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Abstract of “Semantic Three-Dimensional Understanding of Dynamic Scenes” by Zhile Ren, Ph.D.,

Brown University, May 2018.

We develop new representations and algorithms for three-dimensional (3D) scene understanding

from images and videos. To model cluttered indoor scenes, we introduce object descriptors that

account for camera viewpoint, and use structured learning to perform 3D object detection and

room layout prediction. We further boost accuracy by using latent support surfaces to capture

style variations of objects and help detect small objects. In outdoor environments, we incorporate

semantic segmentation in a cascaded prediction framework to more accurately model the 3D scene

flow of moving objects.

We first propose a cloud of oriented gradient (COG) descriptor that links the 2D appearance and 3D

pose of object categories, and thus accurately models how perspective projection affects perceived

image boundaries. We also propose a Manhattan voxel representation which better captures room

layout geometry. Effective classification rules are learned via a structured prediction framework.

Contextual relationships among categories and layout are captured via a cascade of classifiers.

Furthermore, we design algorithms that use latent support surfaces to better represent the 3D

appearance of large objects, and provide contextual cues to improve the detection of small objects.

Our model is learned solely from annotated RGB-D images, but nevertheless its performance

substantially exceeds the state-of-the-art on the SUN RGB-D database.

We then focus on outdoor scene flow prediction. Many existing approaches use superpixels for

regularization. We instead assume that scenes consist of foreground objects rigidly moving in

front of a static background, and use semantic cues to produce pixel-accurate scene flow estimates.

Our cascaded classification framework accurately models scenes by iteratively refining semantic

segmentation masks, stereo correspondences, 3D rigid motion estimates, and optical flow fields. Our

method has state-of-the-art performance on the challenging KITTI autonomous driving benchmark.
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Chapter 1

Introduction

Scene understanding started with the goal of building machines that can see like humans to infer

general principles and current situations from imagery, but it has become much broader than that [1].

In recent years, algorithmic advances have enabled many real-world vision applications, such as large

scale scene classification [103, 155], object detection [43, 49], semantic scene parsing [66, 156]

and data-driven computational photography [116, 68]. Nevertheless, those tasks remain notoriously

difficult [1], especially the problem of 3D scene understanding.

3D scene understanding is one of the core tasks of computer vision, and seminal works on

geometrical reconstruction and visual SLAM date back to decades ago [28, 105, 142]. With 3D

understanding of scenes, intellegent agents such as robots or autonomous cars could better interact

with and reason about objects in dynamic environments. However, acquiring 3D data and creating

benchmarks has been challenging because 3D sensing technologies may be expensive or hard to

use in general environments. In recent years rapid progress of range sensing technology, such

as the Microsoft Kinect and Velodyne LiDAR systems, opened up exciting research on large-scale

learning with RGB-D datasets [70, 40, 118, 117, 16, 2]. Training on those dataset, there has been

progress on several challenging 3D understanding tasks such as object classification [123], point

cloud segmentation [91], object proposal [19] and geometric reconstruction [122]. In this thesis, we

focus on semantic 3D scene understanding of indoor and outdoor environments and propose new

representations and learning frameworks to perform various 3D scene parsing tasks.

1
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1.1 3D Indoor Scene Understanding

Indoor scene understanding is a core task for many exciting real-world applications such as robotics,

virtual and augmented reality, and real-estate. The ultimate goal of holistic indoor scene understand-

ing is to accurately answer questions like “Where is the chair?”, “What is on the table?”, “What is

the layout of this room?”, and so on. However, scene understanding in cluttered indoor scenes is

very challenging because objects are occluding each other and have different shapes or styles. With

depth sensors providing extra 3D knowledge of indoor scenes, we introduce novel algorithms for

3D indoor scene understanding. In particular, we focus on two of the most important tasks: object

detection and room layout prediction.

Figure 1.1: Comparing to traditional 2D bounding box annotations for indoor objects, 3D cuboid
annotations contain richer information about object location, size, and orientation.

Describing objects by 2D bounding boxes has limited power in real-world vision and robotics

applications. For example, when presented only with 2D bounding box detections for indoor objects

(Fig. 1.1 left), robots are unable to perform complex environmental interactions like determining

where to place objects, navigating, and figuring out contextual relationship among objects. Recently,

3D cuboids are increasingly used as a new way to represent objects in visual scenes. 3D cuboid

annotations contain richer information about object orientations, physical sizes, and occupancy

areas in the real world. The task of object detection using 3D cuboids has become a new standard in

popular indoor and outdoor scene understanding benchmarks [118, 40].

Indoor objects in 3D environments are placed in various poses, and thus camera-captured objects

in images vary widely in appearance. 3D objects also have diverse styles and shapes, and it is a
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very challenging task to design reliable and accurate object descriptors. Moreover, due to sensor

noise and the complexity of cluttered indoor environments, room layout prediction algorithms are

very sensitive to outliers and thus usually inaccurate. In this thesis, we aim to solve those problems

by introducing cloud of oriented gradients (COG), a view-invariant 3D descriptor for indoor object

detection. Building on this, we design Manhattan Voxels to predict room layouts efficiently, and

use latent support surfaces to encode object styles as well as help detect small objects. Finally, we

design a cascaded prediction framework to reason about contextual relationship among objects, and

achieve state-of-the-art performance on the SUN RGB-D dataset [118].

1.2 Motion Estimation in Outdoor Scenes

Given a video sequence of scenes with moving objects, the task of motion estimation aims to estimate

the moving direction and magnitude of each pixel. This pixel-wise motion field is called optical

flow. 2D motion estimation has a variety of applications in different areas of computer vision such

as object tracking and image segmentation. However, there is a growing need to estimate accurate

3D motions, especially in real-world autonomous driving applications.

Figure 1.2: With stereo pairs of two consecutive frames as input, scene flow is the 3D motion for
each pixel in the image [138].

The dense 3D motion of all points in an observed scene is called the scene flow. The task is

challenging because scene flow models usually involve very large numbers of variables. Moreover,

real-world scenes contain dynamic motions, and it is difficult to estimate per-pixel motion effectively
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without understanding the semantics of the scene. In this thesis, we use semantic segmentation to

separate foreground and background regions, and use a cascaded prediction approach to efficiently

model segmentation, 3D geometry, and motion. Our semantic scene flow approach achieves com-

parable performance with state-of-the-art algorithms on the challenging KITTI autonomous driving

benchmark [40].

1.3 Overview of Contributions

In this thesis, we design new representations and algorithms for 3D scene understanding from

cluttered indoor RGB-D images and outdoor video sequences. We introduce novel representations

for 3D object detection systems that localize objects with cuboids and describe room layouts by

Manhattan structures. Using view-invariant 3D features, we capture 3D style variations and design

systems to detect small objects by modeling support surfaces. Finally, we develop cascaded pre-

diction frameworks to model 3D contextual relationships and enable rapid understanding of scene

properties including depth, motion, and segmentation.

Figure 1.3: An overview of major contributions of this thesis. We introduce novel 3D descriptors for
3D object detection and use semantic segmentation to improve 3D scene flow estimation. Through
this thesis we design cascaded prediction frameworks to model contextual relationship among objects
and perform accurate and efficient inference on complex graph structures.

In Chapter 2, we introduce backgrounds of 3D visual scene understanding tasks related to this

thesis, especially object detection, optical flow and stereo matching. We describe basic concepts
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and survey related works for each computer vision task.

In Chapter 3, we introduce cloud of oriented gradients (COG), a novel object descriptor for

3D cuboids that are invariant to orientations. We use COG to design 3D object detection and

room layout prediction algorithms. We also propose to use a cascaded prediction framework to

model 3D contextual relationship among objects and room layouts. The two-stage holistic indoor

scene understanding system is accurate and efficient, and has state-of-the-art performance on the

large-scale SUN RGB-D benchmark [118].

We then propose latent support surfaces as a modeling technique to encode 3D object styles. The

relative height of support surfaces on large objects is incorporated in 3D object detection systems as

latent variables, and the whole system can be trained using latent structural SVM [148]. Predicted

support surfaces on large objects also serve as the search space for small objects such as lamps, thus

improving the precision of those object detectors.

In Chapter 4, we further explore cascaded prediction by modeling semantic segmentation,

stereo matching and optical flow prediction in a joint semantic scene flow algorithm. We focus on

autonomous driving applications [40] and demonstrate that a complex optimization problem can be

solved in an iterative manner using cascaded prediction.

Finally in Chapter 5, we conclude with discussions on promising future research directions. We

think that models trained on photo-realistic synthetic datasets have potentials to solve challenging

scene understanding tasks.



Chapter 2

Background

In this chapter, we review the concepts of several computer vision tasks that are related to this thesis.

We start by discussing methods for designing accurate and efficient 2D object detection systems

on single RGB images. Following the discussion we describe challenges in modeling 3D data and

the motivations behind designing 3D object detection systems. We then introduce optical flow,

stereo matching, and their connections to 3D scene flow. We also describe the cascaded prediction

framework, a powerful approach to model contextual relationship. In each subsequent section we

summarize related works and discuss their connections to this thesis.

2.1 Object Detection

Object detection is a widely studied problem in computer vision. We introduce some basic concepts

and highlight most related works in the rich literature.

Dalal and Triggs [27] introduced the histogram of oriented gradient (HOG) descriptor to model

2D object appearance using image gradients (Fig. 2.1). Input images are first split into rectangular

cells, then image gradients are binned according to a given orientation histogram. With ground truth

annotations for each object category, we can train classifiers for each individual object. In test time,

object detectors will scan images in a sliding-windows approach and report a confidence score for

each bounding box proposal.

6
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Figure 2.1: Visualizing HOG descriptors [27]. Image gradients are binned in orientation histograms
in each cell. The concatenated features in each cell act as appearance descriptors for pedestrians.

A bounding box proposal Bp is considered as a correct prediction when the intersection-over-

union [32] score (IOU) with ground truth Bgt exceed 50%.

IOU =
area(Bp ∩ Bgt )

area(Bp ∪ Bgt )
(2.1)

To evaluate the performance of an object detector, a precision-recall curve is computed from ranked

scores, and average precision (AP) score determines the accuracy of the algorithm.

Building on HOG, Felzenszwalb et al. [33] used a discriminately-trained part-based model

to represent objects. This method is effective because it explicitly models object parts as latent

variables and thus implicitly encode object style variations. More recently, many papers have used

convolutional neural networks (CNNs) to extract rich features from images [43, 42, 97, 49, 78].

We include a nice visualization by Girshick et al.in Fig. 2.2 to demonstrate the general approach.

The hand-crafted HOG [27] feature is replaced with outputs from CNNs, leading to state-of-the-art

performance with efficient detection speed [95, 96].

Although accuracies of object detectors have improved rapidly in recent years, in cluttered

indoor scenes, localizing objects in 2D remains a challenging task. This is because indoor objects

are heavily occluded and have view/shape variations (Fig. 2.3). Those findings motivate us to



8

Figure 2.2: Visualization of a standard object detection system using CNNs [43].

propose new representations to describe objects, and use advanced depth sensors to solve scene

understanding tasks in 3D.

Figure 2.3: In cluttered indoor scenes, a chair is mis-classified as “Potter’s wheel” using a popular
object detector [113].

2.2 3D scene understanding

Increasingly, real-world computer vision systems often incorporate depth data as an additional input

to increase accuracy and robustness (Fig. 2.4). With depth maps we can reconstruct point cloud

representation of scenes. This 2.5D input is very helpful and is widely used for many indoor and

outdoor scene understanding tasks. There have recently been significant advances in 3D object

classification [141, 123], point cloud segmentation [91, 92], room layout prediction [71, 111], 3D
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object context [115, 152], and 3D shape reconstruction [128, 25]. Here, we focus on the related

problems of 3D object detection and 3D scene flow estimation.

Figure 2.4: Common depth sensors for indoor (top) and outdoor autonomous driving applications
(bottom)

2.2.1 3D Object Detection

In outdoor scenes, localizing objects with 3D cuboids has become a new standard in the popular

KITTI autonomous driving benchmark [40]. 3D detection systems model car shape and occlusion

patterns using LiDAR or stereo inputs [20, 85, 143, 90], and may also incorporate additional bird’s

eye view data [21]. 3D cuboid representations are more powerful than 2D bounding boxes because

they contain more information for object locations, physical occupancy spaces and orientation.

However, most outdoor 3D detection systems are designed to identify vehicles and pedestrians, and

those methods may not generalize well to more challenging tasks in cluttered indoor scenes.

In indoor scenes, objects have greater shape and style variations. Because indoor objects are

often heavily occluded by their cluttered environments, localizing objects with 3D cuboids [77, 46]

instead of 2D bounding boxes could be more effective. Some works aligned 3D CAD models to

objects in RGB-D inputs [47, 119] and evaluated on the small-scale NYU Depth dataset [117],

but the computational costs are usually expensive. A simple 3D convolutional neural network was

designed to detect simple objects in real time [82]. In 2015, Song et al.introduced a larger scale

SUN RGB-D dataset [118] that contain 10335 RGB-D images with accurate 3D cuboid annotations

for indoor objects, room layouts and scene categories (Fig. 2.5). The size of the dataset matches that

of PASCAL-VOC dataset [32] and motivates a line of research projects.

In recent years there were works that utilized pre-trained 2D detectors and region proposals as
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Figure 2.5: Visualizing 3D cuboid annotations for objects and room layouts in SUN RGB-D
dataset [118].

priors [103], and localized 3D bounding boxes via a separate CNN [120, 29, 69]. Those methods can

achieve good performance in real time, but are very dependent to the accuracy of 2D object detection

systems. Without explicitly modeling view-dependent information and object style information, the

accuracy of object detectors still has room for improvement. In this thesis we introduce the clouds

of oriented gradient (COG) to represent 3D cuboids in orientation-invariant features, and we design

a latent support surface model to encode object style variations.

Apart from detecting objects, we also focus on the task of 3D room layout estimation. The

output of room layout prediction contains 3D locations of walls, ceiling and floor. There are works

designed to predict such room structure in 2D [111, 151, 110, 50, 71, 81]. However, even if two layout

predictions are similar in 2D, the reconstructed 3D layout may be completely different (Fig. 2.6).

Recently there are more works that directly predict room layouts in 3D [157] using CNNs, and in

this thesis we introduce an effective Manhattan voxel approach that predict 3D room layouts.

Figure 2.6: Similar layout predictions in 2D (in red and blue) may be completely different 3D.
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Detecting support surfaces is an essential first step in understanding the geometry of 3D scenes

for such tasks as surface normal estimation [137, 37] and shape retrieval [9]. Silberman et al. [117]

use semantic segmentation to model object support relationships; this work was later extended by

Guo et al. [45] for support surface prediction. However, support surfaces have not been previously

used to enable 3D object detection. In this thesis, we treat support surfaces as latent variables to

capture object style variations, and use them to localize small objects.

2.2.2 3D Scene Flow

Optical flow is also a widely studied computer vision task. Given two consecutive frames from

input videos, optical flow is the 2D motion of every pixel caused by the movement of object or

camera. It is usually visualized by color-coded maps that correspond to different orientations and

magnitudes (Fig. 2.7). Since the seminal work of Horn and Schunck [54], a rich literature of

variational approaches has flourished (e.g., [125, 13, 102]). Given the large number of publications

in this area, we refer the reader to [125, 7] for a more complete survey, particularly of the two-

frame based methods. The recent success of deep learning inspired several approaches based on

convolutional neural networks. Dosovitskiy et al. [30] introduced a denoising autoencoder network,

called FlowNet, for estimating optical flow. Mayer et al. [83] extended the FlowNet to disparity and

scene flow estimation with a large synthetic dataset. Other related networks can either replace parts

of the traditional pipeline [145, 6], or can be used in an end-to-end fashion [58, 94, 126]. While

CNN models generate scene flow predictions rapidly, most networks trained on synthetic data are

not competitive with state-of-the-art methods on the real-world KITTI benchmark [40, 84].

Similar to optical flow prediction, stereo matching is also a classical task for finding pixel-wise

correspondences between images. Given a rectified pair of images from left and right cameras,

we aim to find corresponding pixel pairs along each horizontal line. The predicted horizontal shift

of each pixel is called disparity, and it can be used to recover the depth map. Both variational

approaches [44, 112] and CNN-based methods [83, 79] have been proposed and we have seen many

progress on public benchmarks [40].

With stereo inputs from consecutive video frames, Vedula et al. [130] first defined the scene
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Figure 2.7: Visualizing inputs to optical flow prediction tasks and the ground truth motion map in
MPI Sintel dataset [15].

flow as the dense 3D motion of all points in an observed scene, and recovered voxel-based flow

estimates using 2D optical flow fields from several calibrated cameras. The 3D motion for each pixel

in input frames can be predicted, giving autonomous systems more power to understand dynamic

visual scenes. Huguet and Devernay [56] then proposed a variational approach and jointly solved

for stereo and optical flow, while Wedel et al. [139] decoupled the stereo and flow problems for

efficiency. These classic algorithms only improve marginally over modern, state-of-the-art stereo

and optical flow methods.

Although scene flow algorithms require more input images than standard optical flow or stereo

reconstruction methods, the task is still challenging due to the high dimensionality of the disparity

and motion fields. To reduce the solution space, Vogel et al. [133] introduced a piecewise rigid

scene flow (PRSF) model and used superpixels to constrain scene flow estimation. For the first time,

they showed that scene flow methods could outperform stereo and optical flow methods by a large

margin on the challenging KITTI dataset [40]. In a follow-up work they extended their formulation

to multiple frames and improved accuracy [134]. However, because the PRSF model relies on

bottom-up cues for superpixel segmentation, it tends to over-segment foreground objects such as

cars. Over-segmented parts are allocated independent motion models, so global information cannot

be effectively shared.
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Inspired by the success of Vogel et al. [133], Menze and Geiger [84] annotated a new KITTI

dataset with dynamic foreground objects for scene flow evaluation. They proposed an object scene

flow (OSF) algorithm that segments the scene into independently moving regions, and encourages

the superpixels within each region to have similar 3D motion. Although the performance of OSF

improved on baselines, the “objects” in their model are assumed to be planar and initialized via

bottom-up motion estimation, so physical objects are often over-segmented. The inference time

required for the OSF method is also significantly longer than most competing methods.

Some related work integrates automatic motion segmentation with optical flow prediction [89,

127], but assumes large differences between the motion of objects and cameras, and requires multiple

input frames. Exploiting the recent success of CNNs for semantic segmentation [26, 154], semantic

cues have been shown to improve optical flow estimation [5, 57, 114]. Concurrent work [10] also

shows that semantic cues can improve scene flow estimation. In this thesis, we propose a coherent

model of semantic segmentation, scene geometry, and object motion. We use a cascaded prediction

framework [52] to efficiently solve this high-dimensional inference task. We evaluate our algorithm

on the challenging KITTI dataset [84] and show that using semantic cues leads to state-of-the-art

scene flow estimates.

2.3 Cascaded Prediction

Holistic scene understanding is a task that consists of semantic object reasoning, spatial contextual

modeling, as well as scene type estimation [147, 118]. Traditionally, learning and inference in each

sub-task is performed independently and integrated in conditional random fields (CRFs) [67]. For

complex graph structures with high-dimensional output spaces, inference can be inefficient.

Cascaded Prediction is a nice framework that combines multiple instantiations of each classifier

and organizes them into stages [52]. In graphical model representations, information in early stages

are treated as latent variables, and they are used to infer variable values in future stages (See

Fig. 2.8). By marginalizing latent variables from early stages, we can recover the fully connected

undirectional graph structures as in CRFs, but the inference is much more efficient. Cascaded
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prediction is widely used in many computer vision tasks such as face detection [131, 74], image

segmentation [98, 26]. In this thesis, we apply cascaded prediction to perform holistic indoor

scene understanding, and demonstrate its effectiveness in solving inference problems with high-

dimensional outputs for outdoor scene flow estimation.

Figure 2.8: Heitz et al. [52] estimate object detection, semantic segmentation and 3D structure in a
cascaded prediction framework.



Chapter 3

Indoor RGB-D Scene Understanding:

Object Detection and Layout Estimation

We develop new representations and algorithms for three-dimensional (3D) object detection and

spatial layout prediction in cluttered indoor scenes. RGB-D images are traditionally described by

local geometric features of the 3D point cloud. We propose a cloud of oriented gradient (COG)

descriptor that links the 2D appearance and 3D pose of object categories, and thus accurately models

how perspective projection affects perceived image boundaries. We also propose a “Manhattan voxel”

representation which better captures the 3D room layout geometry of common indoor environments.

Effective classification rules are learned via a structured prediction framework that accounts for

the intersection-over-union overlap of hypothesized 3D cuboids with human annotations, as well as

orientation estimation errors. Contextual relationships among categories and layout are captured via

a cascade of classifiers, leading to holistic scene hypotheses with improved accuracy. Our model is

learned solely from annotated RGB-D images, without the benefit of CAD models, but nevertheless

its performance substantially exceeds the state-of-the-art on the SUN RGB-D database. Avoiding

CAD models allows easier learning of detectors for many object categories.

Existing 3D representations for RGB-D images capture the local shape and appearance of object

categories, but have limited power to represent objects with different visual styles. The detection of

small objects is also challenging because the search space is very large in 3D scenes. However, we

15
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observe that much of the shape variation within 3D object categories can be explained by the location

of a latent support surface, and smaller objects are often supported by larger objects. Therefore,

we explicitly use latent support surfaces to better represent the 3D appearance of large objects, and

provide contextual cues to improve the detection of small objects. We evaluate our model with 19

object categories from the SUN RGB-D database, and demonstrate state-of-the-art performance.

3.1 Introduction

The last decade has seen major advances in algorithms for the semantic understanding of 2D

images [32, 103]. Images of indoor (home or office) environments, which are typically highly

cluttered and have substantial occlusion, are particularly challenging for existing models. Recent

advances in depth sensor technology have greatly reduced the ambiguities present in standard

RGB images, enabling breakthroughs in scene layout prediction [72, 51, 151], support surface

prediction [117, 37, 45], semantic parsing [48], and object detection [119]. A growing number of

annotated RGB-D datasets have been constructed to train and evaluate indoor scene understanding

methods [104, 70, 117, 118].

A wide range of semantic 3D scene models have been developed, including approaches based on

low-level voxel representations [63]. Generalizing the bounding boxes widely used for 2D detection,

the 3D size, position, and orientation of object instances can be described by bounding cuboids

(convex polyhedra). Several methods fit cuboid models to RGB or RGB-D data [60, 59, 144] but

do not have any semantic, high-level scene understanding. Other work has used CRFs to classify

cuboids detected by bottom-up grouping [77], or directly detected objects in 3D by matching to

known CAD models in “sliding” locations [119].

Several recent papers have used CAD models as additional information for indoor scene un-

derstanding, by learning models of object shape [141] or hallucinating alternative viewpoints for

appearance-based matching [3, 76, 75]. While 3D models are a potentially powerful information

source, there does not exist an abundant supply of models for all categories, and thus these methods
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have typically focused on a small number of categories (often, just chairs [3]). Moreover, example-

based methods [119] may be computationally inefficient due to the need to match each examplar to

each test image. It is unclear how many CAD models are needed to faithfully capture an object class.

To model the spatial layout of indoor scenes, many methods assume an orthogonal “Manhattan”

structure [24] and aim to infer 2D projections of the 3D structure. Building on [72] and [53],

Hedau et al. [50] use a structured model to rerank layout hypotheses, Schwing et al. [110] propose

an efficient integral representation to efficiently explore exponentially many layout proposals, and

Zhang et al. [151] incorporate depth cues. Jointly modeling objects may improve layout prediction

accuracy [51, 111], but previous work has focused on restricted environments (e.g., beds that are

nearly always aligned with walls) and may not generalize to more cluttered scenes. Other work has

used point cloud data to directly predict 3D layout [77, 118], but can be sensitive to errors in RGB-D

depth estimates.

Simple scene parsing algorithms detect each category independently, which can introduce many

false positives even after non-maximum suppression. Previous work has used fairly elaborate,

manually engineered heuristics to prune false detections [119] or used CAD models and layout cues

jointly to model scenes [41]. In this paper we show that a cascaded classification framework [52]

can be used to learn contextual relationships among object categories and the overall room layout,

so that visually distinctive objects lead to holistic scene interpretations of higher quality.

However, existing 3D detection algorithms suffer some common problems. Given diverse objects

in the same category, modeling different visual styles is often very challenging [35], and ground truth

annotations of 3D cuboids can vary among different human annotators (see Fig. 3.9). Moreover,

objects with smaller physical size are hard to detect because the search space in the whole scene is

very big, and bottom-up proposals typically contain many false positives.

State-of-the-art 3D object features, such as TSDF [120], are calculated for a grid of voxels

within each hypothesized 3D cuboid. A major cause of feature inconsistency across different object

instances is variation in the location of the supporting surface contained by many indoor objects. We

treat the height of the support surface as a latent variable, and use it to distinguish different visual

styles of the same object category.
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Modeling support surface can also help detect smaller objects like monitors, lamps, TVs, and

pillows. Since small objects are typically placed on the supporting surfaces of large objects, we first

detect large objects on the ground and predict their support surface location, and then search for

small objects on top of support surface areas. The reduced search space for small objects naturally

reduces false positives and improves performance.

In this chapter, we propose a general framework for learning detectors for multiple object

categories using only RGB-D annotations (Sec. 3.2). We introduce a novel cloud of oriented

gradients (COG) feature that robustly links 3D object pose to 2D image boundaries. We also

introduce a new Manhattan voxel representation of 3D room layout geometry. We then use a

structured prediction framework to learn an algorithm that aligns 3D cuboid hypotheses to RGB-

D data, and a cascaded classifier to incorporate contextual cues from other object instances and

categories, as well as the overall 3D layout.

Building on our proposed cascaded 3D scene understanding framework, another contributions

in this chapter include the introduction of new 3D view features that improve 3D detection systems,

the modeling of support surfaces as latent variables capturing intra-class variation for large objects,

and the use of support surfaces to more accurately detect small objects (Sec. 3.3). We evaluate our

algorithm on the SUN RGB-D dataset [118] and achieve state-of-the-art accuracy in the 3D detection

of 19 object categories.

3.2 3D Cuboid Detection and Layout Prediction Using Cloud of Ori-

ented Gradients

3.2.1 Modeling 3D Geometry & Appearance

Our object detectors are learned from 3D oriented cuboid annotations in the SUN-RGBD dataset [118],

which contains 10,335 RGB-D images and 19 labeled object categories. We discretize each cuboid

into a 6×6×6 grid of (large) voxels, and extract features for these 63
= 216 cells. Voxel dimensions

are scaled to match the size of each instance. We use standard descriptors for the 3D geometry of

the observed depth image, and propose a novel cloud of oriented gradient (COG) descriptor of RGB
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Point-Cloud Density 3D Normal COG 

Figure 3.1: Given input RGB and Depth images (left), we align oriented cuboids and transform
observed data into a canonical coordinate frame. For each voxel in a 6 × 6 × 6 grid, we then extract
(from left to right) point cloud density features, 3D normal orientation histograms, and our COG
model of back-projected image gradient orientations. On the left, COG bins are colored to show
alignment between instances. The value of the point cloud density feature is proportional to the voxel
intensity, each 3D orientation histogram bin is assigned a distinct color, and COG feature intensities
are proportional to the normalized energy in each orientation bin, similarly to HOG descriptors [27].

appearance. We also propose a Manhattan voxel model of 3D room layout geometry.

Object Geometry: 3D Density and Orientation

Point Cloud Density Conditioned on a 3D cuboid annotation or detection hypothesis i, suppose

voxel ℓ contains Niℓ points. We use perspective projection to find the silhouette of each voxel in the

image, and compute the area Aiℓ of that convex region. The point cloud density feature for voxel ℓ

then equals φa
iℓ
= Niℓ/Aiℓ . Normalization gives robustness to depth variation of the object in the

scene. We normalize by the local voxel area, rather than by the total number of points in the cuboid

as in some related work [119], to give greater robustness to partial object occlusions.

3D Normal Orientations Various representations, such as spin images [62], have been proposed

for the vectors normal to a 3D surface. As in [119], we build a 25-bin histogram of normal

orientations within each voxel, and estimate the normal orientation for each 3D point via a plane fit

to its 15 nearest neighbors. This feature φb
i

captures the surface shape of cuboid i via patterns of

local 3D orientations.
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Voxels in similar positions of chairs COG Binning HOG Binning COG Binning HOG Binning 

Figure 3.2: For two corresponding voxels (red and green) on two chairs, we illustrate the orientation
histograms that would be computed by a standard HOG descriptor [27] in 2D image coordinates,
and our COG descriptor in which perspective geometry is used to align descriptor bins. Even though
these object instances are very similar, their 3D pose leads to wildly different HOG descriptors.

Clouds of Oriented Gradients (COG)

The histogram of oriented gradient (HOG) descriptor [27] forms the basis for many effective object

detection methods [32]. Edges are a very natural foundation for indoor scene understanding, due to

the strong occluding contours generated by common objects. However, gradient orientations are of

course determined by 3D object orientation and perspective projection, so HOG descriptors that are

naively extracted in 2D image coordinates generalize poorly.

To address this issue, some previous work has used 3D CAD models to hallucinate the edges that

would be expected from various synthetic viewpoints [75, 3]. Other work has restrictively assumed

that parts of objects are near-planar so that image warping may be used for alignment [35], or that

all objects have a 3D pose aligned with the global “Manhattan world coordinates” of the room [51].

Some previous 3D extensions of the HOG descriptor [14, 109] assume that either a full 3D model

or mesh model is given. In recent independent research [121], 3D cuboid hypotheses were used

to aggregate standard 2D features from a deep convolutional neural network, but the relationship

between these features and 3D object orientation was not modeled. Our cloud of oriented gradient

(COG) feature accurately describes the 3D appearance of objects with complex 3D geometry, as

captured by RGBD cameras in any orientation.
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Gradient Computation We compute gradients by applying filters [−1, 0, 1], [−1, 0, 1]T to the

RGB channels of the unsmoothed 2D image. The maximum responses across color channels are the

gradients (dx, dy) in the x and y directions, with corresponding magnitude
√

dx2
+ dy2.

3D Orientation Bins The standard HOG descriptor [27] uses evenly spaced gradient bins, with

0◦ being the horizontal image direction. As shown in Fig. 3.2, this can produce very inconsistent

descriptors for objects in distinct poses.

For each cuboid we construct nine 3D orientation bins that are evenly spaced from 0◦ − 180◦ in

the half-disk sitting vertically along its horizontal axis. We then use perspective projection to find

corresponding 2D bin boundaries. For each point that lies within a given 3D voxel, we accumulate its

unsigned 2D gradient in the corresponding projected 2D orientation bin. To avoid image processing

operations that can be unstable for objects with non-planar geometry, we accumulate standard

gradients with warped histogram bins, rather than warping images to match fixed orientation bins.

Normalization and Aliasing We bilinearly interpolate gradient magnitudes between neighboring

orientation bins [27]. To normalize the histogram φc
iℓ

for voxel ℓ in cuboid i, we then set φc
iℓ
←

φc
iℓ
/

√

| |φc
iℓ
| |2 + ǫ for a small ǫ > 0. Accounting for all orientations and voxels, the dimension of the

COG feature is 63 × 9 = 1944.

Room Layout Geometry: Manhattan Voxels

Given an RGB-D image, scene parsing requires not only object detection, but also room layout

(floor, ceiling, wall) prediction [50, 72, 151, 111]. Such “free space” understanding is crucial for

applications like robot navigation. Many previous methods treat room layout prediction as a 2D

labeling task [4, 110, 151], but small mistakes in 2D can lead to huge errors in 3D layout prediction.

Simple RGB-D layout prediction methods [118] work by fitting planes to the observed point cloud

data. We propose a more accurate learning-based approach to predicting Manhattan geometries.

The orthogonal walls of a standard room can be represented via a cuboid [88], and we could

define geometric features via a standard voxel discretization (Fig. 3.3, bottom left). However, because

corner voxels usually contain the intersection of two walls, they then mix 3D normal vectors with
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Figure 3.3: Models for 3D layout geometry. Top: Ground truth annotation. Bottom: Top-down
view of the scene and two voxel-based quantizations. We compare a regular voxel grid (left) to our
Manhattan voxels (right; dashed red line is the layout hypothesis).

very different orientations. In addition, this discretization ignores points outside of the hypothesized

cuboid, and may match subsets of a room that have wall-like structure.

We propose a novel Manhattan voxel (Fig. 3.3, bottom right) discretization for 3D layout

prediction. We first discretize the vertical space between floor and ceiling into 6 equal bins. We

then use a threshold of 0.15m to separate points near the walls from those in the interior or exterior

of the hypothesized layout. Further using diagonal lines to split bins at the room corners, the overall

space is discretized in 12×6 = 72 bins. For each vertical layer, regions R1:4 model the scene interior

whose point cloud distribution varies widely across images. Regions R5:8 model points near the

assumed Manhattan wall structure: R5 and R6 should contain orthogonal planes, while R5 and R7

should contain parallel planes. Regions R9:12 capture points outside of the predicted layout, as might

be produced by depth sensor errors on transparent surfaces.
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3.2.2 Learning to Detect Cuboids & Layouts

For each voxel ℓ in some cuboid Bi annotated in training image Ii, we have one point cloud density

feature φa
iℓ

, 25 surface normal histogram features φb
iℓ

, and 9 COG appearance features φc
iℓ

. Our

overall feature-based representation of cuboid i is then φ(Ii, Bi) = {φaiℓ, φ
b
iℓ
, φc

iℓ
}216
ℓ=1. Cuboids are

aligned via annotated orientations as illustrated in Fig. 3.1, using the gravity direction provided in

the SUN-RGBD dataset [118]. Similarly, for each of the Manhattan voxels ℓ in layout hypothesis Mi

we compute point cloud density and surface normal features, and φ(Ii, Mi) = {φaiℓ, φ
b
iℓ
}72
ℓ=1.

Structured Prediction of Object Cuboids

For each object category c independently, using those images which contain visible instances of that

category, our goal is to learn a prediction function hc : I → B that maps an RGB-D image I to a 3D

bounding box B = (L, θ, S). Here, L is the center of the cuboid in 3D, θ is the cuboid orientation,

and S is the physical size of the cuboid along the three axes determined by its orientation. We

assume objects have a base upon which they are usually supported, and thus θ is a scalar rotation

with respect to the ground plane.

Given n training examples of category c, we use an n-slack formulation of the structural support

vector machine (SVM) objective [61] with margin rescaling constraints:

min
wc,ξ≥0

1
2
w
T
c wc +

C

n

n
∑

i=1

ξi

subject to w
T
c [φ(Ii, Bi) − φ(Ii, B̄i)] ≥ ∆(Bi, B̄i) − ξi, for all B̄i ∈ Bi, i = 1, . . . , n.

(3.1)

Here, φ(Ii, Bi) are the features for oriented cuboid hypothesis Bi given RGB-D image Ii, Bi is the

ground-truth annotated bounding box, and Bi is the set of possible alternative bounding boxes. For

training images with multiple instances, as in previous work on 2D detection [129] we add images

multiple times to the training set, each time removing the subset of 3D points contained in other

instances.
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Given some ground truth cuboid B and estimated cuboid B̄, we define the following loss function:

∆(B, B̄) = 1 − IOU(B, B̄) ·
(

1 + cos(θ̄ − θ)

2

)

. (3.2)

Here, IOU(B, B̄) is the volume of the 3D intersection of the cuboids, divided by the volume of their

3D union. The loss is bounded between 0 and 1, and is smallest when the IOU(B, B̄) is near 1 and

the orientation error θ − θ̄ ≈ 0. Loss approaches 1 if either position or orientation is wrong.

We solve the loss-sensitive objective of Eq. (3.1) using a cutting-plane method [61]. We also

experimented with detectors based on a standard binary SVM with hard negative mining, but found

that the loss-sensitive S-SVM classifier is more accurate (see Fig. 3.5) and also more efficient in

handling the large number of negative cuboid hypotheses.

Cuboid Hypotheses We precompute features for candidate cuboids in a sliding-window fashion

using discretized 3D world coordinates, with 16 candidate orientations. We discretize cuboid size

using empirical statistics of the training bounding boxes: {0.1, 0.3, 0.5, 0.7, 0.9} width quantiles,

{0.25, 0.5, 0.75} depth quantiles, and {0.3, 0.5, 0.8} height quantiles. Every combination of voxel

size, and 3D location and orientation, is then evaluated.

Structured Prediction of Manhattan Layouts

We again use the S-SVM formulation of Eq. (3.1) to predict Manhattan layout cuboids M = (L, θ, S).

The loss function ∆(M, M̄) is as in Eq. (3.2), except we use the “free-space” definition of IOU

from [118], and account for the fact that orientation is only identifiable modulo 90◦ rotations.

Because layout annotations do not necessarily have Manhattan structure, the ground truth layout is

taken to be the cuboid hypotheses with largest free-space IOU.

Layout Hypotheses We predict floors and ceilings as the 0.001 and 0.999 quantiles of the 3D

points along the gravity direction, and discretize orientation into 18 evenly spaced angles between

0 and 180◦. We then propose layout candidates that capture at least 80% of all 3D points, and are

bounded by the farthest and closest 3D points. For typical scenes, there are 5,000-20,000 layout

hypotheses. See the supplemental material for more details.
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Figure 3.4: An illustration of how cascaded classification captures contextual relationships among
objects. From left to right: (i) A traditional undirected MRF representation of contextual relation-
ships. Colored nodes represent four object categories, and black nodes represent the room layout.
(ii) A directed graphical representation of cascaded classification, where the first-stage detectors are
hidden variables (dashed) that model contextual relationships among object and layout hypotheses
(solid). Marginalizing the hidden nodes recovers the undirected MRF. (iii) First-stage detections
independently computed for each category as in Sec. 3.2.2. (iv) Second-stage detections (Sec. 3.2.3)
efficiently computed using our directed representation of context, and capturing contextual relation-
ships between objects and the overall scene layout.

3.2.3 Cascaded Learning of Spatial Context

If the detectors learned in Sec. 3.2.2 are independently applied for each category, there may be many

false positives, where a “piece” of a large object is detected as a smaller object (see Fig. 3.4). Song

et al. [119] reduce such errors via a heuristic reduction in confidence scores for small detections

on large image segments. To avoid such manual engineering, which must often be tuned to each

category, we propose to directly learn the relationships among detections of different categories.

As room geometry is also an important cue for object detection, we integrate Manhattan layout

hypotheses for total scene understanding [118, 77].

Typically, structured prediction of spatial relationships is accomplished via undirected Markov

random fields (MRFs) [87]. As shown in Fig. 3.4, this generally leads to a fully connected graph [93]

because there are relationships among every pair of object categories. An extremely challenging

MAP estimation (or energy minimization) problem must then be solved at every training iteration,

as well as for each test image, so learning and prediction is costly.

We propose to instead adapt cascaded classification [52] to the modeling of contextual relation-

ships in 3D scenes. In this approach, “first-stage” detections as in Sec. 3.2.2 become input features

to “second-stage” classifiers that estimate confidence in the correctness of cuboid hypotheses. This
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can be interpreted as a directed graphical model with hidden variables. Marginalizing the first-stage

variables recovers a standard, fully-connected undirected graph. Crucially however, the cascaded

representation is far more efficient: training decomposes into independent learning problems for

each node (object category), and optimal test classification is possible via a rapid sequence of local

decisions.

Contextual Features For an overlapping pair of detected bounding boxes Bi and Bj , we denote their

volumes as V (Bi) and V (Bj ), their volume of their overlap as O(Bi, Bj ), and the volume of their union

as U (Bi, Bj ). We characterize their geometric relationship via three features: S1(i, j) =
O(Bi,B j )

V (Bi )
,

S2(i, j) =
O(Bi,B j )

V (B j )
, and the IOU S3(i, j) =

O(Bi,B j )

U (Bi,B j )
. To model object-layout context [77], we

compute the distance D(Bi, M) and angle A(Bi, M) of cuboid Bi to the closest wall in layout M .

The first-stage detectors provide a most-probable layout hypothesis, as well as a set of detections

(following non-maximum suppression) for each category. For a bounding box Bi with confidence

score zi, there may be several overlapping bounding boxes of categories c ∈ {1, . . . ,C}. Letting ic

be the instance of category c with maximum confidence zic , features ψi for bounding box Bi are

created via a quadratic function of zi, S1:3(i, ic), A(Bi, M), and a radial basis expansion of D(Bi, M).

Relationships between second-stage layout candidates and object cuboids are modeled similarly. See

the supplemental material for details.

Contextual Learning Due to the directed graphical structure of the cascade, each second-stage

detector may be learned independently. The objective is simple binary classification: is the candidate

detection a true positive, or a false positive? During training, each detected bounding box for each

class is marked as “true” if its intersection-over-union score to a ground truth instance is greater than

0.25, and is the largest among those detections. We train a standard binary SVM with a radial basis

function (RBF) kernel

K (Bi, Bj ) = exp
(

−γ | |ψi − ψ j | |2
)

. (3.3)

The bandwidth parameter γ is chosen using validation data. While we use a RBF kernel for

all reported experiments, the performance of a linear SVM is only slightly worse, and cascaded

classification still provides useful performance gains for that more scalable training objective.
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Sliding-Shape [119] 42.95 19.66 20.60 28.21 60.89 - - - - -
Geom 8.29 15.06 26.20 24.53 1.15 - - - - -

Geom+COG 52.98 28.64 42.16 45.14 43.00 28.17 7.93 14.25 12.83 47.69
Geom+COG+Context-5 58.72 44.04 42.50 54.81 63.19 - - - - -
Geom+COG+Context-10 61.29 48.68 49.80 59.03 66.31 44.58 12.97 25.14 30.05 56.78

Geom+COG+Context-10+Layout 63.67 51.29 51.02 62.17 70.07 45.19 15.47 27.36 31.80 58.26

Table 3.1: Average precision scores for all object categories, from left to right: bed, table,

sofa, chair, toilet, desk, dresser, night-stand, bookshelf, bathtub. Notice that using COG features
without second-stage context already outperforms [119], training a second stage classifier with more
contextual categories and room layout further boosts performance, and that [119] cannot model
categories without CAD models.

To train the second-stage layout predictor (the bottom node in Fig. 3.4), we combine the object-

layout features with the Manhattan voxel features from Sec. 3.2.1, and again use S-SVM training to

optimize the free-space IOU.

Contextual Prediction During testing, given the set of cuboids found in the first-stage sliding-

window search, we apply the second-stage cascaded classifier to each cuboid Bi to get a new

contextual confidence score z′
i
. The overall confidence score used for precision-recall evaluation is

then zi + z′
i
, to account for both the original belief from the geometric and COG features and the

correcting power of contextual cues. The second-stage layout prediction is directly provided by the

second-stage S-SVM classifier.

3.2.4 Experiments

We test our cascaded model on the SUN RGB-D dataset [118] and compare with the state-of-the-art

sliding shape [119] cuboid detector, and the baseline layout predictor from [118]. The older NYU

Depth dataset [117] is a subset of SUN RGB-D, but SUN RGB-D has improved annotations and

many new images. Since unlike prior work we do not use CAD models, we easily learn and evaluate

RGB-D appearance models of 10 object categories, five more than [119]. Object cuboid and 3D

layout hypotheses are generated and evaluated as described in previous sections.

We evaluate detection performance via the intersection-over-union with ground-truth cuboid
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Figure 3.5: Precision-recall curves for 3D cuboid detection of the 5 object categories considered
by [119] (top), and 5 additional categories (bottom). For the first 5 categories, we also test the
importance of various features, and the gains from modeling context. See legend at top.

Bed Table Sofa Chair Toilet

Desk Dresser Nightstand Bookshelf Bathtub

Figure 3.6: Visualization of the learned 3D COG features for all 10 categories. Reference orientation
bins with larger weights are darker, and the 3D visualization is similar to each category’s appearance.
Cuboid sizes are set to the median of all training instances.

annotations, and consider the predicted box to be correct when the score is above 0.25. To eval-

uate the layout prediction performance, we calculate the free space intersection-over-union with

human annotations. We provide several comparisons to demonstrate the effectiveness of our scene

understanding system, and the importance of both appearance and context features.
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Figure 3.7: Comparison of our Manhattan voxel 3D layout predictions (blue) to the SUN RGB-D
baseline ([118], green) and the ground truth annotations (red). Our learning-based approach is less
sensitive to outliers and degrades gracefully in cases where the true scene structure violates the
Manhattan world assumption.

The Importance of Appearance We trained our detector with geometric features only (Geom), and

with the COG feature added (Geom+COG). There is a very clear improvement in detection accuracy

for all object categories (see Table 3.1 and precision-recall curves in Fig. 3.5). Object detectors based

solely on noisy point clouds are imperfect, and the RGB image contains complementary information.

HOG versus COG To demonstrate the effectiveness of the COG feature, we also use naïve 2D

bins to extract HOG features for each 3D cuboid and train a detector (Geom+HOG). Since fixed

2D bins do not align with changes in 3D object pose, this feature is less informative, and detection

performance is much worse than when using COG bins corrected for perspective projection.

We visualize the learned COG features for different categories in Fig. 3.6. We can see many

descriptive appearance cues such as the oriented exterior boundaries of each object, and hollow

regions for sofa, chair, toilet, and bathtub.

Cubical Voxels versus Manhattan Voxels We use the free-space IOU [118] to evaluate the

performance of layout prediction algorithms. Using standard cubical voxels, our performance

(72.33) is similar to the heuristic SUN RGB-D baseline (73.4, [118]). Combining Manhattan voxels

with structured learning, performance increases to 78.96, demonstrating the effectiveness of this

improved discretization. Furthermore, if we also incorporate contextual cues from detected objects,

the score improves to 80.23. We provide some layout prediction examples in Fig. 3.7.
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Pg Rg Rr IoU

Sliding-Shape+Plane-Fitting [118] 37.8 32.3 23.7 66.0
COG+Manhattan Voxel+Context 47.3 36.8 35.8 72.0

Table 3.2: Evaluation of total scene understanding [118]. We choose a threshold for object confidence
scores that maximizes Pg, and compute all other metrics. Our highly accurate object and layout
predictions also lead to improved overall scene interpretations.

The Importance of Context To show that the cascaded classifier helps to prune false positives,

we evaluate detections using the confidence scores from the first-stage classifier, as well as the

updated confidence scores from the second-stage classifier (Geom+COG+Context-5). As shown in

Table 3.1 and Fig. 3.5, adding a contextual cascade clearly boosts performance. Furthermore, when

more object categories are modeled (Geom+COG+Context-10), performance increases further. This

result demonstrates that even if a small number of objects are of primary interest, building models

of the broader scene can be very beneficial.

We show some representative detection results in Fig. 3.8. In the first image our chair detector is

confused and fires on part of the sofa, but with the help of contextual cues of other detected bounding

boxes, these false positives are pruned away. For a fixed threshold across all object categories, we

have as many true detections as the sliding-shape baseline while producing fewer false positives.

Total Scene Understanding By capturing contextual relationships between pairs of objects, and

between objects and the overall 3D room layout, our cascaded classifier enables us to perform the

task of total scene understanding [118]. We generate a single global scene hypothesis by applying

the same threshold (tuned on validation data) to all second-stage object proposals, and choose the

highest-scoring layout prediction. We report the precision, recall, and IOU evaluation metrics

defined by [118] in Table 3.2. In every case, we show clear improvements over baselines.

Computation Speed Our algorithm, implemented in MATLAB, spends most of its running time

on feature computation. For a typical indoor image, our algorithm will spend 10 to 30 minutes

to compute features for one object category and Manhattan Voxel discretization, and 2 seconds to

predict 3D cuboids and layout hypotheses. This speed could be dramatically improved in various

ways, such as exploiting integral images for feature computation [119] or using GPU hardware for

parallelization.



31

Chair Sofa Table Toilet Bed Desk Dresser Nightstand Bookshelf Bathtub 

Ground Truth Sliding Shape [119] Geom+COG Geom+COG+Context-10

Figure 3.8: Detections with confidence scores larger than the same threshold for each algorithm.
Notice that using contextual information helps prune away false positives and preserves true positives.
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3.3 3D Object Detection with Latent Support Surfaces

COG descriptor for bed

COG descriptor for bed surface

Figure 3.9: A visualization of 3D object detection system for beds and pillows using latent support
surfaces. Given input RGB-D images, we use our learned COG descriptor [99] to localize 3D objects
and infer latent support surfaces (shaded) for 3D proposals of beds (red). Then we search for pillows
(green) that lie on top of the inferred support surfaces.

3.3.1 Effective Extensions to COG Descriptor

Feature extraction is one of the most important steps for object detection algorithms. 2D object

detectors typically use either hand-crafted features based on image gradients [27, 33] or learned

features from deep neural networks [43, 42, 97, 49, 78]. For 3D object detection systems with

additional depth inputs, Gupta et al. [48] use horizontal disparity, height above ground, and the

angle of pixel’s local surface normal to encode images as a three channel (HHA) map for input to a

convolutional neural network. While such convolutional processing of 2D images may be used to

extract features from 2D bounding boxes, it does not directly provide a method for recovering 3D

bounding boxes.

Song et al. [119] use 3D truncated signed distance function (TSDF) features to encode 3D

cuboids, and their subsequent deep sliding shape [120] method aggregates TSDF with standard 2D

features from a deep convolutional neural network. However, those features do not explicitly capture

3D orientation. We instead build our 3D detection algorithm on the cloud of oriented gradients

(COG) descriptor [99]. We introduce simple extensions that improve its performance.
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View-to-Camera Feature For single view RGB-D inputs, an object like nightstand may only

expose one planer surface to the camera. At test time, features of a 3D cuboid proposal whose

orientation is facing backwards resembles those of a correct detection (Fig. 3.10). This is because

voxel features are computed by first rotating the cuboid to a canonical coordinate frame. However,

due to the self-occlusions that occur in real objects, the features modeled by the COG descriptor

would in fact not be visible when objects are facing away from the camera. Therefore, we add

features to represent objects’ view to camera, and learn to explicitly distinguish implausible object

orientations.

Figure 3.10: A false positive 3D detection for nightstand without using view-to-camera feature (left).
The COG feature is similar to that of a correct detection (right) but the orientation is flipped.
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Specifically, we compute the cosine x of the angle between the cuboid orientation and its viewing

angle from camera in horizontal direction. Then we define a set of radial basis functions of the form

f j (x) = exp
(

−
(x − µ j )2

2σ2

)

,

and space the basis function centers µ j evenly between [−1, 1] with step size 0.2. The bandwidth

σ = 0.5 was chosen using validation data. Radial basis expansions are a standard approach to non-

linear regression, and can also be seen as a layer of a neural network. We expand the camera angle

using this basis representation and refer to the resulting 11-dimensional vector as the view-to-camera

feature.

Scene Layout Feature The interaction between objects and the scene layout (floor, walls, ceiling)

provides important cues for object detection. For example, Song et al. [120] propose 3D objects along

the predicted walls of the scene. Ren et al. [99] introduce a Manhattan voxel discretization to better

predict scene layouts and model object-layout interactions. We model object-layout interactions by

first computing the distance and angle to the nearest predicted wall using Manhattan voxels [99],

then expand the distance-to-wall value using radial basis functions spaced between [0, 5] with step

size 0.5. We also expand the absolute cosine value of the angle-to-wall using radial basis functions

spaced between [0, 1] with step size 0.2 and σ = 0.5. Combining these layout features with the

view-to-camera feature, we are able to improve detection performance for most object categories

(see Table 3.3).

3.3.2 Modeling Latent Support Surfaces

Geometric descriptors and COG descriptors [99] are able to capture local shapes and appearances.

However, 3D objects in indoor scenes have widely varying visual styles. Moreover, 3D cuboid

annotations are labeled by different people from Mechanical Turk in SUN RGB-D dataset [118],

thus objects in the same category may have inconsistent 3D annotations. As a result, features are

inevitably noisy and inconsistent across different object instances (see Fig. 3.11).
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To explicitly model different visual styles for each objects, a classical approach is to use part-

based models [33, 35] where objects are explained by spatially arranged parts. However, indoor

objects have very diverse visual styles, and it is very challenging to design a consistently varying set

of latent parts. However, for many object categories, the height of the support surface is the primary

cause of style variations (Fig. 3.11). Therefore, we explicitly model the support surface as a latent

part for each object.

By modeling support surfaces we can also constrain the search space for small object detectors.

Such detectors are otherwise intractable to learn and perform poorly due to the large set of possible

3D poses [99].

Figure 3.11: Different surface heights for “desk” in SUN RGB-D dataset [118] lead to inconsistent
3D COG representations [99].

Latent Structural SVM Learning

Some previous work was specifically designed to predict the area of support surface regions [45], but

the predicted support surfaces are not semantically meaningful. Inspired by deformable part-based

models for 2D object detection [33], we propose to treat the relative height of the support surface of

each object as a latent variable and use latent structural SVMs [148] to learn the detector.
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We follow the notation of Ren et al. [99] with an updated learning objective. For each category c,

our goal is to learn a prediction function I → (B, h) that maps an RGB-D image I to a 3D bounding

box B = (L, θ, S, y) along with its relative surface height h. L is the center of the cuboid in 3D, θ

is the cuboid orientation, S is the physical size of the cuboid along the three axes determined by its

orientation, and y is an indicator variable representing the existence of such prediction. The latent

variable h is defined as the relative surface height to the bottom of the cuboid. We discretize cuboid

height to 7 slices, and thus h localizes the support surface to one of those slices (see Fig. 3.12).

Given n training examples of category c, we want to solve the following optimization problem:

min
wc,ξ≥0

1
2
w
T
c wc +

C

n

n
∑

i=1

ξi subject to

max
hi ∈H

w
T
c φ(Ii, Bi, hi) − max

h̄i ∈H
w
T
c φ(Ii, B̄i, h̄i)

≥ ∆(Bi, B̄i, h̄i) − ξi, for all B̄i ∈ Bi, i = 1, . . . , n.

Here Bi is the ground-truth bounding box, Bi is the set of possible bounding boxes, andH is the set

of possible surface heights. φ(I, B, h) are the features associated to cuboid B whose relative surface

height is indicated by h. We first discretize B into 5 × 5 × 5 voxels and compute geometric features,

COG [99], view-to-camera feature, and scene layout feature, as denoted by φcuboid(I, B). Then we

discretize B with finer resolutions at the vertical dimension into 5 × 5 × 7 voxels and take the h-th

slice from the bottom to represent cuboid feature, as denoted by φsurface(I, B, h). Finally we add an

indicator vector for support surface height, so that

φ(I, B, h) = [φcuboid(I, B), φsurface(I, B, h), 0, ..., 1, ..., 0].

If the indicator variable y in B is 0, meaning there’s no detection, we set the feature vector to be all

zeros. A visualization of support surface feature is shown in Fig. 3.12.

Following Ren et al. [99] we define a loss function for cuboid proposals B̄: If a scene contain
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ground truth cuboid B and indicator variable ȳ is 1, we compute

∆(B, B̄) = 1 − IOU(B, B̄) ·
(

1 + cos(θ̄ − θ)

2

)

.

where IOU(B, B̄) is 3D intersection over union. The scale of this loss function ranges in [0, 1]. If

a scene doesn’t contain any ground truth cuboid and the indicator variable ȳ is 0 for the cuboid

proposal, the loss is set to be 0. We penalize all other cases with a loss of 1.

To train the model with latent support surfaces, we follow Ren et al. [99] by pre-training cuboid

descriptors (geometric features, COG, view-to-camera, and scene layout feature) without modeling

support surface. We then extract the center slice of pre-trained cuboid descriptors and concatenate it

to the pre-trained models. Finally, we initialize the support surface height indicator vector randomly

in [0, 1]. We use the CCCP algorithm [149] to solve the resulting latent structural SVM learning

problem [148].

(0, 0, 0, 1, 0, 0, 0)

Figure 3.12: Features of 3D cuboid with support surface. The surface feature is computed at a single
slice of the cuboid followed by an indicator vector to represent the relative height.
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Small Object Detection on Support Surfaces

In indoor scenes, besides large furniture like beds and chairs, many other objects with comparatively

small physical size are very hard to detect [120, 99]. Some algorithms are specifically designed to

detect small objects in 2D images using multi-scale methods [17, 55], but they cannot be directly

applied to 3D object detection.

The biggest issue for detecting small objects is that the search space can be enormous, and thus

training and testing with a sliding-windows based approach are usually intractable. But note that

small objects, such as pillows and monitors and lamps, are usually placed on top of other objects

with support surfaces. If we only search for small objects on predicted support surfaces, the search

space will be greatly reduced. As a result, the inference speed will be improved and object proposals

contain less false positives. This is another benefit of modeling support surfaces.

In our implementation, we first detect large objects of indoor scenes that are on the ground [99],

then we search for smaller objects only on top of the support surfaces of those large objects with

positive confidence scores. We reduce the voxel descritization size to be 3 × 3 × 3 for lamps and

pillows because small cuboids contain less pixels, and 3 × 1 × 3 for monitors and TVs because they

have thin shapes.

Spatial Contextual Learning for All Objects

Our object detector is trained discriminatively for each object category. At test time, 3D objects

with locally similar shapes can confuse 3D detectors trained for each object category independently.

Instead of designing simple heuristics to handle false positives, we follow Ren et al. [99] by using

an effective cascaded detection framework [52] to model contextual relationships among cuboid

proposals.

For each 3D cuboid proposal, we encode its contextual relationship with the highest confidence

cuboid proposals in all object categories using 3D overlapping features and confidence differences.

Using those contextual features we learn a linear SVM to determine whether those 3D object

proposals are correct or not, and add this updated confidence score to first-stage detection scores.

We refer readers to the supplementary material of Ren et al. [99] for a detailed explaination. For
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Figure 3.13: To model contextual relationships between small objects and the large objects supporting
them, we compute the 2D overlap between 3D bounding boxes from the top-down view.

small objects that are placed on the support surfaces of large objects, 3D overlap features are noisy.

We replace 3D overlap with 2D overlap scores from the top-down view of the scene (Fig. 3.13).

With updated confidence scores that account for both original beliefs and contextual cues, object

proposals contain fewer false positives and object detectors have improved performance.

Bathtub Bed BookshelfChairDeskDresserNightstand Sofa TableToilet Box DoorCounterGarbage-binSinkPillowMonitorTVLamp
mAP
(10)

mAP
(19)

COG 49.8 53.0 8.5 39.0 14.9 5.5 12.8 52.8 26.0 34.5 11.6 0.9 2.4 20.1 30.3 0.0 0.0 0.0 0.0 29.68 19.1
+view 60.2 59.3 18.4 40.4 18.0 9.5 16.8 53.2 26.8 41.6 11.0 3.2 4.6 21.8 30.6 0.0 0.0 0.0 0.0 34.4 21.9

+surface 66.6 68.0 21.5 42.0 26.0 8.5 17.1 52.8 39.0 45.8 11.3 2.6 4.0 19.7 60.9 9.9 1.6 0.4 9.6 38.7 26.7
+cascade 76.2 73.2 32.9 60.5 34.5 13.5 30.4 60.4 55.4 73.7 19.5 5.4 10.7 34.6 75.3 12.5 1.6 2.1 16.9 51.0 36.3

SS [119] - 43.0 - 28.2 - - - 20.6 19.7 60.9 - - - - - - - - - - -
DSS [120] 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 1.5 0.0 4.1 20.4 32.3 13.3 0.2 0.5 18.4 42.1 26.9
Ren [99] 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 - - - - - - - - - 47.6 -

Lahoud [69] 43.5 64.5 31.4 48.3 27.9 25.92 41.9 40.39 37.0 80.4 - - - - - - - - - 45.1 -

Table 3.3: Experiment results on SUN RGB-D dataset [118]. Our baseline method uses COG
descriptor. Adding extra features to model view-to-camera and scene layout (+view) improves
performance, and modeling support surfaces (+surface) not only help detect large objects but also
reduce many false positives for small objects (last 4 categories). The final stage cascaded detection
framework [99] (+cascade) models object context and help boost the performance to the state-of-
the-art over existing methods for the first 10 and all 19 object categories.

Bathtub Bed BookshelfChairDeskDresserNightstandSofaTableToilet Box DoorCounterGarbage-binSinkPillowMonitorTVLamp
mAP
(10)

mAP
(19)

Whole System 76.2 73.2 32.9 60.5 34.5 13.5 30.4 60.4 55.4 73.7 19.5 5.4 10.7 34.6 75.3 12.5 1.3 2.1 16.9 51.0 36.3

-view-surface 53.3 63.0 18.7 61.6 29.0 7.5 20.2 58.8 49.1 62.8 17.3 1.1 6.6 39.1 60.3 0.0 0.0 0.0 0.0 42.4 28.9

Table 3.4: We compare our holistic scene understanding system with cascaded detection on SUN-
RGBD dataset [118]. Although cascaded detection is powerful, there is still a drop in performance
without modeling view-to-camera feature, scene layout and support surfaces.
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Bed Table Desk Nightstand

Sink Bathtub Pillow Lamp

Figure 3.14: Precision-Recall curves for several object categories including small objects (pillow
and lamp) on SUN RGB-D dataset [118].

3.3.3 Experiments

We train our 3D object detection algorithm solely on the SUN RGB-D dataset [118] with 5285

training images, and report performance on 5050 test images for all 19 object categories (Table 3.3).

The NYU Depth dataset [117] has 3D cuboid labels for 1449 images, but annotations are noisy

and inconsistent. Some previous work has only evaluated detection performance on this small

dataset [47], or defined their own annotations for 3D cuboids [29]. Because the SUN RGB-D dataset

contains all images from NYU Depth dataset with more accurate annotations, we do not evaluate on

the NYU Depth dataset in this chapter.

Baseline Algorithm using COG We implement a baseline detector using only COG features [99]

and local geometric features of the point cloud. This method is denoted by “COG” in the first row

of Table 3.3. Note that this detectors’ performances is slightly different from the first stage detection

scores in Ren et al. [99] because we are using a coarser 5 × 5 × 5 discretization (versus 6 × 6 × 6)

for each cuboid. With reduced feature size, our algorithm is more computationally efficient but has

similar accuracy.
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Effectiveness of View-based Features By adding extra view-to-camera features and scene layout

features, denoted by “+view” in the second row of Table 3.3, we witness notable improvements on

detecting small objects with a layered shape such as dressers and nightstands. Those objects usually

expose only one side to the camera, and the view-to-camera feature is helpful in distinguishing

correct predictions. With scene layout features, we also witness improvements for objects whose

orientations strongly correlate with directions of walls, such as beds and bookshelves.

Modeling Latent Support Surfaces For objects such as beds, tables, and desks, modeling support

surface as a latent variable help capture the intra-class style variations within each cuboid and we

witness great performance gains in the third row of Table 3.3. We visualize examples of inferred

support surfaces in Figure 3.15. For objects that do not have explicit “support surfaces”, such as

bathtub, bookshelf, and sink, our model can be viewed as a single part-based model and is also

effective for 3D object detection. Note that the goal of this work is to model latent support surface

in order to help 3D detection, not to predict accurate support surface area of the scene. We do not

use any annotations of support surfaces when training, and also do not evaluate our performance on

surface prediction benchmarks [45].

Small Object Detection Detecting small objects is a challenging task and is still an open problem.

Without modeling support surfaces, our baseline method fails to detect small objects because

the search space is large and 3D object proposals contain many false positives. Using simple

heuristics to check support relationships in the SUN-RGBD annotations, we find more than 95%

of lamps/pillows/monitors/TVs are placed on the surface of night-stands/tables/beds/desks/dressers.

Searching on the predicted surface region enables our algorithm to discover small objects with higher

precision. See row 3 in Table 3.3.

Comparison to Other Methods By modeling latent support surface, our algorithm already out-

performs the state-of-the-art method of Ren et al. [99] for 10 large object categories, and can also

detect some smaller objects. In this chapter our main goal is to demonstrate the effectiveness of

modeling latent support surface, and we think the current system already shows great potential.
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Comparing with other algorithms that use CNN features [120, 69] pretrained on external datasets,

the performance of our algorithm is comparable even without the cascaded prediction step. Conven-

tional CNNs for 3D detection [120, 69] are trained to produce weighted confidence scores for each

of multiple object categories, while our first-stage detector algorithm is instead tuned to discrimina-

tively localize individual categories in 3D. Our subsequent cascaded prediction [52] of contextual

relationships between object detections has structural similarities to a multi-stage neural network, but

it is trained using (convex) structural SVM loss functions and designed to have a more interpretable,

graphical structure. Interestingly, our cascaded approach is comparable to or more accurate than

standard 3D CNNs [120, 69] in the detection of both 10 and 19 object categories.

Computational Speed We implemented our algorithm using MATLAB in a 2.5GHz single core

CPU. The computational speed of our algorithm is 10-30min per image, which is slightly better than

the reported speed in Ren et al. [99]. The most time-consuming part is the feature computation step,

which could be improved by using parallel computing with multi-core CPUs or GPUs. With pre-

computed cuboid features for each RGB-D image, the inference time is 2sec for each object category.

With pre-computed contextual features among all objects, the cascaded prediction framework takes

less than 0.5sec on average to run.

Failure Cases An typical failure case for our algorithm is shown in the last row of Fig. 3.15,

where missing depth values cause objects to be missed. While it is true that some small objects will

be missed when we fail to detect their supporting surface, given the extreme difficulty of detecting

small objects in highly cluttered indoor scenes, there are still substantial net benefits to exploiting

support relationships for 3D detection. Some previous work was specifically designed to solve

this issue [29, 69] by using CNN features in RGB images, and we believe incorporating a similar

approach in our cascaded prediction framework might also help resolve this failure case.
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Groundtruth Annotations for RGB-D Images Our Final Stage 3D Detection Output

Figure 3.15: Visualizing our final stage 3D detections for objects with high confidence scores.
Support surfaces are depicted with faded colors inside each large object. We show one failure case
at the bottom: our algorithm failed to detect a dresser and a nightstand due to missing depth inputs
(dark blue). As a result, the lamps supported by those objects are missed as well.
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3.4 Conclusions

We propose an algorithm for 3D cuboid detection and Manhattan room layout prediction from

RGB-D images. Using our novel COG descriptor of 3D appearance, we trained accurate 3D cuboid

detectors for ten object categories, as well as a cascaded classifier that learns contextual cues to prune

false positives. Our scene representations are learned directly from RGB-D data without external

CAD models, and may be generalized to many other categories.

We then design a 3D object detection system using latent support surfaces. Modeling the height

of the support surface as a latent variable leads to improved detection performance for large objects,

and constrains the search space for small object detectors. Our detector achieves state-of-the-art

performance on the SUN RGB-D dataset, demonstrating the effectiveness of modeling support

surfaces in 3D object detection.
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3.5 Supplementary Material

3.5.1 Proposing Layout Candidates

We predict floors and ceilings as the 0.001 and 0.999 quantiles of the 3D points along the gravity

direction. After that, we only need to propose wall candidates that follows Manhattan structure.

We discretize orientation into 18 evenly spaced angles between 0 and 180◦. For each orientation,

the frontal wall is bounded by the 0.99 quantiles of the farthest points and the back wall is bounded

by camera location. Because the layout candidates should follow a Manhattan structure, the left/right

wall should be orthogonal to the frontal wall and should be bounded by the 3D points. We further

discretize along the width and depth direction by 0.1m, and propose candidates that capture at least

80% of all 3D points. For typical scenes, there are 5,000-20,000 layout hypotheses.

3.5.2 Contextual Features

Here, we give a detailed explanation of the contextual features we use to model object-object and

object-layout relationships in the second stage cascaded classifier.

For completeness, we define the notations again. For an overlapping pair of detected bounding

boxes Bi and Bj , we denote their volumes as V (Bi) and V (Bj ), their volume of their overlap as

O(Bi, Bj ), and the volume of their union as U (Bi, Bj ). We characterize their geometric relationship

via three features: S1(i, j) =
O(Bi,B j )

V (Bi )
, S2(i, j) =

O(Bi,B j )

V (B j )
, and the IOU S3(i, j) =

O(Bi,B j )

U (Bi,B j )
. To

model object-layout context [77], we compute the distance D(Bi, M) and angle A(Bi, M) of cuboid

Bi to the closest wall in layout M .

The first-stage detectors provide a most-probable layout hypothesis, as well as a set of detections

(following non-maximum suppression) for each category. For each bounding box Bi with confidence

score zi, there may be several bounding boxes of various categories c ∈ {1, 2, ...,C} that overlap with

it. We let ic be the instance of category c with the maximum confidence score zic . The features ψi

for bounding box Bi are then as follows:

1. Constant bias feature, and confidence score zi from the first-stage detector.
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2. For m ∈ {1, 2, 3} and c ∈ {1, 2, ...,C}, we calculate Sm(i, ic), Sm(i, ic) · zic , Sm(i, ic) · zi and

concatenate those numbers.

3. For c ∈ {1, 2, ...,C}, we calculate the difference in confidence score from each first-stage

detector, zi − zic , and concatenate those numbers.

4. For D(Bi, M), we consider radial basis functions of the form

f j (x) = exp(−
(x − µ j )2

2σ2
) (3.4)

For a typical indoor scene, the largest object-to-wall distance is usually less than 5m, therefore

we space the basis function centers µ j evenly between 0 and 5 with step size 0.5, and choose

σ = 0.5. We expand D(Bi, M) using this radial basis expansion.

5. The absolute value of the cosine of D(Bi, M): | cos(D(Bi, M)) |

To model the second-stage layout candidates, we select the bounding box ic with the highest

confidence score zic from the first-stage classifier in each category c ∈ {1, 2, ...,C}, and use the

following features for layout Mi with confidence score z′
i
:

1. All the features used in the first-stage to model Mi using Manhattan Voxels.

2. For c ∈ {1, 2, ...,C}, we calculate the radial basis expansion for D(Bic, Mi), and its product

with z′
i

and zic .

3. For c ∈ {1, 2, ...,C}, we calculate the absolute value of the cosine of D(Bic, Mi): | cos(D(Bic, Mi)) |,

| cos(D(Bic, Mi)) | · z′
i

and | cos(D(Bic, Mi)) | · zic .

4. For c ∈ {1, 2, ...,C}, we calculate the difference in confidence score from each first-stage

detector, z′
i
− zic , and concatenate those numbers.

3.5.3 Additional Experimental Results

Orientation Besides evaluating detection based on intersection-over-union score, we can also

evaluate the accuracy of the predicted orientations. We plot the cumulative counts of true positive

detections whose orientation error in degrees is less than certain thresholds in Fig. 3.16. Using
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geometric feature and COG, our detector is able to detect more true positives than sliding-shape [119],

while maintaining comparable accuracy in orientation estimation. Those curves are not related to

the precision-recall curves as we are only evaluating on true positives.
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Figure 3.16: Quantification of orientation estimation accuracy for the four object categories consid-
ered by [118].

Additional Layout Prediction results Besides the two examples for layout prediction shown in

this chapter, in figure 3.17 we show some additional results to demonstrate the effectiveness of

Manhattan Voxels.

Figure 3.17: Comparison of our Manhattan voxel 3D layout predictions (blue) to the SUN RGB-D
baseline ([118], green) and the ground truth annotations (red). Our learning-based approach is less
sensitive to outliers and degrades gracefully in cases where the true scene structure violates the
Manhattan world assumption.



Chapter 4

Cascaded Scene Flow Estimation using

Semantic Segmentation

Given two consecutive frames from a pair of stereo cameras, 3D scene flow methods simultane-

ously estimate the 3D geometry and motion of the observed scene. Many existing approaches

use superpixels for regularization, but may predict inconsistent shapes and motions inside rigidly

moving objects. We instead assume that scenes consist of foreground objects rigidly moving in

front of a static background, and use semantic cues to produce pixel-accurate scene flow estimates.

Our cascaded classification framework accurately models 3D scenes by iteratively refining semantic

segmentation masks, stereo correspondences, 3D rigid motion estimates, and optical flow fields.

We evaluate our method on the challenging KITTI autonomous driving benchmark, and show that

accounting for the motion of segmented vehicles leads to state-of-the-art performance.

4.1 Introduction

The scene flow [130] is the dense 3D geometry and motion of a dynamic scene. Given images

captured by calibrated cameras at two (or more) frames, a 3D motion field can be recovered

by projecting 2D motion (optical flow) estimates onto a depth map inferred via binocular stereo

matching. Scene flow algorithms have many applications, ranging from driver assistance [86] to 3D

48
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Initial Geometry 

Updated Geometry 

Initial Flow 
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Figure 4.1: An illustration of our method for scene flow estimation. Given two frames from a pair
of stereo cameras, and initial geometry and optical flow estimates provided by a non-semantic scene
flow algorithm [133], we use semantic segmentation cues [26] to identify foreground vehicles. In
this example, our updated geometry estimate reduces motion errors in the windshield of the car and
the adjacent road.

motion capture [38].

The problems of optical flow estimation [124, 7] and binocular stereo reconstruction [108] have

been widely studied in isolation. Recent scene flow methods [80, 146, 133] leverage 3D geometric

cues to improve stereo and flow estimates, as evaluated on road scenes from the challenging KITTI

scene flow benchmark [84]. State-of-the-art scene flow algorithms [134, 84] assume superpixels

are approximately planar and undergo rigid 3D motion. Conditional random fields then provide

temporal and spatial regularization for 3D motion estimates. Those methods generally perform

well on background regions of the scene, but are significantly less accurate for moving foreground

objects.

Estimating the geometry of rapidly moving foreground objects is difficult, especially near mo-

tion boundaries. Vehicles are particularly challenging because painted surfaces have little texture,

windshields are transparent, and reflections violate the brightness constancy assumptions underly-

ing stereo and flow likelihoods. However, accurate estimation of vehicle geometry and motion is

critical for autonomous driving applications. To improve accuracy, it is natural to design models

that separately model the motion of objects and background regions [89, 84].

Several recent methods for the estimation of optical flow [5, 57, 114, 89] have used semantic

cues to improve accuracy. While motion segmentation using purely bottom-up cues is challenging,

recent advances in semantic segmentation [154, 26] make it possible to accurately segment traffic
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scenes given a single RGB image. Given segmented object boundaries, object-specific 3D motion

models may then be used to increase the accuracy of optical flow methods.

In this paper, we use instance-level semantic segmentations [26] and piecewise-rigid scene flow

estimates [133] as inputs, and integrate them via a cascade of conditional random fields (CRFs) [67].

We define pixel-level CRFs relating dense segmentation masks, stereo depth maps, optical flow

fields, and rigid 3D motion estimates for foreground objects. Due to the high dimensionality of these

variables, we refine them iteratively using a cascaded classification model [52], where each stage of

the cascade is tuned via structural SVM learning algorithms [61]. We evaluate using previous scene

flow annotations [84] of the challenging KITTI autonomous driving benchmark [40], and improve

on the state-of-the-art in two-frame scene flow estimation. Our work demonstrates the importance

of semantic cues in the recovery of the geometry and motion of 3D scenes.

4.2 Modeling Semantic Scene Flow

Given two consecutive frames I, J and their corresponding stereo pairs I ′, J ′, our goal is to estimate

the segmentation mask, stereo disparity, and optical flow for each pixel in the reference frame

(Fig. 4.1). Let pi = (d
(1)

i
, s

(1)

i
,mi, f i) denote the variables associated with pixel i in the reference

frame, where d
(1)

i
∈ R+ is its disparity, s

(1)

i
∈ {0, 1, . . .} is a semantic label (0 is background,

positive integers are foreground object instances), mi ∈ SE(3) is its 3D rigid motion (translation and

rotation), and f i = [ui, vi] is its optical flow. We denote the disparity and semantic segmentation for

each pixel in the second frame by qi = (d
(2)

i
, s

(2)

i
). We only use two frames to estimate scene flow,

and thus need not explicitly model motion in the second frame.

Existing scene flow algorithms make predictions at the superpixel level without explicitly mod-

eling the semantic content of the scene [84, 134]. Predictions inside each semantic object may

thus be noisy or inconsistent. In this work, we assume that the scene contains foreground objects

(vehicles, for our autonomous driving application) rigidly moving across a static background. Given

an accurate semantic segmentation of some foreground object, the geometry of the pixels within

that segment should be spatially and temporally consistent, and the optical flow should be consistent
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with the underlying 3D rigid motion.

Due to the high dimensionality of the scene flow problem, we refine our estimates using a cascade

of discriminative models [52], with parameters learned via a structural SVM [61]. Every stage of the

cascade makes a targeted improvement to one scene variable, implicitly accounting for uncertainty

in the current estimates of other scene variables. We initialize our semantic segmentation S using

an instance-level segmentation algorithm [26], and our disparitiesD and optical flow fields F using

the PRSF method [134]. We discuss their cascaded refinement next.

4.2.1 Refinement of Semantic Segmentation

The initial single-frame segmentation is unreliable in regions with shadows and reflections. Given

stereo inputs, however, our depth estimates provide a strong cue to improve the segmentation.

Therefore for each segmentation instance, we define a CRF on the pixels in its enclosing bounding

box Bi. We seek to estimate the foreground segmentation s given an initial noisy segmentation ŝ.

Our data term encourages the inferred segmentation s to be close to the initial segmentation ŝ.

The KITTI scene flow dataset [84] generates “ground truth” segmentations by aligning approximate

CAD models, and these annotations are often inaccurate at object boundaries. To add robustness, we

thus define a feature φdist(i, ŝ) by computing the signed distance of pixel i to the original segmentation

border, and using a sigmoid function to map these distances to [0, 1]. The data energy for our CRF

model is then

Edata
seg (S)=

∑

i∈Bi

[

λ1+λ2φdist(i, ŝ)
]

δ(si=0, ŝi=1) +
[

λ3+λ4φdist(i, ŝ)
]

δ(si=1, ŝi=0). (4.1)

We demonstrate the benefits of our signed distance feature φdist(i, ŝ) in Fig. 4.2. By allowing the CRF

to reduce confidence in ŝ near boundaries, this feature allows other image-based cues to improve

segmentation accuracy.

To allow spatial regularization, we add edges E to our CRF connecting each pixel to its 8 spatial
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Signed Distance φdist(·, ŝ) “Ground Truth” Segmentation CRF Excluding φdist CRF Including φdist

Figure 4.2: The “true” KITTI segmentations [84] are approximate. By incorporating a signed
distance feature φdist(i, ŝ), CRF segmentation accuracy improves.

neighbors:

E
space
seg (S) =

∑

(i, j)∈E

[

λ5 + λ6ρimg(Ii, Ij ) + λ7ρdisp(di, d j )
]

δ(si , s j ). (4.2)

Here, ρimg(Ii, Ij ) = exp{− | |Ii−Ij | |
σimg

}measures RGB color similarity, and ρdisp(di, d j ) = exp{− |di−d j |
σdisp

}

measures similarity of the current (approximate) disparity estimates.

To learn the parameters λ = [λ1, . . . , λ7], we use a structured SVM [61] with loss equal to the

average label error within bounding box Bi [36]. Feature bandwidths σimg, σdisp are tuned using

validation data. To perform inference within each iteration of S-SVM learning, we use an efficient

message passing implementation of tree-reweighted belief propagation [136, 64]. Because the pixel

labels are binary, inference takes less than 0.5s. To apply our CRF model to the scene flow problem,

we independently estimate the segmentation for each instance and frame.

4.2.2 Estimation of Scene Geometry

Given a disparity map D and camera calibration parameters, a 3D point cloud representation of the

scene may be constructed. Standard stereo estimation algorithms ignore semantic cues, and often

perform poorly on surfaces that are shadowed, reflective, or transparent. As illustrated in Fig. 4.3,

for autonomous driving applications the depth estimates for vehicle windshields are especially poor.

Because inaccurate depth estimates lead to poor motion and flow estimates, we design a model that

enforces local smoothness of depths within inferred segmentation masks.

We define a CRF model of the pixels within each semantic segment previously inferred by
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our cascaded model. For each pixel i in the left camera with disparity hypothesis di, we denote

its corresponding pixel in the right camera as Pd (i, di). The data term is defined to penalize the

difference in smooth census transform between pixel i and Pd (i, di):

Edata
geom(D) =

∑

{i |si=s }
ρCSAD(Ii, I ′Pd (i,di )

). (4.3)

Here, ρCSAD(., .) is the CSAD cost [132] for matched pixels in different images. The CSAD difference

is a convex approximation of the census transform [150] that gives reliable pixel correspondences

for many datasets [132].

We encourage piecewise-smooth depth maps by penalizing the absolute difference of neighboring

pixel depths:

E
space
geom (D) = τ1

∑

(i, j)∈E
ρdepth(di, d j ). (4.4)

Here ρdepth(di, d j ) = | Cdi −
C
d j
|, and C is a camera-specific constant that transforms disparity d into

depth C
d

. We enforce consistency in depth domain because the scale of disparity varies when objects

are close or far from the camera.

Although our stereo CRF uses standard features, as illustrated in Fig. 4.3, it is quite effective at

resolving uncertainties in challenging regions of foreground objects. If naively applied to the full

image, simple CRF models are often inaccurate at object boundaries [133]. However, they are much

better able to capture depth variations within a single object. Because our pairwise distances depend

only on the absolute value of depth differences, distance transforms [34] may be used for efficient

coarse-to-fine inference in the corresponding CRF. On average, it takes less than 5s to perform

inference in a 200 × 200 region with 200 disparity candidates. We refine the disparities for each

frame independently.

4.2.3 Estimation of 3D Motion

If the segmentation mask and disparity estimates for each object instance were perfect, we could

apply 3D rigid motion to the 3D point cloud for each segment, and project back to the image plane to

recover the 2D optical flow. We let (xi, yi) denote the motion flow constructed in this way. Although
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Initial Point Cloud [133] Initial Disparity Error Refined Point Cloud Refined Disparity Error

Figure 4.3: 3D point clouds (top) and corresponding disparity errors (blue small, orange large) for
the initial PRSF depth estimates [133], and the refined depth estimates produced by our CRF model.

our imperfect geometry estimates will cause the motion flow to differ from the true optical flow

(ui, vi), each still provides valuable cues for the estimation of the other.

For each detected segment, we let M = (R, t) denote its 3D relative motion between the first and

second frames. The motion M has 6 degress of freedom: t is a translation vector, and R = (α, β, γ)

is a rotation represented by three axis-aligned rotation angles. We match the rigid motion M to the

current flow field estimate (u, v) by minimizing the following energy function:

Emotion(M) = ν(ρ(α) + ρ(β) + ρ(γ)) +
∑

{i |si=s }
|xi (M, di) − ui | + |yi (M, di) − vi |. (4.5)

where (xi (M, di), yi (M, di)) is the motion flow computed from disparity di, 3D motion M , and the

camera calibration. We let ρ(a) =
√

a2
+ ǫ2 be the Charbonnier penalty, a smooth function similar

to the L1 penalty that provides effective regularization for motion estimation tasks [124]. We set the

regularization constant ν using validation data, and use gradient descent to find the optimal value

for M . We visualize an example motion flow map in Fig. 4.4.

4.2.4 Estimation of 2D Optical Flow

The estimated motion flow from the previous stage provides valuable cues for optical flow estimation.

As in the example in Fig. 4.4, motion flow errors are primarily caused by imperfect geometries (or

disparities). We thus seek a flow field f i = (ui, vi) such that the corresponding pixel Pf (i, f i) in the

next frame matches pixel i, and f i does not deviate too much from (xi, yi). We define a CRF model
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Figure 4.4: Visualization of estimated flow fields (Top, hue encodes orientation [124]) and their
error (Bottom, blue small, orange large). A rigid 3D motion flow captures the dominant object
motion, and the refined estimates from our CRF model further improve accuracy.

of the pixels within segment s in frame 1, with likelihood

Edata
flow(F ) =

∑

{i |si=s }
ρCSAD(Ii, JPf (i, fi )) + η1(|ui − xi | + |vi − yi |). (4.6)

We also encourage spatially smooth flow field estimates:

E
space
flow (F ) =

∑

(i, j)∈E
η2(|ui − u j | + |vi − vj |). (4.7)

While many optical flow methods use superpixel approximations to make inference more effi-

cient [114], max-product belief propagation can be efficiently implemented for our pixel-level CRF

using distance transforms [34, 18]. As shown in Fig. 4.4, our refined optical flow improves the initial

flow by smoothly varying across the segment, while simultaneously capturing details that are missed

by the motion flow.

To limit the memory consumption of our optical flow algorithm, we perform inference on a

down-sampled image and then use the EpicFlow [102] algorithm to interpolate back to the full

image resolution. Other recent optical flow algorithms have used a similar approximation [18, 5].

Motion Estimation for Out-of-Frame Pixels We notice that the EpicFlow interpolation tends to

produce significant errors for pixels that move outside of the image border. Outside of the camera’s

field of view, optical flow can only be predicted using the known 3D rigid motion, and we thus
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Figure 4.5: Visualization of our flow fusion CRF to reduce motion errors (blue small, orange large)
for out-of-border pixels.

propose a flow fusion CRF [73] to combine the estimated optical flow and motion flow for partially

occluded objects.

In particular, we use a binary CRF to determine whether the optical flow (ui, vi) or motion

flow (xi, yi) provides a better estimate of the true flow (Ui,Vi) for each pixel i. Intuitively, for

within-border pixels we should use the matching cost to compare flow fields, while out-of-border

pixels should be biased towards the motion flow interpolation:

Edata
fuse (F ) = ω1(|Ui − xi | + |Vi − yi |)δ[Pf (i, f i) outside]

+

∑

f={(u,v),(x,y) }

∑

{i |si=s }
ρCSAD(Ii, JPf (i, fi ))δ[Pf (i, f i) inside].

Spatial smoothness is encouraged for neighboring pixels:

E
space
fuse (F ) =

∑

(i, j)∈E
ω2(|Ui −Uj | + |Vi − Vj |) (4.8)

We tune parameters ω1, ω2 using validation data, and minimize the energy using tree-reweighted

belief propagation [64]. We show in Fig. 4.5 that the fused flow estimate retains many details of the

optical flow, while using the motion flow to better interpolate in occluded regions. We also apply our

flow fusion technique to update the noisy background flow predictions. See Fig. 4.9 for additional

examples of our final optical flow estimates.
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Figure 4.6: A directed graph summarizing our cascaded approach to the estimation of object
segmentations S, disparities D, 3D rigid motions M , and optical flow F. Subscripts indicate
different stages of the cascade. The bold arrows represent additional temporal dependencies added
for stages two and later.

4.3 Cascaded Scene Flow Prediction

The CRF models defined in Sec. 4.2 refine the various components of our scene model greedily,

by estimating each one given the current best estimates for all others. However, this approach

does not fully utilize the temporal relationships between the segmentation and geometry at different

frames. Also, when the initial optical flow contains major errors, our motion flow estimates will

be inaccurate. To better capture the full set of geometric and temporal relationships, we thus use

multiple stages of cascaded prediction [52] to further refine our scene flow estimates. The inputs

and outputs for each stage of our cascade are summarized by the directed graph in Fig. 4.6.

Temporal Segmentation Consistency Rather than segmenting each video frame independently,

in the second stage of our cascade, we use the inferred flow field f to encourage temporal consistency.
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Motion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion InputMotion Input

Figure 4.7: From top to bottom, we visualize input frames, initial disparity (left) and flow (right)
predictions, and the refined disparity and flow after the first and second stages of the cascade. Our
refined flow estimates from stage 1 (note object boundaries) lead to improved stereo estimates in
stage 2 (upper left).

Each pixel i in frame 1 is linked to matched pixel Pf (i, f i) in frame 2:

Etime
seg (S) = λ8δ(s

(1)

i
= 0, s(2)

Pf (i, fi )
= 1) + λ9δ(s

(1)

i
= 1, s(2)

Pf (i, fi )
= 0)

+

∑

i

[

λ10 + λ11ρCSAD(Ii, JPf (i, fi ))
]

δ(s
(1)

i
= s

(2)

Pf (i, fi )
).

We again use S-SVM learning of CRF parameters λ, and infer segmentations using tree-reweighted

belief propagation.

Temporal Geometric Consistency As in our temporal segmentation model, we also extend the

stereo CRF of Sec. 4.2.2 to encourage smooth changes for the depths of pixels linked by our optical

flow estimates:

Etime
geom(D) = τ2

∑

{i |s(1)

i
=s }

ρdepth(di (mi), dPf (i, fi )). (4.9)

Here, di (mi) denotes the disparity value of pixel i in the second frame when rigid motion mi is

applied. The parameters τ are learned using validation data. Fig. 4.7 shows an example of the

improved disparity and flow estimates produced across multiple stages of our cascade.

Recovery from a Poor Optical Flow Initialization If the initial noisy optical flow is very inac-

curate, our cascade cannot recover the correct 3D motions of objects because we assume motion

flow should match optical flow. Since our updated semantic segmentation masks s(1) and s(2) are
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typically very accurate, when applying rigid motion M to pixels in s(1), the shape of the new seg-

mentation mask s(M) should be similar to s(2). We measure this similarity via a cost defined on the

second-frame bounding box B:

1
|B |

∑

i∈B
αS(M)i · C(S

(2)

i
) + (1 − α)C(S(M)i) · S(2)

i
. (4.10)

Here, C(·) is the Chamfer difference map and α = 0.5. This cost function is widely used for human

pose estimation [8]. If this cost exceeds 0.5, we replace the first term in Eq. (4.5) with this silhouette

cost. By optimizing this modified objective, we can recover from bad motion estimates.

To provide an intuitive example, we visualized an example in Figure 4.8. Since the initial flow is

totally wrong, the estimated motion will inevitably be problematic as well, and indeed the silhouette

cost is large. For flow estimations with large silhouette errors, we replace the first term in Eq. (5)

with this term. As a result, the estimated motion is reliable, leading to more accurate optical flow

predictions.

Second Frame Disparities For the KITTI scene flow dataset [84], the ground truth disparity for

the second frame is represented as per-pixel disparity changes with respect to the first frame. To

predict this quantity for evaluation, we apply our estimated 3D rigid motion for each pixel to its

estimated geometry in the first frame. The accuracy of these disparity estimates is thus strongly

dependent on the performance of our motion estimation algorithm.

Initial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow CorrespondenceInitial Flow Correspondence Poor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial FlowPoor Initial Flow Silouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motionSilouette Cost for initial motion Initial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow errorInitial flow error
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Figure 4.8: Visualizing how we recover correct 3D motion from poor flow initializations by mini-
mizing the silhouette cost.



60

D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all Time

PRSF 4.74 13.74 6.24 11.14 20.47 12.69 11.73 27.73 14.39 13.49 31.22 16.44 2.5min
CSF 4.57 13.04 5.98 7.92 20.76 10.06 10.40 30.33 13.71 12.21 33.21 15.71 1.3min

OSF 4.54 12.03 5.79 5.45 19.41 7.77 5.62 22.17 8.37 7.01 26.34 10.23 50min
SSF-O 4.30 8.72 5.03 5.13 15.27 6.82 5.42 17.24 7.39 6.95 25.78 10.08 52.5min
SSF-P 3.55 8.75 4.42 4.94 17.48 7.02 5.63 14.71 7.14 7.18 24.58 10.07 5min

Table 4.1: Scene flow results on all pixels for KITTI test set. Under most evaluation metrics, our
algorithm SSF outperforms PRSF [133], CSF [80], OSF [84] that take two frames as input.

D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all

CSF 4.03 11.82 5.32 6.39 16.75 8.25 8.72 26.98 12.03 10.26 28.68 13.56
PRSF 4.41 13.09 5.84 6.35 16.12 8.10 6.94 23.64 9.97 8.35 26.08 11.53
OSF 4.14 11.12 5.29 4.49 16.33 6.61 4.21 18.65 6.83 5.52 22.31 8.52

SSF-O 3.98 7.82 4.62 4.26 12.31 5.70 4.04 13.18 5.70 5.44 21.11 8.25

SSF-P 3.30 7.74 4.03 4.12 14.57 5.99 4.20 10.81 5.40 5.70 19.93 8.25

Table 4.2: Scene flow results on non-occluded pixels for KITTI test set. SSF also outperforms other
methods.

4.4 Experiment

We test our semantic scene flow algorithm (SSF) with 3 iterations of cascaded prediction on the

challenging KITTI 2015 benchmark [84]. The performance is evaluated at disparity estimations at

two frames (D1, D2), flow estimations (Fl) at the reference frame, and scene flow estimations (SF),

and evaluated separately on foreground (fg), background (bg) and all pixels (all). See Table 4.1

for experimental results at all pixels and Table 4.2 for non-occluded pixels. We test SSF with

PRSF [133] initialization (SSF-P) and OSF [84] initialization (SSF-O). Our algorithm is superior

to state-of-the-art scene flow algorithms in all the evaluation metrics and we also provide qualitative

results on training sets in Figure 4.9.

In Table 4.3, we test the performance gain in each stage of the cascade in the training set. There

is an improvement at the first iteration of the cascade when modeling segmentation and geometry

at independent frames, followed by another improvement at the second iteration when temporal

consistency is introduced. At the third iteration, the performance starts to saturate.

Speed Scene flow prediction usually takes a long time to compute, and efficient algorithms [80]

usually trade efficiency over accuracy. Training on a large synthetic dataset, CNN-based approaches
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Figure 4.9: Visualizing the qualitative results of our algorithm for 4 sequences in KITTI training
set. In the last set of results, we show one failure case where the imperfect segmentations lead to
scene flow estimation error.
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Seg D1-fg D1-bg Fl-fg Fl-bg

PRSF 10.1 5.00 3.27 8.54 4.04
Iter 1 9.79 3.69 3.18 8.38 3.67
Iter 2 8.41 3.50 3.15 8.20 3.65
Iter 3 8.40 3.49 3.15 8.20 3.65

GT Seg 0 2.19 3.05 7.61 3.56

Table 4.3: Results on KITTI validation set. Starting with noisy PRSF initialization, we make
improvements at each stage of the cascade. In the last row, we show that when segmentation mask
is perfect, scene flow prediction can be improved in a huge margin.

have been proposed to perform optical flow [30, 140] and disparity estimation [83] as two separate

tasks at very fast speeds. However, their accuracy is not as good as classical scene flow algorithms

on the real-world KITTI dataset. Although the parameter space of our algorithm is huge and we are

making pixel level predictions, our algorithm is still efficient. The main reason is that we disentangle

the output space, and utilize efficient algorithms [34, 18] to solve each inference problem with high

dimensional outputs. Most of the computation time is spent on feature computation, and could be

improved using parallel computation.

Failure Cases As can be seen in Figure 4.9, if the instance segmentation algorithm fails to detect

missing vehicles for challenging cases, the performance of our algorithm can be influenced. Similar

to optical flow methods that utilize semantic information [5], we conducted an experiment using

ground truth segmentation masks and witnessed a significant performance gain, see Table 4.3.

Therefore our bottleneck is the accuracy of instance segmentation.

4.5 Conclusion

In this work, we utilize semantic cues to identify rigidly moving objects, and thereby produce more

accurate scene flow estimates for real-world scenes. Our cascaded prediction framework allows

computationally efficient recovery of high-dimensional motion and geometry estimates, and can

flexibly utilize cues from sophisticated semantic segmentation algorithms. We improve on the state-

of-the-art for the challenging KITTI scene flow benchmark [84, 40]. While our experiments have

focused on using vehicle detections to improve scene flow estimates for autonomous driving, our
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cascaded scene flow method is directly applicable to any category of objects with near-rigid motion.

4.6 Supplementary Material

4.6.1 Learned Parameters

We split ground truth data for KITTI dataset [84] as 150 for training and 50 for validation, and learn

parameters in our model at each stages of the cascade. Here, we report the learned parameters.

Refinement for Semantic Segmentation

We show in Table 4.4 the learned parameters for segmentation refinement model using Structural

SVM training [36].

Iter1

λ1 λ2 λ3 λ4 λ5 λ6 λ7

-1.90 3.68 1.62 -3.29 0.00 0.64 0.17
λ8 λ9 λ10 λ11 σimg σdisp

- - - - 100 3000

Iter2

λ1 λ2 λ3 λ4 λ5 λ6 λ7

-0.45 0.92 0.36 -0.69 0.04 0.12 -0.03
λ8 λ9 λ10 λ11 σimg σdisp

-0.03 0.08 0.02 0.01 100 3000

Iter3

λ1 λ2 λ3 λ4 λ5 λ6 λ7

-0.10 0.25 0.09 -0.11 0.03 0.03 -0.01
λ8 λ9 λ10 λ11 σimg σdisp

0.09 -0.00 0.02 100 5000 5000

Table 4.4: Parameters (×10−3) for segmentation refinement.

Estimating Scene Geometry, 3D Motion, 2D Optical Flow, and Flow Fusion

We learn the rest of the parameters for scene geometry modeling, 3D motion and 2D optical flow

estimation, and flow fusion using grid search. The learned parameters will be shared across all

stages of the cascade and is shown in Table 4.5.

Scene Geometry Estimation
τ1 τ2
3 0.5

3D Motion Estimation
ν

10

Optical Flow Estimation
η1 η2

1 0.12

Flow Fusion
ω1 ω2

1 0.1

Table 4.5: Parameters for estimating scene geometry, 3D Motion, 2D optical flow, and flow fusion.
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4.6.2 More Qualitative Results

We demonstrate more qualitative results of our algorithm on KITTI training set [84] in Fig-

ure 4.10, 4.11 and 4.12.
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Figure 4.10: Visualizing the qualitative results of our algorithm in KITTI training set.
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Figure 4.11: Visualizing the qualitative results of our algorithm in KITTI training set. (contd.)
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Figure 4.12: Visualizing the qualitative results of our algorithm in KITTI training set. (contd.)



Chapter 5

Future Research

In this thesis, we developed new representations and algorithms for 3D scene understanding. Our

clouds of oriented gradient feature is an orientation-invariant 3D appearance descriptor. By modeling

latent support surfaces, our model is able to capture style variations and help detect small objects.

Via structured training and cascaded prediction, our algorithm is able to learn contextual relationship

among objects and achieve state-of-the-art performance in 3D detection tasks [99, 100]. We also

use cascaded prediction to solve outdoor scene flow prediction tasks by jointly modeling semantic

segmentation, scene geometry, and motion [101]. We now conclude by discussing open research

directions in 3D scene understanding and motion estimation.

Over the last few decades, we witnessed the evolution of 2D object detection systems (Fig. 5.1).

Early works used hand-crafted features [27] to model object apperance, and were improved by using

a part-based descriptor [33]. In modern computer vision systems, convolutional neural networks

(CNNs) have become the most widely used method to extract rich features from images. One reason

why CNN-based systems are effective is because networks are trained using large-scale datasets like

ImageNet [103].

Our thesis work on 3D object detection also follows the evolution of 2D detection systems

(Fig. 5.1). The clouds of oriented gradient feature is a hand-crafted 3D appearance feature, and

the latent support surfaces can be viewed as a part-based 3D descriptor. 3D object detection has a

relatively shorter history because the first accurately labelled benchmark [118] was just introduced

67
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Figure 5.1: The evolution of 2D and 3D object detection systems. Our thesis work on 3D detec-
tion [99, 100] lines up with the advancement of 2D detection systems. Designing 3D CNN-based
object detection is a tempting idea, but it is challenging without large scale datasets with accurate
3D annotations.

in 2015. Recently, people also started to train 3D CNN-based systems. However as we described in

Chapter 3, our approaches that use COG and cascaded prediction are able to achieve compatible or

even better performance than CNN-based systems [120, 69]. This suggests that directly applying 3D

convolutional networks is less effective. One major reason is that labeling 3D datasets is very time-

consuming, and no real-world 3D dataset has ImageNet’s scale. As a result, learned convolutional

features from this relatively small dataset may not generalize well. There are also a few recent

works that convert 2D bounding box proposals to 3D cuboids [90, 29], but their systems heavily rely

on state-of-the-art 2D detection systems [42] trained on external 2D datasets. A similar issue also

happens in motion estimation tasks, where real-world datasets are very small because constructing

ground truth motion fields is very difficult.

With advanced rendering technologies, synthetically simulated environments are closer to real-

istic scenes, and they are becoming informative benchmarks for various scene understanding tasks.

One major benefit of synthetically generated environments is that their annotations are accurate and

scalable. Since 2D CNN systems for 2D scene understanding tasks have benefited from large-scale

datasets, we consider the use of synthetic 3D datasets for solving 3D scene understanding tasks. We
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argue that it is a promising direction for designing computer vision systems.

Photo-Realistic Synthetic Datasets for 3D CNNs There are a few existing works that use graphic

engines to create 3D datasets. For example, the SUN CG dataset [122] was rendered by physically-

based graphic engines [153] to provide accurate annotations in indoor scenes. However the level of

photo-realism is low, thus the features trained from this dataset may not generalize well to real-world

datasets. The rendered scenes in AI2-THOR dataset [65] are closer to realism, but the size of the

dataset is small.

Recent CNN-based 3D object detection systems [90, 69, 29] first use 2D detection systems [97]

to initialize bounding box proposals, then a deep neural network structure is used to recover 3D

bounding boxes. Such systems are not learning representations solely from 3D data, but rather rely

on advanced 2D deep learning systems. This is because no large 3D dataset is available for deep

learning systems to learn rich descriptors.

We believe it is promising to use more 3D meshes and more complex lighting settings to generate

photo-realistic datasets with cuboid annotations (Fig. 5.2). Since the size of the synthetic dataset can

be very and annotations are accurate, learned 3D convolutional features are likely to be cleaner and

useful. The photo-realism of the dataset may allow learned features to generalize well to real-world

data. Therefore with such a dataset, training 3D CNN-based detection systems is likely to be more

effective.

Figure 5.2: Photo-realistic synthetic 3D environments provide accurate annotations at large scale.
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Large-scale Synthetic Datasets for Motion Estimation For motion estimation tasks such as

optical flow or scene flow, modern motion estimation systems are also starting to use synthetic

datasets to train deep neural networks (Fig. 5.3).

Despite recent advances in optical flow estimation, it is still challenging to account for compli-

cated motion patterns. At video rates, however, even such complicated motion patterns are smooth

for longer than just two consecutive frames. This suggests that information from frames that are

adjacent in time could be used to improve the optical flow estimation.

Indeed numerous methods have been developed to either impose temporal smoothness of the

flow [11, 12] or to explicitly reason about the trajectory of each pixel across multiple frames [107].

Despite the fact that multiple frames carry additional information, none of the top three optical flow

algorithms on the major benchmark datasets uses more than two frames [15, 40].

Figure 5.3: Large-scale synthetically generated datasets like Monkaa [83] (top) and virtual
KITTI [39] (bottom) can be used to train deep neural networks for motion estimation tasks.

This may be due to the fact that motion and its statistics do change over time. If the optical

flow field changes dramatically the visual information contained in longer frame sequences may

be less useful and potentially detrimental [135]. The ability to decide when visual information

from past frames is useful is paramount to the success of multi-frame optical flow algorithms.

Some early methods account for the temporal dynamics of motion using a Kalman filter [31, 22].
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More recent appraches attenuate the temporal smoothness requirement when a sudden change is

detected [106, 135].

Training on large scale synthetic dataset [83], CNN-based optical flow estimation algorithms [126,

58] already perform on par with variational approaches [145]. Those synthetic datasets also contain

potentials for deep networks, such as RNN [23], to learn temporal information. A promising research

direction is to design a multi-frame scene flow network that accounts for geometric information and

3D motion. Training on large scale synthetic datasets, systems with this network structure are likely

to achieve improved performance on real-world benchmarks.
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