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Human communication is naturally multimodal. On the web, images frequently appear alongside

text: for example, product images and descriptions on shopping websites, or social media users com-

menting on an image or a video. Image captions can serve many purposes: describing the salient

content of an image, giving background information that is relevant to understanding the image,

and allowing for images to be indexed and retrieved on search engines. Automatic image captioning

is a challenging task involving several open problems in the fields of Natural Language Processing

(NLP) and Computer Vision (CV).

This thesis presents work toward image captioning methods that learn from weakly-supervised ex-

amples of previously captioned images. These approaches employ text-to-text natural language

generation techniques, which generate image captions by adapting text from captions of visually

similar images. Using automatic and human evaluations, we demonstrate that our models can pro-

duce coherent and informative captions of images.

The work in this thesis will help enable the development of data-oriented image captioning systems

which can be used to generate captions that describe the same relevant features that are described

by humans, even in specific domains with few CV resources.
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A picture is worth one thousand words.

Chinese Proverb

As the Chinese say, one thousand and one

words is worth more than a picture.

John McCarthy
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Chapter 1

Introduction

This thesis is concerned with the task of automatically generating image captions. In general, image

captioning refers to the following problem: given an image, generate text that describes the image.

Automatic captioning methods for images (as well as video and other multimedia) are intended to

reduce the amount of human labor needed for organizing, retrieving, and analyzing digital media.

1.1 Applications of Image Captioning

In recent years, digital photography has become cheap and ubiquitous, and the cost to store and

retrieve large amounts of image data has also decreased. For social media, image sharing is a popular

mode of communication, and is used not just for communicating with friends and family, but also

for citizen journalism and activism. In scientific and medical fields, images are used for things like

cataloging and identifying types of species and diseases, or capturing the output of experiments.

Images are also collected and stored by professionals in many other fields, such as history and the

arts.

There is a wide variety of potential applications for image captioning technology:

Background and Context Text that is associated with an image can provide information to help

a user understand what they are seeing.

Search and Retrieval Humans often use natural language to describe images that they wish to

search for. Image captions provide text to compare against search queries.

Accessibility Captions provide an alternate way to access information that is shared in an image,

in cases where the user is unable to access or view the image directly. This is important not

just for blind and visually impaired users, but also for users who access the internet using

mobile devices or limited bandwidth connections.

Decision Making Image captions can help users to make decisions about what they are seeing in

an image. For example, online shopping websites use captions alongside images of products to

1
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help users understand situations where they might use the product. In a scenario where the

computer is making a decision, image captioning could be used to ask a human for help or

feedback.

1.2 Contributions of this Thesis

This thesis presents work toward data-driven approaches to image captioning. In this work, vison

and language features are learned jointly in a statistical model that is trained on images and human-

authored captions found on the web.

Specifically, this thesis introduces the use of text-to-text natural language processing for generation

of image captions. The text-to-text generation process begin with some source text as input, and

then adapts that text in order to meet the objective for some output. By collecting examples of

images and human-written captions that are similar to those that we wish to produce in our system,

we can create models that generate captions for new images that are taken in a similar context.

This thesis presents two new techniques using text-to-text generation for image captioning. First,

we propose a nonparametric model for estimation of the content of a query image by examining

human-written captions of images with similar spatial features. Our model produces captions that

are 48% more relevant than the previous best approach using spatial feature matching, and 34% more

relevant than the previous best approach using a more complex visual model, according to human

judgments of relevance.

Second, we describe a new task setting for domain-specific image captioning in which many

relevant visual details cannot be captured by off-the-shelf visual entity extractors. We develop a

joint model of visual and textual bag-of-word features, and use this model to adapt existing human-

authored captions to new query images. We implement our model using a large, unlabeled dataset

of women’s shoes images and natural language descriptions (Berg et al., 2010) and use human and

automatic evaluation to demonstrate the effectiveness of our proposed method.

An additional contribution of this thesis is that we present an examination of datasets and eval-

uation techniques for previous work on annotating online images. While image caption generation is

a very new task, there is a longer history of previous work generating image keyword annotations by

selecting words from text that is associated with the query image – such as an image that appears

on a website or next to a news article. Examining this related work gives us insight into some of

the challenges in designing and evaluating applications that combine Natural Language Processing

and Computer Vision. We reimplement previous image annotation models and present a series of

simple baselines that outperform previously published systems for this task. We describe how these

results motivate the approaches used in our image captioning research.
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1.3 Outline

Chapter 2 provides background on relevant work in Computer Vision and Natural Language Genera-

tion, a brief summary of existing image captioning research, and conventional methods of evaluation.

Chapter 3 describes our work examining datasets and evaluation for online image annotation.

Work in this chapter is based on Mason and Charniak (2012).

Chapter 4 introduces our nonparametric content estimation model for image captioning. We

describe a dataset and prior work in image caption retrieval, present our model, and describe the

experimental tasks used for evaluation. This work is previously described in Mason and Charniak

(2014b).

Chapter 5 describes our setup for domain-specific image captioning, the dataset we use, and

our models for content estimation and for adapting existing captions. This work was introduced in

Mason and Charniak (2013) and Mason (2013) and the final model and experiments were presented

in Mason and Charniak (2014a).

Finally, Chapter 6 gives the conclusions of this study, and suggestions for future work.



Chapter 2

Background

The main components of the automatic captioning process are image understanding and language

generation. Each are very difficult problems, motivating entire communities of researchers from the

fields of Natural Language Processing (NLP) and Computer Vision (CV). This chapter provides a

brief background of work that is relevant for understanding existing approaches to image caption-

ing. This is followed by a summary of existing image captioning research, including approaches to

evaluation and what are the attributes of a good image caption.

2.1 Image Understanding

Image understanding refers to the process of determining the content and meaning of a source

image. This process is typically associated with Computer Vision, a field of research concerned

with automatically reconstructing properties of the real world according to visual input (Szeliski,

2010). However there are some applications where this information can be recovered from alternate

sources, such as meta-information, or related text. This section briefly reviews image understanding

approaches which are relevant to automatic image captioning.

2.1.1 Computer Vision

Visual Object Recognition

Visual object recognition is one of the central problems of CV research, and is an important compo-

nent of many automatic image captioning approaches. The core problem is to learn generic categories

of visual objects, and to locate and identify new instances of these categories (Grauman and Leibe,

2010). The human vision system is able to perform this task with very little effort, considering

the difficulty of the task. Consider, for example, the task of recognizing a table. There are many

different kinds of tables, such as a dining table, a workbench, an operating table, or a ping-pong

table. Yet humans are able to recognize that these all belong to the same conceptual category, and

infer the identity of objects that have not been seen before. Even the exact same object can vary in

4
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Figure 2.1: Representations from the Deformable Part-Based Model (Felzenszwalb et al., 2010, 2008)
for categories, learned on the PASCAL (Everingham et al., 2008) dataset. Figure from Felzenszwalb
et al. (2010).

appearance in different images. This may be due to differences in viewpoints or illumination, or the

view of the object may be partially occluded by another object or cut off by the edge of the image

frame.

The automatic object recognition system which has most prominently been used for image cap-

tioning is the Deformable Part-Based Model (Felzenszwalb et al., 2010, 2008). Part-based models

are particularly helpful for recognizing object categories such as humans which appear in different

poses. It represents images using low-level HOG features (Dalal and Triggs, 2005), which measure

the direction of the change of intensity at different parts of the image. To train their object detec-

tor, they match the movable parts of the object in the training image, such as wheels on a bicycle,

or limbs on a person. They then use a latent SVM to discriminatively learn the different objects.

Figure 2.1 shows examples of learned representations. Supervised models such as the Deformable

Part-based Model require images with labeled instances of objects for training. Typically each label

corresponds to a “bounding box” that indicates the location of the object in the image.

Scene Recognition

Another fundamental problem in Computer Vision is scene recognition. Many scenes can be charac-

terized by their global spatial properties. The well-known GIST (Oliva and Torralba, 2001) feature

is a global image descriptor related to perceptual dimensions such as “naturalness”, “roughness”,

and “ruggedness”. These features are coarsely localized in order to describe the structure of the

image. Another well-known global image descriptor is the TinyImage descriptor (Torralba et al.,

2008), which resizes the image to a 32x32 thumbnail, so that the structure of the scene can be

described using the overall layout of the colors in the thumbnail image.

Both GIST and TinyImage descriptors can be used for classifying types of scenes, such as of

different kinds of scenes: beach, forest, city street, and so on. They can also help in recognizing

different attributes of scenes (Patterson and Hays, 2012), such as man-made vs natural environments,
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Figure 2.2: Interest point matching using SIFT descriptors. Image from Lowe (1999). SIFT features
generated by OpenCV (http://opencv.org/).

or indoor lighting vs outdoor lighting. Finally, scene-level image descriptors can also be used as a

measure for comparing images in many data-driven Computer Vision applications. These methods

reduce an inference problem for an unknown image to finding an existing labeled image that is

similar. For example, the Im2Text system (Ordonez et al., 2011) finds a caption for an image using

GIST and TinyImage descriptors to find the most similar image from a database of captioned images.

Feature Recognition

Finally, there are also “bag-of-image-word” visual features which are computed at various points on

the image, and contain information such as the color, shape, texture, or lighting at that point. Like

a bag-of-words model for text, the bag-of-image-words model does not consider the position of the

features in the image. The features are quantized in to discrete words using the k-means algorithm.

A single “image word” does not carry semantic meaning like a single word of English text.

Some standard bag-of-image-word features that are often used in CV are SIFT (Lowe, 1999),

HOG (Dalal and Triggs, 2005), and Textons (Leung and Malik, 2001). A SIFT descriptor describes

which way edges are oriented at a certain point in an image (Lowe, 1999). Bag-of-HOG (histogram

of gradients) features describe gradients and curvature at a point (Dalal and Triggs, 2005). For

texton features, images are convolved with Gabor filters at multiple orientations and scales, sampled

at the locations where the image words will be (Leung and Malik, 2001).

Figure 2.2 shows an example of SIFT features being used on the interest points of an object.

This allows the same object to be recognized in a different image despite differences in scale and

rotation.

2.1.2 Non-visual Approaches

There are also non-CV approaches to image understanding, which are used for image captioning,

retrieval, and annotation. Image search engines on the web, such as images.google.com typically
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only use text that is related to the image in order to decide which images to retrieve for a query.

Previous work has used related text and meta-information such as an article related to a news image

(Deschacht et al., 2007; Feng and Lapata, 2010b,a), the webpage where the image comes from (Leong

et al., 2010), or the GPS coordinates where the image was taken (Fan et al., 2010).

2.2 Natural Language Generation

Natural language generation is an area of NLP that deals with the automatic production of text

or speech according to a certain input (Jurafsky and James, 2009). Generation methods are often

categorized as either concept-to-text methods, which produce textual output from non-linguistic

input; or as text-to-text methods which produce textual output using input text from human-

authored sources (Reiter et al., 2000). However, much previous work in image captioning uses a

hybrid of these approaches.

2.2.1 Concept-to-text Generation

The most basic steps of a traditional concept-to-text generation pipeline are selection of content to be

in the output text, and realization of the natural language output. Content selection is determined

by the input data – such as the output of a visual detection system – as well as the communication

objective for the output, and a set of constraints capturing linguistic or other knowledge. This

objective may be reached using various AI planning algorithms (Hovy, 1991; Koller and Stone,

2007).

Surface realization is a linguistic process of constructing a sentence using the choices of words and

syntactic structures found in the content selection stage (Prevost and Steedman, 1993). It involves

applying morphological and syntactic rules so that the output text sounds natural and correct. The

rules governing this process are relatively well-understood, and there are several software systems

available for realization (Bateman, 1997; Gatt and Reiter, 2009). However, understanding which

concepts are important, and selecting words and phrases to describe that content, is still an open

research question.

2.2.2 Text-to-text Generation

In text-to-text generation, content is typically specified by some textual input source. The objective

is to preserve the meaning of the input text, while transforming it to better meet the communication

objective. Some examples of text-to-text generation are:

Summarization : Generating a summary that contains only the most important information in a

document or group of documents. Extractive summarization methods select relevant sentences

from the original document or documents and using that text as the summary (Nenkova and

Vanderwende, 2005; Haghighi and Vanderwende, 2009). Abstractive summarization methods
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generate novel sentences to describe relevant content from the source documents (Murray et al.,

2010; Cheung and Penn, 2013).

Compression : Decreasing the length of an input sentence by deleting words that are not relevant,

without making the sentence ungrammatical (Clarke and Lapata, 2008; Martins and Smith,

2009).

Paraphrasing : Rewording and rearranging phrases or sentences in a different way from the original

(Barzilay and Lee, 2003).

Simplification : Rewriting a sentence to make it easier to understand (Vanderwende et al., 2007;

Zhu et al., 2010).

Fusion : Combining the relevant content of two sentences into one single sentence (Barzilay and

McKeown, 2005; Elsner and Santhanam, 2011).

Text-to-text generation methods are typically guided by some notion of relevance. In some cases,

relevance is determined using intrinsic qualities of the input text, such as the frequency of a word

in a document, or the positions of noun phrases in the grammatical structure of the text. Outside

sources, including non-linguistic information, can also be used to guide selection of relevant content.

2.3 Image Description

There is a variety of interesting research at the intersection between Computer Vision and Natural

Language Processing. In this section, we provide background on two main tasks in describing images:

generating keyword annotations, and generating full-sentence image captions.

2.3.1 Image Annotation

Image annotation is the task of taking in an image and generating relevant descriptive keywords

that describe the visual content of the image. Image annotation is an important area of research

with applications such as tagging, indexing, and retrieval. Keyword annotations can be used to

approximate the content of the query image, and as a source of content words for generating an

output caption (Feng and Lapata, 2010a).

The Computer Vision literature contains countless approaches to this task, using image under-

standing techniques (Section 2.1) to select annotation keywords for a query image. A survey of

methods for image annotation be found in Hanbury (2008).

In addition to Computer Vision approaches, there is research using Natural Language Processing

to discover visually descriptive keywords. Text processing is computationally less expensive than

image processing and may provide information that is difficult to learn visually. Instead of selecting

descriptive keywords according to a visual-to-textual representation dictionary, descriptive words

can be mined from natural language text that is associated with the image. Most commercial image
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Figure 2.3: A general pipeline for image captioning.

search websites use surrounding text as a source of information for understanding the content of an

image (Frankel et al., 1996).

Some examples of text that may be used are text or captions on the webpage that contains the

image, the title of the webpage, or the URL or filename of the image itself. For example, Deschacht

et al. (2007) use named-entity recognition on news articles to identify people in images that are

associated with the article. Feng and Lapata (2010b) learn topic models to learn descriptive keywords

for news images given both the image and the associated news article. Boiy et al. (2008) and Leong

et al. (2010) use term association to estimate the “visualness” of words in order to select words that

are likely to describe visual content of images. The Wikipedia Retrieval Task at ImageCLEF 2011

(Tsikrika et al., 2011) compared several approaches to image retrieval on Wikipedia, including both

systems which rely solely on text-based approaches and systems which incorporate Computer Vision

approaches.

2.3.2 Image Captioning

In recent years, there has been an increasing interest in systems that describe images using natural

language – phrases or captions, rather than keyword-length descriptions. The objective is to generate

image captions which describe the relevant content in the image. Natural language captions are

helpful for describing the relationships between objects in images, or for describing images to humans.

An image caption is the output of a complex process which involves understanding the query

image, grounding the visual representation to a semantic representation of what is relevant in the

image, and then natural language generation of the output caption. Figure 2.3 shows an example

pipeline of an image captioning system. However, exact formulations of the image captioning task
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Query Image
Caption (automatic) Last year, thousands of

Tongans took part in
unprecedented demonstrations
to demand greater democracy
and public ownership of key
national assets.

Contaminated Cadbury’s choco-
late was the most likely cause of
an outbreak of salmonella poi-
soning, the Health Protection
Agency has said.

Caption (human) King Tupou, who was 88, died a
week ago.

Cadbury will increase its con-
tamination testing levels.

Table 2.1: Example query images from Feng and Lapata (2010a), with automatic captions generated
by extracting text from a related text document, and human-authored captions for comparison.

vary across previously published image captioning methods.

This thesis will focus on models that can learn from images and captions that co-occur naturally

on the web. Therefore, we primarily focus on more recent image captioning work that seeks to

integrate both image understanding and natural language generation components.

Generating Captions for Images with Associated Text Documents

A handful of approaches have been proposed in the literature to incorporate knowledge in the form

of text documents into the image captioning pipeline. For each query image, we assume that we are

given or are able to retrieve a related text document. The output caption should contain a summary

of information in the document that is relevant to the query image. This task formulation is similar

to query-focused automatic summarization, but with an image serving as the focus for the output

summary.

For example, Feng and Lapata (2010a) generate captions of news images using both summariza-

tion methods on the news articles that appear with each image. They use a joint model of visual

and textual information to select relevant content. They integrate these models using a topic model

based on Latent Dirichlet Allocation (Blei et al., 2003) which incorporates a bag-of-words model of

the article text, and a bag-of-image-words model of SIFT features computed from the query image.

Once the relevant content is identified, they present methods for caption generation using both ex-

tractive and abstractive summarization. Table 2.1 shows examples of query images, human-authored

captions, and captions automatically generated using the extractive method.

Aker and Gaizauskas (2010) and Fan et al. (2010) present image captioning systems that model

image content using GPS coordinates of where the image was taken – information which is often

recorded by cameras in mobile phones. These systems retrieve text documents related to landmarks

near where a query photo was taken, then generate concise summaries of those text documents.
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A related task which has seen some interest in the natural language processing community is

generation of descriptions for information graphics (Mittal et al., 1995; Greenbacker et al., 2011;

Demir et al., 2012). Information graphics such as line graphs and plots exist in many documents,

but the information contained in them is often not described in the document, and inaccessible

to users such as the visually impaired. In these systems, the content of the image is determined

by directly accessing the data used to generate the information graphic, as well as analyzing the

accompanying text document.

One shortcoming of these approaches to image captioning is that not all of the text in the related

document will be related to the visual content in the image. For example in Table 2.1, the automatic

caption on the left gives information that is not relevant to what is shown in the image. Another

concern is that these methods rely on extra data outside of the content of the image, since they

assume that the related text document will be available. These approaches are most applicable

for specific domains (e.g., news, travel, financial reports) for which it can be assumed that these

documents exist and can be retrieved in a structured way.

Generating Captions for Images by Caption Transfer

Data-driven matching methods have shown to be effective for a variety of complex problems in

Computer Vision. These methods reduce an inference problem for an unknown image to finding an

existing labeled image which is semantically similar. When generating captions for query images

which do not have a corresponding text document available, one can reduce the captioning problem

to finding a semantically similar captioned image, and transferring the existing caption to the query

image.

The Im2Text model by Ordonez et al. (2011) presents the first web-scale approach to image

caption generation. Im2Text retrieves an image which is the closest visual match to the query

image, and transfers its description to the query image. Visual matches are computed using a

combination of visual object detectors and scene based descriptors such as TinyImage and GIST.

Ordonez et al. (2011) also present a new corpus, the SBU-Flickr dataset1, which is made of 1 million

images and human-authored captions uploaded by users of the website flickr.com.

Kuznetsova et al. (2012) present a related approach also using the SBU-Flickr corpus which uses

trained CV recognition systems to detect a variety of visual entities in the query image. A separate

description is retrieved for each visual entity, which are then fused into a single output caption. Like

Im2Text, their approach uses visual similarity as a proxy for textual relevance, but their sentence

fusion approach allows greater flexibility for generating output that matches the visual content.

Other related work models the text more directly, but is more restrictive about the source and

quality of the human-written training data. Farhadi et al. (2010) and Hodosh et al. (2013) learn

joint representations for images and captions, but can only be trained on data with very strong

alignment between images and descriptions (i.e. captions written by Mechanical Turkers).

1http://vision.cs.stonybrook.edu/~vicente/sbucaptions/
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Figure 2.4: An illustration of the Im2Text captioning system from Ordonez et al. (2011). For the
query image, the system selects a captioned image that is the closest match according to visual
similarity. The caption from the matched image is selected to caption the query image as well.

Integrating Visual and Linguistic Models

The most recent approaches to image captioning integrate image understanding with linguistic mod-

els. This allows for smoothing of the noisy visual detection scores using knowledge learned from

large linguistic corpora.

For example, Kulkarni et al. (2011) uses a conditional random field to predict the most likely

labeling of objects in a scene, incorporating both the detection scores with text-based potentials

computed from large text corpora. Predicted labels are used to complete sentence templates which

provide form for the generated captions. Template-based generation is also used by Yang et al.

(2011), who use an HMM-based approach. In addition to correcting noisy initial detections, the

linguistic model can also be used to predict verbs and preposition words which are difficult to

determine visually.

Later work such as Li et al. (2011) and Mitchell et al. (2012) generate more natural-sounding

captions using more flexibile models that learn from examples of n-grams and syntactic structures

in larger text corpora. Yu and Siskind (2013) present a model that learns the alignment between

individual words and object detection classes.

Finally, the past few months have seen a large amount of interest in exploiting deep neural

networks for the task of image captioning (Vinyals et al., 2014; Karpathy and Fei-Fei, 2014; Kiros
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et al., 2014; Donahue et al., 2014; Mao et al., 2014; Fang et al., 2014). Further progress in this area

of research will likely lead to models which provide richer representations of visual scenes.

2.4 Evaluation

Image captions are evaluated using the same basic techniques used for evaluation other kinds of

automatically generated language: intrinsic evaluations in which humans rate or compare the quality

of generated text; extrinsic evaluations in which peformance is measured by how much it helps

humans can perform some task; and automatic metrics which compare generated text to a human-

authored gold standard.

Intrinsic evaluations have humans rate image captions based on the quality of their language

(grammaticality) and content (relevance to the image). Likert scales (or rating scales) are one

approach that has been used for caption evaluation (Feng and Lapata, 2010a; Kuznetsova et al.,

2012; Mitchell et al., 2012). The advantage of Likert scales is that they can be used to measure the

degree to which one method is better than another. However, they can provide noisy measurements

and require careful calibration, especially for human studies that are conducted over Mechanical

Turk. Forced choice evaluations, where users must choose between two different captions that are

shown, have also been used to evaluate image captioning systems (Ordonez et al., 2011; Kuznetsova

et al., 2013). Forced choice evaluations are easier to perform over the internet, and show how often

a proposed method improves over the baseline.

Extrinsic evaluations are rare in previous captioning work, since they are more difficult to mea-

sure, and because caption generation is such a novel topic that it is not yet clear which kinds of

tasks will provide interesting research questions and practical applications in the long term. As

an example, Table 2.2 shows some images found on the web, and some examples of captions that

could be used to describe the images in different contexts. If we were to perform the discrimination

task from Ordonez et al. (2011) using these two images, all of the example captions would perform

equally well, because none of them could be applied to the other image. The three captions under

each image all choose to include different information: a thorough description of the entire scene,

labeling only the relevant nouns in the scene, or providing information about the context where the

image was taken.

Automatic metrics compare generated text to a human-authored gold standard. Automatic

evaluation metrics are useful for system development, where they can provide feedback much quicker

than the time it would take to run a human evaluation. They are also useful for situations where

human evaluations are very expensive, due to requiring human evaluators with expensive expertise.

However, it is difficult to provide a fair gold-standard for human-authored texts, as human authors

generally have a variety of different ways to express the same idea. Automatic metrics also have

difficulty measuring the grammaticality or coherence of a generated text. However, for a large enough

test set, automatic metrics often capture significant differences in how well different generation

systems capture content words that are in the human-authored texts.
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A red bird is standing on a glass table
against a green background.

A man wearing a blue suit and a woman
wearing black clothes are standing behind
a microphone. A curtain is in the back-
ground.

Northern Cardinal ** The president of the United States, Barack
Obama and the vice chairwoman of the Fed-
eral Reserve, Janet Yellen.

Photo taken while trying out my new cam-
era in the backyard.

Janet L. Yellen, 67, would be the first
woman to lead the Federal Reserve if the
Senate confirms her nomination for a four-
year term. **

Table 2.2: Images from the web, along with example captions that could serve different purposes.
Captions followed by ** are the original captions.

In NLP, there are a variety of specialized metrics for evaluating different kinds of generated

language, but there is no metric that is specifically developed for the task of evaluating generated

image captions. In previous image captioning work, the BLEU (Papineni et al., 2002) metric is

most frequently used (Farhadi et al., 2010; Kulkarni et al., 2011; Ordonez et al., 2011; Kuznetsova

et al., 2012). The ROUGE (Lin, 2004) metric has been also used for evaluating generated image

captions (Yang et al., 2011), and recent work shows that ROUGE scores correlate better with human

judgments of image caption quality (Elliott and Keller, 2014).

Here, we describe both the BLEU and ROUGE metrics in greater detail, as they are used (in

addition to human evaluations) in our experiments in later chapers.

2.4.1 BLEU

BLEU (Papineni et al., 2002) is a modified unigram precision metric, originally developed for eval-

uating automatic translations. The quality of a machine translation is considered to be how well it

resembles a translation generated by a professional human translator. BLEU scores range from 0 to

1, where scores closer to 1 are assumed to be closer to that of a human. Even a human translator will

rarely achieve a perfect BLEU score, because there may be many correct translations for the same

source text. BLEU scores are highly correlated with professional judgments of translation quality

(Papineni et al., 2002; Coughlin, 2003).
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In order to compute BLEU scores, it is necessary to have a reference translation to compare

against. When available, BLEU may consider multiple reference translations, in order to cover more

of the possible correct translations. Using an unmodified precision metric, it is possible to achieve

very high scores by repeatedly guessing frequent words in the target language. BLEU modifies the

precision metric to discourage this kind of guessing.

2.4.2 ROUGE

ROUGE (Lin, 2004) is a recall-oriented metric developed for summarization evaluation. Similar

to BLEU, ROUGE is a measure of how well a candidate text resembles human-generated text.

There are different ROUGE measures which count the number of overlapping units such as ngrams,

word sequences, and word pairs between the candidate text and the ideal text created by humans.

ROUGE is a widely-used metric for summarization evalution, and is used to compare systems in

shared summarization tasks such as DUC2 and TAC3.

2http://duc.nist.gov/

3http://www.nist.gov/tac/



Chapter 3

Evaluating Image Annotations

This chapter presents our work examining the baselines used to evaluate image annotations that

are generated by Natural Language Processing systems. In these systems, descriptive keywords are

generated for a query image by selecting words from some text that is associated with the image

to be annotated. In this chapter, we develop a series of baseline measures for this task, inspired

by baselines used in Information Retrieval, Computer Vision, and extractive summarization. We

compare the results on two recent datasets (Section 3.1) developed for the task of image annotation

using Natural Language Processing techniques.

The main contributions of this chapter are that we present image annotation methods that match

or exceed the best published scores for image annotation on these datasets (Section 3.3.3 and 3.4.3),

and provide an explanation of experimental practices that can lead to misleading results in research

combining language and vision processing techniques (Section 3.5).

In the previous chapter, we introduced the task of image annotation. More specifically, we

introduced image annotation approaches which use Natural Language Processing to examine text

that is associated to a query image, and then select keywords from that text that are descriptive of

the query image. In Section 3.1 we describe in detail two representative datasets used for this image

annotation task, and the typical steps used to generate keyword annotations from natural language

text.

In Section 3.2 we describe a series of baseline methods for image annotation which we then evalu-

ate (in Sections 3.3 and 3.4) on the two datasets respectively. Many previously published annotation

models are based on modeling association between visual and textual features, or modeling term

relationships between different words in order to identify which words are more likely to describe

visual content. In contrast, we develop image annotation models similar to frequency baselines used

in automatic summarization. The performance of our approach demonstrates that image annotation

with associated text is perhaps better thought of a summarization task. This finding motivates the

approaches we use for image captioning in later chapters of this document.

16
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3.1 Data and Preprocessing

Table 3.1 provides an overview of the datasets; while remainder of this section covers the source of

the datasets and their gold annotations in more detail.

3.1.1 BBC Dataset

The BBC Dataset Feng and Lapata (2008)1 contains news articles, image captions, and images taken

from the BBC News website. Each training instance consists of a news article, and the associated

image and caption from the same news story. The annotation keywords for the training set are

generated by selecting “descriptive” words from the image captions. These words are defined as the

nouns, adjectives, and certain kinds of verbs that are found in these captions.

To address the problem of converting natural language into annotations, a large amount of

preprocessing is performed. In Feng and Lapata (2008), Feng and Lapata (2010b), and Feng and

Lapata (2010a), the established preprocessing procedure for this dataset is to lemmatize and POS-

tag using TreeTagger (Schmid, 1994). This leaves a total text vocabulary of about 32K words, which

is further reduced by removing words that appear fewer than five times in the training set articles.

Table 3.1 shows the number of word tokens and types after performing these steps.

3.1.2 UNT Dataset

The UNT Dataset (Leong et al., 2010)2 consists of images and co-occurring text from webpages. The

webpages are found by querying Google Image Search with frequent English words, and randomly

selecting from the results.

Each image in UNT is annotated by five people via Mechanical Turk. In order to make human

and system results comparable, human annotators are required to only select words and collocations

that are directly extracted from the text, and the gold annotations are the count of how many times

each keyword or collocation is selected. The human annotators write keywords into a text box; while

the collocations are presented as a list of candidates and annotators mark which ones are relevant.

Human annotators tend to select subsets of collocations in addition to the entire collocation. For

example, the gold annotation for one image has “university of texas”, “university of texas at dallas”,

“the university of texas”, and “the university of texas at dallas”, each selected by at least four of

the five annotators. Additionally, annotators can select multiple forms of the same word (such as

“tank” and “tanks”). Gold annotations are stemmed after they are collected, and keywords with

the same stem have their counts merged. For this reason, many keywords have a higher count than

the number of annotators.

1Downloaded from http://homepages.inuf.ed.ac.uk/s0677528/data.html

2Downloaded from http://lit.csci.unt.edu/index.php?P=research/downloads
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Dataset: BBC UNT

data instances article, image, and cap-
tion from a news story

image and text from a
webpage

source of data scraped from BBC News
website

Google Image Search
results

candidate keywords
or collocations for
annotation

descriptive unigram
words from training data

n ≤ 7-grams extracted
from co-occurring text;
collocations must appear
as article names on
Wikipedia

gold annotations descriptive words from
held-out image captions

multiple
human-authored
annotations for each
image

evaluation metric precision and recall
against gold annotations

metrics adapted from
evaluation of lexical
substitutions (SemEval)

number of instances
in training set

3121 articles, images,
and image captions

299 websites, images,
and human-generated
keyword annotations
(train using
cross-validation)

number of instances
in test set

240 articles and images,
held-out image captions

300 websites, images,
held out annotations

preprocessing
procedure

lemmatize tokens,
remove from dataset all
words that are not
descriptive or that
appear fewer than five
times in training articles

stem all tokens

average number of
text tokens after
preprocessing

169 tokens per article,
4.5 tokens per caption

278 tokens per webpage

average document
title length

4 tokens 6 tokens

total vocabulary af-
ter preprocessing

10479 types 8409 types

Table 3.1: Comparison of the BBC (Feng and Lapata, 2008) and UNT (Leong et al., 2010) image
annotation datasets.
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3.2 Baselines

For this study, we retrieved the datasets and performed preprocessing on the text as described in

the previous section. We then implement five baselines to compare against the captioning models

in the previous work.

First, we implement the following two baselines, both of which are previously used for comparison

in Feng and Lapata (2008), Feng and Lapata (2010b) and Leong et al. (2010):

Document Title The title of a document gives important information about the text of the full

document. Document titles frequently contain keywords that are important to the body of

the text, or even describe ideas at a more conceptual level than is contained in the full text

(Montes-y Gómez et al., 2000).

In the BBC dataset, the headline for the news article is used as the document title. For the

UNT dataset, the title of the webpage is used as the document title.

tf*idf Short for “term frequency–inverse document frequency”, tf*idf is a statistic that gives weight

to a term according to how important the term is in a particular document. It is a standard

baseline used for information retrieval tasks, based on the intuition that a word that appears

in a smaller number of documents is more likely to be meaningful than a word that appears

in many documents.

tf*idf is the product of term frequency and inverse document frequency, where N is the number

of documents, and ni is the number of documents that contain the term ti:

idf(ti) = log
N

ni

To run the tf*idf baseline on the BBC dataset, we base the idf weights on the document

frequency of the training articles. On the UNT dataset, we follow Leong et al. (2010) who uses

the British National Corpus to calculate the idf scores.3

Next, we implement our own baselines, inspired by previous work in automatic summarization and

image annotation in Computer Vision.

Corpus Frequency Image annotation keywords tend to be distributed with with a relatively small

number of frequently occurring keywords, and a long tail of keywords that only appear a few

times. Related work for image annotation in the field of Computer Vision (Section 2.3.1) shows

that the background frequency of a keyword in the corpus is a very powerful feature on its

own. For UNT, we use the total keyword frequency of all the gold annotations, except for

the one document that we are currently scoring. For BBC, we only measure the frequency of

keywords in the training set captions, since we are specifically interested in the frequency of

terms in captions.

3We also implemented a cross-validation tf*idf baseline where for each document we recalculate idf using the other
299 documents. But we did not get any meaningful change in the output annotations.
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Term Frequency Term frequency has been shown to be a powerful feature in summarization

(Nenkova and Vanderwende, 2005). Words that appear frequently in a document are con-

sidered more meaningful than infrequent words. Term frequency is the number of times a

term (excluding function words) appears in a document, divided by the total number of terms

in that document. For our image annotation baseline, the document is the text that appears

alongside the image – the text of the website where the image appears, or the news article

that corresponds with the image. On the UNT dataset we use the stopword list included with

the MALLET toolkit (McCallum, 2002). For the BBC dataset, we compute term frequency of

the “descriptive words” that were pulled out during preprocessing.

Sentence Extraction This baseline extracts the most central sentence from the co-occurring text,

and uses descriptive words from that sentence as the image annotation. Unlike sentence ex-

traction techniques from Feng and Lapata (2010a), our baseline selects a sentence based only

on the text of the document, not the estimated content of the image. We extract the sen-

tence with the minimum KL-divergence to the entire document, using the KLSum algorithm

(Haghighi and Vanderwende, 2009).4

3.3 BBC Dataset Experiments

3.3.1 System Comparison

In addition to the baselines, we compare against the Mix LDA and Text LDA systems from Feng and

Lapata (2010b). In Mix LDA, each instance is represented as a bag of textual features (unigrams)

and visual features (SIFT features quantized to discrete “image words” using k-means). A Latent

Dirichlet Allocation topic model (Blei et al., 2003) is trained on articles, images, and captions

from the training set. Keywords are generated for an unseen image and article pair by estimating

the distribution of topics that generates the test instance, then multiplying them with the word

distributions in each topic to find the probability of textual keywords for the image. The Text LDA

model is similar to Mix LDA but excludes the SIFT image words from both train and test instances.

3.3.2 Evaluation

In previous work using the BBC dataset Feng and Lapata (2008, 2010b); Leong et al. (2010), systems

are evaluated by measuring precision and recall against the keywords found in the human-authored

captions. For term frequency, tf*idf, corpus frequency, and the Mix LDA system, the generated

annotation for each test image is its ten most likely keywords. We also run all baselines and the

Mix LDA system on an unpruned version of the dataset, where infrequent terms are not removed

from training data, test data, or the gold annotations. The purpose of this evaluation is to see if

candidate keywords which are “unlearnable” for Mix LDA system can be learned by our systems.

4The KLSum algorithm is described in futher detail in the next chapter, Section 4.4.
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Standard Include-infrequent
Precision Recall F1 Precision Recall F1

Term Frequency 13.13 27.84 17.84 13.62 25.71 17.81
tf * idf 9.21 19.97 12.61 7.25 13.52 9.44
Doc Title 17.23 13.70 15.26 15.91 11.86 13.59
Corpus Frequency 3.17 6.52 4.26 3.17 6.02 4.15
Sentence Extraction 16.67 15.61 16.13 18.62 16.83 17.68

Mix LDA 7.30 16.16 10.06 7.50 13.98 9.76
Text LDA 8.38 17.46 11.32 7.79 14.52 10.14

Table 3.2: Image annotation results for previous systems and our proposed baselines on the BBC
Dataset.

3.3.3 Results

The evaluation results for the BBC Dataset are shown in Table 3.2.5 Term frequency is a stronger

baseline than tf*idf. Since nearly all of BBC’s function words are removed during preprocessing, the

words that are downweighted by the idf score are common – but meaningful – words such as police

or government which appear frequently in the BBC news articles.

Recall that Feng and Lapata (2008, 2010b) remove keywords that appear fewer than five times

in the training section of the BBC corpus. They remove these keywords are removed because their

experiments compare against Computer Vision models such as CorrLDA (Blei and Jordan, 2003)

which need to see a keyword multiple times in the training set in order to learn a visual model.

However, our experiments show that text-only baselines, such as term frequency, are able to predict

some of these keywords. As shown in Table 3.3, many of the keywords which are removed from the

corpus in preprocessing are meaningful to the content of the images.

While sentence extraction has a lower recall than term frequency, it is the only baseline or system

that has improved recall when including infrequent words. This is unexpected because our baseline

selects a sentence based on the term frequency of the document, and the recall for term frequency

fell. One possible explanation is that extraction implicitly uses correlations between keywords.

Probabilities of objects appearing together in an image are not independent; and the accuracy of

annotations can be improved by generating annotation keywords as a set Moran and Lavrenko

(2011). Recent works in image captioning also use these correlations: explicitly, using graphical

models Kulkarni et al. (2011); Yang et al. (2011); and implicitly, using language models Feng and

Lapata (2010a). In comparison, sentence extraction is very implicit.

5We are unable to reproduce the scores reported in Feng & Lapata Feng and Lapata (2008, 2010a,b). We have
contacted the authors, who were unable to identify the reason for this discrepancy. All system and baseline scores
presented on the BBC corpus are of our own implementation, and may not match those reported in previous
publications.
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Cadbury increase contamination test-
ing level

malaria parasite spread mosquito

Table 3.3: Examples of gold annotations from the test section of the BBC Dataset. The bolded
words are the ones that appear five or more times in the training set; the unbolded words appear
fewer than five times and would be removed from both the candidate and gold keywords in the
standard BBC evaluation.

3.4 UNT Dataset Experiments

3.4.1 System Comparison

We evaluate against the text mining system from Leong et al. (2010). Their system generates image

keywords by extracting text from the co-occurring text of an image. It uses three features for

selecting keywords.

Flickr Picturability queries the Flickr API with words from the text in order to find related image

tags. Retrieved tags that appear as surface forms in the text are rewarded proportionally to

their frequency in the text.

Wikipedia Salience assigns scores to words based on a graph-based measure of importance that

considers each term’s document frequency in Wikipedia.

Pachinko Allocation Model is a topic model that captures correlations between topics (Li and

McCallum, 2006). PAM infers subtopics and supertopics for the text, then retrieves top words

from the top topics as annotations.

There is also a combined model of these features. The feature weights are trained using an SVM

with 10-fold cross-validation.

3.4.2 Evaluation

Evaluation on UNT uses a framework originally developed for the SemEval lexical substitution

task (McCarthy and Navigli, 2007). This framework accounts for disagreement between annotators

by weighting each generated keyword by the number of human annotators who also selected that

keyword. The scoring framework consists of four evaluation measures: best normal, best mode, oot

(out-of-ten) normal, and oot mode. Both the original framework and its adaptation by Leong et al.
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Best Out-of-ten (oot)
Normal Mode Normal Mode

Term Frequency 5.67 14.29 33.40 89.29
tf * idf 5.94 14.29 38.40 78.57
Doc Title 6.40 7.14 35.19 92.86
Corpus Frequency 2.54 75.00 8.22 82.14

Flickr Picturability 6.32 78.57 35.61 92.86
Wikipedia Salience 6.40 7.14 35.19 92.86
Topic Model (PAM) 5.99 42.86 37.13 85.71
Combined (SVM) 6.87 67.49 37.85 100.00

Table 3.4: Image annotation results for our proposed baselines, and the text mining systems from
Leong et al. (2010)

(2010) give precision and recall for each of the evaluation measures. However, in practice, precision

and recall are identical for all baselines and systems.

The two best evaluations find the accuracy of a single “best” keyword generated by the system.

Best normal measures the accuracy for each system annotation aj as the number of times aj appears

in the Rj , the multi-set union of human tags, and averages over all the test images.

Bestnormal =

∑
ij∈I

|aj∈Rj |
|Rj |

|I|
In oot normal, up to ten unordered guesses can be made without penalty.

ootnormal =

∑
ij∈I

∑
aj∈Aj

|aj∈Rj |
|Rj |

|I|
where Aj is the set of ten system annotations for image ij .

The best mode and oot mode metrics are the same as the normal metrics except they only

evaluate system annotations for images where Rj contains a single most frequent tag. We use the

scoring software provided by SemEval6 with the gold annotation file provided in the UNT Dataset.

3.4.3 Results

The results of the lexical substitution evaluation on the UNT Dataset are shown in Table 3.4. For

this corpus, the tf*idf baseline outperforms term frequency. This is because UNT is a web-based

corpus with noisier text. Even though a stopword filter is used, many documents contain text such

as copyright disclaimers which are not relevant to the content of the image.

Recall that the mode evaluation is only measured on data instances where the gold annotations

have a single most frequent keyword. While running the evaluation script on the gold annotation file

that came with the UNT dataset, we discover that SemEval only identifies 28 of the 300 instances

as having a single mode annotation, and that for 21 of those 28 instances, the mode keyword

6http://nlp.cs.swarthmore.edu/semeval/tasks/task10/data.shtml
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cartoon(6), market(5), market
share(5), declin(3), imag(3),
share(3), pictur(1), illustr(1),
cartoonstock(1), origin(1),
artist(1), meet(1), jfa0417(1),
meetingcopyright(1)

cartoon(6), bill gate(5), gate(4),
monopoli(4), pearli gate(4),
bill(3), imag(3), caricatur(2),
pictur(2), illustr(1), copyright(1),
artist(1), own(1), pearli(1)

lift index(5), gener(3), index(3),
condit(2), comput(2), comput
gener(2), unstabl(2), zone(2),
area(1), field(1), between(1),
stabl(1), encyclopedia(1),
thunderstorm(1), lift(1), free
encyclopedia(1), wikipedia(1)

Table 3.5: Examples of gold annotations from the UNT Dataset.

is “cartoon”. Those 21/28 images correspond to the 75% best mode score obtained by Corpus

Frequency baseline.

When we investigated the reason why the word “cartoon” appears so frequently in the UNT

corpus, we discovered that 45 of the 300 images were collected from a single online cartoon library.

Although Leong et al. (2010) describe some steps that they take to encourage diversity in the sources

of images collected for this corpus, apparently those steps were not sufficient.

Additionally, we discovered that the co-occurring text to many of these images contains a long

list of keywords, with little full-sentence text that is relevant to the image. We looked at a small

sample of the rest of the dataset and found that many of the other text documents in UNT also

contain keyword lists. This makes it difficult to measure the benefits of using complex techniques

like topic modeling and graph similarity to find and extract keyword annotations. This is shown in

the normal evaluation results, where the combined system from Leong et al. (2010) is only slightly

better at selecting the single best keyword, and no better than tf*idf for the out-of-ten measure.

3.5 Conclusion

This chapter presents our work examining evaluation of image annotation systems which use co-

occurring natural language text as a source of annotation keywords. We proposed image annotation

baselines and tested them on two different datasets.

In Section 3.3.3, we showed that making prior assumptions about which keywords are possible

are possible to learn may discount . We especially found good performance from baselines inspired
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by those used in document summarization, such as term frequency.

In Section 3.4.3 we found that datasets constructed using search queries are vulnerable to over-

representing certain sources or certain styles of text that tend to perform well in search engine

results. We are not aware of previous work that has brought this issue to attention, although many

datasets which are also used for image captioning, such as SBU-Flickr (Ordonez et al., 2011) are

also constructed using search results.



Chapter 4

Nonparametric Image Captioning

This chapter presents our work on image captioning via a caption transfer model. The major

contribution of this chapter is a state-of-the-art result for image captioning on the SBU-Flickr

dataset, obtained in Section 4.5.

In the previous chapter, we examined the task of annotating images with keywords, by extracting

relevant words from natural language text that is related to the query image. We demonstrate that

for certain tasks, simple term frequency-based approaches can match or exceed the performance

of more complex visual or linguistic models. This is because more complex models often impose

constraints and assumptions on the form of the data being modeled. This restricts the effectiveness

of these models in situations where the data does not match the form that is specified a priori. An

example can be seen in Figure 3.3, where restrictions cause the image annotation systems to ignore

many relevant terms as potential keywords.

More generally, we are interested in further exploration of nonparametric methods for image

description. Nonparametric models are commonly used in statistics to describe and analyze data

when the underlying distribution for the data is unknown.

In Computer Vision, the availability of larger datasets has enabled development of nonparametric

matching methods which reduce the inference problem for an unknown image to finding an existing

labeled image which is semantically similar. Data-driven matching methods have shown to be very

effective for a variety of challenging vision problems (Hays and Efros, 2008; Makadia et al., 2008;

Tighe and Lazebnik, 2010; Liu et al., 2011).

Visual matching approaches for image captioning (Section 2.3.2) take as input a query image

with no associated text, and generate captions by transferring captions from visually similar images

retrieved from a large database of captioned images. Unlike the image annotation methods in the

previous chapters, these methods do not rely on the availability of additional information besides the

query image itself. However, there are some challenges with this approach. Consider the example in

Table 4.1. Both images are portraits of human subjects, both facing directly at the camera, and are

photographed in black and white against a white background. However, the caption of the retrieved

image would not be relevant or descriptive for the query image.

26
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Query Image Retrieved Image

3 month old baby girl with blue
eyes in her crib

Table 4.1: Example of a query image from the SBU-Flickr dataset, with the most visually similar
captioned image in the database. Visual similarity computed using scene attributes (Patterson et al.,
2014).

This example illustrates two main challenges. First, visual similarity measures do not capture all

of the relevant visual details which humans might describe in a caption. Second, the text of retrieved

caption may be poorly aligned with the visual features used for matching. This second problem is

of particular concern because many image captions on the web contain contextual or background

information which is not related to the visual content of the image.

In this chapter, we present a nonparametric density estimation technique for estimating the

content of the generated caption. This content is modeled using a term frequency distribution which

is found by smoothing the term counts over multiple retrieved images. For example, words that

appear in multiple captions in Figure 4.2 are likely to be visually relevant to the query image.

The output caption is generated by extracting the caption which best represents the mutually

shared content. This task is cast as extractive multi-document summarization, a well-studied prob-

lem in Natural Language Processing. The objective of extractive multi-document summarization is

to generate a summary of a document collection by extracting sentences with content that is rele-

vant to the entire document collection, which is typically represented using unigram word frequency

models (Nenkova and Vanderwende, 2005; Haghighi and Vanderwende, 2009).

Before we apply this approach, we formally define the task (Section 4.1) and describe the dataset

to be used (Section 4.2). In Section 4.3 we propose our model, first defining the feature space for

visual similarity, then formulating a density estimation problem with the aim of modeling the words

which are used to describe the images that are visually similar to the query image. In Section

4.4 we explore methods for selecting which caption to transfer to the query image. Experimental

setup and results are presented in Section 4.5, where we show that our model strongly outperforms

two state-of-the-art caption extraction systems according to human judgments of caption relevance.

Section 4.6 is the conclusion.
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3 month old baby girl with blue eyes in her crib

A photo from the Ismail’s portrait shoot

A portrait of a man, in black and white

Portrait in black and white with the red rose

I apparently had this saved in black and white as well

Portrait in black and white

Table 4.2: Captions from images retrieved using a k nearest-neighbor approach. Our proposed
approach identifies words that appear in multiple captions.

4.1 Formulation

The image caption transfer task is as follows. Given a query image Iq, the goal is to generate a

relevant description. The description is generated by selecting a single caption from a database, C.
This database consists of a very large number of captioned images, collected from the web.

Previous approaches to this task such as Ordonez et al. (2011) and Patterson et al. (2014) select

a match image in C which is the most visually similar to Iq according to some computed measure.

Then simply transfer the caption of the matched image to the query image.

Our approach has an intermediate step of obtaining a probability density estimate of the caption

text, given the query image. p(w) is the prior probability for content words for all the captions in

C. p(w|Iq) is a word distribution conditioned on the query image.
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4.2 SBU-Flickr Dataset

For the experiments in this chapter, we use the SBU-Flickr dataset (Ordonez et al., 2011)1. The

SBU-Flickr dataset contains one million images from Flickr.com, along with the corresponding

captions which were uploaded by the users. This dataset was constructed by querying for words

from a term list of common visual entities. To encourage visual descriptiveness in the collection,

they enforce that all descriptions must contain at least two words belonging to their term list, and

at least one prepositional word that indicates spatial relationships (Ordonez et al., 2011).

Due to its size, SBU-Flickr corpus has enabled notable research in both Computer Vision and

Natural Language Processing. In particular, it is used in a variety of tasks in work stemming from

the 2011 Johns Hopkins-CLSP Summer Workshop, such as image captioning (Mitchell et al., 2012;

Kuznetsova et al., 2012), identifying visual descriptions in text (Dodge et al., 2012), and identifying

semantically relevant regions of images (Berg et al., 2012).

However, the SBU-Flickr corpus is known to have many misalignments between images and

caption content, because Flickr users often use captions to describe background information about

the image. Further analysis by Hodosh et al. (2013) shows that the majority of the captions in

(∼67%) in SBU-Flickr describe information that cannot be obtained from the image itself, while a

substantial fraction (∼23%) contain almost no description of visual content.

4.3 Approach

4.3.1 Measuring Visual Similarity

Many Computer Vision matching methods compute global (scene-based) descriptors rather than

object and entity detections. Scene-based techniques in Computer Vision are generally more robust,

and can be computed more efficiently on large datasets.

The basic Im2Text model from Ordonez et al. (2011) uses an equally weighted average of GIST

Oliva and Torralba (2001) and TinyImage Torralba et al. (2008) features, which coarsely localize

low-level features in scenes. The output is a multi-dimensional image space where semantically sim-

ilar scenes (e.g. streets, beaches, highways) are projected near each other. However, recent work

by Patterson and Hays (2012) and Patterson et al. (2014) shows that “scene attribute” representa-

tions can provide improved matching for image captioning over the basic Im2Text model. Scene

attribute representation are characterized using low-level perceptual attributes as used by GIST

(e.g. openness, ruggedness, naturalness), as well as high-level attributes informed by open-ended

crowd-sourced image descriptions (e.g., indoor lighting, running water, places for learning).

For our experiments, we use the publicly available2 scene attributes from Patterson and Hays

(2012) to compute representations for all the query images and database images in the SBU-Flickr

1http://tamaraberg.com/CLSP11/

2https://github.com/genp/sun_attributes
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Figure 4.1: A 2d visualization of the multi-dimensional scene attribute space for images. Seman-
tically similar images are projected near to each other. Image provided by Patterson and Hays
(2012).

corpus. Images are represented using 102-dimensional real-valued vectors, and similarity between

images is measured using the Euclidean distance.

4.3.2 Density Estimation

As shown in Bishop (2006), probability density estimates at a particular point can be obtained by

considering points in the training data within some local neighborhood. In our case, we define some

region R in the image space which contains Iq. The probability mass of that space is

P =

∫
R
p(Iq)dIq (4.1)

and if we assume thatR is small enough such that p(Iq) is roughly constant inR, we can approximate

p(Iq) ≈ kimg

nimgV img
(4.2)

where kimg is the number of images within R in the training data, nimg is the total number of

images in the training data, and V img is the volume of R. In this paper, we fix kimg to a constant

value, so that V img is determined by the training data around the query image.3

3Alternately, instead of using k nearest-neighbors, one could use a kernel density approach by fixing the value of
V img and determining kimg from the number of points in R. This technique is called Parzen-Window Density
Estimation, and is useful to ensure that samples far away from the query are not selected in cases where the query
is in a sparse area of the data. However, it can lead to over-smoothing in more dense areas. Due to the large
number of samples in the SBU-Flickr dataset, the k nearest-neighbor approach is more appropriate.
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At this point, we extend the density estimation technique in order to estimate a smoothed model

of descriptive text. Let us begin by considering p(w|Iq), the conditional probability of the word4 w

given Iq. This can be described using a Bayesian model:

p(w|Iq) =
p(Iq|w)p(w)

p(Iq)
(4.3)

The prior for w is simply its unigram frequency in C, where ntxtw and ntxt are word token counts:

p(w) =
ntxtw

ntxt
(4.4)

Note that ntxt is not the same as nimg because a single captioned image can have multiple words in

its caption. Likewise, the conditional density

p(Iq|w) ≈ ktxtw

ntxtw V img
(4.5)

considers instances of observed words within R, although the volume of R is still defined by the

image space. ktxtw is the number of times w is used within R while ntxtw is the total number of times

w is observed in C.
Combining Equations 2, 4, and 5 and canceling out terms gives us the posterior probability:

p(w|Iq) =
ktxtw

kimg
· n

img

ntxt
(4.6)

If the number of words in each caption is independent of its image’s location in the image space,

then p(w|Iq) is approximately the observed unigram frequency for the captions inside R.

4.4 Output Caption Selection

We compare two selection methods for extractive caption generation:

1. SumBasic SumBasic (Nenkova and Vanderwende, 2005) is a sentence selection algorithm

for extractive multi-document summarization which exclusively maximizes the appearance of words

which have high frequency in the original documents. Here, we adapt SumBasic to maximize the

average value of p(w|Iq) in a single extracted caption:

output = max
ctxt∈R

∑
w∈ctxt

1

|ctxt|
p(w|Iq) (4.7)

The candidate captions ctxt do not necessarily have to be observed in R, but in practice we did not

find increasing the number of candidate captions to be more effective than increasing the size of R
directly.

2. KL Divergence We also consider a KL Divergence selection method. This method outper-

forms the SumBasic selection method for extractive multi-document summarization (Haghighi and

4Here, we use word to refer to non-function words, and assume all function words have been removed from the
captions.



32

Figure 4.2: BLEU scores vs k images retrieved for our nonparametric model using SumBasic caption
selection.

Vanderwende, 2009). It also generates the best extractive captions for Feng and Lapata (2010a),

who caption images by extracting text from a related news article. The KL Divergence method is

output = min
ctxt∈R

∑
w

p(w|Iq) log
p(w|Iq)

p(w|ctxt)
(4.8)

4.5 Evaluation

4.5.1 Automatic Evaluation

BLEU scores (Papineni et al. (2002), Section 2.4.1) are widely used for image caption evaluation.

We compute BLEU scores using the scoring software from NIST, and comparing against the original

captions for the query images which were held out during the captioning process.

However, we find BLEU scores to be poor indicators of the quality of our model. As shown in

Figure 4.2, the BLEU scores increase as we increase the number of k nearest-neighbor in the model,

even as the density estimations seem to get washed out by oversmoothing. BLEU scores continue

to improve until k = 500 but only because the generated captions become increasingly shorter, and

use more general words like “picture” which could be accurate for almost any photo. Furthermore,

although we observe that our system captions selected using SumBasic obtain consistently higher

BLEU scores, our personal observations find that captions selected using the KLSum method are

more relevant, as the SumBasic captions tend to be very short. These findings are consistent with

work by Elliott and Keller (2014) which recently shows that BLEU scores tend to reward brevity

rather than relevance for image caption evaluation.

Nevertheless, BLEU scores are the accepted metric for recent work, and as shown in Table 4.3, our

KLSum captions with k = 25 still outperform all other previously published systems and baselines.

We have made our full BLEU setup, as well as the captions for all systems and baselines, available
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System BLEU@1
Scene Attributes .1640
Collective .1654
System (SumBasic) .2294
System (KLSum) .1886

Table 4.3: BLEU scores for our system, Scene Attributes nearest-neighbor baseline (Patterson et al.,
2014), and Collective caption generation (Kuznetsova et al., 2012). See Section 4.5.1.

in the ACL Anthology5, in order to allow our work to be evaluated using future automatic metrics.

4.5.2 Human Evaluation

We generate captions using our system with KL Divergence sentence selection and k = 25. We

also evaluate the original Human captions for the query image, as well as generated captions from

two recently published caption transfer systems. First, we consider the Scene Attributes system

(Patterson et al., 2014), which represents both the best scene-based transfer model and a k =

1 nearest-neighbor baseline for our system. We also compare against the Collective system

(Kuznetsova et al., 2012), which is the best object-based transfer model.

We perform our human evaluation of caption relevance using a similar setup to that of Kuznetsova

et al. (2012), who have humans rate the image captions on a 1-5 scale (5: perfect, 4: almost perfect, 3:

70-80% good, 2: 50-70% good, 1: totally bad). Evaluation is performed using Amazon Mechanical

Turk. Evaluators are shown both the caption and the query image. Evaluators are specifically

instructed to ignore errors in grammaticality and coherence, so to not unfairly advantage systems

such as ours and Scene Attributes which select entire human-written captions, against systems

such as Collective which construct new captions out of transferred phrases. An example of the

human evaluation task is shown in Figure 4.3.

In order to facilitate comparison, we use the same test/train split that is used in the publicly

available system output for the Collective system6. However, we remove some query images which

have contamination between the train and test set (this occurs when a photographer takes multiple

shots of the same scene and gives all the images the exact same caption). We also note that their

test set is selected based on images where their object detection systems had good performance, and

may not be indicative of their performance on other query images.

Table 4.4 shows the results of our human study. Captions generated by our system have 48%

improvement in relevance over the Scene Attributes system captions, and 34% improvement

over the Collective system captions. Although our system captions score lower than the human

captions on average, there are some instances of our system captions being judged as more relevant

than the human-written captions.

5http://www.aclweb.org/anthology/attachments/P/P14/P14-2097.Datasets.zip

6http://www.cs.sunysb.edu/~pkuznetsova/generation/cogn/captions.html
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System Relevance

Collective 2.38 (σ = 1.45)
Scene Attributes 2.15 (σ = 1.45)
System 3.19 (σ = 1.50)
Human 4.09 (σ = 1.14)

Table 4.4: Human evaluations of relevance: mean ratings and standard deviations. See Section 4.5.2.

4.6 Discussion and Examples

Example captions are shown in Table 4.5. In many instances, scene-based image descriptors provide

enough information to generate a complete description of the image, or at least a sufficiently good

one. However, there are some kinds of images for which scene-based features alone are insufficient.

For example, the last example describes the small pink flowers in the background, but misses the

bear.

Image captioning is a relatively novel task for which the most compelling applications are prob-

ably not yet known. Much previous work in image captioning focuses on generating captions that

concretely describe detected objects and entities (Kulkarni et al., 2011; Yang et al., 2011; Mitchell

et al., 2012; Yu and Siskind, 2013). However, human-generated captions and annotations also de-

scribe perceptual features, contextual information, and other types of content. Additionally, our

system is robust to instances where entity detection systems fail to perform. However, one could

consider combined approaches which incorporate more regional content structures. For example,

previous work in nonparametric hierarchical topic modeling (Blei et al., 2010) and scene labeling

(Liu et al., 2011) may provide avenues for further improvement of this model. We leave these ideas

for future work.
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Chapter 5

Domain-Specific Image Captioning

Consider the following example:

Query Image Retrieved Image

This sporty sneaker clog keeps
foot cool and comfortable and
fully supported.

Table 5.1: Example of a query image and nearest-neighbor match from the Attribute Discovery
dataset. Visual similarity computed using GIST (Oliva and Torralba, 2001).

The image on the left is the query image, while the image on the right is its nearest-neighbor in a

database, using GIST (Oliva and Torralba, 2001) nearest neighbors 1. In this example, the caption

of the retrieved image is somewhat accurate for the query image – both images show clog-style shoes,

both shoes appear to be comfortable. However, some words in the retrieved caption such as “sporty”

and “sneaker” do not accurately describe the query image.

In the previous chapter, we presented an approach for image captioning using multi-document

summarization to select an existing caption which best fits the query image. However, there are

some limitations to this approach. The output would be limited to existing captions in the database.

Additionally, it is difficult to determine how many nearest-neighbor matches the nonparametric

density estimator should smooth over, and to find the best balance between brevity and detail.

This is particularly true for the task of domain-specific image captioning, where fine-grained details

1We do not use the scene attributes from Patterson and Hays (2012) because the images are not of natural scenes.
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become more relevant. For example, if the query image above were to appear on an online shopping

website, simply captioning it as “A shoe” would be completely inadequate.

Domain-specific image captioning also presents additional challenges. As we mentioned in pre-

vious chapters, many current approaches for image captioning rely on the use of general-domain

entity detectors. These detectors typically require accurate hand-labeled training data, which are

not available for many specific domains where automatic image captioning would be useful. Ideally,

a domain-specific captioning system would learn in a less supervised fashion, using captioned im-

ages found on the web. Less supervised captioning methods could be used to generate detailed and

accurate descriptions for a variety of long-tail domains of captioned image data, such as in nature

and medicine.

In this chapter, we present a data-driven framework for domain-specific image caption generation,

which adapts existing captions in the manner shown. Our framework has three main components.

We extract an existing description from a database of human-captions, by projecting query images

into a multi-dimensional space where structurally similar images are near each other. We also train a

joint topic model to discover the latent topics which generate both captions and images. We combine

these two approaches using sentence compression to delete modifying details in the extracted caption

which are not relevant to the query image. An example is shown in Table 5.

Query Image Retrieved Image

Extract This sporty sneaker clog keeps
foot cool and comfortable and
fully supported.

Topic Model This sporty sneaker clog keeps
foot cool and comfortable and
fully supported.

Compress This clog keeps foot comfort-
able and supported.

Our domain-specific captioning framework is inspired by several recent approaches at the inter-

section of Natural Language Processing and Computer Vision, including our own work described in

earlier chapters of this document. These include:

Caption Transfer Our method extends previous work such as Farhadi et al. (2010), Ordonez et al.

(2011), and the nonparametric method presented in Chapter 4 of this thesis.

Image Annotation While recent improvements in state-of-the-art visual object class detections
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(Felzenszwalb et al., 2010) have enabled much recent work in image caption generation (Farhadi

et al., 2010; Ordonez et al., 2011; Kulkarni et al., 2011; Yang et al., 2011; Mitchell et al., 2012;

Yu and Siskind, 2013), trained detectors are often not available for domain-specific entities.

Instead, we develop a joint topic model to learn the latent topics that generate both images

and captions. Previous work by Berg et al. (2010) and Feng and Lapata (2010b) has also

explored using natural language caption text as a source of image annotations.

Sentence Compression Typical models for sentence compression (Knight and Marcu, 2002; Furui

et al., 2004; Turner and Charniak, 2005; Clarke and Lapata, 2008) have a summarization

objective: reduce the length of a source sentence without changing its meaning. In contrast, our

objective is to change the meaning of the source sentence, letting its overall correctness relative

to the query image determine the length of the output. Our work can also be constrasted to

that of Kuznetsova et al. (2013), who compress image caption sentences with the objective of

creating a corpus of generally transferrable image captions, while our objective is to compress

captions to generate a more accurate caption for a specific query image.

In Section 5.1 we describe the Attribute Discovery Dataset (Berg et al., 2010), which will be used

in experiments for the rest of this chapter. Section 5.2 describes the approach used for transferring

captions, and Section 5.3 describes the topic model. Section 5.4 describes how transferred captions

are adapted for a specific query image using sentence compression. Section 5.5 describes automatic

and human evaluations that we use to show that our captioning method effectively deletes inaccurate

words from extracted captions while maintaining a high level of detail in the generated output.

5.1 Dataset

The dataset we use is the women’s shoes section of the publicly available Attribute Discovery

Dataset2 from Berg et al. (2010), which consists of product images and captions scraped from

the shopping website Like.com. We use the women’s shoes section of the dataset which has 14764

captioned images. Product descriptions describe many different attributes such as styles, colors,

fabrics, patterns, decorations, and affordances (activities that can be performed while wearing the

shoe). Some captions also include non-visual information such as sizing or whether the item is on

sale. Some examples are shown in Table 5.2.

For our experiments, we first determine an 80/20% train test split. We define a textual vocabulary

of “descriptive words”, which are non-function words – adjectives, adverbs, nouns (except proper

nouns), and verbs. This gives us a total of 9578 descriptive words in the training set, with an average

of 16.33 descriptive words per caption.

2http://tamaraberg.com/attributesDataset/index.html
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Two adjustable buckle straps top a classic rubber
rain boot grounded by a thick lug sole for excellent
wet-weather traction.

Available in Plus Size. Faux snake skin flats with
a large crossover buckle at the toe. Padded insole
for a comfortable all day fit.

Glitter-covered elastic upper in a two-piece dress
sandal style with round open toe. Single vamp
strap with contrasting trim matching elasticized
heel strap crisscrosses at instep.

Explosive! These white leather joggers are sure
to make a big impression. Details count, includ-
ing a toe overlay, millennium trim and lightweight
raised sole.

Table 5.2: Example data from the Attribute Discovery Dataset (Berg et al., 2010). See Section 5.1.
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5.2 Caption Transfer

Our overall process is to first find a caption sentence from our database to use as a template, and

then adapt the template sentences using sentence compression. We compress by removing details

that are probably not correct for the5sec:eval query image. For example, if the sentence describes

“a red slipper” but the shoe in the query image is yellow, we want to remove “red” and keep the

rest.

As in this simple example, the basic paradigm for compression is to keep the head words of

phrases (“slipper”) and remove modifiers. Thus we want the extraction stage of our scheme to be

more likely to find a candidate sentence with correct head words, figuring that the compression stage

can edit the mistakes. Our hypothesis is that headwords tend to describe more spatially structured

visual concepts, while modifier words describe those that are more easily represented using local or

unstructured features.3 Table 5.3 contains additional example captions with parses.

GIST (Oliva and Torralba, 2001) is a commonly used feature in Computer Vision which coarsely

localizes perceptual attributes (e.g. rough vs smooth, natural vs manmade). By computing the

GIST of the images, we project them into a multi-dimensional Euclidean space where images with

semantically similar structures are located near each other. Thus the extraction stage of our caption

generation process selects a sentence from the GIST nearest-neighbor to the query image.

5.3 Topic Model

The second component of our framework incorporates visual and textual features using a less struc-

tured model. We use a multi-modal topic model to learn the latent topics which generate bag-of-

words features for an image and its caption.

The bag-of-words model for Computer Vision represents images as a mixture of topics. Measures

of shape, color, texture, and intensity are computed at various points on the image and clustered

into discrete “codewords” using the k-means algorithm. Unlike text words, an individual codeword

has little meaning on its own, but distributions of codewords can provide a meaningful, though

unstructured, representation of an image.

An image and its caption do not express exactly the same information, but they are topically

related. We employ the Polylingual Topic Model (Mimno et al., 2009), which is originally used

to model corresponding documents in different languages that are topically comparable, but not

parallel translations. A plate diagram for the polylingual topic model is shown in Figure 5.1. We

extend this work to model shopping images and captions.

The generative process is defined for a captioned image: the pair w =< wimg, wtxt >. It starts

with a single topic distribution drawn from concentration parameter α and base measure m:

θ ∼ Dir(θ, αm) (5.1)

3For example, the color “red” can be described using a bag of random pixels, while a “slipper” is a spatial
configuration of parts in relationship to each other.
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5sec:topicmodel

Table 5.3: Example parses of women’s shoes descriptions. Our hypothesis is that the headwords in
phrases are more likely to describe visual concepts which rely on spatial locations or relationships,
while modifiers words can be represented using less-structured visual bag-of-words features.

Modality-specific latent topic assignments zimg and ztxt are drawn for each of the text words and

codewords:

zimg ∼ P (zimg|θ) =
∏
n

θzimg
n

(5.2)

ztxt ∼ P (ztxt|θ) =
∏
n

θztxt
n

(5.3)

Observed words are generated according to their probabilities in the modality-specific topics:

wimg ∼ P (wimg|zimg,Φimg) = φimg

wimg
n |zimg

n
(5.4)

wtxt ∼ P (wtxt|ztxt,Φtxt) = φtxtwtxt
n |ztxt

n
(5.5)

Given the uncaptioned query image qimg and the trained multi-modal topic model, it is now

possible to infer the shared topic proportion for qimg using Gibbs sampling:
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Figure 5.1: Polylingual topic model (Mimno et al., 2009)

P (zn = t|qimg, z\n,Φ
img, αm) ∝ φimg

qimg
n |t

(Nt)\n + αmt∑
tNt − 1 + α

(5.6)

5.4 Compression

Let w = w1, w2, ..., wn be the words in the extracted caption for qimg. For each word, we define a

binary decision variable δ, such that δi = 1 if wi is included in the output compression, and δi = 0

otherwise. Our objective is to find values of δ which generate a caption for qimg which is both

semantically and grammatically correct.

We cast this problem as an Integer Linear Program (ILP), which has previously been used for

the standard sentence compression task (Clarke and Lapata, 2008; Martins and Smith, 2009). ILP

is a mathematical optimization method for determining the optimal values of integer variables in

order to maximize an objective given a set of constraints. Sentence compression is modeled as an

integer optimization problem because the decision to include each word is a binary integer decision.

5.4.1 Compression Objective

The objective for the sentence compression is to maximize a weighted linear combination of two

measures which represent the correctness and fluency of the output compression. For correctness,

recall in Section 5.1 we defined words as either descriptive words or function words. For each

descriptive word, we estimate the probability of the word given the query image, P (wi|qimg), using

topic proportions estimated using Equation 5.6:

P (wi|qimg) =
∑
t

P (wi|ztxtt )P (zt|qimg) (5.7)

This estimate is used to find I(wi), which is a function of the likelihood of each word in the extracted

caption. This function considers the prior probability of wi because frequent words often have a

high posterior probability even when they are inaccurate. Function words (such as articles and

prepositions) get a score of zero, because they do not contribute to the accuracy of a generated

caption.
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I(wi) =

P (wi|qimg)− P (wi), if descriptive

0, function word
(5.8)

Thus the sum
∑n

i=1 δi · I(wi) is the overall measure of the correctness of a proposed caption condi-

tioned on qimg.

Next, we measure the fluency of the output caption using a trigram language model. This

requires additional binary decision variables. These binary decision variables are αi which equals

1 if wi begins the output compression, βij which equals 1 if the bigram sequence wi, wj ends the

compression, and γijk which equals 1 if the trigram sequence wi, wj , wk is in the compression. We

also add a special variable δ0 = 1, to represent the “start token” for the output compression.

This language model favors shorter sentences, which is not necessarily the objective for image

captioning, so we introduce a weighting factor, λ, to lessen the effect.

Here is the combined objective, using P to represent logP :

max z =

(
n∑

i=1

αi · P (wi|start)

+

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

γijk · P (wk|wi, wj)

+

n−1∑
i=0

n∑
j=i+1

βij · P (end|wi, wj)

)
· λ

+

n∑
i=1

δi · I(wi) (5.9)

5.4.2 Compression Constraints

The compression constraints for the ILP ensure the mathematical validity of the model, as well as

the grammatical correctness of its output.

Sequential Constraints As defined in Clarke and Lapata (2008), these constraints ensure that

the ordering of the trigrams is valid, and that the mathematical validity of the model holds. These

constraints are:

1. Only one word can be the first word in the output compression.

∑
i

αi = 1 (5.10)

2. If a word is included in the compression, it is either the first word in the compression, or it

follows another word in the compression.4

4The second word in the compression is the last word of the trigram starting with the special start token.
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δk − αk −
k−2∑
i=0

k−1∑
j=1

γijk = 0

∀k : k ∈ 1...n (5.11)

3. If a word appears in the compression, it either is followed by another word, or it ends the

compression.

n−1∑
j=i+1

n∑
k=j+1

γijk −
n∑

j=i+1

βij −
i−1∑
h=0

βhi − δi = 0

∀i : i ∈ 1...n (5.12)

(5.13)

4. Only one bigram can end the compression.

n−1∑
i=0

n∑
j=i+1

βij = 1 (5.14)

Modifier Constraints

Modifier constraints ensure that the sentence is coherent. Using the “semantic head” variation

of the headfinder from Collins (1999), these constraints are:

1. The head word of the sentence and the head words of noun phrases must be included.

2. If headof(wi) = wj , then δi ≤ δj for words that are not punctuation or coordinating conjunc-

tions.

Other Constraints

Finally, there are other constraints that ensure a minimum length for the compressed output

(
∑

i δi ≥ 3) and define valid use of punctuation and coordinating conjunctions.

5.5 Evaluation

We evaluate using both automatic metrics and a human study. Automatic metrics provide a simple

and objective method to evaluate nearly 3000 captions generated from the images in our test set,

and allow us to explore the trade-off between recall and precision in our sentence compression

model. A human study more accurately measures the quality of generated captions, since automatic

metrics fail to capture variance in human descriptions. Humans are also better at measuring the

grammaticality of a compressed caption.
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ROUGE-2 Average 95% Confidence int.

KL (Extraction)
P .06114 ( .05690 - .06554 )
R .02499 ( .02325 - .02686)
F .03360 ( .03133 - .03600 )

GIST (Extraction)
P .10894 ( .09934 - .11921 )
R .05474 ( .04926 - .06045)
F .06863 ( .06207 - .07534)

LM-Only (Compression)
P .13782 ( .12602 - .14864 )
R .02437 ( .02193 - .02700 )
F .03864 ( .03512 - .04229)

System (Compression)
P .16752 (.15679 -.17882 )
R .05060 ( .04675 - .05524 )
F .07204 ( .06685 - .07802 )

Table 5.4: ROUGE-2 (bigram) scores. The precision of our system compression (bolded) significantly
improves over the caption that it compresses (GIST), without a significant decrease in recall.

5.5.1 Setup

We compare the following systems and baselines:

KL (Extraction): The top performing extractive model from Feng and Lapata (2010a), and

the second-best captioning model overall. Using estimated topic distributions from our joint model,

we extract the source with minimum KL Divergence from qimg.

GIST (Extraction): The sentence extracted using GIST nearest-neighbors, and the uncom-

pressed source for the compression systems.

LM-Only (Compression): This baseline changes the function I(w) (Equation 5.8) to simply

give the prior P (w) in the case a word is descriptive. This causes the ILP to ignore the content

objective and only maximize the trigram language model (still subject to the constraints). We include

this baseline to demonstrate that our model is effectively conditioning output compressions on the

query image, as opposed to generating a more generally transferrable caption as does Kuznetsova

et al. (2013).

System (Compression): Our full system.

Unfortunately, we cannot compare our system against prior work in general-domain image cap-

tioning, because those models use visual detection systems which train on labeled data that is not

available in our domain.
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BLEU@1

KL (Extraction) .2098
GIST (Extraction) .4259

LM-Only (Compression) .4780
System (Compression) .4841

Table 5.5: BLEU@1 scores of generated captions against human authored captions. Our model
(bolded) has the highest BLEU@1 score with significance.

System LM-Only

Yes No Yes No
Compression improves accuracy 63.2% 36.8% 42.6% 57.4%
Compression is grammatical 73.1% 26.9% 82.2% 17.8%

Table 5.6: Human evaluation results.

5.5.2 Automatic Evaluation

We perform automatic evaluation using similarity measures between automatically generated and

human-authored captions. Note that currently our system and baselines only generate single-

sentence captions, but we compare against entire held-out captions in order to increase the amount

of text we have to compare against.

ROUGE (Lin, 2004) is a summarization evaluation metric which has also been used to evaluate

image captions (Yang et al., 2011). It is usually a recall-oriented measure, but we also report

precision and f-measure because our sentence compressions do not improve recall. Table 5.4 shows

ROUGE-2 (bigram) scores computed without stopwords.

We observe that our system very significantly improves ROUGE-2 precision of the GIST extracted

caption, without significantly reducing recall. While LM-Only also improves precision against GIST

extraction, it indiscriminately removes some words which are relevant to the query image. We

also observe that GIST extraction strongly outperforms the KL model, which demonstrates the

importance of visual structure.

We also report BLEU (Papineni et al., 2002) scores in Table 5.5, which are the most popularly

accepted automatic metric for captioning evaluation (Farhadi et al., 2010; Kulkarni et al., 2011;

Ordonez et al., 2011; Kuznetsova et al., 2012, 2013). Results are very similar to the ROUGE-2

precision scores, except the difference between our system and LM-Only is less pronounced because

BLEU counts function words, while ROUGE does not.
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5.5.3 Human Evaluation

We perform human evaluation of compressions generated by our system and LM-Only.5 Users are

shown the query image, the original uncompressed caption, and a compressed caption, and are asked

two questions: does the compression improve the accuracy of the caption, and is the compression

grammatical.

We collect 553 judgments from six women who are native English-speakers and knowledgeable

about fashion. Users were recruited via email and did the study over the internet.

Table 5.6 reports the results of the human evaluation. Users report 63.2% of System compres-

sions improve accuracy over the original, while the other 36.8% did not improve accuracy. (Keep

in mind that a bad compression does not make the caption less accurate, just less descriptive.)

LM-Only improves accuracy for less than half of the captions, which is significantly worse than

System captions (Fisher exact test, two-tailed p less than 0.01).

Users find LM-Only compressions to be slightly more grammatical than System compressions,

but the difference is not significant. (p > 0.05)

5About 15% of output compressions are the same for both systems, and about 10% have no deleted words in the
output compression. We include the former in the human evaluation, but not the latter.
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Query Image Nearest Neighbor

Extraction: Shimmering snake-embossed leather
upper in a slingback evening dress sandal style
with a round open toe.
Compression: Shimmering upper in a slingback
evening dress sandal style with a round open toe.

Query Image Nearest Neighbor

Extraction: This sporty sneaker clog keeps foot
cool and comfortable and fully supported.
Compression: This clog keeps foot comfortable
and supported.

Query Image Nearest Neighbor

Extraction: Italian patent leather peep-toe bal-
let flat with a signature tailored grosgrain bow.
Compression: leather ballet flat with a signature
tailored grosgrain bow.

Query Image Nearest Neighbor

Extraction: Platform high heel open toe pump
with horsebit available in silver guccissima leather
with nickel hardware with leather sole.
Compression: Platform high heel open toe pump
with horsebit available in leather with nickel hardware
with leather sole.

Table 5.7: Example output from our full system. Red underlined words indicate the words which
are deleted by our compression model.
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Query Image Nearest Neighbor

Extraction: Classic ballet flats with decorative canvas
strap and patent leather covered buckle.
Compression: Classic ballet flats covered.
Query Image Nearest Neighbor

Extraction: This shoe is the perfect shoe for you , fea-
turing an open toe and a lace up upper with a high heel
, and a two tone color .
Compression: This shoe is the shoe , featuring an open
toe and upper with a high heel .

Table 5.8: Examples of bad performance. The top example is a parse error, while the bottom
example deletes modifiers that are not part of the image description.
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Daumé III, H., Berg, A. C., et al. (2012). Detecting visual text. In Proceedings of the 2012

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 762–772. Association for Computational Linguistics.

Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., and

Darrell, T. (2014). Long-term recurrent convolutional networks for visual recognition and descrip-

tion. arXiv preprint arXiv:1411.4389.

Elliott, D. and Keller, F. (2014). Comparing automatic evaluation measures for image description.

In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,

volume 2, pages 452–457.

Elsner, M. and Santhanam, D. (2011). Learning to fuse disparate sentences. In Proceedings of the

Workshop on Monolingual Text-To-Text Generation, pages 54–63. Association for Computational

Linguistics.

Everingham, M., Van Gool, L., Williams, C., Winn, J., and Zisserman, A. (2008). The pascal visual

object classes challenge 2008 (voc2008) results. http://www.pascal-network.org/challenges/

VOC/voc2008/workshop/index.html.



54

Fan, X., Aker, A., Tomko, M., Smart, P., Sanderson, M., and Gaizauskas, R. (2010). Automatic

image captioning from the web for gps photographs. In Proceedings of the international conference

on Multimedia information retrieval, MIR ’10, pages 445–448, New York, NY, USA. ACM.

Fang, H., Gupta, S., Iandola, F., Srivastava, R., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M.,

Platt, J., et al. (2014). From captions to visual concepts and back. arXiv preprint arXiv:1411.4952.

Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., and Forsyth,

D. (2010). Every picture tells a story: generating sentences from images. In Proceedings of the 11th

European conference on Computer vision: Part IV, ECCV’10, pages 15–29, Berlin, Heidelberg.

Springer-Verlag.

Felzenszwalb, P. F., Girshick, R. B., and McAllester, D. (2008). Discriminatively trained deformable

part models, release 4. http://people.cs.uchicago.edu/~pff/latent-release4/.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object detection

with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(9):1627–1645.

Feng, Y. and Lapata, M. (2008). Automatic image annotation using auxiliary text information. In

ACL, pages 272–280.

Feng, Y. and Lapata, M. (2010a). How many words is a picture worth? automatic caption generation

for news images. In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, ACL ’10, pages 1239–1249, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Feng, Y. and Lapata, M. (2010b). Topic models for image annotation and text illustration. In

HLT-NAACL, pages 831–839.

Frankel, C., Swain, M. J., and Athitsos, V. (1996). Webseer: An image search engine for the world

wide web.

Furui, S., Kikuchi, T., Shinnaka, Y., and Hori, C. (2004). Speech-to-text and speech-to-speech sum-

marization of spontaneous speech. IEEE TRANS. ON SPEECH AND AUDIO PROCESSING,

12(4):401–408.

Gatt, A. and Reiter, E. (2009). Simplenlg: A realisation engine for practical applications. In Proceed-

ings of the 12th European Workshop on Natural Language Generation, pages 90–93. Association

for Computational Linguistics.

Grauman, K. and Leibe, B. (2010). Visual object recognition. Morgan & Claypool Publishers.

Greenbacker, C. F., Carberry, S., and McCoy, K. F. (2011). A corpus of human-written summaries of

line graphs. In Proceedings of the UCNLG+ Eval: Language Generation and Evaluation Workshop,

pages 23–27. Association for Computational Linguistics.



55

Haghighi, A. and Vanderwende, L. (2009). Exploring content models for multi-document summariza-

tion. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North

American Chapter of the Association for Computational Linguistics, pages 362–370. Association

for Computational Linguistics.

Hanbury, A. (2008). A survey of methods for image annotation. J. Vis. Lang. Comput., 19:617–627.

Hays, J. and Efros, A. A. (2008). Im2gps: estimating geographic information from a single image. In

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.

IEEE.

Hodosh, M., Young, P., and Hockenmaier, J. (2013). Framing image description as a ranking

task: data, models and evaluation metrics. JOURNAL OF ARTIFICIAL INTELLIGENCE RE-

SEARCH, 47:853–899.

Hovy, E. H. (1991). Approaches to the planning of coherent text. Springer.

Jurafsky, D. and James, H. (2009). Speech and language processing an introduction to natural

language processing, computational linguistics, and speech.

Karpathy, A. and Fei-Fei, L. (2014). Deep visual-semantic alignments for generating image descrip-

tions. arXiv preprint arXiv:1412.2306.

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014). Unifying visual-semantic embeddings with

multimodal neural language models. arXiv preprint arXiv:1411.2539.

Knight, K. and Marcu, D. (2002). Summarization beyond sentence extraction: a probabilistic

approach to sentence compression. Artif. Intell., 139(1):91–107.

Koller, A. and Stone, M. (2007). Sentence generation as a planning problem.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg, T. L. (2011). Baby

talk: Understanding and generating simple image descriptions. In CVPR, pages 1601–1608.

Kuznetsova, P., Ordonez, V., Berg, A., Berg, T., and Choi, Y. (2013). Generalizing image captions

for image-text parallel corpus. In ACL.

Kuznetsova, P., Ordonez, V., Berg, A. C., Berg, T. L., and Choi, Y. (2012). Collective generation

of natural image descriptions. In ACL.

Leong, C. W., Mihalcea, R., and Hassan, S. (2010). Text mining for automatic image tagging. In

Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pages

647–655. Association for Computational Linguistics.

Leung, T. and Malik, J. (2001). Representing and recognizing the visual appearance of materials

using three-dimensional textons. International Journal of Computer Vision, 43(1):29–44.



56

Li, S., Kulkarni, G., Berg, T. L., Berg, A. C., and Choi, Y. (2011). Composing simple image

descriptions using web-scale n-grams. In Proceedings of the Fifteenth Conference on Computational

Natural Language Learning, CoNLL ’11, pages 220–228, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Li, W. and McCallum, A. (2006). Pachinko allocation: Dag-structured mixture models of topic

correlations. In Proceedings of the 23rd international conference on Machine learning, ICML ’06,

pages 577–584, New York, NY, USA. ACM.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Marie-

Francine Moens, S. S., editor, Text Summarization Branches Out: Proceedings of the ACL-04

Workshop, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.

Liu, C., Yuen, J., and Torralba, A. (2011). Nonparametric scene parsing via label transfer. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 33(12):2368–2382.

Lowe, D. (1999). Object recognition from local scale-invariant features. In Computer Vision, 1999.

The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 1150 –1157

vol.2.

Makadia, A., Pavlovic, V., and Kumar, S. (2008). A new baseline for image annotation. In Computer

Vision–ECCV 2008, pages 316–329. Springer.

Mao, J., Xu, W., Yang, Y., Wang, J., and Yuille, A. L. (2014). Explain images with multimodal

recurrent neural networks. arXiv preprint arXiv:1410.1090.

Martins, A. F. T. and Smith, N. A. (2009). Summarization with a joint model for sentence extraction

and compression. In Proceedings of the Workshop on Integer Linear Programming for Natural

Langauge Processing, ILP ’09, pages 1–9, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Mason, R. (2013). Domain-independent captioning of domain-specific images. In Proceedings of the

2013 NAACL HLT Student Research Workshop, pages 69–76, Atlanta, Georgia. Association for

Computational Linguistics.

Mason, R. and Charniak, E. (2012). Apples to oranges: Evaluating image annotations from natural

language processing systems. In NAACL-2012: Main Proceedings, Montreal, Canada. Association

for Computational Linguistics.

Mason, R. and Charniak, E. (2013). Annotation of online shopping images without labeled training

examples. In Proceedings of Workshop on Vision and Language, Atlanta, Georgia. Association for

Computational Linguistics.

Mason, R. and Charniak, E. (2014a). Domain-specific image captioning. In CoNLL-2014, page 11.



57

Mason, R. and Charniak, E. (2014b). Nonparametric method for data-driven image captioning. In

ACL-2014: Main Proceedings, Baltimore, Maryland. Association for Computational Linguistics.

McCallum, A. K. (2002). {MALLET: A Machine Learning for Language Toolkit}.

McCarthy, D. and Navigli, R. (2007). Semeval-2007 task 10: English lexical substitution task. In

Proceedings of the 4th International Workshop on Semantic Evaluations, pages 48–53. Association

for Computational Linguistics.

Mimno, D., Wallach, H. M., Naradowsky, J., Smith, D. A., and McCallum, A. (2009). Polylingual

topic models. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing: Volume 2 - Volume 2, EMNLP ’09, pages 880–889, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Mitchell, M., Dodge, J., Goyal, A., Yamaguchi, K., Stratos, K., Han, X., Mensch, A., Berg, A. C.,
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