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Abstract of “Scalable Algorithms for Mining Graphs and Social Networks via Sam-
pling”:
Sampling based and randomized algorithms are powerful tools in studying big data
problems. In this thesis we provide sampling based algorithms for mining graphs and
social network in three different contexts:

Detecting Valuable Information. Detecting new information and events in a dy-
namic system by probing individual nodes has many practical applications: discov-
ering new webpages, analyzing influence properties in network, and detecting failure
propagation in electronic circuits or infections in public drinkable water systems. In
practice, it is infeasible for anyone but the owner of the network (if existent) to mon-
itor all nodes at all times. We study the constrained setting when the observer can
only probe a small set of nodes at each time step to check whether new pieces of
information (items) have reached those nodes.

Centrality Maximization. Betweenness centrality (BWC) is a fundamental cen-
trality measure in social network analysis. Given a large-scale network, how can we
find the most central nodes? This question is of great importance to many key appli-
cations that rely on BWC, including community detection and understanding graph
vulnerability. Despite the large amount of work on scalable approximation algorithm
design for BWC, estimating BWC on large-scale networks remains a computational
challenge. In this paper, we study the Centrality Maximization problem (CMP): given
a graph G = (V,E) and a positive integer k, find a set S∗ ⊆ V that maximizes BWC
subject to the cardinality constraint |S∗| ≤ k. We present an efficient randomized
algorithm that provides a (1 − 1/e − ε)-approximation with high probability, where
ε > 0. Our results improve the current state-of-the-art result [127].

Influence Estimation. Social networks are important communication and infor-
mation media. Individuals in a social network share information and influence each
other through their social connections. Understanding social influence and informa-
tion diffusion is a fundamental research endeavor and it has important applications
in online social advertising, viral marketing, and trending topic prediction.

We first study the Targeted-Influence problem (TIP): Given a network G = (V , E)
and a model of influence, we want to be able to estimate in real-time (say in a few
seconds per query) the influence of an arbitrary subset of users S over an arbitrary



subset of users T , for any possible query (S;T ), S, T ⊆ V . To do so, we allow an
efficient preprocessing. Finally, we conclude the thesis by studying the problem of
Conditional Influence Estimation (CIE) whose goal is to estimate the influence of
a node given that a cascade started from that node has already reached a group of
nodes (target nodes).

vi
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Chapter 1

Introduction

In the era of Big Data, having access to scalable algorithms is greatly important.
Sampling based methods and randomized algorithms are strong tools for analytical
tasks in Data and Graph mining. In this thesis we study sampling based algorithms
in three different contexts of Big Data problems, and more specifically, in analyzing
graphs and social networks. The first context we study is the detection of valuable
information in dynamic networks when we have limited resources. Next, in the con-
text of Social Network Analysis (SNA), we study the topics of betweenness centrality
maximization, real-time targeted-influence queries over large graphs, and finally con-
ditional influence estimation. In following we give an introduction to these topics
divided into three parts.

Part 1: Detecting Valuable Information

Many applications require the detection of events in a network as soon as they happen
or shortly thereafter, either because the events are critical (e.g. anomalies, malfunc-
tions) and late detection can be very costly, or because the value of the information
obtained by detecting the events decays rapidly as time passes (e.g., news or trending
topics).

Monitoring for new events or information is a fundamental search and detection
problem in a distributed data setting. We call each possible event of interest an item,
and assume that items are generated at individual nodes. To study our search and

1



detection problem we need to answer the following questions, in order to specify the
setting of our model:

• Can items propagate (being copied) in the network?

• Do items lose their novelty (or relevance/freshness) over time?

Depending on the application, we may have different answers to the above questions.
For example, when the goal is to detect anomaly, malfunctionality, or the information
that are specific to their location, we assume the items do not propagate, and items
found in different parts of the network are considered different. Whereas in the
context of news aggregation or rumor detection, the same item (e.g. news, rumor)
can be found in different parts of the network. Also, note that in the former case, the
items do not lose their novelty/relevance as they are issues that need to be detected
and fixed, but in the latter case, their novelty decays over time. Also note that, it
is always sufficient to detect a copy of each individual item, as there is no benefit in
seeing multiple copies of the same news item or rumor. In this proposal, we study
our detection problem in these two settings:

• Schedule Optimization Problem: Items do not propagate and do not lose
their novelty. We may probe up to c nodes at any time, and a probing schedule
can be deterministic or randomized. See Chapter 2.

• (θ, c)-Optimal Probing Schedule Problem: Items can propagate and lose
their novelty with decay rate θ. We may probe up to c nodes at any time, and
probing schedules are randomized. Chapter 3.

We outline several important applications of this schedule optimization problem:

News and Feed Aggregators. To provide up-to-date summary of the news, news
aggregator sites need to constantly browse the Web, and often also the blogosphere
and social networks, for new items. Scanning a site for new items requires significant
communication and computation resources, thus the news aggregator can scan only
a few sites simultaneously. The frequency of visiting a site has to depend on the
likelihood of finding new items in that site. [17, 60, 114]

Algorithmic Trading on Data. An emerging trend in algorithmic stock trading is
the use of automatic search through the Web, the blogosphere, and social networks

2



for relevant information that can be used in fast trading, before it appears in the more
popular news sites [34, 51, 59, 79, 86, 90, 91]. The critical issue in this application is
the speed of discovering new events, but again there is a resource limit on the number
of sites that the search algorithm can scan simultaneously.

Detecting Anomaly and Machine Malfunction. In large server farm or any
other large collection of semi-autonomous machines, a central controller needs to
identify and contain anomalies and malfunctions as soon as possible, before they
spread in the system. To minimize interference with the system’s operation the
controller must probe only a small number of machines in each step.

In these examples, as well as in many other applications, the main cost is in probing
a remote server or machine. There are efficient techniques for identifying new items
with minimum communication [18, 21, 31, 123], and the cost of transmitting the
(relatively rare) new items, or a pointer to that information is also marginal. We
therefore focus here on optimal allocations of probes, ignoring other related costs.

Part 2: Centrality Maximization

Betweenness centrality (BWC) is a fundamental measure in network analysis, measur-
ing the effectiveness of a vertex in connecting pairs of vertices via shortest paths [42].
Numerous graph mining applications rely on betweenness centrality, such as detecting
communities in social and biological networks [47] and understanding the capabilities
of an adversary with respect to attacking a network’s connectivity [62]. However,
in many applications, e.g. [47, 62], we are interested in centrality of sets of nodes.
For this reason, the notion of BWC has been extended to sets of nodes [61, 127]. In
Chapter 4 we study the betweenness centrality maximization problem which asks for
a subset of fixed size whose betweenness centrality is maximized.

Finding the most central nodes in a network is a computationally challenging
problem that we are able to handle accurately and efficiently, and improve upon the
state-of-the-art algorithm in [127].
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Part 3: Influence Estimation

Online social networks allow their users to connect, share information, and interact
with each other. These interactions between connected users can cause the members
of the networks to be influenced by each other. For instance, a rumor can spread
through Facebook as a result of being re-shared, a piece of news can reach a large
audience by being re-tweeted multiple times, a user can adopt a new product after
seeing it reviewed by his friends, etc. In these scenarios the members of the network
are influenced (i.e. they adopted the product or they received the news) via a cascade
of pairwise interactions which might extend far from the source of the influence.
Understanding the phenomena of social influence and information propagation in
networks is a fundamental research endeavor and as such it has been subject to many
studies including works on identifying the influential members of a network [19, 36,
48, 49, 88, 104, 108]. Understanding social influence has also important applications
in the context of online advertisement and viral marketing.

We first (Chapter 5) focus on the problem of estimating the influence exerted by
a group of users over another target group of users. This is an important primitive in
the context of online social advertisement. Social networks’ advertisement campaigns,
in fact, are often targeted: The advertiser has a specific group of users in mind that
we refer to as the target set, such as users in a certain geographic area, in a social
group, of a specific occupation, or at an income level. However, direct communication
from the advertiser to the entire target set may not be possible and may not be as
effective as a third person recommendation. For instance, the advertiser might only
directly contact the users that already liked her page (or signed up to a mailing list)
and may want to influence a larger population. Therefore, in viral marketing, the
goal of the advertiser is to spend her budget, e.g. by free samples or sending coupons,
to some influential users of the network that may recommend her product to their
friends/followers, with the hope that the product is adopted by a large number of
users in her target set through the cascade of recommendations. We refer to the
set of users over which the advertiser makes the initial spending as the seed set. The
advertiser, however, can not spend on all nodes, and she can be restricted to a smaller
group of users. Therefore, she needs to estimate the influence of potential seed sets
over her target set, in order to decide which seed set to pick. Another potential
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application of this method is in the realm of online shopping. Here, one wants to
estimate the likelihood that a customer visiting a set of products to end up visiting
another set of products by following the similar item recommendations links. This
issue as well can be modeled as an influence-propagation instance.

Despite extensive research in modeling, computing, and optimizing the influence
in social networks, the focus of most works has been on global influence, where the
target set is the whole network and the advertiser can access any seed set. This is a
significant limitation in the context of target advertisement where only a potentially
small fraction of such users are of interest. Note that efficiency of computation in
this context is key as a great number of advertisers operate in on-line advertisement
systems [57] and each requires obtaining estimates on multiple query sets in real-time
to tune her campaign. For this reason, we design efficient preprocessing algorithms
that help us serve these advertisers in reasonable time.

We next (Chapter 6) study the problem of estimating the influence with partial
observation. Many of the phenomena in real social networks can be modeled as a
spread of influence. For instance, spread of influence, also known as cascade, can
model spread of a post/meme on Facebook/Twitter through re-sharing, diffusion of
an infectious virus in a network of connected machines, or adaption of a new product
when a user received recommendation from her friends. In all of these cases, members
in the social network are influenced via pairwise interactions that might go beyond
the source of the influence [37, 84, 117].

Estimating the final size of a cascade, before it completes its progression, is of
great importance, such as detecting (potential) trending topics or catching popular
rumor/news on a social media. There have been some studies on estimating the
cascade size that assume the access to the full history of the cascade progression, i.e.
when and where in the social network is affected by the cascade [44, 77, 113, 129].
Since we might become interested in a cascade and its final size at a time after its
initiation, when there are signs of that being/becoming viral or trending, it is not a
realistic assumption that we have access or record of the full history of the cascade.
For instance, a website might publish a story and after a while we see the story is
mentioned in some other websites that we follow, or a tweet may get our attention
when it is retweeted by some people that we follow. Thus, in these cases, we may
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only know the source and only some part of the cascade, and therefore, we need to
estimate the cascade size via partial observation of the cascade.
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Part I

Detecting Valuable Information
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Chapter 2

Schedule Optimization Problem:
Isolated Items

We consider an infinite, discrete-time process in which n nodes generate new items
according to a stochastic process which is governed by a generating vector π (see
Section 2.1 for details). An algorithm can probe up to c nodes per step to discover all
new items in these nodes. The goal is to minimize the cost of the algorithm (or the
probing schedule), which we define as the long term (steady state) expected number
of undiscovered items in the system.

We first show that the obvious approach of probing at each step the nodes with
maximum expected number of undiscovered items at that step, is not optimal. In
fact, the cost of such a schedule can be arbitrary far from the optimal.

Our first result toward the study of efficient schedules is a lower bound on the
cost of any deterministic or random schedule as a function of the generating vector
π, and the number of simultaneous probes c.

Next we assume that the generating vector π is known and study explicit construc-
tions of deterministic and random schedules. We construct a deterministic schedule
whose cost is within a factor of

(
2 + 2c−1

2c

)
of the optimal cost, and a very simple,

memoryless random schedule with cost that is within a factor of (2 + (c− 1)/c) from
optimal, where c is the maximum number of probes at each step. We also address
the more realistic scenario in which the generating vector, π, is not known to the
algorithm and may change in time. We construct an adaptive scheduling algorithm
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that learns from probing the nodes and converges to the optimal memoryless random
schedule.

We then provide the proof for existence of an `-cyclic optimal c-schedule for some
positive integer `: A schedule is `-cyclic if after a time t0, it repeats itself every period
of length ` steps. We also show that for a given fixed `, there exists a deterministic `-
cyclic c-schedule whose cost is within a factor of 2

1−g(`) from the optimal, for g = o(1).
Note that this is a better approximation ratio compared to the

(
2 + 2c−1

2c

)
ratio,

for large enough `’s. Finally, at the cost of more memory space, we construct a
randomized

(
2

1−g(`) + o(1)
)
-approximation c-schedule. This algorithm can also extend

to an adaptive schedule.

2.1 Model and Problem Definition

We study an infinite, discrete-time process in which a set of n nodes, indexed by
1, . . . , n, generate new items according to a random generating process. The gen-
erating process at a given time step is characterized by a generating vector π =
(π1, . . . , πn), where πi is the expected number of new items generated at node i at
that step (by either a Bernoulli or a Poisson process). The generation processes in
different nodes are independent.

We focus first on a static generating process in which the generating vector does
not change over time. We then extend our results to adapt to generating vectors that
change over time.

Our goal is to detect new events as fast as possible by probing in each step a small
number of nodes. In particular, we consider probing schedules that can probe up to
c nodes per step.

Definition 1 (Schedule). A c-schedule is a function S : N → {1, . . . , n}c specifying
a set of c nodes to be probed at any time t ∈ N. A deterministic function S defines a
deterministic schedule, otherwise the schedule is random.

Definition 2 (Memoryless Schedule). A random schedule is memoryless if it is de-
fined by a vector p = (p1, . . . , pn), such that at any step the schedule probes a set C of
c items with probability ∏j∈C pi independent of any other event. In that case we use
the notation S = p.
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Note that for a memoryless schedule S = (p1, . . . , pn), each pi is nonnegative and∑n
i=1 pi = 1.

Definition 3 (Cyclic Schedule). A schedule, S, is `-cyclic if there is a finite time
t0 such that from time t0 on, the schedule repeats itself every period of ` steps. A
schedule is cyclic if it is `-cyclic for some positive integer `. Obviously, every cyclic
schedule is deterministic.

The quality of a probing schedule is measured by the speed in which it discovers
new items in the system. When a schedule probes a node i at a time t, all items
that were generated at that node by time t− 1 are discovered (thus, each item is not
discovered in at least one step). We define the cost of a probing schedule as the long
term expected number of undiscovered items in the system.

Definition 4 (Cost). The cost of schedule S in a system of n nodes with generating
vector π is

cost (S, π) = lim
t→∞

1
t

t∑
t′=1

E
[
QS(t′)

]
= lim

t→∞

1
t

t∑
t′=1

n∑
i=1

E
[
QSi (t′)

]
,

where QSi (t′) is the number of undiscovered items at node i and at time t′, and QS(t′) =∑n
i=1 Q

S
i (t′). The expectation is taken over the distribution of the generating system

and the probing schedule.

While the cost can be unbounded for some schedules, the cost of the optimal sched-
ule is always bounded (we show the existence of an optimal schedule in Section 2.2.6).
To see that, consider a round-robin c-schedule, S, that probes each node every dn/ce
steps. Clearly no item is undiscovered in this schedule for more than dn/ce steps, and
the expected number of items generated in an interval of dn/ce steps is dn/ce∑n

i=1 πi.
Thus, QS(t) ≤ dn/ce∑n

i=1 πi, which implies cost (S, π) ≤ dn/ce∑n
i=1 πi. Therefore,

without loss of generality we can restrict our discussion to bounded cost schedules.
Also, note that when the sequence

{
E
[
QS(t)

]}
t∈N

converges we have

cost (S, π) = lim
t→∞

E
[
QS(t)

]
by Cesaro Means [54, Sect. 5.4].

One can equivalently define the cost of a schedule in terms of the expected time
that an item is in the system until it is discovered.
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Lemma 1. Let ωSi be the expected waiting time of an item generated at node i until
node i is probed by schedule S. Then

cost (S, π) =
n∑
i=1

πiω
S
i .

Proof. Following the definition of the cost function we have

cost (S, π) = lim
t→∞

1
t

t∑
t′=1

n∑
i=1

E
[
QSi (t′)

]
=

n∑
i=1

 lim
t→∞

∑t
t′=1 E

[
QSi (t′)

]
t


=

n∑
i=1

πiω
S
i ,

where the last eqaulity is obtained by applying Little’s Law [81].

Corollary 1. A schedule that minimizes the expected number of undiscovered items in
the system simultaneously minimizes the expected time that an item is undiscovered.

Corollary 2. For any schedule S, cost (S, π) ≥ ∑n
i=1 πi.

Proof. As mentioned above, when we probe a node i at time t we discover only the
items that have been generated by time t − 1. Therefore, ωSi ≥ 1, and by Lemma 1
the proof is complete.

Now, our main problem is defined as the following:

Definition 5 (Schedule Optimization). Given a generating vector π and a positive
integer c, find a c-schedule with minimum cost.

When the generating vector is not known a priori to the algorithm the goal is to
design a schedule that converges to an optimal one. For that we need the following
definition:

Definition 6 (Convergence). We say schedule S converges to schedule S ′, if for any
generating vector π, lim

t→∞

∣∣∣E [QS(t)
]
− E

[
QS

′(t)
]∣∣∣ = 0.
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2.2 Results

We start this section by, first, showing that the obvious approach of maximizing the
expected number of detections at each step is far from optimal. Next, we prove a
lower bound on the cost of any schedule, and provide deterministic and memoryless
c-schedules that are within a factor of

(
2 + 2c−1

2c

)
and (2 + (c − 1)/c), respectively,

from the optimal. Also, introduce an algorithm, Adaptive, which outputs a schedule
A that converges to the optimal memoryless 1-schedule when the generating vector
π is not known in advance. We also show that Adaptive can be used to obtain a
c-schedule Ac whose cost is within (2 + (c − 1)/c) factor of any optimal c-schedule.
We then, study cyclic c-schedules and provide the proof for existence of an `-cyclic
optimal c-schedule for some positive integer `. We also show that for a given fixed
`, there exists an `-cyclic c-schedule whose cost is within a factor of 2

1−g(`) from the
optimal, for g = o(1). Note that this is a better approximation ratio compared to
the

(
2 + 2c−1

2c

)
ratio, for large enough `’s. Finally, at the cost of more memory space,

we construct a randomized
(

2
1−g(`) + o(1)

)
-approximation c-schedule. This algorithm

can also extend to an adaptive schedule.
Throughout this section, by τSi (t) we mean the number of steps from the last time

that node i was probed until time t, while executing schedule S; if i has not been
probed so far, we let τSi (t) = t. Using the definition, it is easy to see that

E
[
QSi (t)

]
= πiE

[
τSi (t)

]
, (2.1)

when the expectations are over the randomness of both S and π. Therefore, if the
expectation is over only the randomness of π we have

E
[
QSi (t)

]
= πiτ

S
i (t). (2.2)

2.2.1 On Maximizing Immediate Gain

Let S be a 1-schedule that at each step, probes the node with the maximum expected
number of undetected items. By (2.2), the expected number of undetected items at
node i and at time t is πiτSi (t), and thus, S(t) = arg maxi πiτSi (t).

Now, suppose πi = 2−i, for 1 ≤ i ≤ n. Since the probability that node 1 has an
undetected item in each step is at least 1/2, node i is probed no more than once in
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each 2i−1 steps. Thus, the expected number of time steps that an item at node i will
stay undetected is at least 1

2i−1 (1 + . . . + 2i−1) = 2i−1+1
2 > 2i−2. Using Lemma 1, the

cost of this schedule is at least ∑n
i=1 πiωi >

∑n
i=1 2−i2i−2 = Ω(n). Now, consider an

alternative schedule that probes node i in each step with probability 2−i/2/Z, where
Z = ∑n

j=1 2−j/2. The expected number of steps between two probes of i is Z/2−i/2,
and the cost of this schedule is

n∑
i=1

2−i
(

2−i/2∑n
j=1 2−j/2

)−1

=
 n∑
j=1

2−j/2

2

= O(1).

Thus, optimizing the immediate gain is not optimal in this example, and its cost can
be arbitrarily far from optimal.

2.2.2 Lower Bound on Optimal Cost

In this section we provide a lower bound on the optimal cost, i.e., the cost of an
optimal schedule. Later in Section 2.2.6 we show that there always exists an (`-
cyclic) optimal schedule.

Theorem 1. For any optimal c-schedule O we have

cost (O, π) ≥ max


n∑
i=1

πi,
1
2c

(
n∑
i=1

√
πi

)2
 .

Proof. By Corollary 2, cost (O, π) ≥ ∑n
i=1 πi. It remains to show that cost (O, π) ≥

1
2c

(∑n
i=1
√
πi
)2
. Fix a positive integer t > 0, and suppose that during the time interval

[0, t], O probes node i at steps t1, t2, . . . , tni . Let t0 = 0 and tni+1 = t. The sequence
t0, . . . , tni+1 partition the interval [0, t] into ni + 1 intervals Ii(j) = [tj + 1, tj+1], for
0 ≤ j ≤ ni. Denote the length of interval Ii(j) by `i(j) = tj+1 − tj. Applying the
Cauchy-Schwartz inequality we have:

ni∑
j=0

`i(j)2
ni∑
j=0

1 ≥
 ni∑
j=0

`i(j)
2

=⇒
ni∑
j=0

`i(j)2 ≥ 1
ni + 1

 ni∑
j=0

`i(j)
2

= t2

ni + 1 = t2

ni

(
1− 1

ni + 1

)
. (2.3)

Since new items are generated in node i by a process with expectation πi per step, for
any t′ ∈ Ii(j), the number of undiscovered items at node i at time t′, QOi (t′), is equal

13



to the number of items generated in that node since time tj, which has expectation
πi(t′ − tj). Therefore,

t∑
t=1

E
[
QOi (t′)

]
=

ni∑
j=0

∑
t′∈Ii(j)

E
[
QOi (t′)

]
=

ni∑
j=0

∑
t′∈Ii(j)

πi(t′ − tj)

=
ni∑
j=0

πi(1 + . . .+ `i(j)) = πi

ni∑
j=0

`i(j)(`i(j) + 1)
2

≥ πi
2

ni∑
j=0

`i(j)2 ≥ πi
2
t2

ni

(
1− 1

ni + 1

)
. (2.4)

In the first equality above we partitioned the sum to the different intervals, in the
second equality we used the fact that for t′ ∈ Ii(j) we have E

[
QOi (t′)

]
= π(t′ − tj),

the third equation uses the definition of `i(j), and in the last inequality we apply
Equation (2.3).

By summing over all nodes and averaging over t, we have
n∑
i=1

t∑
t′=1

1
t
E
[
QOi (t′)

]
≥

n∑
i=1

1
t

πi
2
t2

ni

(
1− 1

ni + 1

)

=
n∑
i=1

πi
2
t

ni

(
1− 1

ni + 1

)
(2.5)

≥ 1
c

(
n∑
i=1

ni
t

)(
n∑
i=1

πi
2
t

ni

(
1− 1

ni + 1

))
(2.6)

≥ 1
2c

(
n∑
i=1

√
πi

√(
1− 1

ni + 1

))2

, (2.7)

where in the second line we use the fact that if the schedule executed c probes in each
step then∑n

i=1
ni
t
≤ c, and the third line is obtained by applying the Cauchy-Schwartz

inequality.
It remains to show that for an optimal schedule O, and for any i such that πi > 0,

lim
t→∞

ni = ∞. For sake of contradiction assume that there is a time s such that the
node i is never probed by O at time t > s. So, E

[
QOi (t)

]
= π(t− s) and we have

cost (O, π) ≥ lim
t→∞

1
t

t∑
t′=s

E
[
QOi (t)

]
= lim

t→∞

πi
t

(t− s)(t− s+ 1)
2 =∞,

which is a contradiction. Hence, for all i, lim
t→∞

ni =∞, and using (2.4) we obtain

cost (O, π) ≥ lim
t→∞

1
2c

(
n∑
i=1

√
πi

√(
1− 1

ni + 1

))2

= 1
2c

(
n∑
i=1

√
πi

)2

,

14



which completes the proof.

2.2.3 Deterministic
(
2 + 2c−1

2c
)
-Approximation Schedule

Here, we first construct a deterministic 1-schedule in which each node i is probed
approximately every ni =

∑n

j=1
√
πj

√
πi

steps, and using that, present our
(
2 + 2c−1

2c

)
-

approximation c-schedule. For each i let ri be a nonnegative integer such that 2ri ≥
ni > 2ri−1, and let ρ = maxi ri.

Lemma 2. There is a 2ρ-cyclic 1-schedule D such that node i is probed exactly every
2ri steps.

Proof. Without loss of generality assume ∑n
i=1 2−ri = 1, otherwise we can add aux-

iliary nodes to complete the sum to 1, with the powers (ri’s) associated with the
auxiliary nodes all bounded by ρ.

We prove the lemma by induction on ρ. If ρ = 0, then there is only one node,
and the schedule is 1-cyclic. Now, assume the statement holds for all ρ′ < ρ. Since
the smallest frequency is 2−ρ, and the sum of the frequencies is 1, there must be two
nodes, v and u, with same frequency 2−ρ. Join the two nodes to a new node w with
frequency 2−ρ+1. Repeat this process for all nodes with frequency 2−ρ. We are left
with a collection of nodes all with frequencies > 2−ρ. By the inductive hypothesis
there is a (2ρ−1)-cyclic schedule D′ such that each node i is probed exactly each 2ri

steps. In particular a node w that replaced u and v is probed exactly each 2−ρ+1

steps.
Now, we create an 2ρ-schedule, D, whose cycle is obtained by repeating the cycle

of D′ two times. For each probe to w that replaced a pair u, v, in the first cycle we
probe u and in the second cycle we probe v. Thus, u and v are probed exactly every
2ρ steps, and the new schedule does not change the frequency of probing nodes with
frequency larger than 2−ρ.

Theorem 2. The cost of the deterministic 1-schedule D is no more than 2.5 times
of the optimal cost.

Proof. By Lemma 2 each node i is probed exactly every 2ri steps. Using 2ri−1 <
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∑n

j=1
√
πj

√
πi

we have 2ri + 1 ≤ 2·
∑n

j=1
√
πj

√
πi

+ 1, and therefore

lim
t→∞

1
t

t∑
t′=1

E
[
QDi (t′)

]
= lim

t→∞

1
t

(
t

2ri
2ri∑
t′=1

E
[
QDi (t′)

])
= 1

2ri
2ri∑
t′=1

πit
′

= πi
2ri

2ri(2ri + 1)
2 ≤ πi

2

(
2∑n

j=1
√
πj√

πi
+ 1

)

= √πi ·
n∑
j=1

√
πj + πi

2 .

Thus by Theorem 1, we have

cost (D, π) = lim
t→∞

1
t

n∑
i=1

t∑
t′=1

E
[
QDi (t′)

]
≤

n∑
i=1

√πi · n∑
j=1

√
πj

+ 1
2

n∑
i=1

πi

=
 n∑
j=1

√
πj

2

+ 1
2

n∑
j=1

πj ≤ 2.5 · cost (O, π) ,

where cost (O, π) is the optimal cost.

Using the previous deterministic 1-schedule, the following corollary provides a
c-schedule whose cost is within

(
2 + 2c−1

2c

)
factor of the optimal cost.

Corollary 3. There is a deterministic c-schedule Dc whose cost is at most
(
2 + 2c−1

2c

)
times

of the optimal cost.

Proof. Consider the execution of the deterministic 1-schedule D constructed in The-
orem 2 on generating vector 1

c
π. Let Dc be a deterministic c-schedule obtained by

grouping c consecutive probes of D into one step. Suppose O is an optimal c-schedule.
Applying Lemma 1,

cost (Dc, π) =
n∑
i=1

πiω
Dc
i =

n∑
i=1

πi
c
cωD

c

i ≤
n∑
i=1

πi
c

(ωDi + c− 1)

= cost
(
D, 1

c
π

)
+

n∑
i=1

(c− 1)πi
c

(from the proof of Theorem 2) ≤
(

n∑
i=1

√
πi
c

)2

+ 1
2

n∑
i=1

πi
c

+
n∑
i=1

(c− 1)πi
c

= 1
c

(
n∑
i=1

√
πi

)2

+ 2c− 1
2c

n∑
i=1

πi

(by Theorem 1) ≤
(

2 + 2c− 1
2c

)
cost (O, π) ,
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where the first inequality holds because some items could be detected in less than c
steps in the 1-schedule but are counted in one full step of the c-schedule.

2.2.4 On Optimal Memoryless Schedule

Here, we consider memoryless schedules, and show that the memoryless 1-schedule
with minimum cost can be easily computed. We call a memoryless schedule with
minimum cost among memoryless schedules, an optimal memoryless schedule. We
also provide an upper bound on the minimum cost of a memoryless c-schedule.

Theorem 3. Let R = (p1, . . . , pn) be a memoryless 1-schedule. Then we have
cost (R, π) ≥

(∑n
i=1
√
πi
)2
, and the equality holds if and only if pi =

√
πi∑n

j=1
√
πj
, for all

i.

Proof. Since probing each node i is a geometric distribution with parameter pi, the
expected time until an item generated at node i is discovered, is ωRi = 1/pi. Therefore,
by Lemma 1, we have cost (R, π) = ∑n

i=1
πi
pi
. We find p∗ = arg minS=p cost (R, π),

using the Lagrange multipliers:

∂

∂pj

(
n∑
i=1

πi
pi

+ λ
n∑
i=1

pi

)
= 0 =⇒ pj ∝

√
πj.

Therefore, cost (R, π) is minimized if pi =
√
πi∑n

j=1
√
πj
, and in this case the (minimized)

cost will be

cost (R, π) =
n∑
i=1

√πi · n∑
j=1

√
πj

 =
(

n∑
i=1

√
πi

)2

.

Corollary 4. The cost of the optimal memoryless 1-schedule is within a factor of 2
of the cost of any optimal 1-schedule.

Proof. The cost of the schedule R in Theorem 3 is
(∑n

i=1
√
πi
)2
, which is bounded

by 2 · cost (O, π) for an optimal 1-schedule O using Theorem 1.

Corollary 5. There is memoryless c-schedule, Rc, whose cost is within a factor of
(2 + (c− 1)/c) of any optimal c-schedule.
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Proof. Suppose Rc is a memoryless c-schedule obtained by choosing c probes in each
step, each chosen according to the optimal memoryless 1-schedule, R, computed in
Theorem 3. Using the same argument as in the proof of Corollary 3 we have

cost (Rc, π) ≤ 1
c

(
n∑
i=1

√
πi

)2

+ c− 1
c

n∑
i=1

πi ≤
(

2 + c− 1
c

)
cost (O, π) ,

for an optimal c-schedule O.

2.2.5 On Adaptive Algorithm for Memoryless Schedules

Assume now that the scheduling algorithm starts with no information on the gener-
ating vector π (or that the vector has changed). We design and analyze an adaptive
algorithm, Adaptive, that outputs a schedule A convergent to the optimal memory-
less algorithm R (see Section 2.2.4) by gradually learning the vector π by observing
the system. To simplify the presentation we present and analyze a 1-schedule algo-
rithm. The results easily scale up to any integer c > 1, where the adaptive algorithm
outputs a c-schedule convergent to Rc (as in Section 2.2.4).

Each iteration of the algorithm Adaptive starts with π̃ = (π̃1, . . . , π̃n) as an
estimate of the unknown generating vector π = (π1, . . . , πn). Based on this estimate
the algorithm chooses to probe node i with probability pi(t) =

√
π̃i∑n

j=1

√
π̃j

(which is the
optimal memoryless schedule if π̃ was the correct estimate). If node i0 is probed at
time t, the estimate of πi0 is updated to π̃i0 ←

max(1,ci0 )
t

, where ci0 is the total number
of new items discovered in that node since time 0.

We denote the output of Adaptive schedule by A and the optimal memoryless
1-schedule by R = p∗ = (p∗1, . . . , p∗n); see Section 2.2.4. Our main result of this section
is the following theorem.

Theorem 4. The schedule A converges to R, and thus,

cost (A, π) = cost (R, π) .

To prove Theorem 4 we need the following lemmas.

Lemma 3. For any time t and i ∈ [n] we have pi(t) ≥ 1
n
√
t
.
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Proof. It is easy to see that pi(t) will reach its lowest value at time t only if for j 6= i

we have π̃j = 1 and π̃i = 1
t−1 (which requires i to be probed at time t−1). Therefore,

pi(t) ≥ 1/
√
t−1

1/
√
t−1+n−1 = 1

1+(n−1)
√
t−1 ≥

1
n
√
t
.

Algorithm 1: Adaptive

1 Outputs: A1(t), for t = 1, 2, . . .;
2 begin
3 (c1, . . . , cn)← (0, . . . , 0);
4 (π̃1, . . . , π̃n)← (1, . . . , 1);
5 for t = 1, 2, . . . do
6 for i ∈ {1, . . . , n} do
7 pi(t)←

√
π̃i∑n

j=1

√
π̃j
;

8 end
9 A1(t) ∼ p(t);

10 output A1(t);
11 c′ ← number of new items caught at i0 = A1(t);
12 ci0 ← ci0 + c′;
13 π̃i0 ←

max(1,ci0 )
t

;
14 end
15 end

Define δ(t) = 4n exp
(
−π∗t1/3

6

)
, where π∗ = min {π1, . . . , πn}, and let N0 be the

smallest integer t such that exp
(
−
√
t

2n

)
≤ 2 exp

(
−π∗t1/3

6

)
. Note that one can choose

δ(t) = 4ne−π∗t
1/2−ε
6 for any ε ∈ (0, 1/2), and for convenience we chose ε = 1/6.

Lemma 4. For any time t ≥ N0, with probability ≥ 1 − δ(t)/2, all the nodes are
probed during the time interval [t/2, t).

Proof. By Lemma 3, the probability of not probing i during the time interval [t/2, t)
is at most

t−1∏
t′=t/2

(1− pi(t′)) ≤
(

1− 1
n
√
t

)t/2

≤ e
− t

2n
√
t ≤ 2 exp

(
−π∗t

1/3

6

)
= δ(t)

2n ,

where we used the fact that for t ≥ N0 we have exp
(
−
√
t

2n

)
≤ 2 exp

(
−π∗t1/3

6

)
. Finally,

a union bound over all the nodes completes the proof.
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Lemma 5. Suppose node i is probed at a time t′ ≥ t/2. Then,

Pr
[
|π̃i(t′)− πi| > t−

1
3πi
]
<
δ(t)
2n .

Proof. We estimate π from t′ ≥ t/2 steps, each with πi expected number of new
items. Applying a Chernoff bound [92, Ch. 4] for the sum of t′ independent random
variables with either Bernulli or Poisson distribution we have

Pr
[
|π̃i(t′)− πi| > t−

1
3πi
]
< 2 exp

−t− 2
3πit

′

3

 ≤ 2 exp
−t− 2

3π∗t

6

 = δ(t)
2n .

Note that by union bound, Lemma 5 holds, with probability at least 1 − δ(t)/2,
for all the nodes that are probed after t/2.

Lemma 6. Suppose t ≥ N0. With probability at least 1− δ(t) we have for all i ∈ [n],
(

1− 1
t1/3 + 1

)
p∗i ≤

√
1− t−1/3

1 + t−1/3 p
∗
i ≤ pi(t) ≤

√
1 + t−1/3

1− t−1/3 p
∗
i ≤

(
1 + 1

t1/3 − 1

)
p∗i

Proof. Applying Lemma 4, Lemma 5 and a union bound, with probability 1− δ(t) all
the nodes are probed during the time [t/2, t) and |π̃i(t)− πi| ≤ t−1/3πi for all i ∈ [n].
Since pi(t) =

√
π̃i(t)∑

j

√
π̃j(t)

, we obtain

pi(t) ≥
√

(1− t−1/3)πi∑
j

√
(1 + t−1/3)πj

=

√
1− t−1/3

1 + t−1/3

√
πi∑

j

√
πj

=

√
1− t−1/3

1 + t−1/3 p
∗
i ≥

(
1− 1

t1/3 + 1

)
p∗

i

where the last inequality uses the Taylor series of
√

1 + x. The upper bound is
obtained by a similar argument.

Corollary 6. The variation distance between the distribution used by algorithm Adaptive

at time t ≥ N0, p(t) = (p1(t), . . . , pn(t)), and the distribution p∗ = (p∗i , . . . , p∗n) used
by the optimal memoryless algorithm satisfy

‖ p(t)− p∗ ‖= 1
2

n∑
i=1
|pi(t)− p∗i | ≤

n

t1/3 − 1 + δ(t) t→∞−→ 0.

Finally, we present our proof for Theorem 4.
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Proof of Theorem 4. Recall that we defined τSi (t) as the number of steps from the
last time that node i was probed until time t in an execution of an schedule S, and
E
[
QSi
]

= πiE
[
τSi (t)

]
(see Equation (2.2)).

Let F (t) indicate the event that the inequalities in Lemma 6 are held for ∀t′ ∈
[t/2, t). Therefore, Pr [F (t)] ≥ 1− δ(t/2)·t

2 by applying union bound over all t′ ∈ [t/2, t),
and using the fact that δ(t′) ≤ δ(t/2). Therefore,

|E
[
QA(t)

]
− E

[
QR(t)

]
| =

∣∣∣∣∣
n∑
i=1

πiE
[
τAi (t)

]
−

n∑
i=1

πiE
[
τRi (t)

]∣∣∣∣∣
≤

n∑
i=1

πi
∣∣∣E [τAi (t)

]
− E

[
τRi (t)

]∣∣∣
≤

n∑
i=1

πi
∣∣∣E [τAi (t)

]
− E

[
τAi (t) | F (t)

]∣∣∣
+

n∑
i=1

πi
∣∣∣E [τAi (t) | F (t)

]
− E

[
τRi (t)

]∣∣∣ ,
where we used the triangle inequality for both inequalities. So, it suffices to show
that for every i,

lim
t→∞

∣∣∣E [τAi (t)
]
− E

[
τAi (t) | F (t)

]∣∣∣ = lim
t→∞

∣∣∣E [τAi (t) | F (t)
]
− E

[
τRi (t)

]∣∣∣ = 0.

Obviously, τAi (t) ≤ t. Now by letting t ≥ 2N0 we have,

E
[
τAi (t)

]
= Pr [F (t)]E

[
τAi (t) | F (t)

]
+ Pr [¬F (t)]E

[
τAi (t) | ¬F (t)

]
≤ E

[
τAi (t) | F (t)

]
+ δ(t/2)t

2 t = E
[
τAi (t) | F (t)

]
+ δ(t/2)t2

2 . (2.8)

We also get

E
[
τAi (t)

]
≥
(

1− δ(t/2)t
2

)
E
[
τAi (t) | F (t)

]
= E

[
τAi (t) | F (t)

]
− δ(t/2)t

2 E
[
τAi (t) | F (t)

]
≥ E

[
τAi (t) | X

]
− δ(t)t2

2 . (2.9)

Note that lim
t→∞

δ(t/2)t2
2 = lim

t→∞
4ne−

π∗t1/3

6 3√2 t2 = 0, and thus by (2.8) and (2.9) we have

lim
t→∞

E
[
τAi (t)

]
− E

[
τAi (t) | F (t)

]
= 0⇒ lim

t→∞

∣∣∣E [τAi (t)
]
− E

[
τAi (i) | F (t)

]∣∣∣ = 0. (2.10)

Now, we show that lim
t→∞

∣∣∣E [τAi (t) | F (t)
]
− E

[
τRi (t)

]∣∣∣ = 0. So here, we assume F (t)
holds. So for every i ∈ [n], node i is probed in [t/2, t), and for all t′ ∈ [t/2, t) we have
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(i) pi(t′) ≥
(
1− 1

t′1/3+1

)
p∗i ≥

(
1− 1

(t/2)1/3+1

)
p∗i . So,

E
[
τAi (t) | F (t)

]
≤
(

1− 1
(t/2)1/3 + 1

)−1 1
p∗i

=
(
1 + (t/2)−1/3

) 1
p∗i
.

(ii) pi(t′) ≤
(
1 + 1

t′1/3−1

)
p∗i ≤

(
1 + 1

(t/2)1/3−1

)
p∗i . Hence,

E
[
τAi (t) | F (t)

]
≥
(

1 + 1
(t/2)1/3 − 1

)−1 1
p∗i

=
(
1− (t/2)−1/3

) 1
p∗i
.

Obviously E
[
τRi (t)

]
= 1

p∗i
, since probing node i by R can be viewed as a geometric

distribution with parameter p∗i , and since δ(t)→ 0 as t→∞ we have

E
[
τRi (t)

]
= 1
p∗i

= lim
t→∞

(
1− (t/2)−1/3

) 1
p∗i
≤ lim

t→∞
E
[
τAi (t) | F (t)

]
≤ lim

t→∞

(
1 + (t/2)−1/3

) 1
p∗i

= 1
p∗i

= E
[
τRi (t)

]
.

Therefore,

lim
t→∞
|E
[
τAi (t) | F (t)

]
− E

[
τRi (t)

]
| = 0. (2.11)

Thus, by (2.10) and (2.11) we have lim
t→∞
|E
[
QA(t)

]
−E

[
QR(t)

]
| = 0, and A converges

to S, and since lim
t→∞

E
[
QS(t)

]
=
(∑n

i=1
√
πi
)2
, it implies that

lim
t→∞

E
[
QA(t)

]
=
(

n∑
i=1

√
πi

)2

= cost (A, π)

by Cesaro Mean [54, Sect. 5.4].

Note that one can obtain an adaptive schedule Ac by choosing c probes in each
step, at each round of Adaptive, and using similar argument as in Section 2.2.4 (and
similar to Corollary 3), it is easy to see that Ac converges to Rc.

Finally, if π changes, the Adaptive algorithm converges to the new optimal mem-
oryless algorithm, as the change in the rate of generating new items is observed by
Adaptive.
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2.2.6 On Cyclic Schedules

In this section we study cyclic schedules (which are also deterministic). In particular,
we first show that for some `, there exists an `-cyclic optimal schedule. Next, we
show that for a given ` there exists a

(
2

1−g(`)

)
-approximation c-schedule, where g is

a decreasing function that converges to 0.

2.2.6.1 Existence of Cyclic Optimal Schedule

Our main result in this section is the following theorem.

Theorem 5. For any positive integer c, there always exists a cyclic optimal c-
schedule.

In order to prove Theorem 5 we need the following definitions and lemmas.

Definition 7 (Configuration State). Suppose S is a c-schedule. The configuration
state (or simply state) of S at time t is the vector τS(t) = (τS1 (t), . . . , τSn (t)), where
τSi (t) is the number of steps from the last time that node i was probed until time t.

Definition 8 (Configuration Graph). The (π, c)-configuration graph is a directed
node-weighted infinite sized graph Gπ,c = (V , E , z), where V is the set of all possible
configuration states of any schedule S at any time t. For two nodes η1, η2 ∈ V we
have η1η2 ∈ E if there exist a time t and a c-schedule S such that η1 = τS(t) and η2 =
τS(t+ 1). The weight of every node η = (τ1, . . . , τn) is defined as z(η) = ∑n

i=1 πi · τi.

Note that as we mentioned before in Equation (2.2), if η = τS(t) we have

E
[
QS(t)

]
=

n∑
i=1

πiτ
S
i (t) = z(η). (2.12)

For any finite subset X of states in Gπ,c, define z(X) = ∑
η∈X z(η). We have to

following important lemma about the cycles1 in Gπ,c:

Lemma 7. There exists a cycle C in Gπ,c such that

z(C)
|C|

= min
{
z(C ′)
|C ′|

| C ′ is cycle in Gπ,c
}
.

1A (directed) cycle does not pass a state twice.

23



Proof. Let CR be the cycle of length n obtained by performing a round-robin schedule:

CR = (1, . . . , n− 1, n)→ (2, 3, . . . , n, 1)→ (3, 4, . . . , n, 1, 2)→ . . .

Also, let 0 < B = z(CR)/|CR| and F = {η ∈ Gπ,c | z(η) ≤ 2B}. Note that F is finite:
if η = (τ1, . . . , τn) ∈ F then τi ≤

⌊
2B
πi

⌋
, 1 ≤ i ≤ N , since otherwise z(η) > 2B. So,

F ⊆
{
η ∈ Gπ,c | 1 ≤ τi ≤

⌊2B
πi

⌋
and τi is positive integer, for 1 ≤ i ≤ n

}
,

and thus |F| ≤ ∏N
i=1

⌊
2B
πi

⌋
.

Claim. If |C| ≥ 2|F| for a cycle C, then z(C)/|C| > B.

This is because

z(C)
|C|

≥ 1
|C|

∑
η∈F

z(η) +
∑

η∈C\F
z(η)


>

1
|C|

∑
η∈F

0 +
∑

η∈C\F
2B
 ≥ 2B

|C|
(|C| − |F|)

= 2B − |F|
|C|

2B ≥ 2B −B = B.

Now, suppose F ′ ⊆ F is the set of states than can be reached from a state in F via
a path of length at most 2|F|. Therefore, by the above claim, if z(C)/|C| ≤ B for a
cycle C, then C ⊆ F ′. Obviously, F ′ is finite, and so is the set

{C | C is a cycle and C ⊆ F ′} ,

and therefore, there is cycle C that minimizes z(C)/|C|.

From now on, we denote C∗ to be the cycle in Gπ,c that minimizes z(C)/|C|.

Corollary 7. Suppose W is a closed walk2 in Gπ,c. We have z(W )
|W | ≥

z(C∗)
|C∗| .

Proof. We prove by induction on the length of W . If |W | = 2, W is a cycle (since
there is no self-loop in Gπ,c for n > 1), and by Lemma 7 the statement holds. Now,
suppose the statement holds for all the closed walks of length smaller than |W |. If W
is a cycle, again by Lemma 7 the statement holds. So, assume that W is not a cycle.

2A walk in a graph is a sequence of nodes obtained by traversing the edges.
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In this case note that we can decompose W as W = W1CW2, where W1,W2 are two
walks and C is a cycle, such that |W1|+ |W2| > 0 (since W is not a cycle) and W1W2

is a closed walk. Therefore,

z(W )
|W |

≥ z(W1W2) + z(C)
|W1W2|+ |C|

≥ min
{
z(W1W2)
|W1W2|

,
z(C)
|C|

}
,

where we used the fact that α+β
γ+δ ≥ min

{
α
γ
, β
δ

}
, for positive integers α, β, γ, δ. Now,

by induction hypothesis we know that z(W1W2)
|W1W2| ≥

z(C∗)
|C∗| (since W1W2 is a closed walk),

and by Lemma 7 we have z(C)
|C| ≥

z(C∗)
|C∗| . Therefore,

z(W )
|W | ≥

z(C∗)
|C∗| .

Definition 9 (Walk). The walk of a c-schedule S, denoted by W (S), is the infinite
walk in graph Gπ,c that S traverse, i.e.,

W (S) = τS(1), τS(2), τS(3), . . .

Now, by Equation (2.12), the cost of a c-schedule S is the average of weights of
all nodes in W (S), i.e.,

cost (S, π) = lim
t→∞

1
t

t∑
t′=1

z(τS(t′)). (2.13)

Remark 1. Note that an infinite walk W , that starts from the state (1, . . . , 1),
uniquely defines a schedule S such that W (S) = W : each directed edge in Gπ,c cor-
responds to probing a set of at most c nodes. So, S is a schedule that at time step t
probes the nodes corresponding to the i-th edge traversed by W .

Theorem 6. For any schedule S, we have cost (S, π) ≥ z(C∗)
|C∗| .

Proof. If cost (S, π) = ∞ there is nothing to prove. So, assume cost (S, p) < ∞.
Define

FS = {η ∈ Gπ,c | z(η) ≤ cost (S, p) + 1} .

We claim that the walk of S visits FS infinite times, i.e., there is an infinite sequence
of time steps t1 < t2 < . . . such that τS(ti) ∈ FS : otherwise, there is a time t0
such that for t ≥ t0 we have τS(t) /∈ FS , and thus, τS(t) > cost (S, π) + 1. Now by
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Equation (2.13), we have

cost (S, π) = lim
t→∞

1
t

 t0∑
t′=1

τS(t′) +
t∑

t′=t0+1
τS(t′)

 = lim
t→∞

1
t

 t∑
t′=t0+1

τS(t′)


≥ lim
t→∞

1
t

 t∑
t′=t0+1

cost (S, π) + 1
 = lim

t→∞

t− t0
t

(cost (S, π) + 1)

= cost (S, π) + 1 > cost (S, π) ,

which is a contradiction. Therefore, W (S) visits FS infinite times, and since FS
is a finite set (same reason for finiteness of F defined above), there exists a state
η ∈ FS that is visited by W (S) infinite times. So, W (S) can be written as W (S) =
W0,W1,W2 . . . where each Wi, for i ≥ 1, is a closed walk that ends in η. So, by
Corollary 7 and using Equation (2.13) we have

cost (S, π) = lim
i→∞

z(W0) + . . .+ z(Wi)
|W0|+ . . .+ |Wi|

≥ lim
i→∞

z(W1) + . . .+ z(Wi)
|W1|+ . . .+ |Wi|

≥ lim
i→∞

min
{
z(W1)
|W1|

, . . . ,
z(Wi)
|Wi|

}
≥ lim

i→∞

z(C∗)
|C∗|

= z(C∗)
|C∗|

,

which completes the proof.

We are finally ready to give the proof for the main result of this section.

Proof of Theorem 5. By Theorem 6, for every schedule S we have cost (S, π) ≥ z(c∗)
|C∗| .

To complete the proof, we show that there exists a cyclic schedule whose cost is z(c∗)
|C∗| .

As mentioned in Remark 1, each edge e = η1η2 in Gπ,c corresponds to a set uce of
at most c nodes, such that by probing the nodes in uce the configuration state changes
from η1 to η2. Now, assume C∗ = η1, . . . , η`, and uc1, . . . , uc` are the corresponding sets
of nodes to the edges of C∗. It is easy to see that from any state we can reach η`,
after exactly ` time steps, by probing the nodes by following uc1, . . . , uc`. Let O be a
schedule that periodically probes the nodes by following uc1, . . . , uc`. Obviously O is a
cyclic schedule, and we can write W (O) = W0, C

∗, C∗, . . . for a walk W0. Again, by
Equation (2.13) we have

cost (S, π) = lim
i→∞

z(W0) + c · z(C∗)
|W0|+ i · |C∗|

= z(C∗)
|C∗|

,

and the proof is complete.
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Note that we proved, by finding the cycle C∗ one can obtain a cyclic optimal
schedule. However, note that finding C∗ can be an intractable task, as the size of the
F ′, and the number its cycles can be exponentially large.

2.2.6.2 On (≈ 2)-Approximation Cyclic Schedules

In the previous section, we showed that there is always an `-cyclic optimal algorithm,
for some `. However, we did not specify the length of the cycle, `. Here, we answer
a related important question: given a fixed `, how well an `-cyclic schedule can ap-
proximate the optimal one? To answer this question, we prove the following theorem
in this section:

Theorem 7. For a given positive integer `, there exists an `-cyclic
(

2
1−g(`)

)
-approximation

schedule, where g is a decreasing function, and lim`→∞ g(`) = 0.

We use a probabilistic method to prove this theorem. But first, we need the
following lemmas.

Lemma 8. Let `, f be two positive integers, where f ≤ `, and let F be a random
variable that takes values in {f, . . . , `}. We have

E [min {X1, . . . , XF}] ≤
`+ 1
f + 1 ,

if {X1, . . . , XF} ⊆ {1, 2, . . . , `} is a subset of size F chosen uniformly at random.

Proof. Denote Xmin = {X1, . . . , XF}. For i ∈ {1, . . . , `− F + 1} we have

Pr [Xmin ≥ i | F ] = Pr [X1 ≥ i, . . . , XF ≥ i] =

(
`−i+1
F

)
(
`
F

) ,

and thus

E [Xmin | F ] =
`−F+1∑
i=1

Pr [Xmin ≥ i | F ] = 1(
`
F

) `−F+1∑
i=1

(
`− i+ 1

F

)

= 1(
`
F

) ((F
F

)
+
(
F + 1
F

)
+ . . .

(
`

F

))

= 1(
`
F

) ((F + 1
F + 1

)
+
(
F + 1
F

)
+ . . .

(
`

F

))

=

(
`+1
F+1

)
(
`
F

) = `+ 1
F + 1 .
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For the first equality we used the equality E [X] = ∑
i≥1 Pr [X ≥ i] for random variable

X with positive integer values. We also used the fact that
(
n
r

)
+
(
n
r+1

)
=
(
n+1
r+1

)
. Finally

E [Xmin] =
∑̀
F=f

Pr [F ]E [Xmin | F ] =
∑̀
F

Pr [F = f ] `+ 1
F + 1

≤
∑̀
F=f

Pr [F ] `+ 1
f + 1 = `+ 1

f + 1 ,

which completes the proof.

Lemma 9. Suppose `, f1, . . . , fn are positive integers such that ∑n
i=1 fi ≤ `. There

exists an `-cyclic 1-schedule whose cost is at most (`+ 1)∑n
i=1

πi
fi+1 .

Proof. Define U = U(`, {f1, . . . , fn}) is the space of all sequences U ∈ {1, . . . , n}` of
length ` such i ∈ {1, . . . , n} appears in U at least fi times. By U ∼ U we mean U is
a sequence chosen uniformly at random from U . For a U ∈ U let SU be an `-cyclic
1-schedule that probes the nodes periodically following the sequence U .

Claim. The expected waiting time an item at node i following the schedule SU , de-
noted by ωSUi , is at most `+1

fi+1 .

To show this, suppose an item is generated at time t and at node i. Let T be the
time interval [t+ 1, t+ 2, . . . , t+ `]. Since SU is an `-cyclic schedule that repeats the
sequence U , the number of times SU probes the node i during T is a least fi, and
if U ∼ U , these probes of i during the interval T are chosen uniformly at random.
Therefore, by Lemma 8, we have

ωSUi = E [min {X1, . . . , XFi}] ≤
`+ 1
fi + 1 ,

where Fi is a random variable that indicates the frequency of i in U , and thus,
fi ≤ Fi ≤ `. Also, {X1, . . . , XFi} is a subset of {1, . . . , `} of size Fi and chosen
uniformly at random, that indicates the probes of the node i during T . Therefore,

EU∼U (cost (SU , π)) ≤
n∑
i=1

πi(`+ 1)
fi + 1 .

Therefore, there exists a sequence U0, and thus a schedule SU0 , such that cost (SU0) ≤
EU∼U (cost (SU , π)) ≤ ∑n

i=1
πi(`+1)
fi+1
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Using a similar argument we have the following extension to c-schedules.

Lemma 10. Suppose `, f1, . . . , fn are positive integers such that ∑n
i=1 fi ≤ c ·`. There

exists an `-cyclic c-schedule whose cost is at most (`+ 1)∑n
i=1

πi
fi+1 .

Proof. Define Uc = U(`, {f1, . . . , fn} , c) is the space of all sequences U = uc1, . . . , u
c
`

such that each ucj is c-subset3 of {1, . . . , n} and each i appears at least fi times in
multiset ∪`j=1u

c
j, i.e., at least fi of ucj’s contain i. Also, define SU be the `-cyclic

c-schedule that at anytime t probes the c nodes in ucj where j = t mod `.
Now, similar to the proof of Lemma 9, the expected waiting time of any item at

any node i is at most `+1
fi+1 , and thus, there exists an `-cyclic c-schedule whose cost is

at most (`+ 1)∑n
i=1

πi
fi+1 .

Proof of Theorem 7. Let p∗i =
√
πi∑n

j=1
√
πj
, and fi = bc · ` · p∗i c. Therefore,

fi
c · ` · p∗i

≥ c · ` · p∗i − 1
c · ` · p∗i

= 1− 1
c · ` · p∗i

.

Now, if p∗min = min {p∗1, . . . , p∗n} define g(`) = 1
c·`·p∗min

. Therefore, fi ≥ (1−g(`))c ·` ·p∗i .
Also g is a decreasing function and converges to 0. Also, note that

f1 + . . .+ fn ≤
n∑
i=1

c · ` · p∗i = c · `.

Therefore, by Lemma 10, there exists an `-cyclic c-schedule S such that

cost (S, π) ≤
n∑
i=1

(`+ 1)πi
fi + 1 <

n∑
i=1

`πi
fi
≤

n∑
i=1

`πi
(1− g(`))c · ` · p∗i

= 1
c(1− g(`))

n∑
i=1

πi
p∗i

= 1
c(1− g(`))

(
n∑
i=1

√
πi

)2

≤ 2
1− g(`)cost (O, π) ,

where we used the lower bound for the cost of optimal c-schedule O in Theorem 1.

2.2.7 On (≈ 2)-Approximation Random Schedule

In the previous section we talked about existence of deterministic schedules, whether
being optimal, or approximation. In this section, we compute a random c-schedule,
R+, that is

(
2

1−g(`) + o(1)
)
-approximation (the same function g defined in the previous

3An r-subset is a subset of size r.
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section), at the cost of using more space. Note that this improves the approximation
ratio

(
2 + c−1

c

)
in Corollary 4, for large enough `, memory space, and c ≥ 2.

Suppose Uc = U(`, {f1, . . . , fn} , c) is the space of all random sequences U as
defined in the proof of Lemma 10, and by U ∼ Uc we mean U is sampled from U
uniformly at random. The c-schedule R+ is given in Algorithm 2. The idea is to
partition the timeline into time intervals T1, T2, . . ., where the length of all of them
is exactly h`, for a positive integer h. Next, for each Ti, we sample Ui ∼ Uc and let
U = UiUi . . . Ui be the h times concatenation of Ui with itself. Then, during the time
interval Ti, we probe the nodes by following the sequence U .
Algorithm 2: Computing the schedule R+

1 Inputs: Positive integers `, h, c, and generating vector π.
2 Outputs: R+(t), for t = 1, 2, . . ..
3 begin

4 p∗min ← min
1≤i≤n

{ √
πi∑n

j=1
√
πj

}
;

5 for i ∈ {1, . . . , n} do
6 fi ← bc · ` · p∗minc;
7 end
8 r ← 0;
9 for t = 1, 2, 3, . . . do

10 if r = 0 then
11 Ui ∼ U(`, {f1, . . . , fn} , c);
12 U ← Ui;
13 for j = 1, . . . , h− 1 do
14 U ← UUi;
15 end
16 end
17 r ← r + 1 mod h`;
18 R+(t)← r-th element of U ;
19 end
20 end

We have the following theorem:
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Theorem 8. The cost of R+ (given in Algorith 2) is a most
(

2
1−g(`) + `

h

)
times the

optimal cost.

Proof. Recall that ωR+
i is the expected waiting of an item generated at node i. Let

ω
R+
i (t) be the expected waiting time an item generated at node i and at time t.

Therefore,

ω
R+
i = lim

t→∞

1
t

t∑
t′=1

ω
R+
i (t). (2.14)

Each of these time intervals can be written as Tj = AjBj where Bj is the last ` time
steps in Tj, i.e., the lengths of Aj and Bj are (h− 1)` and `, respectively.

Note that by Lemma 10, if t ∈ Aj, for some j, we have

ω
R+
i (t) ≤ `+ 1

fi + 1 ≤
`

fi
.

Also, note that if t ∈ Bj, for some j, then t+ ` ∈ Aj+1 and

ω
R+
i (t) ≤ `+ ω

R+
i (t+ `) ≤ `+ `

fi
.

Therefore, by Equation (2.14) we get

ω
R+
i = lim

j→∞

1
|T1|+ . . .+ |Tj|

j∑
r=1

∑
t∈Tr

ω
R+
i (t)

= lim
j→∞

1
jh`

j∑
r=1

∑
t∈Ar

ω
R+
i (t) +

∑
t∈Br

ω
R+
i (t)


≤ lim

j→∞

1
jh`

j∑
r=1

(
|Ar|

`

fi
+ |Br|

(
`

fi
+ `

))

= lim
j→∞

1
jh`

j∑
r=1

(
|Tr|

`

fi
+ `2

)
= lim

j→∞

1
jh`

(
jh` · `
fi

+ j`2
)

= `

fi
+ `

h
.
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Now, similar to the proof of Theorem 7, we have

cost (S, π) ≤
n∑
i=1

πi

(
`

fi
+ `

h

)
≤

n∑
i=1

`πi
(1− g(`))c · ` · p∗i

+ `

h

(
n∑
i=1

πi

)

= 1
c(1− g(`))

n∑
i=1

πi
p∗i

+ `

h

(
n∑
i=1

πi

)

= 1
c(1− g(`))

(
n∑
i=1

√
πi

)2

+ `

h

(
n∑
i=1

πi

)

≤
(

2
1− g(`) + `

h

)
cost (O, π) ,

for an optimal schedule O, and since limh→∞
`
h

= 0, for large enough h compared to
`, `

h
= o(1) and the proof is complete.

Extension to Adaptive Algorithm. The assumption in Algorithm 2 is that the
generating vector π is given. However, similar to Algorithm 1, we can compute an
adaptive schedule A+, that starts with an estimate of the generating vector π̃ (as in
Algorithm 1), that updates the estimates of each πi after each probe, but update the
p∗i ’s after each time interval Ti.
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Chapter 3

Optimal Probing Schedule
Problem: Propagating Items

In this chapter, we formalize a generic process that describes the creation and distri-
bution of information in a network, and define the computational task of learning this
process by probing the nodes in the network according to a schedule. The process and
task are parametrized by the resource limitations of the observer and the decay rate
of the novelty of items. We introduce a cost measure to compare different schedules:
the cost of a schedule is the limit of the average expected novelty of uncaught items
at each time step. On the basis of these concepts, we formally define the Optimal
Probing Schedule Problem, which requires finding the schedule with minimum cost.

We conduct a theoretical study of the cost of a schedule, showing that it can be
computed explicitly and that it is a convex function over the space of schedules. We
then introduce wiggins,1 an algorithm to compute the optimal schedule by solving
a constrained convex optimization problem through the use of an iterative method
based on Lagrange multipliers.

We discuss variants of wiggins for the realistic situation where the parameters
of the process needs to be learned or can change over time. We show how to compute
a schedule which is (probabilistically) guaranteed to have a cost very close to the
optimal by only observing the generating process for a limited amount of time. We

1In the Sherlock Holmes novel A study in scarlet by A. Conan Doyle, Wiggins is the leader of the
“Baker Street Irregulars”, a band of street urchins employed by Holmes as intelligence agents.
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also present a MapReduce adaptation of wiggins to handle very large networks.
Finally, we conduct an extensive experimental evaluation of wiggins and its vari-

ants, comparing the performances of the schedules it computes with natural baselines,
and showing how it performs extremely well in practice on real social networks when
using well-established models for generating new items (e.g., the independence cas-
cade model [68]).

3.1 Problem Definition

In this section we formally introduce the problem and define our goal.
Let G = (V,E) be a graph with |V | = n nodes. W.l.o.g. we let V = [n]. Let

F ⊆ 2V be a collection of subsets of V , i.e., a collection of sets of nodes. Let π be
a function from F to [0, 1] (not necessarily a probability distribution). We model
the generation and diffusion of information in the network by defining a generating
process Γ = (F , π). Γ is a infinite discrete-time process which, at each time step
t, generates a collection of sets It ⊆ F such that each set S ∈ F is included in It
with probability π(S), independent of t and of other sets generated at time t′ ≤ t.
For any t and any S ∈ It, the ordered pair (t, S) represents an item - a piece of
information that was generated at time t and reached instantaneously the nodes in S.
We choose to model the diffusion process as instantaneous because this abstraction
accurately models the view of an outside resource-limited observer that does not have
the resources to monitor simultaneously all the nodes in the network at the fine time
granularity needed to observe the different stages of the diffusion process.
Probing and schedule. The observer can only monitor the network by probing
nodes. Formally, by probing a node v ∈ V at time t, we mean obtaining the set I(t, v)
of items (t′, S) such that t′ ≤ t and v ∈ S:2

I(t, v) := {(t′, S) : t′ ≤ t, S ∈ It′ , v ∈ S} .

Let Ut be the union of the sets It′ generated by Γ at any time t′ ≤ t, and so I(t, v) ⊆ Ut.
We model the resource limitedness of the observer through a constant, user-

specified, parameter c ∈ N, representing the maximum number of nodes that can
2The set S appears in the notation for an item only for clarity of presentation: we are not
assuming that when we probe a node and find an item (t, S) we obtain information about S.
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be probed at any time, where probing a node v returns the value I(t, v).
The observer chooses the c nodes to probe by following a schedule. In this work

we focus on memoryless schedules, i.e., the choice of nodes to probe at time t is inde-
pendent from the choice of nodes probed at any time t′ < t. More precisely, a probing
c-schedule p is a probability distribution on V . At each time t, the observer chooses
a set Pt of c nodes to probe, such that Pt is obtained through random sampling of V
without replacement according to p, independently from Pt′ from t′ < t. Memoryless
schedules are simple, easy to store, and fast to implement.
Caught items, uncaught items, and novelty. We say that an item (t′, S) is
caught at time t ≥ t′ iff

1. a node v ∈ S is probed at time t; and
2. no node in S was probed in the interval [t′, t− 1].

Let Ct be the set of items caught by the observer at any time t′ ≤ t. We have
Ct ⊆ Ut. Let Nt = Ut \Ct be the set of uncaught items at time t, i.e., items that were
generated at any time t′ ≤ t and have not been caught yet at time t. For any item
(t′, S) ∈ Nt, we define the θ-novelty of (t′, S) at time t as

fθ(t, t′, S) := θt−t
′
,

where θ ∈ (0, 1) is a user-specified parameter modeling how fast the value of an item
decreases with time if uncaught. Intuitively, pieces of information (e.g., rumors) have
high value if caught almost as soon as they have appeared in the network, but their
value decreases quickly (i.e., exponentially) as more time passes before being caught,
to the point of having no value in the limit.
Load of the system and cost of a schedule. The set Nt of uncaught items at
time t imposes a θ-load, Lθ(t), on the graph at time t, defined as the sum of the
θ-novelty at time t of the items in Nt:

Lθ(t) :=
∑

(t′,S)∈Nt
fθ(t, t′, S) .

The quantity Lθ(t) is a random variable, depending both on Γ and on the probing
schedule p, and as such it has an expectation E[Lθ(t)] w.r.t. all the randomness in the
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system. The θ-cost of a schedule p is defined as the limit, for t→∞, of the average
expected load of the system:

costθ(p) := lim
t→∞

1
t

∑
t′≤t

E[Lθ(t)]

= lim
t→∞

1
t

∑
t′≤t

E

 ∑
(t′′,S)∈Nt′

fθ(t′, t′′, S)
 .

Intuitively, the load at each time indicates the amount of novelty we did not catch
at that time, and the cost function measures the average of such loss over time. The
limit above always exists (Lemma 11).

We now have all the necessary ingredients to formally define the problem of interest
in this work.
Problem definition. Let G = (V,E) be a graph and Γ = (F , π) be a generating
process on G. Let c ∈ N and θ ∈ (0, 1). The (θ, c)-Optimal Probing Schedule Prob-
lem ((θ, c)-OPSP) requires finding the optimal c-schedule p∗, i.e., the schedule with
minimum θ-cost over the set Sc of c-schedules:

p∗ = arg min
p
{costθ(p), p ∈ Sc} .

Thus, the goal is to design a c-schedule that discovers the maximum number of items
weighted by their novelty value (which correspond to those generated most recently).
The parameter θ controls how fast the novelty of an item decays, and influences the
choices of a schedule. When θ is closed to 0, items are relevant only for a few steps
and the schedule must focus on the most recently generated items, catching them
as soon as they are generated (or at most shortly thereafter). At the other extreme
(θ ≈ 1), an optimal schedule must maximizes the total number of discovered items,
as their novelty decays very slowly.

Viewing the items as “information” disseminated in the network, an ideal sched-
ule assigns higher probing probability to nodes that act as information hubs, i.e.,
nodes that receive a large number of items. Thus, an optimal schedule p∗, identifies
information hubs among the nodes. This task (finding information hubs) can be seen
as the complement of the influence maximization problem [68, 69]. In the influence
maximization problem we look for a set of nodes that generate information that reach
most nodes. In the information hubs problem, we are interested in a set of nodes that
receive the most of information, thus the most informative nodes for an observer.
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In the following sections, we may drop the specification of the parameters from
θ-novelty, θ-cost, θ-load, and c-schedule, and from their respective notation, as the
parameters will be clear from the context.

3.2 The WIGGINS Algorithm

In this section we present the algorithm wiggins (and its variants) for solving the
Optimal Probing Schedule Problem (θ, c)-OPSP for generating process Γ = (F , π) on
a graph G = (V,E).

We start by assuming that we have complete knowledge of Γ, i.e., we know F and
π. This strong assumption allows us to study the theoretical properties of the cost
function and motivates the design of our algorithm, wiggins, to compute an optimal
schedule. We then remove the assumption and show how we can extend wiggins
to only use a collection of observations from Γ. Then we discuss how to recalibrate
our algorithms when the parameters of the process (e.g., π or F) change over time.
Finally, we show an algorithm for the MapReduce framework that allows us to scale
to large networks.

3.2.1 Computing the Optimal Schedule

We first conduct a theoretical analysis of the cost function costθ, and then use the
results to develop wiggins, our algorithm to compute the optimal c-schedule (i.e.,
solve the (θ, c)-OPSP).

3.2.1.1 Analysis of the cost function

Assume for now that we know Γ, i.e., we have complete knowledge of F and π. Under
this assumption, we can exactly compute the θ-cost of a c-schedule.

Lemma 11. Let p = (p1, . . . , pn) be a c-schedule. Then

costθ(p) := lim
t→∞

1
t

t∑
t′=0

E[Lθ(t′)] =
∑
S∈F

π(S)
1− θ(1− p(S))c , (3.1)

where p(S) = ∑
v∈S pv.
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Proof. Let t be a time step, and consider the quantity E[Lθ(t)]. By definition we have

E[Lθ(t)] = E

 ∑
(t′,S)∈Nt

fθ(t, t′, S)
 = E

 ∑
(t′,S)∈Nt

θt−t
′

 ,
where Nt is the set of uncaught items at time t. Let now, for any t′ ≤ t, Nt,t′ ⊆ Nt

be the set of uncaught items in the form (t′, S). Then we can write

E[Lθ(t)] = E

 t∑
t′=0

∑
(t′,S)∈Nt,t′

θt−t
′

 .

Define now, for each S ∈ F , the random variable XS,t′,t which takes the value θt−t′ if
(t′, S) ∈ Nt,t′ , and 0 otherwise. Using the linearity of expectation, we can write:

E[Lθ(t)] =
∑
S∈F

t∑
t′=0

E[XS, t
′, t]

=
∑
S∈F

t∑
t′=0

θt−t
′ Pr(XS,t,t′ = θt−t

′) . (3.2)

The r.v. XS,t,t′ takes value θt−t
′ if and only if the following two events E1 and E2

both take place:

• E1: the set S ∈ F belongs to It′ , i.e., is generated by Γ at time t′;
• E2: the item (t′, S) is uncaught at time t. This is equivalent to say that no

node v ∈ S was probed in the time interval [t′, t].

We have Pr(E1) = π(S), and

Pr(E2) = (1− p(S))c(t−t′) .

The events E1 and E2 are independent, as the process of probing the nodes is inde-
pendent from the process of generating items, therefore, we have

Pr(XS,t,t′ = θt−t
′) = Pr(E1) Pr(E2) = π(S)(1− p(S))c(t−t′) .

We can plug this quantity in the rightmost term of (3.2) and write

lim
t→∞

E[Lθ(t)] = lim
t→∞

∑
S∈F

t∑
t′=0

θt−t
′
π(S)(1− p(S))c(t−t′)

= lim
t→∞

∑
S∈F

π(S)
t∑

t′=0
(θ(1− p(S))c)t

=
∑
S∈F

π(S)
1− θ(1− p(S))c , (3.3)
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where we used the fact that θ(1 − p(S))c < 1. We just showed that the sequence
(E[Lθ(t)])t∈N converges as t→∞. Therefore, its Cesàro mean, i.e., limt→∞

1
t

∑t
t′=0 E[Lθ(t)],

equals to its limit [55, Sect. 5.4] and we have

costθ(p) = lim
t→∞

1
t

t∑
t′=0

E[Lθ(t)] = lim
t→∞

E[Lθ(t)]

=
∑
S∈F

π(S)
1− θ(1− p(S))c .

We now show that costθ(p), as expressed by the r.h.s. of (3.1) is a convex function
over its domain Sc, the set of all possible c-schedules. We then use this result to show
how to compute an optimal schedule.

Theorem 9. The cost function costθ(p) is a convex function over Sc.

Proof. For any S ∈ F , let

fS(p) = 1
1− θ(1− p(S))c .

The function costθ(p) is a linear combination of fS(p)’s with positive coefficients.
Hence to show that costθ(p) is convex it is sufficient to show that, for any S ∈ F ,
fS(p) is convex.

We start by showing that gS(p) = θ(1− p(S))c is convex. This is due to the fact
that its Hessian matrix is positive semidefinite [14]:

∂

∂pi∂pj
gS(p) =

 θc(c− 1)(1− p(S))c−2 i, j ∈ S
0 otherwise

Let vS be a n×1 vector in Rn such that its i-th coordinate is [c(c− 1)(1− p(S))c−2]1/2

if i ∈ S, and 0 otherwise. We can write the Hessian matrix of gS as

∇2gS = VS ∗ V T
S ,

and thus, ∇2gS is positive semidefinite matrix and g is convex. From here, we have
that 1− gS is a concave function. Since fS(p) = 1

1−gS(p) and the function h(x) = 1
x
is

convex and non-increasing, then fS is a convex function.
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If for every v ∈ V , S = {v} belongs to F , then the function gS in the above proof
is strictly convex, and so is fS.

We then have the following corollary of Thm. 9.

Corollary 8. Any schedule p with locally minimum cost is an optimal schedule (i.e.,
it has global minimum cost). Furthermore, if for every v ∈ V , {v} belongs to F , the
optimal schedule is unique.

3.2.1.2 The Algorithm

Corollary 8 implies that one can compute an optimal c−schedule p∗ (i.e., solve the
(θ, c)-OPSP) by solving the unconstrained minimization of costθ over the set Sc of all
c-schedules, or equivalently by solving the following constrained minimization problem
on Rn:

min
p∈Rn

costθ(p)
n∑
i=1

pi = 1

pi ≥ 0 ∀i ∈ {1, . . . , n}

(3.4)

Since the function costθ is convex and the constraints are linear, the optimal solu-
tion can, theoretically, be found efficiently [14]. In practice though, available convex
optimization problem solvers can not scale well with the number n of variables, es-
pecially when n is in the millions as is the case for modern graphs like online social
networks or the Web. Hence we developed wiggins, an iterative method based on
Lagrange multipliers [14, Sect. 5.1], which can scale efficiently and can be adapted to
the MapReduce framework of computation [33], as we show in Sect. 3.2.4. While we
can not prove that this iterative method always converges, we can prove (Thm. 10)
that (i) if at any iteration the algorithm examines an optimal schedule, then it will
reach convergence at the next iteration, and (ii) if it converges to a schedule, that
schedule is optimal. In Sect. 4.3 we show our experimental results illustrating the
convergence of wiggins in different cases.

wiggins takes as inputs the collection F , the function π, and the parameters c
and θ, and outputs a schedule p which, if convergence (defined in the following) has
been reached, is the optimal schedule. It starts from a uniform schedule p(0), i.e.,
p(0)
i = 1/n for all 1 ≤ i ≤ n, and iteratively refines it until convergence (or until
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a user-specified maximum number of iterations have been performed). At iteration
j ≥ 1, we compute, for each value i, 1 ≤ i ≤ n, the function

Wi(p(j−1)) :=
∑
S∈F

s.t. i∈S

θcπ(S)(1− p(j−1)(S))c−1

(1− θ(1− p(j−1)(S))c)2 (3.5)

and then set

p(j)
i = p(j−1)

i Wi(p(j−1))∑n
z=1 p(j−1)

z Wz(p(j−1))
.

The algorithm then checks whether p(j) = p(j−1). If so, then we reached convergence
and we can return p(j) in output, otherwise we perform iteration j+1. The pseudocode
for wiggins is in Algorithm 3. The following theorem shows the correctness of the
algorithm in case of convergence.

Theorem 10. We have that:

1. if at any iteration j the schedule p(j) is optimal, then wiggins reaches conver-
gence at iteration j + 1; and

2. if wiggins reaches convergence, then the returned schedule p is optimal.

Proof. From the method of the Lagrange multipliers [14, Sect. 5.1], we have that, if
a schedule p is optimal, then there exists a value λ ∈ R such that p and λ form a
solution to the following system of n+ 1 equations in n+ 1 unknowns:

∇[costθ(p) + λ(p1 + . . .+ pn − 1)] = 0, (3.6)

where the gradient on the l.h.s. is taken w.r.t. (the components of) p and to λ (i.e.,
has n+ 1 components).

For 1 ≤ i ≤ n, the i-th equation induced by (3.6) is
∂

∂pi
costθ(p) + λ = 0,

or, equivalently, ∑
S∈F

s.t.i∈S

θcπ(S)(1− p(S))c−1

(1− θ(1− p(S))c)2 = λ . (3.7)

The term on the l.h.s. is exactly Wi(p). The (n + 1)-th equation of the system (3.6)
(i.e., the one involving the partial derivative w.r.t. λ) is

n∑
z=1

pz = 1 . (3.8)
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Consider now the first claim of the theorem, and assume that we are at iteration
j such that j is the minimum iteration index for which the schedule p(j) computed at
the end of iteration j is optimal. Then, for any i, 1 ≤ i ≤ n, we have

Wi(p(j)) = λ

because p(j) is optimal and hence all identities in the form of (3.7) must be true. For
the same reason, (3.8) must also hold for p(j). Hence, for any 1 ≤ i ≤ n, we can write
the value p(j+1)

i computed at the end of iteration j + 1 as

p(j+1)
i = p(j)

i Wi(p(j))∑n
z=1 p(j)

z Wz(p(j))
= p(j)

i λ

1 · λ = p(j)
i ,

which means that we reached convergence and wiggins will return p(j+1), which is
optimal.

Consider the second claim of the theorem, and let j be the first iteration for which
p(j) = p(j−1). Then we have, for any 1 ≤ i ≤ n,

p(j)
i = p(j−1)

i Wi(p(j−1))∑n
z=1 p(j−1)

z Wz(p(j−1))
= p(j−1)

i .

This implies
Wi(p(j−1)) =

n∑
z=1

p(j−1)
z Wz(p(j−1)) (3.9)

and the r.h.s. does not depend on i, and so neither does Wi(p(j−1)). Hence we have
W1(p(j−1)) = · · · = Wn(p(j−1)) and can rewrite (3.9) as

Wi(p(j−1)) =
n∑
z=1

p(j−1)
z Wi(p(j−1)),

which implies that the identity (3.8) holds for p(j−1). Moreover, if we set

λ = W1(p(j−1))

we have that all the identities in the form of (3.7) hold. Then, p(j−1) and λ form a
solution to the system (3.6), which implies that p(j−1) is optimal and so must be p(j),
the returned schedule, as it is equal to p(j−1) because wiggins reached convergence.
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Algorithm 3: wiggins
input : F , π, c, θ, and maximum number T of iterations
output: A c-schedule p (with globally minimum θ-cost, in case of convergence)

1 for i← 1 to n do
2 pi ← 1/n
3 end
4 for j ← 1 to T do
5 for i← 1 to n do
6 Wi ← 0
7 end
8 for S ∈ F do
9 for i ∈ S do

10 Wi ← Wi + θcπ(S)(1−p(S))c−1

(1−θ(1−p(S))c)2

11 end
12 end
13 pold ← p
14 for i← 1 to n do
15 pi ← pold

i ·Wi∑
i

pold
i ·Wi

16 end
17 if pold = p then // test for convergence
18 break
19 end
20 end
21 return p

3.2.2 Approximation through Sampling

We now remove the assumption, not realistic in practice, of knowing the generating
process Γ exactly through F and π. Instead, we observe the process using, for a
limited time interval, a schedule that iterates over all nodes (or a schedule that selects
each node with uniform probability), until we have observed, for each time step t in
a limited time interval [a, b], the set It generated by Γ, and therefore we have access
to a collection

I = {Ia, Ia+1, . . . , Ib}. (3.10)

We refer to I as a sample gathered in the time interval [a, b]. We show that a schedule
computed with respect to a sample I taken during an interval of `(I) = b − a =
O(ε−2 log n) steps has cost which is within a multiplicative factor ε ∈ [0, 1] of the
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optimal schedule. We then adapt wiggins to optimize with respect to such sample.
We start by defining the cost of a schedule w.r.t. to a sample I.

Definition 10. Suppose p is a c-schedule and I is as in Equation (3.10), with `(I) =
b− a. The θ-cost of p w.r.t. to I denoted by costθ(p, I) is defined as

costθ(p, I) := 1
`(I)

∑
S∈I

1
1− θ(1− p(S))c .

For 1 ≤ i ≤ n, define now the functions

Wi(p, I) = 1
`(I)

∑
S∈I:i∈S

θc(1− p(S))c−1

(1− θ(1− p(S))c)2 .

We can then define a variant of wiggins, which we call wiggins-apx. The
differences from wiggins are:

1. the loop on line 8 in Alg. 3 is only over the sets that appear in at least one
Ij ∈ I.

2. wiggins-apx uses the values Wi(p, I) (defined above) instead ofWi(p) (line 10
in Alg. 3);

If wiggins-apx reaches convergence, it returns a schedule with the minimum cost
w.r.t. the sample I. More formally, by following the same steps as in the proof of
Thm. 10, we can prove the following result about wiggins-apx.

Lemma 12. We have that:

1. if at any iteration j the schedule p(j) has minimum cost w.r.t. I, then wiggins-
apx reaches convergence at iteration j + 1; and

2. if wiggins-apx reaches convergence, then the returned schedule p has mini-
mum cost w.r.t. I.

Let `(I) denote the length of the time interval during which I was collected. For
a c-schedule p, costθ(p, I) is an approximation of costθ(p), and intuitively the larger
`(I), the better the approximation.

We now show that, if `(I) is large enough, then, with high probability (i.e., with
probability at least 1−1/nr for some constant r), the schedule p returned by wiggins-
apx in case of convergence has a cost costθ(p) that is close to the cost costθ(p∗) of an
optimal schedule p∗.
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Theorem 11. Let r be a positive integer, and let I be a sample gathered during a
time interval of length

`(I) ≥ 3(r ln(n) + ln(4))
ε2(1− θ) . (3.11)

Let p∗ be an optimal schedule, i.e., a schedule with minimum cost. If wiggins-apx
converges, then the returned schedule p is such that

costθ(p∗) ≤ costθ(p) ≤ 1 + ε

1− εcostθ(p∗) .

To prove Thm. 11, we need the following technical lemma.

Lemma 13. Let p be a c-schedule and I be a sample gathered during a time interval
of length

`(I) ≥ 3(r ln(n) + ln(2))
ε2(1− θ) , (3.12)

where r is any natural number. Then, for every schedule p we have

Pr(|costθ(p, I)− costθ(p)| ≥ ε · costθ(p)) < 1
nr

.

Proof. For any S ∈ F , let XS be a random variable which is 1
1−θ(1−p(S))c with proba-

bility π(S), and zero otherwise. Since p(S) ∈ [0, 1], we have

1 ≤ XS ≤
1

1− θ .

If we let X = ∑
S∈F XS, then

costθ(p) = E[X] =
∑
S∈F

E[XS] ≥
∑
S∈F

π(S) . (3.13)

Let Z = ∑
S∈F π(S). Then we have

Z ≤ X ≤ Z

1− θ .

Let X i
S be the i-th draw of XS, during the time interval I it was sampled from, and

define X i = ∑
S∈F X

i
S. We have

costθ(p, I) = 1
`(I)

∑
i

X i .
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Let now
µ = `(I)(1− θ)

Z
costθ(p) .

By using the Chernoff bound for Binomial random variables [93, Corol. 4.6], we have

Pr (|costθ(p, I)− costθ(p)| ≥ εcostθ(p))

= Pr
(∣∣∣∣∣∑

i

X i − `(I)costθ(p)
∣∣∣∣∣ ≥ ε`(I)costθ(p)

)

= Pr
(∣∣∣∣∣1− θZ

∑
i

X i − µ
∣∣∣∣∣ ≥ εµ

)
≤ 2 exp

(
−ε

2µ

3

)

≤ 2 exp
(
−ε

2`(I)(1− θ)costθ(p)
3Z

)
≤ 2 exp

(
−ε

2`(I)(1− θ)
3

)
,

where the last inequality follows from the rightmost inequality in (3.13). The thesis
follows from our choice of `(I).

We can now prove Thm. 11.

of Thm. 11. The leftmost inequality is immediate, so we focus on the one on the right.
For our choice of `(I) we have, through the union bound, that, with probability at
least 1− 1/nr, at the same time:

(1− ε)costθ(p) ≤ costθ(p, I) ≤ (1 + ε)costθ(p), and

(1− ε)costθ(p∗) ≤ costθ(p∗, I) ≤ (1 + ε)costθ(p∗) (3.14)

Since we assumed that wiggins-apx reached convergence when computing p, then
Thm. 11 holds, and p is a schedule with minimum cost w.r.t. I. In particular, it must
be

costθ(p, I) ≤ costθ(p∗, I) .

From this and (3.14), We then have

(1− ε)costθ(p) ≤ costθ(p, I) ≤ costθ(p∗, I) ≤ (1 + ε)costθ(p∗)

and by comparing the leftmost and the rightmost terms we get the thesis.
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3.2.3 Dynamic Settings

In this section we discuss how to handle changes in the parameters F and π as
the (unknown) generating process Γ evolves over time. The idea is to maintain an
estimation π̃(S) of π(S) for each set S ∈ F that we discover in the probing process,
together with the last time t such that an item (t, S) has been generated (and caught
at a time t′ > t). If we have not caught an item in the form (t′′, S) in an interval
significantly longer than 1/π̃(S), then we assume that the parameters of Γ changed.
Hence, we trigger the collection of a new sample and compute a new schedule as
described in Sect. 3.2.2.

Note that when we adapt our schedule to the new environment (using the most
recent sample) the system converges to its stable setting exponentially (in θ) fast.
Suppose L items have been generated since we detected the change in the parameters
until we adapt the new schedule. These items, if not caught, lose their novelty
exponentially fast, since after t steps their novelty is at most Lθt and decreases
exponentially. In our experiments (Sect. 4.3) we provide different examples that
illustrate how the load of the generating process becomes stable after the algorithm
adapts itself to the changes of parameters.

3.2.4 Scaling up with MapReduce

In this section, we discuss how to adapt wiggins-apx to the MapReduce frame-
work [33]. We denote the resulting algorithm as wiggins-mr.

In MapReduce, algorithms work in rounds. At each round, first a function map
is executed independently (and therefore potentially massively in parallel) on each
element of the input, and a number of (or zero) key-value pairs of the form (k, v) are
emitted. Then, in the second part of the round, the emitted pairs are partitioned by
key and elements with the same key are sent to the same machine (called the reducer
for that key), where a function reduce is applied to the whole set of received pairs, to
emit the final output.

Each iteration of wiggins-apx is spread over two rounds of wiggins-mr. At
each round, we assume that the current schedule p is available to all machines (this
is done in practice through a distributed cache). In the first round, we compute the
values piWi, 1 ≤ i ≤ n, in the second round these values are summed to get the
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normalization factor, and in the third round the schedule p is updated. The input in
the first round are the sets S ∈ I. The function map1(S) outputs, a key-value pair
(i, vS) for each i ∈ S, with

vS = θc(1− p(S))c−1

`(I)(1− θ(1− p(S))c)2 .

The reducer for the key i receives the pairs (i, vS) for each S ∈ I such that i ∈ S,
and aggregates them to output the pair (i, gi), with

gi = pi
∑

vS = piWi .

The set of pairs (i, gi), 1 ≤ i ≤ n constitutes the input to the next round. Each input
pair is sent to the same reducer,3 which computes the value

g =
n∑
i=1

gi =
n∑
i=1

piWi

and uses it to obtain the new values pi = gi/g, for 1 ≤ i ≤ n. The reducer then
outputs (i, pi). At this point, the new schedule is distributed to all machines again
and a new iteration can start.

The same results we had for the quality of the final schedule computed by wiggins-
apx in case of convergence carry over to wiggins-mr.

3.3 Experimental Results

In this section we present the results of our experimental evaluation of wiggins-apx.
Goals. First, we show that for a given sample I, wiggins-apx converges quickly
to a schedule p∗ that minimizes costθ(p, I) (see Thm. 10). In particular, our exper-
iments illustrate that the sequence costθ(p(1), I), costθ(p(2), I), . . . is descending and
converges after few iterations. Next, we compare the output schedule of wiggins-
apx to four other schedules: (i) uniform schedules, (ii) proportional to out-degrees,
(iii) proportional to in-degrees, and (iv) proportional to undirected degrees, i.e., the
number of incident edges. Specifically, we compute the costs of these schedules ac-
cording to a sample I that satisfies the condition in Lemma 13 and compare them.

3This step can be made more scalable through combiners, an advanced MapReduce feature.
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Then, we consider a specific example for which we know the unique optimal sched-
ule, and show that for larger samples wiggins-apx outputs a schedule closer to the
optimal. Finally, we demonstrate how our method can adapt itself to the changes in
the network parameters.

Datasets #nodes #edges (|V1K |, |V500|, |V100|) gen. rate
Enron-Email 36692 367662 (9,23,517) 7.22
Brightkite 58228 428156 (2,7,399) 4.54
web-Notredame 325729 1497134 (43,80,1619) 24.49
web-Google 875713 5105039 (134,180,3546) 57.86

Table 3.1: The datasets, corresponding statistics, and the rate of generating new items at each step.

Environment and Datasets. We implemented wiggins-apx in C++. The im-
plementation of wiggins-apx never loads the entire sample to the main memory,
which makes it very practical when using large samples. The experiments were run
on a Opteron 6282 SE CPU (2.6 GHz) with 12GB of RAM. We tested our method
on graphs from the SNAP repository4 (see Table 5.1 for details). We always consider
the graphs to be directed, replacing undirected edges with two directed ones.
Generating process. The generating process Γ = (F , π) we use in our experiments
(except those in Sect. 3.3.1.1) simulates an Independent-Cascade (IC) model [68].
Since explicitly computing π(S) in this case does not seem possible, we simulate
the creation of items according to this model as follows. At each time t, items are
generated in two phases: a “creation” phase and a “diffusion” phase. In the creation
phase, we simulate the creation of “rumors” at the nodes: we flip a biased coin for
each node in the graph, where the bias depends on the out-degree of the node. We
assume a partition of the nodes into classes based on their out-degrees, and, we assign
the same head probability for the biased coins of nodes in the same class, as shown
in Table 3.2. In Table 5.1, for each dataset we report the size of the classes and the
expected number of flipped coins with outcome head at each time (rightmost column).
Let now v be a node whose coin had outcome head in the most recent flip. In the
“diffusion” phase we simulate the spreading of the “rumor” originating at v through
network according to the IC model, as follows. For each directed edge e = u → w

we fix a probability pe that a rumor that reached u is propagated through this edge
4http://snap.stanford.edu
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Class Nodes in class Bias
V1K {i ∈ V : deg+(i) ≥ 1000} 0.1
V500 {i ∈ V : 500 ≤ deg+(i) < 1000} 0.05
V100 {i ∈ V : 100 ≤ deg+(i) < 500} 0.01
V0 {i ∈ V : deg+(i) < 100} 0.0

Table 3.2: Classes and bias for the generating process.

to node w (as in IC model), and events for different rumors and different edges are
independent. Following the literature [22, 23, 66, 68, 121], we use pu→w = 1

deg−(w) . If
we denote with S the final set of nodes that the rumor created at v reached during
the (simulated) diffusion process (which always terminates), we have that through
this process we generated an item (t, S), without the need to explicitly define π(S).

each directed edge e = v → w has a probability

3.3.1 Efficiency and Accuracy

In Sect. 3.2.1 we showed that when a run of wiggins-apx converges (according
to a sample I) the computed c-schedule is optimal with respect to the sample I
(Lemma 12). In our first experiment, we measure the rate of convergence and the
execution time of wiggins-apx. We fix ε = 0.1, θ = 0.75, and consider c ∈ {1, 3, 5}.
For each dataset, we use a sample I that satisfies (3.12), and run wiggins-apx for 30
iterations. Denote the schedule computed at round i by pi. As shown in Figure 3.1,
the sequence of cost values of the schedules pi’s, costθ(pi, I), converges extremely fast
after few iterations.

Datasets |I| avg. item size avg. iter. time (sec)
Enron-Email 97309 12941.33 204.59
Brightkite 63652 17491.08 144.35
web-Notredame 393348 183.75 10.24
web-Google 998038 704.74 121.88

Table 3.3: Sample size, average size of items in the sample, and the running time of each iteration in wiggins-apx
(for c = 1).

For each graph, the size of the sample I, the average size of sets in I, and the
average time of each iteration is given in Table 3.3. Note that the running time of
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each iteration is a function of both sample size and sizes of the sets (informed-sets)
inside the sample.
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Figure 3.1: The cost of intermediate c-schedules at iterations of wiggins-apx according to I.

Next, we extract the 1-schedules output by wiggins-apx, and compare its cost to
four other natural schedules: unif, outdeg, indeg, and totdeg that probe each node,
respectively, uniformly, proportional to its out-degree, proportional to its in-degree,
and proportional to the number of incident edges. Note that for undirected graphs
outdeg, indeg, and totdeg are essentially the same schedule.
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To have a fair comparison among the costs of these schedules and wiggins-apx,
we calculate their costs according to 10 independent samples, I1, . . . , I10 that satisfy
(3.12), and compute the average. The results are shown in Table 3.4, and show that
wiggins-apx outperforms the other four schedules.

Dataset wiggins-apx uniform outdeg indeg totdeg

Enron-Email 7.55 14.16 9.21 9.21 9.21
Brightkite 4.85 9.64 6.14 6.14 6.14
web-Notredame 96.10 97.78 97.37 97.43 97.40
web-Google 213.15 230.88 230.48 230.47 230.47

Table 3.4: Comparing the costs of 5 different 1-schedules.

3.3.1.1 A Test on Convergence to Optimal Schedule

Here, we further investigate the convergence of wiggins-apx, using an example graph
and process for which we know the unique optimal schedule. We study how close the
wiggins-apx output is to the optimal schedule when (i) we start from different initial
schedules, p0, or (ii) we use samples I’s obtained during time intervals of different
lengths.

Suppose G = (V,E) is the complete graph where V = [n]. Let Γ = (F , π) for
F = {S ∈ 2[n] | 1 ≤ |S| ≤ 2}, and π(S) = 1

|F| . It is easy to see that costθ(p)
is a symmetric function, and thus, the uniform schedule is optimal. Moreover, by
Corollary 8 the uniform schedule is the only optimal schedule, since {v} ∈ F for
every v ∈ V . Furthermore, we let θ = 0.99 to increase the sample complexity (as in
Lemma 13) and make it harder to learn the uniform/optimal schedule.

In our experiments we run the wiggins-apx algorithm, using (i) different random
initial schedules, and (ii) samples I obtained from time intervals of different lengths.
For each sample, we run wiggins-apx 10 times with 10 different random initial
schedules, and compute the exact cost of each schedule, and its variation distance to
the uniform schedule. Our results are plotted in Figure 3.2, and as shown, by increas-
ing the sample size (using longer time intervals of sampling) the output schedules gets
very close to the uniform schedule (the variance gets smaller and smaller).
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Figure 3.2: The cost of wiggins-apx outputs and their variation distance to the optimal schedule: The top and
bottom edge of each box are the 25th and 75th percentiles respectively , and the median (50th percentile) is shown
by a red line segment. The + symbols denote outliers, i.e., points larger than q3 + 1.5(q3 − q1) or smaller than
q1 − 1.5(q3 − q1), where q1 and q3 are the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points that are not outliers.

3.3.2 Dynamic Settings

In this section, we present experimental results that show how our algorithm can
adapt itself to the new situation. The experiment is illustrated in Fig. 3.3. For each
graph, we start by following an optimal 1-schedule in the graph. At the beginning of
each “gray” time interval, the labels of the nodes are permuted randomly, to impose
great disruptions in the system. Following that, at the beginning of each “green” time
interval our algorithm starts gathering samples of Γ. Then, wiggins-apx computes
the schedule for the new sample, using 50 rounds of iterations, and starts probing.
The length of each colored time interval is R = 3(log(n)+log(2))

ε2(1−θ) , for ε = 0.5 and θ = 0.75,
motivated by Theorem 11.

Since the cost function is defined asymptotically (and explains the asymptotic
behavior of the system in response to a schedule), in Figure 3.3 we plot the load of the
system Lθ(t) over the time (blue), and the average load in the normal and perturbed
time intervals (red). Based on this experiment, and as shown in Figure 3.3, after
adapting to the new schedule, the effect of the disruption caused by the perturbation
disappears immediately. Note that when the difference between the optimal cost
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and any other schedule is small (like web-Notredame), the jump in the load will be
small (e.g., as shown in Figure 3.1 and Table 3.4, the cost of the initial schedule for
web-Notredame is very close the optimal cost, obtained after 30 iteration).

3.4 Related Work

The novel problem we focus on in this work generalizes and complements a number
of problems studied in the literature.

The “Battle of Water Sensor Network” challenge [100] motivated a number of
works on outbreak detection: the goal is to optimally place static or moving sensors
in water networks to detect contamination [56, 73, 83]. The optimization can be
done w.r.t. a number of objectives, such as maximizing the probability of detection,
minimizing the detection time, or minimizing the size of the subnetwork affected
by the phenomena [83]. A related work [4] considered sensors that are sent along
fixed paths in the network with the goal of gathering sufficient information to locate
possible contaminations. Early detection of contagious outbreaks by monitoring the
neighborhood (friends) of a randomly chosen node (individual) was studied by [27].
[76] present efficient schedules for minimizing energy consumption in battery operated
sensors, while other works analyzed distributed solutions with limited communication
capacities and costs [50, 74, 75]. In contrast, our work is geared to detection in huge
but virtual networks such as the Web or social networks embedded in the Internet,
where it is possible to “sense” or probe (almost) any node at approximately the same
cost. Still only a restricted number of nodes can be probed at each steps but the
optimization of the probing sequence is over a much larger domain, and the goal is to
identify the outbreaks (items) regardless of their size and solely by considering their
interest value.

Our methods complement the work on Emerging Topic Detection where the goal
is to identify emerging topics in a social network, assuming full access to the stream of
all postings. Providers, such as Twitter or Facebook, have an immediate access to all
tweets or postings as they are submitted to their servers [20, 89]. Outside observers
need an efficient mechanism to monitor changes, such as the methods developed in
this work.
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Figure 3.3: Perturbation, Sampling, and Adapting (For details see Section 3.3.2).

55



Web-crawling is another research area that study how to obtain the most recent
snapshots of the web. However, it differs from our model in two key points: our model
allows items to propagate their copies, and they will be caught if any of their copies
is discovered (where snapshots of a webpage belong to that page only), and all the
generated items should be discovered (not just the recent ones) [32, 125].

The goal of the News and Feed Aggregation problem is to capture updates in news
websites (e.g. by RSS feeds) [17, 60, 99, 114]. Our model differs from that setting
in that we consider copies of the same news in different web sites as equivalent and
therefore are only interested in discovering one of the copies.
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Part II

Centrality Maximization
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Chapter 4

Scalable Betweenness Centrality
Maximization via Sampling

In this chapter we study the betweenness centrality maximization problem. The
betweenness centrality of a node u is defined as

B(u) =
∑
s,t

σs,t(u)
σs,t

,

where σs,t is the number of s-t shortest paths, and σs,t(u) is the number of s-t shortest
paths that have u as their internal node. However, in many applications, e.g. [47, 62],
we are interested in centrality of sets of nodes. For this reason, the notion of BWC
has been extended to sets of nodes [61, 127]. For a set of nodes S ⊆ V , we define the
betweenness centrality of S as

B(S) =
∑
s,t∈V

σs,t(S)
σs,t

,

where σs,t(S) is the number of s-t shortest paths that have an internal node in S.
Note that we cannot obtain B(S) from the values {B(v), v ∈ S}. In this work, we
study the Centrality Maximization problem (CMP) defined formally as follows:

Definition 11 (CMP). Given a network G = (V,E) and a positive integer k, find
a subset S∗ ⊆ V such that

S∗ ∈ arg max
S⊆V :|S|≤k

B(S).
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We also denote the maximum centrality of a set of k nodes by OPTk, i.e., OPTk =
max

S⊆V :|S|≤k
B(S).

It is known that CMP is APX-complete [41]. The best deterministic algorithms
for CMP rely on the fact that BWC is monotone-submodular and provide a (1− 1/e)-
approximation [35, 41]. However, the running time of these algorithms is at least
quadratic in the input size, and do not scale well to large-scale networks.

In this chapter we focus on scalability of CMP, and graph mining applications.
Our main contributions are summarized as follows.

Efficient algorithm. We provide a randomized approximation algorithm, HEDGE,
based on sampling shortest paths, for accurately estimating the BWC and solving
CMP. Our algorithm is simple, scales gracefully as the size of the graph grows, and
improves the previous result [127], by (i) providing a (1−1/e−ε)-approximation, and
(ii) smaller sized samples. Specifically, in Yoshida’s algorithm [127], a sample contains
all the nodes on “any” shortest path between a pair, whereas in our algorithm, each
sample is just a set of nodes from a single shortest path between the pair.

The OPTk = Θ(n2) assumption. Prior work on BWC estimation strongly relies on
the assumption that OPTk = Θ(n2) for a constant integer k [127]. As we show in
Section 4.2.3, this assumption is not true in general. Only empirical evidence so far
supports this strong assumption.

We show that two broad families of networks satisfy this assumption: bounded
treewidth networks and a popular family of stochastic networks that provably generate
scale-free, small-world graphs with high probability. Note that the classical Barabási-
Albert scale-free random tree model generates bounded treewidth networks [10, 94].
Our results imply that the OPTk = Θ(n2) assumption holds even for k = 1, for these
families of networks. To our knowledge, this is the first theoretical evidence for the
validity of this crucial assumption on real-world networks.

General analytical framework. To analyze our algorithm, HEDGE, we provide a
general analytical framework based on Chernoff bound and submodular optimiza-
tion, and show that it can be applied to any other centrality measure if it (i) is
monotone-submodular, and (ii) admits a hyper-edge sampler (defined in Sect. 4.1).
Two examples of such centralities are the coverage [127] and the κ-path centralities [5].

Experimental evaluation. We provide an experimental evaluation of our algorithm
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that shows that it scales gracefully as the graph size increases and that it provides
accurate estimates. We also provide a comparison between the method in [127] and
our sampling method.

Applications. Our scalable algorithm enables us to study some interesting charac-
teristics of the central nodes. In particular, if S is a set of nodes with high BWC, we
focus on answering the following questions.

(1) How does the centrality of the most central set of nodes change in time-evolving
networks? We study the DBLP and the Autonomous systems graphs. We
mine interesting growth patterns, and we compare our results to stochastic
Kronecker graphs, a popular random graph model that mimics certain aspects
of real-world networks. We observe that the Kronecker graphs behave similarly
to real-world networks.

(2) Influence maximization has received a lot of attention since the seminal work
of Kempe et al. [68]. Using our scalable algorithm we can compute a set of
central nodes that can be used as seeds for influence maximization. We find that
betweenness centrality performs relatively well compared to a state-of-the-art
influence maximization algorithm.

(3) We study four strategies for attacking a network using four centrality measures:
betweenness [42], coverage, κ-path, and triangle centrality. Interestingly, we find
that the κ-path and triangle centralities can be more effective at destroying the
connectivity of a graph.

4.1 Algorithm

In this section we provide our algorithm, HEDGE (Hyper-EDge GrEedy), and a general
framework for its analysis. We start by defining a hyper-edge sampler that will be
used in HEDGE.

Definition 12 (Hyper-edge sampler). We say that an algorithm A is a hyper-edge
sampler for a function C : 2V → R if it outputs a randomly generated subset of
nodes h ⊆ V such that

∀S ⊆ V : Prh∼A(h ∩ S 6= ∅) = 1
α
C(S),
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where α is a normalizing factor, and independent of the set S. We call each h (sampled
by A) a random hyper-edge, or in short, a hyper-edge. In this case, we say C

admits a hyper-edge sampler.

Our proposed algorithm HEDGE assumes the existence of a hyper-edge sampler and
uses it in a black-box manner. Namely, HEDGE is oblivious to the specific mechanics of
the hyper-edge sampler. The following lemma provides a simple hyper-edge sampler
for BWC.

Lemma 14. BWC admits a hyper-edge sampler.

Proof. Let A be an algorithm that selects two nodes s, t ∈ V uniformly at random,
selects a s-t shortest path P , among all s-t shortest paths, uniformly at random (this
can be done in linear time O(m + n) using bread-first-search from s, finding the
number of shortest paths from s and backward pointers; e.g. see [105]), and finally
outputs the internal nodes of P (i.e., the nodes of P except s and t).

Now, suppose h is an output of A. Since the probability of choosing each pair is
1

n(n−1) , and for a given pair s, t the probability of S ∩ h 6= ∅ is σs,t(S)
σs,t

, for every S ⊆ V

we have
Prh∼A(h ∩ S 6= ∅) =

∑
s,t∈V

1
n(n− 1)

σs,t(S)
σs,t

= 1
n(n− 1)B(S).

Also note that in this case, the normalizing factor is α = n(n− 1) = Θ(n2).

For a subset of nodes S ⊆ V , and a set H of random hyper-edges, denote

degH(S) = | {h ∈ H | h ∩ S 6= ∅} |.

The pseudocode of our proposed algorithm HEDGE is given in Algorithm 4. First, it
samples q hyper-edges using the hyper-edge sampler A and then it runs a natural
greedy procedure on H.

4.1.1 Analysis

In this section we provide our general analytical framework for HEDGE, which works
with any hyper-edge sampler. To start, define BH(S) = α

|H| degH(S) as the estimate
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Algorithm 4: HEDGE

1 Input: A hyper-edge sampler A for BWC, number of hyper-edges q, and the size of
the output set k.

2 Output: A subset of nodes, S of size k.
3 begin
4 H ← ∅;
5 for i ∈ [q] do
6 h ∼ A (sample a random hyper-edge);
7 H ← H∪ {h};
8 end
9 S ← ∅ ;

10 while |S| < k do
11 u← arg maxv∈V degH({v});
12 S ← S ∪ {u};
13 for h ∈ H such that u ∈ h do
14 H ← H \ {h};
15 end
16 end
17 return S;
18 end

centrality (BWC) of a set S according to the sample H of hyper-edges, and for a graph
G let

q(G, ε) = 3α(`+ k) log(n)
ε2OPTk

,

where n is the number of nodes in G, and ` is a positive integer. We have the following
lemma:

Lemma 15. Let H be a sample of independent hyper-edges such that |H| ≥ q(G, ε).
Then for all S ⊆ V where |S| ≤ k, we have Pr [|BH(S)−B(S)| ≥ ε · OPTk] < n−`.

Proof. Suppose S ⊆ V and |S| ≤ k, and let Xi be a binary random variable that
indicates whether the i-th hyper-edge in H intersects S. Notice that degH(S) =∑|H|
i=1 Xi and by the linearity of expectation E [degH(S)] = |H| · E [X1] = q

α
B(S).
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Using the independence assumption and the Chernoff bound, we obtain:

Pr [|BH(S)−B(S)| ≥ δ ·B(S)] =

Pr
[∣∣∣∣ qαBH(S)− q

α
B(S)

∣∣∣∣ ≥ δq

α
·B(S)

]
=

Pr [|degH(S)− E [degH(S)] | ≥ δ · E [degH′(S)]] ≤

2 exp
(
−δ

2

3
q

α
B(S)

)
.

Now, by letting δ = εOPTk
B(S) and substituting the lower bound for q(G, ε) we obtain

Pr [|BH(S)−B(S)| ≥ εOPTk] ≤ n−(`+k),

and by taking a union bound over all possible subsets S ⊆ V of size k we obtain
|BH(S) − B(S)| < ε · OPTk with probability at least 1 − 1/n`, for all such subsets
S.

The following theorem shows that if the number of samples, i.e. |H|, is at least
q(G, ε/2), then HEDGE provides a (1− 1/e− ε)-approximate solution.

Theorem 12. If H is a sample of at least q(G, ε/2) hyper-edges for some ε > 0, and
S is the output of HEDGE, we have B(S) ≥ (1− 1/e− ε)OPTk, with high probability.

Proof. Note that B is (i) monotone since if S1 ⊆ S2 then B(S1) ≤ B(S2), and
(ii) submodular since if S1 ⊆ S2 and u ∈ V \ S2 then B(S2 ∪ {u}) − B(S2) ≤
B(S1 ∪ {u})−B(S1).

Similarly, BH is monotone and submodular. Therefore, using the greedy algorithm
(second part of HEDGE) we have (see [96])

BH(S) ≥ (1− 1/e)BH(S ′) ≥ (1− 1/e)BH(S∗),

where
S ′ = arg max

T :|T |≤k
BH(T ), and S∗ = arg max

T :|T |≤k
B(T ).

Notice that OPTk = B(S∗). Since |H| ≥ q(G, ε/2), by Lemma 15 with probability
1− 1

n`
we have
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B(S) ≥ BH(S)− ε

2OPTk ≥
(

1− 1
e

)
BH(S∗)− ε

2OPTk

≥
(

1− 1
e

)(
B(S∗)− ε

2OPTk
)
− ε

2OPTk ≥
(

1− 1
e
− ε
)

OPTk,

where we used the fact B(S∗) = OPTk, and the proof is complete.

The total running time of HEDGE depends on the running time of the hyper-edge
sampler and the greedy procedure. Specifically, the total running time is O(the · |H|+
(n log(n)+ |H|)), where the is the expected required amount of time for the sampler to
output a single hyper-edge. The first term corresponds to the total required time for
sampling, and the second term corresponds to an almost-linear-time implementation
of greedy procedure as in [13].

Remark 2. Note that if OPTk = Θ(n2), the sample complexity in Theorem 12 becomes
O
(
k log(n)
ε2

)
. We provide the first theoretical study on this assumption in Sect. 4.2.

Finally, we provide a lower bound on the sample complexity of HEDGE, in order to
output a (1 − 1/e − ε)-approximate solution. This lower bound is still valid even if
OPTk = Θ(n2).

Theorem 13. In order to output a set S of size k such that B(S) ≥ (1−1/e−ε)OPTk
w.h.p., the sample size in both HEDGE and [127]’s algorithm needs to be at least O

(
n
ε2

)
.

Proof. Define a graph A = (VA, EA) where

VA =
{

(i, j) | 1 ≤ i ≤ ε
√
n and 1 ≤ j ≤

√
n
}
,

and two nodes (i, j) and (i′, j′) are connected if i = i′ or j = j′.1 Note that the
distance between every pair of nodes is at most 2, and there are at most 2 shortest
paths between a pair of nodes in A. Let G be a graph of size n which has (1 − ε)n
isolated nodes and A as its largest connected component. We have the following
lemma:

Lemma 16. If k = εn, then OPTk =
√
n(
√
n− 1) · ε

√
n(ε
√
n− 1) = Θ(ε2n2) = Θ(n2),

since ε is a constant.
1Without loss of generality we can assume ε

√
n and

√
n are integers, as the arguments still hold

after rounding them to the closest integers.
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Proof of the lemma. Obviously, all the isolated nodes in G have zero BWC, and thus,
the optimal set, S∗, is A (which is already of size k = εn). Now, if for two nodes s, t
in G, there is a shortest path with an internal node in A, we have s, t ∈ VA such that
s = (i, j) and t = (i′, j′) where i 6= i′ and j 6= j′. In this case, there are exactly two
s-t shortest paths with exactly 1 internal nodes. Finally, the number of such pairs is
exactly

√
n(
√
n− 1) · ε

√
n(ε
√
n− 1).

Note that in both HEDGE and the algorithm of [127], we first choose a pair of nodes
in s, t in G, and if s and t are not in the same connected component, the returned
hyper-edge is an empty set. Therefore, in order to have a non-empty hyper-edge both
nodes should be chosen from VA, which occurs with probability ε2. Thus, sampling
o(n/ε2) hyper-edge results in reaching to at most o(n) = o(|A|) = o(k) nodes, and
so, the algorithm will not be able to tell the difference between the isolated nodes
and many (arbitrarily large) number of nodes in A as they were not detected by any
hyper-edge.

Remark 3. Theorem 13 implies that the number of samples M = O(log(n)/ε2) as
in [127] is not sufficient.

4.1.2 Beyond Betweenness Centrality

Suppose C : 2V → R≥0 is a centrality measure that is also defined on subset of
nodes. Clearly, if C is monotone-submodular and admits a hyper-edge sampler, the
algorithm HEDGE can be applied to and all the results in this section hold for C. Here,
we give a couple of examples of such centrality measures, and it is easy to verify their
monotonicity and submodularity.

Coverage centrality. The coverage centrality [127] for a set S ⊆ V is defined as
C(S) = ∑

(s,t)∈V 2 Ps,t(S), where Ps,t(S) is 1 if S has an internal node on any s-t
shortest path, and 0 otherwise. The coverage centrality admits a hyper-edge sampler
A as follows: uniformly at random pick two nodes s and t. By running a breadth-
first-search from s, we output every node that is on at least one shortest path from s

to t. Note that for every subset of nodes Prh∼A(h ∩ S 6= ∅) = 1
n(n−1)C(S).

κ-Path centrality. In [5], κ-path centrality was introduced, as a centrality measure
on the nodes of a network. However, it can easily be generalized to any subset of
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nodes as C(S) = ∑
s∈V P

s
κ(S), where P s

κ(S) is the probability that a random simple
path of length κ starting at s will pass a node in S: a random simple path starting
at node s is generated by running a random walk that always chooses an unvisited
neighbor uniformly at random, and stops after κ of edges being traversed or if there
is no unvisited neighbor. Note that κ-path centrality is a generalization of degree
centrality by letting κ = 1 and considering sets of single nodes.

Obviously, κ-path centrality admits a hyper-edge sampler based on its definition:
LetA be an algorithm that picks a node uniformly at random, and generates a random
simple path of length at most κ, and outputs the the generated simple path as a hyper-
edge. Therefore, for any subset S we have Prh∼A (h ∩ S 6= ∅) = 1

n

∑
s∈V P

s
κ(S) =

1
n
C(S).

4.2 On OPTk = Θ(n2) Equality

Recall that all additive approximation guarantees for BWC as well as all existing
approximation guarantees for A-BWC involve an error term which grows as Θ(n2). In
this Section we provide strong theoretical evidence regarding the following question:
“Why does prior work which relies heavily on the strong assumption that OPTk =
Θ(n2) perform well on real-world networks?” We quote Yoshida [127]: This additive
error should not be critical in most applications, as numerous real-world graphs have
vertices of centrality Θ(n2).

We show that the OPTk = Θ(n2) assumption holds for two important classes of
graphs: graphs of bounded treewidth networks, and for certain stochastic graph mod-
els that generate scale-free and small-world networks, known as random Apollonian
networks [43].

4.2.1 Bounded Treewidth Graphs

We start by defining the treewidth of a graph:

Definition 13 (Treewidth). For an undirected graph G = (V,E), a tree decompo-
sition is a tree T with nodes V1, . . . , Vr where each Vi is (assigned to) a subset of V
such that (i) for every u ∈ V there exists at least an i where u ∈ Vi, (ii) if Vi and Vj
both contains a node u, then u belongs to every Vk on the unique shortest path from Vi
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to Vj in T , and (iii) for every edge (u, v) ∈ E there exists a Vi such that u, v ∈ Vi. The
width of the tree decomposition T is defined as max1≤i≤r|Vi| − 1, and the treewidth
of the graph G is the minimum possible width of any tree decomposition of G.

Now, we have the following theorem.

Theorem 14. Let G = (V,E) be an undirected, connected graph of bounded treewidth.
Then OPTk = Θ(n2).

Proof. Suppose w is the treewidth of G, which is a constant (bounded). It is known
that any graph of treewidth w has a balanced vertex separator2 S ⊆ V of size at
most w + 1 [106]. This implies that O(n2) shortest paths pass through S. Since
|S| = w + 1 = Θ(1), there exists at least one vertex u ∈ S such that B(u) = Θ(n2).
Hence, OPT1 = Θ(n2), and since OPT1 ≤ OPTk we have OPTk = Θ(n2).

It is worth emphasizing that the classical Barabási-Albert random tree model
[10, 94] belongs to this category. For a recent study of the treewidth parameter on
real-world networks, see [1].

4.2.2 Scale-free, Small-world Networks

We show that OPTk = Θ(n2) for random Apollonian networks. Our proof for the latter
model relies on a technique developed by Frieze and Tsourakakis [43] and carries over
for random unordered increasing k-trees [45]. A random Apollonian network (RAN)
is a network that is generated iteratively. The RAN generator takes as input the
desired number of nodes n ≥ 3 and runs as follows:

• Let G3 be the triangle graph, whose nodes are {1, 2, 3}, and drawn in the plane.

• for t← 4 to n:

• Sample a face Ft = (i, j, k) of the planar graph Gt−1 uniformly at random,
except for the outer face.

• Insert the new node t inside this face connecting it to i, j, k.
2Means a set of nodes Γ such that V \Γ = A∪B, where A and B are disjoint and both have size
Θ(n).

67



1

23

45

{1,2,3}

{1,2,4} {1,3,4} {2,3,4}

{1,2,4} {1,3,4} {2,3,4}{1,3,5}{1,4,5} {3,4,5}

(a) (b)
Figure 4.1: (a) An instance of a random Apollonian network for n = 100. (b)
Bijection between RANs and random ternary trees.

Figure 4.1(a) shows an instance of a RAN for n = 100. The triangle is originally
embedded on the plane as an equilateral triangle. Also, when a new node t chooses
its face (i, j, k) it is embedded in the barycenter of the corresponding triangle and
connects to i, j, k via the straight lines: (i, t), (j, t), and (k, t). It has been shown that
the diameter of a RAN is O(log(n)) with high probability [39, 43].

At any step, we refer to set of candidate faces as the set of active faces. Note
that there is a bijection between the active faces of a RAN and the leaves of random
ternary trees as illustrated in Figure 4.1(b), and noticed first by [43].

We shall make use of the following formulae for the number of nodes (vt), edges
(et) and faces (ft; excluding the outer face) after t steps in a RAN Gt:

vt = t, et = 3t− 6, ft = 2t− 5.

Note that ft = Θ(vt) = Θ(t).

Theorem 15. Let G be a RAN of size n. Then OPTk = Θ(n2).

Proof. Note that removing a node from the random ternary tree T = (VT , ET ) (as in
Fig. 4.1(b)) corresponds to removing three nodes from G, corresponding to a face F
that existed during the RAN generation process. Clearly, the set of these three nodes
is a vertex separator that separates the nodes inside and outside of F . Therefore, all
nodes in the tree except for the root r correspond to a vertex separator in G. Observe
that the leaves in T correspond to the set of active faces, and thus, T has fn = 2n−5
leaves after n steps.

We claim that there exists an edge (F, F ′) ∈ ET (recall that the nodes of T are
active faces during the generating process of G) such that the removal of e from ET
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results in two subtrees with Θ(n) leaves. We define g : VT → Z to be the function
that returns for a node v ∈ VT the number of leaves of the subtree rooted at v. Hence,
g(r) = 2n − 5, g(u) = 1 for any leaf u. To find such an edge consider the following
algorithm. We start from the root r of T descending to the bottom according to the
following rule which creates a sequence of nodes u0 = r, u1, u2, . . .: we set ui+1 to be
the child with most leaves among the tree subtrees rooted at the three children of ui.
We stop when we first find a node ui such that g(ui) ≥ cn and g(ui+1) < cn for some
constant c. Clearly, g(ui+1) ≥ cn/3 = Θ(n), by pigeonhole principle. So, let F = ui

and F ′ = ui+1.
Now suppose F ′ = {x, y, z}, and consider removing x, y, and z from G. Clearly,

F ′ 6= r as F ′ is a child of F . Also, due to the construction of a RAN, after removing
x, y, z, there are exactly two connected components, G1 and G2. Also, since cn/3 ≤
g(F ′) < cn, the number of nodes in each of G1 and G2 is Θ(n).

Finally, observe that at least one of the three nodes x, y, z must have betweenness
centrality score Θ(n2), as the size of the separator is 3 and there exist Θ(n2) paths
that pass through it (connecting the nodes in G1 and in G2). Therefore, OPT1 ≥
max {B(x), B(y), B(z)} = Θ(n2), and since OPT1 ≤ OPTk we have OPTk = Θ(n2).

We believe that this type of coupling can be used to prove similar results for other
stochastic graph models.

4.2.3 On Maximum Centrality

Here, we present two examples in which the assumption of OPTk = Θ(α) does not
hold. However, it still remains as an interesting open problem to see what properties
of the graphs result in this assumption.

Complete Graph. Obviously the centrality of each set of nodes, both for Between-
ness and Coverage centralities, is zero. Thus OPTk = o(n2) 6= Θ(n2). Note that in
Betweenness and Coverage centrality we had α = n(n− 1) = Θ(n2).

Hypercube. The hypercube Qr (with n = 2r nodes) is a vertex-transitive graph, i.e.,
for each pair of nodes there is an automorphism that maps one onto the other [? ].
So, the centrality of the nodes are the same.

First consider the coverage centrality, and lets count how many pairs of nodes
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have a shortest path that pass the node (0, . . . , 0). Note that a, b ∈ {0, 1}r have a
shortest path that passes the origin if and only if ∀i ∈ 1, . . . , r : aibi = 0. To count
the number of such pairs, we have to first choose a subset I ⊆ {1, . . . , r} of the bits
that are non-zero either in a or b, in

(
r
|I|

)
ways, and partition the bits of I between

a and b (in 2|I| ways). Therefore, the number of (a, b) ∈ V 2 pairs that their shortest
path passes the node (0, . . . , 0) is

r∑
i=0

(
r

i

)
2i = (1 + 2)r = 3log(n) = nlog(3) = o(n2).

So, the maximum coverage centrality of a node is at most nlog(3) (since we counted
the endpoints as well, but should not have). Now by submodularity of the coverage
centrality we have OPTk ≤ knlog(3) = O(n1+log(3)) = o(n2).

Finally, since the betweenness centrality is no more than the coverage centrality,
we have the similar result for betweenness centrality as well.

4.3 Experimental Results

In this section we present our experimental results. We first start by comparing HEDGE

(our sampling based algorithm) with EXHAUST (the exhaustive algorithm defined in
Sect. 5.4) and show that the centrality of HEDGE’s output is close to the centrality
of EXHAUST’s output, with great speed-up. This part is done for 3 small graphs as
EXHAUST cannot scale to larger graphs.

We then compare our sampling method with the method presented in [127]. We
show that, although our method stores less per each hyper-edge, it does not lose its
accuracy.

Equipped with our scalable algorithm, HEDGE, we will be able to focus on some
of the interesting characteristics of the central nodes: (i) How does their centrality
change over time in evolving graphs? (ii) How influential are they? and (iii) How
does the size of the largest connected component change after removing them?

In our experiments, we assume the graphs are simple (no self-loop or parallel
edge) but the edges can be directed. We used publicly available datasets in our
experiments.3 HEDGE is implemented in C++.

3http://snap.stanford.edu and http://konect.uni-koblenz.de/networks/dblp_coauthor
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4.3.1 Accuracy and Time Efficiency

Table 4.1 shows the results of EXHAUST and HEDGE on three graphs for which we were
able to run EXHAUST. The fact that EXHAUST is able to run only on networks of this
scale indicates already the value of HEDGE’s scalability. As we can see, HEDGE results
in significant speedups and negligible loss of accuracy.

In Table 4.1 the centrality of the output sets and the speed up gained by HEDGE is
given, and as shown, HEDGE gives a great speedup with almost the same quality (i.e.,
the centrality of the output) of EXHAUST. The centrality of the outputs are scaled by

1
n(n−1) , where n is the number of nodes in each graph. Motivated by the result in
Sect. 4.2 we run HEDGE using k log(n)/ε2 hyper-edges for ε = 0.1, and for each case,
ten times (averages are reported). For sake of comparison, these experiments were
executed using a single machine with Intel Xeon cpu at 2.83GHz and with 36GB
ram.

Algorithms
GRAPHS #nodes #edges k EXHAUST HEDGE speedup

ca-GrQd 5242 14496
10 0.242 0.241 2.616
50 0.713 0.699 2.516
100 0.974 0.951 2.217

p2p-Gnutella08 6301 20777
10 0.013 0.011 6.773
50 0.036 0.035 6.478
100 0.053 0.051 6.117

ca-HepTh 9877 25998
10 0.165 0.164 4.96
50 0.498 0.497 4.729
100 0.747 0.745 4.473

Table 4.1: HEDGE vs. EXHAUST: centralities and speedups.

4.3.2 Comparison against Yoshida’s Algorithm [127]

We compare our method against Yoshida’s algorithm (Y-ALG) [127] on four undirected
graphs (as Y-ALG runs on undirected graphs). We use Yoshida’s implementation which
he kindly provided to us. Note that Yoshida’s algorithm applies a different sampling
method than ours: it is based on sampling random s-t pairs of nodes and assigning
weights to every node that is on any s-t shortest path, whereas in our method we
only pick one randomly chosen s-t shortest path with no weight on the nodes.
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Y-ALG and HEDGE use 2 log(2n3)
ε2

and k log(n)
ε2

samples, respectively, where n is the
number of nodes in the graph, and we set ε = 0.1. We also run a variation of our
algorithm, HEDGE=, which is essentially HEDGE but with 2 log(2n3)

ε2
samples. This allows

a more fair comparison between the methods.

Table 4.2 shows the estimated centrality of the output sets, and the number of
samples each algorithm uses. Surprisingly, Y-ALG does not outperform HEDGE=, de-
spite the fact that it maintains extra information. Finally, our proposed algorithm
HEDGE is consistently better than the other two algorithms.

Betw. Centrality # of Samples
GRAPHS k Y-ALG HEDGE= HEDGE Y-ALG HEDGE= HEDGE

CA-GrQc
10 0.208 0.214 0.215

5278
8565

50 0.484 0.483 0.49 42822
100 0.569 0.568 0.577 85643

CA-HepTh
10 0.151 0.151 0.154

5658
9198

50 0.403 0.4 0.409 45989
100 0.534 0.533 0.547 91978

ego-Facebook
10 0.924 0.932 0.933

5121
8304

50 0.959 0.957 0.959 41519
100 0.962 0.96 0.964 83038

email-Enron
10 0.329 0.335 0.335

6445
10511

50 0.644 0.646 0.65 52552
100 0.754 0.756 0.762 105104

Table 4.2: Comparison against Y-ALG

4.3.3 Applications

For the next three experiments, we consider three more larger graphs that HEDGE

can handle due to its scalability: email-Enron, loc-Brightkite, and soc-Epinion1, with
36692-183831, 58228-214078, and 75879-508837 number of nodes-edges, respectively.
These experiments are based on orders defined over the set of nodes as follows: we
generate 100 log(n)/ε2 hyper-edges, where n is the number of nodes, and ε = 0.25.
Then we order the nodes based on the order HEDGE picks the nodes.

For sake of comparison, we ran HEDGE using the coverage and κ-path (for κ = 2)
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centralities, since both of them admit hyper-edge sampler as we showed in Sect. 4.1.2.
Also, we considered a fourth centrality that we call triangle centrality, where the
centrality of a set of nodes S equals to the number of triangles that intersect with S.
For the triangle centrality, we run EXHAUST as computing this centrality is easy and
scalable to large graphs.4 All these experiments are run ten times, and we report the
average values.

Time evolving networks.. Leskovec et al. studied empirically properties of time-
evolving real-world networks [82]. In this section we investigate how BWC of the most
central nodes changes as a function of time.

We study two temporal datasets, the DBLP 5 and Autonomous Systems (AS)
datasets. We also generate stochastic Kronecker graphs on 2i vertices for i ∈ {8, . . . , 20},
using ( 0.9 0.5

0.5 0.2 ) as the core-periphery seed matrix. We assume that the i-th time snap-
shot for Kronecker graphs corresponds to 2i vertices, for i = 8, . . . , 20. Note that in
these evolving sets, the number of nodes also increases along with new edges. Also,
note that the main difference between DBLP and Autonomous Systems is that for
DBLP edges and nodes only can be added, where in Autonomous Systems nodes and
edges can be increased and decreased.

The results are plotted in logarithmic scale (Fig. 4.2), and as shown, we observe
that the centrality of the highly central set of nodes increases. Also, we observe that
the model of stochastic Kronecker graphs behaves similar to the real-world evolving
networks with respect to these parameters.

Influence maximization. We consider the Independent-Cascade model [68], where
each edge has the probability 0.01 of being active. For computing and maximizing
the influence , we consider the algorithm of [13] using 106 number of samples (called
hyper-edge but defined differently). We compute the influence of output of HEDGE

with output of [13]. As shown in Table 4.3, and as we observe, the central nodes also
have high influence, which shows a great correlation between being highly central
and highly influential. It is worth outlining that our main point is to show that our
proposed algorithm can be used to scale heuristic uses of BWC.

4EXHAUST for the triangle centrality, at every iteration simply chooses a node that is incident with
more number of new triangles.

5Timestamps are in Unix time and can be negative.

73



METHODS
GRAPHS k IM betw. cov. κ-path tri.

CA-GrQc
10 19.12 13.67 14.93 14.10 18.48
50 76.65 67.28 67.44 65.06 69.30
100 141.33 126.76 126.66 124.51 124.06

CA-HepTh
10 17.33 15.61 15.58 14.63 12.98
50 77.88 70.53 69.95 67.80 63.95
100 147.75 133.45 133.24 130.41 127.52

p2p-Gnutella08
10 19.61 13.05 13.71 10.39 18.06
50 83.64 60.58 61.73 51.57 74.19
100 148.86 118.27 118.76 103.58 132.04

email-Enron
10 461.84 458.70 450.34 455.25 451.53
50 719.86 703.08 695.81 699.74 681.05
100 887.63 863.66 858.39 865.76 830.15

loc-Brightkite
10 184.40 162.64 160.35 163.16 145.19
50 402.85 372.64 360.64 366.28 330.45
100 563.13 521.18 508.59 512.77 445.11

soc-Epinion1
10 343.89 81.57 111.47 14.43 311.74
50 846.18 300.88 282.88 72.90 778.56
100 1161.45 463.04 457.29 133.20 1062.99

Table 4.3: Comparing the influence of influential nodes (IM) and central nodes obtained
by different centrality methods.

Graph attacks. It is a well-known fact that scale-free networks are robust to random
failures but vulnerable to targeted attacks [6]. Some of the most efficient strategies for
attacking graph connectivity is based on removing iteratively the most central vertex
in the graph [58]. Such sequential attacks are central in studying the robustness of
the Internet and biological networks such as protein-protein interaction networks [62].

We remove the nodes one-by-one (according to the order induced by these central-
ities and picked by HEDGE) and measure the size of the largest connected component.
The results are plotted in Fig. 4.3. Our observation is that all the sizes of largest
connected components decline significantly (almost linearly in size of S), which is
compatible with our intuition of centralities. We also find that κ-path and triangle
centralities can be more effective at destroying the connectivity.
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4.4 Related Work

Centrality measures. There exists a wide variety of centrality measures: degree
centrality, Pagerank [101], HITS [72], Salsa [80], closeness centrality [11], harmonic
centrality [12], betweenness centrality [42], random walk betweenness centrality [97],
coverage centrality [127], κ-path centrality [5], Katz centrality [67], rumor centrality
[112] are some of the important centrality measures. Boldi and Vigna proposed an
axiomatic study of centrality measures [12]. In general, choosing a good centrality
measure is application dependent [46]. In the following we discuss in further detail
the centrality measure of our focus, the betweenness centrality.

Betweenness centrality (BWC). is a fundamental measure in network analysis.
The betweenness centrality index is attributed to Freeman [42]. BWC has been used
in a wide variety of graph mining applications. For instance, Girvan and Newman use
BWC to find communities in social and biological networks [47]. In a similar spirit,
Iyer et al. use BWC to attack the connectivity of networks by iteratively removing
the most central vertices [62].

The fastest known exact algorithm for computing BWC exactly requires O(mn)
time in unweighted, and O(nm + n2 logm) for weighted graphs [16, 40, 109]. There
exist randomized algorithms [8, 15, 105] which provide either additive error or multi-
plicative error guarantees with high probability.

For CMP, the state-of-the-art algorithm [127] (and the only scalable proposed al-
gorithm based on sampling) provides a mixed error guarantee, combining additive
and multiplicative error. Specifically, this algorithm provides a solution whose cen-
trality is at least (1− 1

e
)OPTk − εn2, by sampling O(log n/ε2) hyper-edges, where each

hyper-edge is a set of all nodes on any shortest path between two random nodes with
some assigned weights.

As we mentioned before, CMP is APX-complete, and the best algorithm (i.e.
classic greedy algorithm for maximizing the monotone-submodular functions) using
exact computations of BWC provides (1−1/e)-approximation [41]. We call this greedy
algorithm by EXHAUST algorithm, and works as follows: It starts with an empty set
S. Then, at any round, it selects a node u that maximizes the adaptive betweenness
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centrality (A-BWC) of u according to S defined as

B(u|S) =
∑

(s,t),s,t 6=u

σs,t(u|S)
σs,t

,

where σst(u|S) is the number of s-t shortest paths that do not pass through any node
in S and have u as an internal node. The algorithm adds u to S and stops when
|S| = k.

Note that the A-BWC is intimately connected to the BWC through the following
well-known formula [127]:

B(S ∪ {u}) = B(S) +B(u|S).
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Figure 4.2: Largest betweenness centrality score and number of nodes, edges and average
degree versus time on the (i) Autonomous systems (a),(b) (ii) DBLP dataset (c),(d) and (iii)
stochastic Kronecker graphs (e),(f).

77



0 200 400 600 800 1000
1000

1500

2000

2500

3000

3500

4000

4500 CA-GrQc Betw.
Cov.
k-Path
Tri.

0 200 400 600 800 1000
5500

6000

6500

7000

7500

8000

8500

9000 CA-HepTh
Betw.
Cov.
k-Path
Tri.

0 200 400 600 800 1000
4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400
p2p-Gnutella08

Betw.
Cov.
k-Path
Tri.

0 200 400 600 800 1000

#104

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7 loc-Brightkite
Betw.
Cov.
k-Path
Tri.

0 200 400 600 800 1000

#104

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4 email-Enron
Betw.
Cov.
k-Path
Tri.

0 200 400 600 800 1000

#104

6.4

6.6

6.8

7

7.2

7.4

7.6 soc-Epinion1

Betw.
Cov.
k-Path
Tri.

Figure 4.3: The size of the largest connected component, as we remove the first 1000 nodes
in the order induced by centralities.
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Part III

Influence Estimation
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Chapter 5

Real-Time Targeted-Influence
Queries over Large Graphs

In this chapter, we introduce the Targeted-Influence Problem (TIP), that aims to
estimate the influence of a group of nodes (people) in the graph of social network
over another group. In TIP we are given, in the preprocessing stage, an arbitrary
graph G and a model of influence over G. Then, in the query phase, a sequence of
queries arrives for arbitrary pairs (Si, Ti) of subsets of the nodes where Si and Ti are
the set of seed nodes and target nodes in the query, respectively. Our goal in the
query stage is to estimate the influence of the set Si over the set Ti, i.e. the expected
number of influenced nodes in Ti if the nodes in Si spread the information. To do so,
as efficiently as possible, we are allowed to preprocess the graph G in the preprocessing
stage, before knowing which queries will be issued during the query stage. Also, note
that having access to a TIP-solver oracle is sufficient to (approximately) find the most
influential node among the accessible nodes as in [130].

To the best of our knowledge, TIP is a new problem and has not been addressed
before. Notice that this is a significant departure from recent works [52, 130] that
proposed settings for Influence Maximization problem in the target context where
an expensive computation is run to maximize influence over a given fixed target set.
In practical settings however, the social network operator needs to optimize multiple
campaigns with different targets and seed sets at the same time. For this reason our
aim is instead, to allow high-quality answers in the query stage, for many distinct
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(Si, Ti) queries after an efficient preprocessing.
Naive approach. In most influence-propagation models, the TIP problem can

be readily solved by standard Monte Carlo (MC) simulations: simply run (enough)
MC simulations of the influence process, and measure how many nodes in Ti are
influenced when the information starts propagating from the seed nodes in Si for each
query (Ti;Si). However, as we discussed above, in real settings numerous advertisers
operate on the social network at any given time and each of them may have many
ongoing advertisement campaigns with different target sets and potential seed sets
to evaluate. Determining the best strategy even for a single campaign might involve
performing numerous influence queries. As each influence query requires multiple MC
simulations over a potentially huge graph, this naive approach is not able to handle
many advertisers over large networks with billions of nodes and edges. For an online
targeted-influence query system to be practically useful, we would like to be able to
answer such queries in real-time (say in a few seconds per query). That means that
we need to answer such queries in a time that is significantly shorter than what is
necessary just to read the graph in input.

In this thesis we present the first real-time algorithm for TIP on large scale
graphs. We present algorithms for both directed and undirected graphs: after a
feasible preprocessing, our algorithms are guaranteed to answer each (S;T )-query in
time Õ(|S| + |T |), for general undirected graphs, and directed graphs under some
assumptions, that are backed with experiments.1 Note that in the naive approach,
the running time at the query stage is Θ(|V |+ |E|) required for just a single MC sim-
ulation. We also provide precise theoretical guarantees on the approximation error of
this algorithm.

Our experiments show that our algorithms are able to answer influence queries
quickly with high accuracy. We achieve several orders of magnitude speedups over
the naive approach of Monte Carlo simulation while preserving good accuracy in both
directed and undirected graphs.

1Here, Õ(·) notation hides the lower order terms.
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5.1 Notations and Problem Definition

Throughout this paper, we assume that we are given an arbitrary graph G = (V , E)
as input. To model the influence of a seed set S ⊆ V over a target set T ⊆ V ,
we introduce the Snapshot model. In Sect. 5.2.5 we prove that the Snapshot model
generalizes the Triggering model that in turn is a generalization of the classic and
widely used Independent-Cascade and Linear-Threshold models [68]. Our analysis
holds for this more general model, and thus, is valid for both Independent-Cascade
and Linear-Threshold models. Informally, the Snapshot model is represented by an
arbitrary distributionM over the subgraphs of G = (V , E). Each sample G = (V , E)
(subgraph of G with the same set of nodes) from the distribution is a realization of
the diffusion process over G, where the edges in E represent the active influence edges
in that instance. Given one realization G, a node u ∈ S influences all the other nodes
to which it is connected to by a (directed) path in G, if S is the set of seeds:

Definition 14 (Snapshot & Influence). The Snapshot model for a graph G = (V , E),
is a distributionM over all subgraphs of G, and by G ∼M we mean G is a subgraph
of G that is selected randomly via M. We say an edge e ∈ E is activated in G =
(V , E) ∼ M, if e ∈ E. The influence of a seed set S over a target set T , denoted
by Inf (S;T ), is defined as

Inf (S;T ) = EG∼M [|IG(S) ∩ T |] ,

where G is a random subgraph of G sampled according to M and IG(S) is the set of
all reachable nodes from S in graph G. Therefore, Inf (S;T ) is the expected number
of nodes in T that can be reached from S in a random graph sampled viaM.

In this paper, we study the problem of estimating the influence of seed sets over
target sets in real-time, after a preprocessing of the data to expedite the estimation of
the targeted-influence. Our methods for TIP has two stages: (1) preprocessing, and
(2) query stages. Obviously, in order to work with large datasets, our solution has
to be scalable at the preprocessing stage, and very fast at the query stage. Formally,
our goal is as follows:

Definition 15 (Targeted-Influence Problem (TIP)). By preprocessing the graph G =
(V , E) in time Õ(|V|+ |E|) and using Õ(|V |) space, provide an estimation of Inf (S;T )
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for every seed and target sets, in time Õ(|S| + |T |). We call a query of a seed set S
and a target set T , an (S;T )-query.

Our Contributions. In this paper, (1) we introduce the Targeted-Influence problem,
(2) we give efficient solutions to the TIP problem, both for undirected and directed
graphs with theoretical guarantees, and (3) we provide extensive experiments on real
world networks, and show the efficiency and accuracy of our methods.
Paper Organization. Sect. 5.4 reviews the related work. In Sect. 5.2 we provide our
algorithms and theoretical results for (i) efficient preprocessing, and (ii) estimating
the targeted-influence, both for undirected and directed graphs. Finally, in Sect. 5.3
we conclude by applying our proposed algorithms on real world networks.

5.2 Method

We start this section by discussing how we can estimate the targeted-influences in
general settings, using Monte Carlo methods. We then introduce our algorithms.

5.2.1 Estimating Targeted-Influence Using Monte Carlo Meth-
ods

Recall that we assume the Snapshot model and denote byM its distribution. Also,
recall that by an (S;T )-query we mean the query for a pair of seed set S and a target
set T . By definition, the influence of S over T is Inf (S;T ) = EG∼M [|IG(S) ∩ T |]
which is an expectation that can be approximated using Monte Carlo simulation:
given a sample of ` graphs S = {G1, . . . , G`} sampled independently from M, the
(experimental) influence of S over T according to S is

InfS (S;T ) = 1
`

∑̀
i=1
|IGi(S) ∩ T |.

Obviously, we have ES [InfS (S;T )] = Inf (S;T ).
In order to quantify the accuracy of an estimation for an (S;T )-query for a given

sample S we introduce the following definition.
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Definition 16 (Impact). The impact of a seed set S over a target set T is the
average fraction of the number of nodes in T that get influenced by S, i.e., Inf(S;T )

|T | .
We denote the impact of S over T by ρ(S;T ).

The following theorem states the sample complexity for estimating the influence
of an (S;T )-query.

Theorem 16. Suppose S = {G1, . . . , G`} is a sample of ` independent draws from
M. If ` ≥ ln(2/δ)

2ε2ρ2 , where ε, δ ∈ (0, 1) and ρ = ρ(S;T ), with probability at least 1 − δ
we have

|Inf (S;T )− InfS (S;T )| < ε · Inf (S;T ) .

Proof. For i ∈ {1, . . . , `}, let Xi = |IGi(S) ∩ T |. Obviously , InfS (S;T ) = X1+...+X`
`

,
0 ≤ Xi ≤ |T |, and E [Xi] = Inf (S;T ). Therefore, by Hoeffding’s inequality we have

Pr [|InfS (S;T )− Inf (S;T ) | ≥ ε · Inf (S;T )]

≤ 2 · exp
(
−2ε2Inf (S;T )2 `

|T |2

)
,

and by substituting for ` the proof is complete.

Note that in practice the queried seed sets are expected to be close to the target
set, if not directly connected. Therefore, if we restrict the queries to those with an
impact greater than a constant threshold, the sample complexity for computing the
influence will be O(ln(1/δ)/ε2). Thus a constant number of samples suffices for any
constant probability and error parameter.

5.2.2 Intuition of Our Method

We have shown that to answer any (S;T )-query, it is sufficient to draw a sample
S = {G1, . . . , G`} according to M and then efficiently compute |IGi(S) ∩ T |. In
particular, for any graph we can obtain a good approximation for queries with at least
constant impact with O(ln(1/δ)/ε2) samples. Moreover, for O(ln(|V |)/ε2) samples we
can get a (1 + ε)-approximation, with high probably, for all queries in a polynomially
long sequence of queries. Notice that computing |IGi(S)∩T | at the query phase might
take Õ(|V |+ |E|) time, as opposed to Õ(|S|+ |T |). To circumvent this issue, we show
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how one can preprocess each random graph Gi ∈ S during the preprocessing stage
so that at the query time we can estimate |IGi(S) ∩ T | efficiently and accurately. To
do so, we present different algorithms for preprocessing and answering the queries for
undirected and directed graphs. Finally, note that even for queries with small impact,
we have the following immediate corollary, using Hoeffding’s inequality:

Corollary 9. Suppose S = {G1, . . . , G`} is a sample of ` independent draws from
M. If ` ≥ ln(2/δ)

2ε2 , where ε, δ ∈ (0, 1), with probability at least 1− δ we have

|Inf (S;T )− InfS (S;T )| < ε · |T |.

5.2.3 Undirected Graphs

In this section, we assume G is an undirected graph,2 and G ∼ M is one random
subgraph ofM that needs to be preprocessed. We first describe the algorithm, and
then provide its analysis.

5.2.3.1 Algorithm

We preprocess G and compute |IG(S) ∩ T | as following:
Preprocessing. We obtain the list of connected components of G and for each node
u we store the ID of its connected component that we denote by cc (u).
Computing |IG(S) ∩ T |. Suppose we are given the (S;T )-query to process. Let
cc (S) = {cc (u) | u ∈ S}. Note that

|IG(S) ∩ T | = |{v ∈ T | cc (v) ∈ cc (S)}| .

This is because S reaches to a node v ∈ T if and only if there is a node u ∈ S such that
u, v are in the same connected component. Therefore, |IG(S) ∩ T | can be computed
in time O(min |S|, |T |) by using hash-maps, or in time O(log(|S|)|S|+ log(|T |)|T |) by
sorting and merging the lists).

5.2.3.2 Analysis

Now, we analyze the running time of our algorithm for undirected graphs, when we
sample S = {G1, . . . , G`} of randomly chosen subgraphs Gi ∼M.

2Equivalently in Independent-Cascade model, each pair of nodes in an edge, have the same
probability of activating it.
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Preprocessing The preprocessing time is due to (i) the time to sample a random
subgraph G = (V,E) according toM (ii) finding the connected components in time
O(|V | + |E|). Therefore, the preprocessing algorithm can be implemented in total
time O (`[|V|+ |E|+ TM]), where TM is the time to generate a sample fromM. Note
that our preprocessing stage requires O(` log(|V|)) bits per node, just to store the id of
the connected component of the node in each sample. Also, ifM is the Independent-
Cascade model, TM = |E|. Notice that the preprocessing algorithm can be easily
parallelized in O(diam(G)) rounds of Map-Reduce, in which the communication com-
plexity of each round is O(`(|V| + |E|)), and each reducer receives an input of size
O(`∆), where ∆ is the maximum degree in G.

Answering queries To answer each (S;T )-query, we need to compute the average
of |IGi(S)∩T |, over the sampled subgraphs, and thus, the running time for answering
the queries isO(`·min {|S|, |T |}) by using hash-maps, orO(`(log(|S|)|S|+log(|T |)|T |))
by sorting and list merging as above.

Considering our analysis, our algorithm satisfies the requirements of the TIP prob-
lem, and is an accurate and efficient solution.

5.2.4 Directed Graphs

Our algorithms for directed graphs follow the same approach of the undirected one,
but here the problem is complicated by the need to compute reachability in directed
graphs. For this case we provide some heuristic algorithms that allow a good experi-
mental tradeoff between the space and time required in the preprocessing phase and
the precision at query time. We present our basic technique (Algorithms 5 and 6) for
preprocessing and query. Later improve these algorithms with additional technique.

Here, we assume G is a directed graph, and we provide an efficient way to prepro-
cess each randomly sampled subgraph G = (V , E) ∼M and estimate |IG(S)∩ T | for
any (S;T )-query.

5.2.4.1 Algorithm

Our method for both preprocessing and query stages are provided in Algorithms 5
and 6, and here we give an overview of these algorithms.
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Preprocessing. We apply the Bloom filter technique (defined below), which assigns
a reachability vector (defined below) RG(u) of length w to each node u ∈ V (see
Algorithm 5).
Computing |IG(S) ∩ T |. Using these vectors, for each pair u, v we can estimate
whether v ∈ IG(u), i.e., v is reachable from u or not (see Algorithm 6), which provides
us a biased estimator for Inf (S;T ).

Without loss of generality, assume V = [n].3 For the directed graph G, let C(G) =
{C1, . . . , Cr} be the partition of G into its strongly connected components (SCC).4

Also, for each node u ∈ [n] we denote the strongly connected component that includes
u by C(u). Note that by grouping the nodes in each Ci, we obtain a directed-acyclic-
graph (DAG), denoted by G[C], whose nodes are the strongly connected components
in C(G), and Ci has an edge to Cj if there is a node in Ci that connects to a node in
Cj via an edge in E. Also, without loss of generality, we always assume C1, . . . , Cr

is the topological order of Ci’s according to G[C] (i.e. if there is a direct path from
Ci to Cj with i 6= j then i < j). We also denote the in-neighbors of Ci in G[C] by
N−(Ci).

Definition 17 (Reachability Vector). Suppose k and w are positive integers, and let
Hk,w = {h1, . . . , hk} be a family of k independent random hash functions, such that
for i ∈ {1, . . . , k} we have hi : C(G)→ [w]. For C ∈ C(G) define Hk,w(C) as a binary
vector of length w whose i-th entry is 1 if and only if for some j we have hj(C) = i.
Now, the reachability vector of node u, denoted by RG(u) is

RG(u) =
∨

v∈IG(u)
Hk,w(C(v)),

where ∨ is the bit-wise logical OR operation.

Note that reachability vectors are in fact Bloom filters that verify if a strongly
connected component is reachable from a given node. We later describe the tradeoff
between the values of k and w and the precision of the algorithm (See in Lemma 17
and Theorem 17). Finally, in Algorithm 6 we show how we can estimate |IG(S) ∩ T |

3We denote the set {1, . . . , n} by [n].
4Note that finding the partition C(G) can be done efficiently in time O(|V |+ |E|) using Tarjan’s
algorithm [122].
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for an (S;T )-query. For notational convenience in Algorithm 6, we denote x ≤ y for
two real vectors of the same length, if x is smaller than y entry-wise.

Algorithm 5: PreD(G, k, w)
input : Directed graph G, positive integers k and w.
output: Hash functions and reachability vectors.

1 begin
2 C(G) = {C1, . . . , Cr} //SCC, ordered topologically
3 H ← Hk,w //Sample random hash functions
4 for i← 1 to r do
5 B(Ci)← H(Ci)
6 end
7 for j ← r to 1 do
8 for Ci ∈ N−(Cj) do
9 B(Ci)← B(Ci) ∨B(Cj)

10 end
11 end
12 for u← 1 to n do
13 RG(u)← B(C(u))
14 end
15 return H and (RG(u))u∈[n]
16 end

5.2.4.2 Analysis

In this section we analyze our method for estimating |IG(S)∩ T | for an (S;T )-query.
Let α(S) be the number of reachable strongly connected components from the nodes
in S, i.e., α(S) = {i | S  Ci}, where by  we mean existence of a path from S to
Ci in G. Similarly, we use S  v for a node v if v is reachable from a node in S. We
first have the following lemma:

Lemma 17. Consider U and H as defined in Algorithm 6. If w > log(1/δ)
log(1/0.7865)α(S)

and k = log(2)w
2α(S) , for δ ∈ (0, 1), and v is a node in G:

(a) if S  v then H(C(v)) ≤ U ; and

(b) if S 6 v, with probability at least 1− δ, H(C(v)) 6≤ U .
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Proof. For part (a), note that if S  v, then there exists a node u ∈ S such that
u  v. First, H(C(v)) ≤ RG(u), since RG(u) is the logical OR of some vectors
including H(C(v)) in Algorithm 5. Secondly, RG(u) ≤ U as U is the logical OR of
some vectors including RG(u) in Algorithm 6. So, H(C(v)) ≤ U .

For part (b), note that the probability that a single bit being zero in U is
(1− 1/w)kα(S), since H is a family of k-independent functions. Therefore, the prob-
ability of a false positive (i.e. H(C(v)) ≤ U) is

Pr [H(C(v)) ≤ U ] =
(

1−
(

1− 1
w

)kα(S))k

≤
(

1− e−
2kα(S)
w

)k
≤
(

1− 1
2

)k
≤ (0.7865)

w
α(S) < δ,

where we used the fact that 1− x ≥ e−2x for x ≤ 1
2 .

Lemma 17, gives us the next Theorem:

Theorem 17. Consider X and U as defined in Algorithm 6, and an (S;T )-query. If
k ≥ log2(|T |/δ) and w ≥ 2α(S), for δ ∈ (0, 1), we have

(a) With probability at least 1− δ, X = |IG(S) ∩ T |; and

(b) Always

|IG(S) ∩ T | ≤ E [X] ≤
(

1 + δ

ρ(S;T )

)
· |IG(S) ∩ T |.

Recall that ρ(S;T ) is the impact of S over T .

Proof. Part (a) is directly obtained from Lemma 17, and applying the union bound.
For part (b) notice that

|IG(S) ∩ T | ≤ X ≤ T,

since (i) for every v ∈ |IG(S) ∩ T | we have H(C(v)) ≤ U , and thus, X is increased
at least |IG(S) ∩ T | times; and (ii) X is increased at most T times. Therefore,
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|IG(S) ∩ T | ≤ E [X], and

E [X] ≤ Pr [X = |IG(S) ∩ T |] · |IG(S) ∩ T |

+ Pr [X > |IG(S) ∩ T |] · |T |

≤ |IG(S) ∩ T |+ δ
|IG(S) ∩ T |
ρ(S;T )

=
(

1 + δ

ρ(S;T )

)
· |IG(S) ∩ T |,

where we used the fact that Pr [X = |IG(S) ∩ T |] ≤ 1, and the proof is complete.

Algorithm 6: QueD(S, T,H, (RG(u))u∈[n])
input : Seed set S, target set T , hash functions H, and reachability vectors

(RG(u))u∈[n].
output: An estimate of |IG(S) ∩ T |.

1 begin
2 U ← ∨

u∈S RG(u)
3 X ← 0
4 for v ∈ T do
5 if H(C(v)) ≤ U then
6 X ← X + 1
7 end
8 end
9 return X

10 end

Theorem 17 shows that the number of bits for each node, sample pair needed to
answer accurately a query is w ≥ 2α(S). Notice that although the seed sets are in
practice small sets, the α(S) can be a large quantity.

To reduce the memory required we introduce the following heuristic. In the pre-
processing stage, we select λ strongly connected components (SCCs) with the highest
out-degree in the G[C] DAG, i.e., SCCs with maximum number of SCCs they can
reach with a directed edge. We let L to be the set of these SCCs, and call the ele-
ments of L, the hubs of the network. Thus, |L| = λ. We set λ to be a small constant,
and in our experiments we used λ = 10.

Next, for each hub l ∈ L (which is also a SCC) we execute two visits of the graph
to obtain: 1) all the SCCs reached by l and 2) all the SCCs reaching l. The ids of
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the SCCs reached by each l′ ∈ L are stored in a distinct hash set for constant query
time. For each node v ∈ V , instead, we store a bitmap of λ bits representing whether
the node reaches any given hub.

We finish the preprocessing stage as before (similar to Algorithm 5) but the ac-
cumulations of B(Ci)’s vectors stop at the components in L (which are essentially
ignored from the graph).

The query algorithm, instead, proceeds as before with the following difference: we
first obtain the union of all hubs reached by any nodes in S. Then in order to see
whether S  v, for a node v ∈ T , we both check (i) H(C(v)) ≤ U , and (ii) if for any
hub reached by S, v belong to the set reached by that hub.

It is easy to see that using the hub trick can only decrease the false positives
caused by the Bloom filter as reachability through hubs is computed exactly. It
is also clear that the running time for preprocessing and query algorithms become
Õ (λ(|V|+ |E|)) and Õ (λ(|S|+ |T |)), respectively, and since λ is a constant we obtain
the same complexity as before.

Finally, it is worth noting that this trick of using hubs significantly improves
the space needed by the Bloom filters to obtain good results as we show in the
experiments. This is due to the skewed reachability set size distribution of SCCs:
not storing the descendants reachable from the top SSCs significantly reduces the
maximum size that needs to be stored in any Bloom filter as our experiments show.

Therefore, for a general directed graph G = (V , E), we preprocess the graph and
answer the queries as follows:

• Preprocess: generate a sample of S = {G1, . . . , G`}, where G ∼ M. Then,
preprocess each Gi using using the hub heuristic (for better performance).

• Query: For an (S;T )-query, return 1
`

∑`
i=1 |IGi(S)∩ T |, using the hub heuristic.

Finally we conclude this section by computing the running time and the space
complexity of our approach.

Running time and space complexity The preprocessing algorithm can be im-
plemented in total time O(`(kw+ λ) · (|V|+ |E|)). The space for each of ` samples is
O(wr+ |V |(log2(r) +λ)) where r is the number of SCCs in the sample graph. Finally
the query time is O(|S|`wdλ+ `kλ(|T |)).
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5.2.5 On Snapshot Model

In this short section, we explain why the Snapshot model generalizes the Triggering
model [68] and thus the independent-Cascade and the Linear Threshold model. We
first start by formally defining the Triggering model:

Definition 18 (Triggering model [68]). Let G = (V , E) be a graph, and for each node
v let N(v) be the set of v’s neighbors. In the Triggering model, each node v is assigned
with a distribution Tv over subsets of N(v), and when v is influenced, it influences
a subset of its neighbors sampled according to Tv, independent of other nodes. We
denote a Triggering model by the vector (Tv)v∈V .

Note that in the Triggering model, the process in which a node v chooses a subset
N ′ of its neighbors to influence, is equivalent to sampling the edges that connect v to
the nodes in N ′. Therefore, the triggering model (Tv)v∈V imposes a distributionM
over the subsets of G, where each subset is obtained from G by sampling the edges
according to the joint distribution of (Tv)v∈V , independently. Therefore, clearly, our
model is more general than the Triggering model as it allows for arbitrary (and hence
non-independent) joint distributions for the neighbors of each node.

5.3 Experiments

In this section we provide our experimental results. First, we introduce our datasets
and the influence model that we use for the experiments and discuss some important
properties for these datasets in the given model. Next, we evaluate the efficiency of
the preprocessing algorithms and show the speed-up we obtain for query stage with
respect to using the naive Monte Carlo method for each given (S;T )-query. Finally,
we measure the accuracy of our estimation method. Each experiment was executed
using a single machine with Intel Xeon cpu at 2.83GHz and with 12GB RAM.

5.3.1 Data and Model

For sake of experiments, we consider the widely used Independent-Cascade model,
which we showed is a special case of the Snapshot model. We assume that the activa-
tion probability of each edge equal to p. We show the results for p ∈ {0.05, 0.1, 0.2}.
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In Sect. 5.2, we presented 2 approaches: one for undirected, and one for directed
graphs. We refer to AU as the undirected graph algorithm of Sect. 5.2.3. This
algorithm is very efficient and all the experiments using AU are run in the main
memory.

We refer to AD as the directed graph algorithm using hubs (Sect. 5.2.4). This
algorithm is more expensive compared to AU for the complexity of handling reacha-
bility in directed graphs. In this case for our larger graphs (com-Youtube, wiki-Talk,
soc-Pokec, soc-LiveJournal1) we store the preprocessed data output in files, and use
them to answer the queries.

Datasets We used publicly available datasets.5 See Table 5.1. The direction of each
edge represents the flow of the influence. We also remove any self-loop or parallel-
edge.

Datasets Direction #nodes #edges

email-Enron U 36692 183831
soc-Epinions1 D 75878 508837
email-EuAll D 265006 418956
soc-Slashdot0902 D 82168 870161
com-dblp U 317080 1049866
ego-twitter D 81306 1768135
com-youtube U 1134890 2987624
wiki-Talk D 2394367 5021410
soc-Pokec D 1632801 30622564
soc-LiveJournal1 D 4846606 68475391

Table 5.1: The datasets, direction on their edges (Undirected or Directed), number
of nodes and edges.

Density of G[C] As we discussed in Sect. 5.2.4, in AD, we sample several subgraphs
of G ∼ M, and decompose each G into its strongly connected components (SCC).
Note, each reachability question can be addressed in the graph G[C], the DAG induced
by the strongly connected components of G. Therefore, a natural question to ask how
dense (or sparse!) is the graph G[C], since sparser graphs are easier to store and to
process for reachability questions. Density of a graph is defined as the number of

5http://snap.stanford.edu/
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edges divided by the number of nodes. We show the results in Table 5.2. For each
graph/model we sample 10 graphs G ∼M, and the averages are reported. As shown,
the graphs are highly sparse, which motivates our approach.

Datasets p = 0.05 p = 0.1 p = 0.2

email-Enron 0.905 0.944 0.984
email-EuAll 0.955 0.961 0.964
com-dblp 0.813 0.943 1.033
com-youtube 0.849 0.89 0.934
soc-Epinions1 0.954 0.952 0.973
soc-Slashdot0902 0.987 0.999 1.012
ego-twitter 1.197 1.237 1.244
wiki-Talk 1.003 1.012 1.013
soc-Pokec 1.166 1.177 1.173
soc-LiveJournal1 1.03 1.055 1.048

Table 5.2: The density of the G[C] graphs, for G ∼M.

Maximum Number of Descendants As we discussed in Sect. 5.2.4, the number
of bits in the each reachability vector (denoted by w) necessary to obtain a multi-
plicative approximation is lower-bounded by a function of α(S), the number of SCCs
that are reachable from S. The smaller the α(S) the smaller the memory required.

Here we evaluate our heuristic to reduce the amount of memory need using L

hubs. we consider the following cases: (1) no hubs, i.e., L = ∅, and (2) when L

is the t-top degree nodes in G for t ∈ {1, 2, 3, 4, 5, 10}. In Fig. 5.1 we present the
maximum number of descendants of any node, using different number of hubs. Each
number is the average for 10 sampled random subgraph G ∼M. As shown, by using
hubs, the number of direct descendants suddenly drops, which then, improves the
space required dramatically. For space limitations, we provide the plot for p = 0.2.
However for p = 0.05 and p = 0.05 we obtain very similar results.

5.3.2 Efficiency

In this section we provide the running time for preprocessing the graphs G ∼M, and
the speed-up we obtain for answer (S;T )-queries, i.e. estimating Inf (S;T ), compared
to running the standard Monte Carlo simulations to estimate Inf (S;T ). For these
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Figure 5.1: Maximum number of descendants with/without using hubs.

experiments we set the parameters as follows:

• |L| = 10: number of hubs,

• k = 5: number of hash functions,

• w = 214 = 16384: number of bits for reachability vectors,

• ` = 50: number of sampled random subgraphs G ∼M,

5.3.2.0.1 Preprocessing In Figure 5.2 we show the running time for prepro-
cessing the randomly sampled graphs G ∼ M: numbers are averaged over different
samples of G.

5.3.2.0.2 Speed-ups in answering queries Here, we compare the time to an-
swer an (S;T )-query using our approach T1, to the running time of Monte Carlo
simulations, T2. In both cases we use the same number ` = 50 of simulations. Here,
by speed-up we mean the T2

T1
ratio.

For our experiments, we report the average results over 50 (S;T )-queries that are
obtained using three different methods, in each case we set |S| = |T | = 1000. In the
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Figure 5.2: Preprocessing time for both approaches.

UNIF case both S and T are subsets of nodes chosen uniformly at random, among
the nodes with non-zero out-degree and non-zero in-degree, respectively. In the 2-
Hops experiment S is a subset of nodes with non-zero out-degree, chosen uniformly
at random. T is obtained by randomly choosing from the nodes that can be reached
from S by using at most 2 edges (i.e., from 2-neighborhood of S). Finally, in theDEG
case S and T are obtained by sampling the nodes with probability proportional to
their out-degree and in-degree, respectively.

In Table 5.3 the time (seconds) to answer the queries with preprocessed data, and
in Fig. 5.3 the speed up we obtain is presented. For each graph, the speed-ups are
the average of 50 random (S;T )-queries. As shown, we obtain tremendous speed-up
by using our preprocessing techniques, in both AU and AD approaches reducing the
running time for a given query up to a 103 factor. Again, for lack of space, in Fig. 5.3
we present the results for UNIF only, as the other two methods give us very similar
results.

5.3.3 Relative Errors

Finally in this section, we discuss the accuracy of our estimated influence of an (S;T )-
query, by computing its relative error: For each (S;T )-query, we run 300 Monte Carlo
simulation to estimate Inf (S;T ) as the ground truth, and we denote this estimate by
I1. If I2 is our estimate of Inf (S;T ), the relative error is |I1−I2|

I1
.

The results are provided in Fig. 5.4. As shown, overall the relative errors are very
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UNIF 2-Hops DEG
Dataset \p = 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
email-Enron(U) 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.02
com-DBLP(U) 0.41 0.05 0.03 0.17 0.05 0.05 0.05 0.04 0.03
com-YouTube(U) 1.51 0.06 0.05 0.05 0.05 0.05 1.19 0.05 0.06
soc-Epinions1(D) 2.87 2.94 3.02 2.87 2.93 3.01 3.24 2.9 2.78
email-EuAll(D) 2.78 2.65 2.78 2.83 2.7 2.77 3.31 2.95 3.06
soc-Slashdot0902(D) 2.93 2.84 2.88 3.02 2.86 2.91 3.72 2.73 2.62
ego-Twitter(D) 4.69 3.44 3.13 4.69 3.43 3.13 5.43 3.53 3
wiki-Talk(D) 10.08 10.61 11.21 10.19 10.62 10.35 11.62 13.1 11.32
soc-Pokec(D) 11.24 14.65 20.22 11.19 14.33 19.7 11.52 10.72 10.39
soc-LiveJournal1(D) 10.85 12.49 18.55 11.05 11.31 11.77 11.96 14.19 23.28

Table 5.3: The time (seconds) consumed by our algorithm for answering queries.
Letters U and D correspond to AU and AD, respectively.
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Figure 5.3: Speed-ups: Applying AU and AD methods.

small (true for all cases, show here only for UNIF, for space limitation), in particular,
we observe that the higher the probability p, the lower the error observed. In almost
all cases we obtain relative errors smaller than 10% and our relative errors can be as
low as < 0.1%

5.4 Related work

Kempe et al. [68] introduced the Influence Maximization (IM) problem. In the IM
problem we want to find a subset of nodes, of a given size, that has the maximum in-
fluence over the graph. In our notation this can be defined as arg maxS:|S|=k Inf (S;V)
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Figure 5.4: Relative error for the influence estimation in AU and AD.

for a fixed positive integer k. They provided a constant approximation for both
Independent-Cascade and Linear Threshold models. They also introduced the Trigger-
ing model which is a generalization of the Independent-Cascade and Linear Threshold
models. Here, we introduce the Snapshot model, that is a generalization of Trigger-
ing model, and for which our theoretical analysis holds (see Sect. 5.2.5). Later, more
efficient algorithms for the IM problem were provided based on sampling (random
hyper-edges) [13, 120, 121]. These algorithms run in almost linear time. As men-
tioned before, our goal in this work is to efficiently estimate the targeted-influence
and not maximizing it.

More related to our work, Zhou et al. [130] introduced the constraint IM problem,
in which for a given positive integer k, a graph G = (V,E), an accessible set A ⊆
V , and a target set T ∈ V , one has to find a set S ⊆ A of size k that has the
maximum influence over the set T . The model in [130] generalized a previous model
known as personalized influence [52], where T is just a single node and A = V \ T .
The algorithm proposed for the constraint IM in [130], is essentially the standard
Monte Carlo method followed by the classic greedy algorithm. Our model/problem
substantially departs from this model since, (i) we focus on computing the (targeted)
influence for several seed and target sets query, and (ii) we consider a real-time setting
where we need to answer each query, in the query stage, as fast as possible (i.e
Õ(|S|+ |T |)). Thus, we cannot afford to run the Monte Carlo method over the entire
graph, for each query.
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In [87] Lucier et al. studied the problem of estimating the influence of a given seed
set, and proposed a parallel algorithm for this task. In contrast, our model considers
more general influence queries, where we have to find the influence of a seed set over
any other given target set. Also, we aim at algorithms that answer each influence
query in a time that is linear in the size of the query, not the size of the graph.

Cohen et al. in [29], introduced a sketch-based algorithm for computing and
maximizing the influence. Although this method can be applied for estimating the
influence of a seed set S in the network, i.e. Inf (S;V), it cannot handle online
(S;T )-queries for general target set T . This is because such sketch-based method
allows estimating the cardinalities and not the set intersections (a significantly harder
problem). A naive use of such sketches would requires storing (at the preprocessing
time) a different sketch for each possible distinct target set T , where exponentially
many of them are possible.

Other related work are Topic-Aware model IM [7], where the diffusion probabilities
can be different for different items (for each item, an Independent-Cascade model is
assumed), and the Adaptive Seeding, in which the budget for seeding the nodes is
partitioned in different stages. Recently, Subbian et al. [116], studied the problem
of finding the top-k influential nodes in graph streams. In another work, Cohen et
al. [28] considered a different influence model based on the distances in the network.
The IM problem has been also studied in continuous time diffusion models [38, 107].
In [119], Tang et al. considered a slightly different objective function, which is a linear
combination of the influence and a diversity function, with the goal of maximizing
influence and diversity of the influenced nodes at the same time.

Finally, our problem is closely related to the fundamental problems of reachability
in directed graphs (RP) [30, 65, 126] and uncertain graphs (RUP) [26, 64, 71]: In
RP, each query is a (u, v) pair of nodes, and we have to decide whether u can reach
v. The RUP problem, for each (u, v) query, asks the probability that u can reach v,
where edges can fail (i.e., be removed) with some probability.

Note that each method for RP can be extended to an approximate method for
RUP, by generating samples from the graph, and process them individually as certain
graphs. Also, note that to answer each (S;T )-query in our problem, one can naturally
applies a reachability method on each (s, t) pair, where s ∈ S and t ∈ T . However,
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this causes the processing time to be at least Ω (α · |S| · |T |), for some α that depends
on the reachability method we use. But this violates our constraint for the running
time in the query stage to be (almost) linear in size of the query, i.e, Õ (|S|+ |T |).
Another important point to note is that in most of the reachability methods, either α
is at least Ω(m), or the construction time is O(mn), where n and m are the number
of nodes and edges, respectively.

In an independent work, similar to our method [115] applied the Bloom filter
method for answering reachability queries. However, our Bloom filter method is
equipped with a hub technique that significantly improves the space needed by the
Bloom filter to obtain good results as we show in the experiments.
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Chapter 6

Conditional Influence Estimation

In this chapter, we study the problem of Conditional Influence Estimation (CIE), in
which, given a source, a partial observation, and the network topology, our goal is to
estimate the cascade size. To the best of our knowledge, this is the first time that
the problem of cascade estimation under this more realistic assumption (i.e. partial
observation) is introduced and studied, and the first work on (conditional) cascade
estimation in discrete-time setting.

We first introduce the problem of Conditional Influence Estimation (CIE), for
estimating cascade size with partial observation, in a discrete-time setting. We then
provide two algorithms based on Markov Chain Monte-Carlo (MCMC) sampling, and
show how they can improve upon the naive approach using rejection sampling.

6.1 Preliminaries and Problem Definition

In this section we provide the preliminary definitions and results, and formally define
our problem, i.e., Conditional Influence Estimation. We first start by defining the
model of cascade propagation we consider in this work, Independent-Cascade (IC) [68].

Definition 19 (Independent-Cascade (IC)). Given a graph G = (V,E) (directed
or undirected) that represents a social network, the Independent-Cascade model
assumes an activation probability function p : E → [0, 1] that assigns each edge e ∈ E
an activation probability p(e). In IC model the progression of a cascade is as follows:
when the cascade reaches (or starts) at node u ∈ V it tries, only once, to pass each
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(out-going) edge e = uv, and reach the neighbor v, with probability p(e).

Having the IC model, we now can define the influence of a source node:

Definition 20 (Influence). In a graph G = (V,E), for a node s ∈ V , let R(s) be the
(random) set of nodes in a cascade initiated at node s. The influence of s, denoted by
Inf (s), is the expected size of a cascade initiated at s, i.e., Inf (s) = E [|R(s)|]. Note
that this is similar to Definition 14 when we consider the IC model, single node seed
set, and the whole graph as the target set.

The influence of a node s in a graph G = (V,E) with activation probability
p : E → [0, 1] can be defined equivalently: Let H = (V,E) be a random subgraph of G
that is obtained by sampling each edge e with probability p(e). Now, ifRH(s) is the set
of reachable nodes from s in the subgraph H, it is easy to see that Inf (s) = EH [RH(s)]
(see [98]). When it is clear from the context, we may drop the subscript H from RH

or EH . Also, we denote this distribution over the subgraphs H ⊆ G obtained by
sampling the edges by Dp.

In this work, we study the problem of estimating the conditional influence, where
the influence/cascade is observed to have reached to a set of nodes, i.e., the only
information we have about the cascade is the source node and some of the nodes that
are in the cascade, and the goal is to estimate the average size of such cascade. The
main problem of this chapter is defined formally as follows:

Definition 21 (Conditional Influence Estimation (CIE)). Suppose G = (V,E) is
a graph, and p is its activation probability function. For a source s ∈ V and an
observed set of nodes O = {t1, . . . , tk}, the goal is to compute the expected size
of a cascade initiated at s that reaches all the nodes in O, which we call it by the
influence of s conditioned on O. The influence of s conditioned on O is denoted
by and defined as

Inf (s;O) = E [|R(s)| | O ⊆ R(s)] .

We may also call the nodes in O as terminals.

In this section, we first discuss the naive Monte Carlo method based on rejection
sampling for conditional influence estimation. We then discuss the challenges of such
approach, that motivates our Markov Chain Monte-Carlo approach (see Sect. 6.2).
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Suppose G = (V,E) is a graph with activation probability function p, and s ∈ V
and O = {t1, . . . , tk} ⊆ V . Let X be a random variable that takes positive integer
values, where

Pr [X = k] = Pr [R(s) = k | O ⊆ R(s)] . (6.1)

By the definition, E [X] = Inf (s;O). Let DX be the probability distribution of X
over positive integers. We have the following lemma:

Lemma 18. Suppose X1, . . . , X` are ` i.i.d draws from the distribution DX . Let
X̄ = X1+...+X`

`
. If ` ≥ O(log(n)/ε3), where n = |V | for ε, δ > 0 we have

Pr
[
|X̄ − Inf (s;O) | > ε · Inf (s;O)

]
< 1− δ.

Proof. See [87, Lemma 1].

Lemma 18 shows that if we have access to a sampler that can generate i.i.d draws
from the distribution DX , we would have an accurate estimator for the conditional
influence with low sample complexity. This is the case for the (unconditional) in-
fluence function [87], since we can sample random subgraphs H ∼ Dp (as described
above) via the activation probability function and get RH(s) which has the same
distribution as R(s). However, for the conditional influence function, after sampling
each random subgraph H we only can pick |RH(s)| if O ⊆ RH(s), i.e., we apply re-
jection sampling. This becomes problematic when Pr [O ⊆ RH(s)] is a very small
quantity, and makes the rejection sampling impractical. In practice, this is the case,
and in Section 6.2 we develop methods to circumvent this issue, using Markov Chain
Monte-Carlo sampling techniques.

Definition 22 (Conditional Distribution). We call the distribution defined by (6.1)
the conditional distribution. Note that the goal is to design efficient sampler from
the conditional distribution, as we later can apply the result from Lemma 18 to get
accurate estimates.

6.2 Algorithms

In this section we provide two methods for sampling from the conditional distribu-
tion. As mentioned in Section 6.1, our goal is to design efficient samplers from the
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conditional distribution, which would enable us to have an accurate estimator (see
Lemma 18). Here we provide two sampling techniques both based on the MCMC
method: Maci, and Maci-Hybrid.

6.2.1 First Approach

Our first MCMC based algorithm for estimating the conditional influence function,
Maci, is presented in Algorithm 7. In Maci, CH(s,O) denotes the set of edges in H
such that, by removing any edge in CH(s,O), at least one node in O is not reachable
from s using the edges in H. We also call CH(s,O) the set of (s,O)-cut-edges in H.
Maci is consist of τ rounds of sampling an edge e ∈ E uniformly at random, and if
e 6∈ CH(s,O) we keep or add e to H with probability p(e). It then returns the size
of the number of reachable nodes from s in the current H, as a random draw from
the conditional distribution. We can efficiently find the set of (s,O)-cut-edges (see
Algorithm 8).

Note that in order to compare Maci to the rejection sampling we need to compare
the expected number of steps that each method takes to generate a sample, i.e., to
generate a valid sample in rejection sampling and the mixing time in Maci. There
are examples in which the rejection sampling takes exponential steps between valid
samples but Maci takes only (almost) linear time. In Figure 6.1, the rejection sam-
pling takes O

((
1

(1−(1−p)2)

)m/2
)
as it needs to pick at least one edge from each ring.

However, Maci takes O(m log(m/ε)) number steps: consider the following coupling
technique where for two states H and H ′ (where both are just subsets of edges) will
always pick the same edge; however for each chain an edge is removed only when it
does not disconnect the source node s from any terminal. It is easy to see that two
chains take (1) constant time to couple inside each loop (2) O(m log(m/ε)) time to
choose all the loops.
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Algorithm 7: Maci
input : Graph G = (V,E), source node s ∈ V , observation set

O = {t1, . . . , tk} ⊆ V , and positive integer τ (for mixing time).
output: A random draw from the distribution defined in (6.1).

1 H ← G

2 if O 6⊆ RH(s) then . check for zero influence
3 return −1
4 end
5 for i← 1 to τ do
6 e← choose an edge uniformly at random from E

7 if e 6∈ CH(s,O) then . making sure the edge can be flipped
8 α← Unif(0, 1)
9 if α < p(e) then

10 H ← H ∪ {e}
11 end
12 else
13 H ← H \ {e}
14 end
15 end
16 end
17 return |RH(s)|
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Algorithm 8: Finding (s,O)-cut-edges
input : Graph H = (V,E ′), source node s ∈ V , observation set

O = {t1, . . . , tk} ⊆ V .
output: The set of (s,O)-cut-edges, denoted by CH(s,O)

1 R← RH(s) . the set of reachable nodes from s in H
2 for t ∈ O do
3 Ct ← ∅
4 P ← any path from s to t . Note CH(s,O) ⊆ P

5 n← {t} . Super node
6 while s 6∈ n do
7 uv ← the edge on P connected to n for some v ∈ n
8 N− ← the set of incoming edges to n from the nodes in R
9 if N− = {uv} then

10 Ct ← Ct ∪ {uv}
11 n← n ∪ {u}: contract uv to the super node
12 remove self-loops at n
13 end
14 else
15 if ∃u′v′ ∈ N− that u′ 6∈ P then
16 n← n ∪ {u′}: contract u′v′ to the super node
17 remove self-loops at n
18 end
19 else
20 n← n ∪ {u}: contract uv to the super node . Note uv ∈ P
21 remove self-loops at n
22 end
23 end
24 end
25 CH(s,O)← CH(s,O) ∪ Ct
26 end
27 CH(s,O)← ∅
28 return CH(s,O)
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Figure 6.1: Here O = {t}

6.2.2 Second Approach

The main idea behind this approach is to first sample some paths from the source
to all the terminals, so that the connectivity condition is satisfied, and then sample
the rest of the edges. We call this method Maci-Hybrid as it is built on two
MCMC methods attached together. In this section, for simplicity we assume that the
activation probability function is a constant function, i.e., p(e) = p for all edges in G.
The arguments can be modified for the general case.

In order to define Maci-Hybrid formally we need some notations: If H ⊆ G,
Ni(H) denotes the number of paths from s to ti using only the edges in H, and
N(H) = N1(H)×· · ·×Nk(H), assuming the obervation set O has k terminals. Also,
let m(H) denote the number of edges in H. Note that in order to sample a graph H
from the conditional distribution, the probability of picking H should be proportional
to pm(H) · (1− p)m−m(H).

Maci-Hybrid traverses a Markov chain M2 = (Ω, P ) where: (1) each state in Ω
is a subgraph H ⊆ G (with the same set of vertices) in which s reaches all the nodes
in O, and (2) Each state H is connected to all the other states, and makes jump by
first choosing a state H ′ with probability q(H ′), where q(H ′) ∝ N(H ′) · pm(H′)(1 −
p)m−m(H′), and jumps with probability

P (H,H ′) = min
{

1, q(H) · pm(H′)(1− p)m−m(H′)

q(H ′) · pm(H)(1− p)m−m(H)

}
= min

{
1, N(H)
N(H ′)

}
,

and a self-loop otherwise. Note that this is just the Metropolis-Hastings algorithm
for sampling the subgraphs according to the conditional distribution (see [92]). So
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the main challenge is to sample a random state H ′ with probability q(H ′), in order
to implement the jumps in M2. To do so, we will utilize another MCMC sampler.

Now, let Pi be the set of all paths from s to ti in graph G, and Q(i1, . . . , ik) be a
set of edges that is obtained by picking the ij-th path from Pj. Note that these paths
are not necessarily disjoint. The algorithm for sampling subgraphs according to the
probability function q is presented in Algorithm 9, which is based on Sample-Paths

procedure that samples aQ = Q(i1, . . . , ik) proportional to p|Q|. We have the following
theorem:

Theorem 18. A subgraph H returned by Algorithm 9 is sampled with probability
q(H).

Proof. Note that there areN(H) number of (i1, . . . , ik) vectors such thatQ(i1, . . . , ik) ⊆
H. Therefore, the probability of outputting a specific H is

1
Z

∑
Q

p|Q|pm(H)−|Q|(1− p)m−m(H) = pm(H)(1− p)m−m(H)
(
N(H)
Z

)

∝ N(H) · pm(H)(1− p)m−m(H),

for a normalizing factor Z, and thus, it is equal to q(H).

Algorithm 9: Sampling H with q(H)
input : Graph G = (V,E), source node s ∈ V , observation set

O = {t1, . . . , tk} ⊆ V .
output: A random subgraph H sampled with probability q(H).

1 H = Sample-Paths(G, s,O)
2 for e ∈ E \Q do
3 α← Unif(0, 1)
4 if α < p(e) then
5 H ← H ∪ {e}
6 end
7 end
8 return H

The Sample-Paths algorithm is an MCMC based procedure and provided in Al-
gorithm 10, and we have the following theorem:
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Theorem 19. The Sample-Paths algorithm samples a Q = Q(i1, . . . , ik) with prob-
ability proportional to p|Q|.

Proof. Algorithm 10 implements the Metropolis-Hastings algorithm and its stationary
distribution is the distribution we want to sample from.

Algorithm 10: Sampling Q(i1, . . . , ik)
input : Graph G = (V,E), source node s ∈ V , observation set

O = {t1, . . . , tk} ⊆ V , and mixing time τ .
output: Q = Q(i1, . . . , ik) sampled with probability ∝ p|Q|.

1 Q← ∅
2 for i← 1 to k do
3 Qi ← a path (as a set of edges) from s to ti chosen uniformly at random

from Pi

4 Q← Q ∪Qi

5 end
6 for j ← 1 to τ do
7 Q′ ← ∅
8 for i← 1 to k do
9 Qi ← a path (as a set of edges) from s to ti chosen uniformly at random

from Pi

10 Q′ ← Q′ ∪Qi

11 end
12 α← Unif(0, 1)

13 if α < min
{

1, p|Q
′|

p|Q|

}
then

14 Q← Q′

15 end
16 end
17 return Q

Since the in the Markov chains of Maci and Sample-Paths all the states are
connected (complete graph), applying the coupling technique (simply choosing the
same states at each time) we have:

• The mixing time for Sample-Paths is at most τ if maxQ,Q′ p|Q
′|−|Q| < τ , where
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the maximum is over any pair of states Q and Q′.

• The mixing time for Maci-Hybrid is at most τ if maxH,H′ N(H)
N(H′) < τ .

Therefore, if both of the above conditions hold for a small τ , Maci-Hybrid has a
small mixing time.

Finally, Figure 6.2 shows an example for which Maci takes exponential mixing
time, as it has to include both paths in order to be able to remove any of (s,O)-cut-
edges (and rejection sampling takes exponential number of steps to generate a valid
sample), whereas Maci-Hybrid takes only constant mixing time (since each path
can be picked with probability at least 0.5 at each step).

s

t

s

t
Figure 6.2: Here O = {t}

6.3 Related Work

In this section, we provide an overview of the related works and topics. We first
review the works in influence estimation and maximization. Next, we talk about the
studies in estimating the size of a cascade. We then conclude this section with an
overview of the work in finding the source(s) of a cascade.

Influence Estimation and Maximization. The Influence Maximization (IM)
problem, whose goal is to find a subset of nodes, of a given size, with maximum influ-
ence was introduced in [68]. They provided a Monte-Carlo method for estimating and
a constant approximation for maximizing the influence. Later, more efficient algo-
rithms for estimation and maximizing the influence were provided based on Reverse
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Reachable Sets (or Hyper-Edges) [13, 120, 121], or using sketches [29]. Also, in [87]
a parallel algorithm for estimating the influence function was provided. There have
been numerous variations of the IM problem, such as Topic-Aware model [7], Adap-
tive Seeding [110], streaming model [116], Distance-Based Influence [28], Continuous
Time Diffusion [38, 107], or combination with Diversity function [119]. As mentioned
before, in this work we consider the problem of estimating the influence of a source
node conditioned on the event that it has influenced a given group of observed nodes,
and the previous sampling techniques cannot be applied to our problem (CIE). Also
note that, CIE deals with estimation and not maximization of the influence.

Cascade Size Estimation. The problem of Cascade Size Estimation has been
studied in the context of content popularity, such as number of likes, reshares or
views of a content in a social network or on a website. By applying point process
models [44, 113, 129] studied the problem of predicting the final number of reshares
(e.g. retweets) in online social networks, and [118] considers the number of views a a
video receives on YouTube1 or the number of votes a story gets on Digg.2 The content
popularity has been studied as a regression problem using feature-based methods to
predict the popularity of memes [124], news articles [9, 70], and number of retweets
in [77]. It also has been studied as a classification problem where the goal is to predict
whether or not a content reaches a popularity threshold [9, 25, 53]. There have been
some work to compute the probability of a content being boosted (such as being
liked, reshared) in social media, that do not consider the final cascade size [2, 95,
102, 117, 128]. The most significant difference between our model and the previously
studied models in the context of content popularity is that we assume we only have
a limited observation of the cascade (a “given” subset of affected/infected nodes in
the cascade), where the previous works assume that we have access to the full history
of the cascade up to the current point. We also assume a discrete-time setting, and
fully incorporate the underlying graph structure of the social network.

Lastly, there have been many studies on spotting the source(s) of a cascade [3,
24, 63, 78, 85, 103, 111] which is not directly related to this work, as we are given
the source and part of the cascade, and the goal is to estimate the cascade size by

1www.youtube.com
2www.digg.com
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computing the conditional influence of the source.
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