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The need for rich, ad-hoc data analysis is key for pervasive discovery. However, generic and reusable
systems tools for interactive search, exploration and mining over large data sets are lacking. Explor-
ing large data sets interactively requires advanced data-driven search techniques that go well beyond
the conventional database querying capabilities, whereas state-of-the-art search technologies are not
designed and optimized to work for large out-of-core data sets. These requirements force users to
roll their own custom solutions, typically by gluing together existing libraries, databases and custom
scripts, only to end up with a solution that is difficult to develop, scale, optimize, maintain and
reuse.

To address these limitations, we propose a tight integration of data management and search
technologies. This combination would not only allow users to perform search efficiently, but also
offer a single, expressive framework that can support a wide variety of data-intensive search and
exploration tasks. As the first step in this direction, we describe a custom search framework called
Semantic Windows, which allows users to conveniently perform structured search via shape and
content constraints over a large multidimensional data space. As the second step, we describe a
general-purpose exploration framework called Searchlight, which allows Constraint Programming
(CP) machinery to run efficiently inside a Database Management System (DBMS) without the need
to extract, transform and move the data. This marriage concurrently offers the rich expressiveness
and efficiency of constraint-based search and optimization provided by modern CP solvers, and the
ability of DBMSs to store and query data at scale, resulting in an enriched functionality that can
effectively support data- and search-intensive applications. As such, Searchlight is the first system to
support generic search, exploration and mining over large multidimensional data collections, going
beyond point algorithms designed for point search and mining tasks.

Fast, interactive query evaluation is only one of the requirements of effective data-exploration
support. Finding the right questions to ask is another notoriously challenging problem, given the
users’ lack of familiarity with the structure and contents of the underlying data sets, as well as
the inherently fuzzy goals in many exploration-oriented tasks. In the third part of this work, we
study the modification of initial query parameters at run-time: we describe how Searchlight can
dynamically relax or constrain the parameters of a query, based on its progress, to offer more or
fewer results to the user. This feature allows users to iterate over the data sets faster and without
having to make accurate guesses on what parameters to use.
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Chapter 1

Introduction

Efficient execution of constrained search queries remains an important problem in the presence of
big data. There are constrained search solutions where the data first has to be extracted and put
into memory. There are separate solutions for efficiently managing data, which at the same time
lack search functionality. There are no existing solutions combining the two technologies in a single
system. This research strives to remedy this inconsistency by introducing a new type of search
framework, where search and data management facilities work closely with each other, providing
users with a general search solution suitable for vast amounts of data.

At the same time, even when search queries can be executed efficiently, there still remains the
issue of improving user’s experience during the search. Users, at least initially, might have limited
knowledge about the data set itself and the results their queries might return. That makes the query
specification tedious. Users basically have to “guess” the correct queries in the attempt to receive
a suitable number of meaningful results. The proposed system addresses this issue via the notion
of query relaxation and constraining, which works at the query engine level and modifies the query
constraints depending on its progress.

1.1 Motivation

The need for rich, ad-hoc data analysis is key for pervasive discovery. However, generic and reusable
systems tools for interactive search, exploration and mining over large data sets are lacking. Explor-
ing large data sets interactively requires advanced data-driven search techniques that go well beyond
the conventional database querying capabilities, whereas state-of-the-art search technologies are not
designed and optimized to work for large out-of-core data sets. These requirements force users to
roll their own custom solutions, typically by gluing together existing libraries, databases and custom
scripts, only to end up with a solution that is difficult to develop, scale, optimize, maintain and
reuse.

In data exploration, users often have some idea about what they want to find, but have no idea
where to look. This is fundamentally a search problem in which the user interacts with the data
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in an ad-hoc fashion to identify objects, events, regions, patterns of interest for further, more de-
tailed analysis. Let us consider simplified, but representative examples from the astronomy domain:
consider an astronomer working with SDSS [4], a popular data set containing information about
different celestial objects.

An object of interest might be a hyper-rectangular region in the sky (i.e., a rectangle with
coordinates corresponding to right ascension and declination), and the properties might include
average/min/max values of magnitudes of stars within a region, the area of the region, the lengths
of its sides, etc. The user might be interested in the following types of search queries:

• First-order queries look for a single region satisfying the search properties. For example, Q1:
“find all [2, 5]◦ by [3, 10]◦ regions with the average r-magnitude of stars within it less than 12”.
Note that the region dimensions are not fixed and can take any value within the given range.
The search can include more advanced properties; e.g., “additionally, the difference between
the average magnitudes of the region and its 3◦-neighborhood must be greater than 5”.

• High-order queries search for sets of regions. For example, Q2:“find a pair of celestial regions
with the difference between the magnitudes not exceeding 1, located in different sectors of the
sky”.

• Optimization queries assign an objective function to all regions, and search for regions maxi-
mizing/minimizing the function. For example, Q3: “find all 2◦ by 3◦ regions that contain sky
objects with the minimal r-magnitude”.

Another example is performing search for time-series data. For example, MIMIC [2] contains
waveform data (e.g., arterial blood pressure, ECG, etc.) for a number of patients admitted to ICU.
An object of interest here might be a time interval (e.g., a temporal region) with specific properties.
The user might search for time intervals that exhibited abnormal values or are similar to the specified
interval (first-order queries); she might also search for sets of similar intervals to detect patterns in
the patient’s medical history (high-order queries).

In data exploration applications, the user should start getting results as quickly as possible. For
optimization queries the system might report the running maximum/minimum. The user might not
even be interested in the final result at all. She might quickly switch between queries, interrupt
their execution, refine and restart them. This is sometimes called “human-in-the-loop” exploration.
Additionally, the user should not be constrained to a particular type of object. She might want to
search for interesting spheres instead of rectangles or add additional types of properties, e.g., a new
complex aggregate or distance measure.

Perhaps surprisingly, traditional DBMSs offer very limited support for search queries, even for
the most basic first-order ones. We will discuss this in more detail in context of relational and
array-based DBMSs in Chapters 3 and 4. Traditional SQL constructs such as OVER and GROUP BY

are not expressive enough. Even a seemingly simple query such as Q1 is thus very cumbersome
to specify and difficult to automatically optimize. Fundamentally, search requires the ability to
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enumerate sets of objects and identify the qualifying ones. Most DBMSs do not provide such power-
set enumeration operations. Even if the enumeration can be done, the number of (sub)sets can be
so large that sophisticated pruning and search techniques have to be employed to get results in a
timely fashion.

Take SciDB [3, 10], a state-of-the-art array DBMS. Revisiting the astronomical example above,
the objects of interest, regions, can be seen as equal to sub-arrays. SciDB has a powerful window()

operator that can be used to compute aggregates for every possible sub-array of the specified size.
This might allow users to find interesting sub-arrays by enumerating all of them and then performing
filtering based on the query constraints. However, the operator processes sub-arrays exhaustively,
in a specific order, without any concerns for interactivity. Moreover, since it has to compute every
possible sub-array, the query becomes impractical for large search spaces — for a two-dimensional
array of size 10,000x10,000, finding even a fixed region of size 10x10 would result in exploring approx-
imately 108 regions and computing one or more aggregates for each of them. Looking for flexible-size
regions significantly exacerbates the problem due to increased search space size. Moreover, for more
complex search problems users might have to write several queries and perform some form of a “join”
or concatenation of the intermediate results.

We argue about the necessity of introducing integrated search functionality within a DBMS.
Such functionality would not only allow users to perform search efficiently, but also offer a single,
expressive framework that can support a wide variety of data-intensive search and exploration tasks.

1.2 Integrated Search and Exploration Over Large Multidi-
mensional Data

We will explore the problem of performing search queries over large multidimensional datasets.
Such data can often be represented as an array with multiple dimensions (e.g., location coordinates,
time stamps, etc.), where each array cell contains a number of attributes (e.g., astronomical objects
magnitudes, signal amplitude measurements, etc.). A typical search query would look for sub-
arrays (regions) with interesting properties. The properties are typically expressed by the user via
a number of constraints. While we do not impose any specific restrictions on the nature of such
constraints in general, in this research we concentrate our effort on aggregate constraints, containing
aggregate functions. An aggregate function takes a sub-array as the input and produces a single
scalar value. For example, avg(R,magnitude) < 10 is an algebraic constraint that might allow the
user to search for a celestial region with average magnitude less than 10. While seemingly simple,
such constraints have considerable expression power. For example, similarity between two regions
can often be expressed via a distance between them (e.g., Euclidean), which can be treated as an
aggregate function.

As the first step in our effort of integrating search with DBMSs query processing, we discuss
a specialized framework called Semantic Windows (SW) [27]. In this framework users can search
for multidimensional rectangular regions (windows) satisfying constraints on shape (e.g., the size
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of the window) and content (e.g., the average magnitude of stars within the window). Thus, it
partially covers the “First-order queries” class discussed above. SW treats an exploration query as a
data-driven search task, with the search space consisting of all possible windows. Since windows can
overlap and can be located anywhere in the data, this makes the search space quite large. Thus, to
deliver results to the user quickly, this search space is explored in the order of utilities, which measure
each window in terms of cost and benefit. The cost shows how expensive it is to read the window
data from disk, and the benefit measures how close the window is to satisfying the constraints.
Exploring more promising windows first allows the framework to find and start presenting results
quickly to the user.

We implemented SW as a distributed layer on top of a relational DBMS PostgreSQL, which
communicates with the DBMS via TCP/IP. The SW layer performs the search itself and delegates
all computations requiring data to PostgreSQL by using SQL queries over a network connection.
We conducted an extensive experimental evaluation on synthetic and real data to study the benefits
and drawbacks of the approach. The experimental results showed that in many cases our frame-
work offered online results quickly and continuously, outperforming the traditional DBMS approach
significantly. For the comparison we used a complex SQL query, which is the only way to specify
the studied search queries in a relational DBMS. Due to the complexity of the query, the query
processor in PostgreSQL was not able to plan and execute it efficiently, so not only intermediate
(online) result times, but also query completion times for SW were often better. In Chapter 3 we
argue that this is an inherent limitation of query processing in SQL-based systems, which renders
them incapable of efficient execution of search queries.

While SW showed the applicability of the proposed approach of closely integrating search pro-
cessing within DBMS, at the same time it has a number of certain limitations:

• The framework is specialized for single-region search with specific aggregate functions. Users
cannot easily express more complex search queries. For example, it might be logical to look at
the difference between a region and its neighborhood to detect anomalies. The neighborhood
can be expressed as a region as well. Ideally, users should be able to define such search objects
easily with the appropriate constraints linking them together with other constraints. However,
due to a specialized search algorithm, such extensibility is not trivial for SW.

• While SW can find results quickly, eventually it has to read the whole data set. This is due
to the fact that SW uses sampling to perform cost-benefit analysis. Since sampling cannot
give 100% guarantees that a given window violates the constraints, it is impossible to prune
unneeded windows, which poses a significant problem for large data sets. This highlighted
for us the need in sophisticated pruning techniques to exclude parts of the data that cannot
contain results from exploration.

• SW exposed the necessity of carefully managing not only the search process itself, but also
the data access part of it. Each time a query constraint is checked, an aggregate for the
window may need to be computed, which results in disk access from the DBMS. Due to the
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size of the search space, the number of such disk requests might also be quite significant. Both
the search and data access should be balanced across all nodes participating in the query.
While SW performs static search space distribution before the query begins, there is need in
dynamic distribution as well, since some nodes might complete their job much faster. The
same argument can be applied to the data access, with the need of distributing data requests
across multiple nodes and possibly redistributing some data during the query execution.

To address these issues, we devised another, more general, search framework, called Search-
light [28], which we discuss in Chapter 4. The gist of the new approach is employing existing
Constraint Programming (CP) [45] techniques to perform the search part of the query. First of
all, not only CP allows users to naturally and easily express search problems from all three query
classes discussed above, but it also has no significant limitations on extensibility, i.e., defining more
sophisticated search objects and constraints. Users express their search queries by using a number
of decision variables to define search objects and constraints referencing the variables to describe the
desired search criteria. Variables and constraints compose the model of the problem. Secondly, CP
solvers are very proficient at exploring large search spaces using such models. Solvers incorporate so-
phisticated search heuristics and pruning techniques, which helps quickly find results and efficiently
remove parts of the search space that do not contain any. Search heuristics are highly customizable,
which allows users to make exploration for new kinds of search problems more efficient.

These features render CP solvers a very powerful tool for interactive, human-in-the-loop data
exploration and mining. Unfortunately, solvers commonly assume that all the required data fits into
main memory and thus only optimize for the compute bottleneck. While this assumption has served
well for many traditional CP problems, in which the primary challenge is to deal with very large
search spaces, it has recently become obsolete with the availability of very large data sets in many
disciplines.

Searchlight uses a two-stage Solve-Validate approach. At the solving stage, CP Solvers perform
speculative search on main-memory synopsis structures, instead of the real data. A synopsis is a
condensed representation of the data, containing information needed to perform pruning and to
verify query constraints. The results are guaranteed to contain all the real results, but possibly
include false positives. At validation, Validators efficiently check the candidates over the original
data, eliminating the false positives and producing the final solutions while optimizing I/O. This
two-stage approach is transparent to the CP solver internals and the users.

Searchlight can also transparently parallelize query execution across multiple nodes in a modern
cluster of multi-core machines. Searchlight supports both static and dynamic balancing. During the
static phase, the search space and the data space are distributed between Solvers and Validators
before the query begins. During execution, Searchlight redistributes work between idle and busy
Solvers to address hot spots. In times of high I/O, load it redistributes data between Validators
at different nodes and starts more Validators at the same node, if the cluster has the resources
available.

Our experimental results, both synthetic and SDSS-based, quantify the remarkable potential
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of Searchlight for data- and search-intensive queries, for which Searchlight often performs orders
of magnitude faster than the next best solution (DBMS-only or CP-solver-only) in terms of end
response time and time to first result.

1.3 Enhancing User Experience: Query Relaxation and Con-
straining

Efficient search query execution is just the first step towards improving data exploration support in
traditional systems. There still remains the issue of correctly specifying the query and its constraints.
Since the user, at least initially, might have very limited knowledge of the data set, properly formu-
lating constraints might be a complex task. Even assuming the user knows the types of constraints
she wants to put into the query, getting the constraint parameters right is not trivial. For example,
consider query Q1 from Section 1.1. The user has to specify the threshold for r-magnitude for
the resulting region. Depending on the specified threshold, the query might result in the following
outcomes:

• The query outputs the desired number of results, which is easy to explore. This is the desired
outcome.

• The query does not output any results, since the query is over-constrained. This is the so-
called “empty-answer problem”. The query might also output too few results, e.g., 1-2, while
the user desires at least 10. In this case the user would have to re-formulate the query, hoping
for a better outcome. At this point this becomes a cumbersome guessing game in which the
user tries to guess the correct constraint parameters to receive the desired number of results.

• The query returns too many results. For example, 1000 instead of 10. Such a number of results
might be hard to represent in a meaningful way, and for the user to analyze. Since Searchlight
outputs results interactively, minimizing delays, it is possible for the user to interrupt the
query after she has received too many answers and try a new one. However, interrupting the
query does not necessarily make the result any more meaningful, since the results found so far
might not carefully represent the whole result set. At the same time, reformulating the query
becomes the same guessing game we saw for the empty-answer problem.

The second and third outcomes have been well-studied in the research literature, especially in
the context of relational queries. A common solution for the empty-answer problem is to relax
the query [34, 36, 38, 37, 31]. This allows the system to provide “close enough” results to the
user. The process can be either automatic, based on a suitable distance function, or interactive,
where the user is guided through a number of possible options. As for the problem of too many
results, the possible solutions include contracting the query, modifying its constraints to reduce the
number of results [36], or ranking results with some user-provided function and outputting the top-k
results [16, 42, 26, 11, 17, 52]. Unfortunately, these approaches have limited applicability for the
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types of queries Searchlight addresses. In general, they assume either available statistics for efficient
result cardinality estimations or indexes over all possible query objects (e.g., tuples) for efficient
traversing and pruning. We discuss the related work in more detail in Chapter 2.

Since Searchlight mainly addresses ad-hoc exploratory queries with user-defined regions and con-
straints, it has to deal with the aforementioned problems dynamically, during the query evaluation.
The main reason for this is that the objects of interest belonging to the result have to be discovered
first and only then relaxation or contraction can take place. Searchlight detects the too-few/too-
many results problem during the query execution and applies either relaxation to bring in more
results or constraining to filter out results dominated with respect to the user-specified ranking
function. At the same time, Searchlight keeps the overhead of this approach at minimum, so not to
hamper the interactivity of the queries that do not need these techniques.

If during the search Searchlight cannot find the required number of results (specified by the user),
it relaxes the original query constraints and revisits parts of the search space previously pruned by
the CP solver. It stops when the user result cardinality requirement is satisfied, at the same time
guaranteeing that the relaxed results have the minimum distance from the original constraints. By
default, Searchlight uses a built-in function to measure this distance, which is suitable for interval-
based algebraic constraints. For example, for constraint avg(R,magnitude) < 10, a result having the
average value 12 has the distance 2 from the original query. For multiple constraints, the maximum
or average distance can be taken. Alternatively, the user can specify her own distance function.

Alternatively, if Searchlight detects too many results (again, as per the user-specified cardinality
requirement), it introduces new constraints into the original query to prune results dominated by
already found ones and admit only better (or non-dominated) results to the current result set. The
“better” is determined by the ranking function, which can be specified by the user. The user can
also use the Searchlight’s built-in ranking function by specifying her preferences. For example, if
a query has two constraints: for the average brightness of a region and the distance from another
region, the user might prefer brighter regions, but with smaller distance. Another option for the
user is to use the common skyline computation. However, in this case Searchlight cannot guarantee
the cardinality of the final result.

Our experimental results showed that the dynamic relaxation-constraining approach does not
bring any significant overhead to the queries that do not need modification. Relaxation, when
required, performs extremely better than the query guessing approach discussed above (i.e., a series
of queries), and quite comparable with a hypothetical“oracle-based” approach, in which the user
can somehow guess the relaxed query correctly on the first try (after the completion of the original
query, of course). Constraining in many cases perform orders of magnitudes better than the original
query, when comparing with running the query until completion and ranking results at the client
side.



Chapter 2

Related Work

There has been extensive research in the areas of search queries processing and management of data.
However, there has not been much research in combining the two. When it comes to search queries,
it is usually assumed that the data can fit into main memory and the complexity lies with exploring
the large search space. One notable example is Constraint Programming (CP) [45]. However, these
days a lot of data is stored and managed in DBMSs. While there are methods available to support
specialized search queries in DBMSs [12, 18, 19, 53, 13], they target particular problems that can
be solved either with the help of existing indexes or after precomputing additional information first.
Often, each query type needs its own precomputed structures, and changing query constraints leads
to rebuilding these structures. Such solutions lack generality, limit users to particular types of query
constraints, and offer poor support for ad-hoc exploration.

2.1 Constraint Programming

There is a considerable body of research directed to making search efficient for large search space
queries with different types of constraints [45]. Traditional Constraint Programming (CP) solvers
(e.g., Gecode, IBM ILOG, Comet) support a large variety of constraints and are highly extendable,
both in terms of new types of constraints and search heuristics. A typical solver builds a search
tree for the problem and traverses it attempting extensive pruning at the tree nodes. Pruning
allows solvers to provably cut entire sub-trees from the search space, dramatically decreasing its
size. Introducing new search heuristics allows users to tune the search process by customizing the
tree traversal strategy, which might improve performance for specific and new types of problems
without modifying the solver internals. To efficiently traverse very large search spaces most CP
solvers support parallel search, including work stealing [35, 15] and over-partitioning [46]. Work
stealing involves dividing the search space between solvers at run-time, where idle solvers take away
parts of the search space from currently busy solvers. Over-partitioning treats a CP problem as
embarrassingly parallel, dividing the search space into a very large number of pieces before the
query starts. Then, at run-time, each solver traverses a single piece until completion and takes

8
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another one until all pieces are exhausted. We give a background on CP solvers and discuss parallel
search in more detail in Chapter 4.

Our search framework, Searchlight (Chapter 4), employs an existing CP solver to perform the
search. We have not modified the solver’s logic, so Searchlight does not introduce any new constraint
programming techniques. The main theme of our research and, thus, the main novelty behind
Searchlight is efficiently executing CP-based search queries over DBMS data in-place, without the
need to extract it and load in memory. Our experiments (Section 4.5) showed that traditional CP
solvers are ill suited for searching large volumes of data or handling DBMS-resident data natively,
i.e., without extracting, transforming and partitioning it. Solvers assume that the data fits into main
memory, and query constraints can be verified relatively quickly. When taking secondary storage
latency and performance into consideration, this assumption does not hold in practice. Solvers
perform a large number of constraints checks during the search, which makes secondary storage a
major bottleneck. Thus, efficiently mediating solver’s access to the DBMS-resident data becomes an
important problem. To address this issue Searchlight uses a novel two-stage Solve-Validate approach.
CP solvers perform the search using in-memory synopsis structures. This, however, might result in
producing false-positive solutions. At the second stage solutions are verified on the original data to
ensure correct query results. We describe this approach in more detail in Chapter 4.

2.2 Interactivity and Online Answering

Another important area of research is interactivity of DBMS queries, which often means producing
online results [24, 22, 44]. Interactivity does not necessarily mean completing the entire query in
a matter of seconds. If a query contains complex computations (e.g., multiple aggregate functions
accessing large portions of data) and produces multiple results, outputting them all quickly might not
be physically possible. However, it might be possible to severely decrease delays between subsequent
results, when introducing them one-by-one to the user. Another common way to support interactivity
is approximate answering, where the system outputs approximate result and possibly keeps updating
it during the execution. Interactivity allows systems to support “human-in-the-loop” exploration,
in which users do not necessarily need to see the entire and/or exact result.

One of the most interesting topics in online answering for DBMS queries is online aggregation [24,
22], which strives to bring approximate results to the user when computing common aggregate
functions over large data sets. The result contains a confidence interval based on the required
probability of containing the real result, so the user better understands its guarantees. It is also
constantly updated as the computation evolves and more data tuples are explored.

We designed both our frameworks, Semantic Windows and Searchlight, with the goal of being
as interactive as possible. Rather than support approximate answering, we decided to provide exact
online results to the users. Our frameworks support this by steering the search in the direction
of possible results (solutions) using sampling or synopses, and then validating such (approximate)
results over the original data as quickly as possible. One might argue about the applicability of
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online aggregation techniques for approximate answering of search queries. As we extensively argue
in Chapter 3, search queries in general deal with complex objects, which makes the direct application
of online aggregation with confidence guarantees to such queries non-trivial. Thus, approximate
answering for such queries remains an open problem.

Online results have been studied for more complex queries as well. One example is skyline-over-
join queries [44], which compute non-dominated points for queries involving joins. In some cases
it is possible to carefully examine input and output distribution of the join operator to determine
input tuple ranges that might produce dominating results needed for the skyline. Such ranges are
processed first. In this case online results are guaranteed to be exact. Note, however, that such
queries not only are highly specialized, but also do not involve search. Determining the output
distribution for a search query is naturally impossible, since it would require knowing the location
of the results beforehand. This defeats the very purpose of search queries. Such complexity makes
most dominate-based online answering techniques applicable for traditional queries unsuitable for
search queries.

2.3 Database Queries Processing

We want to explicitly contrast our work with aggregate query processing and data cube exploration.
The first one involves efficient computation of aggregates for the specified query region (e.g., via
the SQL WHERE clause). While constraints in Searchlight might contain aggregates, its queries are
much more complex in nature, since they involve search. In general, a search query cannot be easily
mapped to an aggregate query, since the former does not have a query region. The complexity lies
with finding this region, based on the specified constraints.

To compute aggregates, additional structures (e.g., R-/B-trees) are often used to find the tuples
belonging to the region and perform the computation. These structures can be extended to include
more information about the data. For example, Multi-Resolution Aggregate (MRA) trees [32],
where nodes are annotated with aggregate information (e.g., sum/min/max/count). The query’s
aggregates can be estimated at every level of the tree with progressively better intervals, guaranteed
to contain the exact result. As we discuss in Chapter 4, Searchlight uses similar techniques as the
basis for synopsis structures, which allow the search process to quickly estimate functions and prune
the search space.

Sampling-based methods [24, 8, 40] are also commonly used to approximate aggregates, and often
have lower costs. Our first framework, Semantic Windows [27], which we present in 3, uses strati-
fied sampling techniques for aggregate estimation to steer the search in the direction of promising
candidates. However, sampling does not provide 100% confidence guarantees, which makes them
unsuitable for provably pruning search sub-trees. This is the main reason why Searchlight uses syn-
opsis structures. Synopses provide answers in form of intervals, which are guaranteed to contain
the real result. As we show in Chapter 4, this technique allows Searchlight to severely reduce the
amount of data that have to be read.
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Data cube exploration [21] involves computing one or more aggregates over GROUP BYs of subsets
of attributes. For a particular GROUP BY users can perform operations like roll-up (expanding an
attribute from the GROUP BY set) or drill-down (adding an attribute to the GROUP BY set). Thus,
data cube exploration is essentially a series of related aggregate queries. Different techniques have
been explored to speed-up the exploration, e.g., materializing parts of the cube [23], compressing it
for general [50] and spatio-temporal cases [33]. Additional information can be stored in the cube to
provide more information to the user, e.g., the degree of abnormality for values [47]. The important
distinction with our work is that data cube exploration does not involve search. When the user
specifies the GROUP BY attributes and the aggregates, the problem lies in efficiently computing the
corresponding aggregate queries.

2.4 Search Queries in Databases

While DBMSs lack general search methods, there is a large body of research dedicated to specific
problems [12, 18, 19, 53, 13] involving search. For example, Top-K and Skyline queries [12, 18]
look for dominating tuples, e.g., “find top-3 companies by revenue” or “find best houses based on
the number of bathrooms and the total area”. Such queries, however, are usually solved by first
precomputing and indexing additional information first. Then, the index can be used to retrieve the
answers efficiently with little additional effort. For example, the Onion technique [13] builds convex
hulls for required DBMS relations and then uses the hulls to answer optimization (e.g., min/max)
queries with linear constraints. Another interesting approach involves building a specialized graph-
like index for optimization problems and using the A* algorithm to traverse it [53].

Another approach to search queries involves some form of nearest neighbors search. For example,
it might be possible to use histograms [11] to estimate the required linear distance from the query
point (e.g., the “ideal” house, as defined by the user) to other possible candidates. This defines a
region for tuples that need to be checked. Then, the region’s tuples are retrieved and sorted based on
the distance function. The function must be defined by the user and reflects her search preferences
(e.g., “the house area is two times more important than the number of bathrooms”).

We want to emphasize two specific issues with the approaches discussed above. First of all, they
target specific problems with specific constraints. Additional indexes are built with the assumption
that all queries and constraints are known in advance, which might not hold true for ad-hoc explo-
ration. In case no estimations can be made or no index is available, the DBMS would have to resort
to a sequential scan of the whole data, which is prohibitively expensive for large data sets. Secondly,
such queries generally search for tuples. If the user wants to search for more complex objects, like
rectangular regions with flexible sizes, not only traditional indexes (e.g., R-/B-trees) are not suitable
for the task, but also even an exhaustive sequential scan ceases to be an option due to the severely
increased search space. Indexing all possible objects (e.g., regions) the user might search for is also
infeasible due to a very large number of them. These issues clearly indicate the need for general
search methods available within the DBMS and integrated with its query processing.
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2.5 Spatial Databases

Spatial DBMSs [48] allow users to manage and query spatial data. These systems are often built
on top of traditional DBMSs, and can efficiently retrieve particular objects (e.g., buildings, rivers,
etc.), find all features inside a specified query region and perform nearest-neighbors search. Such
queries, however, do not generally involve search. Objects can be easily indexed and then retrieved
by using common index structures, like pyramids [51, 7] or R-trees. For nearest-neighbors search,
the point of reference is given (e.g., find the nearest ATM to the current location).

The most interesting type of spatial queries related to search is Content-Based Retrieval (CBR) [48],
which explores relationships between objects (e.g., topological, directional, metric). For example, the
user might search for a building near a lake with a grove nearby. One common way to process CBRs is
to precompute a complete graph of all objects, containing the relationship information [6, 41]. Then,
the search can be performed using this graph. The constraints are generally easy to check, since
they involve looking up the corresponding graph edge, and the search space is small. In contrast,
for search queries we target in our research we assume a potentially large search space of objects,
which is infeasible to precompute, index and maintain. The constraints are also more expensive,
since they might involve multiple computations that involve accessing a lot of data.

2.6 Query Relaxation, Contraction and Top-K Answering

Query relaxation [38, 37, 31, 36] deals with the empty-answer and too-few-answers query problems
by relaxing the original query constraints to include more answers. The user usually provides a
cardinality requirement for the number of answer she wishes to obtain. If the query is empty or does
not provide enough answers, the original constraints are modified to include more answers so that
the cardinality requirement is satisfied as close as possible (i.e., without overflowing the user with
too many results) and the answers are “close” to the original constraints. This “closeness” is usually
measured by a distance function, in which case the query outputs relaxed results with the minimal
distance from the original constraints. Another option is to guide the user through the relaxation
interactively, via multiple steps, by providing possible relaxation options at each step.

The existing body of work on query relaxation can be roughly put into two broad categories.
The first category includes relaxation based on some statistics readily available in the database.
For example, Stretch-and-Shrink (SnS) framework [36] uses query cardinality estimations via a
precomputed sample to check if the original query satisfies the cardinality requirement and then
use the estimations to find relaxed ranges for each range-based query constraint independently. In
such way the cardinality requirement can be fulfilled as close as possible by relaxing only a single
constraint. Then the user is guided through a series of steps, where at each step she chooses
the next constraint to relax and its value. After each step SnS recomputes the relaxed ranges to
accommodate the user choices. This way SnS can actually handle query contraction as well, if
the original query’s cardinality exceeds the one required by the user. The framework heavily relies
on fast cardinality estimations. Multiple estimations might have to be made at every step of the
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interactive refinement. Another framework [11] uses histograms to produce cardinality estimations
and derive proper constraint ranges for the query. In this example the results presented to the
user are ranked based on the distance (e.g., Euclidean) from the original constraint ranges. There
is also the possibility of using probabilistic [37] and machine learning [38] frameworks to produce
relaxations and guide the user through the process. These methods, however, still rely on statistics
to provide probabilistic estimations for the relaxation decision or the learning stage to understand
the rules hidden inside the data. Such solutions would not be suitable for Searchlight, since, as we
discussed earlier in this chapter, our framework targets queries for which the cardinality is not known
beforehand. It would be also hard to estimate properly due to a large search space and possible
complexity of query constraints. The results are also not known, and might be expensive to find,
which makes the learning stage or probabilistic estimations infeasible.

The other category includes methods that use indexes available in the database to relax con-
straints during the query execution. One approach [31] is to relax join and selection predicates, and
obtain the relaxation skyline. The framework targets range-based constraints as well, so each result
can be represented as a vector of distances from the original constraint ranges. The results with non-
dominated distance vectors are output to the user. The proposed method uses R-trees to traverse
the tuple space, and use MBRs (Minimum Bounding Rectangles) provided by R-tree nodes to prune
the nodes dominated by the running skyline. Actually, using R-trees as means of hierarchical repre-
sentation of the tuple space (i.e., as the search space tree) and the MBR-based domination pruning
is a common technique for relaxing (and contracting) queries in relational databases. In general such
methods have limited applicability for Searchlight, since results are not known and, hence, cannot
be indexed beforehand. Searchlight uses search space traversal and pruning techniques as part of
the query processing and the relaxation processes. However, the structure of the search space differs
significantly from the relational one, since Searchlight generally works with regions instead of tuples,
and the search space itself depends on the query constraints. Additionally, query constraints might
be more complex than ranges over attributes, potentially referencing data outside of regions. This
makes R-trees (or other traditional index trees) unsuitable for traversal and pruning.

The too-many-results problem, when the number of results exceeds the user’s requirement, cre-
ates the dual problem of contracting the query. The system might try to modify the query con-
straints [11, 36] so that the query outputs the required number of results. Such methods generally
use precomputed statistics to make fast cardinality estimations and find suitable ranges for query
constraints. Thus, the corresponding frameworks usually handle both relaxation and contraction
at the same time. Another approach is to get rid of excessive answers by ranking them and out-
putting only the best few. The “best” can be based on a scalar ranking function (top-k queries)
or vector domination (skyline [12] queries), where vectors are produced by ranking each constraint
(attribute) independently. These methods commonly rely on traditional precomputed structures,
such as views [16, 26] and R-trees [42, 52]. These structures are then used for efficient traversal and
possible result pruning. The view-based approaches additionally require to know at least part of the
workload beforehand to materialize proper views. The R-tree approaches follow the familiar pattern
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of traversing the tree and performing MBR-based pruning. For some top-k queries (e.g., where
the tuple rank equals the number of other tuples it dominates) the R-tree can be used to provide
fast rank estimations. If such structures are not readily available, the only option is to perform a
sequential scan and either build the required structures or do the processing during the scan. Ex-
amples include sorting [17, 9], batch computation [9] or building structures optimized for particular
queries [42]. As we pointed out before, for Searchlight queries no indexes are available beforehand.
The only option is to perform the search over the data and perform query contraction during the
query execution. This might seem similar to the sequential scan-based approaches, however, as we
have discussed in this section, the nature of the queries is different, which requires us to introduce
new approaches.



Chapter 3

Interactive Data Exploration Using
Semantic Windows

As the first step in developing an easy-to-use, interactive approach for human-in-the-loop exploratory
analysis of data at scale, we discuss our novel search framework called Semantic Windows [27]. It
allows users to conveniently perform structured search via shape and content constraints over a
multidimensional data space.

3.1 Semantic Windows Overview

Consider the following data exploration framework. A user examines a multidimensional data space
by posing a number of queries that find rectangular regions of the data space the user is interested
in. We call such regions windows. After getting some results, the user might decide to stop the
current query and move to the next one. Or she might want to study some of the results more
closely by making any of them the new search area and asking for more details. Let us look at two
illustrative examples in Figure 3.1.

Example 3.1.1. A user wants to study a data set containing information about stars and other
objects in the sky (e.g., SDSS [4]). She wants to find a rectangular region in the sky satisfying the
following properties:

• The shape of the region must be 3◦ by 2◦, assuming angular coordinates (e.g., right ascension
and declination).

• The average brightness of all stars within the region must be greater than 0.8.

The example above describes a spatial exploration case, where windows of interest correspond
to two-dimensional regions of the sky. However, the framework can be used for other cases, e.g., for
one-dimensional time-series data:

15
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Figure 3.1: Exploration queries searching for bright star clusters (left) and periods of high average
stock prices (right).

Example 3.1.2. A user studies trading data for some company. The search area represents stock
values over a period of time. The user wants to find a time interval (i.e., a one-dimensional region)
having the following properties:

• The interval must be of length from 1 to 3 years.

• The average of stock prices within the interval must be greater than 50.

By defining windows of interest in terms of their desired properties, users can express a variety of
exploration queries. Such properties, which we call conditions, can be specified based on the shape
of a window (e.g., the length of a time interval) and an aggregate function of the data contained
within (e.g., the average stock value within an interval).

Another important requirement in data exploration is interactivity. Since the amount of data
users have to explore is generally large, it is important to provide online results. This allows the user
to interrupt the query and modify it to better reflect her interests. Moreover, many applications
can be satisfied with a subset of results, without the need to compute all of them. Most SQL
implementations do not allow such functionality, making users wait for results until the entire query
is finished.

Semantic Windows (SW) treats an exploration query as a data-driven search task. The search
space consists of all possible windows, which can vary in size and overlap. We use a cost-benefit
analysis to quantify a utility measure to rank the windows and decide on the order by which we
will explore them. We use sampling to estimate values for conditions on the data, which allows us
to compute a distance from these values to the values specified in the query. We then guide the
search using a utility estimate, which is a combination of this distance, called benefit, and the cost
of reading the corresponding data from disk. We use shape-based conditions to prune parts of the
search space.

For experimentation purposes, we implemented a distributed version of the framework on top
of PostgreSQL. The computation is done by multiple workers residing on different nodes, which
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interact between themselves and with the DBMS via TCP/IP. To explore windows efficiently, we
require efficient execution of multidimensional range queries, which can be achieved via common
index structures, like B-trees or R-trees. To estimate utilities we collect a sample of the data offline
and store it in the DBMS.

In summary, the proposed SW framework:

• Allows users to interactively explore data in terms of multidimensional windows and select
interesting ones via shape- and content-based predicates.

• Provides online results quickly, facilitating human-in-the-loop processing needed for interactive
data exploration.

• Uses a data-driven search algorithm integrated with stratified sampling, adaptive prefetching
and data placement to offer interactive online performance without sacrificing query completion
times.

• Offers a diversification approach that allows users to direct the search for qualifying SWs in un-
explored regions of the search space, thus allowing the user to control the classical exploration
vs. exploitation trade-off.

• Provides an efficient distributed execution framework that partitions the data space to allow
parallelism while effectively dealing with partition boundaries.

3.2 SW Model and Queries

Assume a data set S containing objects with attributes a1, . . . , am (e.g., brightness, price, etc.) and
coordinates x1, . . . , xn. Thus, S constitutes an n-dimensional search area with dimensions d1, . . . , dn.
We will often specify S in terms of the intervals it spans (e.g., S = [L1, U1) × [L2, U2) for a two-
dimensional data set). Next, we define a grid on top of S. The grid GS is defined as a vector of
steps: (s1, s2, . . . , sn). It divides each interval [Li, Ui) into disjoint sub-intervals of size si, starting
from Li: [Li, Li+ si)∪ [Li+ si, Li+ 2si)∪ · · · ∪ [Li+k · si, Ui). The last sub-interval might have size
less than si, which has no impact on the discussion. Thus, S is divided into a number of disjoint
cells. The search space of an SW query consists of all possible windows. A window is a union of
adjacent cells that constitutes an n-dimensional rectangle. Since the grid determines the windows
available for exploration, the user can specify a particular grid for every query.

Let us revisit examples presented in Section 3.1. Example 3.1.1 could be represented as follows:

• d1 = ra, d2 = dec, a1 = brightness 1.

• S = [100◦, 300◦)× [5◦, 40◦), GS = (1◦, 1◦).

and Example 3.1.2 as:
1The original SDSS data does not contain a brightness attribute. However, this attribute or a similar one can be
computed from other attributes using an appropriate function.
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• d1 = time, a1 = price.

• GS = (1 year), S = [1999/02/01, 2003/11/30)

An objective function f(w) is a scalar function, defined for window w. There are two types of
objective functions:

• Content-based. They are computed over objects belonging to the window. Since the value
must be scalar, this type is restricted to aggregates (average, sum, etc). We further restrict
them to be distributive and algebraic [21]. This is done for efficiency purposes — the value of
f(w) must be computable from the corresponding values of the cells in w. We discuss this in
more detail in Section 3.5.

• Shape-based. They describe the shape of a window and do not depend on data within the
window. We restrict ourselves to the following functions: card(w) and lendi

(w). The former
defines the number of cells in w, which we call the cardinality of w. The latter is the length of
w in dimension di in cells. Assuming w spans interval [li, ui) in di, lendi(w) = ui−li

si
. Other

functions, for example computing the perimeter or area, are possible.

A condition c is a predicate involving an objective function. The result of computing condition
c for window w is denoted as wc. The framework is restricted to algebraic comparisons, for example
f(w) > 50.

The conditions for Example 3.1.1 can be defined as: lenra(w) = 3, lendec(w) = 2 and
avg_brightness(w) > 0.8. For Example 3.1.2, the conditions can be expressed as: lentime(w) ≥ 1,
lentime(w) ≤ 3 and avg_price(w) > 50.

An SW query can now be defined as QSW = {S,GS , C}, where C is a set of conditions. The
result of the query is defined as: RESQ = {w ∈ WS |∀c ∈ C : wc = true}, where WS is a set of all
windows, defined by GS .

3.3 Existing SQL Extensions for Data Exploration

As a first option, we look into expressing SW queries using SQL. While SQL has constructs for
working with groups of tuples, such as GROUP BY and OVER, they are insufficient for expressing all
possible windows. GROUP BY does not allow overlapping groups, which makes it impossible to express
overlapping windows. OVER allows users to study a group of tuples (also called window in SQL) in
the context of the current tuple via PARTITION BY clause. However, it allows only one such a group
for every tuple, not a series of groups with different shapes. Thus, only a subset of possible windows
can be expressed this way. The standard SQL is even more restrictive and does not allow functions
to be used in PARTITION BY. This makes it difficult to express multidimensional windows at all.

One general way, which we implemented, is to express an SW query as follows:

1. Compute objective function values for every cell of the grid via GROUP BY.
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WITH RECURSIVE
−− computing cells
cells (cell_id , lx , rx, ly , ry, val) AS (

SELECT cell_num(x, y),
(cell_coords(cell_num(x, y))).lx ,
(cell_coords(cell_num(x, y))).rx,
(cell_coords(cell_num(x, y))).ly ,
(cell_coords(cell_num(x, y))).ry,
(sum(val), count(val))::sc_val

FROM data
WHERE x >= start_x() AND x < end_x()

AND y >= start_y() AND y < end_y()
GROUP BY cell_num(x, y)

),
−− all windows built by expanding to the " right "
windows_int(lx, rx, ly , ry, val) AS (

SELECT lx, rx, ly, ry, val
FROM cells
UNION ALL
SELECT r.lx, r.rx + step_x(), r.ly, r.ry,

(SELECT ((r.val).s + sum((c.val).s),
(r . val ). c + sum((c.val).c))::sc_val

FROM cells AS c
WHERE (c.lx = r.rx AND c.ly >= r.ly AND

c.ry <= r.ry))
FROM windows_int AS r
WHERE EXISTS(SELECT 1

FROM cells AS c
WHERE (c.lx = r.rx AND c.ly >= r.ly

AND c.ry <= r.ry))
),
−− all windows built by expanding "up"
windows(lx, rx, ly , ry, val) AS (

SELECT lx, rx, ly, ry, val
FROM windows_int
UNION ALL
SELECT r.lx, r.rx, r.ly, r .ry + step_y(),

(SELECT ((r.val).s + sum((c.val).s),
(r . val ). c + sum((c.val).c))::sc_val

FROM cells AS c
WHERE (c.ly = r.ry AND c.lx >= r.lx AND

c.rx <= r.rx))
FROM windows AS r
WHERE EXISTS(SELECT 1

FROM cells AS c
WHERE (c.ly = r.ry AND c.lx >= r.lx
AND c.rx <= r.rx))

)
−− main query
SELECT lx, rx, ly, ry, (val).s / (val ). c AS val
FROM windows
WHERE (val).c <> 0 AND (val).s / (val).c > 200

Figure 3.2: An example of SQL query expressing a simple exploration SW query.
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2. Generate every possible window by combining cells, using recursive Common Table Expressions
(CTEs). Values for the objective functions are computed by combining the values of the cells.

3. Filter windows that do not satisfy the conditions.

Figure 3.2 gives an example of a two-dimensional SW query expressed this way. It searches for
all windows (without any other restrictions) for which avg(val) > 200. Note that this query is even
less complex than the one from Example 3.1.1. Some parts of the query are omitted for the sake of
clarity, since they are not required for understanding the query. This includes:

• Helper functions and types, which are also written in SQL and define simple expressions and
constants. For example, cell_num() computes the number of the cell a tuple belongs to in
the row-major order.

• A small sub-query that computes avg(val) via GROUP BY for every possible cell, including
empty ones. One caveat of GROUP BY is that it does not output cells that contain no tuples.
Since such cells are still required to compute the windows, they are explicitly assigned values
of 0.

This type of query leads to two major problems. First, due to its complexity most traditional
query optimizers would likely have hard time executing the query efficiently. As an example, we
provide experimental results for PostgreSQL in Section 3.6. More importantly, the query performs
an aggregation in the beginning. This means the computation is blocked until all cells have been
computed. Such a query would not be able to output online results. Techniques like online aggre-
gation [24] are very limited here, since exact, not approximate, results are required. Also, applying
online aggregation to such a complex query is challenging at best.

To address these problems we propose to extend SQL to directly express SW queries. Our
extensions are as follows:

• The new GRID BY clause for defining the search space. This clause replaces GROUP BY (both
cannot be used at the same time).

• New functions that can be used for describing windows. Namely, LB(di), UB(di) to compute
the lower and upper boundaries of a window in dimension di. Other functions are possible
depending on the user’s needs.

• New functions for defining shape-based conditions. Namely, LEN(di), which is equivalent to
lendi

(w). This function is syntactic sugar, since it is possible to compute it by using boundary
functions introduced above.

Additionally, we reuse the existing SQL HAVING clause to define conditions for the query. Figure
3.3 shows how Example 3.1.1 can be expressed with the proposed extensions.

In the GRID BY clause, BETWEEN defines the boundaries of the search area for every dimension and
STEP defines steps of the grid (ra, dec are attributes of sdss and serve as dimensions). The query is
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SELECT LB(ra), UB(ra), LB(dec), UB(dec),
AVG(brightness)

FROM sdss
GRID BY ra BETWEEN 100 AND 300 STEP 1,

dec BETWEEN 5 AND 40 STEP 1
HAVING AVG(brightness) > 0.8 AND

LEN(ra) = 3 AND
LEN(dec) = 2

Figure 3.3: The SW query from Figure 3.2 written with the proposed SQL extensions.

processed in the same way as a GROUP BY query in SQL, except that instead of groups it works with
windows defined via the GRID BY clause. HAVING has the same meaning — filtering windows that
do not satisfy conditions. Since SELECT outputs windows, only functions describing a window can
be used there: the ones describing the shape and the ones that were used for defining conditions.
Similar restrictions are imposed in the SQL standard for GROUP BY queries.

3.4 The SW Framework

3.4.1 Data-Driven Online Search

We first describe our basic algorithm for executing SW queries with online results. Logically, the
search process can be described as follows:

1. Data set S is divided into cells ci as specified by grid GS .

2. All possible windows w are enumerated and explored one by one in an arbitrary order.

3. If window w satisfies all conditions (i.e., {∀c ∈ C : wc = true}), the window belongs to the
result.

This suggests a naive algorithm to compute an SW query. The algorithm presented in this section
is designed to provide online results in an efficient way. The main idea is to dynamically generate
promising candidate windows as the search progresses and explore them in a particular order.

The search space of all possible windows is structured as a graph. First we define relationships
between windows. Giving a window w, an extension of w is a window w′, which is constructed by
combining cells of w with a number of adjacent cells from its neighborhood. If w′ is extended in a
single dimension and direction from w, it is called a neighbor. An example can be seen in Figure 3.4.
A two-dimensional search area is divided into four cells, labeled 1 through 4. Window 1|2|3|4 2 is
an extension of window 1, since it is produced by adding adjacent cells 2 through 4. At the same
time, 1|2|3|4 is a neighbor of 1|2, since 1|2 is extended only in the vertical dimension and the only

2c1| . . . |ck labels a window consisting of cells c1 through ck
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direction — “down”. The resulting search graph consists of vertices representing windows and edges
connecting neighbors.

With the search graph defined, we use a heuristic best-first search approach to traverse it. The
heuristic is based on the utility of a window, which will be discussed in more detail in Section 3.4.2.
In a nutshell, utility is a combination of the cost of reading a window from disk and the potential
benefit of the window, which is a measure of how likely the window is to satisfy the query conditions.
The resulting algorithm is presented as pseudo-code below:

Algorithm 1 Heuristic Online Search Algorithm
Input: search space S, grid GS , conditions C
Output: resulting windows RESQ

procedure HeuristicSearch(S,GS , C)
PQ← ∅, RESQ ← ∅ . PQ — priority queue
StartW ← StartWindows(S,GS , C)
for all w ∈ StartW do

EstimateUtility(w)
insert(PQ,w) . utility as priority

while ¬empty(PQ) do
w ← pop(PQ)
UpdateUtility(w)
if Utility(w) ≥ Utility(top(PQ)) then

Read(w) . read from disk if needed
UpdateResult(RESQ, C, w)
N ← GetNeighbors(w, S,GS)
for all n ∈ N do

EstimateUtility(n)
insert(PQ, n)

else
insert(PQ,w)

The algorithm uses a priority queue to explore candidate windows according to their utilities. The
utility is estimated before a window is read from disk via a precomputed sample. Since estimations
might improve while new data is read from disk during the search, when the next window is popped
from the queue, we update its utility via the UpdateUtility() function. This can be seen as lazy
utility update. If the window still has the highest utility, it is explored (i.e., read from disk and
checked for satisfying the conditions). Otherwise, it is returned to the queue to be explored later.
Additionally, we periodically update the whole queue to avoid stale estimations. In this case only
the windows for which new data is available are actually updated.

The procedure begins by determining the initial windows via the StartWindows() function.
Since the search space might be large, it is important to aggressively prune windows. Suppose the
user specifies a shape-based condition that defines the minimum length n for resulting windows
in some dimension (e.g., lendi

(w) ≥ n). StartWindows() does not generate windows that cannot
satisfy this condition, effectively pruning initial parts of the graph. Otherwise, the search starts
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from cells. A similar check is made in the GetNeighbors() function, which generates all neighbors
of the current window. It checks for conditions that specify the maximum length in a dimension
(e.g., lendj (w) ≤ m) and does not generate neighbors that violate such conditions.

Since the number of windows can be very large, at some point the priority queue may not fit
into memory. It is possible to spill the tail of the queue into disk and keep only its head in memory.
When a new window has a low utility, it is appended to the tail (in any order). When the head
becomes small enough, part of the tail is loaded into memory and priority-sorted, if needed. For
efficiency, the tail can be separated into several buckets of different utility ranges where windows
inside a bucket have an arbitrary ordering.

While additional pruning, based on other conditions, might further increase the efficiency of the
algorithm, it is not safe to apply in general. Since providing approximate results is not an option we
consider, it is not possible to discard a window or its extensions solely on the basis of estimations.
Content-based conditions must be checked on the exact data. In general, extensions have to be
explored as well, since they too can produce valid results. However, in some restricted cases, it is
possible to prune them.

One example is the so-called anti-monotone constraints [39]. In case of a content-based condition
sum(w) < 10 and assuming sum() can produce only non-negative values, it is possible to prune all
windows that contain the current window w′ if sum(w′) ≥ 10, since sum() is monotonic on the
size of a window. The length and cardinality of a window are other examples of such functions.
Since they are data-independent, the corresponding conditions are always safe to use for pruning,
which our algorithm supports. Such anti-monotone pruning, however, would not necessarily decrease
the amount of data that has to be read. Windows that just overlap with w′ might still be valid
candidates for the result.

3.4.2 Computing Window Utilities

The utility of a window is a combination of its cost and benefit. The cost determines how expensive
it is to read a window from disk. Since the grid is defined at the logical level without considering
the underlying data distribution, some windows may be more expensive to read than others, if the
data distribution is skewed. Also, since windows overlap, the cost of a window may decrease during
the execution if some of its cells have already been read as parts of other windows. We assume that
the system caches objective function values for every cell it reads, so it is not necessary to read a
cell multiple times. The cost is computed as follows. Let |S| = n, |GS | = m, where |S| is the total
number of objects in the data set and |GS | is the total number of cells. Let the number of objects
belonging to non-cached cells of window w be |w|nc. Then the cost Cw of the window is computed
as: Cw = |w|nc

n/m = |w|ncm
n .

In case data does not have considerable skew, the cost is approximately equal to the number of
non-cached cells belonging to the window. However, in general the cost might differ significantly,
depending on the skew. To compute the cost accurately, it is necessary to estimate the number of
objects in a window. We use a precomputed sample for the initial estimations and update these
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estimations during the execution as we read data. When reading a window, we not only compute the
objective function values, but also the number of objects for every cell. This results in computing
an additional aggregate for the same cells, which does not incur any overhead.

The second part of the utility computation is benefit estimation. Here, we determine how “close”
a window is to satisfying the user-defined conditions. First, we compute the benefit for every
condition independently. The framework currently supports only comparisons as conditions, but
the approach can be generalized for other types of predicates. Assume an objective function f(w)
and the corresponding condition in the form: f(w) op val, where op is a comparison operator. We
assume f(w) can be estimated for window w via the precomputed sample. Let the estimated value
be fw. Then the benefit bfw for condition f for window w is computed as follows:

bfw =

max
{

0, 1− |fw−val|
eps

}
if fw op val = false

1 if fw op val = true

The value eps determines the precision of the estimation and is introduced to normalize the
benefit value to be between 0 and 1. It often can be determined for a particular function based
on the distance of the corresponding attribute values from val. For example, if f = avg(ai), then
max{|val −min(ai)|, |val −max(ai)|} can serve as eps. Alternatively, a value of the magnitude of
val can be taken initially and then updated as the search progresses.

The total benefit Bw of window w is computed as the minimum of the individual benefits, since
a resulting window must satisfy all conditions: Bw = minf∈C bfw.

Since bfw ∈ [0, 1], it follows that Bw ∈ [0, 1]. The utility of window w is a combination of the
benefit and cost:

Uw = sBw + (1− s)
(

1−min
{
Cw
k
, 1
})

The cost is divided by k to normalize it to [0, 1]. In case the user did not provide any restrictions
on the maximum cardinality for windows, k is equal to m. Otherwise, it is equal to the maximum
possible cardinality inferred from shape-based conditions. The parameter s (s ∈ [0, 1]) is the weight
of the benefit. Lowering the value allows exploring cheaper, but promising, windows first, while
increasing it prioritizes windows with higher benefits at the expense of the cost. Intuitively, it is
better to first explore windows with high benefits and use the cost as a tie-breaker, picking the
cheaper window when benefits are close to each other.

We illustrate the algorithm with the search graph from the previous section, presented in Fig-
ure 3.4. The exact parameters for the search area are irrelevant. Assume the whole data set contains
n = 200 objects and the number of objects in cells 1, 2, 3 and 4 (m = 4) is 50, 20, 30 and 100 re-
spectively. We assume that eps = 10, k = 4 and s = 1

2 . The only condition is f(w) > 13 and the
estimated values fw are specified on top of windows. The numbers to the left (bottom) of windows
specify benefits, costs and utilities as b, c and u respectively. Initially, only the values for cells are
computed, and the values for other windows are computed when they are explored. The search
progresses as follows:
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Figure 3.4: The search graph for an SW query, annotated with benefits, costs, utilities and objective
function estimations

1. Since there are no shape-based conditions, the search starts with cells. Initially, PQ =
[2, 3, 1, 4], and the algorithm picks cell 2, which is read from disk. It generates two neigh-
bors: 1|2 and 2|4. f(w) is estimated from the sample, and the windows are put into the queue.
Note that C1|2 = C1 = 1, C2|4 = C4 = 2, since cell 2 has already been read.

2. PQ = [3, 1|2, 1, 2|4, 4]. The algorithm picks cell 3 and reads it from disk. It generates its
neighbors: 1|3 and 3|4.

3. PQ = [1|3, 1|2, 1, 2|4, 3|4, 4]. The next window to explore is 1|3. It is processed in the same
way and generates the only neighbor possible — 1|2|3|4.

4. PQ = [1|2, 1, 1|2|3|4, 2|4, 3|4, 4]. The search moves to window 1|2. Since cells 1 and 2 have al-
ready been read, the window is not read from disk and explored in memory. Its only extension,
1|2|3|4, was generated already and is skipped.

5. PQ = [1, 1|2|3|4, 2|4, 3|4, 4]. The search then goes through 1, 1|2|3|4, 2|4, 3|4 and, finally, 4 in
the order of their utilities. Due to caching, all windows except 1|2|3|4 are checked in memory,
and when 1|2|3|4 is explored, only cell 4 is read from disk.

At every step, after a window is read from disk, the condition is checked. If the window satisfies
the condition, it is output to the user. Otherwise, it is filtered.

3.4.3 Progress-driven Prefetching

Reconsider the heuristic search algorithm presented in Section 3.4.1. Every time a window is ex-
plored, all of its cells that do not reside in the cache have to be read from disk. If the grid contains a
large number of cells, the search process might perform a large number of reads, which might incur
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considerable overhead. If the data placement on disk does not correspond to the locality implied by
windows, reading even a single window might result in touching a large number of pages dispersed
throughout the data file. The problem goes beyond disk seeks. If only a small portion of objects
from each page belongs to the window, these pages have to be re-read later when other windows
touch them. This might create thrashing. An implementation of the algorithm that does not modify
the database engine cannot deal with this problem. The problem might be partially remedied by
clustering the data, yet there are times when users cannot change the placement of data easily. The
ordering might be dictated by other types of queries users run on the same data. Another possible
way is to materialize the grid by precomputing all cells. However, this requires that the query pa-
rameters (i.e., the search area, the grid and functions) be known in advance. Since exploration can
often be an unpredictable ad hoc process, we assume the parameters may vary between queries. In
this case, materialization performed for every query will make online answering impossible.

To address this problem, we use an adaptive prefetching strategy. Our framework explores
windows in the same way, but it prefetches additional cells with every read. The window is extended
to a new window, according to the definition of the extension from Section 3.4.1. When the size
of prefetching increases, intermediate delays might become more pronounced due to the additional
data read with every window. At the same time, due to the decreased number of reads, this reduces
the overhead and the query completion times. Decreasing the size of prefetching has the opposite
effect. While this approach can be seen as offering a trade-off between the online performance and
query completion time, we show that, in some cases, prefetching can be beneficial for both, as we
demonstrate through experiments.

During the search it is beneficial to dynamically change the size of prefetching. A read can
have two outcomes. Positive reads result in reading cells that belong to the resulting windows. It
might be the window just read or windows overlapping with it. While new results keep coming,
the framework prefetches a constant default amount, controlled by a parameter. By setting this
parameter users can favor a particular side of the trade-off. On the other hand, a false positive read
does not contribute to the result, reading cells that do not belong to the resulting windows. A false
positive can happen for two reasons:

• The remaining data does not contain any more results. To confirm this, the search process
still has to finish reading the data. All remaining reads are going to be false positives. In this
case the best strategy would be to read it in as few requests as possible.

• Due to sampling errors, utilities might be estimated incorrectly. Since new results are still
possible, it is better to continue reading data via select, short requests.

Since it is basically impossible to distinguish between the two cases without seeing all the data,
we made the prefetching strategy adapt to the current situation. In this new technique, which we
refer to as progress-driven prefetching, the size of prefetching increases with every new consecutive
false positive read, which addresses the first case. When a positive read is encountered, the size is
reset to the default value to switch back at providing online results. The size of prefetching, p, is
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Algorithm 2 Prefetch Algorithm
Input: window w, prefetch size p
Output: window to read w′

procedure Prefetch(w, p)
w′ ← w
for i = 1→ n do . n — number of dimensions

for dir ∈ {left, right} do
max← Cw′ + p

∏
k 6=i lendk

(w′)
repeat

ext← GetNeighbor(w′, di, dir)
if Cext ≤ max then

w′ ← ext
until Cext > max

computed as:
p = (1 + α)α+fp_reads − 1

α ≥ 0 is the parameter that controls the default prefetching size. We call it the aggressiveness
of prefetching. In case α = 0, p = 0 and no additional data is read. Increasing α results in
increasing the default prefetching size, which favors the query completion time. fp_reads is the
number of consecutive false positives. When it increases, p increases exponentially. If a new result
is discovered, fp_reads is set to 0, and p is automatically reset. This corresponds to the adaptable
strategy described above. The exponential increase was chosen so that the size would grow quickly
in case no results can be found. This allows us to finish the query faster. We assume that the number
of consecutive false positives due to sampling errors is not going to be large, so online performance
will not suffer.

The pseudo-code of Algorithm 2 describes how a window is extended according to the value of p.
The size defines a “cost budget” for the extension. This budget is applied as a number of possible
extension cells independently for every direction in every dimension. The budget-based approach
allows us to address a possible data skew. Since for a fixed dimension a window can be extended in
two directions, we denote them as left and right.

3.4.4 Diversifying Results: Exploration vs. Exploitation

Our basic SW strategy is designed for “exploitation” in that it is optimized to produce qualifying
SWs as quickly as possible without taking into account what parts of the underlying data space
these results may come from. In many data exploration scenarios, however, a user may want to get
a quick sense of the overall data space, requiring the underlying algorithm to efficiently “explore”
all regions of the data, even though this may slow down query execution.

With the basic algorithm, when a number of resulting windows is output, other promising win-
dows that overlap with them will have reduced costs and higher utilities due to the cached cells.
Such windows will be explored first, which might favor results located close to each other. In some
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cases it might be desirable to jump to another part of the search space that contains promising,
but possibly more expensive, windows. This way the user might get a better understanding of the
search area and results it contains. We considered two approaches to achieve that.

The first approach is to include a notion of diversity of results within the utility computation.
We define a cluster of results as an MBR (Minimum Bounding Rectangle) containing all resulting
windows that overlap each other. Discovering all final clusters faster might give a better under-
standing of the whole result. When a new window is explored we compute the minimum Euclidean
distance dist from the window to the clusters already found. The distance is normalized to [0, 1]
and included as a part of the window’s benefit: B′w = Bw+dist

2 , resulting in the modified utility U ′w.
If the window being explored belongs to a cluster, we find the next highest-utility window w′ with
a non-zero dist and compare utilities U ′w and U ′w′ . If w′ has a higher utility, it is explored first. We
call this a “jump”. With this approach, promising windows might be stifled by consecutive jumps.
To avoid this problem, the jumping is turned off at the current step if the last jump resulted in a
false positive.

Another approach is to divide the whole search area into sub-areas, according to a user’s spec-
ification. For example, a time-series data might be divided into years. Each sub-area has its own
queue of windows and the search alternates between them at every step. If a window spans multiple
sub-areas, it belongs to the sub-area containing its left-most coordinate point, which we call the
window’s anchor. This approach is similar to the online aggregation over a GROUP BY query [24],
where different groups are explored at the (approximately) same pace. Since some sub-areas might
not contain results, the approach may cause large delays. At the same time, it makes the exploration
more uniform.

3.5 Architecture and Implementation

We implemented the framework as a distributed layer on top of PostgreSQL, which is used as
a data back-end. The algorithm is contained within a client that interacts with the DBMS. To
perform distributed computation, the clients, which we call workers, can work in parallel under
the supervision of a coordinator. The coordinator is responsible for starting workers, collecting all
results and presenting them to the user. The search area is partitioned into disjoint sub-areas among
the workers. A window belongs to the worker responsible for the sub-area containing the window’s
anchor, its leftmost point. Since some windows span multiple partitions, the worker is responsible
for requesting the corresponding cell data from other workers. An overview of the distributed
architecture is shown in Figure 3.5.

The worker consists of the Query Executor, which implements the search algorithm, including
various optimizations such as prefetching. The Window Processor is responsible for computing
utilities and objective function values (exact and estimated), based on the information about cells
provided by the Data Manager. The Data Manager implements all the logic related to reading cells
from disk, maintaining additional cell meta-data, and requesting cell data from other workers. This
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Figure 3.5: Distributed SW architecture

includes:
Caching. The cache contains objective function values for all cells read from disk and requested

from other workers. When a new window is explored, only the cells that are not in the cache are
read. We assume that the objective values for all cells can fit into memory. This is a fair assumption,
since data objects themselves do not have to be cached.

Sample Maintenance. The Data Manager maintains a sample that is used for estimating objective
function values and the number of objects for every cell that has not been read from disk. We assume
that a precomputed sample is available in the beginning of query execution. The parts of the sample
belonging to other partitions are requested from the corresponding workers.

DBMS Interaction and I/O. When a request for a window is made, the Data Manager performs
the read via a query to the underlying DBMS. It requests objective function values for non-cached
cells belonging to the window in a single query. These values are combined with the cached ones at
the Window Processor producing the objective value for the window. Windows consisting entirely of
cached cells are processed without the DBMS. We assume that the value of an objective function for
a window can be combined from the values of cells the window consists of. All common aggregates
(e.g., min(), sum(), avg(), etc.) support this property.

Remote Requests. When a window spans multiple partitions, the Data Manager requests objective
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values for the cells belonging to other partitions from other workers. If a remote worker does not
have the data in cache, it delays the request until the data becomes available. Eventually it is going
to read all its local data and, thus, will be able to answer all requests. After every disk read, the
worker checks if it can fulfill more requests. If so, it returns the data to the requester. At the
same time, the requester continues to explore other windows. When the remote data comes, the
corresponding windows are computed and reinserted into the queue. The only way a worker may
block is when it has finished exploring its entire sub-area and is waiting for remote data. Thus, the
total query time is essentially dominated by the total disk time of the slowest worker.

3.6 Experimental Evaluation

For the experiments we used the prototype implementation described in Section 3.5, written in C++.
Single-node experiments were performed on a Linux machine (kernel 3.8) with an Intel Q6600 CPU,
4GB of memory and WD 750GB HDD. All experiments with the distributed version presented in
Section 3.6.4 were performed using EBS-optimized m1.large Amazon EC2 instances (Amazon Linux,
kernel 3.4).

Data Sets For the experiments, we used three synthetic data sets and SDSS [4]. Each synthetic
data set was generated according to a predefined grid. The number of tuples within each cell was
generated using a normal distribution with a fixed expectation. Each synthetic data set contains
eight clusters of tuples, where a cluster is defined as a union of non-empty adjacent cells. We
generated three queries, one for each data set, which select four clusters. These target clusters differ
in their distance from each other, which we call spread. Essentially, each data set contains the same
clusters (and tuples), although their coordinates differ. Thus, each query has the same conditions,
which allowed us to measure the effect of the spread in a clean way. The parameters of the query
are: S = [0, 1000000)× [0, 1000000), s1 = s2 = 10000, card() ∈ (5, 10), avg() ∈ (20, 30).

For the SDSS data set, the situation is different. It is hard to ensure the same cleanliness
of the experiment when dealing with different spreads of the result. We thus chose three queries
with (approximately) the same selectivity and different spreads. However, in this case the con-
ditions for each query differ and the search process explores different candidate windows in ev-
ery case. The parameters of the queries are: S = [113, 229) × [8, 34), s1 = s2 = 0.5, card() ∈
(10, 20)/(5, 10)/(15, 20), avg(

√
rowv2 + colv2) ∈ (95, 96)/(100, 101)/(181, 182), where ra, dec (from

the relational SDSS) are dimensions, / divides high, medium and low spread respectively and
rowv, colv are velocity attributes.

Each of the data sets takes approximately 35GB of space, as reported by the DBMS. PostgreSQL’s
shared buffer size was set at 2GB. Computing an objective function for a window is transformed
into a SQL prepared statement call. The statement is basically a range query, defining the window,
with a GROUP BY clause to compute individual cells. For the efficient execution of range queries, we
created a GiST [25] index for each data set 3 The size of each index is approximately 1GB. Each

3In PostgreSQL, GiST indexes are used instead of R-trees, which would be a logical choice for SW queries.
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query results in a bitmap index scan, reading the data pages determined during the scan and an
aggregation to compute the objective function. PostgreSQL performed all aggregates in memory,
without spilling to disk.

Data Placement Alternatives As described in Section 3.4.3, the placement of data on disk
has a profound impact on the performance of the algorithm. In the experimental evaluation we
considered three options:

• Ordering tuples by one of the coordinates (e.g., order by the x-axis). In this case windows
generally contain tuples heavily dispersed around the data file. We denote this option as
“Synth/SDSS-axis” in text (e.g., “SDSS-ra”).

• Clustering the tuples according to the GiST index. This reduces the dispersion of tuples, but
since R-trees do not guarantee efficient ordering, there still might be considerable overhead for
each range query. This option is denoted with suffix “-ind”.

• Clustering the tuples by their coordinates in the data file. One common way to do this is to use
a space-filling curve. Since we used a Hilbert curve, we denoted this option with suffix “-H”.
Another way is to cluster together tuples from the same part of the search area. For example,
tuples from each of the eight synthetic clusters are placed together on disk, but no locality is
enforced between the clusters. This is a convenient option in case more data is added and the
search area is extended, since it does not destroy the Hilbert ordering. We define this option
with suffix “-clust”.

Stratified Sampling We used a stratified sampling approach to estimate utilities. Assuming
the total number of cells is m and the total sample budget is n tuples, each cell is sampled with
t = n

m tuples. If a cell contains fewer tuples than t, all its tuples are included in the sample and the
remaining cell budget is distributed among other cells. The idea is similar to the idea of fundamental
regions [14] and congressional sampling [5]. A cell is a logical choice for a fundamental region. Each
cell is independently sampled with SRS (Simple Random Sampling). Since cells effectively have
different sampling ratios, we store the ratio with each sampled tuple to correctly estimate the
required values, which is the common way to do this. All experiments reported were performed
using a 1% stratified sample.

3.6.1 Query Completion Times

In this experiment we studied the effect of the data placement and prefetching on the query com-
pletion time. Table 3.1 provides the results for the high spread query. Other queries exhibited the
same trend. α denotes the aggressiveness of prefetching, where “No pref” means no prefetching.

To establish a baseline for the comparison, we ran a corresponding SQL query (as described in
Section 3.3) in PostgreSQL and measured the total and I/O (disk) time. Due to the nature of the
SQL query, PostgreSQL did a single read of the data file, and then aggregated and processed all
windows in memory. For the synthetic data set, the query resulted in 1,457.84s total and 677.94s



32

Table 3.1: Query completion times for different aggressiveness values (in seconds)
Dataset No pref α = 0.5 α = 1.0 α = 2.0
Synth-x 28,206.84 13,521.55 8,602.45 6,957.33
Synth-clust 1,123.12 859.08 886.01 817.59
SDSS-dec 26,725.05 4,542.17 3,145.15 2,109.76
SDSS-clust 1,510.59 1,145.37 1,130 1,158.29

I/O time. For SDSS the query resulted in 3,589.93s total and 849.70s I/O time. The difference
between the synthetic and SDSS times was due to small differences in the size of the data sets and
the parameters of the queries (SDSS selected more windows, which resulted in more CPU overhead
for PostgreSQL).

As Table 3.1 shows, in case when data is physically clustered on disk (-clust), the framework is
able to outperform PostgreSQL even without using prefetching. This is due to a very small CPU
overhead for the framework. When using prefetching, the difference becomes even more pronounced.
In the “SDSS-clust” case, using α = 2.0 resulted in 30% less completion time. It is important to
mention that the framework starts outputting results from the beginning, while the SQL approach
outputs all results only at the end.

In case the data is physically dispersed on disk (-x and -dec ordering), prefetching allowed us to
reduce the completion time significantly, i.e., by an order of magnitude. In the case of SDSS, the
framework eventually started outperforming PostgreSQL, while for the synthetic data a considerable
overhead remained. In general, the performance improvement depends on the properties of the data
set, such as the degree of skew or the number of clusters. Despite the remaining overhead for the
synthetic data, we believe the framework remains very useful even in such cases, since it starts
outputting results quickly.

3.6.2 Online Performance

This experiment studies the effect of prefetching on online performance (i.e., delays with which
results are output). As the previous experiment showed, increasing the prefetching size reduces the
query completion time. At the same time, it should increase delays for results since the amount of
data read with each window increases. To present the experiment more clearly, instead of showing
individual result times, we show times to deliver a portion of the entire result (a percentage of
the total number of answers). The time to find all the answers (i.e., 100% in the figures) and
the completion time of the query generally differ. The former might be smaller, since even when
all answers are found, the search process has to read the remaining data to confirm this. This
means users can be sure the result is final only when the query finishes completely. We provide the
PostgreSQL baseline, explained in the previous section, as a dotted line in the figures.

Figure 3.6 shows the online performance of all three queries with different spreads for the synthetic
data set (sorted by the axis x). All queries behaved approximately the same, since at every step the
algorithm considers windows from the whole search space. The differences were due to the physical
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Figure 3.6: Online performance of the synthetic queries (Synth-x, left: α = 0.5, right: α = 2.0)
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Figure 3.7: Online performance of the high-spread synthetic query (left: Synth-x, right: Synth-clust)

placement of data. For the case of α = 2.0 the final result was found faster for the low spread query.
Since in this case clusters were situated close to each other, prefetching large amounts of data around
one cluster allowed the algorithm to “touch” another, nearby, cluster as well. Other orderings of the
data set resulted in the same behavior.

Figure 3.7 shows the online performance of the high-spread query for the “Synth-x” and “Synth-
clust”. For “Synth-x” larger aggressiveness values resulted in much better online performance during
the whole execution, although α = 2.0 created longer delays at some points. The situation changes
with the beneficial clustered ordering. While values up to α = 1.0 behaved approximately the same,
α = 2.0 created much longer delays. This exposes a trade-off between the query completion time
savings coming from prefetching data and the delays for online results. Figure 3.8, which shows the
results for the high spread SDSS query, demonstrates the same trend. If the user is not aware of the
ordering, α = 1.0 might be considered a “safe” value on average, which both provides considerable
savings and does not cause large initial delays. For advanced usage, the aggressiveness should be
made available to users to control. If the user is satisfied with the current online results, she can
increase the value to finish the query faster. If the ordering is not beneficial (e.g., axis-based), the
value should not be set to less than α = 1.0.

Other queries exhibited the same trend and are not shown. We do not show the results similar
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Figure 3.8: Online performance of the high-spread SDSS query (left: SDSS-dec, right: SDSS-clust)

to Figure 3.6 for SDSS. Since different spread queries for SDSS differ in the number of results and
query parameters, the algorithm behaved different each time (e.g., considered different candidate
windows and used different sizes for prefetching), which made the direct comparison of different
queries meaningless.

We should mention that first results are output in 10 seconds in most cases and in 80 seconds in
worst cases. This fulfills one of the most important goals: start delivering online results fast.

3.6.3 Physical Ordering of Data

Here we studied the effect of the physical data placement, described in Section 3.4.3, in more detail.
Table 3.2 presents statistics of data file reads for three different ordering options described at the
beginning of Section 3.6. We ran a single query (one per data set) and used systemtap probes in
PostgreSQL to collect the statistics. In the table, “Total” refers to the total time of reading all
blocks, without considering the time to process the tuples.

Table 3.2: Disk statistics for the synthetic dataset
Data set Total Mean/Dev Reads Re-reads

(s) read (ms) (blks) (blks)
Synth-x 24,987 2.4/2.5 10,476,601 6,477,523
Synth-ind 3,053 0.7/1.7 4,217,096 218,018
Synth-clust 738 0.2/0.8 4,001,263 2,185
Synth-H 747 0.2/0.8 4,000,592 1,514

When the physical ordering did not work well with range queries (i.e., -x), the DBMS effectively
had to read the same data file more than twice (see the “Re-reads” column), which supports the
thrashing claim made in Section 3.4.3. Moreover, since each range query resulted in multiple dis-
persed reads, the time of a single read grew considerably and became more unpredictable (see the
“Mean/Dev” column), because of seeks. SDSS showed the same results.
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3.6.4 Distributed Processing

We now present experimental results for the same queries over distributed data. When a search
area is partitioned among the workers, there is flexibility in partitioning the data itself, which we
studied along three cases. In the first one, the data partitioning corresponds to area partitioning,
which requires some workers to perform remote data requests. We call this no-overlap. Another
case, full-overlap, involves creating overlapping partitions so that workers have all data available
locally and no remote requests are made. This case is possible only if shape-based conditions (e.g.,
the cardinality of windows) are known in advance or if the data is fully replicated. Otherwise, the
overlap will be partial and workers will be making remote requests, albeit a smaller number of them.
We call this third case part-overlap.

Table 3.3: Results for the distributed synthetic high-spread query (Synth-clust, α = 1.0)
Nodes, Overlap First result All results Total time
1 node, no 6 820 1820
2 nodes, no 6 470 1050
4 nodes, no 5 360 580
8 nodes, no 7 200 350
1 node, full 6 820 1820
2 nodes, full 6 490 1250
4 nodes, full 5 350 790
8 nodes, full 7 255 650
8 nodes, part 7 300 540

Table 3.3 presents the results for the synthetic high-spread query. All times are in seconds and
rounded to the nearest integer. Since the I/O performance of Amazon EBS may vary, the number
of runs was at least 10. For the no-overlap case, the reason behind the sub-linear scalability is
primarily the skew, since the distribution of results is uneven, especially for the case of 4 and 8
nodes, which may likely be common in practice. Moreover, the pattern of reads heavily depends on
a worker’s area, which creates another difference in result times. As for the total time, we tried to
make the partitioning as even as possible, so that each worker has approximately the same amount
of data. However, since partitions must be aligned with cells, this is not completely possible. Total
disk times differed for up to 100 seconds between workers. Supporting the claim of Section 3.5, the
total time was dominated by the slowest worker’s total disk time. The additional overhead was kept
under 10 seconds.

The full-overlap case performed worse than the no-overlap case in general. For the total times,
this can be explained by the additional disk reads overhead. The overlapping parts were read more
than once independently by workers that needed them, so some workers had more data to read.
In the no-overlap case, such data was read on a single node and served to other nodes from cache.
Result times did not become better, since the number of resulting windows spanning the overlap was
small. Moreover, these windows had to be read from disk, which introduced delays. One could argue
that reading all data locally might reduce delays when the number of resulting windows spanning
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the overlap is large. However, there are times when such promising data would be read by other
workers sooner and served faster during remote requests. Overall, the full-overlap case does not
consistently offer improvements over the no-overlap case.

For the part-overlap case, we present only the result for 8 nodes, since it is consistent with the
same trend. The total time is between the times for other cases, which was expected. The time
to get all results was worse, due to a different read pattern: the required remote data came in the
middle of a large local read and the corresponding windows were explored later. The prefetching
pattern was different as well.

Since the total completion time is determined by the total disk time, we performed another
experiment where we varied the amount of data read by each worker. With increasing the size skew
the total time grew to 390 and 455 seconds for the no-overlap case of 8 nodes. This shows the need
to carefully balance workers, which is common for any distributed algorithm. This can be done
before running the queries or by automatically assigning sub-areas to workers while estimating their
data sizes from the sample.



Chapter 4

Searchlight: Integrated Search and
Exploration

As we discussed in Chapter 3, introducing advanced search methods into traditional query processing
significantly improves performance and usability of large scale data exploration. While Semantic
Windows framework showed the applicability of this approach, at the same time it indicated the
need in a more general solution, which would:

• Allow users to execute a variety of ad-hoc queries, rather than using a predefined query set.
Users should be able to define and customize their queries based on the exploration problem
at hand, using existing constraints or adding new constraint types if required.

• Severely decrease the amount of data that needs to be read for answering the query. It should
perform extensive pruning not only for the search space, but for the data as well.

• Control query execution dynamically by balancing search space, data and the available compu-
tation resources between nodes participating in the query to provide better interactivity and
query completion times.

In this chapter we present a novel framework called Searchlight [28], which addresses these re-
quirements. Searchlight is a marriage between Constraint Programming (CP) and data management
techniques, which concurrently offers the rich expressiveness and efficiency of constraint-based search
and optimization provided by modern CP solvers, and the ability of DBMSs to store and query data
at scale. This results in an enriched functionality that can effectively support both data- and search-
intensive applications. As such, Searchlight is the first system to support generic search, exploration
and mining over large multi-dimensional data collections, going beyond point algorithms designed
for point search and mining tasks.

37
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4.1 Overview of Searchlight

First, let us revisit typical search queries types discussed in Section 1.1. While DBMSs struggle
with queries such as Q1-Q3, these can be compactly expressed and efficiently answered by a CP
approach [45]. In CP, users first specify decision variables over some domains, defining the search
space. They then specify constraints between the variables, e.g., algebraic ones, “all variables must
have different values”, etc. Finally, a CP solver finds solutions, which are the variable assignments
satisfying the constraints. For Q1, the decision variables would simply define the sky region (i.e.,
the corners of a rectangle, or the center and radius of a sphere) with domains restricting the regions
to a particular sky sector and constraints specifying the properties. To express high-order queries
such as Q2, more variables and constraints can be introduced in a straightforward manner. As
for optimization queries, such as Q3, CP solvers natively support min/max searches with objective
functions.

Several salient features make CP solvers particularly well suited for generic search and explo-
ration:

• Efficiency: CP solvers are very proficient at exploring large search spaces. Similar to query
optimizers, solvers also incorporate a collection of sophisticated optimizations including prun-
ing, symmetry breaking, etc. The first is a core technique that safely and quickly remove from
consideration parts of the search space that cannot contain any results.

• Interactivity: CP solvers are designed to identify individual solutions fast and incrementally.
User can pause or stop the search or ask for more solutions at any time. This is fundamentally
different from conventional query optimization that aims to minimize the total completion
time of queries.

• Extensibility: CP solvers are designed in a modular and extensible manner; they can be
extended to include new constraints types and functions. Moreover, users can easily introduce
their own search heuristics, tuning the search process.

CP solvers are commonly used for NP-hard search problems as they go beyond straightforward
enumeration and can effectively navigate large search spaces through a variety of effective pruning
techniques and search heuristics that leverage the structure of the search space. Note also that
expressing the original search problem via CP does not increase the original problem’s complexity.
Take as an example the problem of finding a fixed-size sub-array satisfying some constraints. The
number of possible sub-arrays is polynomial on the size of the array. Exhaustive search would produce
a polynomial, albeit a very inefficient, algorithm. A standard CP solver is going to construct and
explore a search tree, where leaves correspond to possible sub-arrays. Thus, the complexity remains
the same, but the search space can be explored in a much more efficient way.

Searchlight supports data- and search-intensive applications at large scale by integrating CP and
DBMS functionality to operate on multidimensional data. Its design is guided by the following goals:
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• Integrated search and query: Searchlight offers both standard DBMS functionality (e.g.,
storage and query processing) and sophisticated search. This integrated functionality simplifies
application development and reduces data movement between the systems.

• Modularity and extensibility: Our design is minimally invasive and work with differ-
ent solver implementations without any or very little modification. Similarly, the underlying
DBMS engine will not require major modifications. This goal allows Searchlight to grace-
fully and automatically evolve as the underlying systems evolve. This also allows the same
framework to be applied to compatible systems.

• Optimized data-intensive search and exploration: Searchlight provides optimized exe-
cution strategies for CP logic, integrated with regular queries, on large data sets.

• Distributed, scalable operation on modern hardware: Searchlight supports efficient
distributed and parallel operation on modern clusters of multi-core machines.

Users can invoke existing solvers along with their built-in search heuristics using an array DBMS
language. Under the hood, Searchlight seamlessly connects the solver logic with query execution
and optimization, allowing the former to enjoy the benefits of DBMS features such as efficient data
storage, retrieval and buffering, as well as access to DBMS query operators. Searchlight runs as a
distributed system, in which multiple solvers will work in parallel on different parts of the data- and
search-space.

An important challenge is to enable existing CP solver logic (without any modifications) to work
efficiently on large data. To achieve this goal, Searchlight uses a two-stage Solve-Validate approach.
At the solving stage, Solvers perform speculative search on main-memory synopsis structures, instead
of the real data. A synopsis is a condensed representation of the data, containing information needed
to perform pruning and to verify query constraints. The results are guaranteed to contain all the real
results, but possibly include false positives. At validation, Validators efficiently check the candidates
over real data, eliminating the false positives and producing the final solutions while optimizing I/O.
Solvers and Validators invoke different instances of the same unmodified CP solver logic; yet the
former will be directed to work on the synopses and the latter on the real data through an internal
API that encapsulates all array accesses. This two-stage approach is transparent to the CP solvers
and the users.

We present an implementation of Searchlight as a fusion between two open-source software,
Google’s Or-Tools [1], a suite of operations research tools that contains a powerful CP solver, and
SciDB, a multidimensional array DBMS. Our experimental results quantify the remarkable potential
of Searchlight for data- and search-intensive queries, for which Searchlight often performs orders of
magnitude faster than the next best solution (SciDB-only or CP-solver-only) in terms of end response
time and time to first result.
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4.2 DBMS-Integrated Search

In Searchlight users pose search queries in form of constraint programs, which reference data in a
DBMS. While conceptually Searchlight is not restricted to a particular data model, in this paper
we target array data. An array consists of elements with dimensions serving as array indexes.
Each element has its own tuple of properties, called attributes. For example, for an astronomy data
set, right ascension and declination might serve as dimensions, while magnitudes or velocities as
attributes.

4.2.1 CP Background and Or-Tools

Let us revisit the astronomy example from Section 1.1. Assume the user decides to search for all
rectangular regions in the sky sector [0, 10]◦ × [20, 50]◦, where coordinates are defined using right
ascension and declination. The regions must be of size [2, 5]◦ by [3, 10]◦ and have the average
r-magnitude of objects contained within less than 12.

To form a constraint program the user first defines decision variables over domains, which cor-
respond to objects of interest, the regions. For this example it is sufficient to define four variables
x ∈ [0, 10], y ∈ [20, 50], lx ∈ [2, 5], ly ∈ [3, 10]. x, y describe the leftmost corner of the region and
lx, ly — the lengths of the sides. CP has limited support for non-integer domains, so in this exam-
ple the “resolution” of search is 1◦. If higher precision is required, real values can be converted to
integers, e.g., by multiplying on 1,000.

The next step is to define constraints. The size constraint is expressed via domains of lx and ly.
There are two left:

• A region must fit into the sector: x+ lx− 1 ≤ 10 and y + ly − 1 ≤ 50.

• The r-magnitude constraint: avg(x, y, lx, ly, r) < 12. avg() computes the average value of at-
tribute r over the sub-array (x, y, lx, ly). We assume it is readily available to use in constraints
and elaborate on this in the next section.

Decision variables and constraints constitute the model for the problem. A common way to
obtain solutions in CP is to perform backtracking search. Other methods exist, e.g., local search,
but they might not guarantee the exact result. A typical backtracking solver organizes the search
as a binary tree. At every non-leaf node at least one decision variable is unbound (i.e., its current
domain contains multiple values). At every such a node, the solver makes a decision consisting of two
branches. The decision depends on the search heuristic the solver is using, which can be specified
by the user. A search heuristic typically first chooses an unbound variable. The choice might be
based on the size of its domain, the minimum/maximum value of the domain or just randomly.
After the variable is selected, the two branches of the decision correspond to two opposite domain
modifications. For example, the left branch might assign the value v to the variable x, in which
case the right branch would remove v from the domain of x. Another common decision is to split
the domain: x ∈ [0, 9] → x ∈ [0, 4] ∨ x ∈ [5, 9]. Then the solver chooses a branch, and repeats the
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process until a leaf of the tree is reached. At a leaf all variables are bound, and the solver can report
them to the user as a solution.

After the solver walks into a branch, and the variable domain changes, constraints get notified
of the change, and can check for violations. Additionally, some constraints might be able to reason
about the domains and modify them further. For example, if x = 9, lx becomes 2, because of the
x + lx − 1 ≤ 10 constraint. Thus, the constraint sets lx = 2, and the process is repeated until no
further changes to the domains can be made, which is called local consistency. The process itself is
called constraint propagation.

If during the propagation a constraint cannot be satisfied (e.g., avg() > 14 for x = 9, lx = 2),
the search fails at the current state, since no solutions are possible in the sub-tree rooted to the
state. The solver prunes the sub-tree and backtracks, rolling back all changes, until an ancestor
with an unexplored branch is found. If such an ancestor exists, the solver goes into the branch.
Otherwise, the search ends, since no alternatives are possible. If the solver does not fail when it
reaches a leaf, the corresponding assignment is a solution, since all constraints are satisfied. If the
user wants to continue searching for more solutions or the problem is an optimization one (e.g.,
max(avg(x, y, lx, ly, r))), the solver backtracks from the leaf, and explores the rest of the search
space. More thorough description of CP solver details can be found in the related books [45].

Searchlight uses the backtracking CP solver from Google’s Or-Tools [1], which follows the exe-
cution model described above. Users can add new constraints, functions, define their own search
heuristics, including performing nested searches at any node of the main search tree. They can also
define monitors to track the search progress, limit the time of the execution or perform modifica-
tions (e.g., search restarts, switching branches, etc.). This makes Or-Tools highly customizable, and
Searchlight extensively uses these features to efficiently merge the solver with the DBMS.

4.2.2 Search Queries

Searchlight essentially supports any type of queries a typical CP solver can process. However, to use
additional Searchlight features, e.g., working with array data, users have to employ User-Defined
Functions (UDFs).

UDFs allow users to define additional concepts to use in constraints, where built-in functions
are not enough. Revisiting the astronomy example, in the constraint avg() < 12, avg() must be
defined as a UDF, since it requires the array data. UDFs are essentially treated as black boxes by the
solver 1. It periodically calls them to obtain their values at the current search state. In general, since
variables might be unbound, it is not possible to return a scalar value. So a UDF usually returns
an interval [m,M ] containing all possible values of the function for all possible assignments of the
variables from the current domains. Such an interval is enough to check constraints and perform
pruning at internal nodes. A scalar value can be represented as m = M . Usually, tighter intervals
mean more efficient pruning. For the example constraint, avg() < 12, the interval 13 ≤ avg() ≤ 17
would allow the solver to prune the current sub-tree, while 11 ≤ avg() ≤ 17 would not.

1In Or-Tools UDFs can be written in C++, which gives users a large degree of freedom.



42

For performance, array operations are restricted to the Searchlight API, which at present consists
of two calls:

• elem(X, a), which returns the value of attribute a at coordinates X = (x1, . . . , xn).

• agg(X1, X2, a, op), which computes the aggregate op over attribute a for the sub-array bounded
by X1 and X2. op can be any of the common aggregates (i.e., min, sum, etc), and it is easy to
add support for others. Users can specify multiple ops in a single call.

These calls are useful for array exploration, since individual elements and sub-arrays are natural
entities of interest. The API is not fixed and can be easily extended for future applications. It
is meant to provide building blocks for constraints, and a UDF can contain any number of API
calls. For example, a user might want to compute the average value of some attribute for a sub-
array and its neighborhood and compare the two to detect anomalies. This can be implemented
with several API calls in a single UDF, which would return the difference between the averages.
Searchlight provides built-in functions for common aggregates, and the library of functions can be
easily extended.

Let us describe briefly how the UDF A = avg(x, y, lx, ly, r) could be implemented. A must return
interval [m,M ] containing all possible values of r for every sub-array [x′, x′+lx′−1]× [y′, y′+ly′−1],
where x′, y′, lx′, ly′ are values from the current domains. When the number of possible sub-arrays
(i.e., the product of the cardinalities of the domains) is greater than a threshold, then m and M are
equal to the minimum and maximum values of r in the minimum bounding sub-array. This requires
a single agg() call. If the number of the sub-arrays is less than the threshold, the average for each
of them can be computed with an agg() call. m and M then will be equal to the minimum and
maximum values just computed. For a single sub-array (i.e., in a leaf of the search tree), m = M .

4.2.3 Search Heuristics

After the user poses a query, the search process is guided by a search heuristic. Searchlight can run
native Or-Tools search heuristics (e.g., random, impact-based, split, etc.) without any modifications.
It can also be further extended by defining new ones. This allows users to customize search for
particular problems, which is very common in CP. New search heuristics are defined in the same
way as in plain Or-Tools. Users can also use API calls to access array data, e.g., for estimating the
impact of the heuristic decisions.

Let us show an example of a custom search heuristic, which also allows us to illustrate the
concepts introduced in the previous section. This heuristic is part of Searchlight, and we found it
useful for Semantic Windows [27] queries. An example search tree that might have been produced
for the astronomy example is shown in Figure 4.1. The heuristic is utility-based. First, it divides the
search space into non-overlapping areas by splitting each variable’s domain into several intervals (the
number of intervals is a parameter). An area is a Cartesian product of intervals, one per variable.
Then, the heuristic takes a number of random variable assignments (probes), from each interval. A
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Figure 4.1: Search tree of a utility-based heuristic. Intervals chosen at each step are highlighted.
Utilities are provided in the table as Ut=. The state within the dashed ellipse is pruned.

probe might be successful (i.e., a solution) or a failure (i.e., it violates constraints). The utility of
an interval is the ratio of successful to total number of probes. The probing itself is done by using
nested random search, which makes it very general and applicable to other types of problems. Even
if probes cannot catch interesting areas (e.g., in case the search space is very large), the heuristic
still can prune some areas immediately when they violate constraints.

For the astronomy example the areas are defined based on variables x, y, since they define the
location of a region. After the probing is completed, at every step the heuristic chooses the variable
and interval with the maximum utility. When domains of x and y become intervals (i.e., the current
state is an area), a nested search of the area is started with some heuristic. We found random and
split heuristics to be quite efficient, however users might specify others. Figure 4.1 also shows an
example of pruning. When the solver explores the right branch of the root, it detects a violation of
a constraint and prunes the entire sub-tree.

4.3 Searchlight Query Processing

The naive way to process Searchlight queries would be to run a traditional CP solver without any
changes and transform Searchlight API calls into DBMS queries. This, however, results in a very
poor interactive and total performance. The solver can call UDFs many times during the search, since
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Figure 4.2: Two-level search query processing.

it assumes them to be relatively cheap. More importantly, pruning cannot work without requesting
data, since UDF values are required for provable pruning. In practice, the naive approach results
in reading the same data multiple times by arbitrarily ordered data requests, which causes DBMS
memory buffer thrashing. This is supported by our experimental evaluation, presented in Section
4.5.1.

Searchlight uses two-level query processing instead, which combines speculative execution over a
synopsis of the array with validating the results. We designed this architecture with the following
goals in mind:

• Interactivity. Searchlight should start outputting results quickly and minimize delays between
results. Some overhead is impossible to avoid, e.g., computing an aggregate for a large sub-
array might be expensive. However, the time to discover the next result should be minimized.
This is the main task of speculative execution.

• Total performance. Parts of the data not containing any results should be eliminated efficiently
with few data accesses. Searchlight uses extensive pruning at the speculative level to achieve
this.

• Expressiveness. Users should be able to use tools available in a plain CP solver, e.g., con-
straints, heuristics, etc. We did not modify the solver’s engine directly, but rather used the
customization features available in Or-Tools to merge the solver with the DBMS.

4.3.1 Two-level Query Processing

The two-level query processing is illustrated in Figure 4.2. When the user submits a search query in
form of a CP model, Searchlight starts a CP solver for processing it. As we discussed in Section 4.2.2,
a search query that reads DBMS data makes Searchlight API calls. When such a call is made, it is
processed by the Router, which sends it to a synopsis. Synopsis is lossy compression of data, which
is able to give approximate answers to API calls. For each call it returns an interval guaranteed to
contain the exact answer. For example, elem(X, a) might return [5, 10], while the real value is 7.
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Since in general UDFs return intervals as well, it does not create complications for users. In most
cases manipulating intervals is not harder than manipulating scalar values.

While the Solver processes the model by using the synopsis instead of the original data, it
produces candidate solutions (candidates). A candidate is a CP solution (i.e., a complete variable
assignment), and does not violate any constraints. However, since candidates are synopsis-based,
they might contain false positives. Since synopsis intervals are guaranteed to contain exact answers,
candidates are guaranteed to include all real solutions.

When the Solver produces a candidate, it sends the candidate to the Validator, which checks it
over the original data. At the beginning, the Validator clones the initial model from the Solver and
starts its own CP solver, which, however, runs a different search heuristic. When a new candidate
is received by the Validator, the heuristic assigns the values from the candidate to the variables.
However, this time all API calls are answered using the original DBMS data, which results in proper
validation of query constraints. Thus, if the Validator’s solver fails, the candidate is a false positive.

We made the Validator CP-based for the sake of generality. Since it executes the same model as
the Solver, it does not assume anything about the nature of constraints. New constraints, UDFs and
API calls can easily be added without modifying the Validator. Moreover, the users do not have to
be aware about the two-level processing at all.

Since the Validator uses its own CP solver, it works in parallel with the main Solver. Potentially
expensive validations do not hamper the search and are made concurrently, which greatly improves
interactive performance.

The Router directs API calls to the appropriate data depending on the context. Users write API
calls using the Router, and Searchlight takes care of the details internally.

4.3.2 Synopsis

Synopsis is lossy compression of data, which gives approximate answers to the Searchlight API calls.
We assume it fits into memory, so the Solver, which uses it during the search, can execute its model
efficiently. It might partially reside on disk, especially during distributed processing, where the
Solvers operate on parts of the search space.

Synopsis is more of a concept than a particular structure. Different API calls might require
different synopsis types, which we discuss later in this section. Searchlight can use multiple synopses
in a single query, if required by constraints (API calls).

Synopsis for Aggregate Estimations

An example of the synopsis is presented in Figure 4.3(a). The original 4x4 array is divided into
four synopsis cells of size 2x2. For each cell we keep information needed to answer API calls. For
aggregates these are min/max, the total sum and count of all elements. Cells might store other
information, e.g., distribution of a cell, bitmaps for very sparse cells, etc. The synopsis introduces
lossy compression. For example, the top-right cell in the figure could be produced by sub-arrays
(5, 3, 3, 2) and (5, 4, 2, 2). We will call such sub-arrays cell distributions.
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Figure 4.3: Synopsis example. (a) 2x2 synopsis grid. (b) Upper and lower bound arrays for the
avg() of the highlighted region.

Synopsis provides answers to Searchlight API calls in form of intervals [m,M ], guaranteed to
contain the exact value. Answering elem() calls is easy: m and M are just the minimum and
maximum values stored in the corresponding cell. The agg() call requires more work.

Let us assume the user called avg(R), where R is a highlighted region from Figure 4.3(b). R
intersects 3 out of 4 synopsis cells partially. Since cells might correspond to different distributions,
this implies multiple possible values of avg(R). The main idea is to find the cell distributions that
reach the lower bound m and the upper bound M of the interval, which is illustrated in the part (b)
of the figure. It is easy to verify that both arrays might have produced the synopsis. Their avg(R)
values are 2.125 and 3.286, so the API call will return the interval [2.125, 3.286]. For the original
array, avg(R) = 2.857.

Estimating upper and lower bounds for aggregates over a synopsis is similar to aggregate estima-
tions for Multi-Resolution Aggregate (MRA) tree structures [32]. The algorithm essentially follows
the same path. For example, to compute the interval for avg(), the upper (lower) bound array must
contain as many large (small) elements as possible to bring the average up (down), without violat-
ing the synopsis information. The possible elements from all cells are considered in the decreasing
(increasing) order and added one by one, until the average cannot go up (down).

The detailed algorithm with proofs can be found in the MRA paper [32]. The difference for arrays
is due to intersections of the query region and cells (MRA tree nodes). For an MRA tree (e.g., an
annotated R-tree), each intersection might contain any number of database objects referenced by
the tree node, while for arrays the minimum/maximum number of elements for each intersection is
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known. Thus, each cell has a budget of minimum and maximum number of elements it must provide
for an estimation, and we account for this budget when selecting elements during the computation
as described above.

Synopsis Layers

Synopsis array described above has a parameter — the size of the cell (e.g., 2x2), which we call
its resolution. There is a trade-off when choosing the correct resolution for a query. Estimating
aggregates is computationally more efficient with coarser synopses (i.e., with larger cells) due to
smaller numbers of cells participating in estimations. At the same time, they might provide poor
quality estimations, especially for small regions. Finer synopses, on the other hand, provide better
quality estimations, albeit at higher cost. Synopses for a single array can be thought of as a hierarchy
of layers, low to high resolution.

Given a synopsis hierarchy for an array, Searchlight starts from the lowest-resolution layer and
proceeds as follows:

1. The query region is divided into disjoint pieces: intersections with the synopsis cells. For
example, in Figure 4.3 there are four pieces.

2. Each piece covered by the corresponding cell more than 75% (a parameter) is estimated from
this cell. The coverage is defined as the area of the piece divided by the area of the cell.

3. The remaining pieces are left for the next layer, finer, synopsis. In Figure 4.3, the bottom-right
piece is covered 25% and the top-right one 50%. If there are no more layers, the pieces are
estimated from the current one.

The basic idea behind the algorithm is to cover each region with the synopsis such that to avoid
small region-cell intersections, which taint the estimation quality, and at the same time cover large
parts of the region with a small number of cells, which improves performance. To further speed-up
computation the algorithm employs the following heuristic: if the region is covered by the cells of
the current synopsis layer more than 75% (a parameter), the algorithm stops at this layer, ignoring
individual cell coverage. This heuristic allows us to avoid cases where large regions have a small
number of poorly covered pieces. In Figure 4.3, the region is covered 9

16 × 100% = 56%. So the
algorithm will use the next synopsis layer, if available.

Synopsis layers are also considered when validating candidates. If one of the layers is aligned
with the UDF’s query region, that synopsis is used to compute the UDF instead of the original
data array. To be aligned with a synopsis, the region must intersect all its cells completely, which
guarantees the exact answer. This optimization severely improves performance, since synopses are
either fit in memory or, at least, are much more compact than data arrays.
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Synopsis Alternatives

The choice of the synopsis as an aggregate grid was dictated by using arrays for the original data.
There is no need in a tree (e.g., R-tree), since grid cell coordinates can be easily computed from the
original array ones. Synopsis layers can be seen as a slice of the well-known pyramid structure [51].
In general, Searchlight does not use the complete pyramid due to memory restrictions. Several in-
memory layers are used for estimations, and the lowest pyramid layer, the original array, is used for
validations. In case of other DBMS types, other structures might be more suitable. For example,
for an RDBMS, MRA-trees [32] would be a better choice.

We want again to emphasize the fact that the synopsis concept is not exclusive to aggregate
structures. Other types of constraints might necessitate other types of structures. One example
is sub-sequence similarity matching for time-series data [19, 20]. A common way to answer such
queries is first to compute the Discrete Fourier Transform (DFT) for all sub-sequences of the time-
series, take several components of each DFT as points and produce a trace [19] by combining the
points from adjacent sub-sequences. A trace can be seen as a set of points in a multi-dimensional
space. Instead of DFT another suitable transformation can be used, such as Discrete Wavelet
Transformation (DWT) [43], Piecewise Aggregate Approximation (PAA) [30] or indexable Symbolic
Aggregate approXimation (iSAX) [49]. If the traces become large, they can be further covered by a
number of MBRs, which then can be indexed (e.g., by an R-tree).

Such an index obviously fits in the synopsis concept described above. Each MBR can be used
to estimate the similarity distance between the query sequence and all time-series sub-sequences
represented by the MBR, which is exactly what a CP solver needs. We have implemented the new
synopsis type, based on the PAA transformation and MBA coverage, as part of Searchlight. To
interact with the synopsis on the low level, we added API call dist(xl, xr, Q), which computes the
maximum Euclidean distance between the user’s query sequence Q and any sub-sequence of size |Q|
lying within the [xl, xr]. We also introduced the user level function dist(x,Q), which allows the user
to specify the similarity constraint in the obvious way, e.g., dist(x,Q) ≤ 10, where Q is the query
sequence, as before, and x is a decision variable denoting the start of the resulting sub-sequence in
the data.

We demonstrated the applicability of the approach using the waveform data from the MIMIC
data set [29]. The performance for the similarity queries depends mostly on the quality of the index
estimation, which Searchlight does not have control over. At the same time the search overhead is
kept at minimum. It is important to mention that the overall implementation effort was quite small,
and was heavily dominated by the index implementation. At the same time, the main search engine
and architecture did not require any changes at all, which underlines great extensibility potential
for Searchlight.
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Figure 4.4: Distributed Searchlight with Solver and Validator layers.

4.4 Distributed Searchlight

Searchlight supports distribution on both levels of query processing. At the first level, the search
space is distributed among Solvers in a cluster. At the second level, Validators are assigned to nodes
responsible for different data partitions, and validate candidates sent to their corresponding nodes.
There can be an arbitrary number of Solvers and Validators, and they do not have to reside on the
same nodes. This gives users considerable freedom in managing cluster resources. Solvers can be
put on CPU-optimized machines, while Validators can be moved closer to the data. Moreover, there
might be multiple Solvers and Validators at each node at the same time, which explores multi-core
parallelism. The architecture is illustrated in Figure 4.4.

4.4.1 Searchlight in SciDB

Searchlight uses SciDB [3, 10] as the array DBMS. A typical SciDB cluster consists of instances,
and each array is distributed among all instances. During query execution one instance serves as
a coordinator. Coordinator combines partial results from other, worker, instances and returns the
final result to the user.

Each array is divided into chunks, possibly overlapping tiles of fixed size. SciDB computes a hash
function over the leftmost corner of a chunk, which produces the instance number that will own the
chunk. One of the important features of SciDB is attribute partitioning, which means different
attributes are stored in different sets of chunks. This is similar to vertical partitioning in columnar
RDBMSs.

In addition to built-in query operators, SciDB allows users to write their own (User-Defined
Operators, UDOs). We implemented Searchlight as a UDO. Thus, Searchlight directly participates
in query execution inside the DBMS engine and has access to the internal DBMS facilities. We use
SciDB networking to pass all control and data messages. Validators use the temporary LRU cache to
store chunks pulled from other instances. When computing API calls, Searchlight accesses the arrays
in the buffer memory, without the need to serialize and transfer the data to a client. In summary,
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Figure 4.5: Search balancing. (a) Static round-robin balancing. The highlighted region is a hot-spot.
(b) Dynamic balancing with transferring a sub-tree.

working inside the DBMS engine significantly decreases the overhead and avoids duplication of the
same functionality.

4.4.2 Search Distribution and Balancing

Initially, the search space is distributed among the Solvers statically. Since the search space is a
Cartesian product of the variable’s domains, it can be represented as a hyper-rectangle. We slice
this hyper-rectangle along one of its dimensions into even pieces and assign each slice to a Solver in
the round-robin fashion. This is illustrated in Figure 4.5(a).

The static scheme targets search hot-spots, parts of the search space containing large numbers
of candidates. A Solver might get “stuck” in a hot-spot, while others finish their parts quickly. This
creates an imbalance, where some Solvers do most of the work, while others sit idly. The round-robin
method distributes continuous hot-spots among multiple solvers, as shown in Figure 4.5(a).

The static partitioning depends on the total number of slices. Too few slices might result in a
hot-spot not being covered by multiple Solvers, which brings back the bias. Too many slices might
reduce the quality of synopsis estimations for some heuristics, which hurts pruning. It might also
create additional burden for Solvers when maintaining domains.

When the static balancing falls through, Searchlight uses dynamic balancing as a fall-back strat-
egy. When a Solver becomes idle (i.e., when it has finished its part), it reports itself to the coordinator
as a helper. Coordinator pops a busy Solver from a queue, dispatches a helper to it, and pushes it
back to the queue. Thus, a busy Solver might receive multiple helpers. The busy Solver cuts a part
of its search tree and sends it to the helper. A Solver might reject help, e.g., due to the heuristic,
in which case the helper is dispatched to another busy Solver. This process is highly dynamic. A
helper becomes a busy Solver itself and might receive helpers in the future. Such balancing is similar
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to work stealing, which is common in distributed CP.
Dynamic balancing is illustrated in Figure 4.5(b), where a Solver at Instance 1 cuts its right

sub-tree and sends it to the helper at Instance 2. The helper starts the search by treating it as a
root node. Transferring a sub-tree is cheap, since all Solvers run the same model. A sub-tree is a
set of domain intervals, and can be serialized into a message efficiently.

4.4.3 Validating and Forwarding Candidates

In SciDB, array chunks are hash-partitioned across the entire cluster and DBMS queries are broad-
cast across all nodes. That means at the validation search UDFs might expose large latency: UDFs
make multiple API calls, and each call has to be broadcast across the cluster, all answers must be
collected and combined together. Only then the Validator can continue, until the next API call.
Additionally, API functions would have to be distributive or algebraic [21]. This is true for many
common functions (including the API aggregates). However, we wanted the API to be extendable
with other type of functions, including holistic ones, which cannot be easily distributed. Considering
this, we decided to investigate another approach.

The array is sliced into multiple partitions in a similar way as shown in Figure 4.5(a). In this
case, however, each node running Validators gets exactly one slice. During the validation Searchlight
transparently pulls the required array chunks from other instances and caches them in a temporary
LRU buffer. The buffer is disk-backed, so no remote chunks are ever re-fetched. Chunks are pulled
only on demand, when an API call needs them. If the search does not touch some parts of the array,
which is common due to pruning, the corresponding data is neither fetched nor read from disk at all.
With this approach UDFs can make multiple API calls during a validation without worrying about
latency. Each call will be served from memory, after the chunks are fetched only once. Arbitrary
complex functions can be added to the API, since any sub-array can be iterated over locally.

In some cases such data re-distribution might hurt performance. For queries that read the
majority of the array, transferring a lot of chunks might saturate the network. However, we assume
this to be rare in practice due to the nature of search queries. Even in such cases Searchlight does
not stop to provide great interactive performance, as supported by experiments. Moreover, as an
optimization, such redistribution can be done during the execution of the first query, which would
create a chunks cache persistent between queries.

When a Solver finds a candidate, it has to send it to the appropriate node for validation. In
general, solvers have no knowledge about which API calls will be made during the validation. These
calls, however, determine the array chunks the validation needs. We solve this problem by first
simulating the validation, which is performed by a same-node Validator. The Validator switches its
Router (Figure 4.2) to the “dumb” mode. In this mode, the Router answers API calls with [−∞,+∞]
intervals, satisfying any constraint. At the same time, it logs all API calls. After the simulation is
finished, the Validator retrieves the log and determines the chunks needed by the candidate. After
that, it forwards the candidate to the node responsible for most of the chunks required (it might
keep the candidate at the local node). The simulation is very lightweight, since it does not require
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data access, disk or memory.
Some Validators might get flooded with candidates. This becomes a CPU, not data, problem,

since the data will be quickly pulled from remote instances and mostly residing in memory. In
such cases Searchlight dynamically starts more Validators at the struggling nodes. Validations are
performed concurrently by reading data from the same shared buffer, so no chunks are duplicated.
The number of additional threads depends on the current state of the search process, which we
discuss in the next section.

In case a node keeps getting flooded with candidates and there are no additional CPU resources
(threads) available to run more Validators, Searchlight performs rebalancing. It takes a portion of
candidates and sends them to another node. This effectively might result in that new node fetching
more data, since candidates do not belong to its partition. While this process might be expensive
in practice, at this point during the execution it is assumed to be beneficial for both interactive and
total query performance. When performing rebalancing, the Validator first tries to find a new node
that has been used for rebalancing from the same node before. That might mean the new node
might have already fetched some of the required data and would not have to start from scratch.
Secondly, the Validator will rebalance only to a node that does not have any of its own candidates,
choosing an idle node instead.

4.4.4 Additional Performance Improvements

Systems usually restrict the number of simultaneous active jobs (e.g., via thread pools), either on per
node or per query basis. Each Searchlight node participating in a query has a number of active jobs
corresponding to the Solvers and Validators. The challenge is to put more CPU resources to either
of them depending on the current state of the search. While it is possible to do this in the static way,
before the query begins, that might be highly inefficient. For example, given 8 threads per node, 4
might be given to the Solvers and 4 to the Validators. However, it is hard to predict if a particular
node is going to experience high load in the number of candidates or if the search is going to have a
lot of candidates at all. To address this issue Searchlight uses a dynamic resource allocation scheme,
where it monitors the current state of the search process for each node. Initially, given n available
threads per node, it starts n − 1 Solvers and a single Validator at each node. If the number of
candidates at a node increases over time, Searchlight stops Solvers when they finish exploring their
parts of the search space and starts more Validators instead. Ultimately, nodes overwhelmed with
candidates might become Validator-only. In this case, the remaining search space is automatically
distributed between Solvers at other nodes. When the number of candidates decreases, Searchlight
stops Validators and releases the Solvers allowing them to continue the exploration.

Searchlight optimizes resource utilization even further. Recall, when a Solver finishes its part of
the search space, it reports itself to the coordinator as a helper. While it is waiting, Searchlight starts
another Validator to avoid wasting resources. When a new search space load arrives, Searchlight
stops a Validator and wakes up the Solver. This also ensures that when the Solvers have finished
the search entirely, all resources go to Validators.
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Another optimization involves batching candidates for more efficient I/O performance. Some
queries produce a large number of candidates dispersed around the data array. If these candidates
are validated in an arbitrary order, that might result in thrashing: DBMS repeatedly reads chunks
from disk, evicts them and reads again for other candidates. To address this issue Searchlight first
divides each data partition into multiple continuous zones. Each candidate is assigned to the zone
containing most of the chunks required for its validation. This information is determined by the
simulation process described before. At each step Validators take candidates from the same zone,
enforcing locality. The zones are sorted in the most-recently-used order, so recent zones are checked
first. By default Searchlight ensures that at least two zones can fit in memory at the same time.
Firstly, candidates corresponding to continuous objects (windows) often span neighboring zones.
Secondly, this allows us to avoid the case where two frequently-used zones evict each other from
memory.

4.5 Experimental Evaluation

We performed extensive experimental evaluation of Searchlight for clusters of sizes 1 through 8. We
used EBS-optimized Amazon EC2 instances c3.xlarge (4 virtual CPU cores, 7.5GB memory each).
Storage per each instance varied in size, however each disk volume was an EBS general purpose SSD
(no provisioned IOPS). The OS was Debian 7.6 (kernel 3.2.60). We used SciDB 14.3 as the DBMS
and Or-Tools 1.0.0 (the current SVN trunk at the time) as the CP solver.

The main data array was generated using Gaussian distribution with varying mean (from 0 to
200) and small variance. At places we injected small sub-arrays with means of 300, 350 and 500,
which introduced natural zones of interest (clusters). The data array size was 100, 000 × 100, 000
elements with a single attribute and took 120GB of space (the binary size of the SciDB file). We
used a 100× 100 synopsis, which took approximately 400KB. We performed the evaluation varying
the size of the search space by choosing more or less restrictive constraints and variable domains.
For each search space we also chose queries that produced different number of candidates to vary
Validator loads. The queries were as follows:

HSS (Huge Search Space). The query looked for 800 × 800 sub-arrays with avg() ∈ [330, 332].
While results were situated around the clusters, the search space size was 1010 sub-arrays, which
was impossible to finish in a reasonable time. We used HSS to explore time-limited execution.

SSS-HS, SSS-LS (Small Search Space, where HS/LS stands for High/Low selectivity). The
left-most corners of the sub-arrays were restricted to coordinates divisible by 330. LS searched for
2, 000× 2, 000 sub-arrays with avg() ∈ [95, 120]. For HS the sizes varied from 500 to 2,000 with step
100, and avg() ∈ [330, 332].

SSS-ANO (ANOmaly). This query checked the ability of Searchlight to handle more elaborate
constraints. In addition to searching for 1, 000×1, 000 sub-arrays with avg() ∈ [200, 600], it computed
the maximum element of the sub-array’s neighborhood of size 500. The query selected only sub-
arrays for which the difference between their maximum elements and the neighborhoods’ was greater
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than 100, which can be seen as detecting anomalies. The query was expressed via CP constraints
with the only UDFs being avg(),max().

LSS-HS, LSS-LS (Large Search Space). These were similar to SSS queries, except the left-most
coordinates of sub-arrays were divisible by 10. Thus, the search space was much larger. The sub-
array sizes varied from 500 to 2,000 with step 100. For HS avg() ∈ [495, 505], for LS avg ∈ [330, 332].

LSS-ANO. The query was similar to SSS-ANO: looking for 500× 500 sub-arrays with avg() ∈
[200, 600]. The neighborhood size was 200, and an additional constraint was made: not only the
difference between the maximums was at least 250, but also the difference between the region’s
minimum and the neighborhood’s maximum was at least 200.

4.5.1 Exploring Alternatives

We studied two alternatives to Searchlight. The first, CP, ran a traditional CP solver on DBMS
data. Data requests were made via UDFs, but no synopses were used, only the original data. This
allowed us to explore the applicability of state-of-the-art CP solvers for exploring large data sets.
The second alternative performed search by using the SciDB window() operator, which computes
aggregates for every possible fixed-size sub-array. Then, the filter() operator was used to select
the required sub-arrays. Since the operators belong to the Array Functional Language (AFL), we
called this approach AFL. AFL does not allow full richness of constraints supported by Searchlight,
but it allowed us comparison with a native DBMS solution. For all approaches we specify the size
of the cluster via a hyphen, e.g., CP-8 means running CP in an 8-node cluster.

While the number of alternatives might seem scarce, these are the only ones available to the
users today. It might be possible to use SciDB with complex client scripts or extend it with special-
ized indexes. However, this would require non-trivial effort, and would result in comparison with,
basically, a different system. The main goal of this experiment was to explore existing alternatives.

Table 4.1: HSS times (secs), #results found in 1 hour
Approach First result Delays Results
SL-1 13 0.001/3.8/101.1 981
SL-8 5 0.001/5.9/21.9 6,336

Results for HSS are presented in Table 4.1. Since the search space was very large, it was infeasible
to run the query until completion. Thus, we limited the time to 1 hour. We see it as a common
use-case, when users want to get some results within a time limit to get an idea about the content.
Nor CP, nor AFL found anything. Both performed too many data reads, which destroyed the
performance. Running the query in an 8-node cluster did not help. SL (Searchlight), found first
result in 13/5 seconds and kept providing them during the execution with small delays. We provide
delay statistics as min/avg/max delays between subsequent results. We believe this to be a good
measure of the interactivity. We also provide the time to find the first result as a measure of the
initial response time.
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Table 4.2: SSS-HS-modified query times, seconds
Approach First result Delays Total time
SL-1/8 6.19/4.8 6.19/4.8 6.52/5.13
CP-1/8 3,360/91 3,360/91 3,611/304

Even for a small search space, CP was not able to finish SSS-HS in 13 hours, and no results were
found. Thus, we decided to decrease the search space by running SSS-HS inside a 10, 000× 10, 000
sub-array of the original array (Table 4.2). Even in this case, CP was no match for SL. This is
due to a large number of API calls produced by CP. While this was true for SL as well, SL was
able to utilize the synopsis, greatly improving its performance. Moreover, for CP pruning did not
make much difference, since it requires reading the data first. In a cluster the performance of CP
increased significantly, while still remaining well below the SL. When we tried a larger sub-array of
size 30, 000 × 30, 000, Searchlight was done in 11 seconds, whereas CP could not find any results
within 3 hours, and is thus not a competitor.

Table 4.3: Times for SSS-HS(top)/-LS(bottom), seconds
Approach First result Delays Total time
SL-1 8.2 0.09/2.4/8.2 31.2
SL-8 6.12 0.02/1.2/6.9 13.9
AFL-1 2,105 2,105 2,105
AFL-8 301.3 1.1/3.3/7.1 945.3
SL-1 16.7 0.001/0.14/16.7 2,198
SL-8 6.1 0.001/0.05/6.1 563.3
AFL-1 1,852 1,852 1,852
AFL-8 295 295 295

AFL, however, was able to complete the SSS queries within reasonable time. Unfortunately,
expressing the constraints in AFL was not entirely possible, since window() does not support vari-
able sizes. We tried to use the concat() operator to combine results of several window operators,
which gave very poor performance due to subpar implementation. Moreover, SSS-HS required 256
concat() operators for a single query, which is hard to optimize. We decided to use another
approach. First, since SSS-LS/HS require window coordinates divisible by 330, we created a tempo-
rary array via the regrid() operator, which divides the array into tiles and computes aggregates for
them. This actually gives an I/O performance boost to SciDB, since such an array can be seen as
an index. Then, we ran several filter-window queries over the same connection (one for each possible
size) and measured the total time of all queries as well as times for intermediate results. The regrid
time was added to the time of the first result, since it was the essential part of the AFL query. It
was impossible to express SSS-HS exactly (after the regrid(), window sizes had to be divisible by
330 as well), so we modified the query preserving the high selectivity. For SSS-LS we ran a single
regrid-window-filter query. Results are presented in Table 4.3.

While AFL required computing every sub-array, Searchlight was able to prune most of the data
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Figure 4.6: Delays for subsequent results for SL (secs).

and provide much better performance. SS-LS query, however, is different. While pruning was
possible, the candidates touched the majority of the array, which created significant I/O load. As
we discussed in Section 4.4.3, we consider such queries rare. In the cluster the performance of
AFL improved significantly, and it was able to beat SL by utilizing the regrid() array. Note, SL
remained the best interactive solution in all cases.

We tried to compare Searchlight and AFL for the LSS queries. However, even running a version
of LSS-LS with fixed size windows resulted in a very poor AFL performance. We simplified the
query and ran it on a regrid() array, similar to SSS. Modified LSS-LS did not find any results
within 13 hours. All CPU cores were saturated and the query itself had a simple query plan. Such
poor performance can be explained by the necessity of checking 108 windows. Thus, AFL cannot
handle larger-than-trivial search spaces. SL finished the modified LSS-LS in under 2 minutes and
output the first result in 18 seconds.

4.5.2 Online and Total Performance

We studied interactive and total performance of distributed Searchlight by varying the number of
nodes in the cluster. The results are shown in Figure 4.6. We do not provide minimum delays, since
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they were mostly under 1 second.
We decided to omit SSS-ANO and SSS-HS, since the former demonstrated the same trend as LSS-

ANO, and the latter finished in 30 seconds even for a single node with the first result delivered in 8
seconds. Searchlight provides great interactivity even on a single node. Running it in a cluster brings
most delays down even further. One notable exception is LSS-HS, for which the first result time
remained around 2 minutes and averages around 30 seconds even in the 8-node cluster. However,
this was a very hard query with a large number of candidates and limited pruning possible.

Table 4.4: Total times for queries, in seconds
Query 1 node 2 nodes 4 nodes 8 nodes
SSS-LS 2,138 1,799 1,572 563
SSS-HS 31 19 14 13.9
SSS-ANO 163 60 27 16
LSS-LS 2,830 1,271 646 491
LSS-HS 1,381 663 332 225
LSS-ANO 443 215 59 39

Total times for all queries are presented in Table 4.4. For some queries it was hard to improve
performance beyond 4 nodes, since the granularity of the distribution on both levels of the execution
is a slice (a sub-tree for dynamic balancing). One exception is SSS-LS, which scaled poorly as it
touched almost every chunk of the array. Thus, Validators saturated the network (Amazon EBS
is network-based as well). The results can be partially explained by bursty performance of EC2.
When we were running the query in a 2-node cluster, the total time varied from 30 to 90 minutes.
When we ran a similar query in a local 4-node cluster, the completion time went down from 2,008
(1 node) to 700 seconds (4 nodes). Note, LSS-LS also has low selectivity. However, since it did not
touch as many chunks, it scaled much better.

4.5.3 SDSS Experiment

We experimented with the entire Sloan Digital Sky Survey (SDSS) [4] catalog, which contains infor-
mation about objects in the surveyed portion of the sky. We used right ascension (ra) and declination
(dec) as coordinates. The catalog provides a large number of attributes, and we chose the model
magnitudes: u, g, r, i, z. These are spectrum measures that can be used to analyze the “brightness”
of objects. The binary size of the data in the DBMS was approximately 80GB. We performed the
experiment in an 8-node cluster.

Table 4.5: SDSS queries times (Qi given in text), secs
Query First result Delays Total time
Q1 10 0.001/2/54 300
Q2 17 17 132
Q3 24 0.004/6/45 331
Q4 29 0.21/13/29 134
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We fed Searchlight a variety of queries searching for sky regions (sub-arrays) with average mag-
nitudes belonging to a range. Similar queries are often used in SDSS workloads when filtering
individual objects. Some of the results are presented in Table 4.5. The queries are given below in
the format: “rX,mY,lenZ,stT”, where X means the resolution (e.g., 1◦ for sub-arrays with leftmost
coordinates divisible by 1◦), Y means ranges for magnitudes (we used all five of them in the same
query), Z means the range of lengths (e.g., 4◦ to 5◦) and T means the step for the lengths. The de-
lays, as before, are given as min/avg/max. If the delay is a single number, that means there was only
one result. The queries were: Q1 = res1,m10-20,len4-5,st0.05; Q2 = res1,m5-15,len0.4-0.5,st0.001;
Q3 = res0.1,m0-20,10-30,10-15,0-50,0-40,len5; Q4 = res0.1,m5-15,len0.1.

SDSS was a big challenge for Searchlight. Objects with different magnitudes are dispersed around
the data set, which makes pruning difficult. Thus, the completion times were worse than for the
synthetic data. Even so, Searchlight was able to provide great interactive performance.



Chapter 5

Query Relaxation and
Constraining

As we discussed in Section 1.3, initially the user might have little knowledge about the dataset. Even
if she has understanding of the nature of constraints she wants to query the data with, it might be
hard for her to come up with proper constraint parameters. As an example, consider a simple range
constraint avg(x) < 10. The user might want to obtain at least 10 results from the query. If the
query returns no results or 1-2 results, she might want to consider broader range for the avg(x)
function. Unfortunately, there is no way for her to know which range value will work. Setting the
value to 12 might still not return enough results, while setting it to 20 might return too many of
them, e.g., a hundred or more. This guessing game becomes much more cumbersome for the user,
when the number of constraints increases. In that case she would need to try different combinations
of constraints and possibly stitch together results from multiple modified queries to obtain results
close enough to the original constraints.

Searchlight aspires to improve the user’s experience by automatically modifying the query during
the execution. The user specifies the cardinality requirement in addition to the query constraints.
If the search produces too few results, Searchlight automatically relaxes the query to include more
results that minimize the distance from the original constraints. At the same time, if the query
starts producing too many results, Searchlight introduces new constraints to the query to rank the
results and output the top ranking ones, filtering all the others. Thus, Searchlight is able to adapt
the query execution dynamically to either relaxation or constraining. The user does not have to
choose the strategy when specifying the query.

As we discussed in Chapter 2, the methods for such query relaxation and contraction techniques
are well-researched in the context of relational databases. However, since Searchlight touches upon
the different realm of search queries, the previous approaches cannot be directly applied to our
system. In this chapter we discuss how Searchlight handles query relaxation and constraining1,

1We prefer the term constraining to a more common term contraction due to the way the contraction is handled
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challenges that these techniques bring to our architecture and our solutions that deal with these
challenges.

5.1 Query Relaxation and Constraining Model

Each Searchlight query consists of a number of decision variables X and constraints C. In addition
to the query itself the user gives Searchlight the desired cardinality for the result k. The original
query might have the following outcomes:

• The query outputs exactly k results. In this case it is processed in the usual way, without any
modifications.

• The query outputs a set of results R = r such that |R| < k. In this case it is automati-
cally modified by Searchlight to include additional k − |R| results. The additional results are
guaranteed to minimize the specified RD(r) function (discussed below)2 This is called query
relaxation.

• The query outputs |R| > k results. In this case Searchlight ranks the results based on the
provided RK(r) function (discussed below). The query is guaranteed to return top-k results
according to RK(r). This is called query constraining.

When relaxing or constraining the query Searchlight considers only range-based constraints of
form a ≤ f(X) ≤ b. The nature of f() is not important, it might be an arbitrary algebraic
expression containing UDFs (see Section 4.2.1) and variables from X. For the purpose of relaxation
and constraining Searchlight treats f() as black boxes. As we pointed out in Section 4.2.1, we assume
at every node of the search tree the function produces the range of all possible values for all the
corresponding values of X, i.e., a′ ≤ f(X) ≤ b′. UDFs, the decision variables and their common
algebraic expressions satisfy this requirement. By default, Searchlight considers all range-based
constraints, but the user can exclude any of them from the relaxation and/or contraction process.
Let us denote all constraint Searchlight considers for relaxation as Cr and for constraining as Cc.
Cr does not necessarily equal Cc.

The relaxation and constraining processes are based on result ranking via separate relaxation
and constraining ranking functions. In the two following sections 5.1.1 and 5.1.2 we describe the
out-of-box ranking functions Searchlight uses. Then, in Section 5.1.3 we discuss the custom ranking
functions requirements.

in our system — by introducing additional constraints.
2Strictly speaking, the number of additional results might exceed k−|R| in case many results have the same RD(r)

value.
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5.1.1 Query Relaxation Model

For each constraint c ∈ Cr we define the relaxation distance RDc() as follows. Assuming constraint
a ≤ fc(X) ≤ b and a result r, s.t. fc(r) = t:

RDc(r) =


0 if a ≤ t ≤ b

t− b if t > b

a− t if t < a

Then the total relaxation distance for r is:

RD(r) = max
c∈Cr

wcRDc(r),

where wc ∈ [0, 1] are constraint weights, which can be defined by the user. By default, wc = 1.
The more the weight of the constraint, the faster its penalty grows as part of the relaxation distance.

One problem exposed by the definition above is the possible difference in scale between fc() for
different constraints. For example, one constraint might deal with ages (e.g., fc() ∈ [0, 200]), while
another might deal with similarities (e.g., fc() ∈ [0, 1]). To account for this we use normalized RDc()
values by dividing each RDc() by the maximum possible difference for each fc(). Such maximum
differences can be usually derived from the obvious domain restrictions (e.g., similarity cannot exceed
1). We additionally allow users to specify maximum and minimum values for each fc(), giving them
more control over relaxation. Searchlight will not relax the corresponding constraints beyond the
specified values. From this point on we will assume RDc(r), RD(r) ∈ [0, 1] for any r.

In addition to RD(r) for each result r we define V C(r) as the number of constraints from Cr

violated by r divided by |Cr|. Obviously, V C(r) ∈ [0, 1]. Then, the total relaxation penalty for
result r is defined as:

RP (r) = αRD(r) + (1− α)V C(r)

α is a parameter that allows the user to put more importance in the distance of the results from
the original constraints or in the number of violated constraints. By default α = 0.5.

Assuming these definitions, Searchlight provides the following relaxation guarantee: if the user
submits query Q with the cardinality requirement k, Searchlight outputs at least k results r with
the lowest RP () values among all possible r. There are two important points to consider:

• The guarantee above naturally incorporates queries that do not need relaxation. If the query
has at least k results, all of them will have RP = 0 by definition, which is the minimal possible
value. In that case no relaxed results are possible, since for relaxed results RP > 0.

• If the user specifies relaxation restrictions for some fc() (see above), Searchlight cannot output
k results, if the number of results satisfying the maximally relaxed constraints is less than k.
In that case even the maximally relaxed query is still over-constrained and does not contain
enough result. Searchlight will just output all of them.
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Revisiting the astronomical example from Section 4.2.1, the query has variables x ∈ [0, 10], y ∈
[20, 50], lx ∈ [2, 5], ly ∈ [3, 10] describing the region of interest the user is searching for (i.e., the
top-left coordinates and lengths in the two-dimensional right ascension/declination search space).
It also has the following constraints:

• x+ lx− 1 ≤ 10 ∧ y + ly − 1 ≤ 50 for the region to fit inside the whole search region.

• C1 = avg(x, y, lx, ly, r) ≤ 11 defining the user preference for the average value of the r-
magnitude for objects inside the region.

• C2 = avg(x, y, lx, ly, g) ≤ 10, which is analogous to the r-magnitude constraint above, but for
the g-magnitude.

Let us assume that the user wants k = 3 results and Cr = {C1, C2}. Additionally, avg() values
for each magnitude belong to the [−20, 20] domain interval, α = 1

2 and wCi = 1. The results have
the form (r, g), where r = avg(r) and g = avg(g). Then the search might progress as follows:

1. A result r1 = (11, 10) is found. It satisfies both constraints, so RP (r1) = 0.

2. A result r2 = (9, 9) is found. Again, it satisfies both constraints, so RP (r2) = 0.

3. Searchlight cannot find any more results satisfying the original constraints, so it starts relaxing
the query.

4. A result r3 = (18, 18) is found. It violates both constraints: RDC1(r3) = 18−11
20−11 = 0.777,

RDC2(r3) = 18−10
20−10 = 0.8. Thus, RD(r3) = max{0.777, 0.8} = 0.8, and RP (r3) = 1

2 (RD(r3) +
V C(r3)) = 1

2 (0.8 + 2
2 ) = 0.9.

5. A result r4 = (11, 13) is found. It violates only C2, thus RDC1(r4) = 0, RDC2(r4) = 13−10
20−10 =

0.3, RD(r4) = max{0, 0.3} = 0.3, RP (r4) = 1
2 (0.3 + 1

2 ) = 0.4. Since RP (r4) < RP (r3), r4 is
inserted into the top-3 results, and r3 is discarded.

Depending on the user preference, r3 might be output during the search and then indicated as
obsolete by the system when r4 is found. If the user does not wish to receive intermediate results,
r3 is found and discarded without the user’s knowledge.

5.1.2 Query Constraining Model

Searchlight performs constraining only when the number of results exceeds the user’s requirement k.
That means during constraining each result ri satisfies all constraints in Cc. For each function f(X)
from constraints in Cc the user can specify her preference in form of maximization or minimization
of the function. For example, if the constraint’s f(x) represents a property like brightness, the user
might prefer large values of f(X). On the other hand, if f(x) represents some distance, the user
might prefer smaller values. Considering this, for each constraint c ∈ Cc : c = a ≤ fc(X) ≤ b and
each result r, fc(r) = t we define the ranking function RKc(r) as follows:
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RKc(r) =

b− t if c is being maximized

a− t if c is being minimized

Note, by the nature of constraining it is guaranteed a ≤ t ≤ b. As we discussed in the section
about query relaxation, if the constraints contain functions with the values over different scales, we
normalize the RKc(r) to be in [0, 1] by dividing the value to b− a. If the interval is half-open, i.e.,
a or b is not specified for the constraint, a suitable domain boundary for the function can be used
instead.

We define the full rank of result r as follows:

RK(r) = 1−
∑
c∈Cc

wcRKc(r),

where wc, 0 ≤ wc ≤ 1 ∧
∑
c wc = 1 represent the constraint’s weights. They allow the user to

prioritize some constraints over the others. By default wc = 1
|Cc| . We subtract the weighted sum of

individual ranks from 1 so that the better results get higher ranks, which is a more natural definition.
Assuming these definitions, Searchlight provides the following constraining guarantee: when

the user submits query Q with the result cardinality requirement k, if Q has at least k results r,
Searchlights outputs at most k results with highest RK() ranks among all possible r. Note, if the
query does not have at least k results, Searchlight will either perform the relaxation or just output
all results, as per the user’s preference. In both cases the constraining will not be activated.

Revisiting the astronomical example from Section 5.1.1, let Cc = {C1, C2}, wCi = 1
2 . We assume

the user prefers maximization for both functions and wants only one result (i.e., k = 1). The search
might progress as follows:

1. A result r1 = (11, 10) is found. Its rank is RK(r1) = 1− 1
2 ( 20−11

40 + 20−10
40 ) = 1− 0.24 = 0.76.

2. A result r2 = (9, 9) is found. Its rank is RK(r2) = 1 − 1
2 ( 20−9

40 + 20−9
40 ) = 0.73. Since

RK(r2) < RK(r3) r2 is discarded.

3. A result r3 = (20, 15) is found. Its rank is RK(r3) = 1 − 1
2 ( 20−20

40 + 20−15
40 ) = 0.94. Since

RK(r3) > RK(r1), r1 is discarded, and r3 becomes the next top-1 result.

As in the case of query relaxation, if the users wishes to receive intermediate results, Searchlight
outputs all of them, but might obsolete some if better results are found at some point (e.g., r3 makes
r1 obsolete in the example above).

In addition to the scalar value ranking approach just described Searchlight supports another
popular ranking paradigm called skyline, which is vector-based. In that case Searchlight simply
outputs non-dominated results, where a result is a vector of values of fc(), c ∈ Cc. By definition,
V dominates W , iff ∀i : vi ≥ wi ∧ ∃i : vi > wi. The user can choose the meaning of > for each
component by specifying if she wants to minimize or maximize the corresponding function. In case
the user chooses the skyline, however, Searchlight cannot guarantee that the number of results will
not exceed k. There is no way to directly compare non-comparable vectors.
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5.1.3 Custom Ranking Functions

In addition to the out-of-box ranking of results we discussed in the two previous sections, Searchlight
can be extended to support custom ranking functions, if needed. These function must satisfy the
following requirements to ensure correct search tree pruning and provide maximum efficiency during
the query execution.

First, we discuss custom relaxation ranking. As in the built-in approach, it is based on the
distance of a relaxed result from the original constraints. The user has to define a custom penalty
function RP () with the following requirements:

• RP () ≥ 0, with larger values corresponding to worse relaxation. All results satisfying the
original query must have RP () = 0.

• The user has to define the RP () function as a range function for all possible search states
(search tree node). She is provided with the current decision variable domains (i.e., the subset
of the original search space) and ranges of values for fc(), c ∈ Cr, corresponding to the current
search tree node. The user has to return the range of possible penalties [lp, hp].

• To ensure proper pruning and results, RP () and its ranges must satisfy the following criteria:

– lp = hp must be exact for the bounded decision variables, when the search is at a solution.
This affects result reporting in the obvious way, since RP () is the ranking function for
the relaxed results, and Searchlight reports the top-k of them.

– lp cannot be underestimated (i.e., greater than the minimum of all possible lp values at
all leaves corresponding to the search node’s sub-tree). Otherwise, the pruning might cut
valid results.

– lp cannot decrease for the descendants of the search node, i.e., if node S′ is a descendant
of node S, then lp(S′) ≥ lp(S). This guarantees the validity of pruning.

The custom query constraining is rank-based as well, so the user has to define a custom ranking
function RK() with the following requirements:

• Larger RK() values correspond to better results.

• The user has to define RK() for every possible node of the search tree, as in the case of RP ().
She is given the current decision variable domains and the current values for fc(), c ∈ Cc. The
function must produce range [lr, hr] of possible ranks for all possible solutions corresponding
to the search node’s sub-tree.

• To ensure correct pruning and result reporting, RK() must satisfy the following requirements:

– lr = hr must be exact at a solution (as in the case of RP ()). Since results are ranked,
and Searchlight outputs the top-k results, this guarantees proper result reporting.
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– hr cannot be underestimated (i.e., less than the maximum of all possible hr values at
solutions corresponding to the search node’s sub-tree). This is necessary for proper prun-
ing.

– hr cannot increase with the descendants of the current search node, i.e., if node S′ is a
descendant of node S, then hr(S′) ≤ hr(S). This is necessary for valid pruning.

In addition, if the user wants to perform skyline-like computation with defining her own notion
of domination between result vectors, she can provide a function similar to RK() above. The only
exception is that she is provided with the current top-k vectors at each call, since domination requires
to know the current result in total instead of just scalar rank values. The requirements specified
above for RK() can be naturally converted to the custom skyline function, which effectively is a
constraint making pruning decisions at every node of the search tree. Additionally, this function can
and must modify the current top-k results, since a new result might dominate a number of others
in the top-k set.

As can be seen, the general requirements for the custom ranking functions are quite similar,
which is no surprise. Searchlight uses similar techniques for both relaxation and constraining at the
query execution level, which allows it to adapt the search to either of these strategies dynamically.

5.2 Query Relaxation and Constraining in Searchlight

As we discussed in Section 4.1, Searchlight accepts queries in form of Constraint Programs (CP).
The search is performed by the CP solver, which dynamically builds and traverses the search tree.
The dynamic nature of the query execution process allows Searchlight to naturally modify the ex-
isting constraints and add new ones. This is the main idea behind supporting query relaxation and
constraining in Searchlight. If the query does not produce enough results satisfying the original
constraints, Searchlight revisits some parts of the search tree with modified (relaxed) original con-
straints. If the query produces too many results, Searchlight introduces new constraints to prune
results having smaller ranks than the already found ones.

As in the case of the original query processing, the efficiency of the relaxation and constrain-
ing heavily relies on effective pruning. There are three possible pruning points when performing
relaxation or constraining3:

• During the main search at the Solver. This is the most effective point of pruning. Not only
it allows Searchlight to prune parts of the search tree from consideration, but possibly a large
number of candidate solutions as well. This is also the most natural point of pruning, and we
target it with query constraints.

• Just before validating the candidate at the Validator. Note, each candidate solution is submit-
ted by a Solver. Thus, it has passed the search-level checks. However, due to extensive disk

3see Section 4.3 for the description of the Searchlight two-level query processing.
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accessing Validators work slower than Solvers. That means many candidates in the Validator
backlog queue might have been submitted before the top ranks or relaxation penalties were
updated. Rechecking the candidates using up-to-date information might allow some pre-disk
pruning.

• After validating the candidate at the Validator. Even if the candidate passes the validation
checks over the real data, it is necessary to check them again if the new ranking/penalty
information became available. Note, this is the least efficient point of pruning, not allowing
any significant performance gains, since the disk validation has just been performed. It might
ease the burden for the user by filtering out inferior results at the server and possibly decreasing
the amount of data transferred to the client.

In the following sections we describe the basic methods behind query relaxation and constraining
in more detail. We also discuss some optimizations we perform to obtain additional performance
gains.

5.2.1 Query Relaxation

As we discussed in Section 4.2.1, a CP solver dynamically builds the search tree and validates relevant
constraints at every node of the tree. A node either satisfies the constraints, at least currently, or
fails. The successful nodes eventually lead to leaves, which produce candidate solutions. When the
search is finished, if Searchlight has not found k results (the user’s cardinality requirement), it starts
revisiting parts of the search tree with modified, relaxed constraints. It does not have to revisit
successful search nodes, since these nodes satisfied the original constraints. Revisiting those with
relaxed constraints would not introduce any new candidate solutions. Revisiting previously failed
search nodes, on the other hand, could lead to candidates satisfying relaxed constraints. We call
such revisiting fail replaying, and this is the main technique behind the relaxation.

When Searchlight encounters a failed search node during the main search, it prunes the node as
usually. However, it records the current search state at the node before doing so. The information
includes:

• Current decision variable domains. This information is crucial when the fail is replayed later,
so that the fail can be instantiated as the root of its own search tree. This way we do not need
to revisit the whole path from the original search root to the failed node.

• The range [a′, b′] for values of every function fc, c ∈ Cr. These ranges are obtained as part
of the search process anyway, since all constraints, including Cr, must be verified at each
search node. If fc contains UDFs, the ranges for UDFs are obtained via the synopses and
then combined to produce the range for the whole expression4. Note, if [a′, b′] intersects the

4In terms of Or-Tools, fc is an integer expression, which must support min/max calls. If fc is an algebraic
expression, such calls have obvious implementation.
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interval [a, b], a ≤ fc ≤ b of the original constraint, the constraint is counted as satisfied, and
the interval is not recorded.

After this information has been recorded, Searchlight computes the best and worst relaxation
penalties possible for this fail. For the built-in RP function this is straightforward, since the current
fc ranges and the number of violated constraints has just been computed. As for the custom RP

function, it must support the corresponding call as discussed in Section 5.1.3. After the relaxation
penalties are computed, the fail is inserted in the priority queue ranked by the best fail relaxation
penalties.

If during the search at least k results are found, Searchlight clears the queue and stops intercepting
and recording search fails. In this case, however, the constraining turns on, which we discuss later.
If the main search is finished with less than k results, the relaxation is needed. Searchlight starts
replaying fails in the priority queue order (i.e., minimizing the best relaxation penalty by default).
To replay the fail, Searchlight does the following:

1. A new search is instantiated with the same decision variables and constraints as in the original
query. Thus, the model is not modified.

2. The variables are assigned the previously recorded domains for the fail. Thus, the root of the
tree corresponds to the same search state the fail was in.

3. All violated constraints are modified as follows. The original a ≤ fc() ≤ b become a′ ≤ fc() ≤
b′, where [a′, b′] is the recorded interval at the moment of fail. Note, this guarantees the fail
will become a successful node, and the search can continue.

Searchlight then starts the search and treats it as the original one. No special tricks are required.
As the original search, the search initiated by a fail replay can also encounter its own fails. For
example, when a constraint that was not violated during the original fail becomes violated. The
common reason is improved synopsis estimations for UDFs when the search deepens, in which case
the intervals for fc() become gradually tighter. Such repeated fails are caught and recorded as the
original ones. They are inserted in the priority queue and might be replayed later. It is important to
notice that during replays Searchlight explores only previously untouched parts of the search tree.
That means no work is repeated for already visited parts of the search tree, and there can be no
duplicates in the results.

As can be seen, the mechanism described above does not allow any pruning at the search level. If
we replay fails with relaxing violated constrains as shown, the relaxed constraints cannot fail again,
i.e., violated constraints are “fixed” completely. The only new fails can be due to new constraints
failing, as we mentioned above. Thus, no pruning will occur for such replays. To remedy that
Searchlight takes into account the Maximum Relaxation Penalty (MRP ) among the already found
results.

Let us first assume the built-in RP function. While the number of results is less than k, the
MRP is set to the maximum, MRP = 1. When at least k results are found, MRP might become
less than 1. First of all, Searchlight modifies the fail recording and replaying process as follows.
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C1: [8, 20]
C2: [9, 20]

C1: [10, 18]
C2: [9, 18]

C1: [10, 16]
C2: [9, 15]

C1: [10, 18]
C2: [12, 18]

Search 
Tree

C1: [15, 18]
C2: [12, 19]

Variables C1 Range C2 Range BRP

x’, y’, lx’, ly’ - [12, 18] 0.35

x’’, y’’, lx’’, ly’’ [12, 20] [12, 18] 0.65

… … … …

Fail Priority Queue

x’, y’, lx’, ly’
avg(r) <= 11
avg(g) <= 15

Fail replay

Figure 5.1: Example of fail recording and replaying for the astronomical query (MRP = 0.5).

• When the fail is being recorded, the [a′, b′] interval is recorded as previously. However, if the
best relaxation penalty for the fail is greater than MRP , the fail is discarded. The corre-
sponding search tree cannot result in any candidates with RP () ≥ MRP . This is equivalent
to pruning the corresponding subtree.

• When the fail is selected for replaying, its recorded intervals [a′, b′] are tightened by using
the current value of MRP , which we discuss in more detail below. Such tightening allows
Searchlight to perform more effective pruning, since constraints are relaxed as minimally as
possible. Also, the best relaxation penalty for the fail is again checked against MRP . If it is
greater than MRP , this fail is discarded without being replayed, and a new one is taken from
the queue.

Let us discuss the interval tightening in more detail. We assume the built-in RP () function
discussed in Section 5.1.1 with α 6= 0. If α = 0, the relaxation distance does not influence RP (),
and the originally recorded interval [a′, b′] must be used. Otherwise, to qualify for the result, all
candidates r must have RP (r) ≤MRP . This implies:

αRD(r) + (1− α)V C(r) ≤MRP

αRD(r) ≤MRP − (1− α)V C(r)

RD(r) ≤ MRP − (1− α)V C(r)
α

(5.1)

This relaxation distance boundary can be used to tighten each violated interval [a′, b′] accordingly
before the fail replay starts.
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Let us revisit the example from Section 5.1.1 and illustrate the above algorithm with the help of
Figure 5.1. In this figure the search nodes are rectangles with the current (i.e., synopsis-estimated)
values for the avg() from constraints C1 and C2. As can be seen, the root node produces two
new decisions (the search heuristic is not important for this example). The left node is processed,
and produces two new decisions. For the first one, since constraints are currently satisfied (current
intervals intersect constraint intervals), the search continues further (the “Search Tree” cloud in the
figure). At some point the solver backtracks and explores the second decision. At this node, however,
the C2 constraint is violated, since 12 > 10. The Best Relaxation Penalty (BRP) for the fail is:
1
2 ( 2

10 + 0) + 1
2

1
2 = 0.35. This is smaller than the current MRP = 0.5, so the fail is recorded in the

priority queue (we do not record the C1 range, since C1 is not violated). The solver then backtracks
again and explores the second child of the root. At this node both constraints are violated. Its
BRP = 1

2 ( 4
10 + 2

10 ) + 1
2

2
2 = 0.8. Since it is greater than the current MRP = 0.5, we discard the

fail without recording it. At some point the solver starts replaying the fails and takes the first one
(with the best BRP ) from the queue. The C1 constraint remains the same: avg() ≤ 11. We can set
the C2 constraint as avg() ≤ 18. However, since MRP = 0.5, RD ≤

1
2−

1
2

1
2

1
2

= 0.5. The right bound
h for the constraint can be tightened to t−10

10 = 1
2 =⇒ t = 15. Thus, C2 is modified to avg() ≤ 15

at this replay (search node).
For the custom RP () function Searchlight cannot apply the same logic for tightening intervals,

since the custom RP () is basically a black box. In this case the constraints are relaxed to the [a′, b′]
intervals. However, at each search node we call the custom RP () function to check against the
MRP . If the search node does not pass the check, we fail the node and do not record the fail for
further replays.

When consideringMRP , the search initiated by a fail replay can still encounter other fails, which
now can be of two types:

• A previously non-violated constraint is now violated. This is the same case as before. We
check MRP and record the fail, if it passes the check. When replaying such a fail, the fc
intervals might be tightened even further, since V C() increases.

• A previously relaxed constraint fails. This can happen due to the additional tightening de-
scribed above. In this case, the fail is discarded, since the constraint has been already max-
imally relaxed with respect to MRP and cannot be relaxed further. This is actually caught
by checking the best penalty value for the fail. In this case it will be greater than the current
MRP by definition.

After the search tree with relaxed constraints reaches a leaf, it submits the corresponding candi-
date solution to the appropriate Validator in the same way as the original search. Since the Validator
runs the same model from the original query, it needs to make sure its own constraints are properly
relaxed. At the same time, it can provide additional pruning before the validation accesses the disk.
Let us now describe how Validators handle candidate solutions in the presence of relaxation.
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Validators generally work much slower than Solvers, since they need to access disk data and
possibly transfer some data over the network, if data redistribution is required. That means Solvers
submit candidates faster than Validators check them. When the Validator takes another batch of
candidates from its pending candidates queue, some candidates in the batch might have large BRP
values and might violate the currentMRP value. The Validator processes the candidates as follows:

1. The Validator takes a batch of candidates from its queue of pending candidates. This is the
same step as for the common search.

2. It checks the candidate’s BRP value against the current MRP , and in case BRP > MRP it
discards the candidate. The BRP value is sent to the Validator from the Solver as additional
meta-data.

3. If the candidate passes the check, the Validator relaxes constraints at its own validating CP
solver. Along with the BRP value, The Solver also sends the list of violated constraints. The
Validator uses this information to relax all constraints using the Inequality 5.1, in the same
way the Solver uses it for the tightening. Note, the Validator has to relax all the constraints,
since even not previously violated constraints might become violated (i.e., due to imprecise
synopsis estimations). Such new violations do not necessarily fail the candidate. It might still
satisfy the current MRP value. Since the tightening is not possible in case of the custom RP

function, the Validator just relaxes all constraints maximally.

4. If the candidate passes the validation, the Validator computes itsRP value and checks it against
the current MRP value. If the RP value is greater than MRP , the solution is discarded.

5. If the solution passes the check, it is reported to the user (if the user wishes to receive interme-
diate results), and its RP value is broadcasted across the cluster so that all nodes can update
the MRP value accordingly.

The validation itself is performed as usual, without any modifications. It can be seen that for
both Solvers and Validators query relaxation does not cause any significant query processing changes.
The relaxation is incorporated quite naturally inside the CP-based search and validation process,
and does not require any awareness from the user. For example, if the user specifies a custom search
heuristic to use, it does not interfere with the relaxation, since the search process itself remains the
same.

5.2.2 Query Relaxation Optimizations

In this section we discuss a number of useful optimizations we perform for the basic query relaxation
process. These optimizations do not modify the main workflow, but provide additional performance
gains in some frequently occurring situations.

Computing UDF values at fails. As we described in the previous section, when Searchlight
catches a fail, it computes the [a′, b′] intervals for functions fc, c ∈ Cr. However, if the search fails
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at a search node, it does not necessarily mean all constraints have been verified. The fail happens
at the first violated constraint, in which case the subsequent constraints are not touched at all. This
implies some fc values might remain unknown. For example, in our running astronomical example,
if C1 fails, C2 is not verified, and avg(g) is not computed. In this case Searchlight can force the
computation for such functions to obtain proper [a′, b′] ranges. However, fc functions usually contain
Searchlight UDFs, computing which might be relatively expensive, despite this requiring memory-
only accesses. While it might seem like a negligent performance issue for a single fail, for complex
queries Searchlight might catch hundreds of thousands fails. If the query contains multiple UDFs, the
cumulative performance drain might become quite visible. First of all, the overall query execution
time might increase significantly. Secondly, it might postpone outputting the first result, since the
overhead starts accumulating before the relaxation begins, at the fail catching phase. Lastly, if the
query has “real” results, satisfying the original constraints, the latency for such results increases as
well, since fail recording introduces non-trivial delays. This is especially disturbing in the presence
of the fact that many fail records might not be required later at all! If the query does not require
the relaxation, all the recorded fails will be discarded after the required number of results is found,
and the recording time will be spent for nothing. If the relaxation is required, the remaining fails
will be discarded as soon as MRP reaches a small enough value. Thus, it is important to minimize
the time spent on catching and recording the fails.

To deal with this issue, we do not force the computation of all fc functions, but simply record
the [a′, b′] intervals already known at the moment of fail. From the implementation perspective this
is a simple matter of switching the Router (see Section 4.3.1) to the “dumb” mode while recording
the fail, as we do for the candidate simulation at the Validator (see Section 4.4.3). Recall that in
this mode the Router intercepts all data request and answers them with trivial [−∞,+∞] intervals.
Assuming the UDFs in constraints support caching5, this has the following impact on functions:

• Since the search state remains the same, already computed functions do not perform any more
data accesses, so they just reuse the cached values. The “dumb” mode has no effect on them.

• If the function has not been computed yet, it tries to access the data, but get the trivial answers
(at no cost). This generally results in the trivial [a′, b′] intervals, where a′ = −∞, b′ = +∞.

Searchlight naturally treats the trivial intervals as “unknown” values, and treats the correspond-
ing constraints as not violated. This is an optimistic approach. That means the BRP (Best Re-
laxation Penalty) value for such fails is overestimated. When such a fail is replayed, the chances
for additional fails in the replay’s search tree increase. This does not create any problems with the
algorithm. Such fails do not differ from the ordinary fails, and they are recorded and processed in
the same way.

While we reduce the computation overhead at the recording stage, the skipped functions will still
need to be computed when we replay the fail. Thus, for the replayed fails the total savings are null.

5Caching is provided for built-in UDFs. For custom UDFs, the caching is provided for the current search node,
and can be extended by users.
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We just postpone the computation until we really need it (if ever), which is a form of lazy evaluation.
The decreased overhead at the fail recording stage might result in better interactive delays (time to
the first result and delays between results in the same query). The benefits for the query completion
times depend on the query — if Searchlight replays (almost) all recorded fails, for example, the
query completion time would remain the same, since we just pay the cost of computation later.

As we show in the experimental evaluation, while the total number of processed fails might
increase, overall this optimization results in significant performance gains for queries with expensive
functions. It allows us to keep the relaxation turned on for all queries without incurring any visible
penalties for result delays, even for the queries that do not require the relaxation (which is not
known beforehand).

Partial relaxation at replays. When Searchlight replays fails, it relaxes violated constraints
within the saved [a′, b′] interval and tightens it with respect to theMRP value. At the early replays,
however, such relaxation might be too “wide”. If the original query fails almost immediately, close to
the root of the search tree, the violated constraints will have wide [a′, b′] intervals. At the same time,
the MRP value will be still maximal. Thus, the tightening will not be possible, and the constraints
will be relaxed in the maximal possible way. This will effectively result in traversing the entire search
tree with no pruning. At some point, when Validators have checked some candidates, the MRP

might go down, which will allow Searchlight to perform some pruning on both Solvers and Validators
(at the before-validation point). Ideally we would like the MRP value to be updated to a small
value as soon as possible. To facilitate that, at a fail replay we do not relax the violated constraints
all the way, but rather use a percentage of the relaxation interval. The percentage is a parameter
we call Replay Relaxation Distance (0 ≤ RRD ≤ 1). If, for example, a constraint fc() ≤ 10 is to be
relaxed to fc() ≤ 20, and RRD = 0.3, we relax the constraint to fc() ≤ 10 + (20 − 10) × 0.3 = 13.
This effectively results in first exploring parts of the search tree that can lead to decreasing MRP

to 0.3. A potential drawback is that there might no be such candidate solutions at all for the query.
In this case, the search results in a number of new fails, which are recorded and gradually relaxed
further. This might create an additional delay for the results. However, our experiments showed
that small values of RRD might considerably speed-up some of the queries, and, at the same time,
do not hamper other queries much.

Saving UDF states at fails. Searchlight saves decision variable domains when recording fails
to be able to replay the fail later from exactly the same point. Since the model essentially remains
the same (relaxing constraint intervals does not change the model itself), restoring the variable
domains is enough to continue the search. However, at the moment of fail, some fc() functions have
been computed and some UDFs, participating in these functions, might have important caching
information stored. At the very least, this information is valid at the current search node. For more
advanced function implementations, this information can be used to speed up the recomputation
for descendant search nodes as well. To prevent the loss of this information, Searchlight provides
support for UDF states. At a fail, when performing the recording, Searchlight saves the state as a
binary blob without interpreting it in any way. When the replay of the fail is initiated, Searchlight
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restores the state for all UDFs that saved it. If the user uses her own functions, she can implement
the save/load state functions. If she does not, the state is lost at fails. This optimization was found
to provide significant performance gains when replaying fails, as expected. At the same time, it does
not introduce any overhead, except slightly increased memory footprint.

Sorting the Validator queue on BRP . When candidate solutions are received by the Val-
idator, they are put into a queue. Without considering the relaxation, FIFO queues work efficiently,
especially when we use several zones to avoid data buffer thrashing. However, FIFO queues do not
make the relaxation-specific pruning more effective. It is often the case that first fail replays produce
a considerable number of candidate solutions, creating relatively long queues (recall, Solvers work
much faster than Validators due to the absence of disk accesses). Subsequent fail replays might
produce candidates with better relaxation penalties (BRP ), however these candidates are put to
the tail of the queue. At the same time, candidates with lower BRP scores might allow Searchlight
to decreaseMRP faster, which improves the overall pruning. To take advantage of this opportunity,
instead of using a simple FIFO queue at the Validator, we use a priority queue ranked by the BRP
candidate scores. While a priority queue is more expensive than a FIFO queue, in practice perfor-
mance benefits resulting from better pruning outweigh the queue maintenance costs, as supported
by our experiments.

Speculative Relaxation. Before relaxing the query Searchlight runs the original query until
completion. Only then the recorded fails are replayed, if needed. It is often the case that the original
query does not bring any results at all, since the constraints are too tight. Let us assume the user
does not mind intermediate results, i.e., the ones that might become obsolete in the future if less
relaxed ones are found. However, the first results will come only after the original query is finished.
To address this issue Searchlight supports speculative relaxation as an option for users. If this mode
is enabled, Searchlight runs an additional speculative Solver on each instance to replay fails as soon
as they are caught. Technically this Solver is not different from the “original” Solvers — it runs
the same model. However, it works only with fail replays and only when Validators are not heavily
loaded. If Validators process other candidates, the speculative Solvers sit idle. They are completely
turned off when the main Solvers finish their search trees and start replaying fails themselves. This
is reasonable, since the idea behind the speculative Solvers is to inject some relaxed candidates while
the main Solvers are struggling to produce anything. There are two important issues to consider for
speculative execution:

• Speculative Solvers do not necessarily result in faster intermediate results. This is because
they work with fails found by the main Solvers so far. In case of tight relaxation, when the
user specifies tight relaxation limits for the constraints, such fails might be quite close to these
limits. In this case the corresponding candidates might be filtered by Validators as violating
even the maximally relaxed constraints. Speculative Solvers are opportunistic — if some very
promising fail is found during the main search phase, it will be processed quickly and will
hopefully produce some results.

• Speculative Solvers introduce a trade-off between possibly receiving some relaxed results faster
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and overall query latency. A good practice is to allocate a Solver per each available CPU core.
In such a case, when a speculative Solver starts replaying fails, there are no free CPU cores
available, so it slows down the main Solvers. According to our experiments this might create
a pronounceable latency for the query. However, this is the expected result in the presence of
such resource contention. If there are freely available CPU cores, speculative Solvers do not
result in any noticeable overhead.

5.2.3 Query Constraining

In contrast with the query relaxation, query constraining deals with the problem of many results.
That means query constraining does not need to look at the fails, since it only works with results
satisfying the original constraints. Actually, the two processes, relaxation and constraining, cannot
be active at the same time. After the query begins execution, Searchlight considers the possibility
of query relaxation and tracks the fails. If the query produces at least k results (k being the
user cardinality requirement for the query), Searchlight turns off the relaxation, stops tracking fails
and starts constraining the query to prune subsequent results. The pruning is based on the top-k
approach with respect to the specified ranking function (built-in or custom).

Recall that Searchlight explores three possible points of pruning. The first one is Solver-based, at
the search tree. When at least k results are found, Searchlight computes the Minimum result RanK
(MRK) — the minimum rank RK() among all the k results. For a new result to belong to the
top-k results its Best possible RanK BRK value must not fall belowMRK. Similar to the BRP for
the query relaxation, BRK is the maximum possible rank among all possible results in the search
sub-tree corresponding to the current search node. Thus, Searchlight puts a new constraint for the
query: BRK(r) ≥MRK. This is similar to how traditional CP solvers handle optimization process
by obtaining progressively better objective function values. There are two important properties of
this constraint:

• The constraint is dynamic. When a new result is found, it might improve the MRK value. In
this case the constraint is refined with respect to the new value to facilitate tighter pruning
during the search. Note, the refining does not require the current search to halt or restart.
The constraint can be updated at any search node at the moment the new MRK value is
received.

• The constraint usually requires the current [a′, b′] intervals for all functions fc, c ∈ Cc to
compute BRK. Searchlight obtains these intervals in the same way as described for query
relaxation (Section 5.2.1). Searchlight enforces this constraint to be checked only after the
main query constraints have been verified. This way all fc have been computed, the cost of
computing BRK is negligent, and the additional constraint does not interfere with possible
pruning performed by the main constraints.

As an illustration, consider the running astronomical example with constraints C1 : avg(r) ≤
11 ∧ C2 : avg(g) ≤ 10, where both avg() have domains [−20, 20]. We assume the user wants to
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maximize both avg() functions. If at the current search node the function’s intervals are avg(r) ∈
[0, 5] and avg(g) ∈ [0, 15], then BRK = 1 − ( 1

2
6

40 + 1
2

0
40 ) = 0.93 (since the user is maximizing the

functions, BRK is based on the right interval boundaries). If MRK = 0.9, for example, this node
satisfies the constraint. On the other hand, if at some of its descendant the function ranges become
avg(r) ∈ [0, 3] ∧ avg(g) ∈ [0, 10], then BRK = 1− ( 1

2
8

40 + 1
2

10
40 ) = 0.78. Thus, the node is pruned.

Searchlight does not introduce any additional constraining techniques at the Solvers. When a
leaf is reached, the Solver passes the corresponding candidate solution and its BRK value to the
appropriate Validator. The Validator processes the candidates in a similar way as for the query
relaxation:

1. A new candidate batch is taken from the Validator’s queue.

2. The candidate’s BRK value is checked against MRK, in case the MRK value has changed
since the candidate was put into the queue. This is similar to the query relaxation case, and
provides a very effective and cheap pruning opportunity.

3. If the candidate passes the check it is then validated over the real data. In contrast with the
query relaxation, the Validator does not need to relax any constraints — during the query
constraining phase candidates must satisfy the original query constraints.

4. If the candidate passes the validation, the Validator checks its RK value against MRK. Since
fc, c ∈ Cc have been computed over real data, the rank is the exact scalar value. If the check
fails, the solution is discarded.

5. If the solution passes the check, the new MRK value is computed, and the RK value is
broadcasted across the cluster, so that all Searchlight instances can update their own top-k
sets and MRK values accordingly.

As can be seen, the query constraining does not require any extensive modifications to the main
search process. It does not interfere with the user preferences, if, for example, the user specifies a
custom search heuristic or introduces her own functions. As in the case of query relaxation, CP
solvers already provide most of the required facilities to incorporate the techniques efficiently. Both
relaxation and constraining naturally co-exist during the search process.

5.2.4 Query Constraining via Skylines

Searchlight provides an additional option for the query constraining — the skyline constraint. Sup-
porting skyline does not require any additional changes, although it introduces important differences
from the rank-based constraining:

• If the user’s cardinality requirement k is not fulfilled (i.e., the skyline contains less than k

results), the query will be relaxed as usually. However, relaxed results might violate the
skyline property — they are provided just to get the user more info to work with. At the same
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time, the skyline size might exceed k quite considerably, which is an important distinction
from the rank-based constraining, which guarantees no more than k results. Searchlight does
not have any means to compare results belonging to the skyline, since such results (vectors)
are incomparable.

• The search-level pruning is still performed. It is not based on the rank, however. Instead the
skyline constraint checks the current fc, c ∈ Cc values for the possibility of dominating results
in the running skyline. This is done as traditional interval-based comparison.

• The checks at Validators are still performed, but, again, against the running skyline instead
of the ranks. When a new solution is found, it is broadcasted across the cluster, and all
instances update their own running skylines accordingly. This effectively updates the search-
level constraint as well.

In general, skyline-based pruning is less effective than the rank-based pruning. That is because
the pruning now is based on interval comparisons, for which the rank-based approach in some way
is less strict than the domination-based. For example, for a search node to be pruned, it must be
dominated by one of the top-k results. That means, the result must dominate each of the search
node’s fc intervals. If the intervals are wide, which is often the case closer to the root of the
search tree, such pruning is not very effective. At the same time, even for such queries we found
that Searchlight in many cases provides significant performance gains comparing with running the
queries without constraining and computing the skyline at the client.

5.3 Experimental Results

We performed an extensive experimental evaluation of the query relaxation and constraining features
in Searchlight. The main part of the evaluation consists of measuring the benefits of using this
combined query processing solution against the only thing available to the user — relaxing or
constraining by hand. At the same time, we wanted to make sure these features do not bring any
significant overhead to the query processing, even in the case of regular queries, which do not required
modification. Another important part of the experimental evaluation is to measure the benefits of
the various optimizations we described in Section 5.2.2. We do not provide comparison with, for
example, the pure SciDB approach. Such a comparison is available in Section 4.5 for different kinds
of queries for both synthetic and a real-world data sets,

All experiments were performed in a four-instance Searchlight cluster. The cluster consisted of
Linux machines (kernel 3.16) with Intel Q6600 CPUs, 4GB of memory and WD 750GB HDD. We
used two data sets. The first one was a synthetic data set, 60GB total size, which is a part of the
same synthetic data set we used in Section 4.5. The second data set was a part of the MIMIC II [2]
waveform data for the Arterial Blood Pressure (ABP) signal. The data set size was 50GB.

To look at different aspects of our approach we provide most of the results for two characteristic
example queries for each data set. By default, we assumed the user’s cardinality requirement is 10
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results. The queries are as follows:

• S-SEL (from Synthetic SELective). If ran without modifications, this is an empty-result query
for the synthetic data set. However, being maximally relaxed it becomes a non-empty, but
very selective query. We used it to measure the benefits and overhead of our approach in the
scenario where the user does not want to relax the query too much. Practically, it is possible
for her to run the maximally relaxed version of the query in the first place, however, the user
does not know that, since she cannot estimate the result cardinality.

• S-LOS (from Synthetic LOoSe). This query follows the same logic, but the maximally relaxed
version is very loose, outputs a very large number of results, and does not allow Searchlight
to perform much pruning. Thus, this is impractical for the user to run the maximally relaxed
version at all. With such a query we measured the performance of Searchlight in cases when
the user does not restrict relaxation in any way, for example, due to having little knowledge
about the data. We see such cases as the most common and useful for our approach.

• M-SEL (from Mimic SELective). This is the MIMIC version of the query S-SEL.

• M-LOS (from Mimic LOoSe). This is the MIMIC version of the query S-LOS.

Additionally, we used maximally relaxed versions of these queries to measure the performance
of the query constraining in Searchlight. This ensures a very interesting comparison from the user’s
perspective. If, for example, the user runs the maximally relaxed versions of the loose queries (S-
LOS/M-LOS) hoping to get just enough results, she will be actually overwhelmed with the number
of them. By constraining such queries, Searchlight should still allow the user to get a number of
ranked results without the need to stop the query and look for a more selective version. Thus, it
allows us to demonstrate the benefits of the combined approach.

5.3.1 Query Relaxation

In this experiment we measured the benefits of the automatic relaxation provided by Searchlight
against the guessing-based approach, when the user would be forced to guess the correct query to
get at least 10 results. We looked at the following possible user scenarios:

• GUESS. This is a common guessing game scenario. The original query gives an empty answer.
Then the user relaxes it in a cautious way, and the new query still does not fulfill the cardinality
guarantee. On the third try the user guesses the correct query — the one that outputs at least
10 results and, at the same time, does not output too many of them. We provide results with
only one intermediate unsuccessful try, which is enough to demonstrate the benefits of the
automatic relaxation. In the real world, the guessing game might go on for some time, since
the user has a large number of options: which constraints to relax and how to modify them.

• ORACLE. This is the scenario in which the user guesses the query correctly from the first
try (after the original query outputs empty result). Since in the real world it would be nearly
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impossible for the user to guess such a query without some kind of an oracle, we call this the
oracle approach.

• MAX. This is the scenario in which the user just relaxes the query maximally after the
original query fails. Depending on the query, this might perform like the oracle approach (e.g.,
for selective queries) or just start outputting a large stream of results without any means of
pruning (due to loosely relaxed constraints). In the latter case the user would have to stop
the query and guess again, since such queries might easily take hours to finish.

First, we provide query completion times for the selective queries S-SEL and M-SEL under
different scenarios described above. The results are illustrated in Table 5.1, where the “Auto” column
corresponds to the Searchlight auto query relaxation. For the oracle scenario in the parenthesis we
specify the completion time of the second, correctly relaxed, query. For these queries the oracle and
max user scenarios are basically equivalent since there is no harm in relaxing the query completely.

Table 5.1: S/M-SEL query completion times (secs) for query relaxation.
Query Auto Guess Oracle Max
S-SEL 134 415 288 (165) 288
M-SEL 184 586 397 (245) 397

As can be seen, even comparing with the oracle approach Searchlight provides considerable
performance gains. They come from two sources:

• Searchlight does not need to re-explore the already traversed parts of the search tree. After
the main search parts are finished, it can concentrate only on the previously unexplored (i.e.,
failed) parts of the search tree. This is in contrast with any of the user-level approaches — when
the user issues the next, more relaxed, query, Searchlight has to explore the corresponding tree
entirely. There is no sharing of information between different queries.

• When relaxing the query Searchlight is able to provide additional pruning based on the best
results found so far. When the user submits the “correct” query, this kind of pruning is
absent. While for selective queries it is not necessarily the game changer, it has a much more
pronounceable effect for loose queries, which we show later in this section.

It is as interesting observation that Searchlight performed better even comparing to the correctly
relaxed versions of the queries (the parenthesis times for the oracle case). This can be attributed to
the distance-based pruning described in the second bullet above.

We also measured the time it takes Searchlight to obtain the first result. For the auto approach
it took Searchlight 109 seconds against 125 seconds for the oracle (the best) approach. The corre-
sponding times for the M-SEL query were 41 seconds against 202 seconds. Since Searchlight is aware
of the relaxation from the beginning, it generally might find relaxed results before the relaxation
phase starts. One notable case is when a candidate solution passes the checks of the original query
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at the search level, but fails them at the Validator. In that case the Validator still outputs the
relaxed result if it is within specified maximum relaxation bounds.

When it came to the overhead of the query relaxation approach itself, it did not exceed 10
seconds for the synthetic and 3 seconds for the MIMIC query. This overhead came from assessing
and recording the fails, both suitable for future replays and discarded at the recording.

Table 5.2 provides the corresponding results for the loose queries. For the “Max” case we did
not run the query until completion and stopped it after 1 hour (hence the > symbol in the table),
since this was enough to demonstrate our point.

Table 5.2: S/M-LOS query completion times (secs) for query relaxation.
Query Auto Guess Oracle Max
S-LOS 147 378 250 (126) >3600
M-LOS 80 179 119 (91) >3600

This experiment shows the same trend as for the selective queries. Searchlight prevails for the
same reasons. In contrast with the selective queries, for the loose queries the max scenario does not
equal the oracle one. If the user relaxes the query maximally, it will run for a very extended period
of time (we stopped after 1 hour). Note, in practice the user cannot just stop the query and rank the
currently found results, since she is not guaranteed to find the top-k among them. At the same time
Searchlight correctly finds the top-k results and prunes the unnecessary parts of the search space at
the same time. Since the maximal relaxation is out of question, the user would have to continue the
guessing game incurring times potentially much larger than specified for the guess approach in the
table.

Searchlight output the first result in 130 seconds for S-LOS and 44 seconds for M-LOS. The
corresponding times for the best user scenario, the oracle, were 136 and 78 seconds. This is the same
trend as we discussed for the selective queries. As for the auto relaxation overhead, it remained at
comparably low levels: 13 seconds for S-LOS and 1 second for M-LOS.

The last experiment of this section measured the overhead of the auto relaxation for the queries
that do not need it. Recall that our goal is to keep the relaxation in the “always on” mode, since
the user cannot predict if the query will need the relaxation before running it. In this case, however,
Searchlight incurs additional overhead coming from the following sources:

• Catching and recording fails. While it is automatically turned off when the required number
of results is found, it still might be active for considerable time during the execution.

• Validation overhead for some candidates. This is a more subtle type of the overhead. If
Searchlight is not relaxing the query, it might be able to filter out candidates faster, after
detecting the first violated constraint. However, when considering relaxation the constraints
are relaxed at the Validator as well (with respect to MRP ). That makes the constraints more
loose, and validations “less strict” — the Validator will admit more candidate solutions than
without relaxation. Some early candidates can actually pass such a validation and be output
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as relaxed results (to become obsolete later by the exact results). After the required number
of results is found, the Validators will not relax constraints anymore and will return to more
strict validation dictated by the original constraints.

For this experiment we took the relaxed version of the queries from the oracle scenario and ran
them with relaxation turned on. The results are presented in Table 5.3.

Table 5.3: Query completion times (secs) for queries not needing relaxations.
Auto-relax S-LOS M-LOS S-SEL M-SEL
Off 126 91 165 265
On 135 106 186 332

As can be seen, in most cases the overhead was quite manageable. For the synthetic queries the
overhead came mostly from maintaining the fail catching and recording. For the M-SEL query it was
a mix of both. Actually, the overhead for M-SEL is the largest we have seen for the MIMIC queries.
Most of the other queries, including selective ones, had the overhead on the same scale as synthetic
queries. Another measure, not included in the table, is the time to get the first result, which is a
reasonable measure of the system’s responsiveness. For all queries turning on the relaxation did not
introduce any noticeable result delays. The auto-relaxation approach resulted in increased delays
no more than 1 second. One notable exception was, again, M-SEL, for which the difference was
5 seconds. Despite that, we believe the benefits of keeping the relaxation always on and getting
considerable performance improvements for many queries well worth the price of quite manageable
overhead.

5.3.2 Query Constraining

In this experiment we measured the benefits of the automatic query constraining provided by Search-
light. Without the automatic constraining the only option available to the user is to run the query
until completion and then filter results at the client. While this might work for queries returning a
small number of results, it is very inefficient for queries returning a large number of them. Besides
that, such a client-based approach misses significant pruning opportunities, which we wanted to
demonstrate with this experiment.

The main results for the experiment are presented in the Table 5.4. As for the Table 5.2, we use
the > symbol to specify we did not run the query until completion and stopped it after the specified
time. By default we specify times in seconds, but we use ’h’ and ’m’ symbols where appropriate to
denote hours and minutes.

Table 5.4: Query completion times (secs) for query constraining.
Auto-relax S-LOS M-LOS S-SEL M-SEL M-SEL-ALT
Off 2h 17m 3h 150 265 314
Rank 74 242 35 258 186
Skyline 31m 45m 126 284 194
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As can be seen, the loose S/M-LOS queries cannot even finish in a reasonable amount of time
(for M-LOS the time is much greater due to a large search space size). If the user risks running such
queries without any support from Searchlight, she will be just overwhelmed with the results without
any means of meaningful interpretation. Note, these queries actually were outputting results with
very low latencies during the execution. However, since constraints were loose, they created an
avalanche of such results without the ability to prune. The user cannot simply stop such queries,
since there are no guarantees the top-k ranked answers are among the found results.

At the same time, for the loose queries Searchlight provided considerable performance gains.
They came from the pruning both at Solvers and Validators, as we described in Section 5.2.3.
This is especially evident for the rank-based constraining. The skyline-based constraining was less
effective, when it came to the query completion time. However, comparing with the client-based
“Off” approach, the performance benefits were quite considerable. The reduced efficacy can be
attributed to the nature of skyline — it is harder to prune interval-based search nodes at Solvers
and candidates at Validators.

The selective queries S-SEL and M-SEL allowed us to measure the constraining benefits for
the queries for which the client-based filtering is a viable alternative — their completion time is
reasonable. It can be seen that in most cases the constraining approach of Searchlight provided
improvements even in this case. The M-SEL query is somewhat of an exception, for which the
skyline approach performed a little worse than the “Off” approach. This can be attributed mostly
to some overhead from the skyline based checks during pruning (without any benefits) and slightly
different rebalancing of the candidates between Validators. In other words, it was somewhat of an
anomaly. The last column of the table (M-SEL-ALT) provides results for another selective MIMIC
query. It can be seen that both rank and skyline auto approaches provide significant improvements
for query completion times, so the M-SEL case should not be considered a trend.

When it comes to the overhead of the automatic approach, it is kept at the minimum. Actually,
it is smaller than that for the query relaxation since it does not need any maintenance similar to
fail catching and recording. As for the Solver-level checks, they are quite cheap for the rank-based
constraining, since it is a very cheap constraint that does not even need access to data, synopsis or
real. Moreover, the constraint is added only when Searchlight finds the number of results required
by the user. Thus, for queries that do not need constraining (including the relaxation queries)
there is zero overhead. The same is true for the Validator-level checks, which are insignificant
comparing with the oncoming data accesses required by the validation itself, and are active only
when the constraining really is needed. For skyline-based constraining the checks are somewhat
more expensive, and they must be active all the time, from the beginning of the query. However,
the checks can be done quite efficiently using the variety of existing methods. This problem is well-
researched in the literature, e.g., for relational skyline queries. We see the skyline queries overhead
not as the cost of the constraining approach, but rather as the logical cost of the skyline constraint
itself, which is not trivial.
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5.3.3 Query Relaxation Optimizations

In this section we describe experiments we performed to measure the effect of the query relaxation
optimizations described in Section 5.2.2 on query performance.

Computing UDFs at fails. In this experiment we measured the difference between the two
different strategies to compute UDFs when catching fails. The first strategy, “Full”, enforces com-
putation of all function values to record the search state at the fail, even for functions that have not
been computed (i.e., due to an earlier constrain violation). The rationale behind this strategy is that
Searchlight can estimate the relaxation penalty more accurately. Another strategy, “Known”, just
considers the already computed UDF values, and assumes the other function values to be unknown
(i.e., −∞ ≤ fc() ≤ +∞). This strategy has the benefit of lower overhead during fail recording, but
at the same time might provide less information about the fails, resulting in less accurate penalty
estimations and an increased number of fail replays. At the same time, we wanted to study the
effect of this optimization on interactive times, in particular the time to obtain the first result of the
query.

The results are presented in Table 5.5 (query completion times) and Table 5.6 (time to the first
result). As can be seen from the table, for expensive synthetic queries the optimization resulted
in significant benefits, both for the completion and interactive times6 For less expensive MIMIC
queries the benefits were not pronounced. At the same time, the strategy did not introduce any
overhead either. We also ran additional MIMIC experiments for more expensive queries. We took
the same M-SEL/LOS queries and increased their cardinality requirements from 10 to 200 results,
which resulted in more extensive search. We saw the significant benefits at the fail recording stage:
for some queries the overhead went down from 30 to 15 seconds. At the same time it did not have
any effect at the times to the first result. For those queries first results were relatively easy to find,
and at that point the overhead was not large (it was accumulating during the whole query). As for
the completion times, those queries resulted in replaying most of the recorded fails, thus rendering
the benefits of the recording stage computation savings mostly unnecessary.

Table 5.5: Query completion times (secs) for fail recording methods.
Record method S-LOS M-LOS S-SEL M-SEL
Full 165 81 161 183
Known 147 80 134 184

Table 5.6: Time to the first result (secs) for fail recording methods.
Record method S-LOS M-LOS S-SEL M-SEL
Full 150 43 128 41
Known 130 42 108 41

Saving UDF states at fail recording. In this experiment we measured the impact of saving
6While times to the first result might seem large, they include the completion time of the original query, which
found no results at all.
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known UDF states for recorded fails. In contrast with the previous optimization, which just post-
pones computation of UDFs whenever possible, similar to lazy evaluation, this optimization should
be able to avoid re-computation of the saved UDF values completely. Logically speaking, this should
have impact on both interactive and completion times, which we verified with this experiment. The
results are presented in Table 5.7 (query completion times) and Table 5.8 (times to first result).

Table 5.7: Query completion times (secs) for the UDF state saving optimization.
UDF saving S-LOS M-LOS S-SEL M-SEL
On 147 80 134 184
Off 238 104 137 186

Table 5.8: Times to first result (sec) for the UDF state saving optimization.
Record method S-LOS M-LOS S-SEL M-SEL
On 130 42 108 41
Off 163 65 107 41

As can be seen from the results, the saving optimization was beneficial for most queries. For the
selective M/S-SEL queries the benefits were not pronounced due to the structure of those queries.
The replays were relatively cheap, involving less re-computation (which, for instance, depends on the
number of constraints violated at the fail). The trend was the same for the times to the first result.
To conclude, this optimization in many cases brings significant improvements in both completion in
interactive times at virtually no CPU cost. The memory footprint for the saved states depends on
the functions. Standard aggregate functions use about 80 bytes per save for the two-dimensional
data set (16 bytes for the range itself plus 64 bytes for the support coordinates for the min and max
values, if the values correspond to particular coordinates in the array).

Sorting the Validator queue on BRP . This optimization tries to steer the Validator checks in
the direction of promising candidates by sorting the candidate queue on the Best Relaxation Penalty
(BRP ) value for the candidate. It should give significant benefits for queries with large numbers
of candidates. When the number of candidates is small or when most candidates contribute to the
final result (i.e., selective queries) the benefits should be small to non-existent. When we ran these
experiments, the original queries with the cardinality requirement k = 10 did not show any differences
in times depending on the sorting method. This can be seen for the M-LOS/SEL queries in Table 5.9.
Thus, we re-ran the experiment for the same queries with increased cardinality parameter. Those
results can be seen as M-LOS-200 and M-SEL-200 (k = 200) in the same table. For the loose query
(M-LOS-200) the benefit for the query completion time was obvious. Internally, we saw a significant
decrease in the total number of candidates validated. This was due to a faster establishment of
the Maximum Relaxation Penalty (MRP ), which serves as the cut-off point for the potential top-k
relaxed candidates. For the selective queries there were no visible benefits, which was expected as
discussed above. We did not see any changes in the times to the first result. Because of that we
do not provide the times here. However, due to decrease in the query completion times the delays
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between intermediate results are bound to become smaller in general.

Table 5.9: Query completion times (secs) for the BRP -based Validator queue sorting.
Queue sorting M-LOS M-LOS-200 M-SEL M-SEL-200
BRP 80 290 184 277
No-sort 81 331 183 270

Speculative execution. As can be seen from the previous experiment, often the time to find
the first result is quite large. This is a logical result for the empty-result queries, since Searchlight
first finishes the main, non-relaxed, query and only then tries relaxing it. So the completion time of
the main query is always added to the first result time of the relaxed query. To try to remedy that
Searchlight offers speculative relaxation, the goal of which is to start replaying fails before the main
query finishes. This might improve the times to the first result, but might increase query completion
times, since it requires additional Solvers and, thus, consumes more CPU resources. The results for
the running queries are presented in Table 5.10 (query completion times) and Table 5.11 (times to
the first result).

Table 5.10: Query completion times (secs) for speculative execution.
Speculative execution S-LOS M-LOS S-SEL M-SEL
On 186 94 145 185
Off 147 80 134 184

Table 5.11: Time to first result (secs) for speculative execution.
Speculative execution S-LOS M-LOS S-SEL M-SEL
On 18 45 2 42
Off 130 42 108 41

As can be seen from the results in many cases speculative execution significantly improved times
to the first result. Unfortunately, we could not find suitable queries to demonstrate the same trend
for the MIMIC queries. While the speculative Solver for those queries replayed some of the fails,
they resulted in a small number of non-perspective candidates. Note, the speculative Solver still
works in the maximum relaxation boundaries, so its search tree and candidates are still subject to
pruning. Moreover, the speculative Solver can only replay fails found so far by the main Solvers,
which might be low quality when it comes to their best relaxation penalty. It just does not have
enough information to build a search tree leading to promising candidates! Our next experiment
tries to investigate this issue in more detail (see below). We still find the speculative execution a
quite promising strategy for a large variety of queries.

As expected, the speculative relaxation has its own overhead coming from the additional con-
sumption of CPU resources by the speculative Solver. This can be seen in Table 5.10. For some
queries the increase in the completion time was significant despite Searchlight following a conser-
vative approach of running the speculative Solver only at the main query stage and only while the
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Validator was idle. We decided to run an additional experiment (not shown here), where we had
one additional CPU thread available. As expected, the times for the speculative relaxation turned
on and off were the same, which proves the overhead is CPU related and cannot be trivially extin-
guished. To conclude, we assume it is up to the user to decide if she wishes to exchange a portion
of the total query execution time for a possibility of faster results to work with.

Sorting recorded fails by BRP . While this is not strictly an experiment exploring one of
the optimizations, it still allows us to demonstrate the benefits of sorting recorded fails in the Best
Relaxation Penalty (BRP ) order. We compare our default BRP -based recording with the time-bases
sorting, for which the fails were just replayed in the order encountered. This experiment also touches
upon an interesting question: would there be any benefits if we just ignored the fails and continued
exploring failed search sub-trees immediately, i.e., without first recording and then replaying the
fails? While in our implementation it was impossible to implement such an approach due to the
Or-Tools architecture (at least without very significant changes to the CP engine), it might still be a
possibility with other CP implementations. We provide the results of the experiment in Table 5.12
(query completion times) and Table 5.13 (times to the first result).

Table 5.12: Query completion times (secs) for different fail orderings at Solver.
Sorting S-LOS M-LOS M-LOS-200 S-SEL M-SEL
BRP 147 80 290 134 184
Time 14m13s 80 351 144 194

Table 5.13: Time to first result (secs) for different fail orderings at Solver.
Sorting S-LOS M-LOS M-LOS-200 S-SEL M-SEL
BRP 130 42 42 108 41
Time 193 43 44 109 41

As can be seen from the results, for some queries the time-based sorting might have quite detri-
mental effect on the performance. To provide more insight for the MIMIC queries we ran M-LOS
not only with the k = 10, but also with k = 200 (the M-LOS-200 query). The result was similar to
the S-LOS query — a significant increase of the completion time. The time to find the first result
did not change significantly for most queries, however, the result for S-LOS hinted at the possibility.
S-LOS, actually, is a good example of a query for which the natural, time-based, ordering of nodes
in the search tree diverges from the optimal traversal significantly. While it might be remedied by
a suitable search heuristic, such a situation might be hard to predict before the query begins, and
a suitable heuristic might be hard to find. On the other hand, BRP -based sorting can be seen as
a kind of generally beneficial search heuristic, which steers the search tree traversal in the direction
of promising relaxed candidates.

Partial relaxation during replays. This optimization addresses the issue of over-relaxing the
query at a fail replay. Each fail has its own maximum relaxation based on the current MRP value,
the number of violated constraints and UDF values at the moment of fail. The RRD parameter
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(0 ≤ RRD ≤ 1) controls the relative length of relaxation for each constraint with respect to the
maximum relaxation interval for this constraint at the replay. The main idea is to prevent the
Solver from building a potentially large search tree and try to find candidates with better relaxation
penalty values. We provide query completion times for the two running loose queries in Table 5.14.
We did not see any noticeable effect on the times to the first result.

Table 5.14: Query completion times (secs) for different RRD values.
Query RRD = 0.1 RRD = 0.3 RRD = 0.5 RRD = 0.7 RRD = 1.0
S-LOS 146 147 143 149 146
M-LOS 75 80 127 289 28m

As can be seen from the results, for some queries the optimization does not have any effect.
These are the queries for which the maximum relaxation intervals at the replays are relatively small
already. In this case the optimization does not result in any overhead either. We saw a slightly
elevated number of fail replays, but not significant enough to cause any drop in performance. Query
M-LOS, on the other hand, is an example of a query for which some of the fails have very large
relaxation intervals. This commonly happens when the original non-relaxed query fails relatively
fast, in which case the fails correspond to “coarse”, close to the root, nodes of the search tree.
Relaxing them (near) maximally causes the Solver to build and traverse a large search tree, as was
the case with the M-LOS query. We believe the RRD optimization can serve as a fail-safe for such
situations.

To sum up the relaxation optimization results, we should say that most optimizations target
particular issues that arise when the query relaxation is performed. The evaluation clearly shows
the optimizations address the issues effectively for many cases, and at the same time do not result
in any significant overhead for queries that do not require them. At the same time, relaxation
penalty based optimizations can be seen as part of a search heuristic that steers the search in the
direction of promising relaxed results. As any heuristic it produces visible benefits for some queries
and struggles for other ones. In the latter case, however, the heuristic did not introduce any visible
overhead either, which we consider to be a positive outcome.
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Conclusion

In this chapter we discuss briefly our findings, lessons learned and possible future work directions.
The discussion covers three main parts of this work: the Semantic Windows framework, Searchlight
and query relaxation/constraining for search queries.

6.1 Semantic Windows

We presented the Semantic Windows (SW) framework as the first step towards easy-to-use, interac-
tive approach for human-in-the-loop exploratory analysis. SW allows users to conveniently perform
structured search via shape and content constraints over a multi-dimensional data space.

The framework uses a data-driven search algorithm coupled with a variety of complementary
techniques, including stratified sampling, adaptive prefetching and sophisticated data placement, to
search the underlying data space quickly while providing online results. We described a prototype
implementation of the framework as a distributed layer on top of PostgreSQL and conducted an
experimental evaluation with real and artificial data to study the impact of various design and algo-
rithmic decisions. The results showed that SW significantly improves online performance, relative
to representative state of the art solutions. SW is not always the ideal solution when it comes to
the query completion time, however. For some queries the traditional database approach (i.e., via a
complex SQL query) might result in better query completion times. This can be seen as a benefit
of batch computing — performing a sequential scan of the data with outputting results at the end.
With this approach the user receives first results only when the query completes, which introduces
considerable result latency. In such cases SW still provides superior interactive performance. At
the same time, even the loss in the query completion time can be almost entirely eliminated or
significantly reduced via the adaptive prefetching.

Despite the very promising results, we found SW approach lacking efficiency along the following
directions, which we also discussed in Section 1.2:

• SW was specialized for semantic windows queries, which constitute only a small part of the
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“First-order” query class discussed in Section 1.1. Users could not easily add more complex
constraints. For example, to explore differences between windows and their neighborhoods,
which is very useful for exploring anomalies in data. This restriction was mostly due to the
custom nature of the solver, which could not easily accommodate extensions of this kind. Thus,
a more general and extensible solution was required.

• SW had to eventually read the whole data set. It used sampling to steer the search in the
required direction and provide results quickly. Sampling in general, however, does not give
100% guarantees. Thus, it did not allow SW to perform sophisticated pruning for the search
space and data. As we noted in the experimental evaluation, even when all results had been
found and output SW still had to confirm this by reading the remaining data. This made SW
less suitable for large data sets. It was infeasible to execute search queries without extensively
pruning parts of the data that could not contain results.

• SW did not perform balancing of any kind. While initially the search space and the data
was statically distributed among the workers, if a worker became idle, it remained idle until
query completion. The only way for the user to remedy this was to carefully perform pre-
query distribution by hand, taking possible data skew into consideration. Obviously, such an
approach was not feasible in practice. Ideally, there should have been dynamic balancing of
both the search space and the data between multiple workers depending on the query progress.

6.2 Searchlight

The SW deficiencies discussed in the previous section spurred research and development of a new
kind of framework that uniquely integrates constraint solving and data management techniques by
allowing Constraint Programming (CP) machinery to run efficiently inside a DBMS without the
need to extract, transform and move the data. We called this framework Searchlight [28].

Searchlight facilitates the application of modern constraint-based search methods to large data
sets, while taking advantage of the data management capabilities in a modern array DBMS. It
uses sophisticated techniques that combine speculative execution over a synopsis with the validation
over the original data to provide interactive performance. It supports distributed computation and
employs data- and search-space balancing techniques. Experimental results over real and artificial
data sets showed the remarkable speedups that are possible over the state-of-the-art alternatives for
data- and search-intensive queries, for both interactive and total performance.

At the same time this approach is surprisingly extensible. As we discussed in Section 4.3.2,
adding new types of constraints (e.g., distance-based similarity matching for time sequences) does
not require changing not only the architecture, but even the search engine. In the worst case, it is
just a simple matter of adding a new synopsis type, which is similar to adding a new index type in
a traditional query execution engine without changing the query execution mechanics.

In summary, Searchlight makes the following scientific contributions:
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• Constraint solvers as first-class citizens Instead of treating solver logic as a black-box,
Searchlight provides native support, incorporating the necessary APIs for its specification and
transparent execution as part of query plans, as well as novel algorithms for its optimized
execution and parallelization.

• Speculative solving Existing solvers assume that the entire data set is main-memory resident.
Searchlight uses an innovative two stage Solve-Validate approach that allows it to operate
speculatively yet safely on main-memory synopses, quickly producing candidate search results
that can later be efficiently validated on real data.

• Computation and I/O load balancing As CP solver logic can be computationally ex-
pensive. Executing it on large search and data spaces requires novel CPU-I/O balancing
approaches when performing load and data distribution.

In this part of the research we have explored the fusion between the constraint-based CP search
engine and the computation-oriented traditional DBMS engine. At the same time there are directions
for more in-depth research of both the CP and DBMS sides of this collaboration, which we kept as
future work:

• Searchlight still requires the user to specify the search heuristic to use. In many cases an
out-of-box heuristic works well. For example, the traditional split heuristic showed great
performance for most queries we studied in the experimental evaluation. For some queries,
however, a custom heuristic, like the probe-based one discussed in Section 4.2.3, might be
more suitable. It is worth to study the possibility of automatic heuristic choice, based on the
user’s query. As in traditional DBMSs, this choice might be at least initially dictated by the
statistics collected about the data already available from previous queries. At the same time
the heuristic might be modified during the query execution when the new information becomes
available. This is similar to adaptive query planning. Since Solvers are isolated entities when
it comes to exploring their parts of the search tree, it is even possible to run different heuristics
at different Solvers, which further improves adaptability.

• At this point we consider Searchlight-only queries, where the query is basically a CP specifi-
cation with all data access restricted to Searchlight functions. It is beneficial to study more
complex Searchlight-DBMS queries, especially when it comes to the derived data, e.g., when
the data for the search is produced by another sub-query. In this case the query can be log-
ically seen as consisting of two parts: the search part (Searchlight) and the data producing
part (DBMS). There are great optimization opportunities between the two. Among them are
the following:

– Some constraints can be pushed down from the Searchlight part to the DBMS engine to
possibly prune some data from consideration. This is similar to the predicate push-down
optimization in traditional DBMSs, albeit with additional issues. There is, for example, a
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question of the constraint types the DBMS can benefit from. Moreover,the predicates for
pushing down might need to be derived from the constraints, since the objects of search
are more complex (e.g., regions instead of tuples).

– The exchange of constraints can go both ways, where some DBMS-level predicates are
pushed-up to the Searchlight part of the query as new constraints. This might help the CP
engine to decrease the search space size, for instance. The issue can be explored further,
when the DBMS engine collects some statistics about the data during its creation and
provides it to Searchlight. The statistics would depend on the search part of the query.

– Synopsis can be created adaptively. For example, a coarse-resolution synopsis can be
created at the DBMS concurrently with producing the data. The finer resolution synopses
can be built at Searchlight during the search process for the data parts that need deeper
exploration.

• At the present time Searchlight considers only “monolithic” search queries, where the search
space and constraints define a single query specification. Basically, Searchlight can be seen
as a single database query operator. It might be beneficial to explore “higher-order” queries,
with multiple Searchlight operators. One notable example is similarity queries, e.g., “find two
similar rectangular regions”. This query implicitly contains two search sub-queries (for the first
and second region) and a“join” between them (the similarity constraint). Creating different
Searchlight operators for sub-queries enables different search strategies for each sub-query. In
this case there is also a possibility of handling the join the DBMS itself, which puts us again
into the realm of cross Searchlight-DBMS query optimization as discussed above.

6.3 Query Relaxation and Constraining

When it comes to data exploration, there is an important issue of better user support, since the
users might have limited knowledge of the data. This constitutes the third major part of this work:
query relaxation and constraining. Without extensive knowledge of the data it is hard for the user
to assess the kind of result she is going to get. We studied the two common manifestations of this
problem: the cases of too few and too many results. The first case causes the user to initiate a
“guessing game” with the system — trying to guess a query that would bring enough results. The
second case makes interpreting and analyzing results much harder, in which case the user has to
again guess the “correct” query or rank-and-filter results after the query has been completed. At
the same time Searchlight collects extensive knowledge about the data during the query progression,
which can be used to either relax the constraints and bring more results (query relaxation), or to
constrain the query further and output only the top results depending on the user-defined ranking
function (query constraining).

Our research showed that query relaxation and constraining can be incorporated in Searchlight in
an efficient and effective way. The very essence of these techniques is manipulating query constraints.



91

Query relaxation requires modification of the original query constraints, while query constraining
requires adding new ones. Since Searchlight is a constraint-based system, which treats constraints
as first-class citizens, these techniques naturally fit into its CP query execution engine. By collecting
information about the query execution while it is running, Searchlight is able to make data-driven
decisions about which constraints to relax and to what degree. At the same time, it is able to
detect the point when the number of results becomes too large, and can add additional constraints
during the search to efficiently prune results that are inferior to already found. In other words,
Searchlight makes query relaxation and constraining an integral part of query processing, which
allows it to explore the same optimization capabilities (e.g., pruning, speculative execution over
synopses, steering the search in a specific direction) as for regular queries. This ensures the techniques
can perform in the most efficient way possible during the query processing.

Our extensive experimental evaluation supports the claim. For both synthetic and real data
sets Searchlight provides superior performance comparing with the only alternative available to the
user — guessing the query. Moreover, even if the user could somehow guess the correct query from
the first try, creating the ideal scenario, Searchlight is still able to match the performance in both
interactive and query completion times.

Query relaxation and constraining might not be the only means of improving the user experience
for data exploration. We believe they may be part of a more general idea of manipulating query
constraints depending on the current state of the search. For Semantic Windows (SW), for example,
we discussed the idea of diversifying results in Section 3.4.4. Sometimes we want to avoid being
stuck at the same part of the search space. It might be desirable to “jump” to another part, thus
possibly bringing results from different parts of the data set faster. This can also be seen as a type
of constraints manipulating the results. The constraints might involve the search space itself (e.g.,
“exclude this part of the data from search”) or the semantic properties of the data (e.g., “no more
results from the [0, 5] average r-magnitude range”). Such constraints can be seamlessly incorporated
into Searchlight in the same way as has been done for query relaxation and constraining. It should be
relatively easy to give the user a significant control over creating such constraints in a way similar to
UDFs, creating a very extensible run-time query modification framework. Defining such a framework
in terms of API and researching the necessary query engine optimizations related to it is another
very promising direction of future work.
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