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Cancer is a disease resulting from genomic mutations that occur during an individual’s lifetime

and cause the uncontrolled growth of a collection of cells into a tumor. These mutations range from

single nucleotide variants to larger rearrangements such as copy number aberrations or structural

variants that duplicate, delete or rearrange entire segments of DNA. As we enter the era of person-

alized medicine, where a patient’s treatment may be tailored to their specific genomic architecture,

accurate identification and interpretation of the set of mutations within each patient’s genome is

increasingly important.

Despite numerous recent advances in DNA sequencing technologies, many challenges still ex-

ist for measuring genomic mutations – especially for cancer genomes. For example, tumors often

exhibit intra-tumor heterogeneity where individual cells in a single tumor contain different comple-

ments of mutations. Additionally, cancer genomes are highly rearranged and often contain complex

rearrangement patterns that amplify, delete or interweave distant regions of the reference genome.

These challenges confound the identification and interpretation of the complete set of mutations in

a tumor. Therefore, we have developed a suite of algorithms that directly address these challenges.

With respect to intra-tumor heterogeneity, we describe several algorithms that infer the composi-

tion of heterogeneous tumors from both single and multi-sample datasets. In the case of multi-sample

data, our approach is also able to infer the evolutionary history of the tumor sample. With respect to

complex rearrangements, we present algorithms to find the most likely set of rearrangements present

in a cancer genome, and to determine whether such a set of rearrangements occurred simultane-

ously or as part of a sequence of individual events. We demonstrate the advantages of our methods

over competing algorithms using both simulated and real DNA sequence data. This collection of

algorithms forms an initial step towards enabling improved characterization of genomic mutations

in tumor samples.



Computational Characterization of Heterogeneity and Rearrangements in Cancer

by

Layla Oesper

B.A., Pomona College, 2005

Certificate, University of Wisconsin at Madison, 2010

Sc. M., Brown University, 2012

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2015



c© Copyright 2015 by Layla Oesper



This dissertation by Layla Oesper is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Benjamin J. Raphael, Director

Recommended to the Graduate Council

Date
Amy Greenwald, Reader

Date
Michael L. Littman, Reader

Date
Teresa Przytycka, Reader

(NCBI, NLM, NIH)

Approved by the Graduate Council

Date
Peter M. Weber

Dean of the Graduate School

iii



Vita

Layla Oesper was born in Colorado Springs, Colorado on June 11, 1983. She attended Pomona

College in Claremont, California where she received a B.A in Mathematics in 2005. She then

worked for Epic Systems Corporation (a company that makes electronic medical records) in Madison,

Wisconsin for three years before deciding to return to school. In 2010 she received a certificate in

Computer Science from the University of Wisconsin at Madison. She then joined the Computer

Science department at Brown University in Providence, Rhode Island in 2010. She earned her

Sc.M. in Computer Science from Brown University in 2012 while studying for her Ph.D under the

advisement of Ben Raphael. During her time at Brown University she was the recipient of various

awards including a National Science Foundation Graduate Research Fellowship (2011-2014) and an

Anita Borg Scholarship (2014). She has also been heavily involved in a number of initiatives related

to diversity in computing including organizing the Graduate Women in Computer Science (GWiCS)

group and coordinating a new scholarship program that sends students to conferences related to

diversity in computing. In the fall of 2015 she will start a tenure-track position as an Assistant

Professor of Computer Science at Carleton College in Northfield, Minnesota.

iv



Acknowledgements

“We have done the impossible, and that makes us mighty.”

Captain Malcolm Reynolds – Firefly

This dissertation is only possible through the effort, collaboration and support of many people. I

am deeply indebted to my co-authors on the work presented here: Ben Raphael, Gryte Satas, Ahmad

Mahmoody, Anna Ritz, Sarah Aerni, Ryan Drebin, Mohammed El-Kebir, Hannah Acheson-Field

and Caleb Weinreb. The many discussions, ideas and enthusiasm that each brought to the table

were essential to driving this work forward.

In particular, I can not thank my adviser, Ben Raphael, enough. His drive, ingenuity and

seemingly unending source of ideas still amaze me. I have learned so much from him about not only

about how to do research, but also the crucial task of how to effectively present research. He has

taught me to strive for excellence and to aim for more than I think is possible, because I will never

know for sure what is possible until I try. The successes that I have had over the past 5 years have

in no small way been due to his influence. I can only hope to be as influential to my students in

future years.

I also want to acknowledge the rest of my thesis committee – Amy Greenwald, Michael L. Littman

and Teresa Przytycka. They have been extremely valuable colleagues to have as I have been finishing

up this thesis.

I am extremely indebted to the former and current members of the Raphael Lab: Anna Ritz,

Crystal Valentine, Suzanne Sindi, Fabio Vandin, Hsin-Ta Wu, Max Leiserson, Ahmad Mahmoody,

Gryte Satas, Mohammed El-Kebir, Matt Reyna and Iman Hajirasouliha. We certainly know how to

v



both work hard and have a good time. I will indeed miss being a part of this group. In particular,

I want to acknowledge Anna Ritz for helping to guide me (and keep me sane) during my first year

and more recently while I was on the job market. I also want to thank Max Leiserson for always

being willing to follow through on crazy adventures like the CS Conference Chicken and the Watson

Cup.

There have been many friends here at Brown who have helped to make my time here wonderful.

Mike Hughes and Ryan Cabeen – we’ve been in this together since day one. I have really appreciated

the support and friendship you have provided during the past five years. Mike – We still have to

collaborate on something, someday. Betsy Hilliard – through all the sushi dinners and coffee breaks

you have been with me for more adventures (and initiatives) than I can count. I look forward to

seeing all that you accomplish in the coming years. To the numerous others not named here – people

really are what makes a place special. You all have made my time at Brown truly special.

I would never have discovered the field of Computer Science if it wasn’t for Cole Rottweiler who

convinced me to take my first ever Computer Science class back at Pomona College. Who would

have thought back then that I would have ever ended up here? Certainly not me. But, I guess Cole

knew something that I didn’t.

Both A-Staff and T-Staff in the Computer Science department here at Brown University are

absolutely amazing. I cannot even imagine what this process would have been like without the help

of people like Lauren Clarke, Kathy Kirman, Max Salvas, Angel Murakami and many others. I would

also be remiss if I didn’t thank Nathaniel Gill. Not only do you seamlessly administer everything

for CCMB, you are just a joy to hang out with.

My family – Mom, Dad and Erin – you have been so supportive of me throughout this process.

I am extremely grateful for your energy, thoughtfulness and willingness to listen if things were not

going well. Lastly, I must say a big thank you to Y. You literally found me in a forest when I needed

you, and the world has been a better place since then.

Okay, I’m ready now. Bring on the rubber chicken!

vi



Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Somatic Mutations in Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Measuring Somatic Mutations from DNA Sequencing Data . . . . . . . . . . . . . . 4

1.3 Challenges to Detecting and Interpreting Somatic Mutations in Cancer . . . . . . . . 6

1.3.1 Intra-Tumor Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Complex Genomic Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Quantifying Intra-Tumor Heterogeneity 13

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The THetA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 The Maximum Likelihood Mixture Decomposition Problem (MLMDP) . . . . 18

2.2.2 Intervals and Counts: Probability Model . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Solving the MLMDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 A More Efficient Algorithm for the MLMDP . . . . . . . . . . . . . . . . . . 24

2.2.5 Intervals of Unequal Length and Mappability . . . . . . . . . . . . . . . . . . 27

2.2.6 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.7 Sets of Maximum Likelihood Solutions . . . . . . . . . . . . . . . . . . . . . . 30

2.2.8 Virtual SNP Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



2.3.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Breast Cancer Sequencing Data . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 An Improved Approach to Quantifying Intra-tumor Heterogeneity 48

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 The THetA2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Notation and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Interval Count Matrix Enumeration . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 A Two-Step Procedure for Genome-Wide Inference of Copy Numbers . . . . 54

3.2.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.5 Probabilistic Model of B-allele Frequencies . . . . . . . . . . . . . . . . . . . 56

3.2.6 Application to Whole-Exome Data . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Extension to Whole-Exome Sequencing Data . . . . . . . . . . . . . . . . . . 61

3.3.3 Analysis of Highly Rearranged and Heterogeneous Genomes . . . . . . . . . . 64

3.3.4 Using B-allele Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Inferring Tumor Evolution from Multi-Sample Data 69

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 The AncesTree Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 The Variant Allele Frequency Factorization Problem (VAFFP) . . . . . . . . 73

4.2.2 Solving the VAFFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 VAFFP with Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Comparison of AncesTree to PhyloSub and CITUP . . . . . . . . . . . . . . . 86

4.3.2 Analysis of Whole-exome vs. Deep Sequencing Data . . . . . . . . . . . . . . 87

4.3.3 Uncovering High-Confidence Ancestral Relationships . . . . . . . . . . . . . . 88

4.3.4 Heterogeneity within Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



5 Reconstructing Cancer Genome Organization 93

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 The PREGO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Intervals, Adjacencies, and Cancer Genome Reconstruction . . . . . . . . . . 95

5.2.2 Perfect Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.3 Imperfect Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.4 Multiple Chromosomes and Telomere Loss . . . . . . . . . . . . . . . . . . . . 102

5.2.5 Utilizing a Matched Normal Sample . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Ovarian Cancer Sequencing Data . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 Breast Cancer Sequencing Data . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Detecting Simultaneous Rearrangements in Cancer Genomes 116

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Analysis of a Proposed Signature of Chromothripsis . . . . . . . . . . . . . . . . . . 119

6.2.1 A Formal Model of Chromothripsis . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 H/T Alternating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Two Alternative Measures of Simultaneous Rearrangements . . . . . . . . . . . . . . 125

6.3.1 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.2 Modeling Cancer Genomes with k-breaks . . . . . . . . . . . . . . . . . . . . 126

6.3.3 Open and Closed Adjacencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.4 Open Adjacency Rate (OAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.5 Copy-number Asymmetry Enrichment (CAE) . . . . . . . . . . . . . . . . . . 131

6.3.6 Application of OAR and CAE to Real Data . . . . . . . . . . . . . . . . . . . 132

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Conclusions 136

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.1 Intra-Tumor Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.2 Complex Genomic Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . 138

ix



7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.1 Intra-Tumor Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.2 Complex Genomic Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.3 Other Related Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendices 143

A Quantifying Intra-Tumor Heterogeneity 143

A.1 Additional Algorithmic Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1.1 Motivating the Multinomial Model . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1.2 Derivation of Equations Used by ASCAT and ABSOLUTE . . . . . . . . . . 144

A.1.3 Separable Convexity of Lr(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1.4 Proof of Theorem 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1.5 Further Details Related to Theorem 2.2.1 . . . . . . . . . . . . . . . . . . . . 148

A.1.6 Proof of the Theorem 2.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.2 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2.1 Simulated Data Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2.2 Details of Other Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2.3 Additional Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.3 Heuristics Applied to Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3.1 Copy Number Bounds: n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.2 Copy Number Bounds: n = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.3 Normal Admixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.4 Breast Cancer Sequencing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.4.1 Sample PD4120a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.4.2 Sample PD4088a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.4.3 Sample PD4115a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B Improved Approaches to Quantifying Intra-tumor Heterogeneity 176

B.1 Proofs Omitted from the Main Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2 Using a Graph to Enumerate Sm,n,k . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.3 Interval Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

x



B.3.1 Mixtures of normal and one tumor subpopulation (n = 2) . . . . . . . . . . . 180

B.3.2 Mixtures of normal and two tumor subpopulations (n = 3) . . . . . . . . . . 181

B.4 Determining Additional Copy Numbers: Multiple Rows . . . . . . . . . . . . . . . . 181

B.5 Probabilistic Model of BAFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.6 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.6.1 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.6.2 Additional Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.7 Real Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.7.1 Whole-Exome Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.7.2 Whole-Genome Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.7.3 Virtual SNP Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.7.4 Tree Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.8 TCGA Samples: Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.8.1 Whole Exome Sequencing Data . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.8.2 Consistency Across Sequencing Platforms . . . . . . . . . . . . . . . . . . . . 193

B.8.3 Sample TCGA-06-0188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.8.4 Low-Pass Breast Cancer Genomes . . . . . . . . . . . . . . . . . . . . . . . . 195

B.8.5 Sample TCGA-56-1622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.8.6 Sample TCGA-06-0214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.8.7 Sample TCGA-06-0145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C Inferring Tumor Evolution from Multi-Sample Data 201

C.1 Proofs Omitted from the Main Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C.2 Details related to CITUP and PhyloSub . . . . . . . . . . . . . . . . . . . . . . . . . 202

C.3 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C.3.1 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C.3.2 Details of Comparison Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.3.3 Additional Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.4 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.4.1 Data Acquisition and Processing . . . . . . . . . . . . . . . . . . . . . . . . . 206

C.4.2 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xi



C.4.3 Effect of α and β Parameters on G . . . . . . . . . . . . . . . . . . . . . . . . 208

C.4.4 Comparison of AncesTree to PhyloSub and CITUP on Real Data . . . . . . . 208

C.4.5 Ancestry Graph for CLL 077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

D Detecting Simultaneous Rearrangements in Cancer Genomes 212

D.1 Proof of Theorem 6.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

D.2 Preliminary Results on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Bibliography 218

xii



List of Tables

2.1 Publicly available methods for inferring tumor purity and tumor subpopulations. . . 15

2.2 Performance of THetA, ASCAT, CNAnorm and ABSOLUTE on simulated data with

one tumor population (n = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Performance of THetA, CNAnorm and ABSOLUTE on simulated data containing

two tumor populations (n = 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Comparison of various algorithms on the 188X coverage breast cancer genome. . . . 40

3.1 Comparison of THetA2 results on whole-genome and whole-exome data. . . . . . . . 63

5.1 Overview of ovarian cancer datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Statistical tests for variant edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Overview of breast cancer datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.1 Analysis of two step method with respect to optimality. . . . . . . . . . . . . . . . . 182

B.2 Genomes and associated datatype analyzed with THetA2. . . . . . . . . . . . . . . . 191

B.3 Comparison of THetA2 results on whole-genome and whole-exome data. . . . . . . . 192

B.4 A list of CNAs identified in squamous cell lung cancer sample TCGA-56-1622 by

THetA2 which have been reported as recurrent CNAs in lung cancers [66] . . . . . . 198

C.1 Overview of datasets and results from running AncesTree with parameters α = 0.3

and β = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

C.2 Analysis of CITUP, Phylosub, and AncesTree on real data. . . . . . . . . . . . . . . 209

xiii



List of Figures

1.1 Basic types of genomic rearrangements that occur in cancer. . . . . . . . . . . . . . . 4

1.2 Overview of DNA sequencing and rearrangement (novel adjacency) detection from

paired-end sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Schematic of the evolution of a heterogeneous tumor. . . . . . . . . . . . . . . . . . . 8

1.4 Schematic of the chromosomal structure in both a normal genome and a tumor genome. 9

2.1 An example mixture of 3 tumor cells and the parameterization of the mixture using

the probabilistic model underlying THetA. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The convex geometry of the MLMDP that is used in the THetA algorithm. . . . . . 24

2.3 Comparison of THetA to CNAnorm and ABSOLUTE on simulated mixtures from

real sequencing data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Analysis of high coverage breast tumor PD4120a. . . . . . . . . . . . . . . . . . . . . 41

2.5 Analysis of moderate coverage breast tumor PD4115a. . . . . . . . . . . . . . . . . . 44

2.6 Analysis of chromosome 8 in breast tumor PD4115a. . . . . . . . . . . . . . . . . . . 45

3.1 An example of the graph used by THetA2 to enumerate matrices C. . . . . . . . . . 54

3.2 Runtime comparison and estimation error for THetA2 on simulated data containing

a mixture of normal cells and two tumor subpopulations. . . . . . . . . . . . . . . . 59

3.3 Comparison of THetA2, THetA and ABSOLUTE on a simulated mixture of 3 sub-

populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 THetA2 results on whole-exome (WXS) data. . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Analysis of squamous cell lung cancer sample TCGA-56-1622. . . . . . . . . . . . . . 66

4.1 Model for clonal evolution and inference. . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiv



4.2 Spanning arborescences of the ancestry graph. . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Violin plots comparing AncesTree, PhyloSub and CITUP on simulated data. . . . . 86

4.4 Comparison of whole-exome and deep sequencing data for lung patient 330. . . . . . 89

4.5 Analysis of CLL patient 077 shows AncesTree’s ability to infer successive clonal ex-

pansions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Analysis of renal patient EV006 reveals distinctive sample composition. . . . . . . . 91

5.1 Construction of the interval-adjacency graph. . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Effect of sample contamination and read depth estimation errors on a simulated cancer

genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Two classes of variant edges in the interval-adjacency graph. . . . . . . . . . . . . . . 108

5.4 Examples of reciprocal translocations in ovarian cancer sample OV5. . . . . . . . . . 109

5.5 Example of a Breakage/Fusion/Bridge Cycle on Chr18 in ovarian cancer sample OV2. 110

5.6 Tandem duplications found on Chr2 in ovarian cancer samples OV2 and OV3. . . . . 111

5.7 A portion of the interval adjacency graph for breast cancer sample PD4120. . . . . . 112

5.8 The interval adjacency graph along with assigned edge counts for Chr17 in breast

cancer sample PD4199. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9 The interval adjacency graph along with assigned edge counts for Chr12 and Chr15

in breast cancer sample PD4199. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 A diagram depicting a chromothripsis event on a single chromosome. . . . . . . . . . 118

6.2 Graph representations and H/T alternating status of several chromosomes that have

undergone chromothripsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Simulations demonstrating that the H/T alternating property degrades quickly with

noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Examples showing a 2-break and 3-break. . . . . . . . . . . . . . . . . . . . . . . . . 126

A.1 Simulations demonstrating that large deletions can affect read depth across the entire

genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Read depth ratios across 50kb bins for 20 breast cancer genomes and one cell line. . 145

A.3 Read depth ratios using intervals determined using BIC-Seq for 19 breast cancer

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xv



A.4 The convex geometry of the MLMDP that is used in the THetA algorithm in the

instance when n = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.5 Distributions of observed read depth estimation error φ. . . . . . . . . . . . . . . . . 155

A.6 The true underlying interval count matrix C and genome mixing vector µ for one

simulation along with sample reconstructions by THetA, CNAnorm, ASCAT and

ABSOLUTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.7 Comparison of THetA and CNAnorm on simulated tumor samples. . . . . . . . . . . 158

A.8 Effect of read depth estimation errors on a simulated data. . . . . . . . . . . . . . . 159

A.9 Comparison of copy number aberrations predicted by THetA, CNAnorm and ABSO-

LUTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.10 Results of running THetA on breast cancer sample PD4120a when only considering

a single tumor population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.11 Analysis of copy number aberrations in breast tumor PD4120a when considering a

smaller subset of intervals than presented in the main text. . . . . . . . . . . . . . . 164

A.12 The distributions of read depth ratios over 50 kb intervals in the 22 autosomes of

breast cancer sample PD4120a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.13 Distribution of all read depth ratios for sample PD4120a. . . . . . . . . . . . . . . . 167

A.14 Pairwise Z-scores for corrected read depth ratios in aberrations occurring in sample

PD4120a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.15 Additional analysis of rearrangements on chromosome 22q in breast cancer sample

PD4120a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.16 Analysis of the ∼40X coverage breast tumor PD4088a. . . . . . . . . . . . . . . . . . 172

A.17 Distribution of read depth ratios in 50 kb intervals for breast cancer sample PD4115a. 174

A.18 Pairwise Z-scores for corrected read depth ratios between different subclonal deletions

in breast cancer sample PD4115a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.1 Enumeration Graph for k=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.2 Results from running THetA2 on simulations with 7X Coverage and Comparison to

30X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.3 THetA vs THetA2: Fraction of Genome Considered. . . . . . . . . . . . . . . . . . . 186

B.4 Comparison of THetA vs THetA2 on simulated data. . . . . . . . . . . . . . . . . . . 186

xvi



B.5 Simulation results with 4 subpopulations. . . . . . . . . . . . . . . . . . . . . . . . . 187

B.6 THetA2 results when underestimating the number of subpopulations. . . . . . . . . 188

B.7 THetA2 workflow for whole-genome and whole-exome datasets. . . . . . . . . . . . . 189

B.8 Comparison of purity estimates obtained for two whole-exome segmentation methods

when considering a tumor to be a mixture of normal cells and one tumor population. 193

B.9 THetA2 results when analyzing whole-genome and whole-exome data for sample

TCGA-AO-A0JF and considering normal contamination up to 100% cells. . . . . . . 194

B.10 THetA2 results when analyzing whole-genome and whole-exome data for sample

TCGA-06-0188. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.11 THetA2 results when analyzing low pass whole-genome data for two breast cancer

samples predicted to have 3 subpopulations from low pass whole-genome data. . . . 197

B.12 Zoomed in versions of THetA2 results when analyzing whole-genome data for sample

TCGA-56-1622. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.13 Analysis of two equally likely solutions returned by THetA2 for GBM sample TCGA-

06-0145. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C.1 AncesTree demonstrates better accuracy at predicting mutations that are incompa-

rable than CITUP and PhyloSub on simulated data. . . . . . . . . . . . . . . . . . . 205

C.2 Distribution of the fraction of mutations included by AncesTree over the 90 simulations.205

C.3 Relationship between α and |V |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

C.4 Relationship between β and |A|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

C.5 Comparison of inferred trees by AncesTree, PhyloSub and CITUP on 22 real se-

quenced tumors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.6 The ancestry graph for CLL007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

D.1 A comparison of the fraction of observed breakpoints classified as mixed paired versus

unpaired for 24 genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

xvii



Chapter 1

Introduction

DNA is the chemical compound that contains the instructions for the development of nearly all

living organisms. For simplicity, a DNA sequence is often described as a string on a 4 character

alphabet, {A,C,G, T}, representing different nucleotides/bases that form a strand of DNA. The

human genome is a code consisting of ∼3 billion bases and is organized into 23 pairs of chromosomes,

or subsequences. While the exact sequence of the human genome is nearly identical (> 99.5%

similarity) for all individuals [160], there are important difference that make each individual’s genome

unique to them. However, it is important to note that an individual’s genome is not static, which is

how cancer develops.

Cancer is a disease resulting from genomic alterations called somatic mutations – those that

occur during the individual’s lifetime – and cause the uncontrolled growth of a collection of cells into

a tumor. These mutations range from single nucleotide variants (SNVs) where a single base pair

is changed, to larger rearrangements called structural variants that affect whole segments of DNA

(Figure 1.1). As we enter the era of personalized medicine, where a patient’s treatment may be

tailored to their specific genomic architecture, accurate identification of the set of mutations within

each patient’s genome and how they arose is increasingly important.

One of the most common ways to measure genomic mutations is through high-throughput DNA

sequencing experiments. Despite numerous recent advances in such technologies, many challenges

still exist for measuring genomic mutations. Many of these challenges arise from the fact that no

technology currently exists that can read off the complete ordered sequence of billions of nucleotides

in the human genome. Instead, most current technologies produces many millions or billions of short

1
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reads of length ∼100-300 nucleotides - each representing a short sequence that may exist somewhere

in the genome. Furthermore, these short reads contain errors and are subject to other artifacts from

the sequencing process.

Further challenges arise in measuring cancer genomes specifically from high-throughput DNA

sequence data. For instance, tumors often exhibit intra-tumor heterogeneity where different cells

in a single tumor contain a different complement of mutations. Most DNA sequencing technologies

sequence the genomes from a collection of cells, rather than a single genome and therefore the

resulting genomic measurements reflect a mixed population where the signal to detect individual

mutations is often diluted. Furthermore, many cancer genomes contain complex genomic rearranged,

and often contain extensive duplicated or deleted sequences compared to the normal/healthy genome

from which there were derived. Thus, there is a pressing need for new computational methods which

can handle the challenges specific to to analyzing and interpreting the output of DNA sequencing

experiments of cancer genomes.

Inspired by this need, this dissertation focuses on the design of algorithms that enable analysis

of high-throughput DNA sequencing data of cancer genomes. In particular, we focus on design-

ing methods that address challenges related to intra-tumor heterogeneity and characterization of

complex rearrangements in cancer. Chapter 1 contains necessary background information related

to somatic mutations in cancer, high-throughput DNA sequencing and intra-tumor heterogeneity.

Chapter 2 describes a method to infer the composition of a heterogeneous tumor sample. Chapter 3

contains work that extends and improves the algorithm introduced in the previous chapter. Chap-

ter 4 contains an approach for inferring the evolutionary history of a tumor when multiple sequenced

samples of the tumor are available. Chapter 5 describes a method for determining the complete set

of rearrangements that together best describe an entire cancer genome. Chapter 6 describes work

on how to determine whether a set of rearrangements arose gradually over time or as the result of

a one-time catastrophic event. Finally, Chapter 7 contains discussion and final conclusions derived

from this entire body of work.

1.1 Somatic Mutations in Cancer

Cancer is a genetic disease resulting from genomic mutations that lead to the disfunction of multiple

genes and uncontrolled growth of a collection of cells into a tumor [165]. A cancerous genome was



3

once a normal genome that has acquired a set of somatic mutations that occurred during the

lifetime of the individual. These mutations differ from germline mutations that are inherited from

an individual’s parents. There are several different classes of somatic mutations that may occur in

cancer.

The simplest type of mutation is a single nucleotide variant (SNV) where the character at one

location has been altered. Even such a small mutation may have substantial impact on function of

the cell in which the mutation occurred. For instance, the genetic code within a gene consists of 3

letter words called codons. Each distinct codon defines a particular amino acid, and the sequence

of amino acids described in a gene is used as a blueprint for the cell to build proteins. A mutation

causing a change in the coded sequence of amino acids may lead to disregulation of the function of

that gene. SNVs that occur in certain genes, such as KRAS, TP53 and PIK3CA, have long been

implicated in a number of different types of cancers [166].

Somatic mutations may also affect entire segments of DNA, rather that just a single base. These

genomic rearrangements termed structural aberrations or structural variants (SVs) include deletions,

duplications, inversions and translocations, where portions of multiple chromosomes are fused (Fig-

ure 1.1). Aberrations that result in a change in the number of copies of a particular segment of DNA

within a genome are called copy number aberrations (CNAs) and include rearrangements such as

deletions and duplications. Furthermore, cancer genomes are often aneuploid containing deletions

or duplications of entire chromosomes [54].

Genomic rearrangements are extremely common in many types of cancers [3, 68] and are part of

the focus of the work in thesis. Rearrangements may amplify genes that promote cancer (oncogenes)

or delete genes that inhibit cancer development (tumor suppressor genes). In addition, rearrange-

ments such as translocations and inversions may change gene structure or regulation and create

novel fusion genes, with or without concomitant changes in copy number [3]. Classic examples are

the BCR-ABL fusion gene in chronic myeloid leukemia and the activation of the MYC oncogene in

Burkitt’s lymphoma via a translocation [38]. Identification of other common structural aberrations

is essential for understanding the molecular basis of cancer and for developing cancer-specific diag-

nostic markers or therapeutics such as Gleevec that targets BCR-ABL [46] or Herceptin that targets

ERBB2 amplification [79]. However, these types of successes are much less common than we might

hope.

Not all patients with the same type of cancer will exhibit the same sets of mutations [21]. In
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Figure 1.1: Basic types of genomic rearrangements that occur in cancer. Deletions include
the removal of a segment of DNA, duplications are when a portion of DNA becomes copies (a tandem
duplication is when the copy is inserted next to the original segment), an inversion is when a segment
of DNA if flipped around and translocations are fusions between different chromosomes.

fact, there appears to be an incredible amount of genomic diversity among many types of cancers.

This mutational heterogeneity between patients is a driving force behind the burgeoning field of

personalized medicine or precision medicine where a patient may have their treatment plan tailored

to their specific genomic architecture [34, 51]. However, in order for such treatments to become

mainstream will require processes for accurate determination of the complete set of mutations within

a single patient’s genome. There are also other subsequent steps required to make personalized

medicine an everyday reality, such as determining which mutations are likely driving the growth of

cancer or determining whether a mutation is druggable. However, since these downstream steps rely

on first identifying the mutations within a tumor, we mainly focus on this goal.

1.2 Measuring Somatic Mutations from DNA Sequencing

Data

Measuring the set of somatic mutations that exist within a single tumor sample is not a straight-

forward task. No technology currently exists that can measure the entire ∼3 billion base pair

long human genome. Instead, modern high-throughput DNA sequencing technologies provided by
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companies such as Illumina, Ion Torrent, Pacific Biosciences, 454 and others, produce many millions-

billions of short reads (<1000bp). The coverage of a sequencing experiment refers to the average

number of times that any position in the genome is sequenced (contained within a short read).

Higher coverage sequencing can yield more accurate information about the genome, but with the

tradeoff of higher cost. We consider two main categories for sequencing experiments produced by

these technologies - whole-genome sequencing (WGS) where the entire genome is sequenced, usually

at modest ∼40X coverage, and whole-exome sequencing (WXS) where only the coding region of

the genome is targeted but at higher ∼100X coverage. Alternatively, ulta-deep targeted sequencing

where only a small portion of a genome is of interested is sequenced to very high coverage may be

used. This is typically used as a way to validate mutations predicted using a lower coverage sequenc-

ing protocol. These technologies have allowed for the measurement of thousands of cancer genomes

through collaborative projects such as The Cancer Genome Atlas (TCGA) [25] or the International

Cancer Genome Consortium (ICGC) [74]. However, the challenge of how to extract information

from the many short reads produced by these technologies is an ongoing challenge, which requires

the continual development of new algorithms.

Tumor samples are generally sequenced in tandem with a matched normal sample for the same

patient, which can later be used to distinguish somatic mutations from germline mutations. The

most common approach is to sequence a single sample from a tumor. However, several recent studies

have sequenced multiple samples of a tumor through either multi-sectioning [52, 185] or by collecting

samples at different time points [147]. As cancer genomes are highly rearranged, they are generally

analyzed using a resequencing approach that relies on alignment of DNA sequence reads to the

human reference genome. It is from this alignment data that the presence of somatic mutations in

the cancer samples is inferred.

SNVs may be identified by analyzing the set of reads with alignments to the reference genome

containing a common loci. Since read alignments generally allow mismatches between the read and

reference genome, some fraction of the aligned reads may indicate an alternate allele at the loci. If

“enough” reads indicate a different allele, an SNV may be inferred. Somatic SNVs are then identified

when the alignment data for the tumor data indicates the presence of a mutation not found in the

matched normal sample. A number of algorithms have been developed to infer the presence of

somatic SNVs in DNA sequencing data of tumor samples [82, 35, 142, 146].

A paired-end sequencing protocol generates reads from both ends of a longer fragment (or insert)
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which allows for the detection of all types of somatic structural variants [139, 151, 150, 133, 31].

Paired-end mapping [163, 84], or End Sequencing Profiling [167, 136], aligns paired reads from a

cancer genome to the reference human genome. The distance between the aligned reads is computed.

If this aligned distance is close to the expected length of the sequenced fragments, as determined

by the distribution of fragment lengths, the aligned pair of reads is referred to as a concordant pair.

If the aligned distance is far from the expected fragment length (either shorter or longer) or if the

orientation of the aligned reads has changed, then the aligned pair is referred to as a discordant pair.

Clusters of discordant pairs reveal novel adjacencies (or breakpoints) created by somatic structural

aberrations [136]. Figure 1.2 shows an overview of DNA sequencing and rearrangement detection

from paired-end sequencing.

The process of detecting somatic mutations from aligned reads is potentially confounded by a

number of challenges as numerous errors and artifacts are introduced during both the sequencing

and alignment processes. These include, but are not limited to: optical PCR duplicates, GC-

bias, strand bias (where reads that indicate a possible mutation only align to one strand of the

reference), sequencing errors, and alignment artifacts due to regions of low complexity or repetitive

DNA sequence [15, 44]. Additional challenges arise for cancer genomes specifically, which we discuss

further in the following section.

1.3 Challenges to Detecting and Interpreting Somatic Mu-

tations in Cancer

There are a number of things that make detecting and interpreting somatic mutations in cancer

from DNA sequence data particularly difficult. We describe two such challenges in the following

subsections.

1.3.1 Intra-Tumor Heterogeneity

One important challenge in identifying and characterizing somatic mutations from high-throughput

DNA sequence data is that most tumor samples are heterogeneous, containing admixture with normal

cells and potentially multiple distinct populations of tumor cells. The clonal theory of cancer [116]

posits that all cancerous cells in a tumor descended from a single cell and that mutations in all tumor
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Figure 1.2: Overview of DNA sequencing and rearrangement (novel adjacency) detection
from paired-end sequencing. DNA from multiple cells is fragmented and reads are sampled
from both ends of a fragment and aligned to a reference genome. Read pairs where either the
aligned distance is far from the expected fragment length or the orientation of reads is altered are
called discordant. Otherwise, read pairs are called concordant. Clusters of discordant pairs indicate
rearrangements in the tumor genome, not present in the reference.

cells are either clonal, having been inherited from the most recent common ancestor of all tumor

cells, or subclonal if they occurred later in evolution of the tumor and only exist in a subset of tumor

cells (Figure 1.3). Alternatively, subclonal mutations may suggest that the tumor is polyclonal,

consisting of subpopulations of cells that are not all descended from a single founder cell [124].

Most cancer genome sequencing studies generate data from a bulk tumor sample that contains

both normal cells and one or more subpopulations of tumor cells, each containing a different com-

plement of somatic mutations. This intra-tumor heterogeneity complicates the identification of all

types of somatic mutations and requires specialized methods to quantify the extent and character

of heterogeneity in a sample. The simplest form of intra-tumor heterogeneity is admixture by nor-

mal cells and tumor purity is defined as the fraction of cells in the sample that are cancerous. A

sequenced read from a tumor sample represents the genomic sequence in the cell, or subpopulation

of cells, from which the read was derived. Thus, lower tumor purity results in a reduction in the

number of sequence reads derived from the cancerous cells, and thus a reduction in the signal to

detect somatic mutations. As a result accurate identification of tumor purity may be helpful for

identification of all types of mutations and many algorithms either implicitly or explicitly require an
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Figure 1.3: Evolution of a heterogenous tumor. A tumor evolves after an initial mutation in a
founder cell and, in this example, leads to three distinct tumor populations (red, purple and blue)
at present time. All tumor populations include a single clonal aberration (red) which exists in all
tumor cells. Tumor Population 2 and Tumor Population 3 are subclonal populations, containing the
purple and blue subclonal mutations, respectively, which are present in only a subset of tumor cells
in the sample.

estimate of tumor purity [82, 145].

Furthermore, it is desirable to identify subclonal aberrations which can provide information on

the age or history of the tumor [149] and can yield further insight into tumors that fail treatment or

metastasize [149, 56]. As a result there has been major interest in recent years in algorithms that

can deconvolve information about intra-tumor heterogeneity from high-throughput DNA sequencing

data [177]. There has also been increased interest in not only inferring the different populations of

tumor cells that exist within a tumor sample, but also inferring the evolutionary history underlying

the tumor which lead to its heterogeneous state [75, 47, 64, 155]. Being able to infer such information

about the history a tumor may lead to further insights into how tumors develop.

1.3.2 Complex Genomic Rearrangements

Cancer genomes are aneuploid, contain extensive duplicated sequences, and are highly rearranged

compared to the germline genomes from which they were derived (Figure 1.4). The organization of

amplified regions in cancer genomes is often highly complex with many high copy amplicons from
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distant parts of the reference genome co-localized on the cancer genome [137, 59]. This complex

organization is not only difficult to interpret, but also confounds the analysis of other “simpler”

mutations such as SNVs [141].
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Figure 1.4: Schematic of the chromosomal structure in both a normal genome and a
tumor genome. In the normal genome (left) every chromosome is “painted” a different color.
The tumor genome (right) is colored in the same manner as the normal genome and contains many
complex rearrangements including the amplification or loss of entire chromosomes.

Beyond the identification of which mutations exist within a single patient’s genome, it can also be

important to determine the order in which mutations arose, as earlier mutations may be more likely

to have contributed to tumor growth. Closely related is the difficult task of determining whether

rearrangements occurred sequentially over many cell divisions, or nearly simultaneously as part of

either a chromothripsis [154] or chromoplexy [11] event where a portion of one or more chromosomes

shatter and are randomly stitched back together. The more we are able to understand about how

tumors develop, the better prepared we will be when it comes to understanding how to combat

cancer.

1.4 Summary of Contributions

In this section we overview the research contributions described in this thesis. All points are ex-

panded in further details in the following chapters.

Chapter 2: Quantifying Intra-Tumor Heterogeneity

In Chapter 2 we present an algorithm called Tumor Heterogeneity Analysis (THetA) [118, 117]

which infers the most likely collection of genomes and their proportions in a heterogeneous tumor
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sample, for the case where copy number aberrations distinguish tumor subpopulations.

Contributions:

1. We develop a multinomial model of DNA sequence data for a heterogeneous tumor sample

that directly incorporates changes in genome length due to deleted or duplicated sequence.

2. Unlike many other methods, our multinomial model allows for any number of tumor subpop-

ulations within a single tumor.

3. We present an efficient algorithm for inferring tumor purity and copy number aberrations in

the important instance where a tumor sample consists of normal cells and a single tumor

population.

4. We apply THetA to simulated data and 3 breast cancer genomes from [114] and demonstrate

that THetA not only does favorably compared to other methods but also is able to accurately

identify multiple tumor populations from real sequence data.

Chapter 3: An Improved Approach to Quantifying Intra-Tumor Hetero-

geneity

In Chapter 3 we present THetA2 [121], which extends the THetA algorithm discussed in Chapter 2

in several important directions.

Contributions:

1. We describe a graph-based approach which results in an algorithm that is > 1000X faster than

the original for the case of multiple distinct subpopulations in a tumor sample.

2. We extend THetA2 to infer tumor composition for highly rearranged genomes using a two-step

procedure where initial estimates are made using high confidence regions of the genome, and

then are extended to the entire genome.

3. We devise a probabilistic model of B-allele frequencies, which can be used to solve the identi-

fiability issue when read depth alone is consistent with multiple possible tumor compositions.

4. We extend THetA2 to analyze the cheaper and more widely available whole-exome sequencing

data.
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Chapter 4: Inferring Tumor Evolution from Multi-Sample Data

In Chapter 4 we present an algorithm called AncesTree [47] that infers the clonal evolution of a

tumor from multi-sample sequencing data.

Contributions

1. We formalize the problem of reconstructing the clonal evolution of a tumor using single-

nucleotide mutations as the Variant Allele Frequency Factorization Problem (VAFFP).

2. We derive a combinatorial characterization of the solutions to the VAFFP.

3. We derive an integer linear programming solution to the VAFFP in the case of error-free data

and extend this solution to real data with a probabilistic model for errors.

4. We apply our AncesTree algorithm both simulated and real sequencing data and demonstrate

that our approach outperforms several competing methods.

Chapter 5: Reconstructing Cancer Genome Organization

In Chapter 5 we present an algorithm called Paired-End Reconstruction of Cancer Genome Organization

(PREGO) which identifies the most likely set of structural rearrangements that describe an entire

cancer genome [120, 119].

Contributions:

1. We formulate the Copy Number and Genome Adjacency Reconstruction problem of determin-

ing the most likely sequence of genomic segments from the normal genome that spells out the

cancer genome.

2. We introduce the PREGO algorithm which uses two different signals obtained from DNA

sequence data to solve a version of the Copy Number and Genome Adjacency Genome Re-

construction problem. PREGO finds the most likely set of variants and their organization

that best describe the entire cancer genome, in contrast to other algorithms which consider all

variants individually.

3. We demonstrate that PREGO is a polynomial time algorithm through reduction to a network

flow problem on a bi-directed graph.
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4. We apply PREGO to 5 Ovarian Cancer genomes from The Cancer Genome Atlas (TCGA)

and 6 Breast Cancer genomes from [114]. We identify numerous rearrangements and biological

events in these genomes.

Chapter 6: Detecting Simultaneous Rearrangements in Cancer Genomes

In Chapter 6 we present analysis of one signature of chromothripsis suggested by Korbel et al. [83]

followed by two additional measures, Open Adjacency Rate (OAR) and Copy-number Asymmetry

Enrichment (CAE), which compute a lower bound on the fraction of rearrangements in a sample

that occurred as part simultaneous event [170].

Contributions

1. We present a formal model of chromothripsis and use it to demonstrate potential issues with

one signature of chromothripsis suggested by Korbel et al. [83].

2. We derive a relationship between the comparative genomics notion of a k-break and simulta-

neous events in cancer (e.g. chromothripsis, chromoplexy).

3. We introduce the notion of open and closed adjacencies and show that open adjacencies may

be used as a proxy for identifying rearrangements that occurred simultaneously.

4. We describe two measures, OAR and CAE, which allow us to compute a lower bound on the

fraction of rearrangements in a sample that occurred as part simultaneous event.



Chapter 2

Quantifying Intra-Tumor

Heterogeneity

Tumor samples are typically heterogeneous, containing admixture by normal, non-cancerous cells

and one or more subpopulations of cancerous cells. Whole-genome sequencing of a tumor sample

yields reads from this mixture, but does not directly reveal the cell of origin for each read. In this

chapter we present THetA (Tumor Heterogeneity Analysis), an algorithm that infers the most likely

collection of genomes and their proportions in a tumor sample, for the case where copy number

aberrations distinguish subpopulations.

We apply THetA to simulated data, and three breast cancer genomes that were sequenced and

extensively analyzed in [114]. We find that THetA successfully estimates normal admixture and

recovers clonal and subclonal copy number aberrations in real and simulated sequencing data. In

particular we show that THetA is able to accurately identify subclonal aberrations even from the

modest sequencing coverage (∼ 30-40X) that is now the standard in many cancer studies.

Much of the completed work from this chapter is taken from [118] and [117] and was originally

presented at the 17th Annual International Conference on Research in Computational Molecular

Biology (RECOMB).

13
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2.1 Related Work

As discussed in Chapter 1 a tumor is a heterogeneous population of cells, each cell potentially con-

taining a different complement of somatic mutations (see Figure 1.3). These include both clonal

mutations which exists in all tumors cells and subclonal mutations that exist in a subset of tumor

cells. DNA sequencing technologies now enable an unprecedented view of this “intra-tumor” mu-

tational heterogeneity [42]. However, nearly all recent cancer sequencing projects generate DNA

sequence from tumor samples consisting of many cells – including both normal (non-cancerous) cells

and one or more distinct populations of tumor cells. The tumor purity of the sample is the fraction

of cells in the sample that are cancerous, and not normal cells. Lower tumor purity reduces the

power to detect all types of somatic aberrations in cancer genomes. For example, lower tumor pu-

rity attenuates copy number ratios or allele frequencies away from values expected by integral copy

numbers. Methods to detect somatic copy number aberrations or loss of heterozygosity (LOH) from

SNP array data or array comparative genomic hybridization (aCGH) data must account for this

issue [49, 9, 180, 10, 57, 123]. In addition, many algorithms for identifying somatic single-nucleotide

mutations from DNA sequence reads implicitly or explicitly rely on an estimate of tumor purity.

For example, the VarScan 2 program [82] uses an estimate of tumor purity as input to calibrate the

expected number of reads that contain a somatic mutation at a locus.

Traditionally, tumor purity was assessed by visual analysis of tumor cells, either manually by

a pathologist or via image analysis [182]. Recently a number of algorithmic methods have been

developed to infer tumor purity directly (see Table 2.1). Two widely used methods are ASCAT [164]

and ABSOLUTE [27] which were introduced to estimate tumor purity directly from SNP array data,

a different technology that measures polymorphisms in a sample. Both of these methods utilize the

presence of copy number aberrations in cancer genomes to estimate both tumor purity and tumor

ploidy, the number of copies of segments of (or entire) chromosomes. Tumor purity and tumor

ploidy are intertwined; e.g. a heterozygous deletion of one copy of a chromosome in a 100% pure

tumor sample (containing one cancer genome) could also be explained as a homozygous deletion

in a 50% pure tumor sample (containing one cancer genome). Thus, it is necessary to estimate

tumor purity and ploidy simultaneously, but this is a subtle and difficult problem. ASCAT and

ABSOLUTE address this problem by estimating the average ploidy over the entire cancer genome.

These estimates of tumor purity and average ploidy are then used in a second step to derive copy
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number aberrations.

Signal Method Datatype
Multiple Tumor

Populations Sample Type

SNV

SciClone [105] WXS Yes Single
PyClone [143] Deep Yes Single
EXPANDS [8] Deep Yes Single
PurBayes [87] HTS Yes Single

PurityEst [157] HTS No Single
PhyloSub [75] Deep Yes Multiple

TrAp [155] WXS Yes Single
CITUP [98] Deep Yes Multiple

AncesTree [47] WGS, WXS Yes Multiple

CNA

THetA [118] WGS Yes Single
THetA2 [121] WGS, WXS Yes Single

ABSOLUTE [27] SNP Array, WXS No Single
ASCAT [164] SNP Array No∗ Single

CNAnorm [62] WGS (low-pass) No Single

CNA,SNV
AbsCN-seq [12] WXS No Single
CloneHD [48] HTS Yes Multiple

PhyloWGS [39] WGS Yes Multiple
CNA, LOH PyLOH [91] HTS No Single

Table 2.1: Publicly available methods for inferring tumor purity and tumor subpopula-
tions. Signal refers to the type(s) of signal from an experiment used to estimate tumor purity and
populations. Datatype indicates the type of data that the method is designed to use. WGS is whole-
genome, WXS is whole-exome and HTS is high-throughput sequencing, which is used when the type
is not specified. We also list whether a method is capable of inferring multiple tumor populations
and if it works with only single or multiple tumor samples. Methods by the author of this thesis are
in bold. ∗[114] used an extension of ASCAT to consider exactly two tumor subpopulations, but did
not generalize the extension to more tumor subpopulations.

Both ASCAT and ABSOLUTE were shown to yield accurate estimates of tumor purity, achieving

in some cases better estimates than via pathology or other techniques. However, these methods also

have important limitations. First, the mathematical models used by ASCAT and ABSOLUTE are

optimized for SNP array data, as we detail below. While these methods may be adapted to run

on DNA sequencing data (e.g. for ABSOLUTE see [86] and for ASCAT see below), the underly-

ing mathematical model used by both methods does not adequately describe the characteristics of

sequencing data. Second, both of these methods apply various heuristics in their estimation proce-

dures, such as rounding copy numbers to the closest integer [164] and do not directly infer integer

copy numbers for each segment of the genome during the estimation. Finally, both methods do not

explicitly identify multiple tumor subpopulations, and instead infer only a single tumor subpopula-

tion. For example, ABSOLUTE [27] classifies copy number aberrations as outliers if they are not
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clonal, but does not refine these outliers into subpopulations. If a tumor sample consists of mul-

tiple tumor subpopulations, then considering only a single tumor population may yield inaccurate

estimates of tumor purity, as we show below.

High-throughput DNA sequencing data is much higher resolution data than SNP arrays, and pro-

vides the opportunity to derive highly accurate estimates of both tumor purity and the composition

of tumor subpopulations. For example, the number of reads containing a somatic single-nucleotide

mutation at a locus provides – in principle – an estimate of the fraction of cells in a tumor sample

containing this mutation. However, three interrelated factors complicate this analysis: (1) The num-

ber of reads supporting a somatic single-nucleotide mutation has high variance, implying that an

estimate of the allele frequency will be highly unreliable at the modest coverages (30-40X) employed

in nearly all current cancer sequencing projects. (2) Somatic mutations may be present in only a frac-

tion of tumor cells. (3) Somatic copy number aberrations (nearly ubiquitous in solid tumors) alter

the number of copies of the locus containing the mutation. While the first issue might be addressed

in part by clustering allele frequency estimates across the genome [157, 148, 41, 143] the second and

third issues complicate such a clustering. Recent methods for analyzing tumor composition from

DNA sequencing data either ignore copy number aberrations [41] or use iterative approaches [62] or

other approximations [164, 27], and do not formally model the generation of DNA sequencing data

from a mixture of integral copy numbers for each genomic segment.

Beyond the estimation of tumor purity and ploidy, it is desirable to identify subclonal aberrations,

which can provide information on the age or history of the tumor [149] and can yield further insight

into tumors that fail treatment or metastasize [149, 56, 56]. However, even with a pure tumor

sample, characterizing subclonal mutations is a challenge. Tolliver et al. [161] infer subclonal

copy number aberrations by comparing aberrations across different individuals, thus assuming that

the progression of somatic copy number aberrations is conserved across individuals. Gerlinger et

al. [53] recently demonstrated the extent of subclonal mutations by sequencing multiple (spatially

separated) samples from a tumor, complementing earlier studies of heterogeneity using microarray-

based techniques [110]. In another approach, [41] used a targeted ultra-deep sequencing (1000X

coverage) approach to estimate allele frequencies for relapse mutations in AML. In another recent

study, Nik-Zainal et al. [114] used a SNP array based estimate of tumor purity [164] followed

by extensive manual analysis of somatic mutations to identify a clonal (majority) population and
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a number of subclonal populations in each of several breast cancer genomes. Ultimately, single-

cell sequencing techniques promise to provide a comprehensive view of cancer heterogeneity [109,

176, 71, 14], but these techniques presently require specialized DNA amplification steps that can

introduce artifacts and also incur costs for sequencing many cells. Thus, the problem of simultaneous

estimation and correction for tumor purity as well as identification of clonal/subclonal mutations

will remain a challenge for the majority of cancer sequencing projects.

In this Chapter, we introduce Tumor Heterogeneity Analysis (THetA), an algorithm that infers

the most likely collection of genomes and their proportions from high-throughput DNA sequencing

data, in the case where copy number aberrations distinguish subpopulations. In contrast to existing

methods, we formulate and optimize an explicit probabilistic model for the generation of the observed

tumor sequencing data from a mixture of a normal genome and one or more cancer genomes, each

genome containing integral copy numbers of its segments. Specifically, we derive and solve the

Maximum Likelihood Mixture Decomposition Problem (MLMDP) of finding a collection of genomes

– each differing from the normal genome by copy number aberrations – whose mixture best explains

the observed sequencing data. Thus, we generalize the problem of estimating tumor purity to the

problem of determining the proportions of normal cells and any number of tumor subpopulations in

the sample.

Our formulation and solution of the MLMDP leverages the fact that copy number aberrations

create a strong signal in DNA sequencing data: even relatively small copy number aberrations

cause deviations in the alignments of thousands-millions of reads. Thus, in contrast to single-

nucleotide mutations, where there is high variance in the number of reads at each position, many

measurements (reads) are perturbed for each copy number aberration. Thus, each copy number

aberration provides many data points for deconvolution of the tumor genome mixture. We show

how to solve the MLMDP as a collection of convex optimization problems. THetA is the first

algorithm – to our knowledge – that automatically identifies subclonal copy number aberrations in

whole-genome sequencing data from mixtures of more than two genomes. Moreover, in the case of

admixture between a single (clonal) cancer population and normal cells, THetA runs in polynomial-

time, providing the first rigorous and efficient algorithm for simultaneously estimating tumor purity

and inferring integral copy numbers.
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2.2 The THetA Algorithm

In this section we describe the Tumor Heterogeneity Analysis (THetA) algorithm.

2.2.1 The Maximum Likelihood Mixture Decomposition Problem (MLMDP)

We first formulate the Maximum Likelihood Mixture Decomposition Problem of finding the most

likely mixture of tumor cells populations from a sequenced tumor sample. We assume that sequenced

reads from a tumor sample are aligned to the reference human genome, the first step in cancer

genome sequencing analysis [103, 43]. Typically a matched normal genome is also sequenced to

distinguish somatic mutations from germline variants. We focus on copy number aberrations in order

to estimate tumor purity and subpopulations. Thus, we assume that a cancer genome differs from

the reference genome by gains and losses of segments, or intervals, of the reference genome. These

intervals are identified by examining the density, or depth, of reads aligning to each location in the

reference [174, 33, 104], and/or by clustering of discordant paired reads that identify the breakpoints

of copy number aberrations or other rearrangements [136, 58, 120, 99, 31, 13]. Following this analysis,

one obtains a partition the reference genome into a sequence I = (I1, . . . , Im) of non-overlapping

intervals. We represent a cancer genome by an interval count vector c = (c1, . . . , cm), where cj ∈ N

is the integer number of copies of interval Ij in the cancer genome. From the sequencing of a tumor

sample, we observe a read depth vector r = (r1, . . . , rm), where rj ∈ N is the number of reads with

a (unique) alignment within Ij .

A tumor sample is a mixture of cells that contain different collections of somatic mutations, and

in particular somatic copy number aberrations. We assume that the tumor sample is a mixture

of n subpopulations, including a subpopulation of normal cells and one or more subpopulations of

cancer cells. Each subpopulation has a distinct interval count vector representing the genome of

the subpopulation. Thus, we represent a tumor sample T by: (1) an m × n interval count matrix

C = [cjh], where cjh ∈ N is the number of copies of interval Ij in the hth distinct subpopulation; and

(2) a genome mixing vector µ ∈ Rn where µh is the fraction of cells in T from the hth subpopulation.

Given a read depth vector r derived from the sequence of T, our goal is to identify the underlying

interval count matrix C and genome mixing vector µ that best describe r (Figure 2.1). We formulate

the following problem.
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Maximum Likelihood Mixture Decomposition Problem (MLMDP). Given an interval par-

tition I of a reference genome and an associated read depth vector r derived from a tumor sample T,

find the underlying interval count matrix C and genome mixing vector µ that maximize the likelihood

P (r|C, µ).

2.2.2 Intervals and Counts: Probability Model

In this section we derive the probability P (r|C, µ) in the Maximum Likelihood Mixture Decomposi-

tion Problem (MLMDP). In brief, under the usual assumptions for DNA sequencing, the probability

pj that a reads that aligns to an interval Ij is equal to the fraction of the total DNA in the sample

originating from interval Ij . Hence, the probability P (r|C, µ) of the observed read depth vector r

follows a multinomial distribution determined by the interval count matrix C and genome mixing

vector µ.

Single Genome

Following the usual assumptions (e.g. the Lander-Waterman model), we assume that the starting

positions of reads in the cancer genome are uniformly distributed over its length. The probability

of a read from the cancer genome aligning to an interval Ij in the reference genome depends on:

(i) the number of copies of the interval in the cancer genome; (ii) the length of the interval; (iii)

possible difficulties in aligning reads to Ij due to repetitive sequence or other effects. We first

describe the model under the simplifying assumption that there are no alignment difficulties and all

the intervals in I are of equal length, which without loss of generality we set to length 1. Below we

show how to remove these restrictions by incorporating an interval weight vector w into the model

that assigns a weight to each interval in proportion to its length or mappability. Let c = (c1, . . . , cm)

be the (unknown) number of copies of each interval in the cancer genome. Then the probability pj

that a read aligns to Ij satisfies pj =
cj
|c|1 , where |c|1 =

∑m
j=1 cj is the `1-norm of c. We use the

notation x̂ = x
|x|1 to denote a normalized vector. Thus, the observed read depth vector r is the

result of r =
∑m
j=1 rj independent draws from a multinomial distribution with parameter p = ĉ; i.e.

r ∼Mult(r; ĉ).

We emphasize that the multinomial distribution models the fact that the number of reads aligning

to each interval are not independent random variables, but rather are dependent on the number

of copies (ploidy) of each interval in the cancer genome(s). As the total number of reads gets
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extremely large, the multinomial distribution will converge to independent Poisson distributions

in each interval. However, even with the millions-billions of reads produced by high-throughput

DNA sequencing, the effects of a finite number of reads are an issue in cancer genome sequencing.

This is because large copy number changes – including gain and loss of whole-chromosomes – are

common in cancer genomes. A large deletion/duplication will affect the number of reads observed

in other intervals; e.g. if we consider the 22 autosomes, a homozygous deletion of chromosome 1 will

reduce the effective length of the cancer genome by 8.65%, altering the expected number of reads

observed in other intervals. See Appendix A.1.1 for both simulations and real data experiments

further motivating the use of the multinomial model.

Mixture of Genomes

Now suppose we sequence a tumor sample T and align the obtained reads to the reference genome,

observing a read depth vector r = (r1, . . . , rm) ∈ Nm. Let C = [cjh] be the (unknown) interval count

matrix and µ be the (unknown) genome mixing vector for the tumor sample. Here µ is required to

be an element of the unit (n − 1)-simplex ∆n−1 = {(µ1, . . . , µn)T ∈ Rn | ∑n
h=1 µh = 1, and µh ≥

0 for all h}. Then the probability pj that a read aligns to Ij is the ratio of DNA in T from Ij

compared to the total amount of DNA in the sample. That is, pj =
(Cµ)j
|Cµ|1 . Therefore, r is the result

of r =
∑m
j=1 rj draws from a multinomial distribution with parameter p = Ĉµ = Cµ

|Cµ|1 (Figure 2.1).

That is r ∼Mult(r; Ĉµ).

In contrast to our probabilistic model for DNA sequencing data, other methods for estimating

tumor purity and ploidy [164, 27] do not model the data as an observation from an experiment.

Rather, they assume that the observed copy number ratio of an interval (or probe) is the ratio of

the expected value of the tumor copy number and the expected value of the normal copy number

(see Appendix A.1.2). Thus, they implicitly assume that the observed data is an average over many

experiments.
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Figure 2.1: An example mixture of 3 tumor cells. A mixture of 3 tumor cells with 2 distinct
genomes: a normal genome (represented here with one copy of each interval for simplicity), and an
aneuploid genome with a duplication of one interval (red). If reads are distributed uniformly over
the aggregate DNA in this sample, then the observed distribution of reads over the (blue, red, and

yellow) intervals follows a multinomial distribution with parameter Ĉµ. Here C is the interval count
matrix giving the integral number of copies of each interval in each genome in the mixture, and µ
is the genome mixing vector giving the proportion of each subpopulation in the mixture. We find
the pair (C, µ) that maximizes the likelihood of the observed read depth vector r.

2.2.3 Solving the MLMDP

We show here how to solve the MLMDP as a disjunction of separate convex optimization problems.

The negative log-likelihood of r as a function of the generic multinomial parameter p ∈ ∆m−1 is

Lr(p) = − log(P (r|p)) = − log

(
(
∑m
j=1 rj)!∏m
j=1 rj !

m∏

j=1

(pj)
rj

)
= −

m∑

i=1

ri log(pi) + α, (2.1)

where α is a constant, depending only on r. Finding the multinomial parameter p that minimizes

this negative log-likelihood function is straightforward. Using a Lagrange multiplier to encode

the constraint p ∈ ∆m−1, one determines that the (unique) value p∗ maximizing Lr(p) satisfies

p∗i = ri∑m
j=1 rj

. Moreover, if the entries of r are integers (as they will be for read counts) and C is

permitted to be any integer-valued matrix, then the (unconstrained) solution p∗i = ri∑m
j=1 rj

can be

written in the form p = Ĉµ. In particular, this is true when C contains some column cj = r and

µ is such that µj = 1 for some j ∈ {1, . . . , n}. Thus, a solution of the MLMDP is obtained by

maximizing the multinomial likelihood over all p ∈ ∆m−1.
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Constraints on C

In practice, the interval count matrix C is not allowed to be any integer-valued matrix. There are

three natural constraints on the interval count matrix. (1) One component of the tumor sample is

the normal genome. Thus, we set the first column c1 = (2, 2, . . . , 2)
T

, the vector whose entries are

all two since humans are diploid. (2) The number n of subpopulations is less than the number m

of intervals. (3) The copy numbers of the intervals are integers between 0 and k, inclusive, where

k ≥ 2. We let Cm,n,k denote the set of all matrices satisfying these properties. Thus we define Ωm,n

to be pairs (C, µ) where C satisfies the first two of those conditions.

Ωm,n = {(C, µ)|c1 = 2m, cj ∈ Nm for j > 1, µ ∈ ∆n−1} . (2.2)

Similarly, we define Ωm,n,k ⊆ Ωm,n to be the pairs (C, µ) where C satisfies all three of the

conditions.

Ωm,n,k = {(C, µ) | c1 = 2m, cj ∈ {0, . . . , k}m for j > 1, µ ∈ ∆n−1}. (2.3)

In the following, we will use Ω to refer to either Ωm,n or Ωm,n,k, as appropriate. Given a pair

(C, µ) ∈ Ω, we define the negative log-likelihood of the observed read depth vector r using the

multinomial model to be

Lr(C, µ) = − log(P (r|C, µ)) = −
m∑

i=1

ri log((Ĉµ)i) + α. (2.4)

For an observed r, our goal is to find the C and µ that minimize (2.4). We define the following

optimization problem where the domain of (C, µ) can be either of the domains Ω defined above.

(C∗, µ∗) = argmin(C,µ)∈Ω Lr(C, µ) = argmin(C,µ)∈Ω Lr(Ĉµ). (2.5)

Since all entries of C are positive integers and all µj are positive reals, (2.5) is a mixed integer

program. In general, mixed integer linear programs (MILP) are NP-hard to solve [67]. In our case,

the objective function is a non-linear function of C and µ meaning that even sophisticated MILP

solvers are unlikely to be much benefit for this problem.
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A Coordinate Transformation

Rather than attempting to solve the optimization problem (2.5) as a generic MILP, we derive a

coordinate transformation that allows us to solve this problem as a constrained optimization problem

in Rm. First, note that a pair (C, µ) ∈ Ω defines a probability distribution Ĉµ. We define PΩ =
{

Ĉµ
∣∣∣(C, µ) ∈ Ω

}
to be the space of all such probability distributions for all (C, µ) ∈ Ω. Note that

only Ĉµ, and not (C, µ), is identifiable from the observed data r. We prove the following theorem.

Theorem 2.2.1. Suppose p ∈ PΩ, so p = Ĉµ for some (C, µ) ∈ Ω. Then there exists µ′ ∈ ∆n−1

such that p = Ĉµ′, where Ĉ = (ĉ1, . . . , ĉn).

Proof. Let µ′ = (µ′1, . . . , µ
′
n) where µ′j =

µj |cj |1∑n
h=1 µh|ch|1 . By definition

∑n
j=1 µ

′
j = 1 and µ′j ≥ 0, so

µ′ ∈ ∆n−1. We now show that Ĉµ′ = p. For each i ∈ {1, . . . ,m} we compute that the ith entry of

Ĉµ′:

(Ĉµ′)i =

n∑

j=1

ĉijµ
′
j =

n∑

j=1

cij
|cj |1

µj |cj |1∑n
h=1 µh|ch|1

=

n∑

j=1

µjcij∑n
h=1 µh|ch|1

=

∑n
j=1 µjcij∑n

h=1

∑m
g=1 µhcgh

= (Ĉµ)i = pi.

Hence, we see that p = Ĉµ′.

Now suppose the interval count matrix C is fixed, and let H(C) = {Ĉµ | µ ∈ ∆n−1} denote

the set of convex combinations of the normalized column vectors in C. Then (2.5) reduces to the

problem of finding argminp∈H(C) Lr(p). Since the objective function Lr(p) is separable convex (see

Appendix A.1.3) and the domain H(C) is convex, this problem is easy to solve using standard

convex optimization routines. Considering all interval count matrices C ∈ Cm,n,k gives the following

optimization problem.

minLr(p) subject to p ∈ ∪C∈Cm,n,k
H(C). (2.6)

Figure 2.2 illustrates the geometry of this optimization problem. Since in general a union of

convex sets is not convex, the constraint set in (2.6) is not convex. A brute-force approach to this

problem is to enumerate all C ∈ Cm,n,k, but the number of such matrices is exponential in m and
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n. Note that in the Results section THetA demonstrates improved performance in computing C

and µ as the number m of intervals increases in the case where n = 3. This is expected from the

convex geometry used by our algorithm: for a fixed interval count matrix C, each value Ĉµ defines

a 2-plane in ∆m−1 (see Appendix Figure A.4). These planes become more sparse in ∆m−1 as m

increases, and thus our algorithm is less prone to overfitting. In the next section, we show that in

the n = 2 case we can restrict the space of C matrices to a number that is polynomial in m.

0
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0
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0
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0.4

0.6

0.8

1

ĉ2
←− p∗

= r̂
ĉ1

Figure 2.2: The convex geometry of the MLMDP that is used in the THetA algorithm.
(Left) In the case of a single cancer genome with normal admixture, the interval count vector c2 of
the cancer genome and tumor purity µ define a collection of rays Cµ for µ ∈ [0, 1]. (Here we show

the space Ω3,2,3). (Right) Normalizing these rays, we obtain the parameter p = Ĉµ used in the
multinomial likelihood. These parameters are embedded in the simplex ∆m−1 (gray triangle with a
black outline) because their entries sum to one. (This is the space PΩ3,2,3). For a fixed interval count
matrix C = (c1, c2) the blue ray (left) defined by Cµ is mapped to the corresponding red/green ray
(right) connecting ĉ1 to ĉ2 (right), the normalized columns of C, as described in Theorem 2.2.1. For
n > 2, hyperplanes are mapped to hyperplanes (see Appendix Figure A.4). We show p∗ = r̂, the
maximum likelihood solution when interval counts are not constrained to be integers. Note that this
point is not on any of the rays defined by interval count matrices. Rays that satisfy the ordering
constraint from Theorem 2.2.2 are in green.

2.2.4 A More Efficient Algorithm for the MLMDP

We derive an algorithm to solve the MLMDP (as formulated in (2.6)) that is polynomial time in m

when n = 2. This algorithm relies on the observation that it is necessary to consider only a subset

of interval count matrices C whose entries satisfy ordering constraints imposed by the read depth

vector r. We say that a vector a = (a1, . . . , am) ∈ Rm has compatible order with another vector

b = (b1, . . . , bm) ∈ Rm if for all 1 ≤ i, j ≤ m, bi ≤ bj implies that ai ≤ aj . Note that the vector

x = (s, . . . , s) ∈ Rm for any s ∈ R has compatible order with all vectors in Rm.
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Theorem 2.2.2. Suppose p∗ = Ĉ∗µ∗ = argmin
p∈PΩm,n,k

Lr(p) and all entries in r are distinct. Then we

have the following.

1. p∗ has compatible order with r.

2. If n = 2 and µ∗2 > 0, then c∗2 has compatible order with r.

Proof. We start with part (1) and proceed by contradiction. Suppose r and p do not have a

compatible order, that is there exist i, j ∈ {1, . . . ,m} such that ri ≥ rj , but pi < pj . Since all entries

in r are distinct, then necessarily ri > rj . Without loss of generality assume i < j, and let p′ be a

point on the simplex obtained from p by swapping the ith and the jth entries. We first show that

p′ ∈ PΩm,n,k
. Since p ∈ PΩm,n,k

, by definition there exists a (C, µ) ∈ Ωm,n,k such that p = Ĉµ.

Let C′ be a matrix obtained from C by swapping the ith and the jth rows. We define p′ = Ĉ′µ.

Since the set of entries in C′ is as same as the set of entries in C, we have (C′, µ) ∈ Ωm,n,k. Thus

p′ ∈ PΩm,n,k
.

Now, by the theorem assumption Lr(p) is minimized, and therefore Lr(p) ≤ Lr(p
′)⇒ Lr(p)−

Lr(p
′) ≤ 0. We define δ = ri − rj > 0. We have

Lr(p)− Lr(p
′) = (−

m∑

i=1

ri log(pi) + α)− (−
m∑

i=1

ri log(p′i) + α)

= −ri log(pi)− rj log(pj) + ri log(pj) + rj log(pi)

= −(rj + δ) log(pi)− rj log(pj) + (rj + δ) log(pj) + rj log(pi)

= −rj log(pi)− δ log(pi)− rj log(pj) + rj log(pj) + δ log(pj) + rj log(pi)

= −δ log(pi) + δ log(pj)

= δ(log(pj)− log(pi))

> 0.

This is a contradiction. Therefore, it must be the case that r and p have compatible order, thus

completing the proof of part (1).

Part (2) following directly form part (1) since we assume that the first column of C, denoted c1

has equal entries.

Theorem 2.2.2 leads to a more efficient algorithm in the case where n = 2. First, a permutation

π : {1, . . . ,m} → {1, . . . ,m} is r-compatible if rπ1
≤ rπ2

≤ . . . ,≤ rπm
. For every r-compatible
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permutation π, we define Mr,π to be the set of matrices in C ∈ Cm,2,k where c2 has compatible

order with rπ(1), . . . , rπ(m).

We only need to enumerate the elements of sets Mr,π for each r-compatible permutation π to find

the optimal (C∗, µ∗). For a specific π the number of elements in Mr,π is
(
m+k
k

)
, and we can enumerate

Mr,π efficiently. If ri’s are all distinct (which is expected for real data) then the r-compatible

permutation π is unique, and our search space will drop from O(km) to O
((
m+k
k

))
= O(mk), meaning

the exponential size search space reduces to a polynomial (in m) size space.

Not only is Mr,π polynomial in m in size, but also we can efficiently enumerate all the elements

in Mr,π. Suppose the matrices C = (c1, c2) ∈ Mr,π, where c1 = 2m and c2 = (c12, . . . , cm2)T ,

are ordered based on the lexicographical order of (cπ(1)2, . . . , cπ(m)2). Given a matrix C′ ∈ Mr,π,

Algorithm 1 finds the next matrix in Mr,π, i.e., the successor of the matrix C′ in Mr,π, in time O(m)

which implies that all the matrices in Mr,π can be enumerated in time O(mk+1) since the size of

Mr,π is O(mk).

Algorithm 1: Enumeration of matrices in Mr,π.

input : A matrix C ∈Mr,π

output: The next matrix next(C) ∈Mr,π

begin
(c1,2, . . . , cm,2)←− the second column of C;
j ←− the largest j such that cπ(j),2 < k;
if j exists then

for i = 1→ j − 1 do
c′π(i),2 ←− cπ(i),2;

for i = j → m do
c′π(i),2 ←− cπ(j),2 + 1;

else
next(C)←− NULL;

next(C)←− the matrix with columns 2m and (c′1,2, . . . , c
′
m,2)T ;

return next(C);

Restricting the Solution Space when n > 2

Now suppose n > 2. Based on Theorem 2.2.2 if p∗ = Ĉ∗µ∗ = argmin
p∈PΩm,n,k

Lr(p) and all entries in r

are unique, then Ĉ∗µ∗ has compatible order with r. Therefore, ∀i, j ∈ {1, . . . ,m} we have
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ri ≤ rj ⇒ (Ĉ∗µ∗)i ≤ (Ĉ∗µ∗)j ⇒ (C∗µ∗)i ≤ (C∗µ∗)j ⇒ ∃ t ∈ {1, . . . , n}, c∗i,t ≤ c∗j,t. (2.7)

Although this does not impose any total order on columns of C, it still puts some restrictions on

entries of C. This leads into a smaller search space with exponential size (in m and n), but is still

a useful speed up in practice.

Considering a Fixed Purity

Sometimes an estimate of sample purity (µ1) is obtained from sample examination by a pathologist

or from the output of another computational program. Thus, it is desirable to be able to use this

estimate of tumor purity when inferring the size of tumor subpopulations and the copy number

aberrations that distinguish them. In this subsection we show that the theoretical results from the

previous sections extend to this case.

Let, p ∈ [0, 1] be the previously inferred purity of a tumor sample sample. We define ∆p
n−1 =

{µ = (µ1, . . . , µn) ∈ ∆n−1 | µ1 = p} and Ωm,n,k,p ⊆ Ωm,n,k to be the pairs (C, µ) where µ ∈ ∆p
n−1.

We have the following theorem whose proof (appearing in the Appendix) is nearly identical to the

proof of Theorem 2.2.2.

Theorem 2.2.3. Suppose p∗ = Ĉ∗µ∗ = argmin
p∈PΩm,n,k,p

Lr(p) and all entries in r are distinct. Then we

have the following: p∗ has compatible order with r.

Theorem 2.2.3 tells us that the optimal solution when considering a fixed level purity will have

compatible order with the observed read depth vector r. Lastly, since ∆p
n−1 is a convex subset of

∆n−1 and Lr(Ĉµ) is convex over ∆n−1, we have that Lr(Ĉµ) is convex over ∆p
n−1. However, we

note that the transformation described in Theorem 2.2.1 cannot be used directly when performing

optimization since there is no guarantee that µ′1 = p.

2.2.5 Intervals of Unequal Length and Mappability

Thus far, we made the simplifying assumptions that all intervals in I were of equal length and that

reads aligned to each interval without any biases from the DNA sequence of the interval. Now we

consider the general case where each interval Ij has an associated positive weight wj . These weights



28

can model both interval lengths as well as different mappability of intervals – i.e. the probability of

reads aligning uniquely to an interval in the reference genome can depend on the repeat content of

the interval [89]. Let w = (w1, . . . , wm) be the interval weight vector. In practice we use the read

depth vector over I for the paired normal sample as w which allows us to implicitly incorporate

information of interval length, mappability and GC content into the model.

Consider a single cancer genome where c = (c1, . . . , cm) is the number of copies of each interval in

the cancer genome. Then the probability pj of a read aligning to interval Ij in the reference genome

is
wjcj∑m
i=1 wici

=
wjcj
|Wc|1 , where W is a diagonal matrix such that Wj,j = wj . Therefore, the observed

read depth vector r is obtained by r =
∑m
j=1 rj independent draws from a multinomial distribution

with parameter p = ( w1c1
|Wc|1 , . . . ,

wmcm
|Wc|1 ). We define the linear transformation Φ : Rm → Rm to be

Φ(v) = Ŵv. Thus, p = Φ(c) and r ∼ Mult(r; Φ(c)). As in the unweighted case above, if the

entries in c are allowed to be arbitrary positive integers, then for any integer read depth vector

r and non-negative weight vector w we can always find the maximum likelihood solution to the

corresponding weighted MLMDP (see Appendix A.1.6).

Similarly, if we consider a tumor mixture T with interval count matrix C and genome mixing

vector µ, the probability pj of a read aligning to interval Ij satisfies pj =
wj(Cµ)j∑m
i=1 wi(Cµ)i

= (WCµ)i
|WCµ|1 =

Φ(Cµ). Given a read depth vector r and an interval weight vector w, we formulate the analogous

Maximum Likelihood Mixture Decomposition Problem of identifying the underlying interval count

matrix C and genome mixing vector µ that maximize the multinomial likelihood Mult(r|Φ(Cµ)).

Theorem 2.2.4 (see Appendix A.1.6 for the proof) relates the optimal (C, µ) in the cases of equal

and unequal weighted intervals.

Theorem 2.2.4. Let Φ−1 : Rm → Rm be Φ−1(v) = Ŵ−1v. We have the following set equality,

argmin(C,µ)∈Ωm,n
Lr(Φ(Cµ)) = argmin(C,µ)∈Ωm,n

LΦ−1(r)(Ĉµ).

Using this theorem, we find the optimal solution in the weighted interval case by solving the

unweighted interval case; e.g. using the techniques above. As stated, Theorem 2.2.4 applies to

the case where (C, µ) ∈ Ωm,n (i.e. the entries of C are unbounded). However, we can still lever-

age the logic behind this result when we restrict to C ∈ Cm,2,k. While we do not expect that

argmin(C,µ)∈Ωm,2,k
Lr(Φ(Cµ)) is equal to argmin(C,µ)∈Ωm,2,k

LΦ−1(r)(Ĉµ), we may assume that a

solution to argmin(C,µ)∈Ωm,2,k
Lr(Φ(Cµ)) will satisfy the same order constraints as LΦ−1(r)(Ĉµ).
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Namely, we expect that the optimal solution will have compatible order with Φ−1(r) (Theorem 2.2.2).

This is because: (1) the unconstrained optima (when (C, µ) ∈ Ωm,n) for the two likelihood functions

are equal; (2) the objective function Lr(p) is well-behaved (separable convex); (3) the transforma-

tion Φ is linear. Thus, the optima in the constrained weighted case cannot deviate too much from

the optima in the constrained unweighted case, where the ordering conditions hold. Thus, we need

only to consider C ∈ Cm,2,k where c2 has compatible order with Φ−1(r) to find an optimum. We

verified this statement empirically over a variety of simulations where both r and w were chosen at

random. We then verified that the solution sets returned when considering all matrices C ∈ Cm,2,k

and when only considering C with compatible order Φ−1(r) were the same.

2.2.6 Model Selection

W note that the likelihood P (r|C, µ) increases with larger number n of tumor subpopulations in the

mixture: indeed the observed read depth vector can be fit “perfectly” by placing each copy number

aberration in its own tumor subpopulation. However, mixtures with larger n also have greater

model complexity (i.e. more parameters). We use a model selection criterion based on the Bayesian

Information Criterion (BIC) to select the model with a balance between higher likelihood and lower

model complexity, and avoid overfitting. The standard form of the BIC is −2 log(L) + a log(b)

where L is the likelihood of a solution, a is the number of free parameters in the model, and b is

the number of datapoints. We add a slight modification to this, similar to a modification used by

the segmentation algorithm BIC-Seq [174] that allows use to more stringently penalize solutions

with more free parameters using a new parameter γ. The motivation is that the BIC tends to be

too liberal when the model space is large [30] – as is the case here. Values of γ above 1 will more

strongly penalize models with more distinct tumor populations, that is, increasing this parameter will

more strongly encourage solutions with fewer subpopulations. The default value of γ is 10, and was

chosen because we expect to recover a small number of distinct subpopulations from sequencing data

- thus making penalization of models with more subpopulations attractive. Additionally, changing

γ in either direction (by up to 4) from this default value yields consistent results on the datasets

analyzed. Our modified BIC is −2 log(L) + γa log(b), where a = (m + 1)(n − 1) and b is the total

number of reads in the intervals for both the tumor and normal samples. Since we often run the

n = 3 version of the algorithm on a subset of the intervals used in the n = 2 algorithm, we use the

following steps to determine which value of n to select. (1) Run the algorithm for n = 2 and n = 3
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using the subset of intervals and the lower and upper bounds used for n = 3 and obtain respective

likelihood values. (2) Compute the modified BIC for both values of n and choose the one with the

lowest value.

2.2.7 Sets of Maximum Likelihood Solutions

We note that tumor-sequencing data alone does not distinguish between different optimal solutions

with the same maximum likelihood. In mathematical terms, this is because only the parameter

of the multinomial distribution is identifiable from the observed read depth vector r. Thus, we

cannot distinguish between pairs (C, µ) and (C′, µ′) of interval count matrices and genome mixing

vectors that give the same multinomial parameter (that is, Ĉµ = Ĉ′µ′) and therefore have the same

likelihood. By default THetA will always output the complete set of maximum likelihood solutions to

the MLMDP given the input parameters (e.g. the maximum copy number k to consider). However,

THetA has several options that allow a user to input additional information, like sample ploidy, that

may be known in advance. One option allows a user to supply an expected ploidy for a sample (e.g.

4 in the case of a tetraploid genome), and the lower and upper bounds considered for all intervals are

rescaled to reflect this expected ploidy. Another option allows a user to directly set lower and upper

bounds on copy numbers for all intervals in the genome. In either case, THetA will still output the

complete set of maximum likelihood solutions that reflect the options supplied by the user.

2.2.8 Virtual SNP Arrays

In the Results section, one means we employ to compare our predictions that differ from those

presented in [114] is to look at known germline SNP allele frequencies derived directly from the

sequencing data – a “virtual SNP array”. We emphasize that this data is not used by our THetA

algorithm for computing tumor heterogeneity, and therefore provides an independent data for vali-

dation. We look at read coverage and variant allele frequency for the 907,693 SNP positions on the

22 autosomes tested by the Affymetrix 6.0 SNP array (SNP positions and major and minor alleles

for hg19 determined using the UCSC genome browser [78]). Read coverage for a SNP position is the

number of concordant reads with mapping quality > 30 that have an alignment containing either

the major or minor allele at the SNP position. The variant allele fraction, or BAF, is the fraction

of such reads that contains the minor allele.
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2.3 Results

In this section we describe results from running THetA on both simulated data and a breast cancer

dataset from [114].

2.3.1 Simulated Data

In this section we present the results from multiple different simulations and compare THetA to

other methods for estimating tumor purity and ploidy. Further details about how simulated data was

created, the other algorithms and additional results not presented here are located in Appendix A.2

Normal Admixture: Single Cancer Genome

Using two different sets of simulated data, we compare our THetA algorithm to three other meth-

ods for estimating tumor purity and ploidy: ASCAT [164], ABSOLUTE [27], and CNAnorm [62].

ASCAT and ABSOLUTE jointly estimate tumor purity and ploidy, and were originally designed for

SNP array data. While both can be adapted to run on DNA sequencing data, they do not formally

model this type of data, as noted above. CNAnorm is designed for DNA sequencing data, but rather

than allowing tumor purity and tumor ploidy to inform each other, it uses an iterative approach

that separately infers purity and copy numbers. In some instances, CNAnorm relies on the user to

manually enter the most abundant ploidy.

As noted above, there may be multiple optimal solutions with the same maximum likelihood.

CNAnorm [62] and ASCAT [164] use ad hoc criteria to return only a single purity estimate, and

ABSOLUTE [27] uses external cancer karyotypes to select among multiple possible solutions. To

compare THetA to these other methods, we must select a single pair (C, µ) from the set returned

by THetA as a representative sample reconstruction. For all simulations we choose the pair (C, µ)

that maximizes the total length of all genomic intervals in the tumor genome with copy number of

2, the expected copy number of the normal genome for humans. We note that this decision applies

only to these simulations – for real sequencing data the set of all equally like solutions are returned

by THetA from which a user may select one in the presence of additional information about the

sample under consideration.

In our first set of simulations we generate a cancer genome consisting of chromosome arm copy
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number aberrations. The copy number for each non-acrocentric chromosome arm is chosen uni-

formly at random from the range 0 (i.e. homozygous deletion) through k > 2 (amplification), up to

a specified maximum copy number k). While real cancer genomes may have copy numbers larger

than the maximum value (k = 7) considered in these simulations, such high amplitude amplifi-

cations are generally focal events. We emphasize that it is not necessary to use all copy number

aberrations to infer the tumor composition; e.g. if there are a sufficient number of arm-level copy

number aberrations, these may suffice. We then create a random mixture of this cancer genome

and a “matched normal” genome and simulate a read depth vector r for the mixture, adding noise

according the read depth estimation error φ. The parameter φ models errors in the sequencing and

analysis process, and we estimate φ from real sequencing data to range from 0.01 to 0.04 (see Ap-

pendix Figure A.5). Since the ASCAT algorithm uses SNP array data, we also simulate SNP array

data from our mixture. In this first set of simulations, we find that our THetA algorithm computes

both C and µ very accurately over a range of copy numbers k (Table 2.2). In particular, THetA

outperforms CNAnorm, ABSOLUTE, despite the fact that ASCAT uses additional information (al-

lele frequencies) that THetA does not consider. Even with high amplitude copy number aberrations

(k = 7) THetA on average estimates tumor purity within 0.5% of the true purity, compared to

6.9%, 10.8% and 14.9% by ASCAT, CNAnorm and ABSOLUTE respectively. Even when THetA

does not estimate all copy numbers across the genome correctly, it estimates most copy numbers

correctly and estimates the copy number correctly for more segments than the other algorithms (see

Appendix Figures A.6, A.7 and A.8).

We also compare THetA, CNAnorm, and ABSOLUTE on a second set of simulated mixtures

of tumor and normal cells created using real sequencing data from an acute myeloid leukemia

(AML) tumor sample and matched normal sample (TCGA-AB-2965) from The Cancer Genome Atlas

(TCGA) [25]. This sample was chosen due to its high purity (∼95% pure) and lack of copy number

aberrations. We spike in 10 copy number variants of length 2.5Mb at random non-overlapping posi-

tions in Chr20 (excluding the centromere) into the tumor genome. As in the first set of simulations,

the copy number for each variant is chosen uniformly at random from the range 0 (i.e. homozygous

deletion) through k > 2 (amplification), up to a specified maximum copy number k = 5. (We did

not run ASCAT on this simulated data since this algorithm designed only for microarray data.) We

again find that THetA outperforms both CNAnorm and ABSOLUTE on all measures (Figure 2.3).

In particular, THetA estimates the sample purity with an order of magnitude better accuracy (using
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root mean squared error as a metric of comparison as is done in ABSOLUTE [27]), and consistently

identifies more true copy number aberrations than the other algorithms across different purity values

and sequencing coverage. In particular, THetA identifies 7.4 and 2.2 more copy number aberrations,

on average, than ABSOLUTE and CNAnorm, respectively, across all purity values at 30X sequenc-

ing coverage. Even when we relax the requirement that a copy number aberration be predicted with

the correct copy number, and instead count any non-normal copy number as correct, THetA still

outperforms the other algorithms (see Appendix Figure A.9).

Mixture of Tumor Subpopulations

We next evaluate the performance of THetA on a simulated mixture containing two subpopulations

of tumor cells with different copy number aberrations and admixture by normal cells. Thus, there are

three distinct subpopulations in the mixture (n = 3). Our method for constructing simulated data

is the same as the first set of simulations in the previous section with a fixed read depth estimation

error of φ = 0.02 along with a few minor changes (see Appendix A.2.1). While the performance

of THetA is less precise than in the tumor with normal admixture (n = 2) case in estimating all

copy numbers (i.e. the entries in C) exactly, THetA maintains a good level of accuracy as the

estimates are near the true interval copy numbers (Table 2.3). In fact, THetA correctly computes

on average 94% of the copy numbers across all subpopulations in the mixture when there are m = 12

intervals with varying copy in the subpopulations. THetA also estimates the tumor purity with good

accuracy (within 3.6% of the true purity when m = 12), whereas both CNAnorm and ABSOLUTE

gravely misestimate the tumor purity by 30.1% and 54.7% respectively. One possible explanation

for these errors is that both these methods do not account for multiple subpopulations in the sample

and therefore tend to report tumor purity as either the fraction of the sample representing the

largest subpopulation, or as an average of the fractions of all tumor subpopulations. Thus, THetA

successfully recovers a complex mixture of two tumor subpopulations and normal cell admixture

directly from the observed read depth.

2.3.2 Breast Cancer Sequencing Data

We analyzed Illumina paired-end sequencing data from 3 breast cancer genomes and their matched

normal samples from [114]. We downloaded the data from the European Genome-phenome Archive

(accession number EGAD00001000138). This includes 2 samples that were sequenced to a depth of
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Figure 2.3: Comparison of THetA to CNAnorm and ABSOLUTE on simulated mix-
tures from real sequencing data. A. Comparison of true and inferred tumor purity by THetA,
CNAnorm and ABSOLUTE on simulated mixtures of DNA sequencing data from an acute myeloid
leukemia (AML) sample and a matched normal sample. Gray dashed line indicates True Purity =
Inferred Purity. Below each plot are root mean squared error (RMSE) for each method. B. Com-
parison of the number of copy number aberrations correctly predicted (defined as 50% reciprocal
overlap in position and correct integral copy count) by each method for varying tumor purity and
sequence coverage. In most cases, THetA outperforms both CNAnorm and ABSOLUTE. Similar
results counting aberrations with correct position (with 50% reciprocal overlap) but allowing for
difference between true and predicted copy number are in Appendix Figure A.9.
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% Correct C Copy number error (median) Purity error (median)
m THetA THetA THetA CNA ABS
6 35.0 0.118 0.081 0.202 0.458
8 45.0 0.075 0.052 0.276 0.477
10 35.0 0.071 0.055 0.177 0.434
12 45.0 0.059 0.036 0.301 0.547

Table 2.3: Performance of THetA, CNAnorm and ABSOLUTE on simulated data con-
taining two tumor populations (n = 3). Performance of algorithms simulated datasets with
interval count matrix and mixing vector (C, µ) ∈ Ωm,3,3, and read depth estimation error φ = 0.02.
% Correct C and Copy number error are defined as in Table 1. We define purity error as the dis-
tance between the true and predicted fraction of tumor cells in the sample. Thus, purity error is
|(1 − µ1) − (1 − µ∗1)|2, as the proportion of tumor cells in the sample is 1 − µ1. Since CNAnorm
and ABSOLUTE are not able to infer multiple subpopulations, their % Correct C = 0, and we list
only their purity estimates. We only calculate results for CNAnorm where the inferred purity was
< 100% (between 14-18 trials for each m).

approximately ∼40X coverage and one sample, PD4120a, that was sequenced with ∼188X coverage.

We use the BIC-Seq segmentation algorithm [174] to partition the 22 autosomes into intervals

according to read depth. We form an interval count vector from all intervals longer than 50 kb,

focusing on these longer genomic intervals because their observed read depth will have lower variance.

Most intervals removed in this step are relatively short for the samples analyzed. For the two ∼40X

coverage genomes changing this cutoff to 10 kb resulted in the same partition as when 50 kb was

used. For the ∼188X genome we only remove 9 intervals from consideration when the threshold is 50

kb and 7 when the threshold is 10 kb. The results from THetA are identical for the two different sets

of intervals. We assume that most of the tumor genome does not undergo copy number aberrations,

and thus the mode of the read depth vector provides a normal “baseline”. We set lower and upper

bounds on the copy number for each interval from this baseline. For further details please see

Appendix A.3.

Breast Tumor: 188X Sequence Coverage

We analyze the 188X sequenced tumor PD4120a using our THetA algorithm where we consider

that the mixture contains normal admixture with a single tumor subpopulation (n = 2) and normal

admixture with two distinct tumor subpopulations (n = 3). This sample was extensively annotated

by [114] and thus provides a positive control for THetA. Assuming a single tumor subpopulation

admixed with normal cells (n = 2), THetA’s estimate of tumor purity (65.7%) and inferred copy

number aberrations are very close to those obtained by CNAnorm [62] (67.2%), ASCAT (66.0%) [164]
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and ABSOLUTE (65%) [27] (Table 2.4). However, all of these estimates are lower than the tumor

purity of 70% reported by [114], who identified a second tumor subpopulation in the sample (see

below). Because ABSOLUTE, ASCAT, CNAnorm, and THetA (with n = 2) do not model multiple

tumor subpopulations, their reported tumor purities are an average of the fraction of aberrant cells

amongst the different subpopulations in the tumor sample, and thus generally smaller than the

tumor purity estimate obtained when we allow more than one tumor subpopulation (see below).

In addition, we note that ASCAT uses additional information (B-allele frequencies), while THetA,

CNAnorm and ABSOLUTE are using only read depth. The identified aberrations do not distinguish

between those in different subpopulations, but do include several previously reported in breast

cancer [29, 115, 168, 28, 45, 32]. We also ran THetA using chromosome arms as the intervals, rather

than the BIC-Seq intervals. Using chromosome arms, we estimate a similar sample purity of 61.7%

and predict the same set of copy number aberrations as with the BIC-Seq intervals.

Assuming n = 3 subpopulations – normal cells plus two distinct subpopulations of cancer cells –

we analyze a subset of longer intervals that are most informative for copy number analysis. THetA’s

estimate of 72% tumor purity is slightly higher than the 70% reported by [114]. Moreover, THetA’s

estimate of tumor purity is higher than the ∼65-67% tumor purity given above for ABSOLUTE,

ASCAT, and CNAnorm, three methods which assume only one tumor subpopulation. Our BIC

model selection chooses this solution as a better representation of the data (Figure 2.4A), than the

solution that only considers a mixture of normal cells and a single tumor population. Using the

n = 3 model we identify all copy number variants identified above for a single tumor population,

plus some additional aberrations including subclonal deletions of chromosomes 8, 11, 12, 14 and 15

not identified under that model (nor by the other algorithms). This demonstrates THetA’s ability

to identify copy number aberrations occurring in subpopulations of cells. While many of the clonal

and subclonal copy number aberrations found by THetA are identical to those reported by [114],

there are several notable differences including: a clonal deletion of 16q and different classification of

aberrations on chromosomes 1 and 22 as clonal vs. subclonal (Table 2.4). We further analyze these

differences below.

We further investigated the following three differences between our analysis and [114]: (1) Clonal

deletion of chromosome 16q; (2) Clonal vs. subclonal amplification of chromosome 1q; and (3) Clonal

vs. subclonal deletions in chromosome 22q. We analyze these differences using two complementary

approaches. First, we analyze the distribution of tumor/normal read depth ratios in 50 kb bins across
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the genome. This distribution contains distinct peaks corresponding to copy number aberrations

occurring in different subpopulations. We correct read depth ratios using the following 3 steps: (1)

Normalize tumor and normal read depth to the same number of reads; (2) Translate distribution

so that the mean for a selected set of chromosomes or intervals that are likely to contain no large

copy number aberrations is equal to 1; and (3) For a predetermined amount of normal admixture

µ, scale each ratio r using the following linear transformation: (r − 1) 1
1−µ + 1. After correcting the

read depth ratios, peaks corresponding to clonal aberrations will occur at ratios divisible by 0.5,

whereas peaks corresponding to subclonal aberrations will not (Figure 2.4B). Second, we analyze a

“virtual SNP array” that we construct from the read counts and the variant allele frequencies derived

from aligned reads at known germline SNPs (as described previously). Copy number aberrations

occurring in different subpopulations appear as distinct clusters in a scatter plot of read count vs.

variant allele frequencies (Figure 2.4C).

The first difference we analyze is our prediction of a clonal deletion of chromosome 16q, which is

not reported by [114]. Visual inspection of the virtual SNP array data for chromosome 4 (predicted

to be a clonal deletion by both methods) and chromosome 16q shows three distinct clusters - one for

regions of normal copy (centered at a variant allele frequency of 0.5) and two clusters (positioned

symmetrically around variant allele frequency of 0.5) with lower read count that indicate a deletion

(Figure 2.4D). These deletion clusters have virtually identical locations in the scatter plot for chro-

mosomes 4 and 16q – supporting the conclusion that these deletions occur in the same fraction of

the tumor sample. Comparing the difference between the observed and expected read depth ratios

in these deletions for different aberration fractions (the percent of the sample containing the aber-

ration) reveals that the optimal aberration fraction for both deletions is very similar – additional

evidence that these deletions occur in the same fraction of the tumor sample (see Appendix A.4.1

and Appendix Figure A.14). Given the strong evidence for this chromosome 16 deletion, we suspect

that its omission from [114] was an oversight rather than a deficiency of the analysis.

The second difference is that we predict chromosome 1q to be amplified in a subclonal population

consisting of 61.9% of the cells in the sample, whereas [114] indicate that this aberration is clonal

(occurring in 70% cells in the sample). Since this is the only large amplification present in the

sample, we cannot compare its variant allele frequencies to a different amplification (as we did with

chromosomes 4 and 16 above). Therefore, we more closely examine the read depth data. Visual

inspection of read depth ratios after adjusting for our predicted 28% normal admixture (Figure 2.4B)
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and the 30% normal admixture predicted by [114] (see Appendix A.13) show that the corrected read

depth ratios for chromosome 1q do not match well to a ratio of 1.5 (as would be expected if there

was a clonal amplification with copy number 3) – an indication that 1q is a subclonal aberration.

Comparison of read depth ratios for 1q to other clonal aberrations supports our prediction that 1q

is a sub clonal deletion (see Appendix Figure A.14).

The final difference involves chromosome 22q which we predict to contain both clonal and sub-

clonal deletions, while [114] only report subclonal events. In particular, [114] report that a deletion of

a derivative chromosome from a translocation between chromosomes 1 and 22 is the rearrangement

responsible for the subclonal deletion observed on 22q. We find that 1p (see Appendix Figure A.14)

and the distal portion of 22q (cytogenetic bands 12.2-13.3) appear to be be clonal deletions, while

the proximal portion of 22q (cytogenetic bands 11.2-12.1) is a subclonal deletion. In particular, the

read-depth/variant-allele plot from the virtual SNP array shows an oblong cluster for chromosome

22 that only partially overlaps with the cluster for chromosome 13, a chromosome predicted by both

methods to undergo a subclonal deletion (Figure 2.4E). This evidence supports another possible se-

quence of rearrangements: (1) A non-reciprocal translocation occurred between chromosomes 1 and

22 (supported by GASV clustering [150] of discordant reads as discussed in Appendix A.4.1) result-

ing in the clonal loss of 1p and 22q12.2-13.3. Following this translocation, two copies of 22q11.2-12.1

remain. (2) One of these remaining two copies of 22q11.2-12.1 is deleted in a subclonal population

(see Appendix Figure A.15).

Breast Tumor: 40X Sequence Coverage

We also analyzed 2 tumor samples from [114] sequenced at ∼40X coverage. For sample PD4088a, our

model selection procedure preferred the model of this mixture as a single clonal tumor population

with normal admixture fraction 41%. [114] also report this sample as clonal, although do not

provide an estimate of tumor purity or copy number aberrations. Further details of the analysis of

this sample are in Appendix A.4.2.

We analyzed sample PD4115a, sequenced at ∼40X coverage using THetA again considering the

case where the mixture contains normal admixture with a single tumor subpopulation (n = 2) and

normal admixture with two distinct tumor subpopulations (n = 3). Our BIC model selection chooses

the model where the sample is a mixture of normal cells and two distinct subpopulations of tumor

cells (Figure 2.5A) over the model where the sample contains a single tumor subpopulation with
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Sample PD4120a
Algorithm % Normal Admixture Clonal (% Tumor Purity) Subclonal (%)

THetA, n = 2
(segmentation)

34.3%
Del: 1p, 4q, 13, 16q, 22q

+1: 1q
(65.7%)

-

THetA, n = 2
(chromosome arms)

38.3%
Del: 1p, 4q, 13, 16q, 22q

+1: 1q
(61.7%)

-

CNAnorm *
(chromosome arms)

32.8%
Del: 1p, 4q, 13, 16q, 22q

+1: 1q
(67.2%)

-

ASCAT **
(virtual SNP array)

34%
Del: 1p, 4q, 13, 16q, 22q
+1: 1q, 17q, 18, 19, 20

(66.0%)
-

ABSOLUTE ***
(segmentation)

35% (65.0%) -

THetA
n = 3

28.0%
Del: 1p, 4q, 16q, 22q12.2-13.3

(72.0%)

Del: 13, 22q11.2-12.1
+1: 1q
(61.9%)

Del: 8, 11, 12, 14, 15
(10.1%)

Del: 2, 7, 4p, 6,
9, 18, 21

Nik-Zainal et al. (2012) 30%
Del: 4q
+1: 1q
(70.0%)

Del: 13, t(1;22)
(47.6%)

Tetraploid with:
Del(-2): 2, 7

Del(-1): 6, 8, 9, 11, 12,
14, 15, 18, 21

(9.8%)

Table 2.4: Comparison of various algorithms on the 188X coverage breast cancer genome.
Tumor purity and copy number aberrations identified by various algorithms on the 188X coverage
breast cancer genome (sample PD4120a). When restricting to a single tumor population with
normal admixture (n = 2), THetA, CNAnorm, ASCAT, and ABSOLUTE report similar results.
When considering a mixture of two distinct tumor subpopulations along with normal admixture
(n = 3), THetA finds many of the same aberrations as reported in [114], with aberrations in bold
indicating the differences. Virtual SNP array data and read depth analysis support our predictions
for 1p, 1q, 16q, and 22q (See Figure 2.4). This includes aberrations reported by [114] in several
chromosomes not considered as part of our analysis (2,6,7,9,18 and 21). Italicized aberrations were
not input to the n = 3 THetA analysis, and were inferred by examination read depth ratios corrected
for normal admixture and tumor cell fractions derived from THetA (please see Appendix A.4.1).
*When CNAnorm was run using BIC-Seq intervals the normal admixture was estimated at 6.7%,
therefore we report results from CNAnorm using chromosome arms. CNAnorm does not return
integer copy numbers – and thus we report aberrations where the returned copy number was within
0.15 of the nearest integer, other aberrations were considered inconclusive. **For ASCAT we use
virtual SNP array data as input. ASCAT performs its own segmentation; we list only the large
aberrations. ***We report here the maximum likelihood solution returned by ABSOLUTE when
considering only Karyotypes. When considering only somatic copy number aberrations (SCNA) or
a combination, ABSOLUTE infers a tetraploid solution. For this sample, ABSOLUTE returns copy
numbers for only a subset of the input intervals, so we do not report specific copy number aberrations
predicted.
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Figure 2.4: Analysis of the 188X coverage breast tumor PD4120a A. (Left) Read depth
ratios (gray) and the inferred copy number aberrations by our algorithm when n = 3 including
the normal population (black), dominant (clonal) tumor population (blue), and subclonal tumor
population (red). (Right) A reconstruction of the tumor mixture with the inferred aberrations and
estimated fraction of cells in each subpopulation. B. Read depth ratios in 50 kb intervals after
centering so chromosome 3 has a mean of 1 and correcting for 28% normal admixture using a
simple linear scaling. C. Virtual SNP array results showing distinct clusters of regions according
to number of reads containing each SNP and faction of reads supporting variant allele. D. Virtual
SNP array data comparing variant allele fractions and read counts for chromosomes 4 and 16. This
data demonstrate that both chromosomes have undergone the same type of copy number aberration,
which we predict to be a clonal deletion in 72% cells in the sample. E. Virtual SNP array data
for chromosomes 13 and 22. Chromosome 22q11.2-12.1 and chromosome 13 appear to be affected
by the same type of aberration, which we predict to be a subclonal deletion in 61.9% cells in the
sample. In contrast, 22q12.2-13.3 is different, and the data is consistent with a clonal deletion. See
Appendix Figure A.15 for further details.
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normal admixture. While [114] provides some analysis of aberrations in this example, they do not

provide a complete tumor history as they did for the ∼188X coverage genome. Complete information

on our analysis of this sample when we consider it as a mixture of a single tumor subpopulation

along with normal admixture is contained in Appendix A.4.3. For the model considering multiple

tumor subpopulations, we analyze a subset of longer intervals that are most informative for copy

number analysis (further details are in Appendix A.4.3) and estimate a normal admixture of 24%

(tumor purity 76%) and two tumor subpopulations of 43.3% and 32.7%, respectively. The presence

of these subclonal populations is apparent from visual inspection of corrected read depth ratios

after centering the distribution (ratios in chromosome 20 – which is predicted to contain no copy

number aberrations – are translated to have a mean ratio of 1) and correction for normal admixture

(Figure 2.5B). In particular, a large peak near a corrected ratio of 0.5 represents clonal deletions

(Figure 2.5C). In addition, two overlapping, but distinct smaller peaks appear between the clonal

deletions and regions of normal copy (Figure 2.5D and 2.5E). These peaks represent two distinct

subclonal populations present in the tumor sample. A statistical test of the difference in read depth

ratios between these peaks supports the conclusion that these subclonal populations are indeed

distinct (see Appendix Figure A.18).

Virtual SNP array analysis of this sample is difficult due to the lower sequence coverage. This

leads to overlapping clusters in the read-count/variant-allele plot, as well as distinct banding resulting

from the integrality of read counts (Figure 2.6A). The only clearly distinct clusters are for highly

amplified regions which exhibit correspondingly higher read counts. Since our analysis for this model

used only a subset of chromosome intervals to infer normal admixture and tumor subpopulations,

we can use the resulting genome mixing vector µ to analyze other chromosomes that were not

used in computing the maximum likelihood solution. We analyze several regions in chromosome 8

(Figure 2.6B), a chromosome with a complicated amplification pattern. After correcting read depth

ratios in 50 kb intervals in this region for the estimated normal admixture of 24%, three distinct

peaks centered near ratios of 1, 1.5 and 2 are apparent, corresponding to integer copy numbers of 2,

3, and 4, respectively in the tumor sample (Figure 2.6C). The amplifications are clonal aberrations.

Interestingly, the variant allele frequencies for germline SNPs in the regions corresponding to the

peak at corrected ratio 2 (copy number 4) are centered at 0.5. This implies that both homologs

of chr8q13-21 are present at equal copy number in this region; i.e. there is a duplication of both

homologs (Figure 2.6D). In addition, we observe that the variant allele frequencies for chromosome
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8p are centered at the values of 0 and 1, although this segment of the chromosome is inferred to

have copy number 2. This indicates that there was a copy-neutral loss of heterozygosity (LOH) in

this region. LOH in 8p have been previously reported in breast cancer [7, 179] and copy neutral

LOH in 8p has been reported in cell line data for other cancers [2].

2.4 Discussion

In this Chapter we describe a probabilistic model of DNA sequencing data of heterogeneous tu-

mor sample. Using this model, we formulate the Maximum Likelihood Mixture Decomposition

Problem (MLMDP) of finding the most likely collection of genomes and their proportions from

high-throughput DNA sequencing data in the case where copy number aberrations distinguish sub-

populations. We then introduce Tumor Heterogeneity Analysis (THetA), a convex optimization

algorithm that solves the MLMDP. THetA is an efficient (polynomial time) algorithm in the impor-

tant case where a tumor is a mixture of normal (healthy) cells and a single tumor population.

We show that THetA outperforms three other methods, CNAnorm [62], ASCAT [164] and AB-

SOLUTE [27], for inferring tumor purity and identifying copy number aberrations in the case of a

single tumor cell population admixed with normal (non-cancerous) cells. Moreover, we demonstrate

that THetA successfully estimates tumor purity even at low purity (10%) and with modest sequence

coverages (∼30X) on both real and simulated data. In contrast to other recent methods [27, 164]

that first infer average ploidy across the genome, THetA simultaneously estimates tumor purity and

computes the integral copy number of each genomic segment/interval. These advantages result from

THetA exploiting the large number of data points (reads) that measure copy number aberrations in

high-throughput sequencing data – information that is not available from SNP arrays.

We also demonstrate that THetA successfully deconvolves a tumor sample into a normal pop-

ulation and multiple tumor subpopulations, inferring the proportion of each subpopulation in the

mixture, and partitioning copy number aberrations into clonal and subclonal populations. Other

existing methods such as ASCAT [164], ABSOLUTE [27], and CNAnorm [62] do not directly infer

multiple subpopulations. Further, we show that these methods can produce highly inaccurate es-

timates of tumor purity on samples containing multiple subpopulations, and are sometimes unable

to identify some copy number aberrations that occur in subpopulations of tumor cells. In addition,

THetA reports all possible solutions of interval count matrices C and genome mixing vectors µ with
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Figure 2.5: Analysis of the ∼40X coverage breast tumor PD4115a. A. (Left) Read depth
ratios (gray) and the inferred copy number aberrations by our algorithm when n = 3 including
the normal population (black), dominant (clonal) tumor population (blue), and subclonal tumor
population (red). (Right) A reconstruction of the tumor mixture with the inferred aberrations and
estimated fraction of cells in each subpopulation. B. Distribution of read depth ratios over 50 kb
intervals after centering and correction for 24% normal admixture using a simple linear scaling.
Several peaks fall near to expected corrected ratios (0.5, 1, 1.5, 2). Two nearby but distinct peaks
can be seen indicating multiple sub-clonal deletions in similar proportions. C. (Top) Read depth
ratios in 50 kb bins for chromosomes 5, 9, and 11, each of which contains a clonal deletion (purple).
(Bottom) Distribution of read depth ratios after correction for the aberration fraction of 76% of
the sample. D. (Top) Read depth ratios in 50 kb bins for chromosomes 3, 4, and 5, each of which
contains a subclonal deletion (blue). (Bottom) Distribution of read depth ratios after correction
for the aberration fraction of 43.3% of the sample. E. (Top) Read depth ratios as in part D, but
a different subclonal deletion is highlighted (red). (Bottom) Distribution of read depth ratios after
correction for the aberration fraction of 32.7% of the sample.
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Figure 2.6: Analysis of chromosome 8 in breast tumor PD4115a. A. Virtual SNP array data
from this sample show few distinct clusters (compare to the 188X sample in Fig 3), with amplifica-
tion of chromosome 8 (green) being the most prominent. B. Read depth ratios for chromosome 8
organized by genomic coordinate. C. Histograms of read depth ratios for chromosome 8 corrected
for 24% normal admixture, indicating regions of copy 2,3,and 4 (cyan, orange and pink) respectively,
with the later two being clonal amplifications. D. Variant allele frequencies for chromosome 8. The
region with copy number 4 (pink) has variant allele frequencies clustered around 0.5, suggesting
duplication of both chromosomal homologs, while the telomeric region with copy number 2 (cyan)
has a loss heterozygosity, suggesting a copy neutral LOH event.
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the same maximum likelihood, allowing users to explore different maximum likelihood solutions.

Thus, THetA is an attractive alternative to these methods.

We show the advantages of THetA on 3 breast cancer genomes sequenced in [114]: one sequenced

at ∼188X coverage and two at ∼40X coverage. Nik-Zainal et al. [114] showed how a large amount

of information about a tumor’s evolutional history can be derived by analyzing clonal and subclonal

mutations in high-coverage sequencing data. Our THetA algorithm automates some of the manual

analysis involved in such reconstructions. For the ∼188X genome, our results are largely concordant

with the extensive analysis and annotation of this sample in [114]. THetA automatically recovers

nearly all of the copy number aberrations reported in [114], but with some differences in the clas-

sification of aberrations of clonal or subclonal. Allele data not used by THetA provides external

evidence that support the THetA results in several cases. On one of the ∼40X coverage genomes,

we identify two previously unreported tumor subpopulations in nearly equal proportions, as well as

24% normal admixture. These results are supported by statistical comparisons of read depth ratios,

and also allow us to identify copy-neutral LOH on chromosome 8q. Thus, we demonstrate that it

is possible to successfully identify multiple tumor populations in a single sample when considering

a subset of genomic intervals. Further, we do so for a ∼40X sequenced tumor, demonstrating the

ability to identify intra-tumor heterogeneity at sequence coverages that are the current standard in

cancer sequencing studies.

While we have demonstrated several of the strengths of THetA, the algorithm (as presented here)

does have some limitations. First, the reliance on copy number aberrations means that THetA is

unable to identify tumor subpopulations that do not contain copy number aberrations. As copy

number aberrations are ubiquitous in many types of cancers, particularly solid tumors, we expect

that THetA will prove useful for analyzing a wide range of different cancer samples. Second, THetA is

designed for use with whole-genome data and is not compatible with other popular datatypes such as

whole-exome sequence data. Finally, THetA’s computation time increases with more subpopulations,

making analysis of genomes with multiple tumor populations more difficult. In the Chapter 3 we

present THetA2 which allows us to overcome several of these limitations.

Our focus in the development of THetA was to address rigorously the difficult problem of ana-

lyzing tumor purity and subclonal copy number aberrations from DNA sequencing data. A logical

next step is to use the output of THetA to help predict single nucleotide mutations in tumor samples

and/or assess the clonality of somatic mutations, both challenging problems on their own. Carter
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et al. [27] and Nik-Zainal et al. [114] show that once tumor purity is correctly estimated, then this

value can be used to analyze the clonality/subclonality of somatic mutations. Incorporating the

additional signal of variant allele frequencies into the probabilistic model, as well as extending the

model to allele-specific copy number changes [40] are important directions for future work. Ulti-

mately, a desirable goal is to integrate into a single probabilistic framework the detection of all types

of somatic aberrations (single nucleotide, copy number, and rearrangements) with the estimation

of tumor purity and the derivation of tumor subpopulations. Next, further algorithmic improve-

ments in THetA would help in the analysis of more complicated tumor samples that have more

intervals (e.g. smaller copy number aberrations), higher amplitude copy number aberrations, more

subpopulations, or more complicated rearrangements; e.g. due to breakage/fusion/bridge (B/F/B)

cycles [183], chromothripsis [83], or extrachromosomal amplifications [135]. THetA is polynomial

time for a mixture of two genomes with intervals of equal weight, but the question of the complexity

of the MLMDP for n > 2 remains open. Finally, the number and scope of datasets that THetA can

analyze would grow significantly if the algorithm were modified to work with other datatypes.

A number of other techniques have recently been used to study intra-tumor heterogeneity. For

example [134] uses expression profiles across different individuals to identify differentially expressed

genes with respect to healthy cells at the cancer site of origin. Single cell sequencing and multi-

region sequencing from a primary tumor are alternative strategies that have been successfully em-

ployed [110, 109, 114, 14, 176, 71, 53]. As these technologies improve they will likely further con-

tribute to our understanding of intra-tumor heterogeneity. However, sequencing of primary tumor

samples as well as matched tumor/metastasis samples will remain a dominant protocol for some

time. Thus, algorithms such as THetA, ABSOLUTE, ASCAT, and others that can derive infor-

mation about intra-tumor heterogeneity from DNA sequencing of tumor samples provide a useful

complement to other technologies/techniques for tumor heterogeneity studies.



Chapter 3

An Improved Approach to

Quantifying Intra-tumor

Heterogeneity

In Chapter 2 we introduced Tumor Heterogeneity Analysis (THetA) – an algorithm to infer the most

likely collection of genomes and their proportions in a single sample from a heterogeneous tumor

when copy number aberrations distinguish subpopulations. Since the original paper describing

THetA [118] was published, the area of algorithm development for inferring tumor composition from

sequencing data of single samples of a tumor has remained extremely active [105, 90, 92, 143, 132, 91].

Data in the form of a single sequenced sample from a tumor remains widely available, especially

through large-scale efforts such as TCGA or ICGC. Thus, there is a continued need for better

methods to infer tumor composition from a single sample of a tumor.

In this chapter we explore several avenues for improved inference of tumor composition from a

single mixed tumor sample. While THetA was able to overcome some of the limitations of previous

methods, it still has several drawbacks. In this chapter we introduce THetA2, which extends the

original THetA algorithm in a number of important directions. We apply THetA2 to both whole-

genome (including low-pass) and whole-exome sequence data from 18 samples from The Cancer

Genome Atlas (TCGA). We find that the improved algorithm is substantially faster and able to

analyze highly rearranged genomes - identifying numerous tumors with subclonal tumor populations

48
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in the TCGA data. Where available, we compare our purity estimates to published values for another

widely used algorithm, ABSOLUTE [27]. While the purity estimates are largely in agreement

for higher purity samples, we find cases where ABSOLUTE fails or underestimates purity, but

THetA2 identifies multiple tumor subpopulations. These improvements greatly expand the range of

sequencing data and tumors for which we can infer tumor composition.

Much of the work in this chapter was a collaboration with Gryte Satas and is taken from [121].

This algorithm was presented at the 2014 Intelligent Systems for Molecular Biology special interest

group HitSeq: High-throughput Sequencing Algorithms and was accepted as a platform presentation

at the 2014 TCGA Scientific Symposium.

3.1 Related Work

Many recent studies indicate that most tumor samples are a heterogeneous mixture of cells, including

admixture by normal (non-cancerous) cells and subpopulations of cancerous cells with different

complements of somatic aberrations [114, 53]. As discussed in Chapter 2, characterizing this intra-

tumor heterogeneity is essential for many reasons. We briefly recap these reasons here. First,

an estimate of tumor purity, the fraction of cancerous cells in a tumor, is necessary for accurate

identification of somatic aberrations of all types in the sample. Most cancer genome sequencing

studies use a re-sequencing approach to detect somatic aberrations. Reads from a tumor sample

(and usually a matched normal sample) are aligned to the human reference genome. Differences in

the sequence of aligned reads, the number of aligned reads, or the configuration of aligned reads

(e.g. split reads or discordant pairs) are used to infer the presence of single-nucleotide or other

small variants, copy number aberrations, or structural aberrations respectively [103, 43]. However,

presence of intra-tumor heterogeneity can dilute the signals required to identify somatic aberrations.

Second, estimates of the composition of a tumor sample – including not only the tumor purity,

but also the number and fractions of subpopulations of tumor cells – provide useful for understand-

ing tumor progression and determining possible treatment strategies [108, 56]. In particular, clonal

somatic aberrations that exist in all tumor cells are likely early mutational events and their identi-

fication sheds light on the early stages of cancer. Conversely, subclonal somatic aberrations might

reveal properties shared by a subset of tumor cells such as drug resistance or ability to metasta-

size. Identification of such aberrations and subpopulations of tumor cells might inform treatment
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strategies, and/or help predict metastasis/relapse.

Many methods to infer tumor purity and/or tumor composition have been developed (Table 2.1).

Traditionally, these methods generally fall into two categories: (1) methods that use somatic sin-

gle nucleotide variants (SNVs) and (2) methods that use somatic copy number aberrations. SNV

based methods such as EXPANDS [8], PyClone [143], SciClone [105] and many others [75, 87] use

clustering of variant allele frequencies to determine tumor populations and frequencies. While these

types of methods are able to derive multiple tumor subpopulations, they often require estimates

of copy number for each region containing SNVs. Deriving such estimates for highly rearranged,

aneuploid tumors is as difficult as the estimation of intra-tumor heterogeneity itself. Moreover,

these approaches require high coverage sequencing to overcome the high variance in read counts

at individual SNVs. For example both PyClone [143] and PhyloSub [75] explicitly require deeply

sequenced data. Thus, less expensive low-coverage sequence data, as generated in TCGA [23] is not

amenable to these approaches.

Copy number based methods such as ABSOLUTE [27] and CNAnorm [62] use observed shifts in

read depth due to copy number aberrations to predict tumor purity, but do not explicitly consider

multiple tumor subpopulations, and therefore may return purity estimates that only reflect a sin-

gle subpopulation of tumor cells in a sample. In chapter 2 we described the Tumor Heterogeneity

Analysis (THetA) algorithm to infer the composition of a tumor sample – including both the per-

centage of normal admixture and the fraction and content of one or more tumor subpopulations that

differ by copy number aberrations [118]. While THetA represented an advancement over existing

methods at the time of publication, the method as originally published had limitations. For in-

stance, the algorithm required long run-times when considering multiple tumor populations, was only

adapted for whole-genome sequencing data (rather than the widely popular whole-exome sequencing

protocol) and only utilized read depth information rather than also incorporating alternative data

signals.

Finally, several methods that utilize both SNV and CNA data to infer tumor composition have

recently been developed [39, 91]. However, integrating these different data signals is not a straight

forward process. For instance, PhyloWGS[39] encodes copy number aberrations (already predicted

by another method) as SNVs. Thus, PhyloWGS not only requires that CNA be called a priori, but

also assumes equal weight for every mutation, regardless of the fact that a CNA may be supported

by many more reads than an SNV. Thus, there still remains many questions about how to utilize
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multiple types of input data in order to accurately infer tumor composition.

3.2 The THetA2 Algorithm

In this section we describe the THetA2 algorithms, which extends the THetA algorithm (presented

in chapter 2) in several important directions. First, we substantially improve the computation for

the case of multiple distinct tumor subpopulations in a sample. Second, we extend THetA2 to

infer tumor composition for highly rearranged genomes using a two-step procedure where initial

estimates are made using high confidence regions of the genome, and then are extended to the entire

genome. Third, we devise a probabilistic model of B-allele frequencies, which can be used to solve the

identifiability issue when read depth alone is consistent with multiple possible tumor compositions.

Lastly, we extend THetA2 to analyze whole-exome sequencing data. Thus, THetA2 is applicable to

a much wider array of data than the original algorithm.

3.2.1 Notation and Problem Formulation

We assume that the reference genome is partitioned into a sequence I = (I1, . . . , Im) of non-

overlapping intervals, according to changes in the density, or depth, of reads aligning to each position

in the reference [174]. Given I, we define a corresponding read depth vector r = (r1, . . . , rm) ∈ Nm

where rj is the number of reads with a (unique) alignment within Ij . A cancer genome is defined

by an interval count vector c ∈ Nm, where cj is the integer number of copies of interval Ij in the

cancer genome.

A tumor sample T is a mixture of cells that contain different collections of somatic mutations,

and in particular somatic copy number aberrations. Each subpopulation has a distinct interval

count vector representing the genome of the subpopulation. Following the model introduced in [118]

we represent T by: (1) an interval count matrix C = [cj,k] ∈ Nm×n where cj,k is the number of

copies of interval Ij in the kth distinct subpopulation; and (2) a genome mixing vector µ ∈ ∆n−1 =

{(µ1, . . . , µn)T | ∑n
j=1 µj = 1, and µj ≥ 0 for all j} where µk is the percentage of cells in T that

belong to the kth distinct subpopulation.

Let the interval count matrix C = (c1, . . . , cn), where cj is the jth column of C. We assume that

C satisfies three constraints. (1) The first column c1 = 2m so that the first component of the tumor

sample is the normal genome. (2) The number n of subpopulations is less than the number m of
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intervals. (3) The copy numbers of the intervals are bounded below by 0 and above by a maximum

copy number k ≥ 2. Thus, C ∈ {0, . . . , k}m×n. We define Cm,n,k to be the set of all such C, and

define Ωm,n,k = {(C, µ) | C ∈ Cm,n,k, µ ∈ ∆n−1} to be the domain of pairs (C, µ) satisfying all

constraints.

We model the observed read depth vector r using a multinomial probability distribution with

parameter p = (p1, . . . , pm), where pj is the probability that a randomly chosen read will align to

interval Ij . A pair (C, µ) defines a value for the multinomial parameter p = Ĉµ = Cµ
|Cµ|1 . Thus,

the negative log likelihood L(C, µ|r) = − log(Mult(r; Ĉµ)) is the negative log of the multinomial

probability of observing counts r in the intervals given the probability of a read aligning to an interval

is defined by Ĉµ. The goal is to find the interval count matrix C∗ and genome mixing vector µ∗

that minimize the negative log likelihood:

(C∗, µ∗) = argmin(C,µ)∈Ωm,n,k
L(C, µ; r) (3.1)

3.2.2 Interval Count Matrix Enumeration

In this section, we derive an improved procedure to solve the optimization problem (3.1). In [118]

we showed that the function L(C, µ; r) is a convex function of µ. Thus, for a fixed interval count

matrix C, the optimal value of µ can be computed efficiently. In the important special case of a

mixture of normal cells and a single tumor population (n = 2), we reduce the domain of interval

count matrices C to a set whose size is polynomial in m and guaranteed to contain the optimal C∗.

This set is easy to enumerate and we obtain an efficient algorithm. However, when a tumor sample

contains multiple tumor subpopulations (n > 2) the algorithm in [118] enumerates all C ∈ Cm,n,k

and checks whether each such C satisfies a particular ordering constraint that is a necessary, but

not sufficient, condition for the optimal C∗.

In this section we derive a algorithm that explicitly enumerates only those matrices C that satisfy

a more restrictive necessary ordering constraint for a mixture of any number of tumor genomes. All

proofs are contained in Appendix B.

Compatible Order

We say that vectors v = (v1, . . . , vm) and w = (w1, . . . , wm) ∈ Rm have compatible order provided

all 1 ≤ i, j ≤ m, vi ≤ vj if and only if wi ≤ wj . In [118] we proved that if (C∗, µ∗) is optimal (i.e.
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satisfies Equation (3.1)) then Ĉ∗µ∗ and r have compatible order. We define Sm,n,k to be the set

of matrices C ∈ Cm,n,k that satisfy this ordering constraint: i.e. Sm,n,k = {C | C ∈ Cm,n,k and

∃µ ∈ ∆n−1 such that Ĉµ is in compatible order with r}. Thus, to find the optimal solution (C∗, µ∗),

it is sufficient to examine matrices C ∈ Sm,n,k.

Without loss of generality, we assume that the read depth vector r = (r1, . . . , rm) satisfies r1 ≤

r2 ≤ · · · ≤ rm. Thus, the set Sm,n,k = {C ∈ Cm,n,k| (Cµ)1 ≤ (Cµ)2 ≤ · · · ≤ (Cµ)m for some µ ∈

∆n−1}.

For a matrix C ∈ Cm,n,k, the set of µ which result in a compatible ordering can be calculated

using the function Φ (C):

Φ (C) =

m−1⋂

j=1

{µ|µ ∈ ∆n−1 such that (Cµ)j ≤ (Cµ)j+1}. (3.2)

Thus, a matrix C ∈ Sm,n,k if and only if Φ (C) is not empty. Corollary 3.2.1 follows directly from

Equation (3.2).

Corollary 3.2.1. Suppose C ∈ Cm,n,k. If there exists an i ∈ {1, . . . ,m − 1} such that for all

t ∈ {2, . . . , n}, ci,t ≥ ci+1,t and there exists a t ∈ {2, . . . , n} such that ci,t > ci+1,t, then Φ (C) = ∅.

Using a graph to enumerate Sm,n,k

We now present an algorithm to enumerate Sm,n,k for n ≥ 2. Consider a complete (including self

loops) directed graph Gn,k, with a vertex for each possible row in a matrix in Cm,n,k. Paths on Gn,k

of length m− 1 correspond to matrices in Cm,n,k (See Figure 3.1 and Figure B.1).

To enumerate the subset of paths on Gn,k which correspond to matrices in Sm,n,k, we use a depth

first search. While building paths, we calculate the set Φ for the matrix implied by the current path,

and only proceed down branches which do not result in the empty set (see Appendix B). As a result,

we are guaranteed to enumerate only the matrices in Sm,n,k.

Corollary 3.2.1 allows us to reduce the graph Gn,k by showing that there are certain edges which

will never appear in paths which correspond to matrices in Sm,n,k and thus can be removed from

the graph prior to matrix enumeration. In the case where n = 3, the calculation of Φ is reduced to

a problem in a single variable, µ2

µ3
.
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Figure 3.1: An example of the graph used by THetA2 to enumerate matrices C. Specifi-
cally, the graph G3,1 is used to enumerate the matrices Sm,3,1 as a subset of the paths of length m−1.
The dashed edges can be removed by applying Corollary 3.2.1. The highlighted path corresponds
to the matrix on the right.

3.2.3 A Two-Step Procedure for Genome-Wide Inference of Copy Num-

bers

In [118] we inferred tumor composition using a relatively coarse interval partition I of the reference

genome, considering only large copy number aberrations. As a result, the published approach

could not readily be applied to highly rearranged genomes that are segmented into many intervals.

Moreover, manual selection of a subset of intervals was typically required when analyzing samples

containing multiple tumor populations. Even with the improved enumeration procedure described

in the previous section, when more than one tumor subpopulation is considered, the number of

matrices C that need to be enumerated is exponential in the number m of intervals. Moreover, the

number of matrices C is also exponential in the maximum copy number state k considered, making

analysis of genomes with extensively amplified regions more difficult.

In this section we present a two-step procedure for interval selection that overcomes the limi-

tations stated above, and allows us to infer the composition of highly rearranged genome that are

highly fragmented and/or contains amplified segments with more than k copies. Our two-step pro-

cedure consists of the following steps: (1) Select a set of high-confidence intervals, and determine
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the most likely C and µ for those intervals. (2) Use the estimates of C and µ to determine copy

numbers for all other intervals in I not used in the first step, thus allowing for analysis of both highly

amplified regions and very fragmented genomes.

Interval Selection

We automate the selection of a subset of high confidence intervals used to determine the optimal

(C∗, µ∗) for those intervals. Further details are included in Appendix B. Briefly, we partition I into

two sets of intervals: (1) IH - high confidence intervals; (2) IL - lower confidence intervals. IH is

selected to contain up to a fixed integer d longest intervals from I such that each interval selected

is longer than a predetermined minimum length and is not obviously amplified beyond the specified

max copy number k. IL contains all remaining intervals from I. Additionally, IH must represent

> 10% of the total length of all provided intervals, otherwise the sample is determined not to be a

good candidate for analysis using THetA2. Once IH and IL have been selected, we use the improved

THetA2 algorithm described in the previous section to calculate C∗H and µ∗H for just the intervals

in IH .

Determining Additional Copy Numbers: Single Row

Given (C∗H , µ
∗
H) predicted for high confidence intervals IH , we infer copy numbers for the remaining

intervals IL. We start with the simplifying assumption that |IL| = 1. We prove the following

theorem.

Theorem 3.2.2. Let C = [ci,j ] be an interval count matrix. L(C, µ|r) is a convex function of ci,j.

We use Theorem 3.2.2 to find the optimal real valued solution for the ci,j ’s corresponding to the

single interval I ∈ IL, given C∗H and µ∗H . We then check the surrounding integer values to find the

integral solution, which, by convexity, is guaranteed to find the optimal integer solution.

Determining Additional Copy Numbers: Multiple Rows

In the previous section we showed how to find the optimal copy number for a single additional interval

in IL given optimal values C∗H , and µ∗H for a set of high confidence intervals IH . To estimate copy

numbers when I ∈ IL contains more than one interval we estimate the optimal copy numbers for

each interval in I ∈ IL when appended to CH individually as described in the previous section, and
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then jointly append all inferred copy numbers to C∗H to obtain a new matrix CH∪L. We then return

the solution (CH∪L, µ
∗
H). We note that this approach provides no guarantee for finding the optimal

copy numbers across all I ∈ IL given C∗H , and µ∗H . However, in practice we find that the solutions

returned by our procedure are generally very similar to this optimum (Table B.1).

3.2.4 Model Selection

As in [118], we use the Bayesian information criterion (BIC) to select from different sized models

(that is, different numbers n of tumor populations) and their corresponding maximum likelihood

solutions. We use the standard BIC of −2log(L) + a log(b) where L is the likelihood of a solution,

a = (m+ 1)(n−1) is the number of free parameters in the model and b is the number of data points

(the total number of tumor and normal reads). In contrast, [118] used a modified BIC that more

strongly penalized solutions with more tumor populations. Such a modification is not necessary

here, as our improved algorithm considers copy number data across the entire genome, rather than

only a small number of intervals, reducing the possibility of overfitting. Thus, we are able to more

robustly identify samples with multiple subpopulation of tumor cells.

3.2.5 Probabilistic Model of B-allele Frequencies

THetA2 may return multiple equally like pairs (C, µ) when using read depth alone. We derive a

probabilistic model of B-allele frequencies (BAFs) – the fraction of reads containing the minor allele

– that may be used to distinguish between multiple pairs (C, µ). Let v = (v1, v2, . . . , vq) be the

observed BAFs for q heterozygous germline SNPs in the normal sample and w = (w1, w2, . . . , wq)

be the corresponding BAFs from the tumor genome. We model w as being drawn from Gaussian

distributions whose parameters depend upon v, C and µ. We then select the (C, µ) which maximizes

the likelihood of the observed BAFs in the tumor sample:

L(C, µ|v,w) = P (w|δ, σ2) =

q∏

i=1

N(wi|sgn(0.5− wi)δi, σ2
i ) (3.3)

Here σ2
i is the observed variance for all heterozygous SNPs in v that lie within interval Ij and

δj is the expected BAF deviation away from 0.5 given C and µ. See Appendix B for further details.
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3.2.6 Application to Whole-Exome Data

Lastly, we extend THetA2 for whole-exome data, where only the coding regions of the genome have

been targeted for sequencing. From whole-exome data we need to infer the following two values: (1)

A set of non-overlapping intervals I = (I1, . . . , Im) in the reference genome; and (2) A corresponding

read depth vector r = (r1, . . . , rm).

To infer the interval partition I we rely on recently developed algorithms such as ExomeCNV

[145] and EXCAVATOR [95] for segmentation and detection of copy number aberrations from whole-

exome data. The segmentation returned by one of these algorithms may contain gaps rather than

being a complete partition of the reference genome, but still provides a set of non-overlapping

intervals that may be used as input to THetA2. We note that some methods utilize normalization

procedures for GC content, mappabability and even exon length and this information is therefore

implicitly incorporated into the input provided to THetA2.

We compute the read depth vector r = (r1, . . . , rm) for whole-exome data as follows. Given a

set I of non-overlapping intervals in the reference genome, a set E of exons in the reference genome

and a read length ` we set rj =
xj

` where xj is the total number of sequenced nucleotides that have

a unique alignment to some exon e ∈ E within interval Ij . Thus, rj is approximate count of the

number of reads aligning to some exon located in interval Ij .

3.3 Results

We ran THetA2 on simulated data, and whole-genome (including low-pass data 5-7X coverage) and

whole-exome data from 18 breast carcinoma, ovarian carcinoma, glioblastoma multiforme, kidney

renal clear cell and lung squamous cell carcinoma samples from TCGA (Table B.2). Where available,

we compare our estimates of tumor purity to the estimates reported by the ABSOLUTE algorithm

[27] that estimates purity from SNP array data.

The rest of this section is organized as follows. First we discuss results on simulated data. Second,

we demonstrate THetA2’s performance on whole-exome data, including comparison of results for

samples for which both whole-genome and whole-exome data was available. Next, we present in-

depth analysis of several whole-genome samples in order to demonstrate the efficacy of THetA2 on

highly rearranged genomes, using both low-pass and moderate coverage sequence data. Lastly, we

apply our probabilistic model of B-allele frequencies to one sample and disambiguate between two
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equally likely solutions.

3.3.1 Simulated Data

We tested THetA2 on simulated data in order to demonstrate the improvements in THetA2 over the

original THetA as well as ABSOLUTE. We created simulated mixtures using real sequencing data

from an AML tumor sample and matched normal sample (TCGA-AB-2965) from [26]. This sample

was chosen due to its high purity (approximately 95% pure) and lack of copy number aberrations as

predicted by array data, providing high confidence that our simulated mixture and implanted copy

number aberrations are not confounded by impurity and aberrations in the real data. Simulated

mixtures are created by implanting random amplifications and deletions (see Appendix B) to create

different tumor populations, and then creating a mixture representing different tumor compositions.

Mixtures with 3 subpopulations

We find that THetA2 computes the optimal solution orders of magnitude faster than the original

THetA (Figure 3.2a). Using 30X simulated data THetA2 demonstrates consistent accuracy at

estimating µ (error < 0.05) and copy numbers in the larger tumor population (error < 0.1). In

addition, the accuracy in estimating copy numbers improves for the smaller tumor population as its

proportion increases (Figure 3.2b). Furthermore, THetA2 has increased performance at estimating

copy numbers for both populations when only considering longer intervals. For example, when the

smaller subpopulation comprises 0.3 of cells in the sample and we only consider intervals longer than

5Mb, the error rate for both populations drops below 0.06. We see similar trends using 7X simulated

data, but the lower coverage results in slightly worse copy numbers estimates (Figure B.2).

We also directly compare THetA2 to the original THetA on this simulated data. The two-step

method enables THetA2 to infer copy numbers for 100% of the genome compared to only 6-11% of

the genome with the original THetA (Figure B.3). The expanded fraction of the genome analyzed

also translates into a substantial increase in the fraction of genome with correct copy numbers

estimates. In our simulations THetA2 correctly infers copy numbers for the larger and smaller

tumor subpopulation in 83%− 87% and 28%− 72% more of the genome, respectively, than THetA

(Figure B.4).

Using the simulated mixture in Figure 3.3A, we demonstrate that the improved enumeration

procedure in combination with the two-step can lead to improved estimates of both µ and C.



59

5 10 15
0

200

400

600

800

1000

!"#$%&'()*+"

,-$./&" 0+./).1$"0''1'"2)3" 243"

0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

 

 

µ

Tum1 (all)

Tum1 (>1Mb)

Tum1 (>5Mb)

Tum2 (all)

Tum2 (>1Mb)

Tum2 (>5Mb)

5#6&"17"8-/9"

Figure 3.2: Runtime comparison and estimation error for THetA2 on simulated data
containing a mixture of normal cells and two tumor subpopulations. (a) The ratio of
runtimes for the old and new enumeration procedures as a function of the number of intervals used
in the first step of the algorithm. (b) Estimation error for both µ and C for each tumor population
(Tum1 and Tum2) as the proportion of Tum2 increases and the proportion of Tum1 is fixed at 0.5.
Error for µ is the euclidean distance from the true value and error for each tumor population is the
fraction of the genome for which the copy number is incorrectly inferred for the all copy number
estimates, and when only considering intervals that are longer than 1Mb and 5Mb.

On this mixture THetA2 is able to reconstruct both tumor populations with accuracy above 0.87

(Figure 3.3B) across the entire genome. However, because THetA is only able to consider a small

fraction of the genome, when applied to this mixture it has increased error at estimating µ and

completely misestimates the smaller tumor subpopulation with error of 0.95 across the regions for

which copy number estimates were made and error 0.99 across the whole genome (Figure 3.3C). We

also applied ABSOLUTE [27] to this mixture, run with default parameters, using the same partition

of the genome output by BIC-seq [174]. ABSOLUTE returns a collection of 12 different solutions,

each with a different purity and likelihood (Figure 3.3D). The most likely solutions returned by

ABSOLUTE underestimate purity by at least 0.28 and estimated a tetraploid solution, while the

true sample has mean ploidy 1.75 and 1.77 in the two tumor populations. Further details are located

in Appendix B.

Mixtures with 4 subpopulations

To demonstrate the extensibility of the model to greater numbers of subpopulations, we create

a simulated 30X coverage mixture containing 4 distinct subpopulations. Due to the increased
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Figure 3.3: Comparison of THetA2, THetA and ABSOLUTE on a simulated mixture of
3 subpopulations. (A) True simulated mixture including read depth ratios (gray) over 50 kb bins
and the true copy numbers for a mixture of normal cells (black) and two tumor subpopulations (blue
and red). (B) Tumor composition inferred by THetA2 using default parameters. Genome coverage
is the fraction of the genome for which copy number estimates are made. µ error is euclidean distance
from the true µ and C error is the fraction of the genome with the incorrect copy number estimate.
(C) Similar to (b) but shows composition inferred by the original THetA and also shows C error
across both predicted regions and whole-genome. (D) (left) Histogram of all 12 purity estimates
output by ABSOLUTE. (right) The purity and ploidy reported in the most likely and most likely
using only Karyotype solutions output by ABSOLUTE.
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runtime when considering larger numbers of subpopulations, we employ an alternative segmentation

procedure to reduce the total number of intervals (see Appendix B for details). We find that on this

simulation, THetA2 was able to estimate µ with 0.05 error, comparable to the accuracy achieved

for smaller numbers of subpopulations, and was able to correctly infer copy number for 99.6% of the

intervals considered, with the tradeoff of only considering 87.6% of the total genome (Figure B.5).

Further, we demonstrate how the output of THetA2 changes when the number of subpopulations (n)

is fixed below the true number of subpopulations. In particular, we show that in this case THetA2

still provides useful information about the true mixture (Figure B.6).

3.3.2 Extension to Whole-Exome Sequencing Data

To demonstrate THetA2’s effectiveness on whole-exome data we ran THetA2 on Illumina whole-

exome data for the subset of 16 of the 18 tumor samples from TCGA for which whole-exome data

was available (Table B.2). For each sample we used both ExomeCNV [145] and EXCAVATOR [95]

with default parameters to determine an interval partition I (see Figure B.7 for the complete whole-

exome workflow). If we assume that the tumor sample is a mixture of normal cells and a single tumor

population, then the purity estimates obtained by THetA2 on the ExomeCNV and EXCAVATOR

interval segmentations were similar for most samples (Figure B.8). The two exceptions were two

tumor samples where we find subclonal copy number aberrations (for one example see Figure B.9).

We found that the presence of subclonal aberrations can result in estimates of purity that are

artificially low. For example, a segmentation may not accurately distinguish all present subclonal

aberrations. Thus in the results below, we use the THetA2 solution with higher purity estimate

from the ExomeCNV and EXCAVATOR segmentations. Further details are in Appendix B.

Comparison of THetA2 with ABSOLUTE

On most samples THetA2 purity estimates are within 0.08 of the estimates reported by the ABSO-

LUTE algorithm [27] (Figure 3.4a). One example is glioblastoma sample TCGA-06-0214, for which

we estimate purity of 0.67 compared to 0.66 reported by ABSOLUTE. However, while the purity

estimates are similar, THetA2 is additionally able to identify two subpopulations of tumor cells, in

46.4% and 20.1% of cells in sample (Figure 3.4b) and determine which copy number aberrations are

part of each subpopulation.

There are two samples where THetA2 purity estimates are not in agreement with those reported
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Figure 3.4: THetA2 results on whole-exome (WXS) data. (a) Comparison of purity estimates
by THetA2 and ABSOLUTE (as reported in [27]). With exception of two outlier samples (red
triangles; TCGA-29-1768 and TCGA-06-0188), both approaches predict similar estimates on high
purity samples: r = 0.9 from Pearson correlation coefficient. Circled sample is TCGA-06-0214,
for which both methods agree on sample purity. (b) Tumor composition inferred by THetA2 on
glioblastoma multiforme sample TCGA-06-0214. Read depth ratios (gray) over 50 kb bins and the
copy numbers (for all intervals > 2Mb) inferred by THetA2 for a mixture of normal cells (black)
and two tumor subpopulations (blue and red). We detect rearrangements common to glioblastoma
multiforme [156] such as amplification of chromosomes 7, and loss of chromosomes 6q, 9p, 10, 13q
and 14q.

for the ABSOLUTE algorithm [27] (Figure 3.4a). The first is ovarian carcinoma sample TCGA-29-

1768 where we infer multiple tumor subpopulations and report a purity of 0.87 compared to 0.55

reported by [27]. Notably, one of the tumor subpopulations returned by THetA2 is in 54% cells. A

possible explanation is that ABSOLUTE reported the purity for the major tumor subpopulation.

The second is glioblastoma sample TCGA-06-0188 which we infer to contain two tumor subpopu-

lations consisting of 43.1% and 20.3% cells. In comparison, ABSOLUTE reports that the sample

is highly non-clonal and is unable to estimate purity. Our purity estimate of 0.7 is in the range of

0.6 − 0.8 reported by TCGA histopathology reports. We perform further analysis of this sample

and find supporting evidence for our estimated tumor composition (Figure B.10). These results

demonstrate that consideration of multiple tumor populations may be important for determining

tumor purity, especially for samples with large subclonal populations.

Consistency Across Sequencing Platforms

To further validate the results of THetA2 on whole-exome data we compared results for the 7 of

the 18 TCGA samples for which both whole-genome (including low-pass with 5-7X coverage) and

whole-exome sequence data was available. For whole-genome samples, we partition the reference
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Sample Path. ABS
WGS Purity

(# populations)
WXS Purity

(# populations) Overlap CNA Sim

TCGA-06-0185 0.95 0.89 0.87 (3) 0.83 (2*) 0.97 0.91
TCGA-06-0188 0.6-0.8 NA 0.70 (3) 0.63 (3) 0.96 0.79, 0.62
TCGA-06-02141 0.25-0.8 0.66 0.67 (3) 0.67 (3) 0.96 0.97, 0.92
TCGA-56-1622 0.9 - 0.68 (3) 0.78 (3) 0.96 0.89, 0.57

TCGA-A2-A0EU 0.9 - 0.77 (3) 0.90 (3) 0.91 0.61, 0.22
TCGA-AO-A0JJ 0.8 - 0.52 (3) 0.52 (2) 0.85 0.67
TCGA-BH-A0W5 0.7 - 0.51 (2*) 0.54 (2*) 0.98 0.97

Table 3.1: Comparison of THetA2 results on whole-genome and whole-exome data. Path.
are purity estimates reported in TCGA histopathology reports. ABS are ABSOLUTE purity esti-
mates reported by [27] (samples marked with ‘-’ do not have published purity estimates from AB-
SOLUTE). WGS Purity, WXS Purity and # populations are values predicted by THetA2. Overlap
is I∗

|IWGS |∪|IWXS | where IWGS andIWXS are the interval partitions for the whole-genome and whole-

exome data, respectively, and I∗ is the set of intervals longer than 100kb contained in both IWGS

andIWXS . CNA Sim is the fraction of I∗ where the copy number estimates are the same between the
two data types. ∗ indicates that the sample did not pass the criteria to be considered for multiple
tumor populations (see Appendix B). 1For sample TCGA-06-0214, WGS data was aligned to hg18
and WXS data aligned to hg19. See Table B.3 for purity estimates across all genomes analyzed and
results using an additional similarity metric.

genome using the BIC-seq algorithm [174] run with default parameters (see Figure B.7 for whole-

genome workflow). We found that purity estimates for whole-exome data to be within 0.04 of purity

estimates for whole-genome data for 4 of the 7 samples (Table 3.1).

We also compare the copy number aberrations predicted for the different subpopulations between

the whole-exome and whole-genome data using a similarity measure described in Table 3.1 caption.

We find that 4 of the genomes have ≥ 0.89 similarity under our measure (Table 3.1) for the major

subpopulation. Notably, we find that THetA2 infers 3 subpopulations for sample TCGA-06-0214

on both whole-exome and whole-genome data – selecting the n = 3 solution over both n = 2 and

n = 4 for whole-genome data (see Appendix B) and has similarity 0.92 between the datatypes for

the minor subpopulation. We also found similar copy number similarity results using a less stringent

measure that only considers copy number state rather than exact copy number value (Table B.3).

These results demonstrate the consistency of THetA2 – including the inference of multiple tumor

subpopulations – across different types of sequencing data.
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3.3.3 Analysis of Highly Rearranged and Heterogeneous Genomes

One of the main advantages of THetA2 is the ability to analyze highly rearranged genomes containing

many copy number aberrations in one or more tumor subpopulations. We analyze in further detail

several highly rearranged genomes that THetA2 predicted to contain subclonal populations from

whole-genome data.

Low-Pass Breast Cancer Samples TCGA-A2-A0EU and TCGA-AO-A0JL

We used THetA2 to analyze two breast cancer genomes, TCGA-A2-A0EU and TCGA-AO-A0JL,

that were sequenced with low-pass (5-7X) whole-genome sequencing. These are the most rearranged

of the breast cancer genomes that we analyzed – containing many intervals in BIC-seq segmentation

(493 and 675 intervals respectively) and more predicted copy number aberrations. We attempted to

run ABSOLUTE [27] on these genomes using the BIC-seq segmentation. However, despite trying

a range of values for the parameters, we obtained purity below 0.3 for both samples. For com-

parison, we cite the results reported by [177] on these samples, using ABSOLUTE and a different

segmentation.

In both samples, THetA2 identifies multiple subclonal populations. We infer that breast cancer

sample TCGA-A2-A0EU contains normal admixture with two distinct tumor subpopulations, one

with 42.7% cells and another with 34.6% cells (Figure B.11(a)). We note that our estimate of tumor

purity (0.77) is below the reported histopathology purity of 0.90 for this sample, but closer than the

ABSOLUTE estimate of 0.49. We infer that breast cancer sample TCGA-AO-A0JL contains normal

admixture with two distinct tumor subpopulations, one with 57.0% cells and another with 30.5%

cells (Figure B.11(b)). Despite being the most rearranged of the breast cancer genomes analyzed,

our estimated tumor purity of 0.88 is near the reported histopathology value of 0.80. In comparison,

ABSOLUTE inferred purity of 0.50 for this sample. We are also able to identify a number of clonal

and subclonal chromosome arm level events for both genomes (see Appendix B), as well as many

other small events, thus demonstrating that THetA2 can analyze highly rearranged genomes with

low-coverage whole-genome sequencing data.
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Lung Squamous Cell Sample TCGA-56-1622

We ran THetA2 on a highly rearranged lung squamous sample TCGA-56-1622, containing 2847

intervals in the segmentation. We note that this genome is so fragmented that ABSOLUTE [27]

does not attempt to estimate tumor purity when run with default parameters. Moreover, this sample

has so many copy number changes that SNV based algorithms [8, 143] would have extreme difficulty

in defining regions of normal copy number to analyze. THetA2 infers that sample contains normal

admixture with two distinct tumor subpopulations, one with 50.1% cells and another with 18.1%

cells (Figure 3.5a). Using the new two-step procedure, THetA2 also identifies many smaller copy

number aberrations (Figure B.12) and we find that the read depth predicted using our reconstruction

closely matches the observed read depth (Figure 3.5b).

We examine this sample in further detail using using B-allele frequency (BAF) information not

used by THetA2. We constructed a virtual SNP array defining the BAF at a known germline SNP

to be the fraction of reads containing the minor allele as described in [118]. In diploid regions of the

genome that have not undergone any copy number changes we expect that the BAFs for germline

heterozygous SNPs to be near a value of 0.5, as approximately half of the reads should contain the

B-allele. In a pure tumor sample a deletion of a segment on a single chromosome will lead to a

loss of heterozygosity (LOH) and B-allele frequencies (BAF) at 0 or 1 in a symmetric double banded

pattern centered around 0.5. As the sample become less pure (i.e. more admixture by normal cells),

the double banded pattern will shift closer to 0.5.

In many of the regions where THetA2 predicted a clonal deletion (i.e. in all subpopulations),

such as chromosomes 3, 5q and 18 (Figure 3.5b) we observe that the BAFs cluster near 0 and 1, as

expected for a deletion occurring in a majority of cells in the sample. Similarly, we find that the

shifts in BAF are consistent with THetA2’s predictions of subclonal deletions in 50.0% and 18.1%

of cells (Figure 3.5b). On chromosome 1p, we observe a discrepancy between THetA2’s predictions

and BAF. THetA2 predicts that 1p is a clonal deletion; however, the BAFs are clustered tightly

around 0.5, indicating an equal number of both parental copies of this region in the tumor sample.

One explanation is that 1p is homozygously deleted in one of the tumor subpopulations, rather than

a heterozygous deletion in both subpopulations, which would keep the balance of the parental copies

of 1p in the tumor sample.
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Figure 3.5: Analysis of squamous cell lung cancer sample TCGA-56-1622. (a) (Left) Read
depth ratios (gray) over 50 kb bins and the inferred copy number aberrations calculated by THetA2
when the tumor is considered to be a mixture of 3 subpopulations: normal cells (black), and two
tumor subpopulations (blue and red). (Right) A reconstruction of the tumor mixture along with
ancestral clonal population (purple) with the inferred aberrations and estimated fraction of cells in
each population (see Appendix B). (b) Expected read depth ratios (see Appendix B) for intervals
longer than 2Mb based on inferred C and µ (black) overlaid on observed read depth ratios (gray).
(c) Virtual SNP array showing B-allele frequencies at germline SNPs on indicated chromosomes and
the mean BAF in each segment (see Appendix B).
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3.3.4 Using B-allele Frequencies

For glioblastoma sample TCGA-06-0145, THetA2 outputs two possible (C, µ) pairs using only read

depth – one largely haploid and one largely diploid. We apply our probabilistic model of BAFs and

find that the diploid reconstruction, which includes rearrangements characteristic to glioblastoma

such as amplification of chr7 and deletion of chr10 [156], is determined to be the more likely tumor

composition (Figure B.13).

3.4 Discussion

We introduced an algorithm to infer tumor composition – of highly rearranged genomes from whole-

genome (high or low coverage) or whole-exome DNA sequencing data. These are implemented as

improvements to our Tumor Heterogeneity Analysis (THetA) algorithm which we call THetA2.

The THetA2 algorithm is able to analyze highly rearranged, aneuploid samples that are beyond

the scope of existing algorithms that infer tumor heterogeneity. A recently published comparison of

algorithms for inferring tumor purity [177] showed that our original THetA algorithm [118] performed

well, but sometimes underestimated tumor purity when run to only consider normal cells and one

tumor subpopulation. We argue that this purity underestimation is likely a result of not directly

considering all tumor subpopulations in the sample. In every sample that we analyzed with the new

algorithm, tumor purity was higher when considering multiple tumor subpopulations.

While the improved THetA2 presented here is useful on a wide range of sequencing data from

different tumors, some limitations remain. First, THetA2 is unable to distinguish tumor subpop-

ulations that are not differentiated by copy number aberrations. Since copy number aberrations

are ubiquitous in most solid tumors [3], we expect that THetA2 will still be applicable to many

genomes. However, for some diploid tumors, SNV analysis is preferable. Incorporation of additional

information, such as B-allele frequencies for somatic and germline SNPs, directly into the model

[8, 143] may also increase the scope of samples for which THetA2 is applicable.

Secondly, while the improvements presented here greatly decrease the computational burden of

the algorithm when considering multiple tumor populations, the algorithm remains exponential in

the size of the interval partition of the reference genome - making it impractical to infer tumor

composition with more than a handful of subpopulations in many cases. Identification of further

mathematical restrictions to the domain of interval count matrices, or use of sampling techniques
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in place of complete enumeration are future avenues of investigation which may prove useful in this

respect. Additionally, when considering multiple tumor of subpopulations, the quality of the results

is limited by features of the data including the presence of copy number aberrations that distinguish

subpopulations as well as the number of sequence reads available to identify these aberrations, with

the later a function of sequencing coverage, aberration length, and proportion of cells that have the

aberration.

While the limited number of tumor subpopulations that THetA2 analyzes may not be sufficient

to fully analyze tumor progression, THetA2’s ability to recover subpopulations with relatively low-

coverage sequencing data can provide some insight into tumor subpopulations in cases where methods

that rely on high-coverage data [75, 143] cannot. Combining THetA2’s output with other methods

that do not explicitly consider the phylogenetic history of a tumor such as [75] or [64] may prove a

useful avenue of exploration.

The two-step procedure introduced here allows us to infer subclonal copy number aberrations

at much smaller scales. However, some care is required to avoid overfitting the data, particularly

for small, subclonal copy number aberrations where GC-bias or other sequencing artifacts may lead

to incorrect inferences. Incorporating more sophisticated segmentation procedures that account for

such effects and appropriately scale read counts [15] are useful directions for future research.

Finally, this work focuses on the important first step of quantifying intra-tumor heterogeneity

from a single mixed tumor sample. Downstream analysis including the clinical and functional impact

of the inferred tumor composition is an important area for future work.

In conclusion, we present a new algorithm, THetA2, to infer the composition of a tumor sample

– including both the percentage of normal admixture and the fraction and content of one or more

of tumor subpopulations that differ by copy number aberrations. The new algorithm builds upon

our Tumor Heterogeneity Analysis (THetA) algorithm [118], and includes several improvements

that allow us to analyze highly rearranged genomes from whole-genome (high and low coverage)

or whole-exome sequencing data. In addition, the new algorithm is orders of magnitude faster and

allows us to use B-allele frequencies to distinguish between different reconstructions.



Chapter 4

Inferring Tumor Evolution from

Multi-Sample Data

In this chapter we continue our exploration of methods to infer the composition of heterogeneous

tumors. However, in contrast to the work presented in Chapters 2 and 3 we make the following

two alterations to the type of input data we consider: (1) We now restrict our attention to data

in the form of reads whose alignment indicate the presence of a single nucleotide variant, rather

than shifts in read depth due to copy number aberrations; and (2) We consider input data in the

form of multiple sequenced samples from the same tumor. Specifically, we formalize the problem of

reconstructing the clonal evolution of a tumor as the Variant Allele Frequency Factorization Problem

(VAFFP). The input to this problem are the variant allele frequencies (VAFs) for individual somatic

mutations, i.e. the fraction of tumor cells that contain each mutation, in one or more samples. The

problem is to determine the composition of each sample, including the number and proportion of

clones in each, and a tree that describes the ancestral relationships between all clones. We prove

necessary and sufficient conditions for the VAFFP to have a solution, thus providing a combinatorial

characterization of the space of all solutions.

Based on this characterization of the solutions in the case of error-free data, we describe an

algorithm called AncesTree to analyze noisy data. AncesTree is fundamentally different from existing

approaches because it uses ancestral constraints derived from our combinatorial characterization of

solutions to the VAFFP to group mutations rather than directly clustering VAFs. We model errors

69
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in the data using a probabilistic model and derive an integer linear programming solution to the

VAFFP. Our AncesTree algorithm is better able to identify ancestral relationships between individual

mutations than existing approaches as we demonstrate on both simulated and real sequencing data.

The work from this chapter is joint work with Mohammed El-Kebir and is taken from [47]. The

contributions in this chapter were accepted for presentation at the 23rd International Conference on

Intelligent Systems for Molecular Biology (ISMB).

4.1 Related Work

Cancer is a disease resulting from somatic mutations that accumulate during an individual’s lifetime

and lead to uncontrolled growth of a collection of cells into a tumor. The clonal theory of cancer

[116] predicts that all cells within a tumor have descended from a single founder cell containing

a mutation that gave it a selective growth advantage producing a clonal expansion. Subsequent

advantageous mutations lead to additional clonal expansions.

As a result, the cells within a tumor differ in their complement of somatic mutations, each cell

being a descendant of a clone from a clonal expansion (Figure 4.1A). High-coverage sequencing of

tumor genomes allows one to study this intra-tumor heterogeneity by measuring the frequencies of

mutations within a tumor [114, 41, 148]. Characterization of intra-tumor heterogeneity and inference

of the clonal evolutionary history of somatic mutations within a tumor provide useful insight in the

tumor’s development and may help inform treatment.

Somatic mutations are typically measured in human solid tumors only at a single time point,

when the patient undergoes surgery. Therefore, clonal evolution is not directly observed and one

is faced with the problem of inferring the ancestral relationships between cells in a tumor from

measurements at one time point. This is the problem of phylogenetic tree reconstruction, a well-

studied problem. The direct application of phylogenetic methods requires that we measure mutations

in individual cancer cells that correspond to the leaves (species) of the phylogenetic tree. However,

due to technical limitations and financial considerations, single-cell sequencing of tumors remains

uncommon [111, 169] with nearly all cancer sequencing studies – including large-scale studies such

as TCGA and ICGC – sequencing a small number of samples from a bulk tumor, each containing

potentially millions of cells. Thus, the data one obtains represents the mutations in a mixture of

cells with potentially distinct evolutionary histories.
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Given sequencing data from a single sample, methods have been developed to determine the

composition – including the fraction of normal cells and one or more populations of cancer cells – of

a tumor either by analyzing differences in read depth due to copy number aberrations [118, 121] or by

analyzing changes in the variant allele frequencies (VAFs) of single-nucleotide mutations [143, 105].

Inferring the clonal history of a single sample requires additional assumptions about the evolutionary

process, such as parsimony [64, 155].

Recently, several studies have conducted multi-sample sequencing from the same tumor [53, 52,

112, 185]. These studies measure somatic mutations in multiple spatially distinct regions from the

same tumor at a single time or measure a tumor at multiple time points [147]. Using multiple samples

from the same tumor, one can directly apply phylogenetic techniques; e.g. by computing a distance

between samples according to the number of shared mutations [52, 185]. However, each sequenced

sample is itself a heterogeneous mixture of cells (Figure 4.1B), and thus existing phylogenetic tree

reconstruction techniques cannot be applied.

Several methods have recently been introduced to infer tumor composition and evolution from

VAFs of somatic mutations in multi-sample sequencing data. Clomial [184] infers the set of clones

present in the tumor and their frequencies in each sample, but does not describe the evolutionary

relationships between the clones. Three recent approaches infer a tree describing the evolutionary

history of a tumor. PhyloSub uses a Bayesian approach to sample trees using a tree-structured

process [75]. CITUP [98] enumerates all rooted trees and for each one solves a quadratic program.

LICHeE, which recently appeared on the arXiv preprint server [131], uses a graph construction

similar to one we describe below, but does not provide a rigorous mathematical justification for it.

All of these approaches are data-driven and focus on the construction and optimization of models

that minimize the error between the observed and inferred mutation frequencies. However, they do

not address the combinatorial structure of the problem. Stated more directly: given error-free VAF

data, under what conditions is it possible to reconstruct the clonal evolution of a tumor?

4.2 The AncesTree Algorithm

In this section we first derive a computational formulation for the problem of inferring the clonal

evolution of a tumor from multi-sample sequence data. We then show how this problem can be solved

in the instance of error-free data and noisy data, leading to our AncesTree algorithm described at
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Figure 4.1: Model for clonal evolution and inference. (A) An example of the evolution of a
tumor containing seven distinct clones. Passenger mutations (white) occurring before the first clonal
expansion will be indistinguishable from mutations driving the growth of the founding clone (light
blue). Each subsequent mutation (green, purple, dark blue, orange, red, tan) creates a new clone.
(B) Three sequenced tumor samples. Some clones may no longer exist at the time of sequencing
(orange). Samples 1 and 2 each contain a single clone (purple and blue respectively), while Sample
3 is a mixture of 3 clones (light blue, red and tan). (C) The frequency matrix F observed for the
three sequenced samples indicated in part B. (D) The usage matrix U and clonal matrix B that
generate F . Even though some clones existing at the current time may not be contained within an
sequenced sample (green), their existence in the evolutionary history of the tumor may be recovered.
(E) Tree of the inferred tumor clones. Solid black edges are the clonal tree T corresponding to the
clonal matrix B. Gray dashed edges indicate internal vertices used in the mixing of some sample.
The number next to each clone in each sample indicates the fraction of cells in the sample from
that clone. (F) The ancestry graph for the observed data. The bold arcs indicate one spanning
arborescence.



73

the conclusion of this section.

4.2.1 The Variant Allele Frequency Factorization Problem (VAFFP)

We describe a model for the accumulation of single-nucleotide somatic mutations in a tumor, and

the generation of sequencing data from the tumor. This leads us to the definition of the Variant

Allele Frequency Factorization Problem (VAFFP) at the conclusion of this subsection.

Following the clonal theory of cancer, we assume that all cancer cells in a tumor are descendants

of a single founding clone; i.e. the tumor is monoclonal. In this work, we model only somatic

single-nucleotide mutations, and assume that these are unaffected by copy number aberrations or

rearrangements in the cancer genome. We will use mutation to refer specifically to these events.

We assume, as in previous work [75, 98], that mutations satisfy the infinite sites assumption, which

states that a mutation occurs at a single genomic position, or locus, at most once during the clonal

evolution of the tumor. We encode the state of a specific locus in a clone as a binary value – where

1 indicates a somatic mutation at that position, and 0 indicates no mutation. Thus, each clone

corresponds to a binary vector in {0, 1}n, where n is the total number of loci affected by mutations.

Under the assumptions above the ancestral relationships between clones are described by a

phylogenetic tree where: (1) vertices represent different tumor clones that have existed the tumor’s

evolution; (2) edges represent the direct ancestral relationships between clones and are labeled with

the mutation that distinguishes the child from its parent (Figure 4.1A). We assume that each clone

is distinguished from its parent by a single mutation (in practice we will group individual mutations

into sets that satisfy this assumption). Thus, we describe the mutational process that produced a

tumor by an n-clonal tree T , which we formally define as follows.

Definition 4.2.1. A rooted tree T on n vertices is an n-clonal tree for a mutation set [n] =

{1, . . . , n} provided each edge is labeled with exactly one mutation from [n] and no mutation appears

more than once in T . Let Tn be the set of all n-clonal trees.

We denote the root vertex of an n-clonal tree by vr where r ∈ [n] is the mutation that does not

label any edge in T . We denote the remaining vertices by vj where j 6= r is the mutation on the

last edge of the path from vr to vj . Note that the set of mutations present in a clone vj is the set

of mutations of all vertices on the path from vr to vj . The root vertex vr contains only mutation r

and thus represents the founding clone.
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Alternatively, we may describe the n-clonal tree T by an n × n binary matrix B. We label the

vertices of T by binary vectors indicating the mutations present in each vertex (clone). Each vertex

vj corresponds to a binary row vector bTj with 1’s at the rth position and positions indicated on the

edge labels on the unique path from vr to vj , and 0’s at remaining positions. Let B be the n × n

binary matrix whose jth row is bj . Since the mutations adhere to the infinite sites assumption,

it follows that B is a perfect phylogeny matrix [60]. That is, for a column j of B, let I(j) be the

positions of the 1 entries. Then for any pair of columns j and k of B either I(j) and I(k) are disjoint,

or one contains the other.

Not every n × n perfect phylogeny matrix corresponds to a n-clonal tree T . For example, a

perfect phylogeny matrix may have a row and/or column of all 0’s or have duplicated rows and/or

columns. We define a subset of n × n perfect phylogeny matrices, which we call n-clonal matrices

that are in 1-1 correspondence with n-clonal trees T .

Definition 4.2.2. A matrix B ∈ {0, 1}n×n is an n-clonal matrix provided:

1. There exists exactly one r ∈ [n] such that
∑n
j=1 brj = 1.

2. For each j ∈ [n]\{r} there exists exactly one k ∈ [n] such that bk ⊆ bj and
∑n
l=1(bjl−bkl) = 1.

3. bjj = 1 for all j ∈ [n].

Let Bn be the set of all n-clonal matrices.

The second condition above ensures that every n-clonal matrix is a perfect phylogeny matrix.

We have the following lemmas which we prove in Appendix C.

Lemma 4.2.1. There is a one-to-one correspondence between Tn and Bn.

Lemma 4.2.2. Any B ∈ Bn has rank n.

Figure 4.1D and 4.1E show a clonal matrix together with its corresponding clonal tree.

Measurement of Clonal Trees

We do not directly observe the clonal tree T relating the clones in a tumor. Moreover, unless we

perform single-cell sequencing, we do not directly measure the presence/absence of mutations in

individual clones. Rather each sequenced sample is a mixture of cancer cells (clones) and normal

cells. We obtain variant allele frequencies (VAFs), or the fraction of reads covering a position that
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indicate the variant/mutation, at each of the n mutation sites for each of the m samples. The VAF

for a mutation is proportional to the cellular prevalence, or fraction of cells in the sample that contain

the mutation. Suppose we sequence m samples from a tumor. Our observations are described by

an m × n frequency matrix F = [fpi] where fpi indicates the observed VAF in sample p for the ith

mutation (Figure 4.1C).

The observed mutation frequencies (entries of F ) are related to the tree T by the proportions of

normal cells and clones that define the mixture in each sample. We define an m × n usage matrix

U = [upi], where upi indicates the fraction of cells in sample p that come from clone vi, as follows.

Definition 4.2.3. An m×n matrix U = [upj ] is a usage matrix provided upj ≥ 0 and
∑n
j=1 upj ≤ 1.

Let Um,n be the set of all m× n usage matrices U .

Since, each sequenced sample is a mixture of clones from T with proportions defined in the usage

matrix U , the observed frequency matrix F = [fpj ] satisfies

F =
1

2
UB. (4.1)

The coefficient 1
2 arises because, by the infinite sites assumption, all mutations are heterozygous

(affect only one homolog), and thus each fpj ∈ [0, 0.5]. If we are given an error-free F , our goal is

to find U and B satisfying (4.1). We define this problem as follows (see Figure 4.1D).

Variant Allele Frequency Factorization Problem. Given an m × n frequency matrix F , find

a usage matrix U ∈ Umn and a clonal matrix B ∈ Bn such that F = 1
2UB.

Without loss of generality, we assume that the rows and columns of any frequency matrix F are

distinct, as duplicated rows or columns can be collapsed.

The Variant Allele Frequency Factorization Problem (VAFFP) represents an important gen-

eralization that can be used to describe a wide array of important problems, each with unique

optimization or constraint criteria. For example, a special case of the VAFFP with m = 1, with

the goal of minimizing the number of non-zero entries in U , was previously considered by [64] and

by [155] who break ties in favor of solutions whose corresponding clonal trees have minimum depth.

Additionally, the Perfect Phylogeny Mixture Problem in [65] can also be described as a variant of

the VAFFP where F is binary (a mutation is either observed or not) and additional constraints are

placed on the usage matrix U . Throughout the remainder of this chapter, we will make note of when
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and how related work may be interpreted in terms of the general VAFFP framework.

4.2.2 Solving the VAFFP

In this section, we derive a characterization of the solutions of the VAFFP (Theorem 4.2.7 below)

as constrained spanning arborescences of a directed acyclic graph (DAG) called the ancestry graph

(Definition 4.2.4 below). From this characterization, we can show that the VAFFP is NP-complete

(Theorem 4.2.8 below) and give an exact algorithm for solving the problem.

A Necessary Condition and the Ancestry Graph

We say that B (or T ) generates F if and only if there exists a matrix U ∈ Umn such that F = 1
2UB.

To obtain a characterization of all solutions of the VAFFP, we first define several properties that

relate the observed values of F to any clonal tree T that generates F .

We start by observing that any T induces a partial ordering on the vertices. That is, for j, k ∈ [n],

j ≺T k if and only if vertex vj is an ancestor of vertex vk. Conversely, we say that j and k are

incomparable if and only if neither vj nor vk is an ancestor to the other. Because B is a perfect

phylogeny matrix, there is a partial order on the columns of B [61]. That is, for j, k ∈ [n], we have

j ≺B k if and only if I(j) ⊇ I(k). Similarly, j and k are incomparable if and only if I(j) 6⊇ I(k) and

I(k) 6⊇ I(j). The following observation follows directly from Lemma 4.2.1.

Observation 4.2.1. Given an n-clonal tree T and its corresponding clonal matrix B, j ≺T k if and

only if j ≺B k for all j, k ∈ [n].

Since ≺B and ≺T are equivalent, we will use ≺ to denote either one.

We prove the following proposition.

Ancestry Condition. If T generates F and j ≺T k then fpj ≥ fpk for all samples p ∈ [m].

Proof. Since j ≺T k, by Observation 4.2.1 we have j ≺B k. Therefore I(j) ⊇ I(k). Moreover, since

every entry in U is non-negative, we have the following for all samples p ∈ [m]:

fpj =
1

2

n∑

i=1

upi · bij =
1

2

∑

i∈I(j)

upi

≥ 1

2

∑

i∈I(k)

upi =
1

2

n∑

i=1

upi · bik = fpk.
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Applying the contrapositive of the above lemma on two distinct samples yields the following

corollary which is equivalent to the “crossing rule” stated in [75].

Corollary 4.2.3. If T generates F and there exist samples p, q ∈ [m] and mutations j, k ∈ [n] such

that fpj > fpk and fqj < fqk then j and k are incomparable.

Definition 4.2.4. Given an m × n frequency matrix F , we define the ancestry graph G = (V,A)

where V = {v1, . . . , vn} and A = {(vj , vk) | fpj ≥ fpk, for all p ∈ [m]}.

Intuitively, G is the graph whose vertices represent mutations and whose arcs represent possible

ancestral relationships consistent with observed variant allele frequencies using the ancestry condition

(Figure 4.1F). We note the following observation which will be useful in the following section.

Observation 4.2.2. If all columns of a frequency matrix F are distinct then its ancestry graph G

is a DAG.

A spanning arborescence of the ancestry graph G is a subgraph G′ = (V,A′) with A′ ⊆ A such

that there exists a unique path from the root vertex vr to every vertex v ∈ V .

Lemma 4.2.4. If T generates F then it is a spanning arborescence of G.

Proof. Let T be a tree that generates F . We proceed using contradiction. Suppose that T is not a

spanning arborescence ofG. Thus, there exists an edge (vj , vk) in T with j ≺ k such that (vj , vk) 6∈ A.

By definition of A there must exist p, q ∈ [m] such that fpj < fpk and fqj > fqk. By Corollary 4.2.3,

j and k are incomparable – a contradiction. Hence, T must be a spanning arborescence of G.

If an ancestry graph G = (V,A) does not have a spanning arborescence then there exists no tree

T that generates F . Checking whether G has a spanning arborescence can be done in O(|A|) time

since by definition A contains all transitive arcs. Figure 4.2A shows an example of a frequency matrix

whose ancestry graph has no spanning arborescence. Furthermore, not all spanning arborescences T

of G generate F . Figure 4.2B shows such an example, where the matrix U obtained from T and F

has negative entries and thus is not a usage matrix. Hence, the existence of a spanning arborescence

in G is a necessary but not a sufficient condition for a solution to the VAFFP.
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The Sum Condition and Sufficiency

In the previous section, we saw that the ancestry condition is not sufficient to produce a solution

to the VAFFP. Sufficiency will be obtained through a second condition, which we refer to as the

sum condition. This condition was stated as the “sum rule” in [75], and also appears in [98], and a

special case was called the “children sum to parents” condition in [64]. Given a clonal tree T , δ(vj)

denotes the children of a vertex vj in T .

Sum Condition. If T generates F then for all samples p ∈ [m] and mutations j ∈ [n],

fpj ≥
∑

vk∈δ(vj)

fpk. (4.2)

Proof. All vk ∈ δ(vj) are pairwise incomparable, i.e., there are no vk, vl ∈ δ(vj) such that vk ≺T vl.

Therefore all I(k) with vk ∈ δ(vj) are pairwise disjoint. Moreover, I(j) =
⋃
k∈δ(vj) I(k)∪ {j}. Since

every entry of U is non-negative we thus have

fpj =
1

2

n∑

k=1

upk · bkj =
1

2

∑

k∈I(j)

upk

=
1

2
upj +

1

2

∑

vk∈δ(vj)

∑

l∈I(k)

upl

=
1

2
upj +

∑

vk∈δ(vj)

1

2

n∑

l=1

upl · blk

=
1

2
upj +

∑

vk∈δ(vj)

fpk

≥
∑

vk∈δ(vj)

fpk

For a clonal tree T , sample p and mutation j, we define the deficit dpj = fpj −
∑
vk∈δ(vj) fpk.

Thus, the Sum condition above says that if T generates F , then the deficit dpj is non-negative for

all samples p and mutations j. It turns out that the deficits for all samples and mutations determine

the matrix U . In particular, we have the following Lemma.

Lemma 4.2.5. Given an m × n frequency matrix F and an n-clonal matrix B, the m × n matrix
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U = [upj ] defined as

upj = 2dpj = 2


fpj −

∑

vk∈δ(vj)

fpk


 (4.3)

is the unique matrix such that F = 1
2UB.

Proof. Lemma 4.2.2 tells us that there is thus a unique U ∈ Rm×n such that F = 1
2UB. It suffices

to show that fpj = 1
2

∑n
k=1 upk · bkj for any sample p and mutation j. Let T be the corresponding

clonal tree of B and j ∈ [n]. Since bkj = 1 for all k ∈ I(j), we have

1

2

n∑

k=1

upk · bkj =
1

2

∑

k∈I(j)

upk

=
1

2

∑

k∈I(j)

2


fpk −

∑

vl∈δ(vk)

fpl




=
∑

k∈I(j)


fpk −

∑

vl∈δ(vk)

fpl




=
∑

k∈I(j)

fpk −
∑

k∈I(j)

∑

vl∈δ(vk)

fpl

We note that I(j) returns the set of indices of all vertices in the subtree rooted at vj in T

including vj itself. Since T is a tree, for any k, l ∈ I(j) with k 6= l we have δ(vk) ∩ δ(vl) = ∅. Thus,

in the last line of the above derivation we subtract fpl exactly once for all vertices vl 6= vj that are

in the subtree rooted at vj . The set of such vertices is I(j) \ {j}. Hence,

∑

k∈I(j)

fpk −
∑

k∈I(j)

∑

vl∈δ(vk)

fpl =
∑

k∈I(j)

fpk −
∑

k∈I(j)\{j}

fpk = fpj .

Note that by Lemma 4.2.2, any B ∈ Bn is full-rank, and therefore invertible. Thus, for any

frequency matrix F there is a unique U ∈ Rm×n such that F = 1
2UB, namely U = 2FB−1. Thus,

the above theorem gives an explicit formula for the entries of U = 2FB−1. For the single sample

case, a similar formula was derived by [155]. However, instead of using this formula to infer the

usage vector the authors use back substitution. [75] also describe a recursive formula relating the

frequencies and usages. Moreover, note that dpj = 0 is equivalent to the “children sum to parents”

condition in [64] and the “non-populated clone” condition in [155]. In this case upj = 0, which
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Figure 4.2: Spanning arborescences of the ancestry graph. (A) F cannot be factorized as
its ancestry graph does not admit a spanning arborescence. (B) Red arcs indicate a spanning
arborescence T of the ancestry graph of F with corresponding matrix B. B does not generate F as
the matrix U = 2FB−1 6∈ Umn.

implies that the clone vj is not present (or mixed) in sample p.

The matrix U defined by Equation (4.3) has non-negative entries whose rows sum to at most 1 and

thus is a valid usage matrix precisely when the deficits are non-negative. This in turn happens when

F satisfies the sum condition (Equation (4.2)). Combining these results, we obtain the following

lemma.

Lemma 4.2.6. If an m × n frequency matrix F = [fpj ] satisfies Equation (4.2) for the tree T

corresponding to B ∈ Bn, then B generates F .

Proof. We need only to show that U created according to Equation (4.3) is an element of Umn.

Thus, we need to show that upj ≥ 0 for all p, j and
∑n
j=1 upj ≤ 1 for all p. The condition that

upj ≥ 0 follows directly from our assumption that fpj ≥
∑
vk∈δ(vj) fpk for all p and j, as defined

in Equation (4.2). By definition, column r of B consists of only 1-entries. Moreover, every entry

fpj ≤ 0.5 and thus fpr = 1
2

∑n
k=1 upk · bkr = 1

2

∑n
k=1 upk ≤ 0.5. Hence,

∑n
k=1 upk ≤ 1.

Using this lemma, we obtain the following characterization of those spanning arborescences of

the ancestry graph G that generate F .

Theorem 4.2.7. T generates F = [fpj ] if and only if T is a spanning arborescence of G such that

Equation (4.2) holds for all fpj.

Proof. The forward direction follows from Lemma 4.2.4 and the sum condition (Equation (4.2)). For
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the reverse direction, we know that T spans all vertices of G and therefore is a valid clonal tree with

corresponding clonal matrix B. Lemma 4.2.6 tells us that B, and hence also T , generate F .

Thus, there is a 1-1 correspondence between spanning arborescences in G that satisfy the sum

condition and solutions to the VAFFP. While a spanning arborescence can be found efficiently,

deciding whether G admits a spanning arborescence satisfying the sum condition is NP-complete.

Theorem 4.2.8. VAFFP is NP-complete.

Proof. By reduction from Not-All-Equal-3SAT. We direct readers to [47] for the proof.

In summary, the following procedure gives a solution to the VAFFP for a frequency matrix F :

(i) Build the ancestry graph G for F . (ii) Find a spanning arborescence T of G that satisfies the

sum condition. (iii) Find the corresponding matrix B and compute U according to Equation (4.3).

An Integer Linear Programming Solution

We formulate an integer linear program (ILP) to find the largest arborescence in an ancestry graph

G that adheres to the sum constraint. If this is a spanning arborescence, then we have found a

solution to the VAFFP. First, we introduce an artificial root vertex vr that has has an outgoing

arc to every other vertex in V . Let A′ = A ∪ {(vr, w) | w ∈ V } denote this extended arc set. For

v ∈ V ∪ {vr}, we define δ+(v) = {w ∈ V | (v, w) ∈ A′} to be the set of vertices connected to v

by an outgoing arc. Similarly, we define δ−(v) = {w ∈ V | (w, v) ∈ A′} to be the set of vertices

connected to v by an incoming arc. Let variables x ∈ {0, 1}|A′| be binary variables indicating the
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presence/absence of arcs in a solution.

max
∑

(vj ,vk)∈A′
xjk (4.4)

s.t.
∑

vj∈δ+(vr)

xrj = 1 (4.5)

xkl ≤
∑

vj∈δ−(vk)

xjk ∀(vk, vl) ∈ A (4.6)

∑

vj∈δ−(vk)

xjk ≤ 1 ∀vk ∈ V (4.7)

∑

vj∈δ−(vk)

fpkxjk ≥
∑

vl∈δ+(vk)

fplxkl ∀p ∈ [m], vk ∈ V (4.8)

xjk ∈ {0, 1} ∀(vj , vk) ∈ A′ (4.9)

Constraint (4.5) enforces that the arborescence T has only one root vertex. Constraints (4.6)

state that for every outgoing arc (vk, vl) in T there is an incoming arc (vj , vk) in T . The arborescence

constraints (4.7) enforce that every vertex vk has at most one incoming arc (vj , vk) in T . Constraint

(4.8) is the sum condition (Equation (4.2)). Thus, these constraints encode that any arborescence

satisfying the sum condition is a feasible solution and vice versa. The objective function (4.4)

maximizes the number of edges in the arborescence. Therefore, the answer to the VAFFP is ‘yes’ if

and only if the optimal solution has objective value n. In that case the corresponding arborescence

T would span the vertices of G and satisfy the sum condition. Note that because G is a DAG

(Observation 4.2.2), our formulation of the ILP does not have to consider cycles. Lastly, we observe

that this ILP only allows us to determine if a solution to the VAFFP exists, but provides no way to

discriminate between multiple solutions – something we consider in the following section.

4.2.3 VAFFP with Errors

Thus far we have assumed that the observed frequency matrix F is error-free. That is, there

exists some B ∈ Bn and U ∈ Umn such that F = 1
2UB. However, this may not be the case for

real sequencing data where the entries of F are obtained from integer read counts, and thus are

approximations of the true frequencies. We address this uncertainty in the frequencies by relaxing

both the ancestry condition and the sum condition.
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Approximate Ancestry Graph

We build an approximate ancestry graph using a probabilistic model for the observed read counts.

Let Xpj be a random variable describing the variant allele frequency (VAF) for a sample p and

mutation j. For any pair of mutations j, k and sample p let Pr[Xpj ≥ Xpk] denote the posterior

probability that Xpj ≥ Xpk. The sample p with the smallest such probability, represents the weakest

evidence that mutation j preceded mutation k in the evolutionary history of the tumor. Thus, we

denote the posterior probability that j ≺ k as minp Pr[Xpj ≥ Xpk].

We build the approximate ancestry graph G = (V,A) in two steps: (1) We use a graph cluster-

ing procedure to group mutations whose posterior probabilities indicate that they likely occurred

together; and (2) We restrict to high-confidence ancestral relationships among the clusters of muta-

tions. For these two steps, we use input parameters α and β, respectively, to control the size of V

and A in the graph G. Specifically, our process for building the approximate ancestry graph G is as

follows.

We expect to cluster mutations whose posterior probability distributions are similar across all

samples. If mutations j and k have identical posterior probability distributions in sample p, then

P [Xpj ≥ Xpk] = P [Xpk ≥ Xpj ] = 0.5. Thus, we define the graph H = ([n], AH) whose vertices

are the mutations and whose edges AH = {(j, k) | 0.5 − α ≤ minp Pr[Xpj ≥ Xpk] ≤ 0.5 + α}.

The edges AH are those ancestry relationships where the posterior probability that j ≺ k and

k ≺ j is within α of 0.5, for some α ∈ [0, 1]. The resulting graph H may have directed cycles.

These directed cycles correspond to sets of mutations whose frequencies suggest than none of the

mutations is ancestral to the others. We group such mutations into clusters by computing strongly

connected components in H. We then determine ancestry between clusters/components by including

a directed edge between two components only if there exists mutations k and l in the corresponding

clusters such that the posterior probability that k ≺ l is greater than β for all samples, for some

β. Formally, let S = {S1, . . . , St} be the set of strongly connected components in H. We define

the approximate ancestry graph G = (V,A) whose vertices V = S and whose edges A = {(i, j) |

∃k ∈ Si, l ∈ Sj s.t. Pr[Xpk ≥ Xpl] ≥ β, for all p ∈ [m]}. We note there is no theoretical guarantee

that the resulting graph G is a DAG because cycles may exist containing one or more edges with

posterior probability > 0.5 + α. However, since increasing β reduces the number of edges in G, we

find in practice that setting β sufficiently large generally produces a DAG.



84

We compute the distribution of Xpj for a sample p and mutation j as the posterior probability

of the VAF given the observed read counts. The observed VAF f̃pj =
c̃pj

(c̃pj+d̃pj)
, where c̃pj and d̃pj

are the number of reads from sample p that cover mutation j and that contain the variant and

reference alleles, respectively. The distribution of Xpj is the posterior distribution of the binomial

proportion when one observes c̃pj “successes” on c̃pj + d̃pj trials. Assuming a flat prior on the

proportion, we have Xpj ∼ Beta(c̃pj + 1, d̃pj + 1). In other words, we use a generative model for

variant allele frequencies with c̃pj ∼ Binomial(c̃pj + d̃pj , q) and q ∼ Beta(1, 1). For j, k ∈ [n], we use

the method described in [36] to compute Pr[Xpj ≥ Xpk]. Finally, as the vertices in the approximate

ancestry graph G correspond to strongly connected components that typically include more than

one mutation, we compute the frequency matrix F = [fpj ] for the approximate ancestry graph G by

combining read counts for all mutations in the same component. That is, for a vertex vj ∈ V and

sample p ∈ [m] we define cpj =
∑
k∈Sj

c̃pk and dpj =
∑
k∈Sj

d̃pk. We set fpj =
cpj

(cpj+dpj) .

Note that our approach clusters mutations according to the uncertainty in the ancestry con-

straints, which in turn is defined by the uncertainty in the frequency of individual mutations, where

the latter is computed from the overlap between the posterior distributions of the binomial parame-

ters. This is very different from existing approaches such as CITUP [98], PhyloSub [75], and SciClone

[105] that cluster mutations according to VAF alone. Moreover, in some methods the uncertainty

in the VAF of each mutation is considered to be fixed, rather than a function of the observed read

counts. Our approach allows us to distinguish mutations whose observed VAFs may be similar, but

which are likely contained within distinct clones, according to their relationships to other mutations

in different samples.

An MILP for Arborescences with Errors

Our construction of the approximate ancestry graph relaxes the ancestral relationships in the case

of errors in VAFs. However, errors in the observed VAFs may also result in violations of the sum

condition. Thus, we formulate a mixed integer linear program that finds the largest arborescence

on the approximate ancestry graph while allowing for the inferred frequencies to differ slightly from

the observed frequency values. We create a confidence interval [f−ij , f
+
ij ] as the (1 − γ) equal-tailed

posterior probability interval of the Beta distribution with parameters (cij + 1, dij + 1) where γ is a

fixed parameter. This interval will provide lower and upper bounds on the inferred frequency values

in the MILP formulation.
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G may not contain any spanning arborescence that satisfies the sum condition since G only

consists of high confidence arcs. Therefore, we choose to return a partial solution to the VAFFP

by returning the largest arborescence T in G that adheres to the sum condition. This arborescence

represents a subset of mutations for which we can confidently infer the ancestral relationships. We

note that this is a departure from other methods such as CITUP [98] and PhyloSub [75] that require

that all mutations be placed on a single tree. There may be multiple such maximal trees T in G.

Rather than considering all such trees, we return the clonal tree T (corresponding to a clonal matrix

B) and and associated usage matrix U which minimizes the average deviation between entries in the

inferred frequency matrix F = 1
2UB and the observed frequency matrix F̃ . Since we have clustered

mutations into sets, we need to define a map σ which relates individual mutations, to their respective

cluster. That is, σ(j) = k when mutation j occurs in cluster k.

The MILP is as follows.

max
∑

(vj ,vk)∈A

xjk −
1

mn

m∑

p=1

n∑

j=1

|f̃pj − fp,σ(j)| (4.10)

s.t. (4.5), (4.6), (4.7), (4.8) and (4.9) (4.11)

fpj ∈ [f−pj , f
+
pj ] for all p ∈ [m], vj ∈ V (4.12)

We model the absolute value in (4.10) and the product fpkxjk in (4.8) using standard linearization

techniques [172]. We call the resulting algorithm AncesTree.

4.3 Results

We implemented AncesTree in C++ using CPLEX v12.6. We analyze 90 simulated datasets and

22 real tumor samples. The real data consists of chronic lymphocytic leukemia (CLL) [147], lung

adenocarcinoma [185] and renal cell carcinoma tumors [52]. The lung and renal tumors have un-

dergone multi-section sequencing, while the CLL tumors were sequenced over multiple time points.

For 14 of the 22 tumors we have both whole-genome/whole-exome sequencing data and targeted

deep resequencing data of either the same or a subset of mutations for all sections of the tumor

(Table C.1). For all analyses, we set α = 0.3, β = 0.8 and γ = 0.01. See the Appendix C for results

as α and β are varied.
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Figure 4.3: Violin plots comparing AncesTree, PhyloSub and CITUP on simulated data.
(A) Accuracy of each method in predicting when mutations are ancestral to each other or (B)
clustered in the same population. (C) Error in the inferred VAF fpj and (D) usage values upj .
Median values are indicated below the names of the algorithms.

4.3.1 Comparison of AncesTree to PhyloSub and CITUP

We compare AncesTree to two other recent algorithms that infer trees from multi-sample sequencing

data: PhyloSub [75] and CITUP [98]. We were unable to compare to LICHeE [131] as the software

only provides a graphical user interface with no way to easily export results.

We created 90 synthetic tumor datasets. Each dataset contains 100 mutations grouped into

10 clones that accumulated following the infinite sites assumption. For each dataset we simulated

between 4-6 samples sequenced at a coverage of 50X, 100X, or 1000X. Further details of the simulated

data is contained in Appendix C. We ran AncesTree, PhyloSub and CITUP on each dataset and

compared the results using five measures: (1) accuracy of the ancestral relationship (either ancestral

or not) between all pairs of mutations (Figure 4.3A); (2) accuracy of the clustering relationship

(either clustered in the same clone or not) between all pairs of mutations (Figure 4.3B); (3) accuracy

at determining whether all pairs of mutations are incomparable (i.e. neither ancestral or clustered)

(Figure C.1); (4) the average error 1
mn ||F̃ − F ||1 between the simulated F̃ and inferred frequency

matrix F (Figure 4.3C); (5) the error between the simulated usage matrix Ũ and the inferred usage U
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using the same metric as [98] (Figure 4.3D). We note that we compute these measures only on the set

of mutations that are including in the output of all methods, which equates to the set of mutations

output by AncesTree (median of 69 of the 100 total mutations) since CITUP and PhyloSub include

all mutations. We find that AncesTree has higher accuracy in determining ancestral, clustered, and

incomparable relationships with median accuracy more than 0.05, 0.03 and 0.08, respectively, above

the median accuracy of the other methods. Further, we find that AncesTree achieves a median error

on F and U that is 0.01 and 0.03 lower than the median error of the other methods. See Appendix C

for further details on all five metrics.

We also compare the output of AncesTree, CITUP and PhyloSub on the sequencing data from

22 tumor samples and find that AncesTree produces results that are more consistent with the input

data in terms of our probabilistic model (see Appendix C).

4.3.2 Analysis of Whole-exome vs. Deep Sequencing Data

A key difference between AncesTree and other approaches is that we use a graph clustering approach

to to group mutations by their putative ancestral relationships across all samples, rather than

clustering variant allele frequencies (VAFs) directly. We demonstrate the advantages of this approach

on a lung tumor (patient 330 in [185]) that had multiple samples sequenced using both whole-exome

and targeted deep sequencing (higher coverage) data. One would expect that deep sequencing data

should provide a more accurate measurements of the VAF for each mutation due to the higher read

counts. However, in aggregate there is very little difference between the VAF histograms for whole-

exome vs. deep sequencing (Figure 4.4A). Thus, methods that first cluster mutations according to

their VAF without considering the variance in the VAFs of individual mutations from the observed

read counts, including CITUP [98] and LICHeE [131], will not recognize differences in clustering

between the low and high coverage data.

Examining the posterior probabilities of ancestral relationships between individual mutations

(Figure 4.4B) reveals a striking difference between the low and high coverage datasets. The higher

coverage targeted sequencing data has a much clearer distinction in ancestral relationships with

many more pairs of mutations having posterior probability minp Pr[Xpi ≥ Xpj ], the probability

that mutation i precedes mutation j, close to 1 or 0, indicating high confidence in the ancestral

relationships. The approach used by AncesTree exploits this higher confidence in individual ancestral

relationships, both in grouping mutations and in determining the tree. For example, Figure 4.4C
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shows the posterior probabilities of the VAF for 3 mutations. With lower coverage whole-exome

sequencing, the distributions overlap, and there is no clear ancestral or grouping relationship between

the mutations. With deep sequencing data, the variance of VAF for each mutation is smaller, and

relationships between the mutations become apparent. The red mutation has a strong probability

to be ancestral to both the blue and green mutations as P (red ≺ green) = 1.0 and P (red ≺ blue)

= 1.0. In contrast, the blue and green mutations overlap significantly suggesting that these mutations

should be clustered together. We find P (blue ≺ green) = 0.45 and P (green ≺ blue) = 0.22, both of

which are within the interval [0.5− α, 0.5 + α] that we use for clustering. Thus, these mutations will

be found in the same same strongly connected component when building the approximate ancestry

graph.

4.3.3 Uncovering High-Confidence Ancestral Relationships

Fig. 4.5A shows the clonal tree inferred by AncesTree for CLL patient 077 previously analyzed with

both PhyloSub and CITUP. The structure of our clonal tree closely resembles the trees reported by

the other algorithms (Fig. 4.5C); in particular, both trees have two branching lineages containing

mutations in the same genes. Furthermore, AncesTree returns purity estimates within 0.04 and 0.05,

respectively of those reported by PhyloSub and CITUP across all 5 tumor samples. However, there

are also important differences between the trees. PhyloSub and CITUP group together multiple pairs

of mutations that AncesTree separates into successive clones. For instance, PhyloSub and CITUP

cluster MAP2K1, HMCN1 and NOD1 into a single clone, while the tree produced by AncesTree

shows these mutations as the result of three successive clonal expansions. The extremely high read

counts (>450K) for these three mutations across all five samples give high confidence in the posterior

probability of the ancestral relationships: the minimum posterior probabilities over all samples are

0.86 and 1 for the two edges. Similarly, Pr[PLA2G16 ≺ EXOC6B] = 1 as is reported in AncesTree’s

clonal tree (Fig. 4.5B).

In addition to the differences in ancestry, the clonal tree output by AncesTree contains only a

subset of the mutations, while the tree output by PhyloSub contains all mutations. We find that

three of the missing mutations (in genes BCL2L13, NAMPTL and SAMHD1) have VAFs that are

significantly higher than 0.5. Indeed the 1− γ confidence interval used by our ILP implementation

is strictly larger than 0.5. It is likely that these mutations occur in regions affected by copy number

aberrations, thus violating the assumptions of our model. We examined the approximate ancestry
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Figure 4.4: Comparison of whole-exome (Top) and deep sequencing data (Bottom) for
lung patient 330. (A) Histogram of observed variant allele frequencies (VAFs) for all mutations
for both datatypes does not reveal a significant difference between lower (201X) coverage (top) and
higher (674X) coverage (bottom) sequencing data. (B) A heat map showing the posterior probability
that mutation i ≺ j, that is minp Pr[Xpi ≥ Xpj ], for all pairs of mutations i and j. The asymmetry
in the matrix reveals high confidence ancestral relationships, which become much clearer with higher
coverage. (C) The posterior distribution of the VAF for three mutations given the observed read
counts. In higher coverage data, the distributions become much tighter, revealing that the red
mutation is ancestral to the blue and green mutations.
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Figure 4.5: Analysis of CLL patient 077 shows AncesTree’s ability to infer successive
clonal expansions. (A) (A) The clonal tree output by AncesTree is indicated by the black solid
edges whose weights correspond to the posterior probability of the ancestral relationship. Dashed
edges are used to indicate ancestral clones which exist at the time of sequencing. The blocks
labeled ‘a’ through ‘e’ each represent a sequenced sample, with colored edges indicating the inferred
composition of clones and their fraction in each sample (only edges with usage at least 0.05 are
shown). (B) The 1 − 10−6 confidence intervals of VAF for the sample with the weakest ancestral
evidence for each of the edges connecting gene GPR158 to LRRC16A. (C) The tree reported by
PhyloSub, which is identical to the tree reported by CITUP except for the addition of SAMHD1.
Mutations indicated in blue are those present in part A. Mutations indicated in red likely occur in
regions affected by copy number aberrations.

graph for this sample (Fig. A7) to determine why other mutations were missing from the tree output

by AncesTree. We find that mutations in SLC12A1 and GPR158 only have incoming arcs from the

three genes listed above whose VAFs exceed 0.5. Thus, there is no subtree of the ancestry graph

that contains both SLC12A1 and GPR158. The other missing mutations (KLHDC2, COL24A1,

DAZAP1, GHDC, OCA2) are all descendants of SLC12A in the ancestry graph. Of these missing

mutations, all except for GHDC are also descendants of GPR158, but each violates the sum condition

if added to the tree output by AncesTree.

4.3.4 Heterogeneity within Samples

Since AncesTree directly computes the usage matrix U , we obtain estimates of the amount of mixing,

or intra-tumor heterogeneity, of clones within each analyzed sample. Specifically, for a given sample,

the number of clones that are inferred to be mixed in a sample is the number of non-zero entries in

the corresponding row of U . For each tumor we compute its mixing proportion to be the fraction

entries in U that are non-zero (see Table C.1). Using the deep sequencing data we find that the CLL

tumors have on average a mixing proportion of 1.0. This is much higher than the renal and lung
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Figure 4.6: Analysis of renal patient EV006 reveals distinctive sample composition. The
clonal tree output by AncesTree. Some sequenced sections (R6, R7) are mixtures of clones appearing
only in those sections. In contrast, other sequenced sections (LN1a, LN1b, R3) are mixtures of clones
that each appear in more than one section. In particular, both lymph node samples (LN1a and LN1b)
are mixtures of the same two clones, but in different proportions.

tumors which have on average mixing proportions of 0.22 and 0.5 respectively. The higher mixing

proportions for CLL are consistent with it being a liquid tumor, where mixing between clones is

likely to be more common than in solid tumors.

We further analyzed one renal tumor, EV006, for which we obtained a relatively low mixing

proportion of 0.21 (Figure 4.6). Samples R6 and R7 from this tumor were found to be the mixture

of two and three distinct clones, respectively, that do not appear in other samples. This shows that

AncesTree can infer the composition of individual samples containing clones distinct from all other

samples. The remaining samples in this tumor all include a clone that appears in at least one other

sample. Notably, the two lymph node samples, LN1a and LN1b, are inferred to be mixtures of the

same two clones. The only difference between these two samples appears to be that LN1b contains

a higher admixture with normal cells (0.45) than LN1a (< 0.01), and indeed the two lymph node

samples are grouped together in the original analysis of this tumor by Gerlinger et al. [52].

4.4 Discussion

Reconstructing the evolutionary history of a tumor given VAFs measured in multiple sequenced

samples for a single tumor is a challenging task. In this chapter we formalize this problem and

present the AncesTree algorithm, which solves this problem. While we have demonstrated the

advantages of AncesTree over other methods such as PhyloSub and CITUP, there are a number of

ways that our approach may be improved.

First, throughout this work we assume that no measured mutations occur in regions affected by
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copy number aberrations. Given the prevalence of such rearrangements in many types of cancers [3],

AncesTree may not currently be applicable to some datasets. This represents an important area of

future work. Second, AncesTree only outputs the single largest rooted subtree of the approximate

ancestry graph that satisfies the sum condition. The algorithm may be applied iteratively by re-

moving the clonal tree found at each step from the ancestry graph and re-running, thus returning

a forest. However, it is unclear how the trees in this forest relate to each other or if there is an

approach for joining them. Third, there are also ways for which the theoretical grounding of this

work may be improved. For instance, what is the hardness for constant m? In practice the number

m of samples is much smaller than the number n of mutations, and hence the problem may be

fixed-parameter tractable. Finally, our use of the binomial distribution to model read counts may

underestimate the variance; e.g. due to factors such as PCR artifacts. More realistic models of read

counts may improve the performance of AncesTree.

We also note that the kidney and lung datasets analyzed here contain multiple sections of a

solid tumor obtained at a single time point, whereas the CLL datasets contain samples obtained

at different times. Future work will include investigation into handling multi-section samples and

multi-time-point samples separately in order to account for potential time related dependencies.

In conclusion, we formalize the problem of reconstructing the clonal evolution of a tumor using

single-nucleotide mutations as the Variant Allele Frequency Factorization Problem (VAFFP). This

problem formalization provides a general framework for which numerous other related work may be

interpreted. We derive a combinatorial characterization of the solutions to the VAFFP and show

that the problem is NP-complete. We derive an integer linear programming solution to the VAFFP

in the case of error-free data and extend this solution to real data with a probabilistic model for

errors. The resulting AncesTree algorithm is better able to identify ancestral relationships between

individual mutations compared to existing approaches.



Chapter 5

Reconstructing Cancer Genome

Organization

A cancer genome is derived from the germline genome through a series of somatic mutations. So-

matic structural variants – including duplications, deletions, inversions, translocations, and other

rearrangements – result in a cancer genome that is a scrambling of intervals, or “blocks” of the

germline genome sequence. In this chapter, we present an efficient algorithm, called Paired-end

Reconstruction of Genome Organization (PREGO), for reconstructing this block organization of a

cancer genome from paired-end DNA sequencing data.

We apply PREGO to simulated data, five ovarian cancer genomes that were sequenced as part

of The Cancer Genome Atlas and six breast cancer genomes from [114]. We identify numerous

rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal

rearrangements, and identify rearrangements consistent with known mechanisms of duplication such

as tandem duplications and breakage/fusion/bridge (B/F/B) cycles. Finally, we demonstrate that

PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome

sequencing data.

Most of the work in this chapter is taken from [120], and was originally presented at the Second

Annual RECOMB Satellite Workshop on Massively Parallel Sequencing (RECOMB-seq) in 2012.

The extension to utilize a matched normal sample was referenced in [119] and along with the results

on the breast cancer datasets were presented as part of an invited talk at the Third Workshop

93



94

on Computational Advances for Next Generation Sequencing (CANGS 2013) in conjunction with

the Third IEEE International Conference on Computational Advances in Bio and Medical Sciences

(ICCABS).

5.1 Related Work

Numerous methods have been developed in the past few years to identify structural variants using

paired end mapping [150, 70, 31] and clustering of discordant read pairs. Some methods such as

[139, 88, 133] have begun to incorporate additional signals such as split reads where a read aligns as

two consecutive sequences separated by a gap (e.g. when the read directly contains a breakpoint)

or multiple-mappings where a read may align to many positions in the genome when making variant

predictions. In addition, when the sequencing coverage is high, the number of aligned reads [33, 174]

or concordant pairs [181] provides an estimate of the number of copies of segments of the cancer

genome. Lastly, some methods such as [151, 101] incorporate information from both discordant and

concordant read pairs when making predictions. Details of all these methods can be found in several

recent review articles [175, 102, 6].

However, most methods for structural variant prediction treat all aberrations as independent

events. While this may be a reasonable assumption when analyzing germline variants, where the

size and number of rearrangements that differ in comparison to a reference genome is relatively

small, it is not appropriate when analyzing a cancer genome where a large portion of the genome

may have undergone some type of rearrangement. A few exceptions are CNVer [101], a method

designed for analyzing germline genomes rather than cancer, and nFuse [99] which requires the of

RNA-seq data in addition to DNA sequencing data.

PREGO addresses the problem of reconstructing the complete organization of the cancer genome(s)

present in a cancer DNA sample from the adjacencies and copy number information revealed by the

concordant and discordant pairs from a paired-end resequencing approach. We define the Copy

Number and Adjacency Genome Reconstruction Problem, a general formulation of the problem

which we solve as a convex optimization problem. Our approach adapts and generalizes techniques

that have been employed previously in genome assembly [127, 126, 100], ancestral genome recon-

struction and genome rearrangement analysis in the presence of duplicated genes [5], and prediction

of copy number variants [101]. In contrast to these works, we focus on the particular features and
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challenges of cancer genome reconstruction including a broad class of rearrangements, aneuploidy,

heterogeneity, and the availability of an “ancestral” reference genome.

5.2 The PREGO Algorithm

In this section we describe the Paired-end Reconstruction of Genome Organization (PREGO) Algo-

rithm.

5.2.1 Intervals, Adjacencies, and Cancer Genome Reconstruction

Suppose the cancer genome is derived from the germline genome through a series of somatic re-

arrangements. We perform paired-end DNA sequencing on a cancer DNA sample S. We assume

that the sample S contains a genome sequence derived from the reference genome through some

series of somatic structural rearrangements of blocks of DNA (we are not considering single nu-

cleotide mutations). From the alignments of paired reads to the reference genome, we derive three

pieces of information. First, we derive a partition of the reference genome into a sequence of inter-

vals I = (I1, I2, . . . , In). Each interval Ij = [sj , tj ] is the DNA segment from the positive strand

of the reference genome that starts at coordinate sj and ends at coordinate tj . Since intervals

also appear in the opposite direction in a cancer genome (e.g. due to an inversion), we denote

by I−j = [tj , sj ] the inverted DNA segment. Second, concurrently with the definition of I, we

derive a set A of novel adjacencies in the cancer genome. Each adjacency (Ij , Ik) indicates that

the end tj of interval Ij is adjacent to the start sk of interval Ik in the cancer genome. Thus

A ⊆ {(Ij , Ik)|j, k ∈ {±1,±2, . . . ,±n}}. The partition I and associated set of adjacencies A are ob-

tained by clustering discordant paired reads whose distance or orientation suggest a rearrangement

in the cancer genome [136]. Any existing algorithm can be used to create such input and therefore,

the decision about what data to use (i.e. ambiguous reads, split reads, read mapping quality, etc)

are part of upstream processing. Third, we derive a read depth vector r = (r1, . . . , rn)T , where rj

is the number of (paired) reads that align entirely within interval Ij . The read depth vector r is

obtained by counting concordant pairs in each interval [22].

Our goal is to reconstruct the block organization of the cancer genome(s) in the cancer DNA

sample S from the interval, adjacency, and copy number information. The block organization cor-

responds to a sequence Iα(1)Iα(2) . . . Iα(M) of M intervals where each α(j) ∈ {±1, . . . ,±n}. We
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formulate the following problem.

Copy number and adjacency genome reconstruction problem. Given an interval vector I,

a set A of cancer adjacencies, and a read depth vector r derived from a cancer sample S, find the

cancer genome(s) that are most consistent with these data.

The statement of this problem does not quantify “most consistent”. Defining such a quantitative

measure requires the consideration of several complicating factors. First, the measurements of

adjacencies A and the partition I that they determine may be incomplete or inaccurate. Second,

many cancer genomes are aneuploid, meaning that the copy number of many intervals is above and

below the diploid number of 2, and thus the read depth vector may not accurately represent the

actual copy number of each interval in the cancer genome. Finally, a cancer sample S consists of

many tumor cells, and each of these may contain different somatic mutations. However, because

most tumors are clonal originating from a single cell, a large fraction of the important somatic

mutations will be found in all cells of the cancer sample S. In this paper, we assume that the cancer

sample S is genetically homogenous so that we need only construct the organization of one rearranged

cancer genome. Below, we formulate a specific instance of the Copy Number and Adjacency Genome

Reconstruction Problem that considers the case of a single cancer genome with errors in the set A

of adjacencies, sequence I of intervals, and the copy numbers must be inferred from the read depth

vector r. We defer the question of heterogeneity to future work. We first consider the case of perfect

data.

5.2.2 Perfect Data

We begin with the case that the data is complete and error-free: thus, all cancer adjacencies A are

correctly measured, and we have correctly estimated the copy number of each interval from the read

depth vector r. Also, for ease of exposition, we assume that the reference and cancer genomes each

contain a single chromosome. Specifically, we define the interval count vector c = (c1, c2, . . . , cn)T ,

where cj indicates how many times the interval Ij occurs in S. Note that in general c is not directly

measured, but rather must be inferred from the data, and we consider this extension in the next

section. We have the following problem.

Single chromosome copy number and adjacency genome reconstruction problem. Given

an interval vector I, a set A of cancer adjacencies, an interval count vector c, and the set R =
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{(Ij , Ij+1) : j ∈ {1, . . . , n − 1}} of reference adjacencies, find a cancer genome Iα(1)Iα(2) . . . Iα(M)

satisfying:

1. For j = 1, . . . ,M − 1 either (Iα(j), Iα(j+1)) ∈ A or (Iα(j), Iα(j+1)) ∈ R.

2. For k = 1, . . . , n, the total number of indices j with α(j) = k or α(j) = −k is equal to ck.

To solve this problem, we introduce the interval-adjacency graph, which is derived from the

interval vector I and cancer adjacencies A (Figure 5.1). The interval-adjacency graph G = (V,E)

is an undirected graph with vertices V = {s1, t1, s2, t2, . . . , sn, tn} and edges E = EI ∪ ER ∪ EA.

The set EI = {eI(j) = (sj , tj) : j = 1, . . . , n} of interval edges connect sj to tj for each j. The

set ER of reference edges connect the ends of adjacent intervals in the reference genome; i.e. ER =

{(tj , sj+1) : j ∈ {1, . . . , n−1}. The set EA of variant edges connect intervals that are adjacent in the

cancer genome, but are not adjacent in the reference genome. These adjacencies are inferred from

the set of discordant pairs. Every a ∈ A defines a variant edge. The interval, reference, and variant

edges in the interval-adjacency graph are analogous to the gray, green, and black edges, respectively,

in the breakpoint graph used in genome rearrangement analysis [5]. The interval-adjacency graph

represents the set of possible adjacencies of intervals in the reference genome similar to how the gene

order graph used in [171] contains possible gene orderings. Although, in that case the nodes of the

graph represent genes and edges are gene adjacencies. Note that any v ∈ V is incident to exactly one

interval edge Ij . Thus, we define eI(v) ∈ EI to be the interval edge containing vertex v, and define

eI(j) ∈ EI to be the interval edge corresponding to interval Ij . Similarly, we define eR(v) ∈ ER to

be the reference edge containing vertex v, if such an edge exists, and EA(v) ⊆ EA to be the set of

variant edges incident to vertex v.

Now if the data I, A, and c are generated from an unknown cancer genome generated by a series

of rearrangements, duplications and deletions that do not alter the chromosome ends (telomeres)

s1 and tn, then the block organization of this cancer genome corresponds to an alternating path

through G beginning at s1 and ending at tn that alternately traverses interval edges and non-interval

edges (i.e. reference/variant edges), and where the number of times that each interval Ij is traversed

(in either direction) on the path is equal to cj (Figure 5.1). We require an alternating path since

traversal of an interval edge is equivalent to selection of a block from the reference genome, and

traversal of a reference/variant edge corresponds to a transition between blocks. Therefore, such

an alternating path spells out a sequence of blocks from the reference genome. Formally, if we
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Reference  Genome: Measured Adjacencies: 

(A, -B) 

(-B, C) 

(D, C) 

Measured  
Copy #:  1                 1              2             2 

            A                 B              C            D 

Interval-Adjacency Graph: 

Edge Type 
           Interval 
           Reference 
           Variant 

1                              1                          2                       2 

 A                              B                          C                      D 

µ: 

A -B C D C D 
Reconstructed 

Cancer Genome: 

Figure 5.1: Construction of the interval-adjacency graph. Paired-end sequencing data par-
titions a reference genome into intervals A, B, C, and D with associated copy numbers. These
intervals and the measured adjacencies are used to build an interval-adjacency graph. Deriving
the appropriate multiplicities on this graph results in an Eulerian tour which reconstructs a cancer
genome consistent with the input data. Here, a possible reconstruction is A -B C D C D where -B
indicates that the block is in the inverse orientation from the reference genome. Another possible
reconstruction is A B C D C D which results from the assignment of multiplicity 0 to some variant
edges.

transform the interval-adjacency graph into a multigraph where the multiplicity of each edge equals

the number of times it is traversed, then the multigraph has an Eulerian tour, as in the repeat graph,

or deBruijn graph, in genome assembly algorithms [130, 127].

Conversely, if we are given data I, A,and c then we would like to infer an integer multiplicity

µ(e) on each edge e such that an alternating Eulerian path from s1 to tn exists. We refer to s1

and tn as telomeric vertices and denote by T = {s1, tn} the set of telomeric vertices. Finding such

an assignment of multiplicities can be formulated as an integer linear program (ILP). In particular,

the restriction that the tour alternates between interval edges and non-interval (reference/variant

edges) means that at each non-telomeric vertex v, the multiplicity of the interval edge eI(v) must

equal the sum of the multiplicities of the reference edge eR(v) and variant edges eA(v). Telomeric

vertices T = {s1, tn} are excluded from this requirement since by definition they are only incident
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to an interval edge, but not incident to any reference or variant edges. This constraint imposes the

following copy number balance conditions on the multiplicities.

µ(eI(v)) = µ(eR(v)) +
∑

a:a∈EA(v)

µ(a),

∀v ∈ V \T.
(5.1)

The following theorem follows directly from (5.1) and Kotzig’s Theorem for alternating Eulerian

paths [85] (see also [129]).

Theorem 5.2.1. Given a connected interval-adjacency graph G = (V,E), there exists a function

µ : E 7→ N satisfying the copy number balance conditions (5.1) if and only if there exists a multigraph

Gµ = (V,Eµ) with edge multiplicities µ containing an alternating Eulerian Tour beginning at s1 and

ending at tn.

Finding such a function µ is the Eulerization problem and can be solved in polynomial time [100].

Applying the above result with the additional constraint µ(eI(j)) = cj for j = 1, . . . , n provides an

interval-adjacency multigraph that contains an alternating Eulerian tour, corresponding to a cancer

genome consistent with the data I, A, and c. In a later section, we extend Theorem 5.2.1 to the

case of multiple chromosomes by finding a set of alternating tours.

In the case of perfect data, there is guaranteed to be a solution to the Eulerization problem: one

such solution is the assignment of multiplicities that correspond to the cancer genome. However,

there is no guarantee on the uniqueness of the solution, and other solutions – including solutions that

do not use all variant edges – are possible. Figure 5.1 gives an example. In the case of perfect data we

could require that all variant edges are assigned non-zero multiplicity, thus ensuring that all variant

edges from the cancer genome are used. However, in the case of imperfect data addressed below,

such constraints are not appropriate as we expect such data to contain missing and false adjacencies

due to difficulties in inferring adjacencies (structural variants) from paired-end sequencing data.

5.2.3 Imperfect Data

The previous section considered the case where the intervals I and adjacencies A were derived from

a cancer genome with no errors, and where the interval count vector c was known. Now we consider
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the situation that is presented by real data, where c is unknown and the adjacencies A may be

incorrect (with missing adjacencies and/or false adjacencies). Instead of c, we are given a (paired)

read depth vector r = (r1, . . . , rn) derived by the alignment of concordant paired reads to the

reference genome. Each entry rj is the number of concordant pairs of reads that when aligned to

the reference genome lie entirely within the interval Ij . We use a probabilistic model to derive the

most likely edge multiplicities µ in the interval-adjacency graph.

Specifically, let L1, L2, . . . , Ln be the lengths of intervals I = (I1, I2, . . . , In), and let LR =

∑n
i=1 Li be the length of the reference genome. Let N =

∑n
i=1 ri be the total number of concordant

pairs that align within these intervals. Following the Lander-Waterman model, we assume that the

reads are distributed uniformly on the genome, so that the number of reads that align to each interval

follows the Poisson distribution with mean λj equal to the expected number of reads that align to an

interval Ij . Of course, the Poisson distribution is an idealized assumption, and it has been shown that

read depth is more accurately fit by a over-dispersed Poisson or negative binomial model [16, 181].

Nevertheless, the Poisson assumption has proven useful for copy number variant detection [101],

and thus we use the Poisson model here, postponing consideration of other distributions to later

work. We assume that the length of the cancer genome is approximately equal to the length LR of

the reference genome and µj = µ(eI(j)) is the integer multiplicity assigned to the interval edge Ij .

In a genome without any rearrangements, we expect
NLj

LR
concordant paired reads to align within

interval Ij (ignoring end effects). Since humans are diploid, we need to rescale this value to indicate

the presence of two copies of interval Ij . Therefore, we introduce a variable τ that represents the

expected number of copies of each interval in a non-rearranged sample. Given τ , the expected

number of reads that align to an interval Ij appearing µj times in the genome is λj(
µj

τ ) =
NLj

LR
× µj

τ .

In general we set τ = 2, but we defer discussion of handling multiple chromosomes until the next

section.

We define a convex optimization problem that finds the maximum likelihood assignment of

multiplicities µ(e) to all edges e in the interval-adjacency graph G, subject to the copy number

balance conditions discussed in the previous section. The likelihood function is the product over all

interval edges Ij of the Poisson probability of the observed number rj of concordant pairs that align

within interval edge Ij , which after taking the negative logarithm and removing constant terms gives

us the (negative of) the likelihood function Lr(µ) =
∑
j λj(

µj

τ )− rj log(λj(
µj

τ )). Thus, we have the
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following formulation.

min
µ
Lr(µ) =

n∑

j=1

λj(
µj
τ

)− rj log(λj(
µj
τ

)) (5.2)

subject to

µ(eI(v))− µ(eR(v))−
∑

a:a∈EA(v)

µ(a) = 0,

∀v ∈ V \T

(5.3)

Setting ĉj = µj gives the most likely multiplicity for the interval Ij in the cancer genome.

Note that [101] derives a similar formulation to predict germline copy number variants in human

genomes, using a different construction based on bidirected graphs. Since human genomes are

diploid, [101] add an additional source/sink vertex σ and add additional constraints that a flow of

2 be conserved across the graph. In contrast, most cancer genomes are aneuploid and might suffer

deletions/duplications at the ends of chromosomes, this additional constraint is not applicable. We

address this issue in the following section. [101] also show that their formulation reduces to a network

flow problem that is solvable in polynomial time. The polynomial time result relies on two properties:

(1) the objective function Lr(µ) is separably convex; (2) the constraints are totally unimodular [69].

The interval-adjacency graph has a corresponding bidirected graph, and assignment of edge

multiplicities in the interval-adjacency graph is equivalent to assignment of flow to the corresponding

edges in the bidirected graph. Thus, the problem formulation in (5.2) above also reduces to a network

flow problem that is solvable in polynomial time. In particular, for an interval-adjacency graph, we

obtain a corresponding bidirected graph by adding orientation information to both ends of all edges

in the original interval-adjacency graph. Specifically, for all interval edges (sj , tj) we assign a positive

direction to the end at vertex sj and a negative direction to the end at vertex tj . For all reference

edges (tj , sj+1) we assign a positive direction to the end at vertex tj and a negative direction to the

end at vertex sj+1. For all the variant edges (v1, v2) we assign a positive direction for all v ∈ {v1, v2}

such that v is a vertex of the form sj , and a negative direction if v is a vertex of the form tj . We

directly transfer all constraints on edge multiplicities. The problem formulation in (5.2) can now

be equivalently described as a network flow problem on the corresponding bidirected graph since

edge multiplicity assignment can be viewed as equivalent to flow assignment. Due to how we orient

the bidirected edges, the copy number balance conditions from (5.1) are also equivalent to requiring



102

that the amount of flow going into each vertex is equal to the flow exiting the vertex.

The formulation above addresses the fact that sequencing data does not directly give copy num-

bers of intervals, but rather yields read depth, which we use along with adjacencies to estimate

copy number simultaneously across all intervals. However, another source of error in the data are

incorrect and missing adjacencies in the set A. Incorrect adjacencies will subdivide intervals and

alter the read depths in each of these intervals. Because our likelihood function considers both

read depth and adjacencies when determining edge multiplicities, our algorithm is somewhat robust

to the presence of incorrect adjacencies. Incorrect adjacencies that do not alter the estimated copy

numbers of intervals are likely not to be used (i.e. the adjacency will be assigned multiplicity µ = 0).

Missing adjacencies will also affect the local structure of the interval-adjacency graph near the miss-

ing variant. In particular, all interval edges incident to the missing variant will be concatenated,

and the corresponding variant edge will not be present. In most cases, we expect that the resulting

reconstruction will simply not contain the missing adjacency. However, in other cases the missing

adjacency may lead to additional errors in the reconstruction: for example the cases where the

missing adjacency leads to large differences in the estimated copy number of the merged interval,

or where the missing adjacencies overlaps with other variants. Our objective function (5.2) does

not attempt to maximize the usage of variant edges, instead allowing the copy number estimates to

determine whether variant edges are used are not. Defining an appropriate objective function that

includes both copy number balance and scoring of variant edges is left for future work.

5.2.4 Multiple Chromosomes and Telomere Loss

We generalize the formulation above to handle two additional features of real data: (1) the reference

and cancer genomes have multiple chromosomes, and (2) ends of chromosomes (telomeres) may be

deleted in the generation of the cancer genome. First, to address the case of multiple chromosomes,

we build a multichromosomal interval-adjacency graph G = (V,E) where the interval and reference

edges are the union of interval and reference edges in the unichromosomal interval-adjacency graph,

respectively. The variant edges EA are derived from the set A of adjacencies that connect intervals

that are adjacent in the cancer genome, but not in the reference genome. These adjacencies are

inferred from the discordant pairs, and now can include adjacencies between different chromosomes;

e.g. those resulting from a translocation. The set T of telomeric vertices is the union of telom-

eric vertices of each chromosome, and consequently |T| is even. We now revise Theorem 5.2.1 to
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multi-chromosomal genomes, where we now decompose the interval-adjacency graph into a set of

alternating tours.

Theorem 5.2.2. Given an multichromosomal interval-adjacency graph G = (V,E) with telomeric

vertices T, there exists a function µ : E 7→ N satisfying the copy number balance condition (5.1) for

all v ∈ V/T if and only if there exists a multigraph Gµ = (V,Eµ) with edge multiplicities µ containing

a set of edge-disjoint alternating tours that each begin and end at vertices in T, and whose union is

Eµ.

A second feature of cancer genome data is that telomeres of the reference genome may be lost.

In this case, the set T of telomeric vertices contains vertices other than the starts and ends of each

chromosome of the reference genome. De novo telomere loss does not produce novel adjacencies in

the cancer genome, and thus requires examining the read depth along the genome to find changes

in concordant coverage, as used in read depth methods for copy number variant prediction [181].

Additionally, non-reciprocal translocations or breakage/fusion/bridge cycles produce novel adjacen-

cies in the cancer genome and thus the drop in concordant coverage will be apparent over adjacent

intervals in I. We use a heuristic which determines the relative ratio of concordant reads to interval

length between intervals to determine these drops in concordant coverage, and if at least one such

case is found, we add an additional vertex σ to the interval-adjacency graph and to the set T of

telomeric vertices. We also add variant edges from σ to the incident interval edge of the loss.

5.2.5 Utilizing a Matched Normal Sample

In most cancer sequencing experiments, in addition to sequencing a sample from a tumor, a matched

normal sample (usually from a blood sample in the case of a solid tumor) is also sequenced. We now

consider the case where a matched normal sample is also available. As before, let L1, L2, . . . , Ln be

the lengths of intervals I = (I1, I2, . . . , In), LR =
∑n
i=1 Li be the length of the reference genome,

and N =
∑n
i=1 ri be the total number of concordant pairs that align within these intervals. We are

now able to observe a corresponding read depth vector s = (s1, . . . , sn) where sj is the read depth

observed for interval Ij in the matched normal sample.

Previously we assumed that in a genome without any rearrangement we would expect to
NLj

LR

concordant pairs to align within interval Ij . This relies on the assumption that reads will be

uniformly distributed across all intervals in the genome based only upon the length of the interval.
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In many instances this may not be the case due to factors such as GC content (fraction of bases that

are a G or a C) or mappability of the region. Given a matched normal, we use the observed number

of concordant pairs sj that align to interval Ij to implicitly account for such biases. Therefore,

given τ = 2, the expected number of reads that align to interval Ij appearing µj times in the tumor

genome is sj
µj

τ . We now can replace the previous estimate of λj with sj and obtain the following

objective function (while keeping the same constraints as (5.3).

min
µ
Lr(µ) =

n∑

j=1

sj(
µj
τ

)− rj log(sj(
µj
τ

)) (5.4)

subject to

µ(eI(v))− µ(eR(v))−
∑

a:a∈EA(v)

µ(a) = 0,

∀v ∈ V \T

(5.5)

5.3 Results

We ran our PREGO algorithm on both simulated data and real sequencing data from both ovarian

and breast cancer genomes. We solve the convex optimization formulation in Equation (5.2) with

CPLEX 12.1, using a piecewise linear approximation of the log term in the objective function, thus

transforming the problem into an Integer Linear Program (ILP). Note, we use CPLEX rather than

the efficient network flow algorithm discussed in a previous section as there is no good implementation

of the later for bi-directed graphs.

5.3.1 Simulated Data

We tested our algorithm on simulated data to determine how robust the reconstructed interval-

adjacency graphs are to various errors in the input data. Errors in the input data arise from a

number of sources, and we studied the effect of two types of errors on the performance of a simulated

sequence: sample contamination and read depth estimation error. We begin by constructing a cancer

genome C = Iα(1)Iα(2) . . . Iα(M) consisting of 200 novel adjacencies: 100 homozygous deletions and

100 heterozygous deletions distributed over 22 autosomes (similar to the ovarian cancer genomes we

analyzed in the next section). The lengths of the deletions are sampled from a normal distribution



105

with mean 10Kb and standard deviation 1Kb. From C we identify the sequence of intervals I. We

introduce 50 additional “false” adjacencies, where each false adjacency simply partitions an interval

in I into three subintervals and adds a corresponding false deletion adjacency to the set A. We then

simulate 30X physical coverage of paired-end sequencing by sampling uniformly from C the starting

positions of intervals, called read-intervals. We sample the length of these intervals from a normal

distribution with mean 200 and standard deviation 10. We compute the resulting read depth rj for

each interval Ij .

Tumor samples are often a mixture of cells from the tumor itself and cells from non-cancerous

cells. To model this type of error, we sample some proportion ρ of the read-intervals from the

corresponding reference genome (i.e. the sequence of intervals I1I2 . . . In), and sample (1− ρ) of the

read-intervals from the cancer genome C. Additional noise in the read depth estimation occurs due

to experimental error (such as sequencing errors and alignment errors due to repetitive sequences

in the reference genome) when estimating rj . Thus, we add Gaussian noise to each rj drawn from

N(0, φrj). We use φrj rather than a single variance parameter to adjust the noise model for intervals

with different read depths.

We ran our algorithm on the simulated datasets with error parameters ρ and φ and counted the

number of edges in the interval-adjacency graph where the predicted multiplicity is the same as the

correct multiplicity and averaged the results over 10 trials (Figure 5.2). The percent of correct edges

drops by at most by 40%. Most of the errors made as the read depth variance φ increases are that

heterozygous deletions are incorrectly called either homozygous no deletion (Figure 5.2).

5.3.2 Ovarian Cancer Sequencing Data

We analyzed DNA sequencing data from 5 ovarian cancer genomes and matched normal samples

that were sequenced as part of The Cancer Genome Atlas (TCGA) (Table 5.1).Each sample was

sequenced at 30X coverage using Illumina paired end technology with read length of 36bp. We

downloaded the BAM files containing aligned reads from TCGA Data portal, and used the GASV

algorithm [150] to cluster discordant pairs from each sample and from the matched normal using

only those paired reads with mapping quality ≥ 30 in the BAM file. We then removed any clusters

of discordant pairs that contain paired reads from both the tumor sample and the matched normal.

In this way, we focus on somatic rearrangements. We also require that the discordant clusters are:

(1) at least 1Mb away from the centromeres as annotated in the UCSC Genome Browser; (2) that
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Figure 5.2: Effect of sample contamination and read depth estimation errors on a sim-
ulated cancer genome. φ is a scaling factor for the variance; for example φ = 400 means that
the noise model has a standard deviation 20 times rj for interval Ij . We show the average percent
of interval edges (left) and reference and variant edges (middle) correctly estimated over 10 trials.
(Right) At ρ = 0, as φ increases most of the errors result from variant edges moving from the correct
multiplicity of 1 (heterozygous deletion) to a multiplicity of 2 (homozygous deletion).

Dataset ID # Var Edges (Used)
OV1 TCGA-13-0890 771 (499)
OV2 TCGA-13-0723 562 (268)
OV3 TCGA-24-0980 311 (172)
OV4 TCGA-24-1103 340 (218)
OV5 TCGA-13-1411 389 (255)

Table 5.1: Overview of ovarian cancer datasets. Statistics of inferred interval-adjacency graphs
for 5 ovarian genomes when a minimum of 5 discordant pairs are required to add a variant edge to
the graph. A variant edge e is used if µ(e) > 0.

they have a minimum number (either 5 or 10 as indicated below) of supporting discordant pairs; (3)

introduce intervals no smaller than 8Kb in the interval sequence I. Restricting the lengths of the

intervals in I allows for a better estimation of read depth, which is obtained by counting the number

of concordant pairs within each interval Ij . We also restricted our analysis to the 22 autosomes.

Table 1 gives the results of our algorithm when the cancer adjacencies A are restricted to those

with at least 5 discordant pairs supporting each adjacency. The possible number of variants is quite

large, and given the high rates of false positives with structural variant prediction [102, 106] many

of these are not likely to be real variants. Since we are lacking a set of validated structural variants

for these ovarian cancer genomes, we examine in the next section features of the interval-adjacency

graph that might help distinguish true variants.
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Reciprocal vs. Non-reciprocal Variants

Each measured adjacency in A ∈ A represents the result of cutting the reference genome at two

locations, resulting in four free “ends” of two pairs Ip:Ip+1 and Iq:Iq+1 of interval edges. Two of

these ends are then pasted together in the cancer genome. In some cases, e.g. an inversion or a recip-

rocal translocation, there is a corresponding partner adjacency A′ that joins together the other two

free ends of the intervals. Note that the GASV algorithm [150] clusters discordant pairs to identify

partner adjacencies, when present. Thus, we distinguish two types of variant edges in the interval-

adjacency graph: non-reciprocal edges, and (pairs of) reciprocal edges. Figure 5.3 shows examples

of both types of edges, including reciprocal and non-reciprocal inversions and translocations. More-

over, following the cytogenetic nomenclature, we distinguish two types of translocations: classical

translocations that preserve the orientation of both chromosomes and Robertsonian translocations

that switch the orientation of one chromosome.

Thus, as a first step in evaluating the solutions produced by our algorithm, we examined the

frequency with which reciprocal edges were used in the resulting interval-adjacency graph (i.e. the

corresponding variant edge has inferred multiplicity > 0) versus the frequency with which non-

reciprocal edges were used (Table 2). Note that reciprocal edges may be used in the following “trivial”

way. If the inferred multiplicities on the two variant edges are both equal (i.e. µ(A) = µ(A′) = k) and

the inferred multiplicities of each pair of interval edges surrounding the corresponding breakpoints

are also equal (i.e. µ(Ip) = µ(Ip+1) and µ(Iq) = µ(Iq+1)) then the objective function (5.2) of

the ILP is unchanged if one sets µ(A) = µ(A′) = 0 and increases the edge multiplicity of the

incident reference edges by k, thus removing the variant edges from the graph (Figure 5.3). We

define reciprocal variant edges that satisfy this condition as trivial and those that do not satisfy this

condition as non-trivial. Note that non-reciprocal variant edges have no equivalent trivial definition

as altering the multiplicity assigned to a non-reciprocal variant edge would force a corresponding

change in the multiplicity assigned the incident reference edges to maintain the copy number balance

condition at the vertices of the variant edge. This change, however will cause the vertices at either

end of the references edges to become unbalanced.

We analyzed the output of our algorithm for reciprocal (non-trivial) edges and non-reciprocal

variant edges. For each type of reciprocal variant (inversions, classical translocations and Robert-

sonian translocations) we tested whether there was an association between a variant edge being
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Figure 5.3: Two classes of variant edges in the interval-adjacency graph. Reciprocal variants
are pairs of variant edges incident to the same four interval edges (Ip, Ip+1, Iq, Iq+1), while non-
reciprocal variants are the cases where only a single variant edge is incident to the four interval
edges defined by the variant edge. A trivial reciprocal variant has equal inferred multiplicities:
µ(A) = µ(A′), µ(Ip) = µ(Ip+1), and µ(Iq) = µ(Iq+1).

used vs. unused, and reciprocal vs. non-reciprocal, using Fisher’s exact test. We find that in most

cases there is a statistically significant association, with a larger fraction of (non-trivial) reciprocal

variant edges being used than non-reciprocal variant edges (Table 5.2). We surmise that the ob-

served significant association between reciprocal variants and their use in the solution obtained by

our method is an indication that it may be easier to satisfy the copy number balance conditions for

vertices associated with a reciprocal variant. In particular, we may only use a non-reciprocal variant

if additionally the concordant coverage on the surrounding intervals is indicative of a possible change

in copy number. In this respect, non-reciprocal variant edges that are used may represent structural

variants whose signature is supported by both read depth and discordant read pairs.

Reconstructed Variants

In this section, we give several examples of reconstructed variants in the OV genomes. First, we

show two cases of reciprocal translocations, one trivial and one non-trivial, demonstrating that in

some cases we may infer possible ordering of rearrangements - for example a translocation preceding

a duplication (Figure 5.4).

We also find subgraphs of the interval-adjacency graph that suggest particular mechanisms of

aberrant DNA repair in cancer genomes. In particular, Figure 5.5 shows part of the interval-

adjacency graph of the proximal arm of chromosome 18 in sample OV2. We identify highly amplified
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Reciprocal vs. Non Reciprocal Variant Edges

Dataset VariantType R(all) R(all) R(non-triv) R(non-triv) NR NR p-Val
OV1 T 179 41 75 13 9 58 < 1E-15
OV1 I 46 20 16 12 2 29 3.46E-5
OV1 TO 210 46 70 16 9 38 2.79E-12
OV2 T 77 51 41 23 12 49 5.17E-7
OV2 I 21 15 9 5 10 21 0.057
OV2 TO 96 64 46 18 15 44 2.63E-7
OV3 T 61 13 19 3 6 30 2.111E-7
OV3 I 19 13 5 5 2 13 0.075
OV3 TO 58 26 22 8 7 28 1.92E-5
OV4 T 74 16 40 6 12 35 1.54E-9
OV4 I 10 0 2 0 3 12 0.073
OV4 TO 48 22 22 10 12 26 0.0036
OV5 T 93 19 29 7 8 37 2.30E-8
OV5 I 12 8 2 0 6 13 0.13
OV5 TO 82 26 22 8 7 34 2.29E-6

Table 5.2: Statistical tests for variant edges.Results of Fisher’s exact test showing that non-
trivial reciprocal edges are more likely to be used (assigned a multiplicity µ > 0) in the interval-
adjacency graph than non-reciprocal variant edges when a minimum of 5 discordant pairs is required
to add a variant edge to the graph. Variant edges are classified as Inversion (I), Translocation (T),
and Robertsonian Translocation (TO). Each variant edge is also classified as either reciprocal or
not and by whether it is used (µ > 0) or not used (µ = 0). We report the number of edges of the
following types: used reciprocal edges (R(all)), non used reciprocal edges (R(all)), used reciprocal
non-trivial (R(non-triv)), not used reciprocal non-trivial (R(non-triv)), used non-reciprocal (NR),
and not used non-reciprocal (NR)

Figure 5.4: Examples of reciprocal translocations in ovarian cancer sample OV5. The
Chr3/Chr7 translocation (left) has the same multiplicity on the variant edges (red stars) as well as
on the corresponding pairs of incident interval edges making it trivial. The Chr1/Chr3 translocation
(right) has different multiplicities on the variant edges (green stars) and is therefore non-trivial. In
the Chr1/Chr3 translocation there is a single copy of Chr1 that does not use any variant edges,
suggesting that only one copy of Chr1 is involved in the translocation, and that duplication of one
of the translocated chromosomes occurs subsequent to the translocation.
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Figure 5.5: Example of a Breakage/Fusion/Bridge Cycle on Chr18 in ovarian cancer
sample OV2. The first two Mb of Chr18 (starting in the upper left) is highly amplified, and
this high multiplicity continues until the self-loop at Chr18:1887171 (blue star), which indicates an
inverted repeat.

intervals that are incident to a loop variant edge that also has high multiplicity. Loops in the interval-

adjacency graph are indication of inverted duplications, a signature of breakage/fusion/bridge cycles,

a known source of genome instability in cancer genomes [58]. Oncogenes YES1 and TYMS appear

in this amplified region, and both have been implicated in ovarian cancer [153, 80].

We also find tandem duplications on Chr2 of both OV2 and OV3 (Figure 5.6). Recently, a

tandem duplication signature was reported in SNP data from Ovarian TCGA samples as well as in

a pair of cell lines [113]. In particular, the cell line data included tandem duplications on Chr2. In

the interval-adjacency graph, the location of these tandem duplications on the homologs of Chr2

are ambiguous. For example, OV2 has two copies of the variant edge, which may be one tandem

duplication present on both copies of Chr2 or two tandem duplications present on one copy of Chr2.

OV3 has two different locations where tandem duplications occur, one of which is within 2Mb of the

duplicated region on OV2. All three of these tandem duplications occur with 4Mb of a duplication

reported in [113] and one duplicated region in OV2 includes several cancer associated genes including

PLB1, PPP1CB, ALK [107, 158, 76].

5.3.3 Breast Cancer Sequencing Data

We also analyzed DNA sequencing data from 6 breast cancer genomes and matched normal samples

that were sequenced in [114] (Table 5.3).Most samples were sequenced at ∼ 30 − 40X coverage

with Illumina paired-end sequencing except for sample PD4120, which was sequence at ∼ 188X
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Figure 5.6: Tandem duplications found on Chr2 in ovarian cancer samples OV2 and
OV3. OV2 has a single site of tandem duplication, while OV3 has two sites of tandem duplication.
Note that the region duplicated in OV2 is much larger than the region duplicated on OV3, and
the duplicated region in OV2 contains several cancer associated genes including PLB1, PPP1CB,
ALK [107, 158, 76].

coverage. Data processing of these genomes and their corresponding BAM files was as described

in the previous section except that we require that discordant clusters have at least 20 reads for

all samples. For all genomes we ran PREGO with 4 different parameter settings: (1) Use matched

normal and allow telomere deletions, (2) Use matched normal and don’t allow telomere deletions, (3)

Only use tumor data and allow for telomere deletions, and (4) Only use tumor data and don’t allow

telomere deletions. Unless otherwise indicated, all results reported are for the parameter settings

that both use the matched normal and allow for telomere deletion.

Number of Edges
Sample Interval Variant
PD3890 100 45
PD3904 315 160
PD3905 165 85
PD4005 148 75
PD4120 647 395
PD4199 123 57

Table 5.3: Overview of breast cancer datasets. The number of interval and variant edges for
the 6 breast cancer datasets analyzed.

Reconstructed Variants

We identify numerous rearrangements in these genomes, including many previously reported by [114].

For instance, we recover the gain of 8q and the loss of 4p in sample PD3890, loss of Chr4 in PD4199,

and the trisomy of Chr 1q (a hallmark for breast cancer [19]) in sample PD4005 – all predicted

by [114]. Lastly, in the ∼ 188X sample, which we analyze in further detail in Chapter 2, we recover

the trisomy of Chr 1q as well as the deletion of Chr 1p, predicted by both us [118] and [114]

We also infer many other previously unreported mutations, such as 3 tandem duplications in Chr1
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Figure 5.7: A portion of the interval adjacency graph for breast cancer sample PD4120.
The interval adjacency graph for chromosome 1 and other connected chromosomes for PD4120,
including a trisomy of Chr 1q and a deletion in Chr 1p.

of sample PD4005, including one that contains the gene PDE4B which has been shown to be up-

regulated by the oncogene KRAS in colorectal cancer [162]. In sample PD4199a we find two regions of

the genome that exhibit a large amount of amplification. The first occurs in a complex rearrangement

on Chr17 (Figure 5.8) where extensive amplification occurs over two originally separate segments

(hg19 positions 28019260-28046479, and 37207568-37958521). Several aberrations have caused these

segments become adjacent in the cancer genome. The first segment is amplified up to 15 copies and

contains the cancer related gene SSH2 [94], which has recently been suggested as a therapeutic drug

target. The second segment contains between 40-53 copies and contains the well known ERBB2 gene

[77] as well as the breast cancer related gene MED1 [37]. [114] report an amplification of ERBB2, but

do not state the number of copies of the amplification, nor do they discuss the exact configuration

of the organization of the chromosome. Another chromosome that exhibits an interesting structure

in sample PD4199 is Chr12 which contains a highly amplified region (9 copies) adjacent to a self

loop (Figure 5.9). We also note that this chromosome appears to have lost at least one copy of its

telomere, the first step in a breakage/fusion/bridge (B/F/B) event. This configuration is the same

as the one we (and others) postulated to be a signature of a B/F/B event [120, 58], as discussed in

the previous section.

5.4 Discussion

The PREGO algorithm presented here combines copy number and adjacency information from

paired-end sequencing data to infer cancer genome organization. However, the algorithm does not
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consider all the issues involved in real cancer sequencing data. In particular, we assume that struc-

tural variants can be identified by mapping of discordant paired reads, but this is difficult for

structural variants in repetitive regions of the human genome [70, 133]. Thus, there may be missing

or incorrect adjacencies in the data. Similarly, estimates of read depth are difficult to obtain in

repetitive regions [181]. While some of these issues may be addressed computationally, the more

difficult cases will require longer reads and/or longer fragments for paired reads.

Beyond the issues with data quality are limitations on the inferred organization. While we derive

multiplicities on the edges using adjacency and copy number data, we do not resolve the resulting

paths through the interval-adjacency graph, except in simple cases. In many datasets, there will be

many such paths and therefore many reconstructions of the cancer genome that are consistent with

the data. Even the solution for the estimated edge multiplicities may not be unique. Resolving such

longer paths requires additional information about connections between consecutive adjacencies, and

such information is generally not available unless the distance between consecutive adjacencies is

within the length of a read/fragment. In addition, the interval-adjacency graph does not contain

allele-specific information about copy number variants, as considered in other work [58]. Finally, we

assume that a cancer sample contains a single genome, when in fact most cancer samples contain

DNA from a mixture of tumor cells, each with potentially different somatic mutations. It is possible

that some of this intra-tumor heterogeneity could be resolved computationally. Alternatively, DNA

sequencing of single cells, or smaller pools of cells, will minimize these effects.

In summary, we formulated the Copy Number and Adjacency Genome Reconstruction Problem

of reconstructing a rearranged cancer genome and developed an efficient algorithm, called Paired-

end Reconstruction of Genome Organization (PREGO), for a particular instance of this problem.

We designed an optimization problem on the interval-adjacency graph, which is related to the

breakpoint graph used in genome rearrangement studies. We applied our algorithm to simulated

data, ovarian cancer genomes sequenced as part of The Cancer Genome Atlas (TCGA) and breast

cancer data from [114] and reconstruct structural variants in these genomes. We analyzed the

patterns of reciprocal vs. non-reciprocal rearrangements, and identified rearrangements consistent

with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge

cycles.
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Figure 5.8: The interval adjacency graph along with assigned edge counts for Chr17 in
breast cancer sample PD4199. A series of complex structural variants have resulted in large
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Figure 5.9: The interval adjacency graph along with assigned edge counts for Chr12 and
Chr15 in breast cancer sample PD4199. The self loop which is adjacent to a region of high
copy (9 copies here) is a signature of a breakage/fusion/bridge event.



Chapter 6

Detecting Simultaneous

Rearrangements in Cancer

Genomes

The evolution of a cancer genome has traditionally been described as a sequential accumulation of

individual mutations – including chromosomal rearrangements – over long period of time. Several

recent studies report that some rearrangements exhibit a complicated structure involving multiple,

closely located breakpoints. In 2011 Stephens et al. [154] proposed a novel mechanism of chro-

mosomal rearrangement in cancer termed chromothripsis in order to explain extreme cases of this

phenomenon. The chromothripsis model posits that in some instances a small portion of the genome

in a cancer cell undergoes a cataclysmic event resulting in a shattering of genetic material that is sub-

sequently pieced back together in apparently random order. Under this hypothesis, many mutations

are acquired simultaneously in contrast to the long standing sequential model.

Since the chromothripsis model was proposed, a number of studies – using a myriad of differ-

ent criteria for determining the presence of chromothripsis – have reported varying rates for this

phenomenon across different cancer types [154, 97, 138]. However, there is a paucity of formal

mathematical models or descriptions of how such cataclysmic events would manifest themselves in

the face of noisy sequencing data, making it unclear how to unbiasedly distinguish whether or not a

chromothripsis (or another simultaneous event) has actually occurred.

116
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In this chapter we present work related to building a formal mathematical model of simultaneous

events from high-throughput DNA sequencing data. This takes the form of a rigorous analysis of

one signature of chromothripsis proposed by [83] and two measures we developed that place a lower

bound on the fraction of rearrangements in a sample that were likely caused simultaneously. The

analysis of the signature suggested by [83] was presented in the form of a platform presentation

at the 2013 Wellcome Trust Scientific Conferences/Cold Spring Harbor Laboratory Conference on

Genome Informatics and at a poster session at the 2013 Microsoft Research Computational Aspects

of Biological Information Conference. The two measures of simultaneous rearrangements were part

of a collaboration with an undergraduate student, Caleb Weinreb, and were presented at the 2014

RECOMB-CG Satellite Workshop [170].

6.1 Related Work

Cancer is driven by somatic mutations in a population of cells [116]. These somatic mutations range

in scale from single nucleotide mutations to large-scale chromosomal rearrangements. Traditionally,

the evolution of a cancer genome has been described as a sequential accumulation of such mutations

over many cell divisions. In 2011, however, Stephens et al. [154] suggested that cancer genomes may

also acquire tens to hundreds of genomic rearrangements simultaneously as part of a one-time catas-

trophic event termed chromothripsis. It was proposed that during a chromothripsis event a portion

of one, or a few chromosomes, shatter into many fragments. DNA repair mechanisms then stitch

together some subset of these genomic fragments into a mosaic chromosome (Figure 6.1). Frag-

ments not included in the reconstructed chromosome are lost, and therefore appear as interspersed

deletions throughout the region.

The Chromothripsis hypothesis was formed as a means of describing observations in data that

seemingly could not be described using the standard sequential model of genome rerrangements. A

related phenomenon reported by Berger et al. [17] was later named chromoplexy by Baca et al. [11].

Both chromothripsis and chromoplexy involve simultaneous breakage and repair at multiple genomic

locations, although with slight differences: e.g. chromoplexy is proposed to favor inter-chromosomal

over intra-chromosomal rearrangements.

Simultaneous breakage and repair at multiple genomic locations has not yet been measured in
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Figure 6.1: A diagram depicting a chromothripsis event on a single chromosome.

vivo. Thus, to infer that such an event has occurred one must argue that simultaneous rearrange-

ment is a more plausible explanation for the observed sequencing data than sequential accumulation

of rearrangements. Several different signatures have been proposed as the defining characteristics

of chromothripsis [83, 96] including clustering of rearrangement breakpoints and a small number

of oscillating copy number states. Other suggested signatures, including “the ability to walk the

derivative chromosome” are not well defined, making them difficult to interpret. While these signa-

tures may be suggestive of a simultaneous, or one-off, rearrangement event, they do not conclusively

establish the occurrence of such an event. In addition, there is variability in how these criteria are

implemented [154, 97, 139] making it unclear how to interpret or compare results across different

studies.

The lack of formal models and definitions for detecting chromothripsis and chromoplexy has led

to a growing debate about whether these are true phenomena [152, 81]. For instance, Sorzano et

al. [152] suggest that the observed clustered rearrangement breakpoints do not exist in every cell,

but rather reflect heterogeneity in the tumor population as a result of an event such as breakage-

fusion-bridge (B/F/B) cycle. The fundamental question underlying this debate is how to identify

simultaneous acquisition of rearrangements – the defining feature of chromothripsis/chromoplexy –

in a cancer genome, given sequence data from a tumor sample and matched normal.

The original chromothripsis publication [154] used Monte Carlo simulations to demonstrate that
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it was unlikely to observe only a few copy number states under a sequential model. While variations

on this approach have been adopted in several other studies [97, 139], recent reports have questioned

the conclusions drawn from this approach. For example, [81] demonstrate that a small but significant

proportion (3.9%) of simulated datasets with sequential accumulation of 50−55 breakpoints exhibit

three or fewer copy states, thus showing a high false positive rate with this approach. Recently,

other methods for identifying simultaneously formed rearrangement clusters have been proposed.

ShatterProof [55] provides a framework for combining the various proposed criteria of chromoth-

ripsis [83] to generate a composite likelihood score. ChainFinder [11] detects chromoplexy using a

graph based model which identifies closed chains of rearrangements that are unlikely to have arisen

independently.

6.2 Analysis of a Proposed Signature of Chromothripsis

In this section we present a formal model of chromothripsis using strings which we then use to

analyze one of the signatures of chromothripsis suggested by Korbel et al. [83], the ability to

walk the derivative chromosome. Furthermore, we quantify the exact instances when this signature

would arise under perfect data and demonstrate that this signature degrades quickly when noise is

added. This further motivates the need for alternative methods to detecting simultaneous events

from sequencing data of cancer genomes. In the following section, we present several other measures

which may be more capable of detecting the presence of simultaneously obtained rearrangements

from noisy data.

6.2.1 A Formal Model of Chromothripsis

We first present a simple mathematical model of chromothripsis using strings and which will serve as

the basis for further investigations. We begin by describing a mathematical model of unichromosomal

genome G that undergoes a chromothripsis event. Suppose that we label consecutive intervals,

or genomic segments, along the original genome G using the characters 1, 2, . . . , n. An interval

g ∈ {1, . . . , n} that subsequently appears in the reverse orientation can then be denoted as −g.

Any linear/circular sequence of characters from the set {±1, . . . ,±n} therefore represents a possible

rearrangement of segments from the original genome G. Using this notation, we can now define

which such configurations may result from a chromothripsis event.
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Definition 6.2.1. We define a linear string C to be a chromothripsis string for G if C is a signed

permutation of 2 or more characters from the set {1, . . . , n}.

We now present some further notation related to this definition of a chromothripsis string that will

be useful in later sections. Each g ∈ {1, . . . , n} can be denoted as an interval with two extremities:

[gt, gh] where gt is the tail extremity and gh is the head extremity of the interval denoted by the

character g. We define the extremity set V = T ∪H where T = {gt | g ∈ {1, . . . , n}} and H = {gh |

g ∈ {1, . . . , n}}. An interval g ∈ {1, . . . , n} that appears in the reverse orientation is denoted as −g =

[−gt,−gh] = [gh, gt]. Therefore, any interval g ∈ {±1,±2, . . . ,±n} can be written as an ordered

pair of extremities from V where one extremity is from H and the other from T . Notice that once a

single extremity for an interval g is defined, the other extremity, or obverse extremity is completely

predetermined. Therefore we define an adjacency to be an unordered pair of extremities from V ,

indicating an adjacency between two intervals from {±1, . . . ,±n}. Suppose g, g′ ∈ {±1, . . . ,±n},

the adjacency between (g, g′) is defined in Equation (6.1).

A(g, g′) =





(gh, g
′
t), g > 0, g′ > 0

(|g|t, |g′|h), g < 0, g′ < 0

(gh, |g′|h), g > 0, g′ < 0

(|g|t, g′t), g < 0, g′ > 0

(6.1)

Any linear/circular sequence of characters C from the set {±1, . . . ,±n}, representing a possible

rearrangement of segments from the original genome G, can be represented as a set of such unordered

pairs of extremities from V . Suppose that C = c1c2 . . . cm is a linear/circular string where each

cj ∈ {±1,±2, . . . ,±n}. We define the adjacency set of C as A(C) = {A(cj , cj+1) : j = 1, . . . ,m− 1}

if C is linear and A(C) = {A(cj , cj+1) : j = 1, . . . ,m − 1} ∪ {(cm, c1)} if C is circular. We also

note any such sequence of characters C can easily be depicted using a graph G = (V,E) similar

to the interval-adjacency graph introduced in Chapter 5 where V = T ∪ H is just extremity set

defined above and E = EI ∪ A(C) is the union of interval edges EI = {(gt, gh)|g = 1, . . . , n} and

and adjacency edges A(C) as defined as above.

We define T(C), the terminal set of C, as the set of extremities from V appearing in some

adjacency in A(C) but where the obverse extremity for the interval does not appear in any adjacency

in A(C). Note that that an extremity in the terminal set indicates that the associated character



121

(or interval) must appear at the end of the string C, and in terms of genomes may be interpreted

as the telomere. We define the sorted adjacency string π(C) = π1π2 . . . πp to be the permutation

of unique extremities appearing in some element of A(C), to be listed in sorted order according

to their position in G. We say that a string π(C) is H/T alternating if its characters alternate

between being members of the sets H and T . Figure 6.2(A-C) shows three tumor genomes along

with their strings C, adjacency sets A(C), corresponding graph representations, terminal sets T(C)

and the sorted adjacency string π(C). Figure 6.2(A-B) correspond to chromothripsis strings while

Figure 6.2C does not.

6.2.2 H/T Alternating

Korbel et al. [83] suggest that one proposed signature of chromothripsis (the ability to walk the

derivative chromosome) is defined by an alternating head/tail pattern observed when measured tu-

mor adjacencies are sorted according to their position in the reference genome. In our model, this

corresponds to the string π(C) having a H/T alternating pattern. In Theorem 6.2.1 we explicitly

quantify 2 necessary and sufficient conditions that determine when a chromothripsis string C will

exhibit a H/T alternating pattern. In particular, the first condition corresponds to when a chro-

mothripsis event occurs somewhere in the middle of a chromosome, leaving the telomeres in place

(Figure 6.2A), while the second condition corresponds to a degenerate case where both ends of the

derivative chromosome originate in a particular configuration from the interior of the chromosome.

It is important to note that the cases detailed in Theorem 6.2.1 do not include the important case

where a chromothripsis event includes a telomere (Figure 6.2B). Further, Figure 6.2C shows one

example where a genome that has not undergone a chromothripsis event exhibits H/T alternating

pattern. Lastly, Figure 6.2D shows the relationship of the three example genomes in terms of being

chromothripsis strings and H/T alternating, thus demonstrating that the H/T alternating pattern

suggested by [83] does not completely capture chromothripsis events.

Theorem 6.2.1. Suppose that C is a chromothripsis string for G. π(C) is H/T alternating if and

only if the terminal set T(C) is one of the following:

1. T(C) = {π1, πp} where p = |π(C)|, π1 ∈ H, and πp ∈ T .

2. There exists some k such that T(C) = {πk, πk+1} where πk ∈ T , and πk+1 ∈ H.



122

3	
   4	
   5	
   6	
   7	
   8	
   9	
  2	
  1	
  
Reference	
  Genome	
  

3	
   5	
  6	
   9	
  1	
  
Tumor	
  Genome	
  

(A)	
  

1t	
   1h	
   2t	
   2h	
   3t	
   3h	
   4t	
   4h	
   5t	
   5h	
   6t	
   6h	
   7t	
   7h	
   8t	
   8h	
   9t	
   9h	
  

Π(A(C))	
  =	
  1h2t2h3t3h5t5h6t6h7t7h9t	
  

Chromothripsis	
  
Sets	
  of	
  Strings	
  

AlternaEng	
  
H/T	
  

(A)	
  

3	
   4	
   5	
   6	
   7	
   8	
   9	
  2	
  1	
  
Reference	
  Genome	
  

3	
   5	
  6	
   9	
  1	
  
Tumor	
  Genome	
  

(B)	
  

1t	
   1h	
   2t	
   2h	
   3t	
   3h	
   4t	
   4h	
   5t	
   5h	
   6t	
   6h	
   7t	
   7h	
   8t	
   8h	
   9t	
   9h	
  

Π(A(C))	
  =	
  1h2t2h3t3h5t6t6h7t7h9t9h	
  

3	
   4	
   5	
   6	
   7	
   8	
   9	
  2	
  1	
  
Reference	
  Genome	
  

1	
  
Tumor	
  Genome	
  

(C)	
  

1t	
   1h	
   2t	
   2h	
   3t	
   3h	
   4t	
   4h	
   5t	
   5h	
   6t	
   6h	
   7t	
   7h	
   8t	
   8h	
   9t	
   9h	
  

Π(A(C))	
  =	
  2t2h4t4h6t7h	
  

4	
   4	
  3	
  2	
  2	
  

(B)	
   (C)	
  

(D)	
  
DeleEon	
  type	
  
Tandem	
  duplicaEon	
  type	
  

Head-­‐to-­‐head	
  type	
  
Tail-­‐to-­‐tail	
  type	
  

Interval	
  
Edge	
  

Reference	
  type	
  Graph	
  Legend:	
  

-­‐2	
   -­‐7	
  

A(C)	
  =	
  {(1h,	
  3t),	
  (3h,	
  6t),	
  (6h,	
  2h),	
  (2t,	
  7h),	
  (7t,	
  5t),	
  (5h,	
  9t)}	
   T(C)	
  =	
  {1h,	
  9t}	
  

-­‐2	
   -­‐7	
  

A(C)	
  =	
  {(1h,	
  3t),	
  (3h,	
  6t),	
  (6h,	
  2h),	
  (2t,	
  7h),	
  (7t,	
  9t),	
  (9h,	
  5t)}	
   T(C)	
  =	
  {1h,	
  5t}	
  

-­‐7	
   -­‐6	
  

A(C)	
  =	
  {(1h,	
  2t),	
  (2h,	
  2t),	
  (2h,	
  3t),	
  (3h,	
  4t),	
  (4h,	
  7h),	
  (7t,	
  6h),	
  (6t,	
  4t)}	
   T(C)	
  =	
  {6t,	
  7h}	
  

Figure 6.2: Graph representations and H/T alternating status of several chromosomes
that have undergone chromothripsis.(A)-(C) Three different tumor genomes obtained as a rear-
rangement of blocks from the reference genome along with their corresponding graph representation
(where different types of adjacency edges in A(C) are indicated using different colors), adjacency
sets, terminal sets and sorted adjacency string. (D) Shows the relationship of the previous three
examples in terms of being a chromothripsis string or exhibiting a H/T alternating pattern.

Proof. Let C be a chromothripsis string for G.

(⇒) Assume that π(C) is H/T alternating. We will proceed by contradiction. Assume that none

of the above conditions about T(C) are true. In particular, we can also assume that there exists
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some k′ ∈ {2, . . . , p} such that πk′ ∈ T(C) but πk′−1, πk′+1 6∈ T(C). Therefore, there must exist

some g, g′ ∈ {1, . . . , n} such that πk′−1 = gh and πk′+1 = g′t. However, if πk ∈ H, this implies

that π(C) does not alternate. Similarly, if πk ∈ T , this implies that π(C) does not alternate – a

contradiction. Hence, one of the above conditions about T(C) must be true.

(⇐) We will consider each possible telomere set T(C) separately and show that for each it is true

that π(A(C)) is alternating.

Assume that T(C) = {π1, πp} where p = |π(C)|, π1 ∈ H, and πp ∈ T . We will proceed by

contradiction. Assume that π(C) is not alternating. This implies (without loss of generality) that

there exists some k ∈ {1, . . . , p − 1} and g, g′ ∈ {1, . . . , n} such that πk = gh, πk+1 = g′h (that is

πk, πk+1 ∈ H). This implies that g′t 6∈ π(C) and therefore g′h = πk+1 ∈ T(C). And since k+ 1 > 1,

it must be the case that g′h = πk+1 = πp, therefore contradicting our assumption that πp ∈ T . The

argument for πk = gt, πk+1 = g′t is similar. Hence, π(C) must be H/T alternating.

Assume there exists some k such that T(C) = {πk, πk+1} where πk ∈ T , and πk+1 ∈ H. We

will proceed by contradiction. Assume that π(C) is not alternating. This implies (without loss of

generality) that there exists some k′ ∈ {1, . . . , p−1} and g, g′ ∈ {1, . . . , n} such that πk′ = gh, πk′+1 =

g′h (that is πk′ , πk′+1 ∈ H). This implies that g′t 6∈ π(C) and therefore g′h ∈ T(C). There are only

two possible values of k′ such that πk′+1 ∈ T(C). The first possibility is that k′ = k−1. If k′ = k−1,

then πk = g′h, a contradiction with our assumption that πk ∈ T . The second possibility is that

k′ = k. If k′ = k, then πk = gh, a contradiction to our assumption that πk ∈ T . The argument for

πk′ = gt, πk′+1 = g′t is similar. Hence, π(C) must be H/T alternating.

In addition to showing that not all chromothripsis strings exhibit the H/T alternating property,

we have also proven the following Theorem (proved in Appendix D) showing the probability that

a randomly chosen chromothripsis string will exhibit the H/T alternating property and that this

probability only depends on the number m of characters in the chromothripsis string.

Theorem 6.2.2. Suppose that C is a chromothripsis string of length m derived from a reference

genome G composed of n intervals. The probability that π(C) is H/T alternating is 1
2(m−1) .

Given that Theorem 6.2.1 allows us to know exactly which chromothripsis strings will exhibit

the H/T alternating property, we explore how robust this signature is when noise is present, as is

expected from real data. Specifically, we add noise by randomly adding and removing a predeter-

mined number of adjacencies from A(C) and determine whether or not the resulting data retained
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the alternating H/T property. We find that the H/T alternating signature degrades quickly as noise

is added (Figure 6.3). Specifically, the random removal of just a single edge only displayed the

H/T alternating signature in less than 4% of the 10,000 simulations. We also analyzed 17 genomes

formally predicted to have undergone chromothripsis/chromoplexy [154, 97, 139] and none of them

exhibit the H/T alternating signature. Thus, as proposed by Korbel et al. [83] the H/T alternating

signature may not be useful in practice as a means of measuring “the ability to walk the derivative

chromosome”. This conclusion is supported by the findings in a recent paper [93] which noted that

this signature was not applicable to their findings of chromothripsis.
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Figure 6.3: Simulations demonstrating that the H/T alternating property degrades
quickly with noise. We created 10,000 random H/T alternating chromothripsis strings C con-
taining 15 characters each (from a set of 50 possible characters) and randomly added and removed
adjacencies from the from the corresponding adjacency set A(C). We found that the H/T alternating
signature degraded quickly as edges were either removed or added.
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6.3 Two Alternative Measures of Simultaneous Rearrange-

ments

In the previous section we demonstrated that one of the signatures of chromothripsis proposed by

Korbel et al. [83] may not be useful in practice. Thus, here we introduce two alternative mea-

sures of chromothripsis/chromoplexy based on the properties of the adjacencies and copy number

changes that are measured by high-throughput sequencing. Since the defining characteristic of chro-

mothripsis/chromoplexy is the simultaneity of breakpoint formation, we define the open adjacency

rate (OAR) and copy-number asymmetry enrichment (CAE) in order to assess the prevalence of si-

multaneously formed breakpoints. In terms of the models introduced in the genome rearrangement

community, genome rearrangements can be modeled as double cut and join (DCJ) operations, where

two double-stranded breaks (DSBs) are introduced and repaired in an aberrant configuration [178].

Simultaneous breakage and repair at multiple sites is an operation with more than two cuts, and

can be modeled as a k-break [4]. We note that in general, a k-break may be equivalent to a se-

quence of DCJ operations. However, under certain conditions described below an observed k-break

with k > 2 cannot be equivalently described by a sequence of DCJ operations. Thus, chromothrip-

sis/chromoplexy is the occurrence of one or more k-breaks with k > 2. The OAR and the CAE use

different data as input, but both aim to provide an estimate in answer to the following question:

given a genome, what proportion of the observed breakpoints were formed in k-breaks with k > 2?

6.3.1 Definitions and Preliminaries

We consider a derivative genome to be a genome that is formed from the normal, or reference genome

through a series of k-breaks. A k-break is an operation that cuts the genome at k locations and joins

the resulting free ends together [4]. k-breaks are a general purpose model for structural variation

in cancer, since they formally describe a diverse set of rearrangement types including balanced

rearrangements such as translocations, inversions and transpositions as well as deletions.

Formally, we define a breakend to be an oriented position on the genome, representing one side

of a break (e.g. x = (chr17:105227,+)). Thus, each k-break produces 2k breakends, which are

then joined together in an aberrant configuration in the derivative genome. Note that 2-breaks

are equivalent to double cut and join (DCJ) operations [178]. Depending on how the resulting

breakends are joined, a 2-break models either a translocation, an inversion, or creates a new circular
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chromosome (Figure 6.4A). In the last case, if the breakends are on the same chromosome and this

circular chromosome is lost, the result is a deletion of the intervening segment. Pairs of breakends

that were separate before the breakage but connected after the repair (i.e. in the derivative genome)

are called adjacent. An unordered pair A = {x, y} of adjacent breakends is called an adjacency.

Adjacencies are the signal left by k-breaks in the derivative genome. Pairs of breakends connected

before the breakage (i.e. in the reference genome) are called counterparts. We denote counterpart

breakends using a prime, so that if x is a breakend, x′ is its counterpart. For example, a break

occurring between nucleotides n and n + 1 will generate counterpart breakends x = (n,+) and

x′ = (n+ 1,−).
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Figure 6.4: Examples showing a 2-break and 3-break. (A) In a 2-break, two breaks pro-
duce four breakends, organized into counterpart pairs x, x′ and y, y′, Aberrant repair leads to an
inversion/translocation (left) with adjacencies {x, y} and {x′, y′} or a closed loop that is then lost
resulting in a deletion (red X, right). In both cases, all adjacencies are closed. This can be detected
as counterpart-symmetry for the inversion adjacencies ({x, y}, {x′, y′}, left) and copy-number sym-
metry for the deletion adjacency ({x, y′}, right), since due to copy number loss ∆(x) = ∆(y′) = −1.
(B) In a (k > 2)-break, k breaks produce 2k breakends which are aberrantly repaired. Closed loops
formed in this process can result in deletions (red X). The resulting adjacencies are open, since for
each adjacency A the counterparts of the two breakends in A are not themselves adjacent. For exam-
ple, x and y are adjacent but x′ and y′ are not. This can be detected using counterpart-asymmetry
(e.g. {x, y}, since x′ is adjacent to z′ but z′ 6= y′) or copy-number asymmetry (e.g. {x′, z′}, since
∆(x′) = 0 while ∆(z′) = −1).

6.3.2 Modeling Cancer Genomes with k-breaks

We model the process of genome rearrangements in cancer as follows. Each tumor begins as a non-

mutated founder cell containing the reference genome. Over time, a sequence of k-breaks occur in

the founder cell’s lineage, eventually forming the derivative genome which is revealed at the time of

sequencing. k-breaks occur according to two assumptions:
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1. There is no breakpoint reuse; i.e. breaks never occur in the same location twice.

2. All breakends are fused; i.e. no new telomeres are formed. Note, the formation of new closed

loops of DNA is allowed

The “no breakpoint reuse” assumption is a subtle issue in evolutionary comparisons [144, 128]

where the breakends of genome rearrangements are determined as boundaries of synteny blocks

from sequence alignments. These boundaries may be ambiguous due to subsequent mutations and/or

repetitive sequences at the boundaries, leading to the identification of breakpoint regions rather than

precise breakends. This lack of resolution is less of an issue in cancer data from high-throughput

sequencing where we expect that any breakpoint that is detected is also localized precisely (within

a few hundred nucleotides), as there has been little time for subsequent mutations to obscure this

breakpoint.

6.3.3 Open and Closed Adjacencies

Let A be the set of all adjacencies produced by a sequence of k-breaks that transform the reference

genome into a derivative genome. A should be thought of as a complete ‘record’ of all the somatic

rearrangements that occurred, and not only those that can be measured in the derivative genome;

i.e. A contains adjacencies that may be removed by subsequent deletions in the creation of the

derivative genome. Chromothripsis and chromoplexy are putative rearrangement mechanisms in

which many breaks occur simultaneously followed by aberrant repair of the resulting breakends, and

thus is modeled as the occurrence of one or more k-breaks with large k. Under the “no breakpoint

reuse” and “all breakends fused” assumptions listed above, the occurrence of a k-break with k > 2

will leave a specific signature in the set A.

Let A ∈ A be an adjacency with breakends x and y. From x, we infer that at some time a DNA

break occurred at x’s location. This break would have produced an additional breakend x′, the

counterpart of x. Similarly the break at y would have generated a counterpart breakend y′. Since

adjacencies (hence breakends) are never removed from A, both x′ and y′ can be found in adjacencies

B,C ∈ A. We now ask, when does B = C? The answer depends on k. If A was produced by a

2-break, then no other breakends would have been present at the time, forcing x′ and y′ to form an

adjacency (Figure 6.4A). On the other hand, if k > 2, then additional breakends would have been

available for fusion with x′ and y′ (Figure 6.4B). To distinguish between these scenarios we make
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the following definition.

Definition 6.3.1. Given the set A of adjacencies produced by a sequence of k-breaks, A = {x, y} ∈ A

is closed if {x′, y′} ∈ A; otherwise A is open.

Every k-break generates k adjacencies. When k = 2, these adjacencies must be closed. Con-

versely, every open adjacency must have come from a k-break with k > 2. For a given adjacency

set A, let A2 the subset of adjacencies produced by 2-breaks and let Ak be the subset produced by

(k > 2)-breaks, so that A = A2 ∪ Ak. Let O(A) be the set of open adjacencies in A. We have the

following.

Observation 6.3.1. For every adjacency set A, O(A) ⊂ Ak.

Two Signatures of Open Adjacencies

Our goal is to detect chromothripsis/chromoplexy by inferring the history of k-breaks that gave rise

to an observed set of adjacencies and copy number aberrations. In particular, we are interested

deriving a lower bound for the number of adjacencies produced in k-breaks with k > 2. As described

above, this can be accomplished by counting open adjacencies. However, “open” and “closed”

are theoretical categories, describing the etiology of an adjacency, rather than its structure in the

derivative genome. In particular, subsequent rearrangements or experimental error may obscure

whether adjacencies are open or closed. Thus we need to define signatures of open adjacencies

that can be robustly applied to real data. We define two such signatures below: (1) counterpart-

asymmetry ; and (2) copy-number asymmetry.

Let A be the complete set of adjacencies produced by a sequence of k-breaks and Ã ⊆ A be

the subset observed in genome sequencing data from the derivative genome. Consider an adjacency

A = {x, y} ∈ Ã. If A is open then the counterpart breakends x′ and y′ must belong to separate

adjacencies in A, say {x′, w} and {y′, z} where w 6= y′ and z 6= x′. Based on the assumption

of no breakpoint reuse, observing either {x′, w} or {y′, z} in the derivative genome precludes the

existence of {x′, y′}, and demonstrates that A is open. We call this signature counterpart-asymmetry

(Figure 6.4B).

Definition 6.3.2. Given a set Ã of experimentally detected adjacencies, A = {x, y} ∈ Ã has

counterpart-asymmetry if there exists a breakend w such that w 6= y′ and {x′, w} ∈ Ã or there exists

a breakend z such that z 6= x′ and {y′, z} ∈ Ã.
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The second signature of open adjacencies relies on copy number. We represent copy number as an

integer-valued function N on genomic coordinates. Assuming the k-break model of rearrangement,

each discontinuity in N occurs at a site of breakage and results in a distinct copy number state over

each breakend in a counterpart pair. Thus, if a break between nucleotides n and n + 1 produces

a pair of counterpart breakends: x = (n,+) and x′ = (n + 1,−), N(x) represents the absolutel

copy number state immediately upstream of the break and N(x′) the copy number downstream. In

addition to the absolute copy number at a breakend, we wish to characterize the change in copy

number change across a breakend. Thus, we define ∆(x) := N(x′)−N(x) where x′ is the counterpart

of x.

In this formulation, breakends flanking deleted regions have negative ∆ values. For example,

suppose the adjacency A = {x, y} resulted from a heterozygous (single copy) deletion. Then x′, the

counterpart of x, must lie within the deleted region, meaning N(x′) = N(x)− 1 =⇒ ∆(x) = −1. A

similar argument implies that ∆(y) = −1. In this case, the changes in copy number are symmetric

at the two breakends of the adjacency. Alternatively, an adjacency A = {x, y} may exhibit different

copy number changes across both its breakends. Such an occurrence is our second signature of open

adjacencies called copy-number asymmetry, which we define as follows.

Definition 6.3.3. Given a set Ã of experimentally detected adjacencies, A = {x, y} ∈ Ã has copy-

number asymmetry provided ∆(x) 6= ∆(y).

It is not immediately clear that an adjacency with copy-number asymmetry is necessarily an

open adjacency, so we prove the following.

Proposition 1. If an adjacency A has copy-number asymmetry, then it is open.

Proof. Suppose that A = {x, y} is a closed adjacency formed by a k-break at some time t0. This

means that the pairs of breakends {x, x′} and {y, y′} were connected before time t0, and the pairs

{x, y}, {x′, y′} are connected after time t0. Since we assume there is no breakpoint reuse, x and y

must have been ‘untouched’ before time t0. Thus, N(x) = N(x′) and N(y) = N(y′) before t0. After

t0, these counterpart breakend pairs are no longer fused, meaning their copy numbers can change

independently. However, the newly adjacent breakend pairs are now ‘locked’ to each other and their

copy numbers must rise and fall together. For example, once x and y are adjacent, a copy number

decrease over x implies a copy number decrease over y. Indeed their copy numbers could only change

differentially if they were re-broken, violating the assumption that breakpoints are not reused. This
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implies that in the derivative genome, N(x′) − N(x) = N(y′) − N(y) =⇒ ∆(x) = ∆(y), which

means closed adjacencies cannot be copy-asymmetric. Conversely, adjacencies with copy-number

asymmetry must be open.

We emphasize here the importance of analyzing the differences ∆(x) and ∆(y) in copy number

across breakends to define copy-number asymmetry rather than absolute copy numbers N(x) and

N(y) at breakends. N(x) and N(y) can be unequal even when the adjacency {x, y} is closed, as

a change in copy number for either breakend may have occurred prior to the formation of the

adjacency {x, y}. After the formation of the adjacency {x, y}, however, copy number changes that

affect x must also apply to y since the two breakends are fused. Thus assuming {x, y} is closed,

we expect to find ∆(x) = ∆(y) even when N(x) 6= N(y). Critically, this argument rests on our

assumption that there is no breakpoint reuse, since a second break at x or y (on the originally

rearranged chromosome or its homologue) would allow ∆(x) and ∆(y) to vary independently.

Detecting a Range of Open Adjacencies.

Since counterpart-asymmetry relies on the presence of counterpart breakends and copy-number

asymmetry implicitly relies on their absence, the two signatures in combination can identify a broader

set of open adjacencies than each can on its own. This is illustrated in the following two examples.

First, let A = {x, y} be a closed adjacency. This implies that x′ and y′ were fused in the k-break

that created A. Clearly, observing the adjacency {x′, y′} in the derivative genome would demonstrate

that A is closed, but what if {x′, y′} is not observed? There are two possible explanations: either

{x′, y′} exists in the derivative genome but was not detected, or the genomic segment containing

{x′, y′} is deleted. In the latter case, the deletion would have a occurred at the same time as the

creation of A (i.e. A was created by a deletion) or subsequent to the creation of A. Since the deletion

of an adjacency entails a copy number drop at its constituent breakends and our no breakpoint

reuse assumption implies that any subsequent copy number changes would produce coordinated

copy number changes across x and y, we have that ∆(x) = ∆(y). Thus, A would show counterpart

symmetry if {x′, y′} were retained and copy-number symmetry if it were deleted. In either case, A

will be considered a closed adjacency according to our definitions (Figure 6.4A).

Next, suppose A = {x, y} is an open adjacency. This means that the counterpart x′ was fused

to a breakend w 6= y′, producing an adjacency {x′, w}. Observing the adjacency {x′, w} in the
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derivative genome would demonstrate that A is open through counterpart-asymmetry. On the other

hand, if the DNA supporting {x′, w} were deleted, then there would be a copy number change at x

(∆(x) 6= 0). Since y′ is not adjacent to x′ or w, it is unlikely that y′ is also deleted at the same time.

If we also assume that y′ does not experience an independent change in copy number at another time,

then we have ∆(y) = 0. Under these conditions ∆(x) 6= ∆(y), giving A copy-number asymmetry.

Therefore, A would look open to our signatures if either {x′, w} were retained and measured or if

{x′, w} were deleted and y′ were retained (Figure 6.4B).

6.3.4 Open Adjacency Rate (OAR)

Given a collection of measured adjacencies Ã and a copy number profile N, we identify the adjacencies

that exhibit counterpart-asymmetry or copy-number asymmetry and form a putative set of open

adjacencies O ⊂ Ã. Note that Ã may represent all measured adjacencies, or a subset of adjacencies

that suspected to reflect a chromothripsis-like or chromoplexy-like event. To estimate the proportion

of adjacencies in Ã formed by (k > 2)-breaks, we define the open adjacency rate (OAR)

OAR(Ã,N) =:
|O|
|Ã|

. (6.2)

In real data, not all open adjacencies will display copy-number asymmetry or counterpart-

asymmetry. For example, if only a sparse set of adjacencies is detected, then counterparts will be rare.

However, those adjacencies which do show either signature can be called open with high-confidence.

Hence the total number of adjacencies exhibiting counterpart/copy-number asymmetry bounds the

true number of open adjacencies from below. Thus, if there is no experimental error generating

false-positive open adjacencies then it follows from Observation 1 that OAR(Ã,N) < |Ãk|/|Ã|.

6.3.5 Copy-number Asymmetry Enrichment (CAE)

For two breakends to be considered counterparts, they must satisfy several criteria, including that

they lie close together on the genome. Therefore, in regions that exhibit a dense clustering of break-

ends it can become difficult to disambiguate breakends that are close because they are counterparts

from those that are close due to other factors. Thus, adjacencies which are densely clustered may

occasionally appear open due to false positive counterpart breakend calls, artificially enhancing the

open adjacency rate. Since adjacency sets representing putative chromothripsis/chromoplexy events



132

are often formed on the basis of breakend clustering [83], it is desirable to develop a measure which

ignores the relative positions of breakends and allows one to separate the contribution of breakend

clustering from other factors when assessing whether the given adjacencies were formed during a

one-off event. We introduce a second measure, copy-number asymmetry enrichment (CAE), that

imputes the open adjacency rate using only relative copy number changes at adjacent breakends.

Consider an adjacency set Ã produced by k-breaks with k ≥ 2. Let Ã2 be the set of adjacencies

from 2-breaks and Ãk be the set from (k > 2)-breaks, so that Ã = Ã2∪Ãk. Further, let C ⊆ Ã denote

the subset of copy-number asymmetric adjacencies. We wish to estimate the fraction of adjacencies

in Ã that came from (k > 2)-breaks using copy-number asymmetry alone; i.e. to estimate |Ãk|/|Ã|

from |C|. Proposition 1 tells us that |C| ≤ |Ãk|. Turning this lower bound into a direct estimate

requires quantifying the degree to which |Ãk| exceeds |C|. This depends critically on the fraction of

breakends in Ã that co-locate with changes in copy number.

Let p∆ be the fraction of breakends x in Ã such that ∆(x) 6= 0 (i.e. the fraction of breakends

co-locating with a change in copy number). To derive an expected relationship between |C|, p∆

and |Ãk|, we treat the copy number changes ∆(x) as random variables and make the following

assumptions: (1) For each breakend x, ∆(x) is always -1 or 0 (deletion or non-deletion); (2) For

each adjacency {x, y} ∈ Ã2, ∆(x) and ∆(y) are equal (dependent) and Bernoulli distributed with

P (∆(x) = ∆(y) 6= 0) = p∆; (3) For each adjacency {x, y} ∈ Ãk, ∆(x) and ∆(y) are independent and

Bernoulli distributed with P (∆(x) 6= 0) = P (∆(y) 6= 0) = p∆. It follows from these assumptions

that Ã2∩C = ∅ and that for an adjacency {x, y} ∈ Ãk chosen uniformly at random, P ({x, y} ∈ C) =

P (∆(x) 6= ∆(y)) = P (∆(x) = 0,∆(y) = −1) + P (∆(x) = −1,∆(y) = 0) = 2p∆(1− p∆). It follows

that E(|C|) = 2p∆(1 − p∆)|Ãk|, allowing us to approximate |Ãk| ≈ |C|/(2p∆(1 − p∆)). Thus, we

can estimate (|Ãk|/|Ã|), the fraction of (k > 2)-breaks, by the copy-number asymmetry enrichment

(CAE) ratio, defined as

CAE(Ã) :=
|C|

2p∆(1− p∆)|Ã|
. (6.3)

6.3.6 Application of OAR and CAE to Real Data

Detecting open adjacencies in real sequencing data requires: (1) a set Ã of measured adjacencies

along with an annotation of the corresponding breakends for membership in counterpart pairs; (2)

a copy number profile N across the genome that maps copy number changes to breakends. The

procedures we use to collect this data are described below.
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We assume that a collection of rearrangements, or structural aberrations, has been identified in

the derivative genome by analyzing paired-read or split read data using one of the many algorithms

for this purpose [13, 151, 138]. The output of these algorithms is a collection V of pairs of breakends

{x, y} representing novel adjacencies in the derivative genome, where x and y are oriented genomic

coordinates in the reference genome. We form the the adjacency set Ã from V by identifying

counterpart breakend pairs {x, x′} such that x, x′ ∈ V, x ≤ x′, and the following criteria are satisfied:

(1) x′ − x ≤ D for a small integer D; (2) x has positive orientation and x′ has negative orientation;

i.e. the pair (x, x′) has convergent (+,−) orientation; (3) {x, x′} /∈ V; (4) no other breakends in V

lie between x and x′. In principle, counterpart breakends occupy adjacent nucleotides, so that we

expect x′ − x = 1, indicating a distance threshold of D = 1 in criterion (1) above. However, higher

values of D may be used in practice since many structural aberration algorithms do not identify

breakends to single nucleotide resolution. In addition, counterpart breakends may be separated

by a small distance due to microdeletions or “deletion bridges” [11] that occur at rearrangement

breakpoints.

One may compute the OAR on the full set of novel adjacencies; i.e. build Ã from V. Alternatively,

one may evaluate a subset of detected adjacencies, for example a spatially clustered set of adjacencies

or a collection previously implicated as representing a chromothripsis-like event, by building Ã from

a subset of V. We use the later approach in our analyses below.

To create a copy profile N which maps changes in copy to breakends, we analyze a whole-genome

segmentation as follows. First, we match the ends of copy number segments (indicating a change in

copy number) to nearby breakends. This is done by creating a breakpoint interval I with length L

around the boundary of each copy number segment For each breakend x and breakpoint interval I,

we declare a match if: (1) x lies within I; (2) x is the only breakend occupying this interval. Since

determination of absolute copy number in tumors is challenging due to heterogeneity [118], we assign

change in copy values ∆ to breakends using a step function: ∆(x) = 1 for breakends matched to

intervals indicating positive copy change; ∆(x) = −1 for breakends matched to intervals indicating

negative copy change; ∆(x) = 0 for breakends without a matched copy change.

Results on Real Data

In [170] we compute the OAR and CAE on 121 cancer genomes from two datasets that were pre-

viously screened for chromothripsis/chromoplexy [97, 11]. We refer the reader to [170] for the
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complete results. In short, we find that both measures correlate well with the predicted classifica-

tions of chromothripsis/chromoplexy versus sequential (p < 10−3 on data from [97] and r = 0.73

on data from [11]), but differ on a small subset of genomes. Visual inspection of the genomes for

which OAR makes differing predictions suggest that they have been mis-classified in the published

analyses. Appendix D also contains preliminary experimental results on real data that motivated

the work appearing in [170].

6.4 Discussion

The definition of rigorous criteria to distinguish events such chromothripsis/chromoplexy which

result in the simultaneous acquisition of multiple rearrangements from the stepwise accumulation

of rearrangements using DNA sequencing data from a single time point is challenging task [154, 11,

83, 97, 55, 81, 91]. We first provide a rigorous model of chromothipsis which we use to analyze

one signature of chromothipsis proposed by [83]. We use this analysis to demonstrate that noise

in sequencing data may quickly degrade the signal associated with this signature. This motivates

the need for measures of simultaneous events which are more robust to noise. Thus, we introduced

two measures, the open adjacency rate (OAR) and copy-number asymmetry enrichment (CAE), to

quantify the occurrence of simultaneous rearrangements, or k-breaks [4] with k > 2, in the formation

of a derivative genome. We showed that the OAR and CAE measures correlate well with previously

published analyses [97, 11] of chromothripsis/chromoplexy, but that our measures also reveal some

potential misclassifications in these studies.

While our results demonstrate that the OAR and CAE are useful measures, they both have

limitations. The OAR and CAE are local measures that estimate the proportion of (k > 2)-break

adjacencies by considering each adjacency in turn, rather than examining their global configura-

tion. While some information is lost in this approach, robustness to experimental error is gained.

Indeed, measures of chromothripsis/chromoplexy that rely solely on the global configuration, such

as ChainFinder [11] may be affected by a single missing adjacency. Combining information from

global configurations with local measures such as the OAR is therefore an important area for future

investigation. In addition, recent studies suggest that chromothripsis/chromoplexy events do not

occur in isolation [91]. Thus, flexible measures, such as the OAR and CAE, may be better able to

distinguish the available signal of a one-time event from the noise of sequential rearrangements in
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the same region.

The ability to detect chromothripsis/chromoplexy using OAR, CAE, or related measures is im-

pacted by the extent of intra-tumor heterogeneity within a sample. If a chromothripsis/chromoplexy

event exists in only a fraction of cells in the sample, then the power to detect the adjacencies and copy

number changes that characterize this event is diminished. Recently developed methods to charac-

terize intra-tumor heterogeneity within a single sample [118, 143, 63] or new single cell sequencing

approaches [169], may provide better data for measures such as OAR.

Ultimately, in vivo or in vitro studies of chromothripsis/chromoplexy are necessary to further

quantify the causes and prevalence of these events. In the interim, analytical methods to predict

k-breaks from high-throughput sequencing data will remain useful tools, with the caveat that for

some samples such post hoc analysis may insufficient to determine reliability whether a chromoth-

ripsis/chromplexy event occurred.
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Conclusions

“More people each year die of cancer in the United States than all the Americans who

lost their lives in World War II. This shows us what is at stake. It tells us why I sent a

message to the Congress the first of this year, which provided for a national

commitment for the conquest of cancer, to attempt to find a cure.”

– President Richard M. Nixon, December 23, 1971

It has been over 40 years since President Richard Nixon declared a “War on Cancer” by signing

the National Cancer Act of 1971. In that time, increased awareness and funding opportunities have

led to extensive research investigating both causes of and treatments to cancer. As a result, we have

taken important steps forward in our understanding and approach to treatment of some types of

cancer. For example, the advent of the drug Gleevec, introduced in 2001, has helped to increase

the 5 year survival rate for patients with Chronic Myeloid Leukemia (CML) from 31% to 59% [73].

Despite the progress that has been made, we are still a long way from the ultimate goal of curing

cancer.

The advent of new high-throughput DNA sequencing technologies in recent years have ushered

in a new era of cancer research. The prospect of sequencing a tumor sample from a patient recently

diagnosed with cancer would hardly have been imaginable just 10 years ago, but is quickly becoming

reality. The ability to probe and measure the human genome in this manner opens up incredible

136
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potential for better understanding of cancer, but more importantly provides the initial step needed

to embark down the path of personalized medicine. To fully realize this ultimate goal of personalized

treatment will require continued advancement not only in the technology for sequencing genomes,

but also in the algorithms used to analyze that data [125].

There are still many challenges related to analyzing high-throughput DNA sequence data. The

basic task of identifying the set of somatic mutations in tumor, a necessary prerequisite for person-

alized medicine to become a reality, is still plagued by many challenges. Some of these challenges

are specific to the DNA sequencing technology and others are a result of genomic anomalies specific

to cancer. New methods developed to handle to intricacies of DNA sequence data of cancer genomes

have incredible potential to change our fundamental understanding of cancer.

7.1 Summary of Contributions

This dissertation focuses on the design of algorithmic methods that address challenges specific to an-

alyzing DNA sequence data of cancer genomes; in particular intra-tumor heterogeneity and complex

genomic rearrangements.

7.1.1 Intra-Tumor Heterogeneity

In Chapter 2 we present Tumor Heterogeneity Analysis (THetA), an algorithm to infer the collection

of tumor genomes that differ by copy number aberrations and their prevalences within a single

tumor sample [118]. THetA addressed several important limitations of previous methods for this

task. First, THetA utilizes a probabilistic model of DNA sequencing data (as opposed to previous

methods which were designed for a different technology). Second, THetA allows any number of

tumor populations to be inferred as opposed to previous methods which were only able to infer a

single tumor population. Finally, we show that THetA is an efficient algorithm in the important

case when a tumor contains a single tumor population along with admixture with normal cells.

In Chapter 3 we present THetA2 which extends the original THetA algorithm in a number of

important directions [121]. This includes a new optimization procedure which reduces the runtime

of the algorithm when considering multiple tumor populations by a factor of >1000X. We also

formulate a probabilistic model of B-allele frequencies (an alternative type of data not used in the

original THetA algorithm) that allows THetA2 to distinguish between solutions which are equally



138

likely using read depth information alone. This improvement helps to address an identifiability issue

with the original THetA. Lastly, we extend THetA2 to work with whole-exome sequencing data.

These improvements greatly increase the breadth of tumors that may be analyzed with THetA2 –

thus making it a more attractive program for biologists to use when analyzing sequencing data.

In Chapter 4 we formalize the problem of reconstructing the clonal evolution of a tumor using

single-nucleotide mutations as the Variant Allele Frequency Factorization Problem (VAFFP) and

derive a combinatorial characterization of the solutions to this problem [47]. We also describe an

integer linear programming solution to the VAFFP in the case of error-free data and extend this

solution to real data with a probabilistic model for errors. We call the resulting algorithm presented

here AncesTree.

7.1.2 Complex Genomic Rearrangements

In Chapter 5 we present the Paired-End Reconstruction of Genome Organization (PREGO) algo-

rithm which uses complementary data signals (read depth and adjacencies) to infer the most likely

collection of rearrangements that together best describe the cancer genome [120]. We demonstrate

that PREGO is a polynomial time algorithm through reduction to a network flow problem on a

bi-directed graph. We obtain biologically meaningful results when applying PREGO to both breast

and ovarian cancer datasets.

In Chapter 6 we address the question of whether it can be determined from sequencing data if

a set of observed rearrangements occurred sequentially overtime or part of a one-time catastrophic

event such as Chromothripsis [154] or Chromoplexy [11]. We first define a rigorous mathematical

model of chromothripsis on strings. We then use this model to critique one of the signatures of chro-

mothripsis as suggested by Korbel et al. [83]. We then introduce two new measures on the fraction

of rearrangements that occurred simultaneously (as is predicted by Chromothripsis/Chromoplexy)

called the Open Adjacency Rate (OAR) and the Copy-number Asymmetry Enrichment (CAE) [170].

7.2 Future Work

If the past is a valid predictor of the future, DNA sequencing technologies will continue to evolve

quickly. Concurrent with these changing technologies will be new algorithmic challenges. Thus,

there is will be a continuing need for the development of novel computational algorithms into the
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foreseeable future. While it is impossible to predict how the available technologies will change in

the coming years, we can make use of past trends to help guide our visions of what may come.

Furthermore, the motivating factors behind necessary algorithmic development is not only driven

by the type of available data, but also it’s scale and scope. Given the ongoing efforts of large scale

collaborations such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome

Consortium (ICGC), it seems likely that in the near future the amount of available data will continue

to increase in terms of raw numbers and types of cancers.

The work presented in this dissertation is aimed at addressing challenges related to analyzing

DNA sequence data from cancer samples. Specifically, we have addressed challenges related to

intra-tumor heterogeneity and complex genomic rearrangements. These have been extremely active

research areas, especially intra-tumor heterogeneity, in recent years. While the algorithms presented

in this dissertation, and the numerous others that have been published in recent years, have helped

to scratch the surface on our understanding of the complex facets of cancer, we still have a long

way to go. We now discuss possible future directions around the areas of intra-tumor heterogeneity,

complex genomic rearrangements and other related directions.

7.2.1 Intra-Tumor Heterogeneity

Despite the volume of recent methods aimed at handling and detecting intra-tumor heterogeneity

from a single DNA sequenced sample [105, 143, 8, 12, 63, 91, 92, 48], including THetA presented

in Chapters 2 and THetA2 presented in Chapter 3, there are a number of challenges that remain

in this space. The integration of multiple data signals, including but not limited to somatic SNVs,

germline SNPs, CNAs, and other structural variants such as inversions or translocations, may be

advantageous when inferring tumor composition. While some methods have begun to integrate a

subset of these data signals [48, 91, 12], it is still unclear how to weight the contribution of the

different signals and if all can be efficiently combined. Related, is the challenge of how to proceed if

the different signals actually provide contradictory evidence. Appropriate integration of these data

signals, and perhaps others derived from alternative data sources such as RNA-Seq or Methylation

data can only improve our ability to detect intra-tumor heterogeneity.

Another challenge that still need to be more thoroughly addressed is how to accurately and

automatically identify and incorporate genome-wide events, such as whole-genome doubling when
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inferring tumor composition. While the method ABSOLUTE [27] does detect whole-genome du-

plication events, it is intended to be used with a trained analyst annotating and selecting the final

results. Many methods, including THetA [118] and THetA2 [121], rely on the assumption that much

of the genome maintains the normal diploid state, thus making prediction of whole-genome events

difficult. This is one challenge where the incorporation of additional data signals may in fact make

inference of such whole genome events more plausible.

Most methods aimed at predicting the evolutionary history of a heterogeneous tumor sample [75,

155, 64, 39] including the AncesTree algorithm presented in Chapter 4 are constrained by a number

of rigid assumptions. These include the use of only SNV data in analysis and the assumption that

all observed SNVs occur in copy neutral regions. The one exception is PhyloWGS [39] which can

be given pre-computed copy number estimates. However, this only sidesteps the task of being able

to simultaneously infer both SNVs and CNAs in the context of tumor evolution. Furthermore,

The the rigid assumption that observed SNVs occur in copy neutral regions is likely not valid for

many tumors, especially for those cancer types such as breast or ovarian cancer [50, 24] where copy

number aberrations are extremely common. Thus, there is a need for further exploration into how

copy number aberrations can be incorporated into such methods. Such exploration would likely

need to define assumptions, similar to the infinite sites assumption for SNVs, on how copy number

aberrations evolve over time.

Lastly, one ongoing challenge that affects all current and future methods is how to perform

validation. On real data the true tumor composition or evolutionary history is not known, thus

validation of predictions is a tricky task. Many approaches utilize results obtained on simulated

data as a means of verifying the accuracy of the method. However, there is extreme variability in

how such simulated datasets are created. A few large scale simulated datasets are now becoming

available through challenges related to benchmarking existing algorithms [72]. While this may

partially help by providing standardized datasets for comparison, there are other issues that need

to be addressed. For instance, it is difficult to create simulated datasets that accurately reflect the

intricacies of real datasets. In fact, it is unclear if the datasets created for these benchmarking

challenges are truly indicative of the amount and quality of noise contained within real data. Thus,

there is a need for standardized and realistic comparison datasets that can be used to analyze and

compare methods.
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7.2.2 Complex Genomic Rearrangements

The ability to detect and analyze complex genomic rearrangements is closely tied to available DNA

sequencing technologies. For instance the PREGO method presented in Chapter 5 relies on using a

set of rearrangements detected using any structural variation prediction method (e.g. [151, 133, 139],

etc.). Unfortunately, most such methods have high false positive rates and produce variable results

on the same datasets [1, 122]. However, as read lengths continue to grow, the ability to detect

novel rearrangements, especially in repetitive regions, by clustering discordant pairs of reads should

improve. This will certainly help with downstream prediction of complex genomic rearrangements.

Of course as read lengths grow, the probability that an individual read contains information about

multiple aberrations increases. Thus, methods that are able to handle multiple breaks will be

needed [140].

Furthermore, methods for analyzing and interpreting complex genomic rearrangements including

PREGO presented in Chapter 5, OAR and CAE presented in Chapter 6 and various others [99,

55, 11] do not utilize information about intra-tumor heterogeneity. This represents just part of a

larger issue where information about intra-tumor heterogeneity ought to be included when analyzing

DNA sequence data that likely represents a collection of different tumor genomes. The omission

of information such as tumor composition from many algorithms is a multi-faceted issue. In some

instances this is because it has only been in the past few years that methods for inferring intra-tumor

have really started to appear. In others, this omission may be the result of simplifying assumptions

made about the underlying biology. There is certainly a gap between the theory underlying many

algorithmic methods and their true usefulness in practice. Figuring out how to better close this

gap, or to identifying what information is truly lost when simplifying assumptions are made, is an

important area of future work.

Finally, the question of whether simultaneous events truly occur in vivo is still an open debate.

In the absence of irrefutable evidence that such events are real, there will be a continued need for

rigorous analytical methods to asses what signal may be left by such events in DNA sequence data

and if that signal can be confidentially distinguished from noise. The OAR and CAE presented in

Chapter 6 provide a partial glimpse of such analysis, but further work is needed.
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7.2.3 Other Related Directions

Recent advances in high-throughput DNA sequencing have revolutionized our ability to measure

genomes. These advancements have led to falling sequencing costs and as a result, large-scale efforts

such as the 1000 Genomes project, The Cancer Genome Atlas (TCGA), the International Cancer

Genome Consortium (ICGC), etc. have been producing an ever growing plethora of publicly available

data. With sequencing data becoming available for large cohorts of patients, there are questions

about tumors and their development that only now can be posed (and potentially answered). For

example, are there particular molecular pathways (sets of genes) that are more likely to be mutated

in clonal tumor subpopulations (existing in all tumor cells) or in a subclonal tumor subpopulation

(existing in only a subset of tumor cells)? Such information may yield further insight into the order

and progression of pathways mutated in cancer. The availability of datasets such as those through

the TCGA or ICGC will make such analysis possible. One algorithmic challenge with this goal is to

develop a method that does not rely on previously characterized pathways but instead, allows for

the discovery of novel pathways.

Parts of this dissertation have focused on the problem of intra-tumor heterogeneity, where a tumor

sample contains a mixture of different cancer genomes. There are a number of other contexts where

a sequenced sample may contain a mixture of distinct genomes and it may be useful to be able to

deconvolve the mixture into its constituent components. One example of a context where a mixture

of DNA exists is blood samples of a patient with cancer. Recent studies have shown that when a

tumor cell dies, it may ultimately release fragments of its genomic content into the blood stream,

and this may happen at such a rate as to be detectable. Thus, sequencing data from a blood sample

of a cancer patient may ultimately contain a mixture of tumor DNA along with normal (healthy)

DNA [18]. Another specific example where a genomic mixture is measured, and deconvolution of the

mixture is desirable, is metagenomics. Here, an environmental sample contains a mixture of multiple

distinct, but potentially related, species [173]. Both of these examples have their own unique sets

of challenges (number of components in the mixtures, relative similarity of mixture components,

etc.) that need to be addressed in order to deconvolve the mixed DNA sample. Overall, it may be

useful to study the distinct challenges associated with identifying the composition of mixed genomic

samples in a generic setting or to see if the lessons learned in these different contexts can be shared

across the domains.



Appendix A

Quantifying Intra-Tumor

Heterogeneity

A.1 Additional Algorithmic Details

In this section we present additional algorithmic details related to the THetA algorithm not included

in Chapter 2.

A.1.1 Motivating the Multinomial Model

The multinomial model that we use in our likelihood function does not assume that the observed

read depths in different intervals are independent. Even though we assume that reads are distributed

uniformly on the cancer genome, large copy number aberrations (e.g. gain and loss of whole chro-

mosomes) will cause the observed number of aligned reads in an interval Ij to deviate from expected

even when the interval Ij itself is not affected by a copy number aberration. The reason is because

the number of reads is fixed; thus, for example the lack of reads aligning to one part of the genome

due to a deletion will mean that there will be more reads observed from the non-deleted parts of the

genome. We see shifts in read depth ratios between tumor and normal samples due to the change

in the length of the tumor genome in both simulation and real data (Figures A.1 and A.2).
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Figure A.1: Simulations demonstrating that large deletions can affect read depth across
the entire genome.In simulated data containing a mixture of normal cells and one tumor popu-
lation with a specified number of chromosome arm deletions we observe shifts in read depth ratios
across the entire genome. As more of the genome becomes deleted, the ratios (even for regions of
normal copy) shift to the right. As the sample purity decreases, all ratio peaks become compressed
together. For many of these mixtures simply rounding read depth ratios to obtain integer copy
numbers will result in errors.

A.1.2 Derivation of Equations Used by ASCAT and ABSOLUTE

In this section we show how Equation 1 from [27] and the log term in Equation 1 from [164]

can be written as a function of expected values of observations in our probabilistic model. Let

I = (I1, . . . , Im) be a partition of the reference genome into m intervals. Using our notation, these

equations can be written directly as
2µ1+cj2µ2

2µ1+ρµ2
where ρ is average ploidy in the cancer genome.

Suppose we sequence a tumor sample T with P reads. Let Xpq be a random variable such that
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Figure A.2: Read depth ratios across 50kb bins for 20 breast cancer genomes and one
cell line.(a)Tumor/Normal read depth ratios over 50kb bins for 20 of the breast caner genomes
from [114]. In several instances we can observe shifting in the read depth ratios away from 0,
perhaps due to changes in the genome length, thus motivating the use of the multinomial model.
(b) Tumor/Normal read depth ratios over 50kb gins for breast cancer cell line HCC1143, which is
nearly tetraploid, making simple rounding of read depth ratios to obtain copy number estimates
highly inaccurate.

Xpq = 1 if the pth read from T aligns to Iq and 0 otherwise. Therefore Xq =
∑N
n=1Xpq is the

number of reads from T that align to Iq. Let Yq be a similar random variable, but for a matched

normal sample N. We can now calculate the expected number of reads aligning to interval Iq.

E[Xq] = E[

P∑

p=1

Xpq] =

P∑

p=1

E[Xpq] =

P∑

p=1

Prob(Xpq = 1) = P × Prob(Xpq = 1)

Now assume that T has a true underlying C and µ where n = 2 and the first column of C is set

to 2 (the normal component). Let ρ = 1
m

∑m
k=1 ck2, that is ρ is the average value of entries in the

second column of C. Using our multinomial model, we can directly calculate Prob(Xpq = 1).
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Figure A.3: Read depth ratios using intervals determined using BIC-Seq for 19 breast
cancer samples. BIC-Seq run with λ = 100.

Prob(Xpq = 1) = (Ĉµ)q =
(Cµ)q∑m
k=1(Cµ)k

=
2µ1 + cq2µ2∑m

k=1(2µ1 + ck2µ2)

=
2µ1 + cq2µ2

2mµ1 + µ2

∑m
k=1 ck2

=
2µ1 + cq2µ2

2mµ1 + µ2mρ
=

2µ1 + cq2µ2

m(2µ1 + µ2ρ)

Since N is just the normal sample and has all copy 2, we similarly calculate Prob(Ypq = 1) = 1
m .

We can now see how to derive the equation used by both [27] and [164].

E[Xq]

E[Yq]
=
P × Prob(Xpq = 1)

P × Prob(Ypq = 1)
=
Prob(Xpq = 1)

Prob(Ypq = 1)

=

2µ1+cj2µ2

m(2µ1+µ2ρ)

1
m

=
2µ1 + cj2µ2

2µ1 + µ2ρ
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A.1.3 Separable Convexity of Lr(p)

In this section we show that our objective function is separable convex.

Lemma A.1.1. Lr(p) = −∑m
j=1 rj log(pj) + α is separable convex for p ∈ Pm.

Proof. To show that Lr(p) is a separable convex function for p ∈ Pm, we show (i) Pm is a convex

space; (2) the functions `j(pj) = −rj log(pj) are convex. Finally since Lr(p) =
∑m
j=1 `j(pj) + α we

conclude the separable convexity of Lr(p).

Suppose λ ∈ [0, 1] and p,q ∈ Pm are arbitrarily chosen. Let s = λp + (1 − λ)q. By definition

sj = λpj + (1− λ)qj ≥ 0 since pj , qj , λ ≥ 0, and
∑m
j=1 sj = 1 since

m∑

j=1

sj = λ

m∑

j=1

pj + (1− λ)

m∑

j=1

qj = λ+ (1− λ) = 1⇒ s ∈ Pm, and Pm is convex.

Now, for any j ∈ {1, . . . ,m}

`j(sj) = `j(λpj + (1− λ)qj) = −rj log(λpj + (1− λ)qj)

≤ −rj(λ log(pj) + (1− λ) log(qj)) (By Jensen’s Inequality)

= −rjλ log(pj)− rj(1− λ) log(qj)

= λ`j(pj) + (1− λ)`j(qj)

⇒ the function `j(pj) is a convex function.

Finally, since α is a constant and Lr(p) =
∑m
j=1 `j(pj) + α, the function Lr(p) is separable convex.

A.1.4 Proof of Theorem 2.2.3

Theorem 2.2.3. Suppose p∗ = Ĉ∗µ∗ = argmin
p∈PΩm,n,k,p

Lr(p) and all entries in r are distinct. Then we

have the following: p∗ has compatible order with r.

Proof. We proceed with proof by contradiction. Suppose r and p do not have a compatible order,

that is there exist i, j ∈ {1, . . . ,m} such that ri ≥ rj , but pi < pj . Since all entries in r are distinct,

then necessarily ri > rj . Without loss of generality assume i < j, and let p′ be a point on the
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simplex obtained from p by swapping the ith and the jth entries. We first show that p′ ∈ PΩm,n,k,p
.

Since p ∈ PΩm,n,k,p
, by definition there exists a (C, µ) ∈ Ωm,n,k,p such that p = Ĉµ. Let C′ be a

matrix obtained from C by swapping the ith and the jth rows. We define p′ = Ĉ′µ. Since the set of

entries in C′ is as same as the set of entries in C, we have (C′, µ) ∈ Ωm,n,k,p. Thus p′ ∈ PΩm,n,k,p
.

By our original assumption Lr(p) is minimal, and thus Lr(p) ≤ Lr(p
′) ⇒ Lr(p) − Lr(p

′) ≤ 0.

We define δ = ri − rj > 0. We have

Lr(p)− Lr(p
′) = (−

m∑

i=1

ri log(pi) + α)− (−
m∑

i=1

ri log(p′i) + α)

= −ri log(pi)− rj log(pj) + ri log(pj) + rj log(pi)

= −(rj + δ) log(pi)− rj log(pj) + (rj + δ) log(pj) + rj log(pi)

= −rj log(pi)− δ log(pi)− rj log(pj) + rj log(pj) + δ log(pj) + rj log(pi)

= −δ log(pi) + δ log(pj)

= δ(log(pj)− log(pi))

> 0.

This is a contradiction to Lr(p) as minimal. Therefore, it must be the case that r and p have

compatible order. Thus, if we consider a fixed purity, then we need only to consider the same set of

matrices C as if we were considering all purities.

A.1.5 Further Details Related to Theorem 2.2.1

As described in the main text, Theorem 2.2.1 allows us to solve separate convex optimization prob-

lems in the space PΩ. Figure A.4 shows an example of the geometry of the problem when m = 4

and n = 3.

A.1.6 Proof of the Theorem 2.2.4

In this section we present the proof for Theorem 2.2.4. To do so, we first prove two important

properties of the function Φ, and next we show there is a unique p ∈ Φ(Cµ), where (C, µ) ∈ Ωm,n,

such that Lr(p) is minimized.
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Figure A.4: The convex geometry of the MLMDP that is used in the THetA algorithm
in the instance when n = 3. When n = 3, convex combinations of normalized columns in C form
planes, or 2-simplices, which are embedded in ∆m−1 (as described in Theorem 2.2.1). Here we show
an example with m = 4 where one such plane is highlighted in blue.

Lemma A.1.2. The function Φ has the following properties:

(i) Φ(v) = Φ(v̂), for all v ∈ Rm, and

(ii) restrictions of Φ and Φ−1 to ∆m−1 are inverse of each other.

Proof. First we show that Φ(v) = Φ(v̂):

Φ(v) = Ŵv =
Wv

|Wv|1
=

Wv
|v|1
|Wv|1
|v|1

=
W v
|v|1

|W v
|v|1 |1

=
Wv̂

|Wv̂|1
= Φ(v̂). (A.1)

By definition of Φ−1 we have Φ−1(q) = Ŵ−1q. Let p ∈ ∆m−1:

Φ−1(Φ(p)) = Φ−1(Ŵp) = Φ−1(
Wp

|Wp|1
) =

̂
(W−1

Wp

|Wp|1
) =

W−1 Wp
|Wp|1

|(W−1 Wp
|Wp|1 )|1

=

p
|Wp|1
|p|1
|Wp|1

=
p

|p|1
= p,

where the last equation comes from the fact that p ∈ ∆m−1 and |p|1 = 1. Using the same argument

Φ(Φ−1(p)) = p, and the proof is complete.
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Theorem A.1.3.

∣∣∣∣∣ argmin
p=Φ(Cµ),(C,µ)∈Ωm,n

Lr(p)

∣∣∣∣∣ = 1.

Proof. Let µ∗ = (1, 0, 0, . . . , 0)T ∈ Rn and C∗ be a matrix whose first column is (c∗1, . . . , c
∗
m)T , where

c∗i = (
∏
j wj) · riwi

∈ Z, and other entries of C are arbitrary integers in N. Define p∗ = Φ(C∗µ∗). We

claim that p∗ is the only element in the set argmin
p=Φ(Cµ),(C,µ)∈Ωm,n

Lr(p).

First, p∗ ∈ argmin
p=Φ(Cµ),(C,µ)∈Ωm,n

Lr(p): by definition we have

p∗i = Φ(C∗µ∗)i =
c∗i · wi∑
j c
∗
j · wj

=
(
∏
j wj)

ri
wi
· wi

∑
h

rh
∏

j wj

wh
· wh

=
(
∏
j wj)ri

(
∏
j wj)

∑
h rh

=
ri∑
h rh

= (r̂)i.

This implies that p∗ ∈ argmin
p∈∆m−1

Lr(p), and since {Φ(Cµ) | (C, µ) ∈ Ωm,n)} ⊂ ∆m−1 we have

p∗ ∈ argmin
p=Φ(Cµ),(C,µ)∈Ωm,n

Lr(p).

Now suppose p′ ∈ argmin
p=Φ(Cµ),(C,µ)∈Ωm,n

Lr(p). Thus, Lr(p
′) = Lr(p

∗), and p′ ∈ argmin
p∈∆m−1

Lr(p), as

we showed p∗ ∈ argmin
p∈∆m−1

Lr(p). But p′ = p∗, since there is a unique optimal point for argmin
p∈∆m−1

Lr(p),

i.e., |argmin
p∈∆m−1

Lr(Φ(p))| = 1, which completes the proof for uniqueness of p∗.

Theorem 2.2.4. Let Φ−1 : Rm → Rm be Φ−1(v) = Ŵ−1v. We have the following set equality,

argmin
(C,µ)∈Ωm,n

Lr(Φ(Cµ)) = argmin
(C,µ)∈Ωm,n

LΦ−1(r)(Ĉµ).

Proof. By Theorem A.1.3 argmin
p=Cµ,(C,µ)∈Ωm,n

Lr(p) has a unique point p∗, where p∗i = ri∑m
j=1 rj

. There

is a unique optimal point q∗ in argmin
(C,µ)∈Ωm,n

LΦ−1(r)(Ĉµ), where q∗i =
ri
wi∑m

j=1

rj
wj

. Now we have
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(C∗, µ∗) ∈ argmin
(C,µ)∈Ωm,n

Lr(Φ(Cµ))⇔ Lr(Φ(C∗µ∗) = Lr(p
∗)

(using uniqueness of p∗, and Lemma A.1.2)⇔ Φ(Ĉ∗µ∗) = Φ(C∗µ∗) = p∗ =
r∑
j rj

= r̂

(applying Φ−1 and using Lemma A.1.2) ⇔ Ĉ∗µ∗ = Φ−1(r̂)

(by Lemma A.1.2) ⇔ Ĉ∗µ∗ = Φ−1(r)

(since Φ−1(r) ∈ ∆m−1, |Φ−1(r)|1 = 1)⇔ Ĉ∗µ∗ =
Φ−1(r)

|Φ−1(r)|1
= (

r1
w1∑m
j=1

rj
wj

, . . . ,
rm
wm∑m
j=1

rj
wj

)

⇔ LΦ−1(r)(Ĉ∗µ∗) = LΦ−1(r)(q
∗)

⇔ (C∗, µ∗) ∈ argmin
(C,µ)∈Ωm,n

LΦ−1(r)(Ĉµ).

A.2 Simulated Data

In this section we describe our methods for data simulation of sequencing data, corresponding SNP

array data, and synthetic mixtures of real sequencing data. We also present additional simulation

results.

A.2.1 Simulated Data Creation

Simulated Sequencing Data with n = 2 We randomly simulate sequencing data using for

a mixture of tumor and normal cells (n = 2) using the following the following procedure. For

the interval partition I we use the 39 autosomal chromosome arms excluding the 5 acro-centric

p-arms on chromosomes 13,14,15,21, and 22. We sample an interval count matrix C uniformly at

random from C39,2,k. For each simulated tumor sample, we draw a value µ2 uniformly from the

interval [0.5, 0.95], values of tumor fraction that are reasonable for real cancer sequencing data. The

expected distribution of reads is then p = Φ(Cµ), where the weight vector ω, is obtained from paired

end sequencing data from 9 normal human genomes from [114]. ω is determined by first counting the

number of concordant read pairs (with mapping quality ≥ 30) that align to the interval partition I

for all 9 genomes. We then average the observed distribution of reads over these intervals to obtain



152

a mean observed weight vector ω which we then normalize to obtain a valid multinomial parameter.

Under perfect conditions, the read depth vector r and weight vector w are drawn directly from

the multinomial distributions with parameters p and ω. We simulate errors in the sequencing and

analysis process by adding noise to r and w. These errors occur for a variety of reasons. First,

copy number aberrations that change the length of the cancer genome, but are not appropriately

represented in I, may globally alter the observed read depth over all intervals. We model this noise

by drawing vectors r0 and w0 from a Dirichlet prior with parameters proportional to p and ω such

that the expected number of reads corresponds to 30X coverage of the normal genome. Second,

additional sources of noise in read depth estimation occur due to sequencing errors or alignment

errors caused by repetitive regions. To model these errors, we add Gaussian noise to each entry of ri

of r0 (resp. wi of w0) using a Gaussian distribution with mean 0 and standard deviation φri (resp.

φwj). φ is estimated from real data as described below.

Simulated Sequencing Data with n = 3 We construct simulated sequencing data for a mixture

of normal cell and two cancer subpopulations (n = 3 genomes in the mixture) using the same

procedure as for n = 2 genomes with the following changes: (1) We require the content of each

tumor component to be greater than 20%; (2) our set of intervals is just the first m q-arms and (3)

we randomly sample C such that it contains a fixed number of amplifications and a random number

of heterozygous deletions (similar to the real genomes we analyze). We set individual lower and

upper bounds on the copy number for each interval using the same heuristic we use for real data

(Supplemental Material Section A.3).

Simulated SNP Array To compare our algorithm for sequencing data to the algorithm ASCAT

[164], designed for SNP data, we devised a method for simulating sequencing data and then convert-

ing that data to SNP array data in the format required by ASCAT. We initially create read depth

data using the process described in the previous section. For both the tumor and normal genome

we then create LogR and B allele-frequencies (BAF) values (necessary values for running ASCAT)

for the 907,693 SNP positions on the 22 autosomes queried by the Affymetrix 6.0 SNP array. The

LogR value for the tumor sample is log2 of the ratio of the tumor to normal read counts for the

interval containing the SNP location. The LogR ratio for the normal sample is 0, indicating a copy

number of 2. We randomly determine AN and BN , the number of A and B alleles for each SNP in
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the normal genome. We then draw a total read count for the SNP from a poisson distribution with

parameter equal to the observed coverage for the genomic interval containing the SNP. We then

simulate the number reads with the variant allele by making draws from a binomial distribution

with parameter equal to the expected variant allele fraction BN

AN+BN
. The number of reads with the

variant allele divided by the total number of reads gives the observed BAF. BAFs for the tumor

sample are created in a similar manner after randomly determining the number of copies of each

parental chromosome for each interval in the tumor cells. If the total number of copies for an interval

is ≥ 2 we require that at least one copy of each parental chromosome is retained in the tumor cells

(otherwise this implies the more complicated situation where multiple events would have occurred to

the same interval). Using the data from the matched normal, we calculate AT and BT the number

A and B alleles for each SNP in the tumor genome. We define µN to be the fraction of normal cells

in the sample, and µT to be the fraction of tumor cells in the sample (µN + µT = 1). The expected

variant allele fraction in the tumor sample is calculated using the following equation:

BAF =(
BN

AN +BN
)

µN (AN +BN )

µN (AN +BN ) + µT (AT +BT )
+

(
BT

AT +BT
)

µT (AT +BT )

µN (AN +BN ) + µT (AT +BT )
(A.2)

Lastly, by default ASCAT assumes that LogR values have been scaled by a platform dependent

parameter γ. We multiply all LogR values by γ = 0.55, which [164] reports as default for Illumina.

We also ran all experiments with γ = 1 and find that ASCAT performs much better when γ = 0.55

and therefore present only those results.

Simulated Mixtures of Real Data In this section we describe how we created simulated mix-

tures of tumor cells with normal cell admixture by using real sequencing data from a matched tumor

and normal AML samples. We first obtained BAM files for sample TCGA-AB-2965 obtained from

CG-Hub [25]. We choose this sample because it is estimated to have 95% purity and zero copy

number aberrations (as determined using array data) [25] which allows us to create datasets with re-

alistic sequencing noise by spiking in copy number variants and mixing reads in different proportions

from the tumor and normals.

We first identify all concordant read pairs where each read has mapping quality ≥ 30 and use
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this data to create simulated mixtures. We spike in 10 copy number variants of a fixed length (for

the reported simulations we used variants of length 2.5Mb) at random non-overlapping positions in

Chr20 (excluding the centromere) by up/down sampling concordant pairs. The copy number of the

variant is uniformly at randomly determined to be either a deletion (heterozygous or homozygous)

or an amplification (up to copy 5). We then create mixtures of this tumor genome and the matched

normal by mixing together concordant pairs sampled from each. Concordant pairs are sampled

with probability such that the expected total number of reads sampled from the tumor and normal

samples respectively reflects a uniform sampling from all DNA in the sample given the mixing

percentages and lengths of the tumor and normal genomes (while maintaining the original coverage

of the original tumor sample). We then create samples of different coverage by randomly up/down

sampling from this mixture. Interval partitions for Chr20 is then determined by running BIC-Seq

with parameter λ = 10. We run with a smaller value of λ than we use on real data since we are

only considering a single chromosome and can therefore allow for a finer partition of the reference

genome into intervals. The read depth vectors r and w used as input to THetA and CNAnorm

is just the count of the number of concordant pairs aligning within the derived intervals from the

mixed sample and matched normal. The input to ABSOLUTE is the log2 ratio of these counts.

Read Depth Estimation Error φ In simulation we use an empirically observed value of the read

depth estimation error φ by using the distribution of read depth, after normalizing for coverage, over

the non-acrocentric chromosome arms of 9 normal samples from [114]. Over all intervals we find a

mean value of φ = 0.037 and median of φ = 0.029. When we exclude the genome with the lowest

actual coverage we observe a mean value of φ = 0.021 and median of φ = 0.013 (see Figure A.5).

A.2.2 Details of Other Algorithms

In this section we explain other details pertaining to the other algorithms that we compare THetA

against.

CNAnorm Details Since CNAnorm first determines the set of copy numbers expressed in a

sample, before estimating the sample purity, errors in the first step may result in estimated purity

values above 100% (as discussed in [62]). Therefore, in simulation we only considered trials where

purity was inferred ≤ 100%. Additionally, since CNAnorm returns non-integer copy numbers, we
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Figure A.5: Distributions of observed read depth estimation error φ. The distribution of
the average observed φ over the non-acrocentric chromosome arms for 9 normal genomes (left). This
distribution has mean 0.037 and median 0.029. The distribution of the average observed φ over the
non-acrocentric chromosome arms for 8 normal genomes (right) after removal of the genome with
the lowest coverage. This distribution has mean 0.021 and median 0.013.

round their results to the nearest integer value when comparing the interval count matrices C.

ABSOLUTE Details ABSOLUTE does not return a single solution, but instead returns three

sets of solutions: (1) Solutions based on somatic copy number aberrations (SCNA); (2) Solutions

based on recurrent Karyotypes; and (3) Solutions based on combined SCNAs and Karyotypes. Since

our simulations are based on randomly generated cancer genomes, we select the ABSOLUTE solution

with the highest likelihood from the SCNA category as the returned solution to compare against.

When running ABSOLUTE on simulated data, we set the maximum possible ploidy to the

maximum possible value of copy number aberrations in the simulated data rather than the default

value of 10. In all cases this limits the set of possible solutions considered by ABSOLUTE. All other

parameters are set to their default values as described in the ABSOLUTE documentation.

A.2.3 Additional Simulation Results

Here we present a more detailed analysis comparing the results of THetA, CNAnorm [62], ASCAT

[164] and ABSOLUTE [27]. Figure A.6 shows the true interval count matrix C and genome mixing

vector µ and the inferred values by the above algorithms on one of the trials from the first set of

simulations in the main text. The figure also includes calculations of the Copy number error and

Purity error for these solutions (as defined in the main text). THetA has the most accurate purity

estimate of all algorithms - being with 0.5% of the true purity and only misestimate the copy of
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three segments (each where the copy number estimate is off from the true value) whereas CNAnorm,

ASCAT and ABSOLUTE misestimate 17, 4 and 37 segments respectively (out of 39 possible). The

large number of copy number estimates by ABSOLUTE show the dependence between copy number

estimates and purity estimates as ABSOLUTE gravely underestimates the purity of this sample.

We also ran additional experiments comparing our algorithm to CNAnorm for varying read depth

estimation error φ, a parameter that is not relevant for the SNP array data used by ASCAT. We

compare to three versions of CNAnorm [62]: (1) run with default parameters (CNAnorm), (2) run

with an optional smoothing step (CNAnorm-S), and (3) run where each chromosome arm was broken

into 100 intervals (CNAnorm-M) with equal read depth in each interval. In all cases, our algorithm

consistently outperforms CNAnorm by a large margin – beating CNAnorm by up to 50 percentage

points at estimating C correctly (Figure A.7). Figure A.8 shows the complete results for our method

and CNAnorm when we analyze how well each estimates sample purity.

We also include additional simulation results for the experiments using real sequencing data to

create varying mixtures of tumor and normal admixture. These results are for the simulated data

presented in the main manuscript, but we provide here results where a true positive for predicting

a copy number variant only requires a 50% reciprocal overlap with a true variant and a non-normal

copy number predicted without requiring that the copy number be exactly correct. We find that

the results for THetA change only slightly - indicating that when THetA predicts a copy number

variant, it often predicts the true copy number accurately. Whereas we see significant changes in

the accuracy of both CNAnorm and ABSOLUTE - indicating that these algorithms, especially for

low sample purity, incorrectly estimate the overall ploidy of the tumor genomes in the mixture.

A.3 Heuristics Applied to Real Data

We assume that most of the tumor genome does not undergo focal copy number aberrations. Thus,

the mode of the read depth vector provides a normal “baseline” and allows us to set tighter lower and

upper bounds on the copy number for each interval. This allows us to use the following heuristics

when analyzing real sequencing data.
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Figure A.6: The true underlying interval count matrix C and genome mixing vector µ for
one simulation along with sample reconstructions by THetA, CNAnorm, ASCAT and
ABSOLUTE. Copy number error is 1

m(n−1) |C−C∗|2, that is, the average error per copy number

estimate made, or per entry in C, where error is the euclidean distance between C and C∗. Purity
error is |µ2 − µ∗2|, that is the distance between the true and inferred sample purity.
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Figure A.7: Comparison of THetA and CNAnorm on simulated tumor samples. Simula-
tions contain normal admixture between 5% and 50% and true underlying interval count matrix C
sampled uniformly at random from C39,2,3. We perform 100 random trials (between 57 and 86 of
which CNAnorm returns purity < 100%) across varying read depth estimation error (φ). We also
vary the maximum copy number (k) considered by THetA (beyond the true maximum copy number
in the sample). We outperform CNAnorm in the metrics: (left) average number of trials where the
inferred interval count matrix C exactly matches the true underlying interval count matrix for the
sample ; (middle) average euclidean distance of between the inferred and true integer count vector
c2 of the tumor genome; (right) median of the euclidean distance between the inferred and true
genome mixing vector µ. Error bars represent the 25 and 75 percentiles. In the right figure, values
for CNAnorm are not shown as the corresponding median values are between 0.07 and 0.13 – out-
side the range of the plot when error bars are included. (Appendix Figure A.8 gives all CNAnorm
results).
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Figure A.8: Effect of read depth estimation errors on a simulated data. Simulations have
underlying pair (C, µ) ∼ Ω39,2,3. φ is a scaling factor for the variance of Gaussian noise added to
each interval. We show results for our algorithm when run with k = 3, 4, 5 and for three variations
of the CNAnorm algorithm. We show the median of the euclidean distance of the estimated sample
purity from the true underlying sample purity (where error bars represent the 25 and 75 percentiles).
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Figure A.9: Comparison of copy number aberrations predicted by THetA, CNAnorm
and ABSOLUTE. Plots show the number of true copy number aberrations predicted (using 50%
reciprocal overlap) across different purity levels.
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A.3.1 Copy Number Bounds: n = 2

We introduce an optional heuristic that uses the distribution of
r̂j
ŵj

over all intervals Ij to partition

intervals into two groups: (1) intervals that are either deleted or have an unchanged copy number;

and (2) intervals that are potentially amplified. We set different lower and upper bounds depending

on which group an interval falls into.

For real sequencing data we initially make the assumption that most of the tumor genome will

retain the normal expected copy number. This assumption allows us to further restrict the set of

copy number values we consider for each interval. Rather than using an individual global maximum

copy number value k for all intervals, we set individual lower and upper bounds for each interval

using the following process. Let r and w be the observed read depth vectors for the tumor sample

and matched normal samples respectively. For each interval Ij we calculate the ratio
r̂j
ŵj

, and then

determine the mean x and standard deviation y for all of these ratios. For all intervals Ij where

r̂j
ŵj
≤ x+ by we set the lower bound to 0 and the upper bound to the expected normal copy number

τ , where b ∈ R+ is a user supplied positive value. For all intervals Ij where
r̂j
ŵj

> x + by we set

the lower bound to max(τ, d r̂jŵj
e − 1) and the upper bound to max(k, d r̂jŵj

e+ 1). Setting b too small

increases the the size of the search space, and setting b too large may lead to true amplification

being missed. In practice we find that b = 0.5 provides a reasonable balance between these tradeoffs

in many cases. However, the best value for b does change some depending on the number of copy

number variants included in a sample.

In cases where most of the genome does not retain the normal expected copy number, THetA

allows for the bounds set using the above heuristic to be rescaled to reflect the expected average

ploidy of the sample. Additionally, since THetA returns the set of all maximum likelihood solutions,

this set of solutions can contain different sample reconstructions representing different ploidys.

A.3.2 Copy Number Bounds: n = 3

We use a heuristic in the n = 3 to set bounds on the copy number for each interval that is similar to

the n = 2 heuristic described above. For each interval in the subset of intervals that are considering

for n = 3 we use the same lower and upper bounds on copy number estimated using the heuristic

for the n = 2 case, with the exception that for any interval that previously had a lower bound of

0, we set a new lower bound of 1. This is required to limit the size of the search space, and is a
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reasonable assumption when none of the intervals in the subset being considered were predicted to

be homozygously deleted by the n = 2 algorithm. In simulations we also set an upper bound of

k = 3 as the genomes do not contain high-level amplifications.

A.3.3 Normal Admixture

Since we expect tumor samples to be relatively pure we add an additional constraint to our model

where we require the inferred purity of the sample to be greater than 50%.

A.4 Breast Cancer Sequencing Data

The breast cancer samples analyzed were sequenced using Illumina paired-end technology with read

length of 100bp or 108bp. We downloaded the BAM files from the European Genome-phenome

Archive (http://www.ebi.ac.uk/ega/, accession number EGAD00001000138). The read depth vec-

tor is derived from the number of concordant paired reads where each read has a mapping quality

≥ 30.

We set the interval weight vectors w equal to to the read depth vector for the matched normal

sample. This is a reasonable weight vector use; for example, if wi

wj
= 2 we expect the number of

reads originating from a single copy of ith interval to be as twice as the number of reads originating

from a single copy of jth interval. That is, ri
rj
≈ 2, for a large enough number of reads and intervals

i and j are not amplified or deleted in the tumor sample.

A.4.1 Sample PD4120a

In this section we present some additional processing details, results and further analysis of the

sample PD4120a from [114] not included in the main text.

n = 2 analysis

We present here the results of when we run our algorithm with n = 2 on sample PD4120a. We use

all genomic intervals derived following BIC-Seq segmentation (λ = 100) after removal of all intervals

less then 50 kb in length. We infer that the sample contains 34.3% normal cells and 65.7% tumor

cells, compared to the 30% and 70% respectively reported by [114]. Figure A.10 shows the complete

set of copy number aberrations predicted using this analysis.
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Figure A.10: Results of running THetA on breast cancer sample PD4120a when only
considering a single tumor population. We identify several aberrations including the trisomy
of 1q, and deletions of 1p, 4q, 13q, 16q and 22q. Copy numbers for the normal genome are in black
and copy numbers for the tumor genome are in blue. Read depth ratios (gray) are over 50 kb bins
across the entire genome.

n = 3 analysis

We performed analysis using our algorithm with n = 3 on a subset of intervals in sample PD4120a.

We select a subset of the intervals used in the n = 2 analysis by choosing: (1) all chromosomes that

BIC-Seq partitioned into a single interval; (2) all intervals > 22 Mb that were reported as abnormal

copy number ( 6= 2) in the n = 2 analysis. We use only the longest such interval per chromosome if

the number of such intervals is large. We later add all intervals from chromosome 22 to this subset

in order to resolve differences between our results and those presented in [114]. Since the results

for both subsets are extremely similar, we present in the main text the results for the larger subset

(including chromosome 22). Here we present the similar results obtained when using the original

smaller set of intervals.

Our algorithm estimates a normal admixture of 27.96% and two tumor populations comprising

of 62.19% and 9.84% of the cells in the sample (Figure A.11). Again, we recover the fully clonal loss

of 4q, and also estimate loss of 16q and part of 22q as clonal aberrations – the later [114] reports

as subclonal. We also estimate the trisomy of 1q as subclonal - which [114] reports as clonal. We

find a subclonal loss of 13q in 62.19% of the total cells in the sample. In comparison, [114] report a

similar subclonal deletion in 47% of all cells in the sample (68% of the tumors cells in a 70% pure

sample). Lastly, we identify subclonal deletions of chromosomes 8,11,12,14,and 15 in 9.84% of cells

in the sample. [114] report aberrations for these chromosomes in 9.8% of the cells in the sample

(14% of a 70% pure sample). However they claim that these aberrations are chromosomal loss after
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a genome duplication, a scenario that is not found by our analysis.
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Figure A.11: Analysis of copy number aberrations in breast tumor PD4120a when consid-
ering a smaller subset of intervals than presented in the main text. Results shown are for
n = 3. (Left) We show a copy number profile of of the normal population (black), dominant (clonal)
tumor population (blue), subclonal tumor population (red) and read depth ratios (gray). (Right)
A reconstruction of the tumor phylogeny with the estimated fraction of cells in each subpopulation.
We identify copy number changes in chromosomes 1p, 4q, 16q, and 22q as clonal, the deletion of
13q and trisomy of 1q as part of the 62.2% subclonal population and deletions of chromosomes 8,
11,12,14,15 as part of the 9.8% subclonal population.

Additionally, we use estimates of normal admixture to correct read depth ratios over all chromo-

somes in order to predict subclonal events in chromosomes that were not used directly in the n = 3

analysis. We can predict the existence of a subclonal event if a peak in the read depth distribution

occurs at a value that is not near a multiple of 0.5. Using this method we are able to predict

the existence of subclonal deletions of chromosomes 2, 4p, 6, 7, 9, 18 and 21 (Figure A.12). The

deletions in chromosomes 2 and 7 appear in a similar fraction of the sample, while the deletions in

chromosomes 4p, 6, 7, 9, 18 and 21 appear in a similar fraction of the chromosomes – perhaps as

part of the same subclonal population as the deletions of chromosomes 8,11,12,14, and 15 predicted

directly by THetA.

Comparisons between Our Predictions and [114]

In this section we provide additional details of differences between our predictions and those pre-

sented in [114]. One of the techniques we use to validate our predictions is to use corrected read

depth ratios in 50 kb intervals over entire genomes or specific genomic intervals. Figure A.13(B)

shows that such binning provides a more discerning view of read depth ratios than considering ratios

over individual SNP positions (Figure A.13(A)).
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Figure A.12: The distributions of read depth ratios over 50 kb intervals in the 22 auto-
somes of breast cancer sample PD4120a. Results are plotted after centering and correction
for 28% normal admixture for each using a simple linear scaling. Peaks that occur not at a ratio
that is not divisible by 0.5 indicate the presence of a subclonal aberration.



166

Chromosome 1q We performed further analysis of chromosome 1q for sample PD4120a. [114]

indicated that the amplification of 1q to 3 copies is a clonal mutation (occurring in 70% cells),

whereas our analysis finds that 1q is a subclonal mutation (occurring in 62% cells). We partitioned

the genome into 50 kb intervals and determined read depth vectors over all intervals for both the

tumor sample and matched normal sample. We determined read depth ratios by normalizing the

total number of reads to be the same for both the tumor and normal sample to be equal. Both

our analysis and that done by [114] agree that chromosome 3 does not contain large copy number

aberrations. We therefore center the ratios so that the average ratio in chromosome 3 is set to a

ratio of 1 (Figure A.13(A)). We also look at how the distribution changes when we correct for 28%

normal admixture (as estimated by our model) and 30% normal admixture (as predicted in [114]). In

both of these cases, we see that the amplified intervals (which are those intervals in chromosome 1q)

appear to be amplified in a smaller proportion of the cells than the clonal deletions (Figure A.13(B)

and Main Text Figure 3B). We analyze this data further by focusing on the intervals contained in

the amplified portion of 1q and testing how far the corrected ratios are from the expected ratio

of 1.5 (for an amplification to copy 3). We find that average ratio for intervals in 1q with normal

admixture of 27.96% is 1.456 and with normal admixture of 30.0% is 1.47). While the later estimate

is closer to the expected value of 1.5 (given copy number 3), the observed distributions have p-values

of 4.7E − 80 and 2.9E − 39 using a a t-test when compared to the expected mean value of 1.5 – an

indication that this aberration may indeed be subclonal.

We also perform further statistical analysis by comparing the read depth ratios for 1q to other

intervals we predict to be clonally deleted (1p, 4q, and 16q). For all 4 intervals we use a linear scaling

(see Main Text Methods) to correct read depth ratios for a range of possible aberration fractions –

the fraction of the sample containing the aberration. For each aberration fraction and interval pair,

we calculate a Z-score equal to x−µ
σ where x is the expected corrected ratio (0.5 for deletions, 1.5

for amplification of a single copy) for the interval and µ and σ are the mean and standard deviation

of the corrected ratios. For all pairwise combinations such interval and aberrations fraction pairs,

we calculate a pairwise Z-score by summing the absolute value of the corresponding Z-scores. Lower

pairwise Z-scores indicate a better fit to the data. We investiage all pairwise Z-scores in Figure A.14

and find evidence that the aberrations in 1p, 4q and 16q are likely to occur in similar fractions of

the sample. Whereas, the amplification in 1q appears to occur in a smaller fraction of the sample

than the deletions in 1p, 4q and 16q. This evidence supports our hypothesis that the amplification
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Figure A.13: Distribution of all read depth ratios for sample PD4120a. All plots are centered
so that the mean ratio for Chromsome 3 (which doesn’t contain larger copy number aberrations)
is set to 1. A. Read depth ratios determined by counting the number of reads with an alignment
including known germline SNP positions. B. Read depth ratios in 50 kb bins. C. Read depth ratios
after correction for 30% normal admixture using a simple linear scaling. The peak for chromosome
1q is less than 1.5, as would be expected if this aberration were clonal.
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of 1q was a subclonal event.
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Figure A.14: Pairwise Z-scores for corrected read depth ratios in aberrations occurring
in sample PD4120a. A lower intensity indicates a lower Z-score, and an overall better fit with the
data. The black diagonal marks equal aberration fractions between the intervals under consideration.
The red X marks the pair of aberration fractions with the lowest pairwise Z-score. The closer that
the red X is to the black diagonal, the more likely that the aberrations occur in a similar fraction of
the sample and hence are in the same subclonal/clonal population.

Chromosome 22 We performed further analysis of Chm22 in sample PD4120a which our analysis

in the main paper indicates that 22q contains a clonal deletion as well as a subclonal deletion. [114]

posit that a translocation between Chr1 and Chr22 is subclonally deleted. We used the algorithm

GASV [150] to cluster discordant pairs where one read aligned to Chr1 and the other read aligned to

Chr22. We find a cluster of 41 discordant supporting a single non-reciprocal translocation between

Chr1p21 and Chr22q12. A visual representation [159] of these discordant read pairs is located in

Figure A.15(B). This finding supports another potential sequence of events, where the non-reciprocal

translocation between Chr1 and Chr22 results in clonal deletion of parts of 1p and 22q and a dicentric
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chromosome. This is later followed by a subclonal deletion of a part of 22q which was not previously

deleted in the translocation (Figure A.15(A)). Dicentric chromosomes are known to be unstable, and

so this deletion might occur on this chromosome.

Analysis of PD4120a using ASCAT

We ran the ASCAT algorithm [164] on synthetic SNP array data we created from sequencing data

for sample PD4120a [114]. For the 907,693 SNP locations on chromosomes 1 - 22 queried by the

Affymetrix 6.0 SNP array, we created the two types of input used by ASCAT: 1) LogR values; and

2) B allele frequency (BAF). For each SNP position we counted the number of reads containing

different alleles for both the tumor and matched normal samples. BAF values were calculated as

the fraction of such reads containing the variant allele. LogR ratios for the were calculated by using

quantile normalization [20] over the read counts for the matched tumor and normal sample and

then taking the log2 of the ratio of number of reads containing the SNP location from the tumor

sample over the number from the normal genome. By default, ASCAT assumes that LogR values

have been scaled by a platform dependent parameter γ = 0.55, so we scaled all LogR values by

this γ. LogR ratios for the normal sample were all set to 0. ASCAT inferred sample purity of 66%

using this synthetic SNP data as input, a value similar to our estimate when n = 2 of 65.6%. The

copy number aberrations predicted by ASCAT agree with both our analysis and that in [114] on

several aberrations like the trisomy of 1q and the monosomy of 4q, but differs by predicting that

chromosomes 17, 18, 19 and 20 are amplified.

A.4.2 Sample PD4088a

In this section we provide analysis of sample PD4088a, not contained in the main text. [114] report

that sample PD4088a contains little subclonal copy number variation, (although they do not pro-

vide tumor purity estimates or copy number aberrations) making this sample a good candidate to

analyze with our efficient method for inferring a clonal population. Following BIC-Seq segmentation

(λ = 200), we find that chromosome 17 is extensively fragmented containing 25% of the intervals.

To avoid overfitting to this chromosome, we remove all chromosome 17 intervals from considera-

tion. Our algorithm run with n = 2 reports that PD4088a contains 41% normal cells and 59%

tumor cells and identifies a loss of chromosomes 3, 10q, 11q, 18q, and 22q in the tumor population

(Figure A.16(A)). Setting n = 3 and selecting a subset of intervals using the rules discussed in the
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Figure A.15: Additional analysis of rearrangements on chromosome 22q in breast cancer
sample PD4120a.A. A potential sequence of events describing the clonal and subclonal deletions
observed in 22q for sample PD4120a. A translocation (whose position is indicated by yellow markers)
occurs between Chr1 (red) and Chr22 (blue) leading to a clonal loss of 1p and a portion of 22q.
Then one of the two remaining copies of a portion of 22q (purple) is later subclonally deleted. B.
Visual display of the discordant read pairs that support the translocation between Chr1 and Chr22.
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main text (with an interval length lower bound of 40 Mb) also indicates that this sample is mostly

clonal (Figure A.16(B)). This analysis indicates a normal admixture of 40.2% with two subclonal

population comprising 58.6% and 1.2% of cells in the sample. Aberrations reported in the major

subclonal population including a deletion of chromosomes 3, 10q, 11q, and 22q are the same as those

reported in the clonal population in our analysis when n = 2. When we compare the n = 2 and

n = 3 solutions using our version of the BIC model selection we choose the n = 2 solution indicating

that this sample is mostly clonal.

Read depth ratio analysis also supports our conclusion that this sample is mainly clonal. Fig-

ure A.16(C) shows the original distribution of tumor/normal read count ratios over 50kb bins across

the genome. Figure A.16(D) shows this distribution after correction for normal admixture using

our estimates of the n = 2 analysis. The clearly defined peaks at corrected ratios of 0.5, 1 and to

some extent at 1.5 indicated that this sample is indeed mostly clonal (at least with respect to copy

number variants).

A.4.3 Sample PD4115a

In this section we present some additional processing details, results and further analysis of the

sample PD4115a from [114] not included in the main text.

n = 2 analysis

We present here the results when we run our algorithm with n = 2 on sample PD4115a. We use all

genomic intervals derived from BIC-Seq segmentation (λ = 200) after removal of all intervals 50 kb

in length. On initial analysis we infer that the sample contains a high normal admixture and most

copy numbers returned were equal to 1. Under our model, an equally likely solution is obtained

by adding 1 to all copy numbers, thus translating the mode to copy number 2, and redetermining

normal admixture. Using that sequence of steps, our algorithm reports that PD4115a contains

32.33% normal cells and 67.67% tumor cells (Figure A.17(A)). We identify several amplifications

including 1q (+3), 7q (+1) and part of 8q (+5). We also identify multiple deletions including 9q,

11q, and 14q. Figure A.17(B) shows the distribution of read depth ratios over the entire genome

after centering using chromosome 20 (determined by the above analysis to have normal copy number

of 2). Figure A.17(C) shows the same distribution of read depth ratios but includes a correction for

the estimate normal admixture of 32.33%. Other than the normal copy peak at a corrected ratio of
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Figure A.16: Analysis of the ∼40X coverage breast tumor PD4088a. A. Read depth ratios
(gray) and the inferred copy number aberrations by our algorithm when n = 2 including the normal
population (black), and clonal tumor population (blue). B. Read depth ratios (gray) and the inferred
copy number aberrations by our algorithm when n = 3 including the normal population (black),
major tumor population (blue) and subclonal population (red). C. Read depth ratios in 50kb
intervals after centering so chromosomes 4,5,6 and 7 have a mean of 1. D. Read depth ratios in 50kb
intervals after centering so chromosomes 4,5,6 and 7 have a mean of 1 and correcting for 41% normal
admixture using a simple linear scaling. The only visible peaks fall near to expected corrected ratios
(0.5, 1, 1.5), indicating that this sample is mostly clonal (with respect to copy number variants).
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1, these corrected ratios do no align well to increments of 0.5, as would be expected if the sample

was clonal. This supports our analysis that this sample contains several subclonal populations.

n = 3 analysis

We find that PD4115a contains many apparent copy number aberrations with the segmentation

used for n = 2 containing 102 intervals (compared to only 69 intervals for sample PD4120a above).

In addition, this sample also includes several highly amplified regions, and no chromosome was

segmented into a single interval. Thus, we ran THetA for n = 3 on subset of the longest intervals

in the BIC-Seq partition (since no chromosome was partitioned into a single interval). Due to the

greater amount of fragmentation of this genome, we used a parameter of 0.4 for our heuristic for

setting lower and upper bounds. Our analysis indicated that the sample contained two distinct

subclonal populations in near similar proportions. We compare these subclonal populations using

Z-scores in the same manner as described in the previous section. The only difference is that we

compare a deleted interval in chromosome 3p simultaneously to the deleted intervals in 3q, 4q and

5q (Figure A.18). We find that the deletion in 3p does appear to be deleted in a different fraction

of cells than the other deletions.
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Figure A.17: Distribution of read depth ratios in 50 kb intervals for breast cancer sam-
ple PD4115a. (A) Read depth ratios when distribution is centered so that the mean ratio in
Chromosome 20 is set to a ratio of 1. (B) Ratios after centering, and correction for 32.33% normal
admixture using a simple linear scaling. No peaks fall near expected corrected ratios - supporting
our analysis that this sample contains subclonal aberrations. (C) Inferred copy number aberrations
by our algorithm when n = 2 including the normal population (black), clonal tumor population
(blue), and read depth ratios (gray).
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Figure A.18: Pairwise Z-scores for corrected read depth ratios between different subclonal
deletions in breast cancer sample PD4115a. A lower intensity indicates a lower Z-score, and
an overall better fit with the data. The black diagonal marks equal aberration fractions between
the intervals under consideration. The red X marks the pair of aberration fractions with the lowest
pairwise Z-score. The closer that the red X is to the black diagonal, the more likely that the
aberrations occur in a similar fraction of the sample and hence are in the same subclonal/clonal
population. Here the red X is quite far from the black line - an indication that these deletions do
occur in different subclonal populations. The white dot indicates the aberration fractions estimated
by our algorithm and is near (within ∼1) the optimal pairwise Z-score within for this subset of
deletions.



Appendix B

Improved Approaches to

Quantifying Intra-tumor

Heterogeneity

B.1 Proofs Omitted from the Main Text

Corollary 3.2.1. Suppose C ∈ Cm,n,k. If there exists an i ∈ {1, . . . ,m − 1} such that for all

t ∈ {2, . . . , n}, ci,t ≥ ci+1,t and there exists a t ∈ {2, . . . , n} such that ci,t > ci+1,t, then Φ (C) = ∅.

Proof. Now, we will proceed by contradiction. Assume the above conditions hold and Φ (C) 6= ∅.

Then there exists some µ such that (Cµ)i ≤ (Cµ)i+1. Since, µk > 0 for all k ∈ {2, . . . , n} this implies

that ci,sµs ≥ cj,sµs for all s ∈ {2, . . . , n} and ci,tµt > cj,tµt for some t ∈ {2, . . . , n}. However, this

implies (Cµ)i > (Cµ)i+1, a contradiction. Hence, Φ (C) = ∅.

Theorem 3.2.2. Let C = [ci,j ] be an interval count matrix. Lr(C, µ) is a convex function of ci,j.

In order to prove Theorem 3.2.2 we first need to build up some notation. We will then prove

Theorem 3.2.2 in the situation where n = 2, which is then easily generalizable to n > 2. We start with

the following real valued function defined when n = 2. Given a read depth vector r = (r1, . . . , rm+1),

and a pair (C, µ) ∈ Ωm,2,k we define Lr,C,µ : [0,∞) −→ R such that Lr,C,µ(x) = Lr(X̂µ|X =

[C; 2, x]). Here X̂µ = Xµ
|Xµ|1 is just the normalized version of Xµ. To prove Theorem 3.2.2 for the
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case when n = 2, we just need to show that Lr(X̂µ|X = [C; 2, x]) is convex in x. Before we do so,

we first need the following lemmas.

Lemma B.1.1. Lr(p) = −∑m
j=1 rj log(pj) + α is separable convex for p ∈ ∆m−1.

Proof. See the supplement of [118].

Lemma B.1.2. Let (C, µ) ∈ Ωm,n,k and [a, b] be a non-negative real valued interval. The set

X = {X̂µ|X = [C; 2, x], x ∈ [a, b]} is a convex subset of ∆m.

Proof. We show that every element in X can be written as a convex combination of two particular

elements of X and therefore defines a line in Rm+1 (embedded in ∆m) which is by definition a convex

set. Let A ∈ S such that A = [C; 2, a] and let B ∈ X such that B = [C; 2, b]. Notice that for any

x ∈ [a, b] there exists some λ where 0 ≤ λ ≤ 1 such that x = λa + (1 − λ)b. Therefore, any X ∈ X

can be written as X = λA + (1 − λ)B for some λ where 0 ≤ λ ≤ 1. We note the following two

observations which can easily be verified for any X ∈ X and corresponding λ.

(1) |Xµ|1 = |(λA + (1− λ)B)µ|1 = |λAµ+ (1− λ)Bµ|1 = λ|Aµ|1 + (1− λ)|Bµ|1.

(2) (Xµ)i = λ(Aµ)i + (1− λ)(Bµ)i for all i ∈ {1, . . . ,m+ 1}.

We now show that for any X ∈ X there exists some α = (α1, α2) ∈ ∆1 such that X̂µ =

α1Âµ + α2B̂µ. Set α1 = λ|Aµ|1
λ|Aµ|1+(1−λ)|Bµ|1 and α2 = (1−λ)|Bµ|1

λ|Aµ|1+(1−λ)|Bµ|1 . By definition α1 + α2 = 1

and α1, α2 ≥ 0, so α ∈ ∆1. We now show that X̂µ = α1Âµ+α2B̂µ. For each i ∈ {1, . . . ,m+ 1} we

compute the ith entry:

(α1Âµ+ α2B̂µ)i = α1
(Aµ)i
|Aµ|1

+ α2
(Bµ)i
|Bµ|1

=
λ|Aµ|1

λ|Aµ|1 + (1− λ)|Bµ|1
(Aµ)i
|Aµ|1

+

(1− λ)|Bµ|1
λ|Aµ|1 + (1− λ)|Bµ|1

(Bµ)i
|Bµ|1

=
λ(Aµ)i + (1− λ)(Bµ)i
λ|Aµ|1 + (1− λ)|Bµ|1

=
(Xµ)i
|Xµ|1

(Using both of the above observations.)

= (X̂µ)i
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Hence, we see that X̂µ = α1Âµ + α2B̂µ, and is therefore any X̂µ ∈ X is a convex combination

of Âµ, B̂µ ∈ X ⊆ ∆m. And therefore X must be a convex subset of ∆m.

We now can prove Theorem 3.2.2.

Proof. We start by considering the case where n = 2. Lemma B.1.2 tells us that for a fixed (C, µ) ∈

Ωm,n,k and closed positive real valued interval [a, b] the set X = {X̂µ|X = [C; 2, x], x ∈ [a, b]} is

a convex subset of ∆m. Notice that [0,∞) = ∪∞i=1[0, i] is the union of a non-decreasing sequence

of convex intervals. Let Xi = {X̂µ|X = [C; 2, x], x ∈ [0, i]} and X = ∪∞i=1Xi. From the proof of

Lemma B.1.2, it is clear that Xi ⊂ Xi+1 for all i ≥ 1. Hence, each Xi is a non-decreasing sequence of

convex subsets of ∆m and therefore X is a convex subset of ∆m where X = {X̂µ | X = [C; 2, x], x ∈

[0,∞)}.

Since X is a convex subset of ∆m we can apply the result from Lemma B.1.1 to prove that Lr(p)

is separable convex for p ∈ X. Since Lr,C,µ(x) = Lr(X̂µ | X = [C; 2, x]) there is a one-to-one

correspondence between x and p ∈ X, we have shown that Lr,C,µ(x) is convex in x.

We have therefore shown that Lr(C, µ) is convex in ci,j when n = 2. The proof easily extends

to the case when n > 2 by determining an appropriate pair (X′, µ′) where X′ = (x1, cj) ∈ Rm,2 and

µ′ = (1− µj , µj) and X̂′µ′ = Ĉµ and the proof from the case of n = 2 can be directly applied.

B.2 Using a Graph to Enumerate Sm,n,k

In this section we provide further details and pseudocode on our algorithm for using a graph to

enumerate Sm,n,k.

The algorithm depends on being able to calculate and efficiently union the µSet (v, w), i.e the

set of values for µ for which vµ ≤ wµ. In the case where n = 3, this set is defined by the single

variable, µ2

µ3
. In particular, in the case where v2 > w2, the upper bound on µ2

µ3
is w3−v3

w2−v2
. Likewise, in

the case where v2 < w2, the lower bound on µ2

µ3
is w3−v3

w2−v2
. The case where v2 = w2 doesn’t restrict

the values of µ2

µ3
.

B.3 Interval Selection

In this section we discuss how interval selection is done during the first step of our two-step procedure

for different values of n.
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[2,0,0]

[2,0,1] [2,1,0]

[2,0,2] [2,1,1] [2,2,0]

[2,1,2] [2,2,1]

[2,2,2]

2

1

Figure B.1: Enumeration Graph for k=2. Edges that cannot possibly result in valid matrices
have been removed from the fully connected graph. However, a simple enumeration of the paths
on this graph would still result in matrices which do not satisfy the compatible ordering condition
(i.e. the set Φ (C) is empty). One example is the path highlighted in red. To account for this, the
enumeration algorithm keeps track of Φ as paths are being enumerated and does not explore paths
that cannot lead to valid matrices C.
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Algorithm 2: Enumerate Sm,n,k using modified depth-first search on G3,k. µSet (v, w) is the
set of values for µ for which vµ ≤ wµ.

Input: Gn,k, m
Output: The set Sm,n,k
procedure Setup(Gn,k, m)

S← ∅
C← n×m matrix
Φ← ∅
V,E ← Gn,k
for v ∈ V do

C[1 : ]← v
S← S ∪ Enumerate(C, 1, Φ, m, Gn,k)

return S

procedure Enumerate(C, i, m, Φ, m, Gn,k)
if i = m then

return S ∪C
V,E ← Gn,k
v ← C[i : ]
for (v, w) ∈ E do

Φ← Φ ∪ µSet(v, w)
if Φ 6= ∅ then

C[i+ 1 : ]← w
S← S ∪ Enumerate(C, i+ 1, Φ, m, Gn,k)

return S

B.3.1 Mixtures of normal and one tumor subpopulation (n = 2)

For the first step in our two step procedure, we need a way to select a subset of high confidence

intervals that will be used to infer (C∗, µ∗) for just those intervals. Since we are modeling a sequenc-

ing experiment as a probabilistic model where reads are distributed according to a multinomial

model, intervals with larger read depths are a natural candidate for selection. However, this may be

confounded for intervals that are extremely amplified, thus resulting higher read counts, but where

precise estimates of copy number are difficult to make. Therefore, we choose the intervals that have

the longest length in the reference genome as a compromise between these competing interests. For

a fixed integer d, we select up to the d longest intervals such that: (1) The number of tumor reads

(tj) and normal reads (nj) aligning to interval Ij is non-zero; (2) The length of interval Ij is longer

that 1Mb; and (3) If T is the total number of tumor reads, N is the total number of normal reads

and k is the provided max copy number parameter, then the following holds:
tj/T
nj/N

< k+1
2 . This final

constraint forces the observed copy number ratio to not be too high beyond the specified max copy

number k. Additionally, if the set of selected intervals must represent > 10% of the total length of



181

all provided intervals, otherwise the sample is determined to not be a good candidate for analysis

using THetA. By default we set d = 100.

B.3.2 Mixtures of normal and two tumor subpopulations (n = 3)

When considering a tumor to be a mixture of multiple distinct tumor subpopulations (n ≥ 3) we

rely upon the results obtained from considering the tumor to only contain a single tumor population

(n = 2) to find the set of intervals that allow us to best be able to measure events that have

occurred in a sub-population of tumor cells. In particular, we include intervals determined by the

n = 2 analysis to have normal copy (c∗j2 = 2) as well as intervals determine to contain copy number

aberrations (c∗j2 6= 2). We also limit the copy number aberrations used to have either been predicted

to be a deletion or an amplification of a single copy, as these intervals have the most reliable signal

for predicting multiple tumor populations. For a fixed integer d (we use 20 by default) the interval

selection process goes as follows:

• Select the top a = dd × 0.75e longest intervals such that: (1) The length of the interval Ij is

longer than 5Mb, (2) c∗j2 6= 2, and (3) c∗j2 < 4. If a such intervals do not exists, the genome is

determined to not be a good sample for multiple tumor population analysis.

• Select the top d−a longest intervals such that: (1) The length of the interval Ij is longer than

5Mb, and (2) c∗j2 = 2. If d − a such intervals do not exists, the genome is determined to not

be a good sample for multiple tumor population analysis.

B.4 Determining Additional Copy Numbers: Multiple Rows

Individually estimating optimal copy numbers for low confidence intervals is not guaranteed to find

optimal solution as if all intervals were jointly estimated. In order to test how well the procedure

does in practice, we ran the two-step algorithm and inferred copy numbers for all intervals on three

less fragmented (< 200 interval) whole genome and exome samples, as well as a single chromosome

of a more fragmented sample (See Table B.1). We then fixed the values of the high confidence

intervals used in Step 1, and the estimated µ value, and through brute-force enumeration, found

the true optimal value for the low confidence intervals. We find that for the less fragmented whole

genome and exome samples, the step two procedure correctly inferred the optimal copy number for
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all intervals. On the single chromosome sample, the procedure was correct for all but one interval.

ID Data Type

# Intervals

(Total)

# Intervals

(Step 2)

# Intervals

Incorrect

TCGA-06-0137 Exome 163 75 0
TCGA-AO-A0JF WGS (low) 129 29 0
TCGA-BH-A0W5 WGS (low) 53 3 0

TCGA-56-1622 (Chrm 1) WGS 159 92 1

Table B.1: Analysis of two step method with respect to optimality. Comparison of copy
numbers inferred during step two of the two-step procedure to the optimal values.

B.5 Probabilistic Model of BAFs

In this section we describe in more detail our probabilistic model of BAFs. Let s = (s1, s2, . . . , sq) be

a set of genomic coordinates for germline heterozygous SNPs in a patient, and let v = (v1, v2, . . . , vq)

be the observed BAFs across all s ∈ S in the normal sample and w = (w1, w2, . . . , wq) be the BAFs

for the corresponding tumor sample. We use a probabilistic model to describe w.

Assuming that reads are generated uniformly at random across all DNA in a sample, we first

calculate the expected deviation in BAF away from 0.5 for an interval Ij given a pair (C, µ) ∈ Ω.

In order to calculate this deviation, we need to know the number of copies of Ij for both parental

chromosomes (and hence the number of copies of each allele for any si ∈ Ij . We do not need to

know which copy number pertains to which allele, just the pair of integer values. We note that if we

assume that if we make the simplifying assumption that no region is deleted, followed by a gain (and

vice versa), we can exactly determine these values for regions of total copy 0, 1, 2 and 3. Therefore,

for the remainder of this section we assume that no entry in C is greater that 3. We define a function

φ that given total copy number of an interval, returns the number of copies of the more common

parental chromosome. That is φ(0) = 0, φ(1) = 1, φ(2) = 1, and φ(3) = 2. We now can define a

value δj that gives the deviation away from 0.5 expected for interval Ij given a pair (C, µ):

δj =

∑n
k=1 φ(cjk)µk∑n
k=1 cjkµk

− 0.5. (B.1)

That is, δj is the fraction of total copies of interval Ij that contain the major (or more common)

allele for any germline SNP located in Ij . For example, if interval Ij has not undergone any copy

number events cjk = 2 for all k then δj = 0. Let δ = (δ1, δ2, . . . , δm) be the expected deviation away
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from 0.5 for all intervals in I. Note that if δj 6= 0 we expect that the BAFs in interval Ij will be

double banded, containing two clusters around 0.5± δj .

We define a map π : {1, . . . , q} −→ {1, . . . ,m} where Iπ(i) ∈ I is the genomic interval that

contains SNP si. Let σ2 = (σ2
1 , σ

2
2 , . . . , σ

2
m) where σ2

j is the observed variance around 0.5 for all

heterozygous SNPs in interval Ij in the matched normal genome. That is σ2
j =

∑q
i=1 1(π(i),j)(vi−0.5)2∑q

i=1 1(π(i),j)

where 1 is the identity function. Lastly, we define a sign function sgn(x) such that sgn(x) = 1

if x ≥ 0 and sgn(x) = −1 if x < 0. We now present a probabilistic model using a collection of

gaussians for observed BAFs w given a pair (C, µ) ∈ Ω and observed BAFs in the matched normal

v as a product of draws from different normal distributions.

P (w|C, µ,v) = P (w|δ, σ2) =

q∏

i=1

P (wi|δ, σ2) =

q∏

i=1

N(wi; 0.5 + sgn(wi − 0.5)δπ(i), σ
2
π(i)) (B.2)

Given multiple pairs (C, µ) with the same likelihood using only read depth, we may select the

pair that maximizes the likelihood in Equation (B.2) to select the reconstruction most consistent

with observed BAF data.

B.6 Simulated Data

B.6.1 Simulation Procedure

We create a simulated mixture of a specified number of tumor subpopulations along with normal

admixture using real sequencing data from an AML tumor sample and matched normal sample

(TCGA-AB-2965) from The Cancer Genome Atlas [26]. This sample was chosen due to its high

purity (approximately 95% pure) and lack of copy number aberrations. We create tumor subpopu-

lations similar to the glioblastoma genomes analyzed in the next sections by using up/down sampling

to randomly spike in chromosome arm deletions and amplifications (we excluded the p-arms of the

acrocentric chromosomes 13, 14, 15, 21 and 22 from consideration). For each mixture we ensure

that some aberrations are shared by different populations and that some are unique to the sub-

populations. We then created a mixture by selecting reads uniformly at random from the original

tumor genome and the created subpopulations to create a simulated mixtures. We then used the

true matched normal sample as the normal sample in the simulation. Using up and down sampling
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we can create mixtures of different coverages.

We run our simulated data through the same pipeline as real data, including interval partitioning

determine by using BIC-seq [174]. We note that BIC-seq recommends using a parameter setting

of λ = 2 for low-coverage genomes and λ = 4 for higher coverage genomes. We adhere to these

recommendations for these simulations.

B.6.2 Additional Simulation Results

Mixtures made with Normal Only

We note that in the main manuscript and this supplement, we include simulated data where a

mixture was created by spiking in deletions and amplifications into a tumor sample which are then

mixed with the original tumor sample and compared against the normal sample. As validation we

also created similar mixtures by using the normal sample for all steps. We note that the data created

by such a procedure will not include variation present in real data such as batch effects. We find that

mixtures created using only the matched normal sample are segmented into many fewer intervals

(<100) than when the mixture is created using the tumor sample (1000’s intervals). As a result, we

also find that THetA2 is able to perfectly reconstruct both µ and C for the mixtures created using

only the normal sample (perhaps due to the fewer number of intervals). Therefore, we find that such

simulations are valid for demonstrating that the implementation of THetA2 works as expected, but

do not represent a realistic simulation given what we would expect to find in real sequencing data.

7X Coverage

We also generated simulated data with 7X coverage. We find similar trends in 7X sequence coverage

data as we see with 30X sequence coverage. Namely, we find good performance at estimating µ,

the larger tumor population (Tum1) and increased performance at estimating the copy numbers in

the smaller tumor population (Tum2) as it increases in size. We also see increased performance

at estimating copy number aberrations in both tumor populations when only considering longer

intervals (Figure B.2a). We comparing to 30X coverage simulations we see similar results, except

with improved performance at estimating copy numbers for longer intervals (Figure B.2b).
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Figure B.2: Results from running THetA2 on simulations with 7X Coverage and Com-
parison to 30X. (a) Estimation error for both µ and C for each tumor population (Tum1 and
Tum2) as the size of Tum2 increases and the size of Tum1 is fixed at 0.5 for 7X coverage. Error in
µ is euclidean distance from the true µ and error for each tumor population is the fraction of the
genome for which the copy number is incorrectly inferred. We also report error rates for estimat-
ing copy numbers in both populations when we only restrict consideration to longer intervals. (b)
Comparison of 30X to 7X coverage when considering intervals longer than 5Mb.

Comparison of THetA to THetA2

We include here additional results from comparing THetA to THetA2 on simulated data. We use

simulated mixtures of 3 subpopulations where the proportion of the sample in the larger tumor

subpopulation is fixed at 0.5 and the proportion of the sample in the smaller subpopulation varies

from 0.05 to 0.3. Figure B.3 shows a comparison between what fraction of the genome THetA and

THetA2 make copy number estimates. The two-step procedure allows THetA2 to consider all of the

genome while THetA only considers less than 10% of the genome.

On these same simulations we also compare the accuracy of estimating both µ and C. When no

copy number prediction is made for a region, we consider this to be an incorrect prediction.

Mixture of 4 subpopulations

We generated a mixture containing one normal and three tumor subpopulations. Subpopulation

sizes were chosen to be sufficiently distinct from one another (20%, 30%, 40%). Whole arm deletions

and amplifications were spiked into the mixture.

Due to the additional runtime requirements for 4 subpopulations, an alternate segmentation

procedure was used. The simulated sample was divided into 50 kb intervals. We filtered out intervals

which were likely to be noisy or lower quality: ones within the centromeres, ones that contained less
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Figure B.3: THetA vs THetA2: Fraction of Genome Considered. A bar plot showing the
fraction of the genome for which copy number estimates are made for both THetA and THetA2.
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Figure B.4: Comparison of THetA vs THetA2 on simulated data. (Left) Comparison of error
at estimation µ (measured as euclidean distance from true) and C (measured as fraction of genome
incorrectly estimated) between THetA and THetA2. (Right) Comparison of error at estimating C
between THetA and THetA2 when only restricting consideration to intervals longer than 5Mb.
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Simula'on*

THetA2*

Figure B.5: Simulation results with 4 subpopulations. The simulated mixture was created by
spiking in chromosome arm deletions and amplifications to create three distinct tumor populations
and mixing with a matched normal genome. Due to runtime concerns for n = 4, an alternative
segmentation algorithm was used to obtain the intervals used. The figure shows the true mixture
(above) and the solution obtained by THetA2 (below).

than 2000 reads from the normal sample, and ones for which the ratio of tumor to normal reads

was greater than 10% different from both of its neighbor intervals were filtered out, leaving 87.6% of

the genome. For each chromosome, kernel density estimation of the distribution of tumor to normal

read ratios was used to cluster intervals into larger intervals that we expect to contain the same

copy number, then these large intervals were merged with intervals from other chromosomes which

display similar tumor to normal read ratios.

Figure B.5 shows the results of running THetA2 on these intervals. THetA2 was able to infer µ

with 4.9% estimation error (using euclidian distance from the true µ. THetA2 was also able to infer

the correct copy number values for 99.9%, 99.9%, and 99.6% of the intervals that were considered

for the 3 tumor subpopulations respectively, which cover ∼87.6% of the whole genome.

Underestimating Number of Subpopulations

We also investigated THetA2’s behavior when the number of tumor subpopulations is incorrectly

estimated. We considered six different mixtures of 3 subpopulations and evaluated the results

returned by THetA2 when the number of subpopulations was fixed at two (n = 2). We find that



188

Figure B.6: THetA2 results when underestimating the number of subpopulations. We
ran THetA2 with the number of subpopulations fixed at two (n = 2) on six simulated 30X mixtures
of 3 subpopulations. (a) For each mixture, the predicted µ is shown next to the true underlying
µ. We find that the THetA2 tends to slightly underestimate the tumor purity when considering
fewer subpopulations than exist in the true underlying mixture. (b) For each mixture, the copy
number profile C predicted was compared to the true copy number profile for the large and small
subpopulation. The fraction of the genome estimated incorrectly is shown, for both the whole
genome and the aberrant regions (those that contain an amplification or deletion in at least one
subpopulation). We find that when considering fewer subpopulations than exist in the true mixture,
THetA2 copy number predictions tend to resemble those in the largest true subpopulation.

THetA2 consistently underestimates tumor purity, but only by 0.027 on average (Figure B.6). We

also compared the values in the integer count matrix C returned by THetA2 to the true C values

for the large and small subpopulations. We find that in this case, THetA2 was able to accurately

estimate the copy number profile of the major subpopulation: on average 97.0% of the whole genome,

and 96.6% of aberrant regions (regions which contain an amplification or deletion in at least one

subpopulation). Thus, THetA2 may return useful information about a sample’s purity and copy

number profile, even if runtime constraints force THetA2 to underestimate the true number of

subpopulations.

B.7 Real Data Processing

B.7.1 Whole-Exome Data

BAM files for each sample were obtained from CGHub (https://cghub.ucsc.edu/) and only reads

with a mapping quality ≥ 30 were used in our analysis. We determined exon positions E using
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Figure B.7: THetA2 workflow for whole-genome and whole-exome datasets.

the UCSC genome browser [78] and merging any overlapping exonic intervals. For each sample we

used both ExomeCNV [145] and EXCAVATOR [95] run with default parameters to determine an

interval partition I. ExomeCNV directly provides a segmentation I. Whereas, EXCAVATOR only

provides regions that were predicted to contain non-normal copy, so I was determined to be the set

of returned intervals and all genomic segments located between returned intervals. Read depth r

over these intervals and the set of exons E was calculated as described in the methods for both the

tumor and normal genomes. A diagram describing the workflow for whole-exome data is shown in

Figure B.7.

B.7.2 Whole-Genome Data

BAM files for each sample were obtained from CGHub (https://cghub.ucsc.edu/) and concordant

reads (as determined by using the GASV pre-processing utility [150]) with a mapping quality ≥ 30

were used in our analysis. For each sample we used both BIC-seq [174] run with default parameters

(λ = 2) to determine an interval partition I. A diagram describing the workflow for whole-genome

data is shown in Figure B.7.
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B.7.3 Virtual SNP Array

See our previous publication [118] for details of how a virtual SNP array is created. When comparing

results obtained from THetA2 to data from a virtual SNP array, we calculate an observed mean

BAF. This value is calculated for each interval in an interval partition of the genome obtained from

either the BIC-Seq [174], ExomeCNV [145] or EXCAVATOR [95]. We only report values for intervals

that are longer than 2Mb and contain at least 10 heterozygous SNPs in the matched normal sample.

We calculate the standard deviation in the observed B-allele frequencies (BAFs) for all germline

SNPs occurring in the specified interval in both the tumor (σt) and matched normal (σn) samples.

If the σt < 1.5σn, then we report the mean as 0.5, as would be expected in a non-rearranged interval.

However, if σt >= 1.5σn, then we report two mean values - the mean of all BAFs in the interval that

are greater than 0.5 and the mean of all BAFs in the interval that are less than 0.5. These values

represent the mean BAF suggested by the data as reported using black bars in all BAF plots.

B.7.4 Tree Construction

We describe how the trees associated with the results from a run of THetA2 are constructed. First,

this tree should not be interpreted as a phylogenetic tree, but rather as a tree representing the

nested partitioning of inferred subpopulations and the aberrations whose population frequencies

place them in each subpopulation. This construction of a binary tree partition is defined formally

and studied in [64]. We only create such trees when they can be constructed unambiguously. This

will always be the case for mixtures of three or fewer subpopulations, but since THetA2 makes no

“perfect phylogeny” assumption about the subpopulations that it infers, such a tree may not be

constructible with four or more subpopulations.

Each tree is constructed as follows. Each subpopulation is a leaf and is annotated with the

fraction of the tumor mixture that was predicted to account for that population. For any pair

of tumor subpopulations that share aberrations we add a parent node connecting them and label

the node with the total fraction of cells in the sample that are part of either subpopulation. We

iterate this process up the tree until we can join all remaining populations with a root node. The

aberrations labeled on leaf nodes are unique to that subpopulation. Any aberrations that are shared

among the tumor subpopulations are labeled on their parent node, rather than labeling each leaf

node. An aberration is listed as a whole-arm event when more than a fixed proportion (> 0.7) of the
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ID
Cancer
Type ABS WXS WGS

WGS
(low)

TCGA-06-0137 GBM X X
TCGA-06-0145 GBM X X
TCGA-06-0171 GBM X X
TCGA-06-0174 GBM X X
TCGA-06-0185 GBM X X X
TCGA-06-0188 GBM X X X
TCGA-06-0214 GBM X X X
TCGA-06-0219 GBM X X
TCGA-06-2557 GBM X
TCGA-56-1622 LUSC X X

TCGA-A2-A0EU BRC X X
TCGA-AO-A0JF BRC X X
TCGA-AO-A0JJ BRC X X
TCGA-AO-A0JL BRC X
TCGA-BH-A0W5 BRC X X

TCGA-13-1500 OV X X
TCGA-29-1768 OV X X
TCGA-A3-3324 KIRC X

Table B.2: Genomes and associated datatype analyzed with THetA2. A list of the genomes
analyzed, the cancer type and what type of datasets were available for sample purity analysis. ABS
refers to ABSOLUTE results obtained from SNP array data as reported in [27].

chromosome arm was predicted to be either deleted or amplified in a single subpopulation. Finally

the root of the tree represents the complete collection of cells in the sample.

B.8 TCGA Samples: Additional Results

Table B.2 contains a complete list of genomes analyzed broken down by TCGA sample ID and the

available datatypes and purity estimates for each. Table B.3 contains the complete purity estimation

results across all samples, including TCGA histopathology results and purity estimates reported for

the ABSOLUTE algorithm [27].

B.8.1 Whole Exome Sequencing Data

When considering a tumor to be a mixture of normal cells and a single tumor population we find that

THetA2 purity estimates obtained from both the ExomeCNV and EXCAVATOR interval segmenta-

tions to be similar for most genomes (Figure B.8) with a few outliers. While the Pearson correlation

coefficient between the purity estimates obtained from the different segmentations is 0.47, most of
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Sample Path. ABS

WGS Purity

(# populations)

WXS Purity

(# populations) Overlap CNA Sim1 CNA Sim2

TCGA-06-0137 0.85-0.9 0.92 - 0.89 (2*) - - -
TCGA-06-0145 0.8-0.9 0.79 - 0.84 (2*) - - -
TCGA-06-0171 0.3-0.5 0.76 - 0.68 (3) - - -
TCGA-06-0174 0.8-0.9 0.95 - 0.92 (3) - - -
TCGA-06-0185 0.95 0.89 0.87 (3) 0.83 (2*) 0.97 0.91 0.91
TCGA-06-0188 0.6-0.8 0 0.70 (3) 0.63 (3) 0.96 0.79, 0.62 0.80, 0.70
TCGA-06-02141 0.25-0.8 0.66 0.67 (3) 0.67 (3) 0.96 0.97, 0.92 0.97, 0.94
TCGA-06-0219 0.8-0.95 0.65 - 0.69 (3) - - -
TCGA-06-2557 1.0 - - 0.58 (3) - - -
TCGA-56-1622 0.9 - 0.68 (3) 0.78 (3) 0.96 0.89, 0.57 0.91, 0.77
TCGA-A2-A0EU 0.9 - 0.77 (3) 0.90 (3) 0.91 0.61, 0.22 0.64, 0.31
TCGA-AO-A0JF 0.7 - 0.52 (2*) 1.00 (2*) 0.97 0.98 0.98
TCGA-AO-A0JJ 0.8 - 0.52 (3) 0.52 (2) 0.85 0.67 0.68
TCGA-AO-A0JL 0.8 - 0.87 (3) - - - -
TCGA-BH-A0W5 0.7 - 0.51 (2*) 0.54 (2*) 0.98 0.97 0.97
TCGA-13-1500 0.89 0.75 - 0.77 (3) - - -
TCGA-29-1768 0.25-0.5 0.55 - 0.87 (3) - - -
TCGA-A3-3324 0.3-0.45 - 0.58 (2*) - - - -

Table B.3: Comparison of THetA2 results on whole-genome and whole-exome data.
Path. are purity estimates reported in TCGA histopathology reports. ABS are ABSOLUTE purity
estimates reported by [27]. WGS Purity, WXS Purity and # populations are values predicted by
THetA.∗ indicates that the sample did not pass the criteria to be considered for multiple tumor
populations (see Appendix B - Interval Selection). Overlap is I∗

|IWGS |∪|IWXS | where IWGS and IWXS

are the interval partitions for the whole-genome and whole-exome data, respectively, and I∗ is the
set of intervals longer than 100kb contained in both IWGS and IWXS . CNA Sim1 is the fraction
of I∗ where the copy number estimates are the same between the two data types. CNA Sim2 is
the fraction of I∗ where the copy number estimates are of the same type (deletion, amplification,
normal) between the two data types. 1For sample TCGA-06-0214, WGS data was aligned to hg18
and WXS data aligned to hg19. We also compared to WGS data aligned to hg19, but found it
contained a much larger variance in read depth than the hg18 data.
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Figure B.8: Comparison of purity estimates obtained for two whole-exome segmentation
methods when considering a tumor to be a mixture of normal cells and one tumor
population. The sample indicated by the red triangle is TCGA-06-0185. The sample indicated by
the black square is TCGA-AO-A0JF. Values of r shown are the Pearson correlation coefficient over
either all the datapoints, or the indicated subset.

this error comes from two samples, TCGA-06-0185 and TCGA-AO-A0JF, and the correlation in-

creases to 0.9 when these two samples are excluded. THetA2 infers multiple tumor subpopulations

in sample TCGA-06-0185, so we surmise that the discrepancy between the purity estimates is due to

the presence of subclonal copy number aberrations. We infer that sample TCGA-AO-A0JF contains

copy number aberrations in a small subpopulation (Figure B.9) by running THetA with parameters

that allow for normal contamination up to 100% cells (rather than using the default settings). We

believe this leads to the discrepancy in purity estimates between the two segmentation methods

when run with the default parameters. We therefore exclude this sample from further analysis.

B.8.2 Consistency Across Sequencing Platforms

For the 7 genomes for which we have both whole-exome and whole-genome data, we compare THetA2

results across both data types. To compare copy number predictions, we use two different similarity

metrics (see Table B.3). For similarity metric 1 (CNA Sim 1) we calculate the fraction genomic

intervals in I∗ where THetA2 returns the same copy number for the whole-genome and whole-exome

data. For similarity metric 2 (CNA Sim 2) we relax the assumption that THetA2 returns the same

integer copy number in the whole-genome and whole-exome data, and instead calculate the fraction
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Figure B.9: THetA2 results when analyzing whole-genome and whole-exome data for
sample TCGA-AO-A0JF and considering normal contamination up to 100% cells. A.
Results using the BIC-Seq partition from whole genome data. B. Results using the ExomeCNV
partition on whole-exome data. C. Results using the EXCAVATOR partition on whole-exome data.
All 3 indicate that sample purity is < 0.5.
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of intervals in I∗ where the copy state (normal, deleted, amplified) is the same for both datatypes.

To account for different numbers of populations predicted from the different datatypes (either due to

different estimates or one datatype not passing all criteria of multiple population analysis), we report

similarity between the two largest subpopulations, and when applicable, the similarity between the

two smaller subpopulations.

B.8.3 Sample TCGA-06-0188

We perform additional analysis on GBM sample TCGA-06-0188 which reported ABSOLUTE results

[27] indicate as non-clonal and therefore was unable to determine sample purity. TCGA histopathol-

ogy reports this sample as having purity between 0.6-0.8. Both whole-genome and whole-exome data

from TCGA was available for this sample. THetA results on whole-genome data indicate that the

sample contains 30% normal cells and two tumor populations in 43.2% cells and 26.8% cells (Fig-

ure B.10A). Results from applying THetA to whole-exome data are similar and indicate that the

sample contains 36.6% normal cells and two tumor populations in 43.1% cells and 20.3% cells (Fig-

ure B.10B). Notably, both purity estimates are within the range indicated by histopathology. A

number of large copy number aberrations are predicted from both data types. Virtual SNP array

analysis appears to indicate the existence of aberrations predicted by both data types, such as clonal

deletion of 13q and subclonal deletion of 10 as well as other aberrations inferred from the whole-

exome data such as clonal amplification of chromosome 7, clonal deletion of chromosome 22q and

subclonal deletion of 17p (Figure B.10C).

B.8.4 Low-Pass Breast Cancer Genomes

We include here the sample composition inferred by THetA2 for two of the low-pass breast cancer

genomes, TCGA-A2-A0EU and TCGA-AO-A0JL (Figure B.11), for which we infer multiple distinct

tumor subpopulations. Both genomes appear highly rearranged and we predict a number of chro-

mosome arm events. We note that our inferred purity values of 0.77 and 0.88 are near the reported

histopathology purity values of 0.9 and 0.8 for these samples.
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Figure B.10: THetA2 results when analyzing whole-genome and whole-exome data for
sample TCGA-06-0188. A. (Left) Read depth rations (gray) over 50 kb bins and the inferred
copy number aberrations for intervals > 2 Mb calculated by THetA2 applied to whole-genome data
when the tumor is considered to be a mixture of 3 subpopulation: normal cells (black), and two
tumor subpopultions (blue and red). (Right) A reconstruction of the tumor mixture along with
ancestral clonal population (purple) with the inferred aberrations and estimated fraction of cells in
each population. THetA2 results when analyzing whole-genome data for sample TCGA-06-0188.
B. Same as the previous part, but applied to whole-exome data. C. Virtual SNP array showing
B-allele frequencies for chromosomes 4, 7, 10, 13, 17 and 22.
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Figure B.11: THetA2 results when analyzing low pass whole-genome data for two breast
cancer samples predicted to have 3 subpopulations from low pass whole-genome data.
A. (Left) Read depth ratios (gray) over 50 kB bins and the inferred copy numbers (for all intervals
> 2Mb) for a mixture of normal cells (black) and two distinct tumor subpopulations (blue and red)
inferred by THetA2 for sample TCGA-A2-A0EU. (Right) A reconstruction of the tumor mixture
with the inferred aberrations and estimated fraction of cells in each subpopulation. B. Same as for
part A, but for tumor sample TCGA-AO-A0JL.
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ID CNA Type Tumor 1 (50%) Tumor 2 (18.1%)

3q26 Amplification X X
5p13-14 Amplification X

8q23 Amplification X
8q24 Amplification X X

3p21 Deletion X X
8p21 Deletion X X

9p21-22 Deletion X X
13q22 Deletion X

17p12-13 Deletion X

Table B.4: A list of CNAs identified in squamous cell lung cancer sample TCGA-56-1622
by THetA2 which have been reported as recurrent CNAs in lung cancers [66].

B.8.5 Sample TCGA-56-1622

We present further results for squamous cell lung cancer sample TCGA-56-1622. First, Figure 5(b)

in the main manuscript shows the observed read depth over 50kb bins as well as the predicted read

depth as determined by the inferred tumor composition for this sample. For a given vector x we

define x̂ = x
|x| . Predicted read depth is calculated using C, µ and normal read depth vector w. Let

W be the square matrix with entries along the main diagonal equal to w and all other entries 0.

The predicted read depth ratio for interval j is:
̂(WCµ)j

(̂w)j
.

Second, using THetA2 results, we are able to identify several deletions and amplifications that

have been reported as recurrent CNAs in lung cancers [66] (see Table B.4). In particular, we see a

high amplification in 3q26 (see Figure B.12). Amplification in this region has been reported to be

particularly common in squamous cell carcinoma genomes, and contains several genes which have

been identified as potential oncogenic drivers in squamous cell carcinoma, including PI3KCA, SOX2,

p63, SSCRO/DCUND1, and TERC [66].

B.8.6 Sample TCGA-06-0214

For this sample, we ran THetA2 with n = 2, 3, 4 on the whole-genome data. We find that after

correcting for model size using the BIC, the n = 2 and the n = 4 solutions have a lower likelihood

than the n = 3 solution.
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Figure B.12: Zoomed in versions of THetA2 results when analyzing whole-genome data
for sample TCGA-56-1622. (a) Zoomed in view of chromosomes 7 and 17 where we identify
several copy number aberrations including a subclonal deletion containing TP53. (b) Zoomed in
view of chromosome 3. We are able to identify several CNAs common in squamous cell lung cancer,
including deletion in 3p21, and amplification in 3q26.
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Figure B.13: Analysis of two equally likely solutions returned by THetA2 for GBM
sample TCGA-06-0145. (a) One reconstruction returned by THetA2. (Top) Read depth ratios
over 50kb bins (gray) and inferred copy numbers for normal genome (black) and one cancer genome
(blue). (Bottom) Observed BAF for the genome along with expected BAF calculated using (C, µ).
Under the BAF model described in Equation (B.2) this reconstruction is determined to be more
likely. (b) Same as (a) but for the second solution returned by THetA2. Under the BAF model
described in Equation (B.2) this reconstruction is determined to be less likely.

B.8.7 Sample TCGA-06-0145

For glioblastoma sample TCGA-06-0145, THetA outputs two possible (C, µ) pairs using only read

depth – one largely haploid and one largely diploid. We apply our probabilistic model of BAFs

described previously and find that the diploid reconstruction, which includes rearrangements char-

acteristic to glioblastoma such as amplification of chr7 and deletion of chr10 [156], is determined to

be the more likely tumor composition (see Figure B.13).



Appendix C

Inferring Tumor Evolution from

Multi-Sample Data

C.1 Proofs Omitted from the Main Text

In this section we include proofs that were omitted from the main text.

Lemma 4.2.1. There is a one-to-one correspondence between Tn and Bn.

Proof. First we define a function Φ : Tn −→ {0, 1}n×n such that Φ(T ) = X with xjk = 1 if and only

if either k = r or mutation k exists on the unique path from vr to vj in T . Intuitively, the jth row

of X is a binary vector indicating which mutations exist in clone vj . It suffices to show that for any

tree T ∈ Tn we have Φ(T ) ∈ Bn, and that for any matrix B ∈ Bn there exists some T ∈ Tn such

that Φ(T ) = B.

Let T ∈ Tn. We need to show that Φ(T ) = X ∈ Bn. We do so by showing that X adheres to

the three conditions in the definition of an n-clonal matrix.

1. Let vr be the root node of T . By definition of Φ, row r of X must only have a single non-zero

entry at xrr and therefore
∑n
k=1 xrk = 1. For all other j ∈ {1, . . . , n} \ {r} we have xjr = 1

and the path from vr to vj must have length at least one, and thus
∑n
k=1 xjk > 1.

2. For each j ∈ {1, . . . , n} \ {r} pick k ∈ {1, . . . , n} such that T contains an edge from vk to vj

labeled with j. Since the unique path in T from vr to vj traverses the unique path from vr to

201
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vk, we have xjl = xkl for all l 6= j. Hence xk ⊆ xj and
∑n
p=1(bjp − bkp) = 1.

3. Let j ∈ {1, . . . , n}. If j = r then xrr = 1 by definition of Φ. If j 6= r, then by the definition of

n-clonal trees the label j exists on the unique path from vr to vj and hence xjj = 1.

Let B ∈ Bn. We will show that there exists some T ∈ Tn such that Φ(T ) = B. Let br

be the unique row vector of B such that |br| = 1. By definition for every row vector bj where

j ∈ {1, . . . , n} \ {r} there exists a unique row vector bk such that
∑n
p=1(bjp − bkp) = 1. Given such

a pair (bj ,bk) we define π(j) = k. We now show how to build a tree T ∈ Tn such that Φ(T ) = B.

The vertices of T are v1, . . . , vn and the vertices vj with j ∈ {1, . . . , n} correspond to row vector bj .

Tree T is rooted at vertex vr. For any j, k ∈ {1, . . . , n} there is an edge (vk, vj) if π(j) = k and this

edge is labeled by mutation j. The resulting rooted tree has n vertices and adheres to the required

constraints for T to be an n-clonal tree: All edges are labeled with a unique mutation from the set

{1, . . . , n} \ {r}. Hence T ∈ Tn. By construction, it is also evident that Φ(T ) = B.

Lemma 4.2.2. Any B ∈ Bn has rank n.

Proof. We claim that the row echelon form of B is the n×n identity matrix In. We obtain this form

by performing Gaussian elimination using a post-order traversal of all non-root vertices of the clonal

tree T corresponding to B. That is, we visit a vertex only when all of its children have been visited.

Let vj 6= vr be a vertex of T whose parent vi has not been visited yet. By Definition 4.2.1, we have

that (vi, vj) is labeled with mutation j. We perform the elementary row operation bj := bj −bi on

the row vector bj corresponding to vertex vj .

By definition row br has exactly one 1-entry which occurs in column r. Let j ∈ {1, . . . , n} \ {r}

and suppose vi is the parent of vertex vj in T . Since vertex vi is unvisited (as we are using post-order

traversal), we have that bi has not been changed yet. Therefore subtracting bi from bj results in a

row vector with exactly one 1-entry at column j. After the post-order traversal every row j of B

will have bjj = 1 and bjk = 0 for k 6= j. Hence, the row echelon form of B is In, which implies that

the rank of B is n.

C.2 Details related to CITUP and PhyloSub

CITUP was run with an error rate of 0.03 and the number of clusters was kept at the default of 15.

For CLL006 we set the number of clusters to 10 as the instance had fewer than 15 mutations. We
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note that CITUP limits the number of vertices in the inferred trees to at most 5. We used CITUP’s

BIC criterion for selecting the most likely tree. PhyloSub was run with default parameters. That

is, µr = 0.999, δr = 1, µv = 0.5, δv = 1. The number of MCMC samples was set to 100 and the

number of Metropolis-Hastings iterations was set 5000.

C.3 Simulated Data

In this section we include some additional details and results on the simulated data.

C.3.1 Simulation Procedure

All simulated datasets were created using the following set of procedures. First, given a specified

number of mutations m and number of clones n, a clonal tree was constructed by first partitioning

the m mutations into n sets uniformly at random. Each set represents mutations that are clustered

together, and thus first appear in the same clone in the clonal tree. A tree was then built by first

randomly selecting one of the n sets of mutations to be those appearing in the root. The remainder

of the tree is then constructed iteratively by randomly selecting a set of mutations and an existing

vertex in the tree. A child clone is added to the selected vertex and the selected set of mutations

first appear in this clone.

The corresponding usage matrix was then created row by row where each row represents the usage

of a sequenced sample. Usage was determined by first selecting the number c of clones mixed in each

sample by uniformly at random selecting a value between 1 and 4. Then, usage was determined by

randomly sampling a value from the c simplex and applying the first c values to c randomly selected

clones. We used rejection sampling over this whole process to ensure that only simulations where

all mutations were included in at least two samples were created.

The simulation process described above implicitly creates a pair of matrices B and U . Let

F = [fpi] = 1
2UB. We simulate sequenced read counts for this tumor and sequenced samples as

follows. Given some expected sequencing coverage value a, mutation i and sample p we first draw

the number of reads containing mutation i in sample p as npi ∼ Poiss(a). We then determine the

number of reads containing the variant allele as xpi ∼ Binomial(npi, fpi). Thus, the number of reads

containing the variant allele is reported as xpi and the number of reads containing the reference allele

is reported as npi − xpi.



204

C.3.2 Details of Comparison Metrics

In the main text we briefly describe 5 different metrics we use to compare the results of AncesTree to

PhyloSub and CITUP. In particular this includes three accuracy metrics. These metric are computed

using the following definition of accuracy: (TP + TN)/(TP + FP + TN + FN) where TP is the

number of true positives, TN is the number of true negatives, FP is the number of false positives,

and FN is the number of false negatives.

We also compute two different error metrics. This includes one error that computes the error

between the simulated usage matrix U and the inferred usage Ũ using a metric similar to that used

by [98]. In particular, since U and Ũ may have a different number of columns corresponding to

clones containing different subsets of mutations, we need to map the columns of Ũ to U . We do so,

by computing a minimum-cost perfect matching in a complete bipartite graph whose two vertex sets

correspond to the columns of U and Ũ . The cost of matching column j of U to column j′ of Ũ is the

size of symmetric difference between the mutation sets of j and j′ – i.e. the number of mutations

that are unique to either set. To deal with potentially different sizes of U and Ũ , we add dummy

nodes to the smaller of the two vertex sets and label these dummy nodes by the empty set.

C.3.3 Additional Simulation Results

In the main text we report results comparing AncesTree to both CITUP and PhyloSub for several

metrics. We include in Figure C.1 the results of one additional metric, accuracy at determining

mutation pairs that are incomparable, not reported in the main text. We see that AncesTree has

better accuracy, by at least 0.08, than the other approaches. We also show the distribution of

the fraction of mutations included in the results returned by AncesTree over all 90 simulations in

Figure C.2.

C.4 Real Data

In this section we include some additional details and results on the real data.
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C.4.1 Data Acquisition and Processing

For the lung and CLL tumors, we obtained a list of all called mutations and reference/variant allele

read counts for all samples from the supplementary materials of the corresponding publication [147,

185]. For the renal tumors, we obtained the list of called mutations from the supplementary materials

for [52] and obtained read counts from the authors (M. Gerlinger, personal communication). We

exclude, from our analysis any mutation which is reported to be an indel or occurs in a region affected

by a copy number aberration as indicated in the original publication. Thus, across all samples, we

analyze 7621 of the 7684 originally reported mutations (Table C.1). For all analyses, we set α = 0.3,

β = 0.8 and γ = 0.01.

C.4.2 Overview of Results

Table C.1 contains an overview of the AncesTree results over all 22 samples analyzed.
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Figure C.3: Relationship between α and |V | for all datasets. The number of vertices included
in the ancestry graph G = (V,A) increases with α.
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Figure C.4: Relationship between β and |A| for all datasets. For fixed α = 0.1, the number
of edges included in the ancestry graph G = (V,A) decreases as β increases.

C.4.3 Effect of α and β Parameters on G

The parameters α and β alter the resulting relaxed ancestry graph G = (V,A). The α parameter

controls how many mutations are clustered together and therefore controls |V |. Small values of α

allow more mutations to satisfy the relaxed ancestry constraint, resulting in a smaller number of

strongly connected components; i.e. there is more clustering of mutations when α is small. This is

indeed the pattern we see as we vary α for all datasets (Figure C.3).

The parameter β controls how confident we must be in the ancestral relationship between two

genes (or two sets of clustered genes) to include the corresponding edge in the relaxed ancestry

graph. Thus, as β increases the number of edges |A| in the ancestry graph decreases (Figure C.4).

C.4.4 Comparison of AncesTree to PhyloSub and CITUP on Real Data

We compare AncesTree to CITUP and PhyloSub [75, 98] – run with default parameter settings (see

Section C.2) – on the 22 sequenced tumors. We do not compare to LICHeE [131] as the associated

program provides only a graphical user interface, but no way to easily export results. We use our

probabilistic model to assess the consistency of the inferred trees with the observed read counts. For
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Figure C.5: Comparison of inferred trees by AncesTree, PhyloSub and CITUP on 22
real sequenced tumors. (A) Shows the error between the inferred and observed frequencies. (B)
Shows the median clustered probability (MCP) between pairs of mutations that are clustered. (C)
Shows the median ancestral probability (MAP) between pairs of mutations where one mutation is
inferred to be ancestral to the other mutation. (D) Shows the median incomparable probability
(MIP) between pairs of mutations that occur in different branches of the inferred tree.
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a fair comparison, we only consider the data sets for which all three methods computed a solution

(28 patients out of 36 patients). Certain methods did not compute a solution on certain data sets

because of the size of data sets and limitations of different methods. Using four different metrics,

we find that AncesTree outperforms both CITUP and PhyloSub. The first metric, ∆VAF, measures

the error between inferred and observed frequencies (Figure C.5(A)) in the same way as the F error

computed in the main text. The second metric measures likely errors in the clustering of mutations by

identifying the fraction of pairs of clustered mutations for which there is evidence that one mutation

is ancestral to the other with high probability across all samples (Figure C.5(B)). The third metric

identifies the fraction of pairs of clustered mutations that are likely pairwise incomparable, i.e.,

there exist at least two samples with incompatible ancestry relationships between these mutations

(Figure C.5(C)). The last metric measures whether the mutations connected by an arc of the inferred

tree have read counts that support the implied ancestral relationship. To do so, we compute the

fraction of arcs that admit a pair of mutations whose ancestral probability, calculated using the

observed read counts under our posterior model, is at least β (Figure C.5(D)). See Table C.2 for

further details.

C.4.5 Ancestry Graph for CLL 077

Figure C.6 contains the ancestry graph for CLL sample 077.
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Figure C.6: The ancestry graph for CLL007. Edges are annotated with their posterior proba-
bility under our probabilistic model. Genes indicated in red are those whose VAFs are much higher
than 0.5. In fact, their 1− γ confidence intervals lie entirely above 0.5. It is likely that these muta-
tions occur in a region affected by a copy number aberration, thus violating the assumptions of our
model.



Appendix D

Detecting Simultaneous

Rearrangements in Cancer

Genomes

D.1 Proof of Theorem 6.2.2

In this section we present the necessary background to prove Theorem 6.2.2 which shows how to

compute the probability that a chromothripsis string C of length m, constructed using blocks from

a reference genome G of n blocks, drawn uniformly at random from the set of such strings has H/T

alternating π(C). First, we calculate |G(m,n)|, the total number of chromothripsis strings of m

blocks given a reference genome of n blocks. This is straightforward using the following equation.

|G(m,n)| =
m−1∏

i=0

(2n− 2i) =

m−1∏

i=0

2(n− i) = 2m
m−1∏

i=0

(n− i). (D.1)

Next we calculate |A(m,n)|, the number of chromothripsis strings of m blocks given a reference

genome of n blocks that are H/T alternating. First, we note that the selection of any two blocks

(telomeres) in a reference genome G = 1 . . . n defines a partition of the remaining n− 2 blocks into

two sets: (1) blocks that lie between the two chosen telomere blocks in G; and (2) blocks that lie

outside the chosen telomere blocks in G. By construction the two cases from Theorem 6.2.1 are

212
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mutually exclusive. In Case 1 all non-telomere blocks in the derivative chromosome lie in between

the telomeres and in Case 2 they must lie outside the telomeres. Therefore, we consider these two

cases separately.

We begin with Case 1 from Theorem 6.2.1. Suppose we choose two blocks at random to be

the telomeres for a genome. A genome with those telomeres can only fall into Case 1 if there

are i blocks in between. For each value of i there are n − 1 − i possible pairs of telomeres where

i ≥ m − 2. In such an instance, there are two possible configurations of the telomeres - both in

normal orientation with the smaller interval as the start of the derivative chromosome, or both in

reverse with the larger interval as the start of the derivative chromosome. We now only have to

choose m−2 blocks, along with their order and orientation from the i blocks between the telomeres.

Case 2 from Theorem 6.2.1 is similar to Case 1, except now we let i represent the number of blocks

that lie outside the telomeres of which there are i + 1 paris with i ≥ m − 2. There are still two

possible configurations of the telomores - both in reverse orientation with the smaller interval as

the start of the derivative chromosome or both in normal orientation with the larger interval as the

start of the derivative chromosome. These insights form the basis for the following equation which

we simplify.

|A(m,n)| =
n−2∑

i=m−2

(2)(i+ 1)



m−3∏

j=0

(2i− 2j)


+

n−2∑

i=m−2

(2)(n− 1− i)



m−3∏

j=0

(2i− 2j)




= 2m−1
n−2∑

i=m−2

(i+ 1)



m−3∏

j=0

(i− j)


+ 2m−1

n−2∑

i=m−2

(n− 1− i)



m−3∏

j=0

(i− j)




= 2m−1
n−2∑

i=m−2

(i+ 1 + n− 1− i)



m−3∏

j=0

(i− j)




= 2m−1n

n−2∑

i=m−2



m−3∏

j=0

(i− j)




We can now directly calculate the probability of a sequence of m blocks from an n block reference

genome having an H/T alternating alignment and we do so in Theorem 6.2.2. But first we must

state and prove Lemma D.1.1 which is used in the proof for Theorem 6.2.2.

Lemma D.1.1.
∑n
i=1

∏m−1
j=0 (i+ j) = 1

m+1

∏m
j=0(n+ j)
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Proof. We use proof by induction on the variable n. We start with the base case n = 1.

1∑

i=1

m−1∏

j=0

(i+ j) =

m−1∏

j=0

(1 + j) =
1

m+ 1

m∏

j=0

(1 + j)

We now assume the property holds for values up to n− 1 and want to prove for generic n.

n∑

i=1

m−1∏

j=0

(i+ j) =

n−1∑

i=1

m−1∏

j=0

(i+ j) +

m−1∏

j=0

(n+ j)

=
1

m+ 1

m∏

j=0

(n− 1 + j) +

m−1∏

j=0

(n+ j)

=
n− 1

m+ 1

m−1∏

j=0

(n+ j) +

m−1∏

j=0

(n+ j)

=
n+m

m+ 1

m−1∏

j=0

(n+ j)

=
1

m+ 1

m∏

j=1

(n+ j)

Therefore we have proven the Lemma for general n.

Theorem 6.2.2. Suppose that C is a chromothripsis string of length m derived from a reference

genome G composed of n intervals. The probability that π(C) is H/T alternating is 1
2(m−1) .

Proof. The probability that π(C) is alternating is just the ratio of the number of possible H/T

alternating chromothripsis strings C of length m divided by all chromothripsis strings C of length

m.
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P (π(C) alternates |m,n) =
|A(m,n)|
|G(m,n)|

=
2m−1n

∑n−2
i=m−2

(∏m−3
j=0 (i− j)

)

2m
∏m−1
i=0 (n− i)

=

∑n−2
i=m−2

(∏m−3
j=0 (i− j)

)

2
∏m−1
i=1 (n− i)

=

∑n−m+1
i=1 (

∏m−3
j=0 (i+ j))

2
∏m−1
i=1 (n− i)

=
1

m−1

∏m−2
j=0 ((n−m+ 1) + j)

2
∏m−1
i=1 (n− i)

(by Lemma D.1.1)

=
1

m−1

∏m−1
j=1 (n− j)

2
∏m−1
i=1 (n− i)

=
1

2(m− 1)

D.2 Preliminary Results on Real Data

In this section we present some preliminary results on real data which led to some of the ideas and

results presented in [170]. Here, we classify observed breakpoints into categories in order to see if

a genome has a configuration that under a sequential model would require breakpoint re-use, and

therefore may be better explained by a one-time chromothripsis event. Novel tumor adjacencies de-

tected using high-throughput sequencing are generally reported as a pair of breakpoints, where each

breakpoint is defined by a chromosome, a genomic position on that chromosome and an orientation

(+/−) which indicates which strand of the genome the reads supporting the adjacency align to.

An adjacency between such a pair of breakpoints indicates that the corresponding portions of the

genome have been “glued” together. An orientation of + indicates that the block to the left of the

breakpoint position is involved in the gluing operation. Similarly an orientation of − indicates that

the block to the right of the breakpoint position is involved in the gluing operations.

We classify all observed breakpoints into three separate categories: (1) unpaired, (2) paired, and
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(3) other. Since DNA sequence data is imperfect, we rarely expect to exactly measure the exact loca-

tion of a breakpoint and therefore need to allow for some variation in reported breakpoint locations.

Therefore, we define an unpaired breakpoint as an observed breakpoint where no other breakpoints

are observed within a fixed breakpoint distance L in any direction on the same chromosome. A paired

breakpoint is a breakpoint that where exactly one other breakpoint occurs within a fixed breakpoint

distance L (and no other breakpoint occurs within distance L of that breakpoint) and the observed

breakpoints align to opposite strands of the genome (one with orientation + and one with −). Any

other breakpoint is classified as a other. Lastly, we can also break the paired breakpoints into two

separate classes: (1) mixed paired - where the two breakpoints are part of two separate adjacencies

measured and (2) simple paired - where the two breakpoints are the ends of a single adjacency (i.e.

a deletion that is smaller than L).

A large number of mixed paired breakpoints, which can not be explained by simple events such

as a reciprocal inversion would be an indication of chromothripsis, as these types of breakpoints in-

dicate that either breakpoint re-use occurred or that these adjacencies occurred simultaneously. We

examined 24 samples from 5 studies [114, 154, 97, 139, 183] which had been been previous classified

as chromothripsis or step-wise (including B/F/B which is a sequential mechanism of rearrange-

ment [183]). No reciprocal inversions were included in this analysis. We compared the distribution

of breakpoints in these samples that were classified as mixed paired versus unpaired and found that

this was able to distinguish several of the genomes called as chromothripsis (Figure D.1).

Further refinement of this signature is necessary to determine if some version may be appropriate

for determine whether or not chromothripsis was likely to have occurred.
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Figure D.1: A comparison of the fraction of observed breakpoints classified as mixed
paired versus unpaired for 24 genomes. This includes, 17 previously classified as chromothripsis
(blue), 2 previously classified to contain a B/F/B cycle (red) and 5 that have previously classified as
the result of a step-wise sequence of events (black). The genomes with the largest fraction of mixed
paired breakpoints (circled in gray) are all genomes that have been previously indicated to contain
a chromothripsis event.
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