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Eye tracking, the process of capturing the gaze location within a display, is extensively used in

usability studies, psychology, human-computer interaction, and marketing. The setup and operation

of modern eye trackers is time-consuming and a specialist is needed to calibrate them and be present

throughout the experiment, leading to highly-controlled user studies with artificial tasks and only

a small number of participants. In addition, their steep price, which rises to tens of thousands of

dollars, restricts their use to only a small number of labs that can afford them.

This thesis aims to democratize eye tracking by using common webcams already present in laptops

and desktops. We introduce WebGazer, a webcam eye tracker that infers the gaze of web visitors

in real time. WebGazer is developed as an open-source JavaScript library that can be incorporated

into any website. Its eye tracking model self-calibrates by mapping eye features to positions on the

display that correspond to user interactions.

We investigate whether webcam eye tracking can lead to similar conclusions to in-lab eye tracking

studies. We explore this question in the context of web search, by extending WebGazer so that it

can predict the examined search element within a search engine result page. We use SearchGazer

to replicate three seminal studies in the area of information retrieval and demonstrate that scalable

and remote eye tracking studies on user behavior are possible at a fraction of cost and time.

Finally, we create a benchmark for webcam eye tracking with data collected from a lab study with

more than 60 participants. This dataset allows us to investigate the relationship between user

interactions and gaze, confirming past findings on the alignment of gaze with clicks and cursor

movement, and introducing novel insights into the differences in gaze behavior across users based on

their ability to touch type. Taking advantage of the temporal alignment of gaze and user interactions,

we perform improvements in WebGazer’s accuracy and functionality.

These contributions make eye tracking accessible to everyday users, researchers, and developers.

Traditional eye tracking studies that are confined to labs can now be performed remotely and at

scale. Subjects can participate in studies in their everyday environments which can yield a more

naturalistic behavior and lead to more powerful insights.
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Chapter 1

Introduction

Thesis Statement Modern eye trackers are time-consuming to set up and calibrate. In addition,

they are expensive, and only a small number of labs can afford them. We show that it is possible to

democratize eye tracking and bring it out of the lab to enable scalable and naturalistic user studies.

We use common webcams and combine them with a variety of user interactions to self-calibrate

and continuously predict the gaze of users on any web page. This results in efficient and accurate

eye tracking systems which enable new in-situ experiments. We validate this claim by replicating

findings of past studies and creating a benchmark dataset that supports future research.

1.1 Motivation

Eye tracking is typically defined as the process of capturing the location of a user’s gaze on a display.

Eye tracking systems are extensively used in research in human-computer interaction, usability test-

ing, psychology and neuroscience studies, and marketing. They have enabled unparalleled insights

into human behavior visual system, becoming an established methodology in a number of fields [37].

Modern eye tracking systems are passive and usually comprise a bar that is mounted on the

display at a fixed distance from the subject. The bar contains a number of sensors and emitters,

such as digital cameras and illuminators, which are used to create and detect reflection patterns of

infrared light on the front surface of the eyes’ cornea. The relative positions of the center of the

pupil and the corneal reflections are used to compute the gaze direction. A calibration step asks

subjects to fixate on a sequence of display locations, so that the eye-gaze direction can be translated

1
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to display pixel coordinates. Subjects are often immobilized with a chin rest or bite bar.

Currently, eye tracking experiments cannot be deployed either at large scale or remotely, as eye

trackers contain specialized equipment (e.g., infrared illuminators) that is not broadly available. In

addition, they require a laborious setup and calibration process and the continuous presence of a

specialist who monitors the experiment. Finally, their prohibitive cost that ranges between $20,000–

$40,000 [71] allows only a small number of labs to afford them. Any research has to be conducted in

highly-controlled lab user studies that create artificial environments and tasks for a limited number

of participants.

Eye tracking systems that use webcams have been examined before as a cheap alternative to

commercial eye trackers, but without focusing on scalable, remote, and online eye tracking experi-

ments. They have been developed as offline software solutions that manipulate the webcam video

and detect the eye-gaze relationship. Although they do not require the purchase of any special

equipment or dedicated hardware, they have not been widely adopted due to poor accuracy and

need for extensive calibration [39]. In addition, typical users will find them hard to install, as they

come in the form of desktop applications that need to be compiled. For example, OpenGazer is

an open-source webcam eye tracker written in C++ that requires a technical background to install

and operate [116]. This restricts the use of eye tracking to a small number of users that possess

the software and know-how to install it. Unless a researcher provides computers with pre-installed

eye tracking software or helps the participants install it on their computers, they are unable to

deploy a remote or scalable experiment. In addition, they can only detect the generic gaze behavior

while using a computer, without focusing on a specific task and application. It is unclear how the

gaze predictions will be collected and securely transferred to the researcher, and such process only

takes place after the completion of the study, making the use of gaze as real-time input for other

applications impractical.

We argue that there are recent technological advances that support the practical use of webcams

for scalable eye tracking that is accessible to everyone and encourages naturalistic studies. Today,

more than 72% of web browsers support the HTML5 API that allows access to the webcam video feed

from the web [22]. Moreover, the computational power that enables real-time eye tracking on the

browser increases continuously. As a consequence, browser-based webcam eye tracking can become

a reality and can lead to the democratization of eye tracking by enabling scalable experiments on

the web. To this day, the only attempts for software that performs eye tracking on the browser are
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either incomplete [112] or are not standalone solutions [115].

This thesis investigates how to make browser-based eye tracking accessible to researchers, devel-

opers, and everyday users. We use common webcams, already present in desktops and laptops, and

combine them with user interactions to infer the gaze on any web page. Any researcher or developer

can create a remote and scalable eye tracking experiment to examine in real time the behavior of

users in their natural environment. Our eye tracking systems self-calibrate and do not disrupt the

user experience, while allowing the collection of rich data about the participants.

We explore the central theme of democratizing eye tracking as follows:

• We develop WebGazer, the first webcam eye tracking library that can be added to any web

page to predict gaze in real time. WebGazer applies computer vision techniques to detect

the face and eyes in the webcam video feed and combines them with the location of user

interactions, which naturally occur when interacting with a web page, to predict the point

of gaze on the screen in real time. WebGazer can be applied to any web page, regardless of

its structure, and will provide gaze predictions after only a small number of user interactions.

We explore the use of different eye detection libraries and regression algorithms to map the

eye-gaze to the screen. We conduct two user studies, one large-scale remote study and one

small in-lab study, and show that WebGazer can achieve a prediction error of less that 175

pixels. By making webcam eye tracking on the browser a reality, we enable a large number of

eye tracking applications and studies that have been confined in labs or have not been possible

in the past.

• We investigate whether WebGazer can enable scalable and remote eye tracking experiments to

alter how behavior studies are conducted. We consider the use of eye tracking in web search,

and examine whether webcam eye tracking can produce similar findings to past research. We

extend the best gaze prediction model of WebGazer and create SearchGazer. SearchGazer is

an eye tracker that, in addition to gaze prediction, also detects which search element is being

examined in real time. We replicate three seminal information retrieval papers as crowd-

sourced studies and substitute their eye tracking component with SearchGazer. We show that

SearchGazer can be deployed as a scalable and remote eye tracking solution and can lead to

similar conclusions to past studies at a fraction of the cost and time.

• To establish a point of reference across researchers that work on webcam eye tracking, we
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create the first benchmark dataset for webcam eye tracking. We conduct a controlled lab

study with more than 60 participants, recording their screens, gaze, and every interaction

during a number of different tasks and under different environmental conditions. Based on the

collected data, we explore the temporal and spatial relationship of gaze and user interactions,

paying particular attention to the unexplored alignment of typing and gaze activity, especially

under the lens of the user’s ability to touch type. We use this knowledge to improvements

the performance of WebGazer and make it suitable of applications that typing is a dominant

interaction.

1.2 Overview of Contributions

This dissertation provides steps which make eye tracking accessible to everyone. We develop different

eye tracking systems to predict the gaze of web visitors in real time and without the need of explicit

calibration. A central theme of our approach toward democratizing eye tracking is making all our

contributions publicly available. To this end, we release our code along with a benchmark dataset

for all researchers and developers to extend or compare against our work. This dissertation enriches

the literature in eye tracking and user behavior, while confirming past research findings in human-

computer interaction.

Webcam Eye Tracking on the Browser We have developed WebGazer, an eye tracking library

that can be added to any web page. Prior research has shown that there is a strong correlation be-

tween gaze and clicks, as users will first look at the target locations they aim to click [48]. WebGazer

builds on this theory and self-calibrates by matching pixels of the eyes to locations on the screen

during user interactions. In contrast to traditional eye tracking systems, WebGazer self-calibrates

continuously and without interrupting the user experience. Future observations of the eyes are com-

pared to past instances through a simple regression model that allows real-time eye gaze prediction.

Furthermore, WebGazer is written in pure JavaScript and is the first webcam eye tracking system

that runs exclusively on the web. Any developer or researcher can integrate WebGazer in a web

page and collect eye tracking data instantaneously. Chapter 3 provides a detailed explanation of the

WebGazer system. Two experiments showed that WebGazer achieved an average accuracy of 169

pixels (approximately 3 cm on the test display). WebGazer can be used as a free alternative for eye
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tracking for applications with some tolerance for error.

Webcam Eye Tracking for Remote Studies of Web Search Chapter 4 explores whether

WebGazer can lead to remote and scalable behavior studies that have been previously confined to

labs. We choose to focus on web search, as it is an ideal candidate for eye tracking studies that

need to translate to millions of users, but are not viable with the current available eye tracking

systems. Eye tracking plays a central role in information retrieval, as search engines can identify

which results web visitors examine throughout a search session. Traditionally, web analytics are used

to run scalable remote experiments. Since they only include logs of clicks and cursor movements,

eye tracking is used instead to infer the cognitive processes that took place before clicking on a

specific result. As with all eye tracking studies, search engines are restricted in lab user studies with

a small number of participants. To compensate for the lack of scalability, they focus on the creation

of different prediction models that simulate gaze activity through cursor movement. This is far from

a perfect solution, as the cursor remains inactive for long periods and usually is moved only after

the user has picked the result they will click. We present SearchGazer, an extension of WebGazer’s

best regression model, that in addition to real-time gaze prediction can identify which search result

is examined at any given moment. To achieve this, SearchGazer uses the underlying structure of a

search engine result page. We crowdsource three online user studies and replicate three seminal eye

tracking papers from information retrieval. We show that webcam eye trackers can largely lead to

similar conclusions to traditional eye tracking studies on search behavior at a fraction of the cost

and time.

Benchmark Dataset for Webcam Eye Tracking We create the first benchmark for webcam

eye tracking, so that any researcher or developer working in this area can evaluate the performance of

their eye trackers. Chapter 5 describes the experimental design behind the controlled lab user study

we conducted. Its final product is a curated dataset which is derived from the participation of more

than 60 individuals who performed the same sequence of tasks under different conditions. During

the whole experiment, we record their screens and any user interaction, while capturing their point

of gaze with a high-end commercial eye tracker. Participants can choose from two different computer

settings, a desktop PC and a laptop, and are assigned to different lighting conditions. Contrary to

studies that examine user behavior under conditions that are not naturalistic (e.g., using a bite-bar
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so that participants do not move), we allow our participants to interact with the test computers in a

comfortable and naturalistic manner. This leads to a dataset with more realistic user behavior and

diverse conditions that can be used as a point of reference in advancing future research on webcam

eye tracking and user behavior.

Extending Webcam Eye Tracking with Typing Input We use the aforementioned dataset

to explore in depth the relationship between gaze and different user interactions. We analyze the

temporal and spatial alignment of gaze during the occurrence of clicks, cursor movements, and key

presses. The relationship of gaze and typing activity is relatively unexplored, although it constitutes

a typical everyday computer activity. In Chapter 6, we shed light on this area, while focusing on

the differences across users who can touch type and those who cannot. Our findings inform our

development of WebGazer’s regression models, to include typing as a new user interaction.



Chapter 2

Related Work

Eye tracking is a method that has provided unprecedented insights into visual attention and human

behavior. Over the past decades, it has been widely established and broadly used in psychology,

neuroscience, human-computer interaction, usability testing, and marketing, while its success contin-

uously attracts more disciplines that investigate new applications. This chapter provides an overview

of the eye tracking literature, presenting a historical overview of different eye tracking technologies

and pairing it with advancements in the understanding of how humans interact with computers. Its

aim is to establish the foundation for the webcam eye tracking systems that this dissertation intro-

duces and to highlight their potential to enable an even deeper understanding of humans, especially

in the context of supporting them in their interaction with technology.

2.1 Definitions

Eye tracking is a broad term that describes a number of processes related to the monitoring and

measuring of the eye activity. These can be related to tracking the spatial location of the eye relative

to the head, the eye movement and eye closure level, the size and activity of the pupils, and the

direction of gaze [37]. In this dissertation, we define eye tracking as the process of capturing the

point of gaze or regard on a screen of a device.

As a methodology, eye tracking enables researchers to understand how the human visual attention

system works and in consequence gain more insights into how humans function [94]. Eye tracking

systems combine our knowledge of the eye physiology with specialized sensors and emitters to infer

7
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where a subject is looking at. The following sections provide a short introduction to the eye model

and the common types of eye movement and their connection with modern eye tracking systems.

2.1.1 Eye Model

The eyeballs act as cameras that allow us to perceive large parts of our surroundings. The cornea, a

transparent membrane covered by tear fluid, is the first layer of the eye [20]. The cornea meets the

sclera or the “white of the eye” at the corneal limbus. The iris is located behind the cornea and is

bound by the limbus [37]. The iris is the part of the eye which defines the eye color in humans. At

its center, there is the pupil, a black circular hole that allows the light to enter the eye. The pupil

functions as an aperture, changing size to control with the crystalline lens the amount of light that

will reach the retina. The retina consists of rods, which are sparse and sensitive to dim light, and

cones, which detect colors and fine details. The fovea is located at the center of the retina and has a

high concentration of cone cells [109]. Its field of view is very narrow, ranging between 1–2 degrees,

thus making targets very sharp. The parafoveal region extends to 10 degrees and can discern rough

details, such as words. The peripheral vision allows the distinction of colors and motion at its

boundaries. The whole visual system spans up to 190 degrees [99]. Figure 2.1 provides a schematic

representation of the eye model and its different components that were discussed above.

The visible parts of the eye generally include the pupil, the iris, the sclera, and a “gloss” that is

created on the iris by the cornea. The iris is usually occluded by the top and bottom eyelids and

only two triangular areas of the sclera can be seen at the right and left of the iris. Eye tracking

systems rely predominantly on the cornea and pupil of the eye to perform eye-gaze tracking.

Modern commercial eye trackers use infrared illuminators to create reflections or “glints” on

the corneal surface. The position of the illuminators is combined with the optical axis of special

sensors to detect the pupils. There are two main pupil detection techniques: the bright and the

dark pupil detection mode [108]. In the bright pupil mode, the illuminators and the sensors are

placed closely, so that the light that enters through the cornea, pupil, and lens, reaches the retina

and is directly reflected out, the same way it entered. The pupil in this mode appears as a white

disk at the center of the iris. On the other hand, the dark pupil mode places the illuminators away

from the optical axis, so that the light cannot bounce back. In this mode, the pupil appears as a

dark disc. Some specialized eye trackers alternate between a bright and dark pupil detection mode

as they can be more appropriate for different ethnicities. Specifically, the bright pupil mode works
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Figure 2.1: Schematic representation of the human eyeball. The cornea can be seen in front of the
iris and pupil. The pupil is located behind the lens. Image reproduced from [86].

well for individuals with Hispanic and Caucasian backgrounds, whilst the dark pupil mode is more

appropriate for subjects with Asian and African backgrounds [14]. The location of the detected

pupil is coupled with the glint, allowing the eye tracking system to detect the direction of the gaze.

As a consequence, eye trackers can function successfully only when both the pupil and the corneal

reflections are visible. Figure 2.2 demonstrates how the bright and dark pupil methods make the

eye appear under near-infrared light.

2.1.2 Eye Movements

Humans are visual mammals and their eyes are particularly active, performing movements that

can be classified into a number of categories with unique characteristics. The most important

movement, the fixation, is the absence of any movement. Fixations occur when a human focuses

their attention on a specific spot of interest and their retinas stabilize momentarily. Although there

are different approaches for identifying fixations [90], in general they are deemed to last between

50–600ms. Fixations are perceived as indications of the direction of the attention and the processing

of the incoming information [85]. Saccades are rapid movements between eye fixations. They are
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Figure 2.2: (a): Bright pupil method. The infrared illuminators are placed on the same axis with
the camera so that the light is fully reflected. (b): Dark pupil method. The illuminators and sensors
are placed far from each other, trapping the light within the pupil which appears dark. The glint
can be seen as a white reflection on the cornea. As the eye moves, the eye tracker combines the
location of the pupil and that of the glint to determine the direction of the gaze. Images reproduced
from [32].

tremendously short, spanning less than 100ms, during which the subject is practically blind as any

information acquisition is suppressed [26]. Because of their short duration, humans cannot perceive

their presence, thus experiencing a smooth representation of their environment [85].

Apart from fixations and saccades, there are different types of eye movements that are not

significant when the subjects are users of computers, due to their considerably static environment.

These include smooth pursuits (the eyes track a moving target), vergence movements (the eyes

move inwards or outwards to refocus), and vestibo-ocular movements (the eyes stabilize against

any head and body movement) [33]. The definitions of eye movements are products of different

algorithms. Constructing and applying eye movement filters to the raw gaze predictions extracted

from our presented eye tracking systems is out of the scope of this dissertation. Nevertheless,

identifying fixations and saccades is rather important when making interpretations about visual

attention processes.

2.2 Eye Tracking Systems

Eye tracking systems can be classified into two main categories: diagnostic and interactive [26]. The

focus of diagnostic eye tracking solutions is to record and provide quantitative measurements of

the human visual attention mechanisms, for instance to classify eye movements during reading [85].

Interactive eye tracking systems use the eye movements either as pointing and selecting input [53]

or for gaze-contingent applications that alter the image generation of variable-resolution displays

around the point of gaze to minimize computational resources [83]. In this dissertation, all the
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presented eye tracking systems are diagnostic. However, their real-time eye-gaze predictions can be

used to alter the experience and interaction of the user with the device.

In the next sections, we provide a historical overview of the two main categories of eye tracking

systems. The first includes invasive or active eye tracking systems and it is chronologically followed

by non-invasive or passive eye tracking systems. It is important to understand the evolution of

eye tracking to appreciate the leaps of technological advancements and the new possibilities that

webcam eye tracking systems can bring. All the eye tracking systems that we developed and present

in this dissertation fall into the passive eye tracking category.

2.2.1 Active Eye Tracking

The history of eye tracking spans more than a century of inventions and advances in our under-

standing of human behavior [87]. Eye tracking started with simple observations made by the naked

eye of scientists and moved to active eye tracking systems. In 1879, Louis Emile Javal, a French

ophthalmologist, observed that the eyes do not move smoothly while reading [55]. His observations

eventually led to the classification of eye movements into fixations and saccades, as defined in Sec-

tion 2.1.1. Delabarre [21] and Huey [50] created almost simultaneously the first mechanical devices

which allowed monitoring eye movements, but at the cost of straining the eyes and prohibiting any

motion. Although over the next years a number of photography-based systems surfaced, invasive

techniques continued to being introduced. These techniques often led to dangerous chemical ele-

ments (e.g., mercury [5] and sodium bicarbonate [28]) being placed on the subject’s eyes. Two of the

most popular active eye tracking techniques include magnetic search coils and electro-oculography.

The use of magnetic search coils in tight-fitting contact lenses which are attached on the subject’s

eyes led to extremely precise measurements of eye movements, as long as the subject remained within

an external three-axial magnetic field [88]. Even though this approach allowed free head movement,

magnetic search coils are highly invasive and can cause eye irritation. In electro-oculography, two

pairs of electrodes are attached to the regions adjacent to the eyes and pass an electric signal that

leads to the translation of the dipole moment to gaze direction [60]. The Dual Purkinje Image

tracker is a less invasive optical tracking method that combines reflections on the front surface of

the cornea (the first Purkinje image) and the rear of the lens (the fourth Purkinje image) [16]. This

method can achieve accurate measurements but it is sensitive to movement. Therefore, stabilization

of the subject is required, usually through the use of “bite-bars” or “chin-bars”. Today, none of
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these techniques are popular for general purpose eye tracking. Instead, passive and non-invasive eye

tracking systems which are based on digital video have largely replaced them.

2.2.2 Passive Eye Tracking

Passive eye tracking surfaced in 1901, when Dodge and Cline built a non-invasive eye tracking device

based on photography [24]. Their system tracked only horizontal eye movements and required

participants to remain still. Judd, McAllister, and Steel introduced the use of motion picture

photography which enabled eye tracking on both dimensions [59]. This method prevailed over

the next decades [74]. In the 1950s, Fitts and his colleagues conducted the first usability study by

tracking the eye movements of pilots during landing [30]. However, the true revolution in eye tracking

research happened in the 1970s: image processing based on digital video combined with corneal

reflections pushed for better precision and less invasive technologies [16]. Fields like psychology

and physiology were particularly invigorated by these advances and led to extensive research on

the cognitive, perceptual, and physiological aspects that connect visual attention and behavior [61,

62]. Every decade since has seen new innovations both in the underlying technologies and the

applications that are enabled by eye tracking, establishing it as a standard methodology in a broad

set of fields [52]. Today, most eye tracking devices are either head-mounted or remote and display-

mounted. They include multiple cameras and infrared light sensors which create reflections on the

cornea of the eye. Using a combination of dedicated hardware and software, they can compute the

gaze direction based on the relative positions of the pupil and the corneal reflections. A calibration

step is needed to compute the point of gaze, during which subjects are consecutively asked to fixate

on a number of points that are shown in fixed or random locations on the display. In this dissertation,

we compare our proposed eye tracking systems to remote video-based eye trackers, like the Tobii

Pro X3-120 (Figure 2.3).

Modern eye tracking devices are dramatically improved and have led to more powerful insights

into the human visual attention. However, their cost can reach thousands of dollars and they consist

of specialized equipment that is not widely available. In addition, their setup and operation are com-

plicated and require extensive calibration. Any experiment needs to be performed under the constant

presence of a specialist. Despite their potential applications and further insights, these shortcomings

have restricted their use to well-funded laboratories only. Furthermore, researchers can only conduct

highly-controlled user studies, using artificial tasks and a small number of participants [25].
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Figure 2.3: Setup of the Tobii Pro X3-120 system on the monitor of a PC. The infrared illuminators
can be seen on the eye tracking bar attached to the bottom of the monitor. The screen shows a step
of the calibration process, with the stimulus, which is depicted as a red circle, moving throughout
the screen.

Recently, a number of companies introduced low-cost remote eye trackers to reach developers and

every day users, but in practice they have either been abandoned or have been created for gaming

purposes only. EyeTribe [110] was the first company to release a $100 eye tracker, but has since

been acquired by Oculus and has abandoned the production and distribution of any products. Tobii

Technologies, one of the leading companies in the eye tracking world, released Tobii EyeX and Tobii

Eye Tracker 4C at a similar price range [106]. Neither eye tracker comes with accuracy specifications

as they target real-time gaming applications. Acer [1] and MSI [77] have incorporated the Tobii eye

tracking systems in high-performance laptops which are marketed for gaming. Currently, even with

those advancements, there are no affordable and reliable off-the-shelf eye trackers for generic eye-gaze

tracking that allows logging of eye gaze activity.

2.2.3 Webcam Eye Tracking

The cost, operation, and scalability issues of modern eye tracking systems soon led to the identi-

fication of webcams as convenient substitutes to external digital cameras [29]. Unsurprisingly, the

resolution of webcams and their lack of light sensors makes them less accurate than specialized

infrared eye trackers [38]. Nevertheless, webcam eye trackers show promise and are continuously

improved as technology and computer vision techniques advance [91, 92].
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As the need for explicit calibration can hinder the user experience, researchers have investigated

ways to self or implicitly calibrate webcam eye trackers. For example, image saliency has been

used to estimate user gaze for calibration purposes [104], although it remains a very rough estimate

of where a user is looking at any time. Alnajar et al. [2, 3] introduced webcam eye trackers that

self-calibrate with prerecorded gaze patterns instead of predicted saliency. This is more accurate

than saliency-based calibration, but still requires users to view stimuli for which “ground truth” gaze

patterns have been recorded. Pfeuffer et al. used moving targets and the detected smooth pursuits

in an attempt to alter the typical calibration processes [84]. Finally, PACE is a desktop application

that performs auto-calibrated eye tracking by mapping gaze activity to user interactions [49].

Another line of research focused on remote eye tracking experiments. Lebreton et al. [66, 67]

presented a crowdsourcing application that incorporated webcam eye tracking on an Amazon Me-

chanical Turk task. Crowd-workers calibrated the eye tracker by clicking on stimuli that appeared in

different locations of their screens. The actual eye detection and eye tracking happened on a remote

server, where the video feed of their faces and the markers of their clicks were sent. Similarly, Xu

et al. introduced TurkerGaze [115], a webcam based eye tracker deployed on Amazon Mechanical

Turk that predicts saliency on images. To estimate the gaze location without using any eye tracking

solution, Lagun and Agichtein [64] explored an alternative solution to gaze prediction. They used

the cursor as a restricted focus viewer on a search engine result page, blurring the whole page except

the one result that the cursor was placed on. Kim et al [63] generalized this idea to images, pages,

and designs, by blurring everything but a “bubble” area that is revealed to the user when they click,

therefore approximating more accurately the true gaze location. Both methods do not share our

philosophy, which requires eye tracking to work seamlessly and without disrupting the user experi-

ence. In practice, PACE and TurkerGaze are the most recent and similar projects to the webcam

eye tracking systems we describe in this dissertation. PACE self-calibrates but requires hundreds

of user interactions to reach its desired accuracy. On the other hand, TurkerGaze requires explicit

calibration which is performed during a game phase where users lock their gaze on a specific target.

In addition, it does not utilize user interactions and includes an offline training component. Our eye

tracking approach is distinguished from these works by being the first browser-based eye tracker to

self-calibrate in real time via gaze-interaction relationships which are readily available.
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Several software artifacts for eye detection1 have been made available online, though often with-

out much formal evaluation. OpenGazer [116] is an open-source desktop application that performs

eye tracking using algorithms from OpenCV, an open-source computer vision library; it has been

abandoned since 2010. EyeFace SDK [72] is a library that provides different APIs for face and de-

tection. One of the most efficient face recognition libraries is OpenFace [4]. It implements in Python

and Torch the deep neural networks approach presented by Schroff et al. [95]. Camgaze.js [112] is a

JavaScript library that predicts in real time the pupil location and gaze direction, but does not map it

to the screen. Clmtrackr [75] is a JavaScript library that performs facial feature tracking through con-

strained local models fitted by regularized landmark mean-shift [93]. Similarly, js-objectdetect [111]

and tracking.js [73] are JavaScript libraries that use OpenCV to track the head and eyes. Since

there are no datasets with features for pupil recognition, tracking.js and js-objectdetect do not de-

tect pupils. On the other hand, clmtrackr locates the pupil at the center of the detected eye and

thus fails to capture its true location when the user looks anywhere but straight. In Chapter 3,

we use clmtrackr, js-objectdetect, and tracking.js for face and eye detection and include our own

algorithms to perform pupil detection and eye-gaze tracking.

There have also been commercial forays into online webcam eye tracking. Tobii Technologies has

spun off a company called Sticky that focuses on helping websites optimize advertisements based

on visual behaviors. Their approach is similar to ours, but we aim to employ user interactions to

improve eye tracking in diverse applications. One of the earlier services to offer webcam eye tracking

was GazeHawk, which was acquired by Facebook in 2012 and is now shut down. Like our work,

their system tracked the user in their natural environment from the browser, without the need to

install software. However, their approach is significantly different as they transmitted the webcam

video to their own servers for offline processing. They did so because at that time, laptops were

not capable of processing the video data in real time [communication with GazeHawk founders].

Additionally, they required a phase of user calibration and did not include user interactions. Finally,

a startup called Xlabs focuses on head tracking to determine the gaze position, and has built a

Chrome browser compatible software extension that can be installed by its users [114].
1We note that the terms eye detection and eye tracking are often used interchangeably. In this dissertation, we

distinguish between eye detection in a video feed, and eye tracking which predicts the point of gaze on a display.
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2.3 Gaze and User Interactions

Lab studies involving eye tracking during web browsing have been commonly used to track visual

attention, and the user interaction models used in the eye tracking systems of this dissertation

partially build on top of these findings. Past research has repeatedly found a correlation between gaze

and cursor positions, with the mouse having been characterized as the “poor man’s eye tracker” [15].

Chen et al [12] investigated the relationship between gaze and mouse in web navigation and showed

that the dwell time and movement of the cursor is strongly linked to how likely it is that a user

will look at that region. In web search, Rodden et al. showed that there are three distinct mouse

use patterns: i) The mouse follows the eye horizontally, ii) vertically, or ii) it is used to mark a

particular piece of information [89]. Their study showed that the distance between cursor and gaze

positions was larger along the x-axis, something that we also report in Chapter 5. They also found

that this distance was generally shorter when the cursor was placed over the search results. Guo

and Agichtein [35] reported similar findings noticing that distances along the x-axis tended to be

larger. They could predict with 77% accuracy when gaze and cursor were strongly aligned using

cursor features. Smith [98] et al. and Liebling and Dumais [68] examined the temporal relationship

between hand and gaze relationship and showed that the eyes lead the cursor most of the time.

Scrolling has not attracted similar attention, as it is often grouped with cursor movements. In

web search, scrolling has been taken into account when examining the correlation of attention with

the rank of search results. Once the first scroll occurs, the rank becomes less of an influence on

attention [34, 56]. Finally, when it comes to typing, most research has focused on copy-typing,

where the user types by “copying” text, rather than creating original work. For example, Inhoff and

Gordon studies the eye-hand coordination of copy-typists [51]. Experienced copy-typists look 5-7

characters ahead from the location of their cursor, but this behavior cannot translate to creative

typing. Beyond copy-typing, Johansson et al. studied typing as a creative writing activity and

divided subjects into “monitor gazers” and “keyboard gazers” [58], who can be closely linked to

touch and non-touch typists, as we refer to them in Chapter 5. Focusing on the productivity of

the different types of gazers, they found that monitor gazers are faster and more productive typists.

Wengelin et al. discovered that some writers fixate on text produced prior to the location of the

cursor, perhaps to process or edit what they have already written [113]. In this dissertation, we build

upon and extend our understanding of the correlation between gaze and user interactions, focusing
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on clicks, cursor movements, and typing activity. The natural occurrence of user interactions enables

self-calibration without impeding the user experience.

2.4 Eye Tracking for Web Search

Eye tracking has been applied in an extremely diverse number of disciplines, with entire books

dedicated on general introductions or specific topics related to eye tracking, such as the works of

Hammoud [36] and Bergstrom [6]. Our eye tracking systems are suitable for a number of activities

when interacting with the web. In Chapter 4 we present SearchGazer, an eye tracker that specializes

on web search. We chose to focus on web search as computer users spend on average 1.8 hours

every day searching for information, making the need for understanding and supporting their search

imperative [13].

To that end, the field of informational retrieval has been particularly receptive to eye tracking

research. One of the first findings of eye tracking research was that most searchers view search engine

result pages with a simple linear layout in a similar way. Their gaze exhibits a pattern that has been

described as a “Golden Triangle” or “F shape” [46, 79, 97], as most attention is concentrated on

the top results and lessens on the lower parts of the page. Extending the work on the relationship

between gaze and cursor movement in web search, Huang et al. [48] note that the notion of gaze and

cursor correlation is overly naive; instead their relationship greatly depends on what the user is doing

at that time. They show that the two are highly correlated when users aim at or hit a target, but the

correlation is poor when the cursor is idle. Huang et al. [47] have investigated the meaning behind

cursor interactions, and how they can improve our understanding of searcher behavior along with

the relevance of search results for future users. Navalpakkam et al. [78] investigate the gaze-cursor

relationship on non-linear page layouts which, in search, may represent cases when information or

advertisements are shown in a second column. Furthermore, they perform gaze prediction using

a non-linear model and identify particular regions of interest. SearchGazer can be applied on any

search engine result page with a known underlying structure and will provide gaze predictions after

only a small number of user interactions has occurred.

Numerous studies of web search use eye tracking or some proxy (like cursor activity) as a tool

for understanding searchers and design better search systems. Buscher et al. [7] used eye tracking

features to infer user interest and show that this can yield great improvements when personalizing
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search. Buscher et al. [10] and Dumais et al. [27] notice that users have different gaze behavior

patterns, but can be clustered into different personalities: exhaustive examiners, economic examiners

focused on the organic results or also on the ads. Liu et al. [69] tap into the different phases of gaze

behavior in web search by developing a two-stage model that examines the “skimming” and “reading”

phases. Lagun et al. [65] devised an approach that jointly combines user interactions and salience

of the web page’s content to infer visual attention in web search. Liu et al. [70] extended this work

by using visual saliency maps derived from image content to predict users examination behavior on

an experimental browser. Finally, Diaz et al. [23] created log-based mouse movement models that

estimate searcher attention on new SERP arrangements. SearchGazer does not distinguish across

searchers. The individual behavior of each searcher while interacting with the search engine result

page influences its real-time gaze predictions.

2.5 Conclusion

Eye tracking systems provide powerful insights into human behavior while enabling a great number

of applications that span from scientific contributions to business solutions. This dissertation brings

eye tracking out of the lab, by creating eye tracking systems which are accessible by everyday users

and can enable remote and scalable studies.



Chapter 3

Webcam Eye Tracking on the

Browser

This chapter presents WebGazer, a browser-based webcam eye tracker that is informed by our

understanding of human behavior. WebGazer will serve as the basis of all the systems that will be

presented in this dissertation1.

Fitts et al. introduced one of the first eye trackers [30] with an idea: “If we know where a pilot

is looking, we do not necessarily know what he is thinking, but we know something of what he is

thinking about.” Today, understanding human attention is sought by the many applications of eye

tracking, including psychology experiments, human-computer interaction studies, medical research,

usability testing, and marketing studies. Typical eye trackers use an infrared video camera placed

at a fixed distance from the subject, require explicit calibration and setup, and cost thousands of

dollars. Therefore, the use of eye tracking technology has primarily been confined to specialized labs,

which puts users in an artificial environment with artificial tasks. In essence, current eye trackers

surrender naturalistic studies to more scalable technologies such as web analytics.

The idea of using consumer webcams to perform eye tracking at virtually no cost has been studied

before. Unsurprisingly, the lack of sensors (e.g., infrared illuminators) and dedicated software in

webcams leads to lower accuracy than specialized eye tracking equipment. In addition, there has

not been any attempt for browser-based software, therefore negating the utility of webcam eye
1This chapter has been previously published in [81]. Its content has been revised and expanded.
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tracking in scalable professional studies. However, several technological advancements have recently

arrived that justify webcams as practical technologies: i) over 72% of web browsers support the

HTML5 functions for accessing the webcam [22], with this number increasing monthly, ii) typical

laptop webcams support higher resolutions of capture, and iii) modern computers and browsers are

fast and efficient enough to run real time eye detectors on video. These advances make real-time

online eye tracking possible and therefore enable applications that scale to large numbers of users.

Nevertheless, these advancements do not solve the problem of poor accuracy due to diverse local

environments and human features.

WebGazer is a new approach to eye tracking for common webcams. Its main novelty is that it

employs user interactions to continuously self-calibrate during regular web browsing and that it is

browser-based. Huang et al. [48] have shown that when a user clicks on a page, they will first look at

the target where they intend to click. Research on attention control and its allocation mechanisms

has also led to similar findings [31]. The images extracted by the webcam video during these user

interactions can be collected and used as cues for what the user’s eyes and pupils look like when

interacting with a particular location. Future observations of the eye can be matched to similar

past instances as WebGazer collects mappings of eye features to gaze locations on the page, allowing

inference of the point of gaze even when not interacting.

At its current form, WebGazer extends three open-source eye detection libraries for locating the

bounding box of the user’s eyes. However, the library is built in a modular way to enable the use of

any external eye detection library. There are two gaze estimation methods in WebGazer that match

different feature vectors to screen locations during user interactions. The first detects the pupil and

uses its location to linearly estimate a gaze coordinate on the screen. The second treats the eye as

a multidimensional feature vector and uses regularized linear regression to predict the gaze.

WebGazer goes beyond simply using clicks as user interaction data; it also applies the cursor

movements and the gaze-cursor coordination delay as modifiers to the basic gaze estimation model.

This is where understanding user behavioral habits is helpful in constructing the model. We evalu-

ated WebGazer through a remote online study with 76 participants recruited from university mailing

lists, and 4 participants for an in-lab study to compare with a low-cost commercial eye tracking de-

vice. In the online study, we found that two of our regression models outperform existing approaches

with an error of 175 and 210 pixels respectively. Compared to the commercial eye tracking device

we discover mean errors with an average visual angle of 4.17◦. This demonstrates the potential of
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WebGazer for eye tracking in diverse environments.

The two main contributions of this work are: 1) the research, development, and evaluation of

a real-time online webcam eye tracker, WebGazer and 2) investigations of different gaze estima-

tion models enhanced by multiple forms of user interactions and usability goals. The source code

of WebGazer is publicly available at https://webgazer.cs.brown.edu, for web developers and

researchers to use freely.

By making continuously self-calibrated eye tracking accessible from a typical web browser, eye

tracking becomes a reality for many potential applications such as online gaming, large-scale nat-

uralistic user studies, or even navigation of the web using only the eyes. For example, the user’s

gaze can be used as an input technique for individuals with hand motor impairments. More broadly,

eye tracking can be performed remotely by any website, and by many people simultaneously, unlike

traditional eye tracking technology.

3.1 WebGazer

WebGazer is a self-calibrated client-side eye tracking library written entirely in JavaScript. It trains

various regression models that match pupil positions and eye features with gaze locations during

user interactions. WebGazer can predict where users look within any device display as long as it

has a browser that supports access to the webcam. A few lines of JavaScript code are enough to

integrate WebGazer into any website. Once the end user consents to their webcam being used, it

can immediately perform eye tracking while the user interacts with the web page naturally. The

software is open-source and freely available for anyone to incorporate in their website or for any

research purposes.

WebGazer is relatively simple from a computer vision point of view—it has no explicit 3D

reasoning as found in more sophisticated trackers [38]. This simplicity allows it to run in real

time through browser JavaScript. Any facial feature tracking library can be plugged to WebGazer;

it only needs the location of the eyes within the video to perform its own pupil detection and eye

gaze estimation. Methods with 3D reasoning obviously provide more robust predictions. WebGazer

differs by constantly self-calibrating based on cursor-gaze relationships. Not only does this eliminate

the need for initial calibration sessions, in principle it also means that users are free to move closer

or farther from the webcam or turn their heads and WebGazer will learn new mappings between

https://webgazer.cs.brown.edu
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(a) (b)

Figure 3.1: Demonstration of the pupil detection technique. (a): Once the eye regions are detected,
(b): the pupils are identified as dark circular areas with the use of a summed area table.

pupil position, eye features, and screen coordinates.

As WebGazer is agnostic to the face and eye detection algorithms it uses, we incorporated and

evaluated it using three different facial feature detection libraries: clmtrackr [75], js-objectdetect [111],

and tracking.js [73]. All three implement different computer vision algorithms, are written in

JavaScript, and upon user consent, give access to the video stream captured by the webcam. Js-

objectdetect and tracking.js detect the face and eyes and return rectangular bounding boxes within

the video stream that enclose them. Instead of using the whole video frame, we first perform face

detection for finer-scale eye detection on the upper half of the detected face. This speeds up the

gaze prediction and suppresses false positives that would come from eye-like structures elsewhere in

the scene. If the face detection fails (e.g., because the user leans close to screen), WebGazer falls

back to full-image eye detection. Clmtrackr performs a more realistic fitting of the facial and eye

contour. To provide consistent input for WebGazer, we use the smallest rectangle that fits the eye

contour as input for the regression models described below.

3.1.1 Pupil Detection

Having detected the eye regions, we next identify the precise location of the pupil. For the sake

of simplicity, we make three assumptions: i) the iris is darker than its surrounding area, ii) it is

circular, and iii) the pupil is located at its center. Obviously, these are not always true, e.g., the

eyebrows can be false positives and the iris is rarely perfectly round, either because we capture the

eye at an oblique angle, or because the eye is partially covered by the eyelid. To identify the pupil

within the detected eye region, we search over all offsets and scales for the region with the highest

contrast to its surrounding area. This exhaustive search is made efficient by using a summed area

table or integral image to evaluate each region in constant time. An example of the pupil detection

method can be seen in Figure 3.1.
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(a)
(b)

(c) (d)

Figure 3.2: Example of the process of creating the 120D eye feature vector. (a): Clmtrackr is used
to detect the facial features of the user. (b): The eyes are isolated and the smallest rectangles
that enclose them are resized to two patches of 6×10 RGB pixels, depicted in the 6×10 red grid.
(c): The eye patches are grayscaled and (d): histogram equalization is applied. The two grayscaled
eye patches are concatenated, resulting to a 120D eye feature vector that is passed to the various
regression methods described in this chapter.

3.1.2 Eye Features

The pupil location as a 2D feature can fail to capture the richness of appearance of the eye. Even

when the user moves their eyes from one corner of the screen to the exact opposite, this translates

only to a small change of the coordinates of the detected pupil. From preliminary results, we found

that this change is more obvious when the eye moves on the x, rather than the y-axis.

An alternative to the search for the maximum contrast pupil region is to try to learn a mapping

from pixels to a gaze location. For this, we extend TurkerGaze [115] and represent each eye as a

6×10 image patch built by resizing the detected eye regions. We follow up with grayscaling and

histogram equalization, resulting in a 120D feature that is given as input to the linear regression

algorithms described below. Figure 3.2 shows an example of the steps that are performed to extract

the 120D eye feature vector. TurkerGaze uses only the clmtrackr library, but we apply these steps to

all three facial feature detection libraries. Unlike TurkerGaze, WebGazer’s goal is not image saliency

prediction but real-time gaze prediction on any website.

The cursor logs and the corresponding gaze predictions are stored locally in the browser to avoid

privacy concerns of storing pupil and eye features in a remote location. No data are transmitted

from the user’s computer to the website hosting the WebGazer code, other than the predictions

and their corresponding errors. In addition, WebGazer’s code is executed only if the user explicitly

consents to giving access to their webcam. Eye tracking can be performed whenever requested by



24

the website through WebGazer. When the user is not directly interacting with the page, the webcam

still captures the eyes and applies the regression model to predict the most likely point of gaze.

3.1.3 Mapping to Screen and Self-Calibration

To match the detected pupils and computed eye features to screen coordinates, we must find a

mapping between the 2D and 120D vectors respectively and the gaze coordinates on the device

screen. This relationship is complex — it depends on the 3D position and rotation of the head

with respect to the camera and screen. These 3D properties can be estimated, but generally require

careful calibration and expensive computation.

We avoid this by using a simpler mapping between pupil locations and eye features and display

coordinates. In addition, we rely on continual self-calibration through user interactions that normally

take place in web navigation. The simplicity of our method makes its predictions less robust than

more sophisticated approaches. In addition, as an appearance-based method, our approach can be

sensitive to head pose and light changes. Nevertheless, we chose this simpler approach taking into

account the challenges and opportunities that browser-based eye tracking would present. The model

is lightweight and the calibration data can be collected continuously during normal user interactions

with a website without disrupting the user experience.

To accomplish self-calibration, we assume that when a user interaction takes place, the location

of the gaze on the screen matches the coordinates of that interaction. Huang et al. have conducted

a study which showed that the gaze-cursor distance averages 74 pixels (less than 1 inch in their

study setting) the moment a user clicks [48]. Since that distance can be task-dependent, we simplify

our analysis by assuming that the gaze and cursor align perfectly during clicks. This assumption is

general enough to allow any website to use eye tracking through WebGazer for diverse environments

and tasks. In this study, we focus only on clicks and cursor movements, but WebGazer can be

extended to include other types of user interactions (e.g., key presses while typing as discussed

in Chapter 5 or interactions that are specific to devices with touchscreens). Unlike most existing

webcam eye tracking solutions, WebGazer does not ask for explicit calibration by requesting users

to stare at specific parts of the display. Instead, we train WebGazer through user interactions that

would normally take place when visiting any website. WebGazer’s predictions are not affected by

scrolling and are always projected within the window viewport.
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Mapping Pupil Coordinates

With the assumption that the user fixates on the cursor with every mouse click, we obtain a series

of training examples and observations. Without loss of generality for the y-axis case, we examine

the x-axis estimation case. We obtain N pupil location training examples x = (x1, ..., xN ) and their

corresponding click observations on the display t = (Dx1 , ..., DxN
) through the pupil detection com-

ponent of WebGazer. These are considered as true gaze locations. Using a simple linear regression

model, we obtain a function f(v)→ Dx which, given a pupil feature vector v, predicts the location

of the gaze on the screen along the x-axis. The function is f(v) = φ(x)T w where w is a vector of

weights and φ(x) is a basis function applied to the training data. These weights satisfy the equation:

minimize
w

∑
xi∈x
||Dxi − f(xi)||22. (3.1)

In matrix notation, the weight vector is computed as:

w = (XTX)−1XTY (3.2)

where X is the design matrix of eye features and Y is the response vector of display coordinates.

Mapping Eye Features

The main advantage of the simple linear regression model is its simplicity and ability to produce

real-time predictions. Unfortunately, mapping pupil to screen locations can be particularly brittle

even with small head movements. A more principled approach is to learn a mapping from eye pixels

to gaze locations. We implement a ridge regression (RR) model [42] that maps the 120D eye feature

vector to the display coordinates (Dx, Dy) for each click. With just a few clicks this regularized

linear regression can start producing predictions. In addition, it remains simple as it is linear, it

avoids overfitting due to the regularization, and is fast to evaluate at run time.

Again without loss of generality, we consider the ridge regression model function for the x-

coordinate prediction: f(v) → Dx. This function is also f(v) = φ(x)T w and again depends on a

vector of weights w which is estimated using the expression:

minimize
w

∑
xi∈x
||Dxi − f(xi)||22 + λ||w||22. (3.3)
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Here, the last term λ acts as a regularization parameter to penalize overfitting. In our study, we set

λ to 0.00001, the same value that the authors of TurkerGaze used in their model and that we found

to lead to fairly accurate gaze predictions after experimentation. The calculation of the regression

weight vector w, in matrix notation, is:

w = (XTX + λI)−1XTY. (3.4)

Extra Samples within a Fixation Buffer

Human vision is governed by different types of eye movements which, when combined, allow us to

examine and perceive targets within our visual field. As defined in Chapter 2, two major types of

eye movements are saccades, which are rapid movements, and visual fixations, during which eyes

stabilize on a specific area within the visual field for an average of 200–500ms [85]. This stabilization

is never perfect and small tremor occurs even when fixating. Perceiving information is suppressed

during saccades and is activated during fixations. Therefore, fixations have been traditionally used

to gain insights into human attention.

In this study, we use the above concepts to inform the ridge regression model. We extend the

assumption that gaze and cursor positions align when users click, adding that a fixation has preceded

the click. To identify fixations, we keep a temporal buffer that stores all eye features within 500ms

before a click (the usual maximum duration of a fixation). When a click occurs, we examine in

increasing temporal order the predicted gaze coordinates against the ones corresponding to the

moment of the click. Consequently, we add all predictions that occurred within 500ms and at most

74 pixels away from the predicted gaze locations at the moment of the click to the regression. These

samples can potentially enrich the accuracy of the predictions made by the ridge regression model.

Sampling Cursor Movements

Different studies have shown that there is a strong correlation between cursor and gaze locations

when users move their cursor intentionally, e.g., to click on a target [40]. When the cursor remains

idle though, the distance between them grows, making it a good signal only when it is active. In

addition, cursor movements are not always strongly correlated with the gaze, e.g., when the user sees

the cursor as a visual obstruction and pushes it to the side of the screen. Therefore, our mapping

should take into account that cursor movements are only partially correlated with the gaze location



27

and that this alignment becomes weaker with time.

In our research, we explore the applicability of introducing cursor behavior in the ridge regression

model (RR+C). For that, we slightly alter the ridge regression model by introducing weights on the

samples. In order to introduce weighted samples, we modify the calculation of w by introducing to

Equation 3.4 the diagonal matrix K that contains the weights for each sample along the diagonal.

This produces the updated expression:

w = (XTKX + λI)−1XTKY. (3.5)

We keep the same assumption as before: gaze and cursor locations align when clicks occur. We

give a full unit weight to samples matching click events. Every time the user moves the cursor, we

assign to the corresponding cursor position a weight of 0.5 and assume it corresponds to the predicted

gaze location. We decrease the weight of each cursor position by 0.05 every 20ms. This allows a

cursor location to contribute to the regression model for at most 200ms, a duration comparable to

that of a fixation. Therefore, when the cursor is idle and no new cursor location has been introduced,

this model falls back to the original simple ridge regression which trains WebGazer only with clicks.

Combining Fixations and Cursor Movements

We also explore the outcome of combining the two last models, namely sampling within a fixation

buffer and sampling cursor movements, with the simple ridge regression (RR+F+C). As the evalu-

ation of WebGazer is heavily based on the moments that clicks occur, we wanted a more rounded

model that would provide enhanced predictions even when the cursor remains idle. As such, we build

a regression model that matches gaze locations to click locations, includes extra samples within a

fixation buffer, and uses cursor movements only when the cursor is moving.

3.2 Experiment Design

3.2.1 Remote Large-Scale Study

Procedure

We conducted a remote online user study to evaluate the prediction error and feasibility of performing

eye tracking with WebGazer. During a period of one week, participants accessed remotely the online
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user study that was hosted on a departmental server. The experiment started with a consent form

which included a description of the experiment and a compatibility test to detect if the participant

accesses the study through a browser that supports the getUserMedia/Stream API that gives access

to their webcam. Upon agreement, participants were assigned two types of tasks. WebGazer was

integrated in all task pages and each subject was given a unique identifier. All model parameters

were reset between pages for a fair comparison. Contrary to typical eye tracking studies, we did not

ask users to stabilize their head by using bite-bars, placing it on chin-rests, books, etc.

The first type of tasks emulated reading and interacting with content, two typical behaviors in

web pages. Participants had to fill in a quiz with 40 yes/no questions which determined “what

animals/sea creatures/dinosaurs they are” (Figure 3.3). The answers could be given by selecting

one of two radio buttons per question. Each row included 3 questions that spanned across the whole

width of the display and resulted in a grid of 14 rows (13× 3 + 1).

The second type of tasks included selecting a target as part of a standard Fitts’ Law study using

the multidirectional tapping task suggested by the ISO9241-9 standard [100]. Participants had to

click on a circular target that could appear in 11 locations on a circular grid, as seen in Figure 3.4.

The active target would be shown in red color, while the 10 inactive locations were gray. The

amplitude (distance) between two consecutive locations of the active target was 512 pixels, while

the radius of the target was 12 pixels. For each target selection task subjects had to successfully

click on the red target 40 times. Note that Figure 3.4 is a composite image demonstrating the facial

feature detection and predictions made by different regression models. The webcam video and the

predictions were never shown on the task pages to not interfere with and bias the user’s attention.

For both types of tasks, face and eye detection was performed with one of the following facial

feature detection libraries: clmtrackr, js-objectdetect, and tracking.js. This resulted in six trials, as

both tasks were assessed using the three eye detection libraries. Each trial was introduced with a

verification page showing instructions for the upcoming task along with the video captured by the

users’ webcam. The participants were given time to adjust their position and ambient lighting and

ensure that their face, eyes, and pupils were correctly captured. The quiz tasks always preceded the

target selection tasks. The order of the facial feature detectors was uniformly and randomly selected

to avoid bias.

The prediction error was assessed in a similar way to standard eye tracking evaluations; small

targets at fixed locations were treated as ground truth for the gaze coordinates. Each time a
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Figure 3.3: Example of one of the three quizzes that participants had to fill during the remote large-
scale and the in-person validation studies. Each quiz contained 40 yes/no questions and randomly
determined that the participant was most alike a particular “animal, sea creature or dinosaur”. A
different facial feature detection library (clmtrackr, js-objectdetect, or tracking.js) was integrated in
each of the three web pages that contained a quiz.
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Figure 3.4: Composite image demonstrating the experimental setup for the target selection task.
Following the ISO9241-9 standard for Fitts’ Law studies, participants aim to click at the red target.
For every successful click, the red target jumps to one of 11 different locations. Inactive targets
are shown in gray. In total, 40 successful clicks are needed to complete this task. The face of
a participant as captured by the webcam is shown along with their facial features detected by
the clmtrackr library. Predictions from different regression models are depicted with different colors
(light blue for RR, green for RR+F, orange for RR+C, and dark gray for RR+F+C.) No predictions
or video were shown to the participants during the user study. Each participant performed this task
three times, one for each facial feature detection library (clmtrackr, js-objectdetect, and tracking.js).
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participant clicked anywhere within a task page, the various regression models were informed with an

extra data point matching the current pupil location or the eye feature vector to display coordinates.

At the same time, the most recent gaze estimation of where the participant was looking was compared

to the click location, revealing an error distance in pixels.

Every time a click occurred, its coordinates were transmitted to our servers, along with the

corresponding predictions made from all regression models for that given timestamp. To assess the

applicability of the ridge regression when combined with extra sampling within a fixation buffer

(RR+F), we also transmitted the number of extra samples of eye feature vectors that were used per

click. At no point was any video transmitted, preserving the privacy of the users and ensuring that

only cursor coordinates were captured.

After all the trials were completed, participants completed a short demographic questionnaire

inquiring their age, gender, handedness, vision, any feedback, and optionally their emails so that

they could enter a raffle. Participants were free to move and no chin-rest was used. This approach

differs from the traditional practices in research employing eye tracking, as it allows subjects to use

eye tracking at the convenience of their own space and while having a natural behavior.

Participants

We recruited 82 participants (40 female, 42 male) through campus-wide mailing lists. The demo-

graphic makeup of the subjects is mainly college students and young professionals. Their ages ranged

from 18 to 42 years (M=25.6, SD=4.2). Thirty-nine had normal vision, 25 wore glasses, and 18 wore

contact lenses. Right-handedness was dominant with 74 of the participants being right-handed. All

participants used Google Chrome or Firefox as web browsers to access the user study. Participants

received a chance to win 1 of 10 $50 (USD) Amazon gift cards raffled at the end of the experiment.

The experiment lasted an average of 9.9 minutes.

Out of the 82 participants that completed the study, 6 were excluded due to unsuccessful logging

of the predictions on our server. Occasionally, the three facial feature detection libraries failed

to detect the eyes of the participants, therefore there were a few cases for each combination of

libraries and tasks with no predictions: 2 for quiz/clmtrackr, 1 for target selection/clmtrackr, 4 for

quiz/js-objectdetect, 4 for target selection/js-objectdetect, 8 for quiz/tracking.js, and 7 for target

selection/tracking.js. We did not exclude those participants with missing data from our analysis.

Across all participants there were 20,251 clicks; in many cases it took more than 40 clicks per task,
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e.g., the target selection task might take more than one trial to successfully click on the red target.

Out of those clicks, 18,657 had a corresponding prediction through the simple linear regression and

19,545 for each model employing ridge regression.

3.2.2 In-Person Validation Study

WebGazer’s ability to infer the gaze location is based on the assumption that the gaze and cursor

locations match during a click. To evaluate this claim and assess the prediction error of WebGazer

throughout the interaction of a user with a page, we conducted a smaller-scale study that would

give us better insights into the feasibility of webcam eye tracking and how it compares to low-cost

commercial eye trackers. We repeated the same procedures as with the remote large-scale user study,

but this time in a controlled lab and while using Tobii EyeX, a commercial low-cost eye tracker.

Tobii EyeX is an interaction eye tracker primarily used for development of interactive applications,

with a tracking frequency of 50 Hz. We recorded the predictions made by Tobii EyeX and WebGazer

throughout the duration of the user study and not only when clicks occurred. The experiment was

conducted on a desktop PC running Windows 7 and using the Google Chrome web browser in a

maximized window. The monitor was a Samsung SyncMaster 2443 monitor with a 24-inch diagonal

measurement, and a resolution of 1920 × 1200 pixels, placed at a distance of 59 cm from the user.

A Logitech Full HD Webcam C920 USB webcam was mounted on the screen and was used by

WebGazer. A stack of books was used as chin-rest to stabilize for movements.

We recruited 5 college students (2 female, 3 male) that performed the same study as described

earlier. Their ages ranged from 19 to 30 years (M=23, SD = 4.3). Four had normal vision, and

one wore contact lenses. Four were right-handed. As with the large scale study, there was no direct

compensation but participants also entered in the raffle for the 10 $50 (USD) Amazon gift cards.

The study lasted on average 7.2 minutes.

Out of the five participants, one was excluded due to unsuccessful logging of the predictions on

our server. The following data were collected from the remaining four users: 962 clicks with 802

predictions derived from the simple linear regression model and 866 from all models using ridge

regression.
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Figure 3.5: Large-Scale Study: Boxplots of the distribution of the average prediction errors measured
in pixels across all regression models and combinations of tasks and libraries. The mean is obtained
from averaging all the samples from the 76 participants of the large-scale remote user study.
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3.3 Results

We evaluate WebGazer in two separate settings, a remote online study completed by 76 participants

and a small in-person study completed by 4 participants using a commercial low-cost eye tracker

in addition to WebGazer. We determine the prediction error of WebGazer across all participants

by separating the predictions of different regression models made for each combination of task and

facial feature detection library.

3.3.1 Evaluating Predictions From Online Study

To measure the performance of WebGazer, we compute the Euclidean distance between the location

of a click from the corresponding gaze location that the various regression models predict. This

distance is measured in pixels as we cannot control the positioning of the online users or know the

specifications of their computers. Note that the notion of a pixel can differ dramatically across

screens, with higher-resolution displays, such as retinas, inflating significantly the prediction error

as the pixel density within an inch increases decidedly (e.g., approximately 300 pixels are included

within an inch).

As part of the study, we required that for a user to complete a task they would have to perform

at least 40 clicks. This number increases when accidental clicks happen or extra clicks are required,

e.g., when the user fails to successfully click within the circular target. We normalize the results

across all participants and map them to 50 clicks. For each click, we average the error of a prediction

across all participants within a given combination of task and library.

Simple Linear vs. Ridge Regression

We first compare the use of the location of the pupil versus a more general image feature model. To

achieve this, we compare the prediction error of the simple linear regression model that detects the

pupil and maps its location to display coordinates against the ridge regression model that maps the

120D eye feature vector to display coordinates. Across all clicks for all the facial feature detection

libraries and tasks, the mean distance between the location of a click and the prediction made by

the linear regression model is 257.5 pixels (SD = 48.0). Similarly, the mean distance between the

location of a click and the prediction made by the ridge regression model is 233.3 pixels (SD = 61.7).

The distributions of error of each combination of task type and eye detection library are shown in
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Figure 3.6: Average Euclidean distance in pixels between the click location and the predictions made
by the simple linear (solid pink) and the ridge regression model (dashed blue) for the 76 remote
participants. All combinations of tasks (quiz and target selection) and facial feature detection
libraries (clmtrackr, js-objectdetect, tracking.js) are shown.

the first two columns of boxplots of Figure 3.5, for both linear (Linear) and ridge regression (RR).

We average the error across all 50 normalized clicks for each participant. A Kolmogorov-Smirnov

test showed that the errors were not distributed normally for both linear and ridge regression. A

Mann-Whitney U test showed that the mean error was greater for the simple linear regression than

for the ridge regression (p < 0.005).

Figure 3.6 shows the average Euclidean distance in pixels across all 50 normalized clicks for all

combinations of tasks and libraries made by the simple linear and ridge regression. We observe

different error trends across the two types. Filling the quiz seems to introduce more error with more

clicks, perhaps because users need to scroll to reach all questions and thus they move more. On the

other hand, when selecting targets, the error drops until it stabilizes—no scrolling happens in this

type of task.
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As ridge regression has generally a lower error, we base our subsequent analysis only on the ridge

regression model that matches eye feature vectors to display coordinates.

Comparison of All Ridge Regression Models

We compare the accuracy of all prediction models that use ridge regression: the simple ridge re-

gression (RR), the regression when adding extra samples within the fixation buffer (RR+F), when

sampling cursor activity outside of clicks (RR+C), and when combining all the above (RR+F+C).

Figure 3.7 shows the average Euclidean distance in pixels across all clicks for all combinations of

tasks and libraries and for all regression models. Again, we observe the same upward trend for

the task of filling a quiz across all prediction models. On the other hand, for the target selection

task we observe that for the clmtrackr and js-objectdetect detection libraries the error decreases

during the first half of the task and increases during the second half. Performing the study online

leaves room for the interpretation of the observed variability. The speed of the external libraries can

have a significant effect on WebGazer’s ability to match correctly frames and locations on screen.

Head movement, changes in the posture, and changes in the surrounding lighting can also affect the

detected pixels that correspond to eye patches.

Overall, sampling cursor activity (RR+C) has the smallest average error of 174.9 pixels, followed

second by the model that combines fixations and cursor activity (RR+F+C) with an average error

of 210.6 pixels.

Extra Samples Within Fixation Buffer

Contrary to our expectations, the error of WebGazer using extra samples within a fixation buffer

(RR+F) increased (M=251.5 pixels) as seen in Figure 3.7. Figure 3.8 contains the average number

of extra samples within a fixation buffer that were added for each combination of task and library

across all clicks. It is worth noting that this number depends on the performance of the eye detection

library in conjunction with the increased cost of adding extra training points to the regression model.

This justifies the decline in added samples across time and the difference between the three libraries.

There are a couple of factors that could have negatively influenced the accuracy of RR+F, e.g.,

blinks happening within the fixation buffer or the temporal and spatial ranges being too lenient.
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Figure 3.7: Average prediction error in pixels made by the ridge regression model (blue), with extra
sampling within fixation buffer (green), with sampling cursor activity (orange), and the combination
of all three (black) for the 76 remote participants. All combinations of tasks (quiz and target
selection) and facial feature detection libraries (clmtrackr, js-objectdetect, tracking.js) are shown.
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Figure 3.8: Average number of extra samples that were identified within the fixation buffer and were
added to the model (RR+F) across the 76 remote participants. All combinations of tasks and facial
feature detection libraries are shown. All combinations of tasks (quiz and target selection) and facial
feature detection libraries (clmtrackr, js-objectdetect, tracking.js) are shown.
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3.3.2 In-Person Study Results

The data from the small in-person user study were collected in two forms: log files from the Tobii

EyeX eye tracker and Apache server logs for the WebGazer predictions. Both sets of data were

converted into time series of predictions. Since the two data sources did not collect data at exactly

the same timestamp, results were grouped into 10 millisecond bins and then averaged. The error

was computed next, defined as the average Euclidean distance between each regression model and

the corresponding Tobii EyeX prediction for the equivalent bin.

The graphs present smoothed curves for the error in each bin. The tracking.js library was

run during the in-person user study, but it did not generate sufficient data to be analyzed due to

performance issues. For the quiz task, the tracking.js library caused a slowdown by a factor of 10,

generating only 73 bins. This is less than 1 second worth of data compared to clmtrackr which

generated 1207 bins that span the entire 2 minute average duration of the task.

Figure 3.9 shows the distribution of the mean prediction errors measured in pixels for all four

in-lab participants. We note that the errors reported here are comparable with the ones in Figure 3.5

from the large-scale remote study. That further supports our assumption for matching gaze and user

interaction coordinates.

The two models with the lowest error were RR+C with M=169 pixels and RR+F+C with

M=187 pixels. The average visual angle was 4.17◦ or 3 cm. In other words, non-click features that

are based on an understanding of human gaze-cursor habits are useful for improving the accuracy

of the gaze estimate. For practical applications where we would use the best model, the accuracy of

the better eye detector (clmtrackr) with the best model (RR+C) achieved about 130 pixels of error

(and this is assuming that the physical eye tracking device is a perfect estimator of the user’s gaze,

thus this error may be lower in reality).

Figure 3.10 shows the x and y-coordinate predictions of the RR+C model against the Tobii EyeX

tracker predictions over 10 millisecond intervals, across all 6 trials for a single participant. In the

y-axis, the first three peaks represent the quiz task for the clmtrackr and js-objectdetect libraries.

The third group of three peaks represents the lack of data gathered with the tracking.js library.

The close correspondence between the WebGazer and Tobii EyeX predictions shows that WebGazer

produces results that are relatively close to modern low-cost eye tracking devices.
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Figure 3.9: In-Person Validation Study: Boxplots of the average prediction errors measured in
pixels across all regression models and tasks against the EyeX eye tracker. Only clmtrackr and
js-objectdetect are reported. The mean is obtained from averaging all the samples from the 4
participants of the in-person validation user study.
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Figure 3.10: Tobii EyeX (solid green) and the corresponding WebGazer coordinate predictions
(dashed orange) using the RR+C model for a single participant of the small in-person study. Each
of the peaks correspond to a combination of a specific task and facial feature detection library.
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3.4 Discussion

Current webcam eye tracking solutions are not widely used due to the difficulty to install and

operate. This work proposes WebGazer, a client-side eye tracking library that uses existing user

interactions which occur while a user is navigating a website. This allows WebGazer to continuously

and implicitly calibrate and improve its accuracy, without disrupting the user experience. Our

contribution is not in inventing new computer vision techniques, and it is clear to us that there is a

large number of optimizations that could be made to improve the accuracy of the base facial feature

detectors. Instead, our research focus is in understanding how we can build a browser-based eye

tracker that can take advantage of interaction data as they happen, updating the eye tracking model

parameters in real time, and providing a foundation to enable new applications.

There are numerous applications that webcam eye tracking can enable: large-scale naturalistic

usability studies, identifying successful advertisements, integrating eye movements into online gam-

ing, online newspapers can learn what their users read, clinicians can remotely perform attention

bias tests, people with motor impairments can navigate websites with their eyes, researchers can

better understand web user attention, and search engines can know more precisely which search

results are examined to improve future result rankings.

While the accuracy of WebGazer is not at the level of a specialized eye tracking device, this is

still the first functional, online, self-calibrating eye tracker that is available for experimentation. We

offer a publicly available JavaScript library that can be added with a single line of code on any web

page, detect the pupil, and infer on-screen gaze locations. The in-browser nature of WebGazer offers

several advantages. There is a substantially lower barrier for users to get started because software

does not need to be downloaded and installed, therefore anyone can use it. In contrast to controlled

experiments in eye tracking labs, this approach encourages a natural behavior; users perform tasks

in situ, in their natural setting, which enables websites to analyze real behaviors and understand the

context behind users’ web interactions. Finally, there is less of a privacy concern over the webcam

stream being used for unintended purposes as WebGazer requests the user’s permission to access

their webcam and does not transmit any data besides the predictions to remote locations.
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3.4.1 Comparison with Other Webcam Eye Trackers

Two webcam eye trackers that take a similar approach to WebGazer are TurkerGaze and PACE.

TurkerGaze is a crowdsourcing platform that guides users through games to collect information

on image saliency. Its goal is not real-time gaze prediction and thus contains phases of explicit

calibration and offline training with more sophisticated machine learning algorithms. Their pipeline

also uses the ridge regression model (RR) with the same input and parameters that WebGazer uses

and enhances with user interactions. As discussed in this chapter, our use of cursor activity (RR+C)

improves the accuracy of the base regression.

PACE is auto-calibrated and uses a variety of user interactions, reporting an average error of

2.56◦ in a lab study. A direct comparison with WebGazer is not appropriate as their functionality

and focus differ significantly: i) WebGazer presents an in-browser webcam eye tracking library that

can be incorporated in any website, while PACE is a desktop application that performs general gaze

prediction on a workstation and without focusing on the Web. WebGazer enables scalable studies

that can be accessed remotely by everyday users and regardless of their technical background; the

only requirement is a browser and a webcam. ii) WebGazer provides gaze predictions instantaneously

after a single interaction takes place while PACE relies on sophisticated training algorithms that

need several hundreds of interactions to reach such accuracy, making it impractical for the context

we have designed WebGazer—continuous gaze prediction on any website.

3.4.2 Privacy

Online webcam eye tracking has obvious privacy concerns that must be balanced with its benefits.

This eye tracking procedure is opt-in as browsers request access to the webcam, and the website

is able to use the data if the user agrees. The benefit of doing the eye tracking in real time on

the client-side is that the video stream does not have to be sent over the web, unlike the current

webcam eye tracking systems like Sticky, GazeHawk, and the work of Lebreton et al. [66, 67]. The

images from the webcam are only temporarily stored on the local machine, and not saved to disk.

We believe local processing is a critical requirement of any webcam eye tracker; otherwise, users risk

unintentionally sending private information somewhere out of their control.

Hong et al. [45] state that users will accept the privacy risks only if benefits outweigh them.

We imagine scenarios where users may be financially compensated or offered other incentives, like
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discounts. There is an implicit privacy agreement governing the nature of the transaction—some

benefit in exchange for useful user interaction data.

Another concern is that this method also tracks user interactions, e.g., click activity. It is the

website’s responsibility to inform the user that these data are tracked and stored locally to enhance

eye tracking. If the user interactions are also transmitted to the website’s servers, the user should

be informed. Ultimately, the use of webcams in online web applications poses a privacy risk but

there can be a significant benefit to the user if used appropriately, allowing websites to understand

their users better and improve their usability, or conduct research experiments that contribute to

our knowledge of human behavior.

3.5 Conclusion

We presented WebGazer, a new approach for scalable and self-calibrated eye tracking using only

webcams. WebGazer can be added on any web page and aims to democratize eye tracking by making

it accessible to the masses in existing consumer technology. Our findings showed that incorporating

an understanding of how gaze and cursor relate can inform a more sophisticated eye tracking model.

Using the best of the three open source eye detector libraries (i.e., clmtrackr), and with our best

model (a 120D vector of the eye image with ridge regression plus using non-click cursor positions),

the mean error is about 175 pixels in a remote online study, and about 169 pixels or 4.17◦ during a

small in-person study (approximately 3 cm on the test computer).

At its current state, WebGazer is useful for applications where knowing the approximate location

of the gaze is sufficient. The best arrangement for WebGazer mimics the ability of a consumer-grade

eye tracking device to perform real time gaze tracking, but with the ease of use by any web developer.

Its utility will only improve as laptops and mobile devices gain more powerful processing capabilities

for higher frame-rate computation of gaze estimations, and webcams that capture facial features

better in poor lighting conditions. We believe that this work takes one step towards ubiquitous eye

tracking online, where scaling to millions of people in a privacy-preserving manner could lead to

innovations in web interactions and understanding web visitor behavior.



Chapter 4

Webcam Eye Tracking for Remote

Studies of Web Search

WebGazer can open the door to numerous applications of eye tracking that have been traditionally

confined to lab spaces. In this chapter1, we explore its potential by focusing on eye tracking studies

of web search and examining whether they can be replicated in the wild. We do so by developing

SearchGazer, a webcam eye tracker that extends WebGazer to make it more suitable for web search.

We chose to focus on the domain of web search for two reasons: i) search is a ubiquitous web activity;

computer users nowadays spend on average 1.8 hours every day searching for information [13] and

ii) the field of information retrieval is already well aware of the connection between gaze activity and

user behavior when reading or selecting a specific document [33]. This makes web search an ideal

candidate for assessing the ability of webcam browser-based eye tracking to substitute or at least

approximate specialized eye trackers.

Web search is a visual activity. Users examine search results to determine what is relevant to

them and their task. Knowing what a searcher has examined, or is looking at, has been the focus of

numerous studies in information retrieval. Typically, the goal is to understand the searcher behavior

and apply that information to improve the search systems. Traditionally, these studies are done

in lab with specialized eye trackers, or inferred using remotely collected interaction data like clicks

or cursor activity. To address these shortcomings, we introduce SearchGazer, a new approach to
1This chapter has been previously published in [82]. Its content has been revised and expanded.
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understanding visual attention in search that leverages the advantages of both types of studies:

scalability across millions of users, naturalistic environments, and real webcam-based gaze tracking.

In addition, we ask the question, “can SearchGazer really be useful for search behavior studies?"

We investigate this by directly replicating some of the main results of three past seminal studies

in information retrieval: Cutrell et al. [19] and Buscher et al. [9] presented highly-cited eye tracking

studies which investigated how the behavior of searchers differs based on the presentation of search

results and search advertisements respectively; Lagun et al. [64] used the cursor as a restricted focus

viewer, also a remote behavior capture technique. Contrary to SearchGazer, this technique blurs

most of the search page while allowing only the result directly beneath the cursor to be visible,

therefore hindering the user experience. In this study, we directly substitute the specialized eye

trackers or cursor-as-a-viewer interface with SearchGazer. Our ultimate evaluation examines whether

researchers conducting a prior study performed with an eye tracker or cursor-as-a-viewer interface

would reach similar conclusions with SearchGazer, remotely, online, and in real time without any

special equipment.

Our three studies were conducted simultaneously with crowd-workers. Crowdsourcing yielded

more participants at a lower cost (in terms of time and money). We show that many of the main

results are quite similar and we present the original charts and heatmaps side-by-side with corre-

sponding charts and heatmaps generated by SearchGazer. For the results that are different, we

discuss plausible explanations, primarily due to the change in search technology since the original

studies and differences in the diligence of in-lab participants and remote crowd-workers.

The main contributions of this work are: 1) the description and evaluation of our real-time online

webcam eye tracker, SearchGazer (publicly available at http://webgazer.cs.brown.edu/search),

and 2) the investigation of results obtained from replicating three seminal web search behavior

papers, when SearchGazer is substituted for specialized eye trackers or interfaces.

4.1 SearchGazer

SearchGazer is a self-calibrated client-side eye tracking library that extends WebGazer [81], using

its best regression model to map eye features to gaze locations and search page elements during user

interactions. In addition to predicting the gaze, SearchGazer also identifies gaze periods over regions

of interest on the search results page for analysis.

http://webgazer.cs.brown.edu/search
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Any facial feature detection library can be plugged into SearchGazer; it only needs the location

of the eyes within the video. Based on the evaluation of WebGazer, we use clmtrackr [75] to detect

the smallest rectangle that fits the eye contour.

4.1.1 Self-Calibration and gaze prediction

SearchGazer performs gaze prediction following the same procedure with the RR+C regression

model described in Section 3.1.3. The 120D eye feature vector is mapped to the display coordinates

(Dx, Dy) for each click through the following ridge regression model: f(v) → Dx. This function is

f(v) = φ(x)T w, where φ(x) is a basis function and w is a vector of weights which satisfy:

min
w

∑
xi∈x
||Dxi

− f(xi)||22 + λ||w||22 (4.1)

As with WebGazer, we set the regularization parameter λ to 0.00001.

Section 3.3 showed that our model performs better when taking into account both clicks and

cursor movements (RR+C). When the cursor moves, we assume it matches the true gaze location.

Unlike click coordinates though, cursor locations contribute to the regression model for at most

200ms, a duration comparable to that of a gaze fixation. Therefore, when the cursor is idle and no

new cursor location has been introduced, our model falls back to the original simple ridge regression

where only clicks contribute to the training of SearchGazer.

Mapping to Search Elements

The predicted gaze coordinates are combined with the DOM structure of the underlying search

page and mapped to examined page elements such as links, snippets, and ads. In our open-source

code repository, we have implemented this feature for Google and Bing search engine result pages,

but it can be extended to any search engine with a known underlying structure. Figure 4.1 shows

SearchGazer’s dual output on an example page. The red dot corresponds to the location of the

predicted gaze. The point of gaze is enclosed by a red rectangle that indicates what search element

that prediction would correspond to. These visual representations of SearchGazer’s functionality are

only provided in its debug mode. An actual user would interact with their search engine regularly,

forgetting that their gaze is constantly predicted in the background.
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Figure 4.1: SearchGazer’s dual functionality on an example Bing search engine result page. The
predicted point of gaze is represented with a red dot. The red rectangle indicates the search element
that the user is looking at, at that given moment.
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4.2 Evaluation

Section 3.3 described the prediction error of WebGazer when tested in two user studies—one online

and one in-lab—with a total population of 87 participants. Its gaze predictions were compared

to those made by the commercial eye tracker Tobii EyeX. The mean error was 169 pixels with an

average visual angle of 4.17◦ or 3 cm on the test computer screen. These results are promising

as they show that SearchGazer can also predict relatively accurately the eye-gaze locations and in

consequence the corresponding search elements.

To further investigate the applicability and utility of SearchGazer in web search, we replicate

the studies found in three seminal papers in the area of information retrieval that have used eye

tracking to better understand web search behavior. We conducted all three replication studies

remotely, recruiting participants through the Amazon Mechanical Turk crowdsourcing platform.

All crowd-workers passed a qualification test which ensured they had a webcam and their browser

supported the getUserMedia/Stream API that provides access to the webcam stream. To ensure

lack of bias, each study was conducted with a unique population of crowd-workers.

The gaze predictions provided by SearchGazer are not adequately fine-grained to allow the iden-

tification of fixations. Instead, we rely on raw gaze data when comparing our findings to previous

studies. In addition, each of the heatmaps included in the following sections was created according

to the color palette of the corresponding original study. In the following sections, we report the

results when replicating the three seminal studies. Due to lack of the original reference data, we

cannot perform any rigorous statistical analysis to assess our findings. Instead, we report average

differences and high-level metrics that give a general quantified measure of the similarities between

SearchGazer and the original studies.

4.3 Result Examination Behavior Study

The first study we reproduce is [19], a prominent early study that used eye tracking in web search.

Cutrell et al. conducted an in-lab user study with 22 participants, exploring the effects of changes

in the presentation of search results, i.e., the snippet length, on 6 informational and 6 navigational

queries that were submitted to MSN Search. A Tobii x50 eye tracker was used to identify the gaze

coordinates of the 22 participants.
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4.3.1 Experimental Design and Procedure

To replicate this study, we performed a few modifications as some of its specifications are outdated.

Given that MSN Search does no longer exist as an independent search engine, we used its successor,

Bing. One of the navigational queries (“Pinewood”) was also changed to a current software company

(“Symantec”). To keep the study short, contrary to [19], our participants were only allowed to look

for the answer within the first page of returned results and could not manipulate the query with

which they were provided. For each of the 12 queries, the first search engine result page (SERP) was

downloaded from Bing, without manipulation of the length of the snippets. All ads were removed so

that the SERPs resembled as much as possible the MSN Search, leading to 8 instead of 10 organic

results. SearchGazer was added on each of the 12 SERPs to predict and log in real time the predicted

gaze locations.

Our version of the study started with instructions and a consent form. As tasks designed for

crowd-workers tend to be shorter than in-lab studies, we included an explicit calibration step, during

which crowd-workers had to click on a circular target that appeared in a 5 × 3 grid that covered

their whole screen. The calibration step was repeated halfway during the experiment. Crowd-workers

proceeded with the 12 search tasks presented in a randomized order. For each task, a description

of the search goal and a corresponding query was given. After concluding a search, crowd-workers

provided their answer or declared they were unable to successfully acquire the target information.

After the study, they filled an online demographic questionnaire.

4.3.2 Participants

Forty-nine crowd-workers performed this study. Thirteen participants were excluded due to aban-

doning the task midway, not following the instructions, or due to technical issues with data logging

in our server. The final population consisted of 36 participants (14 female, 22 male). They were 20

to 49 years old (M=30.1, SD=7.24). Twenty-two had normal vision, 8 wore glasses and 6 contact

lenses. All participants received $2 (USD) at the end of the experiment. To ensure they completed

the whole study, they provided an identification number they were handed along with the question-

naire. The study lasted on average 10.11 minutes (SD=4.13). In total, there were 610 clicks and

76,389 gaze predictions.
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4.3.3 Results

Cutrell et al. provided preliminary results on the general characteristics of search results, along with

changes in the web search behavior when varying the snippet length. We focus on the former, as

those findings are more generalizable and applicable to modern search engines.

Viewing order and fixation duration: Research in information retrieval has repeatedly

shown that users tend to examine results from top to bottom when presented with SERPs that

have a single-column linear layout [56]. Figure 4.2 shows in circles the mean time for the gaze to

arrive at each organic result. Cutrell et al. confirmed previous findings, showing in Figure 4.2a

that the mean time for the gaze to arrive at each result is roughly linear, with lower ranked results

attracting attention last. Figure 4.2b shows the corresponding mean arrival times for the data

obtained through SearchGazer. Note that in our replication studies, a SERP contained at most 8

organic results. We observe that the arrival times also follow a linear fashion but the slopes are

significantly different. For lower ranked results, arrival times are higher in our study, with result 8

being reached on average after 14.2 seconds. We hypothesize that as search engines have become

more powerful, web searchers tend to trust the first ranks even more, exploring the bottom of the

page only after careful consideration of the first results. After normalization, the average difference

between the original study and our findings is 14.75%.

The second component of Figure 4.2 is the average fixation duration for each result, depicted in

bars. As shown in Figure 4.2a from [19], most gaze activity was directed at the first results, which

attracted far more attention. In Figure 4.2b, SearchGazer’s predictions demonstrate similar total

visual attention towards lower-ranked results. Following [57], we assume that the power law fits

the data better than any other common distribution. Fitting two power law curves on the original

and SearchGazer’s results, we find that the exponents are 0.7235 and 0.7906, respectively. After

normalization, the average difference between the fixations in the original study and our findings is

5.09%. We observe that the curves have similar slopes, although the crowd-workers of our experiment

spent less time examining each result. This can be perhaps explained by the difference in nature

of a remote and an in-lab study. As crowd-workers are unattended and often use crowdsourcing as

their sole source of income, they tend to complete the tasks faster and possibly not as diligently.

In addition, crowd-workers come from many countries and therefore they might approach the tasks

differently than in-lab participants who are often native English speakers.
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 5

All the results pages for the initial queries (those generated 
by the links) were cached locally to ensure that all 
participants in a given condition would see exactly the same 
information at the beginning. All search-results pages for 
subsequent queries were generated on the fly as described 
above. 

For each query we generated, we made sure that the task 
could be completed with a site presented in the initial set of 
10 results. For navigational queries, only one result was 
associated with the target, while for informational queries 
there was always one “best” result in which a user could 
quickly find the searched information (e.g., the searched 
information was included in the snippet, or the information 
appeared in a very obvious place on the Web page). 
However, as is common for informational queries, the task 
often could be completed by navigating to several different 
locations if the participant was willing to spend some time 
“orienteering” around target sites (see [24]). 

At the beginning of each session, participants were 
calibrated for the eye- tracker and given a practice query to 
familiarize them with the procedure. At the beginning of 
each task, participants read the task description and 
motivation in their Web browser and clicked the underlined 
query when they were ready. Each task was considered 
completed when participants clicked on the link to the 
target page, confirmed it was the desired site and vocally 
announced that they had found the Web site or information 
requested. At the end of the study, participants provided 
some demographic information and answered a short 
questionnaire about their history using Web search engines 
and their experiences in the study. 

Results 
Common eye-tracking measures include pupil dilation, 
fixation information, and sequence information such as scan 
paths. For our analyses, we relied on measures related to 
gaze fixations with a minimum threshold of 100 ms in areas 
of interest.  Here we consider AOIs including each 
individual search result and each sub-element therein (e.g., 
title, contextual snippet, and URL). 

In addition, we looked at two non-gaze-related behavioral 
measures: total time on task (measured from when the first 
set of search results appeared on the screen until 
participants announced they had finished), and click 
accuracy (whether a participant clicked on the “best” result 
in the first set of results). 

General gaze characteristics for search results 
Before describing the results of the various manipulations, 
we present some aggregate characteristics for how people 
view Web search results across all our search tasks and 
conditions. First, confirming previous findings [12], we 
found that people viewed search results in a roughly linear 
order. Most gaze activity was directed at the first few items; 
items ranked lower got users’ attention last and least 
(Figure 3). 

We also were interested in the number of items viewed 
before and after a selected item because this relates to how 
completely users search a set of results. That is, if users 
clicked on a result, on average how many other items above 
and below that item did they look at? Figure 4 shows that 
no matter which result they eventually clicked on, our 
participants usually looked at the first 3 or 4 search results. 
When they clicked on the first or second result, they still 
looked at the first 4 results. When they clicked on lower- 
ranked results, they usually had looked at most of the items 
ranked higher. Finally, participants went through about 8 
results on a page before changing their queries without 
clicking on anything (indicated by “Requery”). With the 
exception of position 1, these results are very similar to 
findings reported by Joachims, et al. [12]. In their study, 
participants rarely looked at more than 1 or 2 items after the 
one they had clicked on, even when they had clicked on the 
first item. 

A common observation in Web search is a “hub and spoke” 
pattern of exploration in which users go back and forth 
between a search results page and different target sites 
using the “back” button. We found that the distribution of 

 
Figure 4. Mean number of search results looked at before 
users clicked on a result (above and below that result). E.g., if 
users clicked on result 5, on average they looked at almost all 
items above it and about 1.4 results below it. 
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Figure 3. Mean fixation duration (bars) and mean time for 
gaze to arrive at each result (circles). As search results move 
downward in rank, it takes longer for searchers to arrive at 
them (upward trend of circles), and they spend less time 
looking at lower-ranked results (decreasing trend of bars). 
This figure sums across all search-results pages visited by 
participants. All error bars are ± standard error of the mean. 
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Figure 4.2: The mean duration of fixating or examining each result is shown in green bars for (a) the
Result Examination Behavior and (b) the replication by SearchGazer. The orange circles represent
the mean time spent until the gaze arrives for the first time at each result. Note that SERPs in the
original Result Examination Behavior contain 10 instead of 8 results.



53

 5
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participants in a given condition would see exactly the same 
information at the beginning. All search-results pages for 
subsequent queries were generated on the fly as described 
above. 
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10 results. For navigational queries, only one result was 
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in the first set of results). 
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found that people viewed search results in a roughly linear 
order. Most gaze activity was directed at the first few items; 
items ranked lower got users’ attention last and least 
(Figure 3). 

We also were interested in the number of items viewed 
before and after a selected item because this relates to how 
completely users search a set of results. That is, if users 
clicked on a result, on average how many other items above 
and below that item did they look at? Figure 4 shows that 
no matter which result they eventually clicked on, our 
participants usually looked at the first 3 or 4 search results. 
When they clicked on the first or second result, they still 
looked at the first 4 results. When they clicked on lower- 
ranked results, they usually had looked at most of the items 
ranked higher. Finally, participants went through about 8 
results on a page before changing their queries without 
clicking on anything (indicated by “Requery”). With the 
exception of position 1, these results are very similar to 
findings reported by Joachims, et al. [12]. In their study, 
participants rarely looked at more than 1 or 2 items after the 
one they had clicked on, even when they had clicked on the 
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Figure 4.3: The orange circle corresponds to the rank of the examined result. The green bars above
and below the orange circles show the mean number of search results looked at before users clicked
on a result, above and below that result respectively. No participant selected the 9th result in [19]
and the 7th result in the corresponding SearchGazer study.
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Results Viewed before a click: An interesting measure of saturation of a SERP is how many

results were viewed on average before a click occurred on a result. Figure 4.3 shows the average

number of results ranked higher and lower than the one that the user clicked on. For example, in

Figure 4.3a, users from [19] who clicked on result 5, on average looked at almost all items above

it and about 1.5 results below it. Figure 4.3b shows our findings when we analyzed SearchGazer’s

predictions. Crowd-workers that clicked on result 5, on average look at 4 items above and 1.6 below

it. The average difference between the two studies is 0.28 results for those ranked higher and 0.61

results for those ranked lower than the one clicked. Missing the reference data prevents us from

running any rigorous statistical test, but on average it seems that SearchGazer can replicate studies

relatively accurately.

4.4 Ad Examination Behavior Study

Buscher et al. [9] investigated contemporary search engines that contain ads and related searches in

addition to organic results. They conducted a lab user study, varying the type of task (informational

or navigational) and the quality of ads (relevant or irrelevant to the query). The experiment was

conducted with 38 participants that were provided with custom-generated SERPs for each of the

above combinations, for a total of 32 search tasks. A Tobii x50 eye tracker was used to measure the

visual attention of the participants across different areas of interest (AOIs).

4.4.1 Experimental Design and Procedure

The authors of [9] provided us with the list of 32 queries along with the corresponding SERPs that

were used in the original study. Each query could return one of two SERPs that varied in the quality

of ads (relevant or irrelevant to the query). SearchGazer was added to all SERPs to predict gaze

locations in real time. To keep the study short and remotely practical, we only worked with 12 of

the original queries (6 informational and 6 navigational). The experimental design was identical to

the procedures followed in the Result Examination Behavior Study described in Section 4.3. The

ordering of tasks was also randomized, but for the ad quality we followed the same protocol as [9].

Each participant was assigned to one of three ad quality blocks. Each block contains 12 trials, with

ads being mostly good (relevant), bad (irrelevant), or randomly selected, as shown in Figure 4.4.
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Condition:  GB
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Figure 4.4: Design of the ad examination behavior study. Every experiment contains 12 trials, each
trial randomly assigned one of the 12 SERPs. Each participant is randomly assigned to one of three
ad quality blocks that indicate their relevance to the provided query. GB starts with 6 SERPS, 5
with good (g) and 1 with bad (b) ads, followed by another 6 SERPs, 5 with bad and 1 with good
ads. BG presents blocks in a reverse order, mostly bad and then good ads. The RR has 6 SERPs
with good and 6 SERPs with bad ads, presented in random order.

4.4.2 Participants

Forty-four crowd-workers performed this study. Nine were filtered out due to incomplete or aban-

doned tasks. The resulting 35 participants consisted of 17 female and 18 male, with ages ranging

from 21 to 59 years (M=30.4, SD=9.1). Of these participants, 19 had normal vision, 13 wore glasses

and 3 contacts. The study lasted on average 9.75 minutes (SD=7.05) and in total there were 88,438

gaze predictions.

4.4.3 Measures

The following two measures were used as defined by Buscher et al. [9]:

AOIs: Each SERP was broken into separate AOIs that correspond to 10 organic results, 3 top ads,

and 5 rail ads.

Fixation Impact: Buscher et al. used the measure of fixation impact [8] which spreads the duration

of a fixation to all AOIs that fall close to the fixation center using a Gaussian distribution. They

used Tobii Studio to detect fixations, for which the exact technique is not disclosed. We instead

used raw gaze predictions and a smaller radius Gaussian.
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Figure 1: Gaze heat map on a search engine results page. 
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ABSTRACT 

We investigate how people interact with Web search engine result 

pages using eye-tracking.  While previous research has focused on 

the visual attention devoted to the 10 organic search results, this 

paper examines other components of contemporary search 

engines, such as ads and related searches.  We systematically 

varied the type of task (informational or navigational), the quality 

of the ads (relevant or irrelevant to the query), and the sequence in 

which ads of different quality were presented.  We measured the 

effects of these variables on the distribution of visual attention and 

on task performance. Our results show significant effects of each 

variable. The amount of visual attention that people devote to 

organic results depends on both task type and ad quality. The 

amount of visual attention that people devote to ads depends on 

their quality, but not the type of task. Interestingly, the sequence 

and predictability of ad quality is also an important factor in 

determining how much people attend to ads. When the quality of 

ads varied randomly from task to task, people paid little attention 

to the ads, even when they were good. These results further our 

understanding of how attention devoted to search results is 

influenced by other page elements, and how previous search 

experiences influence how people attend to the current page. 

Categories and Subject Descriptors 

H.1.2 [Models and Principles] User/Machine Systems – Human 

information processing, Human factors . 

General Terms 

Design, Experimentation, Human Factors, Measurement. 

Keywords 

Gaze tracking, user study, search engine results pages 

1. INTRODUCTION 
In designing effective search systems, it is important to 

understand how people search and interact with the information 

presented on search engine result pages (SERPs). In this paper we 

use an eye-tracking study to increase our understanding of the 

processes that people use in examining result pages, and of 

variables that influence these processes.  

Previous studies have used eye-tracking to understand how people 

attend to and interact with different elements of SERPs. This work 

has developed well-known terms to describe typical gaze 

distributions on SERPs, such as the “golden triangle” [12] or the 

“F-shaped pattern” [18]. Figure 1 shows an example of a 

characteristic heat map for a SERP. These studies tend to be fairly 

high-level, with qualitative descriptions aggregated across many 

different pages or tasks. Other researchers have taken a more 

controlled experimental approach and reported quantitative 

summaries of eye movements on SERPs, often explicitly 

controlling users’ tasks. These studies characterized how visual 

attention is distributed on the 10 organic results, e.g., [6], [9], 

[10], [16]. However, all of today’s major commercial search 

engines include additional elements on a SERP such as sponsored 

links at the top and on the right rail, related searches, graphical 

elements such as maps, illustrations, or other content.  In this 

study we seek to understand how the visual attention devoted to 

organic results is influenced by these other page elements. 

Sponsored links are an especially important component of the 

SERP since they form the main source of income for search 

engines. Depending on the search intent of the user, ads may 

provide valuable information and lead searchers directly to their 
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Figure 4.5: Gaze heatmap of all participants in the original Ad Examination Behavior Study [9].
The classic “F-shape” or “golden triangle” can be easily discerned across the first organic results.
The provided SERP is just an example.
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Figure 4.6: Gaze heatmap created by SearchGazer. The predictions are aggregated across all par-
ticipants and queries and projected on the same SERP that was used in Figure 4.5.
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4.4.4 Results

General Gaze Distribution on SERPs: The gaze heatmap in Figure 4.5 demonstrates the dis-

tribution of visual attention across all participants and tasks in [9]. The data have been aggregated

across all queries and the background SERP serves as an example. Figure 4.6 shows the correspond-

ing heatmap created by the predictions of SearchGazer across all 12 queries and 35 participants. We

observe that both heatmaps follow the golden triangle, with the majority of visual attention focused

in the first three organic results. For SearchGazer, there is a wider spread of predictions across the

whole SERP, as its predictions are not as concentrated as a commercial eye tracker. Nevertheless,

it is worth noting that the aggregated data can lead to similar conclusions between the original and

the replication study.

Figure 4.7 shows the mean fixation impact for each AOI across all participants and tasks. The

results from [9] in Figure 4.7a show that most visual attention falls on the top results. Figure 4.7b

shows the corresponding SearchGazer results. Our findings have the same linear decay across organic

results, with the exception of the 7th and 8th which are examined for longer. This is perhaps due to

the page-fold falling near them or because crowd-workers are more deliberate in the examination of

lower results. In addition, our study shows smaller overall examination durations. Surprisingly, the

five right ads attract much higher visual attention. SearchGazer predictions could lack precision, as

we noticed that the inferred gaze positions were more scattered along the x-axis. After normalization,

the average difference between the mean fixation impact as seen across the two studies is 28.78%.

Effects of Task Type: Figure 4.8 shows the mean fixation impact for AOIs, split between

informational and navigational tasks. Both [9] and our results show, in Figures 4.8a and 4.8b

respectively, that participants spent more time on SERPs for informational tasks. This additional

time was mostly spent on the organic results. After normalization, the average difference between

the mean fixation impact is 21.85% for informational and 29.52% for navigational tasks.

Effects of Ad Quality: Figure 4.9 shows the mean fixation impact for AOIs, separated based

on ad quality (good or bad, that is relevant or irrelevant ads to the query). Buscher et al. did not

find any statistical difference between the time spent in SERPs with good and bad ads, but showed

that participants devoted about twice as much visual attention to top ads when the ads were of good

quality. In contrast, participants paid less attention to the organic results when good quality ads

were displayed, as shown in Figure 4.9a. Our findings in Figure 4.9b indicate in many cases a totally
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(a) Ad Examination Behavior Study [9]

(b) SearchGazer Replication Study

Figure 4.7: The mean fixation impact (amount of gaze in milliseconds) of each AOI is shown in bars,
across all participants and tasks for (a): the original Ad Examination Behavior Study and (b): the
SearchGazer replication study.
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is especially evident for the organic results at positions 1 and 2 

(t(1208)=7.4, p < 0.01). 

Interestingly, there was virtually no difference in the distribution 

of gaze on the top 3 ads. For the right rail ads we observe slightly 

more visual attention during informational tasks, although the 

absolute amount of attention is very low (mean 

informational=189ms, mean navigational=104ms, t(1208)=2.7, p 

< 0.01). 

Discussion. It is striking that none of the extra time for 

informational tasks was spent on the top ads. Users did not 

distribute their additional time evenly on the elements of the 

SERP but seemed to concentrate their attention on the top 2 

organic results. This suggests that for informational tasks where 

users typically focus more on text snippets, the bias for the top 

organic results is even stronger.  

Furthermore, there is a noticeable difference in visual attention on 

the upper search box which is more than twice as high for 

informational tasks. This reflects that the fact users requeried 

more during informational tasks (1.20 queries) than navigational 

tasks (1.05 queries). Interestingly, even when participants were 

not able to find the solution on the first static SERP, they did not 

divert their attention much towards other components of the SERP 

such as ads or related searches, instead they requeried. 

4.3 Effects of Ad Quality 
Figure 7 (right side) shows average fixation impact for SERP 

elements, broken down separately for SERPs containing good and 

bad ads. There are several large differences of the general gaze 

distribution with respect to ad quality.  

Overall, participants spent somewhat less time on SERPs when 

good quality ads were displayed (mean time on SERP 14.2s, 

σ=16.5s for good quality ads vs. 15.2s, σ=16.0s for bad quality 

ads), however, the difference is not statistically significant. 

There are, however, interesting differences in the gaze distribution 

on different components of the SERPs. Participants devoted about 

twice as much visual attention to top ads when the ads were of 

good quality (mean=2.1s and 1.1s for good and bad quality, 

respectively, t(1208)=6.8, p < 0.01). In contrast, participants paid 

consistently less attention to the organic results when good quality 

ads were displayed (mean=10.8s and 12.8s for good and bad 

quality, respectively, t(1208)=2.6, p < 0.01). There were no 

reliable effects of ad quality on the remaining SERP components 

such as the search box, right rail ads, and related searches. 

We further analyzed the participants’ search engine judgments for 

each trial with respect to ad quality. When good quality ads were 

displayed, participants rated the search engine slightly better than 

when bad quality ads were presented (mean of 4.55 vs. 4.49 on a 

5-point Likert scale), however this difference is not significant. In 

addition, the total time to complete a task was about 10% shorter 

when good quality ads were shown (mean 50.4s, σ=53.1) than 

when bad quality ads were shown (mean 54.4s, σ=62.2), but this 

difference is not significant. 

Discussion. The quality of ads on a SERP directly influenced 

participants’ attention and performance. Top ads of good quality 

attracted twice as much visual attention as those of bad quality. In 

addition, the amount of attention devoted to organic results was 

influenced by the quality of the ads, with less attention to organic 

results when the ads were good.  

The effect of ad quality on visual attention was not evident for 

right rail ads. Right rail ads seem to be largely ignored, and when 

participants looked there, they did not do so differentially as a 

function of ad quality. 

4.4 Sequence Effects 
Every sequence of 32 tasks was performed in three different 

conditions, GB, BG, and RR (see Figure 4). The condition 

determined the order in which good or bad quality ads were 

displayed on the SERPs for the different tasks. In this section, we 

concentrate on effects observed in those different conditions. 

Figures 8 and 9 show results (for fixation impact and clicks) for 

these three conditions, broken down separately for SERPs 

containing good and bad ads.  

In Figure 8, we see that mean fixation impact on the top ads from 

participants in either the BG or the GB condition was around 1.8 

times larger than from participants in the RR condition 

(t(1208)=5.3, p < 0.01). Good ads generated higher fixation 

impact for all conditions than bad ads. In the blocked conditions 

(BG and GB), good quality top ads received twice as much visual 

attention as in the random condition (RR). Further, good quality 

top ads in the random condition received only as much gaze as 

bad quality top ads in the blocked conditions. 

In Figure 9, we see even larger differences for clicks as a function 

of condition and ad quality. Not surprisingly, the quality of the 

ads had a large effect on click rate – there were no clicks on bad 

ads and a click rate of about 13% for good ads. Condition also had 

a large effect on click behavior. Participants in the BG or GB 

conditions clicked on the top ads 2 to 3 times more often than 

Figure 7: Comparison of mean fixation impact on SERP elements for navigational and informational tasks (left) and for SERPs 

displaying good or bad ads (right). 

(a) Ad Examination Behavior Study [9]

(b) SearchGazer Replication Study

Figure 4.8: The mean fixation impact on AOIs for navigational and informational tasks is shown in
green and orange bars respectively. Results are averaged across all participants and tasks.
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different picture, revealing that webcam eye tracking can miss such subtle differences. The fact that

our study included 12 instead of 32 tasks might have also reduced the effect that ads normally have.

After normalization, the average difference between the mean fixation impact is 23.63% for pages

with good ads and 25.48% for bad ads.

4.5 Restricted Focal View Result Examination Study

Lagun and Agichtein [64] created ViewSer, a tool that automatically modifies the appearance of a

SERP to show one result at a time, while blurring the rest of the interface using a restricted focal

view. The participant can uncover only one result at a time by moving their cursor on top of it, thus

the search engine knows which result a user is examining at any moment. Although ViewSer is an

interface and not an eye tracker, it allows researchers to infer web search behavior remotely, without

the need to purchase additional equipment. Our work with SearchGazer builds on ViewSer’s idea

of capturing examined regions of the search page at scale, and their assessing the feasibility of the

work through crowd-workers. The authors validated the utility of ViewSer by running a remote

user study with 106 crowd-workers. Each worker went through a list of 25 benchmark search tasks

from the Web Track of the TREC 2009 competition [80]. The results were compared to a lab study

that was performed with 10 participants using a Tobii x60 eye tracker. Clickthrough and viewing

rates were comparable between participants using ViewSer and those tracked using the physical eye

tracker.

4.5.1 Experimental Design and Procedure

We did not have access to the original SERPs, so instead we replicated this study using Google and

focusing on 12 queries. We downloaded the 12 Google SERPs and added SearchGazer on each one

of them. As with all 3 replication studies, the crowd-workers were allowed to only click within the

first page of returned results and could not manipulate the query. The rest of the protocol was the

same as the Result Examination Behavior Study, as described in Section 4.3.

4.5.2 Participants

Forty-seven crowd-workers performed this study. Eleven were excluded due to incomplete and aban-

doned tasks, resulting to 36 participants (12 female, 24 male). Their ages ranged from 21 to 63 years
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(a) Ad Examination Behavior Study [9]

(b) SearchGazer Replication Study

Figure 4.9: The mean fixation impact on AOIs for SERPs with good and bad quality is shown in
blue and purple bars respectively for the (a): original Ad Examination Behavior study and (b): the
SearchGazer replication study.
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(M=31.97, SD=10.42). Twenty-five had normal vision, 10 wore glasses and 1 wore contacts. The

study lasted on average 10.36 minutes (SD=6.83). Across all participants there were 630 clicks and

76,602 gaze predictions.

4.5.3 Results

Gaze Distribution: Figures 4.10 and 4.11 show an example heatmap of the relative viewing time

spent on the SERP that corresponds to the query “toilet”. For [64], this heatmap can be created only

with data collected from the in-lab eye tracking study, as shown in Figure 4.10. Data gathered from

ViewSer can be visualized with vertical colorbars as shown in Figure 4.10, as colorbar (b). Colorbar

(a) corresponds to data gathered from the in-lab eye tracking study. SearchGazer, which predicts in

real-time the gaze locations as screen coordinates, can lead to both types of visualizations, allowing

for richer information. Figure 4.11 shows the corresponding heatmap created with the data obtained

from our study. As the organic results in the two SERPs are not identical, it is hard to compare them

directly. It is worth noting though, that as the task is informational (“Find information on buying,

installing, and repairing toilets”), participants tend to spend more time on the SERP, examining

even lower-ranked results.

SERP Examination and Clickthrough: Figure 4.12 depicts the viewing and clickthrough

rates across all queries and participants. As shown in Figure 4.12a, the data gathered from the

ViewSer group demonstrate that both viewing and clickthrough rates decay in a linear fashion, with

lower ranked results attracting less attention. Figure 4.12b shows the corresponding data gathered

from the predictions made by SearchGazer. It is worth noting, that even though the same linear

trend is observed the rates are lower. After normalization, the average difference between the viewing

rate is 14.11% and 28.54% for the clickthrough rates. This could be a result of the differences in the

user experience across the two studies. Restricted focus viewing can lead users to carefully examine

more results instead of just scanning them, as they now have to move their cursor to reveal one

result at a time. At the same time, ViewSer can lead to a closer examination of results that would

otherwise be overlooked, leading to higher clickthrough rates in lower ranked results. In our study,

the bottom results attracted less attention and even fewer clicks. As many of the informational

tasks were vague and the target information existed in many results, it is not unlikely that our

crowd-workers ended up clicking on the first few results, trusting the search engine.
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Figure 4: An example attention heatmap showing
the relative viewing time over a SERP for the query

”
toilet” (Eye-tracking group), and the correspond-

ing colorbar, showing the heatmap density projected
onto the vertical axis (a). Overlaid as (b) is the
colorbar for the viewing time for the same SERP
but for the ViewSer group. This figure illustrates
the similar distribution of attention between eye-
tracking (a) and ViewSer (b).

positions, resulting in lower rates of “indiscriminate”clicking
frequently observed for top-ranked results [1].

Comparative Analysis of Viewing and Clickthrough
for Individual Queries: More detailed analysis of the
Spearman correlation of viewing and clickthrough behav-
ior for the ViewSer and Eye-Tracking groups for individual
queries is reported in Figures 7(a) and 7(b), respectively.
For the vast majority of queries (over 80%), the correlation
of the viewing and clickthrough behavior of the ViewSer and
Eye-Tracking groups is over 0.8 and is never below 0.6, in-
dicating that ViewSer provides a close approximation of eye
tracking for over 80% of queries, and a moderate approxi-
mation for the remainder. To gain additional intuition of
the relationship between Eye-tracking and ViewSer behav-
ior for individual queries, we plot the relative viewing time
measured using Eye tracking (Y axis) and ViewSer (X axis)
for each result for all queries (Figure 8). The color shading
indicates the results rank position, where the red color cor-
responds to rank 1, and the blue color to rank 10. The result
viewing times, as measured by the two methods, correlate
strongly (r = 0.74). Intuitively, results with higher ranks
cluster in the top right quarter as both groups spend more
time viewing higher-ranked results, as expected.

Further Analysis: ViewSer vs. Unconstrained Brows-

Figure 5: Viewing and clickthrough rates for each
rank, aggregated for all queries and participants
(ViewSer group).

.

ing: to validate ViewSer methodology further, namely, to
determine whether ViewSer participants examine the SERP
differently due to restricting of their peripheral vision, we
performed a follow-up study with additional 25 MTurk work-
ers. This final group enjoyed Unconstrained viewing of the
SERP, without blurring of out-of-focus results. The click-
through rates of this group are reported in Figure 9, to-
gether with the corresponding ViewSer clickthrough rates.
Remarkably, the clickthrough behavior of these groups is
similar, with Spearman correlation r = 0.81.

5. APPLICATIONS TO SEARCH TASKS
This section describes three practical applications of the

ViewSer technology to web search. First, Section 5.1 de-
scribes collection of relevance rating used in our experiments
for this section. Then, we describe how ViewSer could be
used to analyze snippet attractiveness (Section 5.2), to im-
prove result ranking (Section 5.3), and to detect misleading
snippets (Section 5.4).

5.1 Relevance ratings collection
To validate our findings on a bigger dataset, we collected

SERP examination data for an additional 50 queries taken
from the HARD track of TREC 2005, resulting in a dataset
of 75 queries. Separately from the ViewSer study, we col-
lected comprehensive relevance judgments for all of the re-
sults on the first page of results, for all queries in the WEB
Track and the HARD Track. The Mechanical Turk workers
(MTurk) were recruited to perform the relevance labeling as
described above.

To control worker accuracy in ViewSer group we obtained
relevance ratings for documents of each query in our collec-
tion. Each MTurk HIT was to assess organic (non-sponsored)
results for one query. Following the recommendation of [20],
the authors labeled 10% of documents as a validation set in
order to estimate the worker accuracy and verify the qual-
ity of their work. On average, results for each query were
rated by 6 workers. Inter-rater agreement, computed with
Fleiss Kappa was 0.39, which correspond to fair/moderate
agreement. We conjecture that this level of agreement is
caused by the difficulty of the tasks and the informational
nature of the queries. These ratings were used to compute
the worker’s accuracy on validation set and to filter workers
with low accuracy as unreliable. For the WEB track, 17 of

Figure 4.10: Attention heatmap over a SERP for the query “toilet" and its corresponding colorbar
showing the heatmap density replicated by the Result Examination Behavior Study via Restricted
Focal View [64]. Colorbar (a): shows gaze activity of the in-lab eye tracking group, while colorbar
(b): shows the data gathered by the remote ViewSer group.
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Figure 4.11: Attention heatmap over a SERP for the query “toilet" and its corresponding colorbar
showing the heatmap density of the predicted gaze provided by SearchGazer. Unlike ViewSer which
is restricted to density colorbars, SearchGazer allows the creation of gaze heatmaps.



66

(a) Result Examination Behavior Study via Restricted Focal View [64]

(b) SearchGazer Replication Study

Figure 4.12: Viewing and clickthrough rates for each rank shown in yellow and green bars respec-
tively. The rates are aggregated across all queries and participants for both studies.
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4.6 Discussion

Replicating these three studies revealed both the potential and limitations of performing webcam eye

tracking in place of specialized equipment and interfaces. Many of our findings, such as Figure 4.3,

achieved similar conclusions compared with the original studies, showcasing that SearchGazer can

be successfully used in experiments where the goal is to measure the distribution of gaze locations.

SearchGazer was able to recreate general trends and even highlight differences in viewing times

across individual organic results. In comparison to a restricted focus viewer [64], SearchGazer does

not disturb the user experience by blurring the SERP. Once users consent to giving access to their

webcam, they can continue navigating the web page as they would normally do, while SearchGazer

collects interactions and predicts gaze activity in the background. Overall, using SearchGazer, we

were able to reproduce three studies with numerous charts and heatmaps at a fraction of the cost,

effort, and time it would normally take if those studies were conducted in lab. Multiple crowd-

workers performed the study simultaneously and without the need of monitoring, allowing us to test

SearchGazer with far richer and more diverse computational and ambient environments.

On the other hand, there are certain limitations that we cannot ignore. Although in principle

having the original SERPs from [9] would allow us to replicate their study more accurately, there

were specific differences that were surprising and demonstrate the need to expand our understanding

of webcam eye tracking constraints. A possible explanation for those differences is our lack of an

algorithm to identify fixations, relying instead on raw gaze data. Although the overall aggregated

data were almost always very close to the original studies, we hypothesize that removing saccades

would lead to a clearer picture that would allow replication of more fine-detailed studies. Coming

up with an algorithm custom-built for SearchGazer to identify fixations as is available in existing

eye trackers is one future direction that we would like to explore. Further, SearchGazer assumes

that the location of clicks and cursor movements is equal to that of the gaze. Temporal and spatial

differences in this relationship might bias our model. Since our studies were conducted remotely, we

lack information about the nature of SearchGazer’s errors.

4.7 Conclusion

We presented SearchGazer, a real-time online eye tracker using only the common webcam as a way

to determine users’ examination behavior on search pages. Using SearchGazer, we revisit in today’s
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search environments the key findings from: a search results page examination study from CHI 2007,

a search advertisement examination study from SIGIR 2010, and a study of a restricted focus viewer

based on the cursor from SIGIR 2011. The findings from reproducing past web search studies showed

that the approach of conducting remote eye tracking studies through webcams is not unreasonable.

This new approach can be transformative, as examination behavior can be understood at scale for

diverse search scenarios: when users perform infrequent queries, when search interface designers seek

to test new features or layouts. In fact, numerous information retrieval models seek to infer which

search results a user has examined (e.g., [11, 102]); clearly, this signal is important to the web search

community, even when not measured perfectly. Compared to lab studies, remote crowd-workers

can perform tasks whenever and wherever they choose, without the need for any special equipment

or software installation. Remote webcam eye tracking is therefore considerably cheaper than an

in-person lab study required for typical eye trackers, saving time for both the participants and

experimenters. Additionally, experimenters are able to release the tasks which can be performed by

remote crowd-workers immediately and simultaneously, allowing for faster feedback to inform search

engine design.



Chapter 5

A New Benchmark for Webcam

Eye Tracking

This thesis has focused so far on: i) the presentation of WebGazer, a new approach to eye tracking

that uses webcams and user interactions, such as clicks and cursor movements, to infer the gaze of

users in any web page in real time, and on ii) demonstrating, through the lens of web search, that our

approach enables remote behavior studies that lead to similar conclusions with past experiments.

This chapter will build on our central theme of democratizing eye tracking.

Due to the lack of any benchmark in the webcam eye tracking community, we seek to establish a

dataset that can be used as a reference point for any researcher who wants to evaluate the accuracy

of their eye tracker. For this, we conducted a controlled lab study with more than 60 participants

who performed a number of different tasks on the web. For every participant, we captured their

faces, recorded their screens, and logged every interaction with the test computer. In addition, we

used a high-end commercial eye tracker to capture their point of gaze throughout the experiment.

Participants were assigned to different computer settings and lighting conditions, and were asked

demographic questions, resulting in a rich and diverse public benchmark1.

In the following sections, we present the design of the study that led to the benchmark dataset.

In addition, we analyze the accuracy and precision of the commercial eye tracker that was used to

create the ground truth data for the gaze activity of the participants.
1To be made public upon publication of initial findings
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5.1 Creating a Benchmark

5.1.1 Experiment Design

To create a new benchmark for webcam eye tracking, we conducted a controlled lab user study

that led to a highly curated dataset. Over the span of three weeks, we recruited participants that

performed a number of browser tasks, while we recorded their faces, screens, logged each of their

interactions, and collected demographic information to annotate the collected dataset. Further,

we also used Tobii Pro X3-120, the highest-end remote eye tracker by Tobii Technologies—with

a reported gaze sampling frequency of 120 Hz, accuracy of 0.4◦ and precision of 0.24◦—to record

the subjects’ point of gaze throughout the experiment. Contrary to most eye tracking studies,

participants were free to move their heads and change their posture, resulting to more naturalistic

user behavior.

Each participant was introduced to the nature of the experiment, both in writing and orally by

an experimenter, and signed a consent form. Following procedures from our Institutional Review

Board, participants agreed that the video, audio, and logs of their participation would be recorded

and released for research purposes in a publicly available dataset. Each participant was asked if they

are familiar with touch typing, an ability that was later confirmed by the experimenter who noted

if they could indeed type without looking at their keyboard.

Upon agreement, subjects were randomly assigned to a lighting setting: natural light from two

large windows they directly faced or typical artificial office light with the blinds of the windows

closed. In the case of natural light, the experimenter noted down if the day was sunny or cloudy;

the study always took place during daylight. Further, a white portable projector screen was used to

ensure a uniform background. Upon taking their seat, participants could adjust the height of the

standing desk where the study took place to ensure they were comfortable. The experimenter would

then measure the initial distance of their eyes to the screen; participants were allowed to move freely

within their seat throughout the experiment.

Participants were given the option of performing the study on a desktop PC or a MacBook Pro

laptop, according to the type of computer and operating system they would be more comfortable

with. In addition, participants who chose the laptop were given the option of using an external mouse

instead of the built-in touchpad. Figure 5.1 demonstrates the desktop PC and laptop settings. The

laptop included a built-in webcam while an external Logitech Full HD Webcam C920 USB webcam
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was attached on top of the desktop PC monitor. The Tobii Pro X3-120 eye tracker was mounted at

the bottom of the monitor or the screen for the PC and laptop accordingly. The desktop PC runs

Windows 10, has an Intel Core i5-6600 processor at 3.30 GHz, and a Samsung SyncMaster 2443

monitor with a 24-inch diagonal measurement and a resolution of 1920× 1200 pixels. The MacBook

Pro (Retina, 15-inch, Late 2013) runs macOS Sierra 10.12.5, has an Intel Core i7 processor at 2.6

GHz, and a resolution of 1440 × 900 pixels. For both settings, the Google Chrome web browser

(version 56.0.2924) was used in a maximized window.

The user study started with the built-in calibration of the Tobii Pro X3-120. This process starts

with a visualization of the eyes of the subject, which are visible within a certain tracking area. The

experimenter would potentially alter the setup configuration to ensure that both eyes were captured

before proceeding with the calibration. The calibration process is standard and straightforward: the

subject was presented with a stimulus in the shape of a red dot that appeared in five locations within

the screen: top left, top right, center, bottom left, bottom center. The radius of the stimulus was 23

and 17 pixels for the PC and laptop, respectively. The experimenter would judge if the calibration

was successful or if it had to be repeated, based on visual cues provided by the Tobii interface.

Once satisfied with the calibration, the experimenter would ensure that the face of the partic-

ipant was within the webcam field of view, that all their interactions were logged, and that their

screens were recorded. After starting the user study and having asked any questions, participants

were discouraged from talking to the experimenter. All tasks were preceded by well-documented

instructions which included examples and screenshots of every step of the task they would face.

Each participant completed the same sequence of tasks on the browser. After the completion

of each task, the webcam video feed that corresponded to this task was automatically downloaded.

The first task, which we will refer to as “Dot Test”, began with a black circle at the top left corner

of the screen. The circle had a radius of 17 pixels and at its center a concentric yellow circle with a

radius of 3 pixels. The goal of this task is to move the cursor and successfully click on that yellow

circle. Because of its small size, we provided visual cues that would help participants better aim

at it. If they indeed clicked at the center, the whole black circle would move to one of 9 locations

within a 3×3 grid: from the top left corner of the screen sequentially all the way to the bottom right

corner, filling one row at a time. Figure 5.2 demonstrates the nature of the task and the visual cues

we provided.

The second task is a replication of the Target Selection Task presented in Chapter 3. In principle
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(a) Desktop PC Setting

(b) Laptop Setting

Figure 5.1: The two available computer settings participants could choose from. In both cases,
the Tobii Pro X3-120 eye tracker can be seen mounted at the bottom of the screen. The external
webcam for the Desktop PC can be seen mounted on the monitor.
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(a) (b)

(c) (d)

Figure 5.2: Dot Test. A black circle with a radius of 17 pixels moves in a 3× 3 grid every time the
participant successfully clicks at the yellow circle at its center. (a): Participant moves their cursor.
(b-c): Visual cues to guide them to the center. (d): Participant successfully clicks at the center.
The black circle moves to its next location within the 3×3. The task is completed after successfully
clicking at the black circle’s center when it is at the bottom right corner of the screen.
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Figure 5.3: The writing portion for one of the questions. Participants were reminded of the
question—in this case, “What are the educational benefits of social networking sites?”—and typed
their answer in the prescribed text area.

a Fitts’ Law test, this task required participants to click 40 times on a circular target that could

appear in 11 locations on a circular grid. Participants were advised to strike a balance between

speed and accuracy while repeatedly aiming at the target.

The next batch of tasks is different, aiming to capture everyday activities on the web: reading,

searching for information, and writing. Participants were given four questions in total and a query

with its corresponding search engine result page (SERP). Table 5.1 shows the four questions and

their corresponding queries in the exact order they were given to all participants. The questions

and queries were found in the TREC 2014 Web Track organized by NIST [80]. For every query,

we downloaded the first SERP from Google and confirmed that at least one of the provided links

contained relevant information to the question. Participants could visit as many links as they wished

within that SERP, but they were not allowed to alter the query or go beyond the first page of results.

Once they visited a link, we no longer had a way of capturing their interactions; only their screens

and gaze predictions were recorded at those moments. After feeling satisfied with their search, they

would scroll at the bottom of the search result page, where a button would take them to the next

portion of this task. There, participants would type the answer they synthesized for the question

we asked them. We explicitly prohibited the action of copying and pasting text so that we could

see the true interactions that take place when typing. Figure 5.3 shows an example of the writing

portion for the second question. In total, there were four tuples of “ask, search, write down” tasks.
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Task Description Query
How is running beneficial to the health of the human body? benefits of running
What are the educational benefits of social networking sites? educational advantages of

social networking sites
What are the best places to find morel mushrooms growing? where to find morel mushrooms
What treatments are available for a tooth abscess? tooth abscess

Table 5.1: The four questions and the corresponding queries given to participants. The questions
were selected from the TREC 2014 Web Track.

The final task was very similar to the Dot Test. Instead of clicking on the black circle, participants

had to watch it as it moved on its own in the 3×3 grid, staying for 3 seconds in each of the 9 locations.

We name this task “Final Dot Test” and use it as a measure of the accuracy of eye tracking systems;

participants were explicitly instructed to look at the circle as it moved around the screen.

At the end of the study, we provided a questionnaire that asked the following information: their

gender, age, handedness, eye color, if they have normal vision, wear eye glasses or contacts, and

to self-report their race, and skin color. Figure 5.4 shows the five options for the eye color. The

self-reported race could be one of the American Indian or Alaska Native, Asian, Black or African

American, White, or Other. For the self-reported skin color, a color bar obtained from [41] was used

to match the color of the inside part of their upper arm. Finally, the experimenter made observations

about any type of facial hair (none, little, beard) and classified the participants into touch typists

or non-touch typists, based on their ability to type without looking at their keyboard. This signaled

the end of the experiment, which was followed by the compensation of the participant.

Including all instruction and task pages, the experiment consisted of 20 web pages. For the

search tasks, participants often visited multiple times the same web page. For each page that was

visited, a separate webcam video feed was downloaded. In addition, we collected log files of all user

interactions (including clicks, cursor movements, and key presses) and the locations they occurred,

records of all gaze predictions made by Tobii Pro X3-120, and screen captures for the whole duration

of the experiment.

5.1.2 Participants

We recruited 64 participants (32 female, 32 male) through campus-wide mailing lists. All participants

were compensated with $20 (USD). The study lasted on average 20.78 minutes. Out of those

64 participants, 13 were excluded from our analysis and are not included in the curated dataset
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Figure 5.4: Participants chose the closest picture that corresponds to their true eye color. Image
obtained from [18].

Figure 5.5: Color bar that was used to match the inner part of the upper arm of the participant.
Chart obtained from [41].
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due to technical difficulties in various parts of the experiment: issues with the eye tracker or the

screen recording, interruptions throughout the study by the participant, etc. This resulted to 51

participants whose data we will use throughout the following sections, unless otherwise specified.

Their ages ranged from 21 to 58 years (M=27.04, SD = 5.64). Out of the 64 participants, 26 had

normal vision, 19 wore eye glasses, and 6 wore contact lenses. Table A.1 in Appendix A contains all

the demographic information as self-reported by the participants or annotated by the experimenter

for the 51 participants. Across all participants, there were 4,801 clicks, 109,640 mouse movements,

71,412 key presses, and 4,501,959 gaze predictions made by Tobii Pro X3-120.

5.2 Results

We analyze the curated dataset of the 51 participants that conducted our lab user study. The goal

is to understand in more depth the relationship between user interactions and attention and explore

the potential of further advancing the accuracy of our webcam eye tracking systems. Our dataset

is unique, as it provides data from both naturalistic tasks such as web search, reading, and writing,

while allowing us to see through the different selection tasks the user behavior there is a strong

intention for selecting a target. Finally, the Final Dot Test provides us with an opportunity to

evaluate any eye tracking system, including Tobii Pro X3-120.

Tobii Pro X3-120’s predictions come in two main forms: a 2D prediction in the “Active Display

Coordinate System” (ADCS) or a 3D prediction in the “User Coordinate System” (UCS) [107].

Figure 5.6 illustrates the two different coordinate systems. For ADCS, the 2D prediction of the gaze

position on the screen is normalized, with the origin (0,0) being at the top left corner of the screen

and (1,1) at the bottom. In the UCS, the origin of the 3D predictions is located in the eye tracker.

In addition to the gaze position, the gaze origin is defined in the center of the detected pupil. The

coordinates are reported in centimeters. The visual angle is defined as the angle that is formed

between the gaze vector, which originates from the eye and ends up in the predicted point of gaze,

and the true location of the stimulus.

5.2.1 Accuracy and Precision of Tobii Pro X3-120

The specifications of commercial remote eye trackers usually include three numbers: their gaze sam-

pling rate, accuracy, and precision. For example, Tobii Pro X3-120 has reportedly a gaze sampling
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frequency of 120 Hz, accuracy of 0.4◦, and precision of 0.24◦. These numbers indicate the ability

of the eye tracker to capture at a high rate and with high fidelity the gaze of a subject. In this

section, we will focus on the definitions of accuracy and precision and use them to assess the Tobii

Pro X3-120 gaze predictions included in our curated dataset.

The most common test for evaluating the performance of an eye tracker is similar in nature to

our Final Dot Test task: a stimulus moves through the screen while the subject follows it with their

gaze. The number of different locations that the stimulus will appear varies, with the minimum

usually being five. The duration that it appears in every test location also varies. For example, in

our Final Dot Test the stimulus appears in 9 locations, staying for 3 seconds in each of them.

We provide the definitions for the terms of accuracy and precision, according to Tobii’s guide-

lines [105]. It is worth noting that in practice, manufacturers do not disclose how many participants

they tested their methods on, and their tests take place in perfect conditions, which are often far

from naturalistic (e.g., an artificial eye is used to measure the precision). In our analysis, we use the

gaze predictions obtained during the default Tobii calibration process at the beginning of the study,

and those during the Final Dot Test. Since we do not use chin-rests, we are aware that our data,

despite being more realistic, will probably suffer from noise.

Accuracy

Accuracy is defined as the average difference between the known location of the stimuli and the

corresponding locations of the predicted points of gaze [44]. The accuracy is usually measured

separately for the dominant eye (monocular) or as the mean of both eyes (binocular). The latter has

been shown to be more accurate [17], therefore we require the successful detection of both eyes in

order for the inclusion of the corresponding gaze prediction to our analysis. The accuracy is usually

reported in degrees of visual angle. Calculating the visual angle requires that the distance between

the participants and the eye tracker is known and constant and that the participants remain stable.

In our study, the experimenter measured the distance (in centimeters) between the participant

and eye tracker with a measuring tape, which started from the eyes of the participant. Since we

allowed users to move freely during the experiment, we cannot assume that this distance remained

unchanged. We estimate the distance during the Final Dot Test based on the 3D predictions for the

gaze origin and gaze position in the UCS made by Tobii Pro X3-120, as seen in Figure 5.6.
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Figure 5.6: The two Tobii gaze coordinate systems. Upper panel: The Active Display Coordinate
System (ADCS) is a 2D normalized system. The origin (0,0) is located at the upper left corner.
Lower panel: The User Coordinate System (UCS) is a 3D system with its predictions reported in
centimeters. The origin is the eye tracker. Given the estimated gaze origin and gaze position we can
calculate the distance of the participant from the screen.
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Figure 5.7: A stimulus (black circle) is shown on the screen. Assuming the subject looks at its center
(yellow circle), the accuracy is defined as the average distance between it and the gaze predictions
(red crosses). Both definitions of precision capture the variation among the predicted gaze locations
for a given stimulus. Four examples of the combinations of good and poor accuracy and precision
are shown.

Precision

Precision is the variation between successive predicted points of gaze for a single stimulus. There

are two ways that precision is usually calculated [43]. Most commonly, it is defined as the root mean

square of successive predictions. The second definition, which we will refer to as PrecisionSD, is the

standard deviation of successive gaze predictions. As with accuracy, precision is reported in degrees

of visual angle. Since we did not keep constant the distance between participants and Tobii Pro X3-

120, we report our analysis for the measures of accuracy, precision, and precisionSD in centimeters.

Figure 5.7 shows four examples with variations of good and poor accuracy and precision.

Table A.2 in Appendix A shows for each participant the calculated accuracy, precision, and

precisionSD of Tobii Pro X3-120 during the calibration process that took place in the beginning

of the experiment. All values are reported in centimeters. The average accuracy for the x-axis

was 0.93◦ (0.86 cm), for the y-axis 0.92◦ (0.79 cm), and overall 1.47◦ (1.32 cm). These numbers

are already higher than the reported accuracy of 0.4◦ in the specifications of Tobii Pro X3-120. A

possible explanation is that we did not use a chin-rest and did not exclude any of the 51 participants
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from our analysis. In addition, our subjects had diverse backgrounds and conducted the experiment

in lighting conditions that potentially were not ideal.

Using the 9 locations of the stimulus during the Final Dot Test, we again evaluate Tobii Pro

X3-120. We expected that the accuracy and precision of the gaze predictions would deteriorate by

the end of the experiment. Approximately thirty minutes would have passed by the calibration,

contributing to “drift”. In addition, participants moved freely and despite Tobii Pro X3-120’s ability

to track them within a certain range of movement, it is expected that its accuracy would suffer.

Figure 5.8 illustrates in boxplots the distribution of accuracy, precision, and precisionSD during the

Final Dot Test. Two participants, P_17 and P_61, were excluded as they minimized their windows

and we do not know the precise locations of the stimuli. The average accuracy for the x-axis was

1.36◦ (1.19 cm), for the y-axis 1.49◦ (1.27 cm), and overall 2.31◦ (2.00 cm).

The drop in accuracy was significantly higher than what we expected. Watching all 51 videos

of the participants’ faces during the Final Dot Test, we discovered that contrary to our directions,

their gaze did not follow the stimulus closely. Often, they would shift their gaze tentatively across

the screen, even if the stimulus had not moved to a different location. We contribute this behavior

to two factors: i) participants are tired after 30 minutes of the experiment and ii) the stimulus

disappeared momentarily before appearing to a new location; this was not the case with Tobii’s

built-in calibration process, where the stimulus left a faint trail while it moved to the next location.

To compensate for any delays in finding the next location the stimulus has moved to, we only analyze

the second half of 1.5 seconds for each stimulus location. Figure 5.9 and Figure 5.10 illustrate the

precision of the gaze predictions for the desktop PC and laptop setting during the calibration and

Final Dot Test respectively. The error ellipses define the regions that contain 95% of all gaze

predictions and visualize the 2D confidence intervals. It is evident from Figure 5.9 that Tobii Pro

X3-120’s predictions fall close to the five stimuli during the calibration process. On the contrary,

Figure 5.10 shows a different picture. The error ellipses are more scattered. In addition, the color-

coding of the gaze predictions for each location of the stimuli agrees with our video observations.

Participants during the Final Dot Test often moved their gaze beyond the known location of the

stimuli instead of fixating on them. For this reason, we consider the predictions from Tobii Pro

X3-120 as the true gaze locations throughout the experiment.
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Figure 5.8: The distribution of accuracy, precision, and precisionSD of the Tobii Pro X3-120 gaze
predictions during the Final Dot Test. Only the second half of the 3 seconds that the stimulus
stayed within each of the 9 locations in the 3× 3 is used for the analysis. All measures are reported
in centimeters.

5.3 Discussion

We chose to create a public dataset, with the goal of sharing not just a benchmark, but also a re-

source with multiple possible research lines. Our focus in this chapter is on the high level description

of this dataset and on the explanation of the steps we followed to collect the data. We believe that

researchers with diverse interests can find our dataset useful. For the webcam eye tracking commu-

nity, this is the first benchmark that provides videos, user interaction logs, and gaze predictions of

a commercial eye tracker. We also anticipate that there are many questions on the behavior of web

visitors that can be explored through this dataset.

5.4 Conclusion

We created a dataset that can be used as a benchmark by the webcam eye tracking community and

researchers that focus on the behavior of web visitors. The benchmark was derived from a controlled

lab experiment where more than 60 participants were monitored while performing a number of tasks

under different conditions. We recorded videos of their faces and screens, logs of their interactions,
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Figure 5.9: Calibration of Tobii Pro X3-120. Precision of the Tobii Pro X3-120 gaze predictions for
(a) the desktop PC and (b) the laptop setting during the calibration of the eye tracker. The error
or confidence ellipses define the region that contains 95% of all gaze predictions and visualize the
2D confidence intervals. The code to create the figures was adjusted from [101].
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Figure 5.10: Error ellipses for the Tobii Pro X3-120 gaze predictions for (a) the desktop PC and (b)
the laptop setting for the Final Dot Test. Note that the number of times the stimuli will appear
throughout the screen differs between the calibration step and the Final Dot Test (five versus nine
locations).
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and predictions of their gaze as provided by Tobii Pro X3-120, a high-end commercial eye tracker.

The accuracy of the latter is calculated and presented during different phases of the experiment.

Researchers and developers can use our public dataset as a benchmark to evaluate their work,

increasing the accountability and integrity of the work performed in the area of webcam eye tracking.

Our vision is that the community will use our dataset to explore new uses of eye tracking while

adopting the idea of making their contributions on eye tracking accessible to everyone.



Chapter 6

Extending Webcam Eye Tracking

with Typing Input

Chapter 5 presented a new benchmark dataset for webcam eye tracking. In this chapter, we use

this benchmark to explore in more depth the alignment of gaze with the user interactions. The

relationship between clicks, cursor movements, and gaze has been investigated before. Typing has

not attracted much attention, although it is a common computer activity. Here, we analyze the

relationship of clicks, cursor movements, and key presses with gaze. Our goal is to confirm past

findings on clicks and cursor movement, while extending our understanding of the relationship

between gaze and typing activity. We also investigate the differences in the gaze activity of touch

typists and non-touch typists. Our analysis focuses both on the spatial and temporal alignment of

user interactions and gaze, finding when the distance between a user interaction and the gaze is

minimized, and how far those two are.

We use this newly-found knowledge to explore improvements in WebGazer’s accuracy. In Chap-

ter 3, we showed that WebGazer equates the point of gaze with the location of clicks or cursor

movements to train a regression model. Here, we explore the inclusion of typing as a new type of

user interaction. We also investigate whether we can improve WebGazer’s accuracy retroactively,

based on our understanding of the temporal shift between gaze and user interaction alignment. We

evaluate our different techniques by altering WebGazer so that it can work with the recorded offline

webcam video feeds and logs of user interactions that we collected in our benchmark dataset.

86
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The main contributions of this work are: 1) the investigation of the relationship between gaze

and user interactions, with an emphasis on typing through the lens of one’s ability to touch type,

and 2) the extension of WebGazer to include typing and retroactive training of its regression models.

6.1 Gaze and User Interactions

The relationship between user interactions and gaze has been extensively investigated in the past.

Specifically, the cursor has been characterized as the “poor man’s eye tracker” [15] and researchers,

especially in the context of web search, have sought to approximate the point of gaze using cursor

movements. In this section, we analyze the relationship between user interactions and gaze activity

using our benchmark dataset. We assume that the gaze predictions obtained from Tobii Pro X3-120

correspond to the true gaze locations. For all participants, we have collected every click, cursor

movement, and key press they performed throughout the experiment.

Clicks

The cursor location during a click and the corresponding point of gaze have been shown to have a

strong alignment. Huang et al. found in a study on web search with 36 participants that the median

Euclidean distance between gaze and clicks is 74 pixels [48]. Table 6.1 reports the median distance

between gaze and clicks for all tasks in our study. The median Euclidean distance is 82.92 pixels,

which agrees with previous research findings.

We also examine the moment that the distance between gaze and user interactions is minimized.

To accomplish this, we calculate for every click all gaze predictions 3 seconds before and 3 seconds

after it and average them across all tasks and participants. Figure 6.1a shows this relationship across

time. On average, the Euclidean distance between the location of a click event and the Tobii Pro

X3-120 prediction is minimized 480 ms before the click occurred. Its value, 109.82 pixels, is reported

in Table 6.2. During that timestamp, the corresponding average values for the x and y axes are

-19.85 and -1.65 pixels, respectively. That means that the user looks at their target about half a

second before they click. By the time the click has occurred, the gaze already starts moving away.

Figure 6.1b illustrates the frequency distribution of the Euclidean distance, ∆x, and ∆y, 800ms

before and after a click. More than 7% of all distances fall a few milliseconds before a click.
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Figure 6.1: Clicks. (a): Spatial distance between the location of a click and the predictions by
Tobii Pro X3-120. The distance is shown 3 seconds before and 3 seconds after a click occurred,
with 0 being the time of the event. (b): Frequency distribution of distances (Euclidean, ∆x, and
∆y) between Tobii Pro X3-120 predictions and the location of the click, 800ms before and 800ms
after the click occurred. For both (a) and (b), the Tobii Pro X3-120 predictions before and after a
click are grouped in 10 millisecond bins. For every bin, the Euclidean distance (solid green), and
distances in the x (dashed blue) and y (dot dashed red) axes are averaged across all participants
and events.
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Interaction Euclidean (px) ∆x (px) ∆y (px)
Click 82.92 -11.05 10.25
Cursor Movement 122.41 -23.99 2.83
Typing (all subjects) 112.69 -18.47 95.63
Typing (touch typists) 112.56 -16.69 96.01
Typing (non-touch typists) 113.6 -29.15 92.53

Table 6.1: Median distances between the location of user interactions and the corresponding Tobii
Pro X3-120 gaze predictions for the timestamp the interaction occurred. The distances in the x and
y axes are calculated as the difference between the Tobii Pro X3-120 prediction minus the location
of the interaction. A negative ∆x corresponds to gaze predictions at the left of the event, while
a negative ∆y to gaze predictions above the event. For typing, we report the distance across all
subjects, as well the distance across the classes of touch typist and non-touch typists.

Cursor movements

Past research has shown that equating the location of the cursor with that of the gaze is not always

a good idea [48]. The cursor remains inactive for large amounts of time and often it is pushed aside

while the user is examining a web page. Huang et al. classified the cursor based on the following

behavior: inactive, examining, reading, and performing an action. They found out that actions

take only 5.7% of the total time and the median Euclidean distance between gaze and active cursor

movements is 77 pixels. We do not apply such heuristics to the cursor movements of our dataset.

As seen in Table 6.1, the median Euclidean distance of a cursor movement and Tobii Pro X3-120’s

predictions is 122.41 pixels. It is reasonable that the distance is higher, as our analysis also includes

cursor movements that do not correspond to actions.

Examining when that distance is minimized, we find that on average, the Euclidean distance

between the location of the cursor and the Tobii Pro X3-120 prediction is minimized 100 ms before

the cursor moved. Its value, as seen in Table 6.2, is 193.3 pixels. During that timestamp, the

corresponding values for the x and y axes are -66.46 and -17.16 pixels, respectively. Figure 6.2a

shows that on average the user looks above and left of the cursor when the distance between a

cursor movement and their gaze is minimized. Contrary to the clicks, there is not a significant

temporal shift (Figure 6.2b). This is perhaps due to the magnitude of cursor events that happen

continuously and before an action has been completed.

Typing

The relationship between typing and gaze activity is not as well researched as clicks and cursor

movements. Most studies in the past have focused on copy-texting (e.g., [51]), that is the process
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Figure 6.2: Cursor Movements. (a): Spatial distance (Euclidean, ∆x, and ∆y) between the location
of the cursor and the predictions by Tobii Pro X3-120. The distance is shown 3 seconds before and
3 seconds after the cursor moved, with 0 being the time of the event. (b): Frequency distribution
of distances between Tobii Pro X3-120 predictions and the location of the cursor movement, 800ms
before and 800ms after the event. For both (a) and (b), the Tobii Pro X3-120 predictions before and
after the cursor moved are grouped in 10 millisecond bins. For every bin, the Euclidean distance
(solid green), and distances in the x (dashed blue) and y (dot dashed red) axes are averaged across
all participants and events.
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of typing while reading the text from a different source, rather than creating original work. We aim

to shed light in the alignment of key presses and gaze, as typing is an everyday activity for most

computer users (e.g., while writing emails or searching the web). In our analysis, we report numbers

for all subjects, and then we split them among touch typists and non-touch typists.

On average, the median Euclidean distance between the location of the caret during a key press

and its corresponding gaze prediction is 112.69 pixels. Table 6.1 shows that there is no significant

difference between touch typists and non-touch typists. This changes when examining when this

distance is minimized. Table 6.2 shows that 210 ms after a key was pressed, the user will look 178.4

pixels away from the location of the caret. For touch typists, on average, the Euclidean distance

between a key press and the Tobii Pro X3-120 prediction is minimized 210 ms after the key press,

at a distance of 150.71 pixels. During that timestamp, the corresponding average values for the x

and y axes are -6.47 and 115.78 pixels, respectively. On the other hand, for non-touch typists, the

Euclidean distance between a key press and the Tobii Pro X3-120 prediction is minimized 540 ms

after the key press, at a distance of 294.37 pixels. The corresponding values for the x and y axes for

the same timestamp are -38.8 and 239.0 pixels, respectively. The difference between touch typists

and non-touch typists can be easily explained: non-touch typists have to look at the keyboard far

more often that touch typists, therefore the ∆y is greater.

Contrary to clicks and cursor movements, the distance between key presses and gaze is minimized

after the event occurred. Even touch typists will look toward the character they just inserted with

some delay. At that time, on average they will look at the left of the inserted character. Since our

experiment included typing in English, where the text is inserted from left to right, it is reasonable

to expect that users examine the text they have already written as they type new characters, e.g.,

to make sure they spelled correctly a word or that their text flows well. On average, regardless of

their ability to touch type, participants looked below the inserted character. The distance on the

y-axis is even higher for non-touch typists. It is important to note that Tobii Pro X3-120 can only

identify the area that the fovea of the eye is focusing on. In practice, the user can still recognize

characters and words within a certain radius from the foveal point of focus. Figure 6.3 summarizes

the alignment of key presses and gaze for all participants, while Figures 6.4 and 6.5 demonstrate

that differences across touch typists and non-touch typists. Across touch typists there is no much

variation on the ∆y; this is not the case with non-touch typists, who look below the location of the

caret, that is at their keyboard, while typing. Figure 6.6 captures this difference by illustrating the
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Interaction Euclidean (px) Time (ms) ∆x (px) ∆y (px)
Click 109.82 -480 -19.85 -1.65
Cursor Movement 193.3 -100 -66.46 -17.16
Typing (all subjects) 178.4 210 -12.88 141.58
Typing (touch typists) 150.71 210 -6.47 115.78
Typing (non-touch typists) 294.37 540 -38.8 239

Table 6.2: Minimum Euclidean distance between all Pro X3-120 gaze predictions 3 seconds before
and after the event. The timestamp that the Euclidean distance was minimized is also reported,
along with the corresponding average ∆x and ∆y distances. A positive timestamp denotes that the
Euclidean distance was on average minimized after the event occurred. The distances in the x (∆x)
and y (∆y) axes are calculated as the difference between the Tobii Pro X3-120 prediction minus the
location of the event. A negative ∆x corresponds to gaze predictions at the left of the event, while
a negative ∆y to gaze predictions above the event. For typing, we report the distance across all
subjects, as well the distance across the classes of touch typists and non-touch typists.

example of P_6, a touch typist and P_2 a non-touch typist and their gaze on the y-axis across time,

as they interact with the same writing task. Figure 6.6a shows that touch typists steadily look close

to the location of the caret as they type. On the other hand, Figure 6.6b illustrates that non-touch

typists look continuously between the caret location on the screen and their keyboard.

6.2 Extending the Gaze Prediction Model

In the previous section, we examined the alignment between clicks, cursor movements, key presses

and gaze. Here, we will use this knowledge to investigate if we can improve the accuracy of WebGazer.

We use as a baseline the WebGazer regression model with the smallest prediction error, that is the

RR+C which trains a ridge regression model during clicks and incorporates cursor movement only

when the cursor is active. We use clmtrackr for facial and eye detection due to its faster performance

and higher accuracy than the other detection libraries.

We altered WebGazer so that it can accept the offline webcam video feed that we collected

for every task page during the study. We also simulated the collected user interaction logs and

synchronized them with the corresponding video frames. This allows us to replicate the entire user

study as it would happen in real time, with WebGazer predicting the point of gaze given the recorded

user interactions and the corresponding appearance of the detected eyes in the offline videos.

After applying WebGazer on the curated dataset we discovered that clmtrackr failed to properly

apply the facial contour on the videos of a number of participants. Table A.3 in Appendix A shows

that out of the 51, we classify only 29 as having their faces successfully detected. Even across those
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Figure 6.3: Typing. (a): Spatial distance (Euclidean, ∆x, and ∆y) between the location of the cursor
during a key press and the predictions by Tobii Pro X3-120. The distance is shown 3 seconds before
and 3 seconds after a key press, with 0 being the time of the event. (b): Frequency distribution of
distances between Tobii Pro X3-120 predictions and the location of the cursor during the key press,
800ms before and 800ms after the event. For both (a) and (b), the Tobii Pro X3-120 predictions
before and after the cursor moved are grouped in 10 millisecond bins. For every bin, the Euclidean
distance (solid green), and distances in the x (dashed blue) and y (dot dashed red) axes are averaged
across all participants and events.
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Figure 6.4: Typing (touch typists vs non-touch typists). Spatial distance between the location of
the cursor during a key press and the predictions by Tobii Pro X3-120, separated between (a): touch
typists and (b): non-touch typists. The distance is shown 3 seconds before and 3 seconds after a key
was pressed, with 0 being the time of the event. For every key press, all Tobii Pro X3-120 predictions
3 seconds before and 3 seconds after that are examined and grouped in 10 millisecond bins. For
every bin, the Euclidean distance (solid green), and distances in the x (dashed blue) and y (dot
dashed red) axes are averaged across all participants that belong in the touch typists or non-touch
typists groups and their corresponding events.
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Figure 6.5: Typing (touch typists vs non-touch typists). Frequency distribution of distances between
Tobii Pro X3-120 predictions and the location of key presses for touch typists (a) and non-touch
typists (b), 800ms before and 800ms after the event. For both (a) and (b), the Tobii Pro X3-120
predictions before and after the cursor moved are grouped in 10 millisecond bins. For every bin, the
Euclidean distance (solid green), and distances in the x (dashed blue) and y (dot dashed red) axes
are averaged across all participants and events.
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Figure 6.6: Gaze activity on the y-axis for (a) P_6, a touch typist and (b) P_2, a non-touch typist
for the same web page (writing portion of the question “How is running beneficial to the health of
the human body?”). touch typists rarely look at the keyboard, therefore their gaze traces the cursor
as they type. This is not the case with non-touch typists who look at their keyboard for almost
every key press while glancing at the text as they write it.



97

29 participants, the facial model that clmtrackr fits often fails to align correctly for a few seconds,

especially when the participant moves or their face partially comes out of the webcam field of view.

We choose to not focus on improving the facial detection process and leave this direction as future

work. Nevertheless, we report factors that could affect the appearance of the face and eyes and

therefore the ability of clmtrackr to correctly detect these features. The size of the dataset is not

large enough to allow the application of any meaningful statistical tests.

As a first step, we applied the RR+C model on two pages for each of the 29 participants: Dot

Test and Final Dot Test. Since the task in the Dot Test page is to successfully click at the center of

a circle that appears in 9 locations, each participant will click at least 9 times. We use these clicks

as training points for WebGazer. Following this step, we evaluate its prediction error during the

Final Dot Test, where participants just observe the stimulus moving on its own around the screen.

It is worth noting, that working with offline videos allows us to train and test WebGazer in parts

of the experiments. For example, in practice Final Dot Test would have happened approximately

thirty minutes after the Dot Test, but we still use it as an evaluation step, since it allows us to focus

on the basic functionality of WebGazer. Nevertheless, we cannot ignore that within 30 minutes the

participants have moved, changed their posture, the lighting is not the same, etc. These reasons can

affect the reported prediction error.

Figure 6.7 illustrates in boxplots the distribution of the prediction error during the Dot Test and

Final Dot Test for the baseline RR+C regression model of WebGazer. The prediction error is calcu-

lated as the Euclidean distance between the prediction made by WebGazer and the corresponding

prediction from Tobii Pro X3-120. Since their sampling rates differ, we group all predictions in 10

millisecond bins. The average prediction error is 320.79 pixels (SD=333.14) during the Dot Test

and 469.44 pixels (SD=314.18) during the Final Dot Test. As expected, the error during the Final

Dot Test is higher. Figure 6.8 shows the gaze activity of P_46 during the Dot Test across the x and

y axes. Similarly, Figure 6.9 shows the gaze activity of the same participant during the Final Dot

Test. We observe that the RR+C traces closely the Tobii Pro X3-120 predictions.

6.2.1 Incorporating Typing

As a next step, we explore typing as a new user activity; WebGazer’s RR+C model gets trained

only during clicks and momentarily when the cursor is active. We attempted to use key presses as

equivalent interactions of clicks, by permanently training a ridge regression model (RR+C+T). In
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Figure 6.7: RR+C model. The baseline RR+C model is applied during the Dot Test and Final Dot
Test pages. WebGazer is being trained with the addition of at least 9 clicks for each user. The Final
Dot Test takes place approximately thirty minutes after the Final Dot Test. The boxplots illustrate
the distribution of the prediction error of the baseline RR+C model when compared with the Tobii
Pro X3-120 gaze predictions.
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Figure 6.8: Dot Test. Gaze activity in (a): the x-axis and (b): the y-axis, as predicted by Tobii Pro
X3-120 (solid blue) and the baseline RR+C model of WebGazer(dashed orange) during the Dot Test
for one participant (P_46). The 9 locations that the stimulus appears are shown in red. WebGazer’s
predictions start after the first click (black diamond).
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Figure 6.9: Final Dot Test. Gaze activity in (a): the x-axis and (b): the y-axis, as predicted by
Tobii Pro X3-120 (solid blue) and the baseline RR+C model of WebGazer(dashed orange) during
the Final Dot Test for one participant (P_46). The stimulus (red) appears for 3 seconds in each of
the 9 locations within a 3× 3 grid. WebGazer has been only trained during the Dot Test. The gaze
predictions shown here are the most likely point of gaze according to the RR+C model.
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Figure 6.10: RR+C+T. The gaze activity of P_19 on the y-axis, during the Final Dot Test, as
predicted by Tobii Pro X3-120 (solid blue), RR+C (dashed orange), and RR+C+T (dashed lime).
RR+C+T assumes that the location of the cursor during a key press is the same with the location
of the gaze. By overfitting the regression in a small text area, the prediction error skyrockets.

addition to the Dot Test and Final Dot Test tasks, we use the writing portion of the “How is running

beneficial to the health of the human body?” question, with the question task being placed between

the two dot tests. Figure 6.10 shows why we quickly abandoned the idea of equating key presses

with clicks. Since the number of key presses far exceeds the number of clicks, and the location of the

cursor during key presses is concentrated in a small text area, the regression model is flooded with

training points that correspond to a small area within the screen. The variations in the appearance

of the eyes is not that stark to account for this issue, therefore the predictions concentrate around the

area that the RR+C+T model was over-trained. Figure 6.10 illustrates the gaze activity of P_19 on

the y-axis during the final dot test and after RR+C and RR+C+T has been trained during the Dot

Test and the writing task. Even if RR+C is not perfectly accurate, it is far better than RR+C+T.

Following this failed attempt, we considered two alternative approaches in incorporating typing

to our ridge regression model. The first (RR+C+TC) extends the RR+C model and imitates the

way we handled the cursor movements for the key presses. A key press can only contribute to the

ridge regression model when the user is typing, and only for less than a second. The idea behind this

approach is that we can now infer the gaze while typing, but without over-training the regression.

As an alternative, we consider a sampling approach (RR+C+TCS). In this case, we extend the

RR+C+TC method and we also add permanently certain key presses in the model. We chose to
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match the gaze with the location of the cursor during a key press if the cursor was at last 300

pixels from the last added key press or at least 5 seconds had passed. Our reasoning was that these

parameters would allow the training to happen in sparse locations that cover most of the screen and

while taking time into account (e.g., if the user pauses to think, a new key press can contribute to

the model).

Figure 6.11 shows in boxplots the prediction error during the writing task and the Final Dot Task

across all participants. Three regression models are shown: RR+C, RR+C+TC, and RR+C+TCS.

As shown in the upper panel, incorporating typing improves the accuracy of WebGazer’s gaze pre-

diction during the writing task. There are no key presses during the Final Dot Test, therefore the

RR+C and RR+C+TC models are practically the same. For the writing task, the mean Euclidean

prediction error is 372.95 pixels (SD=311) for RR+C, 329.98 pixels (SD=340.84) for RR+C+TC,

and 342.02 pixels (SD=352.94) for RR+C+TCS. For the Final Dot Test, the RR+C and RR+C+TC

models had an average prediction error of 469.44 pixels (SD=314.18), while the RR+C+TCS model

had an error of 548.33 pixels (SD=356.96). Since our attempt to permanently incorporate typing

into the regression model did not give favorable predictions, we choose to extend WebGazer with

the addition of the RR+C+TC model.

6.2.2 Retroactive Training

The analysis of the temporal alignment between clicks and cursor movements led us to explore

whether a retroactive training of WebGazer would bring improvements in its accuracy. We altered

its basic ridge regression model (RR+C) so that it does not map the appearance of the eyes to

screen locations at the exact moment of a user interaction. Instead, we used the Time column from

Table 6.2 and stored all eye features at a sliding window of 480ms and 100ms for the clicks and

eyes, respectively. Every time a click (or cursor movement) occurs, we map the eye features that

correspond to 480ms (or 100ms) before the event to the screen location of the event. Contrary to our

expectations, this approach did not bring any improvements. When applied on all Dot Test pages,

retroactively training during clicks did not bring any change in the average prediction error. The

same approach for cursor movements had a negative effect, increasing by 8% the average prediction

error. Given the lack of any positive improvements, we refrain from retroactively training WebGazer.

Nevertheless, we believe that both the temporal and spatial alignment of gaze and user interactions

have merit, and we will pursue this direction in the future.
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Figure 6.11: Different regression models that incorporate typing. RR+C is the baseline regression
model that was introduced in Chapter 3. RR+C+TC extends it by adding the location of the cursor
during key presses only when the user is typing and without permanently contributing to the model.
In addition to this, the RR+C+TCS samples key presses whose cursor location has been at least
300 pixels away or at least 5 seconds have passed since the last one. The prediction errors are shown
during the writing task and during the Final Dot Test. In the later, the RR+C and RR+C+TC
models are practically the same since the user is not typing anymore, and the key presses no longer
contribute to the model. The prediction error is averaged across all participants as the Euclidean
distance between the WebGazer and the corresponding Tobii Pro X3-120 prediction.
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6.3 Discussion

This chapter offers a glimpse into the complicated world of human attention and behavior, by ana-

lyzing the relationship of user interactions and gaze with an emphasis on typing. Given that typing

is a common everyday task for most computer users, we believe it is important to better understand

the different processes that take place during creative writing. The differences across touch typists

and non-touch typists are stark, and we envision that our insights can be used to support and better

understand users during interactions that involve typing. Finally, our improvements in WebGazer’s

overall accuracy and its ability to now support typing increases the number of applications that

browser-based webcam eye tracking can enable.

We are aware that the accuracy of our systems needs to be improved to truly substitute the use

of commercial eye trackers and replicate their predictions with high fidelity. Throughout this work,

we took certain decisions to narrow down our contributions, at the cost of neglecting other areas.

For example, although we recruited 64 participants, we only used the data of 29 for our work on

improving WebGazer. Certainly, if our focus was on the computer vision aspect of the problem,

we would have a great number of issues to focus on (e.g., changes in posture and lighting). Our

approach throughout this dissertation has been in exploring the possibilities of combining existing

computer vision literature with technological advances and our understanding of literature from the

human-computer interaction field. We encourage the readers to use our benchmark as a source of

data for problems that we have not tackled here.

6.4 Conclusion

We used our benchmark dataset to analyze the relationship of gaze and user interactions with an

emphasis on typing. The analysis of the data confirmed prior knowledge on the spatial alignment of

gaze with cursor movement and clicks. We also provide insights in the relationship of the location

of cursor during key presses and that of the gaze, and focus on differences across touch typists and

non-touch typists. We use those findings to incorporate typing as a user interaction in WebGazer’s

regression model and alter the temporal alignment of user interactions and gaze.

These findings validate our existing webcam eye tracking models. As typing is a ubiquitous

activity, we believe that incorporating it in our systems can enable new uses and applications for

webcam eye tracking.



Chapter 7

Conclusion and Future Directions

This dissertation provides steps toward democratizing eye tracking. Eye tracking is a method that

provides valuable insights into human behavior and has implications for a great number of diverse

fields and applications. Nevertheless, current eye trackers are inaccessible due to their prohibitive

cost and difficulty in operation. Only a few research labs can afford them and by design they are

confined in small-scale lab user studies with artificial tasks. We have shown that it is possible to

make eye tracking accessible to everyone and bring it out of the lab to enable scalable and naturalistic

user studies.

Our first contribution is the development of WebGazer, an eye tracking system that uses common

webcams and combines them with user interactions to self-calibrate and continuously predict the gaze

of users on any web page. Chapter 3 describes how we used existing knowledge on the alignment

of gaze and user interactions to infer the point of gaze in real time without disrupting the user

experience. A number of facial feature detection libraries and regression models were explored.

We assessed WebGazer through two studies, one large scale remote user study and one small in-lab

study, and showed that WebGazer achieved an average prediction error of 169 pixels when compared

to a low-cost commercial eye tracker. Browser-based webcam eye tracking is possible for the first

time and its accuracy makes it suitable for certain eye tracking experiments on user behavior.

Chapter 4 explores whether webcam eye tracking can enable scalable remote user studies and

lead to similar findings with past studies. We focused on the field of web search as it has been

particularly receptive to eye tracking and there is great demand for scalable eye tracking studies

that can translate to millions of web searchers. We replicated three seminal information retrieval

105
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studies and substituted their eye tracking component with SearchGazer, an extension of WebGazer

for web search. We provided evidence that SearchGazer can lead to similar conclusions with past

studies and that contrary to traditional eye tracking studies, webcam eye tracking experiments can

be performed in-situ and deployed at a fraction of the cost and time.

Following the central theme of democratizing eye tracking, Chapter 5 presents the first benchmark

for webcam eye tracking. We conducted a controlled lab study with more than 60 participants and

recorded their gaze and every interaction during different tasks and under different conditions.

Chapter 6 shows that our findings agree with past studies on the alignment of gaze with cursor

movement and clicks. In addition, we provide a novel exploration of the relationship between gaze

activity and typing, focusing on differences across touch typists and non touch typists. Based on

our findings on the temporal alignment between user interactions and gaze, we examine WebGazer’s

performance during retroactive self-calibration and include typing as a new user interaction.

7.1 Future Directions

This dissertation demonstrated the potential of webcam eye tracking on the browser. Our work has

established that browser-based webcam eye tracking is possible, leads to similar conclusions with

past studies, and can advance our knowledge on human behavior. We envision numerous directions

for future research both on problems we identified but also in applications that can be enabled for

the first time.

• The core contribution of this dissertation is the creation of systems that make browser-based

webcam eye tracking possible. We are aware that for webcam eye tracking systems to truly

substitute commercial eye trackers there need to be improvements in their accuracy and fidelity.

The analysis of WebGazer’s performance on our benchmark dataset showed that there are

numerous problems to be tackled. The most obvious is in the development and application

of new computer vision techniques that can adapt during unpredictable user behavior and

environmental changes. Clmtrackr is currently the best performing JavaScript facial feature

detection library, having been trained on the MUCT database which accounts for diverse

lighting, age, and ethnicity features [76]. In practice though, clmtrackr failed to correctly

identify the face of participants under certain conditions, such as uneven lighting, movement,

abrupt changes in posture, reflective sunglasses, etc.
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• Our eye tracking systems map the appearance of the eye to screen coordinates via a regularized

regression model. Different machine learning techniques may improve the accuracy of this

regression by learning a more complex mapping, but often these require more training examples

so as not to overfit. For instance, we experimented with deep neural networks, but their need

for a large number of training points did not work with our scenario in which a user visits a

web page and provides a small number of labels through their interactions. Further, as the

model complexity increases, so does the computational cost of inference, e.g., any solution

must be real time in our web-based JavaScript execution scenario. One avenue for future work

is to train a model offline on a large dataset of imagery (e.g., using the still images of our

benchmark dataset), and attempt to personalize the model as the user naturally interacts with

the page.

• This dissertation presented diagnostic eye tracking systems, that is systems that identified the

point of gaze without using it to actively alter the user experience. Interactive eye tracking

systems that use the point of gaze for pointing and selecting input (e.g., [53]) are out of the

scope of this work, but are still interesting to explore. We are particularly interested in webcam

eye tracking solutions that can be used by individuals with certain motor impairments (e.g.,

ALS). An interesting problem that arises is the “Midas Touch Problem”, with every area

that the user is looking at being of potential interest and thus triggering an action [54]. In

scenarios that the point of gaze is used as input, the self-calibration property of our systems

would probably not be suitable.

• Our vision of democratizing eye tracking was applied only on desktop PCs and laptops, ignoring

mobile devices that since 2016 account for more than 50% of web visits [103]. The problem of

eye tracking on mobile phones and tablets is far more complex, as additional factors come to

play. The computational power of those devices is smaller, their cameras have lower resolutions,

there is additional user movement, and finally there is little literature on the relationship of

gaze and the unique user interactions that occur (e.g., taps, pinches, and drags and drops).

To this day, there is no commercial eye tracker that allows realistic use of mobile devices. The

current solution is the use of a stand that the device is mounted on, but this defies the mobile

purpose of such devices. Eye tracking glasses that have been recently introduced might hold

promise in better understanding how users look and interact with their mobile devices.
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• Our focus throughout this dissertation has been on the development of eye tracking systems

and in their evaluation. One particular interesting direction is to use our systems for new

applications beyond the world of computer science. Our work has already attracted the at-

tention of cognitive scientists [96], an example of the plethora of fields that can be affected by

the introduction of remote and scalable in-situ eye tracking studies.

The core idea of this dissertation is to merge technological advancements and research in computer

vision and user behavior to make eye tracking accessible to everyone. This work enables numerous

avenues of research in eye tracking and new applications to better understand and support humans

in their interaction with technology and beyond. We believe that our work contributes to the idea

of democratizing eye tracking and in consequence that of understanding the human behavior.
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Appendix A

Tabular data from benchmark

dataset

This chapter contains data that were omitted from the main body of the dissertation for brevity.
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Subject Setting Gender Age Race Skin
Color

Eye
Color

Vision Touch
typist

Light Pointing
Device

P_1 Laptop Male 25 Asian 1 Brown Normal Yes Cloudy Touchpad
P_2 Laptop Male 22 Asian 1 Brown Normal No Artificial Touchpad
P_6 PC Female 25 White 1 Blue Normal Yes Sunny Mouse
P_7 Laptop Female 27 Asian 4 Brown Glasses No Sunny Touchpad
P_8 PC Male 23 White 1 Brown Glasses Yes Cloudy Mouse
P_10 PC Male 21 Bl. /Afr. Am. 5 Brown Normal No Artificial Mouse
P_12 PC Male 32 White 1 Brown Normal No Sunny Mouse
P_13 PC Female 25 White 1 Blue Normal Yes Artificial Mouse
P_14 Laptop Male 29 Asian 2 Brown Normal Yes Sunny Mouse
P_15 Laptop Female 26 Asian 2 Brown Normal No Sunny Touchpad
P_16 PC Female 21 Black 3 Brown Glasses Yes Artificial Mouse
P_17 PC Male 26 Asian 2 Brown Contacts Yes Sunny Mouse
P_18 PC Female 23 White 1 Green Normal No Sunny Mouse
P_19 PC Female 23 White 2 Brown Normal Yes Artificial Mouse
P_20 PC Female 24 Asian 2 Brown Glasses Yes Cloudy Mouse
P_23 PC Male 23 White 1 Blue Glasses Yes Sunny Mouse
P_24 Laptop Male 28 Asian 1 Brown Contacts Yes Sunny Mouse
P_25 PC Male 34 White 1 Brown Glasses Yes Sunny Mouse
P_28 Laptop Female 23 Black 5 Brown Contacts No Artificial Touchpad
P_29 Laptop Male 27 Asian 3 Brown Glasses No Artificial Touchpad
P_31 PC Male 25 White 1 Brown Normal No Sunny Mouse
P_33 Laptop Male 34 White 1 Brown Normal Yes Cloudy Touchpad
P_34 Laptop Female 26 Asian 2 Brown Normal No Sunny Touchpad
P_35 PC Male 32 Other 1 Brown Normal No Sunny Mouse
P_37 Laptop Female 26 Asian 2 Brown Normal Yes Artificial Touchpad
P_38 Laptop Female 25 White 1 Blue Normal Yes Cloudy Touchpad
P_39 Laptop Female 23 Other 2 Brown Normal Yes Artificial Touchpad
P_40 PC Female 58 White 1 Blue Glasses Yes Cloudy Mouse
P_41 PC Female 28 White 1 Blue Normal Yes Cloudy Mouse
P_42 PC Female 29 White 1 Amber Glasses Yes Artificial Mouse
P_44 PC Male 24 Asian 1 Brown Glasses Yes Cloudy Mouse
P_45 PC Male 27 Asian 2 Brown Normal No Cloudy Mouse
P_46 PC Female 31 Other 2 Brown Normal Yes Cloudy Mouse
P_47 Laptop Female 26 Asian 2 Brown Glasses Yes Cloudy Touchpad
P_48 Laptop Female 28 White 2 Brown Normal Yes Sunny Touchpad
P_50 Laptop Male 26 Other 2 Brown Normal Yes Artificial Touchpad
P_51 Laptop Male - Other 1 Brown Normal Yes Cloudy Touchpad
P_52 Laptop Female 23 White 2 Brown Normal Yes Cloudy Touchpad
P_53 Laptop Female 23 Asian 1 Brown Contacts No Cloudy Touchpad
P_54 Laptop Female 23 White 1 Green-Blue Glasses Yes Artificial Touchpad
P_55 PC Male 33 White 1 Brown Glasses Yes Cloudy Mouse
P_56 PC Male 31 Asian 3 Brown Glasses No Cloudy Mouse
P_57 Laptop Female 25 Asian 1 Brown Contacts No Cloudy Mouse
P_58 Laptop Male 24 Asian 3 Brown Glasses No Cloudy Mouse
P_59 PC Male 27 White 1 Blue Normal No Artificial Mouse
P_60 Laptop Male 27 Asian 2 Brown Glasses Yes Artificial Mouse
P_61 Laptop Female 29 Other 3 Brown Glasses Yes Cloudy Touchpad
P_62 Laptop Male 24 Bl. /Afr. Am. 5 Brown Normal Yes Cloudy Touchpad
P_63 Laptop Female 26 Asian 2 Brown Glasses No Cloudy Touchpad
P_64 Laptop Female 27 Asian 1 Brown Contacts Yes Artificial Touchpad

Table A.1: Demographic information about the 51 participants. Gender, age, race, skin color, eye
color, and vision are all self-identified characteristics as reported by each participant at the end of
the study.
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Subject Setting Accuracy (cm) Precision (cm) PrecisionSD (cm)

X Y X Y X Y
P_1 Laptop 0.71 0.95 1.00 1.42 0.57 0.72
P_2 Laptop 0.71 0.27 0.75 0.65 0.38 0.32
P_6 PC 1.16 0.40 2.12 1.01 1.21 0.61
P_7 Laptop 0.72 0.37 0.27 0.24 0.16 0.12
P_8 PC 0.49 0.44 0.71 0.64 0.35 0.35
P_10 PC 0.62 0.35 0.59 0.37 0.31 0.21
P_12 PC 0.20 0.70 0.52 1.63 0.30 0.83
P_13 PC 0.37 0.45 0.46 0.26 0.28 0.21
P_14 Laptop 0.72 0.59 0.63 0.75 0.43 0.43
P_15 Laptop 0.90 1.06 0.55 0.88 0.32 0.53
P_16 PC 0.54 1.28 0.67 1.57 0.38 0.85
P_17 PC 0.47 0.86 0.83 1.31 0.41 0.66
P_18 PC 0.88 1.45 0.48 0.59 0.26 0.31
P_19 PC 1.34 0.63 0.66 0.63 0.41 0.41
P_20 PC 0.52 1.04 0.38 0.47 0.24 0.24
P_23 PC 0.78 0.95 1.02 1.11 0.66 0.57
P_24 Laptop 1.0 0.70 0.40 0.48 0.24 0.26
P_25 PC 0.55 0.86 1.06 0.66 0.62 0.42
P_27 PC 1.54 3.72 1.59 0.65 0.80 0.33
P_28 Laptop 1.19 0.65 0.48 0.57 0.32 0.35
P_29 Laptop 0.87 0.60 0.66 0.72 0.33 0.36
P_31 PC 0.76 0.67 0.41 0.52 0.23 0.30
P_33 Laptop 0.93 0.33 0.24 0.52 0.14 0.32
P_34 Laptop 1.83 0.66 1.49 0.70 0.74 0.35
P_35 PC 0.46 1.08 0.46 0.73 0.27 0.39
P_37 Laptop 0.70 0.69 0.32 1.20 0.16 0.74
P_38 Laptop 1.39 0.69 0.46 0.73 0.26 0.39
P_39 Laptop 1.13 0.42 0.54 0.54 0.27 0.29
P_40 PC 0.56 0.98 0.98 1.18 0.70 0.66
P_41 PC 0.42 0.81 0.70 0.76 0.38 0.47
P_42 PC 0.30 0.74 0.35 0.59 0.20 0.32
P_44 PC 0.87 0.89 0.97 0.51 0.50 0.26
P_45 PC 1.77 2.14 0.75 0.41 0.38 0.22
P_46 PC 0.41 0.54 1.00 0.93 0.57 0.58
P_47 Laptop 0.76 0.69 0.30 0.54 0.15 0.27
P_48 Laptop 1.11 0.55 0.34 0.33 0.18 0.20
P_50 Laptop 1.25 0.43 0.37 0.35 0.20 0.19
P_51 Laptop 0.81 0.56 0.36 0.77 0.22 0.40
P_52 Laptop 1.10 0.43 0.54 0.26 0.30 0.14
P_53 Laptop 2.72 0.97 0.48 0.83 0.24 0.42
P_54 Laptop 1.17 0.67 0.84 0.69 0.52 0.34
P_55 PC 0.56 1.14 2.18 1.11 1.11 0.67
P_56 PC 0.45 0.66 1.06 0.94 0.63 0.54
P_57 Laptop 1.03 0.51 0.91 0.68 0.46 0.34
P_58 Laptop 0.66 0.63 0.69 0.48 0.34 0.24
P_59 PC 0.62 0.80 0.49 0.50 0.30 0.26
P_60 Laptop 0.67 0.95 0.84 0.56 0.42 0.38
P_61 Laptop 0.81 0.39 0.69 0.77 0.36 0.42
P_62 Laptop 0.82 0.44 0.34 0.28 0.16 0.15
P_63 Laptop 0.60 0.90 0.59 1.24 0.30 0.62
P_64 Laptop 0.98 0.83 0.80 0.90 0.40 0.45

Table A.2: Average accuracy, precision, and precisionSD of the Tobii eye tracker during the calibra-
tion step at the beginning of the study for each participant. All values are reported in centimeters.
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Subject Gender Race Skin
Color

Eye
Color

Facial
Hair

Vision Weather Face
Detected

P_1 Male Asian 1 Brown None Normal Cloudy Yes
P_2 Male Asian 1 Brown None Normal Indoors No
P_6 Female White 1 Blue None Normal Sunny Yes
P_7 Female Asian 4 Brown None Glasses Sunny No
P_8 Male White 1 Brown Beard Glasses Cloudy No
P_10 Male Black 5 Brown None Normal Indoors No
P_12 Male White 1 Brown Beard Normal Sunny Yes
P_13 Female White 1 Blue None Normal Indoors Yes
P_14 Male Asian 2 Brown Beard Normal Sunny Yes
P_15 Female Asian 2 Brown None Normal Sunny Yes
P_16 Female Black 3 Brown None Glasses Indoors No
P_17 Male Asian 2 Brown None Contacts Sunny Yes
P_18 Female White 1 Green None Normal Sunny Yes
P_19 Female White 2 Brown None Normal Indoors Yes
P_20 Female Asian 2 Brown None Glasses Cloudy Yes
P_23 Male White 1 Blue None Glasses Sunny Yes
P_24 Male Asian 1 Brown None Contacts Sunny No
P_25 Male White 1 Brown Little Glasses Sunny Yes
P_27 Male Asian 3 Brown Beard Glasses Sunny Yes
P_28 Female Black 5 Brown None Contacts Indoors No
P_29 Male Asian 3 Brown Beard Glasses Indoors No
P_31 Male White 1 Brown Beard Normal Sunny No
P_33 Male White 1 Brown None Normal Cloudy Yes
P_34 Female Asian 2 Brown None Normal Sunny Yes
P_35 Male Other 1 Brown Beard Normal Sunny Yes
P_37 Female Asian 2 Brown None Normal Indoors No
P_38 Female White 1 Blue None Normal Cloudy No
P_39 Female Other 2 Brown None Normal Indoors No
P_40 Female White 1 Blue None Glasses Cloudy No
P_41 Female White 1 Blue None Normal Cloudy Yes
P_42 Female White 1 Amber None Glasses Indoors Yes
P_44 Male Asian 1 Brown None Glasses Cloudy No
P_45 Male Asian 2 Brown Beard Normal Cloudy Yes
P_46 Female Other 2 Brown None Normal Cloudy Yes
P_47 Female Asian 2 Brown None Glasses Cloudy No
P_48 Female White 2 Brown None Normal Sunny Yes
P_50 Male Other 2 Brown Beard Normal Indoors Yes
P_51 Male Other 1 Brown None Normal Cloudy No
P_52 Female White 2 Brown None Normal Cloudy Yes
P_53 Female Asian 1 Brown None Contacts Cloudy No
P_54 Female White 1 Green-Blue None Glasses Indoors Yes
P_55 Male White 1 Brown Beard Glasses Cloudy No
P_56 Male Asian 3 Brown Little Glasses Cloudy Yes
P_57 Female Asian 1 Brown None Contacts Cloudy Yes
P_58 Male Asian 3 Brown None Glasses Cloudy No
P_59 Male White 1 Blue Beard Normal Indoors Yes
P_60 Male Asian 2 Brown Little Glasses Indoors No
P_61 Female Other 3 Brown None Glasses Cloudy No
P_62 Male Black 5 Brown Beard Normal Cloudy Yes
P_63 Female Asian 2 Brown None Glasses Cloudy Yes
P_64 Female Asian 1 Brown None Contacts Indoors Yes

Table A.3: Characterization of participants based on successful facial detection as performed by
clmtrackr. Demographic and environmental features that could influence the detection are included.
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