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We explore the role of software assistance in native language targeted second language

education. Beginning with the classification task of determining an author’s native

language from second language text, we demonstrate the use of Tree Substitution

Grammar fragments as an effectively discriminative class of features. We contrast

the use of several syntactic analyses of second language text as well as different meth-

ods for feature selection through grammar induction. We move on to investigate the

data driven formulation of hypotheses for syntactic language transfer, which refers

to the preferential use of second language syntax that mirrors an author’s native

language. Our methodology produces a ranked and filtered list of hypotheses that

provides compelling evidence for several examples of language transfer, and is easily

augmented as more data becomes available. We conclude with a novel system for

language generation in educational applications that incorporates the inherent vo-

cabulary based constraints of the domain. While these constraints are easily handled

with rejection sampling, this becomes inefficient as the amount of training data in-

creases. To combat this, we show sampling algorithms for context free languages that

avoid rejection, sampling directly from the acceptable outputs with tight approxima-

tion. Our work facilitates the construction of systems to both enhance the quality

of second language education through awareness of students’ native languages and

reduce the effort required to create language education exercises.
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Chapter 1

Introduction

As the world becomes more and more technologically fluent, there is a growing

opportunity for occupation targeted software. Such software typically automates

tasks that are repetitive or unnecessarily time consuming, such as simple error-free

tabulation and calculation with spreadsheet software. In other cases, the use of

computation opens up completely new aspects of a profession that would be unfeasible

otherwise, with examples like data-journalism or high frequency stock trading.

The goal of this thesis is to develop the interaction between software and the

profession of second language education. While second language education is already

no stranger to software assistance, we hypothesize its role in two deeply connected

and under-explored areas. The first is native language targeted instruction, taking

into account the norms of a student’s native language when providing second language

instruction. The second is automatic generation of language education exercises or

exams while obeying the constraints of the students’ vocabulary.

To see our vision by example, consider a semi-fictional character named Ross, a

22 year old young man living in the city of Boston. Ross has recently earned his

undergraduate degree in Philosophy and is saving money to take a long international

trip, for which purpose he gets a job as a teacher at one of the many English as a

1
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Second Language (ESL) schools in Boston. As a native English speaker with a de-

gree from Dartmouth this is not a difficult job to get, but Ross’s true interests lie in

athletic running and his plans for law school in the future. As such, he rarely musters

the motivation or ability to prepare classroom activities or assignments beyond those

contained in the text book. He is assigned two daily classes, an afternoon class of

students from Korea and an evening class for adults from Brazil. Using a system

with the components that we develop here, Ross could be equipped with extra in-

class exercises and homework, with minimal effort on his part outside the classroom.

Moreover, the exercises for each class could be made distinct, using sentences that

highlight grammatical structure tailored directly to the students’ different native lan-

guage backgrounds. The students get a better education, the school is able to hire

unexperienced teachers, and Ross is able to devote more time to his interests without

sacrificing the quality of his work.

Native language targeted instruction has been extensively shown to be beneficial

to student performance in language education. An example of recent work is Laufer

and Girsai (2008), who conducted a comparative study of three modes of instruction

for English as a second language students whose native language is Hebrew. The

first instruction technique group engaged in reading comprehension exercises. The

second group conducted classroom activities directly focused on specific vocabulary

and phrases in the text, but with only English examples. The third group was given

instruction that explicitly discussed differences between phrases found in the English

text (e.g. “hit the headlines”) with their Hebrew equivalents (“break into headlines”).

Finally the three groups were evaluated on their ability to translate relevant phrases to

and from English. While it is not surprising that the reading comprehension technique

was least effective, the significant difference in exam scores between the second and

third groups is an excellent example of the real potential of native language targeted
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instruction.

Software is already a common source of language education exercises, both as a

supplement to traditional course material and as fully automatic courses, such as

Rosetta Stone and DuoLingo. Existing examples are often some computerized ver-

sion of flash cards, simple questions with a single right answer. Most systems take

advantage of the benefits of automatic student profiles, recycling questions that the

student has shown difficulty with and removing questions the student regularly an-

swers correctly. This also allows aggregation of profiles across a classroom, letting the

teacher compose lesson plans in reaction to the needs of the class. There is also an

active academic community devoted to the construction and evaluation of this sort of

software, with several yearly conferences and journals that use the name Computa-

tionally Assisted Language Learning, or CALL. The results of CALL research leave

little reason for language education not to be based in a software platform, besides

lack of computational resources or existence of the proper software.

We facilitate these educational techniques in the methods and software presented

here, with the automation of two key components as our main contributions. The first

component is the data driven identification of linguistic structures with connection to

particular L1 backgrounds, providing content for instruction. While there are many

possibilities here, we focus on language transfer, in which a student chooses some

mode of second language expression that is familiar to them in their native tongue

(Lado (1957)). This has been studied extensively by the linguistics community, with

primary attention given to the use of direct translations of words or collocations.

We investigate syntactic language transfer behavior, using rich representations that

not only captures language transfer in an interpretable form but can also be used in

familiar generative language models.

The second component of the education process that we seek to automate is
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the construction of classroom exercises, which at best requires specialized training

in second language education and at least a significant time commitment on the

part of the instructor. We investigate systems that learn generative models of text

from large amounts of data and can effectively generalize to novel correct sentences.

While generative language models are nothing new, our education setting of language

education provides an inherent vocabulary constraint that has not been addressed in

previous work. We show how to efficiently generate text under the constraint that

all words are in a given vocabulary, and also allow specification of a target word or

structure to be featured in the sentence.

This thesis is presented in three main sections. The first is concerned with the

task of Native Language Identification (NLI), a well studied classification problem

in which an author’s native language is predicted from second language text. While

not essential to our primary goal, this puts our work in the context of a the current

research community as NLI is frequently motivated by its ability to detect language

transfer phenomena. Also, unlike the pure proposal of language transfer hypotheses

which has no labeled data for evaluation, NLI is a straightforward classification task,

allowing comparison between different feature sets and representations of the data.

The real purpose of this digression in the larger context of this work is to provide

evidence for our extensive use of Tree Substitution Grammar (TSG) fragments as a

representation of the language transfer signal in later sections, and to provide their

necessary background information.

In the second section we address the data driven construction of language transfer

hypotheses, both from monoligual second language data and the combination of both

second and native language data. We argue that while they are deeply connected,

the use of classification algorithms and their common notions of relevancy are in fact

inappropriate for our purposes. In our monolingual experiments, we propose several
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intuitive measures of what is actually desired, and find automatic metrics that better

mirror these properties. Using these efficient metrics, we compose a fully universal

representation of text across three native languages (German, French, and Spanish)

and the common second language of English, and produce a ranked list of language

transfer hypotheses. The top ranked items, discussed at length in this document, are

compelling cases of language transfer, and our methods are easily extended to larger

amounts of data that are rapidly becoming available.

The third section is concerned with the generation of educational exercises. While

Natural Language Generation is most commonly associated with communicative goals,

or “what to say”, we focus on the constraints of word inclusion that are implicit in lan-

guage education. The first constraint is vocabulary based, ensuring that the output

contains only words from a fixed user specified list. We then extend this constraint

with a generation system that ensures a particular word appears in the output sen-

tence. Our intended application would be to aid a teacher in composition of materials

such as “translate this sentence” test questions. Our system can provide a teacher

in such a situation with several candidate sentences that feature any given vocabu-

lary word from the current section of their syllabus, containing only words that the

teacher can be sure the students have covered and can be expected to translate. Our

basic approach is that of context free language generation, which can handle both

constraints through rejection sampling. For a highly accurate system with wide cov-

erage, we propose that a large amount of context is necessary, which in turn requires

large amounts of data to avoid sparsity in estimates of probabilistic models. With

large enough training data sets, rejection sampling becomes unacceptably slow, and

our primary contributions in this section are alternative sampling algorithms that

closely approximate the behavior of the theoretically sound but inefficient rejection

sampler solutions.



6

We take the reproducibility of our work as a high priority, releasing the relevant

code for each component of this thesis. For our NLI experiments our code can be used

for the classification of arbitrary labeled text data using Tree Substitution Grammar

rules as features1. This code handles parsing of the data, TSG induction, and various

forms of evaluation including cross validation and an API for prediction in down-

stream applications. For data driven language transfer hypothesis formulation, our

code performs the full pipeline of operations, producing a LATEXdocument containing

the full ranked list along with the necessary empirical information to make a full

assessment of each item2. The TSG induction component can be downloaded sepa-

rately, and has several capabilities not featured in this work, such as semi-supervised

learning3. We also release our ranked list of language transfer hypotheses based on

the data available at this time4. Our generation system takes raw text as input and

produces serialized models with an API for generation under user provided vocabu-

lary constraints.5 This software is written in Scala, making its API directly available

in Java, with an additional pure Javascript frontend for the generation package to

facilitate its use in web based educational applications.

1www.cs.brown.edu/people/chonger/fragalyzer.html
2www.cs.brown.edu/people/chonger/LTAnalyzer.html
3www.cs.brown.edu/people/chonger/enbuske.html
4bllip.cs.brown.edu/download/interlanguage corpus.pdf
5www.cs.brown.edu/people/chonger/babbler.html



Chapter 2

Native Language Identification

The corpus linguistics approach to formulating language transfer hypotheses is

often (Jarvis et al. (2012), Tetreault et al. (2013)) approached via the related task of

Native Language Identification (NLI), the straightforward multi-label classification

task of predicting an author’s native language (L1) from second language (L2) text.

In this chapter we discuss NLI independent of our larger goal of L1 targeted language

education, as we will argue in later sections that in fact such NLI based techniques

are not ideal. Our motivation for this initial digression is primarily to demonstrate

Tree Substitution Grammar (TSG) fragments as a class of features that effectively

captures the signal that disambiguates L2 text by L1, and to contrast the options

available when using TSG fragments as a feature representation of text.

In our experiments we first contrast two popular TSG induction methods, the

first using a Bayesian nonparametric model (Cohn and Blunsom (2010a)), and the

second inspired by tree kernel methods (Sangati and Zuidema (2011)). Next, we fix

our induction algorithm and investigate the use of various syntactic analyses of the L2

text including dependency syntax, unsupervised latent symbol classes (Petrov et al.

(2006)), and heuristic annotations.

7
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ROOT
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Figure 2.1: Fragments from a Tree Substitution Grammar capable of deriving the
sentences “George hates broccoli” and “George hates shoes”.

2.1 Tree Substitution Grammars

Tree Substitution Grammars are similar to Context Free Grammars, differing in

that they allow rewrite rules of arbitrary parse tree structure with any number of

nonterminal or terminal leaves. We adopt the term fragment, as opposed to elemen-

tary tree as is often used in related work, to refer to TSG rules as they are easily

visualized as fragments of a complete parse tree (see Figure 2.1). We will also often

refer to the root node of a fragment, which is its topmost node but is not necessary

labeled with the symbol ROOT.

TSGs follow the traditional grammatical formalism of tree generation, beginning

with a ROOT nonterminal leaf node and recursively substituting leaf nonterminals

with fragments whose root symbol matches the leaf’s symbol. A tree’s derivation

is the ordered list of the fragments used to construct it. As shown in Figure 2.2, a

derivation can itself be visualized as a tree, with fragments as nodes.

One inherent difficulty in the use of TSGs is in controlling the number of fragments

in grammars automatically induced from data. Given a training corpus of constituent

parse trees such as the Penn Treebank, TSG induction must allow the potential

inclusion of any fragment of any tree in the corpus, which with a reasonably large

amount of data quickly becomes difficult to do efficiently.
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inclusion of any fragment of any tree in the corpus, which with any reasonable amount

of data quickly becomes difficult to efficiently enumerate.

When automatically induced TSGs were first proposed by Bod (1992), this prob-

lem of grammar induction was tackled with random selection of fragments or weak

constraints, leading to massive grammars. A more principled technique is to use

a Dirichlet process prior to model the large multinomials requireds, explicity rep-

resenting only the most important fragments and backing off to a vague prior over

1As opposed to elementary tree, often used in related work
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Figure 2.2: A parse tree (left) and its derivation (right) using three fragments from the
TSG in Figure 2.1. The act of rewriting a nonterminal, also known as substitution,
is indicated by arrows in the derivation.

When automatically induced TSGs were first proposed by Bod (1992), this prob-

lem of grammar induction was tackled with random selection of fragments or weak

constraints, leading to massive grammars. A more principled technique is to use

a Dirichlet process prior to model the large multinomials requireds, explicity rep-

resenting only the most important fragments and backing off to a vague prior over

the remainder of fragments, as presented by Cohn and Blunsom (2010b) and Post

and Gildea (2009). They provide a local Gibbs sampling algorithm, and Cohn and

Blunsom (2010a) later developed a block sampling algorithm with better convergence

behavior. While the grammars produced by this Bayesian method fall slightly short

of state of the art parsing results, they have achieved state of the art results for un-

supervised grammar induction (Blunsom and Cohn (2010)) and have been extended

to synchronous grammars for use in sentence compression (Yamangil and Shieber

(2010)). A few years after the initial presentation of this method for TSG induction,

state of the art parsing was achieved in combination with latent symbol classes in

Shindo et al. (2012).
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Figure 2.2: The graphical model for a Bayesian Nonparametric Tree Substitution
Grammar

which has the following generative story

Gs ∼ DP (αs, P
s
0 )

eij ∼ GS(eij)

with deterministic generation of a tree t from its derivation e. P s
0 is a vague base

distrubution over TSG fragments, most clearly defined by its own generative process.

P s
0 generates a TSG fragment in nearly the same manner as a CFG, using s as

its initial nonterminal leaf and recursively rewriting nonterminal leaves. It differs

from a CFG only in that when it is about to expand a nonterminal with symbol x,

with probability βx the symbol is not expanded and left as a substitution site in the

resulting TSG fragment. Using the CFG parameters from the maximum likelihood

estimate on the training data, P s
0 can generate any TSG fragment rooted at s that

might be used in a derivation for that data set. The notation S provides a function

that maps a fragment to its root node symbol.

Learning a TSG from data, a process known as grammar induction, can be done

β

P0

S N

Figure 2.3: The graphical model for a Bayesian Nonparametric Tree Substitution
Grammar

In another thread of research on TSG induction, Sangati and Zuidema (2011)

presented an elegantly simple heuristic inspired by tree kernels that they call Double-

DOP. They showed that manageable grammar sizes can be obtained from a corpus

the size of the Penn Treebank by recording all fragments that occur at least twice in

the data set. Using an additional heuristic to provide a distribution over fragments,

DoubleDOP achieved the state of the art for TSG parsing at the time, competing

closely with the absolute best results set by refinement based parsers.

2.1.1 Bayesian TSG Induction

Nonparametric Bayesian models can represent distributions of unbounded size

using a dynamic parameter set that grows with the training data. Bayesian TSG

induction represents the probability of the fragments that might rewrite a node as

an infinite multinomial with a Dirichlet Process prior. Learning is performed with

MCMC, sampling the TSG derivations of a provided Penn Treebank style corpus.

The simplest graphical model for this induction algorithm is shown in Figure 2.3,
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which has the generative story

Gs ∼ DP (αs, P
s
0 ) (2.1)

ei ∼ G (2.2)

ei → ti (2.3)

with deterministic generation of a tree ti from its derivation ei. The generative

process of the grammatical formalism is referenced in Equation 2.2, referring to the

production of a single derivation ei and requiring a variable number of draws from

the ensemble of Gs’s, denoted with G.

To make the generative process of a derivation ei a bit more explicit, assume we

are using the nonterminal symbol set of the Penn Treebank. Under this formalism,

we begin with a node labeled ROOT and sample the first TSG fragment from GROOT ,

a distribution over fragments rooted at the ROOT symbol. The sampled fragment

determines which samples we take next; if we generate a simple CFG rule such as

ROOT → NP V P then we take our next sample from GNP , substituting it for the

new NP nonterminal leaf. If on the other hand we sample a full parse tree fragment

with no nonterminal leaves then the sampling of ei is complete and no further samples

are required.

In these equations P s
0 is a vague base distrubution over TSG fragments, most

clearly defined by its own generative process. P s
0 generates a TSG fragment in nearly

the same manner as a CFG, using s as its root nonterminal symbol and recursively

expanding nonterminal leaves. It differs from a CFG in that when it is about to

expand a nonterminal with symbol x, with probability βx the symbol is not expanded

and left as a substitution site in the resulting TSG fragment. Using the CFG rules

and parameters from the maximum likelihood estimate on the training data, P s
0 can



12

generate any TSG fragment rooted at s that might be used in a derivation for any

tree in the data set.

Learning a Bayesian TSG from data, a process known as grammar induction, is

done with sampling as variational inference approaches have yet to be developed.

While initial work such as Cohn and Blunsom (2010b) used a Gibbs sampler, the

Metropolis-Hastings (MH) blocked sampler of Cohn and Blunsom (2010a) is superior

and we use it exclusively in this work. This algorithm integrates out the Dirichlet

Processes G and iteratively resamples each ei, with a proposal distribution that is so

close to the true distribution that the acceptance rate is nearly 100%. .

First, we describe the calculation of p(ei|e−i,α,P0, ti), the true sampling distri-

bution where α and P0 refer to the collection over all s of αs and P s
0 , and e−i is

the set of sampled derivations for all other trees in the dataset. In order to use the

MH algorithm, we must be able to evaluate this probability up to a normalization

constant for any derivation ei, although we do not need to be able to sample from it.

Note that due to the deterministic link between ei and ti,

p(ei|e−i,α,P0, ti) ∝ p(ei|e−i,α,P0) (2.4)

if ei derives ti and zero otherwise, with the missing normalization constant equal

to the sum of the probabilities of all possible derivations of ti. Assuming we will

only propose derivations that are actually possible, this means only a derivation’s

generative probability is necessary in MH sampling.

In general terms, a derivation is a sequence of draws from a Dirichlet Process (DP).

The probability of a sequence of n draws from a DP with concentration parameter

α and base distribution H is well defined, with the probability of the ith draw being

Xi given as
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P (Xi|X(0,...,i−1), α,H) =
#(Xi ∈ X(0,...,i−1)) + αH(Xi)

|X(0,...,i−1)|+ α
(2.5)

where #(Xi ∈ X(0,...,i−1)) is the number of times Xi appears in the histogram of pre-

vious draws, X(0,...,i−1). Due to the exchangability of draws from a Dirichlet Process,

the joint probability of any set of items can be computed iteratively in any order,

updating X(0,...,i−1) with each draw. For TSGs, the probability p(ei|e−i,α,P0) can

therefore be calculated by initializing the histograms X(0,...,i−1) for each Gs with the

appropriate elements of e−i, and multiplying together the probabilities of drawing

each fragment needed for ei, updating the DPs’ histograms with each draw.

We now describe the proposal distribution q of Cohn and Blunsom (2010a), for

which we must not only be able to evaluate q(ei|e−i,α,P0, ti), but also sample from

it. We will refer to the histogram created when initializing the DP Gs from e−i as

its cache, and denote it with the variable Cs. To sample a fragment eij to expand

a symbol s where Cs has n unique members we sample a multinomial with n + 1

options. The first n outcomes correspond to the choice of one of the existing cache

members e, and have probability

caches(e) =
#(e ∈ Cs)
|Cs|+ αs

(2.6)

The final option corresponds to the decision to sample a TSG fragment from the

base distribution P s
0 , and is chosen with the remaining probability

bases =
αs

|Cs|+ αs
(2.7)

If we choose this outcome, then a TSG fragment is sampled using the generative

model of P s
0 described above. This means that the actual probability of a single

fragment e given a node to expand with symbol s is
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qs(e) = caches(e) + basesP
s
0 (e) =

#(e ∈ Cs) + αsP
s
0 (e)

|Cs|+ αs
(2.8)

A full derivation’s generative probability is simply

q(ei|e−i,α,P0) =
J∏
j=0

qs(eij) (2.9)

where the derivation ei contains J fragments and eij is the jth fragment of derivation

ei. As in the case of the true distribution, as long as ei derives ti this generative prob-

ability is directly proportional to the probability q(ei|e−i,α,P0, ti) and is sufficient

to evaluate it in MH sampling.

This distribution q over fragments is nearly identical to the incremental distribu-

tion provided by the Dirichlet Processes in the true model (Equation 2.5), with the

crucial difference that q is not a stochastic process and so the distribution remains

constant as samples are drawn. Intuitively, it is like freezing the state of the Dirichlet

Processes after drawing e−i and using its posterior for all draws in as if they were the

very next draw after observing e−i. In the true model, if any of the fragments in ei

share the same root nonterminal s, then their joint probability will be slightly differ-

ent than that provided by q as #(e ∈ Cs) and |Cs| will be off by some small integer.

However, with large training data this small integer difference will have negligible

effect, resulting in a very tight approximation and a high acceptance rate when used

in MH.

The final step is to show how to sample a derivation ei using the proposal distribu-

tion q. The derivation ei is sampled recursively, beginning at the root node of ti. Cohn

and Blunsom (2010a) contains a thorough explanation of one implementation that

uses a variant of the Goodman transform (Goodman (1999)). This method encodes

the decisions made by q in a CFG, allowing straightforward application of the Inside
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Outside algorithm (equivalent to the sum product algorithm) and top down sampling

of a CFG derivation that is isomorphic to a derivation of TSG fragments. For the

sake of variety, we provide a different but theoretically equivalent implementation but

do not claim one method’s superiority over the other. The only true difference is that

their use of the Goodman transform compresses TSG fragments that share common

subtrees bottom up, while ours recognizes TSG fragments in a top down manner,

compressing common paths from the root of a fragment downward.

In order to sample a derivation from q, we must compute inside probabilities that

can be locally normalized across a finite set of options. The term inside probability

here refers to the probability of generating the entire observed subtree from a given

node, given that the algorithm is in some state at the time. The first inside probability

that we need for each node n is the probability of its subtree given that it is used

as a substitution site, which we will call I(n). The second inside probability that we

require is the probability of generating a subtree from n given that the immediate

children of n are generated by a draw from the CFG in P0, which we will call I∗(n).

As with traditional inside probabilities, these quantities can be computed bottom

up, which is to say that to calculate I(n) and I∗(n) for a node n, we assume the

cached calculation of these quantities for all descendants of n. Let CFG(r) refer to

the CFG probability for some rule r used in all of the P s
0 , and let rn be the CFG rule

that expands n in the CFG derivation of ti. First, we calculate I∗(n) with

I∗(n) = CFG(rn)
∏

c∈child(n)

(
I(c)βc + (1− βc)I∗(c)

)
(2.10)

where child(n) gives the immediate child nodes of n. This records the probability of

choosing the next CFG rule and then for each child node either continuing to use P0

to derive the subtree with probability (1− βc) or treating the child as a substitution

site with probability βc.
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In order to calculate I(n), we need to consider each outcome of the multinomial

with probabilities defined in Equations 2.6 and 2.7. First, for any of the cached

outcomes associated with Equation 2.6, we need to know if the cached fragment e is

consistent with the tree structure that begins at n. Another way to put this is that

we need to know if a fragment e overlays the tree when its root is placed at n.

To perform this subroutine, we use an efficient data structure that returns On, the

subset of Cs that overlays the tree from n. This data structure can be described as

a prefix tree over tree structures, extending the classic prefix tree over strings. The

intution behind its use lies in eliminating repeated work when checking for overlays

against a cache of fragments, assuming that overlays are checked in an incremental

top down manner. As we check each CFG rule that composes a TSG fragment, we

evaluate any rooted fragment subtree only once and recursively return the sucessful

overlays. For each fragment that does overlay, the data structure also efficiently

returns leaves(n, e), the nodes in ti where the nonterminal leaves of e overlay. The

contribution to I(n) of choosing one of the possible members of On is

Icache(n) =
∑
e∈On

caches(e)
∏

c∈leaves(n,e)
I(c) (2.11)

The other option, corresponding to the outcome with probability defined in Equation

2.7, occurs when we decide to generate the immediate children of n with P s
0 . This

gives the full formula as

I(n) = Icache(n) + basesI
∗(n) (2.12)

With these inside probabilities calculated for all nodes in the tree ti, we can easily

sample a derivation tree ei topdown. This is done with an algorithm that has two

modes, the first of which occurs at nodes that are substitution sites in the derivation.



17

This set includes the root node of ti, and so this is the initial mode of the sampling

algorithm. In this mode, there is one sampling option corresponding to the choice of

a fragment e from On, with probability proportional to

caches(e)
∏

c∈leaves(n,e)
I(c) (2.13)

and one option corresponding to the use of P s
0 with probability proportional to

basesI
∗(n). This finite set of values can be locally normalized and a decision sampled.

If a member of On is chosen, then we remain in this first mode and recurse to the

members of leaves(n, e). If the basesI
∗(n) option is chosen, however, we enter the

second mode. In this mode, we are building a potentially novel fragment by tacking

CFG rules on incrementally. We maintain this growing fragment as we recursively add

the current node’s CFG expansion, and then for each child with symbol x we sample

a Bernoulli with parameter βx. If we get one, we stop growing our new fragment

which makes the child node a substitution site and so we return to the first mode to

choose its expansion. If we get zero, then we simply recurse to this child in mode

two.

2.1.2 DoubleDOP Induction

DoubleDOP (Sangati and Zuidema (2011)) uses a simple but effective heuristic

inspired by tree kernels, which are commonly used to measure similarity between two

parse trees by counting the number of fragments that they share. DoubleDOP uses

the same underlying technique, but records a subset of the shared fragments instead

of counting them, yielding a set of fragments where each member is guaranteed to

appear at least twice in the training set. This guarantee that a fragment appears

in at least two trees gives this induction method its name, along with DOP which

is borrowed from the term “Data Oriented Parsing” used to describe TSGs in early
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work such as Bod (1992).

The fragment extraction algorithm for two trees with n and m nonterminal nodes

respectively can be implemented with a n × m ternary valued chart. Initally, each

cell is empty, and in the first pass a cell ij is marked if node i in the first tree has

the same symbol as node j in the second. Now considering only these marked cells, a

cell ij is doubly marked if the ordered list of child symbols of node i in the first tree

and node j in the second also matches. Finally, each doubly marked cell is visited

and used as the root of an extracted fragment.

Note that any shared fragment consisting of more than one CFG rule implies

multiple other smaller shared fragments. In order to rein in this redundancy, Dou-

bleDOP records only maximal shared fragments, those that are not contained within

some larger shared fragment. This can be calculated efficiently by visiting the dou-

bly marked cells in order of increasing row and column index. Each time a doubly

marked node is visited, DoubleDOP traverses the maximal shared fragment beneath

it by checking the cells corresponding to the zipped list of child indices. If one of

these cells is also doubly marked, it recurses but also removes the markings from that

cell so that it will not be used as the root of another shared fragment in subsequent

iterations.

The main disadvantage of this method is that the complexity scales quadratically

with the training set size, as all pairs of sentences must be considered. It is fully

parallelizable, however, which mediates this disadvantage to some extent.

2.2 Syntactic Representations

In syntactic parsing research, the most basic approaches induce a CFG from the

trees in the training data as they are provided, using the dataset’s nonterminal sym-

bols directly. Most advanced approaches refine this symbol set to more accurately
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model the true distribution while satisfying the context free assumption of the model.

Additionally, other forms of syntactic analysis such as the dependency format high-

light different patterns in language when viewed through the lens of the structural

proximity of their contents.

Many such representations exist, and most techniques that prove successful at

the task of parsing have publicly available implementations, making them feasible

options for incorporation into NLI systems. We investigate five variations on syntactic

representation, all easily produced with freely available Java software; two with the

Berkeley Parser, two with the Stanford Parser, and one with a combination of both

software packages. In the context of NLI and language transfer the important thing

to consider when contrasting these representations is the subtle differences between

the information that is easily captured by TSG fragments in one form or another.

2.2.1 Berkeley Constituent Parses

Our first two representations use the output of the Berkeley Parser (Petrov et al.

(2006)), one of highest performing systems on the benchmark Penn Treebank parsing

task. The basic motivating principle involved is that the traditional nonterminal

symbols used in Penn Treebank parsing are too coarse to satisfy the context free

assumption of a CFG. To combat this, hierarchical latent annotations are induced

that split a symbol into several subtypes, and a larger CFG is estimated on this set

of split nonterminals. A sentence is parsed using this large CFG and each resulting

symbol is mapped back to its original unsplit supertype to produce the final parse.

To illustrate this more clearly, consider the following parsed wisdom from musician

Frank Zappa.
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S

PP

IN

Without

NP

NN

deviation

NP

progress

VP

VBZ

is

RB

not

NP

JJ

possible

(2.14)

The raw output of the Berkeley Parser might look something more like the fol-

lowing, using additional binarization nodes labeled with the @ symbol allow the use

of O(n3) parsing algorithms as is standard for syntactic parsing.

S-5

@S-2

PP-3

IN-10

Without

NP-12

NN-13

deviation

NP-15

progress

VP-2

@VP-1

VBZ-3

is

RB-5

not

NP-6

JJ-2

possible

(2.15)

This parsed sentence shows how each nonterminal is annotated with a split cate-

gory, and illustrates the potential advantages that this method affords. For example,

consider the @VP node in the second tree, whose subtree is generated with a CFG

by first choosing to produce a VBZ and RB, and then by lexicalizing each indepen-

dently. These two lexicalizations are not in fact independent, as can be seen by the
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combination of ”is” with the RB ”may”, which is impossible although each are in-

dependently quite likely. Splitting the symbols as shown on the right allows us to

create a special RB node that is most likely to produce ”not” and VBZ node likely

to produce ”is”. Their likely co-occurrence can then be modeled as shown by a rule

with both specialized tags as children.

It is worth noting that this particular ability of split symbol grammars to coor-

dinate lexical items is easily captured with the TSG rules that we induce on these

parses, regardless of the presence of split symbols. The more orthogonal quality of

these split grammars is their ability to categorize symbols that appear in similar syn-

tactic situations. Consider that some adjectives are more likely to appear in “X is Y”

sentences in the “Y” position, while some are more likely to be used directly to the

left of nouns. A split symbol grammar handily captures this trait with a split POS

tag, while a TSG cannot associate patterns containing different lexical items on its

own.

We use this raw output as our first syntactic representation, and for our second

we simply remove the split symbol categories, as shown here

S

@S

PP

IN

Without

NP

NN

deviation

NP

progress

VP

@VP

VBZ

is

RB

not

NP

JJ

possible

(2.16)

Rather then collapsing the binarization nodes as is done in parsing evaluation, we
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retain them in both of these representations. The use of binarization allows us to

capture patterns such as verb phrases that begin with “is not” independent of the

following child constituents, using the following fragment.

@VP

VBZ

is

RB

not

(2.17)

The capabilities of TSG rules makes the use of binarization even more apt, as we

can easily choose to recover the unbinarized pattern with a slightly larger fragment.

VP

@VP

VBZ

is

RB

not

NP

(2.18)

This choice will be made in TSG induction based on the frequency with which the

combination occurs, which intuitively aligns with our goal of choosing representative

features.

2.2.2 Stanford Dependency Parses

The third and fourth syntactic models we employ are derived from dependency

parses produced by the Stanford parser (Marneffe et al. (2006)). In its standard

form, a dependency parse is a directed tree in which each word except the special

ROOT node has exactly one incoming edge and zero to many outgoing edges, where

edges represent syntactic dependence. Arcs are labeled with the type of syntactic
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dependence that they indicate. Following convention, we represent each word in

combination with its part of speech tag as shown in

ROOT DT NN VBZ PRP
The poodle chews it

root

det nsubj dobj

(2.19)

In order to apply the techniques of TSG induction to dependency parsed data, we

implement a conversion from dependency tree to constituent form. The mechanics

of this conversion are simple and illustrated by the following conversion of the de-

pendency tree from (2.19) into (2.20), and are similar to transforms used in previous

work in unsupervised dependency parsing (e.g. Carroll and Charniak (1992)).

ROOT

VBZ-L

nsubj

NN-L

det

DT

the

NN

poodle

VBZ

chews

VBZ-R

dobj

PRP

it

(2.20)

Note that it is always the case that the arc labels from the dependency parses are

produced by unary rules. This allows the simple removal of the nodes corresponding

to arc labels, yielding our fourth syntactic model, shown here
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ROOT

VBZ-L

NN-L

DT

the

NN

poodle

VBZ

chews

VBZ-R

PRP

it

(2.21)

Those familiar with the Stanford Parser may be concerned that the dependency

parses used here are made by a deterministic transform of a constituent parse of Penn

Treebank style, and then simply transformed back into constituent form. This is

especially concerning when considering the second form in which arc labels have been

removed; this form can be constructed directly from the Berkeley Parse form used

above, and contains no additional information. Our motivation in the investigation of

dependency parses is not that they offer new information, but that they are organized

differently than constituent parses. When inducing a TSG, our ability to find a useful

connections is impeded by physical distance between structures. In particular, in a

dependency parse, the head of the subject and the verb are always contained in some

TSG fragment made up of small number of CFG rules, five or four depending on the

presence of arc labels. In constituent parses, the presence of modifying phrases can

arbitrarily increase this distance.

2.2.3 Stanford Heuristic Annotations

Our final variation uses the annotations internal to the Stanford Penn Treebank

parser, as presented in Klein and Manning (2003). These annotations are motivated

in the same way as Berkeley Parser split states, but are deterministically applied to
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parse trees using linguistic motivations. Besides handling explicit tracking of bina-

rization and parent annotation, several additional annotations are applied, such as

the splitting of certain POS tags into useful categories and annotation of some nodes

with their number of children or siblings.

For ease of implementation, we do not use the Stanford Parser itself to produce

our trees, instead employing parses produced by the Berkeley Parser. The Stanford

Parser annotations are then applied to these trees after binarization symbols were

first collapsed. The following tree is an example of the actual annotations applied

by this process, and includes a fair subset of the many annotation types that are

used. The original symbol in each case is the leftmost string of capital letters in the

resulting symbol strings shown.

ROOT

S-v

NP-B

NNPˆNP

Ace

VP-VBF-v

VBZˆVB-BE

is

PP

INˆPP

in

NP-B

DTˆNP

the

NNˆNP

house

(2.22)
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2.3 Experiments

2.3.1 NLI Background

Work in automatic native language detection was for a time limited to Interna-

tional Corpus of Learner English, or ICLE (Granger et al. (2002)). The NLI task

was introduced by Koppel et al. (2005), which constructed a classification system

with a heterogeneous feature set consisting of function words, POS bi-grams, char-

acter n-grams, and clustered spelling errors, followed by Tsur and Rappoport (2007)

which performed a continued investigation of character n-gram features. Wong and

Dras (2009) considered hand picked syntactic features such as subject-verb and noun-

number coordinations, and continued to investigate Probabilistic Context Free Gram-

mar (PCFG) features from automatic parses (Wong and Dras (2011)). Another in-

teresting contribution is Wong et al. (2011), which investigates the use of the Latent

Dirichlet Allocation topic posterior as a latent feature set of reduced dimensionality.

As interest in NLI grew, the quality of the ICLE as a corpus was repeatedly

called into question. The primary concern was that the ICLE was not collected

with NLI in mind and so nothing was done to control correlation between topic

and native language label (Brooke and Hirst (2012)). In response to this, a corpus

designed specifically for NLI was recently created, and debuted in a shared task

(Blanchard et al. (2013)). This data set consists of TOEFL essays, and spans 11

native languages. In addition to efforts in the construction of this data set to remove

unwanted correlations with L1 label, the shared task tackled the lack of standardized

notions in NLI of sample size and use of content words, specifically designating a

train, development, and test set and explicitly allowing the use of all lexical items in

the text.
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2.3.2 ICLE

For our first set of NLI experiments, we use the International Corpus of Learner

English (Version 2), which consists of raw unsegmented English text tagged with L1

labels. We consider two experimental setups that randomly subsample this corpus,

with all empirical results averaged over 5 subsamplings of the full data set.

Corpus Subsampling

The first setup that we use follows Wong and Dras (2011) in analyzing Chinese,

Russian, Bulgarian, Japanese, French, Czech, and Spanish L1 essays. As in their work

we randomly sample 70 training and 25 test documents for each language, referring

to this setup as 7x95.

The ICLE was expanded in 2009 to include a total of 16 languages, containing

texts from the languages just mentioned as well as Dutch, Polish, Turkish, Norwegian,

Finnish, Italian, Swedish, Tswana, and German. To take advantage of the resources

available we include all of these languages but Dutch, which we exclude due to a

disproportionately small amount of data with this label. We also extend the number

of documents per language from 95 to 200 and use a 20/80 test train split. With these

15 languages we now have 600 test documents and a training set of approximately

80000 trees, compared to 175 test documents and approximately 14000 training trees

in the 7x95 setup. We refer to this experimental setup as 15x200.

Data Preparation

Unfortunately, there is little consensus in the NLI community as to the informa-

tion that should be available to a classification system. To see why this is important,

consider that when asked to compose a essay a Turkish person will be much more

likely to mention the city Istanbul. Indeed, if a simple logistic regressor is trained
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on unigram features, the majority of highly discriminative features are precicely this

sort of information. While these tendencies in topic and opinion that result from ge-

ography and culture certainly provide evidence of native language, they are unrelated

to the language transfer connection that we seek to illuminate.

We choose to limit the available evidence using the common distinction between

stop words and content words, replacing all content words with a single unknown

word symbol. It is worth noting, however, that even this is not sufficient to completely

remove all unwanted evidence, as is discussed in Brooke and Hirst (2011). An example

of this in the ICLE data set is the prevalence of the CFG rule NP→ NNP NNP in L1

Chinese essays. While devoid of lexical items, this construction corresponds almost

exclusively to the mention of Hong Kong, one of the few major cities consisting of

two words that happens to appear in the data.

Our data preproccesing pipeline is as follows: First we perform sentence seg-

mentation with OpenNLP, and then parse each sentence with the 6 split Berkeley

Parser (Petrov et al. (2006)). We then replace all terminal symbols that do not occur

in a list of approximately 600 function words with the word token UNK, using the

function word list distributed with the ROUGE summarization evaluation package.

We split the resulting parse trees into test and training sets and perform TSG

induction on the training data in three different ways. First, to provide a baseline,

we simply read off the CFG rules from the data set. Note that a CFG is a TSG with

all fragments having depth one, and so this can be seen as another TSG system with

a trivial form of grammar induction. Second, in the method we call BTSG, we use

the Bayesian induction model with alpha tuned to 100 and run for 1000 iterations of

blocked sampling. We take as our resulting finite grammar the fragments that appear

in the sampled derivations. Third, we run the parameterless DoubleDOP (2DOP)

induction method, which returns a comparatively large number of fragments.
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Using the full 2DOP feature set for the 7x95 setup involves over 400k features,

which heavily taxes the resources of an average modern computer. On the 15x200

setup, 3.2 million features are extracted, which for a 15 class problem gives over 48

million parameters and a weight vector of doubles of approximately 500MB in size.

Even with sparse feature vectors our logistic regression model requires over 10GB of

RAM to fit all 2400 training examples into memory and run L-BFGS optimization.

To construct a more practically useful 2DOP feature set we balance the feature set

sizes between 2DOP and BTSG by passing back over the training data and counting

the actual number of times each fragment recovered by 2DOP appears. We then limit

the list to the n most common fragments, where n is the average number of fragments

recovered by the BTSG method, around 7k and 10k for the 7x95 and 15x200 setups

respectively. We refer to results with this trimmed feature set with the label 2DOP,

using 2DOP(F) to refer to DoubleDOP with the full set of features.

Given each TSG, we create a binary feature function for each fragment e in the

grammar such that the feature fe is active for a document d if there exists a derivation

of some tree t ∈ d that uses e. We investigated the use of count based feature func-

tions but found that they degraded performance, consistent with Wong et al. (2011).

Classification and training was performed with the Mallet package for logistic regres-

sion using the default initialized MaxEntTrainer, which uses a Gaussian regularizer.

We evaluated a Laplacian (LASSO) regularized version as well, but found that it

lowered performance across the board.

Predictive Power

Classification accuracies for features using the three methods of TSG induction

are shown in Table 2.1. In both experimental setups BTSG gives the highest classifi-

cation accuracy and outperforms the CFG baseline. 2DOP does not perform as well,
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especially on the larger experimental setup.

Model Acc (7x95) Acc (15x200)

CFG 72.6 69.6
2DOP 73.5 70.3
2DOP(F) 76.8 69.7
BTSG 78.4 75.7

Table 2.1: Classification accuracy (%).

For 2DOP we limit the 2DOP(F) fragments by frequency, but there may exist

superior methods. Indeed, Wong and Dras (2011) claims that Information Gain is

a better criteria. We experimented with Information Gain but found no significant

difference in performance. We note that when all rules are used, the averaged accuracy

still lags behind BTSG for both data sets.

With the BTSG model it is possible to compute the probability of a test document

given each of the class labels and use the maximum conditional probability as an

estimator. As expected, this method does not perform nearly as well as the use of a

discriminative model, achieving 67.6 percent average accuracy on the 15x200 setup.

The confusion matrix for the 15x200 setup is shown in Figure 2.4. The most

common misclassifications (shown in bold) are between the Scandinavian languages

Finnish, Swedish, and Norwegian, with the Slavic languages Bulgarian, Russian, Pol-

ish, and Czech also frequently confused. The Scandinavian confusions may seem

troubling, as Finnish is not in the same language family as the other Germanic lan-

guages in this group. Note that in Finland, however, Swedish is not only a second

official national language, but is also compulsory for grades 7 through 9. As the data

was drawn from college students, we can be nearly sure that all of the Finnish stu-

dents also speak Swedish. With this in mind, the confusions not only make sense but

also raise an interesting question as to the effects of L2 on L3 acquisition, as explored
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PO CN RU TR NO FI BG IT JP SW FR CZ TS GE SP
PO 148 1 9 3 . 4 7 3 1 8 6 6 2 2 .
CN 3 177 2 1 . . 4 1 6 . 2 . . 3 1
RU 3 . 132 1 4 5 9 3 5 2 6 15 3 9 3
TR 4 1 2 177 1 . 2 1 2 . 2 2 1 1 4
NO 1 . 2 . 152 9 4 1 . 18 3 2 2 1 5
FI 10 . 4 3 19 90 10 . 3 34 5 9 2 11 .
BG 17 . 15 1 5 5 126 1 . 9 5 8 2 5 1
IT 4 . 3 . . 1 2 181 1 . 2 1 . 1 4
JP 3 3 1 1 2 2 . 1 182 1 . . 2 1 1
SW 10 . 2 1 22 25 12 1 . 106 5 4 3 7 2
FR 4 2 3 3 2 3 8 7 . 3 157 . . 5 3
CZ 8 . 12 2 4 10 3 3 . 4 . 145 . 5 4
TS 1 . 1 1 2 2 2 . . 2 . 1 187 . 1
GE 6 . 8 . 4 16 9 3 1 6 10 8 4 124 1
SP 3 . 7 1 3 1 8 3 1 4 5 1 4 9 150

Figure 2.4: The confusion matrix for native language detection using the BTSG
model, summed over five separate data set samplings. An entry in row i and column
j denotes the number of documents of type i classified as type j. The native languages
in order are Polish, Chinese, Russian, Turkish, Norwegian, Finnish, Bulgarian, Italian,
Japanese, Swedish, French, Czech, Tswana, German, and Spanish. The top nine
confusion pairs are shown in bold.

in Murphy (2005).

Feature Redundancy

We hypothesize that the inferior performance of 2DOP is to some extent due to

feature redundancy, which is known to adversely effect classification performance in

predictive models (Tuv et al. (2009)). Feature redundancy is a serious concern with

TSG features, as it is possible to represent the same general language pattern with

several slightly different fragments. Consider, for example, a noun phrase consisting

of two unknown nouns. This might lead to any subset of the following fragments

being included in our feature set

NP

NN

UNK

NN

UNK

NP

NN

UNK

NN

NP

NN NN

UNK

NP

NN NN

Figure 2.5: Equivalent but distinct fragments arising from the same pattern
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While the Bayesian model is encouraged by the rich-get-richer dynamic of the sam-

pling process to choose a small subset of these fragments to represent in derivations,

2DOP has no such motivation and can easily end up including all four.

To investigate this we approximate feature redundancy with the co-occurrence of

two fragments in the set of derivations of a single sentence, as this is a necessary but

not sufficient criteria for redundant representation. Considering a pair fragments eA

and eB we can calculate the point-wise mutual information between events signifying

their occurrence.

pmi(A;B) = log

(
P (A|B)

P (A)

)
(2.23)

where P(A) is the probability of seeing the fragment eA in at least one derivation of

a sentence. The numerator P (A|B) is the probability that eA appears in a sentence

in which eB appears. For BTSG on 7x95, the average value of this metric over all

pairs (eA, eB) is −.14, while for 2DOP it is −.01. If eA and eB always co-occur, this

metric approaches− log(P (A)) which is greater than zero, while if they are completely

exclusive the value approaches negative infinity. This shows that, as expected, BTSG

yields a set of more exclusive features than 2DOP.

2.3.3 TOEFL

We contrast the syntactic formalisms on the NLI shared task experimental setup

for the NAACL 2013 BEA workshop. We prepared the data in the five forms described

above and induced TSGs on each version of the parsed training set with the blocked

sampling algorithm of Cohn and Blunsom (2010a). The resulting rules were used as

binary feature functions over documents indicating the presence of the rule in some

derivation of sentence in that document. We used the Mallet implementation of a

log-linear (MaxEnt) classifier with a zero mean Gaussian prior with variance .1 on
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BP BPS DP DPA KM AVG

Acc 74.5 69.3 72.4 73.5 73.5 77.3

Figure 2.6: The resulting classification accuracies on the development set for the var-
ious syntactic forms that we considered. The forms used are plain Berkeley Parses
(BP), Berkeley Parses with split symbols (BPS), dependency parses (DP), depen-
dency parses without arc labels (DPA), and the heuristic annotations from Klein
and Manning (2003) (KM). When the predictive distributions of the five models are
averaged (AVG), a higher accuracy is achieved.

the classifier’s weights. Our results on the development set are shown in Figure 2.6.

While a range of performance is achieved, when we construct a classifier that

simply averages the predictive distributions of all five methods we get better accuracy

than any model on its own. We observed further evidence of the orthogonality of these

methods by looking at pairs of formalisms and observing how many development set

items were predicted correctly by one formalism and incorrectly by another. This was

routinely around 10 percent of the development set in each direction for a given pair,

implying that gains of up to at least 20 percent classification accuracy are possible

with an expert system that approaches oracle selection of which formalism to use.

As our submission to the shared task, we used the Berkeley Parser output in

isolation, the average of the five classifiers, and the weighted average of the classifiers

using the optimal weights on the development set (Figure 2.7). The former two models

use the development set as additional training data, which is one possible explanation

of the slightly higher performance of the equally weighted average model. Another

explanation of note is that while the weight optimization was carried out with EM over

the likelihood of the development set labels, this did not in correlate positively with

classification accuracy; even as we optimized on the development set the accuracy in

absolute classification of these items decreased slightly.

The confusion matrix for the evenly averaged model, our best performing system,

is shown in Figure 2.8. The most frequently confused L1 pairs were Hindi and Telegu,
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BP AVG AVG-EM

Acc 74.7 77.5 77.0

Figure 2.7: The classification accuracies obtained on the test data using the Berkeley
parser output alone (BP), the arithmetic mean of all five predictive distributions
(AVG) and the weighted mean using the optimal weights from the development set
as determined with EM (AVG-EM)

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR P R F

ARA 76 2 4 1 2 2 2 1 4 3 3 76.8 76.0 76.4
CHI 2 86 0 1 1 0 4 4 1 0 1 81.1 86.0 83.5
FRE 2 1 77 3 2 6 2 1 5 1 0 82.8 77.0 79.8
GER 0 1 1 91 1 1 0 0 2 0 3 86.7 91.0 88.8
HIN 2 2 1 2 71 0 0 0 0 20 2 73.2 71.0 72.1
ITA 2 0 2 1 1 84 0 1 7 0 2 79.2 84.0 81.6
JPN 3 4 0 1 0 0 83 7 1 0 1 74.1 83.0 78.3

KOR 1 6 1 1 1 0 20 65 2 1 2 69.1 65.0 67.0
SPA 4 2 4 3 2 12 0 3 66 0 4 71.7 66.0 68.8
TEL 1 2 0 0 16 0 0 0 0 81 0 76.4 81.0 78.6
TUR 6 0 3 1 0 1 1 12 4 0 72 80.0 72.0 75.8

Figure 2.8: Confusion Matrix and per class results on the final test set evaluation
using the evenly averaged model.

Japanese and Korean, and Spanish and Italian. The similarity between Hindi and

Telegu is particularly troubling, as they come from two completely different language

families and their most obvious similarity is that they are both spoken primarily in

India. This suggests that even though the TOEFL corpus has been balanced by topic

that there is a strong geographical signal that is correlated with but not caused by

native language.



Chapter 3

Data Driven Language Transfer

Hypotheses

3.1 Introduction

Language transfer refers to the preferential use of second language grammar or

words due to similarity to the native language of the speaker. It is one of several facets

of Interlanguage, the degraded form of the true second language language spoken by

a second language learner. A commonly cited example of language transfer is the

omission of articles “a” and “the” in English by native speakers of languages without

articles, such as Chinese. Another example is the dropping of certain pronouns in

English by native speakers of pro-drop languages like Spanish, as in the sentence “I

like it because is red”. These are examples of negative language transfer, as they

result in errors in the second language. Positive language transfer occurs when the

preferential pattern is valid in the second language; a simple example of this is the

preferential use of cognates, (e.g. “different” in English and “diférrent” in French).

The quality of a language transfer hypothesis is a tricky notion to construct and

35



36

quantify. First, an argument must show that the usage statistics of some feature of

language fits the statistical profile of language transfer. One natural profile that fits

the definition of language transfer is a feature that is overused in both L1 and L2 text

by speakers of a certain native language in comparison to data for speakers of other

native languages. The nature of this claim requires that the feature be detectable in

all languages involved, including the second language. Second, whatever feature is

used must translate into some human understandable concept, such as dropping of

determiners or pronouns, in order to be understood by educators and implemented

in a classroom setting.

Early language transfer research began to appear in publications dating back to

the 1950s (Lado (1957)), with extensive follow-up in the linguistics community. In

this work the formulation of language transfer hypothesis presumably occurs first in

the mind of the researcher, who then seeks out methods to detect it in text. With the

recent advent of computational corpus linguistic methods, language transfer detection

has been approached through classification based strategies as in Jarvis and Crossley

(2012) and most research in NLI. Although these classification experiments typically

operate in second language data only, their primary advantage is that by constructing

a feature based classifier and examining the highly discriminative features, a short

list of potential transfer hypotheses is obtained. A linguist would still need to subse-

quently investigate each hypothesis, constructing parallels to native language data to

build an argument. Classification based experiments are also an attractive mode of

research, as systems can be compared empirically. However, the use of classification

for evaluation implies the assumption that a set of features and classification model

that can better guess the L1 label of L2 text is a better source of potential hypotheses.

We propose that this is a poor implication, as it has been shown in previous research

such as Brooke and Hirst (2011) that there can be a large amount of L1-discriminative
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information that is derived from topic, geography, or culture.

We depart from this previous work that is heavily invested in NLI, guided by

the observation that the actual ability to automatically determine L1 from text is

of limited utility in the language education domain where the native language of

a student is either known or easily solicited. More precisely, the new direction we

take is in the pursuit of features that are individually discriminative between native

languages, rather than as an ensemble. In addition, we consider metrics to eliminate

data set dependence and redundancy, with the goal of a concise ranked list of features

that are expressive enough to capture language transfer phenomenon. This property

is described nicely by the desire for features that capture rather than cover linguistic

phenomena (Johnson (2011)); while features such as character n-grams, POS tag

sequences, and CFG rules may provide a usable L1 signal, each feature is likely

covering only a component of a pattern instead of capturing it in full. TSG fragments,

on the other hand, offer remarkable flexibility in the patterns that they can represent,

potentially utilizing any contiguous parse tree structure.

In our first set of experiments, we consider monolingual (English) L2 data, as is

used in NLI experiments. In the second phase we present a more complete method

that not only considers L2 data but the actual native languages under investiga-

tion. This requires features whose usage frequency can be determined for each L1

background in both L1 and L2 text (e.g. in both German and English written by

Germans). We end this section with discussion of several actual language transfer

hypotheses that are output by our system. The patterns discussed are the top ranked

elements of the list, and not only do their usage statistics provide a convincing ar-

gument that they are capturing language transfer, but the expressive power of TSG

fragments allows clear translation into human notions of grammatical patterns.
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3.2 Muti-grammar TSG induction

Based on our experiments in the previous section we use the Bayesian method

for TSG induction, and we additionally extend the single grammar model described

above to a supervised mixture of latent grammars. In our experiments we show how

this more sophisticated model can be used to incorporate linguistic knowledge and

extract discriminative features more effectively. The intuition behind this extension

is that while the rich get richer dynamic of the DP leads to the use of a compact

set of TSG rules that describes the data, the same property makes rare rules less

likely to be explicitly represented in the induction cache. We observed in preliminary

experiments that most TSG rules that seemed connected to language transfer are

rather rare, and even in a data set of several thousand sentences a specific sentence

construction will be sparsely observed.

We define a general model for TSG induction in labeled documents that combines

a Hierarchical Dirichlet Process (Teh et al. (2006)) with supervised labels in a manner

similar to upstream supervised LDA (Mimno and McCallum (2012)). Each data type

η is given a fixed Dirichlet prior νη, and a hidden multinomial θη over grammars is

drawn from this prior. The traditional grammatical model of nonterminal expansion

is augmented such that to rewrite a symbol we first draw a grammar index from the

sentence’s θη and then choose a TSG fragment from that grammar.

We can express the generative model formally by defining the probability of a
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Figure 3.1: A Multigrammar TSG induction system

fragment ein expanding a symbol s in a sentence with label η as

θη ∼ Dir(νη)

Hs ∼ DP (γs, P
s
0 )

Gjs ∼ DP (αjs, Hs)

zin ∼Mult(θη)

ein ∼ Gzins

The e in Figure 3.1 refers to the ordered set of ein that forms the derivation of tn.

In order to facilitate its representation as a graphical model, this generative process

samples an infinite stream of iid zin variables that are consumed as the fragments

ein are generated for a particular tree; the unused zin are simply discarded. This is

equivalent to the generative process that is more natural from the point of view of
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implementation, where a fresh zin is sampled with each fragment’s generation.

This is closely related to the application of the Hierarchical Pitman Yor Process

used in Blunsom and Cohn (2010) and Shindo et al. (2012), which interpolates be-

tween multiple coarse and fine representations of TSG fragments. While the sampling

algorithm is similar, our model differs in that it models several different distributions

with the same support that share a common prior. To use an analogy to more com-

mon systems, their design is like smoothing a bigram model with a unigram model,

while ours is like a set of bigram models that are smoothed with a universal bigram

model.

To use Metropolis Hastings we require a true distribution p and a proposal dis-

tribution q for a multigrammar derivation of a tree ti, which is a list of tuples (e, z)

consisting of a TSG fragment and the index of the grammar from which it was drawn.

As in the single grammar case, the deterministic production of a tree from its deriva-

tion only introduces a normalization constant on top of the generative probabiltiy of

a derivation, as long as that derivation derives ti. This means that for evaluation of

p and q we can simply use their generative probability of the derivation.

One component of the true distribution is the probability of the series of fragments

drawn from the various HDPs in the model, which like the DPs in the single grammar

model update their model parameters after each draw. These parameter updates

become more complicated with the HDP, as does removing a tree’s contribution to

the model parameters before resampling its derivation. The complications arise from

the fact that when a draw is made from leaf DP Gjs, with some probability a new

fragment is chosen by sampling the base DP Hs. We continue our use of the notation

#(A ∈ B) for the count of item A in histogram B. Using Cjs to denote the cache

of fragments drawn from Gjs and CHs as the set of fragments that have been drawn

from the base DP Hs, the probability that a draw from leaf DP Gjs triggers a draw
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from Hs is

p(Use Hs|e) ∝
αjs

#(e∈CHs)+γsP s
0 (e)

|CHs|+γs
|Cjs|+ αjs

(3.1)

p(Do not use Hs|e) ∝
#(e ∈ Cjs)
|Cjs|+ αjs

(3.2)

To keep CHs up to date, we must sample this implied Bernoulli distribution on each

draw from Gjs and increment the cache CHs if the base DP was used.

Further complications arise when considering the fact that before sampling a new

derivation for tree ti we must remove the fragments from its old derivation tree from

the HDP caches, using exchangability to treat all other draws as occurring before those

we are about to sample. In the simple DP model this is as simple as decrementing

counts, but now the entire sampling history must be considered, including the actual

“table assignments” of the Chinese Restaurant Franchise (Teh et al. (2006)) that are

integrated out in the treatment of the basic DP. The basic approach requires recording

a table index for each fragment, but a more elegant way to handle the book-keeping

is presented in Blunsom et al. (2009). In their method, explicit seating arrangements

are not recorded, a histogram of table sizes for each fragment in each leaf Gjs is

kept. The probability of a new draw joining a table is proportional to its value in

the histogram, which can be sampled and the table histogram updated appropriately.

They also sample a table assignment when a fragment is removed, and if the chosen

table has only one customer then it is removed from the histogram and the base cache

CHs is also decremented.

First, we discuss the true distribution to be used in our Metropolis Hastings

sampler. In addition to the caches Cjs and CHs we also need the histogram of grammar

indices from the other trees with label η, which we call with z−η . To define the
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probability of expanding a node labeled s with a fragment e using a specific grammar

indexed j we require the distribution

p(e, z = j|z−η , Cjs, CHs, αjs, γs, P s
0 , νη) (3.3)

As a derivation tree now consists of (z, e) pairs, we can evaluate the true probability of

an entire derivation by iteratively calculating the probability of a derivation element

with Equation 3.3, updating z−η , Cjs, and CHs with each draw and taking the product

as the derivation’s probability. Based on the dependency structure in the graphical

model, Equation 3.3 factorizes into

p(e|z = j, Cjs, CHs, αjs, γs, P
s
0 )p(z = j|z−η , νη) (3.4)

The form of p(z|z−η , νη) is familiar from the sampling equations for LDA.

p(z = j|z−η , νη) =
#(j ∈ z−η ) + νηj

|z−η |+
∑
νη

(3.5)

where #(j ∈ z−η ) is the count of grammar index j in z−η , and νηj is the jth element of

the Dirichlet parameter vector νη. The other factorized component that conditions

on z = j is

p(e|z = j, Cjs, CHs, αjs, γs, P
s
0 ) =

#(e ∈ Cjs) + αjsp2(e|CHs, γs)
|Cjs|+ αjs

(3.6)

p2(e|CHs, γ) =
#(e ∈ CHs) + γsP

s
0 (e)

|CHs|+ γs
(3.7)

As in Cohn and Blunsom (2010a) we use a proposal distribution q that effectively

takes a snapshot of the predictive distribution of the stochastic process. Specifically,

we use the state of the DP caches (Cjs and CHs) and histogram of z−η after removing
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the derivation of the tree being resampled, which we denote as C∗j s,C
∗
Hs, and z∗η .

Like the true distribution p, the proposal q treats the probability of a derivation as

the product of the probability of its elements, with the probability of one element

(e, z = j) defined by

q(e, z = j) = q(e|z = j, C∗js, C
∗
Hs, αjs, γs, P

s
0 )q(z = j|z∗η , νη) (3.8)

These factored components that mirror the true distribution, replacing the dy-

namic histograms that update with each draw in the true HDP with static histograms

that remain fixed.

q(z = j|z∗η , νη) =
#(j ∈ z∗η) + νηj

|z∗η |+
∑
νη

(3.9)

q(e|z = j, C∗js, C
∗
Hs, αjs, γs, P

s
0 ) =

#(e ∈ C∗js) + αjsq2(e|C∗Hs, γs)
|C∗js|+ αjs

(3.10)

q2(e|C∗Hs, γ) =
#(e ∈ C∗Hs) + γsP

s
0 (e)

|C∗Hs|+ γs
(3.11)

While this provides the ability to evaluate q(e, z = j), in order to define a sampling

algorithm we rephrase q with the following generative story. First, we sample a

grammar index j with Equation 3.9 and then we decide if we will draw a cached

rule or generate from P s
0 . Reorganizing the equations above gives the probability of

choosing a certain cached rule e as

qC(e|z = j) =
#(e ∈ C∗js) + αjs

#(e∈C∗Hs)

|CHs|+γs
|C∗js|+ αjs

(3.12)

while the probability of generating from P s
0 is

q(use P s
0 |z = j) =

αjs
γs

|CHs|+γs
|C∗js|+ αjs

(3.13)
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To sample a derivation under q we compute inside probabilities and sample a

derivation top down, as in the single grammar case. However, as we now are able

to choose a grammar at each generation, for an J grammar model we must record

J + 1 inside probabilities at each node. First there are J options representing the

case where the node is used as a substitution site and grammar j is used to expand

the node.

Ij(n) = q(z = j)

∑
e∈On

qC(e|z = j)
∏

c∈leaves(n,e)

∑
k

Ik(c)

+ q(use P s
0 )I∗(n)


(3.14)

The inside probability representing the probability of a subtree given that a node

n’s children are generated from P0 must also include these inside probabilities,

I∗(n) = CFG(rn)
∏

c∈child(n)

(1− βc)I∗(c) + βc
∑
k

Ik(c) (3.15)

By careful choice of the number of grammars K, the Dirichlet priors ν, and the

backoff concentration parameter γ, a variety of interesting models can easily be de-

fined, as demonstrated in our experiments.

3.3 Monolingual Experiments

3.3.1 Corpus Description

We perform analysis of English text from Chinese, German, Spanish, and Japanese

L1 backgrounds drawn from four corpora. The first three consist of responses to essay

prompts in educational settings, while the fourth is submitted by users in an internet

forum.
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The first corpus is the International Corpus of Learner English, or ICLE (Granger

et al. (2002)), a mainstay in NLI that has been shown to exhibit a large topic bias due

to correlations between L1 and the essay prompts used (Brooke and Hirst (2011)).

The second is the International Corpus of Crosslinguistic Interlanguage (ICCI) (Tono

et al. (2012)), which is annotated with sentence boundaries and had not yet been used

in NLI at the time of this work. The third is the public sample of the Cambridge

International Corpus (FCE), and consists of short prompted responses. One quirk of

the FCE data is that several responses are written in the form of letters, leading to

skewed distributions of the specialized syntax involved with use of the second person.

The fourth is the Lang8 data set introduced by Brooke and Hirst (2011). This data

set is free of format, with no prompts or constraints on writing aids. The samples are

often very short and are qualitatively the most noisy of the four data sets.

We treat each sentence as an individual datum. As document length can vary

dramatically, especially across corpora, this gives increased regularity to the number

of features per data item. More importantly, this creates a rough correspondence

between feature co-occurrence and the expression of the same underlying linguistic

phenomenon, which is desirable for automatic redundancy metrics.

We automatically detect sentence boundaries when they are not provided, and

parse all corpora with the 6-split Berkeley Parser. We then replace all word tokens

that do not occur in a list of common words with an unknown word symbol, UNK.

While these are standard data preprocessing steps, from our experience with this

problem we propose additional practical considerations. First, we filter the parsed

corpora, retaining only sentences that are parsed to a Clause Level1 tag. This is

primarily due to the fact that automatic sentence boundary detectors must be used

on the ICLE, Lang8, and FCE data sets, and false positives lead to sentence fragments

that are parsed as NP, VP, FRAG, etc. The wild internet text found in the Lang8

1S, SINV, SQ, SBAR, or SBARQ
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data set also yields many non-Clause Level parses from non-English text or emotive

punctuation. Sentence detection false negatives, on the other hand, lead to run-on

sentences, and so we additionally remove sentences with more than 40 words.

We also impose a simple preprocessing step for better treatment of proper nouns.

Due to the geographic distribution of languages, the proper nouns used in a writer’s

text naturally present a strong L1 signal. The obvious remedy is to replace all proper

nouns with UNK, but this is unfortunately insufficient as the structure of the proper

noun itself can be a covert signal of these geographical trends. To fix this, we also

remove all proper noun left sisters of proper nouns. We choose to retain the rightmost

sister node in order to preserve the plurality of the noun phrase, as the rightmost noun

is most likely the lexical head.

From these parsed, UNKed, and filtered corpora we draw 2500 sentences from each

L1 background at random, for a total of 10000 sentences per corpus. The exception

is the FCE corpus, from which we draw 1500 sentences per L1 due to its small size.

3.3.2 Feature Selection

Feature selection itself is a well studied problem, and the most thorough systems

address both relevancy and redundancy. While some work tackles these problems by

optimizing a metric over both simultaneously (Peng et al. (2005)), we decouple the

notions of relevancy and redundancy to allow ad-hoc metrics for either, similar to

the method of Yu and Liu (2004). Additionally, we address automatic methods for

removing patterns whose discriminative signal does not generalize across data sets.

Dataset Independence

The first step in our L1 signal extraction pipeline controls for patterns that occur

too frequently in certain combinations of native language and data set. Such patterns
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L1 L2

D1 1000 500
D2 100 50

L1 L2

D1 1000 500
D2 750 750

Figure 3.2: Two hypothetical feature profiles that illustrate the problems with filtering
only on data set independence, which prefers the right profile over the left. Our
method has the opposite preference.

arise primarily from the reuse of essay prompts in the creation of certain corpora, and

we construct a hard filter to exclude features of this type.

A simple first choice of metric would be the variance of a fragment’s frequency

across data sets. However, this misses the subtle but important point that corpora

have different qualities such as register and author proficiency and so some variance

in frequency of all fragments is to be expected. Instead, we treat the set of sentences

containing an arbitrary feature X as a set of observations of a pair of categorical

random variables L and D, representing native language and data set respectively,

and measure the dependence of L and D. Intuitively, this metric prefers features

that exhibit the same relative usage patterns across languages regardless of data set,

although the prevalance of the pattern across data sets may vary.

To see why this treatment is superior, consider the outcomes for the two hypo-

thetical features shown in Figure 3.2. The left table has a high data set dependence

but exhibits a clean twofold preference for L1 in both data sets, making it a desirable

feature to retain. Conversely, the right table shows a feature where the distribution

is uniform over data sets, but has language preference in only one. This is a sign

of either a large variance in usage or some data set specific tendency, and in either

case we can not make confident claims as to this feature’s association with any native

language.

The L-D dependence can be measured with Pearson’s χ2 test, although the specifics

of its use as a filter deserve some discussion. As we eliminate the features for which the
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null hypothesis of independence is rejected, our noisy data will cause us to overzeal-

ously reject. In order to prevent the unneccesary removal of interesting patterns, we

use a very small p value as a cutoff point for rejection. In all of our experiments the

χ2 value corresponding to p < .001 is in the twenties; we use χ2 > 100 as our criteria

for rejection.

Another possible source of error is the sparsity of some features in our data. To

avoid making predictions of rules for which we have not observed a sufficient number

of examples, we automatically exclude any rule with a count less than five for any

L-D combination. This also satisfies the common requirements for validity of the χ2

test that require a minimum number of 5 expected counts for every outcome.

Relevancy

Whatever list is returned by a system such as ours should clearly be sorted, with

“better” hypotheses at the top. What we call relevancy is a quantification of our

confidence that its usage profile provides evidence for language transfer. We define a

simple evaluation metric, per-feature loss, and use it to contrast three relevancy rank-

ing metrics: Information Gain (IG), Symmetric Uncertainty (SU), and χ2 statistic.

The first two metrics are commonly considered superior in classification problems

where the goal is accuracy using an ensemble of features, but we show that when

per-feature loss is the goal and there exist very rare but desirable features, the χ2

statistic is a better choice.
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The formulas for these ranking metrics are

IG(L,Xi) = H(L)−H(L|Xi)

SU(L,Xi) = 2
IG(L,Xi)

H(L) +H(Xi)

χ2(Xi) =
∑
m

(nim − Ni

M
)2

Ni

M

We define L as the Multinomial distributed L1 label taking values in {1, ...,M} and

Xi as a Bernoulli distributed indicator of the presence or absence of the ith feature,

which we represent with the events X+
i and X−i respectively. We use the Maximum

Likelihood estimates of these distributions from the training data to compute the

necessary entropies for IG and SU. For the χ2 metric we use nim, the count of sentences

with L1 label m that contain feature Xi, and their sum over classes Ni.

While SU is often preferred over IG in feature selection for several reasons, their

main difference in the context of selection of binary features is the addition of H(Xi)

in the denominator, leading to higher values for rare features under SU. This helps

to counteract a subtle preference for common features that these metrics can exhibit

in data such as ours, as shown in Figure 3.3. The source of this preference is the

overwhelming contribution of p(X−i )H(L|X−i ) in IG(L,Xi) for rare features, which

will be essentially the maximum value of log(M). In most classification problems a

frequent feature bias is a desirable trait, as a rare feature is naturally less likely to

appear and contribute to decision making.

We note that binary features in sentences are sparsely observed, as the opportunity

for use of the majority of patterns will not exist in any given sentence. This leads to

a large number of rare features that are nevertheless indicative of their author’s L1.

The χ2 statistic we employ is better suited to retain such features as it only deals
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IG SU χ2

r .84 .72 .15

Figure 3.3: Sample Pearson correlation coefficients between different ranking func-
tions and feature frequency over a large set of TSG features.

with counts of sentences containing Xi.

The ranking behavior of these metrics is highlighted in Figure 3.4. We expect

that features with profiles like Xa and Xb will be more useful than those like Xd,

and only χ2 ranks these features accordingly. Another view of the difference between

the metrics is taken in Figure 3.5. As shown in the left plot, IG and SU are nearly

identical for the most highly ranked features and significantly different from χ2.

L1 L2 L3 L4 IG SU χ2

Xa 20 5 5 5 .0008 .0012 19.29
Xb 40 20 20 20 .0005 .0008 12.0
Xc 2000 500 500 500 .0178 .0217 385.7
Xd 1700 1800 1700 1800 .0010 .0010 5.71

Figure 3.4: Four hypothetical features in a 4 label classification problem, with the
number of training items from each class using the feature listed in the first four
columns. The top three features under each ranking are shown in bold.

Redundancy

The second component of thorough feature selection is the removal of redundant

features. From an experimental point of view, it is inaccurate to compare feature

selection systems under evaluation of the top n features or the number of features with

ranking statistic at or beyond some threshold if redundancy has not been taken into

account. Furthermore, as our stated goal is a list of discriminative patterns, multiple

representations of the same pattern clearly degrade the quality of our output. This is
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Figure 3.5: For all pairs of relevancy metrics, we show the number of features that
appear in the top n of both. The result for low n is highlighted in the left plot,
showing a high similarity between SU and IG.

especially necessary when using TSG fragments as features, as it is possible to define

many slightly different rules that essentially represent the same linguistic act.

Redundancy detection must be able to both determine that a set of features are

redundant and also select the feature to retain from such a set. We use a greedy

method that allows us to investigate different relevancy metrics for selection of the

representative feature for a redundant set (Yu and Liu (2004)). The algorithm be-

gins with a list S containing the full list of features, sorted by an arbitrary metric

of relevancy. While S is not empty, the most relevant feature X∗ in S is selected

for retention, and all features Xi are removed from S if R(X∗, Xi) > ρ for some

redundancy metric R and some threshold ρ.

We consider two probabilistic metrics for redundancy detection, the first being SU,

as defined in the previous section. We contrast this metric with Normalized Pointwise

Mutual Information (NPMI) which uses only the events A = X+
a and B = X+

b and

has a range of [-1,1].



52

S

NP

NN

VP

S

NP

PRP

VP

S

NP VP

VBZ

Figure 3.6: Three similar fragments that highlight the behavior of the structural
redundancy metric; the first two fragments are not considered redundant, while the
third is made redundant by either of the others.

NPMI(Xa, Xb) =
log(P (A|B))− log(P (A))

− log(P (A,B))

Another option that we explore is the structural redundancy between TSG rules

themselves. We define a 0-1 redundancy metric such that R(Xa, Xb) is one if there

exists a fragment that contains both Xa and Xb with a total number of CFG rules

less than the sum of the number of CFG rules in Xa and Xb. The latter constraint

ensures that Xa and Xb overlap in the containing fragment. Note that this is not the

same as a nonempty set intersection of CFG rules, as can be seen in Figure 3.6.

3.3.3 Results

Relevancy Metrics

The traditional evaluation criterion for a feature selection system such as ours is

classification accuracy or expected risk. However, as our desired output is not a set of

features that capture a decision boundary as an ensemble, a per feature risk evaluation

better quantifies the performance of a system for our purposes. We plot average risk

against number of predicted features to view the rate of quality degradation under a

relevancy metric to give a picture of a each metric’s utility.

The per feature risk for a feature X is an evaluation of the ML estimate of PX(L) =

P (L|X+) from the training data on TX , the test sentences that contain the feature

X. The decision to evaluate only sentences in which the feature occurs removes an
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implicit bias towards more common features.

We calculate the expected risk R(X) using a 0-1 loss function, averaging over TX .

R(X) =
1

|TX |
∑
t∈TX

PX(L 6= L∗t ) (3.16)

where L∗t is the gold standard L1 label of test item t. This metric has two important

properties. First, given any true distribution over class labels in TX , the best possible

PX(L) is the one that matches these proportions exactly, ensuring that preferred

features make generalizable predictions. Second, it assigns less risk to rules with

lower entropy, as long as their predictions remain generalizable. This corresponds to

features that find larger differences in usage frequency across L1 labels.

The alternative metric of per feature classification accuracy creates a one to one

mapping between features and native languages. This unnecessarily penalizes fea-

tures that are associated with multiple native languages, as well as features that are

selectively dispreferred by certain L1 speakers. Also, we wish to correctly quantify

the distribution of a feature over all native languages, which goes beyond correct

prediction of the most probable.

Using cross validation with each corpus as a fold, we plot the average R(X) for

the best n features against n for each relevancy metric in Figure 3.7. This clearly

shows that for highly ranked features χ2 is able to best single out the type of features

we desire. Another point to be taken from the plot is that it is that the top ten

features under SU are remarkably inferior. Inspection of these rules reveals that they

are precisely the type of overly frequent but only slightly discriminative features that

we predicted would corrupt feature selection using IG based measures.
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Figure 3.7: Per-feature Average Expected Loss plotted against top N features using
χ2, IG, and SU as a relevancy metric

Redundancy Metrics

We evaluate the redundancy metrics by using the top n features retained by

redundancy filtering for ensemble classification. Under this evaluation, if redundancy

is not being effectively eliminated performance should increase more slowly with n

as the set of test items that can be correctly classified remains relatively constant.

Additionally, if the metric is overzealous in its elimination of redundancy, useful

patterns will be eliminated leading to diminished increase in performance. Figure 3.8

shows the tradeoff between Expected Loss on the test set and the number of features

used with SU, NPMI, and the overlap based structural redundancy metric described

above. We performed a coarse grid search to find the optimal values of ρ for SU and

NPMI.

Both the structural overlap hueristic and SU perform similarly, and outperform

NPMI. Analysis reveals that NPMI seems to overstate the similarity of large fragments

with their small subcomponents. We choose to proceed with SU, as it is not only
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Figure 3.8: The effects of redundancy filtering on classification performance using
different redundancy metrics. The cutoff values (ρ) used for SU and NPMI are .2 and
.7 respectively.

faster in our implementation but also can generalize to feature types beyond TSG

rules.

TSG Induction

We demonstrate the flexibility and effectiveness of our general model of mixtures

of TSGs for labeled data by example. The tunable parameters are the number of

grammars K, the Dirichlet priors νη over grammar distributions for each label η, and

the concentration parameter γ of the smoothing DP.

For a first baseline we set the number of grammars K = 1, making the Dirichlet

priors ν irrelevant. With a large γ = 1020, we essentially recover the basic block

sampling algorithm of Cohn and Blunsom (2010a). We refer to this model as M1.

Our second baseline model, M2, sets K to the number of native language labels, and

sets the ν variables such that each η is mapped to a single grammar by its L1 label,
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p < .1 p < .05 p < .01 p < .001

M1 56.5(3.1) 54.5(3.0) 49.8(2.7) 45.1(2.5)

M2 55.3(3.7) 53.7(3.6) 49.1(3.3) 44.7(3.0)

M3 59.0(4.1) 57.2(4.1) 52.4(3.6) 48.4(3.3)

M4 58.9(3.8) 57.0(3.7) 51.9(3.4) 47.2(3.1)

Figure 3.9: The percentage of rules from each model that reject L1 independence
at varying levels of statistical significance. The first number is with respect to the
number rules that pass the L1/corpus independence and redundancy tests, and the
second is in proportion to the full list returned by grammar induction.

creating a naive Bayes model. For M2 and the subsequent models we use γ = 1000

to allow moderate smoothing.

We also construct a model (M3) in which we set K = 9 and νη is such that three

grammars are likely for any single η; one shared by all η with the same L1 label, one

shared by all η with the same corpus label, and one shared by all η. We compare

this with another K = 9 model (M4) where the ν are set to be uniform across all 9

grammars.

We evaluate these systems on the percent of their resulting grammar that rejects

the hypothesis of language independence using a χ2 test. Slight adjustments were

made to α for these models to bring their output grammar size into the range of

approximately 12000 rules. We average our results for each model over single states

drawn from five independent Markov chains.

Our results in Figure 3.9 show that using a mixture of grammars allows the in-

duction algorithm to find more patterns that fit arbitrary criteria for language de-

pendence. The intuition supporting this is that in simpler models a given grammar

must represent a larger amount of data that is better represented with more vague,

general purpose rules. Dividing the responsibility among several grammars lets rare

patterns form clusters more easily. The incorporation of informed structure in M3
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further improves the performance of this latent mixture technique.

3.4 Mutilingual Experiments

3.4.1 Corpus Description

These experiments are made possible primarily due to the Universal Dependency

Treebank, or UTB (McDonald et al. (2013)), that is under ongoing development

at Google. They define a common symbol and edge label set that can be used to

represent text in a variety of languages using dependency parse trees. They also

release conversion software from the constituent parse format and symbol set of the

ubiquitous Penn Treebank, allowing us to convert the ETS Corpus of Non-Native

English (Blanchard et al. (2013)), which we will call TOEFL as it is drawn from

TOEFLr exam essays. Limited by the intersection of languages across these data

sets, we take French, Spanish, and German as our set of L1s with English as the L2.

The UTB provides native language data, containing around 15000 sentences of human

annotated text for each L1 and the TOEFL data consists of over 10K sentences per

L1 label . Finally, we use the Penn Treebank as our source of native English data,

for a total of seven data types; four in English, and one in each L1.

3.4.2 Methodology

Our methodology can be broken down into four steps that are representative

of systems that propose language transfer hypotheses in general. The first is the

definition of a class of features F such that a single feature F ∈ F is capable of

capturing language transfer phenomenon. The second is a universal representation of

both L1 and L2 data that allows us to count the occurrences of any F in an arbitrary

sentence. Third, as any sufficiently expressive F is likely to be very large, a method
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Figure 3.10: The multi-grammar induction setup used in our experiments. Squares
indicate data types, and circles indicate grammars. Data type labels indicate the
native language of the speaker, and all L2 data is in English.

is required to propose an initial candidate list C ⊂ F . Finally, we refine C into

a ranked list H of language transfer hypotheses, where H has also been filtered to

remove redundancy.

In this work we continue to let F be the set of Tree Substitution Grammar (TSG)

fragments in our data, which allows any connected syntactic structure to be used as

a feature. As such, our universal representation of L1/L2 data must be a constituent

tree structure of the general form used in syntactic parsing experiments on the Penn

Treebank. The UTB gets us most of the way to our goal, defining a dependency

grammar with a universal set of part of speech (POS) tags and dependency arc labels.

Two barriers remain to the use of standard TSG induction algorithms. The first

is to define a mapping from the dependency tree format to constituency format. We

use the following dependency tree to illustrate our transformation.

ROOT DT NN VBZ PRP
The poodle chews it

root

det nsubj dobj
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Under our transformation, the above dependency parse becomes

ROOT

root

VBZ-L

nsubj

NN-L

det

DT

the

NN

poodle

VBZ

chews

VBZ-R

dobj

PRP

it

We also require a multilingual lexicon in the form of a function ML(w) for each

language L that maps words to clusters representing their meaning. In order to avoid

cultural cues and reduce noise in our mapping, we restrict ourselves to clusters that

correspond to a list of L2 stopwords. Any L2 words that do not appear on this list are

mapped to the unknown “UNK” symbol, as are all foreign words that are not good

translations of any L2 stopword. Multiple words from a single language can map to

the same cluster, and it is worth noting that this is true for L2 stopwords as well.

To determine the mapping functions ML we train IBM translation models in both

directions between the L2 and each L1. We create a graph in which nodes are words,

either the L2 stopwords or any L1 word with some translation probability to or from

one of the L2 stopwords. The edges in this graph exist only between L2 and L1 words,

and are directed with weight equal to the IBM model’s translation probability of the
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EN my will little very after
following

FR mon seront,seta peu très suite,suivantes
mes feront,fera suivants,après

aura
DE meine,meinem werden,wird wenig sehr nach,folgende

mein,meiner willen,wille folgenden
meinen

ES mi,mis tendrá,será poco,poca muy tras,después
siguientes

Figure 3.11: Sample clusters from our automatic mapping ML, in the words in a
column are mapped to a universal stopword index. The automatic method is effective,
but still contains both false negatives, such as lack of “meines” for German in the
first column, and false positives such as “aura” in French, which is the third person
future tense of “avoir”.

edge’s target given its source. We construct ML by removing edges with weight below

some threshold and calculating the connected components of the resulting graph. We

then discard any cluster that does not contain at least one word from each L1 and at

least one L2 stopword. Examples of the resulting clusters can be seen in Figure 3.11.

To propose a candidate list C, we use the TSG induction technique described above

that simultaneously induces multiple TSGs from data that has been partitioned into

labeled types. For an experimental setup that considers n different L1s, we use 2n+1

data types; Figure 3.10 shows the exact layout used in our experiments. Besides the

necessary n data types for each L1 in its actual native language form and n in L2 form,

we also include L2 data from L2 native speakers. We also define 2n + 1 grammars.

We begin with n grammars that can each be used exclusively by one native language

data type, representing behavior that is unique to each native language (grammars

A-C in Figure 3.10) . This is done for the L2 as well (grammar G). Finally, we create

an interlanguage grammar for each of our L1 types that can be used in derivation of

both L1 and L2 data produced by speakers of that L1 (grammars D-F).
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The final step is to filter and rank the TSG fragments produced in C. For re-

dundancy filtering we use Symmetric Uncertainty, described in our monolingual ex-

periments, and for ranking we use a variant of the expected per feature loss, defined

in Equation 3.16. While in the monolingual experiments the predictive distribution

PF (L) is determined by the observed counts of F in L2 training data, we take our

estimates directly from the L1 data of the languages under study.

The final result is a ranked and filtered list of hypotheses H. The elements of H

can be subjected to further investigation by experts and the accompanying histogram

of counts contains the relevant empirical evidence. As more data is added, the un-

certainty in the relative proportions of these histograms and their corresponding R is

decreased. One additional benefit of our method is that TSG induction is a random

process, and repeated runs of the sampling algorithm can produce different features.

Since redundancy is filtered automatically, these different feature lists can be com-

bined and processed to potentially find additional features given more computing

time.

3.4.3 Results

When calculating metrics such as redundancy and R(F ) we use all available data.

For TSG sampling, we balance our data sets to 15000 sentences from each data type

and sample using the Enbuske sampler that was released with Swanson and Charniak

(2013). To construct word clusters, we use Giza++ (Och and Ney (2003)) and train

on the Europarl data set (Koehn (2005)), using .25 as a threshold for construction on

connected components.

Given our setup of three native languages, a feature withR(F ) < .66 is a candidate

for language transfer. However, several members of our filtered list have R(F ) > .66,

which is to say that their L2 usage does not mirror L1 usage. This is to be expected in
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Figure 3.12: Creating test cases that consist of several sentences mediates feature
sparsity, providing clear evidence for the discriminative power of the chosen feature
set.

some cases due to noise, but it raises the concern that our features with R(F ) < .66

are also the result of noise in the data. To address this, we apply our features to

the task of cross language NLI using only L1 data for training. If the variation of

R(F ) around chance is simply due to noise then we would expect near chance (33%)

classification accuracy. The leftmost point in Figure 3.12 shows the initial result,

using boolean features in a log-linear classification model, where a test case involves

guessing an L1 label for each individual sentence in the L2 corpus. While the accuracy

does exceed chance, the margin is not very large.

One possible explanation for this small margin is that the language transfer signal

is sparse, as it is likely that language transfer can only be used to correctly label a

subset of L2 data. We test this by combining randomly sampled L2 sentences with

the same L1 label, as shown along the horizontal axis of Figure 3.12. As the number

of sentences used to create each test case is increased, we see an increase in accuracy

that supports the argument for sparsity; if the features were simply weak predictors,

this curve would be flat. The resulting margin is much larger, providing evidence that

a significant portion of our features with R(F ) < .66 are not selected due to random

noise in R and are indeed connected to language transfer.
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The number and strength of these hypotheses is easily augmented with more data,

as is the number of languages under consideration and we encourage the reader to

peruse the full list of results2. We will now discuss the top eight members of our

list, demonstrating the final and only un-automated step in the formulation of a

language transfer hypothesis using our method. Each discussion will appear on its

own page, and includes the actual TSG fragment feature, and we have also provided

its equivalent representation as a pattern matcher on dependency trees as they are

normally represented.

2bllip.cs.brown.edu/download/interlanguage corpus.pdf
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55

ROOT

VERB-L VERB VERB-R

p VERB-R

ccomp VERB-R

VERB ? ?
?

root

?+ p

ccomp

?+

Counts per 1000 sentences

ES FR DE

L1 0.38 1.04 8.94

L2 1.81 1.22 8.37

Expected Loss on L2 data - 0.331

55

ROOT

VERB-L VERB VERB-R

p VERB-R

ccomp VERB-R

VERB ? ?
?

root

?+ p

ccomp

?+

Counts per 1000 sentences

ES FR DE

L1 0.38 1.04 8.94

L2 1.81 1.22 8.37

Expected Loss on L2 data - 0.331

Counts per 1000 sentences

ES FR DE EN

L1 0.38 1.04 8.94

L2 1.81 1.22 8.37 1.68

Expected Loss on L2 data - 0.331

This pattern occurs when the main verb of a sentence is followed immediately

with punctuation, usually a comma, and then a complementary clause. In English

this leads to a sentence like “Now I know, that every step in life has its advantages.” or

“I claim, that we do not taste a Big Mac in another way if we see an advertisement.”.

This is a clear example of negative language transfer, as this phrasing is incorrect

in English. The pattern is used most often in both German samples, and its native

equivalent is correct in German, “Die Polizei glaubt, da etwa 30 Bomben in der Stadt

sind.”
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56

56

ROOT

VERB-L VERB VERB-R

p VERB-R

ccomp VERB-R

VERB ?
?

root

acomp

?+

Counts per 1000 sentences

ES FR DE

L1 9.55 .06 .19

L2 .72 .06 .20

Expected Loss on L2 data - 0.331

56

ROOT

VERB-L VERB VERB-R

p VERB-R

ccomp VERB-R

VERB ?
?

root

acomp

?+

Counts per 1000 sentences

ES FR DE

L1 9.55 .06 .19

L2 .72 .06 .20

Expected Loss on L2 data - 0.331

ROOT

VERB VERB-R

acomp VERB-R

Counts per 1000 sentences

ES FR DE

L1 9.55 .06 .19

L2 .72 .06 .20

Expected Loss on L2 data - 0.331

56

ROOT

VERB-L VERB VERB-R

p VERB-R

ccomp VERB-R

VERB ?
?

root

acomp

?+

Counts per 1000 sentences

ES FR DE

L1 9.55 .06 .19

L2 .72 .06 .20

Expected Loss on L2 data - 0.331

56

ROOT

VERB-L VERB VERB-R

p VERB-R

ccomp VERB-R

VERB ?
?

root

acomp

?+

Counts per 1000 sentences

ES FR DE

L1 9.55 .06 .19

L2 .72 .06 .20

Expected Loss on L2 data - 0.331

Counts per 1000 sentences

ES FR DE EN

L1 9.55 .06 .19

L2 .72 .06 .20 .34

Expected Loss on L2 data - 0.331

This pattern captures pronoun dropping at the beginning of a sentence, as in the

actual L2 sentences “Is much more eficent to take the public bus.” and “Is possible

that in 20 years, will not possible have a car.”. This pattern is associated with the

Spanish speaking data samples, and appears in Spanish as “Es inofensivo para los

humanos.” This is another example of negative language transfer. The L2 sentences

provided also highlight the ability of the formalism to handle malformed learner input,

remaining detectable despite the misspelling of ”efficient” in the first sentence and

the additional pronoun drop in the second.
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57

amod

ADJ

34

ADJ
further

amod

ADJ
further

amod

Counts per 1000 sentences

ES FR DE

L1 0.00 0.00 7.24

L2 0.84 0.44 2.24

Expected Loss on L2 data - 0.332

57

amod

ADJ

34

ADJ
further

amod

ADJ
further

amod

Counts per 1000 sentences

ES FR DE

L1 0.00 0.00 7.24

L2 0.84 0.44 2.24

Expected Loss on L2 data - 0.332

Counts per 1000 sentences

ES FR DE EN

L1 0.00 0.00 7.24

L2 0.84 0.44 2.24 0.89

Expected Loss on L2 data - 0.332

A clear case of positive language transfer, this pattern simply detects the use of

a certain multilingual stopword with index 34. Hypotheses containing such stopword

classes are not as strong as they could be if our stopword lists were manually con-

structed, as we cannot be certain that the behavior is not an artifact of our clustering.

The trend that German native speakers use the word “further” in English is clearly

supported by the data, but we must perform some further straightforward analysis

of our text samples to illuminate the cross-lingual connection.
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58

VERB-R

adpmod VERB-R

acomp VERB-R

p

VERB ? ? ?
?

?* ?*

adpmod

acomp

p

Counts per 1000 sentences

ES FR DE

L1 .50 .31 10.8

L2 .13 .17 .51

Expected Loss on L2 data - 0.374

58

VERB-R

adpmod VERB-R

acomp VERB-R

p

VERB ? ? ?
?

?* ?*

adpmod

acomp

p

Counts per 1000 sentences

ES FR DE

L1 .50 .31 10.8

L2 .13 .17 .51

Expected Loss on L2 data - 0.374

Counts per 1000 sentences

ES FR DE EN

L1 .50 .31 10.8

L2 .13 .17 .51 .22

Expected Loss on L2 data - 0.374

This pattern occurs at the end of sentences, as represented by the final punctuaion

arc. The final two dependents of the main verb are an adpositional modifier followed

by an adjectival compliment. In the sentence “From my point of view it is of course

understandable.”, they are “of course”, and “understandable” respectively. In “Also

the variety of ideas is in a group much bigger.”, they are “in a group” and “much

bigger”. This is a technically correct but awkward in English, making it a case of

positive language transfer that merits discussion in a classroom setting. The usage

counts in L1 data suggest that this pattern is more natural in German, where the

outcome is “Das Spiel war in Frankreich am weitesten verbreitet.”
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59

ccomp

VERB-L

mark

VERB VERB-R

dobj

? VERB ?

ccomp

mark dobj

Counts per 1000 sentences

ES FR DE

L1 2.39 .06 0.00

L2 .91 .33 0.10

Expected Loss on L2 data - 0.394

59

ccomp

VERB-L

mark

VERB VERB-R

dobj

? VERB ?

ccomp

mark dobj

Counts per 1000 sentences

ES FR DE

L1 2.39 .06 0.00

L2 .91 .33 0.10

Expected Loss on L2 data - 0.394

Counts per 1000 sentences

ES FR DE EN

L1 2.39 .06 0.00

L2 .91 .33 0.10 .34

Expected Loss on L2 data - 0.394

This fragment represents a clausal complement beginning with a mark relation-

ship, typically lexicalized by the word “that”. This is followed by a single verb and a

possibly complex direct object, resulting in a clauses such as “the facts that determine

it” or “the causes that argue this idea”. This is a distinction in the type of the clausal

complement, differentiating from the common pattern used in “I know that he ate it”

in which the clause has a subject as well. While this contrast is clear and points to

a case of positive language transfer, in analysis of the learner sentences produced we

find a large number of pattern matches to have arisen from misparsed learner text.

To confidently claim that this particular linguistic pattern is associated with Spanish

to English language transfer further data is required, although its prevalence in native

Spanish is clearly shown in the first row in the table.
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60

NOUN-R

dep

X

? NOUN ? X
? ?

?* ?*

dep

Counts per 1000 sentences

ES FR DE

L1 11.05 0.06 0.63

L2 3.38 1.50 0.41

Expected Loss on L2 data - 0.407

60

NOUN-R

dep

X

? NOUN ? X
? ?

?* ?*

dep

Counts per 1000 sentences

ES FR DE

L1 11.05 0.06 0.63

L2 3.38 1.50 0.41

Expected Loss on L2 data - 0.407

Counts per 1000 sentences

ES FR DE EN

L1 11.05 0.06 0.63

L2 3.38 1.50 0.41 1.17

Expected Loss on L2 data - 0.407

This pattern is a false positive, and exemplifies not only the weakness of a data-

driven system, but also the ease with which such patterns can be filtered away. The

first red flag for this pattern is that besides the NOUN tag, it only uses the arc

label “dep” and the pos tag “X”, which are fallback labels in the UTB when other

analyses do not fit. On observation of the english data, we see that it is trigged

almost exclusively by things like “pollution, stress, etc.”, where the dependency and

X postag dominate the “etc”. When triggered in the Spanish data, the dominated

span is primarily English text “Britain’s Got Talent” that does not fit the Spanish

language model, or the exponential 2 in a phrase like “una superficie total de 92.98

km2”. It is pure coincidence that square meterage is often discussed in the native

language data and “etc” is used more frequently in the Spanish L2 data, and that

these are represented by the same TSG fragment.
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61

VERB-R

dobj VERB-R

prt

VERB
?

?*
dobj

prt

Counts per 1000 sentences

ES FR DE

L1 0.00 0.00 4.72

L2 0.90 0.72 2.09

Expected Loss on L2 data - 0.407

61

VERB-R

dobj VERB-R

prt

VERB
?

?*
dobj

prt

Counts per 1000 sentences

ES FR DE

L1 0.00 0.00 4.72

L2 0.90 0.72 2.09

Expected Loss on L2 data - 0.407

Counts per 1000 sentences

ES FR DE EN

L1 0.00 0.00 4.72

L2 0.90 0.72 2.09 1.68

Expected Loss on L2 data - 0.407

Putting a verb particle after the direct object is perfectly fine in English, as

in “try it out” or “cut their sparetime down” where the particles are “out” and

“down”. This is consistent with German seperable verbs in german, where a verb

such as “abfahren” is used in a sentence as “Auf Gefahr fahre ich ab, aber angefahren

fahre ich ins Krankenhaus ein.” The use of seperable verbs makes this construction a

natural result of direct translation from German to English by learners. This example

of positive language transfer highlights the abilities of data driven systems, as they

do not jump out as awkward or erroneous in L2 text and might be more easily missed

by human linguists.
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62

VERB-L

VERB-L

VERB-L nmod

p

? ? VERB
?

nmod

p

?+

?*

Counts per 1000 sentences

ES FR DE

L1 0.19 1.84 0.13

L2 0.45 1.22 0.15

Expected Loss on L2 data - 0.409
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VERB-L

VERB-L

VERB-L nmod

p

? ? VERB
?

nmod

p

?+

?*

Counts per 1000 sentences

ES FR DE

L1 0.19 1.84 0.13

L2 0.45 1.22 0.15

Expected Loss on L2 data - 0.409

Counts per 1000 sentences

ES FR DE EN

L1 0.19 1.84 0.13

L2 0.45 1.22 0.15 .62

‘

Expected Loss on L2 data - 0.409

This pattern represents a certain way of starting sentences, preferred by French

native speakers. The rightmost left dependent in the pattern is typically the verb’s

subject, and the punctuation arc usually a comma, and so the pattern is capturing

the use of a nominal modifier before the subject of a sentence. In English this results

in sentences such as “But today, many elders reache 100 years or over.” or “Thus, in

twenty year, we want to get things without any effort”, where the nominal modifiers

are “today” and “year”. The corresponding pattern in French can be seen in the

sentence “Ce matin, une bande d’anarcho-hitléro-trotskystes a voulu faire sauter”.

This is similar to the previous example in that it suggests positive language transfer

that does not result in a awkward phrasing.



Chapter 4

Generating Language Education

Exercises

4.1 Introduction

In our final section we investigate freeform data driven Natural Language Genera-

tion (NLG), with the goal of incorporating it in second language education classroom

activities. While NLG is a natural choice for a domain that requires large amount of

exemplar text, motivating its empirical study is a difficult task. The key issue is that

although many language models used in statistical NLP are generative and can easily

produce sample sentences by running their “generative mode”, if all that is required

is a plausible sentence one might as well pick a sentence at random from any existing

corpus.

NLG becomes useful when constraints exist such that only certain sentences are

valid. The majority of NLG applies a semantic constraint of “what to say”, producing

sentences with communicative goals. Examples include work such as Belz (2008),

which produces weather reports from structured data, or Mitchell et al. (2013) which

72
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generates descriptions of objects from images. Our work is more similar to NLG

work that concentrates on structural constraints such as generative poetry (Greene

et al. (2010))(Colton et al. (2012))(Jiang and Zhou (2008)) or song lyrics (Wu et al.

(2013))(Ramakrishnan A et al. (2009)), where specified meter or rhyme schemes are

enforced. In these papers soft semantic goals are sometimes also introduced that seek

responses to previous lines of poetry or lyric.

Computational creativity is another subfield of NLG that often does not fix an

a priori meaning in its output. Examples such as Özbal et al. (2013) and Valitutti

et al. (2013) use template filling techniques guided by quantified notions of humor or

how catchy a phrase is.

We study two constraints concerning the words that are allowed in a sentence. The

first sets a fixed vocabulary such that only sentences where all words are in-vocab are

allowed. The second demands not only that all words are in-vocab, but also requires

the inclusion of a specific word somewhere in the sentence.

These constraints are natural in the construction of language education exer-

cises, where students have small known vocabularies and exercises that reinforce the

knowledge of arbitrary words are required. To provide an example, consider a Chi-

nese teacher composing a quiz that asks students to translate sentences from English

to Chinese. The teacher cannot ask students to translate words that have not been

taught in class, and would like ensure that each vocabulary word from the current

book chapter is included in at least one sentence. Using a system such as ours, she

could easily generate a number of usable sentences that contain a given vocab word

and select her favorite, repeating this process for each vocab word until the quiz is

complete.

The construction of such a system presents two primary technical challenges.

First, while highly parameterized models trained on large corpora are a good fit
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for data driven NLG, sparsity is still an issue when constraints are introduced. Tradi-

tional smoothing techniques used for prediction based tasks are inappropriate, how-

ever, as they liberally assign probability to implausible text. We investigate smooth-

ing techniques better suited for NLG that smooth more precisely, sharing probability

only between words that have strong semantic connections.

The second challenge arises from the fact that both vocabulary and word inclu-

sion constraints are easily handled with a rejection sampler that repeatedly generates

sentences until one that obeys the constraints is produced. Unfortunately, for mod-

els with a sufficiently wide range of outputs the computation wasted by rejection

quickly becomes prohibitive, especially when the word inclusion constraint is applied.

We define models that sample directly from the possible outputs for each constraint

without rejection or backtracking, and closely approximate the distribution of the

true rejection samplers.

We contrast several generative systems through both human and automatic eval-

uation. Our best system effectively captures the compositional nature of our train-

ing data, producing error-free text with nearly 80 percent accuracy without wasting

computation on backtracking or rejection. When the word inclusion constraint is

introduced, we show clear empirical advantages over the simple solution of searching

a large corpus for an appropriate sentence.

4.2 Freeform Generation

For clarity in our discussion, we phrase the sentence generation process in the

following general terms based around two classes of atomic units : contexts and

outcomes. In order to specify a generation system, we must define

1. the set C of contexts c
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2. the set O of outcomes o

3. the “Imply” function I(c, o)→ List[c ∈ C]

4. M : derivation tree � sentence

where I(c, o) defines the further contexts implied by the choice of outcome o for the

context c. Beginning with a unique root context, a derivation tree is created by

repeatedly choosing an outcome o for a leaf context c and expanding c to the new

leaf contexts specified by I(c, o). M converts between derivation tree and sentence

text form.

This is simply a convenient rephrasing of the Context Free Grammar formalism,

and as such the systems we describe all have some equivalent CFG interpretation.

Indeed, to describe a traditional CFG, let C be the set of symbols, O be the rules of

the CFG, and I(c, o) return a list of the symbols on the right hand side of the rule

o. To define an n-gram model, a context is a list of words, an outcome a single word,

and I(c, o) can be procedurally defined to drop the first element of c and append o.

To perform the sampling required for derivation tree construction we must define

P (o|c). Using M, we begin by converting a large corpus of sentence segmented text

into a training set of derivation trees. Maximum likelihood estimation of P (o|c) is

then as simple as normalizing the counts of the observed outcomes for each observed

context. However, in order to obtain contexts for which the conditional independence

assumption of P (o|c) is appropriate, it is necessary to condition on a large amount of

information. This leads to sparse estimates even on large amounts of training data, a

problem that can be addressed by smoothing. We identify two complementary types

of smoothing, and illustrate them with the following sentences.

The furry dog bit me.

The cute cat licked me.
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An unsmoothed bigram model trained on this data can only generate the two

sentences verbatim. If, however, we know that the tokens “dog” and “cat” are se-

mantically similar, we can smooth by assuming the words that follow “cat” are also

likely to follow “dog”. This is easily handled with traditional smoothing techniques

that interpolate between distributions estimated for both coarse, P (w|w−1=[animal]),

and fine, P (w|w−1=“dog”), contexts. We refer to this as context smoothing.

However, we would also like to capture the intuition that words which can be

followed by “dog” can also be followed by “cat”, which we will call outcome smooth-

ing. We extend our terminology to describe a system that performs both types of

smoothing with the following

• the set C̄ of smooth contexts c̄

• the set Ō of smooth outcomes ō

• a smoothing function SC : C → C̄

• a smoothing function SO : O → Ō

We describe the smoothed generative process with the flowchart shown in Figure

4.1. In order to choose an outcome for a given context, two decisions must be made.

First, we must decide which context we will employ, the true context or the smooth

context, marked by edges 1 or 2 respectively. Next, we choose to generate a true

outcome or a smooth outcome, and if we select the latter we use edge 6 to choose a

true outcome given the smooth outcome. The decision between edges 1 and 2 can

be sampled from a Bernoulli random variable with parameter λc, with one variable

estimated for each context c. The decision between edges 5 and 3 and the one between

4 and 7 can also be made with Bernoulli random variables, with parameter sets γc

and γc̄ respectively.
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dog [animal]

bit

[action]

4

21

3

5 76

2 Related Work

The application of structural constraints appears
in previous work in the form of generative po-
etry (Greene et al., 2010) or lyrics (Wu et al.,
2013), where specified meter or rhyme schemes
are enforced. Özbal et al. (2013) produces
freeform text by filling templates with respect to
abstract notions such as humor.

3 Freeform Generation

We first address the problem of freeform data
driven language generation directly. We do not
set a semantic goal but instead ask only that the
output be considered a valid sentence, seeking a
model that captures the variability of language.

For clarity in our discussion, we phrase the
generation process in the following general terms
based around two classes of atomic units : Con-
texts and Outcomes. In order to specify a genera-
tion system, we must define

1. the set C of contexts c
2. the set O of outcomes o
3. the “Imply” function I(c, o) → List[c ∈ C]

where I(c, o) defines the further contexts implied
by the choice of outcome o for the context c. This
model can be made probabilistic by the definition
of P (o|c), where each outcome is sampled inde-
pendently given its context. We also require the
existence of a single unique root context, and refer
to the result of repeated sampling of outcomes for
contexts as a derivation tree. Finally, a mapping
from derivation tree to surface form is required to
produce actual text.

This is simply a convenient rephrasing of the
Context Free Grammar formalism, and as such
the systems we describe all have some equivalent
CFG interpretation. Indeed, to describe a tradi-
tional CFG, let C be the set of nonterminals, O be
the rules of the CFG, and I(c, o) returns a list of
the nonterminals on the right hand side of the rule
o and does not depend on c. P (o|c) would enforce
the choice of rules with appropriate lefthand sides.

The Context-Outcome terms can be more natu-
ral when describing other models where we do not
want to explicitly define the space of nonterminals.
A simple example is an n-gram model, for which
a context is an ordered list of words, an outcome
a single word, and I(c, o) can be procedurally de-
fined to produce a list containg a single context

made by dropping the first word of the previous
context and appending the outcome to the end.

This formulation is well suited to data driven
estimation from a corpus of derivation trees.
While our methods are easily extended to mul-
tiple derivations for each single sentence, in this
work we assume access to a single derivation for
each sentence in our data set. Maximum likeli-
hood estimation of P (o|c) is then as simple as nor-
malizing the counts of the observed outcomes for
each observed context. However, in order to ob-
tain contexts for which the conditional indepen-
dence assumption of P (o|c) is appropriate, it is
necessary to condition on a large amount of in-
formation. This leads to sparse estimates even on
large amounts of training data, a problem that can
be addressed by smoothing.

We identify two complementary types of
smoothing, and illustrate them with the following
sentences.

The furry dog bit me.
The cute cat licked me.

Assuming a simple bigram model where con-
text is the previous word and the outcome a sin-
gle word, an unsmoothed model trained on this
data can only generate the two sentences verba-
tim. Imagine we have some way of knowing that
the tokens “dog” and “cat” are similar and would
like to leverage this fact . In our bigram model,
this amounts to the claim that the words that follow
“cat” are perhaps also likely to follow “dog”. This
is easily handled with traditional smoothing tech-
niques, which interpolate between distributions
estimated for both coarse, P (w|w−1=[is-animal]),
and fine, P (w|w−1=“dog”), contexts. We refer to
this as context smoothing.

However, we would also like to capture the in-
tuition that words which can be followed by “dog”
can also be followed by “cat”, which we will call
outcome smoothing. We extend our terminology
to describe a system that performs both types of
smoothing with the following

• the set C̄ of smooth contexts c̄

• the set Ō of smooth outcomes ō

• a smoothing function SC : C → C̄
• a smoothing function SO : O → Ō

We describe the generative process with the fol-
lowing flowchart

2 Related Work

The application of structural constraints appears
in previous work in the form of generative po-
etry (Greene et al., 2010) or lyrics (Wu et al.,
2013), where specified meter or rhyme schemes
are enforced. Özbal et al. (2013) produces
freeform text by filling templates with respect to
abstract notions such as humor.

3 Freeform Generation

We first address the problem of freeform data
driven language generation directly. We do not
set a semantic goal but instead ask only that the
output be considered a valid sentence, seeking a
model that captures the variability of language.

For clarity in our discussion, we phrase the
generation process in the following general terms
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of P (o|c), where each outcome is sampled inde-
pendently given its context. We also require the
existence of a single unique root context, and refer
to the result of repeated sampling of outcomes for
contexts as a derivation tree. Finally, a mapping
from derivation tree to surface form is required to
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This is simply a convenient rephrasing of the
Context Free Grammar formalism, and as such
the systems we describe all have some equivalent
CFG interpretation. Indeed, to describe a tradi-
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the rules of the CFG, and I(c, o) returns a list of
the nonterminals on the right hand side of the rule
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context and appending the outcome to the end.

This formulation is well suited to data driven
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work we assume access to a single derivation for
each sentence in our data set. Maximum likeli-
hood estimation of P (o|c) is then as simple as nor-
malizing the counts of the observed outcomes for
each observed context. However, in order to ob-
tain contexts for which the conditional indepen-
dence assumption of P (o|c) is appropriate, it is
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Figure 4.1: A flow chart depicting the decisions made when choosing an outcome for
a context. The large circles show the set of items associated with each decision, and
contain examples items for a bigram model where SC and SO map words (e.g. dog)
to semantic classes (e.g. [animal]). The example items illustrate that there are four
ways to decide that the “dog” should be followed by “bit”. These four paths differ in
the smoothness of their statements, ranging from “bit can follow dog” (path 1-5) to
“dog is an animal, an animal can be followed by an action, and an action can be the
word bit” (path 2-4-6).

This yields the full form of the unconstrained probabilistic generative model as

follows

P (o|c) = λcP1(o|c) + (1− λc)P2(o|Sc(c))

P1(o|c) = γcP5(o|c)+

(1− γc)P7(o|ō)P3(ō|c) (4.1)

P2(o|c̄) = γc̄P6(o|c)+

(1− γc̄)P7(o|ō)P4(ō|c̄)
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requiring estimation of the λ and γ variables as well as the five multinomial distribu-

tions P3−7. This can be done with a straightforward application of EM.

4.3 Limiting Vocabulary

A primary concern in the generation of language education exercises is the working

vocabulary of the students. If efficiency were not a concern, the natural solution to

the vocabulary constraint would be rejection sampling: simply generate sentences

until one happens to obey the constraint. In this section we show how to generate a

sentence directly from this constrained set with a distribution closely approximating

that of the rejection sampler.

4.3.1 Pruning

The first step is to prune the space of possible sentences to those that obey the

vocabulary constraint. For the models we investigate there is a natural predicate

V (o) that is true if and only if an outcome introduces a word that is out of vocab,

and so the vocabulary constraint is equivalent to the requirement that V (o) is false

for all possible outcomes o. Considering transitions along edges in Figure 4.1, the

removal of all transitions along edges 5,6, and 7 that lead to outcomes where V (o) is

true satisfies this property.

Our remaining concern is that the generation process reaches a failure case. Again

considering transitions in Figure 4.1, failure occurs when we require P (o|c) for some

c and there is no transition to c on edge 1 or SC(c) along edge 2. We refer to such

a context as invalid. Our goal, which we refer to as consistency, is that for all valid

contexts c, all outcomes o that can be reached in Figure 4.1 satisfy the property that

all members of I(c, o) are valid contexts.
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To see how we might end up in failure, consider a trigram model on POS/word

pairs for which SC is the identity function and SO backs off to the POS tag. Given a

context c = (
(
t−2

w−2

)
,
(
t−1

w−1

)
) if we generate along a path using edge 6 we will choose a

smooth outcome t0 that we have seen following c in the data and then independenently

choose a w0 that has been observed with tag t0. This implies a following context

(
(
t−1

w−1

)
,
(
t0
w0

)
). If we have estimated our model with observations from data, there is

no guarantee that this context ever appeared, and if so there will be no available

transition along edges 1 or 2.

Let the list Ī(c, o) be the result of the mapped application of SC to each element

of I(c, o). In order to define an efficient algorithm, we require the following property

D referring to the amount of information needed to determine Ī(c, o). Simply put,

D states if the smoothed context and outcome are fixed, then the implied smooth

contexts are determined.

D {SC(c), SO(o)} → Ī(c, o)

To highlight the statement D makes, consider the trigram POS/word model described

above, but let SC also map the POS/word pairs in the context to their POS tags alone.

D holds here because given SC(c) = (t−2, t−1) and SO(o) = t0 from the outcome, we

are able to determine the implied smooth context (t−1, t0). If context smoothing

instead produced SC(c) = (t−2), D would not hold.

If D holds then we can show consistency based on the transitions in Figure 4.1

alone as any complete path through Figure 4.1 defines both c̄ and ō. By D we can

determine Ī(c, o) for any path and verify that all its members have possible transitions

along edge 2. If the verification passes for all paths then the model is consistent.

Algorithm 1 produces a consistent model by verifying each complete path in the

manner just described. One important feature is that it preserves the invariant that

if a context c can be reached on edge 1, then SC(c) can be reached on edge 2. This
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Algorithm 1 Pruning Algorithm

Initialize with all observed transitions
for all out of vocab o do

remove ?→ o from edges 5,6, and 7
end for
repeat

for all paths in flow chart do
if ∃c̄ ∈ Ī(c, o) s.t. c̄ is invalid then

remove transition from edge 5,7,3 or 4
end if

end for
Run Fixup

until edge 2 transitions did not change

means that if the verification fails then the complete path produces an invalid context,

even though we have only checked the members of Ī(c, o) against path 2.

If a complete path produces an invalid context, some transition along that path

must be removed. It is never optimal to remove transitions from edges 1 or 2 as

this unnecessarily removes all downstream complete paths as well, and so for invalid

complete paths along 1-5 and 2-7 Algorithm 1 removes the transitions along edges 5

and 7. The choice is not so simple for the complete paths 1-3-6 and 2-4-6, as there

are two remaining choices. Fortunately, D implies that breaking the connection on

edge 3 or 4 is optimal as regardless of which outcome is chosen on edge 6, Ī(c, o) will

still produce the same invalid c̄.

After removing transitions in this manner, some transitions on edges 1-4 may no

longer have any outgoing transitions. The subroutine Fixup removes such transitions,

checking edges 3 and 4 before 1 and 2. If Fixup does not modify edge 2 then the

model is consistent and Algorithm 1 terminates.
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4.3.2 Estimation

In order to replicate the behavior of the rejection sampler, which uses the original

probability model P (o|c) from Equation 1, we must set the probabilities PV (o|c) of

the pruned model appropriately. We note that for moderately sized vocabularies it is

feasible to recursively enumerate CV , the set of all reachable contexts in the pruned

model. In further discussion we simplify the representation of the model to a standard

PCFG with CV as its symbol set and its PCFG rules indexed by outcomes. This also

allows us to construct the reachability graph for CV , with an edge from ci to cj for

each cj ∈ I(ci, o). Such an edge is given weight P (o|c), the probability under the

unconstrained model, and zero weight edges are not included.

Our goal is to retain the form of the standard incremental recursive sampling

algorithm for PCFGs. The correctness of this algorithm comes from the fact that the

probability of a rule R expanding a symbol X is precisely the probability of all trees

rooted at X whose first rule is R. This implies that the correct sampling distribution

is simply the distribution over rules itself. When constraints that disallow certain

trees are introduced, the probability of all trees whose first rule is R only includes the

mass from valid trees, and the correct sampling distribution is the renormalization of

these values.

Let the goodness of a context G(c) be the probability that a full subtree generated

from c using the unconstrained model obeys the vocabulary constraint. Knowledge of

G(c) for all c ∈ CV allows the calculation of probabilities for the pruned model with

PV (o|c) ∝ P (o|c)
∏

c′∈I(c,o)
G(c′) (4.2)
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While G(c) can be defined recursively as

G(c) =
∑
o∈O

P (o|c)
∏

c′∈I(c,o)
G(c′) (4.3)

its calculation requires that the reachability graph be acyclic. We approximate an

acyclic graph by listing all edges in order of decreasing weight and introducing edges

as long as they do not create cycles. This can be done efficiently with a binary search

over the edges by weight. Note that this approximate graph is used only in recursive

estimation of G(c), and the true graph can still be used in Equation 4.2.

4.4 Generating Up

In this section we show how to efficiently generate sentences that contain an

arbitrary word w∗ in addition to the vocabulary constraint. We assume the ability

to easily find Cw∗ , a subset of CV whose use guarantees that the resulting sentence

contains w∗. Our goal is once again to efficiently emulate the rejection sampler, which

generates a derivation tree T and accepts if and only if it contains at least one member

of Cw∗ .
Let Tw∗ be the set of derivation trees that would be accepted by the rejection

sampler. We present a three stage generative model and its associated probability

distribution Pw∗(τ) over items τ for which there is a functional mapping into Tw∗ .
In addition to the probabilities PV (o|c) from the previous section, we require an

estimate of E(c), the expected number of times each context c appears in a single

tree. This can be computed efficiently using the mean matrix, described in Miller

and Osullivan (1992). This |CV | × |CV | matri x M has its entries defined as

M(i, j) =
∑
o∈O

P (o|ci)#(cj, ci, o) (4.4)
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where the operator # returns the number of times context cj appears I(ci, o). Defining

a 1×|CV | start state vector z0 that is zero everywhere and 1 in the entry corresponding

to the root context gives

E(z) =
∞∑
i=0

z0M
i

which can be iteratively computed with sparse matrix multiplication. Note that the

ith term in the sum corresponds to expected counts at depth i in the derivation

tree. With definitions of context and outcome for which very deep derivations are

improbable, it is reasonable to approximate this sum by truncation.

Our generation model operates in three phases.

1. Chose a start context c0 ∈ Cw∗

2. Generate a spine S of contexts and outcomes connecting c0 to the root context

3. Fill in the full derivation tree T below all remaining unexpanded contexts

In the first phase, c0 is sampled from the multinomial

P1(c0) =
E(c0)∑

c∈Cw∗
E(c)

(4.5)

The second step produces a spine S, which is formally an ordered list of triples.

Each element of S records a context ci, an outcome oi, and the index k in I(ci, oi) of the

child along which the spine progresses. The members of S are sampled independantly

given the previously sampled context, starting from c0 and terminating when the root

context is reached. Intuitively this is equivalent to generating the path from the root

to c0 in a bottom up fashion.
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We define the probability Pσ of a triple (ci, oi, k) given a previously sampled con-

text cj as

Pσ({ci, oi, k}|cj) ∝ E(ci)PV (oi|ci) I(ci, oi)[k] = cj

0 otherwise
(4.6)

Let S = (c1, o1, k1) . . . (cn, on, kn) be the results of this recursive sampling algo-

rithm, where cn is the root context, and c1 is the parent context of c0. The total

probability of a spine S is then

P2(S|c0) =

|S|∏
i=1

E(ci)PV (oi|ci)
Zi−1

(4.7)

Zi−1 =
∑

(c,o)∈Ici−1

E(c)PV (o|c)#(ci−1, c, o) (4.8)

where Ic−1 is the set of all (c, o) for which Pσ(c, o, k|ci−1) is non-zero for some k. A key

observation is that Zi−1 = E(ci−1), which cancels nearly all of the expected counts

from the full product. Along with the fact that the expected count of the root context

is one, the formula simplifies to

P2(S|c0) =

|S|∏
i=1

PV (oi|ci)

E(c0)
(4.9)

The third step generates a final tree T by filling in subtrees below unexpanded

contexts on the spine S using the original generation algorithm, yielding results with

probability

P3(T |S) =
∏

(c,o)∈T/S
PV (o|c) (4.10)
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where the set T/S includes all contexts that are not ancestors of c0, as their outcomes

are already specified in S.

We validate this algorithm by considering its distrubution over complete derivation

trees T ∈ Tw∗ . The algorithm generates τ = (T, S, c0) and has a simple functional

mapping into Tw∗ by extracting the first member of τ .

Combining the probabilities of our three steps gives

Pw∗(τ) =
E(c0)∑

c∈Cw∗
E(c)

|S|∏
i=1

PV (oi|ci)

E(c0)

∏
(c,o)∈T/S

PV (o|c)

Pw∗(τ) =
PV (T )∑

c∈Cw∗
E(c)

=
1

ρ
PV (T ) (4.11)

where ρ is a constant and

PV (T ) =
∏

(c,o)∈T
PV (o|c)

is the probability of T under the original model. Note that several τ may map to the

same T by using different spines, and so

Pw∗(T ) =
η(T )

ρ
PV (T ) (4.12)

where η(T ) is the number of possible spines, or equivalently the number of contexts

c ∈ Cw∗ in T .

Recall that our goal is to efficiently emulate the output of a rejection sampler. An

ideal system Pw∗ would produce the complete set of derivation trees accepted by the

rejection sampler using PV , with probabilities of each derivation tree T satisfying

Pw∗(T ) ∝ PV (T ) (4.13)
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Consider the implications of the following assumption

A each T ∈ Tw∗ contains exactly one c ∈ Cw∗

A ensures that η(T ) = 1 for all T , unifying Equations 4.12 and 4.13. A does not

generally hold in practice, but its clear exposition allows us to design models for which

it holds most of the time, leading to a tight approximation.

The most important consideration of this type is to limit redundancy in Cw∗ . For

illustration consider a dependency grammar model with parent annotation where a

context is the current word and its parent word. When specifying Cw∗ for a particular

w∗, we might choose all contexts in which w∗ appears as either the current or parent

word, but a better choice that more closely satisfies A is to choose contexts where w∗

appears as the current word only.

4.5 Experiments

We train our models on sentences drawn from the Simple English Wikipedia1.

We obtained these sentences from a data dump which we liberally filtered to remove

items such as lists and sentences longer than 15 words or shorter then 3 words. We

parsed this data with the recently updated Stanford Parser Socher et al. (2013) to

Penn Treebank constituent form, and removed any sentence that did not parse to

a top level S containing at least one NP and one VP child. Even with such strong

filters, we retained over 140K sentences for use as training data, and provide this

exact set of parse trees for use in future work.2

Inspired by the application in language education, for our vocabulary list we use

the English Vocabulary Profile (Capel (2012)), which predicts student vocabulary at

different stages of learning English as a second language. We take the the most basic

1http://simple.wikipedia.org
2data url anon for review
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END

END

Freeform Generation from a Fixed Vocabulary

Abstract

We investigate data driven natural lan-
guage generation under the constraint that
all words must come from a fixed arbi-
trary vocabulary. This constraint is then
extended such that a user specified word
must also appear in the sentence. We
present fast approximations to the ideal re-
jection samplers and increase variability in
generated text through controlled smooth-
ing.

1 Introduction

ROOT PRP VBZ JJ NNS
she likes big dogs

ROOT VBZ
likes

PRP NNS
she dogs

ROOT VBZ NNS
likes dogs

ROOT PRP VBZ
she likes

JJ
big

VBZ JJ NNS
big dogs

Data driven Natural Language Generation
(NLG) is a fascinating topic explored by aca-
demics and artists alike, but motivating its empiri-
cal study is a difficult task. While many language
models used in statistical NLP are generative and
can easily produce sample sentences from distri-
butions estimated from data, if all that is required
is a plausible sentence one might as well pick one
at random from any existing corpus.

NLG is useful when constraints are applied such
that only certain plausible sentences are valid. The
majority of NLG applies the semantic constraint of
“what to say”, producing sentences with commu-
nicative goals. Other work such as ours investi-
gates constraints in structure; producing sentences
of a certain form without concern for their mean-
ing.

We motivate two specific constraints concern-
ing the words that are allowed in a sentence. The
first sets a fixed vocabulary such that only sen-
tences where all words are in-vocab are allowed.
The second demands not only that all words are
in-vocab, but specifies the inclusion of a single ar-
bitrary word somewhere in the sentence. These
contraints are most natural in the case of language
education, where students have small known vo-
cabularies and exercises that reinforce the knowl-
edge of arbitrary words are required. This use
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Figure 4.2: The generation system SpineDep draws on dependency tree syntax where
we use the term node to refer to a POS/word pair. Contexts consist of a node, its
parent node, and grandparent POS tag, as shown in squares. Outcomes, shown in
squares with rounded right sides, are full lists of dependents or the END symbol. The
shaded rectangles contain the results of I(c, o) from the indicated (c, o) pair.

American English vocabulary (the A1 list), and retrieve all inflections for each word

using SimpleNLG (Gatt and Reiter (2009)), yielding a vocabulary of 1226 simple

words and punctuation.

To mitigate noise in the data, we discard any pair of context and outcome that

appears only once in the training data, and estimate the parameters of the uncon-

strained model using EM.

4.5.1 Model Comparison

We experimented with many generation models before converging on SpineDep,

described in Figure 4.5.1, which we use in these experiments. SpineDep uses depen-

dency grammar elements, with parent and grandparent information in the contexts

to capture such distinctions as that between main and clausal verbs. Its outcomes

are full configurations of dependents, capturing coordinations such as subject-object

pairings. This specificity greatly increases the size of the model and in turn reduces

the speed of the true rejection sampler, which fails over 90% of the time to produce

an in-vocab sentence.
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Corr(%) % uniq

SpineDep unsmoothed 87.6 5.0
SpineDep WordNet 78.3 32.5

SpineDep word2vec 5000 72.6 52.9
SpineDep word2vec 500 65.3 60.2

KneserNey-5 64.0 25.8
DMV 33.7 71.2

Figure 4.3: System comparison based on human judged correctness and the percent-
age of unique sentences in a sample of 100K.

We found that large amounts of smoothing quickly diminishes the amount of error

free output, and so we smooth very cautiously, mapping words in the contexts and out-

comes to fine semantic classes. We compare the use of human annotated hypernyms

from Wordnet (Miller (1995)) with automatic word clusters from word2vec (Mikolov

et al. (2013)), based on vector space word embeddings, evaluating both 500 and 5000

clusters for the latter.

We compare these models against several baseline alternatives, shown in Figure

4.3. To determine correctness, used Amazon Mechanical Turk, asking the question:

“Is this sentence plausible?”. We further clarified this question in the instructions with

alternative definitions of plausibility as well as both positive and negative examples.

Every sentence was rated by five reviewers and its correctness was determined by

majority vote, with a .496 Fleiss kappa agreement. To avoid spammers, we limited

our hits to Turkers with an over 95% approval rating.

Traditional language modeling techniques such as such as the Dependency Model

with Valence (Klein and Manning (2004)) and 5-gram Kneser Ney (Chen and Good-

man (1996)) perform poorly, which is unsurprising as they are designed for tasks in

recognition rather than generation. For n-gram models, accuracy can be greatly in-

creased by decreasing the amount of smoothing, but it becomes difficult to find long

n-grams that are completely in-vocab and results become redundant, parroting the
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Corr(%) -LLR

True RS 79.3 –

Uniform 47.3 96.2
G(c) = 1 77.0 25.0

G(c) estimated 78.3 1.0

Figure 4.4: A comparison of our system against both a weak and a strong baseline
based on correctness and the negative log of the likelihood ratio measuring closeness
to the true rejection sampler.

few completely in-vocab sentences from the training data. The DMV is more flexible,

but makes assumptions of conditional independence that are far too strong. As a

result it is unable to avoid red flags such as sentences not ending in punctuation or

strange subject-object coordinations. Without smoothing, SpineDep suffers from a

similar problem as unsmoothed n-gram models; high accuracy but quickly vanishing

productivity.

All of the smoothed SpineDep systems show clear advantages over their competi-

tors. The tradeoff between correctness and generative capacity is also clear, and our

results suggest that the number of clusters created from the word2vec embeddings

can be used to trace this curve. As for the ideal position in this tradeoff, we leave

such decisions which are particular to specific application to future work, arbitrarily

using SpineDep WordNet for our following experiments.

4.5.2 Fixed Vocabulary

To show the tightness of the approximation presented in Section 4.2, we evaluate

three settings for the probabilities of the pruned model. The first is a weak baseline

that sets all distributions to uniform. For the second, we simply renormalize the true

model’s probabilities, which is equivalent to setting G(c) = 1 for all c in Equation

4.2. Finally, we use our proposed method to estimate G(c).
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We show in Figure 4.4 that our estimation method more closely approximates the

distribution of the rejection sampler by drawing 500K samples from each model and

comparing them with 500K samples from the rejection sampler itself. We quantify

this comparison with the likelihood ratio statistic, evaluating the null hypothesis that

the two samples were drawn from the same distribution. Not only does our method

more closely emulate that of the rejection sampler, be we see welcome evidence that

closeness to the true distribution is correlated with correctness.

4.5.3 Word Inclusion

To explore the word inclusion constraint, for each word in our vocabulary list

we sample 1000 sentences that are constrained to include that word using both un-

smoothed and WordNet smoothed SpineDep. We compare these results to the “Cor-

pus” model that simply searches the training data and uniformly samples from the

existing sentences that satisfy the constraints. This corpus search approach is quite

a strong baseline, as it is trivial to implement and we assume perfect correctness for

its results.

This experiment is especially relevant to our motivation of language education.

The natural question when proposing any NLG approach is whether or not the ability

to automatically produce sentences outweighs the requirement of a post-process to

ensure goal-appropriate output. This is a challenging task in the context of language

education, as most applications such as exam or homework creation require only a

handful of sentences. In order for an NLG solution to be appropriate, the constraints

must be so strong that a corpus search based method will frequently produce too few

options to be useful. The word inclusion constraint highlights the strengths of our

method as it is not only highly plausible in a language education setting but difficult

to satisfy by chance in large corpora.
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# < 10 # > 100 Corr(%)

Corpus 987 26 100
Unsmooth 957 56 89.0

Smooth 544 586 79.0

Figure 4.5: Using systems that implement the word inclusion constraint, we count
the words for which the number of unique sentences out of 1000 samples was less than
10 or greater than 100, along with the correctness of each system.

We make the assumption that for a user to effectively select a desirable output

there should be at least ten options, as some of the outputs may be grammatically or

semantically incorrect or undesirable for other unquantfiable reasons. We also assume

that the ability to produce over 100 possibilities is a good benchmark for producing

a wide variety of outputs. Figure 4.5 shows that the corpus search approach fails to

find more than ten sentences that obey the word inclusion constraints for most target

words. Moreover, it is arguably the case that unsmoothed SpineDep is even worse

due to its inferior correctness. With the addition of smoothing, however, we see a

drastic shift in the number of words for which a large number of sentences can be

produced. For the majority of the vocabulary words this model generates over 100

sentences that obey both constraints, of which approximately 80% are valid English

sentences.



Chapter 5

Conclusion

Learning a second language is a increasingly global experience, with English spo-

ken as a second language by a large amount of the world. At the same time, the

increased use and acceptence of technology in work, school, and daily life is hard

to ignore. This research follows a long standing interest in the interaction of these

two growing trends that is shared by previous work in Natural Language Processing,

Computationally Assisted Language Learning, and Linguistics.

Throughout this research we have held this motivation in focus and developed

novel techniques for the discovery of language transfer hypotheses and vocabulary

constrained generation. Our methods for producing a ranked and filtered list of

candidate hypotheses is purely data-driven and will scale with the ongoing efforts

to collect the data it requires. Our generation system produces sentences that are

constrained by vocabulary or word inclusion and semantically plausible with high

probability. Together, they greatly reduce the workload and expertise required to

incorporate language transfer hypotheses into the second language classroom, which

has been shown to increase the quality of the students’ education.

First, we discuss what remains between the ideas presented here and some detailed

92
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possibilities for real world applications. We then discuss ideas for future work regard-

ing both extension of our methods and pursuit of the general goal of computationally

assisted second language learning.

Completing the Connection

First we consider scenarios where our list of language transfer hypotheses is in-

corporated into language education curriculum. It is often the case with English as

a Second Language (ESL) education that the school is devoted entirely to English

education, and has an administrative staff whose task is to determine a school-wide

syllabus for classes of varying levels of experience. We propose that a person in such

a role would be able to use our methods and judge the quality of each language trans-

fer hypothesis. Often observing ten to twenty sentences that contain the pattern is

enough to understand it, a task made easier by bracketing or highlighting the text

that is dominated by the TSG rule representing the pattern. Determining if the pat-

tern is an example of negative language transfer is simple given presumed fluency in

the language of instruction, although it would be interesting to explore automatically

determining this property. The biggest weakness of this proposed system is that in

order to fully convince oneself of the integrity of a pattern it is necessary to under-

stand examples from the native language of the transfer phenomena as well as the

second, requiring a bilingual staff member for each native language involved.

Once a language transfer hypotheses has been accepted for inclusion in the syl-

labus, it can be used in many ways. The most straightforward is to simply have

the teacher explicitly highlight the form resulting from language transfer and present

corresponding sentences in the students’ native languages. In the case of negative

language transfer, L2 sentences exhibiting the error can be used in common exam
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questions such as “Which of these sentences are bad English?” or “Correct this sen-

tence”. Negative transfer patterns could also be used in translation exercises, both

from and to the L2. Positive language transfer can be included in the curriculum by

focusing on equivalent grammatical forms or synonyms, encouraging the students to

broaden their familiarities. Also, in the case of cloze questions (“fill in the blank”),

if a negative language transfer phenomenon consists of a single word or phrase then

its inclusion as a selection option is a worthwhile distractor to consider.

Most of these strategies involve example sentences in either the students’ L1 or

L2, which traditionally are constructed by a textbook author or teacher themselves.

Our generative system of exemplar text can easily produce such sentences. Addition-

ally, our word inclusion constraint enables the construction of exercises with multiple

questions such that one of a chosen set of featured vocabulary is featured in each

question. While according to our human evaluation above these sentences are fre-

quently correct, a human verification step would be necessary not only to weed out

incorrect sentences but to apply the teacher’s unquantifiable constraints of appropri-

ateness. It is important future work to evaluate generative language technologies in

the formulation of exercises to determine if they make tasks like exam creation easier.

It would also be interesting to use the output that the teacher labels as incorrect as a

source of “correct this sentence” exercises, as they may represent more probable real

life errors.

The automatic adaptability of our generative model to any vocabulary allows the

use of a dynamic syllabus. It is common practice in ESL schools to have a class

textbook that provides vocabulary lists, chapter by chapter. Due to the interests

or professional needs of the students, the sequence of chapters in these textbooks is

often only loosely respected, skipping chapters or studying them in a modified order.

This results in pre-made textbook exercises that feature words or grammar presented
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in a previous book chapter that has not been covered by the students. A generated

exercise does not suffer from this weakness, as the vocabulary constraint can simply

be altered to represent the vocabulary from the chapters that have been studied.

Additionally, in most language classes the interests of the students during in-class

activities prompt the introduction of new words that do not appear in the textbook.

These words do not appear in the textbook and are not reinforced by pre-made

exams and exercises. With our system, as long as the teacher quickly recorded these

words they could be automatically integrated into generated exams, homeworks, and

activities, allowing their reinforcement and retention.

The final step that deserves discussion is the missing link between the two tasks

that we address in this work: given our representation of a language transfer hypothe-

ses, how does one define a system of contexts and outcomes to provide exemplar text?

It is a happy coincidence that both our representation of language transfer patterns

and the contexts and outcomes of our best performing generation system, SpineDep,

are isomorphic to dependency tree syntax. This makes it a simple task to generate

exemplars with a slight modification of the word inclusion constraint, which begins

with a single context, generates a spine to the root, and then fills in remaining leaves.

To force inclusion of a language transfer pattern this process can be seeded with a

configuration of contexts and outcomes that represent the pattern, which will be a

tree with a root context. A spine can be generated from this root context, and then

the leaves filled as before.

Next Steps

While we have managed to automatically complete many steps in the formula-

tion of language transfer hypotheses, our methods are far from perfect. Perhaps the

biggest weakness is the set of universal stopword mappings (ML) used in Section
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3.4.2. Some clusters do correspond nicely to the translations across the four lan-

guages (English, French, German, and Spanish) that we investigate, in many cases

capturing the inflections of the gendered languages. Still, we found it hard to avoid

one very large cluster that contains a large number of unrelated stopwords. This

should not effect the quality of the output, as this can be thought of as an “other”

category, but in this way we lose the chance to capture many potentially interesting

patterns. It would be a fairly simple task to curate a gold set of mappings for a small

number of languages, which would allow principled experimentation with automatic

methods such as ours and quantifiable comparison between systems.

Another understudied topic that has significant impact on our results is the be-

havior of statistical parsers on non-native text. This involves handling such artifacts

as frequent misspellings of words, dropping of pronouns and articles, and irregular

punctuation, and it is not clear how to best proceed. By using a parser trained on the

Penn Treebank directly, we are trusting that misspelled words are mapped to appro-

priate unknown word categories so their part of speech can be correctly determined.

Also we hope that to some extent it does not matter what some ungrammatical phrase

parses to, as long as the same error leads to the same structure across trees. We would

be very interested in future work on this topic, as would the general field of NLI.

Generation of plausible text without a semantic goal is a field where much work

remains. A particular extension to our work would be to develop methods to investi-

gate the rate of plausibility over several vocabulary lists and improve the plausibility

rate across the board. One technique for this is active learning, where the user would

be asked to simply give or deny approval to generated text, which would then feed

back into the system. This brings to mind early machine learning work in grammati-

cal version spaces, which has much to say about such grammar induction algorithms.

If it could be shown that through a small amount of effort the plausibility could be
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significantly increased, this would fit our paradigm of language education in a ESL

company setting perfectly, where a teacher is a member of the process whose time

commitment should be minimized.

There are also possibilities for the use of the algorithms we develop on other NLP

tasks. The multi-grammar Tree Substitution Grammar induction model that we

present is general purpose in nature, and can produce many useful models by appro-

priate parameter settings, such as a naive Bayes model or Latent Dirichlet Allocation

topic model in either its canonical or supervised form. While in many implementa-

tions of these models the language model component is a simple bag of words, our

code allows the use of the TSG as the language model and it would be interesting to

see if the addition of syntactic information aids any of the vast number of experiments

that use these well-known models. Our work with constrained generative grammars

also has application in other areas, as it fits the general scenario where composition of

correct text is required but the communicative goal is not explicit. This includes the

previous work mentioned above in poetry and lyric generation, but also has potential

in research tasks like abstractive captioning of images. Another potential area of out-

side application is in speech recognition, which relies on good language models. It is

possible that learner language models that condition on the speakers native language

would produce better L2 language models that more accurately represent the speaker.

To facilitate such future work, we release several software packages that make up the

bulk of the work described here, with links are provided in the introduction.

The General Future

In our experiments, we have focused on a specific aspect (language transfer) of

a much larger group of interconnected issues regarding second language acquisition.
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When detected across multiple languages, language transfer becomes relevant to ques-

tions regarding the effects of native language on cognition such as the Sapir-Whorf

hypothesis. It is possible that when viewed on the level playing field of a common

second language and essay prompt, the behavior of different L1 groups is made clearer

or more easy quantified.

Computationally Assisted Language Learning (CALL) will no doubt remain an

excellent real world application for NLP, and its increasing prevalence will grow the set

of interesting problems that exists today. A key enabler for this type of research would

be to foster the partnership between the educators who hold the relevant data and

the academic community that wants to analyze it. While private software companies

may be unwilling to part with such data, certainly the second language education

departments of major universities could design a framework for sharing data with

the cooperation of interested NLP groups. A large step in the right direction would

be a shift in language education testing to fully computer based methods, a trend

that is already underway with the recent success of online education services such as

Coursera.

While CALL is primarily focused on techniques that effect student performance

on exams, NLP may find more common ground in the design of the syllabus. These

questions are important, as they determine what should be taught rather than how

it should be presented. For example, it is worth considering the design of vocabulary

lists in the chapters of a textbook. Not only should the individual vocabulary lists be

conceptually related such that several vocab words can naturally appear in a single

sentence, but successive lists should also exhibit this property to some extent. This

allows the continued reinforcement of previous lists in natural text. Also, it can be

beneficial to dynamically incorporate current events or class interests into a syllabus,

but careful analysis is required to determine if the new text is appropriate to the
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knowledge of the students.

The generation of classroom exercises is also a field where much work can be

done. Our incorporation of the vocabulary constraint is a bare minimum for such

systems, and our word inclusion constraint facilitates many natural language edu-

cation exercises, but many other types of exercise exist. One closely related topic

is the generation of sentences that feature some syntax or word collocation, which

is possible through extension of our model. A more complex extension would be to

incorporate dialog modeling, attempting to produce the simple dialog that are ubiq-

uitous in language education textbooks. This much more complex problem would be

approachable in a similar spirit to our work, using large amount of in and out of vocab

dialog to determine its compositional nature and building a vocabulary constrained

generation engine from these components.
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