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Chapter 1

Introduction

1.1 Problem Statement

Traditional evaluations for visualizations that focus on benchmark-task performance metrics, like

accuracy and speed, often do not help developers understand why one visualization outperforms

another. Evaluation methods that reveal the cognitive processes of end users during visual analysis

are effective for identifying where designs assist or hinder analysis, but existing methods are difficult

to use. Novel, practical models of a visualization’s insightfulness, how people interact, and how

people gaze during analysis can be used in evaluations of visualizations in order to understand how

these tools support visual analysis beyond basic task performance metrics in more accessible ways

than are currently possible.

Trajectory of this dissertation. The aim of this dissertation is to make it easier for visualization

researchers and designers to evaluate the effectiveness of their visualizations and visual analysis

systems empirically. To do this, we present three novel evaluation methods that go beyond measuring

the time and accuracy of study participants on benchmark tasks. The methods we present reveal

empirical evidence of cognitive processes from end users of visualization and are easier to use than

traditional approaches to collecting this evidence. For each method, we demonstrate how this

cognitive evidence is useful for evaluating visualization designs.

The three methods in this dissertation are presented in order of the coarseness of the cognitive

evidence they collect.

• At the highest level, targeting cognitive activities on the order of tens of minutes, we present

an insight-based evaluation method that measures analysts’ insights during exploratory visu-

alization along with benchmark-task performance in a within-subjects design.

• At the middle level, targeting activities on the order of tens of seconds to minutes, we present

a method that helps automate the construction of predictive performance models for visual-

ization tasks using end user interaction logs. A visualization developer does not need cognitive

1
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Context of use Requirements

DesignEvaluation

A

B

Figure 1.1: Human-centered design cycle (adapted from [75]). Entry points A and B represent alter-
native trajectories for visualization development that begin with qualitative research (e.g., grounded
evaluation [51], pre-design empiricism [11]) or prototyping, respectively.

modeling experience to use the method. Predictions from performance models can be used to

evaluate incremental design changes before they are implemented.

• At the lowest level, targeting activities on the order of fractions of seconds, we present a

method that lets evaluators estimate where people gaze during visualization analysis tasks,

without using an eye tracker.

Together, these methods make it easier for visualization developers to understand how analysts

accomplish tasks or discover insights about their data using visualization.

1.2 Background and Motivation

The work described in this dissertation is ultimately concerned with helping people create visual arti-

facts that are useful cognitive aids for domain scientists and information analysts. More specifically,

we aim to help others make insightful graphics, which can be interactive or static, that represent

data complex enough to require analysis by a human in order to understand the data. For the

remainder of this dissertation, we refer to graphics like these as visualizations and applications that

incorporate visualizations as the principal visual component as visualization systems, unless other-

wise qualified. Visualizations are typically created from computer applications that take encoded

data and apply algorithms that use the data to create a representation of individually-valued pixels

on a digital display. In other words, the software creates an image, or a sequence of image frames,

using the data as input. Visualizations can also be drawn by hand and created through physical or

chemical processes (e.g., darkroom photography), but in this dissertation we are chiefly concerned

with computer-generated visualizations.

Evaluation is critical in the design process

One reason that designing effective visualizations is difficult is that evaluating their effectiveness

remains a major challenge [85]. Yet, evaluation is a key part of the human-centered design process

(shown in Figure 1.1); it helps people know whether a visualization is useful and ready to be deployed
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or whether it ought to be redesigned. Without conclusive evaluation methods, visualizations that

are new but not necessarily helpful aids to analysts serve to clutter the space of available tools that

analysts must navigate. A worst-case scenario is that an analyst spends time and effort choosing

between visualizations only to select an ineffective or misleading design that leads to missed or

incorrect conclusions about their data. Since visualizations are ubiquitous data-understanding tools

in domains ranging from brain science to intelligence analysis, the stakes for evaluation are high.

Visualizations can be multipurpose and evaluation methods can be multifaceted

Many aspects of visualization contribute to evaluation challenges. First, visualizations can serve

different purposes, including narrative or exploratory uses. In turn, evaluations can have different

goals and evaluators might not understand the methods that are most appropriate for their intended

goal. Lam et al. describe seven scenarios in [74] (shown in Table 1.1) that illustrate the range

of methods and questions they address. This and other recent surveys of evaluation approaches,

e.g., [52], include references to published visualization studies that serve as exemplars for various

evaluation goals and methods. Organizing the existing body of visualization literature based on

evaluations is closely related to calls for more benchmark development for visualization [32, 84, 85]:

they aim to make it easier to understand new visualization techniques in the context of what has

worked or failed in the past by providing reusable methods, tasks, or data as grounds for comparison.

In this dissertation, we describe methods that focus on “evaluating user performance” (quantitative

user studies) and “evaluating user experience” (qualitative user studies) scenarios from Lam et al.’s

taxonomy.

Evaluating how a visualization promotes cognition is difficult with current methods

Another reason visualizations are difficult to evaluate is that a common aim of visualization tools is

to promote human understanding of a dataset, which is difficult to observe and quantify. Typically,

evaluators ask people to use a visualization to answer predefined questions, then they judge how well

a visualization “works” by the accuracy or speed with which people answer. Evaluators select tasks

– sometimes with the help of experts in the data domain to ensure they are realistic – and determine

ground-truth answers before recruiting participants. However, it can be difficult to select tasks with

the same levels of uncertainty or exploration that occur in natural analysis settings. In addition,

accuracy and efficiency of responses are somewhat coarse criteria given that many visualization tools

aim to promote insights and discovery inside unfamiliar datasets.

In this dissertation, we present methods that provide empirical data about visualization use

that reveals evidence of how people interact and their cognitive processes. This data is much more

fine grained than basic task-performance metrics like task accuracy, and can therefore lead to more

hypotheses and investigation of surprising evaluation results. The methods in this dissertation are

practical approaches to using models of participants’ self-reported insights, their interaction logs,

and where they might be looking during analysis tasks as data for comparing the effectiveness of

visualization designs.
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Scenario

UWP Understanding Environments and Work Practices

VDAR Evaluating Visual Data Analysis and Reasoning

CTV Evaluating Communication Through Visualization

CDA Evaluating Collaborative Data Analysis

UP* Evaluating User Performance

UE* Evaluating User Experience

VA Evaluating Visualization Algorithms

Table 1.1: Seven scenarios for visualization evaluation by Lam et al. [74]. This dissertation focuses
on methods that support the UP and UE evaluation scenarios.

Chapters 2–4 describe our new methods and experiments, and provide in-depth background and

motivation in the context of specific research questions and hypotheses for these methods.

1.3 Summary of Contributions

This dissertation presents three types of research contributions: (1) novel evaluation methods that

visualization researchers and designers can use to assess people’s cognitive activities while using

visualizations; (2) assessments of the methods applied to case studies; and in some cases (3) findings

from the case studies about specific visualization challenges. The novel evaluation methods extend

existing evaluation approaches and make them easier to use.

In this section, we give a brief description of the three evaluation methods presented in this

dissertation and outline the specific contributions discussed in later chapters.

1.3.1 Contributions in Insight-based Evaluation

We present a novel method for evaluating visualizations using both tasks and exploration, and

demonstrate this method in a study of spatiotemporal network designs for a visual analytics sys-

tem. The method is well suited for studying visual analytics applications in which users perform

both targeted data searches and analyses of broader patterns. In such applications, an effective

visualization design is one that helps users complete tasks accurately and efficiently, and supports

hypothesis generation during open-ended exploration. To evaluate both of these aims in a single

study, we developed an approach called layered insight- and task-based evaluation (LITE) that in-

terposes several prompts for observations about the data model between sequences of predefined

search tasks. We demonstrate the evaluation method in a user study of four network visualizations

for spatiotemporal data in a visual analytics application. Results include findings that might have

been difficult to obtain in a single experiment using a different methodology. For example, with

one dataset we studied, we found that on average participants were faster on search tasks using a



5

force-directed layout than using our other designs; at the same time, participants found this design

least helpful in understanding the data.

This work is described in Chapter 2 and has been published in [26]. A follow-up study beyond

the scope of this dissertation will appear in [34].

Contributions:

• a novel method of evaluating both task performance and insight characteristics of visualizations

in a single study using a mixed design;

• a demonstration of the method in a case study of four network-layout designs for spatiotemporal

visual analytics;

• guidelines for using the evaluation method in future studies.

1.3.2 Contributions in Performance Modeling

We present Tome, a novel framework that helps developers quantitatively evaluate user interfaces

and design iterations by using histories from crowds of end users. Tome collects user-interaction

histories via an interface instrumentation library as end users complete tasks; these histories are

compiled using the Keystroke-Level Model (KLM) into task completion-time predictions using Cog-

Tool. With many histories, Tome can model prevailing strategies for tasks without needing an HCI

specialist to describe users’ interaction steps. An unimplemented design change can be evaluated

by perturbing a Tome task model in CogTool to reflect the change, giving a new performance pre-

diction. We found that predictions for quick (5–60s) query tasks in an instrumented brain-map

interface averaged within 10% of measured expert times. Finally, we modified a Tome model to

predict closely the speed-up yielded by a proposed interaction before implementing it.

This work is described in Chapter 3 and has been published in [29, 30]. The case study in this

chapter is motivated by our work on brain-network visualization applications. Details about these

applications, which are beyond the scope of this dissertation, have been published in [28, 33, 35].

Contributions:

• an early implementation of Tome;

• a case study with a brain-circuit visualization that demonstrates the framework’s prediction

accuracy for task completion times;

• demonstration of usefulness for evaluating new interaction designs. We show that performance

predictions for two circuit query tasks average within 10% of expert performance, and we

extend one Tome-generated model to evaluate a proposed feature that speeds up one task by

16%.
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1.3.3 Contributions in Gaze Modeling with Remote Study Participants

We present the design and evaluation of a method for estimating gazes during the analysis of static

visualizations using crowdsourcing. Understanding gaze patterns is helpful for evaluating visual-

izations and user behaviors, but traditional eye-tracking studies require specialized hardware and

local users. To avoid these constraints, we created a method called Fauxvea, which crowdsources

visualization tasks on the Web and estimates gaze fixations through cursor interactions without

eye-tracking hardware. We ran experiments to evaluate how gaze estimates from our method com-

pare with eye-tracking data. First, we evaluated crowdsourced estimates for three common types of

information visualizations and basic visualization tasks using Amazon Mechanical Turk (MTurk).

In another, we reproduced findings from a previous eye-tracking study on tree layouts using our

method on MTurk. Results from these experiments show that fixation estimates using Fauxvea are

qualitatively and quantitatively similar to eye tracking on the same stimulus-task pairs. These find-

ings suggest that crowdsourcing visual analysis tasks with static information visualizations could be

a viable alternative to traditional eye-tracking studies for visualization research and design.

This work is described in Chapter 4 and is under review in [27].

Contributions:

• a novel method for crowdsourcing gaze fixation estimates for visualization analysis tasks;

• qualitative and quantitative evaluations of the method that show fixation estimates are com-

parable to eye-tracking data on basic infovis analysis tasks;

• an evaluation of how well experts can self-assess where others will gaze during visualization

analysis tasks; we compare self-assessment to data collected using Fauxvea;

• reproduced findings about visual exploration on tree layouts using the method instead of eye

tracking for a more complex graph analysis task.

1.4 Potential Impact and Research Directions

The contributions in this dissertation have the potential to make the visualization-evaluation process

easier and more accessible for visualization practitioners, resulting in more effective visualizations.

Some methods, like the Fauxvea system in Chapter 4 that uses crowdsourcing to estimate where

people gaze during visualization analysis, demonstrate protocols that may be used to evaluate other

evidence of thinking and discovery beyond the scope of this work, e.g., biometric signals correlated

with insight events or learning.

In Chapter 5, we discuss research directions that are motivated by the challenges and successes

we encountered by applying our novel evaluation methods to real case studies. In summary, we see

opportunities to:

• incorporate findings from psychology and social science into better controlled experiments

involving diverse participants;
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• improve human modeling as a tool for evaluation, using machine learning and open datasets

of ‘cognitive evidence’ like eye tracking, cursor traces, etc.;

• integrate evaluation more tightly with the visualization design and development process, so

that useful evaluation data can be collected passively, automatically, or systematically at the

press of a button.

1.5 Roadmap

The remaining chapters of this dissertation provide details about the research contributions, then

relate this work back to the larger context of visualization evaluation and open challenges. Chapters

2–4 of this dissertation describe the contributions in three areas related to visualization evaluation:

insight-based evaluation, performance modeling, and gaze modeling. In each of these chapters, we

provide a detailed context and motivation for the contribution, a novel evaluation method, and a

case study that demonstrates using the method. In these chapters, visualization applications used

in the case studies are also described. In Chapter 5, we conclude the dissertation with a summary

of discussion questions, limitations of our methods, and open challenges. Below we describe the

structure within these chapters.

Chapter 2 begins by introducing the problem of evaluating visualization systems using only

tasks or existing insight-based methodologies. Next, it proposes an evaluation method called lay-

ered insight- and task-based evaluation (LITE) that combines benchmark tasks and open-ended

exploration and show how this differs from related work. To test the method, we identified compet-

ing visualization methods for interactive network diagrams that were motivated by the needs of a

collaborator studying intelligence analysis systems. These competing designs were implemented, and

we designed and conducted a user study using our new evaluation method to determine which design

is most appropriate for the collaborator’s scenario. We conclude with a discussion of limitations and

open challenges for using this method.

Chapter 3 begins by introducing the concept of predictive human-performance modeling and

the challenges involved in using performance modeling to evaluate visualization systems. Next, it

proposes a technique that makes using one kind of performance modeling (KLM) easier for evaluating

visualizations by automating a modeling task that would otherwise require an expert to do by hand.

We discuss our implementation of the method, and validate it by performing a user study with a

simple brain-network visualization. We find that using the method results in task time predictions

that are comparable to measured task times. Finally, we demonstrate how to use the method to

evaluate an unimplemented user-interface feature in the brain-network visualization, then conclude

with a discussion of open challenges related to automating the modeling process.

Chapter 4 begins by introducing the problem of collecting and using eye-tracking data for

visualization evaluation. Next, it proposes a method for estimating gaze during visualization analysis

tasks using remote human participants over the Web. The proposed method removes the traditional

constraints of needing a hardware eye tracker and local study participants in order to collect gaze
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data. The method is described, along with three experiments that demonstrate its usefulness: (1)

one that validates gaze estimates compared to eye tracking on basic tasks, (2) one that shows how

difficult it is for a human to estimate others’ gazes without using the method, and (3) one that shows

the method can be used to reproduce some findings from a eye-tracking study of tree visualization

layouts. Finally, it concludes with a summary of limitations, open challenges, and conclusions.

Chapter 5 concludes the dissertation. First, it outlines the contributions of the dissertation and

relates them back to open challenges in visualization research and evaluation. Next, it discusses the

potential impact of this dissertation and identifies application areas where these evaluation methods

could be integrated. Finally, it summarizes the thesis statement of this work.



Chapter 2

Insight- and Task-based Evaluation

Discovering insights about data is a high-level cognitive activity that has, in recent years, been

integrated visualization evaluation criteria. Existing methods for measuring users’ insights, in or-

der to characterize how well a visualization promotes insights, are often difficult to use and one

dimensional. This chapter describes a practical method for combining tasks and exploration in a

user-study protocol in order to measure both insight characteristics and task-performance metrics

for alternative visualization designs. The method helps evaluators assess two aspects of a visualiza-

tion design in parallel: (1) how well it promotes insight discovery by analysts, and (2) how well it

supports routine information retrieval tasks. This is useful because many visual analytics systems

serve both exploratory and task-based purposes. This chapter is drawn substantially from [26].

Evaluating visual analytics systems is challenging because users need to know that the system

supports both basic information retrieval tasks as well as complex reasoning and exploration. A

system that is good for looking up specific data is not always good for building insights and testing

hypotheses, and vice versa. At the same time, practical applications frequently demand that the

same tool be used for both purposes. Despite visual analytics’ focus on reasoning, many studies

evaluate tools using task-based protocols that measure only user performance on low-level tasks.

By contrast, insight-based methodologies aim to measure how well visualizations promote insight

generation, using characteristics like the domain value of observations users make about the data

model. However, these methodologies can be difficult to follow, and it is not clear how best to

capture insight characteristics alongside users’ task performance, as is relevant in visual analytics

applications that support both targeted data searches and analysis of broader patterns.

Here we present a method for evaluating visualizations using both tasks and exploration, and

demonstrate this method in a study of four spatiotemporal network designs for a visual analytics

system. We call the approach layered insight- and task-based evaluation (LITE) because it interposes

several prompts for observations about the data model between sequences of predefined search tasks.

Our evaluation demonstrates the feasibility of a lightweight, within-subjects insight-based evaluation.

We reflect on the relationship between users’ task performance with a visualization and how well it

promotes insights in assessing the best choice among four visualization designs for a spatiotemporal

9
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visual analytics system.

The contributions of this chapter include:

1. a novel method for evaluating both task performance and insight characteristics of visualiza-

tions in a single study using a mixed design (Sec. 2.2);

2. a demonstration of the method in a case study of four network-layout designs for a spatiotem-

poral visual analytics system (Sec. 2.3) and findings about the designs for this application

(Sec. 2.5);

3. guidelines for using the evaluation method in future studies (Sec. 2.6).

While our case study focuses on a spatiotemporal visual-analytics application where both explo-

ration and routine search tasks might be performed, the evaluation method can be applied to other

visualization domains.

2.1 Related Work

Many evaluation methods have been demonstrated in empirical visualization research. Carpendale

reviews evaluation approaches for information visualization [22] and describes challenges outlined in

earlier works by Plaisant [85] and others. Another overview of approaches aimed at visual analytics

appears in the VisMaster consortium book [67]. The biennial BELIV workshop (Beyond Time and

Errors: Novel Evaluation Methods for Visualization) has significantly added to the discussion of

challenges in visualization evaluation. The research contributions in its proceedings have focused on

developing more effective evaluation methods that avoid the pitfalls of traditional methodologies.

Taxonomies of past studies have also been helpful in constructing guidelines for evaluating new

visualizations [52, 74, 81].

In the remainder of this section, we describe methods relevant to a combined insight- and task-

based evaluation, as well as to evaluations of information layouts for visual analytics.

2.1.1 Task-based Evaluations

Controlled laboratory studies with predefined tasks are commonplace in visualization research. In

general, these studies aim to produce measurable outputs that are comparable among participants,

design conditions, or other independent variables. Accuracy and response time for tasks are typical

measures, with accuracy sometimes being used to filter task executions from the response-time

analysis (e.g., [39]). In such studies the objective is to demonstrate differences in task efficiency.

The evaluation approach described here collects user efficiency and accuracy measures for tasks

selected using a typology covering the basic analysis questions one might ask of a spatiotemporal

data model. These tasks represent analysis pieces that could be composed into a larger-scale,

exploratory analysis. We acknowledge that there are tradeoffs in the realism of tasks performed in
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order to gain precise, quantitative results [74]. Our study uses non-experts rather than professional

data analysts, and tasks have been abstracted to remove any dependence on domain knowledge.

2.1.2 Insight-based Evaluations

Unlike task-based evaluation methods, insight-based methodologies are motivated by the realization

that the goal of a visualization tool is usually to enhance understanding of the underlying data, not to

improve task accuracy and efficiency [20, 77, 84]. Saraiya et al. presented an insight-based approach

for evaluating bioinformatics tools [95] and later used it in a longitudinal study where insights

were developed over months [96]. Characteristics of insights include the number of distinct data

observations, the time needed to reach each insight, the domain value of each insight, breadth-versus-

depth labeling, and other characteristics. Quantifying some of these attributes requires domain

experts to participate as response coders in the evaluation. Even with this scheme, eliminating all

subjectivity from the evaluation is difficult; for instance, the cutoff between a depth insight and a

breadth insight might vary depending on the expert coder.

Other studies have applied similar methods to measure insight characteristics between visual-

ization conditions. It is worth noting that insight characteristics have been adapted from those

proposed by Saraiya et al. in order to fit the hypotheses of other studies. For instance, O’Brien et

al. made an insight-based evaluation of two tools for visualizing genomic rearrangements using a

reduced set of insight characteristics [79]: researchers counted the instances of three categories of

insights as well as the total number of insights, total “hypothesis-driving” insights, and the insights

per minute of analysis. Our method also uses a simplified set of insight characteristics and collects

these with a single study protocol alongside task performance.

North et al. found that the results of an insight-based evaluation can both support and contra-

dict findings of studies using benchmark tasks with the same visualizations [78]. It is possible that

evaluators who use only one of these methods will miss details visible using the other. We aim to

combine the two in a single, practical protocol while minimizing interactions or biases in the results.

Our method differs in time scale from longitudinal studies in visualization, such as multidimensional

in-depth long-term case studies (MILCS) [101]. Unlike previous insight-based evaluations, the evalu-

ation we present uses non-expert participants. Using non-experts lets us achieve a larger sample size

than would otherwise be possible, enabling us to test hypotheses about task performance and quan-

tified insight characteristics more precisely. There are drawbacks in using non-experts; e.g., asking

participants for initial analysis questions might be unreliable; however, even if domain experts were

used, they would not necessarily have experience with the analysis tools in the study, as in [95].

Furthermore, we expect that combining tasks with exploration provides extra training and motiva-

tion for participants. Previous studies [23] and models [88, 89] have demonstrated how predefined

tasks enhance exploratory learning of computer interfaces. While the insights themselves are likely

to be less deep for non-experts than for domain experts, it is possible to compare insight-promoting

characteristics between visualizations using non-experts.
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of data model

Initial questions:  
from users or provided

Training for each task, 
each visualization condition
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Vis 2
T1 T2 T3 Tn O1…
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Vis 3
…

start finish

Figure 2.1: Example ordering of k visualization conditions and n task types in LITE. After each
block of tasks with a visualization (labeled T1 . . . Tn), the participant is prompted for exploration
and observation about the data (labeled O1 . . . Ok). Task ordering within a visualization condition
is randomized using a balanced Latin square, and visualization orders are randomized between
participants using a balanced Latin square. In our case study, k = 4 and n = 4.

2.1.3 Spatiotemporal Tasks and Visual Designs

An indispensable part of designing a visual analytics tool is considering the set of analytical tasks

to be supported. The visualizations evaluated here are grounded in previous work on visual analysis

of spatiotemporal data. In [82], Peuquet distinguished three components in spatiotemporal data

and queries about those components: space (where), time (when), and objects (what). Users can

complete queries when two of the three components are known and the other is the search target.

Andrienko et al., drawing on Peuquet’s work as well as other task typologies, proposed a typology for

visual analytical tasks with the dimensions of search target, search level, and cognitive operation [5].

Others [2, 12, 98] have proposed more general task typologies that also apply to spatiotemporal

data.

Many visual analytics designs for spatiotemporal data exist, as reviewed comprehensively in [5].

Notably, maps and timelines, the most common representations for spatial and temporal data, have

been combined in previous design studies. Slingsby et al. showed that these representations can

be configured as levels of a tree map in order to support different queries [102]. More recently,

Andrienko and Andrienko proposed the cartographic map display and time-series display as the two

visualization components in their visual analytics framework for spatiotemporal analysis [4].

2.2 Layered Insight- and Task-based Evaluation

We propose combining a lightweight insight-based evaluation adapted from Saraiya et al. [95] with a

traditional task-based evaluation. We call this approach layered insight- and task-based evaluation,

or LITE, because it interposes several prompts for observations about the data model between

sequences of predefined search tasks or queries.

2.2.1 Motivation

Two main goals for this method are: 1) to measure the accuracy and efficiency of common tasks

alongside insight characteristics without compromising task measurements; and 2) to measure insight

characteristics while sidestepping some of the difficulties of performing the insight-based method,
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such as:

D1 Users must be intrinsically motivated to look for insights during a session that might be open-

ended.

D2 Training new users on visualization interfaces can be challenging. Training can fatigue users

and make them try less hard in the actual study [95].

D3 After the user study, coding observations for measurable insight characteristics like domain

value is difficult and requires domain experts.

Even when these difficulties are managed in an insight-based evaluation, challenges arise when per-

forming such an evaluation separately from a task-based evaluation so as to collect measures of both

task performance and insight generation. If these studies use different participants it can be difficult

to draw conclusions about relationships between tasks and exploration. Individual differences or

differing sample sizes must be considered.

Performing separate task- and insight-based evaluations back to back creates other challenges. If

a full insight-based evaluation is performed before a task-based evaluation, open-ended exploration

may fatigue users to the point that they perform poorly on the follow-up study. If a full task-based

evaluation is performed before an insight-based evaluation, users may have less motivation to explore

the data model: they might satisfice and report only shallow insights in order to finish the study.

2.2.2 Steps

The initial stages in a LITE evaluation are similar to those in previous insight-based methodologies.

As a study session proceeds, sets of predefined tasks are interleaved with exploration periods letting

participants find and record insights. The steps are:

1. Background about the dataset is provided, then participants are prompted for initial analysis

questions. Alternatively, initial analysis questions can be provided by the evaluators.

2. Participants are then trained on each task type for different visualization conditions. Partici-

pants are not trained on exploration, as in [95].

3. When the study begins, participants complete blocks of tasks with each visualization condition.

4. After each block, participants explore the data freely using the visualization and record in-

sights. Each exploration period is open-ended. In order to keep participants from skipping

these periods, a minimum time requirement may be enforced before they can move to the

next visualization and block of tasks. Figure 2.1 shows an example ordering of tasks and

visualization conditions in which each participant completes each task type once using each

visualization.

5. Finally, a post-test questionnaire or interview may be used after all tasks and exploration

periods are finished. Subjective feedback about the insightfulness of visualizations may be

used to explore findings from insight characteristics measured during exploration periods.
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Time
 Range
Start Date: Sat, 30 Apr 2011 00:00:00 GMT

End Date: Sun, 22 May 2011 00:00:00 GMT

Location
 Selection
Northville Riverside Downtown Uptown Plainville

Smogtown Westside Cornertown Southville Lakeside

Suburbia Eastside Villa

Select all Deselect all

Task
George Herman tweeted about an outdoor hot tub on May 15. Where was that tweet

published?

Force-directed (F)Time
 Range
Start Date: Sat, 30 Apr 2011 00:00:00 GMT

End Date: Sun, 22 May 2011 00:00:00 GMT

Location
 Selection
Northville Riverside Downtown Uptown Plainville

Smogtown Westside Cornertown Southville Lakeside

Suburbia Eastside Villa

Select all Deselect all

Northville

Riverside

Downtown

Uptown

Plainville

Smogtown

Westside

Cornertown

Southville

Lakeside

Suburbia

Eastside

Villa

Task
George Herman tweeted on April 30 from Downtown. Summarize the content of that tweet in

a few words.

Submit

Space-situated (SS)

Apr 30 May 01 May 02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May 11 May 12 May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20 May 21

Apr 30 May 01 May 02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May 11 May 12 May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20 May 21

Time-situated (TS)Time
 Range
Start Date: Sat, 30 Apr 2011 00:00:00 GMT

End Date: Sun, 22 May 2011 00:00:00 GMT

Location
 Selection
Northville Riverside Downtown Uptown Plainville
Smogtown Westside Cornertown Southville Lakeside
Suburbia Eastside Villa
Select all Deselect all

Apr 30 May 01 May 02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May 11 May 12 May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20 May 21

Northville

Riverside

Downtown

Uptown

Plainville

Smogtown

Westside

Cornertown

Southville

Lakeside

Suburbia

Eastside

Villa

Task
Someone tweeted about the Arcade Fire in Cornertown on May 6. Who published that tweet?

Submit

Time- and space-situated (TSS)

Figure 2.2: Four visualization designs were evaluated using a layered insight- and task-based eval-
uation: force-directed (F), time-situated (TS), space-situated (SS), and time- and space-situated
(TSS). These visualizations depict microblog messages and their authors, and the designs differ in
how attributes of the nodes, like timestamp and location, are used to lay out the diagram.

The proposed method addresses some difficulties of the traditional insight-based evaluation listed

earlier. Study participants in LITE may feel more motivated because the session makes concrete

progress through task completions rather than asking for open-ended exploration alone (D1). Tasks

may improve participants’ confidence with the visualizations and provide extra experience that

promotes exploration and insight generation (D2). In our case study, we developed and used a

scoring system without domain experts to code the value of insights (D3), but this system is not

specific to LITE and could be applied to other insight-based methods.
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2.3 Case Study

We evaluated four node-link diagram layout designs for an interactive visual analytics system that

uses a graph-based model of real-world entities, like documents and people. We chose node-link

diagrams here because of their flexibility in representing arbitrary node and edge types in the model.

That said, we expect most nodes to have spatiotemporal attributes that describe when and where

events happen. Based on this, we developed designs that differ in how location and time attributes

are used to lay out nodes with these attributes in the diagram. Specifically, we looked at ways

to project location and time attributes onto the drawing-plane axes. This is conceptually similar

to previous work in which generic quantitative attributes are mapped onto axes to guide node

placement [18]. In this study, we restricted ourselves to designing a layout for a single display. We

considered four distinct node-link diagram layouts for the network model:

F Force-directed: A force-directed layout plots marks based on a physical simulation and has the

effect of reducing visual density in the node-link diagram. Force-directed layouts are widely

used and well understood. We consider this a control condition in an evaluation of visualization

designs that position nodes using spatial or temporal attributes.

SS Space-situated: The space-situated layout overlays document marks on a map of the city based

on documents’ geotags. Nodes without geotags are placed at the top of the visualization and

distributed evenly.

TS Time-situated: The time-situated layout aligns document marks with a horizontal timeline.

The vertical positions of document marks are determined using a force-directed layout to

reduce visual density in the diagram. Nodes without timestamps are placed at the top of the

visualization and distributed evenly.

TSS Time- and space-situated: The time- and space-situated layout plots document marks ac-

cording to both geotags and timestamps. Nodes without geotags and timestamps are placed

at the top of the visualization and distributed evenly. In TSS the horizontal axis is a time-

line, as in TS. In our prototype, the vertical axis is divided into categories corresponding to

neighborhoods in the data model. Categories on the vertical axis can be ordered in different

ways, for instance from top to bottom based on an ordering of neighborhood locations from

northernmost to southernmost. In this case, boundaries between categories could reflect some

information about the geographic boundaries between neighborhoods.

Figure 2.2 shows each of these layout designs. All visualizations were prototyped using D3 [10]

and JavaScript, and share some visual encodings. The entity type of each node is double-encoded

by shape and color. Marks representing documents are blue squares and marks representing people

are gold diamonds; these two sorts of marks have roughly the same size in the browser. A detailed

description of each node appears in a scrollable tooltip when the user hovers over the node. For

documents, this description includes the author, timestamp, location, and content. In general,
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TSS 44.0710833333333 54.7571666666667 56.7226363636364 57.8056666666667

errF 3.18767384671492 5.47470172766923 4.64660004414496 10.9216760534112

errSS 5.60513865982219 4.79333326611034 9.87355498633505 5.72246622682666

errTS 5.91535179982581 5.92167286517045 6.2116389141675 7.22444117419049

errTSS 4.74331473961676 5.84528265619449 11.3255285939435 7.6308283907642

Large

who what when where

F 39.7536666666667 39.9223636363636 49.4011 79.1321666666667

SS 41.7609166666667 44.904 100.811333333333 99.864

TS 48.9315 41.5832727272727 76.0651818181818 62.3282727272727

TSS 53.2513333333333 40.0636363636364 75.2884545454545 75.7342727272727

errF 4.42215412737533 5.40898291442994 5.29006368886257 14.8905769185472

errSS 5.58784433751315 2.9844536071672 32.6123075494823 34.2024931358679

errTS 6.80451199405753 3.44042289443638 11.868871729956 6.45343847895468

errTSS 12.1148796035322 2.19415316558566 13.826764839755 19.3349480033581
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(b) Large dataset

Figure 2.3: Response times grouped by task type for each visualization type. Each participant
completed each task type with each visualization type. Columns show the mean of total time spent
(sec) across participants (n=12 in both (a) and (b) dataset groups) and error bars show ±1 standard
error. Response times corresponding to incorrect task answers are not shown.

document content is limited to 140 characters, since documents in our data model are microblog

formats like Twitter messages that enforce a content-length limit.

A simple aggregation scheme is built into each prototype so that node marks that would otherwise

overlap cannot become inaccessible to the user. When marks of the same entity type overlap, both

are removed from the diagram and a single aggregated mark is added. Only marks representing

entities of the same type can be aggregated: thus, documents can be aggregated only with other

documents. Aggregated marks retain the same entity-type encoding (shape and color) but are

distinguished by a red border and increased size. Because multiple marks might overlap, the size of

aggregated marks is used to encode the number of individual entities it represents.

We considered several approaches to aggregating nodes in node-link diagrams. A common ap-

proach is to aggregate a primary entity node and nodes representing its attributes into a compound

node [19, 99]. This approach does not work for our case, however, as the mapping between two

types of entities in our data model might be many-to-many. In our prototypes, when a node is

aggregated into a different mark, each edge mark connected to that node is replaced by another that

is connected to the aggregated node. The underlying data model is not changed by this process.

Two nodes connected by an edge cannot be aggregated together.

Hovering over a node mark highlights all edges connected to that entity. For example, hovering

over a person node highlights edges to all document nodes connected to that person by an “authored-

by” relationship. Hovering over a document highlights the edge to its author node. Highlighting is

implemented by restyling edges from transparent gray to opaque red. A selection interaction is also

included to allow persistent highlighting during user exploration. Users can toggle selection on node

marks by clicking them with the cursor.
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2.4 Experimental Design

After a small pilot study, we performed an experiment to evaluate a set of hypotheses about task

performance and insight characteristics for participants using four visualization designs. A 2×(4×4)

mixed design was used to examine the independent variables of dataset size between subjects, and

visualization design and task type within subjects.

2.4.1 Hypotheses

In general, we expect that layouts that position nodes by projecting their attributes onto the axes will

improve task performance and promote insight generation. Below are specific hypotheses about the

effect of independent variables on task performance (H1, H2), subjective ratings from participants

(H3, H4, H5), and insight characteristics (H6–H10):

H1 For all tasks, participants will be fastest using TSS, which uses both spatial and temporal

attributes to lay out nodes. For all tasks, participants will be the slowest using F.

H2 Visualization type will have a significant effect on task accuracy.

H3 Participants will report feeling most confident in their task responses when using TSS and

least confident when using F.

H4 Participants will report that TSS is the most helpful visualization type for understanding the

data and that F is the least insightful in this way.

H5 Participants will report that TSS is the easiest visualization type to use and that F is the

hardest.

H6 Total domain value for observation prompts will be highest for the TSS condition and least

for the F condition.

H7 Visualization type will have an effect on the total domain value during observation prompts.

H8 Dataset size will have an effect on both total time and total domain value during observation

prompts. Both characteristics will be higher in the large dataset than in the small one.

H9 The order of observation prompts will have an effect on the total domain value during those

prompts.

H10 The order of observation prompts will have an effect on the total response time during those

prompts.
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2.4.2 Visualization Types

The four visualization types in our study are described in Sec. 2.3 and shown in Figure 2.2. In

addition to the visualization layouts, the user interface included controls to filter document nodes

by publication time and location. Data-filter controls are common in visual analytics applications,

and it is important that the test interface match realistic usage scenarios. The time filter is a

slider that can be moved on both ends in increments of one day. Node and edge marks related to

documents published outside the chosen range are invisible. The location filter contains checkboxes

that correspond to all neighborhood locations in the data model and can be toggled to filter marks

related to documents published outside selected neighborhoods. This filter also provides “Select all”

and “Deselect all” interactions.

2.4.3 Datasets

Dataset size is an important consideration in designing network visualizations. In general, larger

data models add complexity and visual density that can expose scalability problems in different

designs. For our experiment, two graph-based datasets of different sizes were compiled using data

from the 2011 VAST Challenge Mini-Challenge #1 (MC1) [1]. Both are subsets of a synthetic dataset

containing timestamped, geotagged microblog messages from residents in a city experiencing a health

epidemic.

• Small – includes 10 person nodes and 139 document nodes. There are 139 “authored by”

edges that connect documents to their authors. Documents were published from 13 different

neighborhoods over a span of 22 days.

• Large – includes 74 person nodes and 999 document nodes. There are 999 “authored by”

edges that connect documents to their authors. Documents were published from 13 different

neighborhoods, and some lacked a neighborhood-specific location (i.e., location is “Vastopolis”,

the city name). They were published over a span of 22 days.

Both datasets were created by sampling the Challenges full-size dataset, and both contain evidence

of the health epidemic in the microblogs. These ‘evidence’ microblogs appear in similar proportions

in both datasets. We note that, while larger data models are common in real analysis scenarios,

we limited the size in order to keep tasks and exploration manageable for non-expert participants

during single study sessions.

2.4.4 Tasks

Based on the spatiotemporal network data model, tasks were selected using a simple typology based

on when, where, what, and who queries. This task typology is similar to ones used in previous

studies [5, 98]. We note that in the training and task instructions, the word “tweet” was used as

a colloquialism for a microblog message. No data or services from Twitter were used in the study.

The four task types are:
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• who + when + where → what : Given a microblog’s author, date, and location, summarize the

content in a few words. For example, “Cara Guthrie published a tweet in Plainville on May

20. Summarize the content of that tweet in a few words.”

• what + who + when → where: Given a brief summary of the microblog’s content, author,

and date, find where it was published. For example, “Angela Barnett published a tweet about

stylish watches on May 5. Where was that tweet published?”

• where + what + who → when: Given a microblog’s location, a summary of its content, and

its author, find when it was published. For example, “Bradley Church published a tweet about

loss of appetite in Plainville. When was that tweet published?”

• when + where + what → who: Given a microblog’s date, location, and a summary of its

content, find its author. For example, “Someone published a tweet about Sham Wow in Uptown

on May 11. Who is the author of that tweet?”

An answer key for all task instances was created in order to score responses as accurate or inaccurate.

Prompts for Exploration and Observation

After each block of tasks, participants were prompted to explore the data using the visualization

and record observations relevant to the epidemic in the data model. The instructions are:

Explore the data using the visualization, then write down your observations about the

data below. You should record observations about the data that are relevant to the

following questions: “Do you find evidence in the data of an outbreak?”; “If so, when

and where do you think it started? And how might the infection be transmitted, and is

it contained?” Please number each observation.

These specific questions were taken from the instructions for MC1 [1]; they are the questions MC1

participants were asked to answer by exploring and observing a superset of the data we used. We

provided these as replacements for the initial analysis questions asked as part of the insight-based

methodology [95].

In response to findings from our pilot study, we added a minimum time for the observation

prompt before each participant could move ahead to the next block of visualization tasks. During

this time, participants could not access the “Next” button. When an onscreen timer showing the

amount of time remaining (sec) reached 0, the “Next” button became available. At that point,

participants could either continue exploring and making observations about the data or move onto

the next block of tasks.

2.4.5 Participants

We recruited 24 participants for the study, 10 men and 14 women. Participants were primarily

graduate and undergraduate students whose ages ranged from 19 to 30 years (M=24.4, SD=2.6).
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We assigned participants randomly to the small and large dataset groups so that each had 12

people. Participant prior experience with node-link diagrams was similar in both groups. In follow-

up questions after the experiment, about half the participants in each group (5 out of 12 in the small

dataset and 7 out of 12 in the large dataset) responded that they ‘somewhat agree’ to ‘strongly agree’

with the statement “I have experience using visualizations of nodes and edges,” using a 7-point Likert

scale. The remaining participants responded that they ‘somewhat disagree’ to ‘strongly disagree’

with that statement. No participants gave a neutral response.

2.4.6 Protocol

Participants were given background information about the data model and were trained for approx-

imately 20 minutes on the four visualization designs, including the time and location filter controls

in the user interface. During this training, participants performed practice trials for each task type.

With the informed consent of participants, all tasks and exploration following the training were

video-recorded for later analysis.

Each participant in the study performed four blocks of tasks, one per visualization. Each block

contained one instance of each of the four task types. Participants performed different task instances

between blocks. For each task, responses were recorded and timed for later analysis. At the end

of each task block, participants explored the data using the visualization for at least three minutes

and recorded insights by typing into an on-screen text field. In total, each participant performed

16 tasks and four observation prompts. This part of the study session lasted 40–60 minutes on

average. Figure 2.1 shows an example workflow for this part of the study. Ordering effects for both

visualization types and task types are mitigated by counterbalancing. The order of visualization

types is chosen between participants using a balanced Latin square, as is the order of task types

within each visualization block for each person.

Participants were asked in a post-test questionnaire to report their preferred visualization type

for each of the four task types. They were also asked to rate each visualization type for ease of

use, confidence in task responses, and how well the visualization helped them understand what is

happening in the data model. Ratings were on a 7-point Likert scale from “strongly disagree” to

“strongly agree” for statements corresponding to these properties.

Insight Characteristics

Two insight characteristics were measured during each observation prompt in the study: total time

spent and total domain value of observations. Total time spent had a lower bound because of the

three-minute minimum time before participants could move to the next task block, as described in

Sec. 2.4.4.

Scoring Domain Value We developed a simple scoring system to assess the domain value of in-

dividual observations. From a four-user pilot study, we identified two main parts of each observation

about the data model: a general claim about the data (e.g., “It looks like the outbreak started in
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Downtown”), and 0 or more specific data points that are evidence for the observation (e.g., “John

Doe tweeted about feeling sick – from Downtown on April 19”). In the scoring system, each recorded

observation has a starting score based on whether or not it makes a new claim that was not previ-

ously reported by the user during an earlier observation prompt. Because participants explore the

same data model repeatedly, it is important not to double-count observations that were arrived at

earlier. For our purposes, a claim is a general hypothesis, question, or remark about the data model

that is potentially synthesized from multiple observations.

On top of the starting score, points are added to observations that include specific references to

data points in the model as evidence for the claim. The total points awarded during an observation

prompt is equal to the sum of scores of individual observations i in the set of observations I:

base(i) =

0 if i makes no new claim

2 if i makes new claim
(2.1)

bonus(i) =


+0 if i includes no new, supporting data points

+1 if 1 new, supporting data point in i

+n if n new, supporting data points in i

(2.2)

score(i) = base(i) + bonus(i) (2.3)

total(I) =
∑
i∈I

score(i) (2.4)

In this system, we expect individual observations to range from 2 (e.g., a new claim provided without

details) to 5 points (e.g., a new claim with a few supporting data points). Previous insight-based

evaluations scored domain values for individual insights in a similar range and also awarded points

to insights based on depth [79, 95].

Two of the experimenters independently coded all insights from the experiment using this system.

Both coders were doctoral candidates studying visualization and had experience with the datasets

and visualization designs. Scores for the total domain value of each observation prompt from both

coders were averaged for later analyses.

2.5 Results

All statistical tests described in this section were performed using SPSS. The results include support

for some hypotheses from Sec. 2.4.1 but not others: we accept H4, H9, and H10; we find partial

support for H3, H5, and H8; and we reject H1, H2, H6, and H7.
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1

subject data size F SS TS TSS

full_m_0 m 1 3 1 2

full_m_1 m 1 6 4 5

full_m_10 m 1 4 2 5

full_m_11 m 2 5 5 5

full_m_2 m 2 3 6 7

full_m_3 m 2 6 6

full_m_4 m 3 5 6 6

full_m_5 m 1 5 5 7

full_m_6 m 2 7 3 5

full_m_7 m 2 4 6 7

full_m_8 m 1 7 5 4

full_m_9 m 1 6 5 5

full_s_0 s 2 6 7 6

full_s_1 s 5 7 6 3

full_s_10 s 5 7 7 7

full_s_11 s 2 7 3 6

full_s_2 s 1 6 6 6

full_s_3 s 2 6 5 6

full_s_4 s 5 6 5 6

full_s_5 s 3 6 6 5

full_s_6 s 6 2 5 5

full_s_7 s 2 5 6 7

full_s_8 s 4 6 6 4

full_s_9 s 2 4 4 4

small5dataset s 3.25 5.66666666666667 5.5 5.41666666666667

large5dataset m 1.58333333333333 5 4.5 5.33333333333333

stder<s s 0.4787135538781690.4143877070053740.3370999312316210.357989616688202

stder<m m 0.1929960485281360.4264014327112210.48461168459756 0.414387707005374
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Figure 2.4: Subjective ratings of visualization insightfulness on a 7-point Likert scale collected on
the follow-up questionnaire. Columns show the mean response (n=12 in both groups) and error bars
show ±1 standard error.

1

Table 1

subject data size followup'task'
how

followup'task'
what

followup'task'
when

followup'task'
where

full_m_0 m TSS TSS TS SS

full_m_1 m SS SS SS TSS

full_m_10 m TSS TSS TSS SS

full_m_11 m SS SS SS SS

full_m_2 m SS SS TS TSS

full_m_3 m TS TSS SS TS

full_m_4 m TSS SS TS SS

full_m_5 m TSS TSS TSS TSS

full_m_6 m TSS TSS TSS TSS

full_m_7 m SS TSS TSS TS

full_m_8 m TSS TSS SS TS

full_m_9 m SS SS TSS TS

full_s_0 s TS TS SS SS

full_s_1 s TS force TS SS

full_s_10 s TSS TSS SS TS

full_s_11 s force force TS SS

full_s_2 s TSS SS TSS SS

full_s_3 s TSS TSS TSS SS

full_s_4 s TSS TSS SS TSS

full_s_5 s TSS TSS SS force

full_s_6 s TSS TSS TSS TSS

full_s_7 s TSS TSS TSS TSS

full_s_8 s force TSS TS SS

full_s_9 s TSS TSS TSS TSS

How

small dataset large dataset

force 2 0

TS 2 1

SS 0 5

TSS 8 6

What

small dataset large dataset

force 2 0

TS 1 0

SS 1 5

TSS 8 7

When

small dataset large dataset

force 0 0

TS 3 3

SS 4 4

TSS 5 5

Where

small dataset large dataset

force 1 0

TS 1 4

SS 6 4

TSS 4 4
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Figure 2.5: Preferences for visualization type based on task type. From left to right, the tasks shown
are who, what, where, and when queries. Columns show the number of participants (n=12 in both
groups) who preferred each visualization for the task.

2.5.1 Task Performance

Overall, participants were very accurate during the study: accuracy across all participants and tasks

is 96% and did not differ significantly between visualization types. Therefore, we reject hypothesis

H2.

We used a mixed ANOVA to analyze how the response time varied across visualization types

and tasks. Average response times for all task and visualization types are shown in Figure 2.3. We

performed the ANOVA analysis on the log-transformed time data, as is typical in response-time

analysis. Times corresponding to incorrect task answers were replaced with the mean response time

for all correct responses under the same condition. Otherwise, the repeated measures analysis would

exclude data from correct tasks by participants who gave one or more incorrect answer.

The results showed that task type had a main effect on response time (p < .001, F3,50.743 =

13.109, with Greenhouse-Geisser correction). Pairwise comparisons were made using Bonferroni-

corrected p-values by SPSS. These comparisons showed that participants were significantly faster

on the who task than on the when (p < .001) and where (p < .001) tasks. Participants were also

significantly faster on the what than on the where task (p = .025).

We did not find support for hypothesis H1 and reject it. In fact, as shown in Figure 2.3, we

found that the mean response time using TSS is greater than the mean response time using F for
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most task types in both the small and large dataset size conditions. We did not observe a main

effect of visualization type on response time (p = .147, F3,66 = 1.848) or an effect of dataset size on

response time (p = .179, F1,22 = 1.931).

2.5.2 Insight Characteristics

Insight characteristics measured during the study are shown in Figure 2.6 and Figure 2.7. We first

analyzed the insight scores together with time spent on each insight task (using a log-transformation

on times) with a multivariate mixed ANOVA with visualization type as the within-subject indepen-

dent variable. The results showed that visualization type did not have a main effect on either the

insight value score or the exploration time. We did not find evidence for H6 or H7 and reject both.

We found partial support for H8: dataset size had a main effect on time (p = .041, F1,22 = 4.702),

but not on the total domain values of insights (F1,22 = 0.092, n.s.). There was also an interaction

effect between visualization type and dataset size on the total domain values (p = .035, F3,66 =

3.031) but not on time (F3,66 = 0.347, n.s.).

We then performed a similar analysis with presentation order of the visualizations as the inde-

pendent variable. This time we observed a strong main effect of presentation order on both the

total domain value scores of insights (p < .001, F3,66 = 7.488) and the exploration time (p < .001,

F3,38.256 = 11.621, with Greenhouse-Geisser correction). We thus found support for H9 and H10.

Participants spent significantly more time on the visualization that was presented first than on the

following three (p = .033, p = .011, and p = .002 respectively), and also spent more time on the

second visualization than on the last one (p = .02). Participants also had higher insight scores on

the first visualization than on the third (p < .001) or the last (p = .005) visualization.

2.5.3 Subjective Ratings

Figure 2.5 shows the numbers of participants who preferred each visualization type for each task

type. No participants who interacted with the large dataset preferred the force visualization for any

task. TSS was preferred by more participants than any other visualization for both datasets, except

on the where task. In that task, participants using the small dataset preferred SS more than TSS,

and participants using the large dataset preferred TS, SS, and TSS in equal numbers.

We analyzed the subjective Likert-scale ratings of the four visualizations using a multivariate

mixed ANOVA. Visualization type had strong main effects on all three measures (understanding :

p < .001, F3,51 = 18.374; ease of use: p < .001, F3,51 = 9.117; confidence: p < .001, F3,38.955 =

10.386, with Greenhouse-Geisser correction). Dataset size had a main effect on understanding (p =

.049, F1,17 = 4.512) and ease of use (p = .014, F1,17 = 7.557), but not on confidence (F1,17 = 0.705,

n.s.).

Pairwise comparisons of the visualization types showed that participants found the force visual-

ization the least useful in helping them understand the dataset; on average F was rated significantly
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lower than TS, SS, and TSS (p < .001 in all cases). TSS was rated as the most helpful for under-

standing the data, although it was only significantly higher than F. Thus, we find support for H4. F

was rated as the most difficult to use (lower than TS, p = .003; lower than SS, p = .004; lower than

TSS, p = .013). Participants rated SS easiest (not significantly higher than TS or TSS). Therefore,

we found partial support for H5. Participants also felt the least confident with the F (lower than

TS, p = .006; lower than SS, p = .001; lower than TSS, p = .007). They were most confident with

TS (not significantly higher than SS or TSS). Therefore, we found partial support for H3. Pairwise

comparisons for the two dataset sizes showed that participants generally felt that they had a better

understanding of the small dataset and also found the visualizations easier to use with the smaller

dataset.

2.5.4 What Is the Best Design?

We expected that visualization designs using spatiotemporal attributes of nodes in the layout (SS,

TS, and TSS) would have better task performance than F, but this was not the case. A possible

explanation is that the process of using node positions along with guide marks on axes (e.g., in

TS and TSS) to solve search tasks is less efficient than using the data filters for time and location.

In fact, the features of these spatiotemporal layouts might have distracted participants from using

filters as much as they did in the F layout. Task-execution videos showed that most participants

used filtering often, even with the spatiotemporal layouts, so other factors may be involved. For

instance, participants might have taken extra time to verify their answers using guide marks, and

tasks in our typology might have been easy enough that this verification step added time without

significantly improving accuracy.

The efficiency of filtering might also account for the significant differences in average response

time between task types. Overall, participants were faster on who and what tasks, which gave

both location and time components in the task description. In these tasks, participants can use

both location and time filters before inspecting any nodes in the visualization. In the other tasks,

participants had only enough information to use one filter – location or time – based on the task

description.

Looking at task performance alongside user feedback, it is difficult to choose a best layout for the

data model studied. The same layout with the fastest overall task performance (F) was also the one

that participants felt least confident with overall and found the hardest to use overall. F was rated

significantly less helpful in understanding the data than the other types. In such cases, a visual

analytics designer must choose a layout by weighing competing objectives for the tool, including

efficient task performance and subjective user preferences that might impact adoption rates and

indicate insightfulness. When task efficiency is prioritized, F is a good layout choice in a visual

analytics system with interactive, spatiotemporal data filtering. If we prioritize user preferences and

subjective feedback about usability and insightfulness, SS or TSS might be a better layout.
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1

size %me.force %me.SS %me.TS %me.TSS insight.force insight.SS insight.TS insight.TSS
medium 580.39 754.428 442.352 300.218 5 9 3 1
medium 249.41 476.894 281.404 203.905 5 9 3 0
medium 378.135 307.552 276.118 348.881 4 2 1 1
medium 319.377 258.063 664.349 422.815 6 10 7.5 3
medium 220.134 344.499 1239.418 485.704 2 3 9.5 6
medium 330.305 341.484 379.06 465.384 4.5 4.5 2.5 5
medium 571.03 696.108 716.589 409.265 8 9.5 15 1
medium 311.293 337.653 335.349 403.62 3.5 2 1 6
medium 672.107 413.626 275.44 969.285 4.5 5.5 1 9
medium 406.691 286.15 239.448 261.33 2 3.5 6.5 2
medium 245.14 235.212 808.236 250.407 9 5 11.5 1
medium 197.877 234.643 275.875 273.992 3 5 4 5
small 422.201 363.07 390.192 369.165 7 8.5 1.5 6.5
small 255.032 181.598 180.708 181.244 4.5 8.5 3 2
small 402.365 302.772 462.589 518.514 8 1 5.5 8
small 356.985 910.42 433.946 306.585 6 10 5 7
small 180.9 199.822 192.518 180.934 1.5 4 3 7
small 315.868 233.234 258.233 537.148 8 0.5 3.5 13
small 186.732 182.646 211.741 203.885 0 1 2 2
small 184.275 445.581 542.32 399.746 6 4 8 10.5
small 458.391 216.326 195.876 1581.08 0 1.5 0 3.5
small 255.545 185.079 182.078 186.726 7 5 2 4
small 193.677 237.178 661.472 181.37 4 2 4.5 2.5
small 181.439 186.474 186.59 204.724 3 5.5 3 5.5

Total time by vis type

F SS TS TSS

small dataset 282.784166666667 303.683333333333 324.85525 404.260083333333
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Figure 2.6: Insight characteristics organized by the visualization type given to participants, each
of whom was prompted for observations once per visualization type. The orderings of visualization
types were counterbalanced across participants. Columns show the mean of total time spent (sec)
(a) and the mean of total domain value (b) across participants (n=12 in both groups) and error bars
show ±1 standard error.
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Figure 2.7: Insight characteristics organized by the order in which observation prompts were given to
participants, each of whom was prompted once per visualization type. The orderings of visualization
types were counterbalanced across participants. Columns show the mean of total time spent (sec)
(a) and the mean of total domain value (b) across participants (n=12 in both groups) and error bars
show ±1 standard error.

2.6 Discussion

Here we discuss what we learned about LITE through our case study and present open challenges

and guidelines for using the methodology.
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2.6.1 Limitations

We set out to develop a practical visualization evaluation method that combines components of

task-based and insight-based evaluations. In doing so, we attempted to explore and mitigate the

interactions or biases that North et al. warn about when combining these approaches [78]. Other

limitations exist as well.

A practical consideration in most user studies is the time needed to run each participant, and

LITE – like insight-based methods – has an open-ended exploration component that makes it difficult

to estimate how long a single participant will take. In our case study, sessions lasted from 30 to

90 minutes. This uncertainty must also be considered when designing the tasks and repetitions in

the task-based portion of LITE. Conducting a pilot study is a reasonable way to discover whether

the task portion is feasible alongside the insight component. LITE studies with many tasks or

visualization conditions might be prohibitively lengthy for participants.

A second limitation that follows from splitting time between tasks and exploration is related to

the power of the results. The task-based portion of a LITE study design might have fewer trials than

a dedicated task-based study design. Therefore, hypotheses could exist about task performance that

can be tested in a task-only study but not in a LITE study.

Third, participants in a LITE study alternate between blocks of tasks and exploration, and that

context-switching might negatively impact how people perform these activities. On the other hand,

it is also possible that these switches keep participants engaged and give them a sense of making

concrete progress, as mentioned in Sec. 2.2. Further study is needed to understand how these context

switches affect analysis behaviors with visualizations.

Having evaluations of both insight characteristics and task performance is useful for the visual

analytics application in our case study; the tool is intended both to promote insights about events and

support routine data queries. Other visualizations might be aimed at only one of these purposes, and

would be better evaluated using either benchmark tasks or an insight-based evaluation. Evaluators

with both aims could opt to run separate studies with those methods, which is more time-consuming

than running a single LITE study but might give more powerful results. These tradeoffs should be

considered carefully.

2.6.2 Lessons from the Case Study

We encountered a variety of choices and challenges during our study that suggest guidelines for using

the method.

Reinforcing Instructions for Different Portions of LITE

Some participants either did not understand the instructions or forgot background information on

the data provided during the training period. For instance, one participant commented during her

fourth observation prompt that the outbreak “Seems more over the place this time”, even though

participants were told that they would explore the same data set multiple times using different
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visualizations. This detail could be easy to forget since the network layouts changed between blocks

of tasks. Participants who investigated the small dataset made no such observations, possibly because

they were able to revisit and recognize microblogs between visualization conditions.

Other participants answered the initial questions given in the prompt directly rather than pro-

viding observations about the data that confirm or disconfirm those questions. For instance, some

participants began their list of observations like “1. Yes. 2. ...”. In a few cases, observations ap-

peared to be numbered according to the three questions in the prompt (i.e., observations specifically

for those questions, with no more than three separate observations) rather than being numbered by

separate insights about any of the initial questions. We interpreted comments like “yes” as a belief

that the corresponding initial question was true.

Guideline Be explicit about how participants should record insights. Since participants switch be-

tween different types of responses during the task and insight portions of the study, these instructions

should be reinforced.

Coder Agreement for Insights

Overall, the two coders were fairly consistent in applying the scoring scheme to assess the domain

value of insights for each prompt; their scores were within 2 points of each other for 81 out of 96

prompts, or 84.4% of the time. The coding scores are positively correlated, with Pearson’s r = 0.87.

That said, the coders agreed exactly on a score only in 36 of the 96 prompts, or 37.5% of the

time. Evaluating the scoring system in future studies could help improve the scoring rules and coder

manual and therefore improve consistency in assessing the domain-value insight characteristic. As

far as we know, coder consistency has not been explored in depth in the literature for insight-

based evaluations. In some cases, it is unclear whether multiple coders were used to assign domain

values, how well they agreed, how coding conflicts were resolved, and what expertise the coders

had. We believe that the practice of reporting details of the coding process will generally benefit

the development and standardization of insight-based evaluation methodologies.

Guideline In the results of a LITE or insight-based evaluation, provide information about the

process of coding the domain value of insights.

Reduced Set of Insight Characteristics

Our study measured a subset of insight characteristics adapted from previous studies [79, 95]. Some

insight characteristics are difficult to measure using LITE. For instance, we did not measure the

time needed to reach each insight, which could be misleading in a within-subjects design that lets

participants analyze the same data model over multiple iterations. Instead, the total time for

exploration in each visualization condition was used, as in [79].

We also found it difficult to count the number of individual insights without using a think-aloud

protocol. Our LITE case study used an on-screen text field that lets participants record observations
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in a manner similar to recording task responses. We relied on participants to input observations

as a numbered list, but participants had different styles for doing this. One alternative is to guide

users in constructing insights and evidence through a user-interface feature. For instance, Jianu

and Laidlaw let users click nodes in a protein-signaling visualization to construct visual hypotheses

about potential pathways, rather than having them provide unstructured text input [54]. Another

possible solution that we did not test formally is using a think-aloud protocol during the insight

portions of LITE.

We did not divide insights into categories or label them as breadth versus depth. Instead, the

scoring system for domain value distinguishes between claims and supporting evidence. In the

datasets used in this study, the range in the types of comments participants made was small and

hence we saw no need to impose categories. Distinguishing between insights might be more practical

with a dataset that contains more initial questions or in a domain with complicated relationships

among data points, like systems biology.

Finally, providing the initial questions about the data model rather than asking participants for

their initial questions makes it possible that participants had other unreported insights that seemed

irrelevant to the specific initial questions but ultimately showed evidence of insight. Because the

participants in our study were non-experts, it is a reasonable assumption that the initial questions

encapsulated most of what they were able to analyze and observe. With domain experts as partici-

pants, however, there might be questions worth analyzing that would be difficult for us to predict and

hard-code into the evaluation. In such cases, starting the evaluation by gathering initial questions

from participants makes more sense.

Guideline Consider the complexity of the data and participant expertise when choosing insight

characteristics to measure. With a non-expert study population, provide initial analysis questions

rather than requesting them from participants.

Task and Workflow Considerations

We faced several workflow-related considerations during the design of the case study. First, there

is a relationship among the training participants get, the specific tasks they perform, and the types

of insights they are likely to report. It is possible that tasks or training direct users toward certain

types of exploration activities. We deliberately tried to avoid this scenario in our case study by

choosing low-level tasks that were unlikely to lead to insights on their own. An alternative approach

used by North et al. is to give more complex tasks that can be classified into the same categories

as the insights, in order to directly compare the activities that each visualization supports and

promotes [78]. However, in that study, task performance and insights were measured using two

separate experiments with different participants, and ‘insightful’ tasks could significantly interact

with exploration and insights in a within-subjects design like LITE.

Second, we recognized that the results in LITE would be impossible to interpret correctly if the

order of visualization conditions was not counterbalanced. Because the same data is explored by
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each participant repeatedly with different visualizations, an ordering effect on the measured insight

characteristics should be expected. In our case study, we found evidence that participants spent

more time and reported more valuable observations during the earlier observation prompts than

during later ones (see Figure 2.7). Counterbalancing the orderings of visualization conditions, as we

did in the case study, can mitigate the effect of order on the results.

Finally, based on our experience in our pilot study, which let participants effectively skip the

exploration portion of LITE, we decided to require in our case study a minimum time during each

observation prompt. This seemed to motivate participants to explore the data; we did not find that

participants sat idly while the clock counted down, or that they ended their exploration as soon

as the minimum time was finished. Participants were given as much time as needed to record and

explore observations, so this approach does not affect the results as it would in an insight-based

study with fixed length. That said, other ways to motivate participants during the insight portion

of LITE might be more effective than a time requirement.

Guideline In LITE, choose low-level tasks that will not steer participants toward insights, and be

sure to counterbalance the ordering of visualizations.

2.7 Concluding Remarks

We present and demonstrate a method for evaluating visualizations called layered insight- and task-

based evaluation (LITE) that combines predefined tasks and exploration. The method, which mea-

sures both task performance and insight characteristics, was applied in a case study of four different

designs for a spatiotemporal network visualization in a visual analytics system. The results of our

case study helped us assess which design best fit different objectives for the visual analytics system,

including optimizing for task efficiency or promoting insights.

We also identified several guidelines for using LITE based on the study.

• Choose low-level tasks that are components of realistic analysis scenarios but will not steer

participants toward insights.

• Counterbalance the ordering of visualizations to mitigate ordering effects in the insight com-

ponent of LITE.

• Consider the complexity of the data and participant expertise when choosing insight charac-

teristics to measure.

• Report details of the process of coding insights: who are the coders, how well did they agree,

and how were disagreements resolved into one score?

Opportunities exist to address the challenges we encountered using LITE. We are interested in

better understanding how to run lightweight, insight-based evaluations of visualizations using the

non-experts who are often recruited for task-based visualization studies.
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Another promising direction is looking for relationships between the types of exploratory inter-

actions an analyst performs with a visualization and the insights they discover. This direction is

important because while LITE and other insight-based methods like [95] help quantify the insight-

promoting characteristics of a visualization, they do not directly tell us how analysts arrive at

insights. It would be helpful to answer design questions like, Do analysts who use Feature X more

frequently than others during exploration discover more about the data? While answering these ques-

tions is beyond the scope of this work, the co-authors of the study described in Sec. 2.3 and [26]

performed an insight-based evaluation with data from the VAST Challenge 2014. They found cor-

relations between insights characteristics like the number of generalizations and number of facts

discovered with different types of high-level interaction patterns, like sampling from a selection of

query results or filtering large results sets from a dense information display [34]. Hua Guo is the

first author of this follow-up work and lead the study. My contributions included characterizing

insights and interactions using taxonomies we developed, as well as data analysis. We refer readers

of this dissertation to [34] for methods and full results. Further research that incorporates aspects

of sensemaking and cognition into visualization research will help us develop design guidelines for

promoting insights about data through visualization and interaction.

The work described in this chapter is a step toward comprehensive evaluations that assess multiple

objectives for visualization systems in controlled settings, including task performance and how well

systems promote insight discovery by their users. Understanding people’s insights while they use

visualizations provides a context for interpreting task-performance results. For example, we found

that the best network layout for tasks based purely on task efficiency was not the most helpful for

understanding the data, which could be a bigger priority for developers and the analysis scenarios

they aim to support. In the next chapter, lower-level behaviors during visualization use, like how

people interact with interface components, are analyzed to evaluate how people perform tasks,

how efficient strategies are, and how altering visualization designs can affect users’ efficiency at

performing tasks. Like modeling insight characteristics, modeling interaction behaviors provides

another cognitive context for interpreting task-performance metrics.
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Task Performance Modeling

This chapter focuses on how end users of a visualization interact while performing small-scale tasks on

the order of tens of seconds. Observing logs of interactions and how they influence task performance

reveals cognitive processes at a finer scale than the insight-based evaluation in Chapter 2. Here we

describe a method that collects empirical interaction data and lets evaluators predict how quickly

an expert end user can interact with a visualization interface to complete a task. The approach uses

interaction logs from end users to construct predictive models semi-automatically, so an evaluator

does not need to know how end users typically complete tasks or have modeling expertise to get

time predictions. This chapter is drawn substantially from [30].

Quantitative user studies can help visualization developers evaluate new tool designs, but these

studies can be difficult to plan and carry out. Collecting and analyzing usage data on each design

iteration is often prohibitively expensive. An alternate approach is to construct a predictive model

of the tool’s utility (e.g., speed or accuracy for an average user) and evaluate interface changes

by running the model. Despite the power of cognitive architectures like GOMS [31, 55, 57] and

ACT-R [3, 16, 25] in describing these models, constructing them manually is notoriously time-

consuming and error-prone [56], and they are therefore not widely used. We test the hypothesis

that some difficult steps in model construction – namely, observing how users complete tasks, and

then applying the construction steps – can be automated for a simple performance model called the

Keystroke-Level Model (KLM) [21]. The KLM predicts the time it takes an expert user to execute

necessary keyboard and mouse input, along with cognitive operations (e.g. “mental preparation”,

including eye movements to look at the display). In this chapter, we use the KLM to predict the

time needed to execute visual queries in an interactive brain-circuit diagram.

Our novel framework, Tome, is based on the idea that the interface design and task knowledge

needed for KLM use can be extracted from collections of event-based interaction histories, which log

user-input events and descriptions of application-level events caused by that input (e.g., triggering

UI widgets). A related project by John et al. called CogTool [40, 58] runs the KLM from visual

storyboards and task demonstrations mocked up by a CogTool user. A storyboard is a directed

graph that describes how an application transitions between distinct UI states given user input,

31
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and a demonstration describes one specific sequence of user interactions that walk through that

storyboard. Tome simplifies that process by automatically compiling task histories gathered by

its instrumentation library into storyboards that can be imported by CogTool, which is free and

open-source. Tome storyboards are prototypes that can compute a performance prediction right

away for the task or can be edited as needed.

Tome aims to improve visualization and UI designers’ ability to develop and quantitatively

evaluate their tools. We demonstrate this by using Tome with a new brain-circuit visualization

that allows neuroscientists to query neuron projections in the rat brain. Our work is in line with

the agenda in Illuminating the Path [105], addressing the need to “develop tools and techniques

to incrementally automate common tasks involved with creating visualizations”. Tome reduces

performance modeling to a one-time UI instrumentation cost; application users then complete their

tasks as usual to gather the model’s “knowledge”.

The contributions of the work include:

1. a framework, Tome, for logging event-based interaction histories and constructing a canonical

storyboard for the task executed in those histories (Sec. 3.2). This storyboard can be imported

into CogTool, which constructs a KLM prediction for task-completion time, and we created a

library for instrumented Java UI components.

2. a case study in brain-circuit visualization that demonstrates Tome’s prediction accuracy and

usefulness for evaluating new interaction designs (Sec. 3.3). We performed a quantitative

evaluation of predicted completion times for quick (5–60 sec.) circuit query tasks. We show

that Tome performance predictions average within 10% of expert performance, and extended

one model to evaluate a proposed feature that speeds up one task by 16%.

In the remainder of this chapter, we discuss previous usability evaluation tools, history log-

ging, and predictive performance modeling using cognitive architectures. We then describe the

components and design of Tome. Finally, we describe a case study we conducted with a Tome-

instrumented, interactive brain-circuit visualization and assess our findings.

3.1 Related Work

Tome is related to several projects aimed at quantitatively evaluating interface prototypes. We

discuss some of these systems in Sec. 3.1.1; in Sec. 3.1.2, we discuss interaction logging methods

related to the way Tome collects histories to construct performance models.

3.1.1 Modeling User Performance

Cognitive architectures for designing models of goals and task workflow have existed for decades,

and have proven helpful in optimizing system design. GOMS architectures, which decompose tasks

into goals, operators, methods, and selection rules, have been widely applied in HCI systems and
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Figure 3.1: The Tome pipeline. Interaction histories are generated when end users complete tasks
with the instrumented UI. Histories are aggregated by a program into canonical interaction story-
boards for each task; CogTool then produces time predictions from these storyboards. The dotted
arrows show actions a UI designer might take having retrieved the performance prediction from
CogTool.

practice [57]. Other models based on the ACT-R architecture have been deployed to study tasks

like visual search [16, 25] and information search using the Web browser [83]. Gray et al. showed

in Project Ernestine that the CPM-GOMS variant, which considers a critical path of interactions

during task workflow, accurately predicted user time of a proposed telephone operator system design.

This example showed that computational models may be more accurate than designer intuition in

evaluating interfaces, and motivates our efforts to generate performance models for visualizations

that can be used to evaluate or guide design iterations for those tools.

Despite their power, cognitive architectures have not been used widely for visualization evalu-

ation. One system, CAEVA [63], used an ACT-R model to simulate how a user performs analysis

tasks with real visualizations. Unlike Tome, it required domain-dependent knowledge in its cognitive

model, making it more difficult to deploy.

Several projects have aimed at automating model building [40, 55] or converting between ar-

chitectures [103] for wider adoption. Recently, a handful of rapid prototyping tools for design

evaluation [41, 58] have appeared. Most similar to our work, Hudson et al.’s CRITIQUE [50] gen-

erates KLM predictions by interacting with a user interface, but that interface must be built with

a specialized UI toolkit called subArctic. Our framework also builds a UI model programmatically

using a Java instrumentation library that can be used widely with information visualization toolkits

like Prefuse [43]. Unlike CRITIQUE, Tome collects many histories to find canonical task executions

and make KLM predictions, and does not require a single user to demonstrate task executions. It

needs no knowledge a priori of how users complete tasks “in the wild”; it outsources that to end

users, then aggregates histories.
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Our work makes use of a project by John et al., called CogTool, that lets users diagram interaction

storyboards visually; beneath the surface, it runs the KLM to predict user completion time on

tasks, given an interface design. Visual storyboards allow for easy editing of the model task, as

opposed to editing the KLM operators “by hand”. CogTool lets users demonstrate tasks on a

mockup, so no coding is needed, but like CRITIQUE it requires one user to construct the mockup

and demonstrate task executions. Tome does not require this step. In our work, we create these

storyboards programmatically from interaction-event histories. These can be imported directly into

CogTool, where a user can edit the model using a visual editor or run it to predict task-completion

times.

3.1.2 Interaction Histories

Recent applications of history-based usability evaluation [47] use logging in a couple ways: 1) learn-

ing about application usability or utility; 2) building application features that leverage histories for

navigation or usability. The CLOTHO system [37] samples operating system state and logs user-

initiated events and user annotations; it then computes predictive variables that classify applications

as “high utility” or not for a given user. In the visualization domain, Heer et al. [44] incorporated

graphical interaction histories into the visualization tool Tableau, showed how these histories im-

proved usability – for instance, by displaying ‘branches’ of edits – and uncovered tool usage patterns.

Our tools do not currently let users view or interact with the history as it is being compiled; instead,

our goal is to provide post-processing analysis of interactions. Tome’s history-logging library is

application-independent and straightforward to inject into the source code of a new visualization.

Histories have also been used in environments for semi-automated construction of visualizations.

VisTrails [17, 70, 97] lets users query and reuse rendering workflows to build new visualizations.

Both VisTrails and Tome create reusable, modifiable artifacts from workflow records. At the same

time, they differ in important ways: 1) Tome workflows are user interaction sequences, invisible

to application users, and not user-selected imaging modules; 2) we attempt to reduce collections of

workflows with similar semantics into a single, representative workflow.

3.2 Design Evaluation by Performance Modeling

Models of human performance with a tool can be used to guide design choices. Our work uses the

KLM, which predicts the time an expert user takes to execute necessary keyboard and mouse input

and also cognitive operations (e.g., “mental preparation”). Here, an ‘expert user’ is an application

end user who knows the steps necessary to complete a task and can do them as quickly as possible.

A prediction should be close to a lower bound on how long it takes to execute the critical interaction

path for completing a task.

The Tome framework (shown in Fig. 3.1) gives a performance prediction for a task by: 1)

collecting histories of that task as end users execute and label them; 2) determining a canonical

interaction sequence – or, what end users might reasonably do – that completes the task; 3) compiling
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a canonical history into a project for CogTool, which computes time predictions from storyboards

of interactions [58].

Collecting Histories

Tome provides an interface instrumentation library based on Java’s Swing toolkit that automatically

produces interaction histories as end users of applications complete tasks. Library widgets like

buttons are meant to be instantiated in place of respective Swing components. A basic logging

API can be used to capture other events and build logging widgets. There is a one-time cost of

instrumenting an interface, and these applications can be deployed ‘as is’. End users can toggle

logging on or off by editing a configuration file. Toggling the configuration does not affect regular

application functionality, allowing end users to opt out of data collection easily.

Histories are encoded as sequences of widget-triggered interaction events and corresponding

screenshots and keyboard or mouse input. In essence, each history gathers the information needed

to build a graphical storyboard of the input events that cause GUI state changes throughout the

task. Other subtle data is collected; for instance, the on-screen spatial bounds of widgets used are

reported to model mouse-targeting times by Fitts’ Law [76].

Finding Canonical Interactions

A unique aspect of this work is using many histories to produce a single time prediction for a task.

The idea is that for certain types of tasks, the crowd wisdom for how to complete the task can be

extracted from a set of real end-user histories.

In our implementation, when a history aggregation program is run, histories are grouped by labels

that end users provide after finishing tasks. Within a group, histories that share the same interaction

sequence are counted, and the most frequent sequence is treated as the canonical one for the task.

This approach filters out noisy task executions (e.g., including accidental mouse or keystroke events)

or unpopular strategies without having to interpret the semantics of histories. Furthermore, unlike

applying the KLM manually, no modeler must know and express how to complete tasks a priori.

Creating a CogTool Project

The program then compiles a single history with the canonical sequence into an XML encoding of a

CogTool project that describes a storyboard of the task execution (see Fig. 3.3). Finally, CogTool

can open the project and run the model to predict completion time.

The ability to edit these storyboards in CogTool makes our approach more powerful than sim-

ply gathering average times from history timestamps; we can compare current UI designs against

proposed changes by copying Tome storyboards and perturbing them in the WYSIWYG editor

to reflect incremental design changes. This utilizes both CogTool’s rapid prototyping ability and

Tome’s ability to gather baseline models for how end users currently complete tasks. We describe

an example design revision in the section titled “Evaluating New UI Features”.
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Figure 3.2: Brain diagram.

3.3 Case Study: Interactive Brain Diagrams

We incorporated Tome into the development of a sample interface, which was an interactive visual-

ization prototype of the rat brain circuit (Fig. 3.3 thumbnails). To establish the accuracy of Tome’s

predictions, we instrumented this interactive diagram to collect task histories, and then compared

the KLM predictions with measured task completion times. Furthermore, we modified one model

in CogTool to predict the performance improvement given by a proposed feature.

3.3.1 Experimental Design

To collect test histories, eight participants were recruited as application end users and completed two

types of tasks with the brain-diagram tool, as described below. All were undergraduate or graduate

students in computer science. The participants were split into two groups (A and B) that completed

the task types with different brain part queries. Using two groups with different instances of data

gives more model predictions to compare, and therefore more confidence in generalizing that these

task types can be predicted with the KLM.

With the informed consent of each participant, we recorded participant videos and screen capture

for posterior analysis. Participants were trained with the brain node-link diagram for 10-15 minutes

and asked to complete the following tasks as quickly and accurately as possible:

T1: ‘Nearest neighbor’ neural projections. Given the name of a specific brain part p, select the two

nearest parts on the map that share a projection (edge) with p.

T2: Map adjustment. Given the names of two specific brain parts p1 and p2 and a target part t,

click and drag both p1 and p2 on top of t.

In both tasks, participants were required to interpret the diagram and complete several motor

activities using the keyboard and mouse.
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Figure 3.3: The CogTool interface showing a storyboard constructed by Tome during the T2 task.
The arrows between frames indicate GUI state transitions caused by user interactions with widgets
(located at the base of each arrow).

Each participant completed each task 25 times during a session of about an hour. The first five

runs in each task tested the subject on all different brain parts so as to increase familiarity with the

tool and task. The remaining 20 runs of each task were repeated with the same query in order to

estimate the average expert completion time (mean from runs 11–20, using a timer) to compare to

KLM. Of the 160 total expert runs collected, 5 times were discarded from this mean due to users

stopping or encountering technical problems in these trials. Runs 1 through 10 for each task were

training data (histories) for Tome to construct the canonical storyboard.

3.3.2 Evaluating New UI Features

After gathering histories and building Tome storyboards, we extended one of these models to eval-

uate a new feature before implementing it. We used a model created for the T1 task to evaluate an

interaction called radius select that makes T1 faster. With radius select, a user can select all brain

parts within a circular area of interest by choosing a central brain part and a radius on the map;

this interaction can thus solve T1 quickly, without individually selecting nearby nodes. We used

CogTool to edit the T1 model built by Tome after our experiment (see interface on Fig. 3.3). This

amounted to adding one transition triggered by a new mouse action to the previously constructed

storyboard. We simulated radius select in CogTool to produce a time prediction for experts.
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Figure 3.4: Summary of empirical expert task times compared with Tome predictions for task times.

3.4 Results

Figure 3.4 shows results for completion-time prediction accuracy for the tasks described previously.

The worst error was just under 14%, on group B’s T2 task. Reviewing the video for this instance

showed that one participant repeatedly deviated from the most popular strategy that Tome auto-

matically storyboarded; this participant’s significantly slower task executions raised the mean expert

time. Performance times over repeated trials became more consistent with experience. For both

groups A and B, the standard deviation of all training set times (runs 1-10) was at least 50% higher

than in expert trials (runs 11-20) for each task.

We extended the T1-A storyboard to include the radius select interaction. The prediction for

the T1-A task using this feature was 5.7 seconds, 18% faster than the original prediction (6.9 sec).

We implemented this feature and tested it with four participants – two from group B and two new

participants – using the previous protocol. One of the 40 expert runs collected was discarded due

to a technical problem during the trial. Expert times using radius select are about 16% faster than

previous expert times.

3.5 Discussion

Our results show that most models created by Tome fall well within the 20% prediction accuracy

claimed by KLM techniques [56]. These numbers might improve further under a study protocol that

requires more task experience before counting expert runs (for instance, having users complete tasks

100 times each, rather than 20, and binning them 90/10 as pre-expert/expert). Our protocol was

based merely on pilot tests that showed convergence in performance time for these tasks around 10
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Figure 3.5: Updating a storyboard. States s0 . . . s3 and transitions t0 . . . t3 express the storyboards
for task T1 in the original (top) and modified (bottom) designs. The dotted arrow shows the
transition we added in CogTool to predict the performance improvement given by this feature.

iterations.

3.5.1 Instrumentation

Tome decreases the necessary task-modeling expertise of visualization designers at the cost of added

attention to code instrumentation. In our opinion, this is a worthwhile tradeoff because it provides

accessibility, consistency, and incremental improvements for performance modeling.

Accessibility

Instrumentation is more straightforward for developers than learning the “ins and outs” of a cognitive

modeling architecture. Creating new models can be time-consuming even for experienced cognitive

modelers. Tome does this automatically with instrumentation in a process that is invisible to end

users.

Consistency

Creating models automatically is more consistent than doing so by hand, as argued by John [56]

in support of CogTool. Tome makes model-building consistent between storyboards when widget

components from the Tome library are used to construct UIs. Since logging can be disabled through

a configuration file, developers are free to use these components even if they aren’t sure Tome will

be used, and its functionality can be turned on after code has been built and deployed.

Incremental Improvements

Even with imperfect instrumentation, the models generated by Tome are likely to capture some

correct structure – and have some predictive power – and can be hand-tweaked in CogTool for fine-

tuning. The framework itself, as a tool that can be deployed and refined, will support a community
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Figure 3.6: Performance times for 20 iterations each of tasks T1 and T2 for users in group A.
Completion times begin to flatten out as users gain experience and become more consistent. The fact
that completion times converge in these tasks suggests they are meaningful targets for performance
model predictions. We thus evaluate Tome’s performance by comparing its time predictions to
measured completion times in the converged “expert” iterations.

and its applications without hiring modelers in each instance.

3.5.2 Limitations and Open Issues

Exploratory Visualization

Tome is well suited for prototyping models of tasks that require executing steps known ahead of time.

Examples include simple visual query tasks, as in our brain-diagram application, data-flow creation

or transformation in tools like VisTrails [70, 97] or the telephone operator UI described in Project

Ernestine [31]. On the other hand, exploratory visualizations might evoke less routine interactions.

For instance, generating hypotheses about a very complex data set may require different tools or

approaches from a simple one. Users may follow similar high-level analytical steps in both cases

(e.g. “examine the data, identify this irregularity”, etc.), but capturing that similar structure could

require a higher-level modeling technique than KLM.

Longer Timescales

We have examined tasks that take an average user between 5–60 seconds. These fall around the

rational and cognitive bands of Newell’s scale of human actions [3], requiring on the order of minutes

to complete. But as described above, many visualization tasks take longer than this. If we include

the scope of visual analytics tools that can require days or weeks (or longer!) of data observation and

analysis, we anticipate needing modeling tools with coarser precision that can potentially predict

for analytical steps beyond the keystroke unit.
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Unsupervised Sets of Tomes

As mentioned earlier, each Tome has a user-provided name for the task it completes. This label

is important during the reduction scheme that takes many Tomes for the same task and outputs

one canonical Tome for storyboarding. Providing that label, however, is an added human step in a

pipeline we are trying to automate as much as possible.

We foresee two challenges in removing this label and building storyboards from these unsuper-

vised sets of Tomes. First, it may be difficult to gather enough data to apply clustering or learning

methods for different task strategies. Noise due to errors, like extra clicks or button presses, might

look like different task strategies that vary by one or two keystrokes. Second, after producing a

KLM representation, an evaluator needs to know what task is simulated by the model. That person

could inspect the storyboard in CogTool or look at groups of Tomes with TomeVis. Eventually a

human must interpret the task model, and this could be time-consuming and error-prone. There are

trade-offs between having end-users label tasks or having an overseer sort them afterwards. Another

approach would be to have some users label their tasks, and use that smaller set to infer labels for

the rest.

Finding Better Canonical Tomes

We described and evaluated an aggregation strategy that selects a Tome with the most frequently

observed sequence of interactions by end users. However, this suffers when no clear strategy is used

in a majority of histories. A specific case is when all runs contain some noise or variation, as may

occur if one asked 20 users to perform a given alpha compositing task in Adobe Photoshop. Few

would do it exactly the same way.

There are many possible approaches to overcoming these complications. Aside from “most fre-

quent” selection criteria, we explored a Longest Common Subsequence (LCS) approach to computing

a minimum necessary interaction sequence for a task, and choosing or generating a new canonical

Tome based on the subsequence found. See Bergroth et al. for a overview of LCS algorithms [8]. For

Tome, we have to approximate k-LCS, or LCS applied to an arbitrary number of input sequences,

a known NP-hard problem. Another difficulty is determining whether a task meets the assumption

of using LCS to find viable interaction strategies, i.e., that a necessary and sufficient subsequence of

interactions is completed by all end users for the task. If sets of task completions do not share sub-

stantial common subsequences, then LCS will find very short or empty “required steps” to complete

a task, and will predict completion times that are too short.

Finding Better Storyboards

Tome always computes a storyboard that is a directed path. Directed graphs of keyframes that

include cycles are valid in CogTool, but the construction we use is convenient because it maps

events from the Tome event record directly to unique keyframes. We can demonstrate the task

of the canonical Tome by walking through each frame in this storyboard, and CogTool uses this
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demonstration to run the KLM.

However, an individual Tome storyboard does not necessarily describe other interaction se-

quences that are valid in the live application. The fundamental issue is that whatever UI features

are not used during tasks are invisible to the storyboarding tool. This doesn’t affect the KLM

prediction for the task in the canonical Tome, but it means that storyboard is less reusable for

modeling other tasks without prior editing. One fruitful direction could be to register multiple

path-storyboards automatically from an application, producing a single storyboard that describes

multiple interaction scenarios with the UI. This storyboard may include cycles or branching in its

frame transitions, and would allow for more tasks to be modeled in a single CogTool project by more

accurately describing the state machine of the interface.

3.5.3 Limitations

We evaluated only a small number of end users and tasks in a lab setting. An extensive, longitudinal

study of end users completing tasks in situ would be more ecologically valid than having participants

repeat trials in hour-long sessions.

The main limitation with Tome itself is that only certain kinds of tasks can be modeled with the

KLM. Some tasks, like freely exploring a visualization, usually do not have predictable interaction

steps that make sense to model with the KLM. Additionally, tasks that can be modeled must be

executed in a Tome-instrumented interface. Instrumenting an interface and editing storyboards

in CogTool requires time and learning. While our experience suggests that editing a Tome-built

storyboard (as in Fig. 3.5) in CogTool is faster than building one from scratch, we did not evaluate

the time and difficulty involved.

Automating Tome further could make it easier to use in live settings. An open problem is

automatically classifying interaction histories with task labels. What processes are needed to differ-

entiate noisy executions from divergent strategies or different tasks? Currently, end users manually

label their task histories, but this bookkeeping may be tedious or error-prone.

3.6 Concluding Remarks

We have described work toward a novel architecture for modeling human task performance from

multiple interaction histories. Unlike previous methods, our system does not require an HCI expert

to predict and model the steps taken by crowds of end users to complete tasks with an interface.

Limitations of this approach include those of the KLM and that end users must label their task histo-

ries. Modeling higher-level cognitive processes with minimal human expertise remains an important

challenge. Still, our results are encouraging: for quick diagram-query tasks, we demonstrated that

Tome generates predictions within the 20% error claimed by KLM [59] and that these models can

be used to evaluate iterative designs.

Earlier in this dissertation, we modeled insight-promoting characteristics of a visualization based

on how end users discover and record insights during exploratory studies. This chapter focused on
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user interactions that typically come before and/or after arriving at an insight. We showed how

observations about task-focused interactions can be used to predict an expert’s completion time

for a task, which is a measure of usability. In the next chapter, we consider even finer-scale user

behaviors that occur during and between keystroke-level interactions, and that hint at task-specific

regions of interest inside a visualization.



Chapter 4

Crowdsourcing Gaze Estimates for

Visualization Analysis Tasks

Eye movements between and during keystroke-level interactions reflect a fine scale of cognitive pro-

cesses that occur during visualization use. Where people gaze is particularly meaningful during

visualization tasks, because areas that are attended can reveal where a visualization design is ef-

fectively helping interesting data ‘pop out’ or helping a person decode task-specific information. In

order to make observations about this fine-scale behavior accessible for visualization evaluation, this

chapter describes a practical method for estimating where people gaze during visualization analy-

sis tasks. The method is evaluated as an alternative to eye tracking, which captures similar gaze

data but requires expensive, specialized hardware and a controlled lab setting. This work is drawn

substantially from [27].

The goal of this work is to make it easier to understand where people look in visualizations during

analysis tasks. This gaze information is helpful for improving visualization designs. For example,

gaze data can reveal whether users attend to guide marks in a visualization. A potential application

is verifying that increasing the size of marks or repositioning them draws attention to them, thus

helping people interpret the visualization. Finding where people look can also help researchers

understand analysis strategies and might improve their ability to identify low-level analysis activities,

like finding extrema in a chart [2]. Ultimately, this information could be used to improve the usability

of visualization interfaces or choose more effective visual mappings for data visualizations.

We present an evaluation of a crowd-based method for estimating gaze fixations for visualiza-

tions. The method builds on an earlier technique called the Restricted Focus Viewer (RFV) [9], an

image viewer that simulates movement of the fovea by blurring the image and requiring viewers to

deblur regions using the cursor. Essentially, the RFV requires a person to make manual interac-

tions that are easily recorded and correspond to areas of the image she wants to visually decode.

We constructed a Web-based version of the RFV called Fauxvea, which has incremental improve-

ments in the design of the focus window and data capture, but most importantly can be accessed

44
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by remote study participants like crowd workers. As a result, the method enables large-scale gaze

estimation experiments, and can be used to crowdsource the production of heatmaps showing gaze

for visualization stimulus-task pairs.

We demonstrate the method using workers on Amazon Mechanical Turk (MTurk). First, we

compared Fauxvea fixation estimates to eye tracking from 18 participants for three common types

of information visualization (infovis) charts – scatter plots, bar charts, and node-link diagrams –

plus photographs. Second, we compared the Fauxvea estimates with ones predicted by participants

with expertise in vision and eye tracking; we show that an individual, even one with experience with

vision, cannot predict fixations as well as data from a study using Fauxvea. Third, we reproduced

findings from an existing study on tree layouts from Burch et al. [14] that involves a more complex

visual analysis task than in the first experiment. In these experiments, we find that gaze locations

on the visualizations by online participants are qualitatively and quantitatively similar to gazes from

the eye-tracking study.

The contributions of this work are fourfold:

• a novel method for crowdsourcing gaze fixation estimates for visualization analysis tasks

(Sec. 4.2);

• qualitative and quantitative evaluations of the method that show fixation estimates are com-

parable to eye-tracking data on basic infovis analysis tasks (Sec. 4.3);

• an evaluation of how well experts can self-assess where others will gaze during visualization

analysis tasks; we compare self-assessment to data collected using Fauxvea (Sec. 4.4);

• reproduced findings about visual exploration on tree layouts using the method instead of eye

tracking for a more complex graph analysis task (Sec. 4.5).

Finally, we discuss limitations of the method and present opportunities for developing models of

gaze that factor in both visualization stimuli and analysis tasks.

4.1 Related Work

In this section, we describe how our proposed method relates to earlier process-tracking techniques,

as well as other approaches for estimating gaze without an eye tracker.

4.1.1 Focus-Window Methods

The idea of restricting visual information to the location of a pointer and tracking its location has

existed for decades. An early example is the MOUSELAB system, which was aimed at tracking

a study participant’s cognitive process during decision tasks involving information on a computer

display [60]. In this system, boxes containing information appeared blank until the participant

moved the mouse into one, which would reveal the information in that box.
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Our method is more closely related to the Restricted Focus Viewer (RFV) [9], an image viewer

that requires the user to move the cursor in order to focus regions of the image. Unlike MOUSELAB,

the RFV works with images that do not have predefined boundaries of information, so the mouse

can be moved to focus any part of the image, and the image outside of the focus window is blurred.

Cursor movements can be recorded and replayed as a proxy for actual gaze fixations. Fauxvea

adapts this technique for the Web browser, with design changes that make it easier to use. Most

significantly, the experiments we performed demonstrate that gaze estimates collected from online

crowd workers – even in uncontrolled computing environments – are close to eye tracking for the

visualization tasks we studied.

Previous evaluations of the RFV in controlled laboratory experiments have validated the tech-

nique and identified some of its limitations, but to the best of our knowledge we are the first

to explore its use in estimating gaze during analysis tasks with data visualizations. Blackwell et

al. found that when people evaluated causal motions in diagrams of pulley systems, gaze patterns

estimated by the RFV were similar to patterns collected from an eye-tracking study on the same

stimuli [9]. Bednarik and Tukiainen [7] studied how participants in a controlled eye-tracking study

used a Java software debugging environment with the RFV. They found that blurring affected how

some users switched gaze between areas on the screen differently compared to eye tracking, but this

behavior did not affect task performance; participants were able to extract the same information

using the RFV as with a normal image viewer. Stimuli like coding environments or pulley diagrams

differ from typical infovis charts in how directly they encode information, so we are motivated to

study the focus-window method in this context. We find supporting evidence that the approach

works even in realistic visualization scenarios involving moderately complex visual representations

and tasks. For instance, as described in Sec. 4.5.3, we found similarities between eye tracking and our

crowd-powered RFV (Fauxvea) in how people switched between areas of interest in tree diagrams

during a graph analysis task.

Crowdsourcing might also help users of the RFV to select appropriate parameters for their

experiments. Jones and Mewhort [62] found that badly chosen blur levels outside the focus window

can affect scan paths. Earlier works have proposed guidelines for setting blur levels [9, 53], but

it remains a challenge to apply these. Because picking blur parameters depends on the stimulus-

task and not on individual differences, blur levels for stimuli and tasks could be tested rapidly,

inexpensively, and at scale in pilot studies on MTurk. In our experiment, we chose a reasonable blur

level after rapid testing on MTurk.

4.1.2 Estimating Gaze on the Web

User interactions with a Web browser have been studied to predict a person’s gaze, but applications

have focused on domains outside of visualization. Much of this work is based on findings about

the relationship between gaze and cursor movements (e.g., [24]), which are easy to track in Web

applications. Other studies using Web search tasks in lab settings have identified specific types of

eye-mouse coordination patterns [90, 91] and demonstrated the predictive power of cursor actions for
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(a) Browser interface for Fauxvea
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p 

(b) Focus window during fixation

Figure 4.1: (a) Fauxvea interface showing analysis task instructions, the blurred image viewer, and
an input field for the task answer. This example shows a bar chart task from Experiment 1. (b)
Deblur under the focus window during a Fauxvea fixation. All pixels outside radius r are fully
blurred, and pixels inside are blended between the blurred image and the focused one. The blend
ratio for each pixel p is proportional to its distance d from the cursor location.

estimating gaze [36]. Huang et al. performed an eye-tracking study relating cursor activity to gaze

in search engine results pages (SERPs), then followed up with a large-scale study of cursor tracking

that linked cursor movements and results-examination behaviors in SERPs [49]. In [48], Huang

et al. identified additional features beyond cursor location, including temporal and task features,
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that improve the accuracy of predicting where people gaze. Our method also uses cursor actions to

predict gaze, but we make use of deliberate cursor presses and releases rather than hover locations

in order to measure start and end times for gaze fixations.

A Web-based system related to a moving focus window is ViewSer, which helped researchers study

how remote users examine SERPs without eye-tracking [73]. The interface blurs DOM elements in

the page corresponding to search results, and deblurs results when users hover over them with the

cursor. One limitation of this method for evaluating visualization analysis is that it can only deblur

entire DOM elements. Even if visualization components do correspond with DOM elements, e.g.,

using D3 [10], the size of the the deblurred component might be large enough that the hovered

location does not reflect where the user is gazing at a useful level of precision. With Fauxvea, the

deblurring area is based on a simple model of the human fovea. Because the focus region becomes

more blurred away from its center, the user must press the cursor near the pixels she wants to see

clearly. Therefore, the precision of Fauxvea for estimating gaze is linked to a parameter in the model

and is not dependent on the way DOM elements are rendered.

Gaze locations in video frames were crowdsourced using a novel video interface. Rudoy et

al. asked workers on Amazon Mechanical Turk (“Turkers”) to watch videos then report text codes

that randomly appeared on the display in different parts of the image [94]. This allowed researchers

to look up an approximate region each Turker was gazing at on a given frame based on the specific

code he reported. One limitation of this technique is achieving high spatial resolution of gaze

estimates. Codes cannot be so close to one another that a person cannot identify them quickly.

Fauxvea has a similar limitation: users might gaze at locations that are within the focus region

without bothering to refocus precisely where they are attending. In practice, we find that users like

to refocus directly on interesting parts of the focus region.

Webcam-based eye tracking is an alternative to methods like Fauxvea that use interaction data

to predict a person’s gaze. These systems use computer vision techniques to detect a person’s eyes

in webcam-recorded video of his or her face during interaction. Hansen and Ji provide a survey

of methods for eye detection and tracking [38]. Using eye position, webcam-based eye-tracking

systems predict where the user is looking at each moment as a coordinate in the display. We

decided against using webcam eye tracking because both technical and social challenges exist for the

intended application of crowdsourcing visualization analysis tasks. For example, Turkers’ computing

environments and capabilities can vary widely and affect webcam eye-tracking performance; by

contrast, the technical requirements for end users of Fauxvea (i.e., a modern Web browser) are lower.

Overcoming these challenges is an active research problem. In fact, Xu et al. recently demonstrated

the feasibility of crowdsourcing saliency during video clips using Turkers and webcam-based eye

tracking [106].

4.1.3 Crowdsourcing Visual Analysis Tasks

Recently, crowdsourcing platforms have been used to evaluate visualizations with scalable, non-

expert populations. Some notable examples include Heer and Bostock’s reproduction of classic
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graphical perception results [42], Kong et al.’s study on TreeMap design [69], evaluations by Kosara

and Ziemkiewicz of visual metaphors and percentage value reading [72], and Ziemkiewicz et al.’s

study of the effects of individual differences on visualization performance [109]. This line of work

has provided valuable examples and guidelines for crowdsourcing visualization analysis tasks, but

they largely focus on evaluating the speed and accuracy of Turkers’ task performance as outputs.

Instead, we estimate gaze locations with Fauxvea using additional data from the task execution,

e.g., cursor presses that facilitate performing a task.

4.2 Design and Methods

We adapted the RFV into a Web-based application called Fauxvea that estimates gaze fixations

during visualization analysis tasks without using eye-tracking hardware. By design, tasks on the

interface can be performed in parallel by remote users, or crowdsourced as human intelligence tasks

(HITs) on MTurk.

We had two main objectives when designing and building the Fauxvea prototype:

• Collect data that is comparable to eye tracking during analysis of a static visualization.

• Enable scalable experiments with remote users, like crowdsourced participants or remote do-

main experts who are unavailable for local eye-tracking studies.

4.2.1 Interface Design

Comparable to Eye Tracking

The goal of this work is to make gaze data and metrics more accessible to visualization designers

and evaluators. We are mainly interested in the location and duration of fixations – where the eye

is focused in the field of view and has the highest visual acuity. If we assume for simplicity the “eye-

mind” hypothesis, this data identifies areas of a visualization that a person cognitively processes

during an analysis task.

No part of the Fauxvea viewer is focused until the user presses the cursor in the viewport. The

time and location of each cursor press are recorded as the start time, end time, and location point of

a fixation estimate. This is more precise than determining a fixation based on the speed of a hovering

cursor, as in the original RFV. We also considered cursor-dragging as a way to simulate a scan path

when the user intends to shift between gaze locations. One challenge in sampling estimated gaze

locations from a drag movement is that we must trust that a user is attending to the focused part

of the visualization during the drag. Some users may drag from point A to point B as quickly

and (un)attentively as a person who mouse-releases at point A, moves the mouse, then presses it

at point B. Additional training or other mechanisms could be used to make data collected during

dragging more easy to interpret, e.g., as a sequence of fixations or pursuit movements. The prototype

described in this chapter does not allow dragging, but future implementations could benefit from

more investigation of this interaction.
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While the cursor is pressed, image details directly under the cursor are revealed within a focus

radius, as shown in Figure 4.1. The blur approximates how details in one’s peripheral vision appear

when the fovea is fixated elsewhere in the field of view; we use a radius instead of the original RFV’s

rectangular window with steps of blur. The idea of a focus spotlight is similar to other approaches in

foveated imaging and Focus+Context techniques in information visualization, like semantic depth of

field [71]. We note that the information loss that occurs in peripheral vision and how it affects visual

search are not fully understood. Others have argued that blur is too simple of a model and that

other summary statistics may be computed over a pooling region in one’s vision [92]. Incorporating

different models of lossy visual information into an RFV-like interface is an open challenge beyond

the scope of this work.

For the experiments described later, the focus radius is equal to the 1/6 the width of each

stimulus, or 133 pixels. For many desktop and laptop computing environments, we expect this

radius is a reasonable approximation to the extent of the fovea, which is between 1–2 degrees of the

field of view [61]. The Fauxvea focus region does not move if the user drags, forcing the user to

release before pressing in a new location. This lets Fauxvea record fixation start and end times. The

interface does not support zoom or pan operations, though scrolling in the browser window will not

impact the interface. Within the focus radius, each pixel has a color that is a blend of corresponding

colors in the original image and blurred image. The blend ratio for each pixel is proportional to its

distance from the cursor press location; pixels outside the focus radius are fully blurred.

For the purpose of tracking fixations during visual analysis tasks, the visualization should be

blurred enough that the task is impossible to answer correctly without fixating using the cursor.

We expect users to fixate in the image using either: 1) previous knowledge of the image type (e.g.,

where guide marks might exist in a chart), 2) interesting low-resolution details in the blurred image

or in the blended focus radius of a previous fixation location. In the Fauxvea prototype, images are

blurred as a preprocessing step. For the experiments described later in this chapter, all stimuli are

blurred with a Gaussian filter that we selected following a pilot study.

Scalable

Fauxvea is designed to support scalable, online experiments related to visualization analysis. In

addition to the image browser, the webpage includes task instructions, controls to navigate between

tasks, and an input field for task answers. Cursor interactions and answers to task questions are

stored on the client during the task, then sent as a transaction to our database when the task is

completed. Full histories of task executions are collected for each user.

4.2.2 Evaluation Methods

We ran three experiments to evaluate the validity of our method as a viable alternative to eye tracking

for visualization. First, we collected fixation data using an eye tracker with participants performing

analysis tasks on basic infovis charts; we compared these fixations to estimates collected online with

our method on the same stimuli and tasks using workers on MTurk. Second, we evaluated how well
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Figure 4.2: Comparison of eye-tracking gazes, Fauxvea gaze estimates from Turkers, and visual
saliency maps. Red overlays show maps of fixation locations by 18 eye-tracking participants (middle-
left) and between 96–100 Turkers per stimulus type (middle-right). Saliency maps (right) were
computed from a visual saliency model [65], but models like these do not account for predefined
analysis tasks.

self-assessment works as an alternative to eye tracking or Fauxvea for predicting gaze. Third, we

used our method to reproduce findings about visual exploration on tree layouts from an eye-tracking

study by Burch et al. [14] to evaluate the method in a realistic scenario with a more complex analysis

task.

4.3 Experiment 1

In Experiment 1, we performed in parallel an eye-tracking study and an online study using Fauxvea

with workers recruited on MTurk. Both studies asked participants to perform a set of visual analysis

tasks for image stimuli. Participants were asked one question per image that required them to inspect

the image. In the eye-tracking study, participants viewed the stimuli with a normal image viewer
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while the eye tracker collected data. In the MTurk study, Turkers used the Fauxvea interface and

pressed the cursor on the interface while inspecting each image to focus the viewer.

We hypothesize that fixation data collected from both studies will be comparable both qualita-

tively (H1a, H1b) and quantitatively (H2).

H1a For each stimulus, the two distributions of fixation locations from eye tracking and Fauxvea

studies are qualitatively similar.

H1b For each stimulus, the two distributions show patterns that are related to the corresponding

analysis task.

H2 Quantitatively, the similarity between the two distributions for each stimulus is significantly

higher than the similarity between the eye-tracking distribution and random fixations drawn

from a null distribution.

We evaluate H1a and H1b in Sec. 4.3.6 by generating and interpreting heatmaps of fixation locations

using data from each study. We evaluate H2 in Sec. 4.5.3 by applying a distance function (described

later in Sec 4.3.4) that compares two fixation distributions.

4.3.1 Stimuli and Tasks

Three of the most common types of information visualizations were chosen for this experiment: bar

charts, scatter plots, and node-link diagrams. A fourth stimulus type, photographs, were also selected

from a dataset by Judd et al. [65] and serve in contrast to structured charts in our experiment. We

used five images of each type in this experiment, resulting in 20 unique stimuli. All images were

scaled to a width of 800 pixels, and the heights ranged from 600-623 pixels.

Each of the visualizations was created programmatically using D3 and Vega. Each bar chart and

scatter plot shows 20 samples of a quadratic polynomial with noise added to each value. No axis titles

are rendered in the charts. Each node-link diagram showed a graph of 20 nodes with average degree

of 3. Networks of this size have been studied in previous eye-tracking experiments [86]. Blurred

versions of all stimuli were created using ImageMagick. Additionally, we chose a visual analysis task

for each type.

• Bar charts: “Estimate the value (height) at year 2008.” The domain in each chart represents

years from 1993 to 2013, and the year in the task description changed between images.

• Scatter plots: “Estimate the (x, y) position of the biggest outlier in this data trend. For

example, ‘(3.5, 14.8)’.”

• Node-link diagrams: “What is the fewest number of edges to travel between the red marks

A and B?” Each image shows a different graph layout and has two randomly selected nodes

colored red and labelled A and B.

• Photos: “Estimate the average age (years) of all people in the photo.” Each photo contains

one or more people.
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Tasks at this level of complexity have been used in eye-tracking studies involving visualization

analysis (e.g., [86]).

4.3.2 Eye-tracking Study (ET)

We recruited 18 participants (14 male, 4 female) for the eye-tracking portion of the experiment.

Participants were undergraduate and graduate students, except two who were not students. The

eye-tracker used in our study was a contact-free RED 125Hz from Sensory Motor Instruments. The

stimuli were displayed on a 1600 x 900 pixel monitor and participants were seated approximately 30

inches from the monitor. In order to faithfully replicate the Fauxvea browser setup, the eye-tracking

screen displayed during the study was designed to look like the Fauxvea webpage (see Figure 4.1)

but with unblurred stimuli. The unblurred stimuli were shown at the same pixel resolution as used

in the browser setup.

After a minimal introduction and eye-tracking calibration, participants were shown all 20 stimuli

in succession and were asked to provide verbal responses to the task questions.

4.3.3 MTurk Study (MT)

We created four different HITs on MTurk and recruited 100 Turkers to complete each. Each HIT

corresponded to one of four stimulus-task types: bar charts, scatter plots, node-link diagrams, and

photographs. In each HIT, participants looked at five images and performed the corresponding

visual analysis tasks described earlier. All participants were located within the United States.

Participants were then asked to inspect five visualizations of the same type one at a time before

answering the associated question and moving on. The instructions for each HIT briefly described

the image type and task. Participants were instructed to press and hold the cursor over the blurred

image to reveal details. Based on results from a pilot study with 41 Turkers, we determined that

training materials beyond the instructions were not necessary for these tasks. We were cautious

not to suggest analysis strategies for completing these tasks. Participants could advance to the next

image in the sequence after any amount of time by providing an answer to the question and clicking a

button on the webpage. They were not allowed to revisit past images after moving on. Participants

were paid $0.15 for completing the HIT. The instructions also told participants they could earn a

$0.10 bonus if all answers were good according to an expert reviewer. The goal of the bonus is to

incentivize participants to be thorough with the cursor interface in answering the questions. It also

provides a quality control mechanism for analyzing Turkers’ cursor data.

After the visual analysis tasks, we collected demographic information about participants’ age,

sex, and cursor device (mouse, trackpad, or other), as well as how often they look at images like

these (“never”, “sometimes”, “often”).
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Figure 4.3: Fauxvea estimates are significantly more similar to eye tracking (Experiment 1) than
each other baseline is (p < .001 for each). Smaller scores indicate more similarity. Error bars show
±1 standard error.

4.3.4 Comparing Eye Tracking to Fauxvea Estimates

Distance scores were computed between the eye-tracking and crowdsourced gaze data. Low distance

scores indicate high similarity between the gaze locations in both data sets. For each image, we

considered two sets of points: the union of all cursor press location by Turkers using Fauxvea, and

the union of all fixation locations by the eye-tracked participants. For each image, the analysis

followed these steps:

1. For both sets, estimate probability density functions for the pixel locations using kernel density

estimation (KDE) with a Gaussian kernel. This gives spatially smooth representations of the

fixation data.

2. Discretize each smooth representation of the gazes on the original pixel grid. This creates two

histograms, HET and HMT .

3. Compute the distance between HET and HMT .

This approach is similar to a previous study comparing gaze maps [94].

In this experiment, we tested several distance functions to compare HET and HMT . In the re-

mainder of this chapter, we report results from the χ2 goodness-of-fit test and a symmetric version

of Kullback-Leibler (KL) divergence. Both are off-the-shelf techniques that have been previously

used to quantify differences between gaze sets [94] and between saliency maps and human fixa-

tion maps [64, 108]. Other metrics including Earth Mover’s Distance (EMD) and Area Under the

Curve (AUC) variations have also been used and combined to evaluate saliency models [15] and are

applicable to our study; we limited the metrics to χ2 and KL for simplicity.
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Figure 4.4: Pair-wise χ2 distances between eye tracking (ET) and Fauxvea gaze estimates on Me-
chanical Turk (MT) for all 20 stimuli. As a sanity check, we compared each ET dataset to each MT
dataset from Experiment 1 and visualized the distance scores in a matrix. We expect that when
using a reasonable distance metric, the smallest distances (darkest cells) will appear on the diagonal,
where ET and MT are compared for the same stimulus.

4.3.5 Comparing Eye Tracking to Random Gazes

For hypothesis H1, we try to reject the null hypothesis that Fauxvea gaze estimates are spatially

uncorrelated with actual eye-tracking fixations. In this section, we describe “null” distributions, or

baselines, for gazes that we expect to be less similar to ET than MT is. In Sec. 4.6.2, we discuss how

building models of gaze during visualization tasks could help us test more realistic null hypotheses.

We expect the distance between a real gaze map and a random gaze map to be significantly larger

than the distance between corresponding ET and MT gazes for an visualization. We considered

several baseline gaze distributions that we believe are unlikely to be correlated spatially with eye-

tracking fixations during visualization tasks:

• Grid, where fixations are evenly distributed in the stimulus.

• Uniform, where fixations are equally likely in any part of the image. Rudoy et al. compared χ2

distances between eye tracking and crowdsourced fixations with their method to distances be-

tween ET and uniform random fixations [94]. This is a baseline model for saliency (“Chance”)

in the MIT Saliency Benchmark [15].



56

Task Participants Fixations Familiarity with the Image Type

Total Age Mouse / Trackpad / Other Total Per task Never / Sometimes / Often

Bars 98 µ = 29.1, σ = 7.7 77.6% / 18.3% / 4.1% 4,216 µ = 9.9, σ = 7.3 52.0% / 40.8% / 7.2%
Scatter 98 µ = 27.5, σ = 6.9 68.4% / 28.6% / 3.0% 7,484 µ = 24.9, σ = 20.5 57.1% / 34.7% / 8.2%
Node-link 96 µ = 28.2, σ = 7.3 74.0% / 24.0% / 2.0% 4,520 µ = 10.2, σ = 10.0 63.5% / 27.1% / 9.4%
Photos 100 µ = 29.3, σ = 9.7 73.0% / 24.0% / 3.0% 6,314 µ = 14.3, σ = 11.7 6.0% / 43.0% / 51.0%

Table 4.1: Summary of Turkers from Experiment 1. “Fixations” refers to the number of cursor
presses that are used to focus on the stimulus. “Total” is the number of fixations for all participants
on all five stimuli in each category. “Per task” shows the mean and standard deviation for the
number of fixations per user, per stimulus.

• Centered Gaussian, where fixations are normally distributed in the center of the image. Judd

et al. showed that the center of a photograph is a good a priori estimate of gaze location [65].

This is a baseline model for saliency (“Center”) in the MIT Saliency Benchmark [15].

• Uniform + Centered Gaussian, which is a combination of the uniform and centered Gaussian

distributions.

In addition to the above baselines, we compute outputs from a visual saliency model (Saliency) that

is task-agnostic and compare these heatmaps to our ET gazes. The motivation for this step is to

see how an off-the-shelf saliency detector compares to Fauxvea for predicting gaze during predefined

analysis tasks. There are many saliency detectors available that take images as inputs and output

smoothed saliency heatmaps; in this experiment, we demonstrate using Judd et al.’s model [65] that

is trained using a benchmark set of eye-tracking data, and is therefore transparent for others to use.

We report distances from ET to each of these gaze distributions in Sec. 4.3.6.

We computed distances from ET to each baseline.

• For Grid: a set of points were generated forming a n× n grid on the stimulus, where n is the

square root of the number of fixations in the gaze data.

• For Uniform, Centered, or Uniform+Centered: a set of points was sampled from the distribu-

tion, using as many fixations as in the gaze data.

The distance between these baseline point data and the gaze data was computed using the algorithm

described in Sec. 4.3.4 For the baselines involving a sampling procedure (all but Grid), distances

were computed for 100 sampling iterations for each stimulus, then averaged.

For the Saliency baseline, we computed the average distance between ET and the model-generated

saliency map for all stimuli. To compute each single distance score for a stimulus, we used the

algorithm in Sec. 4.3.4 to get a normalized histogram of the ET gazes, then we normalized the

model-generated saliency map as a histogram before applying the distance function.

4.3.6 Results

In this section, we report findings from our comparison of eye tracking and Fauxvea estimates for

basic infovis charts and tasks (Sec. 4.3.6).
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Image type Symmetric KL Divergence χ2 Distance

Uniform+Gaussian Gaussian Uniform Grid Uniform+Gaussian Gaussian Uniform Grid
Eye tracking

Scatter 1.09 8.10 0.75 0.73 0.83 1.35 0.65 0.64
Bars 1.60 9.84 1.08 1.07 1.11 1.63 0.84 0.84
Node-link 1.20 2.25 1.52 1.51 0.90 0.96 1.13 1.13
Photos 0.98 3.90 0.96 1.07 0.75 0.98 0.87 0.86

Table 4.2: Distance from eye-tracking data on different visualization types to random gazes from
four baseline distributions. For each distance function, bold values show the distribution that most
closely fits the image type (smallest distance score). These values suggest which null distribution is
the fairest to sample for baseline comparisons against Fauxvea gaze estimates, for each of the four
stimuli-task types we evaluated.

Summary statistics for our data collection experiments are shown in Table 4.1. Turkers performed

392 HITs from four different stimuli-task types. Eight Turkers submitted HITs without performing

any Fauxvea cursor presses; therefore, their data are not included in our analysis.

In general, we found that fixations are distributed at similar locations between the eye-tracking

(ET) and Fauxvea (MT) studies for all infovis stimuli. Heatmaps of fixation locations collected in

Experiment 1 are shown in Figure 4.2, along with saliency map generated from the Judd model. Each

row shows a sample visualization from our experiment, along with overlays of gaze data collected in

ET and MT studies. Red overlays show normalized maps of fixation locations both by eye-tracking

participants and Turkers. All stimuli and heatmaps from Experiment 1 are shown in Appendix A.

The similarities in these heatmaps between conditions support H1a. In most cases, white spaces

in a visualization are not fixated on in either eye tracking or Fauxvea, and the most relevant marks for

the analysis task are fixated on most heavily. Evidence supporting H1b is clearest in the heatmaps

of bar chart and scatter plot, where specific axis labels corresponding to correct task responses

(i.e., column heights or (x, y) coordinate values) are fixated on heavily while the others are largely

ignored. Heatmaps can also illustrate what visual-analysis strategies are used to complete tasks with

less structure that do not use guide marks. For example, it is clear that people primarily fixate on

faces in both eye-tracking and Fauxvea results to answer the photograph task “Estimate the average

age of all people in the photo” and not other context clues (see Figure 4.2 for an example).

We found quantitative evidence that fixation estimates made with Fauxvea are more similar to

eye tracking than the baseline estimates we tested. While it is not surprising that Fauxvea performs

better than random and task-agnostic gaze estimates, the results confirm a basic requirement for

the method and also demonstrate how to quantitatively compare two sets of fixation locations. As

we discuss in Sec. 4.6, opportunities exist to use this evaluation approach to compare new models

of gaze against each another.

The distance between ET and MT (0.39 using the symmetric KL function, 0.23 using the chi-

squared function) is significantly less than the distance between ET and each of the baselines (p <

.001 for all paired, two-tail t-tests), which supports H2. Figure 4.3 shows the average distance for

both symmetric KL divergence and χ2 distance between all ET and MT data, and the difference

between ET data and each of the baselines we considered.
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Figure 4.5: Predicted fixation locations for the task “Estimate the value (height) at year 2007” by
participants (P1–P6, marked with unique colors) in Experiment 2.

Table 4.2 shows the average distance scores for both metrics between the ET data for the four

image-task types and each of four baseline null gaze distributions. These values suggest which null

distribution is most fair to sample for random comparisons against Fauxvea gaze estimates, for each

of the four stimuli-task types we evaluated. In general, fixations on charts with guide marks near the

edge of the image (e.g., bar charts and scatter plots) are most similar to samples from a grid-based or

uniform distribution rather than a distribution with higher likelihood near the image center. Marks

like axes are critical for decoding information, but where a person attends is usually task-dependent.

By contrast, photographers tend to frame the most interesting parts of the image near the center.

4.4 Experiment 2

In this small-scale follow-up experiment, we test whether people with experience and interest in eye

tracking are able to reliably predict fixation locations for the tasks and stimuli in Experiment 1.

The goal of the experiment is to understand whether it is viable for a person to self-assess where

gazes happen during a visualization task instead of running a crowdsourced study with Fauxvea or

performing an eye-tracking study.

In Experiment 2, participants were limited to those who had experience or interest in eye tracking,

and therefore represent individuals who are most capable and likely to self-assess where others

will gaze as an alternative to performing a user study with others. This provides a reasonable
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baseline for comparing self-assessment to Fauxvea. Another interesting question is whether non-

expert crowdsourced workers like Turkers are also capable of predicting where others gaze. If so, it

might be possible for a visualization developer to crowdsource the gaze prediction task to a small

number of workers instead of either (1) doing it himself or (2) running a typical Fauxvea user study

with a larger sample size, which is more costly. Answering this question is beyond the scope of

Experiment 2, but understanding the range of capabilities of remote non-experts is an important

challenge for crowd-powered systems that we discuss more in Chapter 5.

4.4.1 Methods

We recruited six participants (four male, two female) who were researchers in human-computer

interaction or computer vision at a major research university in the U.S. Each was right-handed,

had normal or corrected-to-normal vision, and identified himself as having experience or interest in

learning where people look in images. The ages of participants ranged from 25–35 years (M=28.7,

SD=4.13). All participants passed an Ishihara test for normal color vision.

In the first task, each participant was seated about 18 inches from a 24” 1920 x 1200 pixel monitor

and viewed each of the 20 task-stimulus pairs from Experiment 1. For each task, participants were

asked to select five or more locations in the stimulus they believe people performing the task will

fixate on. Participants indicated their fixation locations by clicking a cursor at locations inside the

image. The tasks were presented in the same order that participants in the eye-tracking condition

(ET) in Experiment 1 performed them. We recorded each predicted location.

In the second task, participants were seated at the same display and shown eye tracking (ET) and

Fauxvea (MT) gaze heatmaps for each task-stimulus pair, side by side. The ET and MT heatmaps

were generated from data collected in Experiment 1. For each of the 20 pairs, each participant was

asked to click on the heatmap she believed was generated from real eye-tracking data; the position

of the ET heatmap – left or right – was randomly assigned between stimuli. Participants could

also select a “Too close to call” button if they could not identify the ET heatmap. We scored how

accurate each person was in selecting the ET heatmaps in the set of stimuli.

4.4.2 Results

The results from this study are primarily qualitative for two reasons: 1) recruiting a large sample

size of people with experience in vision or eye tracking is difficult; 2) when asked to select fixation

locations, most participants selected only the minimum number of locations we requested. Therefore,

the data are sparse.

We examined the results from the first task by visualizing all fixations predicted by the expert

participants and looking for patterns in how participants chose points across stimuli. These gaze

predictions for all stimuli are shown in Appendix B. A filterable visualization of these fixation

predictions is available online at: http://bit.ly/fauxvea-sup. In general, we found that most

participants identified similar key areas in each stimulus, but predictions varied in how people

http://bit.ly/fauxvea-sup
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attend to areas of the stimuli that are visual salient but irrelevant to the particular tasks. Figure 4.5

shows an example where 5 of 6 participants predicted that others would fixate on the top of the

column, x-axis guide marks, and y-axis guide marks corresponding to the task; however, there was

little consensus on which other bars or guide marks people would attend. One participant (P2), a

graduate student who studies eye tracking, did not predict any fixations on the task-specific areas

of the bar chart; in a follow-up interview, she indicated that she focused on marking only visually

salient regions.

Our main insight is that even with expertise in thinking about where others will gaze in an image,

as an individual it is difficult to predict how a population of people will gaze during a visual analysis

task. Several participants commented that they made predictions by first solving the task on their

own, then reporting where they gazed during that trial; however, this strategy limits the evaluator

to only one perspective and is not viable for estimating gazes from a population that might analyze

a visualization in different ways.

In the second task, the experts correctly identified the real eye-tracking heatmap with 68.3%

accuracy on average. They incorrectly identified the Fauxvea heatmaps as eye tracking 23.3% of

the time, and 8.3% of the time they selected “Too close to call”. In a follow-up interview, most

participants indicated that when heatmaps were noisier it was an indicator of real eye tracking. P5,

who had run eye-tracking studies prior to our experiment, commented that adding random noise to

the Fauxvea heatmaps could make them look closer to the eye-tracking heatmaps.

4.5 Experiment 3

We ran a third experiment to see if the Fauxvea method is able to reproduce findings about visual

exploration behaviors from an existing eye-tracking study using tree visualizations. This follow-up

was aimed at evaluating the external validity of Fauxvea beyond the basic visualization interpretation

tasks in Experiment 1. We reproduced the task and three stimuli from an eye-tracking study

of traditional, orthogonal, and radial tree layouts [14]. Burch et al. note that these layouts are

“frequently used in many application domains, they are easy to implement, and they follow aesthetic

criteria for tree drawing”.

In general, we hypothesize that fixation locations and transition frequencies reported in the

original study will be reproduced by running a similar experiment with Fauxvea (H3). In addition,

we hypothesize that the three findings in the section titled “Analysis of Exploration Behavior” in

[14] will be corroborated with data collected from a reproduction of the experiment using Fauxvea

instead of an eye tracker (H4a, H4b, H4c).

H3 Transition frequencies between predefined areas of interest (AOIs) in the original study will

be similar to transition frequencies reproduced using Fauxvea.

H4a Participants will jump more frequently between leaf nodes that are near each other in the

traditional layout compared to the orthogonal and radial layouts.
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(a) Traditional layout

(b) Orthogonal layout

(c) Radial layout

Figure 4.6: Three stimuli for Experiment 3. In each diagram, the root node is indicated by a larger
circle mark, and the target nodes for the common-ancestor task are indicated by red arrows.
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H4b The pixel distance between the marked leaf nodes will affect the transition frequency.

H4c Participants viewing the radial layout will transition back from the root node to AOI 2 more

frequently compared to the traditional and orthogonal layouts.

We evaluate H3 in Sec. 4.5.3 by analyzing the most frequent destination AOI from each source AOI.

We evaluate H4a, H4b, and H4c in Sec. 4.5.3 by analyzing specific patterns in the corresponding

transition tables.

Testing these hypotheses will help us evaluate whether Fauxvea can reproduce findings about

visual exploration visualization without using an eye tracker. We note that we do not compute

distance scores, as we did in Experiment 1, because the fixation data from the eye-tracking study

are not available. Furthermore, rather than measuring how closely the Fauxvea estimates match

the eye-tracking heatmaps, the main goal of this experiment is to corroborate or reject the findings

from [14] using a similar analysis.

4.5.1 Stimuli and Tasks

Participants were shown tree diagrams with marks that indicated the root node and three target

nodes. Stimuli were composed of three tree layouts: traditional, orthogonal, and radial. The layouts

differ in how nodes and edges are aligned. These layouts are shown in Figure 4.6. The participants

were asked to find the least common ancestor (LCA) of the target nodes in each tree. The instructions

included a definition of the LCA written in plain English.

We asked participants to report the coordinates of the LCA for each tree they analyzed, so we

added an interaction to the Fauxvea interface that lets users find the coordinates over the cursor

location. While interacting with the interface, the user can type the ‘Return/Enter’ key to place a

mark under the cursor and its (x, y) coordinates are displayed on the screen. In this way, participants

can quickly find the coordinates of locations in the image without interfering with cursor presses.

4.5.2 MTurk Study

We created three different HITs on MTurk corresponding to the three tree layouts and recruited

85 Turkers to complete each. We restricted each participant to one HIT only because the same

underlying graph data is visualized in each HIT. All participants were located within the United

States.

In each HIT, participants performed three training tasks using Fauxvea and were shown example

trees with the LCA labelled to help them understand the task. For the fourth task, participants

completed the task for the test stimulus that was replicated from the Burch et al. study. The

test stimulus did not have the LCA labelled. During each HIT, participants could advance to the

next image in the sequence after any amount of time by providing and answer to the question and

clicking a button on the webpage. They were not allowed to revisit past images after moving on. We

expected that each HIT would take 4-5 minutes to complete and paid each Turker who completed
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(a) (b) (c)

Fig. 10. Top row: Hierarchy dataset with three marked leaf nodes (stimuli data). Second row: Gaze plots for the same hierarchy dataset as
illustrated in the top row. Third row: Heat maps for area of interest (AOI) determination based on the gaze plot data represented in the second row.
Bottom row: Probabilities for direct transition between AOIs. Matrix entries highlighted in the same color belong to the same AOI pair.

showed that differences between radial and other layouts were signifi-
cant (p < 0.005, Bonferroni-corrected for multiple comparisons).

Hypothesis 2 can be confirmed. Non-radial layouts are significantly
faster than the radial layout when performing the task of finding the
least common ancestor of a set of marked leaf nodes. To understand
the reasons for the longer duration when solving the task we have to
take into account the eye movement data. There is no significant dif-
ference between traditional and orthogonal layouts.

5.3 Effect of Number of Leaf Nodes Marked

Finally, we analyzed the effect of the number of leaf nodes marked
in a diagram. First, an ANOVA analogous to the one in Section 5.1
showed that there was a significant effect of the number of marked
leaf nodes on completion time (F(2,70) = 5.72; p < 0.005;h2 = 0.69)
with mean times 12.73s (SD = 6.96s) for three marks, 14.85s (SD =
8.24s) for six marks, and 16.01s (SD = 9.82s) for nine marks (see
Figure 8). The ANOVA analogous to Section 5.2 supports these re-
sults. Here, the number of marked leaf nodes also had a significant ef-
fect (F(2,70) = 5.72; p < 0.005;h2 = 0.62) with mean times 13.83s
(SD = 8.92s) for three marks, 15.75s (SD = 10.29s) for six marks,
and 17.86s (SD = 11.89s) for nine marks (see Figure 9). Post-hoc
pairwise testing revealed significant differences only between three
and nine marks (p < 0.005, Bonferroni-corrected for multiple com-
parisons). Since both analyses agree on this and an increasing number
of marked leaf nodes results in increasing completion times, we con-
firm Hypothesis 3.

5.4 Analysis of Exploration Behavior
We base our analysis of the participants’ exploration behavior on areas
of interests (AOIs) that we derived from the density of the heat map
representations. The top row of Figure 10 shows the same hierarchy
dataset in the traditional, orthogonal, and radial layouts. The second
row of Figure 10 represents gaze plots of the participants by the inte-
grated visualization of the eye tracking system for the stimuli based
on the datasets from Figure 10 (top row). Each participant is mapped
to a different color as given by the integrated eye tracking software
and all gaze trajectories are drawn on top of each other. An immense
amount of visual clutter is produced and only the hot spots can be de-
rived from this visualization. Therefore, we preprocess the data by
first generating heat map representations as shown in Figure 10 (third
row) to classify a set of regions that were of special interest for the
subjects.

For the analysis, we calculated a transition matrix of the AOIs that
contains the relative amount of direct transitions between each AOI to
any other AOI, see Figure 10 (bottom). The transition matrix shows
the probability to switch from one AOI to another without detours.

The goal of this analysis is to identify major differences in the ex-
ploration behavior between the three layout strategies. This analysis
method ignores the substantial amount of transitions that begin and
end up outside of AOIs (denoted in the first row/column of the tran-
sition matrix in Figure 10 (bottom)). To identify detailed characteris-
tics of exploration strategies and to obtain statistically significant and
quantitative findings, a more complete analysis approach should be
followed, which is left for future work. However, for the comparative
and qualitative investigation of the main differences in exploration be-
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Figure 4.7: Comparison of results from Experiment 3 with the results reported by Burch et al. Data
in columns (a), (b), and (c) correspond to traditional, orthogonal, and radial layout conditions.
Rows 1 and 2 show the eye-tracking heatmaps from Burch et al. and the gaze estimate heatmaps
we collected in Experiment 3, respectively.

a HIT $0.45. A $0.15 bonus was offered to each Turker who identified the LCA correctly according

to an expert reviewer.

After the visual analysis tasks, we collected demographic information about participants’ age,

sex, and cursor device (mouse, trackpad, or other), as well as how often they look at images like these

(“never”, “sometimes”, “often”) and general feedback about the strategy each Turker completed the

LCA task.

4.5.3 Results

For each HIT, 85 Turkers performed the LCA task using the Fauxvea interface. Each of the test

tasks was deemed accurate if the reported coordinates for the LCA were within 10 pixels of the

known answer. Turkers who were accurate were given a $0.15 bonus. The average task accuracy for

the HITs differed: Turkers were most accurate with the orthogonal layout (50.6% = 43/85), slightly

less accurate with the traditional layout (41.2% = 35/85), and least accurate with the radial layout

(20% = 17/85).

Overall, we found that the distributions of fixations from Experiment 3 on the three stimuli were

similar to those published in Burch et al. [14]. In Figure 4.7, we show heatmaps of fixations from

Experiment 3 alongside those from the original study. The top row shows fixation heatmaps and

the AOIs specified in the original study. The second row shows heatmaps we generated from the

data collected in Experiment 3. We implemented a heatmap renderer using a rainbow color map

to approximate the visualization technique in the earlier work; therefore, some visual differences

between these charts may be due to implementation differences.
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Figure 4.8: Comparison of results from Experiment 3 with the results reported by Burch et al. Data
in columns (a), (b), and (c) correspond to traditional, orthogonal, and radial layout conditions.
Rows 1 and 2 show transition probabilities between AOIs from Burch et al. and the probabilities
we found in Experiment 3, respectively. Transition probabilities to or from areas outside any AOI
are grayed out. Green cells indicate where the most likely destination AOI from a source is the
same in both the eye-tracking results and the Experiment 3 results. Yellow cells indicate where the
most likely destination AOI from a source was not the same in both eye-tracking and Experiment 3
results.

We observed several similarities between the heatmaps from the original study and Experiment 3.

In all heatmaps, AOI 5 – which contains the root node of the tree – is fixated on heavily. This makes

sense because locating the root node is critical for the task of finding the LCA of the target nodes.

We also found subtrees and leaf nodes that were essentially ignored in both the original study and

in Experiment 3. These include areas that are dense with nodes and edges but are not parts of

the visualization that one must attend to find the LCA (e.g., between AOI 1 and AOI 3 in the

traditional and orthogonal layouts). This suggests Turkers are able to focus on the task at hand and

do not spend effort fixating on areas of the visualization that are irrelevant to the task, even if those

areas are comparably visually salient in the blurred viewer. The fact that the heatmaps are similar

between studies, and that they show evidence participants fixate on task-specific areas, supports

both H1a and H1b. We did not evaluate H2 for Experiment 3 because the raw eye-tracking data

needed to compute quantitative distance scores were not available.

We also observed some differences between the fixation maps from these experiments. In gen-

eral, the original eye-tracking fixations appear more focused and less spread out than the Fauxvea

fixations. This contrasts our earlier findings in Experiment 1. An exception to this is the set of

Fauxvea fixations that occur along edges in the traditional and orthogonal layouts (e.g., between

AOI 2 and AOI 6, and between AOI 1 and AOI 7). Another noticeable area where heatmaps differ

in the traditional layout is AOI 2, which is fixated on relatively more than AOI 3 in our experiment

and less than AOI 3 in the original experiment. In this layout, Turkers were much more likely to

transition from AOI 7 to AOI 2 than to any other AOI; in the original eye-tracking study, AOI 2 was

also the most frequent transition from AOI 7, but AOI 1 and AOI 3 are other common destinations
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(each with > 10% frequency).

All observed transition frequencies, which can be thought of as probabilities, between specific

AOIs are shown in Figure 4.8. The top row shows probabilities from the original eye-tracking

study, and the second row shows probabilities from the data in our experiment. The similarity

in transition tables between experiments suggest that participants explored the AOIs using similar

patterns. For 14 out of the 21 source AOIs in the three layouts (67%), the most frequent destination

AOI (highlighted in green) was the same in both the original results and our results. This is much

better than the 3 or 4 matches (16.7% = 1/6) we expect if the most frequent destination from

each AOI were randomly chosen from the remaining six. Therefore, we find support for H3. The

cells highlighted in yellow show where the most likely destination AOI is different between the

experiments. In all but one of these cases, the most likely transition in our experiment was the

second most likely in the original experiment.

Examining the transition probabilities, we did not find support for H4a. Burch et al. found that

the probability from AOI 1 to AOI 6 (and vice versa) was 19% (17%) for the traditional layout, in

contrast to 7% (6%) in our study, which is comparable to the orthogonal layout results from both

studies. Transition probabilities for these AOIs in the radial layout are comparable between studies.

We found partial support for H4b. We re-examined the transitions that supported this hypothe-

sis in the original study. The Fauxvea transition probability from AOI 1 to AOI 3 (and vice versa) is

less than the probability from AOI 1 to AOI 6 (and vice versa) in the traditional (3% (2%) compared

to 7% (6%)) and orthogonal (4% (3%) compared to 7% (3%)) layouts. The distance between AOIs

1 and 3 is greater than the distance between AOIs 1 and 6. However, for the radial layout, we

found that the probability from AOI 1 to AOI 3 (and vice versa) was not necessarily less than the

probability from AOI 1 to AOI 6 (and vice versa), as in the eye-tracking study: 4% (2%) compared

to 2% (3%). In fact, the distances from AOI 1 to AOI 3 and AOI 6 are not as different in the radial

layout and in the traditional and orthogonal ones (see Figure 4.6). We discuss possible explanations

for these differences in Sec. 4.6.1.

Finally, we found strong support for H4c. In our experiment, the probability from AOI 5 to

AOI 2 is 29% in the radial layout but only 11% in both traditional and orthogonal layouts. This

is comparable to Burch et al.’s probabilities for this transition: 22% (radial), 4% (traditional), and

5% (orthogonal).

4.6 Discussion

In this section, we discuss how Fauxvea might affect visual exploration behaviors, then we outline

opportunities for improving Fauxvea and quantitative comparison methods for gaze estimates.

4.6.1 Visual Exploration Behaviors

We noticed a few differences in how eye-tracking and Fauxvea fixations are distributed spatially for

visualization tasks. In Experiment 1, we found that eye-tracking gazes generally occur over wider



66

regions of the image and appear more spread out than Fauxvea gaze estimates (see Figure 4.2).

There are several possible explanations for this behavior:

• People do not look at a singular point of interest for long; instead, their gaze hovers around

that point.

• Holding a cursor at a single pixel location over time requires less effort than gazing at one

location for the same amount of time.

• The time and effort needed to move and press the cursor is greater than a saccade of the eye.

• For Turkers, there is an opportunity cost to being slow or getting distracted by irrelevant

image details. We expected that Turkers would finish the HITs for this experiment as quickly

as possible in order to accept new HITs and to maximize their payments on MTurk.

• Eye trackers can have errors due to both calibration and moments when the eye tracker cannot

find the eye. Therefore, recorded coordinates might be inexact.

Our findings in Experiment 3, which involves a more complex task, show a different pattern:

in some cases, Fauxvea gaze estimates are more spread out than eye-tracking gazes (see the radial

layout in Figure 4.7). It is possible that Turkers using the Fauxvea interface had less experience

with this task compared to the participants in the eye-tracking study and therefore spend more time

exploring the diagram. Turkers also used the interface to fixate on edges in the tree diagrams more

than eye-tracking participants, which supports the idea that they focus on tracing paths to complete

the task. Eye-tracking participants with the normal viewer, on the other hand, can make saccades

between nodes and may rely on peripheral vision to view edges. In both populations, similar hot

spots related to the task appear in the heatmaps.

4.6.2 Quantitative Comparisons

In Experiment 1, we compared Fauxvea fixations against eye-tracking fixations using a quantitative

approach similar to an earlier evaluation by Rudoy et al. [94]. We evaluated an additional distance

function and tested additional baseline distributions of random fixations, plus a grid baseline and a

saliency model. We discuss our findings below.

Distance Metrics

We explored two measures of similarity between smoothed representations of gaze locations: a

symmetric version of KL divergence and χ2 distance. Figure 4.4 shows one of these metrics (χ2)

computed between the ET and MT data we collected, for each pair of stimuli-tasks. As a sanity check,

we were interested in seeing how values on the diagonal – which are distances between corresponding

visualization tasks in the two conditions – compare to distances between unrelated visualization

tasks. We note that this type of matrix should not necessarily be symmetric across the diagonal,

because the columns (Fauxvea) represent a different modality for which fixations were collected
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compared to the rows (eye tracking). The matrix shows that the diagonal is in fact darker than any

single row. This is also visual evidence of hypothesis for H1b: the fixations from both ET and MT

are linked to underlying visualization tasks.

Generating Baseline Gazes

In this work, we evaluated Fauxvea quantitatively by computing how much closer to eye tracking

Fauxvea’s fixation locations are compared to fixations drawn from null distributions that represent

where people might look without regard to the visualization task. Creating realistic computational

models of gaze during visualization tasks is an open problem. Task-aware models could replace

the need for gaze-estimation methods with humans in the loop, or provide stronger baselines for

evaluating new estimation methods.

We used an off-the-shelf, state-of-the-art model of visual saliency [65] and found that the maps

it generates from the visualization stimuli in Experiment 1 are not much closer to eye tracking than

the other null distributions, like Grid and Centered Gaussian. This is not surprising because people

do not necessarily attend to salient regions that are irrelevant to the analysis task they are given. It

is possible that people with experience in vision and eye tracking could identify where people will

look during tasks, but as we found in Experiment 2, self-assessment of these areas is not consistent

even among experts.

4.6.3 Limitations

Imposing on the User

Many challenges remain in the area of estimating gaze patterns without eye trackers. Interactive

visualizations are difficult to study with a RFV-based method because the viewer requires cursor

interactions that might conflict with underlying interactions. For example, the original method to let

users report the LCA in Experiment 3 was to click the node, but this would log an additional fixation.

Another issue is that users could accidentally select a node (e.g., on the first cursor press) before

focusing the image, resulting in an incorrect response. We designed a keyboard interaction that lets

the user find and report the coordinates of a node without extra cursor presses, but for more complex

interactions a similar workaround might not be possible. The process of mixing focus interactions and

interactions with the underlying visualization might obstruct the user’s natural analysis workflow.

For these reasons, we have focused on evaluating gaze locations in static visualizations only.

Another limitation of using a RFV-based interface for visualization is that it could discourage

users from participating in the evaluation. Bednarik and Tukiainen [7] reported that some users

disliked the RFV interface. With Fauxvea, one mitigating factor is the large number of potential

participants on MTurk: even if some Turkers decide to avoid Fauxvea HITs after participating once,

there are many other workers to recruit. In spite of this, we received positive feedback from Turkers

who completed the HITs.

Finally, using any form of eye tracking or gaze estimation to understand a person’s cognitive
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activities with a visualization depends on the “eye-mind” hypothesis – that what a person gazes

indicates her foremost cognitive process [66, 87]. Visualization analysis often requires keeping several

pieces of information in mind while solving a task, so it is possible the hypothesis does not hold for

some tasks, as Kim et al. found [68]. In this case, it is still valuable to understand which visual

information is inspected and needed to answer a task, even if it is difficult to infer deeper cognitive

processes of the person. Follow-up interviews or questionnaires could help verify cognitive processes

that are apparent in gaze traces.

Supporting Large Images or Longer Tasks

The experiments we performed do not evaluate how the size of static visualizations affects the number

of cursor interactions users make, or how task length and cognitive load affect cursor interactions.

Large visualizations might require interactions in the browser, like scrolling. Similarly, longer tasks

or tasks with more sub-parts might require more effort. We demonstrated a real evaluation scenario

in Experiment 3, but studying how more cognitive work and larger image content impacts Fauxvea

users would establish broader external validity of the method.

Eye-Tracking Metrics

Our work focused on validating a method that lets others collect gaze-estimate data and gaze-related

metrics for visualization use. Poole and Ball summarized three types of eye-movement metrics [87]:

fixation-derived, saccade-derived, and scan-path-derived. Of these, our results suggest that Fauxvea

fixations can be used to compute fixation-derived metrics. The Fauxvea interface cannot estimate

saccades, and more work is needed to validate that Fauxvea scan paths are similar to eye-tracking

scan paths.

One must be careful when interpreting metrics involving individual Fauxvea fixations, since

Fauxvea fixations might be more coarse-scale than eye-tracking fixations. We found that the duration

of a Fauxvea fixation is on average longer than an eye-tracking fixation. One explanation for this is

that when a person examines an area of a visualization in a normal image viewer, she might make

several fixations near the same area; in Fauxvea, this might be replaced by a single, longer fixation

due to the added cost of refocusing, as described in Sec. 4.6.1.

4.6.4 Opportunities

We found several opportunities to build on the Fauxvea method and related approaches. In general,

these include collecting and analyzing data at a greater scale, including scan paths and data from

remote experts; using data collected by the Fauxvea interface to improve analysis for future users;

and using data collected by the Fauxvea interface to develop and train models of gaze without

humans in the loop.
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Validating Fixation Sequences

Analyzing fixation sequences, or scan paths, from Fauxvea compared to eye tracking can validate

or disconfirm that Fauxvea can predict temporal aspects of gaze. Using crowdsourced workers for

Fauxvea tasks, interacting in uncontrolled computing environments, could have a potentially large

impact on how well Fauxvea scan paths and eye-tracking scan paths align temporally. For example,

an individual on MTurk could switch to a new browser tab and check his or her email during the

middle of a Fauxvea task. Detecting and controlling for these behaviors systematically will require

appropriate protocols. It is also possible that unintentional ‘time warping’ could occur for Turkers

who never get distracted but have slow or faulty browser responses.

We have begun to analyze the temporal aspects of fixations from Turkers completing tasks with

Fauxvea. In Sec. 4.5, we identified the frequencies at which Turkers transitioned between areas

of interest in the visualization, and found these were similar to transitions collected in an eye-

tracking study. Finding patterns in sequences of transitions is valuable, but aligning sequences

between participants who are faster or slower requires careful treatment. In a preliminary analysis,

we clustered Fauxvea and eye-tracking sequences from Experiment 1 using dynamic time warping

(DTW) and found some evidence that scan paths from both conditions cluster together on the same

task. However, these results were not conclusive because of the small sample size of eye-tracking

scan paths. More work is needed to evaluate Fauxvea scan paths quantitatively.

Facilitating Analysis Using Data from Previous Users

Showing visualization end users the data collected from earlier Fauxvea evaluations could facilitate

analysis behaviors. For instance, displaying to a domain expert the regions of a visualization that

were salient to Turkers could help the expert identify areas that might be overlooked by others, and

therefore support quality control during analyses. Another scenario involves training new users of a

visualization. Displaying the salient regions or ‘search trails’ from earlier users could guide a person

to understand the important components of an unfamiliar visual representation or task.

Improving Baselines for Models for Gaze with Training Data

We believe the data collected from Fauxvea experiments could be used to improve the baselines

mentioned in Sec. 4.6.2 and create computational models of gaze for visualization. In turn, these

models could bootstrap the evaluation of gaze-estimation user interfaces that have humans in the

loop, like Fauxvea. If a computational model of gaze is created that can generate fixations that are

indistinguishable from those produced by Fauxvea or by eye tracking, then Fauxvea and eye tracking

will no longer be needed to predict gaze during visualization tasks.
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Identifying Features of Focus-Window Movement that Improve Fauxvea-Gaze Predic-

tion Accuracy

Other features of how Turkers use Fauxvea and move the focus window could be used to improve

the accuracy of predicting gaze. In our experiments, we predict gaze fixations precisely at the

center of the focus window. Individual style and other factors could account for differences between

the focus-window location and where a person looks (within or outside that window), as Huang et

al. found when comparing gaze to cursor position [48]. Classifying patterns in how people move the

focus window, e.g., in a scan-path analysis, could also be useful in predicting analysis styles and

performance on future tasks, as Brown et al. found in a map-search task performed by Turkers using

zoom and pan controls [13].

Another interesting question is whether certain types of visualizations result in Fauxvea estimates

that are close to eye tracking, while other types of visualizations do not. While we did not evaluate

this directly, we found that different null distributions of gazes (described in Sec. 4.3.5) were closer

or farther from eye tracking depending on the visualization types, as highlighted in Table 4.2. It is

possible that visualization type could affect the closeness of Fauxvea estimations and eye-tracking

fixations. Anecdotally, we found that visually dense visualization types, like the node-link diagrams

used in Experiment 1, appear to have noisier Fauxvea estimates compared to visualizations where

task-relevant marks are separated from other distractor marks, e.g., bar charts. An open question is

whether the parameters of the focus window in Fauxvea – including blur level, how blur degrades,

and the blur radius – could be optimized for the intended visualization type.

Evaluating Gazes from Remote Domain Experts

In addition, we have not yet evaluated Fauxvea using remote visualization-domain experts. Col-

lecting rich empirical evidence about visualization use from remote experts remains an important

challenge for visualization researchers [11]. Using Fauxvea, it might be possible for visualization

developers to collect gaze estimates from experts that are otherwise inaccessible for traditional eye-

tracking lab studies when the developers and experts cannot be co-located. Fauxvea could enable

gaze-related visualization studies with larger sample sizes of domain experts than is currently pos-

sible.

4.7 Concluding Remarks

We developed and evaluated a crowd-powered method called Fauxvea that estimates gaze fixations

for analysis tasks with static information visualizations without using an eye tracker. This work

was adapted from an earlier method that had not been previously evaluated with online crowd

participants or in the context of information visualization.

We ran three experiments to evaluate the method, including a reproduction of earlier eye-tracking

findings about tree visualizations. In Experiment 1, we found quantitative and qualitative evidence
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that Fauxvea fixations from many Turkers are similar – and often less noisy – compared to fixations

collected in a parallel eye-tracking study with a typical number of participants. In Experiment

2, we found that self-assessment of fixations by individuals can be inconsistent; therefore, using

Fauxvea with crowdsourced workers is likely to be a more reliable approximation of eye tracking.

In Experiment 3, we found that the way people transition their gaze between AOIs using Fauxvea

is similar to eye tracking, but comparing full scan paths remains an open challenge. Our method

is a practical alternative to using an eye tracker to find task-specific areas of interest in static

visualizations. Creating a robust computational model of gaze for visualization tasks is an open

problem, and data collected using our method might be helpful in constructing such a model.

This dissertation has shown that using novel, practical methods that model cognitive activities

across a spectrum of high- to low-level processing (insight discovery, keystroke-level interactions,

and gaze fixations) can provide empirical data that is useful for evaluating visualizations. In the

next chapter, we discuss challenges and research opportunities to improve visualization evaluation

methods using human modeling and by integrating these models more tightly into the visualization

development cycle.



Chapter 5

Discussion and Conclusion

This dissertation has addressed the need for improved evaluation methods for visualization. Many

typical evaluations of visualization designs and visual analysis systems use benchmark tasks that

do not necessary reflect real usage scenarios, and therefore sacrifice ecological validity. In addition,

experimental designs that involve characterizing visualizations only by the average accuracy and

efficiency (response time) of study participants performing benchmark tasks usually reveal only in-

direct information about the cognitive activities of participants. Since the aim of many visualization

tools is to promote the discovery of insights about the visualized data by facilitating reasoning, we

focused on developing accessible methods that produce empirical data aligned with evaluating this

criterion, including:

1. insights and insight-based metrics;

2. interaction storyboards that summarize how a population of end users completes analysis tasks

and that are useful for predictive performance modeling;

3. gaze-location estimates as a person performs a visualization task.

We showed that our methods make it easier for evaluators to collect this data compared to existing

approaches.

In the remainder of this chapter, we reiterate the main contributions of our evaluation methods

and experiments. Next, we identify open research questions inspired by this work and propose

opportunities to build upon these contributions. Finally, we conclude with a brief summary of the

dissertation and its potential impact.

5.1 Summary of Primary Contributions

The main contributions of this dissertation are novel methods for evaluating visualizations, as well as

case studies that demonstrate these methods with realistic visualization applications. The methods

72
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were described make it easier to understand cognitive activities during user studies with visualiza-

tions. Minor contributions include specific findings from the case studies described in Chapters 2

and 4 regarding layout designs for node-link diagrams.

The LITE method presented in Chapter 2 lets evaluators assess a visualization system’s ability

both to promote exploration and support routine search tasks in a dataset. The protocol is within-

subjects and, across visualization design conditions, it interleaves blocks of routine tasks with open-

ended exploration periods, during which the insight-promoting characteristics of the system can be

measured.

The Tome framework presented in Chapter 3 lets evaluators construct predictive human-performance

models from interaction logs. It removes the need for an evaluator to apply the Keystroke-Level

Model (KLM) by hand, which can be error-prone and time-consuming [56]. Instead, Tome uses

an instrumentation library for UI widgets and can aggregate collections of interaction logs semi-

automatically into project files for CogTool – a visual environment that simulates task executions

using the KLM. We also demonstrated in a case study of brain-network diagrams that Tome is

useful in predicting whether a proposed UI change would reduce task completion times.

The Fauxvea method described in Chapter 4 lets evaluators estimate where people fix their

gaze on a static visualization during an analysis task using crowdsourced workers. It builds on the

idea of a “restricted focus viewer” that estimates where people fixate in an image based on where

they position a cursor-centered focus window over an otherwise blurred image. The main benefit of

our approach is that it is more accessible to evaluators than performing a lab-based study with a

hardware eye tracker, while providing similar empirical data. Our contributions include qualitative

and quantitative evaluations of the gaze estimate data that show it is:

1. comparable to eye-tracking data for basic infovis tasks;

2. a better estimate of where people will look than predictions made by individuals with eye-

tracking expertise;

3. viable for reproducing findings about visual attention on static visualizations that were origi-

nally obtained using eye tracking.

Together, these methods go beyond evaluations of visualizations that consider only average accu-

racy and efficiency of people performing benchmarks tasks, which is typical in visualization research.

They make it easier to use alternative evaluations that depend on modeling expertise (Tome) or

eye-tracking hardware (Fauxvea), and augment typical task-based evaluation with aspects of insight-

based evaluation (LITE).

5.2 Research Opportunities and Directions

1. Effect of individual differences on visualization analysis performance

One benefit of the insight- and task-based evaluation we describe in Chapter 2 is that it gathers

insight characteristics about different visualization conditions using the same study participants,
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within-subjects. A challenge in between-subjects studies is that how one explores data might differ

between individuals; breaking a study population into smaller groups for different conditions could

result in differences in insight characteristics due to the groupings, not the underlying condition.

Several studies have shown that individual differences between participants affect analysis behaviors

or outcomes during interaction with computer information displays. Earlier in this dissertation,

we described work by Huang et al. that found individual styles of using the cursor affected the

alignment of a person’s cursor position and gaze on search-engine results pages [48]. Personality

traits that shape how a person views the world can influence the way they interact with information

systems. For example, a person’s sense of internal or external control over things, called locus of

control [93], was shown to be correlated with her task performance using visual representations that

depict a containment metaphor (e.g., treemaps [100]) [109]. In some cases, evidence of individual

differences can be observed through interaction choices or strategies used during analysis. Brown et

al. demonstrated this by inferring participants’ personality traits using off-the-shelf machine learning

techniques applied to interaction logs from a map analysis task [13].

Mapping out how individual differences affect interaction and analysis could significantly impact

experimental design for visualization research. It is possible that controlling for individual differences

in evaluations of visualizations could lead to findings about human visual-analysis performance that

would otherwise be statistically insignificant in an uncontrolled population. Furthermore, controlling

for individual differences is critical for protecting the generalizability of findings; participants in

visualization and HCI research experiments at leading institutions may not be representative of

wider populations [46].

Understanding individual differences will also be important for designing user interfaces for vi-

sualization systems that are “cognitively optimized” for the analyst. For instance, after assessing

an analyst’s personality, ability, or work style, features of the application that are tailored to the

individual might be enabled. A simple example of this tailoring in the perceptual domain is a vi-

sualization that first applies a color vision test to the analyst, then chooses a color palette for the

visualization that sidesteps any abnormalities found by the test.

2. Insight-based evaluation with remote expert participants

We presented methods that let evaluators capture evidence of cognitive activities that is useful

in characterizing whether a visualization design or system is more effective than an alternative.

Insight-based methods are particularly well-suited for quantifying the “aha!” moments of discovery

that visualization tools enable, but these methods rely on an evaluator to code self-reported insights

from participants; this is difficult in laboratory settings, and more so in remote settings where it is

difficult for an evaluator to capture and record self-reported insights and interaction data, or ask

targeted questions in a follow-up interview.

At the same time, enabling remote study participants in insight-based evaluations could have a

major impact on visualization research. Existing evaluations with exploratory components, including

ours (see Chapter 2) and previous studies [79, 95, 96], have included local participants with less



75

expertise than full-fledged domain experts in order to achieve reasonable sample sizes. Making these

studies web-accessible could make it much easier to recruit a large population of experts from around

the world – the same population of consumers for the tools being studied.

New software tools and experimental protocols could make insight-based evaluations easier to

execute with remote users. First, there is a lack of integrated tools that record and synchronize

data typically collected in insight-based evaluations, including: (1) screen-capture video, (2) video

recording of participants, (3) audio recording for participant utterances, and (4) low-level interaction

logs. Many tools to capture these data streams already exist, but there are few standards for

encoding and synchronizing these data. For example, developing a standard for interaction logs that

is application-agnostic will let evaluators compare visualization systems more easily. Taxonomies

that describe top-level interactions and types of abstract analytical activities have been used as

descriptive frameworks and to simplify data analyses [2, 45, 107]. We explore this in a follow-up

study [34] we performed with the visual analytics application described in Chapter 2.

It is possible that a web-based platform for insight-based studies will present unexpected chal-

lenges for visualization and HCI researchers. For example, in Chapter 2 we found that converting the

think-aloud protocol for reporting insights to one using web forms seemed to affect when participants

felt “done” with exploration, despite similar instructions. One explanation is that a participant’s

motivation to continue open-ended exploration may be lessened when a proctor is absent. However,

we believe the ability to recruit domain experts who may be intrinsically motivated mitigates this

concern.

3. Predictive human performance modeling from interaction logs

Modeling human performance on visualization tasks remains an important challenge. The potential

impact of evaluating human performance without having to run a user study with people is high:

studies involving people are often costly and difficult to control, as we mentioned earlier in this

chapter. With human models – which Bonnie John calls “cognitive crash dummies” [58] – evaluations

of user interfaces and visualization tools can be run on demand, encouraging more rapid iterations

through the design process. In contrast to simple predictive models like the KLM, which only models

expert task executions on known interaction sequences, we believe cognitive crash dummies in the

future need real interaction data from end users to simulate analysis behaviors for visualization.

Constructing task representations from unstructured interaction data is a step in this direction.

We showed in Chapter 3 that supervised interaction logs, which are manually categorized by task, can

be aggregated into storyboards representing expert task executions and simulated using the KLM.

Earlier we referred to this as semi-automated because it requires a human to group logs manually

based on the tasks attempted during the corresponding interactions. This is only reasonable when

end users are given predefined tasks to complete (as in our case study with the brain-network

diagram). Looking at many interaction logs “in the wild” and labeling the tasks is extremely

difficult, even when logs formatted consistently and a set of supported tasks is known a priori.

Therefore we need computational tools that are able to look at collections of logs and with minimal
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human interaction answer the following:

• On a given log, when does one analysis task begin and end, and another starts?

• Is a sequence of interactions focused on a particular task, or just exploratory?

• Based on a collection of logs, what are the analysis tasks supported by the visualization?

• For an analysis task, what does a “good” execution look like, and what are noisy or error-prone

executions?

• For an individual user, is she learning how to use the visualization and having better analysis

outcomes over time?

4. Incorporating automated and semi-automated evaluation into the visualization

design cycle

Our work is aimed at making effective evaluations of visualization tools easier so that the design

process as a whole works better, resulting in more effective visualization artifacts. We have talked

about automation and semi-automation of evaluations in Chapters 3 and 4. With more automated

tools in development, an open question is: What is an effective way to integrate automated evaluation

into the design process?

One direction is to leverage the fact that many visualization developers already use computational

tools to track revisions in source code. Version control systems (e.g., Git, Mercurial, Subversion,

CVS) are ubiquitous and can track code changes and, in effect, design changes for user interfaces and

visualizations. These systems also support version tagging and branching, and hooks for running

scripts on a server on predefined trigger events, like committing code changes. In some cases,

developers use these hooks for running automated suits of unit tests, which determine whether units

of functionality in an application are working correctly on test input.

We imagine adapting the model of unit testing on regular intervals or major design versions for

visualization evaluation. In a “human unit testing” framework for visualization, an evaluator can run

tests at the press of a button and later receive test results based on the performance of crowdsourced

humans who are recruited on demand to use the visualization. Swearngin et al. applied a similar

UI regression-testing approach using CogTool and the KLM to generate test cases and simulate

tasks [104]. However, as we discussed in Chapter 3, the KLM can only predict expert completion

times for tasks, and therefore cannot perform regression testing on features like task accuracy.

Recently, Okoe and Jianu tested a more flexible system for getting feedback on graph layouts using

crowdsourcing [80]. Building the software framework for launching crowdsourced task is feasible; in

fact, the MTurk tasks described in Chapter 4 were posted by running a script we developed, and we

experimented with installing this script to run when code changes were pushed to the Git repository

with a specific log message. However, there are open research questions:

• What are the limitations of non-expert workers on various visualization analysis tasks, and

should workers be screened before participating?
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• What is the best way to aggregate the results of many workers completing an analysis task

with a visualization, given that there may be a range of abilities?

• When re-running a specific protocol of human tests on design iterations of a single visualization,

how do we control for learning effects that might occur if the workers participate multiple times?

• When re-running a specific protocol of human tests on two distinct visualizations that sup-

port similar analyses, how do we control for learning effects that might occur if the workers

participate in both tests?

5.3 Visualization Evaluation in the Future

Advances in modeling human interactions and reasoning with information systems will have a great

impact on how data visualizations are used and evaluated. For example, models of human perception

and cognition could become so realistic they effectively replace people in user studies of visualization

tools. “Cognitive crash dummies,” as Bonnie John calls them, will not only enable studies that are

more efficient than current user-study protocols that involve human participants, but they could be

used to simulate visualization tasks on descriptions of visualization systems rather than working

implementations of the systems. In other words, these models will inform the design of systems

earlier in the design cycle (see Fig. 1.1) than what is typical today and reduce engineering costs as

a result.

It is possible these advances will parallel the development of new machine-learning techniques

and artificial intelligence systems, and that many scenarios in which we use currently visualization

(e.g., interpreting MRI images for medical diagnostics) will be reliably answered by computers

with minimal human decision making. Incidentally, as the design and evaluation of visualizations

becomes easier and more effective by integrating human modeling capabilities, data visualization

– as a technology that leverages human perceptual bandwidth – may be utilized less in favor of

automated analysis systems that also benefit from advances in these capabilities.

The experiments in this dissertation demonstrate progress toward modeling some cognitive ac-

tivities that occur during visualization analysis, from high-level insight discovery to low-level gaze

movement during tasks. We have shown these simple models are helpful for evaluating visualization

designs. However, integrating human modeling into visualization is still an early research direction,

and building general purpose “cognitive crash dummies” that can help characterize differences in

notorious visualization examples, like Anscombe’s quartet [6], is a very distant goal. The impor-

tance of effective visualization tools is growing as the scale of datasets grows in critical domains like

brain science, systems biology, and intelligence analysis. Designing these tools with require novel

evaluation methods that are practical to use and incorporate aspects of analysts’ cognition.
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5.4 Summary

This dissertation investigated ways of collecting and using empirical data from visualization users

about their cognitive processes for the purposes of evaluating visualizations and visualization sys-

tems. The methods were presented on a trajectory from coarse to fine-scale cognitive-motor be-

haviors: from modeling measurable insights after an analysts’ tens-of-minutes-long exploration, to

modeling keystroke-level interactions for search tasks on the order of tens of seconds to complete, to

modeling gaze fixations on the order of fractions of a second without using an eye tracker.

The methods in this dissertation make it easier for visualization researchers and designers to

evaluate the effectiveness of their visualizations empirically beyond basic accuracy and efficiency on

benchmark tasks. These methods incorporate practical approaches for using insights, interactions,

and gaze estimates as part of the evaluation criteria for visualizations. These methods were devel-

oped alongside new visualizations for brain-network data and spatiotemporal intelligence data, like

geotagged microblogs. Ultimately we are interested in improving data analysis outcomes by design-

ing better visualization tools. Evaluation is a critical part of that design process and will continue

to be as data-driven applications become more prominent.

There are many opportunities to build on this work in visualization evaluation. We identified

research directions that include:

1. clarifying how individual differences affect visual analysis behaviors and outcomes;

2. incorporating remote participants in visualization evaluations, including insight-based studies;

3. classification and clustering problems related to modeling tasks from unsupervised interaction

data;

4. integrating evaluation more tightly with the visualization design and development process, so

that useful evaluation data can be collected passively, automatically, or systematically at the

press of a button.

Furthermore, we expect innovative research toward these directions will be applicable to areas of

human-computer interaction and user-interface design outside of data visualization.



Appendix A

Gaze Location Estimates

This appendix includes visualization stimuli and tasks with corresponding eye-tracking heatmaps,

crowdsourced gaze heatmaps, and saliency maps. See Section 4.3 for more details about this exper-

iment.
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Appendix B

Expert Gaze Location Predictions

This appendix includes visualization stimuli and gaze location predictions made by individuals

(labeled as P1–P6). See Section 4.4 for more details about this experiment.
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Experiment 2: Baseline expert gaze predictions on basic
infovis stimuli
Estimates from Expert Participants

     

Bar charts

Task 1: Estimate the value (height) at year 2007.

P1 P2 P3 P4 P5 P6
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Task 2: Estimate the value (height) at year 1997.
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Task 3: Estimate the value (height) at year 2001.
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Task 4: Estimate the value (height) at year 2008.
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Task 5: Estimate the value (height) at year 2011.
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Scatter plots

Task 6: Estimate the (x, y) position of the biggest outlier in this data trend. For example, "(3.5, 14.8)".
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Task 7: Estimate the (x, y) position of the biggest outlier in this data trend. For example, "(3.5, 14.8)".
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Task 8: Estimate the (x, y) position of the biggest outlier in this data trend. For example, "(3.5, 14.8)".
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Task 9: Estimate the (x, y) position of the biggest outlier in this data trend. For example, "(3.5, 14.8)".
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Task 10: Estimate the (x, y) position of the biggest outlier in this data trend. For example, "(3.5, 14.8)".
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Node-link diagrams

Task 11: What is the fewest number of edges to travel between the red marks A and B?
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Task 12: What is the fewest number of edges to travel between the red marks A and B?
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Task 13: What is the fewest number of edges to travel between the red marks A and B?
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Task 14: What is the fewest number of edges to travel between the red marks A and B?
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Task 15: What is the fewest number of edges to travel between the red marks A and B?
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Photographs

Task 16: Estimate the average age (years) of all people in the photo.
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Task 17: Estimate the average age (years) of all people in the photo.
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Task 18: Estimate the average age (years) of all people in the photo.
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Task 19: Estimate the average age (years) of all people in the photo.
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Task 20: Estimate the average age (years) of all people in the photo.
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