC0(v, i) = hC2(v, i), ∀i.

• Finally, if v ∈ ∂(C0) ∩ ∂(C1) ∩ ∂(C2), then we consider the four criteria:

– If v is in the dominating set, then all three configurations must agree on this. More-

over, the configurations must all agree on how many resolutions path terminate at v, so

hC1(v, 0) = hC2(v, 0) = hC0(v, 0).

– If i > 0 each resolution path with remaining length i crossing out of C0 at v must

correspond to a path crossing out of C1 or C2 and if i < 0 each resolution path with

remaining length i crossing into C0 at v must correspond to a path crossing into C1 or C2.

So hC0(v, i) ≤ hC1(v, i) + hC2(v, i).

– Similarly, if i > 0 each resolution path with remaining length i crossing out of C1 at v must

correspond to a path crossing out of C0 or into C2 and if i < 0 each resolution path with

remaining length i crossing into C1 at v must correspond to a path crossing into C0 or out of

C2. So hC1(v, i) ≤ hC0(v, i) + hC2(v,−i). Symmetrically, hC2(v, i) ≤ hC0(v, i) + hC1(v,−i).

– The difference between the number of resolution paths with remaining length i crossing

into and out of C0 at v must be the same as the difference between the number of resolution

paths with remaining length i crossing into C1 and C2 and out of C1 and C2. Therefore

hC0(v, i)− hC0(v,−i) = hC1(v, i) + hC2(v, i)− hC1(v,−i)− hC2(v,−i).

Since the branch decomposition gives a binary tree with O(n) leaves, there are O(n) clusters.

For each cluster, C, the boundary ∂(C) has at most ω vertices. For each vertex v ∈ ∂(C) there

are (q̂n)2r q̂ options for the value of hC . There are thus at most ((q̂n)2r q̂)
ω configurations for each

cluster boundary. This gives O((q̂n)2rω q̂ω ·n) indices of the DP table. Each entry requires comparing

unions of entries from all compatible child configuration pairs. There are O((q̂n)2rω q̂ω · (q̂n)2r ) such

pairs since knowing the configurations for one child and the parent almost completely determines

the configuration for the other child. The only choice for the second child is for the function at
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the (at most two4) vertices at the intersection of all three boundaries, and since for each i and v

the difference between hC(v, i) and hC(v,−i) is already determined, there are at most q̂n options

for each of r values of i > 0 for each of at most two vertices. Therefore there are at most (q̂n)2r

choices for the configuration of the second child cluster. Checking for compatibility requires O(ω)

time. This gives the algorithm a total runtime of O(ω(q̂2rω+r+ω)2 · n4rω+2r+1).

2.5.2 Dynamic Program for Capacitated Domination

Although an algorithm for solving Capacitated Domination exactly on graphs of bounded branch-

width follows from Theorem 2, we present a more efficient dynamic program for instances in which

the maximum demand d̂em is bounded.

We use the branch decomposition of G to guide the dynamic program. For each cluster C in the

decomposition, the algorithm enumerates all functions Q,Dem : ∂(C) → Z such that ∀v ∈ ∂(C),

0 ≤ Q(v) ≤ q(v) and 0 ≤ Dem(v) ≤ dem(v). Our dynamic-programming table, DP , is indexed by

triplets (C,Q,Dem) over all such functions and clusters.

The entry at index (C,Q,Dem) is an optimal assignment A for cluster C such that for vertices

on the boundary ∂(C), Q(v) indicates the exact amount of capacity that v contributes to vertices

in cluster C and Dem(v) indicates the exact amount of demand from v that is met by vertices in

cluster C. We call this a restricted assignment. The algorithm proceeds level-by-level through the

decomposition, starting at the leaves and continuing rootward.

The algorithm first handles the leaves of the decomposition, which correspond to single edges in

the graph. For the leaf cluster of edge (u, v), there are three cases to consider:

• If Q(v) + Q(u) 6= Dem(u) + Dem(v), there is no solution because the cluster’s contributed

capacity does not equal its covered demand. The algorithm returns {(u, v)∞}.

• If v has sufficient capacity to cover its own demand (Q(v) ≥ Dem(v)) it does so and then uses

any residual capacity to cover some of the demand from u. Any remaining uncovered demand

at u is covered by u itself. Since Q(v) + Q(u) = Dem(u) + Dem(v) the algorithm returns

{(v, v)Dem(v), (v, u)Q(v)−Dem(v), (u, u)Q(u)}.
4By planarity, we can assume that the branch decomposition is a sphere-cut decomposition and that there are at

most two vertices at the intersection of all three boundaries [39].
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• Otherwise, u has sufficient capacity to cover its own demand (Q(u) > Dem(u)) and, symmet-

rically, the algorithm returns {(u, u)Dem(u), (u, v)Q(u)−Dem(u), (v, v)Q(v)}.

Moving rootward, the restricted assignment for a parent cluster is computed using the table

entries for the child clusters. Consider a cluster C0 with child clusters C1 and C2. Boundaries ∂1,2,

∂0,1, ∂0,2, and ∂0,1,2 are as defined in Section 2.5.1 (see Figure 2.3).

We say (C1,Q1,Dem1) and (C2,Q2,Dem2) are compatible with (C0,Q0,Dem0) if the following

hold:

• For all v on ∂1,2: Q1(v) +Q2(v) ≤ q(v) and Dem1(v) +Dem2(v) = dem(v).

• For all v on ∂0,1: Q0(v) = Q1(v) and Dem0(v) = Dem1(v). (Similarly for all v on ∂0,2:

Q0(v) = Q2(v) and Dem0(v) = Dem2(v).)

• For all v on ∂0,1,2: Q1(v) +Q2(v) = Q0(v) and Dem1(v) +Dem2(v) = Dem0(v).

To determine the entry in the table for index (C0,Q0,Dem0) the algorithm searches over all

compatible pairs (C1,Q1,Dem1) and (C2,Q2,Dem2) with respective entries A1 and A2, and finds

the A1 ] A2 such that cost(A1 ] A2) is minimized.

Letting CG0
denote the cluster containing all edges of G and Q∅ and Dem∅ denote the trivial

empty functions, the algorithm returns the assignment stored in DP (CG,Q∅,Dem∅).

Theorem 3. For any positive integers ω, q̂, and d̂em, Capacitated Domination on instances

with branchwidth ω, maximum capacity q̂, and maximum demand d̂em can be solved exactly in

(q̂ · d̂em)O(ω)n time.

Proof. We claim that the dynamic program described above is such an algorithm. We prove cor-

rectness using induction on the branch decomposition.

Our base cases are the leaves of the decomposition. Let edge euv be such a leaf. We consider the

same three cases addressed in the algorithm description.

• If Q(v)+Q(u) 6= Dem(u)+Dem(v) the algorithm returns {(u, v)∞} because the total capacity

used must equal the total demand covered for the cluster to have a feasible solution.

• Otherwise ifQ(v) ≥ Dem(v) the algorithm returns {(v, v)Dem(v), (v, u)Q(v)−Dem(v), (u, u)Q(u)}.

Since Q(v) +Q(u) = Dem(u) + Dem(v), the demand from v and u is covered and the exact

capacity is used. If both Q(v) and Q(u) equal zero, the empty assignment is returned. If
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exactly one of Q(v) and Q(u) equals zero, the size of the dominating set for the returned

assignment is one. Otherwise the size is two. Such an assignment is therefore a minimum.

• OtherwiseQ(v) < Dem(v), and the algorithm returns {(u, u)Dem(u), (u, v)Q(u)−Dem(u), (v, v)Q(v)}.

This case is symmetric to the previous one.

To show the inductive step, we consider a cluster C0 and assume that the restricted assignment for

Capacitated Domination has been solved optimally by the dynamic program for its child clusters

C1 and C2. For index (C0,Q0,Dem0) the algorithm searches over all compatible pairs (C1,Q1,Dem1)

and (C2,Q2,Dem2) with respective entriesA1 andA2 and returns theA1]A2 such that cost(A1]A2)

is minimized. Let A∗1 ] A∗2 be such a minimum where A∗1 is the entry for (C∗1 ,Q∗1,Dem∗1) and A∗2 is

the entry for (C∗2 ,Q∗2,Dem∗2).

To show that A∗1]A∗2 is an optimal restricted assignment for (C0,Q0,Dem0), we must show that

boundary restrictions are met and that it is proper, covering, and minimum.

By definition of compatible, boundary restrictions are automatically satisfied because every ver-

tex on the boundary of C0 must appear on the boundary of at least one of its children and compat-

ibility forces agreement between the child (or children for vertices on all three boundaries) and the

parent.

Since A∗1 and A∗2 are each proper, and compatibility requires that Q∗1(v) +Q∗2(v) is at most q(v)

for each vertex v on the shared boundary, A∗1 ] A∗2 must be proper. Similarly, since A∗1 and A∗2 are

each covering, and compatibility requires that Dem∗1(v) +Dem∗2(v) equals dem(v) for each vertex v

on the shared boundary, A∗1 ] A∗2 must be covering as well.

Let A∗0 be a minimum restricted assignment for (C0,Q0,Dem0). Partition A∗0 into X and Y as

follows:

• For (v, v) ∈ A∗0, with v ∈ ∂(C1) ∩ ∂(C2), put (v, v) into either X or Y arbitrarily.

• Otherwise for (v, v) ∈ A∗0, put (v, v) in X if v is the endpoint of an edge in C1 and in Y if v is

the endpoint of an edge in C2.

• Otherwise for (u, v) ∈ A∗0, put (u, v) in X if edge euv is in C1 and in Y if edge euv is in C2.

Clearly, every pair in assignment A∗0 must be in exactly one of X and Y so A∗0 = X ] Y .

Let Qx : ∂(C1) → Z be the function that maps boundary vertices of C1 to the capacity utilized

by these vertices in X, and Demx : ∂(C1) → Z be the function that maps boundary vertices of C1
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to the demand from these vertices covered in X. By construction, X is now a restricted assignment

for (C1,Qx,Demx). Our inductive hypothesis gives q(DP (C1,Qx,Demx)) ≤ q(X). Symmetrically,

defining Qy and Demy similarly for ∂(C2) gives q(DP (C2,Qy,Demy)) ≤ q(Y ).

DP (C1,Qx,Demx) andX agree on the dominating vertices on the boundaries, as doDP (C2,Qy,Demy)

and Y , so the above inequalities ensure:

q(DP (C1,Qx,Demx) ]DP (C2,Qy,Demy)) ≤ q(X ] Y ) = q(A∗0)

Since (C1,Qx,Demx) and (C2,Qy,Demy) are compatible with (C0,Q0,Dem0), DP (C1,Qx,Demx)]

DP (C2,Qy,Demy) will be considered by the algorithm when finding the minimum such union.

Therefore q(A∗1 ] A∗2) ≤ q(DP (C1,Qx,Demx) ]DP (C2,Qy,Demy)) ≤ q(A∗0) and is thus minimum.

Since the branch decomposition gives a binary tree with O(n) leaves, there are O(n) clusters.

For each cluster, C, the boundary ∂(C) has at most ω vertices. For each vertex v ∈ ∂(C) there

are q(v) options for the value of Q and dem(v) options for the value of Dem. There are thus at

most q̂ω functions Q and d̂em
ω
functions Dem for each cluster boundary. This gives O((q̂d̂em)ωn)

indices of the DP table. Each entry requires comparing unions of entries from all compatible child

configuration pairs. There are O(q̂2ωd̂em
ω

) such pairs since knowing Dem for one child and the

parent completely determines Dem for the other child. Checking for compatibility requires O(ω)

time. This gives the algorithm a total runtime of O(ωq̂3ωd̂em
2ω
n) = (q̂d̂em)O(ω)n.



Chapter 3

Capacitated Vehicle Routing

Overview

3.1 Introduction

In this chapter, we give an in-depth introduction to the Capacitated Vehicle Routing problem.

We first formally define the problem.

Capacitated Vehicle Routing

Input: edge-weighted graph G = (V,E), depot vertex r, client set S ⊆ V , demand function

dem : S → Z+, and capacity Q ∈ Z+

Output: set of tours Π = {π1, π2, ..., πk} such that for all v ∈ S, there is some j ∈ {1, 2, ..., k} such

that πj visits v, and for all i, πi contains r and
∑
v∈πi dem(v) ≤ Q

Objective: minimize sum of tour lengths
∑k
i=1 `(πi)

Note that here, s ∈ π indicates that s is a client covered by tour π. There may be other clients

s′ /∈ π that tour π passes through without covering.

The client demand in Capacitated Vehicle Routing can be either splittable or unsplittable.

In our problem formulation we require unsplittable demands because splittable-demand instances

can be reduced to unsplittable-demand instances: a client s with splittable demand dem(s) can

be replaced by dem(s) co-located clients with unsplittable unit demand. These new clients can be

36
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added to the graph and connected to s with zero-length edges.

Two generalizations of Capacitated Vehicle Routing that we address are: Multiple-Depot

Capacitated Vehicle Routing in which, rather than a single depot, a set R ⊂ V of depots is

specified and a solution consists of a set of paths whose endpoints are in R, and Capacitated

Vehicle Routing with Penalties in which a solution can ignore clients by paying penalties for

them.

A solution SOL to a vehicle-routing problem can be completely defined by the order in which

clients and the depot are visited, since the vehicle can be assumed to use shortest paths between

consecutive clients. For ease of notation, we say that (u, v) ∈ SOL if u and v are clients visited

consecutively by SOL, and similarly use (u, r) ∈ SOL and (r, v) ∈ SOL to denote clients visited

immediately before and after visiting the depot.

3.2 Related Work

3.2.1 Traveling Salesperson Problem

One of the most well-studied vehicle-routing problems is Traveling Salesperson Problem

(TSP), which is defined as follows:

Traveling Salesperson Problem (TSP)

Input: edge-weighted graph G = (V,E)

Output: a tour π that visits every vertex v ∈ V

Objective: minimize tour length `(π)

In fact, TSP is the special case of Capacitated Vehicle Routing where the client set S

equals the entire vertex set V , and the vehicle capacity Q is large enough to accommodate all client

demand.

TSP is a classic NP-hard problem and in general metrics TSP is APX-hard [86] and known to

be inapproximable to within a factor of 123/122 [68]. For Euclidean metrics and planar graphs,

TSP remains NP-hard, but is known to admit polynomial-time approximation schemes [6, 7, 54].

Solving TSP on trees is trivial, as the tour formed by traversing the tree in a depth-first search is an

optimal TSP solution. For graphs with constant treewidth (or branchwidth), TSP is polynomial-time

solvable using dynamic programming on the tree (or branch) decomposition [33].
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For general metrics, a trivial 2-approximation can easily be found using depth-first search on

the minimum spanning tree, whose cost is a lower bound for TSP. The best known approximation

guarantee for general metrics is Christofides’ 1.5 approximation [30].

Already for TSP, we see that the hardness of routing problems in general metrics does not capture

the approximability of routing problems in metrics for which routing problems are relevant. We now

consider the more general problem.

3.2.2 Capacitated Vehicle Routing

The Capacitated Vehicle Routing problem was first proposed in 1959 as the Truck Dispatch-

ing Problem [35]. Since then, a large majority of the work on this problem has focused on finding

exact solutions and on designing heuristics. These two branches of literature are too vast to describe

in detail here, so we give a brief summary.

Initially, much of the work on Capacitated Vehicle Routing focused on finding exact solu-

tions. The two most common techniques for exact solutions have been branch-and-cut algorithms

and algorithms that use a set-partitioning formulation of Capacitated Vehicle Routing. We

refer the reader to surveys on these techniques [14, 15, 25]. We note that the standard benchmarks

for computationally analyzing the performance of these techniques use instances with between 10

and 200 clients and Euclidean distances, and even for these, the state-of-the-art solutions for larger

instances take about a day to find [15].

Recently, much of the research on Capacitated Vehicle Routing has shifted toward design-

ing heuristics. We refer the reader to surveys on these techniques [75, 76]. Metaheuristics such as

Evolutionary Algorithms and Tabu Search have further improved the state-of-the-art for heuristic

approaches [25]. Noting the limitations of the classic benchmarks used for exact instances, a set of

new benchmark instances was recently proposed [94]. These attempt to provide less artificial and

more challenging instances on which to compare the performance of various algorithms. While the

state-of-the-art heuristics can run on even the larger instances in a few hours, the quality of the

returned solutions is unclear. Furthermore, these new instances still use Euclidean distances and

the largest instance has only 1000 clients.

In this thesis, we seek approximation algorithms with provable performance guarantees. We now
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outline the current state of such results. To better understand the complexity of Capacitated Ve-

hicle Routing, recall the distinction between the two variants of the problem: splittable demands

can be covered jointly by multiple tours and unsplittable demands must be covered by a single tour.

As described in the previous section, splittable demands are equivalent to unsplittable unit demands.

As Capacitated Vehicle Routing generalizes TSP, it inherits TSP’s hardness. In fact, Ca-

pacitated Vehicle Routing is substantially harder to solve than TSP. To illustrate this, consider

the case of trees and arbitrary capacity Q. As noted above, TSP is trivial in trees, whereas splittable

Capacitated Vehicle Routing is NP-hard in trees by a reduction from bin packing [74] and the

unsplittable case is hard to approximate to better than a 1.5-factor in trees [52]. For unsplittable

Capacitated Vehicle Routing in trees, Labbe et al. gave a 2-approximation [74]. For splittable

Capacitated Vehicle Routing in trees, Hamaguchi and Katoh [59] define a simple lower bound

on cost(OPT ) and give a 1.5-approximation, which Asano, Katoh, and Kawashima [10] improve to

a
√

41−1
4 ≈ 1.351-approximation using the same lower bound.

They show that there are instances in which the ratio of cost(OPT ) to this lower bound is 4/3,

proving that a 4/3-approximation would be best possible for this lower bound, and leave as an open

question as to whether or not such an algorithm exists. We answer this question in the affirmative by

providing such a 4/3-approximation algorithm (see Chapter 7). It remains unknown as to whether

this approximation ratio can be improved, using a different lower bound. Notably, in Chapter 8 we

give a (1, 1 + ε) bicriteria PTAS for Capacitated Vehicle Routing in trees, in which capacities

are allowed to be exceeded by a (1 + ε) factor, but it is not known if a PTAS exists without this

allowed stretch in capacity.

For general metrics and arbitrary capacities, Haimovich and Rinnoy Kan [58] introduced one of

the biggest advances for approximating splittable Capacitated Vehicle Routing. They use the

following lower bound for Capacitated Vehicle Routing [58].

cost(OPT ) ≥ 2

Q

∑
s∈S

d(s, r) (3.1)

The intuition of Lower Bound (3.1) is as follows. The length of any tour in a feasible solution

must be at least twice the distance to the client on the tour that’s farthest from the depot, as the

vehicle has to get to that client and back. The tour length is therefore also at least twice the average
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distance from the depot to a client on the tour. Noting that each tour visits at most Q clients and

summing over all tours gives the lower bound.

Haimovich and Rinnoy Kan use this lower bound in a technique called Iterated Tour Partition-

ing [58], which starts with a TSP tour of the clients and partitions the tours into |S|/Q segments

each containing Q clients. Each tour of the solution consists of one of these segments and paths

from the depot to each of the segment endpoints. A simple averaging argument shows that for at

least one of the Q options for partitioning the tour in this way, the sum of the lengths of these paths

from the depot is at most the value of Lower Bound 3.1. The length of an optimum TSP tour is also

a clear lower bound on the cost of an optimum vehicle-routing solution, so the total cost an iterated

tour partitioning solution is at most (1 + αQ−1
Q )cost(OPT ) where α is the approximation ratio for

the TSP tour [58].

Lower Bound (3.1) was designed for the splittable-demand setting, but it can straightforwardly

be extended to the unsplittable-demand setting:

cost(OPT ) ≥ 2

Q

∑
s∈S

dem(s) · d(s, r) (3.2)

A similar iterated tour partitioning approach can be applied to the unsplittable-demand setting,

resulting in a (2 + αQ−2
Q ) approximation [5].

Using Christofides’ 1.5-approximation for TSP [30], this strategy results in a (2.5− 1.5
Q )-approximation

for splittable Capacitated Vehicle Routing and a (3.5− 3
Q )-approximation for unsplittable Ca-

pacitated Vehicle Routing. There has been little improvement over Iterated Tour Partitioning

in approximating Capacitated Vehicle Routing in general metrics for arbitrary capacities. Re-

cently, Bomparde [23] showed how to improve the approximation ratio of each case by 1
3Q3 , although

even for moderate values of Q, this improvement is negligible.

A reasonable, and common, relaxation for Capacitated Vehicle Routing is to consider the

case of bounded capacity. For Q = 1, the problem is trivial, and for Q = 2, the problem can be solved

exactly in polynomial time using matchings [11]. But for any fixed Q ≥ 3, Capacitated Vehicle

Routing is APX-hard in general metrics [11]. On the other hand, for fixed Q, Capacitated

Vehicle Routing is polynomial-time solvable in trees and in graphs of bounded treewidth.

One line of research has focused on Capacitated Vehicle Routing in Euclidean metrics. For
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the Euclidean plane (R2), PTASs have been found for constant Q [58], Q = O(log n/ log log n) [11],

Q ≤ 2logδ n (where δ > 0 depends on ε) [4], and Q = Ω(n) [11], as well as for the multiple-depot

variant when both Q and the number of depots is constant [26]. For R3, a PTAS is known for

Q = O(log n) [72], and for higher-dimensional Euclidean spaces Rd, a PTAS is known for Q =

O(log1/d n) [71]. For arbitrary Q, Mathieu and Das gave a QPTAS for Capacitated Vehicle

Routing in the plane [36]. No PTAS for arbitrary Q is known for Euclidean (or any non-trivial)

metrics.

For Capacitated Vehicle Routing with fixed Q, the space between solving exactly in trees

and being inapproximable in general metrics is poorly understood for non-Euclidean metrics. This

thesis works toward filling this gap by answering the following question: are there approximation

schemes or small constant-factor approximations for Capacitated Vehicle Routing in graphs

that model transportation networks? Toward this goal, in Chapter 4 we present a QPTAS for

planar and bounded-genus graphs, in Chapter 5 we improve this to a PTAS for planar graphs, and

in Chapter 6 we present a PTAS for bounded-highway-dimension graphs.

3.3 Methods for Approximation Schemes for Capacitated

Vehicle Routing with Fixed Capacities

In Chapters 4, 5, and 6, we present approximation schemes for Capacitated Vehicle Routing,

for specific graph classes, when the vehicle capacity Q is a fixed constant. In this section we introduce

some of the techniques that we develop for these results.

At a high level, the approximation schemes work by reducing the input instance to a simpler

instance (namely one with bounded treewidth or branchwidth) that is easy to solve. If this reduction

does not incur too much error, then an optimal solution found in the simpler instance can be mapped

to a near-optimal solution in the input instance. We now describe this process in greater detail.

We present these methods for the unsplittable-demand setting, since this generalizes the splittable-

demand setting.
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3.3.1 Error Allowance

A standard technique in approximation schemes is to charge the introduced error to distances be-

tween vertices in an optimal solution. Applying this approach to vehicle-routing problems, for every

(u, v) ∈ OPT (recall this notation means that u and v are consecutive clients visited in an optimal

solution) a near-optimal solution can charge ε · d(u, v) error to this pair. The argument is that if a

solution can be constructed so that all error is charged to some such consecutive-client pair and each

such pair is charged at most once, the cost of such a solution would be at most (1 + ε)cost(OPT ).

One of our major insights toward designing approximation schemes for Capacitated Vehicle

Routing is that clients farther from the depot can afford to be charged a higher error than those

close to the depot. That is, (u, v) ∈ OPT can be charged error not only proportional to d(u, v) but

also proportional to d(u, r) and d(v, r).

In particular, we establish the following error allowance between consecutive clients u and v:

Error Allowance :
ε

Q
(d(u, r) + d(v, r)) (3.3)

Specifically, pairs of consecutive clients in a given solution can afford to be charged this amount.

We use Lower Bound 3.2 to justify this error allowance.

3.3.2 Dynamic Programming

In Section 3.2 we stated that for fixed capacity Q, Capacitated Vehicle Routing in graphs

of bounded treewidth can be solved exactly in polynomial time. In this section, we give such an

algorithm. In particular, we present a dynamic programming algorithm that achieves the following.

Theorem 5. For any Q,ω > 0, there is an algorithm with nO(ωQ) runtime that solves Capacitated

Vehicle Routing on instances with capacity Q and treewidth ω.

Though previous dynamic programming solutions with nO(ωQ2) were known, we believe we were

the first to improve the runtime to nO(ωQ). We note that an analogous dynamic program can be

designed using branchwidth. See Section 1.3 for a definitions of treewidth and branchwidth.

Proof. Let G be a graph with treewidth ω and let D be a tree decomposition of G. Choose an

arbitrary bag to be the root, and for each bag b of the decomposition let cluster Cb be the union
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of the bags descending from b in the tree decomposition, minus the elements of b itself. The bag b

forms a boundary between cluster Cb and V \ Cb.

A configuration in the dynamic program describes how a solution interacts with a cluster: for

each vertex v in the boundary b of the cluster, and for each possible capacity q ≤ Q, the configuration

specifies Iv,q and Ov,q which are respectively the number of tours that enter and exit Cb using vertex

v and that have visited exactly q clients at the moment they reach v. We refer to this as the flow

in and out of Cb at v. These values are sufficient to recover the intersection of the solution with

the cluster: connecting each entering tour with an exiting one, at minimal cost, gives the optimal

solution.

To simplify the dynamic program, we first convert D into a nice tree decomposition with O(ωn)

bags (see Section 1.3). Recall that in a nice tree decomposition, each leaf bag contains a single

vertex, and each non-leaf bag is one of three types: an introduce bag b has exactly one child b′ and

b = b′ ∪ {v} for some vertex v /∈ b′, a forget bag b has one child b′, such that b = b′ \ {v} for some

vertex v ∈ b′, and a join bag b has two children b1 and b2 such that b = b1 = b2.

One property of a nice tree decomposition is that each vertex is forgotten at most once. We

assume the forget bag for the depot occurs at the root of the decomposition. If not, r can be added

to every bag in the tree, and the leaves extended. This results in a nice tree decomposition with at

most twice as many bags while adding at most one to the width.

A tour can be uncrossed to avoid crossing the same vertex in the same direction twice. As there

are at most n different tours, Iv,q ≤ n and Ov,q ≤ n, so there are nO(ωQ) possible configurations per

bag. Since there are O(ωn) bags in the nice tree decomposition, there are a total of nO(ωQ) different

configurations.

The algorithm runs bottom-up: given a configuration for each child node, it finds all possible

compatible configurations for the parent node. We address the treatment of each type of bag as

follows.

For a leaf bag, b, containing vertex u, Cb is empty, so trivially there are no tours entering or

exiting Cb. For configurations with Iu,q = Ou,q = 0 for all q, the algorithm stores the cost zero.

For a forget bag, the parent bag b is equal to its child bag b′ minus some vertex u. For each

child bag configuration, the algorithm considers all ways to transform it into a compatible parent

bag configuration by rerouting u’s flow and, if u is a client, covering its demand, dem(u). For each

resulting parent bag configuration, the dynamic program stores the cost only if it is less than the
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current value stored for that configuration. After considering all child bag configurations and ways

of forming a parent bag configuration, the values stored in the table are guaranteed to be optimal.

Consider some configuration for the child bag. The algorithm transforms this child configuration

into a parent configuration by first constructing several intermediate configurations. First, if u is a

client, one tour is selected to visit it. There are three cases. If the tour crosses into Cb′ after visiting

u, the algorithm chooses a capacity q ≥ dem(u) and makes the following changes to the flow at u:

Iu,q → Iu,q − 1, Iu,q−dem(u) → Iu,q−dem(u) + 1

There are at most Q such choices.

If the tour crosses out of Cb′ after visiting u, the algorithm chooses a capacity q ≤ Q − dem(u)

and makes the following changes to the flow at u:

Ou,q → Ou,q − 1, Ou,q+dem(u) → Ou,q+dem(u) + 1

There are at most Q such choices.

Otherwise, the tour segment that visits u does not cross into Cb′ . The algorithm chooses v1, v2 ∈ b

and q ≤ Q− dem(u), makes the following changes to the flow at v1 and v2:

Iv1,q → Iv1,q + 1, Ov2,q+dem(u) → Ov2,q+dem(u) + 1,

and adds d(v1, u) + d(u, v2) to the intermediate configuration cost. There are ω2Q such choices.

The algorithm then reroutes all flow through u to some vertex in the parent bag, b. The algorithm

chooses, for each vertex v of b and each capacity, the number of the tours that enter (resp. exit)

Cb′ through u directly from (resp. to) v. Each such tour adds a cost of d(u, v) to the intermediate

configuration cost. There are O(n2ωQ) such choices. Thus, for each child configuration there are

O(ω2Qn2ωQ) choices, giving an nO(ωQ) overall runtime for each forget bag.

For an introduce bag, the parent bag is equal to its child bag plus some vertex u. Since the child

bag forms a boundary between the inside and outside of the cluster, no tour can cross directly into

the cluster via u, as it must first cross some vertex of the child bag. Therefore the only compatible

parent configurations are those that have no tours crossing at u. So for every parent configuration,

if Iu,q = Ou,q = 0 for all q, the algorithm stores the cost of the corresponding child configuration,
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namely the configuration that results by removing u. Otherwise the cost is ∞.

For a join bag, the parent bag has two child bags identical to itself. Lemma 4 presents an oracle

that tells, in constant time, the minimal cost needed to form parent configuration (I0, O0) given child

configurations (I1, O1) and (I2, O2), with an infinite cost if the configurations are not compatible.

The algorithm tries all combinations of configurations: the complexity of this step is nO(ωQ).

Since each vertex will appear exactly once in a forget bag, each client will be visited exactly

once. The overall complexity is nO(ωQ), as claimed. The algorithm considers all possible solutions

and outputs the minimal one, so the resulting cost is optimal.

All that remains is to prove Lemma 4.

Lemma 4. For each join bag b, it is possible to compute, in O(n6ωQ) time, a table Tb such that

Tb[(I0, O0), (I1, O1), (I2, O2)] is the minimal cost to connect child configurations (I1, O1) and (I2, O2)

to form parent configuration (I0, O0) of b.

Proof. We design a dynamic program to compute this table. The base cases are when I0 = I1 + I2.

If O0 = O1 +O2 the cost is 0, since the configurations are therefore compatible. Otherwise the cost

is ∞, because it is not possible to balance incoming and outgoing flow.

For the recursion step, assume I0 6= I1 +I2. Pick the first pair (u, q) such that I1
u,q+I2

u,q−I0
u,q =

x 6= 0. If x < 0, the incoming flow at u with capacity q is bigger in b than in its child bags. Since

this is not possible, the cost is ∞. Otherwise, some flow entering Cluster 1 comes from Cluster 2

(or vice versa). Suppose this flow exits Cluster 2 at vertex v: it means that

Tb[(I0, O0), (I1, O1), (I2, O2)] = Tb[(I0, O0), (Î1, O1), (I2, Ô2)] + d(u, v)

where Î1 = {I1, I1
u,q − 1} and Ô2 = {O2, O2

v,q − 1}. By this equation, the algorithm connects one

segment exiting Cluster 2 at v with capacity q to a segment entering Cluster 1 at u. The value of

Tb[(I0, O0), (I1, O1), (I2, O2)] can therefore be computed in ω steps, by applying the above equality

for each vertex v of the boundary and storing the minimum value. This computation requires O(ωQ)

operations to find the pair (u, q), and then O(ω) operations to compute the value of the table. The

recursion step therefore requires O(ωQ) time.

As there are O(n6ωQ) states for this DP, the overall complexity is therefore O(ωQn6ωQ) =
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O(n6ωQ), concluding the proof.

3.3.3 Metric Embeddings

In this section we present a general strategy for designing approximation schemes for Capacitated

Vehicle Routing with fixed capacities. The strategy reduces the problem of designing such

an approximation scheme to that of finding an appropriate metric embedding of the input graph.

Specifically, we leverage the fact that Capacitated Vehicle Routing can be solved in polynomial

time on graphs of bounded treewidth when the capacity Q is fixed, as shown in Theorem 5. If the

input graph can be embedded into a bounded-treewidth graph without distorting distances too much,

a near-optimal solution can then be found in polynomial time. We now formalize this reduction.

Recall, a metric embedding of a guest graph G into a host graph H, is a mapping φ(·) of the

vertices of G to the vertices of H. Metric embeddings are a useful tool for designing approximation

algorithms. Suppose an embedding φ can be found such that the host graph H has simple structure

and such that distances in H approximately preserve distances in G (i.e. dG(u, v) is similar to

dH(φ(u), φ(v)) for all u, v ∈ V ). The problem instance induced in H can then be solved, and this

solution can be mapped back to G. If the structure of H is simple enough, the solution can be found

efficiently, and if distances inH are nearly preserved, the resulting solution in G will be near-optimal.

Related Metric Embedding Work

The general idea of this approach is not new. Bartal [17] presented a randomized algorithm that

finds an embedding φ of a graph G into a tree T such that for all vertices u and v in G, dT (φ(u), φ(v))

is in expectation at most logc(n) · dG(u, v) for some constant c. This distortion factor was improved

to O(log n) by Fakcharoenphol, Rao, and Talwar [43].

A natural question is whether this result can be improved for special graph classes. Chakrabarti

et al. [27] proved that even for the easier problem of embedding unit-weighted planar graphs into

graphs with o(
√
n) treewidth, a distortion factor of o(log n) cannot be achieved. If we consider

additive rather than multiplicative distortion in distances, Fox-Epstein, Klein, and Schild [48] showed

a planar graph G can be embedded into a graph H of bounded treewidth such that dH(φ(u), φ(v)) ≤

dG(u, v) + ε · diam(G).

When the input graph G has bounded doubling dimension θ and aspect ratio γ, Talwar [92] gave

a randomized algorithm that finds an embedding of G into a graph H in which E[dH(φ(u), φ(v))] ≤
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(1 + ε)dG(u, v) for all u and v in G and such that the treewidth of H is bounded by some function

f(γ, θ, ε) that is polylogarithmic in γ. As we will discuss in Chapter 6, Feldman, Fung, Könemann,

and Post [47] gave gave a similar embedding result for graphs of bounded highway dimension.

Metric Embedding Strategy for Capacitated Vehicle Routing

Of particular interest for designing Capacitated Vehicle Routing approximation schemes are

metric embeddings that preserve distances between clients, up to the error allowance given by Error

Allowance 3.3 and such that the host graph has bounded treewidth. By Theorem 5, Capacitated

Vehicle Routing can then be solved exactly in the host graph in time exponential only in the

treewidth and capacity. This solution, SOLH in H can then be straightforwardly mapped back to a

solution SOLG in G: for all u,v in S∪{r}, include (u, v) ∈ SOLG if and only if (φ(u), φ(v)) ∈ SOLH .

Because the embedding preserves distances up to the error allowance, the cost of SOLG is near-

optimal.

We formalize this approach in this section and prove Theorem 6, which can be applied to any

graph class that has such an embedding. Given this theorem, all that remains to designing a

PTAS for a given graph class is to find such an embedding. We will give examples of finding such

embeddings for planar graphs (see Chapter 5) and graphs with bounded highway dimension (see

Chapter 6).

Theorem 6. Fix a family of graphs G, function f , and Q, ε > 0. If there exists a polynomial-time

algorithm that, for any G ∈ G and r ∈ VG, constructs a host graph H with treewidth at most f(ε,Q)

and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) +
ε

Q
(dG(u, r) + dG(v, r))

then there exists an algorithm for Capacitated Vehicle Routing with capacity Q on graphs in

G that in polynomial time returns a solution whose cost is at most 1 + ε times optimal.

Proof. Let G be some such graph class that has an embedding algorithm that satisfies the condition

of the theorem statement. Let Q > 0 and ε > 0 be fixed, let G be a graph G, and let r ∈ VG be a

specified vertex. Let f and φ be as given by the theorem.

Consider the instance of Capacitated Vehicle Routing on G with depot r and capacity Q.

Use φ to embed G into host graph H, and consider the resulting induced instance of Capacitated
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Vehicle Routing in H, with capacity Q, depot φ(r) and client set {φ(s)|s ∈ S}. Use the dynamic

program of Theorem 5 to solve this instance in H.

Let SOLH be the resulting optimum solution in H, and let SOLG be the solution resulting from

mapping SOLH back to G.

Because the construction runtime is polynomial, |VH | ≤ nc for some constant c. Additionally,

since the treewidth of H is at most f(ε,Q), the dynamic program given by Theorem 5 runs in time

nO(c·f(ε,Q)Q). The overall runtime of this algorithm is therefore nf
′(ε,Q) where f ′ is some function

that depends only on ε and Q.

Finally, we show that SOLG is near-optimal. Let OPT be the optimal solution in G and let

OPTH be the corresponding induced solution in H. Since the dynamic program finds an optimal

solution in H, we have costH(SOLH) ≤ costH(OPTH). Additionally, since distances in H are no

shorter than distances in G, costG(SOLG) ≤ costH(SOLH). Putting these pieces together, we have,

costG(SOLG) ≤ costH(SOLH) ≤ costH(OPTH)

=
∑

(u,v)∈OPT

dH(φ(u), φ(v))

≤
∑

(u,v)∈OPT

dG(u, v) +
ε

Q
(dG(u, r) + dG(v, r))

=
∑

(u,v)∈OPT

dG(u, v) + 2
ε

Q

∑
s∈S

dG(s, r)

≤ costG(OPT ) +
2ε

Q

∑
s∈S

dem(s)dG(s, r)

≤ (1 + ε)costG(OPT )

where the final inequality comes from Lower Bound 3.2 (see Section 3.2).

Note that if f or the runtime for constructing H are allowed to depend polylogarithmically on

n, the analogous result is a QPTAS for the given graph class. Additionally, we show the following

analogous result for randomized embeddings.

Theorem 7. Fixed a family of graphs G, function f , and Q, ε > 0. If there exists a randomized

algorithm that, for any G ∈ G and r ∈ VG, in polynomial time constructs a host graph H with
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treewidth at most f(ε,Q) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) and E[dH(φ(u), φ(v))] ≤ dG(u, v) +
ε

Q
(dG(u, r) + dG(v, r))

then there exists an algorithm for Capacitated Vehicle Routing with capacity Q on graphs

in G that in polynomial time returns a solution whose expected cost is at most 1 + ε times optimal.

Proof. The proof is nearly identical to that of Theorem 6, except for the following cost analysis. We

use the same notation as before.

E[costG(SOLG)] ≤ E[costH(SOLH)] ≤ E[costH(OPTH)]

= E[
∑

(u,v)∈OPT

dH(φ(u), φ(v))]

=
∑

(u,v)∈OPT

E[dH(φ(u), φ(v))]

≤
∑

(u,v)∈OPT

dG(u, v) +
ε

Q
(dG(u, r) + dG(v, r))

=
∑

(u,v)∈OPT

dG(u, v) + 2
ε

Q

∑
s∈S

dG(s, r)

≤ costG(OPT ) + 2
ε

Q

∑
s∈S

dem(s)dG(s, r)

≤ (1 + ε)costG(OPT )

3.4 Capacitated Vehicle Routing Extensions

In this section we consider generalizations of Capacitated Vehicle Routing and show how to

extend our methods to address them.

3.4.1 Multi-Depot Capacitated Vehicle Routing

One natural generalization is the multiple depot setting. There are several reasonable ways to

generalize single-depot Capacitated Vehicle Routing. We define Multi-Depot Capacitated

Vehicle Routing as follows. Let R ⊆ V be the set of depots denoted as R = {r1, r2, ..., r|R|}.
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Each vehicle must start at some source depot ri and end at some destination depot rj , though we

do not require i = j. As before, each vehicle has a capacity Q and the vehicles must collectively

cover the client-demand without exceeding their capacities. Routes are now depot-to-depot paths

in G, and again the objective is to minimize the sum of the route lengths.

Notably, we assume that the vehicles are not assigned source and destination depots a priori and

that the algorithm can determine how to preposition the vehicles. In fact, any way of formally defin-

ing a multiple-depot generalization requires assumptions about the fleet that were not required of

the single-depot setting. For example, fleet size is irrelevant in single-depot Capacitated Vehicle

Routing, as traversing a set of tours with a single vehicle costs the same as traversing the same set

of tours with several vehicles. In multple-depot settings, however, fleet size and distribution become

relevant.

Recall the distance of a vertex v ∈ V to a subset R ⊆ V is defined to be d(v,R) = minr∈R d(v, r).

We give the following lower bound for Multi-Depot Capacitated Vehicle Routing.

cost(OPT ) ≥ 2

Q

∑
s∈S

dem(s)d(s,R) (3.4)

The justification is analogous to the single-depot setting. Consider any ri to rj vehicle path π in

OPT , and let s∗ be the client covered by π that is farthest from R. That is, s∗ = arg maxs∈π d(s,R).

The length of π, denoted `(π) is at least d(s∗, ri) + d(s∗, rj) which itself is at least 2d(s∗, R). Noting

that there are at most Q clients covered by π and that the maximum client-to-R distance is at least

as much as the (weighted) average client-to-R distance, the lower bound follows from summing over

all vehicle paths in OPT .

We use Lower Bound 3.4 to justify the following multi-depot error allowance for consecutive

clients in a solution.

Multi−Depot Error Allowance :
ε

2
d(u, v) +

ε

2Q
(d(u,R) + d(v,R)) (3.5)

Unlike in the single-depot setting, where, by the triangle inequality, d(u, v) ≤ d(u, r) + d(v, r), it is

now possible that d(u, v)� d(u,R) +d(v,R). We therefore must explicitly add a term to reflect the

error that can be charged to d(u, v).

Additionally, the dynamic program of Theorem 5 can be adapted to accommodate multiple
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depots, though the resulting runtime will be exponential in |R|. Using such a DP and Error Al-

lowance 3.5, we can then design an embedding strategy analogous to Theorem 6.

Theorem 8. Fix a family of graphs G, function f , and Q, ρ, ε > 0. If there exists an algorithm

that, for any G ∈ G and R ⊆ VG with |R| = ρ, in polynomial time constructs a host graph H with

treewidth at most f(ε,Q, ρ) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1 +
ε

2
)dG(u, v) +

ε

2Q
(dG(u,R) + dG(v,R))

then there exists an algorithm for Multi-Depot Capacitated Vehicle Routing with capacity Q

on graphs in G that in polynomial time returns a solution whose cost is at most 1 + ε times optimal.

Proof. We use the same notation as in the proof of Theorem 6. The two proofs are nearly identical,

except for the following error analysis.

costG(SOLG) ≤ costH(SOLH) ≤ costH(OPTH)

=
∑

(u,v)∈OPT

dH(φ(u), φ(v))

≤
∑

(u,v)∈OPT

(1 +
ε

2
)dG(u, v) +

ε

2Q
(dG(u,R) + dG(v,R))

= (1 +
ε

2
)

∑
(u,v)∈OPT

dG(u, v) + 2
ε

2Q

∑
s∈S

dG(s,R)

≤ (1 +
ε

2
)costG(OPT ) +

ε

Q

∑
s∈S

dem(s)dG(s,R)

≤ (1 + ε)costG(OPT )

where the final inequality comes from Lower Bound 3.4.

3.4.2 Applications to k-Center and k-Median

Another application of the embedding described in Theorem 8 is to give fixed-parameter approxi-

mations (FPAs) for k-Center and k-Median, i.e. algorithms with running time f(k)nO(1).
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k-Center

We first present the FPA framework for k-Center. Recall that the k-Center problem is to find the

set Z of k vertices (called centers) such that the maximum distance of a client to the nearest center is

minimized. That is, find arg minZ⊆V :|Z|≤k(maxs∈S d(s, Z)). Note that we address a generalization

of the standard problem formulation as not every vertex needs to be covered.

Theorem 9. Fix a family of graphs G, function f1, and k, ε > 0. If there exists an algorithm that,

for any ε′ > 0, G ∈ G, and Z ⊆ VG with |Z| = k, in polynomial time constructs a host graph H with

treewidth at most f1(ε′, k) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1 + ε′)dG(u, v) + ε′(dG(u, Z) + dG(v, Z))

then there exists a function f2 and constant c such that there is an f2(ε, k)nc time algorithm that,

given an instance of k-Center in G, finds a solution whose cost is at most 1 + ε times optimum.

The algorithm first computes an α-approximation Z in polynomial time, where α is O(1) (see [60]

or [53] for a 2-approximation). Applying the given embedding to G with the subset Z and ε′ = ε
7α

gives a host graph H. The algorithm then runs a DP that gives a (1 + ε′)-approximation, SOLH of

the optimal solution in the host graph. Note that any vertices added in the construction of H are

not required to be covered. Finally, the solution SOLH is mapped back to a solution SOLG in G.

We first prove that SOLG is a (1 + ε)-approximation of the optimal solution G.

Lemma 5. A (1 + ε′)-approximation of k-Center in the host graph given by Theorem 8 is a

(1 + ε)-approximation of k-Center in the original graph.

Proof. Let OPTG denote the optimal solution in G, and OPTH denote the optimal solution in host

graph H. For each vertex u, let cu denote the closest center to u in OPTG. We have the following:

costH(OPTG) = max
u∈VG

dH(u, cu)

≤ max
u∈VG

(1 + ε′)dG(u, cu) + ε′(dG(u, Z) + dG(cu, Z))

≤ (1 + ε′) max
u∈VG

dG(u, cu) + 2ε′ max
u∈VG

dG(u, Z)

≤ (1 + ε′)costG(OPTG) + 2ε′αcostG(OPTG)

≤ (1 + 3αε′)costG(OPTG)
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We want to show that costG(SOLG) ≤ (1 + ε)costG(OPTG).

costG(SOLG) = costG(SOLH)

≤ costH(SOLH)

≤ (1 + ε′)costH(OPTH)

≤ (1 + ε′)costH(OPTG)

Substituting the above inequality gives,

costG(SOLG) ≤ (1 + ε′)(1 + 3αε′)costG(OPTG)

≤ (1 + 7αε′)costG(OPTG)

= (1 + ε)costG(OPTG)

That is, since the optimal solution in H is an approximate solution in G, an approximate solution

in H is also an approximate solution in G.

The runtime of the DP given by Schild, Fox-Epstein and Klein [48] for a graph with treewidth

ω is O(n(log n)ω), which is O(nO(1)ω2ω) (following Lemma 1 in Katsikarelis et al. [70]). Since the

treewidth of H is f1(ε′, k), this gives a runtime of f1(ε′, k)2f1(ε′,k)nO(1), proving the fixed-parameter

approximation of Theorem 8.

k-median

We now present an analogous FPA framework for k-median. The k-median problem is to find the

set Z of k vertices (called centers) that minimizes the sum of distances between clients and their

nearest center. That is, find arg minZ⊆V :|Z|≤k(
∑
s∈S d(s, Z)). Again, we address a generalization

of the standard problem as not every vertex needs to be covered.

Theorem 10. Fix a family of graphs G, function f1, and k, ε > 0. If there exists an algorithm that,

for any ε′ > 0, G ∈ G, and Z ⊆ VG with |Z| = k, in polynomial time constructs a host graph H with

treewidth at most f1(ε′, k) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1 + ε′)dG(u, v) + ε′(dG(u, Z) + dG(v, Z))
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then there exists a function f2 and constant c, such that there is a f2(ε, k)nc time algorithm that,

given an instance of k-Median in G, finds a solution whose cost is at most 1 + ε times optimum.

The outline is the same as for k-Center. The algorithm first computes an α-approximation Z

for some α = O(1) (see [91]). Then the embedding algorithm is applied using the set Z and ε′ = ε
9α .

Finally the algorithm computes an approximate solution in the host graph. The dynamic program

for k-Center can be adapted to solve k-Median with the same complexity (again, any vertices

added during the host graph construction do not contribute to the cost). The following lemma is

straightforward:

Lemma 6. A (1+ε′)-approximation of k-median in the host graph given by Theorem 10 is a (1+ε)-

approximation of k-median in the original graph.

The proof is almost identical to that of Lemma 5, replacing the max by a sum. The difference

in ε′ values comes from the following:

costH(OPTG) ≤
∑
u∈VG

(1 + ε′)dG(u, cu) + ε′(dG(u, Z) + dG(cu, Z))

The triangle inequality gives,

costH(OPTG) ≤
∑
u∈VG

(1 + ε′)dG(u, cu) + ε′(dG(u, Z) + dG(cu, u) + dG(u, Z))

≤ (1 + 2ε′)
∑
u∈VG

dG(u, cu) + 2ε′
∑
u∈VG

dG(u, Z)

≤ (1 + 2ε′)costG(OPTG) + 2ε′αcostG(OPTG)

≤ (1 + 4αε′)costG(OPTG)

3.4.3 Capacitated Vehicle Routing with Penalties

Another natural generalization to consider is Capacitated Vehicle Routing with Penalties,

in which a penalty value p̂(s) is specified for each client s, and a solution is allowed to avoid covering

a subset of clients in exchange for paying the associated penalties for these uncovered clients. The

objective then is to minimize the sum of the tour lengths and the penalties for skipped clients.

One application of this generalization is the vehicle-routing problem with private fleet and common

carrier (VRPPC), “where customers may either be served by using owned vehicles with traditional
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routes or be assigned to a common carrier, which serves them directly at a prefixed cost” [62, p. 13].

Adapting the dynamic program of Theorem 3.3.2 for solving Capacitated Vehicle Routing

instances in graphs of bounded treewidth to account for penalties is fairly straightforward. Specif-

ically, the only required change is that when processing the forget bag of a client s, the algorithm

also considers the cost of paying p̂(s) instead of covering s.

Using such a dynamic program, the metric embedding strategy introduced in Section 3.3.3 can be

extended to accommodate such penalties. Specifically, we can derive the following theorem analogous

to Theorem 6

Theorem 11. Fix a family of graphs G, function f , and Q, ε > 0. If there exists an algorithm that,

for any G ∈ G, r ∈ VG, S ⊆ VG and function p̂ : S → Z, in polynomial time constructs a host graph

H with treewidth at most f(ε,Q) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) +
ε

Q
(dG(u, r) + dG(v, r))

then there exists an algorithm for Capacitated Vehicle Routing with Penalties with capacity

Q on graphs in G that in polynomial time returns a solution whose cost is at most 1+ε times optimal.

Note that the same embedding can be used for Capacitated Vehicle Routing and Capac-

itated Vehicle Routing with Penalties, where for all s ∈ S, the penalty of φ(s) in H is

p̂(s).

Given the dynamic program described above, all that remains to proving Theorem 11 is to show

that the optimal solution to Capacitated Vehicle Routing with Penalties in the host graph

has a cost at most (1 + ε)cost(OPTG).

Proof. The clients can be divided into two sets U and W , where OPT visits every vertex in U and

pays the penalty for the ones in W . We use (u, v) ∈ OPT to denote that u and v are consecutive

covered clients in some tour of OPT . Applying Lower Bound 3.2 to the client subset U gives

costG(OPT) ≥ 2

Q

∑
v∈U

dem(v) · dG(v, r) +
∑
v∈W

p̂(v)



56

Using this lower bound and the notation from Theorem 6 gives,

costG(SOLG) ≤ costH(SOLH) ≤ costH(OPTH)

=
∑

(u,v)∈OPT

dH(φ(u), φ(v)) +
∑
v∈W

p̂(v)

≤
∑

(u,v)∈OPT

dG(u, v) +
ε

Q
(dG(u, r) + dG(v, r)) +

∑
v∈W

p̂(v)

=
∑

(u,v)∈OPT

dG(u, v) + 2
ε

Q

∑
s∈U

dG(s, r) +
∑
v∈W

p̂(v)

≤
∑

(u,v)∈OPT

dG(u, v) +
∑
v∈W

p̂(v) +
2ε

Q

∑
s∈U

dem(s)dG(s, r)

≤ (1 + ε)costG(OPT )



Chapter 4

A QPTAS for Capacitated Vehicle

Routing in Planar Graphs

4.1 Introduction

In this chapter, we present a quasi-polynomial-time approximation scheme (QPTAS) for Capaci-

tated Vehicle Routing with fixed capacities in planar graphs. Specifically, we prove the following.

Theorem 12. For any ε > 0 and any Q > 0, there is a quasi-polynomial-time algorithm that, given

an instance of Capacitated Vehicle Routing in which the capacity is Q and the graph is planar,

finds a solution whose cost is at most 1 + ε times optimum.

Our quasi-polynomial-time approximation scheme can also be extended to handle Multi-Depot

Capacitated Vehicle Routing as well as Capacitated Vehicle Routing with Penalties

(see Section 3.4). The algorithm can also be generalized to graphs of bounded genus and polylog-

arithmic capacity Q. (Q is considered constant in Theorem 12.) We state our result in its full

generality.

Theorem 13. For any ε > 0, any g ≥ 0, any R ≥ 0 and any c ≥ 0, there is a quasi-polynomial-

time algorithm that, given an instance of Multi-Depot Capacitated Vehicle Routing with

Penalties in which the capacity Q is O(logc n) and the graph has genus g with R designated depots,

finds a solution whose cost is at most 1 + ε times optimum.

57
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Our algorithm uses a recursive decomposition (see Section 1.3) of the graph using shortest-path

separators. That is, there is a recursive clustering in which the vertices on the boundary of each

cluster lie on a small number of shortest paths. This general idea has been used in several previous

approximation schemes for planar and bounded-genus graphs [7, 31, 40, 54]. The closest previous

use was in addressing the k-Center problem [40], and we use a lemma from their paper stating

that such a recursive decomposition exists that has logarithmic depth.1

We introduce several new ideas in order to apply the recursive decomposition to vehicle routing.

Before finding the recursive decomposition, the algorithm must prune the graph to eliminate vertices

that are too far from the depot to participate in an optimal solution. In our algorithm, the shortest

paths bounding each cluster are subpaths of shortest paths from the depot. This ensures that if

vertices u and v are on a bounding shortest path P and u is farther along P than v, then u must

also be farther from the depot than v. This allows us to make use of Lower Bound (3.2), which

depends on distances of clients from the depot.

The algorithm designates some of the vertices of the cluster boundaries to be portals, and requires

(some) paths of the solution to enter and leave clusters only at these portals. This in itself is not

novel; portals have been used before. We introduce two new ideas. The first is how we select portals.

In previous use of portals in approximation schemes for planar graphs, portals are selected uniformly

along a path. In our algorithm, it is essential that the portals be selected in a nonuniform fashion:

the farther from the depot, the greater the spacing between portals. This introduces more error in

solution segments farther from the depot but such error can be afforded due to Lower Bound (3.2).

Second, requiring the entire solution to pass in and out of clusters via portals would introduce

too much error. Instead, we only require a tour to use portals when entering or exiting the clusters

that contain clients covered by that tour. The tour is not required to use portals to pass through

other clusters. This way, we can bound the solution error in terms of clients and their distance from

the depot. (This error also depends on the depth of nesting in the recursive decomposition, since

in the process of picking up a client the tour might pass through many clusters at different levels of

nesting, but the depth of nesting is merely logarithmic.)

After showing that an approximately optimal solution can be assumed to cross clusters in this

way, we reduce the problem to one we can address using dynamic programming. The dynamic
1Such a decomposition was earlier described by Thorup [93] in the context of approximate distance oracles. How-

ever, in addressing the generalization to multiple depots we use a generalization of the decomposition that follows
from slight modification of the proof in [40].
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program introduced in Section 3.3.2 does not quite suffice here, because the solution can sometimes

pass through the boundary without using portals. The dynamic program must also make use of the

metric on the entire graph as well.2

4.2 Preliminaries

Recall that for any edge set F ⊆ E the boundary of F , denoted ∂(F ), is the set of vertices that are

incident both to edges in F and edges in E \ F .

We assume that the length of any edge (u, v) is dG(u, v); if not, it would not be used and can be

removed from the graph.

For a graph G and vertex r, an r-rooted shortest path tree T is an r-rooted tree in which for all v

in V the r-to-v path in T is a shortest path in G. For any vertex u on a shortest r-to-v path, we call

the u-to-v subpath a from-r shortest subpath. Such a subpath must also be a shortest u-to-v path.

A triangulated planar graph is one in which every face has exactly three incident edges. A planar

graph can easily be triangulated in linear time by adding edges that recursively subdivide faces with

more than three incident edges. Each new edge (u, v) is given cost d(u, v). Triangulating a planar

graph requires adding O(n) edges.

A recursive clustering of a graph G is a recursive partition (see Section 1.3) of the vertices VG.

Specificially, it is a rooted binary tree T in which

• each node is labeled with a cluster C ⊆ VG,

• If x is a child of y in T , then the cluster associated with x is a subset of the cluster associated

with y, and

• there is a mapping φ(·) that maps each vertex v of G to a leaf cluster φ(v) that contains v.

Each vertex v is considered to be assigned to each cluster containing φ(v).

A vertex v of a cluster C is a boundary vertex of the cluster if v also belongs to a cluster C′ that

neither contains nor is contained in C. An edge (u, v) of G is a boundary edge of a cluster C if u is

in C and v is not. The depth of a recursive clustering is the depth of the rooted binary tree.
2A similar technique was used in [40].
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4.3 Decomposing the Graph

In this section, we describe the recursive clustering performed by our algorithm.

4.3.1 Graph Pruning

As a preprocessing step, the algorithm prunes from the graph those vertices that are not clients

and are very far from the depot. Specifically, the algorithm deletes each vertex that does not lie on

some u-to-v shortest path with u, v ∈ S∪{r}. Since the optimal solution is composed of such paths,

pruning does not increase cost(OPT ).

Lemma 7. For all vertices w that remain after the preprocessing step, d(r, w) ≤ cost(OPT ).

Proof. Since w survived the pruning step, it must lie on some u-to-v shortest path with u, v ∈ S∪{r}.

Without loss of generality, assume that the optimal solution visits u before visiting v. Therefore

cost(OPT ) ≥ d(r, u) + d(u, v) ≥ d(r, u) + d(u,w) ≥ d(r, w) where the final inequality comes from

the triangle inequality.

4.3.2 Cluster Decomposition

The following lemma is a slight generalization of a lemma in [40].

Lemma 8 (Generalization of Lemma 3.1 in [40]). Let T be a tree of degree at most three. Let Y be

a subset of the vertices. There is a depth-O(log |Y |) recursive clustering of T such that

• there are no boundary vertices,

• each leaf cluster is assigned only one vertex of Y , and

• each cluster C has at most four boundary edges.

Let G be a planar embedded graph and T be a spanning tree of G. Let G′ be obtained from G

by adding artificial edges to triangulate G and G∗ be the planar dual of G′. Finally, let T ∗ be the

set of edges of G∗ corresponding to edges of G′ that are not in T . Then T ∗ is a spanning tree of

G∗ (namely, the interdigitating tree). Each edge of T ∗ corresponds to a nontree edge in G, which

in turn defines a cycle consisting of that nontree edge together with a path through T . Since G′ is

triangulated, G∗ has degree at most three. Map each vertex of G′ to one of the faces to which it
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is incident. Let Y be the set of faces to which elements of S are mapped. By choosing T to be an

r-rooted shortest-path tree of G and applying Lemma 8, we obtain the following generalization of a

corollary of [40].

Lemma 9 (Generalization of Corollary 3.1 of [40]). Let G be a planar embedded triangulated graph

with edge costs, let S be a subset of the vertices, and let r be a vertex of G. There is a depth-O(log |S|)

recursive clustering of G with the following properties:

• there are no boundary edges,

• for each cluster, there are at most eight from-r shortest paths such that the boundary vertices

of the cluster are the vertices that lie on these paths, and

• at most three vertices of S are assigned to each leaf cluster.

The algorithm computes a recursive clustering as described in Lemma 9.

4.3.3 Choosing Portals

The algorithm designates portals along each cluster boundary in a two-step process. First it desig-

nates some of the vertices as spacers. Second, for each cluster it designates a subset of the cluster’s

boundary vertices to be portals, including all designated spacers as well as some additional vertices.

The choice of spacers depends on a parameter δ. We will choose

δ =
ε

(Q+ 4)c log |S|
(4.1)

where c is an absolute constant to be determined in the proof of Theorem 14.

We first describe spacer selection. Let T be the from-r shortest-path tree. Let v̂ be the vertex

farthest from r that remains after the pruning step and let δ > 0. Designate r to be a spacer, and

consider the unpruned vertices in increasing order of distance from r. For each vertex v in turn, let

xv be the closest ancestor of v that has already been designated as a spacer. Designate v as a spacer

if d(v, xv) > δ ·max(d(r, xv),
1
|S|d(r, v̂)).

Lemma 10. Each from-r shortest path has at most 2 + log1+δ
|S|
δ spacers.
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Proof. Let P be a from-r shortest path, and let r=x0, x1, . . . , xl be the spacers on P in increasing

order of distance from r. We bound l as follows. For each i > 0, d(xi−1, xi) > δ d(r, xi−1), so

d(r, xi) = d(r, xi−1) + d(xi−1, xi) > (1 + δ)d(r, xi−1)

By induction,

d(r, xl) > (1 + δ)l−1d(r, x1)

Since d(r, x1) > δ 1
|S|d(r, v̂), we infer d(r, xl) > (1 + δ)l−1 δ

|S|d(r, v̂), which implies

(1 + δ)l−1 <
|S|
δ

d(r, xl)

d(r, v̂)
≤ |S|

δ

which shows

l − 1 < log1+δ

|S|
δ
.

The algorithm then designates some of each cluster’s boundary vertices as portals. For each

cluster C, the boundary vertices of C lie on O(1) from-r shortest subpaths. For each such from-r

subpath P , designate as portals the first vertex of P and all the vertices of P that are spacers.

By Lemma 10, each path P contributes O( 1
δ log( 1

δ |S|)) portals. Using the definition of δ in

Equation 4.1, we obtain,

Lemma 11. For each cluster boundary, the above algorithm designates O(Q 1
ε log2 |S|) portals.

We also show a bound on the distance along the boundary to the nearest portal.

Lemma 12. For every cluster C and boundary vertex v ∈ ∂(C), there is a portal p of C and a p-to-v

path of cost at most δ(d(r, v) + cost(OPT )
|S| ).

Proof. By Lemma 9, v must lie on some from-r shortest subpath P that bounds cluster C. Let x be

v’s closest ancestor in T that is a spacer. By the algorithm for designating spacers and Lemma 7,

d(x, v) ≤ δ max(d(r, x),
1

|S|
d(r, v̂)) ≤ δ max(d(r, v),

cost(OPT )

|S|
)

If x belongs to P then x is a boundary vertex of C and hence a portal of C. In this case, we take

p = x. If not, then let p be the first vertex of P and note that d(p, v) ≤ d(x, v).
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Finally, we note that for any cluster C that contains the depot r, it can be assumed that r is on

the boundary of C and thus a portal of C. In particular, for the topmost cluster (that contains all

of VG) r is the only portal.

4.4 Structure Theorem

Consider a solution to Capacitated Vehicle Routing. It consists of a set of tours. Associated

with each tour π is a set of vertices in Vπ ∩ S that the tour visits. For a cluster C, a tour fragment

with respect to C is a maximal subpath of a tour all of whose vertices are in C. Every tour starts

and ends at the depot r. By construction, if r is in C then it is a boundary vertex of C. Therefore,

by maximality, each endpoint of a tour fragment with respect to C is a boundary vertex of C.

A tour fragment is visiting if it visits clients and passing if it does not. The endpoints of a

visiting fragment are called gates.

Lemma 13. Any solution to Capacitated Vehicle Routing crosses through O(log |S|) gates

between two consecutive visits to clients.

Proof. Consider a solution to Capacitated Vehicle Routing. Let u and v be two consecutive

clients visited by tour π of the solution, and let P be the subpath of π between visiting u and visiting

v. Suppose C is a cluster in which P ′ is a subpath of π that is a visiting tour fragment with respect

to C, such that P ′ has an endpoint x that’s an internal vertex of P . Since P ′ is a visiting fragment,

it visits some client, and since no clients are visited on P between u and v, the other endpoint y of

P ′ must not also be an internal vertex of P . Thus either u or v must be assigned to the cluster C.

If u is assigned to C then all edges on the u-to-x subpath of P belong to C, and the edge of P

after x does not. If v is assigned to C then all edges on the x-to-v subpath of P belong to C, and

the edge of P before x does not.

Now, let Cu,0 ⊂ Cu,1 ⊂ ... ⊂ Cu,l be the clusters that contain u but not v, and let Cv,0 ⊂ Cv,1 ⊂

... ⊂ Cv,k be the clusters that contain v but not u.

For i = 0, 1, . . . , l, let tu,i be the last vertex x of P such that the u-to-x subpath of P consists

of edges of cluster Cu,i. For i = 0, 1, . . . , k, let tv,i be the first vertex x of P such that the x-to-v

subpath of P consists of edges of cluster Cv,i.

Since the clusters are non-crossing, P visits tu,0, tu,1, . . . , tu,l, tv,k, tv,k−1, ..., tv,0 in order (See
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Figure 4.1a). The argument above shows that every gate that π crosses between u and v is one of

tu,0, . . . , tv,0.

By Lemma 9, the depth of the decomposition is O(log |S|), so k + l is O(log |S|).

(a) Gates (b) Detour

Figure 4.1: (a) Gates are depicted by large, hollow circles at crossings. Non-gate crossings enclose
passing segments (b) Boundary portals are denoted by squares. The double-line paths depict a
detour.

A solution is said to be portal-respecting if for every tour in the solution, every gate in the tour

is a portal.

Theorem 14. There exists a portal-respecting solution with cost at most (1 + ε)cost(OPT ).

Proof. Let OPT be an optimal solution to Capacitated Vehicle Routing. To prove the theorem,

we show how to modify OPT to construct a portal-respecting solution SOL by introducing detours

at every gate, and bound the cost incurred by these detours.

Consider a tour fragment P with respect to some cluster C, and let t be an endpoint of P . The

corresponding detour is the subpath of a from-r shortest subpath from t to the nearest portal, and

back. (See Figure 4.1b.) Splicing such a detour into the solution at each gate ensures that the

solution is still feasible and is portal-respecting. It remains to show that the cost of these detours is

small.

Let u and v be two consecutive clients visited by OPT . By Lemma 13 there is some constant

c such that there are at most c log |S| gates between u and v where detours will be added. We use

this constant c in the definition of δ given in Equation 4.1. By Lemma 12 the distance from any

crossing t to the nearest portal is at most δ(d(r, t) + cost(OPT )
|S| ), so the cost of each detour is at most

2δ(d(r, t) + cost(OPT )
|S| ).
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Since OPT is optimal, the path that it takes from u to v must be a shortest path. By the triangle

inequality, d(r, t) ≤ d(r, v) + d(v, t) ≤ d(r, v) + d(v, u). Therefore, the cost of each detour is at most

2δ(d(u, v) + d(r, v) + cost(OPT )
|S| ).

Summing over all gates gives 2δc log |S|
(
d(u, v)+d(r, v)+ cost(OPT )

|S|
)
, and summing over all pairs

of consecutive clients and using Lower Bound 3.2,

∑
(u,v)∈OPT

2δc log |S|
(
d(u, v) + d(r, v) +

cost(OPT )

|S|
)

≤ 2δc log |S|(cost(OPT ) +
Q

2
cost(OPT ) + cost(OPT ))

= δc log |S|(Q+ 4)cost(OPT )

The definition of δ given in Equation 4.1 ensures that the total detour cost is at most εcost(OPT ).

The notion of portal-respecting can be applied not just to a solution but to a partial solution as

well. This is used in the next section.

4.5 Dynamic Program

We present two dynamic programs: the first is slow but is the basis of the second, which gives a

QPTAS. Both have the same configurations but enumerate the transitions in different ways.

4.5.1 Configurations

The goal of the dynamic program is to compute the minimal cost of a portal-respecting solution.

Recall that by construction if the depot r is contained in a cluster, it is a portal of its boundary.

Additionally, since each client is assigned to exactly one leaf cluster, we avoid overcounting any

client’s demand. For a client s, let demC,s be the demand of s inside the cluster C. We let demC,s =

dem(s) if s is assigned to C, otherwise demC,s = 0.

A configuration X for cluster C specifies, for each pair of portals (i, o) of the cluster and for each

q ∈ {1, ..., Q}, a number Xi,o,q of segments that enter C at portal i, cover exactly q units of client

demand in C, and leave C at portal o. A configuration for cluster C is admissible if Σi,o,qqXi,o,q =

Σs∈CdemC,s.



66

A partial solution SOLC for cluster C is a set of tour fragments with respect to C. We say that a

partial solution SOLC for cluster C induces the configuration X if every visiting fragment of SOLC

corresponds to a fragment described in X (recall that a visiting fragment is one that visits at least

one client).

Our dynamic program computes, for each cluster C and admissible configuration X , the weight

DP (C,X ) of the minimum-weight, portal-respecting partial solution that induces the configuration

X .

4.5.2 Compatibility

To compute the minimal cost of a partial solution for a cluster C0 that induces the configuration

X 0, the algorithm determines possible configurations for the two child clusters of C0, namely C1

and C2. Let C0 be a cluster, with two child clusters C1 and C2, and let X 0, X 1, and X 2 be three

configurations such that X ı is admissible for Cı. We say that X 1 and X 2 are compatible with X 0

if each segment (i, o, q) described in X 0 can be mapped to a tuple of segments of X 1 and X 2,(
(b1, e1, j1, q1), · · · , (bK , eK , jK , qK)

)
, where jı ∈ {1, 2}, bı and eı are portals of Cjı , and such that

0 < qı < Q and ΣKı=1qı = q. We use (X 1,X 2) ∼ X 0 to denote that X 1 and X 2 are compatible with

X 0. To ensure that partial solutions are portal-respecting, configurations only need to describe the

segments that visit clients. The other segments need not cross boundaries at portals, so we assume

them to be shortest paths in the original graph.

Conversely, every segment of X 1 and X 2 must correspond to exactly one segment of X 0. Intu-

itively, this means that every segment in X 0 can be broken into subsegments that respect the portals

of C1 and C2. The path from i to o can be divided into a shortest path from i to b1, segments from

bı to eı visiting qı clients in the cluster Cjı , and shortest paths from eı to bı+1 and from eK to o

visiting 0 clients.

We define the price, ζ, of the compatible configurations to be the cost of connecting the segments:

ζ(C0,X 0,X 1,X 2) = d(i, b1)+ΣK−1
ı=1 d(eı, bı+1)+d(eK , o). Therefore, the minimal cost of a partial solu-

tion for a cluster C0 that induces the configuration X 0 is DP (C0,X 0) = min(X 1,X 2)∼X 0 DP (C1,X 1)+

DP (C2,X 2) + ζ(C0,X 0,X 1,X 2).

The algorithm enumerates all possible configurations X 1 and X 2 that are compatible with X 0.

As in the above definitions, the algorithm breaks every segment of X 0 into subsegments, each visiting

some clients in C1 or in C2. It then adds each subsegment to the corresponding subconfiguration:
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Figure 4.2: The segment (i, o, q) of the parent cluster is shown in red (short-dashed line). The
green path (long-dashed line) shows one way to map this segment onto the child clusters: segment
(b1, e1) covers q1 client demand and (b2, e2) covers q2 client demand with q1 + q2 = q. Segments
(i, b1), (e1, b2), and (e2, o) are passing segments and visit no clients. (Figure by David Saulpic).

the subsegment is added to X jı . As qı > 0 and ΣKi=ıqı = q ≤ Q, K ≤ Q. The algorithm enumerates

all possibilities and calculates the value of DP (C0,X 0).

4.5.3 Base Cases

Each base case is a cluster C in which there are at most three clients. Since the configuration X

is admissible, there are at most three tuples i, o, q such that Xi,o,q 6= 0. There are therefore a

constant number of ways of assigning each client of the cluster to a segment of the configuration.

The algorithm tries them all, in constant time, and keeps the smallest cost.

4.5.4 Final Output and Correctness

Since the topmost cluster has r as its only portal, all configurations will consist of r-to-r segments

visiting at most Q clients, and collectively visiting all clients of S. These are exactly the feasible

Capacitated Vehicle Routing solutions. The algorithm returns the minimum over all admissible

configurations of the top-level cluster, which is the cost of the optimal portal-respecting solution.

Theorem 15. The dynamic programming algorithm described above outputs the minimal weight of

a portal-respecting solution to Capacitated Vehicle Routing.

Proof. For a cluster C and an admissible configuration X , we prove that DP (C,X ) is the minimum

weight of a partial solution that induces the configuration and is portal-respecting. We proceed by

induction.

Base cases. The algorithm tries all the possible ways to produce a portal-respecting partial

solution that induces the configuration and keeps the minimal one.
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Induction step. Let C0 be a cluster and X 0 an admissible configuration for C0, and suppose

that the DP is true for C0’s children clusters, C1 and C2. Let SOLC0
be the optimal partial solution

that induces the configuration X 0 and cost(SOLC0) be its cost. We prove that DP (C0,X 0) =

cost(SOLC0
). By definition, all configurations enumerated by the algorithm correspond to portal-

respecting solutions that induce X 0, so DP (C0,X 0) ≥ cost(SOLC0). For the other inequality, we

break each segment induced by the solution SOLC0
into at most Q (see Section 4.5.2) segments of C1

and C2 to obtain configurations X 1 and X 2. These configurations are compatible by construction, so

they appear in the enumeration of the algorithm. Thus, by induction, DP (C0,X 0) ≤ cost(SOLC0).

Overall Solution. Let CE be the topmost cluster, namely the cluster that contains all edges.

Recall that r is the only portal on ∂(CE) so all admissible configurations are composed of r-to-r

segments each visiting at most Q clients and collectively visiting all clients in S. By induction,

DP (CE ,X ) is the minimum weight of a portal-respecting partial solution for CE that induces X ,

which itself is a portal-respeciting solution to Capacitated Vehicle Routing. The optimal cost

is therefore minX DP (CE ,X ) over all admissible X .

4.5.5 Complexity Analysis

The complexity is determined by the number of compatible configurations. For each cluster and

each admissible configuration for this cluster, the algorithm computes

|{ways of breaking a segment}||{segments}|

compatible subconfigurations. We first count the number of admissible configurations for a cluster.

Lemma 14. The number of admissible configurations X for a given cluster C is |S|O(Q3ε−2 log2 |S|).

Proof. An admissible configuration is a vector X indexed by two portals (i, o) and client demand

q. Xi,o,q is the number of segments going from i to o covering q units of client demand. As the

configuration is admissible and demand is unsplittable, this number cannot exceed the total number

of clients, so Xi,o,q ≤ |S|. Moreover, q ≤ Q and because by Lemma 11 there are O(Qε−1 log |S|)

portals for C the number of choices of (i, o) is less than O(Q2ε−2 log2 |S|). The number of admissible

configurations X for a given cluster is thus |S|O(Q3ε−2 log2 |S|).

We now count the number of compatible subconfigurations for a given configuration X .
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Lemma 15. There are O
(
(2Q3ε−2 log2 |S|)Q|S|

)
compatible subconfiguration pairs for a given con-

figuration.

Proof. Using the same argument as in Lemma 14 and the fact that q > 0, we can bound the number

of segments of a configuration: Σi,o,qXi,o,q ≤ |S|. To break a segment, the algorithm chooses at most

Q subsegments, each one consisting of a boolean, a pair of portals and a number of client-demand

units covered by the segment (see Section 4.5.2). As there are O(Qε−1 log |S|) child-cluster portals

by Lemma 11 and the capacity is bounded by Q, there are O((2 · Q · Q2ε−2 log2 |S|)Q) ways of

breaking a single segment. As there are fewer than |S| segments, we have O((2Q3ε−2 log2 |S|)Q|S|)

compatible subconfiguration pairs per configuration.

Lemma 16. The overall complexity of the dynamic program is |S|O(Q3ε−2 log2 |S|)(Q log |S|
ε

)O(Q|S|).

Proof. As stated above, the dynamic program computes for each cluster and each admissible configu-

ration, all compatible subconfigurations. As the decomposition is a binary tree with at most one leaf

per client, the number of clusters is O(S). Combining this with Lemma 14 and Lemma 15, the total

complexity is therefore |S|·|S|O(Q3ε−2 log2 |S|)(2Q3ε−2 log2 |S|
)Q|S|

= |S|O(Q3ε−2 log2 |S|)(Q log |S|
ε

)O(Q|S|).

4.5.6 QPTAS

The slowest operation in the DP is generating all compatible subconfigurations for a given cluster.

But this is very redundant: two different segments can be broken into the same subsegments. We

present a preprocessing step that computes, for every cluster and every triplet of configurations

for parent and children clusters, the minimal price ζ(C0,X 0,X 1,X 2) of passing segments needed to

make the configurations compatible. Recall that a passing segment is one that visits no clients and

that they are necessary to connect the visiting segments of the subconfigurations.

Preprocessing Algorithm

We describe a recursive algorithm. The inputs are a cluster C0, a configuration X 0 of C0 and two

configurations X 1 and X 2 of the children of C0. To determine the price for connecting these three

configurations, the algorithm considers the first segment appearing in X 0 and breaks it into subseg-

ments belonging to the children. It then deletes this segment from X 0 (giving a new configuration
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X̂ 0) and deletes the subsegments from the children configurations, to obtain the subconfigurations

X̂ 1 and X̂ 2. It tries all possibilities for breaking this segment and returns the cheapest one :

ζ[C0,X 0,X 1,X 2] = min
(
ζ(C0, X̂ 0, X̂ 1, X̂ 2) + d(i, b1) + Σd(eı, bı+1) + d(bK , o)

)
The base case is when there are no segments in X 0 (i.e. X 0

i,o,q = 0, ∀i, o, q). Here the algorithm

just checks that there are no remaining segments in X 1 and X 2. It returns 0 if there are none

and ∞ otherwise. This algorithm can be memoized because the number of segments in the first

configuration is strictly decreasing.

Pseudo-code of the algorithm using this preprocessing step is given in Algorithm 1

Algorithm 1 Preprocessing Step

function Price(C0,X 0,X 1,X 2)
if X 0 = 0 then . Base case

if X 1 = 0 and X 2 = 0 then
Return 0

else
Return ∞

else
Let (i, o, q0) be a segment such that X 0

i,o,q0
> 0

Let X̂ 0 ← {X 0,X 0
i,o,q0

− 1}
C1, C2 ← subclusters of C0
for all pairs of portals (b1, e1) · · · (bK , eK) of ∂(C1) ∪ ∂(C2), q1, · · · , qK ∈ N∗ such that

Σqi = q0 valid assignment of the subsegments to C1 or C2 do
Let X̂ 1 ← {X 1,X 1

bi,ei,qi
− 1 ∀(bi, ei, qi) assigned to C1}

Let X̂ 2 ← {X 2,X 2
bi,ei,qi

− 1 ∀(bi, ei, qi) assigned to C2}
ζ(C0,X 0,X 1,X 2) = min ζ(C0,X 0,X 1,X 2),

Price(C0, X̂ 0, X̂ 1, X̂ 2) + d(i, b1) + Σd(ei, bi+1) + d(bK , o))

Algorithm 2 Dynamic Program

function DP(C0,X 0)
if C0 is a leaf then

enumerate the base cases
C1, C2 ← subclusters of C0
for all X 1 admissible for C1 do

for all X 2 admissible for C2 do
DP (C0,X 0)← min(DP (C0,X 0), Price(C0,X 0,X 1,X 2)) + DP(C1,X 1) + DP(C2,X 2)

Return DP (C0,X 0)



71

Correctness

We prove the correctness of this algorithm by induction. The base case is an empty configuration

for the parent cluster. The two subconfigurations are therefore compatible with it only if they are

also empty. If X 0 is compatible with X 1 and X 2, then the chosen segment of X 0 corresponds by

definition to at most Q subsegments in X 1 and X 2. The algorithm enumerates all possible ways to

break the segment, so at least one will result in a compatible configuration. If X 0 is not compatible

with X 1 and X 2, the first segment cannot be broken in such a way that results in three compatible

configurations, so the algorithm avoids false positives.

Complexity

The complexity of this preprocessing step is

O
(
|{clusters}| · |{configurations}|3 · |{ways of breaking a segment}|

)
.

We showed in Lemma 14 that there is |S|O(Q3ε−2 log2 |S|) configurations and we showed in the proof of

Lemma 15 that there are O
(
(2Q3ε2 log2 |S|)Q

)
ways of breaking a segment, so the preprocessing can

be achieved in O(|S| · |S|O
(
Q3ε−2 log2 |S|

)
(2Q3ε−2 log2 |S|)Q) = O(2P (log |S|,Q,ε−1)) where P is some

polynomial.

We can use this preprocessing step to improve the complexity of the main DP. Instead of break-

ing segments we try all compatible configurations for the children clusters, of which there are at

most O(|{configuration}|2). The complexity of this improved DP is therefore O(|{clusters}| ×

|{configuration}|3) and is dominated by the preprocessing step. Combining this analysis with The-

orem 14 gives a QPTAS for planar graphs, proving Theorem 12.

4.6 Generalizations

4.6.1 Multi-Depot Capacitated Vehicle Routing

Our techniques can be extended to address Multi-Depot Capacitated Vehicle Routing, as-

suming a constant number of depots. Recall, in this variation, each tour can start and end at

different depots. Let R denote the set of depots, and for v ∈ S let rv denote the closest depot to v
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(note that the tour that visits v does not necessarily visit rv). The generalization relies on two key

observations.

First, the recursive clustering can be slightly modified in the following way. Let a from-R shortest

path be a from-r shortest path for some r ∈ R.

Lemma 17. Let G be a planar embedded graph with edge costs, and let R and S be subsets of the

vertices. There is a depth-O(log |S|) recursive clustering of G with the following properties:

• there are no boundary edges,

• for each cluster, there are O(|R|) from-R shortest subpaths such that the boundary vertices of

the cluster are the vertices that lie on these paths, and

• at most three vertices of S are assigned to each leaf cluster.

Proof. We sketch the proof. It follows the proof of Lemma 9, which in turn follows that of [40].

Consider the R-rooted shortest-path forest F . Each tree is rooted at some r ∈ R, and consists of

those vertices v for which rv = r. Construct a tree T by arbitrarily linking the trees of F , and then

use the construction of Lemma 9. This gives a decomposition such that each cluster is bounded

by four fundamental cycles of the tree T . Since a fundamental cycle in T consists of at most 2|R|

from-R shortest paths, this concludes the proof.

Figure 4.3: Here, u and v are depots. The forest is in black, the plain lines are the shortest-path
trees from u and v and the dashed one is the connecting edge. The dashed, gray lines are edges not
in T . The arrow is the boundary of a cluster: there is one fundamental cycle in T , and thus two
from-R shortest paths. (Figure by David Saulpic).

Portals in this decomposition are designated the same way as in Section 4.3. The cost of a detour

becomes δ(d(v, rv) + cost(OPT )
|S| ) (using the notation of Section 4.3). Using Lower Bound 3.4, we can

prove a multiple-depot version of the structure theorem, analogous to Theorem 14. Assuming that

|R| is constant, we can adapt the dynamic program for this decomposition to get a QPTAS.
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4.6.2 Bounded Genus

To extend our algorithm to handle the case when G is embedded on a surface of genus g > 0, we

adapt a technique previously used by Eistenstat et al. [40]. Let T be any spanning tree of G, in

our case the shortest-path tree rooted at the depot. The algorithm selects [41] 2g edges not in

T such that cutting the surface along the corresponding cycles (each edge forms a cycle with the

corresponding simple path in T ) yields a surface (with boundary) of genus 0, and a graph embedded

on this surface. The vertices of these cycles lie on shortest from-r paths where r is the depot. The

algorithm then cuts along these cycles, duplicating the vertices (an edge belonging to such a cycle

ends up on one side or the other). The resulting graph is planar.

Next the algorithm forms the cluster decomposition for that graph. Finally, the algorithm

merges duplicate vertices together. Merging the duplicates can result in those merged vertices

being boundary vertices of the clusters, but fortunately all of those merged vertices lie on at most

2g from-r shortest paths, so designation of portals can continue as in Section 4.3.3 and in total the

number of portals per cluster will be O(Qgε−1 log2 |S|).

4.6.3 Handling Penalties

Recall in Capacitated Vehicle Routing with Penalties, the algorithm is allowed to exclude

some clients in exchange for paying the penalties associated with those clients.

The dynamic program of Section 4.5 computes, for each cluster and each admissible configura-

tion of that cluster, the minimum cost partial solution that induces that configuration. To handle

penalties, we change the definition of solution, of admissible and of cost. A solution is now allowed

to not visit all the clients, an admissible configuration is allowed to not visit all the clients, and the

cost includes the penalties of unvisited clients. The base cases change slightly to accommodate these

changes, but otherwise the dynamic program is mostly unchanged.

One other change to the algorithm is needed. As described in Section 4.3.1, the algorithm needs

to prune the graph, removing vertices that are too far to be included. To handle penalties, we need

a more complicated pruning step. The algorithm computes an upper bound ĉost on the value of

the optimum that is at most Q times the value of the optimum, and then prunes away every vertex

whose distance from the depot is greater than ĉost
2 . This ensures that, for any cluster found in the

pruned graph, the value dist(r, v̂) is at most Q
2 cost(OPT), and our analysis can be adapted to show
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that the number of portals is not too large.

Lemma 18. There exists a polynomial-time algorithm that computes a Q-approximation for Ca-

pacitated Vehicle Routing with Penalties.

Proof. Consider an instance of Capacitated Vehicle Routing with Penalties with capacity

Q and a modified version in which the capacity is 1. Solving the modified instance is easy: for

each client, include a depot-to-client round-trip if the cost of this trip is no more than the client’s

penalty. It remains to show that the optimum value for the modified instance is at most Q times

the optimum value for the original instance.

Consider an optimal solution for the original instance. For each tour π in that solution, the cost

of π is at least the cost of a round-trip from the depot to the farthest client visited by π. Replace

π by a collection of tours, one visiting each of the clients visited by π. Each of these tours is a

round trip, and there are at most Q of them, so their total cost is at most Q times the cost of π.

The set of unvisited clients has not changed so the sum of their penalties remains unchanged. Thus

the total value of the solution thus obtained is at most Q times the optimum value for the original

instance.



Chapter 5

Capacitated Vehicle Routing

PTAS for Planar Graphs

5.1 Introduction

In this chapter we improve upon our PTAS result of Chapter 4 and present a polynomial-time

approximation scheme (PTAS) for Capacitated Vehicle Routing, on instances in which the

input graph is planar and the capacity Q is bounded. In particular, we present the first known

PTAS for Capacitated Vehicle Routing on planar graphs.

Theorem 16. For any ε > 0 and capacity Q, there is a polynomial-time algorithm for Capacitated

Vehicle Routing on planar graphs that returns a solution whose cost is at most 1+ε times optimal.

Much of the analysis for proving Theorem 16 was already completed in Chapter 3. Recall, an

embedding of a guest graph G into a host graph H is a mapping φ : VG −→ VH (see Section 3.3.3).

By Theorem 6 and the dynamic program given by Theorem 5, all that remains to designing a PTAS

for Capacitated Vehicle Routing with capacity Q on planar graphs is to find an algorithm that

embeds planar graphs into host graphs with bounded treewidth such that distances are sufficiently

preserved.

To obtain our PTAS result, we first design a randomized embedding that satisfies the conditions

of Theorem 7 (see Section 3.3.3). Specifically, we embed the input graph into a bounded-treewidth

host graph while preserving, in expectation, the client-to-client distances up to a small additive error

75
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proportional to client distances to the depot, namely Error Allowance 3.3 (see Section 3.3.1). This

gives a solution whose expected cost is at most (1 + ε)cost(OPT ). We then show in Section 5.3 how

this result can be derandomized.

Our new embedding result builds on that of Fox-Epstein, Klein, and Schild [48]. Recall, their

result is an embedding for planar graphs into bounded treewidth graphs such that distances are

preserved up to a small additive error, of ε times the diameter of the input graph. The challenge

in directly applying their embedding result to Capacitated Vehicle Routing is that this error

exceeds the error allowance for those clients close to the depot. Instead, we divide the graph into

annuli (bands) defined by distance ranges from the depot and apply the embedding result to each

induced subgraph independently, with an increasingly large error tolerance for the annuli farthest

from the depot. In this way, each client can afford an error proportional to the diameter of the

subgraph it belongs to.

How can these subgraph embeddings be combined into a global embedding with the desired

properties? In particular, clients that are close to each other in the input graph may be separated

into different annuli. How can we ensure that the embedding approximately preserves these distances

while still achieving bounded treewidth?

We use a technique common in metric embedding algorithms. We show that by randomizing

the choice of where to define the annuli boundaries, and connecting all vertices of all subgraph

embeddings to a new, global depot, client distances are approximately preserved (to within their error

allowance) in expectation by the overall embedding, without substantially increasing the treewidth.

To do so, we must ensure that the annuli are wide enough that the probability of nearby clients

being separated (and thus generating large error) is small. Simultaneously, the annuli must be

narrow enough that, within a given annulus, the clients closest to the depot can afford an error

proportional to the distance of the farthest clients from the depot.

As described in Chapter 3, given the embedding result, a dynamic-programming algorithm can

then be used to find an optimal solution to Capacitated Vehicle Routing in the bounded-

treewidth host graph, and the solution can be lifted to obtain a solution in the input graph that in

expectation is near-optimal.

Finally we describe how this result can be derandomized by trying all possible (relevant) choices

for defining annuli and noting that for some such choice, the resulting solution cost must be near-

optimal.
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5.2 Embedding

In this section, we construct a randomized embedding that satisfies the conditions of Theorem 7 for

the class of planar graphs. Specifically, we show the following.

Theorem 17. There is a constant c and a randomized polynomial-time algorithm that, given a

planar graph G with specified root vertex r and given 0 < ε < 1, computes a graph H with treewidth

at most ( 1
ε )cε

−1

and an embedding φ of G into H, such that, for every pair of vertices u, v of G,

dG(u, v) ≤ dH(φ(u), φ(v)) with probability 1, and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + 3ε[dG(u, r) + dG(v, r)] (5.1)

Using ε̂ = ε
3Q in such an embedding satisfies the conditions for Theorem 7, which proves the

following corollary.

We assume all nonzero distances in G are at least one. If not, the graph can be rescaled. We also

assume values of ε are less than one. If not, any ε ≥ 1 can be replaced with a number ε′ slightly less

than one. This only helps the approximation guarantee and does not significantly increase runtime.

Of course for very large values of ε, an efficient constant-factor approximation can be used instead

(see Section 3.2).

Corollary 2. For any ε > 0 and capacity Q, there is a randomized polynomial-time algorithm for

Capacitated Vehicle Routing on planar graphs that returns a solution whose expected cost is

at most 1 + ε times optimal.

To prove Theorem 17, we use the following result from [48] as a black box:

Lemma 19 ([48]). There is a number c and a polynomial-time algorithm that, given a planar graph

G with specified root vertex r and diameter D, computes a graph H of treewidth at most ( 1
ε )c and

an embedding φ of G into H such that, for all vertices u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + εD

Recall, the diameter of a graph G is the maximum distance dG(u, v) over all choices of u and v.

Our embedding partitions vertices of G into bands of vertices defined by distances from r. Choose

x ∈ [0, 1] uniformly at random. Let B0 be the set of vertices v such that dG(r, v) < 1
ε

(x) 1
ε , and
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for i ∈ {1, 2, 3, ...} let Bi be the set of vertices v such that 1
ε

(i+x−1) 1
ε ≤ dG(r, v) < 1

ε

(i+x) 1
ε (see

Figure 5.1).

Let Gi be the subgraph induced by Bi, together with all u-to-v and v-to-r shortest paths for all

u, v ∈ Bi. Note that although the Bi partition V , the Gi do not partition G. Note also that the

diameter of Gi is at most 4 1
ε

(i+x) 1
ε . The factor of 4 addresses the fact that for u, v ∈ Bi, the u-to-v

shortest path is included in Gi and may contain a vertex w /∈ Bi. But for any such w, it must be

that dG(r, w) ≤ 2 1
ε

(i+x) 1
ε .

For each Gi, let Hi be the host graph resulting from applying Lemma 19 using ε′ = ε
1
ε+1 and

let φi be the corresponding embedding. Let H be the graph resulting from adding a new vertex

r′ and for all i and all v ∈ Bi adding an edge (φi(v), r′) of length dG(v, r). That is, H is formed

by connecting (all vertices of) all the Hi to r′ (see Figure 5.2). Finally, set φ(v) = φi(v) for all

v ∈ Bi − {r} and set φ(r) = r′.

Figure 5.1: G is divided into bands B0, B1, ..., Bfinal based on distance from r.
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Figure 5.2: Each subgraph Gi of G is embedded into a host graph Hi. These graphs are joined via
edges to a new depot r′ to form a host graph for G.

We can assume that there are at most n bands, since empty bands would not contribute to the

embedding. The runtime for constructing H is dominated by the construction of the Hi, which by

Lemma 19 is polynomial.

Let H− be the graph obtained from H by deleting r′. The connected components of H− are

{Hi}i. By Lemma 19, the treewidth of each host graph Hi is at most ( 1
ε′ )

c0 = ( 1
ε )c0(ε−1+1) for some

constant c0. This also bounds the treewidth of H−. Adding a single vertex to a graph increases the

treewidth by at most one, so after adding r′ back, the treewidth of H is ( 1
ε )c0(ε−1+1) + 1 = ( 1

ε )c1ε
−1

for some constant c1.

As for the metric approximation, it is clear that dG(u, v) ≤ dH(φ(u), φ(v)) with probability 1.

We use the following lemma to prove our desired distance bound (Inequality 5.1).

Lemma 20. If εdG(v, r) < dG(u, r) ≤ dG(v, r), then the probability that u and v are in different

bands is at most ε.

Proof. Let i be the nonnegative integer such that dG(u, r) = 1
ε

(i+a) 1
ε for some a ∈ [0, 1]. Let b be

the number such that dG(v, r) = 1
ε

(i+b) 1
ε .

1

ε
≥ dG(v, r)

dG(u, r)
=

1
ε

(i+b) 1
ε

1
ε

(i+a) 1
ε

=
1

ε

(b−a) 1
ε
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Therefore

b− a ≤ ε

Consider two cases. If b ≤ 1, then the probability that u and v are in different bands is Pr[a ≤

x < b] ≤ ε.

If b > 1 then the probability that u and v are in different bands is Pr[x ≥ a or x ≤ b − 1] ≤

1− a+ b− 1 = b− a ≤ ε

We now prove Inequality 5.1. Let u and v be vertices in G. Without loss of generality, assume

dG(u, r) ≤ dG(v, r). First we address the case where dG(u, r) ≤ εdG(v, r). Since φ(u) and φ(v) are

both adjacent to r′ in H,

dH(φ(u), φ(v)) ≤ dH(φ(u), r′) + dH(φ(v), r′)

= dG(u, r) + dG(v, r)

≤ 2dG(u, r) + dG(u, v)

≤ dG(u, v) + 2εdG(v, r)

Therefore E[dH(φ(u), φ(v))] ≤ dG(u, v) + 3ε[dG(u, r) + dG(v, r)]

Now, suppose dG(u, r) > εdG(v, r). If u and v are in the same band Bi, then by Lemma 19,

dH(φ(u), φ(v)) ≤ dHi(φ(u), φ(v)) ≤ dG(u, v) + ε′diam(Gi)

≤ dG(u, v) + ε′4
1

ε

(i+x) 1
ε

= dG(u, v) + ε
1
ε+14

1

ε

(i+x) 1
ε

= dG(u, v) + ε4
1

ε

(i+x−1) 1
ε

≤ dG(u, v) + 2ε(dG(u, r) + dG(v, r))

In the final inequality, when i = 0, we use the fact that all nonzero distances are at least one to give

a lower bound on dG(u, r) and dG(v, r).

If u and v are in different bands, then since φ(u) and φ(v) are both adjacent to r′ in H,

dH(φ(u), φ(v)) ≤ dH(φ(u), r′) + dH(φ(v), r′) = dG(u, r) + dG(v, r). By Lemma 20, this case oc-

curs with probability at most ε.
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Therefore

E[dH(φ(u), φ(v))] ≤ (dG(u, v) + 2ε(dG(u, r) + dG(v, r))) + ε[dG(u, r) + dG(v, r)]

≤ dG(u, v) + 3ε[dG(u, r) + dG(v, r)]

which proves Inequality 5.1 and completes the proof of Theorem 17.

The construction depends on planarity only via Lemma 19. We observe that if given a black box

analogous to Lemma 19 for some other family of graphs, we can construct a comparable embedding.

We formalize this generalization in the following lemma.

Lemma 21. Let G be a family of graphs closed under vertex-induced subgraphs. Suppose that there

is a function f and a polynomial-time algorithm that, for any graph G in G, computes a graph H of

treewidth at most f(ε) and an embedding φ of G into H such that, for all vertices u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε · diam(G)

Then there is a function g and a randomized polynomial-time algorithm that, for any graph G in G,

computes a graph H with treewidth at most g(ε) and an embedding φ of G into H, such that, for

every pair of vertices u, v of G, with probability 1 dG(u, v) ≤ dH(φ(u), φ(v)), and

E[dH(φ(u), φ(v))] ≤ dG(u, v) + ε [(dG(u, r) + dG(v, r)]

This result is of particular interest for future research in Capacitated Vehicle Routing.

Consider some such family of graphs G in which any G ∈ G can be embedded into a host graph of

bounded treewidth with distances preserved up to an additive error of ε · diam(G). A randomized

PTAS for Capacitated Vehicle Routing with fixed capacity Q would follow as an immediate

corollary of Lemma 21 and Theorem 7.

5.3 Derandomization

In this section, we prove Theorem 16 by derandomizing the embedding of Section 5.2 to give a

deterministic PTAS for Capacitated Vehicle Routing on planar graph instances with fixed

capacity Q.
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The algorithm can be derandomized using a standard technique. The embedding of Theorem 17

partitions the vertices of the input graph into rings depending on a value x chosen uniformly at

random from [0, 1]. However, the partition depends only on the distances of vertices from the

root r. It follows that the number of partitions that can arise from different choices of x is at

most the number of vertices. The deterministic algorithm tries each of these partitions, finding the

corresponding solution, and returns the least costly of these solutions.

In particular, consider the optimum solution OPT . As shown in Theorem 7,

E[
∑

(u,v)∈OPT

dH(φ(u), φ(v))] =
∑

(u,v)∈OPT

E[dH(φ(u), φ(v))]

≤ (1 + ε)costG(OPT )

So for some choice of x, the induced cost of OPT in H is nearly optimal, and the dynamic program

will find a solution that costs at most as much. This completes the proof of Theorem 16.



Chapter 6

A PTAS for Capacitated Vehicle

Routing in Graphs of Bounded

Highway Dimension

6.1 Introduction

In this chapter we present a PTAS for Capacitated Vehicle Routing with fixed capacities in

graphs of bounded highway dimension. To achieve this result, we again use the strategy outlined in

Section 3.3 of embedding a graph of bounded highway dimension into a graph of bounded treewidth

in a way that preserves distances up to Error Allowance 3.3 (see Section 3.3.1). Specifically, in this

chapter we present the following embedding result.

Theorem 18. There is a function f , such that for every ε > 0, graph G of highway dimension η,

and vertex r ∈ VG there is a polynomial-time algorithm that constructs a host graph H with treewidth

at most f(ε, η) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε(dG(u, r) + dG(v, r))

Given such an embedding, the dynamic-programming algorithm presented in Section 3.3.2 can

83
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then be used to find an optimal solution in the host graph which can be mapped back to a near-

optimal solution in the input graph. The following PTAS follows as a corollary of Theorem 6 by

using ε′ = ε
Q in the above embedding (see Section 3.3).

Theorem 19. For any ε > 0, Q > 0, and η > 0, there exists a polynomial-time algorithm for

Capacitated Vehicle Routing with capacity Q on graphs of highway dimension η that returns

a solution whose cost is at most 1 + ε times optimal.

We then show how to extend this embedding to accommodate multiple depots. Specifically, we

show the following embedding result.

Theorem 20. There is a function f , such that for every ε > 0, graph G of highway dimension η,

and set R of vertices of G there is a polynomial-time algorithm that constructs a host graph H with

treewidth at most f(ε, η, |R|) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1 + ε)dG(u, v) + εmin(dG(R, u), dG(R, v))

Given such an embedding, the following PTAS for Multi-Depot Capacitated Vehicle Rout-

ing follows as a corollary of Theorem 8 by using ε′ = ε
2Q in the above embedding (see Section 3.4.1).

Theorem 21. For any ε > 0, η > 0, ρ and Q > 0, there is a polynomial-time algorithm that, given

an instance of Multi-Depot Capacitated Vehicle Routing in which the capacity is Q, the

number of depots is ρ and the graph has highway dimension at most η, finds a solution whose cost

is at most 1 + ε times optimum.

Additionally, the multi-depot embedding of Theorem 23 satisfies the requirements of Theo-

rems 9 and 10, giving fixed-parameter approximations (FPAs) for k-Center and k-Median in

graphs of bounded highway dimension as corollaries (see Section 3.4.2).

Theorem 22. There is a function f(·, ·, ·) and a constant c such that, for each of the problems

k-Center and k-Median, for any η > 0, k > 0 and ε > 0, there is an f(η, k, ε)nc algorithm that,

given an instance in which the graph has highway dimension at most η, finds a solution whose cost

is at most 1 + ε times optimum.
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6.1.1 Background on Highway Dimension

The notion of highway dimension was introduced by Abraham et al. [1, 3] to explain the efficiency

of some shortest-path heuristics. The motivation of this parameter comes from the work of Bast et

al. [18, 19] who observed that, on a road network, a shortest path from a compact region to points

that are far enough must go through one of a small number of nodes. They experimentally showed

that the US road network has this property. Abraham et al. [1–3] proved results on the efficiency of

shortest-path heuristics on graphs with bounded highway dimension.

For r ∈ R+ and v ∈ V , Br (v) = {u ∈ V |d(u, v) ≤ r } denotes the ball with center v and radius

r . The definition of highway dimension we use is from [47]. Let c be a constant greater than 4.

Definition 1. The highway dimension of a graph G is the smallest integer η such that for every

r ∈ R+ and v ∈ V , there is a set of at most η vertices in Bcr (v) such that every shortest path in

Bcr (v) of length at least r intersects this set.

Abraham et al. [3] recognized that parameterizing problems by highway dimension could lead to

improved algorithms. As described in Chapter 1, small highway dimension is a property observed

in many transportation and road networks, so NP-hard optimization problems that arise in road

networks are natural candidates for study. Feldmann [46] and Feldmann et al. [47] inaugurated this

line of research, giving (respectively) a constant-factor approximation algorithm for one problem

and quasi-polynomial-time approximation schemes for several other problems. In this chapter, we

give the first polynomial-time approximation schemes (PTASs) for classical optimization problems

in graphs of small highway dimension.

Alternative Definitions of Highway Dimension

The definition of highway dimension we use is the one given by Feldmann et al. [47]. However,

alternate definitions exist. We summarize here the differences between them that are discussed in

Feldmann et al. The original definition comes from Abraham et al. [3], in 2010. Their work uses

c = 4, but interestingly they remark that “one could use constants bigger than 4”. Nonetheless,

Feldmann et al. [47] show that changing the constant is not innocuous: for any constant c, there is a

graph with n vertices that has highway dimension 1 with respect to c and highway dimension Ω(n)

with respect to any c′ > c.

Another definition of highway dimension comes from a 2011 paper of Abraham et al. [1]. Their
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definition differs from Definition 1 in that they use c = 2 and all shortest paths of length in (r , 2r ]

that intersect the ball B2r (v) (not just the ones that stay inside the ball). This is a generalization

of Definition 1 for c = 4: a path of length at most 2r that intersects the ball B2r (v) is also entirely

contained in the ball B4r (v). As is, the results of Feldmann et al. and, consequently, ours as well

cannot be generalized to this definition.

The last noteworthy definition of highway dimension was also introduced by Abraham et al. [2]

in a journal paper in 2016 (we use h to denote this parameter, differentiating it from η). This

definition implies that if a metric has bounded highway dimension, then it has also bounded doubling

dimension. This definition is stricter than the one of 2010 and therefore stricter than ours as well.

Feldmann et al. show that if a metric has highway dimension h according to the 2016 definition, it

has highway dimension O(h2) according to the 2010 definition.

The definition chosen by Feldmann et al. is motivated by several considerations. Their definition

is more flexible, as the choice of the constant c gives some slack. It also models more networks

than the definition from [2]. Since the latter implies low doubling dimension, it cannot, for example,

represent air traffic networks. These hub-and-spoke networks are star-like at large airports which

causes large doubling dimension. Nevertheless, as noted in Feldman et al. [47], these networks have

low highway dimension according to their definition, “since the airports act as hubs, which become

sparser with growing scales as longer routes tend to be serviced by bigger airports.”

6.1.2 Related Work

Metric embeddings of bounded-highway-dimension graphs

As mentioned in Section 6.1.1, Feldmann [46] and Feldmann et al. [47] inaugurated research into ap-

proximation algorithms for NP-hard problems in bounded-highway-dimension graphs. Feldmann

et al. [47] discovered quasi-polynomial-time approximation schemes for Traveling Salesman,

Steiner Tree, and Facility Location. The key to their results is a probabilistic metric em-

bedding of bounded-highway dimension graphs into graphs of small treewidth. The aspect ratio of

a graph with edge-lengths is the ratio of the maximum vertex-to-vertex distance to the minimum

vertex-to-vertex distance. Feldmann et al. show that, for any ε > 0, for any graph G of highway

dimension η, there is a probabilistic embedding φ(·) of G of expected distortion 1+ε into a randomly

chosen graph H whose treewidth is polylogarithmic in the aspect ratio of G (and also depends on ε
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and η). There are two obstacles to using this embedding in achieving approximation schemes:

• The distortion is achieved only in expectation. That is, for each pair u, v of vertices, the

expected φ(u)-to-φ(v) distance in H is at most (1 + ε) times the u-to-v distance in G.

• The treewidth depends on the aspect ratio of G, so is only bounded if the aspect ratio is

bounded.

The first is an obstacle for problems (e.g. k-Center) where individual distances need to be bounded;

this does not apply to problems such as Traveling Salesman or Capacitated Vehicle Routing

where the objective is a sum of lengths of paths. The second is the reason that Feldmann et al.

obtain only quasi-polynomial-time approximation schemes, and seems to be an obstacle to obtaining

true polynomial-time approximation schemes.

Nevertheless, the techniques introduced by Feldmann et al. are at the core of our embedding

results. We build heavily on their framework.

We refer the reader to Section 3.2 for an overview of related work on Capacitated Vehicle

Routing.

k-Center

Recall, the goal in k-Center is to select a set of k vertices (centers) so as to minimize the maximum

distance of a vertex to the nearest center. This problem might arise, for example, in selecting

locations for k firehouses.

For k-Center, when the number k of centers is unbounded, for any δ > 0, it is NP-hard [53, 60]

to obtain a (2 − δ)-approximation, even in the Euclidean plane under L1 or L∞ metrics,1 even in

unweighted planar graphs [87], and even in n-vertex graphs with highway dimension O(log2 n) [46].

It is not yet known to be NP-hard in graphs with constant highway dimension, but Feldmann [46]

shows that, under the Exponential Time Hypothesis, the running time of an algorithm achieving a

(2− δ)-approximation would be doubly exponential in a polynomial in the highway dimension.

These negative results suggest considering the problem in which k is bounded by a constant. How-

ever, Feldmann [46] shows that (2− ε)-approximation is W [2] hard for parameter k, suggesting that

the running time of any such approximation algorithm would not be bounded by a polynomial whose

degree is independent of k. Thus even for constant k, finding a much better approximation seems to
1Approximation better than 1.822 is hard under L2, see [44].



88

require that we restrict the metric. Feldmann [46] gave a polynomial-time 3/2-approximation algo-

rithm for bounded-highway-dimension graphs, and raised the question of whether a better approxi-

mation ratio could be achieved. Our Theorem 22 answers this question by showing a fixed-parameter

approximation scheme for k-Center.

Note that the results of Feldmann [46] are based on the definition of highway dimension of

2011 [1], but can be adapted to the definition we use here.

k-Median

Recall, the objective of k-Median is to find k centers so as to minimize the sum (or average) vertex-

to-center distance. For k-Median, constant-factor approximation algorithms have been found for

general metric spaces [9, 63, 91]. The best known approximation ratio for k-Median in general

metrics is 1 +
√

3 [77], and it is NP-hard to approximate within a factor of 1 + 2/e [55]. For k-

Median in d-dimensional Euclidean space, PTASs have been found when k is fixed (e.g. [12]) and

when d is fixed (e.g. [8]) but there exists no PTAS if k and d are part of the input [57]. Recently

Cohen-Addad et al. [32] gave a local search-based PTAS for k-Median in edge-weight planar graphs

that extends more generally to minor-closed graph families.

6.2 Preliminaries

Recall, for any vertex subsets W ⊆ V and vertex v ∈ V we use d(v,W ) to denote minw∈W d(v, w),

and we use diam(W ) to denote maxu,v∈W d(u, v).

Let Y ⊆ X be a subset of elements in a metric space (X, d). Y is a δ-covering of X if for all

x ∈ X, d(x, Y ) ≤ δ. Y is a β-packing of X if for all y1, y2 ∈ Y with y1 6= y2, d(y1, y2) ≥ β. Y is an

ε-net if it is both an ε-covering and an ε-packing.

6.2.1 Shortest-Path Covers

Instead of working directly with Definition 1, we use the concept of a shortest-path cover, which as

noted in Abraham et al. [1] is a closely related and more convenient tool.

Recall that c is a constant greater than 4.

Definition 2. For a graph G with vertex set V and r ∈ R+, a shortest-path cover SPC(r ) ⊆ V is a

set of hubs such that every shortest path of length in (r , cr /2] contains at least one hub from this
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set. Such a cover is called locally k-sparse for scale r if every ball of diameter cr contains at most

k vertices from SPC(r ).

For a graph of highway dimension η, Abraham et al. [1] showed how to find a η log η-sparse

shortest-path cover in polynomial time (though they show it for a different definition of highway

dimension (c = 4), the algorithm can be straightforwardly adapted). This result justifies using

shortest-path covers instead of directly using highway dimension.

Town Decomposition

Feldmann et al. observed that a shortest-path cover for scale r naturally defines a clustering of the

vertices into towns [47]. Informally, a town at scale r is a subset of vertices that are close to each

other and far from other towns and from the shortest-path cover for scale r . Formally, a town is

defined by at least one v ∈ V such that d(v,SPC(r )) > 2r and is composed of {u ∈ V |d(u, v) ≤ r }.
Lemma 22 describes key properties of towns proved in Feldmann et al and depicted in Figure 6.2.

Lemma 22 (Lemma 3.2 in [47]). If T is a town at scale r , then

1. diam(T ) ≤ r , and
2. d(T, V \ T ) > r .

Proof. We give a sketch of the proof from [47]. For the first claim (illustrated in Figure 6.1a), let

u and v be two vertices of the same town. By the definition of towns, there exists w such that

d(u,w) ≤ r and d(v, w) ≤ r . So d(u, v) ≤ 2r . Assume by contradiction that d(u, v) > r . That is,

d(u, v) ∈ (r , 2r ] ⊆ (r , cr /2] (because c > 4). Then there exists a point of the shortest-path cover

for scale r on the path between u and v. This point is at a distance at most r from u or v (because

d(u, v) ≤ 2r ), and therefore is at a distance at most 2r from w, which contradicts the construction

of the town. Therefore d(u, v) ≤ r , and diam(T ) ≤ r .
We proceed similarly for the second point, illustrated in Figure 6.1b. Let u ∈ T, v ∈ V \ T ,

and suppose by contradiction that d(u, v) ≤ r . The definition of T gives a point w such that

d(u,w) ≤ r , d(v, w) > r and d(w, SPC(r )) > 2r . Combining the inequalities gives that r <

d(v, w) ≤ d(u, v) + d(u,w) < 2r < cr /2. By definition of the shortest-path cover, there is a hub h

on the shortest path between v and w, so d(w, h) ≤ d(w, v) ≤ 2r , which contradicts the choice of

w.
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(a) First contradiction: d(u, v) ≤ r (b) Second contradiction : d(T, V \ T ) > r

Figure 6.1: The shortest path cover is represented with black dots, the other points are grey dots.
The dashed circles are towns. (Figure by David Saulpic).

Figure 6.2: Illustration of Lemma 22 (Figure by David Saulpic).

Feldmann et al. [47] define a recursive decomposition of the graph using the concept of towns,

which we adopt for this chapter. First, scale all distances so that the shortest point-to-point distance

is a little more than c/2. Then fix a set of scales r i = (c/4)i. We say that a town T at scale r i is on
level i. Note that the scaling ensures that SPC(r 0) = ∅, and therefore at level 0 every vertex forms a

singleton town. Also note that the largest level is rmax = dlogc/4 diam(Gscaled)e = dlogc/4( c2 ·θG))e,

where θG is the aspect ratio of the input graph. Similarly at this topmost level, SPC(rmax) = ∅

since there are no shortest paths that need to be covered. The only town at scale rmax is the town

that contains the entire graph. We say that the town at scale rmax and the singleton towns at scale
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r 0 are trivial towns. Since c is a constant greater than four, the total number of scales is linear in

the input size.

Consider the set T = {T ⊆ V |T is a town on level i ∈ N} of towns for all levels. Because of

the properties of Lemma 22, this set forms a laminar family and therefore has a tree structure.

Towns on the same level are disjoint from each other. By the isolation property of the town (the

second property of Lemma 22), vertices outside of a town must be far from the town, so a smaller

town cannot be both inside and outside of a larger town. Indeed, if two towns intersect, then the

smaller town must be entirely inside the bigger (see [47] for more details). The set T is called the

town decomposition of G, with respect to the shortest-path cover, and is a key concept used in our

embedding. In particular, the decomposition has the following properties:

Lemma 23 (Lemma 3.3 in [47]). For every town T in a town decomposition T ,

1. T has either 0 children or at least 2 children, and

2. if T is a town at level i and has child town T ′ at level j, then j < i.

Proof. We sketch the proof from [47]. The first property comes from the fact that every singleton

is a town at level 0 and that if T ′ is a child town of T , then T \ T ′ 6= ∅. The second property is a

consequence of the first one combined with the isolation of the child town T ′.

Approximate Core Hubs

Another insight that we adopt from Feldmann et al. is that rather than working with all hubs in

the shortest-path covers, it is sufficient for approximation algorithms to retain only a representative

subset of the hubs: for ε > 0, Feldmann et al. define for each town T a set XT of approximate core

hubs which is a subset of T
⋂
∪iSPC(r i) with the properties described in Lemma 24. One key

property of these sets is a bound on their doubling dimension. The doubling dimension of a metric

is the smallest θ such that for every r , every ball of radius 2r can be covered by at most 2θ balls of

radius r .

Lemma 24 (Theorem 4.2 and Lemma 5.1 in [47]). Let G be a graph of highway dimension η, and

T be a town decomposition with respect to an inclusion-wise minimal, k-sparse shortest-path cover.

For any town T ∈ T ,

1. if T1 and T2 are different child towns of T , and u ∈ T1 and v ∈ T2, then there is some h ∈ XT

such that d(P [u, v], h) ≤ εd(u, v), where P [u, v] is the shortest u-to-v path, and
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2. the doubling dimension of XT is θ = O(log(ηk log(1/ε)).

Intuitively, the shortest-path cover at scale r i forms a set of points that covers exactly the

shortest-paths of length in (r i, r i+1]. Therefore to cover the shortest-path between u ∈ T1 and

v ∈ T2, we can use a hub at level j such that d(u, v) ∈ (r j , r j+1]. Unfortunately, taking all the

shortest-path covers gives a set too big for our purpose. But since we want to cover approximately

the distances between points in different child towns, we can take only a subset of the shortest-path

covers that has a low doubling dimension. This subset can be found in nO(1) time as explained in

Feldmann et al. [47].

Minimality of Shortest-Path Covers

Note that the result of Lemma 24 requires the shortest-path covers be inclusion-wise minimal. For

the embedding we present in Section 6.4, however, it is useful to assume that the depot is not

a member of any town except for the trivial topmost town containing all of G and bottommost

singleton town containing just the depot. One way to ensure this is to add the depot to the shortest-

path cover at every level, but this violates the minimality requirement. Lemma 25, however, shows

that this assumption can be made safely without asymptotically changing our results.

We show that adding the depot to the shortest-path cover at every scale is safe. This is not

immediately obvious, as this modification can greatly alter the town decomposition. However,

the only risk in adding a hub to the shortest-path cover is exceeding the bound on the doubling

dimension of XT for some town T . Indeed, the only place where Feldmann et al. [47] depend on

the shortest-path covers being inclusion-wise minimal is in the proof of this doubling-dimension

bound. It is fairly simple to adapt their proofs to show that adding a fixed number of vertices to a

minimal shortest-path cover at every level adds at most a small factor to the bound on the doubling

dimension.

Instead of reproving their results, however, we modify the graph to give the desired property. In

fact, we prove a more general statement for a set R of depots. Recall that c is a constant greater

than four and that all edges have been scaled so that the smallest point-to-point distance is slightly

more than c/2.

Lemma 25. Any graph G = (V,E) with highway dimension η, diameter ∆G, and designated vertex

set R ⊆ V can be modified by adding O(η2|R|3 log ∆G) new vertices and edges, such that the resulting
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graph G′ = (V ′, E′)

• has highway dimension at most η + |R|

• for all u, v,∈ V ′, dG′(u, v) ∈ ( c2 ,
3c
4 ∆G]

• for all u, v ∈ V , dG′(u, v) = dG(u, v), and

• for every r ∈ R, the only towns containing r in the town decomposition of G′ are the trivial

towns.

Proof. Let a ∈ Z be the smallest integer such that ( c4 )a > c
2 and let b ∈ Z be the smallest integer

such that ( c4 )b > ∆G. We modify G by adding, for each i ∈ {a, a + 1, ..., b} and each r ∈ R,

(η+ |R|)2 copies of vertex vri and an edge (r, vri ) of length r i = ( c4 )i for each copy. This modification

adds (η + |R|)2|R|(b− a+ 1) = O(η2|R|3 log ∆G) vertices and edges (see Figure 6.3). We show that

each of the listed properties holds for the modified graph G′.

First, this modification increases the highway dimension by at most |R|, since adding all depots

in R as hubs covers all newly introduced shortest paths.

Second the smallest introduced edge has length ( c4 )a > c
2 , and all point-to-point distances in G

are already assumed to be greater than c
2 . The largest introduced edge has length ( c4 )b > ∆G ≥

( c4 )b−1, so the largest point-to-point distance in G′ is between two copies of vrb from distinct vertices

r1, r2 ∈ R, namely ∆G′ ≤ 2( c4 )b + ∆G < 3( c4 )b = 3c
4 ( c4 )b−1 ≤ 3c

4 ∆G.

Third, all newly added edges are only connected to vertices in R, so all point-to-point distances

between vertices in V are preserved in G′.

Finally, recall that the trivial towns in the town decomposition of G′ are the singleton towns

at scale r 0 = ( c4 )0 = 1 and the topmost town at scale rmax = dlogc/4 diam(G′)e that contains all

of G′. By the second property above, all point-to-point distances in G′ are greater than c/2 and,

clearly, at most diam(G′). Therefore there are no shortest paths in G′ in the intervals (1, c/2] or

(rmax, c2rmax], so SPC(r 0) = SPC(rmax) = ∅. So all of G′ is in the trivial town at scale rmax and

each vertex v ∈ V ′, including each r ∈ R, is in a trivial singleton town at scale r 0. Consider some

r ∈ R. We must show that r does not appear in a town at any scale r i ∈ [r 1, rmax).

We first show that for every scale r i = ( c4 )i ∈ [ c4 , (
c
4 )b) = [r 1, r b), every locally-sparse shortest-

path cover SPC
(
( c4 )i

)
of G′ includes r, and therefore r cannot be in any town at these scales. The

shortest path cover SPC
(
( c4 )i

)
must contain a hub on each path with length in (( c4 )i, c2 ( c4 )i]. By
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the first property above, SPC
(
( c4 )i

)
is guaranteed to be locally (η + |R|) log(η + |R|)-sparse [1], so∣∣Bc( c4 )i(r) ∩ SPC(( c4 )i)

∣∣ ≤ (η + |R|) log(η + |R|) < (η + |R|)2. There are two cases to consider.

If c
4 ≤ ( c4 )i < ( c4 )a, then ( c4 )a ∈ (( c4 )i, c2 ( c4 )i], since ( c4 )a−1 ≤ c

2 implies ( c4 )a ≤ c
2 ( c4 ) ≤ c

2 ( c4 )i.

Since each edge (r, vra) has length ( c4 )a, SPC
(
( c4 )i

)
must contain either r or all (η + |R|)2 copies of

vra. By the sparsity argument above, SPC
(
( c4 )i

)
must therefore contain r.

Otherwise, ( c4 )a ≤ ( c4 )i < ( c4 )b. Therefore, ( c4 )i+1 ≤ ( c4 )b, so there are (η + |R|)2 newly added

edges (r, vri+1) of length ( c4 )i+1. Furthermore ( c4 )i+1 ∈ (( c4 )i, c2 ( c4 )i], since c
4 < c

2 . Therefore

SPC
(
( c4 )i

)
must contain either r or all (η + |R|)2 copies of vri+1. Again, by the sparsity argu-

ment above, SPC
(
( c4 )i

)
must therefore contain r.

What remains to show is that r is in no town at scales in [r b, rmax). We show that in fact there

are no non-trivial towns at these levels. Assume to the contrary that T is a non-trivial town at scale

r i ∈ [r b, rmax). By Lemma 22, dG′(T, V ′ \ T ) > r i. In particular, any edges in the cut δ(T ) must

have length greater than r i. Furthermore since T is non-trivial, T 6= V ′, and since G′ is connected,

δ(T ) 6= ∅. Therefore there is some edge in G′ that has length greater than r i and thus greater than

r b. However all edges from G have length at most ∆G < r b, and all newly added edges have length

at most r b. Therefore no such town exists.

Figure 6.3: Here, R = {r1, r2, r3} is depicted as hollow vertices in G. For each r ∈ R, the
modification of G to G′ introduces new vertices and edges between these new vertices and r.

Note that after applying the modification of Lemma 25 to the (scaled) input graph, the resulting
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graph has size that is polynomial in the size of the original input.

6.3 Embedding for Graphs of Bounded Diameter

In this section we show how to construct an embedding for the case when the graph with bounded

highway dimension also has has bounded diameter. This embedding, as formally described in

Lemma 26, gives only a small additive error and will prove to be a useful tool for the overall

embedding.

Lemma 26. There is a function f , such that for every ε > 0, graph G of highway dimension η and

diameter ∆, there is a polynomial-time algorithm that constructs a host graph H with treewidth at

most f(ε, η) and an embedding φ(·) of G into H such that

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + 4ε∆

(a) Town decomposition (b) Embeddings (c) Path approximation

Figure 6.4: (a) An example town decomposition. T1 has diameter at most ε∆ and T2 has diameter
greater than ε∆. (b) Two cases of town embeddings. T1 is embedded as a star with center vT1 . The
embedding of T2 connects all vertices in T2 to all hubs in X̂T2

(depicted as squares). (c) Hub ĥ ∈ X̂T

is close to hub h ∈ XT which itself is close to the shortest u-to-v path.

We first present an algorithm to compute the host graph H and a tree decomposition of H. This

algorithm relies on the town decomposition T of G, described in Section 6.2.

The host graph H is constructed as follows. First, consider a town T that has diameter d ≤ ε∆

but has no ancestor towns of diameter ε∆ or smaller. We call such a town a maximal town of

diameter at most ε∆. The town T is embedded into a star: choose an arbitrary vertex vT in T , and
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for each u ∈ T , include an edge in H between u and vT with length dG(u, vT ) equal to their distance

in G (see Figures 6.4a and 6.4b).

Now consider a town T of diameter diamT > ε∆. The set of approximate core hubs XT can be

used as portals to preserve distances between vertices lying in different child towns of T . Specifically,

by Lemma 24, for every pair of vertices (u, v) in different child towns of T , XT contains a vertex

that is close to the shortest path between u and v. In order to approximate the shortest paths, it

is therefore sufficient to consider a set of points close to XT . Let X̂T be an εdiamT -net of XT . For

each ĥ ∈ X̂T and v ∈ T , include an edge in H connecting v to ĥ with length dH(v, ĥ) = dG(v, ĥ)

equal to the v-to-ĥ distance in G (see Figures 6.4a and 6.4b).

The tree decomposition D mimics the town decomposition tree: for each town T of diameter

greater than ε∆, there is a bag bT . This bag is connected in D to all of the bags of child towns of T

and contains all of the vertices of the net assigned to T and of the nets assigned to T ’s ancestors in the

town decomposition. Formally, if AT denotes the set of all towns that contain T , bT =
⋃
T ′∈AT X̂T ′ .

Note that if T ′ is the parent of T in the town decomposition, bT = X̂T ∪ bT ′ . Now for each maximal

town T of diameter at most ε∆ with parent town T ′, the tree decomposition contains a bag b0T

connected to a bag buT for each vertex u ∈ T . We define b0T = {vT } ∪ bT ′ and buT = {u} ∪ b0T .

Following Feldmann et al. [47], the above construction can be shown to be polynomial-time

constructible. The following three lemmas therefore prove Lemma 18.

Lemma 27. D is a valid tree decomposition of H.

Proof. For D to be a valid tree decomposition of H, it has to satisfy three criteria (see Section 1.3).

First, every vertex must appear in some bag in D. As every vertex v in H is in some maximal

town T of diameter at most ε∆ (because every vertex forms a singleton town at level 0), there is a

leaf bvT of D that contains v.

Second, for any edge (u, v) in H, u and v must appear together in some bag in D. Every vertex

v has a leaf bag bvT of D that also contains all of the vertices adjacent to v in H: if an edge connects

u and v, then either u or v is the center of the star for T , or u is in the net of some town that

contains v. In both cases the construction of D ensure that u is in bvT .

Finally, for every vertex v, the bags that contain v must induce a connected subtree of D. Let

T be a town such that bT is the highest bag in the tree decomposition that contains v. As the

towns at a given height of the town decomposition form a partition of the vertices, this town is
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unique. Since the town decomposition has a laminar structure, v cannot appear in a bag that is not

a descendant of bT . Furthermore, by construction, v appears in all descendants of bT , proving the

third property.

Lemma 28. H has treewidth O(( 1
ε )2θ log c

4

1
ε ), where θ is a bound on the doubling dimension of the

sets XT .

Proof. Since the size of the bags is clearly bounded by the depth times the maximal cardinality

of X̂T , it is enough to prove that, for each town T , X̂T is bounded by ( 1
ε )θ, and that the tree

decomposition has a depth O(log c
4

1
ε ).

By Lemma 24, the doubling dimension of XT is bounded by θ. X̂T is a subset of XT , so its

doubling dimension is bounded by 2θ (see Gupta et al. [56]).Furthermore, the aspect ratio of X̂T

is 1
ε : the longest distance between members of X̂T is bounded by the diameter diamT of the town,

and the smallest distance is at least εdiamT by definition of a net. The cardinality of a set with

doubling dimension x and aspect ratio γ is bounded by 2xdlog2 γe (see [56] for a proof), therefore

|X̂T | is bounded by ( 1
ε )2θ.

We now prove that the tree decomposition has O(log c
4

1
ε ) depth. Let T be a town of diameter

diamT > ε∆ and let r i be the scale of that town. By Lemma 22, diamT ≤ r i, and since r i = ( c4 )i

and diamT > ε∆, we can conclude that i > log c
4
ε∆. As the diameter of the graph is ∆, the biggest

town has a diameter at most ∆. It follows that r i ≤ ∆ and therefore i ≤ log c
4

∆. The depth of bT in

the tree decomposition is therefore bounded by log c
4

∆− log c
4
ε∆ = log c

4

∆
ε∆ = log c

4

1
ε . Furthermore,

the tree decomposition of a town of diameter at most ε∆ has depth 2. The overall depth is therefore

O(log c
4

1
ε ), concluding the proof.

Lemma 29. For all vertices u and v, dG(u, v) ≤ dH(u, v) ≤ dG(u, v) + 4ε∆.

Proof. Let u and v be vertices in V , and let T be the town that contains both u and v such that u

and v are in different child towns of T .

If T has diameter diamT ≤ ε∆, then let T ′ be the maximal town of diameter at most ε∆ that is

an ancestor of T (possibly T itself). By construction, T ′ was embedded into a star centered at some

vertex vT ′ ∈ T ′, so dH(u, v) ≤ dH(u, vT ′) + dH(vT ′ , v) ≤ dG(u, vT ′) + dG(vT ′ , v) ≤ 2ε∆.

Otherwise if T has diameter diamT > ε∆, then by Lemma 24, there is some h ∈ XT such that

dG(P [u, v], h) ≤ εd(u, v). Since X̂T is an εdiamT cover of XT , there is some ĥ ∈ X̂T such that
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d(h, ĥ) ≤ εdiamT . The host graph H includes edges (u, ĥ) and (ĥ, v), so dH(u, v) ≤ dH(u, ĥ) +

dH(ĥ, v) ≤ dG(u, h) + dG(h, v) + 2εd(u, v) + 2εdiamT ≤ dG(u, v) + 4ε∆ (see Figure 6.4c).

Finally, since edge lengths in H are given by distances in G, dG(u, v) ≤ dH(u, v) for all u, v ∈

V .

6.4 Main Embedding

In this section, we prove Theorem 18, restated here for convenience.

Theorem 18. There is a function f , such that for every ε > 0, graph G of highway dimension η,

and vertex r ∈ VG there is a polynomial-time algorithm that constructs a host graph H with treewidth

at most f(ε, η) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε(dG(u, r) + dG(v, r))

6.4.1 Embedding Construction

Instead of proving the distance bound of Theorem 18 directly, we show the following bound:

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) +O(ε)(dG(u, r) + dG(v, r))

Rescaling ε, namely using an ε′ = ε
c′ (where c

′ is a constant chosen to compensate for the big-O in

the above inequality) then gives the bound of Theorem 18. We further assume ε ≤ 1
4 (if not, ε can

be replaced by 1
4 without asymptotically affecting performance).

Our construction relies on the assumption that the depot r does not appear in any non-trivial

town. By Lemma 25 (using R = {r}), this assumption is safe, since the input graph can be modified

to satisfy this assumption without (asymptotically) changing the highway dimension, diameter, or

size of the graph. Furthermore since the modification preserves original distances, and all newly

added vertices can be assumed to have no client demand, the modification does not affect the

solution.

The root town in the decomposition, denoted T0, is the town that contains the entire graph. We

say that a town T that is a child of the root town is a top-level town, which means that the only

town that properly contains T is T0.
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The assumption that the depot, r, does not appear in any non-trivial town implies that the top-

level town that contains r is the trivial singleton town. This assumption helps to bound the distance

between a top-level town T and the depot r: as r /∈ T , Lemma 22 gives the bound d(T, r) ≥ diam(T ).

This bound will be useful in the construction of the host graph.

We use Lemma 26 to construct an embedding for each top-level town. It is not immediately

obvious how to connect these town embeddings to form a global embedding. We cannot approximate

XT0
with a net as we did in Lemma 26, because the diameter of G may be arbitrarily large.

To address this issue, we define inductively the hub sets X0
0 , X

1
0 , ... such that Xk

0 is a net of

XT0
∩ B2k(r). Let X0

0 be an ε-net of XT0
∩ B1(r) that contains the depot, r, and for k ≥ 0 let

Xk+1
0 be an ε2k+1-net of the set

(
XT0
∩ (B2k+1(r)−B2k(r))

) ⋃
Xk

0 that contains the depot. This

construction ensures that Xk+1
0 ∩B2k(r) ⊆ Xk

0 , which will be helpful in Section 6.4.3 to find a tree

decomposition of the host graph. Note that we can assume r ∈ XT0
, since adding it increases the

doubling dimension by at most one and thus does not change the result of Lemma 24.

For a set of vertices X ⊆ V , we define l(X ) = dlog2(maxv∈X d(r, v))e (See Figure 6.5a).

For every child town T of T0, the host graph connects every vertex v of T to every hub h in the

band of hubsets X l(T )
0 , . . . , X

l(T )+log2(1/ε)
0 with an edge of length dG(v, h) (See Figure 6.5b).

6.4.2 Proof of Error Bound

In Lemma 31 we prove a bound on the error incurred by the embedding. Our proof makes use of

the following lemma.

Lemma 30. For all k, Xk
0 is an ε2k+1-covering of XT0 ∩B2k(r).

Proof. We proceed by induction. By construction, X0
0 is an ε-net (and thus also an ε21-covering) of

XT0 ∩B20(r). Assume that Xk−1
0 is an ε2k-covering of XT0 ∩B2k−1(r), and let x ∈ XT0 ∩B2k(r).

Xk
0 is an ε2k-net of the set

(
XT0
∩ (B2k(r)−B2k−1(r))

) ⋃
Xk

0 , so if x ∈ B2k(r)−B2k−1(r) then

there is a y ∈ Xk
0 such that d(x, y) ≤ ε2k < ε2k+1. Otherwise x ∈ B2k−1(r). By assumption, there is

an x̂ ∈ Xk−1
0 such that d(x, x̂) ≤ ε2k, and by construction, there is a y ∈ Xk

0 such that d(y, x̂) ≤ ε2k.

Therefore d(x, y) ≤ ε2k + ε2k = ε2k+1.

Lemma 31. For all vertices u and v, dG(u, v) ≤ dH(u, v) ≤ dG(u, v) +O(ε)(dG(r, u) + dG(r, v))
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Figure 6.5: (a) Towns T1 and T2 are top-level towns, with l(T1) = i and l(T2) = i + 1. (b) The
embedding of each top-level town (shown as circles) is connected to a band of log2

1
ε + 1 hub sets

(shown as squares). Edges are striped to convey that they connect all vertices of the given hub-set
endpoint to all vertices of the town-embedding endpoint. (c) The vertices of each bag B (shown
as circles) are added to each bag of each descendant top-level-town tree decomposition (shown as
triangles).

(a) Towns (b) Embedding

(c) Tree decomposition

Proof. Consider two vertices u and v. Let Tu and Tv denote the top-level towns that contain u and

v, respectively. There are two cases to consider.

If Tu = Tv, Lemma 22 gives dG(u, v) ≤ diam(Tu) ≤ dG(Tu, V \ Tu), and therefore diam(Tu) ≤

min{dG(r, u), dG(r, v)}. Because Tu = Tv is a top-level town, its embedding is given by Lemma 26,

which directly gives the desired bound.

Otherwise Tu 6= Tv. Without loss of generality, assume that dG(u, r) ≥ dG(v, r). We show that

there exists some Xk
0 connected to u with a vertex ĥ ∈ Xk

0 close to P [u, v].

By definition of the approximate core hubs, there exists h ∈ XT0
such that d(h, P [u, v]) ≤ εd(u, v).
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Moreover, h ∈ B2l(Tu)+2(r):

d(r, h) ≤ d(r, u) + d(u, h)

≤ d(r, u) + (1 + ε)d(u, v)

≤ d(r, u) + (1 + ε)
(
d(r, u) + d(r, v)

)
by the triangle inequality

≤ d(r, u) + (1 + ε) · 2d(r, u) since d(u, r) ≥ d(v, r)

≤ (3 + 2ε)2l(Tu)

≤ 2l(Tu)+2

Since h ∈ XT0
∩ B2l(Tu)+2(r), then by Lemma 30, there is an ĥ ∈ X

l(Tu)+2
0 such that d(ĥ, h) ≤

ε2l(Tu)+3. Since log2
1
ε ≥ 2, u is connected to ĥ in the host graph.

Depending on v, there remain two cases: either v is connected to ĥ (see Figure 6.6a) or not

(Figure 6.6b). First, if v is connected to ĥ in the host graph, dH(v, ĥ) = dG(v, ĥ) (and the same

holds for u). The triangle inequality gives therefore,

dH(u, v) ≤ dG(u, ĥ) + dG(v, ĥ) ≤ dG(u, h) + dG(v, h)︸ ︷︷ ︸
≤(1+2ε)dG(u,v) by definition of h

+ 2dG(ĥ, h)︸ ︷︷ ︸
≤2ε2l(Tu)+3=O(ε)d(r,u)

Since dG(u, v) ≤ dG(r, u) + dG(r, v), we can conclude that,

dH(u, v) ≤ dG(u, v) +O(ε)(dG(r, u) + dG(r, v))

Otherwise, v is not connected to ĥ. That means that either l(Tu) + 2 < l(Tv) or l(Tu) + 2 >

l(Tv) + log2
1
ε . We exclude the first case by noting that since the diameter of a town is less than

its distance to the depot, dG(v, r) ≤ dG(u, r) implies that l(Tv) ≤ l(Tu) + 1. The second case

implies that dG(r, u) ≥ O( 1
ε )dG(r, v). Since the host graph connects the depot r to all vertices,

dH(u, v) ≤ dG(r, u) + dG(r, v) ≤ dG(u, v) + 2dG(r, v) ≤ dG(u, v) +O(ε)(dG(r, u) + dG(r, v)).
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(a) u and v are both connected to ĥ (b) v is not connected to ĥ

Figure 6.6: The shortest path between u and v in G is indicated by the curved, directed lines. The
path in the host graph is represented by the straight lines. (Figure by David Saulpic).

6.4.3 Tree Decomposition

We present here the construction of a tree decomposition D of the host graph with a bounded width.

For each k > 0 let Bk =
k+log2(1/ε)⋃
i=k−1

Xi
0 be the bag consisting of the kth band of hubsets. For a

top-level town T , the tree decomposition D connects the decomposition DT given by Lemma 26 to

the bag Bl(T ). Moreover, we add all vertices that appear in Bl(T ) to all bags in the tree DT . Finally,

for every k we connect Bk to both Bk−1 and Bk+1 in D. (See Figure 6.5b.)

Lemma 32. D is a valid tree decomposition of the host graph H.

Proof. For D to be a valid tree decomposition of H, it has to satisfy the three properties listed in

Section 1.3.

First, because the top-level towns are a partition of the vertices, each vertex appears in some

tree decomposition DT . The union of all bags is therefore V (H).

Next, let (u, v) be an edge of H. There are two cases to consider: if u and v are in the same

top-level town, Lemma 26 ensures that u and v appear together in some bag. Otherwise, as the

top-level towns are disjoint, one of u or v is a hub connected to the other. Without loss of generality

assume that v is a hub of Xk
0 for some k ∈ {l(Tu), ..., l(Tu) + log2

1
ε }. In this case, v ∈ Bl(Tu), so v

is added to all the bags of DTu , and in particular is in some bag that contains u.

Finally, let v be a vertex that appears in two different bags. If the two bags are in the tree

decomposition of the same top-level town T , Lemma 26 ensures that the bags are connected in DT

and thus also in D. Otherwise, as the top-level towns are disjoint, v must be a hub. Consider all nets
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Xk
0 containing v. Any bag B` containing such a net also contains v. Let I = {k|v ∈ Xk

0 }. We prove

that I is an interval, and therefore that the bags B` are connected. Let i = min(I) and j = max(I).

As v ∈ Xi
0, it must be that v ∈ B2i(r) ⊆ B2i+1(r) ⊆ ... ⊆ B2j (r). Repeatedly applying the property

Xk
0 ∩ B2k−1(r) ⊆ Xk−1

0 proves that for all k ∈ {i, i + 1, ...j}, v ∈ Xk
0 . Therefore I is an interval,

and the bags B` such that v ∈ B` are connected. Finally, we show that interval I includes Bl(Tv).

Since v is a hub, v ∈ X l({v})
0 . By Lemma 22, d(v, r) > diam(Tv), so l(Tv)− 1 ≤ l({v}) ≤ l(Tv), and

therefore v ∈ Bl(Tv). Since the vertices of Bl(Tv) are added to every bag in DTv , the bags containing

v form a connected subtree of D.

Lemma 33. For all k, |Xk
0 | ≤ ( 2

ε )2θ.

Proof. Since Xk
0 is a subset of XT0

, it has doubling dimension 2θ (see Lemma 24). Since Xk
0 is a

ε2k-net, the smallest distance between two hubs in Xk
0 is at least ε2k. Moreover, since Xk

0 ⊆ B2k(r),

the longest distance between two hubs is at most 2 · 2k, therefore, Xk
0 has an aspect ratio of at most

2
ε . The bound used in Lemma 28 on the cardinality of a set using its aspect ratio and its doubling

dimension concludes the proof.

Lemma 34. The tree decomposition D has bounded width.

Proof. Bag Bi is the union of log2
1
ε + 2 sets Xk

0 . Lemma 33 gives |Xk
0 | ≤ ( 2

ε )θ, therefore |Bi| ≤

(log2( 1
ε ) + 2)( 2

ε )2θ. Moreover, by Lemma 28, each bag of the DT decompositions has a cardinality

bounded by O(( 2
ε )θ log c

4

1
ε ). Therefore, since each bag of the decomposition D is either a bag Bi

for some i or is formed by adding a single bag Bi to some bag of a DT decomposition, its size is

bounded. Therefore D has a bounded width.

6.5 Embedding for Multiple Depots

In this section, we extend Theorem 18 to the multiple-depot setting and then show applications of

this new embedding. Specifically we prove the following multiple-depot embedding result.

Theorem 23. There is a function f , such that for every ε > 0, graph G of highway dimension η,

and set R of vertices of G there is a polynomial-time algorithm that constructs a host graph H with

treewidth at most f(ε, η, |R|) and an embedding φ(·) of G into H such that ∀u, v ∈ VG,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1 + ε)dG(u, v) + εmin(dG(R, u), dG(R, v))
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Instead of proving this distance bound exactly, we show that for all vertices u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1 +O(ε̂))dG(u, v) +O(ε̂) min(dG(R, u), dG(R, v))

Theorem 23 follows from setting ε̂ = ε
ĉ for an appropriate constant ĉ.

We modify the embedding of Theorem 18 to accommodate the multiple-depot setting. We assume

that the vertices of R do not appear in non-trivial towns. This assumption is safe because, using

R, we can apply the modification of Lemma 25 to satisfy this assumption without asymptotically

changing the diameter or size of the graph. Note that the modification preserves all distances from

the original input graph but increases the highway dimension to η + |R|.

The algorithm computes the town decomposition with respect to the shortest-path covers, and

embeds the top-level towns using Lemma 26. By analogy with Section 6.4, we define the set Xi
0

to be a ε̂2i-net of ∪r∈RB2i(r) (and we ensure moreover that the Xi
0 are nested). We also modify

the definition of l(X ): for a set X , l(X ) = dlog2(maxv∈X d(R, v))e. Following Section 6.4, the host

graph connects every vertex v of a town T to every hub h in X l(T )
0 , . . . , X

l(T )+log2(1/ε̂)
0 with an edge

of length dG(v, h).

We now prove that the embedding described above has the properties of Theorem 23. We use H

to denote the host graph produced by the embedding. First, we prove the treewidth bound.

Proof. Let θR be the doubling dimension of the union of the approximate core hubs with R. The

shortest-path covers are locally (η + |R|) log(η + |R|)-sparse [1], therefore by Lemma 24, θR is

O
(

log
(
(η + |R|)2 log(η + |R|) log(1/ε̂) + |R|

))
, where the final |R| term comes from the extra balls

required to cover R. The proof of Lemma 33 directly gives that |Xi
0| ≤ |R|( 2

ε̂ )θR . Finally, following

the proof of Lemma 34, the host graph has a treewidth bounded by a function of η, |R| and ε̂.

We now prove the distance-distortion bound on the embedding, completing the proof of Theo-

rem 23.

Proof. Let u and v be two vertices in G and h be the approximate core hub such that dG(u, h) +

dG(v, h) ≤ (1 +O(ε̂))dG(u, v). Let ru, rv and rh denote the depots of R closest to u, v and h.

We first show the following bound on dG(h, rh), which will be useful later in our proof:

dG(h, rh) ≤ (1 +O(ε̂))dG(u, v) + min(dG(u, ru), dG(v, rv)) (6.1)
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The definition of rh gives dG(h, rh) ≤ dG(h, ru), and by the triangle inequality, dG(h, rh) ≤

dG(h, u) + dG(u, ru). By definition, dG(h, u) ≤ (1 +O(ε̂))dG(u, v), so the bound holds with respect

to u. The bound with respect to v is symmetric.

We consider three cases, based on l(h), l(Tu), and l(Tv). These cases are illustrated in Figure 6.7.

First, consider the case in which l(h) ≤ l(Tu) + log2(1/ε̂) and l(h) ≤ l(Tv) + log2(1/ε̂) (see

Figure 6.7a). Let ĥ be the point in X l(h)
0 closest to h. By definition of a net, dG(h, ĥ) ≤ ε̂2l(h) ≤

2ε̂dG(h, rh), and by construction, ĥ is adjacent to u and v. In this case,

dH(u, v) ≤ dH(u, ĥ) + dH(ĥ, v)

≤ dG(u, ĥ) + dG(ĥ, v)

≤ dG(u, h) + dG(v, h) + 2dG(h, ĥ)

By definition of h and ĥ, dH(u, v) ≤ (1 +O(ε̂))dG(u, v) + 4ε̂dH(h, rh), and using Equation 6.1

dH(u, v) ≤ (1 +O(ε̂))dG(u, v) +O(ε̂) min(dG(u,R), dG(v,R))

Second, consider the case in which l(h) > l(Tu) + log2(1/ε̂) but l(h) ≤ l(Tv) + log2(1/ε̂) (see

Figure 6.7b). In the host graph, v is adjacent to ĥ, but u is not. In particular, dG(rh, h) > 1
ε̂dG(ru, u).

The shortest path between u and v is therefore approximated in the host graph by the path u, ru,

ĥ, v. The edge lengths in this path in H, however, are simply the corresponding distances in G,

therefore dH(u, v) ≤ dH(u, ru) + dH(ru, ĥ) + dH(ĥ, v) ≤ dG(u, ru) + dG(ru, ĥ) + dG(ĥ, v). By the

triangle inequality, dG(ru, ĥ) ≤ dG(ru, u) + dG(u, ĥ). Putting these pieces together gives,

dH(u, v) ≤ 2dG(u, ru) + dG(u, ĥ) + dG(ĥ, v)

≤ 2ε̂dG(h, rh) + dG(u, h) + dG(h, v) + 2dG(ĥ, h)

Recall that dG(h, ĥ) ≤ 2ε̂dG(h, rh) and dG(u, h) + dG(h, v) ≤ (1 + ε̂)dG(u, v). Therefore, by Equa-

tion 6.1,

dH(u, v) ≤ (1 + ε̂)dG(u, v) + 4ε̂dH(h, rh)

≤ (1 +O(ε̂))dG(u, v) +O(ε̂) min(dG(u,R), dG(v,R))
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Finally, consider the case in which l(h) > l(Tu) + log2(1/ε̂) and l(h) > l(Tv) + log2(1/ε) (see

Figure 6.7c). Neither u nor v is adjacent to ĥ in the host graph. In this case, the shortest path

between u and v is approximated in the host graph by the path u, ru, ĥ, rv, v. Using the same

arguments as in the previous case, dH(u, v) ≤ (1+O(ε̂))dG(u, v)+O(ε̂) min(dG(u,R), dG(v,R)).

(a) u and v are adjacent to ĥ (b) only v is adjacent to ĥ

(c) u and v are not adjacent to ĥ

Figure 6.7: The shortest path between u and v is approximated in the host graph by the dashed line.
In case (a), the distance from u and v to their centers is large compared to the distance between h
and rh; in case (b), only the distance from v to rv is large, and in case (c) the distance from h to rh
is larger than the other two. (Figure by David Saulpic).

6.5.1 Applications of the Multiple-Depot Embedding

We now show several applications of this multiple-depot embedding that follow as corollaries to

Theorem 23 and the extensions proved in Section 3.4.1. Note that the distance bound we show
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in Theorem 23 is in fact better than what is required for the embeddings in Section 3.4.1, as

min(d(u,R), d(v,R)) ≤ d(u,R) + d(v,R).

Multi-Depot Capacitated Vehicle Routing

The first application we consider is to Multiple-Depot Capacitated Vehicle Routing with a

constant number of depots. Let R denote the set of depots, and recall that S is the set of clients.

We assume that any vertices added in the modification given in Lemma 25 do not have any client

demand.

The embedding in Theorem 23, using ε′ = ε
2Q , satisfies the embedding conditions required of

Theorem 8. A PTAS for Multi-Depot Capacitated Vehicle Routing when the capacity Q,

number of depots ρ, and highway dimension η are fixed, follows as a corollary.

Theorem 21. For any ε > 0, η > 0, ρ and Q > 0, there is a polynomial-time algorithm that, given

an instance of Multi-Depot Capacitated Vehicle Routing in which the capacity is Q, the

number of depots is ρ and the graph has highway dimension at most η, finds a solution whose cost

is at most 1 + ε times optimum.

k-Center and k-Median

Another application of the embedding given in Theorem 23 is to get fixed-parameter approximations

(FPA) for k-Center and k-Median in graphs with highway dimension η.

The embedding in Theorem 23, satisfies the embedding conditions required of Theorem 9 and

Theorem 10 (see Section 3.4). Fixed-parameter approximation schemes for k-Center and k-

Median in graphs of highway dimension η follow as corollaries.

Theorem 22. There is a function f(·, ·, ·) and a constant c such that, for each of the problems

k-Center and k-Median, for any η > 0, k > 0 and ε > 0, there is an f(η, k, ε)nc algorithm that,

given an instance in which the graph has highway dimension at most η, finds a solution whose cost

is at most 1 + ε times optimum.



Chapter 7

A 4/3-Approximation for

Capacitated Vehicle Routing with

General Capacities in Trees

7.1 Introduction

The results of the previous few chapters have addressed Capacitated Vehicle Routing with

fixed capacities. What about the considerably more difficult problem of general capacity Q? Even

in tree metrics, while the fixed-capacity case is polynomial-time solvable, Capacitated Vehicle

Routing with general capacities is NP-hard [74]. In fact, for the unsplittable-demand setting, it is

NP-hard to approximate to better than a 3/2 factor [52].

In this chapter we give a 4/3-approximation algorithm for Capacitated Vehicle Routing in

trees with general capacities and splittable demands. This is the current best-known approximation

ratio for this problem, and builds on the approach introduced by Hamaguchi and Katoh [59] and

Asano, Katoh, and Kawashima [10].

Hamaguchi and Katoh [59] noted a simple lower bound for the splittable-demand variant of

Capacitated Vehicle Routing in trees: every edge must be traversed by at least enough vehicles

to accommodate all demand from the clients that use that edge on the shortest path to the depot.

They then use this lower bound (denoted LB) to give a 1.5 approximation [59]. Following this work,

108
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Asano et al. [10] use the same lower bound to achieve a (
√

41−1)/4 approximation. They also prove

the following lemma (see Section 7.3.2 for details):

Lemma 35 ([10]). There exist instances of Capacitated Vehicle Routing in trees whose optimal

solution costs 4/3 · LB.

This shows that the best possible approximation ratio using this lower bound would be a 4/3-

approximation. Our result, stated in Theorem 24, achieves this ratio, and is therefore tight with

respect to LB. No further improvements over our result can be made until a better lower bound is

found.

Theorem 24. There is a 4/3-approximation algorithm for Capacitated Vehicle Routing in

trees that runs in O(n2) time and is tight with respect to LB.

7.2 Overview of Techniques

Our work extends the techniques introduced by Asano et al. [10] which itself was an extension of

the work of Hamaguchi and Katoh [59]. Specifically, Hamaguchi and Katoh describe a very natural

lower bound that arises on tree instances [59]: the number of tours that traverse each edge must be

at least enough to cover all demand in the subtree below the edge (the tree is assumed to be rooted

at the depot). This introduces a minimum traffic value on the edge. Multiplying this value by two

(each tour crosses each edge once in each direction) times the weight of the edge and summing over

all edges provides a lower bound on the cost of any feasible solution.

The algorithm of Asano et al. [10] proceeds in a sequence of rounds. In each round, a set of tours

is identified such that the cost-to-savings ratio, namely the ratio of the cost (of these tours) to the

reduction to the lower bound that results from taking these tours, is bounded by some constant α.

The key is that although a given tour itself may cost more than α times its reduction to the lower

bound, collectively the set of tours has the desired ratio. If after a round ends, no uncovered demand

remains, then the union of these sets of tours is a feasible solution with cost at most α times the

lower bound, which is at most α times the optimal cost. For Asano et al. [10], α = (
√

41− 1)/4. We

use a similar approach to achieve α = 4/3.

Asano et al. [10] also introduced the idea of making safe modifications to the instance. That

is, modifying the structure of the instance in such a way that does not increase the value of the



110

lower bound or decrease the optimum cost (although it may increase the optimum cost) and such

that a feasible solution in the modified instance has a corresponding feasible solution in the original

instance. These modifications can be made safely at any point in the algorithm. Our algorithm

also makes use of safe modifications, although the ones that we define differ somewhat from those

defined by Asano et al. [10].

These modifications allow us to reason better about how the resulting instance must be struc-

tured. The idea is that the modifications can be made until one of a few cases arise. Each case has

a corresponding strategy to find a set of tours with the desired cost-to-savings ratio.

Specifically, the algorithm of Asano et al. [10] classifies the leafmost (minimal) subtrees containing

at least 2Q units of demand into one of a few cases. The main obstacle in extending their algorithm

to a 4/3-approximation is that one of their cases does not seem to have a good strategy. A natural

idea would be to try modifying their algorithm to instead classify the leafmost subtrees containing

at least βQ units of demand for some β > 2. But this can greatly increase the number of cases that

arise.

We overcome this obstacle by generalizing the difficult case into what we call a p-chain (See

Figure 7.3). Our key insight is that even arbitrarily large p-chains can be addressed efficiently in

sibling pairs and at the root. Our algorithm effectively delays addressing the difficult case by pushing

it rootward until it finds a pair or reaches the root and is thus easy to address. To keep the number

of cases small, we address easy cases as they emerge, and require that any remaining difficult case

must have a specific structure that the algorithm can easily detect in subsequent rounds.

7.3 Preliminaries

When the input graph is a tree T it is assumed to be rooted at the depot r. Recall that the problem

gives a length `(e) ≥ 0 for each edge e ∈ ET , and we define the length of a subgraph A ⊆ E to be

`(A) =
∑

(u,v)∈A `((u, v)). In particular, `(P [u, v]) =
∑
e∈P [u,v] `(e) denotes the the shortest-path

distance dT (u, v) between u and v. Similarly, we define the demand of a subgraph A ⊆ E to be

dem(A) =
∑
v∈A dem(v).

For rooted tree T = (V,E), and v ∈ V where v 6= r, recall that p(v) denotes the parent of v,

and v is the child of p(v). For convenience, an edge labeled (u, v) indicates that u is the parent of

v. Recall, the subtree rooted at v is the subgraph induced by the descendants of v and is denoted
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r

. . .u

v

v-branch at u

Tv

Figure 7.1: An example of Tv, the subtree rooted at node v, and a v-branch at u, which includes
the stem edge (u, v). (Figure by Alice Paul).

Tv. If v has parent vertex u, we call B = Tv ∪ {(u, v)} the v-branch at u, and edge (u, v) the stem

of the branch (see Figure 7.1).

We often extend the notion of parent and child to apply more colloquially to mean the imme-

diately root-ward or leaf-ward instance of the given object. For example, the parent edge of edge

e = (u, v) is the edge p(e) = (p(u), u). This is also the parent edge of vertex u and subtree Tu. The

parent branch of a v-branch at u with stem e is the u-branch at p(u) with stem p(e) and is undefined

if u = r. The child edges of a vertex u are all edges (u, v) such that u = p(v). And so on.

7.3.1 Lower Bound

Here we describe the lower bound introduced by Hamaguchi and Katoh [59] and Asano et al. [10]

and adopt similar terminology. Since all demand must be covered and each tour can cover at most

Q demand, each edge e = (u, v) must be traversed by enough tours to cover dem(Tv) demand. We

call this value the traffic on the edge e, denoted ψ(e). Namely, ψ(e) = ddem(Tv)
Q e. Each of these

tours traverses the edge exactly twice (once in each direction). We say that the lower bound LB(e)

of the contribution of edge e = (u, v) to the total solution cost is therefore,

LB(e) = 2 · `(e) · ψ(e) = 2 · `(e)ddem(Tv)

Q
e

and that the lower bound LB on cost(OPT ) is

LB =
∑
e∈E

LB(e)
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For convenience, we scale down all demand values by a factor of Q and set Q = 1. We also assume

that the vertices with positive demand are exactly the leaves: If some internal vertex v has positive

demand dem(v) we can add a vertex v′ with demand dem(v′) = dem(v) and edge (v, v′) of length

zero and set dem(v) to zero. Alternatively, if some leaf v has zero demand, no tour in an optimal

solution will visit v, so v and the edge to v’s parent can be deleted from the graph. Finally, we

assume that no non-root vertex has degree exactly two, as no branching would occur at such a

vertex, so the two incident edges can be spliced into one.

A very high level description of the algorithm is as follows: iteratively identify sets of tours in

which the ratio of the cost of the tours to the reduction in cost to the lower bound, LB, is at most

4/3. We call such a set of tours a 4/3-approximate tour set.

We say that a 4/3-approximate tour set removes the demand that the tours cover. If such a tour

set removes all demand from a branch, we say that this branch has been resolved. After a branch is

resolved, it is convenient to think of it as having been deleted from the tree and proceed with the

smaller instance.

We note that any 4/3-approximation algorithm for Capacitated Vehicle Routing trivially

generates a 4/3-approximate tour set. The converse is also straightforward:

Lemma 36. If, after iteratively finding and removing demand from 4/3-approximate tour sets, no

demand remains, then the union of all tour sets is a 4/3-approximation for Capacitated Vehicle

Routing.

Given this, we make one more simplifying assumption that each leaf v has demand dem(v) < 1.

Assume to the contrary that for some leaf v, dem(v) ≥ 1. A tour that goes directly from r to

v and back and covers one unit of demand at v is in fact a 1-approximate tour (and thus also a

4/3-approximate tour). If ever such a leaf exists, we can greedily take such tours until no more such

leaves exist [10].

7.3.2 Example Showing Tightness

In this section we present the example of a tree instance that has cost at least 4/3 · LB that was

given by Asano et al. [10].

They define a tree T with root r, in which r has a single child q, and q has 2n + 1 children

v1, v2, ..., v2n+1 that are all leaves. Edge (r, q) as well as edges (q, vi) for all 1 ≤ i ≤ 2n + 1 have
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length one. That is, T is a tree of height two in which all edges have unit lengths. Furthermore, the

demand of each leaf vi is 0.5 + ε, where ε < 1
4n+2 .

For this instance, the traffic of every edge (q, vi) is one, and the traffic of edge (r, q) is n+ 1, so

LB = 2 · 1 · (n+ 1) + (2n+ 1) · 2 · 1 · 1 = 2n+ 2 + 4n+ 2 = 6n+ 4.

An optimum solution for this instance consists of 2n + 1 tours t1, t2, ..., t2n+1 in which tour ti

goes from r to vi, covers all demand at vi and then immediately returns to the depot.

The cost of this optimum solution, OPT is cost(OPT ) = (2n+ 1) · 4 = 8n+ 4.

The ratio of cost(OPT ) to LB is 8n+4
6n+4 which tends to 4/3 as n goes to infinity [10].

Note that there are in fact many other optimum solutions for this instance. For example consider

the following solution consisting of n+ 1 tours t1, t2, ..., tn+1. For i ∈ {1, 2, ..., n}, ti goes from r to

v2i−1, covers all demand at v2i−1, then covers as much demand at v2i as possible before returning

to r. Tour tn+1 then covers all demand at v2n+1 and then all remaining demand at leaves v2i for

i ∈ {1, 2, ..., n}. The cost of this solution is 2 · n · 3 + 2 · 1 · (n+ 2) = 6n+ 2n+ 4 = 8n+ 4.

7.3.3 Safe Operations

We say that an operation that modifies the graph is safe if it preserves solution feasibility and does

not decrease cost(OPT ) or change the cost of the lower bound LB. Note that a 4/3-approximate

tour set in the modified graph is therefore also a 4/3-approximate tour set in the unmodified graph.

The algorithm proceeds iteratively. In each iteration, the algorithm performs a series of safe

operations and identifies a 4/3-approximate tour set. We now define these the operations.

• Condense: If edge e = (u, v) has traffic ψ(e) = 1 and v is not a leaf, add a vertex v′ and replace

e and Tv with an edge e′ = (u, v′) with `(e′) = `(e)+
∑
e′′∈Tv `(e

′′) and set dem(v′) = dem(Tv)

(see Figure 7.2a).

• Unzip: If edge e = (u, v) has traffic equal to the sum of the traffic on child edges (v, w1),

(v, w2), ..., (v, wk), then delete v and add edges (u,w1), (u,w2), ..., (u,wk) with lengths `((u,wi)) =

`(e) + `((v, wi)) for all i ∈ {1, 2, ..., k} (see Figure 7.2b).

• Group: If vertex u has at least four children, including three leaf children v1, v2, v3, such that

1.5 < dem(v1) + dem(v2) + dem(v3) < 2, add vertex u′, edge (u, u′) of length zero, and for

i ∈ 1, 2, 3, replace (u, vi) with (u′, vi) (see Figure 7.2c).
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• Unite: If vertex u has leaf children v1 and v2 such that dem(v1) + dem(v2) ≤ 1, delete

v1 and v2 and add vertex v0 with demand dem(v1) + dem(v2) and edge (u, v0) with length

`((u, v1)) + `((u, v2)) (see Figure 7.2d).

• Slide: If edge e0 = (u, v) has child edges e1 = (v, w1) and e2 = (v, w2) such that traffic

ψ(e0) = ψ(e1), then delete edge e2 and add edge (w1, w2) of length `(e2) (see Figure 7.2e).

(a) Condense (b) Unzip

(c) Group (d) Unite (e) Slide

Figure 7.2: Safe Operations. Traffic values are shown in rectangles.

Showing That Safe Operations are Safe

In this section we show that safe operations are actually safe. Recall that an operation that modifies

the graph is safe if it does not decrease cost(OPT ) or change the cost of the lower bound LB and

it preserves feasibility.

The condense operation replaces a branch B in which every edge e has traffic ψ(e) = 1 with a

single edge eB of length
∑
e∈B `(e) and traffic ψ(eB) = 1, so the lower bound LB remains unchanged,

since the branch contributes 2 ·
∑
e∈B `(e) · 1 = 2 · `(eB) · 1 toward LB both before and after the

operation. The operation is equivalent to requiring any tour that covers any client demand in B

to traverse all of B, which clearly preserves feasibility and possibly increases, but cannot decrease,

cost(OPT ).
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Before the unzip operation, the contribution to LB of edges involved in the modification is

2 · `(e) ·
(∑k

i=1 ψ((v, wi))
)

+
∑k
i=1 2 · `((v, wi)) · ψ((v, wi)) which equals

∑k
i=1 2 · (`(e) + `((v, wi))) ·

ψ((v, wi)), the contribution to LB of involved edges after the operation. The length and traffic

values (and thus also the contribution to LB) of all other edges remain unchanged. The operation

is equivalent to requiring every tour that traverses c child edges of e to traverse e a total of 2c times.

This redundancy may increase the value of cost(OPT ) but cannot decrease it. Since any tour can

be extended to cover e multiple times, the operation also preserves feasibility.

The group operation simply inserts an edge of length zero, resulting in an equivalent instance,

and clearly has no effect on LB, cost(OPT ), or feasibility. The operation is merely for convenience.

The unite operation is equivalent to first inserting an edge of length zero (and traffic one) and

then performing a condense operation, both of which are shown above to be safe. The composition

of safe operations results in a safe operation.

The slide operation essentially moves an edge without changing the length or traffic values of any

edge, which clearly preserves the value of LB. The operation is equivalent to requiring every tour

that traverses edge e2 to also traverse edge e1, which may increase cost(OPT ), but cannot decrease

cost(OPT ). Since the tree is connected, any tour can be extended to include e1, so feasibility is

preserved.

Reforming Operations from Asano et al. [10]

Asano et al. introduce seven safe Reforming Operations [10]. In this section we compare these to

our safe operations.

Reforming operation R1 greedily takes a tour at full capacity to any vertex with demand greater

than one. After exhaustively applying R1, no vertex has demand greater than one. Reforming

operation R2 moves any demand at internal nodes to leaves, by adding edges of length zero when

necessary.

In our algorithm, we use simplifying assumptions to accomplish the same result as exhaustive

application of these two operations. That is, we assume that the input graph already has the

property that leaves are the only vertices with demand, and that the demand of every leaf is at

most one. Our algorithm does not need these operations because these properties of the demand

are never undone by our algorithm.

Reforming operation R3 addresses the specific case of a vertex u with a leaf vertex v of demand



116

at most one as its only child, by contracting the edge (u, v), increasing `((p(u), u)) by `((u, v)),

and setting dem(u) = dem(v). Reforming operation R4 similarly contracts an entire subtree with

total demand at most one to a single leaf. Our condense operation generalizes both R3 and

R4 as it operates on branches rather than subtrees. Note that R3 also addresses the case where

1 < dem(u) + dem(v) ≤ 2, but this case never arises in our algorithm because of our simplifying

assumptions.

Reforming operation R5 merges leaves if their combined demand is at most one and if the parent

vertex u of the leaves has no other child v such that the subtree rooted at v has total demand at

least two. Our unite operation generalizes R5.

Reforming operation R6 addresses the case where a vertex v has exactly two children v1 and

v2 that are leaves such that 1 < dem(v1) + dem(v2) < 2. If v has parent u, R6 removes v and

adds edge (u, v1) of weight `((u, v)) + `((v, v1)) and edge (u, v2) of weight `((u, v)) + `((v, v2)). Our

unzip operation generalizes R6 to accommodate more than two children, non-leaf children, and

larger demands.

Finally, reforming operation R7 addresses the case where a vertex v has children v1 and v2 such

that v2 is a leaf and the subtree rooted at v1 has total demand d1 such that 1 < d1 < 2 and such

that the subtree rooted at v has total demand d such that 1 < d < 2. R7 replaces edge (v, v2) with

edge (v1, v2) of length `((v, v2)). Our slide operation generalizes R7 to accommodate larger demand

values.

7.4 Algorithm Description

Exhaustively applying safe operations is called flattening the instance. Note that none of the oper-

ations cancel each other, so this process terminates.

We say that a problem instance is flattened if no more safe operations are available, no internal

vertices have demand, no non-root vertex has degree two, and for every leaf v, 0 < dem(v) < 1. We

say that a branch is flattened if these conditions hold for the branch.

Recall that a branch consists of a subtree along with its parent edge (stem). If the branch has

traffic p, we call it a p-branch.

A flattened 2-branch with stem e0 = (u, v) such that v has exactly three children w1, w2, w3, all

of which are leaves and such that 1.5 < dem(w1) + dem(w2) + dem(w3) ≤ 2 is called a 2-chain.
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Lemma 37. In a flattened problem instance, all 2-branches are 2-chains.

Proof. Consider any 2-branch in a flattened problem instance. Clearly no edge in the branch can

have traffic greater than two. If more than one child edge of the stem had traffic two, then the traffic

of the stem itself must be greater than two. If the stem had exactly one child edge with traffic two,

then a slide operation would have been possible. Therefore every child edge of the stem has traffic

one. Each of these edges must be leaf edges or else they could be condensed. If there were exactly

two such edges, then the stem could be unzipped. Since no two of these edges can be united, then

the demand of every pair sums to more than one, so there are exactly three such edges and their

demand sums to more than 1.5.

7.4.1 p-Chains

We now generalize the notion of a 2-chain. For p ≥ 3 a p-chain is a flattened p-branch with stem

e0 = (u, v) such that v has exactly three children w1, w2, w3, in which w2 and w3 are leaves with

1 < dem(w2) + dem(w3) ≤ 1.5 and (v, w1) is the stem of a (p− 1)-chain (see Figure 7.3a).

For convenience, we define a labeling scheme for p-chains. Each vertex vji is doubly indexed by

level i and rank (child-order) j. We use eji to denote the parent edge of vji , ∀i, j. A 2-chain with

parent u has stem e0
2 = (u, v0

2) leaves v0
1 , v1

1 , and v2
1 such that `(e0

1) ≥ `(e1
1) ≥ l(e2

1). For p > 2, a

p-chain with parent u has stem e0
p = (u, v0

p), and children v0
p−1, v1

p−1, and v2
p−1, such that e0

p−1 is

the stem of a p− 1-chain, and v1
p−1 and v2

p−1 are leaves with `(e1
p−1) ≥ `(e2

p−1) (See Figure 7.3a).

We further classify some p-chains as long p-chains: All 2-chains are long, and for p ≥ 3 a long

p-chain is a p-chain in which `(e2
p−1) < `(P [v0

p, r]) and e0
p−1 is the stem of a long (p − 1)-chain. A

p-chain in which `(e2
p−1) ≥ `(P [v0

p, r]) is called a short p-chain.

Long p-chains are particularly convenient because they can be resolved individually at the root

and in sibling pairs for internal vertices, as described in the following lemmas (which we prove in

Section 7.6).

Lemma 38. Long p-chains can be resolved in linear time at the root.

Lemma 39. A long p-chain and long p′-chain can be resolved together in linear time if they are

sibling branches.

As in [10], our algorithm proceeds in a series of iterations. Each iteration performs a set of safe

operations and identifies a 4/3-approximate tour set.
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(a) p-Chain. Traffic values are shown in
rectangles, and dem denotes demand.

(b) Cascade. The first four tours of a cas-
cade tour set are depicted.

Figure 7.3

Lemma 40. Iteration i runs in linear time and either finds a nonempty 4/3-approximate tour set

or finds that every branch at the root is either a long p-chain or 1-branch.

Proof. See Section 7.5.

These iterations continue until every branch at the root is either a long p-chain or 1-branch. The

algorithm then solves the remaining instance, using the following lemma.

Lemma 41. There is a linear time 4/3-approximation algorithm for instances of Capacitated

Vehicle Routing on trees in which every child branch of the root is either a long p-chain or a

1-branch.

Proof. The cost of a tour that traverses a 1-branch at the root is equivalent to the reduction to lower

bound LB that results from removing the demand of the branch, so such a tour is a 1-approximate

tour (and thus also a 4/3-approximate tour). The lemma result then follows from Lemma 36 and

Lemma 38

Finally, putting these steps together, gives our overall 4/3-approximation result described in

Theorem 24, which we restate here.
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Theorem 24. There is a 4/3-approximation algorithm for Capacitated Vehicle Routing in

trees that runs in O(n2) time and is tight with respect to LB.

Proof. Let m denote the total amount of demand in the graph. Since each iteration removes de-

mand, there are at mostm iterations, each of which runs in linear time, for an overall O(n2) runtime.

By Lemma 40, after iteration m, every branch off the root must be a long p-chain or a 1-branch.

By Lemma 41 there is a linear-time 4/3-approximation for these branches. Combining this ap-

proximation with the collection of tours identified during the iterations results in an overall 4/3

approximation, by Lemma 36.

All that remains is to prove the above lemmas. In Section 7.5 we describe the iteration subroutine

and prove Lemma 40. In Section 7.6 we prove Lemmas 38 and 39.

7.5 Description of Iteration i

We say that a p-branch B is settled if it is either a 1-branch or a long p-chain. Otherwise we say

that B is unsettled. We say that a p-branch B is minimally unsettled if it is unsettled and all of its

child branches are settled.

Each iteration consists of the following subroutine:

1. Flatten the instance (i.e. exhaustively apply safe operations)

2. If all branches at the root are settled, terminate the iteration.

3. Otherwise, find a minimally unsettled branch B.

(i) If B has at least two child branches that are long p-chains, apply Lemma 39.

(ii) Otherwise, if B has at least three child branches that are 1-branches, apply Lemma 42

(iii) Otherwise, B is a (short) p-chain. Apply Lemma 43.

Lemma 42. A flattened, minimally unsettled branch B with at least three child branches that are

1-branches admits a 4/3-approximate tour set.

Proof. Let (u, v0) be the stem of B, and let (v0, v1), (v0, v2), and (v0, v3) be three (child) 1-branches.

Since the branch is flattened, v1, v2, and v3 are leaves. Since the unite operation is unavailable,

dem(v1) + dem(v2) + dem(v3) > 1.5, and since B is unsettled, it is not a 2-chain. Furthermore,
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the group operation is unavailable, so 2 < dem(v1) + dem(v2) + dem(v3) < 3. Let a = `(P [v0, r]),

w1 = `(v0, v1), w2 = `(v0, v2), and w3 = `(v0, v3). Without loss of generality, assume w1 ≤ w2 ≤ w3.

If a ≤ w1 + w2 + w3, then for i ∈ {1, 2, 3}, let ti be the tour that travels from the depot to vi,

covers all demand at vi, and then returns to the depot. The length of ti is 2(a+wi). The total cost

of the tour set {t1, t2, t3} is 2(3a + w1 + w2 + w3). This tour set covers all demand of {v1, v2, v3}

and also reduces demand along P [v0, r] by two, since 2 < dem(v1) + dem(v2) + dem(v3) < 3, so the

reduction to LB is 2(2a + w1 + w2 + w3). The ratio of the cost of the tour set to the reduction to

the cost of LB that results from taking these tours is therefore,

2(3a+ w1 + w2 + w3)

2(2a+ w1 + w2 + w3)
= 1 +

a

2a+ w1 + w2 + w3
≤ 1 +

a

3a
=

4

3

where the inequality comes from a ≤ w1 + w2 + w3.

Otherwise, a > w1 + w2 + w3. Let t be the tour that travels from the depot to v1, covers all

demand at v1, travels to v3, covers as much demand as possible at v3, and then returns to the

depot. The cost of t is 2(a + w1 + w3). Note that since the unite operation is unavailable, then

dem(v1) + dem(v3) > 1, so the vehicle is full, and some demand remains at v3. Since the vehicle is

full, then t reduces demand along P [v0, r] by one, so the reduction to LB is 2(w1 + a). The ratio

of the cost of the tour set {t} to the reduction to the cost of LB that results from taking tour t is

therefore,
2(a+ w1 + w3)

2(w1 + a)
= 1 +

w3

w1 + a
≤ 4

3

where the final inequality comes from a > w1 + w2 + w3 ≥ 3w3.

Lemma 43. A short p-chain admits a 4/3-approximate tour set.

Proof. Let a = `(P [v0
p, r]), b = `(e2

p−1), and c = `(e1
p−1). By construction, c ≥ b, and since the

p-chain is short, b ≥ a. Let t1 be the tour that goes from the depot to v1
p−1, covers all demand at

this leaf, and then returns to the depot. Similarly, let t2 be the tour that goes from the depot to

v2
p−1, covers all demand at this leaf, and then returns to the depot. Tour t1 has cost 2(a + c) and

t2 has cost 2(a + b). Tour set {t1, t2} has total cost 2(2a + b + c). This tour set covers all demand

at these leaves, which sum to greater than one by definition of p-chain, so these tours reduce the

demand along P [v0
p, r] by one. Therefore the reduction to LB from this tour set is 2(a + b + c).

Therefore the ratio of the cost of the tour set to the reduction to the cost of LB that results from
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taking these tours is,
2(2a+ b+ c)

2(a+ b+ c)
= 1 +

a

a+ b+ c
≤ 4

3

The final inequality comes from a ≤ b ≤ c.

Finally, we prove Lemma 40, which we restate here for convenience.

Lemma 40. Iteration i runs in linear time and either finds a nonempty 4/3-approximate tour set

or finds that every branch at the root is either a long p-chain or 1-branch.

Proof. To prove this lemma, we first must show that any minimally unsettled branch B in a flattened

instance must be in at least one of the three identified cases. Let B be such a branch. B must have

child branches, since it is unsettled. Since it is minimally unsettled, every child branch is settled

(i.e. either a 1-branch or a long p-chain).

If B has at least two long p-chains as child branches, then case i holds.

If B has no long p-chains as child branches, then all child branches are 1-branches. By Lemma 37,

in a flattened instance all 2-branches are 2-chains. Since all 2-chains are long, and thus settled, B

must be a j-branch for some j ≥ 3. Since the unzip operation is unavailable, then there are at least

four 1-branches as child branches of B, so case ii holds.

If B has exactly one long p-chain as a child branch and case ii doesn’t hold, then B must be

a short p′-chain. If there were no 1-branches as child branches, then the degree-two vertex could

be spliced. If there were exactly one 1-branch then either p = p′ and a slide operation would be

available, or p = p′ − 1 and an unzip operation would be available. Since case ii doesn’t hold, there

are exactly two 1-branches as child branches. Since an unzip operation is unavailable, p = p′ − 1,

and since a unite operation is unavailable, the demand of the two 1-branches (which are both leaves

by the condense operation) sum to greater than one. Since the instance is flattened, then B is a

p′-chain. But since B is unsettled, it must be a short p′-chain. Therefore case iii holds.

Since B is covered by some case, then the corresponding lemma (Lemma 39, 42, or 43) guarantees

a nonempty 4/3-approximate tour set.

If no unsettled branch can be found, then all branches at the root must be settled.

Finally, to see that the iteration runs in linear time, note that each operation can be performed

in constant time. Condense, unite, unzip, (and splicing) all make the graph smaller, so they are

exhausted in linear time. Subsequently, if condense and unite are unavailable, then each slide
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results in a degree two vertex remaining to be spliced, also making the graph smaller. After all

other operations are exhausted, each leaf can participate in at most one group operation in a given

iteration. Each of the three cases can likewise be handled in linear time.

7.6 Resolving p-Chains

7.6.1 Cascades

In order to prove Lemmas 38 and 39 we describe a specific group of tours that collectively covers

the demand of a long p-chain.

The labeling on p-chains gives a natural bottom-up ordering on the leaves: v0
1 , v

1
1 , v

2
1 , v

1
2 , v

2
2 ,

..., v1
p−1, v

2
p−1, where the order is determined first by level and then by rank. For a long p-chain,

we define a cascade to be the sequence of p tours in which each tour considers the leaves in this

bottom-up order and:

1. Visits and covers all demand from the first leaf with remaining demand.

2. While the vehicle has spare capacity and there is unmet demand in the branch, determines the

lowest level i with leaves with unmet demand and covers as much demand as possible from v2
i .

3. Returns to the depot.

Let the resulting tours be t1, ..., tp. Tour t1 first covers all demand from v0
1 and then covers

1 − dem(v0
1) demand from v2

1 . Since by definition, a p-chain is flattened, the unite operation is

unavailable, so dem(v0
1) + dem(v2

1) > 1, implying the vehicle is full. The second tour t2 covers all

demand from v1
1 , covers all remaining demand at v2

1 (since dem(v0
1) + dem(v1

1) + dem(v2
1) < 2) and

covers some demand at v2
2 . Since the slide operation is unavailable, dem(v0

1) +dem(v1
1) +dem(v2

1) +

dem(v2
2) > 3, so the vehicle is full. Note that both vehicles have been full, and after two tours no

demand remains at level 1. This pattern continues. For 3 ≤ i < p, tour ti covers all demand at

v1
i−1, all remaining demand at v2

i−1, and some demand at v2
i . Inductively, since the slide operation

is unavailable and all previous vehicles have been full, this vehicle must also be full. After ti, no

demand remains below level i. Since all vehicles have been full, there is less than one unit of demand

remaining for tp (and no demand remains below level p− 1), so tp covers all demand from v1
p−1 and

all remaining demand from v2
p−1. (See Figure 7.3b).
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For all i, this cascading pattern results in i tours traversing e0
i , one tour traversing e1

i , two tours

traversing e2
i , and p tours traversing all edges in the path from the depot r to v0

p. Note in particular

that these values match the lower bounds given by the edge traffic, for e0
i and e1

i . The excess cost,

therefore, comes from doubling the traffic lower bound on the e2
i edges as well as extra traffic along

the path to the depot.

7.6.2 Proofs of Lemmas 38 and 39

We restate the lemmas here for convenience. Recall that a branch is resolved if all of its demand is

covered by a 4/3-approximate tour group. That is, a set of tours whose total cost is at most 4/3

times the reduction to the lower bound LB that results from removing the demand of the branch.

Lemma 38. Long p-chains can be resolved in linear time at the root.

Proof. Let B be a long p-chain at the root (depot). Consider the cascade on B. As described in

Section 7.6.1, the cost of the p tours in the cascade is

2
(
p · `(e0

p) +

p−1∑
i=1

i · `(e0
i ) + 2`(e2

i ) + `(e1
i )
)

since the cost of the path to the depot is zero. Additionally the cascade covers all demand in B, so

the reduction to LB after covering B is:

∑
e∈B

LB(e) =
∑

e=(u,v)∈B

2 · `(e) · ddem(Tv)e = 2
(
p · `(e0

p) +

p−1∑
i=1

i · `(e0
i ) + `(e2

i ) + `(e1
i )
)

Taking the ratio of cost to reduction in cost of LB gives our result:

2
(
p · `(e0

p) +
∑p−1
i=1 i · `(e0

i ) + 2`(e2
i ) + `(e1

i )
)

2
(
p · `(e0

p) +
∑p−1
i=1 i · `(e0

i ) + `(e2
i ) + `(e1

i )
) = 1 +

∑p−1
i=1 `(e

2
i )

p · `(e0
p) +

∑p−1
i=1 i · `(e0

i ) + `(e2
i ) + `(e1

i )

≤ 1 +

(
`(e2

1)
)

+
(∑p−1

i=2 `(e
2
i )
)(

`(e0
1) + l(e1

1) + `(e2
1)
)

+
(∑p−1

i=2 `(e
2
i ) + `(e1

i ) +
∑p
j=i+1 `(e

0
j )
)

≤ 1 +

(
`(e2

1)
)

+
(∑p−1

i=2 `(e
2
i )
)(

3 · `(e2
1)
)

+
(∑p−1

i=2 3 · `(e2
i )
) ≤ 4

3
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Where the second to last inequality comes from the fact that because B is a long p-chain,

`(e2
i ) < `(P [v0

i+1, r]) =
∑p
j=i+1 `(e

0
j ), and because `(e2

i ) ≤ `(e1
i ) by construction.

Lemma 39. A long p-chain and long p′-chain can be resolved together in linear time if they are

sibling branches.

Proof. Let u be a vertex with child branches B a long p-chain and B′ a long p′-chain.

Consider the cascades on B and B′. The cost of these p+ p′ tours is

2
[(
p·`(e0

p)+

p−1∑
i=1

i·`(e0
i )+2`(e2

i )+`(e1
i )
)
+
(
p′ ·`(e′0p′)+

p′−1∑
i=1

i·`(e′0i )+2`(e′
2
i )+`(e′

1
i )
)
+(p+p′)`(P [u, r])

]
Additionally the cascade covers all demand in B and B′, so the reduction to LB is

∑
e∈B∪B′

LB(e) =
∑

e∈B∪B′
2 · `(e) · ψ(e)

which is

2
[(
p·`(e0

p)+

p−1∑
i=1

i·`(e0
i )+`(e2

i )+`(e1
i )
)
+
(
p′ ·`(e′0p′)+

p′−1∑
i=1

i·`(e′0i )+`(e′
2
i )+`(e′

1
i )
)
+(p+p′−1)`(P [u, r])

]
Note that the p+p′−1 factor in the reduction to the edges along P [u, r] arises because by definition

the total demand in a p-chain is between p− 0.5 and p, so covering all demand in B and B′ reduces

the demand in Tu by at least p+ p′ − 1. Rearranging the terms, this reduction to the lower bound

is greater than:

2
[( 2∑

i=0

`(ei1) +

p−1∑
i=2

`(P [v0
i+1, r]) + `(e2

i ) + `(e1
i )
)

+
( 2∑
i=0

`(e′
i
1) +

p′−1∑
i=2

`(P [v′
0
i+1, r]) + `(e′

2
i ) + `(e′

1
i )
)

+ 3`(P [u, r])
]

= 2(X + Y +X ′ + Y ′ + Z)

Where

X =

2∑
i=0

`(ei1)

Y =

p−1∑
i=2

`(P [v0
i+1, r]) + `(e2

i ) + `(e1
i )
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X ′ =

2∑
i=0

`(e′
i
1)

Y ′ =

p′−1∑
i=2

`(P [v′
0
i+1, r]) + `(e′

2
i ) + `(e′

1
i )

and

Z = 3`(P [u, r]).

The ratio of cost to reduction in cost of LB is therefore at most,

1 +

∑p−1
i=1 `(e

2
i ) +

∑p′−1
i=1 `(e′

2
i ) + `(P [u, r])

X + Y +X ′ + Y ′ + Z
≤ 4

3

Where the final inequality comes from noting that, by construction, `(e2
1) ≤ X/3 and `(e′21) ≤

X ′/3, and by definition of a long p-chain, `(e2
i ) ≤ min{`(e1

i ), `(e
2
i ), `(P [v0

i+1, r])} for all 2 ≤ i < p,

so
∑p−1
i=2 `(e

2
i ) ≤ Y/3 and

∑p−1
i=2 `(e

′2
i ) ≤ Y ′/3.



Chapter 8

An Approximation-Scheme

Framework for Vehicle Routing in

Trees

8.1 Introduction

In this chapter we move from Capacitated Vehicle Routing to consider a wider variety of vehicle-

routing problems, including Minimum Makespan Vehicle Routing, Distance-Constrained

Vehicle Routing, and School Bus Routing. We first introduce a general problem formulation

that encompasses all of these problems. Recall that vehicle-routing problems are those in which a

set of vehicles are collectively responsible for serving a set of clients. We are interested in the rooted

versions of these problems, in which the vehicles originate at one or more depots.

We classify a family of rooted vehicle-routing problems by introducing the notions of vehicle load,

the problem-specific vehicle constraint (e.g. number of clients per vehicle, distance traveled by the

vehicle, client regret, etc.), and fleet budget, the problem-specific fleet constraint (e.g. number of

vehicles, sum of distances traveled, etc.).

Most vehicle-routing problems can then be framed as either a Min-Max Vehicle Load problem:

minimize the maximum vehicle load, given a bound k on fleet budget (e.g. Minimum Makespan

Vehicle Routing) or a Minimum Fleet Budget problem: minimize the required fleet budget,
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given a bound D on vehicle load (e.g. Distance-Constrained Vehicle Routing). In fact, these

are two optimization perspectives of the same decision problem: does there exist a solution with

maximum vehicle load D and fleet budget k?

In this chapter we present a framework for designing polynomial-time approximation schemes for

Min-Max Vehicle Load and Minimum Fleet Budget in trees. As described in Chapter 1, tree

(and treelike) transportation networks occur in building and warehouse layouts, mining and logging

industries, and along rivers and coastlines [69, 74]. Our framework applies directly to Min-Max

Vehicle Load problems and generates results of the following form.

Theorem 25. For every ε > 0, there is a polynomial-time algorithm that, given an instance of

Min-Max Vehicle Load on a tree, finds a feasible solution whose maximum vehicle load is at

most 1 + ε times optimum.

An immediate corollary of Theorem 25 is the following bicriteria result for the associated Mini-

mum Fleet Budget problem.

Theorem 26. Given an instance of Minimum Fleet Budget on a tree, if there exists a solution

with fleet budget k and vehicle load D, then for any ε > 0, there is a polynomial-time algorithm that

finds a solution with fleet budget k and vehicle load at most (1 + ε)D.

The input to the framework is a tree T = (V,E), edge lengths `(u, v) ≥ 0 for all (u, v) ∈ E, and

a specified depot vertex r ∈ V at which all vehicles start. Without loss of generality, we assume the

tree to be rooted at the depot r and that the set of clients corresponds to the set of leaves in the

tree: any subtree without a client can be safely removed from the instance and clients at internal

vertices can be moved to leaves by introducing edges of length zero. Since every edge must then be

traversed by at least one vehicle, the problems are equivalent to corresponding tree-cover problems.

As stated, the framework can be customized to a wide range of problems. In Section 8.5, we

illustrate in detail how to customize the framework to give a PTAS for the Minimum Makespan

Vehicle Routing problem of finding k tours each starting and ending at a depot r that serve

all clients in T such that the makespan, the maximum length of any tour, is minimized. Here,

vehicle load is the tour length, and fleet budget is the number of vehicles. A bicriteria PTAS for

the associated Minimum Fleet Budget problem, Distance-Constrained Vehicle Routing,

follows as a corollary.
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We will also demonstrate how the framework can be applied to give similar results for other

vehicle-routing variants, including Capacitated Vehicle Routing (see Section 8.6.1) and School

Bus Routing (see Section 8.6.2). Additionally, we show how to generalize to the multiple depot

setting (see Section 8.6.3). We choose a range of problems that showcase the flexibility and power

of our framework, though we believe the applicability extends beyond these problems as well.

At a high level, the framework partitions the tree into clusters such that there exists a near-

optimal solution that within each cluster has a very simple form, effectively coarsening the solution

space. Then, given this simplified structure, a dynamic program can be designed to find such a

near-optimal solution.

The clusters are designed to be small enough so that simplifying vehicle routes at the cluster

level does not increase the optimal load by too much, but also large enough that the (coarsened)

solutions can be enumerated efficiently. To bound the error introduced by this simplification we

design a load-reassignment tool that makes cluster coverage adjustments globally in the tree.

Finally, standard dynamic programming techniques can result in a large accumulation of rounding

error. To limit the number of times that the load of any single route is rounded, we introduce a

route projection technique that essentially pays in advance for load that the vehicle anticipates

accumulating, allowing the dynamic program to round only once instead of many times for this

projected load.

8.2 Related Work

For trees, Minimum Makespan Vehicle Routing is equivalent to Minimum Makespan Rooted

Tree Cover: the minimum makespan for rooted tree cover is exactly half the minimum makespan

for vehicle routing, since tours traverse edges twice. Minimum Makespan Rooted Tree Cover

is NP-hard even on star instances but admits an FPTAS if the number, k, of subtrees is constant [89]

and a PTAS for general k [61]. For covering a general graph with rooted subtrees, [42] provides a

4-approximation; this bound was later improved to a 3-approximation by [83]. For tree metrics,

an FPTAS is known for constant k [96], and a (2 + ε)-approximation is known for general k [83].

Our result improves this to a PTAS. Although a recent paper of Chen and Marx [28] also claimed

to present a PTAS, in Section 8.5.3 we show that their result is incorrect and cannot be salvaged
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using the authors’ proposed techniques1. Additionally, we compare their approach to our own and

describe how we successfully overcome the challenges where their approach fell short.

In general metrics Minimum Makespan Vehicle Routing (also called Fleet-Constrained

Vehicle Routing and Rooted Min-Max Tour Cover) admits a 6-approximation [82]. Of

note, an α-approximation to Minimum Makespan Rooted Tree (or Path) Cover gives a 2α

approximation to Minimum Makespan Vehicle Routing by doubling the trees to give a tour of

twice the length (equivalent to depth-first search and returning to the depot).

The associated Distance-Constrained Vehicle Routing problem is to minimize the number

of tours of length at most D required to cover all client demand. Even restricted to star metrics,

this problem is NP-hard, and for tree instances it is hard to approximate to better than a factor of

3/2 [84]. Nagarajan and Ravi give a simple 2-approximation for trees [84]. For general metrics, they

give an O(logD)-approximation and show that an O(log |S|)-approximation is straightforward by

framing vehicle routing as a set-cover problem and using the Orienteering problem as a greedy

subroutine [84]. Recently, the best known approximation ratio for general metrics was slightly

improved to O(min{cost(OPT ), logD/ log logD}) [49]. Relaxing the distance constraint, Nagarajan

and Ravi also gave an (O(log 1
ε ), 1 + ε) bicriteria approximation for general metrics, that finds

O(log 1
ε )cost(OPT ) tours of length at most (1 + ε)D [84]. In this chapter we give a (1, 1 + ε)

bicriteria PTAS for trees, and note that the hardness results for trees described above [84] imply

that without allowing this (1 + ε) stretch in D, a PTAS is unlikely to exist.

The regret of a path is the difference between the path length and the distance between the

path endpoints. The Min-Max Regret Routing problem is to cover all clients with k paths

starting from the depot, such that the maximum regret is minimized. For trees, there is a known

13.5-approximation algorithm [21], which we improve to a PTAS in this thesis. For general graphs

there is a O(k2)-approximation algorithm [49].

In the related School Bus Routing problem, there is a bound R on the regret of each path

and the goal is to find the minimum number of paths required to cover all client demand. For

general graphs, [50] provides an LP-based 15-approximation algorithm, improving upon the authors’

previous 28.86-approximation algorithm [49]. In trees, there exists a 3-approximation algorithm for

the uncapacitated version of this problem and a 4-approximation algorithm for the capacitated

version [21]. Additionally, there is a (3/2) inapproximability bound [21]. A PTAS is therefore
1We have contacted the authors, and they agree with our assessment.
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unlikely to exist for trees. Instead, we give a (1, 1 + ε) bicriteria PTAS which, as a corollary,

improves the best-known approximation ratio to 2.

As we saw in Chapter 7, the best known approximation ratio for Capacitated Vehicle Rout-

ing in tree metrics is 4/3 (as shown in this thesis) which improves over the previous approximation

ratios of (
√

41 − 1)/4 [10] and 1.5 [59]. See Chapter 3 for related work on Capacitated Vehicle

Routing in more general metrics. In this chapter we give a (1, 1 + ε) bicriteria PTAS for Capaci-

tated Vehicle Routing in trees with arbitrary capacities, in which capacities are allowed to be

exceeded by a (1 + ε) factor.

8.3 Preliminaries

Recall some of our notation for rooted trees (see Section 1.3 and Section 7.3 for a more comprehensive

overview). We use p(v) to denote the parent of vertex v and Tv to denote the subtree rooted at v.

If u = p(v), the v-branch at u consists of Tv (the subtree rooted at v) together with the stem edge

(u, v). We define the length of a subgraph A ⊆ E to be `(A) =
∑

(u,v)∈A `(u, v). For vertices u, v,

we use dT (u, v) to denote the shortest-path distance in T between u and v.

In this chapter, we assume every vertex has at most two children. If vertex v has j > 2 children

v1, ..., vj , add vertex v′ and edge (v, v′) of length zero and replace edges (v, v1),(v, v2) with edges

(v′, v1),(v′, v2) of the same lengths.

Our framework applies to vehicle-routing problems that can be framed as Min-Max Vehicle

Load problems, in which the objective is to minimize the maximum vehicle load, subject to a fleet

budget. Given a Min-Max Vehicle Load problem, a trivial n-approximation can be used to obtain

an upper bound Dhigh for cost(OPT ). An overarching algorithm takes as input a load value D ≥ 0

and provides the following guarantee: if there exists a solution with max load D, the algorithm will

find a solution with max load at most (1 + ε)D. A PTAS follows from using binary search between
Dhigh
n and Dhigh for the smallest value Dlow such that the algorithm returns a solution of max load

at most (1 + ε)Dlow. This implies Dlow ≤ cost(OPT ). For the rest of the chapter, we assume D is

fixed.
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8.4 Framework Overview

Optimization problems on trees are often well suited for dynamic programming algorithms. In fact,

the following dynamic programming strategy can solve Min-Max Vehicle Load problems on trees

exactly: at each vertex v, for each value 0 ≤ i ≤ D, guess the number of solution route segments of

load exactly i in the subtree rooted at v. Such an algorithm would be exponential in D. (See the

DP for Capacitated Vehicle Routing in Section 3.3.2).

Instead of considering every possible load value, route segment loads can be rounded up to the

nearest θD, for some value θ ∈ (0, 1] that depends only on ε, so that only O(θ−1) segment load

values need to be considered. In order to achieve a PTAS, we must show that this rounding does

not incur too much error. Rounding the load of a route at every vertex accumulates too much error,

but if the number of times that any given route is rounded is at most ε/θ, then at most εD error

accumulates, as desired.

One main insight underlying our algorithm is that a route only needs to incur rounding error

when it branches. The challenge in bounding the rounding error then becomes bounding the number

of times a route branches. While a route in the optimal solution may have an arbitrary amount

of branching, we show that we can greatly limit the scope of candidate solutions to those with a

specific structure while only incurring an εD error in the maximum load. Rather than having to

make decisions for covering every leaf in the tree (of which there may be arbitrarily many−each with

arbitrarily small load), we partition the tree into clusters and then address covering the clusters.

By reassigning small portions of routes within a cluster, we show that there exists a near-optimal

solution in which all clients (leaves) within a given cluster are covered by only one or two vehicles.

These clusters are chosen to be small enough that the error incurred by the reassignment is small,

but large enough that any given route covers clients in a bounded number of clusters. This coarsens

the solutions considered by the algorithm, as vehicles must commit to covering larger fractions of

load at a time. A dynamic program then finds the optimal such coarse solution using these simple

building blocks within each cluster.

8.4.1 Simplifying the Solution Structure

Let ε̂ and δ be problem-specific values that depend only on ε. Let HT denote the set of all subgraphs

of T , and let g : H → Z≥0 be a problem-specific load function. We require g to be monotonic and
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subadditive. Intuitively, for all H ∈ HT , g(H) is the load accumulated by a vehicle for covering H.

Condensing the Input Tree

The first step in the framework is to condense all small branches into leaf edges. Specifically, let B

be the set of all maximal branches of load at most δD. That is, for every v-branch b ∈ B, g(b) ≤ δD

and for b’s parent p(v)-branch, bp, g(bp) > δD. For convenience, if b1 ∈ B is a v1 branch at u and

b2 ∈ B is a sibling v2 branch at u such that g(b1) + g(b2) ≤ δD, we add a vertex u′ and an edge

(u, u′) of length zero and replace (u, vi) with edge (u′, vi) of length `(u, vi) for i ∈ {1, 2}. The u′

branch at u then replaces the two branches b1 and b2 in B. This ensures that any two branches in

B with the same parent cannot be combined into a subtree of load ≤ δD.

Then, for every b ∈ B, we condense b by replacing it with a leaf edge of length `(b) and load g(b).

All clients in b are now assumed to be co-located at the leaf. Though it is easier to think of these

condensed branches as leaf edges, the algorithm need not actually modify the input tree; condensing

a branch is equivalent to requiring the entire branch to be covered by a single vehicle.

Clustering the Condensed Tree

After condensing all small branches, we partition the condensed tree into clusters. We define every

leaf edge whose load is at least δ
2D to be a leaf cluster. The leaf-cluster-to-root paths define what

we call the backbone of T . By construction, every edge that is not on this backbone is either a leaf

cluster (of load ≥ δ
2D) or a leaf edge (of load < δ

2D). That is, every vertex is at most one edge away

from the backbone (see Figure 8.1a).

We can think of the condensed tree as a binary tree whose root is the depot, whose leaves are

the leaf clusters, and whose internal vertices are the branching points of the backbone. Each edge

of this binary tree corresponds to a maximal path of the backbone between these vertices, together

with the small leaf edges off of this path (see Figure 8.1a). To avoid confusion with tree edges, we

call these path and leaf subgraphs woolly edges. A woolly subedge of a woolly edge consists of a

subpath of the backbone and all incident leaf edges.

A woolly edge e whose load g(e) is less than ε̂δ
2 D is called a small cluster. The remaining woolly

edges have load at least ε̂δ
2 D. We partition each such woolly edge into one or more woolly subedges,

which we call edge clusters, each with load in [ ε̂δ2 D,
δ
2D]. Backbone edges do not contain clients and

can be subdivided as needed to ensure enough granularity in the tree edge lengths so that such a
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(a) Woolly edges (b) Clusters (c) T ∗

Figure 8.1: (a) Leaf clusters in yellow and woolly edges in red; (b) The tree partitioned into leaf
clusters (yellow triangles), small clusters (blue ovals), and edge clusters (green rectangles); (c) The
corresponding T ∗ for clustering from (b).

partition is always possible (see Figure 8.1b).

For convenience, we label the components of edge clusters. Let C be the set of edge clusters. For

any edge cluster C ∈ C, let PC denote the backbone path in C and let LC denote the leaf edges

in C. We order the backbone edges along PC as pC,1, pC,2, ..., pC,m in increasing distance from the

depot and similarly label the leaf edges eC,1, eC,2, ..., eC,m−1 such that eC,i is the leaf incident to pC,i

and pC,i+1 for all 1 ≤ i < m (see Figure 8.2). If no such incident leaf exists for some i, we can add

a leaf of length zero. Likewise PC can be padded with edges of length zero to ensure that each edge

cluster ‘starts’ and ‘ends’ with a backbone edge.

Solution Structure

Consider the intersection of a solution with an edge cluster C. There are three different types of

routes that visit C (see Figure 8.2). A C-passing route traverses C without covering any clients, and

thus includes all of PC but no leaf edges in LC . A C-collecting route traverses and covers clients in

C, and thus includes all of PC and some edges in LC . Last, a C-ending route covers clients in, but

does not traverse C, and thus includes backbone edges pC,1, pC,2, ..., pC,i for some i < m and some

leaves in LC , but does not include all of PC . Note that any C-ending route can be assumed to cover

some leaves in LC , because otherwise removing any such redundancy would only improve a solution.

We say that a cluster C has single coverage if a single vehicle covers all clients in C. We

say that an edge cluster C has split coverage if there is one C-ending route that covers leaf

edges eC,1, eC,2, ..., eC,i for some i < m − 1 and one C-collecting route that covers leaf edges
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r
. . . . . .

pC,1 pC,2 pC,3 pC,4 pC,5

eC,1 eC,2 eC,3 eC,4

Figure 8.2: Three types of route within an edge cluster C; the red (top) tour is a C-passing route,
the green (middle) tour is a C-collecting route, and the blue (bottom) tour is a C-ending route.
(Figure by Alice Paul).

eC,i+1, eC,i+2, ..., eC,m−1 (see Figure 8.2).

Finally, we say that a feasible solution has a simple structure if:

• Leaf clusters and small clusters have single coverage,

• Edge clusters have single or split coverage, and

• Each vehicle covers clients in O( 1
ε̂2δ ) clusters.

Customization of the framework must include proving a structure theorem stating that there

exists a near-optimal solution (i.e. a feasible solution with maximum load at most (1 + ε)D) with

simple structure. Such a theorem proves that it is safe to reduce the set of potential solutions to

those with simple structure.

8.4.2 Dynamic Program

After proving a structure theorem, the framework uses a dynamic programming algorithm (DP) to

actually find a near-optimal solution with simple structure. We define the cluster tree T ∗ to be

the tree that results from contracting each cluster of T to a single vertex. That is, the cluster tree

has a vertex for each cluster and each branching point of the backbone (See Figure 8.1c). The DP

traverses T ∗ starting at the leaves and moving rootward, enumerating the possible route structures

within each cluster. Namely, the DP considers all ways edge cluster coverage can be split and how

routes are merged at branching points.

At each vertex in this tree the algorithm stores a set of configurations. A configuration is

interpreted as a set of routes in T that cover all clusters in the subtree of T ∗ rooted at v. Let

θ ∈ (0, 1] be a problem-specific value that depends only on ε. A configuration at a vertex v specifies,

for each multiple i of θD between 0 and (1 + ε)D the number of routes whose rounded load is i at

the time they reach v. Because θ depends only on ε, the number of configurations and runtime of
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the DP is polynomially bounded. After traversing the entire cluster tree, the solution is found at

the root. If there exists a configuration at the root such that all of the rounded route loads are at

most (1 + ε)D, the algorithm returns this solution.

To ensure that the DP actually finds a near-optimal solution, the number of times that a given

route is rounded must be bounded by ε/θ, which gives a rounding error of at most εD. In particular,

we design the DP so that the number of times that any one route is rounded is proportional to

the number of clusters that it covers clients in. Then, using the structure theorem, there exists a

near-optimal solution that covers clients in O( 1
ε̂2δ ) clusters and gets rounded by the DP O( 1

ε̂2δ ) many

times. Finally, θ is set to cθεε̂2δ for some constant cθ.

For loads involving distance, C-passing routes pose a particular challenge for bounding rounding

error. These routes may accumulate load while passing through clusters without covering any clients,

yet the DP cannot afford to update the load at every such cluster. Instead, the DP projects routes

to predetermined destinations up the tree, so that they accumulate rounding error only once while

passing many clusters. The configuration then stores the (rounded) loads of the projected routes,

and the DP need not update these load values for clusters passed through along the projection.

8.4.3 Reassignment Lemma

We now present a lemma that will serve as a general-purpose tool for our framework. This tool

is used to reassign small route segments. That is, if some subgraph H is covered by several small

route segments from distinct vehicles h1, h2, ..., hm, then for some 1 ≤ i ≤ m, the entire subgraph

H is assigned to be covered by hi. This increases load on hi so as to cover all of H, and decreases

load on hj for all j 6= i which are no longer required to cover H (see Figure 8.4). We show that

this assignment process can be performed simultaneously for many such subgraphs such that the

net load increase of any one route is small.

Let G = (A,B,E) be an edge-weighted bipartite graph where A is a set of facilities, B is a set of

clients, and w(a, b) ≥ 0 is the weight of edge (a, b) ∈ E. For any vertex v, we use N(v) to denote the

neighborhood of v, namely the set of vertices u such that there is an edge (u, v) ∈ E. Each facility

a ∈ A has capacity q(a) =
∑
b∈N(a) w(a, b) and each client b ∈ B has weight w(b) ≤

∑
a∈N(b) w(a, b).

A feasible assignment is a function f : B → A, such that each client b is assigned to an adjacent

facility f(b) ∈ N(b). We can think of the weights w(a, b) representing fractional assignment costs

while weight w(b) corresponds to a “discounted” cost of wholly serving client b. Ideally, the total
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A

B

a1 a2 a3 a4

b1 b2 b3 b4 b5 b6

A0

B0

A1

B1

Figure 8.3: An example of the inductive subsets Ai and Bi. A solid edge (a, b) indicates that
f(b) = a, and a dashed edge indicates that (a, b) ∈ E but f(b) 6= a. Note that b6’s level is infinite.
(Figure by Alice Paul).

weight of clients assigned to any facility a would not exceed the capacity q(a); however, this is not

always possible. We define the overload hf (a) of a facility a to be w(f−1(a))−q(a) =
∑
b|f(b)=a w(b)−∑

b∈N(a) w(a, b) and the overload hf of an assignment to be maxa∈A hf (a). The Bipartite Weight-

Capacitated Assignment problem is to find an assignment with minimum overload.

In our application of Bipartite Weight-Capacitated Assignment, facilities represent vehicle

routes and clients represent subgraphs of T . Assignment of a client b to a facility a represents

assigning subgraph b to be covered by route a (see the proof of Lemma 45 for an example).

We now prove the following useful result for the problem.

Lemma 44. Given an instance of the Bipartite Weight-Capacitated Assignment problem,

an assignment with overload at most maxb∈B w(b) can be found efficiently.

Proof. Let wmax = maxb∈B w(b). Consider an initial assignment f by arbitrarily assigning each

client to an adjacent facility. Let A0 = {a ∈ A|hf (a) > wmax} be the set of facilities whose capacities

are exceeded by more than wmax. The lemma statement is satisfied if and only if |A0| = 0.

Let B0 = f−1(A0) be the set of clients that are assigned to facilities in A0. We inductively define

Ai for i ≥ 1 to be N(Bi−1) \
⋃
j<iAj and Bi = f−1(Ai) to be the set of clients that are assigned to

facilities in Ai (see Figure 8.3). We say that a client b (resp. facility a) has level i if b ∈ Bi (resp.

a ∈ Ai), and we say that client b has infinite level if b does not appear in any Bi. By construction,

each client appears in some Bi for at most one value i, so the level of a client is either infinite or at

most |B| (see Figure 8.3).

It suffices to show that if |A0| > 0 then there is some client b, with some finite level, whose

level can be increased without decreasing the level of any other client. After at most |B|2 such

improvements, B0 must be empty, so |A0| must also be empty, proving the claim.
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Suppose that there is some i and some facility a ∈ Ai such that hf (a) ≤ q(a). We say such a

facility is underloaded, and therefore i > 0. By construction, there is some b ∈ Bi−1 adjacent to a

and some a′ ∈ Ai−1 such that f(b) = a′. We reassign b to a by setting f(b) = a. Note that since

this adds w(b) ≤ wmax to the load of a, the resulting overload of a is at most wmax, so the level of

a does not decrease. Further, b now has level at least i and the level of every other client is either

unaffected or increased.

We now show that such an underloaded facility always exists. Let j be the largest value such that

Aj is non-empty. If Bj is empty, then all facilities in Aj are underloaded. Otherwise Bj is non-empty

and N(
⋃

0≤i≤j Bi) ⊆
⋃

0≤i≤j Ai, so
∑
b∈∪iBi w(b) ≤

∑
b∈∪iBi

∑
a∈N(b) w(a, b) ≤

∑
a∈∪iAi q(a).

Since no other clients are assigned to these facilities, at least one facility in
⋃

0≤i≤j Ai must be

underloaded.

8.5 Customizing the Framework: Minimum Makespan Ve-

hicle Routing

In this section, we demonstrate how to apply the general framework to a specific problem, Minimum

Makespan Vehicle Routing. In particular, we use the framework to achieve the following:

Theorem 27. For every ε > 0, there is a polynomial-time algorithm that, given an instance of

Minimum Makespan Vehicle Routing on a tree, finds a solution whose makespan is at most

1 + ε times optimum.

An identical result was claimed to be achieved in a recent paper by Chen and Marx [28]. In

Section 8.5.3, we compare our approach to theirs and prove that their algorithm is incorrect.

Recall that the problem is to find k tours that serve all clients in T such that the maximum

length of any tour is minimized. The vehicle routes are tours, and the vehicle load is tour length, so

the load g(H) of subgraph H is twice the length of edges in the subgraph. The condense operation

is then applied to the input tree, with δ = ε̂ = ε/c for some constant c we will define later. Leaf

clusters therefore correspond to branches of length at least ε̂
4D (load at least ε̂

2D), small clusters

have total length less than ε̂2

4 D, and edge clusters have total length in [ ε̂
2

4 D,
ε̂
4D] As described in

Section 8.4, the two steps in applying the framework are proving a structure theorem and designing
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a dynamic program.

8.5.1 Minimum Makespan Vehicle Routing Structure Theorem

We prove the following for Minimum Makespan Vehicle Routing.

Theorem 28. If there exists a solution with makespan D, then there exists a solution with makespan

at most 1 +O(ε̂)D that has simple structure.

We prove the above by starting with some optimal solution of makespan at most D and show

that after a series of steps that transforms the solution into one with simple structure, the makespan

is still near-optimal.

To ensure that each step maintains solution feasibility, we introduce the following notion of

independence. Let T ′ be a connected subgraph of T containing the depot r, and let X be a set of

subgraphs of T . We say that X is a tour-independent set with respect to T ′ if T ′∪X ′ is connected for

all X ′ ⊆ X. In particular, if T ′ is the subgraph covered by a single tour then adding any subgraphs

in X ′ creates a new feasible tour.

Lemma 45. The condense operation adds at most ε̂D to the optimal makespan.

Proof. The condense operation is equivalent to requiring every branch in B to be covered by a

single tour. We show that there is such a solution of makespan at most cost(OPT ) + ε̂D. Fix an

optimal solution, and let A be the set of tours in the optimal solution that (at least partially) cover

branches in B. We define an edge-weighted bipartite graph G = (A,B, E) where there is an edge

(a, b) if and only if tour a contains edges of branch b, and w(a, b) is the length of the tour segment

of a in branch b, namely twice the length of the edges covered by tour a. Note that ∀a ∈ A, b ∈ B,

w(a, b) ≤ ε̂D. For each b ∈ B, we define the weight w(b) to be 2`(b), and for each a ∈ A, we define

the capacity q(a) to be the sum
∑
b:a∩b6=∅ w(a, b) of all tour segments of a in branches of B. Clearly,

w(b) ≤
∑
a:a∩b6=∅ w(a, b), since these tour segments collectively cover b.

Essentially, q(a) represents tour a’s budget for buying whole branches and is defined by the length

of its tour segments in the branches that it partially covers. Further, we will only assign a branch

to a tour that already covers some edges in the branch so there is no additional cost to connect the

tour to the branch.

Applying Lemma 44 to G, we can achieve an assignment of branches to tours such that each

branch is assigned to one tour and the capacity of each tour is exceeded by at most maxb∈B w(b) ≤
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ε̂D. Further, for any tour a ∈ A, let T ′a be the corresponding subgraph visited by a excluding any

branches in B. T ′a contains r and is connected, so NG(a) ⊆ B is a tour-independent set with respect

to T ′a. Thus, the reassignment of branches creates a feasible solution in which the extra distance

traveled by each tour is at most ε̂D.

(a) (b) (c)

Figure 8.4: Figure (a) depicts a branch b ∈ B covered by several small tour segments; (b) shows
the entire branch b being assigned to the blue tour; (c) shows the result of the condense operation.

Lemma 46. Requiring all leaf clusters and small clusters to have single coverage increases the

makespan by at most 4ε̂D.

Proof. After condensing the tree, all leaf clusters have single coverage, and the effect on makespan

was covered in Lemma 45. Because of the binary tree structure, we can assign each small cluster to

a descendant leaf cluster in such a way that each leaf cluster is assigned at most two small clusters.

Since each leaf cluster is covered by a single tour, we can require this tour to also cover the clients

of the small cluster(s) assigned to that leaf cluster. This is feasible since small clusters are only

assigned to descendant leaf clusters. Furthermore, since leaf clusters have length at least ε̂
4D, we

can charge this error to the length of the leaf clusters. In particular, since any given tour covers

at most D/(2 · ε̂4D) = 2
ε̂ leaf clusters, this assignment adds at most 2 · 2

ε̂ · (2 ·
ε̂2

2 D) = 4ε̂D to the

makespan.

Lemma 47. Requiring every edge cluster to have single or split coverage adds at most 3ε̂D to the

optimal makespan.

Proof. Fix an optimal solution, SOL0. We begin by limiting the number of C-ending tours. For

every edge cluster C, let γ(C) be the subcluster of C covered by C-ending tour segments. Let

C1 = {γ(C)|C ∈ C} and let A1 be the set of tours in SOL0 that are C-ending tours for at least

one edge cluster C ∈ C. We define a bipartite graph G1 = (A1, C1, E1) where there is an edge
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(a, γ(C)) if and only if tour a is a C-ending tour, and wG1
(a, γ(C)) is the length of the tour segment

of a in edge cluster C. Note that ∀a ∈ A1, γ(C) ∈ C1, wG1(a, γ(C)) ≤ 2`(C) ≤ ε̂D. We define

the weight wG1
(γ(C)) = 2`(γ(C)), and for each a ∈ A, we define the capacity q(a) to be the sum∑

C:γ(C)∈NG1
(a) wG1

(a, γ(C)). Clearly, wG1
(γ(C)) ≤

∑
a∈NG1

(γ(C)) wG1
(a, γ(C)), since these tour

segments collectively cover γ(C). Therefore we can apply Lemma 44 to G1 to achieve an assignment

of subclusters in C1 to tours such that each subcluster is assigned to one tour and the capacity of

each tour is exceeded by at most maxγ(C)∈C1 wG1
(γ(C)) ≤ ε̂D. For any tour a ∈ A1, let T ′a be the

corresponding subgraph visited by a, excluding any edge clusters C for which a is a C-ending tour.

T ′a contains r and is connected. Since, for each tour a, NG1
(a) is a tour-independent set with respect

to T ′a, this assignment forms a new feasible solution, SOL1.

At this point each edge cluster C has at most one C-ending tour. We now address C-collecting

tours. For every edge cluster C, let γ(LC) ⊆ LC denote the set of leaf edges of C that are covered

by C-collecting tours. Let L2 = {γ(LC)|C ∈ C}, and let A2 be the set of tours in SOL1 that are C-

collecting tours for at least one cluster C ∈ C. We define a bipartite graph G2 = (A2,L2, E2) where

there is an edge (a, γ(LC)) if and only if tour a is a C-collecting tour, and wG2
(a, γ(LC)) is twice

the length of the leaves in γ(LC) covered by a. Note that ∀a ∈ A2, C ∈ C, wG2(a, γ(LC)) ≤ 2`(C) ≤

ε̂D. We define the weight wG2
(γ(LC)) = 2`(γ(LC)), and for each a ∈ A, we define the capacity

q(a) to be the sum
∑
C:γ(C)∈NG2

(a) wG2
(a, γ(LC)) of tour segments covering leaves in C-collecting

tour segments of a. Clearly, wG2(γ(LC)) ≤
∑
a∈NG2

(γ(C)) wG2(a,C), since these tour segments

collectively cover γ(LC). Therefore we can apply Lemma 44 to G2 to achieve an assignment of L2

leaf sets to tours such that each leaf set is assigned to a single tour and the capacity of each tour is

exceeded by at most maxC∈C wG2(γ(LC)) ≤ ε̂D. For any tour a ∈ A2, let T ′′a be the corresponding

subgraph visited by a, excluding all leaf sets in LC . T ′′a contains r and is connected. Since, for each

tour a, NG2
(a) is a tour-independent set with respect to T ′′a , this assignment forms a new feasible

solution, SOL2. Note that if some C-collecting tour a′ is not assigned γ(LC), it becomes a C-passing

tour.

At this point every edge cluster C has at most one C-collecting tour and at most one C-ending

tour. If C has single or split coverage, we are done. Otherwise, let a1 be the C-ending tour and

a2 be the C-collecting tour. Let j < m be the largest index such that a1 covers leaf eC,j . Since

j is the largest such index, then a2 covers all leaves eC,i for j < i < m. If a1 covers all leaves

eC,1, eC,2, ..., eC,j , then C has split coverage, and we are done. Otherwise, both a1 and a2 contain
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the backbone edges P ′C = {pC,1, . . . , pC,j} and a subset of the leaf edges L′C = {eC,1, . . . , eC,j}.

Using the same argument as above for C-collecting tours, we can assign the leaves L′C to exactly one

of these tours while adding at most maxC∈C 2`(L′C) ≤ ε̂D. If the leaves are assigned to a1, then C

ends up having split coverage, and if the leaves are assigned to a2, then the remaining tour segment

of a1 along the backbone is redundant and can be removed, resulting in every edge cluster C having

single coverage.

The resulting solution SOL3 satisfies the lemma statement.

We now prove Theorem 28.

Proof. Given Lemma 45, Lemma 46, and Lemma 47, all that remains in proving Theorem 28 is to

bound the number of clusters that a single vehicle covers clients in. To do so, we first show that

requiring the length of every C-ending or C-collecting tour segment to be at least ε̂
3

2 D adds a stretch

factor of at most 1 + ε̂ to the makespan.

Consider any edge cluster C with split coverage. Let a0 be the C-ending tour, and let a1 be the

C-collecting tour. For i = 0, 1 let Li be the length of ai within C. Suppose that some Li is less

than ε̂3

2 D. Since L0 + L1 ≥ 2`(C) ≥ 2 ε̂
2

2 D = ε̂2D, then L1−i ≥ ε̂2(1 − ε̂
2 )D and assigning a1−i to

cover the clients served by ai increases the length of a1−i within C by at most a factor of 1 + ε̂ since

Li/Li−1 ≤ ε̂. Reassigning these small tour segments within all edge clusters with split coverage

increases the length of any given tour by at most a factor of 1 + ε̂.

After all of the above steps, there exists a solution with makespan at most (1 + ε̂)(1 + 8ε̂)D.

Consider some such solution and a single tour a. Let X1 be the set of leaf clusters that a covers.

Since any such leaf cluster has length at least ε̂
4D and is entirely covered by a, |X1| is O( 1

ε̂ ). Let

X2 be the set of small clusters that a covers. Since a covers exactly those small clusters that are

assigned to leaf clusters in X1, |X2| ≤ 2|X1| and is also O( 1
ε̂ ), since each leaf cluster is assigned at

most two small clusters. Last, let X3 be the set of edge clusters C for which a is either a C-ending

tour or a C-collecting tour. Since the length of tour a is at most (1 + O(ε̂))D, and each of t’s tour

segments in X3 has length at least ε̂3

2 D, |X3| is O( 1
ε̂3 ).
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8.5.2 Minimum Makespan Vehicle Routing Dynamic Program

Having proven a structure theorem, we now present a dynamic programming algorithm (DP) that

actually finds a near-optimal solution with simple structure.

Recall, the DP traverses cluster tree T ∗ starting at the leaves and moving rootward. A configu-

ration is a vector in {0, 1, 2, ..., k}2ε̂−4

. A configuration ~x at a vertex v is interpreted as a set of tours

projected up to r in T that cover all clusters in the subtree of T ∗ rooted at v. For i ∈ {1, 2, ..., 2ε̂−4},

~x[i] is the number of tours in the set that have rounded length iε̂4D. That is, the actual tours that

correspond to the ~x[i] tours represented in the vector each have length that may be less than iε̂4D.

The algorithm categorizes the vertices into three different cases and handles them separately. The

base cases are the leaves of T ∗. Let v ∈ T ∗ be such a leaf, let Lv be the corresponding leaf cluster

in T , and let u be the vertex at which Lv meets the backbone. When the algorithm determines the

configuration for v it addresses covering both Lv as well as covering any small clusters C1, ..., Ch

that are assigned to Lv. Let `small be the length of all of the leaves of these small clusters, namely

`small = `(
⋃

1≤i≤h Ci \ backbone). Let `0 be 2(`(Lv) + `small + dT (u, r)) rounded up to the nearest

ε̂4D. The only configuration stored at v is ~x such that ~x[`0] = 1 and ~x[j] = 0,∀j 6= `0. All cluster

lengths and distances to the depot can be precomputed in linear time, after which each base case

can be computed in constant time.

The grow cases are the vertices in T ∗ that correspond to edge clusters in T . Let v ∈ T ∗ be such

a vertex, and let Cv be the corresponding edge cluster in T . Let u be the root-most vertex in Cv,

and let v′ ∈ T ∗ be the lone child vertex of v. Note that v′ may correspond to a branching backbone

vertex, a leaf cluster or another edge cluster, but by construction, v has exactly one child. Since Cv

has single or split coverage, at most two tours in any configuration at v are involved in covering the

leaves of Cv: all other tours in the configuration are Cv-passing tours, and their representation in

the configuration remains unchanged. The algorithm considers all possible rounded tour lengths `1

for a Cv-ending tour t1 for the configuration (including not having such a tour) and for each such

t1, the algorithm considers all possible (rounded) lengths `2 for an incoming Cv-collecting tour t2,

before the remaining length from covering leaves in Cv is added to the tour. Given `1 and `2, the

algorithm can easily compute the resulting rounded length `3 of t2 after covering its share of Cv

leaves. For each configuration ~x′ for child vertex v′, the algorithm determines configuration ~x for v

such that ~x[`1] = ~x′[`1] + 1, ~x[`2] = ~x′[`2] − 1, ~x[`3] = ~x′[`3] + 1, and ~x[i] = ~x′[i] otherwise. If the
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resulting ~x is feasible, it is stored at v. Since there are at most 2ε̂−4 options for `1 and `2 and at

most k2ε̂−4

configurations at v′, the runtime for each grow case is kO(ε̂−4).

Finally, the merge cases are the vertices in T ∗ that correspond to branching backbone vertices

in T as well as the depot. Let v0 ∈ T ∗ be such a vertex, and let u be the corresponding vertex in T .

Let v1, v2 ∈ T ∗ be the two children of v0 in T ∗. Every tour t0 in a configuration at v0 will either be

a directly inherited tour ti of rounded length `i from a configuration at vi for i ∈ {1, 2}, or will be a

merging of some tour t1 from v1 and some t2 from v2 with resulting length `1 + `2−2`(u, r) rounded

up to the nearest ε̂4D (recall that t1 and t2 are tours from the depot so the subtracted amount

addresses over-counting the path to the depot). For every possible (`1, `2) (including lengths of zero

to account for tours inherited by children), the algorithm considers how many tours at v0 could have

resulted from merging a tour of length `1 from v1 with a tour of length `2 from v2. Each of these

possibilities corresponds to a configuration ~xi at vi for i ∈ {1, 2} and to a merged configuration ~x at

v0. If ~x1 and ~x2 are valid configurations stored at v1 and v2, respectively, then the algorithm stores

~x at v0. There are k4ε̂−8

such possibilities, so the runtime of each merge case is kO(ε̂−8). Note that

the dynamic program only considers storing feasible configurations ~x at vertex v0 so the algorithm

maintains that there are at most k total tours.

Since for any ε > 0 the DP has a polynomial runtime, the following lemma completes the proof

of Theorem 27.

Lemma 48. The dynamic program described above finds a tour with maximum makespan at most

(1 + ε)D.

Proof. By Theorem 28, each tour covers clients in O(1/ε̂3) clusters and has accumulated c1ε̂D error

during the simplification steps, for some constant c1. Notably, each tour only covers the backbone

edges that lead to clusters in which it covers clients, since otherwise these edges can be removed.

Therefore, the number of backbone branching vertices that a tour branches at is also O(1/ε̂3). Note

that the tour might pass other backbone branching vertices without the tour itself actually branching

there. The dynamic program rounds tour lengths up to the nearest ε̂4D exactly at the clusters in

which the tour covers clients and at the backbone branching vertices at which the tour branches.

Therefore each tour incurs an error of at most ε̂4D at each of the O(1/ε̂3) times that the dynamic

program rounds the tour, for a total rounding error of c2ε̂D for some constant c2. The total increase

in the makespan is (c1 + c2)ε̂D. Setting ε̂ to ε
c1+c2

completes the proof.
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8.5.3 Previous Claim to a Minimum Makespan PTAS

The intuition behind our result is similar to that of [28]: since the main challenge arises from having

to account for small tour segments, modify the instance so that only large tour segments need to

be accounted for. Because each tour can only have a small number of these larger tour segments,

the algorithm can essentially guess all possible ways that the segments can be joined to form tours.

The difficulty with this approach is in showing that this type of grouping of small segments into

large segments can be done without incurring too much error. As did [28], we also observed that

assuming each subtree with length less than εcost(OPT ) to be covered by a single tour increases the

makespan by O(εcost(OPT )), where cost(OPT ) is the optimum makespan.

The presented argument of Theorem 2.1 [28] (which their PTAS requires) depends on the follow-

ing argument, though they use different terminology: Let Tv denote the subtree rooted at v. The

input can be safely modified2 so that there exists a set of vertices CR such that the subtrees rooted

at vertices in CR collectively partition the leaves of the tree and such that CR has the following

properties:

1. For each v ∈ CR, Tv is small : for each child u of v, the length of Tu is less than εcost(OPT ).

2. For each v ∈ CR, Tv is large: the length of Tv is at least εcost(OPT ).

3. The vertices of CR are independent : no two distinct vertices in CR have an ancestor-descendant

relationship.

Each of these properties is vital to the proof of Theorem 2.1 [28]: Property 1 bounds the solution

error, Property 2 ensures polynomial runtime, and Property 3 ensures solution feasibility.

Given such a set CR, Chen and Marx [28] prove that there exists a near-optimal solution in

which each branch of a subtree rooted at a vertex in CR is covered by a single tour. They do so

by showing that an optimal solution SOL can be transformed into a near-optimal solution SOL′ in

which each such branch is wholly covered by one of the tours that partially covers it in SOL. This

proof depends on Property 1 to bound the resulting error of this transformation and on Property

3 to maintain solution feasibility while independently reassigning branch coverage. A dynamic

programming strategy can then be used to find such a near-optimal solution, which requires Property

2 in order to achieve a polynomial runtime.
2Safe graph modifications are those that result in an equivalent instance and consist of subdividing a single edge

e0 into two smaller edges e1 and e2 such that `(e1) + `(e2) = `(e0).
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The problem, though, is that no such set CR is guaranteed to exist. In the process of modifying

the input graph to ensure that their proposed set CR satisfies Property 3, they end up with a set

that no longer satisfies Property 2.

In fact, it is not difficult to show the following.

Lemma 49. There exist instances in which no such set CR as described above exists.

Proof. We describe an instance that neither admits such a set CR nor can be modified using safe

graph modifications into an equivalent instance that admits such a set. Let T be a tree with root r

that consists of a central path P = r, v1, v2, ..., vl, side subtrees Ti for i ∈ {1, 2, ..., l} such that the

root of Ti is a child of vi, and main subtree Tl+1 whose root vl+1 is a child of vl. Let edges (vi, vi+1)

along P have small nonzero lengths, let each side subtree Ti have total length less than εcost(OPT )
2

and let the main subtree Tl+1 have total length at least εcost(OPT )
2 (see Figure 8.5). In order to

satisfy Property 2, no vertex v in any side subtree Ti for 0 < i ≤ l can be in CR, since the subtree

rooted at such a v is not large enough. So, since the subtrees rooted at vertices in CR partition the

leaves of T , at least one vertex in P must be in CR to cover the leaves of trees Ti. At the same

time, in order to satisfy Property 3, at most one vertex in P can be in CR. But, since main subtree

Tl+1 is large, no choice of vertex in P can satisfy Property 1.

Note that the side and main subtrees are general, and can be assumed to be defined after any

safe modifications occur. Additionally, if any edges of P are subdivided, the argument above clearly

still holds.

Figure 8.5: Counterexample to [28].
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The counterexample in the above proof allows an arbitrarily complex and heavy main subtree

Tl+1, so it cannot be argued that only trivial examples fail to admit a set CR. In particular, this

pattern of light side subtrees can continue throughout the main subtree, so these difficult areas

cannot be easily dealt with separately.

To the best of our knowledge, there is no straightforward way to salvage the theorem used in [28].

In fact, the crux of the problem is highlighted by the absence of such a set CR: How can the input

be simplified so as to balance error with runtime given that coverage choices are not independent?

Our approach uses similar intuition to that of [28], but manages to successfully address the critical

challenges of the problem where prior attempts have fallen short.

Rather than partition the tree uniformly into subtrees, we recognize that the behavior of solutions

looks different near the leaves than it does along internal vertices. As such, our framework partitions

the entire tree into three different types of clusters (see Figure 8.1b). Leaf clusters are defined

greedily so as to satisfy properties similar to 1-3 above and serve to anchor the cluster structure.

Small clusters are internal clusters with weight (and frequency) small enough to be effectively ignored

while incurring only a small error that can be charged to the leaf clusters. The remainder of the

tree is grouped into edge clusters, with properties similar to 1 and 2 above: their weight is small

enough to assume, without incurring too much error, a simple structure to the way that tours

cover them, yet they are large enough so that any tour can only cover a bounded number of them.

Though the edge clusters themselves do not maintain independence, we show a weaker, sufficient

property exhibited by tour segments in these clusters that ensures tour connectivity while treating

edge clusters independently.

8.5.4 Distance-Constrained Vehicle Routing

Recall that the Distance-Constrained Vehicle Routing problem is to minimize the number

of tours of length at most D required to cover all clients. Since it is the Minimum Fleet Budget

problem associated with Minimum Makespan Vehicle Routing, the following bicriteria PTAS

follows as a corollary to Theorem 27.

Theorem 29. Given an instance of Distance-Constrained Vehicle Routing on a tree, if there

exists a solution with k tours of length at most D, then for any ε > 0, there is a polynomial-time

algorithm that finds a solution with k tours of length at most (1 + ε)D.



147

8.6 Applications and Extensions

So far, we have introduced a framework and shown how to customize it to a specific problem

(Minimum Makespan Vehicle Routing). In this section we demonstrate the flexibility and

usefulness of our framework by showing how to customize it to seemingly very different problems

as well as to the multiple-depot setting. We give a few examples in this section, but we believe the

framework can serve as a tool for applications beyond those we mention.

We first use Capacitated Vehicle Routing as an example of a problem whose customization

is very similar to that of Minimum Makespan Vehicle Routing. We then use School Bus

Routing as an example of customizing the framework to a very different type of problem. Finally,

we describe how the framework can be extended to accommodate the multiple-depot setting.

8.6.1 Capacitated Vehicle Routing

Recall that in Capacitated Vehicle Routing, each tour can cover at most Q clients and the

objective is to minimize the sum of the tour lengths. This problem is quite different from Minimum

Makespan Vehicle Routing: there is no longer a constraint on the number of tours or the length

of each tour, and the solution cost depends on all tours rather than just the largest one. Yet we

show in this section that these two problems have surprisingly similar framework customizations.

Because Capacitated Vehicle Routing is a Minimum Fleet Budget problem, we must ap-

ply the framework directly to the associated Min-Max Vehicle Load problem, Min-Max Client

Capacity that seeks to minimize the maximum client capacity, Q, required of a vehicle given a

bound k on the sum of tour lengths.

Customizing the framework to Min-Max Client Capacity is nearly identical to Minimum

Makespan Vehicle Routing, except that vehicle load is the number of clients, rather than

length, and the fleet budget is the sum of the tour lengths, rather than the number of vehicles.

Correspondingly, we define the load g(H) of a subgraph H to be the number of clients in the

subgraph. Otherwise, the solution simplification and analysis proceed as in Minimum Makespan

Vehicle Routing, noting that because the objective function is the sum of tour lengths, assigning

an entire branch to be covered by a single tour never increases the fleet budget.

The Min-Max Client Capacity DP configuration is a vector in {0, 1, 2, ..., n}ε̂−4

, where a

configuration ~x at a vertex v is interpreted as a set of tours in T that collectively cover all clusters
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in the subtree of T ∗ rooted at v. Now, however, for i ∈ {1, 2, ..., ε̂−4}, ~x[i] is the number of tours in

the set that have rounded number of clients iε̂4Q. That is, the actual tours that correspond to the

~x[i] tours represented in the vector each cover at most iε̂4Q clients. For each of these configurations,

the DP stores the minimum total length of a solution that is consistent with the configuration.

The resulting PTAS for Min-Max Client Capacity gives the following bicriteria result for

Capacitated Vehicle Routing as a corollary.

Theorem 30. Given an instance of Capacitated Vehicle Routing on a tree, if there exists a

solution of total length k and capacity Q, then for any ε > 0, there is a polynomial-time algorithm

that finds a solution of total length k and capacity at most (1 + ε)Q.

8.6.2 School Bus Routing

A rather different vehicle load measure is maximum client regret : the maximum difference between

the time a client is actually visited and the earliest possible time that client could have been visited.

Note that maximum client regret is always achieved for the final client visited by a vehicle. It is

therefore convenient to assume the routes to be paths. Recall, the regret of a u-to-v path, P , is the

difference between the length of the path and the distance from u to v, namely `(P )− dT (u, v).

The Min-Max Regret Routing problem, given a number of vehicles, k, is to cover all clients

with k paths starting from the depot, such that the maximum regret of a path is minimized. Here,

vehicle load is the regret of the vehicle’s path and fleet budget is the number of vehicles. The related

Minimum Fleet Budget problem, the School Bus Routing problem, given a regret bound R,

is to find the smallest number of paths of regret at most R that each start at the depot, r, and

collectively cover all clients.

In this section, we sketch how to customize our framework to the Min-Max Regret Routing

and achieve the following.

Theorem 31. For every ε > 0, there is a polynomial-time algorithm that, given an instance of

Min-Max Regret Routing on a tree, finds a solution whose maximum regret is at most 1 + ε

times optimum.

Both a bicriteria approximation scheme and a 2-approximation for the School Bus Routing

problem follow as corollaries.



149

Theorem 32. Given an instance of the School Bus Routing problem on a tree, if there exists

a solution consisting of k paths of regret at most R, then for any ε > 0, there is polynomial-time

algorithm that finds a solution consisting of k paths of regret at most (1 + ε)R.

Theorem 33. There is a polynomial-time 2-approximation for the School Bus Routing problem

in trees.

Proof. [49] show that k paths of regret at most αR can be replaced with at most dαek paths each

of regret at most R. Applying this to Theorem 32 completes the proof.

The ability of our framework to capture a regret-based load function demonstrates the flexibility

of the framework and gives evidence for its potential application to problems outside those mentioned

in this chapter.

It is useful (and equivalent) to assume that each vehicle path ends at the depot rather than begins

there; we assume each vehicle starts at some origin vertex and travels to the depot r, possibly taking

some detours on branches along the way. Note that in tree instances, these regret detours exactly

correspond to the regret accumulated by the vehicle, whereas traveling along the origin-to-depot

path is free. The biggest challenge with applying the framework to Min-Max Regret Routing

is the asymmetry of these two aspects of the path.

Structure Theorem

For Min-Max Regret Routing, defining a load function for subgraphs is not as straightforward

as for other problems, as the regret accumulated by a path covering subgraph H is highly dependent

on where it starts and ends. If the vehicle is traversing H on its way to the depot, then some of H

can be covered for free, namely the intersection of H with the shortest path from the vehicle’s origin

to the depot. For this reason, we require g(·) to take two additional parameters, vertices u, v ∈ H,

and define g(H,u, v) to be the minimum regret required for a path to cover H, given that u and v

are respectively the first and last vertex in H on the path. This means that u and v are each either

end points of the path or on the boundary of H.

Let ε̂ = ε/c for some constant c we will define later, and δ = ε̂2. We first update the condensing

and clustering steps to use this extended load function. For a branch b that is a u-branch at v, the

branch load is measured as g(b, v, v) when applying the condense operation. That is, the regret

accumulated by a vehicle covering b and starting outside of b, or equivalently, twice the length of
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b. Leaf clusters therefore correspond to branches of length at least ε̂2

4 D (i.e. load at least ε̂2

2 D).

Let the leaf edges of a woolly subedge be called the wool. Every woolly subedge can therefore be

partitioned into backbone and wool. The load of a woolly subedge e = (u, v) is defined as g(e, u, v),

which is twice the length of the wool of e (i.e. twice the sum of the leaf edge lengths). Therefore,

small clusters are the woolly edges that have total wool length less than ε̂3

4 D. Edge clusters have

total wool length in [ ε̂
3

4 D,
ε̂2

4 D] and partition the remaining woolly edges.

The condense operation increases the regret of any path by at most 2ε̂2D. If any path starts in a

branch b that is condensed, it can be assumed instead that the branch starts at the root-most vertex

of b. This adds at most ε̂2D regret to any path, since each path has exactly one starting point.

The condensed branches are now all covered by detours, so the reassignment argument is equivalent

to Minimum Makespan Vehicle Routing, adding at most an additional ε̂2D regret. Without

loss of generality, we assume that all paths start at the top (rootmost vertex) of some leaf cluster:

paths are already assumed to start on the backbone, and the start point can always be extended to

a descendant vertex without increasing the path’s regret.

As in Minimum Makespan Vehicle Routing, small clusters can be assigned (and charged)

to descendant leaf clusters such that the vehicle covering a given leaf cluster also covers at most two

small clusters. We have now accounted for the single coverage of leaf and small clusters.

Next, consider some edge cluster C. C-passing and C-collecting routes here consist both of

through paths that start in a descendant of C as well as through detours that do not start in a

descendant of C but extend through C to descendant clusters (see Figure 8.6). As before, regret

can be reassigned so that each edge cluster is covered by at most one C-collecting route, adding at

most ε̂2

2 D regret to any path, since edge clusters have total wool length at most ε̂2

4 D.

Furthermore, if the largest amount of regret accumulated in C by a C-ending route is at most

ε̂D, then regret can be reassigned to a single C-ending route. Alternatively, if this amount is more

than ε̂D and is accumulated by C-ending route t, then all regret from other C-ending routes can be

charged to t’s regret in C, since this adds at most ε̂2

2 D to the regret of t.

Using proofs analogous to those in Section 8.5 we can show that there exists a near-optimal

solution such that small clusters and leaf clusters have single coverage, and edge clusters have split

coverage. All that remains to proving the structure theorem is to show that there exists such a

solution such that each vehicle covers clients in a bounded number of clusters.

Bounding the number of leaf clusters and small clusters a vehicle covers is straightforward: leaf
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(a) (b)

Figure 8.6: (a) The red path is a C-ending path and the green path is a C-collecting through path
(b) The blue path is a C-passing through path and the purple path is a C-passing through detour.

clusters have large regret so a vehicle can only afford to cover a small number of them, and each

vehicle covers at most 2 small clusters for every leaf cluster. Edge clusters with either single coverage,

or balanced split coverage (in which both vehicles cover a large fraction of the cluster’s regret) are

similarly straightforward to handle (see proof of Theorem 28). Moreover, if C has split coverage and

the C-ending path has very small regret in C (e.g. less than ε̂4D), its clients can be reassigned and

charged to the C-collecting route, which must have a relatively large regret and can afford to singly

cover C.

The difficult case is when C has split coverage and the C-collecting path has very small regret

in C. Unlike in Theorem 28, even though the C-ending path has relatively large regret, it cannot

afford to singly cover C because the backbone may be arbitrarily long. We say that C has dispersed

coverage in this case and bound the number of times that any given vehicle is the C-collecting route

for a cluster with dispersed coverage.

Consider some woolly edge e, and let {C1, C2, ..., Cl} be the clusters along e that have dispersed

coverage, ordered such that Ci+1 is rootward of Ci for all i. Though the C1-ending path cannot

afford to cover the clients covered by the C1-collecting path in C1, it can afford to cover the clients

covered by the C2-collecting path in C2, since it is necessarily passing through C2 on the way to the

depot. In general, the Ci-ending path can cover the clients covered by the Ci+1-collecting path in

Ci+1. Finally, we can assign woolly edge e to a descendant leaf cluster CL in such a way that each

leaf cluster is assigned at most two woolly edges, and charge the regret of the C1-collecting path

in C1 to the vehicle that covers CL. This propagation reassignment only increases the maximum
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regret of a vehicle by a (1 + ε̂) factor. This bounds the number of times a given vehicle serves as

a C-collecting path in a cluster C with dispersed coverage: the small regret accumulated in C is

charged to the much larger regret the vehicle covers in a descendant cluster, and the vehicle can

only cover such a large amount of regret a bounded number of times.

Dynamic Program

The dynamic program for the School Bus Routing problem must account separately for the

through paths and regret detours. For through paths, a configuration stores the (rounded) regret

already accumulated, whereas for regret detours a configuration stores the (rounded) total detour

length. Of note, at branching points a regret detour can be merged with a through path or with

another regret detour, but two through paths cannot be merged together.

The bigger challenge with adapting the DP is with route projection: a regret detour can be

arbitrarily far from the root, so the DP cannot project the detour all the way to the root. We

address this by setting breakpoints along the tree such that for every vertex v, there is an ancestor

breakpoint within a distance R, and such that no two breakpoints are within εR of each other.

Breakpoints can be designated greedily. The DP then stores rounded regret detours projected

to the next rootward breakpoint. By construction, when two detours are merged, they agree on

breakpoint, and twice the distance to the breakpoint can be subtracted, as with merging a detour

and a through path. When a breakpoint is encountered by the DP, all regret detours are projected

to the next rootward breakpoint. This adds O(εR) rounding operations to any given path, and is

therefore negligible.

8.6.3 Generalizing to Multiple Depots

In this section, we sketch how our framework can be extended to allow for multiple depots. We

illustrate this extension using Minimum Makespan Vehicle Routing, but note that it can be

applied to multiple-depot variants of other problems too. Here, each tour must start and end at the

same depot, and a client can be covered by a tour from any depot.

Theorem 34. For every ε > 0 and ρ > 0, there is a polynomial-time algorithm that, given an

instance of ρ-Depot Minimum Makespan Vehicle Routing on a tree, finds a solution whose

makespan is at most 1 + ε times optimum.
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Structure Theorem

Label the depots {r1, r2, ..., rρ}, and, without loss of generality, assume each depot is a leaf and that

the tree is rooted at some arbitrary vertex r0, rather than at a depot. The clustering is then done,

with respect to r0, identically to the single-depot setting, with δ = ε̂ to be defined later, and with

the load g(H) of subgraph H again being defined to be twice the length of edges in H.

It is more convenient to assume that the depots are outside of the clusters. During the clustering

process, if a depot ri is in a cluster C with root-most vertex v, then a leaf edge (v, r′i) of length

dT (ri, v) is added to v, padded with zero length edges, to maintain a binary tree. The depot is then

assumed to be located at r′i, and thus outside of C (see Figure 8.7). This modification adds at most

ε̂D to the optimal makespan, to account for the potential extra distance that tours from ri must

now travel to reach r′i. Otherwise, the increase to makespan caused by condensing is equivalent to

Lemma 45 of the single-depot setting.

To show that requiring all small clusters to have single coverage does not increase the optimal

makespan by too much is more challenging than in the single-depot setting. Recall that with only

one depot, the load from a small cluster CS could be charged to a descendant leaf cluster CL, because

the tour tL that covers CL must pass through CS on the way to the root depot. This is not true for

the multi-depot setting.

Observe though that if CS is incident to a woolly branch b (a branch of the condensed tree) that

contains no depots, then the load from CS can be charged to a leaf cluster CL in b, since the tour

covering CL must leave branch b to reach its depot, and therefore either pass through or abut CS .

Such small clusters can be assigned to such leaf clusters so that each leaf cluster is charged for at

most three small clusters, adding at most 4ε̂D to the makespan, as in Lemma 46.

What remain are the small clusters not incident to such depot-free branches. We claim that

there are at most 2ρ such clusters. Note that since we moved depots to be outside of clusters,

the cluster tree T ∗, resulting from contracting clusters, now has vertices for each cluster, depot,

branching point, and the root. Consider the meta tree structure T ∗meta induced by the depots and

the root (see Figure 8.8b). There are fewer than 2ρ edges of T ∗meta since it is a binary tree with

depot leaves. Consider some edge emeta of T ∗meta. If emeta contains more than one small cluster (i.e.

corresponds to a subgraph of T ∗ with more than one small cluster vertex), those small clusters must

be incident to depot-free branches. Otherwise, emeta contains at most one small cluster. Therefore,
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there are at most 2ρ small clusters not incident to depot-free branches, and requiring them to have

single coverages increases the optimal makespan by at most ρε̂2D.

Figure 8.7: A four-depot clustering example showing depots moved outside of clusters. Leaf clusters
are yellow, small clusters are blue, and edge clusters are green.

(a) (b)

Figure 8.8: (a) Cluster tree T ∗ corresponding to Figure 8.1; (b) Corresponding meta tree T ∗meta.
Meta edges are shown as thick gray lines.

Last, the definition of split coverage needs to be adjusted to accommodate multiple depots. In

particular an edge cluster C may have C-ending tours from each end. We let top C-ending tours
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denote those that enter C from the root-ward end and bottom C-ending tours denote those that enter

C from the leaf-ward end. In the multi-depot setting, the analogous definition of split coverage for

an edge cluster C is that the leaves of C along the backbone can be partitioned into three continuous

intervals, such that if the root-most interval is nonempty it is covered by a single top C-ending tour,

if the middle interval is nonempty it is covered by a single C-collecting tour, and if the leaf-most

interval is nonempty it is covered by a single bottom C-ending tour. Using analogous analysis to

Lemma 47 shows that requiring edge clusters to have split coverage adds at most 5ε̂D to the optimal

makespan.

It can then be shown that there is a solution of makespan (1 +O(ε̂+ ρε̂2))D such that each tour

covers clients in O( 1
ε̂3 + ρ) clusters. To prove the structure theorem, it then suffices to set ε̂ = ε

cρ for

an appropriate constant c.

Dynamic Program

To adapt the dynamic program for multiple depots, we first note that the configurations must now

account for tours to each depot. The challenge is that our single-depot dynamic program depends

on projecting vehicle routes up the tree, toward a common depot. In particular, this was the same

direction as the DP traversal itself. In the multiple-depot setting, the DP must move away from

depots, but it cannot afford to guess which clients to project a tour toward. To address this issue,

for each depot ri we assign a sub-root r̄i to be the root-most vertex that is within a distance D/2

of ri. In particular, this sub-root is the root-most vertex that can possibly be included in any tour

from ri.

When the DP introduces a new tour to depot ri, it is then projected up to r̄i instead of down to

ri. This includes when the DP processes ri itself: a configuration describes how many tours start

(and end) at ri, and they are all projected from ri up to r̄i (see Figure 8.9a). Two depot-ri tour

segments t1 and t2 can only be merged at some vertex v if `(t1)+`(t2)−4dT (v, r̄i) ≤ (1+ε)D. After

merging, they are stored as a depot-ri tour segment of length `(t1)+`(t2)−2dT (v, r̄i) rounded up to

the nearest ε̂4D (see Figure 8.9b). If at some vertex v, the (rounded) projected tour length reaches

2dT (v, r̄i) + (1 + ε)D, the projected subtour from v to r̄i is removed and the tour ends at v (see

Figure 8.9c). In other words, v is the root-most vertex reached by that tour. The overall runtime is

nO(ρε−8).
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(a) (b) (c)

Figure 8.9: (a) Tours to ri are projected to r̄i; (b) Tours to ri from (a) merged at vertex v and
projected to r̄i; (c) Tour to ri capped at vertex u once tour length reaches (1 + ε)D.



Chapter 9

Conclusion

To conclude this thesis we will first discuss some questions that remain unanswered by our work

that may be candidates for future research in this area. We then give some closing remarks.

9.1 Open Problems

Here we describe opportunities for future work in this line of research. The results presented in

this thesis contribute to the understanding of approximation algorithms for facility-placement and

vehicle-routing problems in metrics that model transportation networks. But many open problems

remain, particularly in the space between bounded and general parameters as well as the space

between simple and general metrics.

9.1.1 Capacitated r -Domination

We showed that when distance r and maximum capacity q̂ are bounded, there is a PTAS for

Capacitated r -Domination in planar graphs. This raises the question as to whether such a PTAS

can be found for general capacities and distances. The runtime of our algorithm is exponential in

both r and q̂, so it is unlikely that a similar approach would yield such a PTAS. In fact, even when

r = 1, Capacitated Domination is W[1]-hard for planar graphs when parameterized by treewidth

and solution size [38]. Additionally, lower bound results for both Dominating Set [78] and r -
Domination [24] show that under the Strong Exponential-Time Hypothesis (SETH), the runtime

for these problems has an exponential dependence on branchwidth. For a Baker-like approach to
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work, the branchwidth of each slab would have to be independent of the maximum capacity.

Furthermore, it has been shown that under the Exponential-Time Hypothesis (ETH), (unca-

pacitated) r -Domination in planar graphs cannot be solved in f(k)no(
√
k) time, where k is the

solution size [80]. This implies that an EPTAS for even the uncapacitated version of the problem

would refute ETH [48]. A recent bicriteria EPTAS was given for r -Domination in planar graphs

that, if there exists a set of k vertices that r -dominates V , finds a set of (1 + ε)k vertices that

(1 + ε)r -dominates V [48]. A natural question is whether such a bicriteria approximation scheme

exists for the capacitated version.

Another open question is whether a PTAS exists for Capacitated r -Domination (or even

Capacitated Domination) with arbitrary vertex weights in planar graphs. Our algorithm can

be straightforwardly extended to accommodate bounded vertex weights. To achieve this, we pay

a factor of ŵ in the treewidth so that we can afford to replace an overloaded vertex of weight one

with an underloaded vertex of weight ŵ. The challenge with extending this strategy to arbitrary

vertex weights is that the underloaded vertices may be arbitrarily more expensive than the over-

loaded vertices, and it is unclear how to charge for the smoothing process. One idea is to design

a more nuanced smoothing process that considers the weights of the vertices chosen in the search.

Alternatively a careful rounding strategy may lead to a bicriteria result in which either the capacities

can be exceeded or the demands can be under-covered by a small (bounded) amount.

More generally, it remains to explore what other (hard)-capacitated problems can be addressed

with extensions to Baker’s framework.

9.1.2 Capacitated Vehicle Routing

Fixed Capacities

For fixed capacity Q, we presented a QPTAS for Capacitated Vehicle Routing in planar graphs,

which we then improved to a PTAS. We also gave a PTAS for Capacitated Vehicle Routing in

graphs of bounded highway dimension. A natural question is, what other graph families have such

approximation schemes. As shown in Chapter 3, we have reduced this question to determining which

graph families can be embedded into graphs of bounded treewidth while approximately preserving

distances, up to a given error allowance.

Our approach, however, depends on a dynamic program in which the degree of the runtime
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polynomial depends on Q. One question is whether, for some non-trivial family of graphs, there

exists a fixed-parameter approximation scheme when the problem is parameterized by Q. That

is, can a solution that is within a (1 + ε) factor of optimal be found in f(Q)nc time where c is

independent of Q (but can depend on ε) and f is an arbitrary function independent of n. This is

not known, even for trees.

Additionally, although the approximation schemes we present take polynomial time, they are not

efficient. That is, the runtime of our algorithm is bounded by a polynomial whose degree depends

on ε. Can this dependence on ε be avoided? It is an open question as to whether efficient PTASs

exist.

General Capacities

In Chapter 7 we presented a 4/3-approximation algorithm for Capacitated Vehicle Routing

with arbitrary capacities and splittable demands in trees. This is the best known approximation

ratio and, as shown, is tight with respect to the best-known lower bound. Improving on this ratio

would require finding a tighter lower bound. Alternatively, it is unknown whether there is a lower

bound in the approximation ratio for the splittable-demand setting. As for the unsplittable-demand

setting, recall that there is a 2-approximation known for trees [74] and it is NP-hard to approximate

to better than a 3/2 factor [52]. This leaves the question, does there exist an α approximation for

some α ∈ [3/2, 2)?

Even though it is not known whether there exits a PTAS for splittable-demand Capacitated

Vehicle Routing in trees, in Chapter 8 we present a bicriteria PTAS for trees, in which capacities

are allowed to be exceeded by a (1 + ε) factor. One question is whether such bicriteria polynomial-

time approximation schemes can be found for other families of graphs. Even extending to graphs of

bounded treewidth would be significant.

Recall that for Capacitated Vehicle Routing in the Euclidean plane, there is a QPTAS

known for general capacities [36]. Can an analogous QPTAS (or even bicriteria QPTAS) be designed

for other metrics such as planar or bounded-treewidth graphs? The challenge with extending the

approach used for R2 is that it depends on polylogarithmically bounding the number of times a

solution is rounded by bounding the recursion depth (or depth of the dynamic programming tree).

It is not straightforward to do so for other metrics. In Chapter 8, we were able to bound the number

of times a solution is rounded in tree instances by instead bounding the complexity of the solution
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structure. Perhaps such a strategy could extend to other metrics.

9.1.3 Multiple Constraints

In Chapter 8 we presented a framework that can be applied to a wide variety of vehicle and fleet

constraints. But what if multple constraints are imposed? For example, what if both vehicle

capacities and vehicle distance constraints are considered? Nagarajan and Ravi showed that in

general metrics, given an α-approximation for Distance-Constrained Vehicle Routing, an

(α + 1)-approximation for the splittable-demand setting and an (α + 2)-approximation for the

unsplittable-demand setting of Distance-Constrained Capacitated Vehicle Routing are

straightforward [84]. That is to say that the current best-known approximations for Distance-

Constrained Vehicle Routing are so large that the extra cost of adding capacity constraints

is negligible. But, as these approximation ratios are improved, thoughtful strategies for combining

such constraints will become necessary.

9.2 Closing Remarks

Finally, recall that the goal of this thesis is to design provable approximation guarantees for facility

placement and vehicle-routing problems with real-world constraints in metrics that model real-world

transportation metrics. With this in mind, we would like our work to have real-world applicability.

As is, our results are of theoretical importance, but the runtimes are not necessarily practical.

We believe, however, that the ideas introduced here can be used to strengthen real-world solutions.

In particular, careful consideration of the specific, often simple, structure of transportation networks

can greatly improve algorithm performance.

Finally, our methods can also be used in conjunction with heuristic approaches. Our approxi-

mation algorithms offer provable performance guarantees with which to better evaluate heuristics,

and the insights from our algorithms can be used to inform heuristic design.
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