
Abstract of “Secure Data Compression and Error Correcting Codes for Networks and Cloud Storage”

by James Alan Kelley, Ph.D., Brown University, May 2015.

We present several novel constructions—combining cryptography, error correcting codes (ECCs), and

data compression—that find ready application in enhancing security and fault-tolerance in cloud

storage. We demonstrate this by presenting a simple (yet novel) secure cloud storage scheme (which

can be used on top of any cloud service provider) that provides strong guarantees of integrity and

fault-tolerance, and we show the different enhancements possible using our constructions.

Our constructions provably achieve strong theoretical properties and are quite practical as well.

First, we consider the problem of combining data compression with encryption to provide a primitive

that performs both operations at once. This work provides the first formal definitions of security for

schemes that combine compression and encryption. We present two compressing ciphers that are the

first to provably achieve these strong guarantees of privacy and security. Moreover, one construction is

quite practical and provides data compression ratios and speeds comparable to standard algorithms,

as demonstrated with a detailed set of experiments.

Second, we utilize cryptographic primitives to enhance erasure codes to withstand adversarial

corruption of the encoded data. As part of this, we present a new adversarial model for ECCs which

is more powerful than previously considered. We then provide two constructions, called authenticated

error correcting codes, that transform an erasure code into an ECC and are provably secure in our

model. The first scheme combines digital signatures and list decoding while the second uses a message

authentication code (MAC), a non-malleable cipher, and a pseudorandom permutation.

Finally, we present cryptographically enhanced LT codes (a fast, rateless erasure code) which

are able to provide error correction over an adversarial channel. LT codes encode data via a sparse

bipartite graph where each output symbol is the XOR of a random subset of the message symbols.

All prior work on LT codes only considered random erasures or random errors (e.g., additive white

Gaussian noise) and would fail under adversaries that exploit the encoding graph. We define a new

framework for analyzing the security of rateless codes and provide three provably secure constructions:

(1) a basic scheme that is used as a subroutine in the other schemes; (2) a scalable, block-oriented

fixed-rate scheme; and (3) a scalable, block-oriented rateless scheme. All of these schemes maintain

both asymptotic and practical efficiency—the latter we demonstrate experimentally.
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CHAPTER One

Securing Cloud Storage

1.1 Introduction

The cloud, an amorphous collection of computing resources, provides several benefits that can enhance

(and sometimes replace) traditional information technology (IT) services, and is quickly becoming an

integral part of IT operations around the world. At a basic level, the cloud provides an outsourced

IT infrastructure that is best thought of as “utility computing” where a subscriber pays for exactly

what they use (like electricity). Different cloud providers offer different usage models, including:

Infrastructure-as-a-Service, where users are allotted a certain amount of hardware resources to use as

desired (e.g., Amazon EC2 [2]); Platform-as-a-Service, where the hardware and a software stack is

provided and users can easily build their own applications on top of it (e.g., Google App Engine [52]);

and Software-as-a-Service, where the hardware and software are setup by the provider and the user

simply pays to use the application (e.g., Drupal Gardens [44]). This outsourcing allows companies to

lower their IT costs by having a cloud provider manage the actual hardware/platform/software in

their (remote) data centers. Also, using the cloud can enable better disaster recovery since it readily

provides strong fault-tolerance through geographic distribution and replication of both data and

computation. While it seems unlikely that the cloud will completely dislodge all business IT (e.g.,

due to regulatory restrictions), the cloud is here for the foreseeable future and its use will continue to

grow.

When considering whether or not to invest in adopting the cloud (even partially), businesses are

keen to understand the risks involved, especially the security risks. By outsourcing their infrastructure

1
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to a third-party, businesses can become more vulnerable to various threats, both accidental and

malicious. Cloud services regularly experience downtime due to software bugs [125, 159], problems

with upgrading the cloud infrastructure [33, 160], and even weather [113, 161]. Indeed, the bug-induced

outage described in [159] resulted in data loss for a portion of Amazon’s customers (specifically,

those who used the Elastic Block Storage service). Mistakes can also undermine the security of the

cloud, such as in 2011 when a bug in the authentication mechanism of Dropbox—a cloud storage

provider—allowed anyone to access any account using any password [37]. Malicious attacks on cloud

providers have also occurred. For instance, in 2012, an employee at Dropbox had the credentials for

their own Dropbox account stolen, resulting in the theft of an internal company document containing

Dropbox user email addresses [38]. Even cloud giants that have world-class security teams, such as

Google, can fall victim to hackers.1

In general, cloud providers give few guarantees about anything. For instance, the Amazon S3

object storage service guarantees at least 99.9% uptime during any monthly billing cycle (see [5]).

Note that the guarantee is one solely of availability and no guarantees are made about data integrity

or consistency (though, they do provide strong guarantees of durability). For Amazon’s “elastic

compute” EC2 service, they guarantee 99.95% uptime where downtime is defined exclusively as

“region unavailability” where “all of your running instances have no external connectivity” (emphasis

added, see [4]). This definition purposefully excludes any downtime caused by, say, a single rack of

servers going down and (possibly) taking down the majority (but not all) of your running instances.

As long as a few of your compute instances are running and have external connectivity, it does not

count as downtime.

Since so few guarantees are provided, particularly in the cloud storage realm, many researchers

and technologists have been working to layer additional services on top of cloud storage to improve

security, integrity, and data consistency guarantees. Several authors have sought to protect against

data corruption from byzantine failures in cloud servers, e.g., [17, 24, 51, 62, 130]. Other authors

have sought to add strong consistency guarantees and the ability to detect violations of cloud service

level agreements (see [130, 149]). In this thesis, we provide several tools that can readily enhance

the efficiency and adversarial-resilience of many (secure) cloud storage schemes, as demonstrated by

enhancing a simple, yet novel, secure cloud storage scheme, described next. The individual tools are
1In late 2009, Google was hacked by unknown persons, in a campaign dubbed Operation Aurora [54], that stole

intellectual property from Google and possibly sought information on dissidents in China. The attack was on Google
itself and not their cloud infrastructure specifically.
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fully detailed in subsequent chapters, and we cover the previous and related work for these schemes

in their respective chapters. We do not address the issue of data consistency models in this work.

Contributions and Organization. In this thesis, we present several general-purpose tools that

find ready application in enhancing the privacy, data integrity, and fault-tolerance of cloud storage. We

demonstrate this applicability by using these tools to enhance a simple, yet itself novel, architecture

for increasing the resilience of cloud storage to data loss and corruption (without modifying the

service provider) which we detail next.

The remainder of this thesis is organized as follows. In the rest of this chapter, we provide a

high-level description of our simple architecture, with intuitive definitions for some of the basic

tools used (presented as needed), and detail how our constructions can strengthen and improve the

efficiency of the scheme.

Chapter 2 describes our work on the Slow and Fast Squeeze ciphers, two new ciphers that provide

data compression while also being provably secure—the first such schemes.2 The algorithms are derived

from the well-known LZW compression algorithm [165] that allows for efficient implementations, which

we demonstrate through a thorough experimental evaluation. We also provide a new definitional

framework for proving the security of combined compression-encryption schemes and show that

it relates in a simple way to the standard definitions of security for ciphers. Moreover, we prove

that our constructions achieve the strongest possible security in this model. This work was done in

collaboration with James Lentini, Peter Shah, and Shiva Chaitanya of NetApp’s Advanced Technology

Group.

Chapter 3 presents two general constructions that turn an erasure code into an error correcting

code—with only a small decrease in the information rate of the code—such that they can withstand

(computationally-bounded) adversarial corruption of the data. Indeed, we define a new adversarial

model for analyzing the error correcting properties of certain codes when attacked by computationally-

bounded adversaries. This model is more powerful than previously considered and is able to capture

more real-world adversarial behaviors. Our schemes are provably secure in this model and, moreover,

achieve better error correction in this model than previous work. Our first construction combines list

decoding with collision-resistant hash functions and digital signatures to correct errors more efficiently
2Previous work was not provably secure, and, indeed, was often quite insecure, see Chapter 2, Section 2.8.
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than previous list-decoding-based schemes (i.e., [111]). The second construction utilizes a non-

malleable cipher, a message authentication code, and a generic pseudorandom permutation to achieve

the same error correction as our first scheme without using list decoding. We call these authenticated

error correcting codes. This work was performed jointly with Nikos Triandopoulos of RSA Laboratories.

Chapter 4 introduces a novel family of error correcting codes based on LT codes [103], an

efficient family of rateless erasure codes. In particular, we enhance LT codes with a combination of

a pseudorandom generator, semantically secure encryption, and a message authentication code to

form an error correcting code able to withstand adversarial data corruption.3 We call this family of

codes Falcon codes. These codes are a generic construction that can be used as a drop-in replacement

for (almost) any LT code4 and provide immediate tolerance to malicious corruption of the encoded

data—e.g., using Falcon codes in the LT-coding step of Raptor and Online codes (which are erasure

codes) enables the codes to withstand adversarial corruption. As part of this work, we have developed

a new adversarial model for analyzing the security of rateless codes—since previous models were only

applicable to fixed-rate codes—and prove the security of our schemes in this model. Additionally, we

provide two scalable variants that can encode and decode large files more efficiently than the basic

scheme. We experimentally evaluate all of our schemes and demonstrate their practicality. This work

was performed jointly with Ari Juels of Cornell Tech and Nikos Triandopoulos of RSA Laboratories.

Finally, we conclude in Chapter 5 with a summary of this thesis.

1.2 High-level Architecture

In this section we first outline several properties desired for cloud storage and then outline our

architecture that achieves these properties. Then, we detail how the tools presented in this thesis can

enhance different aspects of this architecture (including efficiency, integrity, and privacy), and we

outline some of the trade-offs involved.

1.2.1 Desired Properties of Cloud Storage

There are numerous desired features for cloud storage including data availability, integrity, and

privacy as well as overall system efficiency. Since cloud storage moves data outside of the data owner’s
3Previous work considered only random errors, such as additive Gaussian white noise.
4Our construction places lower-bounds on the symbol size of the code to achieve strong guarantees of security—e.g.,

the symbol must be at least 128-bits in size—and so it cannot replace an arbitrary LT code.
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network perimeter, the owner has less control over the management of the data, but data owners can

preprocess their data to achieve the desired levels of reliability, integrity, and privacy. For instance,

error correcting codes5 can readily increase the integrity and availability of the data while a simple

application of encryption can ensure privacy. If data corruption is detected, the system must also be

able to recover efficiently and repair the data, as it is inefficient to re-upload an entire file if only a

small portion was damaged. Another desirable feature for cloud storage is public verifiability of the

integrity of the data. That is, while an organization may outsource (some of) their data to the cloud,

it may not have the resources to continually check the integrity and availability of their data. Public

verifiability allows a (not necessarily trusted) third-party auditor to examine the data stored in the

cloud for any problems. This can increase the security of the data while not placing a large burden

on the organization using the cloud. Moreover, public verifiability helps resolve any service disputes

between the user and the cloud provider.

Additionally, since a great deal of data is dynamic, an organization must be able to update the data

in the cloud without paying large costs, both in bandwidth and computation. The cloud loses much

of its utility if, whenever a portion of a file is accessed, all (or even most) of the hosting servers must

be contacted and/or a majority of the file must be downloaded. Finally, the bulk upload/download

costs must be reasonable; otherwise, the setup cost of switching to the cloud will be too great. To

summarize, the following are desirable properties for a cloud storage system:

1. Tolerance of partial (adversarial) data loss/corruption;

2. Efficient repair of data;

3. Public verifiability;

4. Minimal overhead for small reads/writes (should be proportional to the operation size); and

5. Minimal storage/computational/communication overhead for getting or putting a file;

The first two items can be achieved by using error correcting codes on the data and utilizing

striping of the ECC (striping is defined later). The third property can be achieved by simply signing

each piece of data with an asymmetric key pair and giving the public key to an auditor. The last two

properties, though, require some care to achieve, and this is where we find practical applications for

the constructions detailed in this work.
5An error correcting code is a message encoding scheme that can tolerate some amount of corruption of the encoding

and still decode back to the original message. Codes with fixed input and output lengths (denoted k and n respectively)
are called fixed-rate codes with the ratio k/n called the rate of the code and can recover the input message with any k
out of n of the code symbols.
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Apply striped ECC

Build Merkle trees

Distribute to servers

Figure 1.1: The basic secure storage scheme. The dashed boxes indicate a stripe of the ECC, shaded
boxes are the parity symbols, and the triangles are the Merkle trees.

1.2.2 A Simple Scheme

Suppose we have a file F we would like to store on n servers in the cloud. In our scheme, we simply

apply a systematic error correcting code6 (e.g., a systematic Reed-Solomon code) to F . Specifically,

F is broken up into k pieces of length l bytes, called message symbols, and then encoded into n code

symbols (also l bytes in length). The code symbols are then divided into blocks of b bytes and a

Merkle tree is built over each symbol with the blocks forming the leaves of the tree.7 The Merkle tree

allows us to efficiently (and with overwhelming probability) detect any corruptions of the data and

discard the spurious data, allowing us to utilize an erasure code8 for the encoding. This reduction of

corruptions to erasures via cryptographic means is not novel and, indeed, has been used extensively

(see, for example, [20, 24, 63, 88]). But, building a (distinct) Merkle tree over each symbol is a novel

twist on typical usage of Merkle trees in authenticating data: e.g., distillation codes [76] have a single
6An error correcting code is systematic if the original data forms part of the encoded output. Systematic codes

enable much more efficient decoding in the common case where only a small portion (or none) of the data is corrupted.
7A Merkle tree is a binary hash tree used to authenticate a set of elements using just a collision-resistant hash

function. Each internal node of the tree contains the hash of the contents of its two children and a leaf contains the hash
of the corresponding set element. The hash value in the root node is published publicly. An element is authenticated
by sending the element and the hashes of the sibling nodes on the path from the element to the root. The verifier
recomputes the hashes on the path using the element and the sibling hashes and compares the final result to the
published root hash: accepting if they are equal and rejecting if not.

8An erasure code is an ECC that can correct data erasures (i.e., lost data) but not data errors. Erasure codes are
typically much more efficient that error correcting codes.
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tree for the encoded message and each entire symbol forms a leaf of the tree. Other works that build

a single Merkle tree over the entire encoding include [24, 63].

We call the “plain data” code symbols the systematic symbols and all other symbols the parity

symbols. With a Merkle tree for each code symbol, the client stores the root hash of each Merkle tree

and then sends the encoded data with the trees to the n servers. If we use an [n, k] Reed-Solomon

code9 (i.e., where at least k out of n uncorrupted code symbols are needed to decode without errors),

then the client stores n hashes for F . This cost is reasonable since the client must store the information

identifying the servers hosting the data anyway, and the hashes could easily be included with the

server IDs.

Since each symbol is l bytes and divided into blocks b bytes in size, there are m = l/b blocks per

symbol. To support small reads, the client requests the desired block, and the server returns the

hashes of the siblings on the path to the root of that symbol’s Merkle tree. The client can then verify

the integrity of the block in O(b+ logm) time by recomputing the appropriate hashes (assuming

hash outputs are of constant size, hashing a hash takes O(1) time). The communication overhead is

also O(b+ logm).

Code Striping. To support efficient writes, we cannot use a Reed-Solomon code as-is. As currently

described, our system encodes the file using symbols l bytes in size, with l potentially being quite

large. Any change to a symbol could result in all n− k parity symbols being completely different, i.e.,

a small change results in updating (n− k + 1)l bytes. To avoid this, we use a technique called code

striping. Striping is a technique where the input message is broken up into small segments which are

then independently encoded using the same error correcting code (i.e., the same n and k) but over a

smaller finite field. The resulting code symbols are then interleaved to produce the final larger code

symbols: in particular, all of the i-th code symbols (from each stripe) are concatenated together to

form the i-th aggregate code symbol.10 Striping allows for fine-grained updates to the data since any

change is localized to the stripes containing the change. For example, looking at Figure 1.1, if the

top-most block in the left-most symbol is updated, then the only blocks that must be updated are

those contained within the same dashed-box (which indicates a single stripe of the ECC).
9An [n, k] Reed-Solomon code breaks a message up into k pieces of l bytes each, and the interprets them as

coefficients of a polynomial p ∈ F[x], where F = GF (28l). The encoding is then the evaluation of p at n distinct points.
10Striping an ECC is an extension of data striping found in RAID systems (hard disk arrays where data is spread

across multiple disks for greater redundancy and throughput [124]). In these systems, consecutive data bytes (or blocks)
are written to the disks in a round-robin fashion. For RAID systems that apply (systematic) error correcting codes to
the data, the i-th disk in the array corresponds to the i-th aggregate code symbol for the data.
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Code striping was developed to make the encoded data more robust to burst errors while in

transmission, as a burst error in a single large symbol would “spread out” the error over many smaller

encoded segments. Striping also has the benefit that, when encoding large inputs, it can be much

faster than the “plain” (non-striped) code. For example, using a Reed-Solomon code, if we break the

file up into l-byte symbols, the arithmetic operations for the code are performed over GF (28l) while

striping can use a field as small as GF (28), which allows for efficient field operations.11

An important detail for striping to be efficient in this scheme is to compose a stripe out of

symbols that are a distance of l bytes apart (i.e., the size of one aggregated code symbol), instead of

simply encoding consecutive bytes. This allows the large code symbols to be formed without actually

shuffling any data around (at the cost of losing some spatial locality when encoding/decoding data

far apart in the file), and it simplifies reading the data since consecutive bytes in the input file will

still be consecutive in the (systematic) encoding of the file.

Updates. To perform updates on the encoded data, we can exploit the algebraic properties of

the Reed-Solomon code to minimize the amount of computation. A Reed-Solomon code works by

parsing the input file F into a sequence of k elements in a finite field F (called symbols), which are

interpreted as coefficients of a degree k − 1 polynomial p(x) ∈ F[x] (we assume that the coefficient of

the highest-order term is non-zero). The output code symbols are simply the evaluation of p(x) on

a set of n distinct points (denote these by α1, . . . , αn). For example, if we want to change symbol

si to s′i, creating the new polynomial p′(x). The difference between p′(x) and p(x) as polynomials

is simply (s′i − si)xi; moreover, p′(αj) − p(αj) = (s′i − si)αij for any αj ∈ {α1, . . . , αn}. Thus, to

generate the “patches” necessary to update a single encoded block, we need to perform at most a

single subtraction and n multiplications in the finite field (since αij can be precomputed). If we use

a systematic code, then we only need to perform n− k + 1 multiplications as the k − 1 remaining

(systematic) symbols do not need to be updated. These updates must be applied to the corresponding

block in each parity symbol, requiring the block be read (for each symbol) and a single addition

performed. Thus, we require n− k + 1 multiplications and n− k + 1 additions to generate and apply

the patches. The communication overhead is O((n− k + 1)(b+ h logm)) since each block must be

read and then written back, including the Merkle tree updates. There is also the additional overhead

of O((n− k + 1) logm) hash operations needed to verify the data and parity symbols.
11For example, multiplication in GF (28) can be implemented via a lookup table of size (28)2/2 = 215 bytes.
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Summary of Efficiency. The scheme given in this section has several desirable properties. First,

it can tolerate the loss and/or corruption of at most n − k symbols, the maximum for an [n, k]

code. Second, the scheme is publicly verifiable since the root hashes of the Merkle trees can be

given to the auditor and verified without exchanging any secrets. Third, the storage overhead is

(n − k)(|F |/k) + n(2m − 1)h = ( 1
R − 1)|F | + n(2m − 1)h, where m = l/b is the number of b-byte

blocks per l-byte symbol, h is the size of a hash in bytes, and R = k/n is the rate of the code. We

observe that if |F | is large and b� h, then the n(2m− 1)h term is small. This combination of code

striping and per-symbol Merkle trees allows for much finer-grained reads and writes to the data than

previous schemes. Finally, the client must store only nh bytes for the root hashes of the Merkle trees.

We summarize the costs of the scheme in Table 1.1 and detail them in the following list.

• The overhead for putting a file is O((n− k)k(|F |/(kt)) +nm) = O((n− k)(|F |/t) +nm), where

t is the size of a symbol used in striping. Evaluating a degree k − 1 polynomial at a point

can be performed in O(k) time with k multiplications and k additions using Horner’s method.

We assume that multiplications and additions in a finite field take constant time.12 Since the

code is systematic, we only need to perform n − k polynomial evaluations to generate the

parity symbols, and this must be done |F |/(kt) times. Each symbol also requires 2m− 1 hash

operations to compute the Merkle tree on each (aggregate) symbol.

• Fetching an entire file requires O(|F |+ ( 1
R − 1)|F |+ hnm) = O( 1

R |F |+ hnm) communication

and potentially |F |/(tk) decodings, each of which takes O(k2) time, in addition to verifying the

symbols via the n Merkle trees.13

• Reading a single block requires O(b+ h logm) communication and O(b+ logm) computation.

• Writing a single block requires n− k + 1 finite field multiplications and n− k + 1 additions.

There are also O((n− k + 1) logm) hashing operations and a communication cost of O((n−

k + 1)(b+ h logm)).

• Recovery of a corrupted block takes n reads, b/t stripe decodings, and at most n− k writes

(since the code cannot tolerate more corruption than that), for a computational complexity of

O(n(b+ logm) + (b/t)k2 + (n− k) logm).
12This is a reasonable assumption when using striping since the field used is typically GF (28) or GF (216) and

multiplication tables can be precomputed. For large symbols in GF (2b), each multiplication can be computed in
O(b log b log log b) using the discrete Fast Fourier Transform.

13Reed-Solomon decoding can be done via the inverse discrete Fourier Transform in O(n logn log logn) time, but
this algorithm is impractical for small values of n and k. The Berlekamp-Massey algorithm can decode Reed-Solomon
codes in O(k2) time [107].
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Table 1.1: The efficiency of the simple secure storage scheme (without our enhancements) for various
operations. Communication cost is the number of bytes transmitted.

Computation cost Communication cost
Bulk put O((n− k)(|F |/t) + nm) O( 1

R |F |+ hnm)
Bulk get O(k|F |/t+ nm) O( 1

R |F |+ hnm)
Small read O(b+ logm) O(b+ h logm)
Small write O((n− k + 1) logm) O((n− k + 1)(b+ h logm))
Repair O(n(b+ logm) + (b/t)k2 + (n− k) logm) O(n(b+ h logm) + (n− k)h logm)

Small Optimizations. A simple optimization that we can perform is to replace the Merkle

tree with a multi-way authenticated skiplist [157] (which is a generalization of an authenticated

skiplist [50]). A multi-way skiplist, in expectation, performs the optimal number of hashing operations,

and in [157] it is shown experimentally that the expected number of hashes stored is ≈ 1.41m, which

is less than the 2m− 1 required for a Merkle tree.14 In addition, an authenticated skiplist is more

flexible than a Merkle tree as it more readily supports data insertion and deletion while preserving

its O(logn) access guarantees (with high probability).

A second optimization for our system is aimed at small files (e.g., a few hundred bytes). For a

small file, it is easy to avoid the complexity and cost of Merkle trees altogether and simply sign and

encode the data. The client would then fetch the entire file for any reads or writes—which could be

done in a single network round-trip. For files that are slightly larger (e.g., few kilobytes), we can to

store the hash of each entire symbol instead of the root of a Merkle tree. We would have the same

data corruption resilience guarantees while simplifying the protocols and algorithms.

1.2.3 Avoid Storing Root Hashes

The above scheme works fairly well, but it requires O(n) storage at the client (where again n is the

number of servers). We can reduce this overhead to O(1) by having the client possess an asymmetric

key pair (pk, sk) and use it to sign the concatenation of the hashes before replicating the hashes and

signature to each server. This increases the per-server storage overhead by nh+ s bytes, where s is

the signature length and h is the hash length. We call the hashes and signature the authentication

information for the encoded file.

To reduce this overhead at the servers, instead of using n-fold replication, we can simply use an

error correcting code to redundantly store them, giving an overhead of 1
k (nh+ s) per server instead

14Note, the precise expected number of hashes stored depends on the parameterization of the skiplist. Here, we
assume that p = 1/2, where p is the probability that an element in layer i appears in layer i+ 1 of the skiplist.
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of nh + s. Using a systematic code, in the best case the client will need to communicate with k

servers (in parallel) with a total communication cost of nh+ s (which is identical to the best case

of replication), and at worst n servers with a total communication cost of n
k (nh + s) (instead of

(n− k + 1)(nh+ s) for the replication scheme).

However, the data corruption tolerance in this setup decreases from (n− k) to (n− k)/2 (which

is the error correcting capacity of Reed-Solomon codes), since there is no authentication information

for the encoded hashes and signature. That is, there is no mechanism to detect corruption in the

encoded authentication information, and so we cannot detect and discard corrupt symbols. Thus,

the corruption tolerance gained by using Merkle trees is lost. To counteract this, we leverage the

technique of list decoding where, instead of outputting a single value, the decoder for the ECC is

permitted to output a list of values (instead of a single value), with the correct value guaranteed to be

in the list. This relaxation allows us to correct up to n−k errors for a Reed-Solomon code.15 To locate

the correct value in the list, we utilize the signature on the hashes, accepting the codeword whose

signature verifies. Against a computationally-bounded adversary, with overwhelming probability, only

the correct data will have a valid signature (first proven in [106] and rediscovered in [111]). That is,

signing the input message allows us to disambiguate the list decoding and achieve unique decoding.

Note that no special encoding must be done to perform list decoding; the list decoding algorithm

works as-is with a standard Reed-Solomon code. Also, as before, we can support updates to the

authentication information (i.e., the hashes and the signatures) using the algebraic properties of

Reed-Solomon codes.

Using list decoding on the encoded file itself is possible, but quite expensive since the code symbols

could be rather large (this usage is the scheme described in [111]), and the algebraic operations on

these large symbols have non-trivial costs. The construction presented here uses list decoding on

much smaller code symbols—since the input message was just a few hashes and a signature—so the

list decoding algorithms can operate more efficiently. That is, this hash-sign-encode combination

(for the authentication information) provides an efficient, generic construction for transforming an

erasure code applied to an input message into an error-correcting code for that message (over a

computationally-bounded channel). This construction we call an authenticated error correcting code,

and we will analyze it in detail in Chapter 3 along with an alternative construction that does not

require list decoding.
15See [58] for a description of a list decoder for Reed-Solomon codes that can correct up to n− k errors.
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Apply LT-code with
a strong PRG

Encrypt & MAC

Figure 1.2: The authenticated LT code.

Also of note is that applying a list-decodable ECC to the authentication information completely

separates the corruption of the data from the corruption of the hashes (i.e., they can be corrupted

independently). This enables the distribution of the authentication information to a separate set of n

servers that, themselves, can be corrupted independently of the n data servers. This feature is not

possible with previous constructions combining cryptography and ECCs.

1.2.4 Faster Encoding and Decoding

Encoding with an [n, k] Reed-Solomon code asymptotically takes O(n logn log logn) time using the

Discrete Fast Fourier Transform, but for practical (i.e., small) values of n and k Horner’s method is

the most efficient, taking O(nk) time to evaluate a degree k − 1 polynomial at n points. (Again, this

assumes that field operations take a constant amount of time.16) The quadratic cost for encoding and

decoding is a bottleneck for large files, and thus, it is desirable to seek a faster (both asymptotically and

practically) encoding and decoding algorithm that can provide the same error correction guarantees.

LT codes [103] are a family efficient erasure codes that provide O(k log k) time encoding and decoding

while ensuring decodability with high probability and being much faster than Reed-Solomon codes.

LT codes operate by generating a random, sparse bipartite graph with message symbols in one

partition and code symbols in the other. The value of a code symbol is simply the XOR of its

neighboring message symbols. The degree of each code symbol is selected according to the robust

soliton distribution (described in the original LT code paper [103]), and then the neighbors are

selected uniformly at random. LT codes can produce a practically limitless stream of code symbols

and, hence, do not have a fixed rate. Such codes are call rateless (or fountain) codes.
16If we do not use striping and simply have large input symbols, the cost of field operations becomes non-trivial.
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Unfortunately, LT codes provide guarantees over random channels rather than adversarial ones—

e.g., where each symbol is erased with some fixed probability. Moreover, the error correction of these

codes is quite limited as the errors are assumed to come from a fixed distribution, e.g., additive

Gaussian white noise. In an adversarial setting, errors and erasures can easily become catastrophic.17

In particular, LT codes allow for decoding to fail with some fixed, user-configurable probability that

can be made arbitrarily small, assuming that erasures are random. However, in the presence of

adversarial erasures, the probability of decoding failure can be increased well beyond this bound by

selectively corrupting or deleting symbols and forcing the received codeword to fall into the (formerly)

low probability “bad” case. This attack, which we call targeted erasure, was first mentioned in [91]

and was called a distribution attack; but, the attack was outside of their threat model. The attack

was actually implemented by Lopes and Neves in [100] on a code derived from LT codes called Raptor

codes18, and the authors demonstrate that it is possible to increase the failure probability by several

orders of magnitude from the desired failure probability.

Lopes and Neves also suggest possible mitigations to this attack, but their suggestions are

incomplete and do not fully secure the scheme against targeted erasures. In Chapter 4, we introduce

authenticated LT codes, or Falcon codes that provide the same efficiency guarantees as plain LT codes,

while also fully securing LT codes against computationally-bounded adversaries. That is, we ensure

that any (computationally-bounded) adversary, when corrupting the encoding, is (provably) no more

powerful than a random adversary who simply erases each symbol with some fixed probability. This

is the first LT-based code that achieves error (and erasure) correction against adversarial attacks.

Additionally, codes derived from LT codes, such as Online and Raptor codes (see [108] and [148],

respectively), immediately inherit the security properties of our scheme when using Falcon codes

as a drop-in replacement for the LT code. Our construction leverages a combination of a strong

pseudorandom number generator (to make the bipartite graph unpredictable), a semantically secure

cipher19 (to hide any information about the graph contained in the symbols), and an unforgeable
17While adversarial errors are the worst-case and in some situations may be considered unrealistic, the assumption

that errors are random does not hold for, e.g., storage systems. Indeed, errors in storage systems are often coordinated
and have a measure of spatial locality, see [9]. Our work protecting against adversarial errors naturally also protects
from coordinated storage errors.

18Raptor codes [148] are based on LT codes but utilize a “pre-coding” step where a fast erasure code is applied to
the input and then the encoded symbols are used as input to the LT encoder. This simple combination allows Raptor
codes to achieve high efficiency both practically (being among the fastest erasure codes) and theoretically (with linear
time encoding and decoding).

19A cipher is semantically secure if encrypting a message “hides” all information about the message. More formally,
any function of the message that can be computed with the ciphertext can also be computed without the ciphertext
with only a small increase in time to compute the function.
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MAC (to detect symbol corruption), shown schematically in Figure 1.2. We note that the use of a

semantically secure cipher to protect the bipartite graph gives us privacy for the input data as well.

For the storage scheme, this primitive readily replaces the Reed-Solomon code and gives much

more efficient encoding and decoding. Also, to preserve the capability for small reads and writes, we

use this primitive in a similar “striping” manner as the Reed-Solomon codes: where input symbols

a fixed distance apart are aggregated and become the input for an encoding, and then the output

symbols are distributed among servers.

Large Files. Encoding a large file with an LT code can be problematic. For each code symbol, its

neighbors are selected uniformly at random from all possible input symbols. For very large files—i.e.,

those that do not fit into memory—this will induce many random read operations from the disk.

As an example, say the file is twice as large as the available memory. When producing an output

symbol, on average only half of its neighbors will reside in memory. With an expected node degree of

O(log k), this means that there are (on average) O(log k) disk reads for every output symbol. We

overcome this bottleneck in Chapter 4 where we provide two scalable variants of our basic Falcon

code and experimentally demonstrate their superior efficiency when encoding large files.

A Few Caveats. The first caveat when using Falcon codes is that they are non-systematic codes;

that is, the output consists only of parity symbols.20 So for any read operation, the client must

download and decode each entire stripe covering the desired data (similarly for writing and repairing).

Secondly, LT-based codes are parameterized by a distribution for the degree of an output node in

the bipartite graph. The distribution determines the probability of decoding failure δ and is typically

an asymptotically good distribution so that decoding fails with probability at most δ for all sufficiently

large k. For example, for Raptor codes—which use a variant of the robust soliton distribution—k

must be at least 10000 (similar to an LT code).21 For the secure storage scheme, assuming that the

numbers of servers n is fixed and small, this lower-bound on k implies that we must group together

many input symbols from a single server and form a larger stripe.

A third caveat is that our constructions require that we use a MAC to authenticate each symbol

in the Falcon code, giving O(1) space overhead for each symbol—but, note that MACs have fast
20Though the degree distributions are constructed to output many low-degree (e.g., degree 1, 2, or 3) symbols, it is

not guaranteed that the first k symbols will be systematic symbols.
21Though there are distributions for specific small values of k (e.g., a few hundred), the general design of good

distributions for small k is still an open problem.
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verification times, often 2–3 orders of magnitude faster than signature schemes.22 Unfortunately,

using MACs causes the scheme to lose public verifiability; but, we can regain it by merely using a

public key signature scheme instead. For simplicity in our descriptions we will use a MAC but using

it is not intrinsic to the scheme itself.

Finally, an important limitation of this scheme is that is requires the data to be static. The

security of Falcon codes depends crucially on the fact that that the adversary does not know the

structure of the encoding, i.e., which message symbols have been XORed together to produce a

given code symbol. (Otherwise, the adversary can again perform the targeted erasure attack.) Any

support for dynamic operations will reveal the structure of the bipartite graph as any update to a

single symbol will require updating each parity symbol containing that symbol. Even though the

construction is best used for static, archival data, reads and writes of such data are done in bulk and

the linear-time encoding and decoding can provide large efficiency gains.

1.2.5 Achieving Privacy and Compression Simultaneously

Two fundamental parts of cloud infrastructure are that: (1) a user pays only for the resources that

he uses, and (2) the resources allocated can smoothly scale up as the user’s demands increase. This

allows users to avoid paying the cost of over-provisioning resources necessary to handle peak load

(which may be much larger than the average load). Compressing data before storing it in the cloud

decreases the amount of storage that must be provisioned, and hence, lowers the overall costs of the

user. Of course, the user must pay the cost of compression and decompression when reading and

writing, but CPU cycles are often cheaper than cloud storage and network bandwidth. Indeed, for

archival data, the bulk of the data’s cost will lie in its long-term storage rather than any CPU cycles

used to compress or decompress it.

In addition to saving space, users would like to keep their data private. There is some risk to

privacy when storing data in the cloud and encryption helps mitigate that risk by keeping the data

hidden away from prying eyes. As part of our scheme, we present the first provably secure compression

algorithms that compress the data while providing strong guarantees of secrecy for the data. The

secure compression algorithms—called the Slow Squeeze and Fast Squeeze ciphers, or simply the
22In some rough benchmarks, we used the speed command of the OpenSSL 1.0.1i library to to compare the speed of

2048-bit RSA signing and verification to HMAC using MD5 on an Intel Core i5 processor. For RSA, OpenSSL was
able to perform 760 signs and 24800 verifications per second (using the public exponent e = 65537). For HMAC-MD5,
with a 256-byte input—which is the same size input to 2048-bit RSA—OpenSSL was able to perform 1345132 HMAC
computations per second.



16

squeeze ciphers—are based on the LZW compression algorithm [165], a widely used algorithm found

in the Unix compress utility [66], the GIF image standard [67], and is included in the PDF standard

as an optional compression scheme [43]. Fast Squeeze can provide compression ratios and speeds

comparable to standard algorithms such as plain LZW, gzip, and bzip2. Alternative paradigms for

providing secure compression is an area of future work.

For our storage system, the usage of compression and error correcting codes presents some

challenges.23 If an entire file is compressed and then encoded, subsequent changes to the file may

change the compressibility, and hence final size, of the compressed file. This poses challenges for

the ECCs previously mentioned since they cannot handle insertions and deletions in the middle of

the codeword (though, they can support appending). In this case, the entire (updated) file would

need to be re-encoded before being uploaded to the cloud. Another difficulty is that few compression

algorithms, and none of the popular ones (including LZW), provide for random access to data in the

compressed stream. Rather, one must start at a particular point—the beginning of the stream for

LZW, gzip, and squeeze, and at a 400/600/900KB boundary for bzip2—and decompress from there.

However, using compression can be made more amenable to reads and writes by simply dividing files

into (possibly fixed-sized) blocks and compressing, encrypting, and encoding them separately. This

allows for a much finer granularity for read and write operations and make the usage of compression

more tenable for warmer (i.e., non-archival) data, but the client must track the mapping between

plaintext offsets and compressed ciphertext offsets. However, this is a cost that may be outweighed

by the increased efficiency of the scheme for small reads and writes.

1.2.6 Summary of Enhanced Scheme.

The enhanced scheme given in this section has several desirable properties. First, it can tolerate the

loss and/or corruption of at most n− k servers, as before. Second, the scheme is publicly verifiable, if

we replace the MACs in the Falcon code with a public-key signature scheme (with an increase in

storage and computation overhead). Third, the (uncompressed) storage overhead is ( 1
R−1)|F |(1+s/t),

where the ( 1
R − 1)|F | term is from the redundancy added by the ECC (with rate R), and the (1 + s/t)

term is the overhead for each symbol from the appended MAC in the Falcon code where each
23If we combine compression, even secure compression, with a Falcon code, the compression must be applied prior to

any encoding. All symbols have a fixed size and variations in their compressed length—e.g., by compressing individual
code symbols—can leak information about the contents and enable the targeted erasure attack. See [80] for a thorough
discussion of the leakage inherent to schemes combining compression and encryption.
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Table 1.2: The efficiency of our enhanced secure storage scheme for various operations. We encode a
file F , consisting of |F | bytes, using a Falcon code with k message symbols (each t bytes in size) per
stripe. As with a fixed-rate code, we define R = k/n. The MAC/signature on each symbol is s bytes
in size.

Computation cost Communication cost
Bulk put O( 1

R (|F |/t)) O( 1
R |F |(1 + s/t))

Bulk get O( 1
R (|F |/t)) O( 1

R |F |(1 + s/t))
Small read O(k) O(k(t+ s))
Small write O(n) O(n(t+ s))
Repair O(n) O(n(t+ s))

MAC/signature is s bytes and a symbol is t bytes. Finally, the client must store O(1) secret keys for

the Falcon code.

We summarize the costs of our storage scheme in Table 1.2 (cf. Table 1.1). Recall that to have

the same code rate R as the Reed-Solomon code, we have the Falcon encoder add a ( 1
R − 1)-fraction

of parity symbols so that the ratio of input and output lengths is R. We also use the Falcon code in

the LT coding step of a Raptor code, giving us a secure linear-time encoding and decoding scheme.

We let n = k/R be the number of symbols generated by the Falcon encoder in a stripe. We note that

if we use Fast Squeeze and achieve a compression ratio of ρ, this reduces the overhead for reading

and writing to a ρ-fraction of the original amount. But this reduction is independent of the ECC

used and is equally applicable to the basic scheme, so we omit the savings here.24

The efficiencies given in Table 1.2 are not necessarily comparable to those in Table 1.1. In

particular, the small read and repair costs are quite different since Falcon codes have a high lower-

bound on the value of k. As an example, if each stripe symbol is a single byte, then to read a single

byte, the Falcon code must fetch at least 10000 bytes from the server. In the original scheme, if

both a block and a hash are 16 bytes, then the Merkle tree for a symbol would need to have at least

(10000− 16)/16 = 624 hashes on a single path to fetch the same amount of data. That is, the symbol

would need to have at least 2624 blocks (or 2628 bytes) for 10000 bytes to be transferred to read a

single block. However, despite the loss in efficiency for small reads and writes, the savings in the bulk

upload and download costs are substantial. The encoding and decoding of the Falcon code require

only a linear amount of time, instead of quadratic (see Figure 4.5 in Section 4.7 of Chapter 4 for a

comparison of the throughput of Reed-Solomon and Falcon codes).

24The overhead from using Fast Squeeze is quasi-linear in the input stream length. Chapter 2, Section 2.4 gives
a detailed analysis of the efficiency of Fast Squeeze where we show that both compression and decompression take
O(m log d) time to compress m characters, where d is the size of the dictionary.



CHAPTER Two

Squeeze Cipher: Secure Compression

2.1 Introduction

Individuals and organizations are producing and retaining data in volumes that are unprecedented.

One technique widely used to reduce the footprint of this data is to simply filter it through a

compression algorithm before transmission or storage. Indeed, many popular file systems utilize

transparent file compression, including Apple’s HFS+ [6], Microsoft’s NTFS [112], and Oracle’s

ZFS [19]; additionally, both the standard internet protocol HTTP [41] and Google’s own SPDY [53]

support compression. Concurrent with the accumulation of mountains of data, data thefts have been

increasing in frequency, sophistication, and aggression. Encryption plays a key role in securing data

from these attacks both while at rest (e.g., in NTFS, HFS+, and ZFS) and while in transit (e.g.,

TLS [35] and SPDY), and applying compression before encryption is a natural choice. However, since

compression changes the characteristics of the text being encrypted, we must take care to precisely

describe and analyze the security provided by the combination of these primitives.

In this work we present a theoretical framework for analyzing and proving the security of

combined compression and encryption schemes. We also provide the first provably secure compression

algorithms that compress the data while providing strong privacy guarantees for the data. These secure

compression algorithms—called the squeeze ciphers—are based on the LZW algorithm [165], a widely

used compression scheme found in the Unix compress utility [66], the GIF image standard [67], and

is included in the PDF standard as an optional compression scheme [43]. The first construction, called

Slow Squeeze, possesses strong theoretical properties but is impractical. The second construction,

18
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called Fast Squeeze, is both simple and theoretically sound while providing compression ratios and

speeds comparable to standard algorithms such as gzip and bzip2.

General Problems Combining Compression and Encryption. Unfortunately, there are some

drawbacks to combining compression and encryption together in a naïve fashion. First, the system

must perform two passes over the data: compressing then encrypting. Since these operations are

often chained together, it would be ideal to achieve a compressed and encrypted output in a single

pass over the data. While compression and encryption can be set up to operate in a pipeline (i.e.,

data is encrypted in a streaming manner as it comes out of the compression routine), there are still

two passes over the data occurring.

More troubling, though, is the fact that by combining these primitives together it becomes

impossible to achieve semantic security: the standard, minimal notion of security for a cipher.

Moreover, it is impossible to achieve semantic security even when encrypting with a cipher secure

against adaptive chosen-ciphertext attacks, the gold standard of security for encryption. This failure

occurs because in the game-based definition of semantic security an adversary A chooses two messages,

one of which (chosen at random) will be encrypted and its ciphertext returned. A then tries to

determine which message was encrypted. In this setup, A is permitted to select any two messages

that will be encrypted. In particular, A may select one message that is highly compressible and

another that is highly incompressible, resulting in different length ciphertexts (since the input is

compressed then encrypted).

It is also worth noting that the length of a (compressed) ciphertext can leak information to an

attacker, e.g., the level of compressibility of the file can gives hints about both the content and

structure of the file. See [80] for a full discussion of the information leakage of a general composition

of compression and encryption.1 This leakage is inherent to any scheme that combines compression

and encryption, and where the attacker has knowledge of the input and output lengths. We do not

address this leakage in this work. See Section 2.8.3 for an overview of past work on length-hiding

encryption, which seeks to limit the leakage from compression.

Genesis. This work was born from the observation that compressed data and encrypted data,

ostensibly, look very similar. In particular, a good compression algorithm shrinks the input so that

the output is as long as the “information content” of the input and, moreover, the output appears
1Note that this side-channel is exploited in real systems, e.g., [139].
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close to uniformly distributed (ignoring accompanying header information). The output of a good

encryption algorithm, in comparison, is pseudorandom: i.e., the output is indistinguishable from a

uniformly random string of the same length. Given this apparent similarity, how much privacy is

provided by compressing data? Can data compression serve as a kind of “poor man’s” encryption?

Unfortunately, the answers to these questions are “little to none” and “no.”

Data compression provides little real privacy simply because compression algorithms are de-

terministic and can be inverted by anyone. Even attempts to obfuscate some of the information

needed for decompression (e.g., the prefix tree used in Huffman encoding) do not provide security

against an adversary that knows some statistics about the input message (e.g., the language used and

its associated character frequencies). Thus, the question becomes, can we modify the compression

algorithm (in a light-weight way), casting away the determinism, so that the output of the algorithm

itself provides strong confidentiality for the input message? In this chapter we answer this question

in the affirmative.

Contributions. Our contributions to this topic are several. First, in this work we present a new

definition of semantic security for combined compression-encryption systems (which was not previously

formalized). This definition generalizes the standard notion of semantic security in a natural and

intuitive way and, furthermore, also provides corresponding definitions for non-adaptive and adaptive

chosen-ciphertext security (CCA-1 and CCA-2, respectively). In addition to establishing a theoretical

framework, we provide two constructions that provably achieve security in this framework. Moreover,

one construction is quite efficient, achieving compression ratios and speeds comparable to standard

compression and encryption algorithms. We demonstrate this with a thorough experimental evaluation

on multiple computer architectures.

Organization. The remainder of this chapter is organized as follows. In Section 2.2, we provide

preliminary definitions for tools that will be used throughout the chapter. Section 2.3 details the

LZW compression algorithm, which forms the basis for our secure constructions. Section 2.4 details

our constructions for secure compression algorithms called the Fast and Slow Squeeze ciphers.

Section 2.5 provides a security analysis of the different schemes and proves that they achieve the

claimed security properties. Section 2.6 provides an extensive experimental evaluation of the Fast

Squeeze cipher showing its practicality. We detail some applications and variants of the cipher in
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Section 2.7. Section 2.8 provides a high-level overview of previous work on secure compression and

authenticated encryption. And finally, we discuss future research directions in Section 2.9 and conclude

in Section 2.10.

2.2 Preliminaries

In this section we will provide basic definitions of all the primitives we use, as well as several different

definitions of security for the various primitives that we employ. First, however, we define the notation

that we will use throughout this chapter.

2.2.1 Notation

We denote the security parameter by λ and the empty string by Λ. Let PPT be short for “probabilistic

polynomial-time.” If Alg is a PPT algorithm, let [Alg(π)] denote the set of all possible outputs of Alg

when run on parameters π. Let x R← S denote sampling x from the set S uniformly at random. Let

x← D denote sampling x according to distribution D. There is some notational overloading as we

use ← for assignment in algorithm listings, but its meaning will clear from the context or clearly

marked in a comment. Let ◦ denote concatenation and l(s) and |s| the length of a string s. Let C

be the space of ciphertexts andM the space of messages. Let P(n) be the set of all permutations

of binary strings of length n. We use N to denote the set of positive integers. For a keyed function

f(k, ·), we will often denote this as fk(·).

2.2.2 Basic Definitions

First, we provide a definition of data compression. At a high-level, data compression seeks to conserve

storage capacity and network bandwidth by transforming data into a more compact form. More

concretely, data compression is an encoding of a sample from a data source such that, in expectation,

an encoded message is no longer than the original data. Since it is not possible to achieve compression

in all cases (i.e., for all binary strings—for example, there are 2k k-bit binary strings and only 2k − 1

strings of length less than k), we concern ourselves with compressing specific subsets of messages and

seek to achieve compression in expectation.

Definition 2.1. LetM⊆ A∗ be a space of messages over alphabet A with associated probability

distribution D overM. An encoding forM is a map C :M→ S, for some set of binary strings S.
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If S = {0, 1}∗, then C is called a variable-to-variable code. If S = {0, 1}n, for some n ∈ N, then C

is called a variable-to-fixed code.2 An element in the image ofM is a codeword. If any sequence of

codewords can be parsed unambiguously, then C is called uniquely decodable. �

We only consider uniquely decodable codes. Given a probability distribution D over a message

spaceM, let p(m) be the probability of sampling message m fromM according to D and let l(m)

be the length of m. The average length of a code is defined as,

L(C) =
∑
m∈M

p(m)l(C(m)).

Ideally, we want to design the encoding C to obtain,

L(C) ≤
∑
m∈M

p(m)l(m).

If so, then we will refer to C as a compression function. We call the associated inverse map from the

set of codewords toM the decoding function and denote it with D. If C is a compression function,

then we call D the decompression function.

We define a keyed compression function, also referred to as a compressing cipher, to be a compression

function that takes an additional parameter k, such that k is required to correctly decompress the

input.

Definition 2.2. A keyed compression function over a message spaceM⊆ A∗ and ciphertext space

C, is a triple of (possibly probabilistic) polynomial-time algorithms (Gen,Encode,Decode) where,

• Gen takes as input 1λ and outputs a key k.

• Encode is a compression function that takes as input a key k and a plaintext m ∈ M and

outputs a (compressed) ciphertext c ∈ C.

• Decode takes as input a key k and a ciphertext c ∈ C and outputs the plaintext m ∈M∪ {⊥}.

We require that for all k ∈ [Gen(1λ)], for all m ∈M, Decode(k,Encode(k,m)) = m. �

Any plain compression scheme trivially satisfies this definition by having the key-generation

algorithm Gen always output ⊥ and by letting Encode and Decode be the usual compression and

decompression functions. Of course, such a set up gives little, if any, privacy. Note, also, that any

length-preserving cipher applied to a prefix-free set of messages also satisfies this definition since the
2IfM⊆ Ak, for some k ∈ N, then C :M→ S is a fixed-to-variable code if S = {0, 1}∗. If S = {0, 1}n, then C is a

fixed-to-fixed code.
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identity function is a valid compression function for that set.3 This definition of a keyed compression

function is a particular instance of a symmetric encryption scheme (or private-key encryption scheme).

Such a scheme is a triple of algorithms (Gen,Enc,Dec), where Gen is the key generation algorithm

(where the key is kept secret), and Enc and Dec are encryption and decryption, respectively, and

operate in the expected way—i.e., by taking the secret key and a message/ciphertext as input and

encryption/decrypting it.

As part of the construction of our compressing cipher, we will use a pseudorandom permutation

(PRP) in a key-derivation process that incorporates a nonce (or initialization vector) into each

encryption. Let Of be an oracle for the function fk(·), where k ← {0, 1}λ and f is a permutation of

{0, 1}n. We do not give the adversary A access to an oracle for f−1 and hence only require a “weak”

PRP. The cryptographic definitions used and the security analysis performed in this work will be

concrete, but for simplicity we will often omit the exact security of a given primitive.

Definition 2.3 (Pseudorandom Permutation). A keyed permutation f : {0, 1}λ × {0, 1}n → {0, 1}n

is (t, q, ε)-indistinguishable, if for all PPT distinguishers D running in time t and making q queries to

Of , distinguishes f from a permutation π R← P(n) with probability at most 1
2 + ε. �

If we relax the restrictions on D and only require that t and q be polynomially-bounded, then if ε

is negligible, we say that f is computationally indistinguishable from a random permutation, or just

computationally secure. The typical example of a pseudorandom permutation is a block cipher, such

as AES.

Another tool used in our constructions is a pseudorandom generator (PRG). A PRG is a deter-

ministic algorithm that given a short, random seed will produce a long stream of pseudorandom bits.

A PRG is secure or cryptographically strong if, given a random seed, its output is indistinguishable

(in polynomial time) from truly random bits.

Definition 2.4 (Pseudorandom Bit Generator). A bit generator G is a pair of algorithms (Gen,F),

where Gen is a PPT algorithm that on input 1λ outputs a seed s ∈ {0, 1}λ, and F : {0, 1}λ×{0, 1}∗ →

{0, 1}∗. Note that the second parameter of F specifies the number of bits to output, i.e., |F(s, i)| = i.

Moreover, F(s, i) is a prefix of F(s, i + 1). G is (t, b, ε)-indistinguishable if for all polynomial-time

distinguishers D, running in time t and given b bits of input, distinguishes F(s, b) from a random

string s ∈ {0, 1}b with advantage at most ε over 1
2 . �

3If the set is not prefix-free, then it is not possible to unambiguously parse a sequence of codewords.
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We say that a pseudorandom generator is secure if both t and b are polynomially bounded, and ε

is negligible function of the security parameter λ. We will typically refer to G as pseudorandom or a

pseudorandom generator rather than specify its exact, concrete indistinguishability. For notational

simplicity, we will denote F(s, b) by G(s) and let b be implicit from the context. Note that one could

define an adaptive variant of G where F is a stateful algorithm and outputs its bits one-by-one (or k

at a time). The distinguisher would then take the bits from F dynamically; though, the total number

of bits would still be bounded by b.

Since we would like our scheme to be able to encrypt multiple messages, we require the PRG to

be given a fresh seed for each encryption. Normally, a distinguisher D for G is given a string s of

length at most b from an oracle O and must guess whether s is random or pseudorandom. But, since

we allow our adversary to make multiple encryption queries we must have a PRG that is secure even

if it is reseeded multiple times. Therefore, we allow D to issue “reseed” requests to O. If O is simply

G, then it is initialized with a new random seed and a new sample is given to D. If O produces

random bits, then D is just given a new random string.4 A PRG that is secure in this setting we call

reseedably-indistinguishable.

Definition 2.5. A PRG G is (t, r, b, ε)-reseedably-indistinguishable if for all PPT distinguishers D,

running in time t, making at most r reseed requests, and receiving at most b bits as input per seeding,

succeeds in distinguishing the output of G from random with probability at most 1
2 + ε. �

We will assume that G can produce a super-polynomial number of bits and that, in addition to

the sample s, D may request additional, subsequent bits from the output of G. For this reason, in

the rest of this work we will omit the b parameter. As before, relaxing the restrictions on D and

letting t and r be just polynomially bounded, if ε is negligible then we say that such a PRG is

computationally secure. Note that requiring that a PRG to be reseedably-indistinguishable does not

significantly change its strength. In Appendix A we formally prove the polynomial-equivalence of

reseedable-indistinguishability and standard indistinguishability through a straightforward hybrid

argument. We summarize this result with the following lemma.

Lemma (Indistinguishability Equivalience). Let G be a (t, b, ε)-indistinguishable PRG, then G is

(t− r, r + 1, b, εr2)-reseedably-indistinguishable.
4This models typical reseeding of a PRG in practice, i.e., generate a new random seed and forget the old one.
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Finally, another basic tool that we use is a message authentication code (MAC). Briefly, a message

authentication code is a triple of algorithms (Gen,Mac,Verify) that, given a key k and a message m,

produce a tag t for the message.

Definition 2.6 (Message Authentication Code). A message authentication code (MAC) for a message

spaceM and tag space T , is the triple of algorithms, M = (Gen,Mac,Verify) where,

• Gen is a PPT algorithm that on input 1λ outputs a key k ∈ {0, 1}λ.

• Mac is a PPT algorithm that on input k ∈ {0, 1}λ and m ∈M outputs a tag t ∈ T .

• Verify is a deterministic algorithm that on input k ∈ {0, 1}λ, m ∈M, and t ∈ T outputs a bit

b ∈ {0, 1}.

We require that for all k ← Gen(1λ) and all m ∈M, Verify(k,m,Mac(k,m)) = 1. �

Intuitively, we would like a MAC scheme to be “unforgeable” so as to provide strong assurances

of message authenticity and integrity. The strongest notion of unforgeability is the following: no

PPT adversary can forge a signature for any message, even one of its own choice (this is called

existential unforgeability). In the below definition we give the adversary A access to a Mac oracle Ok

that on input m produces t = Mac(k,m). After a number of queries, bounded by some q, A outputs

a message and tag pair (m, t) and “wins” if the MAC verifies for m (i.e., Verify(k,m, t) = 1). We also

require that m was not previously queried to the oracle.

Definition 2.7 (Existentially Unforgeable MAC). A MAC scheme M is (t, q, ε)-unforgeable if for

all PPT adversaries A running in time t, given access to an oracle Ok (where Ok(m) = Mac(k,m)

for some k ← Gen(1λ)), we have that,

P [k ← Gen(1λ);AOk(·)(1λ)→ (Q,m, t) : m 6∈ Q ∧ Verify(k,m, t) = 1] ≤ ε

where Q is the list of oracle queries made by A and |Q| ≤ q. The probability is taken over the random

coins of A, Gen, and the oracle Ok. �

If t and q are polynomially-bounded, and ε is a negligible function of λ, then we say M is

existentially-unforgeable or just computationally-secure.

2.2.3 Entropy-restricted Semantic Security

When constructing a cipher, we are concerned with “hiding” as much information as possible in the

input message m. That is, intuitively, we want that the ciphertext leaks no significant information
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about the plaintext. Put another way, we want that given any pair of messages, their respective

ciphertexts are indistinguishable.5 To accomplish this, we give the adversary A access to an encryption

oracle that is instantiated with a random key. After some number of queries, A outputs a pair of

message m0 and m1 (the “challenge messages”). One of the messages is chosen at random and

encrypted, and the resulting ciphertext is given to A. The task of A is to guess which challenge

message was encrypted, and we say that the scheme is secure if A cannot do this with non-negligible

advantage over 1/2. This notion is formalized in the following game.6

1. A key k is generated by Gen(1λ).

2. The adversary A is given 1λ as input, has oracle access to Enck(·), and outputs a pair of message

m0, m1 of the same length.

3. A random bit b← {0, 1} is chosen, and c← Enck(mb) is given to A.

4. A continues to have oracle access to Enc(k, ·) and outputs a bit b′.

5. A wins the game if b′ = b.

Security against a PPT adversary in this game is called chosen-plaintext attack indistinguishability,

denoted IND-CPA. Denote the oracle for Enc(k, ·) by O(·). We define the success probability of A in

the game to be,

SuccIND-CPA
Π,A (1λ) = P [k ← Gen(1λ);AO(·)(1λ)→ m0,m1; b← {0, 1};AO(·)(Enc(k,mb))→ b′; b = b′],

where the probability is over the random coins of Gen, A, and the oracle O. Also, we define

AdvIND-CPA
Π,A (1λ) = |SuccIND-CPA

Π,A (1λ)− 1
2 | to be the advantage of A in the game.

Definition 2.8. A symmetric encryption scheme Π = (Gen,Enc,Dec) is (t, q, ε)-IND-CPA secure if

for all PPT adversaries A running in time t and making at most q oracle queries to O(·), AdvΠ,A(1λ)

is at most ε. �

In considering the security of combining compression and encryption together, as stated before, it

is not possible for a such a system to be IND-CPA secure. In particular, since the adversary A may

choose arbitrary challenge messages, it can select a high-entropy m0 and a low-entropy m1.7 With

these, a keyed compression function will likely produce a much shorter output for m1 than for m0,

allowing A to easily distinguish them.
5These two formulations were proven equivalent in [48].
6The game-based definition is lifted almost verbatim from [77].
7We use the term “entropy” not in its mathematical sense; rather, we use it as an informal synonym for “information

content” and “length when compressed.”
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Instead of IND-CPA security, we aim for an entropy restricted variant. Specifically, we restrict A

so that m0 and m1 must both come from the same class of messages C ⊆ M. We call such as class

a compression class. A scheme is secure relative to a class C if the encryptions of any m0,m1 ∈ C

are indistinguishable. For example, if C =M, then we have normal semantic security. Letting C be

a keyed compression function, we can define Cl1,l2 = {m ∈ M : l1 ≤ |C(m)| ≤ l2}, i.e., m0 and m1

compress to lengths within a fixed range. This can be extended to all ofM, partitioning the message

space into equivalence classes. Note that, given a scheme that is secure when l1 = l2, we can extend

it to the case where l1 < l2 by simply appending an end-of-file marker to the plaintext and then

appending random padding to the ciphertext until all ciphertexts have length l2.8 The oracle can

ensure that two messages come from the same class by encrypting both and examining the lengths.

This approach is in contrast to the work of [162] where Tezcan and Vaudenay examine the security

provided by adding padding to the end of a plaintext message. They consider an adversary that seeks

to distinguish the combined padding and encryption of two arbitrary messages that are allowed to

be of different lengths (with a bounded difference). That is, implicitly they consider the case where

the challenge messages may come from different classes (as defined in this work). They prove that

insecurity decreases linearly with padding length and that selecting the padding length uniformly at

random is nearly optimal. As stated above, we only consider indistinguishability of messages within a

single class.

Note that it can be difficult to ascertain whether or not two messages m0 and m1 belong to the

same class without compressing the messages themselves (see [61]). With our particular constructions,

there exists a public, deterministic algorithm that can compress messages to the exact same length

as our ciphers. But, in general, this may not be possible with other schemes. This means that an

adversary A may not know a priori whether or not two messages compress to the same length. In

such a situation, the oracle enforces that m0 and m1 come from the same class, and if they do not

then A is not penalized (i.e., the query is not “counted”).

We define entropy-restricted IND-CPA security via a game. The game is nearly identical to the

game for IND-CPA security, but we change the requirement on the challenges to be m0,m1 ∈ C, for

some class C ⊆ M. Define SuccER-CPA
Π,A,C (1λ) to be the probability that an adversary A succeeds in

the ER-CPA game for class C. Similarly, define AdvER-CPA
Π,A,C (1λ) = |SuccER-CPA

Π,A,C (1λ) − 1
2 | to be the

advantage of A in the ER-CPA game.
8That is, we make the ciphertext self-delimiting from the padding.
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Definition 2.9. We say that a symmetric encryption scheme Π = (Gen,Enc,Dec) is (t, q, ε)-entropy-

restricted CPA secure for a class of messages C ⊆ M, if for all PPT A running in time t and making

at most q queries to the encryption oracle O, AdvER-CPA
Π,A,C (1λ) is at most ε. �

Often, we will just term this ER-CPA security and omit the specification of (t, q, ε), except when

working in a formal context. For simplicity we will only consider the classes of messages Cl1,l2 where

l1 = l2, since a scheme secure for those classes can be extended to a scheme that is secure for l1 < l2.

We note that there are two strictly stronger notions of security for a cipher, specifically IND-CCA-1

and IND-CCA-2 (for “chosen-ciphertext attack indistinguishability”). Roughly, the games for IND-

CCA-1 and IND-CCA-2 security proceed the same as for IND-CPA security, except the adversary A is

given access to a decryption oracle in addition to the encryption oracle. For IND-CCA-1, A can only

query the decryption oracle before outputting the challenges m0 and m1. After receiving the challenge

ciphertext c, A may only query the encryption oracle. For IND-CCA-2, A is allowed to query the

decryption oracle after receiving c as well, but A may not query c to the oracle (otherwise IND-CCA-2

security would be impossible to achieve). Here we also define analogous entropy-restricted CCA-1

and CCA-2 notions of security for a class C ⊆ M, which we will term ER-CCA-1 and ER-CCA-2.

The definitions of SuccER-CCA-1
Π,A,C (1λ), SuccER-CCA-2

Π,A,C (1λ), AdvER-CCA-1
Π,A,C (1λ), and AdvER-CCA-2

Π,A,C (1λ) are

defined analogously.

Definition 2.10. We say that a symmetric encryption scheme Π = (Gen,Enc,Dec) is (t, q1, q2, ε)-

entropy-restricted IND-CCA-X secure (or (t, q1, q2, ε)-ER-CCA-X secure) with X ∈ {1, 2}, for a class

of message C ⊆ M, if for all PPT adversaries A running in time t, making at most q1 encryption

queries and making at most q2 decryption queries, AdvER-CCA-X
Π,A,C (1λ) is at most ε. �

We note that any IND-CPA secure cryptosystem combined with a compression pre-processing

step is automatically ER-CPA secure, else we could easily create an algorithm to break the IND-CPA

security of the scheme. Specifically, if A breaks the ER-CPA security of the scheme, then we can

construct B which takes each query q made by A, compresses it, and then queries its own oracle.

When A outputs its challenges m0 and m1, we know that the compressed lengths are equal and so,

once compressed, they are valid challenges for B to use. After receiving back the encryption of m′b
for some random b, the ciphertext is passed back to A and B outputs whatever A does. Analogous

reductions show that an IND-CCA-1 and IND-CCA-2 secure ciphers are ER-CCA-1 and ER-CCA-2

secure (respectively).
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Even though ER-CPA security and its variants are new definitions of security, they relate in

a simple way to the standard definitions. Firstly, as shown above, being secure in the usual sense

implies security in our entropy-restricted context. Secondly, there are many results constructed

from IND-CPA/CCA-1/CCA-2 primitives, but, crucially, few of these results depend on the length

of the input message. Thus, many of these results also hold when considered in the context of

ER-CPA/CCA-1/CCA-2 security. This is intuitively true since the restriction that challenge messages

have the same length is to ensure that the ciphertexts have the same length, i.e., the length of the

object given to A does not divulge information about the input message. As an example, the results

on ciphertext unforgeability in [78], which we discuss next, also hold in our entropy-restricted context.

2.2.4 Ciphertext Unforgeability

Katz and Yung in [78] define the notion of “ciphertext unforgeability” where it is infeasible for any

PPT algorithm to generate a valid ciphertext without access to the encryption key. Intuitively, if a

cipher possesses this property, then a decryption oracle becomes “useless” to the adversary. Thus,

coupling unforgeability with a notion of privacy (e.g., semantic security) one can gain much stronger

security, such as resistance to chosen-ciphertext attacks. Katz and Yung define several distinct notions

of unforgeability, but we will concern ourselves with the strongest definition: existential unforgeability.

We reproduce their definition here but with a slight change in terminology. What they define as

(t, q, b; ε)-secure we call (t, q, ε)–unforgeable, since we will be working with multiple notions of security

in this chapter and we do not quantify the number of bits b received as input to the adversary (the

reasoning for this is explained below).

Definition 2.11. Let Π = (Gen,Enc,Dec) be a symmetric encryption scheme, and let A be a PPT

adversary. Define:

Advexist
A,Π = P [k ← Gen(1λ); y ← AEnck(·) : Deck(y) 6=⊥].

We require that A has never received y from its encryption oracle. We say that Π is (t, q, ε)-

unforgeable, if for any PPT adversary A which runs in time at most t and asks at most q queries, we

have Advexist
A,Π ≤ ε. �

They also prove that this existential unforgeability coupled with IND-CPA security implies IND-

CCA-2 security (see Theorem 1 in [78]). Observing that their proof is independent of the message

length, we state, with just a high-level proof, an analogous entropy-restricted version of their result.



30

Lemma 2.1. Let Π be an encryption scheme that is (t1, q1, ε1)-unforgeable and (t2, q2, ε2)-ER-CPA

secure. Then Π is (t′, q′e, q′d, ε′)-ER-CCA-2 secure, where t′ = min{t1, t2}, q′e = min{q1 − 1, q2}, and

ε′ = qdε1 + ε2.

The proof of this proceeds identically to that of the original paper, with the exception that

challenge messages must belong to the same compression class. We note two differences between the

statement of this lemma and Theorem 1 in [78]. First, they specify that plaintexts have length l, while

we allow plaintexts to be of arbitrary length (though the encryptions of two challenges messages must

be the same length). Secondly, in addition to running time and the number of oracle queries, they

quantify an upper-bound on the number of bits given as input to A (from the encryption queries).

In their scheme, if Π is existentially unforgeable with at most b bits given to A and Π is IND-CPA

secure with at most be bits given to A, then it is IND-CCA-2 secure receiving at most min{b− l, be}.

Since we allow plaintexts to have arbitrary (but polynomially-bounded) length, we cannot give an

upper bound on the number of bits received by A, and, hence, omit any such bound.

2.3 LZW Compression

In [165], Welch first presented his modification of the older LZ78 compression algorithm [174]. His

algorithm, known as LZW, is a dictionary-based compression algorithm where the dictionary is

dynamically constructed as the input is processed, as in LZ78. The dictionary D in LZW is initialized

with all single-character strings in the input alphabet while LZ78 starts with an empty dictionary.

In each iteration of LZW, the next characters are scanned and the algorithm matches the longest

prefix p of the input that is in D—i.e., p ∈ D but p ◦ c 6∈ D, where c is the next character. The index

of p in D is output and the string p ◦ c is added to D. The algorithm then repeats this process on

the remaining input starting with the next character c until all input is consumed. This is shown

in Figure 2.1 and detailed in Algorithm 2.1. Contrast this with LZ78 where at each iteration, the

compression algorithm outputs the index of p as well as the non-matched character c. This allows

LZW to achieve better compression than LZ78 since LZW removes these “uncompressed” single

characters from the output stream and folds them into the matched strings.9

Decompression works in much the same way but in reverse. Namely, the algorithm reads in the next

dictionary index, looks up the corresponding entry, and outputs the associated string. Decompression
9This has the added benefit of also simplifying the parsing of the compressed data stream.
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Figure 2.1: The LZW compression algorithm.

is detailed in Algorithm 2.2. Note that there is a special case that must be handled. If the input has

a string c ◦ w ◦ c ◦ w ◦ c, where c ◦ w is in the dictionary, then the compression algorithm will match

c ◦ w and insert c ◦ w ◦ c into the dictionary. The next string matched is then c ◦ w ◦ c and its index

is output. But, at the receiver, the second index received refers to an empty entry in the dictionary.

We know, however, that if the empty index points to the next available cell (where the new entry

will be placed), then it must be that we have hit this special case. However, if the index does not

point to the next available cell then the data has been corrupted and we have a decoding error.

The dictionary used can be of fixed size or it can grow dynamically. The former requires either

some sort of deterministic eviction policy or freezing the dictionary when it becomes full. Growing the

dictionary dynamically requires that the encoder and decoder grow the dictionary at the same time.

Typically, the dictionary is doubled in size (and outputs become one bit longer) when the dictionary

is filled. This approach is most common as it gives better compression, using fewer bits early on

in the encoding process. We note that our cipher is compatible with any dictionary management

scheme that is not dependent on the order of the entries in the dictionary (e.g., least-recently-used).

The original LZW paper [165] also describes a space optimization to decrease memory usage of

the dictionary.10 Specifically, each entry consists of a prefix that is found elsewhere in the dictionary

with a single character appended (with the exception of the entries consisting of single letters).

The optimization is to simply store the index of the prefix and the single character extending the

prefix. This greatly reduces the space consumed by the dictionary, but requires a few changes to the

decompression algorithm. We refer the reader to the original paper [165] for details.
10This space optimization is also possible in LZ78.
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Algorithm 2.1 The LZW compression algorithm.
Input: Character stream I
Output: Stream of dictionary indices
1: Initialize dictionary D to contain all single-character strings
2: prefix← Λ . The current prefix of the input
3: free← number of single-character strings . The index of the first free entry in D
4: while there is more input in I do
5: Read next character c
6: if prefix ◦ c in D then
7: prefix← prefix ◦ c . Extend prefix with c and continue processing input
8: else
9: Output index of prefix in D . prefix ◦ c not in D: add it to D
10: D[free]← prefix ◦ c
11: free← free + 1
12: prefix← c . Continuing processing the input starting at c
13: end if
14: end while
15: if prefix 6= Λ then . Output index of the remaining input
16: Output index of prefix in D
17: end if

2.4 Squeeze Ciphers

To turn the LZW algorithm into a cipher, we change how the dictionary D is managed; in particular,

we and randomize the order of the entries. We employ two different randomization schemes, each

utilizing a PRG as the source of randomness. In the first scheme, after outputting the index of the

matched string, we randomly permute all of D. This ensures that at each step the index of the

next matched string will be uniformly distributed among all possible values (and hence, achieves

perfect secrecy11 when using truly random bits). For the second scheme, D is randomly permuted

after initializing it with all single-character strings and then is incrementally re-randomized by

partially permuting the dictionary D after making a match. Intuitively, much of the randomness in

the permutation of D is left unused and can be reused on the next iterations, provided that some

additional randomness is injected to restore the random permutation. This is detailed below.

In both schemes, a nonce ` is given as an input parameter and is then combined with a master

secret key to generate a session key for the pseudorandom generator. Since the PRG is used to

determine the ordering of entries in the dictionary, we do not want the encoding of one message to

leak information about any other message. To derive the ephemeral key, we apply a pseudorandom

permutation f : {0, 1}λ × {0, 1}λ → {0, 1}λ—where λ is the security parameter—to the nonce ` to
11Perfect secrecy is also known as information theoretic security. Any scheme with perfect secrecy is secure even

from an adversary with unbounded computational resources.
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Algorithm 2.2 The LZW decompression algorithm.
Input: Sequence of indices I
Output: Stream of characters or the error symbol ⊥
1: Initialize dictionary D to contain all single-character strings
2: c← Λ . First character of next output string
3: prev← Λ . The previously output string
4: free← number of single-character strings
5: while there is more input in I do
6: Read next index i
7: if D[i] is defined then . i is a valid index in D
8: c← head(D[i]) . Take the first character of D[i]
9: D[free]← prev ◦ c . prev ◦ c was the value inserted after encoding prev

10: free← free + 1
11: else if D[i] is not defined and i = free then . Special case: input was c ◦ w ◦ c ◦ w ◦ c
12: c← head(prev) . The first character of prev is c
13: D[i]← prev ◦ c . We’re decoding prev ◦ c
14: free← free + 1
15: else
16: Output ⊥ and exit . Decoding failed: invalid index
17: end if
18: Output D[i] . Finally: output D[i] and update prev
19: prev← D[i]
20: end while

compute the seed fk(`) = s, where k ∈ {0, 1}λ is the master secret key. The nonce is prepended to

the output so that receiver can properly initialize G for decryption. We use a PRP for key derivation

to simplify the security analysis: using it ensures that each session key is both uniformly distributed

and unique. In practice, any secure key-derivation function (such as PBKDF2 [74]) may be used.

2.4.1 Slow Squeeze: Simple, Secure LZW Compression

As stated previously, to turn LZW into a cipher, the simplest solution is to randomly permute

the entire dictionary after each iteration. This ensures that whatever the next substitution may

be, the output value is uniformly distributed among all possible values.12 This small modification

to LZW, however, is not enough to prevent all attacks (e.g., manipulation of the ciphertext). In

particular, as described, all prefixes of a ciphertext are themselves valid ciphertexts, allowing for

trivial truncation attacks. Such attacks can be thwarted by appending a special “end-of-file” (EOF)

symbol to the plaintext message before encrypting. If, when decrypting, the input ends before the

EOF has appeared in the decrypted stream (or if the EOF was encountered before the end of the

input) then the decryption algorithm fails. This secure LZW algorithm, which we call the Slow
12We note that this scheme is entirely compatible with the dynamically-growing dictionary described earlier.
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Figure 2.2: The Slow Squeeze secure compression algorithm.

Squeeze cipher—Fast Squeeze is detailed later—is shown pictorially in Figure 2.2. The encryption

algorithm is detailed in Algorithm 2.3 and the decryption algorithm is detailed in Algorithm 2.4.

As stated previously, Slow Squeeze utilizes a PRP f for session key derivation and a PRG G for its

source of randomness. Both of these functions are public parameters to the scheme.

Note that if we limit the load of the dictionary to α, then we do not need to permute the entire

dictionary (i.e., we do not need to “move” the empty cells). We can store the dictionary implicitly

and map strings to their indices (e.g., via a hash table) and ensure that there are no “collisions” of

numbers. This also provides an immense efficiency gain when α is very small (say, α ≤ 2−λ) since we

can use far fewer pseudorandom bits (on the order of the number of used entries in the dictionary).

We will show that this scheme achieves ER-CCA-2 security in Section 2.5.

Efficiency. LZW compression is efficient, taking O(n) time (where n is the input size) since, with a

dictionary that performs constant-time look-ups, it performs just a constant amount of work at each

step. (For example, a prefix tree or a hash table would allow for constant-time look-ups.)For Slow

Squeeze, the compression and decompression functions can also use these efficient data structures

for look-ups and processing the input/output characters. However, at each step, Slow Squeeze must

permute the entire dictionary. If the dictionary has total size d and indices are of length l, then

generating the permutation takes O(dl) time using the Fisher-Yates algorithm13 (see [42] and [82])

and applying the permutation also takes O(d) time. This gives a total compute time of O(ndl).
13Typically, descriptions of the Fisher-Yates algorithm implicitly assume that the PRG can output a random integer

in Zd in constant time.
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Algorithm 2.3 The Slow Squeeze Cipher: a simple, secure LZW compression algorithm.
Input: Key k, nonce `, and input stream I
Output: Encrypted, compressed output stream O
1: Initialize dictionary D with all single-character strings and EOF symbol
2: Set s← f(k, `) and seed PRG G with s . f is a PRP
3: Output ` . G is a PRG
4: Generate a permutation π using G and apply it to D
5: Set prefix← Λ and c← Λ
6: while there is more input in I do . Find longest prefix of I that is in D
7: Read next character c
8: if prefix ◦ c in D then
9: prefix← prefix ◦ c
10: else . prefix is the longest prefix of the input that is in D
11: Output index of prefix in D
12: Insert prefix ◦ c into D in the first free position
13: Generate a new permutation π with G and apply it to D
14: prefix← c
15: end if
16: end while
17: if prefix 6= Λ then
18: Output index of prefix in D
19: Generate a new permutation π with G and apply it to D
20: end if
21: Output index of EOF in D

However, to achieve strong security the load in the dictionary α must be negligible in λ (e.g.,

α ≤ 2−λ, see Section 2.5). This implies that the size d of the dictionary must be super-polynomial

in λ. However, as noted previously, we only need to permute a small fraction of the dictionary: that

is, we only need to move the used entries since “moving” an empty cell to another empty cell is in

essence a no-op. Moving only the used entries can be done by simply generating a new random index

for each entry. If there are m entries in the dictionary and l is the length of an index, then this will

take O(ml) time in each iteration of the loop. When generating the indices, however, there may be

collisions, i.e., a generated index refers to an entry that is already used. By the birthday paradox,

the probability of such a collision is ≈ m2l/2; setting l = poly(λ) makes this probability negligible.

Noting that m ≤ αd = α2l and setting α such that α2l is polynomially-bounded, we have that Slow

Squeeze compression and decompression take O(nlαd) time, with overwhelming probability. The

efficiency of Slow Squeeze is summarized in the following lemma.

Lemma 2.2. Consider Slow Squeeze with dictionary D of size d with maximum load α and index

length l ≥ log d. Let m = αd be the maximum number of used entries in D. Then, with overwhelming

probability, Slow Squeeze takes O(nml) time to compress or decompress a stream of n characters.
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Algorithm 2.4 Decryption algorithm for the Slow Squeeze Cipher.
Input: Key k and sequence of indices I
Output: Output character stream O or ⊥
1: Initialize dictionary D with all single-character strings and EOF symbol
2: Read the nonce ` from I
3: Set s← f(k, `) and seed PRG G with s . f is a PRP and G is a PRG
4: Set free to the first free entry in D
5: Generate a permutation π using G and apply it to D
6: Set prev← Λ and c← Λ
7: Set free← π(free) . free indicates the permuted first free position in D
8: while there is more input in I do
9: Read next index i
10: if D[i] is defined then
11: c← head(D[i]) . Take the first character of D[i]
12: D[free]← prev ◦ c . Insert into the permuted first free position
13: else if D[i] is not defined and i = free then
14: c← head(prev)
15: D[i]← prev ◦ c
16: else
17: Output ⊥ and fail . Decoding failed
18: end if
19: if D[i] = EOF and there is more input in I then . Check for valid usage of EOF character
20: Output ⊥ and fail
21: else if D[i] = EOF then
22: Exit . Decoding finished
23: end if
24: Output D[i] and set prev← D[i]
25: Set free to the first free entry in D
26: Generate a new permutation π with G and apply it to D
27: Set free← π(free)
28: end while

2.4.2 Fast Squeeze: Efficient, Secure LZW Compression

While simple, Algorithm 2.3 is quite inefficient. After encoding a string, the entire dictionary D is

randomly permuted, i.e., a permutation on |D| elements must be chosen uniformly at random.14 As

stated above, the (asymptotically optimal) Fisher-Yates algorithm requires O(n) time to produce a

random permutation of n elements, making n calls to a source of randomness for l = log2 |D| bits

each time. In practical constructions, the source of randomness would be a PRG.15 On each iteration

of the main loop in Slow Squeeze, a single index is output (“used”) and then the entire dictionary
14As noted above, this can be optimized so that we only permute the non-empty cells in the dictionary D, but we

are still using many pseudorandom bits.
15By introducing a PRG we are biasing the distribution of permutations and limiting the number of possible

permutations. For instance, 100! ≈ 2524.8, requiring approximately 525 bits of internal state in the PRG. But, since we
assume the PRG is secure, the distribution of permutations produced is indistinguishable from the uniform distribution
over P(n).
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must be permuted, essentially throwing away the extra pseudorandom bits produced by the PRG.

That is, at each iteration, the PRG produces |D| log2 |D| bits, but only log2 |D| are actually used to

encode data.

Speeding Things Up. To reduce this inefficiency, we re-use the “unused” randomness from the

previous permutation of the dictionary. At each iteration, before outputting the index of the matched

entry, we have a k out of n permutation of the dictionary entries, where k is the number of used

entries. After outputting the index of an entry e, we have revealed part of the permutation and are

left with a k − 1 out of n− 1 permutation.16 To restore the k out of n permutation we can simply

swap e with another entry chosen at random (including empty entries). See Lemma 2.4 in Section 2.5

for a proof that this is sufficient. When adding an element to the dictionary, to build a k + 1 out of

n permutation, we only need to select one of the empty entries at random and use it to store the

new entry. The other entries can be left in place. We show in Lemma 2.5 in Section 2.5 that this is

sufficient to create a random k + 1 out of n permutation of the dictionary entries.

Malleability. Unfortunately, the ciphertexts produced by Fast Squeeze are malleable, i.e., the

adversary A can manipulate a ciphertext to produce another different, yet valid, ciphertext. For

example, A could simply remove the tail of a ciphertext and it would decrypt without trouble. Even if

we add a special EOF marker to detect truncation attacks, the adversary can still swap two adjacent

indices and escape detection, with high probability.17 There is no way to prevent such an attack

without creating a feed-back loop where the current plaintext symbol or output index affects the

encryption of the subsequent plaintext in a non-trivial way. The cleanest solution to this is to simply

use a secure MAC computed over the output indices to detect any manipulation by the adversary.

This also eliminates the need for a special EOF marker and, more importantly, allows us to have

a dictionary load α much closer to 1. This is in contrast to Slow Squeeze which must have α be

negligible in λ to achieve strong security, ensuring that “compression” is largely asymptotic instead of

practical. Using a secure MAC allows for a profoundly better compression ratio in addition to using

fewer pseudorandom bits. The encryption algorithm is diagrammed in Figure 2.3 and is detailed in

Algorithm 2.5.
16We assume that the adversary has full knowledge of the input message.
17This attack would fail if the consecutive indices fall in the decoding special case, where the input consists of

c ◦ p ◦ c ◦ p ◦ c. In this situation, the second index will refer to an empty entry in the previous iteration and will cause a
decoding error if used in that iteration.
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Note that this scheme (i.e., a cipher plus a MAC) is the construction used in many authenticated

encryption schemes. If we use an incremental MAC, such as HMAC, the MAC computation can be

performed online while we are encrypting the plaintext. Most authenticated symmetric encryption

schemes achieve security in one or two passes over the data, adding compression into the mix then

adds another pass over the data. Thus, Fast Squeeze is no slower (in terms of passes over the data)

than the best authenticated encryption schemes, and Slow Squeeze achieves the same properties with

just a single pass. Note that if we omit the MAC, then our scheme provides as much security as

simply composing compression and encryption in the naïve way. But, we achieve compression and

encryption with a single pass while the naïve construction requires two.

Decryption. In Algorithm 2.7 we have the decryption algorithm specified for Fast Squeeze. It

behaves much as the original decompression algorithm in Algorithm 2.2. Note that at the end,

we verify that the computed MAC is equal to the sent MAC and fail if not. There is one subtle

complication to Fast Squeeze’s decryption algorithm. Since we are randomly inserting entries into

the dictionary, we have to be more careful with the special case described earlier, where prev = c ◦ w

is sent followed by prev ◦ c = c ◦ w ◦ c.18 Here, instead of testing that the received index i is equal to

the free index, we pre-compute at the pseudorandom index for the next inserted entry (denoted r)

and check if i = r. Note that this is not simply a matter of looking at the next few pseudorandom

bits, rather it requires that we simulate the RandomInsert procedure (but without modifying the

dictionary). In the main if-else block of Algorithm 2.7, we check if prev 6= Λ to ensure that we

skip these blocks on the first iteration through the loop. If we do not, then the character c will be

mistakenly inserted into the dictionary a second time since on the first iteration prev ◦ c = c.

Efficiency. LZW compression is efficient, taking O(n) time to compress a stream of n characters—

with a dictionary that performs O(1) time look-ups, LZW performs just a constant amount of

work at each step. For Fast Squeeze, the compression and decompression functions can utilize these

efficient data structures for look-ups and processing the input/output characters as well. The essential

difference between Fast Squeeze and LZW is the dictionary management, where Fast Squeeze partially

randomizes the dictionary at each step with RandomSwap and RandomInsert.
18Recall that the difficulty we have here is that, technically, we receive an index for an entry that is not yet defined.

Since this only happens in a specific case, we can resolve the ambiguity.
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Figure 2.3: Diagram of the Fast Squeeze secure compression algorithm.

Assuming that it takes O(l) time for the PRG to produce a random index of l bits, the Random-

Swap step only takes O(l) time. However, RandomInsert could take more. Sampling the index of

an empty cell at random can be accomplished in constant time by storing those indices in a randomly

permuted array. Just taking the first entry will then give a sample that is uniformly distributed;

subsequent indices sampled this way would also be uniformly distributed. However, a difficulty arises

in the interaction between RandomInsert and RandomSwap. In particular, RandomSwap can

cause an empty cell to be filled and a used cell to become empty. Thus, we must be able to add and

remove entries from the set of unused indices, ideally in constant time. But, it is not clear how to

create and implement a data structure that allows for O(1) random sampling in addition to O(1)

addition and removal.

The most straightforward way to allow efficient random sampling of empty cells is to bound the

maximum load in the dictionary by some β, where 0 < β < 1, and then sample dictionary indices at

random (taking O(l) time each for each sample) until an empty cell is found.19 This is the approach

used both in the definition of RandomInsert in Algorithm 2.6 and in our implementation. Since the

load in the dictionary is α ≤ β, and each iteration of the while-loop is independent of the others, the

number of iterations of the loop is a geometrically distributed random variable with mean 1/(1− β).

Moreover, with high-probability there will be at most log1/β d iterations, where d is the size of the

dictionary (note that d < n, where n is the input size). Thus, we have that both encryption and

decryption take O(n(l + l log1/β d)) time with high-probability.
19We also note that the parameter β gives a trade-off between compression/decompression speed and compression

ratio: larger values of β give better compression while small β give better speed.



40

Algorithm 2.5 The Fast Squeeze cipher compression algorithm.
Input: keys kprp and kmac, nonce `, input character stream I
Output: encrypted output stream O
1: Set prefix← Λ, c← Λ
2: Create PRG G and empty dictionary D
3: InitSqueeze(kprp, kmac, `, G, D) . Initialize PRG G, D, and MAC: see Algorithm 2.6
4: Output nonce `
5: MacUpdate(kmac, `) . Include the nonce in the MAC
6: while there is more input in I do . Start compressing and encrypting stream I
7: Read next character c
8: if prefix ◦ c in D then
9: prefix← prefix ◦ c
10: else
11: Output index i of prefix in D
12: MacUpdate(kmac, i) . Update the MAC to include i
13: RandomSwap(i, D, G) . Swap prefix with a random entry in D
14: RandomInsert(prefix ◦ c, D, G) . Insert prefix ◦ c randomly into D
15: prefix← c
16: end if
17: end while
18: if prefix 6= Λ then . Make sure we get any straggling input
19: Output index i of prefix in D
20: MacUpdate(kmac, i)
21: end if
22: Set m← MacFinalize(kmac) . Finish computing the MAC
23: Output m

Lemma 2.3. Consider Fast Squeeze with a dictionary D with maximum load α, size d and index

length l ≥ log2 d. Then, with high-probability, Fast Squeeze takes O(n(l+ l log1/β d)) time to compress

or decompress a stream of n characters.

Optimality of Fast Squeeze. There are several ways to permute the dictionary of LZW to achieve

security. First, the approach we take is to permute the entire dictionary with only a subset of the

entries occupied at any given time. An alternative would be to permute only the used entries, e.g.,

if the first 100 entries of the dictionary are used, then they would be randomly permuted among

themselves. Another alternative would be to have some, possibly dynamically growing, subset of the

dictionary that is permuted at each step. Though, the chosen subset must include all used entries,

otherwise an entry may be reused without re-randomization inducing correlations among the output

indices and undermining security.

In each of these cases, though, the final position of each dictionary entry is a function of the

randomness used to generate the permutation. Using true randomness ensures that the cipher has
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Algorithm 2.6 InitSqueeze, RandomInsert, and RandomSwap functions.

1: function InitSqueeze(kprp, kmac, `, G, D)
2: Compute seed = fkprp(`) . f is a PRP
3: Initialize MAC algorithm with kmac
4: Initialize G with seed
5: Initialize dictionary D
6: for each single character string s do
7: RandomInsert(s, D, G)
8: end for
9: end function

1: function RandomInsert(s, D, G)
2: repeat
3: Sample a new index r using PRG G
4: until D[r] = Λ . Until D[r] is empty
5: D[r]← s
6: end function

1: function RandomSwap(i, D, G)
2: Sample a new index r using PRG G
3: Swap D[i] and D[r]
4: end function

perfect, entropy-restricted secrecy (see Section 2.5, Theorem 2.1), and to achieve ER-CPA security, we

must ensure that the algorithm performs only negligibly different when given pseudorandom bits. That

is, we want that the advantage (over 1/2) in distinguishing the two challenge messages is negligible;

moreover, we want this guarantee to be independent of the implementation of the permutation

generation. By definition, this requires that we use a cryptographically-strong pseudorandom generator.

For Fast Squeeze, the security of the scheme lies in the k out of n random permutation of the k

used dictionary entries (with n total entries). When Fast Squeeze outputs an index it partially reveals

that permutation, giving a k − 1 out of n− 1 permutation. We show in Section 2.5, Lemma 2.4, that

the routine RandomSwap restores the k out of n permutation. In addition, in Lemma 2.5, we show

RandomInsert extends the permutation to a random k + 1 out of n permutation. By examination

of the proofs for Lemmas 2.4 and 2.5 we see that the functions RandomSwap and RandomInsert

are both mathematically necessary and optimal (i.e., use a minimum amount of pseudorandom bits)

to restore the permutation.20 Thus, we have that Fast Squeeze is (essentially) optimal with respect

to permutation-based secure LZW ciphers.

2.4.3 A Few Implementation Details

Dictionary Management. Earlier, we mentioned a technique for compressing the dictionary

where each entry for a prefix p in the dictionary consists of the last character c of p and a pointer to

the prefix p′ (where p′ ◦ c = p). This optimization is compatible with Fast Squeeze and can greatly

reduce the memory used by the dictionary.
20The efficiency of RandomInsert as given in Algorithm 2.6 could be improved given a data structure that can

achieve all of the following: (1) O(1) random sampling, (2) O(1) removal from a random position, and (3) O(1) random
insertion. Currently, we know of no data structure that achieves all three simultaneously.



42

Algorithm 2.7 The Fast Squeeze decryption algorithm.
Input: keys kprp and kmac, input stream of indices I
Output: output character stream O
1: Read nonce ` from I
2: Set prefix← Λ, c← Λ
3: Create PRG G and empty dictionary D
4: InitSqueeze(kprp, kmac, `, G, D) . Initialize PRG G, D, and MAC: see Algorithm 2.6
5: MacUpdate(kmac, `)
6: while there is another index in I do
7: Read next index i
8: MacUpdate(kmac, i)
9: Set r ← IndexNextInsertion(D, G) . Get the index r of the new entry prev ◦ c

10: if D[i] is undefined and (i 6= r or prev = Λ) then
11: Output ⊥ and fail . Decoding failed: invalid index
12: end if
13: if D[i] is defined and i 6= r and prev 6= Λ then . i is valid and not part of a collision
14: c← head(D[i])
15: RandomInsert(prev ◦ c, D, G)
16: else if i = r and prev 6= Λ then . Special case: input was c ◦ w ◦ c ◦ w ◦ c
17: c← head(prev)
18: RandomInsert(prev ◦ c, D, G)
19: end if
20: Output D[i]
21: prev← D[i]
22: RandomSwap(i, D, G) . Move prev to a random position
23: end while
24: Set m← MacFinalize(kmac) . Finish computing the MAC
25: Read received MAC m′

26: if m 6= m′ then
27: Output ⊥ and fail
28: end if

If the load α of the dictionary is very small, then it becomes inefficient to store the entire dictionary

since it is so sparse. In this situation the dictionary would be stored implicitly with some intermediate

data structure storing the entries, where each entry contains a pointer to the prefix for that entry,

the “extending” character, and the entry’s index in the implicit dictionary. This can be efficiently

implemented using a hash table or a trie; the latter is used in our implementations of both Slow and

Fast Squeeze.

Management of the dictionary as it grows is an important part of implementing both LZW

compression and Fast Squeeze. Fortunately, all of the dictionary management techniques used in

LZW compression are also compatible with Fast Squeeze, but some care is needed. For example,

with a dynamically growing dictionary in LZW, when the dictionary becomes filled, we can double

it in size and increase the length of all of the indices by one bit. But, increasing the length of a
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Algorithm 2.8 IndexNextInsertion simulates RandomInsert without modifying D.
1: function IndexNextInsertion(D, G) . Simulate RandomInsert
2: Set i← 0
3: repeat
4: Sample a new index r using PRG G
5: i← i+ 1
6: until D[r] = Λ . Until D[r] is empty
7: Rewind G by i samples
8: return r
9: end function

random index is a little trickier. A naïve approach is to generate a random bit for each index and

then prepend or append it, or even insert it at a random position in the index. But, this does not

guarantee a uniform distribution of indices. In particular, since all of the original (say l-bit) indices

are distinct, then whether prepending or appending it is impossible for two of the l + 1 bit indices to

be different in only the prepended/appended bit (similarly for inserting a bit). To ensure that indices

are uniformly distributed, the dictionary must be randomly permuted whenever increasing its size.21

As an alternative to keeping every entry in the dictionary and growing dynamically, we can

use a deterministic eviction policy invoked when the dictionary becomes full. This uses of the

pseudorandomness more efficiently since the eviction itself requires no randomness and the insertion

of the new entry requires the usual amount. An example eviction policy could be the standard

least-recently-used or least-frequently-used policies. Other eviction policies are possible. Any eviction

policies that depend on the ordering of entries in the dictionary are incompatible with Fast Squeeze

since the layout of the dictionary is randomized.

Memory Requirements. The LZW algorithm lends itself to compact in-memory representations

and Fast Squeeze inherits this property. We implemented the dictionary using a trie, with all possible

byte values as the input alphabet, and analyze its memory usage here, focusing first on the memory

footprint of plain LZW and then analyzing Fast Squeeze. To avoid reserving space at each node

for pointers to all possible children (i.e., 256 pointers), we stored the child pointers in dynamically

allocated slabs of 64 pointers. We use bitmasks to indicate the presence or absence of a child and

thereby avoid the cost of initializing the slabs of pointers. This combination decreased memory

requirements allowing for better cache utilization and increased the speed of the algorithm. But there

are more memory-efficient implementations. One such implementation is to store the children in a
21Since the permutation can be done in O(ln) time, where n is the dictionary size and l is the index length, permuting

the dictionary when growing has an amortized overhead of O(l) at each step of encoding.
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linked list so that each node only needs to store a single pointer for all of its children. We implemented

just such a scheme and analyze its speed in Section 2.6.6; here, we section focus on its memory

requirements. Specifically, we analyze the memory used when the linked list is implemented as an

intrusive doubly-linked list. An intrusive doubly-linked list gives us an O(1) move-to-front operation

which allows us to store the children in most-recently-used-first order, giving a significant speed-up.

This compact representation requires 1 byte for the character corresponding to that node, b = dl/8e

bytes for the index of length l, a pointer to the beginning of the list and the 2 pointers for the intrusive

list. This requires 1+b+3p bytes, where p is the number of bytes for a pointer. In our implementation

b = 2 and p = 4 or 8, depending on the architecture. With p = 8, as on the 64-bit Core 2 Quad

processor, each trie node requires 27 bytes. With p = 4, as on the ARM11 processor, each trie node is

15 bytes in size. With 12-bit indices, this gives a total dictionary size of 212 ∗ 27 = 108KB on the Core

2 Quad, and 212 ∗ 15 = 60KB on the ARM11. Note that both of these are smaller than the default

256KB and 300KB of memory used by gzip and bzip2, respectively. Fast Squeeze also requires the

compressor to maintain a mapping of indices to trie nodes to efficiently perform the RandomInsert

routine (i.e., to quickly determine whether or not a given dictionary index has been allocated). This

adds an additional 2l ∗p bytes, which, continuing our example, would be an additional 212 ∗ 8 = 32KB

on a 64-bit architecture and 212 ∗ 4 = 16KB on a 32-bit architecture. Note that the totals of 140KB

and 76KB are still less than the memory requirements of gzip and bzip2.

For decompression, we must proceed bottom-up through the trie to recover the input character by

character instead of top-down. Because of this, each node will need a pointer to its parent, but it will

not need to keep a list of children. Overall, each trie node must store its corresponding character and a

pointer to its parent for a total of 1 + p bytes per node. As a speed optimization, while decompressing

each node can save a pointer into the buffer of decompressed data corresponding to the beginning of

the string for that node (as well as save the length of the string). This adds another p+ b bytes to

the node.22 This avoids traversing all the way to the root each time a node in the dictionary is used.

This optimization gives a total of 1 + 2p + b bytes per node. On a 64-bit architecture and 12-bit

indices, this is 19 bytes; on a 32-bit architecture this is 11 bytes.

Just like the encoder, the decoder must also maintain a mapping of indices to trie nodes to avoid

searching the entire trie for a specific node. This gives total memory requirements for decoding to be
22The string represented by a trie node can never be more than 2l bytes long since that would require more nodes

than can fit in the dictionary.
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212 ∗ 8 + 212 ∗ 19 = 108KB on a 64-bit machine and 212 ∗ 4 + 212 ∗ 11 = 60KB on a 32-bit machine.

Decompression with gzip, however, requires just 44KB on a 32-bit machine. However, without the

optimization of keeping pointers into the decompressed buffer, LZW only requires 9 and 5 bytes,

giving total of 68KB and 36KB.

The above space analyses are for LZW in general rather than Fast Squeeze. In our implementation

of Fast Squeeze, we bound the load in the dictionary by 1/2, but we still need the full inverse

mapping of indices to trie nodes. For decoding, if we include the string-length optimization, then

decompression requires 212 ∗ 8 + 211 ∗ 19 = 70KB and 212 ∗ 4 + 211 ∗ 11 = 38KB on 64 and 32-bit

architectures, respectively. Without the string-length optimization, squeeze decompression requires

212 ∗8+211 ∗9 = 50KB 212 ∗4+211 ∗5 = 26KB. Note that in both with and without the optimization,

on a 32-bit machine, Fast Squeeze requires less memory than gzip.

2.5 Security Analyses

In this section we prove the (concrete) ER-CCA-2 security of both of the Slow and Fast Squeeze

ciphers. We proceed by first proving that each is ER-CPA secure and then proving that each has the

property of existential ciphertext unforgeability (defined in Section 2.2.4), which implies ER-CCA-2

security. (Recall that the original paper [78] showed that IND-CPA security combined with ciphertext

unforgeability implies IND-CCA-2 security. Since the proof was independent of plaintext length, the

same implication holds for ER-CPA and ER-CCA-2 security.)

2.5.1 ER-CPA Security

The proof of ER-CPA security below applies to both constructions, provided that at each step the

layout of the dictionary is a random permutation of the entries. For Slow Squeeze, this is inherent in

the construction; for Fast Squeeze we will need to do a bit more work. We proceed by first proving

two lemmas that establish two loop-invariants for Fast Squeeze encryption and decryption. Then, we

will prove the theorem that both Fast and Slow Squeeze are ER-CPA secure.

Intuitively, if the entries of the dictionary are randomly permuted, then an adversary observing

the output cannot derive any correlations between the output indices and the input strings. In

Fast Squeeze, each index output provides a glimpse into the internal ordering of the entries in the
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dictionary.23 To counteract this, RandomSwap seeks to restore the random permutation of the

dictionary entries and RandomInsert works to extend the permutation to include a new entry. We

refer to the mapping π(a) = b to be an “entry” in the permutation π.

Lemma 2.4. Given a random permutation of k out of n elements, if we reveal any entry, applying

RandomSwap to that entry produces a random permutation of k out of n elements.

Proof. Given a random k out of n permutation, there are n!/(n − k)! possible such permutations.

After revealing one entry, we have a k− 1 out of n− 1 permutation over the remaining entries, giving
(n−1)!

((n−1)−(k−1))! = (n−1)!
(n−k)! possibilities. RandomSwap selects an element at random from the n possible

positions (including empty positions) and swaps it with the revealed element. Each of the n possible

swaps produces a unique configuration, giving a total of n (n−1)!
(n−k)! = n!

(n−k)! possible permutations—i.e.,

a k out of n permutation. Note that the k − 1 out of n − 1 permutation is uniformly distributed,

and since the swap is also uniformly distributed, the final k out of n permutation is also uniformly

distributed.

Thus, RandomSwap restores the random k out of n permutation after each invocation. As a

corollary, this ensures that if we stop inserting elements into the dictionary (i.e., when it is full) but

keep calling RandomSwap at the appropriate time, then we will maintain the security of the scheme.

Now we prove that adding an element to the dictionary through RandomInsert produces a random

permutation on the entries.

Lemma 2.5. Given a random k permutation of n elements, RandomInsert produces a random

k + 1 out of n permutation of the elements.

Proof. Note that we are given a k out of n permutation that is uniformly distributed. RandomInsert

selects a position at random from the n − k remaining positions and inserts the new entry there.

This gives a total of (n − k) n!
(n−k)! = n!

(n−k+1)! possibilities, which is exactly the number of k + 1

permutations of n elements. Note that since the original permutation was uniformly distributed, as

was our selection of the new position, the resulting permutation is also uniformly distributed.

Thus, we have the after each iteration of the Fast Squeeze encoder or decoder, the positions of

the dictionary’s entries form a random k out of n permutation.
23For Slow Squeeze, this leakage is immaterial.
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Now we prove that both the Fast and Slow Squeeze ciphers are ER-CPA secure. Both constructions

are, at the most basic level, a PRG integrated into the LZW compression algorithm with a PRP for

session key derivation. This simple combination gives us straightforward proof of security whereby

we can reduce ER-CPA security to the indistinguishability of the PRG and the PRP. In the proof,

for simplicity, we assume all encryption oracle queries take time at most te.24 Let C(G, f) denote

either Fast or Slow Squeeze instantiated with PRG G and PRP f .

Theorem 2.1 (Slow/Fast Squeeze ER-CPA Security). Let G be a PRG that is (tG, r, εG)-reseedably-

indistinguishable that takes seeds of length λ, and let f be a (tf , r, εf )-indistinguishable PRP over

{0, 1}λ. Then the (Fast/Slow) Squeeze cipher C(G, f) is (t′, r − 1, δ)-ER-CPA secure where t′ =

min{tG − rte, tf − rte} and δ = 2(εG + εf ) + r(r−1)
2λ+1 .

Proof. Suppose A can break the ER-CPA security of (Slow/Fast) Squeeze and that f is a truly

random function. Consider the following distinguisher D for G using A as a subroutine with access to

a PRG oracle O. On input 1λ, D runs A and for each query message m from A, D simply requests a

re-seeding of O, generates a unique nonce `, and then encrypts m following the specification of C.

When given the challenge messages m0 and m1, D selects a random bit b, encrypts mb to produce

cb and gives cb to A. When A outputs its guess b′, the distinguisher D outputs 1 if b′ = b, and 0

otherwise.

First note that since A runs in polynomial time, so does our distinguisher D. In analyzing the

success probability of D, we must analyze the result of feeding truly random bits to A. We know that,

if the input is pseudorandom, A will succeed with advantage εG over random. Secondly, note that we

do not use an initialization vector for generating the seed for the PRG in O. However, since for each

seeding of the PRG, the seed is chosen uniformly at random, this is exactly equivalent to using a

random function f applied to a unique ` for each encryption query (i.e., the distributions of seeds

are identical). We will later remove the assumption that f is a random function. Now, if the bits

given to A are random, then the possible encryptions of m0 and m1 are identically and uniformly

distributed, so A’s success probability is exactly 1
2 . If the bits are pseudorandom, then A succeeds

with some advantage δ, giving D a success probability of 1
2 + δ

2 . Since G is (t, r, εG)-indistinguishable,

we have that δ ≤ 2εG, and it must be that there were at most q = r − 1 messages queried by A, and

the running time of A is t′ = tG − qte.
24Normally, one assumes O(1) time for oracle queries, but we allow for highly variable input lengths, giving a

(possibly) wide variance in computation time. Hence, we include an explicit bound on the encryption time.
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RF to PRP. We remove the assumption that f is a random function (RF) by first replacing f

with a random permutation (RP). Note that for any distinguisher D̃, the only way to distinguish an

RP from an RF is to find a collision in the latter. Thus, D̃ has an advantage of at most q(q− 1)/2λ+1,

where q is the number of oracles queries and λ is the function output size. So the advantage gained

by any adversary against C is at most r(r − 1)/2λ+1, where r is the number of reseeding requests.

Now, replace f with a PRP and consider the following F given access to an oracle Of that may be

an RP or a PRP. If F believes Of to be a pseudorandom, then it outputs 1, otherwise it outputs 0.

F runs A, and for each query m, F generates a fresh nonce `, queries Of (`) = s, and then encrypts

m in the normal way using the PRG G seeded with s. This process repeats for the subsequent queries

and the challenge messages. Eventually, A outputs a guess b′; if b′ = b, F outputs 1, else it outputs 0.

If Of is a random permutation, then A’s success probability is at most 1
2 + r(r − 1)/2λ+1 + 2εG,

which means that F is incorrect with the same probability. If Of is a PRP, then A’s chance of success

is at most δ greater than 1
2 + r(r− 1)/2λ+1 + 2εG, for some δ. This gives a total success probability of

1
2 ( 1

2 − r(r− 1)/2λ+1− 2εG) + 1
2 ( 1

2 + r(r− 1)/2λ+1 + 2εG + δ) = 1
2 − εG + εG + δ

2 = 1
2 + δ

2 . Since f is a

(tf , r, εf )-indistinguishable, we know that δ/2 ≤ εf . This implies that A’s advantage in distinguishing

m0 from m1, when G is a PRG and f is a PRP, is 2(εG + εf ) + r(r − 1)/2λ+1.

Note that the number of encryption oracle queries is exactly equal to the number of reseedings

of G. So, we have that the number of oracle queries for f is upper-bounded by r. Finally, we have

that F ’s running time is upper-bounded by tf , so A’s running time is upper-bounded by tf − rte.

Corollary 2.1. Let G be a computationally secure, reseedably-indistinguishable PRG that takes seeds

of length λ, and let f be a computationally secure PRP over {0, 1}λ, then the (Slow/Fast) Squeeze

cipher C(G, f) is ER-CPA secure.

2.5.2 Ciphertext Unforgeability

In this section, we will prove that both Slow and Fast Squeeze possess ciphertext unforgeability—a

property first defined in [78], see Definition 2.11 in Section 2.2.4. We will prove this for Slow Squeeze

first. For Fast Squeeze, the result follows simply from the unforgeability of the MAC. Recall that

a cipher C is said to be (t, q, ε)-unforgeable if for all PPT A running in time t making at most q

encryption oracles succeeds in producing any valid ciphertext with probability at most ε.
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Slow Squeeze Unforgeability

Intuitively, the proof of unforgeability for Slow Squeeze works by setting the load in the dictionary

α to be a value that is negligible in the security parameter λ. With the dictionary so sparsely

populated, guesses for a particular entry’s index and manipulations of a valid ciphertext will fail

with overwhelming probability. Hence, the security of Slow Squeeze directly reduces to the quality

of the randomness produced by the PRG, which we show below. As before, let te denote the time

to encrypt one ciphertext and let Cα(G, f) denote Slow Squeeze instantiated with PRG G, PRF f ,

and maximum load α. Let l be the length of the dictionary indices in bits (i.e., the dictionary has 2l

entries), but only an α fraction are used. Let O denote the encryption oracle.

Theorem 2.2 (Slow Squeeze Ciphertext Unforgeability). Let Cα(G, f) be the Slow Squeeze cipher

with load at most α, where G is a (tG, r, εG)-reseedably-indistinguishable PRG and f is a (tf , r, εf )-

indistinguishable PRP. Then, Cα(G, f) is (t′, q, ε)-unforgeable (i.e., existentially unforgeable) for

ε = α+ 2(εG + εf ), q = r, and t′ = min{tG − qte, tf − qte}.

Proof. First, assume that G, used by O for encryption, produces truly random bits. To use true

randomness consistently with the format of the encryption, we let the nonce ` be the index of a row

in a table of random bits generated lazily by G (so that the table is at most polynomial in size).

We run A on input 1λ and let c be the attempted forgery. The nonce ` used in c may or may not

correspond to the nonce for a message previously queried to the encryption oracle. If it does not,

then it corresponds to a fresh row of randomness in the table. If it does, then A has some partial

information about the layout of the dictionary that may aid in generating c. We will address each

case separately.

Case: nonce ` is fresh. If ` is fresh, then the dictionary D was permuted with fresh randomness

and the entries are all uniformly distributed. Recall that in Slow Squeeze each encrypted message

must end with the EOF marker. Since there is exactly one valid index for this symbol, regardless of

what A does with the rest of the ciphertext, A correctly ends the message with probability exactly
1
2l . Thus, in this case, A succeeds with probability at most 1

2l < α.

Case: nonce ` is reused. First note that if ` is reused, there is some overlap in randomness used

in the forged ciphertext c and a previous query q. (Note that this overlap may consist of only the

nonce.) Ignoring the shared `, consider c and q as finite sequences of indices, c1, . . . , ca and q1, . . . , qb
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respectively. Note that there must at least one place where c and q differ, i.e., there exists an index

i ≤ min(a, b) such that cj = qj for 1 ≤ j ≤ i− 1 but ci 6= qi.

Suppose there is no such i, then either c is a proper prefix of q or vice versa. If c is a proper prefix

of q, then decryption of c will fail since the decrypted message is missing the EOF symbol. If q is a

proper prefix of c, then c has extra indices after the EOF, which will also cause a decryption failure.

So, consider i such that ci 6= qi, and let n ≤ α2l be the number of valid entries in the dictionary.

The value ci is an index in a randomly permuted dictionary where only an α-fraction of indices are

valid. But, A already knows the value of one index, specifically qi. Since ci 6= qi, A is seeking to

find one of the n− 1 valid indices randomly distributed in a set of 2l − 1 possible indices. Thus, A

succeeds with probability n−1
2l−1 <

n
2l ≤ α.

Moving to pseudorandomness. To remove the assumption of using truly random bits, we

provide a straightforward reduction of the unforgeability of the cipher to the indistinguishability

of the PRG G. Recall that our PRG G is (tG, r, εG)-reseedably-indistinguishable and assume that

we have a ciphertext forger A who runs in time t′, makes q queries, and succeeds with probability

δ. We build our distinguisher D to attack G (i.e., distinguish its output from a random string) by

simply requesting a reseeding the oracle O whenever A makes an encryption query. We then use the

returned string as the source of randomness for encrypting the query. If A succeeds in producing a

forgery, we output 1, else we output 0. We assume that q ≤ r. If q > r, then for the (r+ 1)-th to q-th

queries, we can just use random bits for the encryption. If this changes the success of A by more

than a negligible amount, then we will have created a distinguisher for G which makes at most r

reseeding requests. So, without loss of generality, q ≤ r.

If the strings returned byO to D are random, then A’s probability of success is at most α. Note that

if A succeeds in this case, then D outputs an incorrect guess. If the input strings are pseudorandom,

then A’s probability of success is at most α+ ε for some ε. This gives D a probability of success of
1
2 (1− α) + 1

2 (α+ ε) = 1
2 + ε/2. Since we know that G is (tG, r, εG)-reseedably-indistinguishable, we

have that ε ≤ 2εG and t′ = tG − qte. Finally, note that the reduction relating the security of Slow

Squeeze to the security of the PRP f proceeds exactly as in the above proof of ER-CPA security.

Thus we have that t′ = min{tG − qte, tf − qte} and ε = α+ 2(εG + εf ).

Combining this with Lemma 2.1, we have that Slow Squeeze is ER-CCA-2 secure, if α is negligible

in λ. This result is detailed in the following corollary, which is an adaption of Theorem 1 from [78].
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Corollary 2.2. Let Cα(G, f) be the Slow Squeeze cipher with load at most α, using a (tG, r, εG)-

reseedably-indistinguishable pseudorandom generator G and a (tf , r, εf )-indistinguishable pseudoran-

dom permutation f . Then, Cα(G, f) is (t′, qe, qd, ε)-ER-CCA-2 secure for t′ = min{tG− rte, tf − rte},

qe = r − 1, and ε = qdδ1 + δ2, where δ1 = 2(εG + εf ) + r(r−1)
2λ+1 and δ2 = α+ 2(εG + εf ).

Corollary 2.3. Let Cα(G, f) be the Slow Squeeze cipher where G is a computationally secure,

reseedably-indistinguishable PRG that takes seeds in {0, 1}λ, f is a computationally secure PRP over

{0, 1}λ, and α is negligible in λ. Then, Cα(G, f) is ER-CCA-2 secure.

Fast Squeeze Unforgeability

Proving ciphertext unforgeability for Fast Squeeze is a straightforward result as the ability to produce

a valid ciphertext is dependent on the ability to forge a valid MAC. Again, we have te denote the time

to encrypt one encryption query. Let C(G, f,M) denote Fast Squeeze instantiated with pseudorandom

generator G, pseudorandom permutation f , and MAC scheme M .

Lemma 2.6. Let C(G, f,M) be the Fast Squeeze cipher where G is a PRG that is (tG, r, εG)-reseedably-

indistinguishable, f is a (tf , r, εf )-indistinguishable PRP, and M is a (tm, q, εm)-unforgeable MAC.

Then, C is (t, q, ε)-unforgeable (i.e., existentially unforgeable) for t = tm − qte and ε = εm.

Proof. Suppose we have algorithm A that breaks the unforgeability of C with probability γ. Moreover,

suppose we have an oracle O for the MAC scheme M . We first run Genprp(1λ) to get kprp and then

run A on input 1λ. For each encryption query m from A, we chooses a fresh nonce ` at random from

{0, 1}λ and then generate a session seed s as described in Algorithm 2.5 and seed G with it. We then

encrypt m in the expected way to produce the ciphertext c (which includes the nonce ` prepended to

it). We then query O with c to obtain the tag t and return c ◦ t to A. Eventually, after making at

most q queries, A outputs its forgery c̃ = `′ ◦ c′ ◦ t′. We compute the seed s′ from `′, seed G, and then

decrypt in the usual way but without computing the MAC. If the ciphertext decrypts successfully,

we then output (`′ ◦ c′, t′) as our attempted forgery.

Since A succeeds when c̃ was not the result of a query to its encryption oracle, it must be that c′

was not given as a query to O and the pair (`′ ◦c′, t′) is a valid MAC forgery attempt. If A successfully

forges a ciphertext, then B succeeds in producing a forgery for M . Thus, we have that γ ≤ εm and

the run time of A is t ≤ tm − qte.
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Note that the unforgeability is independent of the security of the PRG and the PRP used. Again,

combining this with Lemma 2.1, we have that Fast Squeeze is ER-CCA-2 secure. This is detailed in

the following corollaries.

Corollary 2.4. Let C(G, f,M) be the Fast Squeeze cipher where G is a (tG, r, εG)-reseedably-

indistinguishable PRG, f is a (tf , r, εf )-indistinguishable PRP f , and M is a (tm, q, εm)-unforgeable

MAC. Then, C is (t, qe, qd, ε)-ER-CCA-2 secure with t = min{tG, tf , tm} − qete, qe = min{r − 1, q},

and ε = qdεm + 2(εG + εf ) + r(r−1)
2λ+1 .

Corollary 2.5. Let C(G, f,M) be the Fast Squeeze cipher where G a computationally secure,

reseedably-indistinguishable PRG that takes seeds in {0, 1}λ, f is a computationally secure PRP over

{0, 1}λ, and M is an existentially-unforgeable MAC scheme. Then C(G, f,M) is ER-CCA-2 secure.

Attacks on Fast & Slow Squeeze

There are several possible attacks on these schemes. The security of each depends crucially upon the

uniqueness of the nonce `. Reuse of a nonce will cause two (or more) ciphertexts to have the same

dictionary randomization and would be vulnerable to known-plaintext attacks. Indeed, repeated use

of a nonce turns Slow and Fast Squeeze into a fancy substitution ciphers. Correlations among nonces,

however, are allowed since the PRP will send them to different, pseudorandom outputs. But, if the

PRP is weak, correlated nonces may have correlated outputs and weaken the security of the PRG.25

Fast Squeeze is also vulnerable to timing attacks as input data with different levels of compressibility

will take different amounts of time to compress even if the output ciphertexts are the same length.

For instance, suppose there are two messages: one consisting entirely of a single, repeated character

and the other consisting of random characters. Even if the strings compress to the same length, the

first string will take less time to compress. This is because at each iteration of the compression loop,

the index output is the index of the most recently inserted entry, which is very likely to be resident

in highest level cache. The random string, however will have poor cache performance since the next

entry to be matched at each iteration will be a random entry in the dictionary, and hence much

less likely to be cache-resident. This timing side-channel allows an attacker to easily distinguish the

encryption of these two messages. More generally, the number of iterations of the main compression

loop before outputting an index is data-dependent and thus inherently vulnerable to timing attacks
25PRG security guarantees assume that the seeds are independent and random, so correlated seeds may produce

weakened streams. See [75] for an analysis of this problem and constructions secure against malicious inputs.
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that leak some of the plaintext. However, such data-dependent timing attacks are inherent to all

combined compression and encryption schemes and are not unique to Fast Squeeze.

2.6 Experiments

In this section we provide a summary of experiments evaluating both the compressibility and speed

of Fast Squeeze (which we will refer to simply as squeeze) as compared to standard algorithms. We

compare squeeze to plain LZW as well as gzip and bzip2 since they are among the most commonly

deployed compression algorithms. The test data used is the Canterbury corpus provided in [118] and

described in [7]. It is a standard corpus of documents for testing lossless compression algorithms

with various types of test files. We compare the algorithms on a representative subset of test files

consisting of a text document of random digits, the Bible from Project Gutenberg, a segment of

E.coli DNA, a snapshot of the CIA World Factbook, the first million digits of the mathematical

constant π, and a C source file. These files highlight the varying performance of the Fast Squeeze

cipher on different inputs.

The tests were performed primarily on a 2.4GHz, Intel Core 2 Quad processor with 4GB of

RAM running Debian Linux 7.0 (wheezy). We also test the algorithms on a Raspberry Pi (Model

B) running Raspbian Linux (based on Debian wheezy) on an ARM11 processor at 700 MHz with

512MB of RAM (see Section 2.6.5). We consider two possible dictionary sizes for squeeze: 212 entries

and 216 entries—denoted squeeze-12 and squeeze-16 respectively; both use the Salsa20 stream cipher

(see [15]) as the PRG and AES for the PRP. We use two different dictionary management schemes.

The first scheme is the simplest where it freezes the dictionary once it is full, i.e., no more entries are

added or removed. The second scheme uses a least-recently-used (LRU) eviction policy to remove

entries from the dictionary when it is full. In both schemes (and with both sizes of indices), the load

in the dictionary is at most 0.5.

We also compare squeeze to LZW using two combinations of encryption with LZW: (1) streaming

encryption with Salsa20, encrypting each index as it is output; and (2) block encryption with AES,

encrypting all of the compressed data at once. These variants are denoted lzw-aes-b and lzw-salsa-b,

where b ∈ {12, 16}. We implemented LZW using the same data structures and optimizations (where

applicable) as we used in squeeze, allowing us to better measure the performance impact of our

modifications to LZW. Each of gzip and bzip2 are run at their default compression levels and the
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Figure 2.4: Chart comparing squeeze with 12-bit and 16-bit indices to standard compression algo-
rithms as well as LZW combined with AES and Salsa20 encryption. Lower numbers indicate better
compression.

executables were compiled with gcc 4.7.2 using the -O2 flag and the OpenSSL v1.0.1e library was

used for AES encryption. All results are the average of 20 trials.

Summary. Overall, our experiments show that squeeze achieves compression ratios comparable to

the standard algorithms LZW, gzip, and bzip2, though squeeze with 16-bit indices provides much

better compression than when using 12-bit indices (see Figure 2.4, Section 2.6.1). In addition, we find

that squeeze with 12-bit indices has compression speeds exceeding those of gzip and bzip2, though

lagging behind the simple combination of LZW and AES/Salsa20 encryption. For decompression,

squeeze has speeds comparable to gzip (and exceeding bzip2), but noticeably lower than LZW. When

using 16-bit indices, both LZW and squeeze are slower than gzip (but still faster than bzip2) in both

compression and decompression, but the performance difference between LZW and squeeze is much

smaller (see Figure 2.5). We show similar results in Section 2.6.5 when testing on ARM11.

We compare squeeze to previous secure LZW schemes in Section 2.6.3 and show that Fast Squeeze

is 2-3 orders of magnitude faster than previous schemes while Slow Squeeze is a modest 3% faster. In

Section 2.6.4, we show that the use of least-recently-used (LRU) eviction provides better compression

ratios for squeeze and LZW, and, moreover, the compression ratios are close to those of gzip and

bzip2. However, the performance suffers greatly and the scheme is 4–5 times slower compared to

having no evictions (compare Figures 2.5 and 2.10).
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2.6.1 Compression Ratio

First, we examine the compression ratio of squeeze as compared to LZW, gzip, and bzip2. The

compression ratio is defined as the (compressed) output size divided by the (uncompressed) input

size with a smaller number signifying better compression. Note that, in general, a larger dictionary

implies that we can achieve better compressibility. The load of the dictionary in squeeze is kept to

0.5 and once the dictionary is full, no entries are evicted or added.26 Each of the algorithms gzip and

bzip2 are run at the default compression level of 3.

We can see in Figure 2.4 that the compression ratio achieved by squeeze-12 and squeeze-16 is

comparable to that of the other algorithms. On some data squeeze is quite competitive, while on other

data it does relatively poorly. Part of the poor performance is due to the dictionary management. If

the dictionary fills up, then the algorithm can no longer adapt to the input and will provide poor

compression if the characteristics of the data change. An example where this does not matter is on

the E.coli test data. The DNA of E.coli consists of only a few characters and contains many of the

same patterns throughout—i.e., it all “looks” the same. However, with the C source code file, squeeze

does not perform well since source code does not exhibit as much regularity as DNA or English prose.

Do note that use of 16-bit indices does, indeed, given better compression in many cases. It does,

however, give worse compression for small files (e.g., fields.c).

2.6.2 Compression Speed

In Figure 2.5, we compare the compression and decompression performance of squeeze as compared

to LZW, gzip, and bzip2. Again we compare both 12-bit and 16-bit indices for squeeze and LZW, and

use each of gzip and bzip2 at compression level 3 followed by encryption with AES in CBC mode.

The test files include the “large” files from the Canterbury corpus (the first for groups of columns in

Figure 2.5), which allow us to see how the algorithms perform at steady-state. We also include the

performance of a file filled with random digits between 0 and 9, the first million digits of π, and a C

source file.

Overall, the speed of squeeze with 12-bit indices is less than that of LZW encrypted with AES

and Salsa20, with squeeze being generally between 10% and 60% slower for compression with a

typical slowdown of around 20%. For decompression, squeeze is slower by 30% to 67%. For 16-bit
26This is the simplest dictionary management scheme. Note that even when the dictionary is full, we still randomly

swap each index that is output by the encoder.
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Figure 2.5: Comparison of the speed of compression (top) and decompression (bottom) in squeeze
to standard compression algorithms and LZW with AES and Salsa20 encryption. Numbers are in
megabytes per second.

indices, squeeze is, in general, slightly faster than LZW with AES and Salsa20 for compression. But,

this is due to the fact that squeeze keeps its dictionary half-full while LZW does not. Squeeze then

performs fewer dictionary insertions and, on average, has shorter strings in the dictionary, meaning

that searching the dictionary takes less time.

Comparing to the standard algorithms, we see that squeeze-12 is faster than both gzip and

bzip2 when compressing, and squeeze-16 is faster than bzip2 but generally slower than gzip (though,

squeeze-16 is faster on some inputs). For decompression, we note that gzip consistently achieves

high speeds while the LZW-based schemes have more variance. LZW with both AES and Salsa20

encryption are generally faster than gzip when decompressing, though squeeze is almost always slower.

Performance Gap. Overall, these graphs demonstrate the practicality of squeeze, in both 12-bit

and 16-bit variants, since it achieves high throughput for both compression and decompression.

However, it performs slower than the simple compress-then-encrypt schemes based on LZW. The

performance gap is due to two factors, one theoretical and the other practical. From a theoretical
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perspective, squeeze will always be slower than simply encrypting with a stream cipher since it must

use more pseudorandom bits. In particular, suppose we have b-bit indices, then for each output index

squeeze must call RandomSwap and use b bits of randomness. If the dictionary is not full and the

load is kept to 0.5, then squeeze uses at least b bits (with 2b bits used on average) in RandomInsert

to insert the new entry. That is, when the dictionary is not full squeeze will use at least twice as

many pseudorandom bits than simply encrypting with a stream cipher.

From a practical perspective, squeeze must perform more “work” than LZW to accomplish the

same task. The function RandomSwap is called on each loop iteration and RandomInsert is called

whenever there is still room in the dictionary. These function induce additional reads and writes to

memory that are not performed by LZW normally. These extra memory references add up to decrease

throughput. To demonstrate this, we ran LZW with both AES and Salsa20 encryption and squeeze-12,

with the CIA World Factbook as input and used the cachegrind tool of valgrind [115] to profile

the number of reads and writes performed by each algorithm. The run included both compression and

decompression. The results are shown in Table 2.1. It is clear that Squeeze is performing many more

read and write operations than LZW both with AES and with Salsa20. The extra data references

are due to the additional pseudorandom bits that squeeze must generate and use in addition to the

reads/writes performed when updating the dictionary.

Algorithm Reads Writes Total
LZW + AES 107M 14M 121M
LZW + Salsa20 77M 26M 103M
Squeeze 131M 66M 197M

Table 2.1: Number (in millions) of reads and writes performed on CIA World Factbook.

LZW & Salsa20 Buffer Size. The combination of LZW compression with Salsa20 encryption

allows for a streaming processing of the data. However, it may be profitable to buffer some of the

output indices before encrypting them to achieve better locality and avoid polluting the instruction

cache by constantly switching between encryption and compression. We can see in Figure 2.6 that

both compression and decompression speeds are only lightly affected by the size of the buffer, with

no significant change in speed overall as the buffer size increases. This is due to the fact that Salsa20

can achieve encryption speeds up to several hundred MB/s, while LZW compression is limited to

tens of MB/s. Note that Salsa20 encryption also has a small code footprint and small internal state,
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Figure 2.6: Compression and decompression speeds of LZW with 12-bit indices versus the size of the
buffer for encryption. Input file is bible.txt, the Bible from Project Gutenberg.

so it can easily avoid polluting the caches too much. Thus, the limiting factor in the compression and

encryption is the compression itself, making the size of the buffer essentially irrelevant.

2.6.3 Comparison to Previous Work

There has been much work looking to combine compression and encryption together but most past

work has been both inefficient and insecure (see Section 2.8). In [172], Zhou et al. present a secure

LZW algorithm—that we denote SecLZW—that is structurally similar to the Slow Squeeze; and so,

we compare the it to both Fast and Slow Squeeze here. In their scheme, new entries are randomly

inserted into the dictionary (though, they assume there are no collisions during insertion) and then a

partial permutation is applied to the dictionary by regarding the dictionary as a square grid and

cyclically shifting the rows and columns by random amounts. See Section 2.8.1 for more details.

We compare both Fast and Slow Squeeze to their scheme and show the efficiency gains of Squeeze.

We do not compare Squeeze to the LZ78-based scheme in [171] since the level of security that scheme

is quite low (see Section 2.8.1 for details) and the comparison would not be meaningful. Figure 2.7a

shows the ratio of Fast Squeeze’s throughput to the throughput of SecLZW. As can be seen, Fast

Squeeze is 2–3 orders of magnitude more efficient than SecLZW for both 12 and 16-bit indices. In

Figure 2.7b, we can see that Slow Squeeze is also more efficient than SecLZW, though the gains

are much more modest, amounting to 1–3%. Note, also, that Slow Squeeze provides much stronger,

provable guarantees of security than SecLZW in addition to being more efficient.
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Figure 2.7: Comparison of Fast and Slow Squeeze to SecLZW.

2.6.4 LRU Eviction

Here we present our results when implementing a least-recently-used (LRU) eviction policy for the

dictionary. In the case of LZW-based compression, the term “used” does not mean solely those entries

whose corresponding indices have been output. In particular, each time a prefix of the remaining

input is matched with an entry in the dictionary we must mark the entry as used even if its index

is not output. To see this, note that if we remove an entry e from the dictionary, we must also

remove every entry that has e as a prefix since those entries can no longer be matched. Marking an

entry used even when it is not the final match ensures that we do not prune large portions of the

dictionary—especially since short strings (e.g., 1 or 2 characters) will be matched often early during

encryption and decryption but less so later in the process and risk being evicted.27

27Removing a single character string can cause the compression to fail (i.e., exit with an error) if that character ever
appears later in the input.
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Figure 2.8: Compression ratios when using LRU eviction.
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Compression Ratio. In Figure 2.8, we show the compression ratios for the schemes using the

same files as in Figure 2.4 with similar results. We note that LRU eviction does not result in superior

compression in all circumstances: for instance, the file of random digits (left-most column), when

encrypted using squeeze with 12-bit indices, had worse compression when using LRU eviction. (The

decrease in compression from eviction is most apparent in LZW using 12-bit indices.) However, for the

remaining files, LRU eviction did at least as well and often better (e.g., for the CIA World Factbook).

Figure 2.9 is a graph comparing the compression ratios of squeeze on a subset of the Canterbury

corpus, with and without LRU eviction.28 One notable aspect in the graph is that the use of 12-bit

indices generally improves the compression of the data compared to using 16-bit indices. This is

expected since the schemes can continually adapt to the input. That is, rapid adaption to the input

characteristics can give better compression than using a large dictionary that can match longer

strings. Note, however, that this does not hold for all of the inputs. Specifically, for the input files

plrabn12.txt and lcet10.txt, the use of 16-bit indices provides better compression.

28Specifically, the subset is the complete previous version of the corpus; the new version includes more files.
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Figure 2.10: Compression and decompression speeds while using LRU eviction.

Speed. In Figure 2.10, we have the compression speeds for squeeze and LZW when given the same

files at input as in Figure 2.5 using LRU eviction (while Figure 2.5 has no eviction). Contrasting

the speeds in these two figures, we can see that the throughput for LRU is much lower. When

implementing the LRU policy, we used a linked list of the entries ordered by recency of access, with

the most recent first. Finding the least recently used entry was then simply of a matter of removing

the tail of the list. The list was implemented with an intrusive doubly-linked list allowing for constant

time insertion and removal. However, even though these operations were constant time, they must

be performed for each character of the input, resulting in an accumulated overhead that becomes

significant. It is worth noting that, as before, the use of 12-bit indices results in a large speed-up.

2.6.5 Squeeze on ARM

We also benchmarked squeeze on a Raspberry Pi running an ARM11 processor at 700MHz with 512MB

of RAM, with Raspbian Linux (based on Debian wheezy) as the operating system. Compression

ratios are omitted since they are data dependent and not architecture dependent. In Figure 2.11

we see the performance of Squeeze versus LZW with AES and Salsa20 on the ARM11 processor.

The results are similar to those in Figure 2.5, but the numbers are an order of magnitude smaller.
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Figure 2.11: Compression and decompression speeds for an ARM11 processor with no eviction.

Worth noting, though, is that LZW combined with AES encryption is the best performing for both

compression and decompression even beating LZW combined with Salsa20. This is likely due to

code-tuning in the OpenSSL implementation of AES for ARM while the Salsa20 code was simply

compiled from untuned code using gcc.

Also, as before, squeeze along with plain LZW compare favorably to both bzip2 and gzip, with

bzip2 outpaced in almost all cases. For most files squeeze performs well and has encryption speeds

close to those of LZW. There is little difference in the performance of the schemes on small files

when using 16-bit indices. For large files and 16-bit indices, LZW combined with AES has a small

performance advantage over squeeze and LZW with Salsa20. On small files, gzip compresses most

quickly while the LZW-based schemes perform well on larger files. When decompressing, as before,

gzip performs consistently well and, indeed, almost always outperforms the LZW-based schemes.

When compared among themselves, the LZW-based schemes perform similarly, though, as with

compression, LZW combined with AES achieves the highest speeds.
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Figure 2.12: Encryption and decryption speeds for squeeze with a compact dictionary.

2.6.6 Memory Efficient LZW

We implemented and benchmarked the memory-efficient versions of squeeze and LZW described in

Section 2.4.3. However, to avoid parallel and redundant code for the dictionary, where encryption

and decryption would have individualized trie implementations, we implemented a union of the trie

nodes described above. Accordingly, some features of the trie nodes were only used when encrypting

or decrypting. While this increases the memory requirements of both encryption and decryption, the

benchmarks still give us a picture of the performance of the compact dictionary.

Figure 2.12 shows encryption and decryption speeds for squeeze using the compact dictionary on

the Core 2 Quad processor. For encrypting large files, the LZW-based schemes match or surpass gzip;

on the other hand, for smaller files (such as fields.c), gzip performs better than the LZW-based

schemes. For decrypting, the LZW-based schemes achieve very high throughput, even exceeding gzip

and our more “optimized” (and memory-heavy) implementation above.

Figure 2.13 shows the performance of squeeze with a compact dictionary on the ARM11 processor.

The speeds here are similar to those in Figure 2.11, but the speeds shown here are up to 10% higher

than those in Figure 2.11. This boost in speed is likely due to better cache performance with the
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Figure 2.13: Encryption and decryption speeds for squeeze on ARM11 with a compact dictionary.

smaller dictionary. Squeeze fairs well in this comparison having speeds close to and even exceeding

those of plain LZW with AES and Salsa20 encryption. However, this can be attributed to the fact

that the load in the dictionary is bounded by 1/2. To see this, note that LZW combined with Salsa20

encryption with the dictionary at most half-full achieves the highest compression and decompression

speeds across the board.

2.7 Applications and Variants of Squeeze

There are numerous applications and variants of Fast and Slow Squeeze. For instance, if we bound

the size of the dictionary and stop encrypting when the dictionary’s size reaches the maximum, then

we have a cipher that produces outputs up to a fixed size. With appropriate padding, the cipher can

produce ciphertexts of constant size. This is similar in operation to a block cipher. However, our

cipher would have a variable-sized input block and a fixed-sized output block, while block ciphers have

fixed-sized input and output blocks. The size of the input block would depend on the compressibility

of the input. Such a configuration would work well with block-oriented storage devices (e.g., a hard

drive) since the fixed output size can allow for more efficient writes.
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This scheme, however, would not support block cipher modes of operation (e.g., CBC) since they

all rely on a fixed block size. But, it is possible to create a chaining mode similar to CBC. In particular,

suppose we have some input that will be broken up into several compression operations. The nonce

for the compression of the first block is generated at random. The nonce for each subsequent block

could be the hash of the previous ciphertext block, using a collision-resistant hash function.

An alternative way to use our compressing cipher would be to integrate several MACs into the

ciphertext. Currently with Fast Squeeze, if a ciphertext becomes corrupted it is possible that the

receiver will not know about the corruption until it has finished decrypting the entire file. It would

be better if the corruption was detected closer to its actual occurrence. A simple way to accomplish

this would be to have a maximum input size for the MAC and computing multiple MACs while

compressing the data.29 Note that the data would still be compressed and that the dictionary would

not be reset whenever a new MAC was started. This is in contrast to the previous variant where the

dictionary was reset whenever a new MAC was started (i.e., whenever a fixed-size block was finished).

In Fast Squeeze, we use a single key for computing the MAC for each encrypted message. An

alternative would be to have a unique MAC key for every message where each ephemeral key is

derived in a process similar to that of the seed derivation process for the PRG. This construction

allows us to have a wider selection of possible MAC schemes to use as the MAC only needs to be

unforgeable for a single message instead of many messages. Furthermore, our session key derivation

process in both Slow and Fast Squeeze, where we encrypt a nonce using a PRP, can be replaced with

any secure key derivation function (such as those in [27]). Using a password-based key derivation

function, such as [74], would allow users to easily encrypt and decrypt files using a password.30

2.8 Previous Work

Compression has featured as an important part of many systems, often being used as a pre-processing

step before encryption. And consequently, the security implications of compression have been in-

vestigated many times. Looking at the threat posed by compression, it has been found that the

compressibility of a text can reveal information about the text itself. For example, in [80] Kelsey

points out that, contrary to folk-wisdom, adding compression as a pre-processing step for encryption

can weaken security instead of enhance it. In particular, knowledge about the input and output
29The MACs would be output immediately after the block that they authenticate.
30The nonce would be combined with the password to produce the session key.
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lengths leaks some information about the plaintext. For example, a text document full of English text

will compress quite differently from, say, an executable. More powerfully, when using a compression

algorithm that adapts itself to the input, an adversary may only know a prefix of the input (e.g., packet

headers) and be able to use the compressibility of the remaining text to learn partial information

about the unknown portion. This work was later utilized by Rizzo and Duong in an attack on TLS

that can steal secret authentication cookies used by websites that employ both compression and

encryption [139]. The attack in [139] was later extended by Prado et al. in [131] to exploit HTTP

compression in HTTPS sessions.

2.8.1 Cryptography and Plain Compression

Several popular compression schemes include encryption as a post-processing step, including PKZip,

WinZIP, WinRAR, and SecureZIP. PKZip used a custom stream cipher that was broken in [18] (the

attack was later improved in [153]); WinZIP uses a combination of AES-128/256 and HMAC-SHA1,

which was shown to have several weaknesses in [85] detailed below; WinRAR uses AES-128; and

SecureZIP can use either AES-256 or triple DES.

There have been several attacks on these compression tools: in addition to PKZip, WinZIP

compression and encryption has been found vulnerable. Tadayoshi Kohno in [85] outlines several

attacks on the encryption and authentication provided in WinZIP. WinZIP uses AES encryption in

counter mode combined with the HMAC-SHA1 message authentication code.31 The weaknesses are

manifold. First, the metadata is not authenticated, so there is a rollback attack that can force WinZIP

to use an older (less secure) encryption method for decrypting the data. There is a chosen-ciphertext

attack where given an encrypted and compressed file F create by a user U , an attacker A can XOR

it with a pseudorandom pad to produce F ′. If A can convince U to decrypt and decompress it and

send the result (e.g., “The file you sent was garbage! Here it is.”), then A can simply re-compress it

(since compression is deterministic), remove the random pad and decompress again to recover the

original file. There are numerous other attacks described in [85], including key-reuse and dictionary

attacks being much more feasible than expected.
31This combination is a provably secure authenticated encryption scheme.
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Huffman Codes

Huffman encoding is an entropy-encoding scheme that assigns bit-strings to input character strings

based on the frequency of those character strings, with the most probable strings being assigned

the shortest bit-strings. The code is a prefix code and also optimal. In [47], Gillman et al. analyze

the difficulty of decoding a Huffman encoded file without having the prefix tree used to encode the

file. They focus on unambiguously decoding the file, which is shown to not be possible in certain

situations. However, they do not consider partial recovery of the input file and their own analysis

suggests that many files can be partly (but not necessarily fully) decoded.

Wu and Kuo in [170] seek to combine compression primitives with some randomness to produce

secure compression without sacrificing speed or compression ratio. They achieve this by applying

Huffman encoding with multiple encoding trees where an optimal tree is generated and then mutated

in different ways to produce different trees. For example, swapping nodes at the same depth in the

tree will not affect coding efficiency. They then use a secret random ordering of the trees to encode

sequential input symbols. They apply a similar construction to arithmetic encoders, where they have

multiple statistical models for the input and iterate through them repeatedly in a random order.

Their security analysis focuses on key recovery attacks and does not analyze possible information

leakage from the ciphertext. This is unfortunate since one possible application they list is in digital

rights management: where attackers seek plaintext extraction and not necessarily key recovery.

Burrows–Wheeler Transform

The Burrows–Wheeler transform, first described in [22], is an invertible partial-sorting algorithm that

permutes the input characters so that identical characters are (roughly) grouped together. Burrows

and Wheeler then utilize move-to-front encoding32 followed by Huffman encoding to compress the

data. This algorithm is implemented in the popular bzip2 utility [144]. Külekci in [94] proposes a

modification of the Burrows–Wheeler transform to provide privacy. Specifically, he utilizes a secret,

randomly chosen ordering of the input alphabet for the partial-sorting step and then uses a separate

secret ordering of the alphabet for the move-to-front encoding step. This algorithm was shown to be

weak by Stanek in [152], succumbing to both chosen- and known-plaintext attacks.
32Move-to-front encoding works by outputting the index of a character in an alphabet, and then moving that

character to the front of the alphabet. In this way, if a subset of characters appear frequently, then they will be encoded
as small numbers. For example, the string baba would be encoded as 2222.
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LZ-based Codes

Xie and Kuo in [171] propose a secure compression algorithm based on the LZW algorithm. They

start with a randomly permuted initial dictionary and each new entry is inserted into the dictionary

in a random position. However, the scheme has several drawbacks. First, they base their algorithm

on the LZ78 compression algorithm, which LZW is derived from. The difference between LZ78 and

LZW lies in what happens when a match in the dictionary is not found. In LZW, the index of the

last matched entry is output; in LZ78, the index of the last matched entry is output along with the

character that failed to match. That is, the output of LZ78 is an alternating sequence of dictionary

indices and individual input characters. Xie and Kuo do not take into account these single characters

and so their ciphertexts always leak part of the plaintext. If instead they used LZW, which would be

a small modification of their scheme, then this plaintext leakage is mitigated.

However, the scheme still suffers from a critical flaw. Specifically, the scheme does not re-randomize

a dictionary entry after it has been used. As long as an entry is never a “target” of a collision during

insertion, the corresponding string always maps to the same output index.33 This weakness turns the

scheme into, essentially, a substitution cipher. Though, Xie and Kuo add an additional complication

to the encryption process by having E different dictionaries (increasing memory use by a factor of E).

When inserting a new entry e, they randomly partition the set of dictionaries into two disjoint sets,

choose two random numbers r1 and r2, and then insert e into position r1 in one set and in position

r2 in the other set. While this complicates the algorithm a bit, it does not change the fundamental

substitutionary character of the cipher itself.

As an example, consider the two message aa and ab: when encrypting the aa, the ciphertext, with

high probability, will consist of two identical indices since they do not update the dictionary after

using an entry. In particular, when inserting aa, with probability (1/E)(1− 1/|D|) + (E − 1)(1/|D|)

(where |D| is the size of the dictionary) aa will not collide with a. This means that when the second

a is matched the same index will be output with probability at least (1− 1/|D|)(1/E). On the other

hand, the string ab will encrypt to two different indices with probability 1/E + (1− 1/|D|)E−1. In

particular, when encoding ab, for a and b to have the same index, b would need to be placed in a’s

entry after encoding a, which is not possible. Namely, when ab is inserted, if it lands in an occupied

entry, that entry is evicted and placed at the end of the dictionary: ab is then inserted into the
33When inserting a new entry, the scheme chooses a random place in the dictionary and evicts whatever entry may

be there. The evicted entry is then appended to the end of the dictionary. This is essentially a single step of the
Fisher-Yates algorithm [42].



69

now-empty position. So there is no way for b to occupy a’s entry since it can only stay in place or be

moved to the end. Thus, the scheme cannot provide even ER-CPA security since the messages ab

and aa are distinguishable with non-negligible probability.

Another drawback is that they handle collisions in the insertion procedure by evicting the

occupying entry and moving it to the end of the dictionary (extending the dictionary by one entry).

When the dictionary is full—which can happen since they use finite-length indices—this is equivalent

to evicting the old entry from the dictionary. This can cause compression to fail as the eviction

process may remove one of the initial single character strings and then the compressor will no longer

be able to encode that character if it is subsequently encountered. Finally, the security analysis

in [171] is a bit narrow and only considers key recovery attacks and rather than information leakage

and/or indistinguishability of ciphertexts.

In [172], Zhou et al. propose a secure LZW algorithm using a randomized dictionary similar to

Fast and Slow Squeeze. They start by initializing the dictionary randomly, i.e., putting each single

character string into a random entry. When inserting a new entry, they use a keyed hash function

to choose a new, random location for the new entry. After encoding a string, they apply a random

partial permutation to the dictionary. There are a few short comings of this algorithm. Firstly, it is

never stated how collisions are handled when an insertion is performed; it seems to be assumed that

there are no collisions. But, due to the birthday paradox, if they have a dictionary of size 2b, then a

collision will happen with probability greater than 50% after 2b/2 insertions.

Secondly, their security analysis focuses on adversaries that are seeking to recover the key and

do not properly consider known- or chosen-plaintext attacks (while they mention chosen-plaintext

attacks, it is in the context of key recovery and not privacy). As a result, their scheme is vulnerable

to chosen-plaintext attacks as detailed by Li et al. in [96].

Thirdly, the permutation step they apply after each encoding step is quite expensive. The

permutation process is equivalent to adding the numbers s12b/2 + r1, s12b/2 + r2, s22b/2 + r1, and

s22b/2 + r2 to different quarters of the dictionary D. This requires O(|D|) operations to be performed

at each encoding step, increasing the work of encoding and decoding by a factor of |D|, drastically

reducing the scheme’s efficiency. See Section 2.6 for an experimental comparison of the work of Zhou

et al. with Fast and Slow Squeeze.

Li et al. in [96] give possible remedies to the security problems of [172] including enhancing the

dependence of the ciphertext on the input plaintext by, e.g., hashing the to-be-inserted string with
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the index of the previously inserted string to produce the new index. They also suggest including an

initialization vector to prevent the chosen-ciphertext attack on single-character strings. But, these

enhancements still suffer from the same profound inefficiency of the original scheme.

Arithmetic Coding

Arithmetic coding compresses data by dividing the interval [0, 1) into disjoint segments whose lengths

correspond to the probability of a particular character occurring in the input stream. The algorithm

reads a character, sets the current upper and lower bound to the end points of the associated interval

and then recurses on that interval. At the end of the input stream, we have an interval that uniquely

determines the sequence of input symbols, and the final output is the shortest element in that interval.

This encoding scheme forms a prefix code and produces outputs that are close to optimal in size.

The probability distribution over the input (called the model) can be fixed or dynamic (e.g., adaptive

to the input).

There have been several efforts to combine arithmetic coding with encryption. One example is [81]

where Kim et al. split each interval into smaller segments and then permute the segments all together.

In this way, each symbol has an associated set of subintervals rather than a single, continuous interval.

When outputting the final string, for each set of subintervals corresponding to an input symbol, the

encoder selects one of the subintervals and uses the shortest string from it. Their scheme also includes

applying a permutation to both the input data and the final output strings. Note that this precludes

their cipher being used on streaming input without buffering the input to be encoded. Also, the

permutation itself is not a random permutation but consists of cyclic shifts of even and odd rows and

columns where even/odd columns/rows rotated the same amount. The work of Zhou et al. in [173]

provides a chosen-ciphertext attack on this scheme that can remove the final permutation in time

linear in the number of chosen ciphertexts and then and then break output of the encoder.

In [29], Cleary et al. present known- and chosen-plaintext attacks against a simple arithmetic

encoder with a fixed (but unknown) probability distribution on the input symbols. The unknown

distribution acts as they key for the system. They show that they can recover the distribution with a

chosen plaintext of w + 2 characters, where the distribution is calculated with w bits of precision.

Witten and Cleary in [167] present two similar schemes for secure, adaptive arithmetic coding

where the encryption key is the model used for the encoding. In the first scheme, the key is the

initial (random) model of encoder. In the second scheme, the encoder starts with a fixed model but
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ingests a random string (i.e., as a prefix to the input) to have the model in an unknown state to an

observer. In [14], Bergen and Hogan present a chosen-plaintext attack on the first scheme that works

by “flooding” the encoder to force it into a known (or more manageable) state and leverage that to

synchronize its model with the encoder’s and decrypt subsequent messages. In [97], Lim et al. build

on [14] and present an adaptive, chosen-plaintext attack on both schemes and can recover the secret

key (the attacks are given in full detail by Bergen and Hogan in [13]).

A randomized arithmetic encoder is proposed by Grangetto et al. in [56], where, when processing

an input symbol, the partitions of the interval are randomly permuted. They do not address known-

or chosen-plaintext attacks on their system. Indeed, it succumbs to a chosen-plaintext attack where

they attacker can slowly probe the encoder with incrementally longer plaintexts to learn the order of

intervals at each step. Their scheme also does not consider biased input distributions—for example, if

we have P (0) = 0.1 and P (1) = 0.9 at each step, then the encryption of any message will necessarily

leak information about the plaintext. In particular, it is impossible for any input starting with 0 to

produce a ciphertext that is in the interval [0.1, 0.8).

Since their proposed application scenario is in selective encryption of multimedia files, partial

information leakage is not considered that deeply. Indeed, an attacker can simply apply the standard

arithmetic decoder to a ciphertext and recover partial information about the input. This is shown in

Figure 7 in [56] where they decode an encrypted Lena picture and the result clearly shows outlines of

elements in the image (i.e., it is readily apparent that the image is of a woman wearing a wide-brimmed

hat). There is, however, a significant degradation in the quality of the image.

In [168], Wong et al. present a scheme based on the observation by Bogdan et al. in [105] that

the reverse application of the skew tent map is equivalent to arithmetic coding. In particular, they

combine the skew tent map over the unit interval with a PRG that is also based on the skew tent

map. In the encoding phase, they use the pseudorandom bit stream to circularly shift the subintervals

and (possibly) reflect each subinterval around its center-line. They XOR the output of the coding

phase with some more pseudorandom bits produced by an integer tent map. They note that the

finite precision integer tent map does not possess sufficient randomness to use the output directly,

so they only output a few of the least-significant bits. They evaluate the strength of the PRG by

running it against the NIST Statistical Test Suite [140] and passing, but perform no further analysis.

The security analysis of the overall cipher is a bit sparse and contains several heuristic (rather than

formal) arguments, leaving the overall security of the scheme rather uncertain.
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Another chaos-based secure arithmetic coder is presented in [169] by Wong and Yuen, where

they use a logistic map with key-dependent parameters to perform the compression and encryption.

The interval [0, 1) is divided into subintervals which are partitioned into disjoint random subsets.

Each subset corresponds to an input symbol with sizes proportional to the likelihood of the symbol.

The key-dependent logistic map is applied to a secret initial value iteratively. Each input symbol is

mapped to the number of iterations needed by the logistic map to “land” in one of the subintervals

in that symbol’s set of subintervals. Wong and Yuen are able to achieve mild compression with this

scheme (e.g., 25% compression for book2 from the Calgary corpus), but the security provided is

minimal. There does not appear to be any way to update the mapping of a symbol to its number

of iterations, so the cipher reduces (almost) to a substitution cipher (some symbols are encrypted

differently, and this only moderately increases security—see the original paper [169] for more details).

2.8.2 Authenticated Encryption

The combination of encryption and message authentication has provided confidentiality and integrity

in a wide variety of deployments (e.g., SSH and TLS). This work utilizes the Encrypt-then-MAC

(EtM) paradigm described by Bellare and Namprempre in [10] in the construction of the Fast Squeeze

cipher. EtM is known to be IND-CCA-2 secure, which—given the observation in Section 2.2.3 that

results independent of ciphertext length also apply in our entropy-restricted context—provides an

alternative proof that our constructions are also ER-CCA-2 secure. Authenticated encryption itself is

a valuable tool, and there has been much research to analyze general constructions (e.g., [10]) as well

as specific constructions—for instance, there are several block cipher modes developed to provide

authentication of the message, see [11, 86, 110].

2.8.3 Length-hiding Encryption

In Section 2.2 we define ER-CPA/CCA-1/CCA-2 security for our scheme and require that the two

challenge message m0 and m1 must come from the same class of message Cl1,l2 ⊆M, where all m ∈ C

compress to sizes within the range [l1, l2]. This is done so that the length of the final ciphertext

does not leak information about which message was encrypted. Of course, if l1 < l2, then we must

add random-padding to ciphertexts of the short messages in C so that their lengths will be the

same as that of the longest compressed-encrypted messages in C. That is, the ciphertexts must be
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self-delimiting in a way that is not visible to the adversary, e.g., include some EOF marker in the

plaintext and then append random bits.

There has been past work looking at padding schemes for hiding plaintext length. For instance,

Paterson et al. in [123] define length hiding authenticated encryption (LHAE) which provides secure

authenticated encryption while using variable length padding appended to the plaintext. Their work

focuses on the MAC-Encode-Encrypt (MEE) paradigm (i.e., MAC, pad, encrypt), which is used in

TLSv1.2. They prove that if the size of the MAC tag is larger than the block size of the cipher, then

MEE is secure LHAE. This work was later used by Jager et al. in [69] to prove the security of the

TLS handshake protocol.

The encryption function for an LHAE instance takes a length parameter ` as input which is the

target output length for the ciphertext. The two input messages are allowed to be of arbitrary length

as long as their encryptions succeed (i.e., do not produce an error), placing an implicit restriction

that ` is greater than or equal to the lengths of the input messages. Note that this ` parameter

is independent of the message content encrypted; for ER-CPA security, the length of the output

ciphertext is dependent on the contents of message (in particular, dependent on its compressibility).

In [162], Tezcan and Vaudenay examine the security provided by adding padding to the end of a

message. Specifically, they consider an adversary that seeks to distinguish the combined padding and

encryption of two messages which are allowed to be of different lengths (with a bounded difference).

They prove that insecurity decreases linearly with padding length and that selecting the padding

length uniformly at random is nearly optimal. This is in contrast to our work, where if two messages

m0 and m1 are in a class Cl1,l2 , where l1 6= l2, then we apply padding to the ciphertext (and append

a special EOF marker to each message) to ensure that the ciphertexts have exactly the same length.

2.9 Future work

There are several directions for future work with secure compression. First and foremost, while it

is natural for data (e.g., a file) to be read in a sequential fashion, this is by no means the only

(or even primary) way of accessing data. Often, users only need a portion of a file rather than all

of it and would like to seek within a file (sometimes randomly), skipping the unneeded segments.

Developing a random access variant of the squeeze ciphers would be synergistic with many file access

patterns. Random access is possible with block ciphers (e.g., counter mode) and compression functions
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(see [90]), so intuitively there does not appear to be anything inherently precluding a compressing

cipher from also having this property.

Second, as noted by Kelsey in [80], the compressibility of a message leaks information about the

contents of that message and it is desirable to address this leak. While our model restricts itself to

comparing plaintexts that have the same compressibility, in real-world applications users do not always

have that luxury. Indeed, our solution for this required a special EOF symbol in the alphabet, which is

not always possible when, for example, compressing binary data where adding a special symbol would

increase the size of every symbol by a bit and undermine the compression. One possible, alternative,

way to relax this restriction is to try and add some “noise” to the compression process, either via:

(1) insertion of random data into the input stream in pseudorandom positions, determined by the key

(similar to the work of Witten and Cleary in [167]); or (2) prepending/appending a variable-length

random pad to the message (as in [123]) or to the ciphertext as described in Section 2.2.3

Finally, another direction of work is to explore alternative compression frameworks and techniques.

Here, we provided a construction based on a self-constructing dictionary, alternatives include prediction

by partial matching [30], grammar-based codes [116], and integrating a variant of the Burrows–Wheeler

transform. And of course, additional optimizations in the compression and efficiency of the squeeze

ciphers would be worthwhile. Part of this effort would be to devise a parallelizable variant of the

algorithm to take advantage of multi-core systems.

2.10 Conclusion

In this chapter we have presented the first theoretical framework for analyzing combined compression

and encryption schemes. The definition of entropy-restricted semantic security (ER-CPA security)

and its refinements (ER-CCA-1 and ER-CCA-2) are based closely on the standard definitions of

security for ciphers; and, indeed, they are shown to be a particular generalizations of them. We also

presented two keyed compression algorithms—both simple, with one being particularly efficient—and

we proved that they both achieve the strongest form of entropy-restricted security. Additionally, we

outlined several alternative constructions and variants of the schemes which have their own interesting

properties, and then finally, we presented several future directions for the work.



CHAPTER Three

Authenticated Error Correcting Codes

3.1 Introduction

Over the last few decades, the proliferation of computing systems to near ubiquity has had manifold

impacts on our world. Among those is a rapid growth in the production of electronic data as well as

an ever growing appetite for that same data, i.e., the aptly named Big Data. Of course, this data

must be stored somewhere. Moreover, much of this data is of a sensitive and personal nature—such

as electronic healthcare records—and the possible corruption and loss of this data can have serious

consequences for both individuals and organizations (see, for instance, [151]). Hence, strong guarantees

of system reliability and data integrity are necessary in modern computing systems.

Reliability and integrity can be achieved in a number of ways. The simplest method is to replicate

the data in multiple locations so that if any disk drive or file server crashes/fails/catches on fire,

another copy of the data is readily available. However, this technique is quite wasteful since, if data is

replicated r times, it will require an r-fold increase in the amount of storage, and hence, the effective

capacity of the storage system is reduced by a factor of r.

An alternative technique is to add some specially constructed redundancy to the data so that if a

portion is lost, it can be reconstructed. For instance, in RAID5 systems,1 the data is broken up into

fixed-sized blocks (typically 4KB) and then distributed among several disk drives. One of the disks is

a dedicated parity disk where each block is the XOR of the corresponding data blocks from the other
1RAID standard for “redundant array of inexpensive disks” and is a standard technique of combining several disks

together to achieve higher system throughput and reliability. There are different configurations numbered RAID0
through RAID6.
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disks. For instance, the first block of the parity disk will be the XOR of the first block from each of

the other disks. This configuration allows the loss of a single disk without losing any data as the

missing disk can be reconstructed by simply taking the exclusive-or of the other disks’ contents. If

there are 5 disks in a RAID5 array, then 4 store data and one stores the parity information, giving

an overhead of just 25%, much less than simple replication of data.

A more powerful and flexible technique to achieve reliability is to use an error correcting code

(ECC), a mathematical transformation of data such that the encoded output can withstand some

amount of mangling/corruption and still allow for the recovery of the original data. Codes that are

resilient to only data loss are called erasure codes (such as RAID5). Some codes allow for including the

input message directly in the encoded output for greater encoding and decoding efficiency: such code

are called systematic. Additionally, if we allow the decoder to output at list of values, instead of a single

value, then we call this a list-decodable code. Often, list-decodable codes can correct more errors than

their unique-decoding counterparts. In comparison with the RAID5 example above, we note that a

RAID can only detect single block corruption but cannot recover from data corruption.2 Additionally,

errors in multiple blocks may cancel out when combined with XOR and remain undetected.

Reed-Solomon codes [138] are error correcting codes that, due to their simple description and

practicality, have found many applications—including error correction of transmissions in space

exploration (e.g., the Voyager spacecraft [166]), computer storage systems such as HDFS-RAID [135],

and CDs and DVDs (see [166] for additional applications). Reed-Solomon codes operate by breaking

up the data into k, equal sized pieces (calledmessage symbols) and regarding these pieces as coefficients

of a degree k − 1 polynomial p(x) over some finite field F (where each symbol is an element of F).

The encoder then evaluates p(x) at n ≥ k distinct points in F, generating n code symbols; these code

symbols form the encoding of the data. Using polynomial interpolation, the original data can be

recovered from any k out of n uncorrupted code symbols, tolerating up to n− k erased symbols. If

some of the data is corrupted, then the decoder needs k + (n− k)/2 uncorrupted code symbols to

decode correctly; that is, the code can tolerate up to (n− k)/2 corrupted code symbols (where the

corruption of a symbol can be arbitrary).

The gap between the erasure and error correction capacities of Reed-Solomon codes comes from the

fact that when a corrupted codeword arrives, the decoder does not know which symbols are corrupted.
2The mismatch between the parity blocks and the XOR of the data blocks will signal that data is corrupted, but it

is impossible to tell which block is the bad one.
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If the decoder has this information, then it can simply discard the bad symbols, regarding them as

erased, and only work with the good symbols. This closes the erasure-error gap and the decoder can

then correct n− k errors. Locating the corrupted symbols can be achieved by simply computing a

checksum over each symbol and appending it to the symbol. This is a well-known technique and has

been used for at least two decades.3 Popular checksum algorithms such as CRC, Adler’s checksum, and

Fletcher’s checksum are best suited for random corruptions of data and cannot withstand purposeful,

adversarial corruption of data. Stronger primitives, such as message authentication codes (MACs)

and digital signatures, can provide protection against any (polynomially-bounded) data-corrupting

adversary (such as in [88]). We call such augmented codes authenticated error correcting codes.

One notable drawback to using checksums is that it is impossible to distinguish between the cases

when the data is actually corrupt and when just the checksum itself is corrupt. This ambiguity can

lead to situations where perfectly good data is thrown out. One system where this can have a large

impact is in large distributed file systems such as the Google File System (GFS) [45] and the Hadoop

File System (HDFS) [134]. In these systems, files are divided into chunks that are tens to hundreds

of megabytes in size (with typical sizes of 64MB and 128MB) and distributed among several storage

servers. Throwing out good data in this context is quite costly since new data would need to be

copied from another server and/or reconstructed from an encoding using an error correcting code

(see [143] for an analysis of the cost of data repair in HDFS).

Contributions. In this work, we give two efficient constructions that resolve this bad-data/bad-

checksum ambiguity. In the first construction, we completely separate errors in the symbols from

errors in the checksum by applying an efficient list-decodable code to the checksums. This allows us

to correct any errors in the checksums, even up to the theoretical maximum number of errors, and

thereby detect up to the maximum number of errors in the code symbols themselves. The second

construction takes the opposite approach by tying together corruption of the data and the checksums;

in particular, we compute a checksum over the data and encrypt the concatenated result with a

non-malleable cipher. In this way, any corruption of the ciphertext will corrupt both the data and

the checksum with overwhelming probability. In addition to these constructions, we provide a new

security framework and we define a new adversarial model that is more powerful than previously

considered. Moreover, we prove the security of our constructions against this strong adversary.
3Krawczyk in [87] used this to construct distributed fingerprints in the early 1990s.
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Organization. The rest of this chapter is as follows. In Section 3.2 we give a summary comparing

our constructions to similar, previous efforts. In Section 3.3 we provide basic definitions for the tools

that we will be using. In Section 3.4, we describe our new adversarial model and corresponding

security definitions. We detail our constructions in Section 3.5 and prove their security in Section 3.6.

We then provide an experimental evaluation of our constructions in Section 3.7. Section 3.8 surveys

the previous work in this area; and, finally, we conclude with Section 3.9.

3.2 Comparison to Previous Work

The constructions we provide in this work use cryptography to enhance the error correction of various

ECCs. There are numerous examples of cryptography and error correcting codes being combined in

this way and here we compare our work with representative samples of previous constructions.

Briefly, an error correcting code maps a message consisting of k symbols to a string of n ≥ k

symbols such that any (uncorrupted) k-subset of the n symbols can be used to reconstruct the original

message. The minimum distance d of a code is the minimum Hamming distance between all pairs of

distinct codewords. If the code is an [n, k] code, then d ≤ n − k + 1. For example, Reed-Solomon

codes reach this bound exactly while a Hadamard code, which has n = 2k for a given message length

k, has distance 2k−1 < n−k+ 1. The minimum distance bounds the maximum number of correctable

errors for a code by b(d− 1)/2c.4

Sign-all. The most basic scheme is the “sign-all” approach that simply computes a signature

or MAC over every code symbol. Any changes to a symbol will be detected with overwhelming

probability and the symbol can be discarded. The inclusion of a nonce in the signature prevents

replays of old symbols. For an [n, k] code, the signatures allow efficient error detection and so code

can correct n− k errors. Examples of works that use this approach include [17] and [25].

Hashing. Another approach is to use the code symbols as the leaves in a Merkle tree. For each

symbol, the encoder appends the hashes of the sibling nodes on path from the symbol to the root of

the tree. This approach adds an overhead of logn to each symbol, where n is the number of code

symbols. This approach was used in [24] and [76].
4Intuitively, this is the maximum radius of a sphere centered at each code word such that none of the spheres

overlap.
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Table 3.1: A comparison of this work with previous constructions. Assume we are using an [n, k]
code to encode the message. The first two rows indicate the number of errors the scheme can correct
given a particular adversary where d is the minimum distance of the code (d− 1 is the theoretical
maximum number of correctable errors). Joint and independent corruption indicates whether symbols
and authentication takes are corrupted jointly or independently.

Sign-all List decoding Merkle tree LD NM
Joint corruption n− k d− 1 n− k d− 1 n− k
Independent corruption (n− k)/2 d− 1 (n− k)/2 d− 1 n− k
Uses list decoding no yes no yes no
Any message alphabet no yes no no no
Any erasure code yes no yes yes yes

Another approach that utilizes hashing but does not require a Merkle tree is in [91]. The authors

use homomorphic hashing—where security is based on the difficulty of computing discrete logarithms—

to authenticate code symbols for reliable and secure content distribution. The message symbol hashes

are published by the sender in a reliable and secure way accessible by the receiver. The encoder

produces parity symbols by adding together a small, random subset of message symbols and the

hashes of the parity symbols are computed by, for each symbol, taking the product of the hashes of

message symbols constituting the given parity symbol. The overhead in this scheme is similar to the

sign-all approach, but they also give a recursive hashing scheme (where the hashes are, themselves,

hashed) to produce more succinct authentication tags at the cost of more computation. (For simplicity,

we consider the non-recursive version.)

List Decoding. In [106], Lysyanskaya et al. couple signatures with list decoding to achieve error

correction (over a computationally-bounded channel) beyond the unique decoding bound of b(d−1)/2c.

Specifically, they sign the input message and then apply an efficiently list-decodable code (e.g., a

Reed-Solomon code) to the message-signature pair. When decoding, the codeword is list decoded

and the signature on each list entry is checked to find the correct decoded message. This technique

of using signatures to achieve unique decoding from list decoding over a computationally-bounded

channel was independently discovered by Micali et al. in [111]. This latter work also developed the

theoretical foundation for a computationally-bounded channel, which we adapt to this work. Note

that the error correction is d− 1, which may be less than the theoretical maximum of n− k. This is

due to the fact that in these schemes the signature is applied to the message before the encoding, so

the code itself must absorb all of the errors.
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We present two constructions in this work that are secure against a new form of data corruption

against authenticated error correcting codes. In particular, an adversary that can corrupt the symbols

and authentication tags independently of each other (e.g., corrupt e symbols and corrupt e tags) we

call independently corrupting. Else we call it jointly corrupting. For example, the sign-all approach

can only tolerate (n − k)/2 independent corruptions since it can cause n − k total symbols to be

discarded (i.e., the corrupted symbols and the symbols with corrupted tags).

Our first construction that is secure against an independently-corrupting adversary uses list

decoding to completely separate the corruption of the symbols from the corruption of the tags: i.e., so

that their respective errors can be corrected individually. We denote this scheme with LD in Tables 3.1

and 3.2. Our second construction applies a pseudorandom permutation (PRP) to a message symbol,

computes and appends a MAC to each symbol, and then encrypts the symbol-MAC pair with a

non-malleable cipher. This ensures that the symbols and tags are “bound together” such that the

corruption of one corrupts the other with overwhelming probability. We prove this in Section 3.6. We

denote this scheme with NM in the tables and, for simplicity of presenting the overhead in Table 3.2,

count its MACs as signatures.

A comparison of this work with previous work is in Table 3.1. Each row in the table is a particular

property of the schemes and each column is a particular scheme. The first row compares the error

correction capacity of the scheme against the standard, computationally-bounded, jointly-corrupting

adversary, where the adversary must regard a symbol and its authentication tag as a single unit. This is

in contrast to a stronger adversarial model (compared in the second row) where adversary is permitted

to corrupt symbols and tags independently of each other. Note that both of our constructions are

secure against this stronger adversary. The third row indicates which schemes use list decoding, which

is generally a costly tool.

The fourth row of the table highlights a notable feature of the schemes in [106] and [111]: both

schemes work over alphabets of all sizes (e.g., Σ = {0, 1}), but do require a minimum message length

of λ, the security parameter. Otherwise if the message length less than λ, the signature scheme cannot

provide security with parameter λ. Our LD and NM constructions, for comparison, have a lower

bound on the size of the symbols used (i.e., Σ = {0, 1}λ), which places a larger lower-bound on the

message size than [106] and [111] do. Note that the sign-all approach requires large alphabets as well.

The last row of the table indicates whether or not the message being sent may be encoded with

(almost) any erasure code. The work done in [106] and [111] requires that the message be encoded
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Table 3.2: Concrete comparison of the overhead associated with the schemes. Encoding of the message
is done with an [n, k] code with rate R = k/n. Hashes and signatures are h and s bytes in size (resp.).
We have L denote the size of the list for decoding and have tL denote the time to list decode. tσ is
the time to compute or verify a signature while th is the time for a hash operation. tE is the time
for any encoding in addition to encoding the input message. tprp and tnm denote the time to apply
a PRP and a non-malleable cipher (and the respective inverses). Let Q = log q be the size of the
encoding alphabet (note, λ < Q). For simplicity, we omit the cost of nonces and counters. Spaces
costs are per symbol while computational costs are per message.

Sign-all List decoding Merkle tree LD NM
Space cost s s/k h logn+ s/k h/R+ s/k s
Encoding ntσ tσ tσ + (2n− 1)th nth + tσ + tE n(tσ + tprp + tnm)
Decoding ntσ tL + Ltσ thn logn+ tσ tL + Ltσ + nth n(tσ + tprp + tnm)

with a list-decodable error-correcting code (and, in particular, an efficiently decodable code). The

other schemes, however, do not have this restriction and the code used on the message itself can be

an arbitrary erasure code (as long as the code supports the required alphabet size and has efficient

encoding and decoding). Though, note that the LD construction requires an efficiently list-decodable

code to be applied to the authentication tags. But, the message itself (which can be much larger

than the authentication tags) need not be encoded with a list-decodable code.

One feature omitted from Table 3.1 is the fact that our list decoding solution (LD) does not

require us to perform list decoding on the entire message. Rather, we perform list decoding on just

the authentication tags. This allows us to perform decoding more efficiently since the decoding is

done over a much smaller field. Holding the message length k and codeword length n constant, and

letting the symbol alphabet Σ grow, LD has a fixed list decoding cost while the cost of the schemes

in [106] and [111] grows with Σ. Note, however, that our LD scheme requires the use of cryptographic

hashes, whose cost grows linearly with alphabet size. But, hashing is a very fast operation compared

to list decoding, so this growth is not significant.

Table 3.2 compares the computational and space overhead of the different schemes. (A simplified,

asymptotic version is given in Table 3.3.) The first row of the table compares the schemes based on the

space overhead per symbol. The sign-all and NM schemes both require a signature per symbol. The

schemes based on list decoding in [106] and [111] both amortize the overhead of the signature across

the message symbols. Our list decoding scheme does the same, in addition to having the, constant,

overhead of the hashes—the n hashes are divided into k pieces, giving an overhead of nh/k = h/R,

where R is the code rate. The Merkle tree-based schemes have, at least, an overhead logarithmic in
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Table 3.3: Asymptotic comparison of the overhead associated with the schemes. Encoding of the
message is done with an [n, k] code with rate R = k/n. Hashes, MACs, and signatures are assumed
to have lengths proportional to the security parameter λ. We have L denote the size of the list for
decoding and have tL(a) denote the time to list decode over an alphabet of size a. tE is the time for
any encoding in addition to encoding the input message. Let Q = log q be the size of the encoding
alphabet (note, λ < Q), and let ` = Qn be the length of an encoded message. For simplicity, we
omit the cost of nonces and counters. Spaces costs are per symbol while computational costs are per
message.

Sign-all List decoding Merkle tree LD NM
Space cost λ λ/k λ logn+ λ/k λ/R+ λ/k λ
Encoding O(`) O(`) O(`+ nλ) O(`+ nλ) + tE O(`)
Decoding O(`) tL(Q) +O(L`) O(`+ λn logn) tL(λ) +O(`+ Lnλ) O(`)

the codeword size. The specific construction of distillation codes in [76] adds an additional overhead

of a signature.

The second and third lines detail the cryptographic and encoding/decoding computational

overhead in addition to the cost for encoding the input message. The sign-all approach requires

a signature operation per code symbol, as does the NM construction. The latter also requires

encrypting/decrypting each symbol. The list decoding schemes of [106] and [111] both perform a

single signature operation when encoding, but require a list decoding step and one signature operation

for each item in the decoded list. Our list decoding based scheme also requires the verification of n

hashes corresponding to the symbols and requires an additional encoding step to encode the hashes.

The Merkle tree constructions require 2n−1 hash operations to build the Merkle tree and n instances

of logn hash operations to verify the received codeword.5 Distillation codes also perform an additional

signature operation.

As is clear from Tables 3.1 and 3.2, our constructions provide stronger guarantees of integrity than

several previous works. Specifically, we are able to correct more errors than the sign-all and Merkle

tree approaches when against an independently corrupting adversary. The additional overhead in our

schemes while providing this increased security is small: n hash operations for LD and n PRP and

encryption operations for NM. Moreover, in our LD scheme, when given fixed n and k, the overhead

from list decoding is constant as the symbol size grows. Compare this to [106] where the list decoding

time increases as symbol grows since the field operations become more expensive. Finally, it should

be noted, that for some efficiently decodable list decoding algorithms, even though the maximum
5The logn verifications per block is necessary since we cannot simply reconstruct the whole tree and compare the

root hashes as there may be corrupted symbols and hashes.
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list size L is polynomially bounded, on average, the output list is very small (e.g., see the appendix

in [109] analyzing the average list size of the Guruswami-Sudan decoder for Reed-Solomon codes).

3.3 Preliminaries

In this section we define the basic terms and concepts, both coding theoretic and cryptographic, that

we will use throughout this work.

Notation. We denote the security parameter by λ. If Alg is a probabilistic algorithm, let [Alg(π)]

denote the set of all possible outputs of Alg when run on parameters π. Let x R← S denote sampling

x from the set S uniformly at random. Let x← D denote sampling x according to distribution D.

We also use ← for assignment in algorithm listings, which will be clear from the context. We denote

string concatenation with ◦. We abbreviate probabilistic polynomial time with PPT. We use |S| to

denote the cardinality of a set S and we let P (n) denote the set of all permutations over {0, 1}n.

3.3.1 Coding Theory

An error correcting code (ECC) is an encoding of an input message into another form such that

the encoded message can be transmitted over a noisy channel while still permitting recovery of the

original message by the receiver. That is, an ECC transforms a message and adds some “redundancy”

such that some (bounded) portion of the message may be corrupted (or lost entirely) but the recipient

of the message can still reverse the encoding and recover the message.

An error correcting code C is defined over a set Σ, called the alphabet, elements of which are called

symbols—often Σ is a finite field. The code C maps elements of Σk (called messages) to elements

of Σn (called codewords), for some n ≥ k. k is called the message length of the code C and n is

the block length. For an element (m1, . . . ,mk) ∈ Σk, each mi is called a message symbol; similarly,

for (c1, . . . , cn) ∈ Σn, each ci is called a code symbol The ratio R = k/n is called the rate of the

code: roughly, this is the amount of information transmitted per codeword. The Hamming distance

between two codewords x and y is defined as ∆(x, y) = |{i | 1 ≤ i ≤ n, xi 6= yi}|. A code C has

minimum distance d if for all codewords x, y ∈ Σn such that x 6= y, we have that ∆(x, y) ≥ d. Note

that d ≤ n− k + 1; if d = n− k + 1, then C is called maximum distance separable code, or an MDS

code. We use the notation [n, k] to indicate a code of message length k and block length n.
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Definition 3.1 (Error Correcting Code). An error correcting code C over an alphabet Σ with

minimum distance d, is a pair of maps (Encode,Decode), where Encode : Σk → Σn and Decode :

Σn → Σk, such that for all m ∈ Σk and for all c ∈ Σn such that ∆(c,Encode(m)) ≤ bd/2c, we have

that Decode(c) = m. �

In some situations, the decoder may fail to recover a message: we denote this by having the

decoder Decode output ⊥ and call this decoding failure. If Decode outputs a message other than the

original message, we call this a decoding error.

For a code with minimum distance d, the code can be uniquely decoded for up to bd/2c errors

(called the unique decoding radius). However, if we allow the decoder to output a list of possible

decodings, such that the correct decoding is in that list, then it is possible to correct more than bd/2c

errors. This is called list decoding, defined next.

Definition 3.2 ((ρ, L)-List-Decodability). For 0 < ρ < 1 and an integer L ≥ 1, a code C with range

R ⊂ Σn is said to be list decodable up to a fraction ρ of errors with list size L, or (ρ, L)-list-decodable,

if for every y ∈ Σn, the size of the set {c | c ∈ R,∆(c, y) ≤ ρn}| is at most L. We say that C

is efficiently (ρ, L)-list-decodable if C is (ρ, L)-list-decodable and there exists a PPT list decoding

algorithm LD which, on input x ∈ Σn, outputs all codewords c ∈ R such that ∆(x, c) ≤ ρn. �

Another way of viewing an error correcting code is as an embedding of Σk into Σn such that

the Hamming distance between any two codewords is (at least) the minimum distance d. Since the

Hamming distance is a metric we can use it to define spheres around each codeword. The unique

decoding radius is then the radius of the largest sphere that can be centered at each codeword without

intersecting any other sphere. Thus any elements of Σn inside the unique decoding radius for a given

codeword are unambiguously decoded to the corresponding message of that codeword. If we allow

the radius to increase, then the spheres begin to overlap and decoding an element in intersection

becomes ambiguous. List decoding an element c ∈ Σn can then be viewed as producing a list of the

centers of each of the ciphers containing c, where each center is an element in the range of Encode.

Reed-Solomon codes [138] are a particular ECC that have seen wide applicability and deployment

(see [166] for examples). The codes themselves are conceptually simple: fundamentally, they are based

on noisy polynomial interpolation. In particular, an input message is broken up into k symbols which

are regarded as coefficients of a degree k − 1 polynomial which is then evaluated at n points and

these evaluations constitute the encoding. Some of the code symbols become corrupted in transit and
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the decoder executes a particular polynomial interpolation algorithm on these “noisy” symbols to try

and recover the original message. We present now the formal definition of a Reed-Solomon code.

Definition 3.3 (Reed-Solomon Code). An [n, k] Reed-Solomon code C over a finite field F is

a map Fk → Fn where each element a = (a0, . . . , ak−1) ∈ Fk is interpreted as a polynomial

p(x) =
∑k−1
i=0 aix

i ∈ F[x], and then we define Encode(a) = (p(α), p(α2), . . . , p(αn)), where α is a

primitive root of F. �

Note that the of use a primitive root is not required: any n distinct points α1, . . . , αn will suffice.

Reed-Solomon codes are MDS codes and have efficient encoding and decoding algorithms, taking

O(nk) and O(n2) time, respectively.6 Moreover, Reed-Solomon codes can be efficiently list decoded

using the Guruswami-Sudan algorithm [109] or by using a variant called folded Reed-Solomon codes,

described in [58]. The latter achieve the best possible list decoding for Reed-Solomon codes, being able

to correct up to n− k errors. We use Reed-Solomon codes in our experiments, but our constructions

are not dependent upon them.

3.3.2 Cryptography

We use several basic tools from cryptography in this work and present their definitions here. First,

we use a collision-resistant hash function in our list-decoding-based construction. Informally, a hash

function is a function that takes an arbitrary sized input and produces a fixed sized output. Such a

function is said to be collision-resistant if it is infeasible to find any two messages x and y that map

to the same output. More formally, we have the following definition.

Definition 3.4 (Collistion-Resistant Hash Function). A family of (efficiently computable) determin-

istic functions H (where for each h ∈ H, h : {0, 1}∗ → {0, 1}λ) is said to be (t, ε)-collision-resistant if

for all PPT adversaries A running in time t,

P [h R← H;A(1λ, h)→ x, y : x 6= y ∧ h(x) = h(y)] ≤ ε

where the probability is taken over the random selection of h and the random coins of A. �

If we relax the time restriction on A, allowing it to run for any polynomial amount of time instead

of just time t, then if ε is negligible, we call h collision-resistant or just cryptographically secure.
6Using discrete Fast Fourier Transforms, encoding and decoding can be performed in O(n logn) time. But, those

algorithms are asymptotic. For practical values of k and n (i.e., in the 10 or 100s), using a combination of Horner’s
Rule for encoding and the Berlekamp-Massey algorithm [107] for decoding is generally more efficient.
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Drawing the function h at random from a family of hash functions H prevents the degenerative

case where we fix h before choosing the adversary A, and then A comes “pre-programmed” with a

specific collision for h, trivially winning the game. For simplicity, though, we will often just refer to a

“collision-resistant hash function” and omit drawing it from a family of functions. In practice, there

is typically just a single hash function h (for example, SHA256) that is used where, even though

mathematically, there exists an adversary A that knows collisions in h, it is infeasible to find or

construct such an adversary.

Our second authenticated error correcting code uses a pseudorandom permutation (PRP) in

securing each symbol. Roughly, a PRP is a function taking two inputs k ∈ {0, 1}λ and x ∈ {0, 1}n

and producing an output f(k, x) ∈ {0, 1}n. In particular, the function fk(·) = f(k, ·) is a permutation

on the set {0, 1}n (and called a keyed permutation); moreover, for k chosen at random from {0, 1}λ,

fk is indistinguishable from a permutation selected at random from P(n). Let Of denote an oracle

for the permutation fk(·) (where k ← {0, 1}λ). (We do not give the adversary A access to an oracle

for f−1 and hence only require a “weak” PRP.)

Definition 3.5 (Pseudorandom Permutation). A keyed permutation f : {0, 1}λ × {0, 1}n → {0, 1}n

is (t, q, ε)-indistinguishable, if for all PPT distinguishers D running in time t and making q queries to

Of , distinguishes f from a permutation π R← P(n) with probability at most 1
2 + ε. �

If we relax the restrictions on D and only require that t and q be polynomially-bounded, then if

ε is negligible, we say that f is computationally indistinguishable from a random permutation, or

just computationally secure. Note that a (secure) block cipher is an example of a pseudorandom

permutation.

Another cryptographic tool that we employ is a public-key signature scheme. A public-key

signature scheme (or just a signature scheme) is triple of algorithms, consisting of a key generator, a

signing function, and a verification function. A signature scheme allows a user to generate a digital

signature for a document, akin to a physical signature, in such a way that it is (computationally)

infeasible to forge. The signature is generated with a secret key, and the public key (related to the

private key) is used to verify the signature. More formally, we have the following definition.

Definition 3.6 (Public-Key Signature Scheme). A public-key signature scheme Π for a message

spaceM is the triple of algorithms, (Gen,Sign,Verify) where Gen and Sign are PPT algorithms and

Verify is a deterministic algorithm, such that,
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• Gen: on input 1λ, outputs a pair (pk, sk) where pk is the public key and sk is the secret key (or

private key).

• Sign: on input secret key sk and m ∈M, outputs a signature σ.

• Verify: on input public key pk, m ∈M, and signature σ, outputs a bit b ∈ {0, 1}.

We require that for all (pk, sk)← Gen(1λ) and for all m ∈M, Verify(pk,m, Sign(sk,m)) = 1. �

The secret-key analog of a public-key signature scheme is a message authentication code (MAC).

Definition 3.7 (Message Authentication Code). A message authentication code (MAC) for a message

spaceM and tag space T , is the triple of algorithms, M = (Gen,Mac,Verify) where,

• Gen is a PPT algorithm that on input 1λ outputs a key k.

• Mac is a PPT algorithm that on key k and m ∈M outputs a tag τ ∈ T .

• VerifyMac is a deterministic algorithm that on input key k, m ∈M, and τ ∈ T outputs a bit

b ∈ {0, 1}.

We require that for all k ← Gen(1λ) and all m ∈M, Verify(k,m,Mac(k,m)) = 1. �

Finally, we also use public-key encryption schemes.7 A public-key encryption scheme consists of a

key generation algorithm, an encryption function, and a decryption function. Encryption is allowed

to be probabilistic, but decryption must be deterministic. Some definitions allow the decryption to

fail to decrypt a ciphertext with some small probability, but we will assume that decryption never

fails when given a legitimate message as input. A secret-key encryption scheme is defined analogously

by omitting the public key pk and having the encryption algorithm take sk as input.

Definition 3.8 (Public-key Encryption Scheme). A public-key encryption scheme for a message

spaceM (with associated ciphertext space C), is the tuple of algorithms (Gen,Enc,Dec) where, Gen

and Enc are PPT algorithms and Dec is a deterministic algorithm, such that,

• Gen: on input 1λ, outputs a key (pk, sk) where pk is the public key and sk is the secret key.

• Enc: on input a public key pk and a message m ∈M, outputs a ciphertext c ∈ C.

• Dec: on input a key sk and a ciphertext c ∈ C, outputs a message m ∈M.

We require that for all k ← Gen(1λ) and for all m ∈M, Dec(sk,Enc(pk,m)) = m. �
7Nothing in our constructions and proofs require asymmetric keys. Using secret-key variants (i.e., symmetric

encryption and MACs) is a straightforward optimization of our scheme. Indeed, we use these in our experiments in
Section 3.7.
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3.3.3 Security Definitions

For each of the cryptographic tools defined above, we present here their corresponding security

definitions. The definitions presented are concrete in that they specify exactly the resources available

to the attacker to break the scheme. This formulation allows for a precise characterization of the

efficiency our reductions in our security proofs and provides guidance for parameterizing a scheme to

achieve a desired level of security. Though, for simplicity of presentation we will often omit the exact

security of a given primitive.

Basic Definitions. First, for digital signatures, intuitively, we would like digital signatures to be

unforgeable, similar to the “guarantee” of real-world signatures. The strongest notion of unforgeability

is that no adversary can forge a signature for any message, even one of its own choosing. In the below

definition, the adversary A is trying to win a game. In particular, we give A access to a signature

oracle Osk that on input m produces a signature σ for m. After some number of queries q, A outputs

a message and signature pair (m′, σ′) and wins the game if Verify(sk,m′, σ′) = 1. We also require

that m was not previously queried to the oracle, otherwise A can trivially win the game.

Definition 3.9 (Unforgeable Signature Scheme). A public-key signature scheme Π is (t, q, ε)-

unforgeable if for all PPT adversaries A running in time t and given access to an oracle Osk,

P [(pk, sk)← Gen(1λ);AOsk(·)(1λ, pk)→ (Q,m, σ) : m 6∈ Q ∧ Verify(pk,m, σ) = 1] ≤ ε

where Q is the list of queries made to Osk, such that |Q| ≤ q, and the probability is taken over the

random coins of Gen, A and Osk. �

Relaxing the restrictions on t and q and allowing them to just be polynomially-bounded instead of

fixed, if ε negligible in λ, then we call the signature scheme existentially unforgeable. The definitions of

(t, q, ε)-unforgeability and existential unforgeability for MACs are analogous and can be constructed

by simply omitting the public key and using the secret key in VerifyMac.

An encryption scheme (either public-key or secret-key) is semantically secure when each ciphertext

hides all of the information about its message in the following sense: any function f of the message

that can be computed with the ciphertext can also be (efficiently) computed without it. Intuitively,

the ciphertext is not “helpful” to A when computing f(m). To prevent A from trivially knowing

the plaintext beforehand, we sample the message m from a distribution D over the message space
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M. The distribution D must be efficiently-samplable: i.e., there exists an efficient (polynomial-time)

algorithm S that on input 1λ outputs a message m ∈M according to distribution D. A may have

some auxiliary information about m that it knows or can learn, e.g., m is an encrypted network

packet with a specific format: we denote this auxiliary information by the function h (the “history”

of m).

Definition 3.10 (Semantic Security). A public-key encryption scheme Π = (Gen,Enc,Dec) is

(t, o, ε)-semantically-secure if for every efficiently-samplable distribution D over message spaceM,

all functions h :M→ {0, 1}∗ and f :M→ {0, 1}∗ (of arbitrary complexity) and every algorithm A

running in time t, there is an algorithm Â that runs in time ≤ t+ o such that,

|P [m← D; (pk, sk)← Gen(1λ); A(1λ, pk,Enc(pk,m), h(m)) = f(m)]

−P [m← D; Â(1λ, h(m)) = f(m)]| ≤ ε,

where the probabilities are taken over the random coins of D, Gen, Enc, A, and Â.8

As an example, a pseudorandom permutation is semantically secure since, intuitively, the encryption

f(k,m) for a random k and a given m is indistinguishable from a random value (i.e., the output of a

truly random permutation). Hence, the ciphertext is “unrelated” to the input message, and so it is

not “helpful” for computing any function of m.

Non-malleability. A strong security property that a cipher can have is one of non-malleability,

which, at a high-level, means that an adversary cannot manipulates a ciphertext and have the

resulting plaintext possess a desired property (e.g., have a particular formatting). More formally,

for any polynomial-time computable relation R, given an encryption of a message m, the adversary

cannot produce a ciphertext c′ such that with m′ = Dec(sk, c′), R(m,m′)) holds with significant

advantage over simply selecting m′ at random. This idea was first formalized in [36]. One advantage

of proving that a cipher is non-malleable is that non-malleability combined with CPA-security implies

that the cipher is CCA2-secure, the strongest form of security for a cipher (see [36]). We use the

formalization given in [12] adapted to be a concrete formulation. In the following,M indicates a set of

messages. M is valid if all messages with non-zero probability are the same length (since encryption

is not meant to hide the length of the plaintext).
8Parameter o is Â’s overhead required to produce the same output as A.
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Definition 3.11 (Non-malleable Cipher). Let Π = (Gen,Enc,Dec) be a public-key encryption scheme,

let R be a relation, let A = (A1,A2) be an adversary consisting of a pair of algorithms and let

S = (S1,S2) be a pair of algorithms that we call the simulator. For atk ∈ {cpa, cca1, cca2} and λ

the security parameter, define,

Advsnm-atk
A,S,Π,R(λ) = |Pr[Exptsnm-atk

A,Π,R (λ) = 1]− Pr[Exptsnm-atk
S,Π,R (λ) = 1]|,

where,

Exptsnm-atk
A,Π,R (λ)
(pk, sk)← Gen(1λ)

(M, s1, s2)← AO
Dec
1

1 (1λ, pk)

x
R←M ; y ← Enc(pk, x)

~y ← AO
Dec
2

2 (s2, y)
~x← Dec(sk, ~y)
If R(x, ~x,M, s1) then return 1
Else return 0

Exptsnm-atk
S,Π,R (λ)
(pk, sk)← Gen(1λ)
(M, s1, s2)← S1(1λ, pk)

x
R←M

~y ← S2(s2)
~x← Dec(sk, ~y)
If R(x, ~x,M, s1) then return 1
Else return 0

where,

• If atk = cpa, then ODec
1 (·) = ε and ODec

2 (·) = ε

• If atk = cca1, then ODec
1 (·) = Dec(sk, ·) and ODec

2 (·) = ε

• If atk = cca2, then ODec
1 (·) = Dec(sk, ·) and ODec

2 (·) = Dec(sk, ·)

We only consider adversaries A that are legitimate in the sense that with probability 1 the following

are true in the first experiment: (1) the message space M is valid, (2) y 6∈ ~y, and (3) in the case of

CCA2, A2 does not query O2 with y. We only consider simulators that are legitimate in the sense that

the message space M in the second experiment is valid. We say that Π is (t, q1, q2, ε)-non-malleable

if for every R computable in time t, every (legitimate) A that runs in time t, with A1 making at

most q1 queries to ODec
1 and A2 making at most q2 queries to ODec

2 , and A and outputs a message

space M samplable in time t, there exists a (legitimate) polynomial-time simulator S = (S1,S2) such

that Advsnm-atk
A,S,Π,R(·) ≤ ε. �

If Π is (t, q1, q2, ε)-non-malleable for all polynomially bounded t, q1, and q2 such that ε is negligible

in λ, then we call Π simply non-malleable-secure. We note here that there is a subtlety in the security

of non-malleable ciphers. The authors of [122] observe that if the adversary is allowed to output
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invalid ciphertexts9 then the definition above does not imply CCA2-security since the simulator may

not be able to efficiently produce an invalid ciphertext without access to the decryption oracle. For

simplicity, we restrict ourselves to consider adversaries that do not produce invalid ciphertexts. This

is not restrictive in our case since we instantiate the non-malleable cipher in our scheme with a block

cipher in CMC mode [60], in which all ciphertexts are valid.

3.4 Security Model

In this section we first motivate our new adversarial model and how it relates to securing distributed

storage, and then we outline our model and present our new definitions. In Section 3.6 we prove our

schemes secure in this model.

3.4.1 Motivation

For our security model, we first assume that the channel is computationally-bounded, as in [87]

and [111]. We first note that previous work that combined cryptography and error correcting codes

(to achieve better error correction) typically worked by simply appending an authentication tag or

checksum to each code symbol (see [76] and [87]). We call this authenticated error correcting codes.

There is an implicit assumption in each of these constructions that the channel would treat a symbol

and its tag as a single unit instead of distinct pieces. If, however, we allow the adversary to corrupt

the tag and the symbol separately, then due to the ambiguity inherent in tag verification failure (i.e.,

it could be a bad symbol or a bad tag), the additional error correction provided by using cryptography

can be nullified (as detailed previously). Moreover, the authentication tag for a symbol constitutes a

piece of metadata about that symbol and logically should be treated distinctly. And, indeed, the tag

may not always be stored with the symbol itself.10

Indeed, several real-world systems store these checksums separate from the data. For example,

ZFS stores its data in a tree of blocks, with data blocks in the leaves and the checksum of each block

stored in its parent block (with the exception of the root, or über, block) [19]. The Hadoop File

System (HDFS) stores the checksums for a file block in a separate file on the same host, but this does
9That is, if the set of possible messages for which ciphertexts can be efficiently created is different than the range of

the decryption function.
10It must be noted, though, that often this information is stored with the data. Object stores, such as Amazon S3 [3]

and Microsoft’s Azure [46], store metadata with the data itself. The WAFL file system from NetApp [64] stores a
64-byte checksum with each 4KB disk block.
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not guarantee that checksum will be physically located near (i.e., on the same disk as) the data block

itself [134]. An extension of HDFS, called HDFS-RAID, encodes each file using a Reed-Solomon code

with a checksum file stored on the same host as its corresponding symbol as before [135]. While HDFS

normally stores multiple replicas of blocks for fault-tolerance, HDFS-RAID only stores a single copy of

each code symbol (and its checksums), since the encoding itself will provide the necessary redundancy.

This separation of data and authentication tags makes independent corruption of symbols and tags a

real possibility. Thus, in this section we define an adversary who is capable of corrupting the code

symbols and their associated authentication tags independently while previous work only considered

adversaries that corrupt both. In Section 3.5 we will provide two constructions designed to withstand

this adversary, and in Section 3.6 we will prove their security in this model.

The example of HDFS-RAID provides a strong case for why such an adversary should be addressed.

In particular, HDFS-RAID (as well as HDFS in general) is capable of repairing an encoded file when

part of it is lost. Suppose the file is encoded with an [n, k] error correcting code and one of the code

symbols is corrupted (e.g., due to a faulty disk). To repair the file, HDFS-RAID must read-in k of

the n− 1 remaining pieces (each of which is tens to hundreds of MB in size), decode the file and then

re-encode the file to generate the missing symbol.11 But, there is an inherent ambiguity whenever

a checksum verification fails: either the data or the checksum may be corrupted (or both). Thus,

the independent corruption of a checksum can lead to entirely unnecessary and expensive repair

operations.

3.4.2 The Model

In our model, as stated before, we allow the code symbols and their associated authentication tags to

be corrupted independently. Of course, the corruption of the encoding and its authentication tags

must be bounded, otherwise an adversary can trivially destroy all of the data. As an example, say we

encode a message with an ECC, sign each symbol with a secure signature scheme, and each signature

is appended to its respective symbol. In our model, a ρ-fraction of symbols can be corrupted by the

channel and, in addition, a ρ-fraction of tags can be corrupted independently of the corruption of the

code symbols. In the remainder of this section, we will first define a public-key coding scheme, then

define a computationally-bounded channel that attacks a public-key coding scheme, and finally we
11The large cost of these repair operations has been noted previously and novel error correcting codes were devised

to reduce the cost, see [143]. But, even in that work, the repair operations are expensive.
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define our “independently corrupting” adversary described above. Throughout this section we will

use to phrase “corrupt a symbol” to include actual corruption of data, erasing the symbol, and even

deleting a symbol.

Public-Key Coding Scheme. We base our definition of a public-key coding scheme on the

definition of such a scheme in [111], but we adapt their formalization to be more concrete rather than

asymptotic. For example, they define λ = f(k, ε) = bkεc, where ε is their security parameter, while in

our definition, we have λ be independent of the message length k.

To ensure that all algorithms run in polynomial-time, we only consider feasible message sizes,

i.e., where k is polynomially-bounded. Moreover, we only consider non-negligible code rates, i.e.,

R > 1/p(λ) for some polynomial p(x). This ensures that the values of n and k used in the code

are always polynomially-bounded and so encoding and decoding always take polynomial time. Also,

our formulation implicitly places a lower bound on the input size, as it is not possible to achieve

security with parameter λ if the space of inputs is polynomial in λ. Hence, we require that the space

of message (i.e., Σk) be superpolynomial in λ—for example, by setting Σ = {0, 1}λ.

We allow a channel to have a “memory” and save past messages sent over the channel and possibly

use that information to manipulate future messages. Such channels are called stateful. If the channel

keeps no state between message transmissions, it is called memoryless.

Definition 3.12 (Public-Key Coding Scheme). A public-key coding scheme CS consists of two PPT

algorithms Gen and Encode, a deterministic, polynomial-time algorithm Decode, a finite alphabet Σ,

the security parameter λ and a code rate 0 < R < 1: CS = (Gen,Encode,Decode,Σ, λ,R).

For all message lengths k and letting n = bk/Rc,

• Gen: on input 1λ, outputs a key-pair (pk, sk), where pk is the public key and sk the secret key.

• Encode: on input (1) an integer i less than 2λ, the counter ; (2) the secret key sk; and (3) a

string mi ∈ Σk, called the message, outputs i+ 1 (as the new counter) and a codeword ci ∈ Σn,

referred to as an encoding of mi.

• Decode: on input the public key pk and an element c′i ∈ Σn (a possibly corrupted version of

an encoding of a message mi), outputs a decoded message m′i ∈ Σk ∪ {⊥} (where ⊥ indicates

Decode failed to recover any message).

We require that for all (pk, sk) ∈ [Gen(1λ)], for all m ∈ Σk, and for all counters i ∈ Z2λ , we have that

Decode(pk,Encode(sk, i,m)) = m. �
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A secret-key coding scheme can be defined analogously and we define a keyed coding scheme CS

to be either a secret-key coding scheme or a public-key coding scheme.

Note that the counter in the definition above is not strictly necessary: its purpose is to prevent

replays of old messages. When sending over a memoryless channel, the counter can be omitted. An

alternative way to prevent replays would be to use a pre-arranged sequence of one-time signatures.

The sender, when encoding the next message, uses the next signature in the sequence to sign the

message. The receiver, upon receiving a message, attempts to verify the signature using the next

signature in the sequence and discards the public key of the signature regardless of whether or not

the signature verification succeeds. Though, if a message is lost or of the adversary injects a spurious

message when the sender sent none, the sender and receiver will become desynchronized with no way

to recover other than by communicating out-of-band.

Computationally-bounded Channel. For a computationally-bounded channel, again, we model

our definition on the definition found in [111], and, as before, we modify their definition to be more

concrete. Intuitively, a computationally-bounded channel is a PPT algorithm A that takes a codeword

c as input and outputs an element c′ ∈ Σn, where c′ is possibly a corrupted version of c. A succeeds

when Decode, on input c′, outputs a decoded message m′ that is different from the originally encoded

message m.

Previous models of computationally-bounded channels includes the work of Lysyanskaya et al. [106]

where the authors define an (α, β)-network where for group of n packets sent in the network, an

α-fraction survive transmission unscathed and at most βn packets arrive at the receiver (β is denial-

of-service tolerance parameter). In their constructions, they use error correcting codes, signatures,

and cryptographic hashes to authenticate the packets. The α and β parameters give implicit bounds

on the number of code symbols that may be corrupted by the network. A motivating example for

their model is an adversary that has partial (but not full) control of a network. In our model, we

do not consider injection of extra symbols (though, it could easily be handled) and we allow the

adversary to see all of the code symbols. That is, we allow the adversary controls the entire network

but we place explicit restrictions on the amount of corruption he may inflict (which is standard in

coding theory).

The work of Bowers et al. [21] defines an adversarial error correcting code where the code

can tolerate some amount of adversarial corruption. They say that a particular adversarial error
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correcting code is (β, δ)-bounded if, for an [n, k] code, and a computationally-bounded adversary A,

P [(c, c′) ← A(1λ); ∆(c, c′) ≤ βn] − δ is negligible in λ. That is, the probability that the A causes

two codewords c and c′ to decode to different messages, where the distance between c and c′ is

less than βn, is negligibly different from some probability δ. This definition was created to model

adversarial behavior against proofs-of-retrievability (PoRs). In a PoR, the construction provides two

guarantees:1. if the corruption is below some threshold t, it can be repaired; and 2. if the corruption

is above the threshold t, it will be detected with high probability. This then motivates the adversary

A to minimize ∆(c, c′) (while the code designer wants to maximize β). This definition, however,

allows for the possibility that if ∆(c, c′) > βn and ∆(c, c′) < d (where d is the minimum distance

of the code), then A can easily cause the codewords to decode to different messages. (That is, the

definition allows for a gap in the error correction capacity of the underlying code and the tolerance to

adversarial corruption.) In a PoR, this does not matter since the corruption (presumably) would be

detected, but we are concerned with preserving the integrity of encoded messages regardless of the

amount of corruption (up to the error correcting capacity of the code). We define our channel next.

Definition 3.13 (Computationally-Bounded Adversarial Channels, Attacks, and Successes). A

computationally-bounded adversarial channel A is a PPT algorithm that takes as input some state ψ

and a codeword c = Encode(pk, i,m), for some m ∈ Σk and i ∈ Z2λ , and outputs an element c′ ∈ Σn

and some new state φ′ to be used against subsequent messages.

An attack of a computationally-bounded adversarial channel A on the public-key coding scheme

CS = (Gen,Encode,Decode,Σ, λ,R) (with message length k) consists of the following process:

1. Gen(1λ) outputs a key-pair (pk, sk).

2. A is given 1λ and pk as input.

3. A outputs the first message m1 to be transmitted, together with the state information ψ1.

4. Encode then produces an encoding c1 ← Encode(sk, 1,m1)

5. A is given ψ1 and c1 and computes (c′1,m2, ψ2), the received codeword c′1, the next message

m2, and the next state information ψ2.

6. This process continues for some number of rounds, where at round i + 1, we have that

(c′i,mi+1, ψi+1)← A(ψi, ci) and ci ← Encode(sk, i,mi).

We denote the above experiment by ChannelExpCS,A(λ). For positive real ρ < 1, we say that the

attack is ρ-successful if, from some stage i, (1) the Hamming distance between ci and c′i is at most

ρn, and (2) the receiver makes a decoding error, that is, Decode(sk, ri) 6= mi and mi 6=⊥. �
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An adversarial channel for secret-key coding schemes can be defined analogously. For a memoryless

channel, there is only a single round of message selection, encoding, and corruption. The restriction

that the decoder must output a message and not fail (and output ⊥) is to ensure that the adversary

does not win the game trivially. For ρ < 1 such that ρn > n− k, A can win by simply erasing ρn

symbols as this leaves less than k code symbols remaining, which, by the definition of an [n, k] code,

makes decoding impossible. Such attacks are denial-of-service attacks which are always possible, so

we require that A’s attack must be “useful.” We now define a computationally secure coding scheme.

Definition 3.14 (Computationally Secure Coding Scheme). A public-key (resp. secret-key) coding

scheme CS = (Gen,Encode,Decode,Σ, λ,R) is (t, q, ε)-computationally-secure against an error rate ρ

if, for all computationally-bounded adversarial channels A running in time t and participating in at

most q rounds in ChannelExpCS,A(λ), for all (sufficiently large) message lengths k, and every e ≤ ρ,

the probability that an attack by A on CS with message length k is e-successful is at most ε. �

Independently-corrupting Adversary. Finally, we define our new adversary who corrupts the

symbol-tag pairs in a way that is more powerful than previously considered. As stated before, we

allow the channel A to apply its error rate ρ to the symbols and the authentication tags independently

of each other. For example, if A corrupts m symbols, then it may also corrupt m tags without regard

to which symbols were corrupted.

Definition 3.15. Let A be a computationally-bounded, adversarial channel with error rate ρ. And

let C = (Encode,Decode) be an error correcting code with message length k, block length n, and

alphabet Σ, with each code symbol σ authenticated by some tag τ produced by tagging scheme T .

We say that A is jointly-corrupting if for any message m ∈ Σk, for each symbol-tag pair (σ, τ) output

by Encode, A corrupts both σ and τ or neither (up to a ρ-fraction of all pairs). Otherwise we say

that A is independently-corrupting. �

Put another way, suppose we have an [n, k] error correcting code C where each symbol is

authenticated with a MAC. Further, suppose A corrupts a set of at most m symbols and a set of at

most m MACs. Let S1 be the set of indices of corrupted symbols and S2 to be the set of indices of

corrupted MACs. If A is jointly-corrupting, then we require that S1 = S2 and that |S1|, |S2| ≤ m.

While, if A is independently-corrupting, then we allow S1 6= S2, and have |S1|, |S2| ≤ m. Previous
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Figure 3.1: Diagram of the encoding function for AuthECC-LD.

constructions implicitly used a jointly-corrupting adversary with error rate ρ or an independently-

corrupting adversary with error rate ρ/2. Our constructions are secure against both jointly-corrupting

and independently-corrupting adversaries with error rate ρ.

3.5 Constructions

In this section we present two constructions of authenticated error correcting codes. Our constructions

allow one to transform an erasure code into an error correcting code over a computationally-bounded

channel with a small decrease in the code rate. When applied to an ECC, the constructions allow us

to push the error correcting capacity of the code to be equal to (or very close to) that of the erasure

correcting capacity.

3.5.1 List-decodable AuthECC

Informally, in our first construction, we encode a file using an erasure (or error correcting) code

and compute an authentication tag for each code symbol. We then sign the concatenation of the

tags, append the signature, and then encode the combined tags and signature with an efficiently

list-decodable ECC. When decoding, we first list decode the encoded authentication tags and use
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Algorithm 3.1 AuthECC-LD Encode: The encoding function for the list decoding based authenticated
ECC with minimum distance d.
Input: Security parameter 1λ, key pair (pk, sk), counter `, message m ∈ Σk
Output: Encoded message c ∈ Σ̃n
1: Set (c1, . . . , cn)← Encode(n, k,m)
2: Set hi ← h(ci) for 1 ≤ i ≤ n
3: Set σ ← Sign(sk, h1 ◦ . . . ◦ hn ◦ `)
4: Set m′ ← h1 ◦ . . . ◦ hn ◦ ` ◦ σ . Gather tags, nonce, and signature for encoding
5: Set (c′1, . . . , c′n)← EncodeLD(n, k,m′) . EncodeLD has minimum distance d
6: Output ((c1, c′1), . . . , (cn, c′n))

the signature to identify the correct codeword in the list.12 We then use the tags to sieve out the

corrupted code symbols, marking them as erasures, and then using the erasure decoding algorithm on

the remaining symbols and recover the message. Fundamentally, this construction decouples the error

pattern in the authentication information from the error pattern in the message so that they can be

adversarially corrupted independently of each other. Since this construction is an authenticated error

correcting code based on list decoding, we call it AuthECC-LD.

Let C be an [n, k] erasure code, where the message length is k, the codeword (or block) length is

n, and the alphabet is Σ.13 Let Encode and Decode be the erasure encoding and decoding functions

and let EncodeLD and DecodeLD be the encoding and decoding functions for the list-decodable code.

Let Π = (Gen,Sign,Verify) be a signature scheme, and let s denote the length in bits of a signature

generated by Π. Let h : Σ→ {0, 1}λ be a collision-resistant hash function that takes as input a symbol

from Σ and produces a value in {0, 1}λ. We assume that the length of the authentication tags and

signature, nλ+ s, is divisible by k so that we do not have any fractional symbols when encoding with

the list-decodable code. We construct an [n, k] error-correcting code C̃ over the alphabet Σ̃ = Σ×Σl,

where Σl = {0, 1}l and l = (nλ+ s)/k.

Note that the security of the hash function puts a lower-bound on the size of the input message:

i.e., to provide λ/2-bits of security, the input to the function must be at least λ-bits in size. While

this precludes the possibility of using arbitrary message alphabets (i.e., symbols less than λ-bits in

size), our primary application of this scheme is in secure storage where symbols sizes are large.

The encoding algorithm is depicted in Figure 3.1 and specified in Algorithm 3.1; the decoding

algorithm is specified in Algorithm 3.2. Briefly, we encode the input message m with an [n, k] erasure
12Using a signature to disambiguate list decoding was first employed in [106] and then independently discovered

(and more formalized) in [111].
13Often in the literature for ECCs, [n, k] will be used to denote a linear ECC (such as a Reed-Solomon code) while

(n, k) is used for any ECC (linear or not). We use the former since the distinction is not important in this work.
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Algorithm 3.2 AuthECC-LD Decode: The decoding function for the list decoding based authenticated
ECC with minimum distance d.
Input: Security parameter 1λ, public key pk, counter `, codeword c ∈ Σ̃n
Output: Message m ∈ Σk or ⊥
1: Parse c = ((c1, c′1), . . . , (cn, c′n)) and set c′ = (c′1, . . . , c′n) and cmsg = (c1, . . . , cn)
2: Set L← DecodeLD(n, k, c′) . DecodeLD has minimum distance d
3: Set auth =⊥
4: for each codeword ĉ in L do . Search the list for the correct decoded message
5: Parse ĉ = h1 ◦ . . . ◦ hn ◦ `′ ◦ σ
6: if Verify(pk, h1, ◦ . . . ◦ hn ◦ `′, σ) = 0 or `′ 6= ` then . Discard: invalid authentication info
7: Discard ĉ
8: else
9: if auth =⊥ then

10: Set auth← h1 ◦ . . . ◦ hn . Valid signature, save the value
11: else
12: Output ⊥ and exit . Two valid signatures: fail
13: end if
14: end if
15: end for
16: if auth =⊥ then
17: Output ⊥ and exit . No valid signature or authentication tags
18: end if
19: Break auth into h1, . . . , hn
20: for each ci in cmsg do . Sieve out corrupted symbols
21: if h(ci) 6= hi then
22: Set ci ←⊥ in cmsg
23: end if
24: end for
25: Output Decode(n, k, cmsg) . If too many ci were erased, then Decode fails

code using Encode to produce a codeword c. We then hash each symbol of c using h, concatenate

the hashes h1, . . . , hn, and then sign the concatenation with Π to produce a signature σ. We create

the authentication information m′ by appending the signature to the hashes and apply an efficiently

list-decodable code L to m′ to create the codeword c′. Each symbol from c′ is appended to a symbol

in c and the resulting pairs are transmitted. The decoding function is largely the reverse of the

encoding function. First, it list decodes the encoded tags and signature, checking the signature on each

entry in the list until one validates.14 If more than one signature validates (unlikely), the algorithm

fails. The hashes in the decoded authentication information are then used to sieve out the corrupt

code symbols. If too many symbols are corrupted, or if none of the signatures are valid, then decoding

again fails. Else, decoding finishes by erasure decoding the remaining good pieces.
14Technically, DecodeLD outputs a list of codewords each of which must be decoded to recover the candidate

authentication information before it can be verified. For simplicity, we omit this step from Algorithm 3.2 as it is not
essential to understand the algorithm.
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Efficiency. Our addition of authentication information adds some amount of computational over-

head to the encoding and decoding of the erasure code. For the encoder, we must perform n hashes

over elements of size log q (where q is the size of the alphabet Σ): denote this time by th. Let te(C) and

td(C) denote the time to encode and decode (resp.) the erasure code C. The hashes are signed (taking

time tσ) and encoded using the list-decodable code L over an alphabet of size 2l where l = (s+nh)/k

and s and h the lengths of the signature and a hash (resp.), taking time te(L). Decoding first requires

list decoding the authentication information, taking time tL(L, ρ) to produce a list of size at most L

for code L with error rate ρ. The decoder then performs at most L signature verifications to sieve out

the spurious list items. This is followed by at most n hashing operations to filter out the corrupted

erasure encoded symbols, and then finally the erasure code is decoded, giving us the following lemma.

Lemma 3.1. Let AuthECC-LD be instantiated with an [n, k] erasure code C over alphabet Σ, where

|Σ| = q, and utilize a (ρ, L)-list-decodable code L (with minimum distance d over alphabet Σ′ where

|Σ′| = 2l and l = (s+nh)/k). Then, the encoder for AuthECC-LD takes time te(C)+te(L)+O(nth+tσ)

and the decoder takes time td(C) + tL(L, ρ) +O(nth + Ltσ) for error rate ρ where ρn < d.

We note that often, a hash function takes time that is linear in the input size, such as SHA256;

and, hence, in practical instantiations, we have th = O(log q). Similarly, signature schemes typically

hash the input message of length l, produce a fixed-sized hash of length l′ = O(λ), and then sign the

hash, giving a running time of ts = O(l) since l′ is constant. Also, hash function and signatures can

have varying lengths depending on the scheme and the parameterization but in each case the length

is at least as long as the security parameter λ. For simplicity, we can denote the output length of

both hash functions and signatures by λ. With these in mind, we get the following corollary.

Corollary 3.1. Let AuthECC-LD be instantiated with an [n, k] erasure code C over alphabet Σ,

where |Σ| = q, and utilize a (ρ, L)-list-decodable code L (with minimum distance d over alphabet Σ′

where |Σ′| = 2l and l = (λ+ nλ)/k). Then, the encoder for AuthECC-LD takes time te(C) + te(L) +

O(n(log q+ λ)) and the decoder takes time td(C) + td(L, ρ) +O(n(log q+Lλ)) for error rate ρ where

ρn < d.

Decrease in Code Rate. The list-decodable code L is a code from Σk
l → Σn

l (recall that

Σl = {0, 1}l, where l = (nλ+ s)/k, λ is the length of a hash, and s is the length of a signature). Let b

be the length (in bits) of an element of Σ. The rate of the new code is kb
n(b+l) = k

n
b
b+l = R b

b+l , where R



101

. . . 

. . . 

. . . 

. . . 

Apply PRP Compute MAC 
Apply non-malleable 

encryption 

Input: erasure 
    encoded data 

Output: authenticated 
     code symbols 

Figure 3.2: Diagram of the encoding function for AuthECC-NM.

is the rate of the original code C. Note that the decrease in the code rate is independent of the block

length k and depends only on the code rate, size of Σ, the hash length λ, and the signature length s

(which itself, in general, depends on λ). In practical applications, l will often be much smaller than b.

For example, suppose h produces a 128-bit hash, the signature is 2048-bits (e.g., 2048-bit RSA), each

code symbol is 2 megabytes in size, and we encode with a [32, 16] code. In such a parameterization,

the decrease in rate is 1− (128∗32+2048)/16
221 = 1− 384

221 ≈ 0.00018, i.e., 0.018%.

3.5.2 Non-Malleable AuthECC

One drawback of list decoding is that it is a fairly heavy-duty primitive, requiring sophisticated

mathematics and algorithms. Indeed, the time to list decode a given codeword can increase dramatically

as the number of errors increases (see Figure 3.3 in Section 3.7). Here we present an alternative

construction that does not utilize list decoding and can be quite efficient.

Recall, that our motivation is to remove any ambiguity about the health of the data if its checksum

fails to verify. To accomplish this without list decoding, we compute a signature over each symbol

and perform a transformation on the signature-symbol pair such that any corruption, with high

probability, corrupts both the signature and the symbol.15 A simple way to accomplish this is to use

a non-malleable cipher to encrypt the pair. Intuitively, a cipher is non-malleable if an adversary is

unable manipulate a ciphertext so that a given predicate on the decrypted message evaluates to true

(with an advantage non-negligibly different from simply choosing a ciphertext at random). In this

case the predicate would evaluate to true if the encrypted symbol-signature pair was corrupted such

that when decrypted, either the symbol is corrupted or the signature is, but not both.
15This is similar to the All-Or-Nothing Integrity property of entangled cloud storage, introduced in [8]. See Section 3.8

for a more detailed comparison.
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Algorithm 3.3 AuthECC-NM Encode: The encoding function for AuthECC-NM.
Input: Security parameter 1λ, secret keys kkdf, kmac and kenc, counter `, and message m ∈ Σk,
Output: Encrypted and authenticated codeword c̃ ∈ Σ̃n
1: Set (c1, . . . , cn)← Encode(n, k,m) . Encode has minimum distance d
2: for 1 ≤ i ≤ n do
3: Set k′ ← kdf(kkdf, ` ◦ i) . kdf is a key-derivation function
4: Set ei ← f(k′, ci) . f is a pseudorandom permutation
5: Set τi ← Mac(kmac, ei ◦ ` ◦ i)
6: Set c′i ← ei ◦ ` ◦ i ◦ τi
7: Set c̃i ← Enc(kenc, c

′
i) . Enc is a non-malleable cipher

8: end for
9: Output (c̃1, . . . , c̃n)

However, this simple combination is not enough. In particular, if the non-malleable cipher is a

public-key scheme then the adversary A can trivially independently corrupt the symbol-signature pair.

In particular, if the symbol is known, then A can simply append a random string of the appropriate

length, encrypt it, and then substitute it for the encrypted symbol in the encoding. With all but

negligible probability, the random string will not be a valid signature resulting in a verification failure

and the discarding of good data. Simply appending some randomness (e.g., derived from a secret

shared between sender and receiver) to the symbol does not help since that randomness logically

becomes part of the authentication tag and falls to the same replace-with-random-value strategy.

To overcome this, we can change how we use the counter when encoding. Specifically, we apply

a key-derivation function (KDF)16 to the counter and a secret key to derive an ephemeral key

for a pseudorandom permutation (over the set of message symbols). We then apply the keyed

permutation to the symbol, compute a MAC over the output and encrypt the ciphertext-MAC

pair with a non-malleable cipher. Intuitively, this ensures that the adversary A cannot, except with

negligible probability, create an input to the non-malleable cipher that will decrypt to the original

data. Essentially, this construction binds together the integrity of the symbol and the signature,

which contrasts with the previous construction where we completely separate the corruption of the

symbols and their tags.

However, since we use a public-key non-malleable cipher, A can construct ciphertexts that decrypt

to arbitrary messages (i.e., symbol-MAC pairs). Applying a PRP to the message before computing

the MAC ensures that, when creating a ciphertext (for the non-malleable cipher), the adversary

cannot control the final message that is decrypted (after inverting the PRP). If we only used a
16A key-derivation function is a function that takes a master secret as input along with some other (possibly public)

information to derive one or more secret keys. Often, they are instantiated with a pseudorandom function.
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semantically secure cipher (or some other keyed transformation), then it can be trivial to construct a

ciphertext that decrypts to a specific value. In particular, suppose we have a semantically secure

cipher Π (which inherently must be a randomized cipher and include randomness in the ciphertext

to support deterministic decryption), we modify it to create Π′ by simply fixing a message m′ and a

specific string of randomness r′ and mapping them to a specific ciphertext c′ regardless of the key.

More formally, define Enc′(k,m, r) such that if m = m′ and r = r′ output c, else output Enc(k,m, r).

Assuming that a well-behaved cipher always uses fresh randomness, Π′ is semantically secure. But, if

A knows the (m′, r′, c) triple a priori, then he can always produce a ciphertext that decrypts to m′.

This can be exploited to independently corrupt the MAC and symbol by letting the message space

M = {m′} and when given the challenge ciphertext y: taking that known ciphertext c, appending a

random value (the same length as the MAC) and then encrypting the result with the non-malleable

cipher. With overwhelming probability, the random value will not verify as a MAC, and the ciphertext

will decrypt to the uncorrupted plaintext m′. A has then successfully corrupted the MAC and symbol

independently. Hence, we use a PRP to make this attack infeasible.

For simplicity and consistency with the KDF, we use a MAC (a secret-key scheme) for authenti-

cating the (encrypted) message symbol and use a secret-key non-malleable cipher for encryption.17

The encoder is depicted in Figure 3.2 and detailed in Algorithm 3.3, and the decoder in Algorithm 3.4.

Also, similar to AuthECC-LD, by computing a signature over each symbol we place an implicit

lower-bound on the size of each symbol of, e.g., λ-bits to achieve λ-bit security. This minimum size

also allows us to have the PRP f have the symbol alphabet Σ as its domain and range instead of

needing to embed Σ in some larger input domain for f .

A practical non-malleable cipher for this purpose is to use a block cipher in CMC mode [60].

This cipher mode works by performing CBC mode encryption forward, XORing in a mask, and

then performing CBC decryption in the reverse direction. The result is a secure, tweakable PRP,

which necessarily implies that it is non-malleable, as shown by Halevi and Rogaway [60]. We denote

our general non-malleable construction by AuthECC-NM and the instantiation with CMC-mode by

AuthECC-CMC. We use AES in CMC mode in our implementation, detailed in Section 3.7.

An alternative version of this scheme is to: (1) encode the message m to get c = (c1, . . . , cn);

(2) compute a MAC for each ci; and (3) apply Algorithm 3.3 to the concatenated MACs (as the
17The combination of pseudorandom permutation and a MAC could be replaced with an authenticated block cipher

mode (such as AES in Galois counter mode).
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Algorithm 3.4 AuthECC-NM Decode: The decoding function for AuthECC-NM.
Input: Security parameter 1λ, secret keys kkdf, kmac and skenc, counter `, and codeword c̃ ∈ Σ̃n
Output: Message m ∈ Σk or ⊥
1: Parse c̃ = (c̃1, . . . , c̃n) where c̃i ∈ Σ̃
2: Set (c1, . . . , cn)← (⊥, . . . ,⊥)
3: for 1 ≤ i ≤ n do
4: Set c′i ← Dec(kenc, c̃i) . Dec is a non-malleable cipher
5: Parse c′i = ei ◦ `′ ◦ i ◦ τi
6: if VerifyMac(kmac, ei ◦ ` ◦ i, τi) = 0 or `′ 6= ` then . Discard if invalid signature
7: Continue at top of loop
8: end if
9: Set k′ ← kdf(kkdf, ` ◦ i) . kdf is a key-derivation function
10: Set ci ← f−1(k′, ei) . f is a pseudorandom permutation
11: end for
12: Output Decode(n, k, (c1, . . . , cn)) . Decode outputs ⊥ if < k of the ci are recovered

input message). This is fundamentally the same as the construction in Algorithm 3.3, but with

a level of indirection between the non-malleable cipher and the message data itself. The security

analysis for this variant is similar to the analysis of the original version, which we will analyze in

Section 3.6. Efficiency-wise, this scheme performs fewer encryptions with the non-malleable cipher at

the cost of computing more MACs, but computing a MAC is typically faster than encrypting with a

non-malleable cipher. For example, our implementation of AES in CMC mode achieves throughput

of 10s of MB per second, while a secure MAC such as [92] can achieve throughput of 100s of MB per

second. We do not test this scheme in our experiments.

The AuthECC-NM construction uses an authenticate-then-encrypt structure to secure the input

symbol. The security of the generic composition of encrypting and authenticating (i.e., authenticate-

and-encrypt, authenticate-then-encrypt, encrypt-then-authenticate) has been studied previously

(see [10, 89]), concluding that the encrypt-then-authenticate construction is the most secure under

generic composition. However, those analyses focused on the data privacy provided by the schemes

while we are concerned with data integrity. In particular, the encryption with a non-malleable cipher

is to ensure integrity against a particular form of data corruption (i.e., corruption of just the data or

just tag). As shown in Figure 2 in [10], the authenticate-then-encrypt composition ensures plaintext

integrity even when the MAC is just “weakly unforgeable” (which is what we use in this work).

Efficiency. To analyze the efficiency of AuthECC-NM, we note that each symbol goes through

the same process of applying a PRP, computing a MAC, and then encrypting with a non-malleable

cipher. Denote the time to perform these for each symbol by tprp, tmac, and tnm respectively. When
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decoding, each symbol needs: (1) to remove non-malleable encryption; (2) verify the MAC; and,

finally, (3) invert the PRP, taking times t′nm, t′mac, and t′prp (resp.). Using, again, te(C) and td(C) to

denote the time to encode and decode for a given code C, we get the following lemma.

Lemma 3.2. Let AuthECC-NM be instantiated with an [n, k] erasure code C over alphabet Σ, where

|Σ| = q, and utilize a PRP f , MAC scheme Ψ, and a non-malleable cipher Π. Then, the encoder

for AuthECC-LD takes time te(C) + O(n(tprp + tmac + tnm)) and the decoder takes time td(C) +

O(n(t′prp + t′mac + t′nm)).

Note that often PRPs, MACs, and non-malleable ciphers (and their respective inverse/verification

functions) take time linear in the size of their input. In this case, the inputs are of length log q, since

|Σ| = q. Hence, the O(n(tprp + tmac)) term in each of the running times above can be simplified

to just O(n log q). However, the tnm term also includes the encryption of the nonce and the MAC,

giving a running time of tnm = O(log q + λ). This gives us the following corollary.

Corollary 3.2. Let AuthECC-NM be instantiated with an [n, k] erasure code C over alphabet Σ, where

|Σ| = q, and utilize a PRP f , MAC scheme Ψ, and a non-malleable cipher Π. Then, the encoder for

AuthECC-LD takes time te(C) +O(n(log q + λ)) and the decoder takes time td(C) +O(n(log q + λ)).

3.6 Security Analysis

Here we prove the security of our two constructions. First, we will prove that the security of AuthECC-

LD reduces to the security of the signature scheme and the hash function. Second, we will prove that

AuthECC-NM reduces an independently-corrupting adversary to a jointly-corrupting one, with high

probability, via the non-malleability of the cipher. Finally, we will show that corruption resilience of

AuthECC-NM reduces to the security of the MAC scheme. In the following, we will assume that we

have a secure key derivation function (KDF) for computing the ephemeral keys from the master key

and the (fresh) counter value.

3.6.1 Security of AuthECC-LD

Let AuthECC-LDn,k,ΣΠ,H,L denote AuthECC-LD instantiated with signature scheme Π, hash function

family H, using an [n, k] erasure code over alphabet Σ to encode the message, and using list-decodable

code L. For the proof, we note that there are two primitives used in series that ensure security in the
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scheme: the signature and the hashes. For an adversary to succeed, they must circumvent at least

one of these schemes. Roughly, if the list decoding step returns incorrect authentication tags then

a signature must have been forged; if the list decoding produced the correct authentication tags,

then hash collisions must have been generated. We detail this next. Let te and td denote the time

to encode and decode a message m using AuthECC-LDn,k,ΣΠ,H,L, where Π is a signature scheme, H is

a family of hash functions and L is a (ρ, L)-list-decodable code. Note that td includes the time to

list decode the authentication information with error rate ρ and produce a list of size L. The exact

values of te and td are detailed in Lemma 3.1 in Section 3.5.1.

Theorem 3.1. Consider AuthECC-LDn,k,ΣΠ,H,L using an [n, k] erasure code C over alphabet Σ to encode

the message, an efficiently (ρ, L)-list-decodable code L, a family of (th, εh)-collision-resistant hash

functions H, and a (ts, qs, εs)-unforgeable signature scheme Π. Then AuthECC-LDn,k,ΣΠ,H,L is (t′, q′, ε′)-

computationally-secure against error rate ρ where t′ = min{th − q′(te + td), ts − q′(te + td)} (with

q′ = qs, and ε′ = max{εh, εs}.

Proof. Suppose A is successful in ChannelExpCS,A(λ) (as defined in Definition 3.13, Section 3.4) where

CS is AuthECC-LDn,kΠ,H,L. Then there exists some i where the Hamming distance between ci and c′i is

less than ρn and the receiver makes a decoding error (i.e., m′i 6= mi where m′i is the decoded message).

Thus, at least one of the symbols in m′i is spurious and withstood the “sieving” step in Algorithm 3.2.

There are two different cases we need to consider, namely whether or not the correct authentication

information (i.e., hashes and signature) was recovered or not. If the incorrect information was list

decoded, then a signature must have been forged. If the correct information was list decoded, but A

still won, then A must have generated a collision in the hash function h. We analyze these two cases

next.

Case 1: incorrect list decoding. In this case, consider the following reduction A′ that utilizes

A to break Π. A′ interacts with A following the steps in ChannelExp (i.e., performing the encoding

and decoding for A) where there are at most q′ rounds, A runs for total time of t′, and A wins with

probability ε′. In particular, A′ performs all of the steps of the Encode and Decode functions for

AuthECC-LD but replaces the call to Sign(sk, ·) with a call to a signature oracle Osk(·) (where sk is

the secret key for the signature and A′ has the corresponding pk).

Suppose A wins the game and the incorrect authentication information was recovered from the

list decoding. So, we have that the list decoded authentication information in round i contains a
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combination of signature and hashes different from those computed over the original message mi.

Denote the original signature by σ and the new one by σ′. Let ai denote the authentication information,

sans the signature, for messagemi, and let a′i be the corresponding authentication information decoded

by DecodeLD.

For a stateful channel, since the counter value is correct and was included in the signed data,

σ′ authenticates a value that was not queried to Osk. Moreover, we know that σ′ verifies, else the

decoding would have failed. Thus it must be that (a′i, σ′) is a valid message-signature forgery. Since

Π is (ts, q, εs)-unforgeable, it must be that t′ ≤ ts − q(te + td) (and q = q′). Moreover, since A′ can

exactly identify which (a′i, σ′i) pair is a forgery (by simply decoding each one), A′ outputs a forgery

whenever A wins; that is, we have that ε′ ≤ εs. Note that ε′ is the advantage of A in succeeding in

any round of the game ChannelExpCS,A(λ). Also note that for a memoryless channel, q′ = 1 and we

then have t′ ≤ ts − (te + td).

Case 2: hash collision. In this case, the list decoding step output the correct authentication

information ai but A still won. This implies that some spurious symbol(s) survived the “sieving” step

after list decoding, but this can only occur if the spurious symbol (or symbols) when hashed gives

the same value as the original symbol. That is, there must be at least one hash collision.

Hence, by simply simulating ChannelExpCS,A(λ) for A (for at most q′ rounds), we can extract

collisions for the family of hash functions H. Namely, if a decoding error occurs in round i and we

compare the original codeword ci with the received codeword c′i, we can determine exactly which

symbols were changed and which are collisions. Thus, we have that ε′, the advantage of A, is upper-

bounded by εh. Moreover, t′ is upper-bounded by th minus the time to simulate the experiment.

Specifically, we have that t′ ≤ th − q′(te + td).

Finally, since these cases are mutually exclusive and exhaustive, we then take the maximum of

εh and εs to get the advantage of A, and we have that t′ is upper-bounded by the minimum of

th − q′(te + td) and ts − q′(te + td). In each case the number of rounds in the game is upper-bounded

by q. This proves the theorem.

Corollary 3.3. Consider AuthECC-LDn,k,ΣΠ,H,L using an [n, k] erasure code C over alphabet Σ, an

efficiently (ρ, L)-list-decodable code L, a family of collision-resistant hash functions H, and an

existentially-unforgeable signature scheme Π. Then AuthECC-LDn,k,ΣΠ,H,L is computationally-secure

for error rate ρ.
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3.6.2 Security of AuthECC-NM

For AuthECC-NM, we first prove that the scheme reduces an independently-corrupting adversary

to a jointly-corrupting one. We accomplish this by leveraging the pseudorandom permutation, the

unforgeable MAC, and the non-malleable cipher. We first, recall the definition of a non-malleable

cipher in Section 3.3.3. At a high-level, a cipher is non-malleable secure (or just non-malleable) if for

any PPT relation R and any PPT adversary A, the adversary cannot produce a ciphertext c′ where R

evaluates to true the decryption of c′ with advantage significantly greater than (essentially) choosing

the ciphertext at random. Intuitively, this means that A cannot create/manipulate a ciphertext such

that the decryption has a particular property (e.g., the last byte is zero) with significant advantage.

Referring to the detailed experiments in Definition 3.11, we use the non-malleable cipher in a more

restricted context, which implies that the cipher’s non-malleability is still meaningful. In particular,

we have the following limitations on our adversary A to model our use of the non-malleable cipher in

AuthECC-NM:

• The message space M output by A must be a subset of the set of symbols Σ associated with

an instance of AuthECC-NM, rather than arbitrary messages.

• The vector output by A2 and S2 (as defined in Section 3.3.3) has length 1.

• When creating the ciphertext y for A, we first sample a message m from M at random. Then,

instead of just encrypting m with the non-malleable cipher, we apply the steps of the AuthECC-

NM encoder. Specifically, we apply a PRP tom, compute a MAC over the PRP’s output, append

the MAC, and then encrypt with the non-malleable cipher to create the final ciphertext. This

ensures that the ciphertext given to A is a symbol authenticated by AuthECC-NM. While this

setup prevents A from producing proper message-MAC pairs at will (since it cannot compute the

MACs), in AuthECC-NM, the MAC is never visible outside the Encode and Decode functions

(which is ensured by the privacy of the non-malleable cipher) and so this restriction better

models real-world interactions with AuthECC-NM.

• We limit A to satisfying a specific relation: the relation evaluates to true if the decrypted

symbols in p and p′ match but the MACs do not, or if the MACs match and the decrypted

symbols do not. (This is, by a definition, the goal of an independently-corrupting adversary.)

Specifically, letting f = f(kprp, ·) be a pseudorandom permutation and f−1 its inverse, and
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letting ` and `′ be two counter values, A must satisfy the relation:

R(f−1, p, p′) = ((f−1(e) ◦ ` = f−1(e′) ◦ `′)∧ (τ 6= τ ′))∨ ((f−1(e) ◦ ` 6= f−1(e′) ◦ `′)∧ (τ = τ ′)),

where p = (e ◦ `, τ), p′ = (e′ ◦ `′, τ ′), e = f(kprp, s) and e′ = f(kprp, s′) for some s, s′ ∈ Σ and

τ ← Mac(kmac, e ◦ `), τ ′ ← Mac(kmac, e′ ◦ `′).

Let AuthECC-NMn,k,Σ
Π,f,Ψ denote an instance of AuthECC-NM using Π as the non-malleable cipher,

pseudorandom permutation f , an unforgeable MAC scheme Ψ, and encoding with an [n, k] erasure code

over alphabet Σ (recall that |Σ| = q is super-polynomial in λ), and let AuthECC-NMn,k,Σ
Π,f,Ψ(m) denote

an encoding of m under AuthECC-NM (the security parameter is implicit in these instantiations).

Lemma 3.3. Consider AuthECC-NMn,k,Σ
Π,f,Ψ using an [n, k] erasure code over alphabet Σ (where

|Σ| = q), with Π = (Gen1,Enc,Dec) being a (tnm, q1, q2, εnm)-non-malleable cipher, f : {0, 1}λ×Σ→

Σ a (tprp, qprp, εprp)-pseudorandom permutation, and Ψ = (Gen2,Mac,VerifyMac) a (tm, qm, εm)-

unforgeable MAC scheme. Then, for all messages m, and for all PPT A independently-corrupting

adversaries running in time t, A jointly-corrupts AuthECC-NMn,k,Σ
Π,f,Ψ(m) with probability at least

1− n(1/q + εprp + εmac + εnm) for t ≤ tnm ≤ min{tprp, tmac}.

Proof. Fix an adversary A, compute (knm, kmac)← (Gen1(1λ),Gen2(1λ)), and sample kprp ← {0, 1}λ.

Let sk = knm and run AOsk(1λ) to getM ⊆ Σ and defineM ′` = {(e◦`, τ) | s ∈M, e = f(kprp, s), τ ←

Mac(kmac, e ◦ `)}, where ` is a (fresh) counter value. For pairs p, p′ ∈ M ′, where p = (e ◦ `, τ) and

p′ = (e′ ◦ `′, τ ′) and defining f−1(·) = f−1(kprp, ·), define the relation

R(f−1, p, p′) = ((f−1(e) ◦ ` = f−1(e′) ◦ `′) ∧ (τ 6= τ ′)) ∨ ((f−1(e) ◦ ` 6= f−1(e′) ◦ `′) ∧ (τ = τ ′)).

Since the encryption scheme Π is (tnm, q1, q2, εnm)-non-malleable, there exists a simulator S = (S1,S2)

that successfully produces a ciphertext in the experiment Exptsnm-atk
S,Π,R (λ) such that R holds with

some probability θ (where atk ∈ {cpa, cca1, cca2}). Moreover, the probability that A does produces

a ciphertext such that R holds is at most εnm greater than θ.

To calculate θ, we note that the relation R only holds if S can match the first or second elements

of the pair p = (e ◦ `, τ) (but not both). In the case of e ◦ `, we note that the pair p was chosen

uniformly at random from M ′`; but, M ′` itself may only contain a single element, so we cannot rely

on its randomness. However, since e is the result of applying a PRP f with a fresh key to some code
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symbol, the probability that S can correctly guess the value of e is at most 1/q + εprp
18 for any S

running in time t ≤ tprp.

For the tag τ , the probability of guessing the correct MAC for e can be no greater than the

probability of forging a MAC for any message in time t, which is εs for t ≤ ts. Otherwise, we have a

straightforward reduction to generate forgeries with probability greater than εs in time less than ts.

Thus, assuming that if S can match e ◦ ` or τ it can make the other entry not match with probability

1, then success of S is at most 1/q + εprp + εs.

For all PPT A running in time at most tnm attacking an encoding of a message m, using

AuthECC-NMn,k,Σ
Π,f,Ψ(m), the probability of A independently corrupting a symbol is exactly equal to

its ability to make R true for the given symbol. Taking the union over all n code symbols, we have

that A independently corrupts at least one symbol with probability n(1/q + εprp + εs + εnm), with

the restriction that tnm ≤ min{ts, tprp}.

Now that we have established that AuthECC-NM can reduce the strongest corruption patterns

to the more typical ones, we will show the strength of AuthECC-NM in preventing decoding errors.

Again we use the definition of ChannelExp detailed in Definition 3.13 in Section 3.4. Let te and td

denote the times to encode and decode (resp.) an instance of AuthECC-NMn,k,Σ
Π,f,Ψ(λ).

Theorem 3.2. Consider AuthECC-NMn,k,Σ
Π,f,Ψ using an [n, k] erasure code C over alphabet Σ (where

|Σ| = q), with Π = (Gen1,Enc,Dec) being a (tnm, q1, q2, εnm)-non-malleable cipher, f : {0, 1}λ×Σ→

Σ a (tprp, qprp, εprp)-pseudorandom permutation, and Ψ = (Gen2,Mac,VerifyMac) a (tm, qm, εm)-

unforgeable MAC scheme. Then for all PPT adversaries A running in time t using at most r rounds

in ChannelExp, the probability that A is ρ-successful against AuthECC-NMn,k,Σ
Π,f,Ψ is at most ρnrεm = ε′,

with t ≤ 1
2 (t− r(te + td)) = t′ and r ≤ qm/n = q′. That is, AuthECC-NMn,k,Σ

Π,f,Ψ is (t′, q′, ε′)-secure.

Proof. Let CS be AuthECC-NMn,k,Σ
Π,f,Ψ and suppose that we have a PPT A that is ρ successful in

ChannelExpCS,A (i.e., causes a decoding error) with probability γ. We can use A in a simple reduction

to break the security of the MAC.

In particular, we generate the appropriate kkdf and knm keys and use a MAC oracle to compute

a MAC over the concatenation of the encrypted symbol and the fresh counter value. Note that, for A

to cause a decoding error, it must be that Decode accepts a spurious symbol, which can only happen

if the following hold:
18Otherwise, we can use S to distinguish f from a random permutation with advantage over εprp.
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1. The counter with the symbol is the correct value; and

2. The MAC (over the encryption of the symbol and the counter) is valid.

Let e′◦`′◦τ ′ be a spurious authenticated symbol (after removing the layer of non-malleable encryption)

that is accepted by Decode. Since the counter value `′ is the correct value, and the counter is updated

before each encoding, the symbol cannot be a replay, i.e., e′ ◦ `′ could not have been queried to the

MAC oracle. Thus, (e′ ◦ `′, τ ′) is a valid forgery and we can simply output it to attack the MAC.

But, we do not have access to a verification oracle and must be careful when performing the

decoding of the corrupted messages output by A. With no way to verify MACs, we are prevented

from simulating Decode to determine which of r rounds of ChannelExp results in a decoding error.

Simply guessing a round at random gives us a 1/r chance of guessing correctly but we must still

simulate Decode for the other rounds.

Since A can win in any of the r rounds (and, indeed, may win multiple times), we guess the

first round i where A wins. The subsequent rounds are irrelevant since we can obtain the needed

MAC forgery in round i. Thus, to obtain a forgery, we, (1) guess the round i in which A will win;

(2) simulate the preceding i− 1 rounds (as detailed next); (3) in round i, guess which of the corrupted

symbols in c′i (output by A) is a forgery (denote it σ′f ); (4) abort A; and finally, (5) decrypt σ′f to

get e′f ◦ `′f ◦ τ ′f , output (e′f ◦ `′f , τ ′f ) as our MAC forgery and exit.

To simulate the first i − 1 rounds, in round j, we simply save the authenticated codeword cj

and compare it symbol-by-symbol with the corrupted codeword c′j output by A. Any symbols in c′j

that do not have a match in cj (and any symbols that are duplicates) are discarded. The remaining

symbols are then decoded and the result is given to A. Since A does not win in round j < i, the

distribution of inputs is identical to the expected distribution (i.e., since A does not win in around

j < i, any corrupted symbols are not successful MAC forgeries and would be discarded).

If we guess correctly (which happens with probability 1/r), then A wins with probability γ and

we produce a MAC forgery with probability γ/(ρnr) (since we can just guess at random which of

the, at most, ρn corrupted symbols are a successful forgery). If we guess a round i′ (where A wins)

that is too small (i.e., less than the winning round i), then we succeed with probability 0 since we

know that A produces no successful forgeries in that round. If our guess is too high, then we will

inadvertently reject a corrupted codeword that causes a decoding error and thereby miss a successful

MAC forgery. This, however, deviates from the distribution of inputs expected by A and may even

be detectable by A. In this situation, we can have no expectations about the behavior of A.
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To remedy this, we have the reduction proceed as before but we also track how many steps A has

executed. If A exceeds the maximum number of steps t, then we terminate A and abort, ensuring that

our reduction takes at most 2t+ r(te + td) steps.19 Assuming that if we select an i that is too large,

then A never wins, we have that our success probability is γ/(ρnr) ≤ εm, which gives γ ≤ ρnrεm. If

A runs in total time of t, then our reduction runs in time at most 2t+ r(te + td) where te and td are

the time to encode and decode. Hence, t ≤ 1
2 (tm − r(te + td)), and we have rn ≤ qm since there are r

rounds with at most n MAC oracle queries each.

Corollary 3.4. Consider AuthECC-NMn,k,Σ
Π,f,Ψ using an [n, k] erasure code C over alphabet Σ (where

|Σ| = q), with Π = (Gen1,Enc,Dec) being a non-malleable cipher, f : {0, 1}λ × Σ→ Σ a pseudoran-

dom permutation, and Ψ = (Gen2,Mac,VerifyMac) an existentially-unforgeable MAC scheme. Then

AuthECC-NMn,k,Σ
Π,f,Ψ is computationally secure.

Proof. The same reduction above does not work here as we do not have an a prior bound t on the

running time of A. But, we can simply observe that for a decoding error to occur, a spurious symbol

(with the proper counter value) must be accepted by the decoder: i.e., it must have a MAC that

verifies. Since the symbol is spurious (i.e., not created by Encode), it must have a forged MAC, which

can only happen with negligible probability.

Finally, we note that if we replace the MAC scheme with a (ts, qs, εs)-unforgeable signature

scheme, we get a much tighter reduction.

Theorem 3.3. Consider AuthECC-NMn,k,Σ
Π,f,Ψ using an [n, k] erasure code C over alphabet Σ (where

|Σ| = q), with Π = (Gen1,Enc,Dec) being a (tnm, q1, q2, εnm)-non-malleable cipher, f : {0, 1}λ×Σ→ Σ

a (tprp, qprp, εprp)-pseudorandom permutation, and Ψ = (Gen2,Sign,Verify) a (ts, qs, εs)-unforgeable

signature scheme. Then for all PPT adversaries A running in time t using at most r rounds in

ChannelExp, the probability that A is ρ-successful against AuthECC-NMn,k,Σ
Π,f,Ψ is at most εs = ε′, with

t ≤ ts − r(te + td) = t′ and r ≤ qs/n = q′. That is, AuthECC-NMn,k,Σ
Π,f,Ψ is (t′, q′, ε′)-secure.

Proof. The reduction proceeds similarly to the proof of Theorem 3.2 but, since we use a signa-

ture scheme, we can verify the signature on each authenticated symbol and detect and success-

ful/unsuccessful forgeries. That is, we can simulate Decode exactly: at each step, the public key of the

signature scheme is used to detect and discard corrupted symbols. Additionally, as before, we track
19The factor of 2 comes from incrementing the counter at each step of A.
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each ci given to A as well as the corresponding c′i and compare them to find which symbols have

changed. Then, checking the signature on only the changed symbols (that have the correct counter

value) will reveal which symbol-counter-signature triple is a valid signature forgery (if any). Thus we

have that we succeed in forging a signature exactly when A wins, and if A runs in time t then the

reduction runs in time t− r(te + td) with r ≤ qs/n, giving a success probability of ε′ = εs.

3.7 Experiments

To show the practicality of our constructions, we implemented both AuthECC-LD and AuthECC-NM,

with the latter instantiated with AES in CMC mode, and show the results of several experiments here.

We denote these schemes as LD and CMC, respectively. The experiments were performed on an Intel

Core i5 processor at 2.6GHz with 4GB of RAM and running Arch Linux with the 3.14.19 kernel. The

code was written in C and compiled with gcc version 4.9.1 with the ’-O2’ optimization flag. We used

the Guruswami-Sudan list decoding algorithm (for Reed-Solomon codes) as our list-decodable code,

as implemented in the decoding library by Guillaume Quintin [137]. The implementation includes

Kötter’s polynomial interpolation algorithm (described in [83], detailed in [109]), and a variant of

the Roth-Ruckenstein root-finding algorithm by Berthomieu et al. [16]. Finite field arithmetic is

performed in GF (2128) using the MPFQ finite field library [163]. Where applicable, we encode

messages using a systematic Reed-Solomon code using the Jerasure library [71].

We used SHA256 for the collision-resistant hash function, UMAC for the message authentication

code [92], OpenSSL version 1.0.1i for AES encryption when implementing CMC mode, and PBKDF2

for key derivation [74]. We used 2048-bit RSA keys for digital signatures, again using the OpenSSL

implementation, and AES in CBC mode with a random IV for our PRP. We also implemented

the scheme by Micali et al., where the message is signed before applying a list-decodable code (as

described in [111]) and refer to it as STE for “sign-then-encode.”

We do not benchmark the Guruswami-Rudra list decoding algorithm [58] for folded Reed-Solomon

codes (which can correct up to a (1−R)-fraction of errors, the theoretical limit for any ECC) due to

lack of a ready implementation of the scheme. We also do not benchmark decoding using multiple

polynomials (used in [34]) via the Cohn-Heninger algorithm [31] to keep our implementation simple.

In Figure 3.3 we see the time to decode for LD, CMC, and STE. The horizontal axis of the

graph gives the error rate: the fraction of code symbols (and encoded tags) corrupted. For CMC, the



114

0.001

0.01

0.1

1

10

100

1000

0.00000 0.03125 0.06250 0.09375 0.12500 0.15625 0.18750 0.21875 0.25000 0.28125

Se
co

nd
s

Error Rate

Decoding Time vs. Error Rate

AuthECC-LD AuthECC-CMC Sign-then-Encode

Figure 3.3: Graph of time to decode with a variable error rate. For a [32, 16] code using the Guruswami-
Sudan list decoding algorithm, the maximum number of errors that can be corrected is 32(1−

√
0.5) ≈ 9.

Input file was 1KB in size.

corruption was applied directly to the symbols; for LD, the corruption was applied to the symbols

and the same fraction of errors was applied to the encoded authentication tags. The graph clearly

shows an almost constant decoding time for CMC as the number of errors increase, and a much larger

increase for both LD and STE. In particular, when correcting errors close to and beyond the unique

decoding radius (i.e., when the error rate is near or greater than 0.25), the running time increases

dramatically. Also note that LD and STE perform almost identically with LD having a small speed

advantage (not visible in the graph).

Since the time to list decode is heavily dependent on the code parameters n and k, we chose

the input message size and [n, k] values to ensure that LD and STE have the same [n, k] when

using a list-decodable code. (Both LD and STE operated over GF (2128).) Suppose the input size

is l, the counter c is 16 bytes, and the code rate is R = 0.5, then, STE must use parameters

k′ = (l + 16 + 256)/16 = l/16 + 17 and n′ = k′/R = l/8 + 34 to encode the message. For LD, if the

message itself is encoded with an [n, k] code, then the authentication tags together are 32n+ 16 + 256

bytes long (the first term for the SHA256 hashes and the latter two for the counter and the signature).

Since each element in GF (2128) is 16 bytes in size, LD must have k′′ = (1/16)(32n+ 272) = 2n+ 17

and n′′ = k′′/R = 4n + 34. To ensure that k′′ = k′, we chose to have an input file of 1KB and

parameters n = 32 and k = 16. This in turn gives k′′ = k′ = 81 and n′′ = n′ = 162. As a result, LD

and STE schemes have virtually identical performance.

The sharp increase is not intrinsic to the list decoding per-se, rather it is due to the particular

choice of subroutines, in particular, the use of Kötter’s algorithm for interpolation [83]. Kötter’s
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Figure 3.4: Graph of speed of list decoding and CMC with variable input sizes and [32, 16] code.
Decoding speeds relative to 2 errors in the codeword.

algorithm performs bivariate polynomial interpolation and takes as a parameter the multiplicity m of

the roots of the polynomial (which is chosen carefully in Reed-Solomon decoding). The algorithm runs

in time O(n2m4), where n is the codeword size. The multiplicity is calculated m = 1 +
[
kn−(n−e)
(n−e)2−kn

]
,

where e is the number of errors in the received codeword. As the number of errors approaches the

limit of n(1−
√
R) (where R is the code rate), since kn = Rn2 and (n− e)2 = (n−n+n

√
R)2 = Rn2

the multiplicity increases without bound (since the denominator goes to 0). Note that e = n(1−
√
R)

is the number of errors corrected in the limit. The actual number corrected will be bec < n(1−
√
R).

A different interpolation algorithm, such as [84], would provide different asymptotic performance.

In Figure 3.4, we see that both LD and CMC achieve practical throughput in both encoding

and decoding. Of note is the fact that, for both, the throughput of encoding and decoding levels

out for large files. This hints at the fact that, for fixed [n, k], the use of hashing combined with a

list-decodable code in LD results in an overhead linear in the file size. In particular, the hashing takes

a linear amount of time and the encoding/decoding of the list-decodable code takes constant time

since the input to the code is of a fixed size. The STE approach, on the other hand, to accommodate

large files would require either increasing n and k when encoding the file—leading to a quadratic

increase in the encoding and decoding times—or (keeping n and k fixed) the size of the underlying

field would need to increase. Indeed, the field elements would need to be very large to accommodate

these big slices of data. Hence, we omit STE from this comparison.

In GF (2m), multiplication can, asymptotically be done in O(m logm log logm) time by regarding

a ∈ GF (2m) as a polynomial in GF (2)[x] and using the Schönhage-Strassen multiplication algorithm.
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Figure 3.5: Graph of speed of CMC and list decoding with a constant rate and variable number of
symbols. Input file was 2MB, the code rate was 0.75, and there were no errors.

Addition and subtraction takes O(m) time by simply adding the two elements as regular integers and

then subtracting the modulus 2m (again, as a regular integer) if the result is bigger than 2m. Hence,

STE’s throughput decreases as the size of the file (and, hence, the size of field elements) increases,

which is shown in Table 3.4. Note that to maintain the same n and k for each field, we must increase

the size of the input file. This has the side effect of increasing the time to compute and verify a

signature, since the file is hashed before being signed. However, in this case, due to the small input

sizes, the increasing file size has a negligible impact on signing and verification efficiency. For example,

in the same set of experiments, the largest file on average took 2.0ms to sign while the smallest file

took 2.3ms. Our AuthECC-LD construction avoids this scalability problem and, indeed, can have the

input file grow quite large (with fixed n and k) without increasing the cost of list decoding.

Figure 3.5 shows the performance of LD and CMC when encoding with a fixed rate while

increasing the number of message and code symbols. The throughput of LD when encoding and

decoding decreases quadratically with n, which is expected. Indeed, decoding throughput goes to

Table 3.4: Encoding and decoding times of STE for a [288, 144] code with no errors in the received
code word over fields of increasing size. Times are the average of 50 trials. Input sizes do not include
the signature but do include the counter.

Field Encoding time Decoding time Input size
GF (216) 2.7 ms 12.1 ms 32 bytes
GF (232) 2.6 ms 13.9 ms 320 bytes
GF (264) 3.2 ms 25.7 ms 896 bytes
GF (2128) 3.7 ms 41.0 ms 2048 bytes
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near 0 as the number of symbols increases. In contrast, even though it slows down as k and n increase,

CMC mode achieves reasonable encoding speeds across all inputs. Moreover, the decoder keeps

comparatively high throughput, even for large files. One reason for this gap in performance between

CMC encoding and decoding is the fact that both the PRP and CMC mode encryption use CBC

encryption, and CBC mode can be easily parallelized when decrypting but not when encrypting.

3.8 Previous Work

There have been many instances of systems that combine erasure/error correcting codes and cryptog-

raphy together. We overview some of them here.

3.8.1 Computationally-bounded Channels

In this work, we prove our constructions secure against a particular computationally-bounded adversary.

This is a more limited adversary than the general, information-theoretic approach (implicitly) taken

in information theory. But, since attacks in the real world are restricted to feasible computations, this

limitation gives a more accurate model of the world. This approach was first proposed in [98], in which

Lipton introduces and formalizes the concept of a computationally-bounded adversarial channel (this

was further developed in the unpublished manuscript [55]). In this, he shows via a simple construction

(called “code scrambling”), that any code that has success probability q over the binary symmetric

channel with error probability p, has success probably q over any (computationally-bounded channel)

with error probability p. The construction works by simply generating and applying a random

permutation of n elements to the code word than then adding in a random pad. This requires

Θ(n logn) random bits, but by assuming the existence of a PRG with security parameter λ, then the

construction only needs O(λ) truly random bits (where λ� n). He also presents a construction that

divides the input into blocks of size a logn (for a suitably chosen a), independently encodes them,

and then scrambles them all together. Before the scrambling, the construction could handle O(logn)

errors in the worst case, but after scrambling it can handle O(n) errors. Lipton in this work reduces

adversarial corruption to random corruption, in the computational setting, but does not enhance the

error-correction in general (i.e., cannot correct more errors) as we do in this work.

Later, Langberg in [95] defines the notion of a private code: i.e., a code that takes a secret key

as a parameter. In this work, he proves that any code over the binary symmetric channel (with
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error probability p) can be turned into a private code over an adversarial channel that corrupts

at most pn symbols. This is done, as in [98], via random permutation over the code symbols. The

difference between Langberg’s work [95] and Lipton’s [98], is that the former makes no cryptographic

assumptions (so the key must be Θ(n logn) bits). In addition to this simple construction, Langberg

proves a lower bound of Ω(logn) on the number of random bits needed to be secure against an

adversarial channel. Additionally, he provides a construction that meets this lower-bound (i.e., requires

only O(logn) random bits). This construction operates via a careful partitioning the space of code

words for a list-decodable code. Decoding is performed with a maximum-likelihood decoder. As

in [98], this reduces adversarial corruption to random corruption but does not allow the code to

correct additional errors.

In [111], Micali et al. describe a game for a stateful, computationally-bounded adversarial channel

and provide a construction that is secure against that channel. They describe a game—modeled

after cryptographic games—involving multiple rounds where the channel chooses a message to be

encoded, corrupts the encoding, and then gives the result to the receiver. The adversary wins if at any

point the decoder decodes to an incorrect message. We use this model as the basis for our model in

Section 3.4. Micali et al. also provide a construction that is secure against their adversary: essentially,

the scheme is a combination of digital signatures and list decoding. Specifically, they sign a message

before encoding it with an efficiently list-decodable code. When decoding, the received codeword is

list decoded and the signature is used to disambiguate the list and achieve unique decoding. This

is basic the same construction found in the earlier paper Lysyanskaya et al. [106] that applied the

same technique to authenticate a group of packets. In both works, adversarial success reduces to

forging a signatures and the use of list decoding allows for the correction of more errors. This is the

“sign-then-encode” approach and is used as part of the AuthECC-LD construction.

An adversarial error correcting code (AECC) is defined by Bowers et al. in [21] to be a code that can

tolerate some amount of adversarial corruption. They say that a particular AECC is (β, δ)-bounded if,

for an [n, k] code, and a computationally-bounded adversary A, P [(c, c′)← A(1λ); ∆(c, c′) ≤ βn]− δ

is negligible in λ. That is, the probability that the A causes a two codewords c and c′ to decode

to different messages, where the distance between c and c′ is less than βn, is negligibly different

from some probability δ. This models adversarial behavior against proofs-of-retrievability (PoRs,

described later). A PoR provides two guarantees:1. if the corruption is below some threshold t, it can

be repaired; and 2. if the corruption is above the threshold t, it will be detected with high probability.



119

This motivates A to minimize ∆(c, c′) while the code designer wants to maximize β. This definition,

however, allows for the possibility that if ∆(c, c′) > βn and ∆(c, c′) ≤ n− k, then A can easily cause

the codewords to decode to different messages. That is, the definition allows for a gap in the error

correction capacity of the underlying code and the tolerance to adversarial corruption. In a PoR,

this does not matter since the corruption of more than βn symbols would (presumably) be easily

detected, but we want to preserve the integrity of encoded messages regardless of the amount of

corruption (up to the error correcting capacity of the code).

3.8.2 General Combination of Codes and Cryptography

Randomization. In work combining cryptography and error correcting codes, Luby and Mitzen-

macher in [104] describe a “verification decoding” algorithm based on belief propagation for LDPC

codes. They assume that a corrupted packet takes on a uniformly random value (rather than an

adversarially chosen value). The decoder performs two steps repeatedly: (1) if the sum of all neighbors

of a parity node is 0, then mark all nodes as verified, (2) if a parity node has a single unverified

neighbor, then it is marked as verified and its value is set to the sum of all other neighbors. With

this decoder, they are able to correct errors over the binary symmetric channel when previously, only

erasures could be corrected. Building on this, they independently rediscover the result of [98] and

reduce an adversarial channel to the binary symmetric channel via a random linear transformation

applied to all code symbols followed by a random permutation. (The same authors also use this

technique in [114] to reduce adversarial corruptions to random ones for a code based on invertible

Bloom lookup tables; see [114] for details.)

In [150], Smith seeks to protect against adversarial errors while using few random bits and avoiding

any unproven computational assumptions (e.g., the existence of a cryptographically strong PRG).

In particular, he draws a random permutation from a t-wise independent family, where t = o(n).20

Moreover, this is accomplished using n+ o(n) random bits instead of the previous best of Θ(n logn).

The basic construction is the same as that of Lipton in [98], where a plain ECC is applied to

a message and then a random permutation is applied to the codeword. The resulting codes are

capacity approaching and correct pn errors with probability exponentially close to 1. Our work makes

additional assumptions (e.g., the existence of secure MACs) allowing us to use many fewer bits,

i.e., just λ� n bits.
20Such a permutation can be generated using O(t logn) bits using a specific (non-cryptographic) PRG.
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Guruswami in [57] presents list decoding in the presence of side information where the sender

and receiver have a noisy primary communication channel and a non-noisy (and likely expensive)

side channel for transmitting additional information. Our schemes can be modeled in this context

with the keys being transmitted on a (noiseless) side channel immune to adversarial eavesdropping.

Guruswami proves that for deterministic schemes, the amount of side information required to allow

unambiguous decoding is nearly equal to the size k of the message itself. For a randomized scheme

(with a small probability of decoding failure, but not decoding error) the amount of side information

required is Ω(log k) and he provides a scheme that meets this bound. Guruswami’s schemes operate in

the presence of a computationally-unbounded adversary, so his results are not directly applicable here.

Indeed, our schemes have key lengths that are independent of the message length k (but logarithmic

is the alphabet size), provided that k is polynomially bounded.

Jaggi et al. in [70] provide information theoretically secure network codes that can tolerate

byzantine nodes in the network. If the network has capacity c and the adversary can eavesdrop on all

links and jam a z-fraction of the links, then their codes achieve a rate of c− 2z. If the adversary has

limited knowledge, e.g., can only eavesdrop on a fraction of the links, then their codes have rate c− z.

The also provide construction can also utilize a secret, noiseless side channel between the sender and

receiver to facilitate decoding. In particular, the receiver uses list decoding to recover a list containing

the correct decoding and then uses a hash of the original message (sent over the side channel) to

disambiguate the list decoding.

Cryptography in Codes. There are several examples of schemes that combine cryptography and

ECCs together. An example where cryptography is used in the heart of an ECC is found in [127]

(further developed in [128]) where Perry et al. present a new rateless error correcting code called a

spinal code. Spinal codes work by breaking the input message of n bits into blocks of k bits and then

applying a random hash function to each block to produce a real number in the interval [0, 1) (called

a spine). The encoder then makes passes over the spines and applies a deterministic function to map

a portion of each spine to an output bit.

Guruswami and Smith present several results in [59] for codes against computationally-bounded

adversaries that corrupt up to a p fraction of the code symbols. First, they provide constructions

for codes that approach channel capacity for additive (i.e., oblivious) channels. Second, they give

polynomial time list-decodable codes with optimal rate for log-space adversaries. Their construction
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for list-decodable codes can be extended to handle an adversary with nc space for any fixed c > 1

(but c must be fixed beforehand). For the first two constructions, they only assume the existence of

one-way functions, and for the latter they assume the existence of PRGs that can fool circuits of

size nc. In their constructions, the sender and receiver do not have pre-shared secret unknown to the

adversary. They hide the secret randomness in the message itself such that the adversary (with only

log-space) cannot locate it, but the receiver (who has super-logarithmic space) can.

Computational Locally Decodable Codes. In [26], Chandran et al. define locally-updatable,

locally-decodable (error correcting) codes (LULDCs). Their constructions have constant code rate

and allow for local updates to an encoded message in addition to having local decodability (i.e., any

message bit can be recovered by querying a few code bits, the number of bits queried is the locality).

Write operations in their schemes have a locality of O(λ log k) and a read operations have a locality

of O(λ log2 k). They accomplish this against computationally-unbounded adversaries. However, the

adversaries are limited so that they do not corrupt “too many” of the recently updated bits: that is,

only a few of new bits can be corrupted, but many of old bits can be corrupted. This is accomplished

by having a hierarchy of levels (with a logarithmic number of levels) where each level twice the size

of the one below it. Updates start in the lowest (and smallest) levels and percolate up to the higher

levels as more updates are made with each level encoded with a locally-decodable code. Against

computationally-bounded adversaries, they can detected arbitrary errors (via MACs) and can correct

a limited class of corruptions.

Ostrovsky et al. present constructions in [119] for private locally decodable codes against

computationally-bounded adversaries. By assuming the existence of one-way functions, they construct

asymptotically good locally decodable codes over a binary alphabet. They can correctly decode any

bit after querying ω(log2 λ) bits in a codeword, with probability greater than 1−λ−ω(1). If the sender

and receiver have a shared state (e.g., a public counter), then their query complexity is ω(log λ).

Furthermore, they show that ω(log λ) bits are necessary to achieve a negligibly small probability of

decoding error.

3.8.3 Secure Storage

Cloud Storage. There have been many works combining cryptography and erasure/error correcting

codes to construct reliable, secure storage (especially cloud storage). One example is [17], where
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Bessani et al. utilize a combination of a “cloud-of-clouds” and byzantine agreement protocols to

overcome the (possibly byzantine) failure of an individual cloud provider. Using byzantine agreement

protocols, they are limited to at most 1/3 of the servers being malicious, but can handle arbitrary

responses from the malicious servers. Data is encrypted for privacy and then the key is distributed

among the servers using Shamir’s secret sharing scheme [146]. The data is then encoded with an

erasure coding for redundancy and each symbol is hashed and signed to detect corruption.

In [88], Krawczyk uses an information dispersal algorithm (e.g., encoding the file with a Reed-

Solomon code) combined with a perfect secret sharing scheme to securely and reliably distribute a

(large) secret. He first chooses a random key K for encrypting the secret message m. The ciphertext

c is then encoded using a (t, n)-information dispersal algorithm, where any t out of n shares can be

used to reconstruct the message. The key is then encoded with a (t, n)-perfect secret sharing scheme

and each share of the encrypted message is paired with a share of the key and the pairs are then

distributed among n servers. In the same work, Krawczyk presents a robust secret sharing scheme,

where he augments his previous scheme by computing the hashes of some erasure encoded symbols

and then using an error-correcting code to encode each hash. The shares of each encoded hash are

then distributed with the symbols. This technique is an application of distributed fingerprints [87]

(also by Krawczyk) and provides security against corrupting adversaries.

In [25], Cao et al. utilize LT codes, bilinear maps, and homomorphic MACs to produce a secure

cloud storage scheme that allows for asymptotically efficient encoding and decoding (via the LT

codes), and allow for the data to be repair if any servers are lost (there is a special server that handles

the repair operations). In this setting, they consider computationally-bounded adversaries, but only

consider attacks against the data servers and not against the repair server.

Goodson et al. give several protocols in [51] that ensure consistency and integrity of data stored

in a collection servers in the presence of (both) byzantine clients and servers. The protocols allow

for “linearizable and wait-free read-write objects.” For reliability, files are erasure coded and each

code symbol is hashed and the concatenation of the hashes is replicated (called a cross-checksum).

Messages between clients and servers are authenticated via pair-wise sharing of secrets among clients

and servers.

Cachin and Tessaro combine erasure codes and Merkle trees (with code symbols as the leaves of

the Merkle tree) in [24] to authenticate data written by a client to a group of servers. The servers use

a reliable broadcast to transmit their symbol and Merkle tree path to the other servers so that each
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server can verify the authenticity and integrity of its symbol. They also use threshold cryptography

to encrypt the file and distribute the key to the servers such that at least 1/3 of the servers are

needed to reconstruct the key. In a follow-up to [24], Hendricks et al. in [63] utilize homomorphic

“fingerprinted cross-checksums” to drastically reduce the inter-server communication in the protocols.

The checksums are keyed, homomorphic universal hash functions and allow each server to efficiently

verify that their code symbol is correct. Further follow-up includes [62] by the same authors.

The work of [156] by Storer et al. gives a secure archival storage system with a “write-once-read-

maybe” data model with data lifetimes on the order of decades. A file is split into pieces (called

fragments) using an information theoretically secure secret sharing scheme for privacy. The fragments

are then split again using a threshold secret sharing scheme (e.g., Shamir’s) for availability; these

pieces are called shards and are distributed among “archives” (each “archive” is a data repository

and separate security domain). Distributed RAID techniques are used for fault-tolerance among the

archives.

Other efforts to secure cloud storage include the work of Wong et al. in [164] where a file is

encoded by dividing it into blocks and using a systematic [n, k] Reed-Solomon code on each block

over GF (2m) with m = 8 or 16. The encoding matrix is kept secret. They also integrate a proof of

data possession (PDP) in their scheme where challenge tokens are created by taking a random subset

of blocks, interpreting them as coefficients of a polynomial and then evaluating the polynomial at

random points. See the original paper [164] for more details.

Proofs-of-Retrievability. A proof-of-retrievability (PoR), first defined and explored by Juels and

Kaliski in [72], is scheme that makes heavy use of cryptography and error correcting codes to secure

remote storage. PoRs consist of encoding, decoding, and audit protocols, the last of which is used

to detect data corruption. Intuitively, a PoR guarantees that if the adversary does not corrupt too

much, then the damage can be repaired; conversely, if the damage cannot be repaired, then it will be

detected with high probability.

There have been several follow-up works to [72]. Shacham and Waters in [145] present two PoRs:

the first is secure in the random oracle model and has short audit query and responses, the second is

secure in the standard model and has short audit responses but longer queries. The work of Bowers

et al. in [20] combines Reed-Solomon codes and universal hashing to produce secure, homomorphic

MACs over the data that give an efficient audit protocol. In addition, the adversary considered in [20]
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is a mobile adversary that may (over time) corrupt all servers but at any given time it only has up

to a constant fraction compromised. PoRs are further explored in [21] by Bowers et al. where they

provide rigorous theoretical framework for designing PoRs and provide improved variants of [72]

and [145]. In [142], Sarkar and Safavi-Naini present a PoR that utilizes Raptor codes. Specifically,

they apply an erasure code to the data and apply a homomorphic authenticator to each symbol

and the audit protocol then performs LT encoding over the erasure encoded data. This allows an

unbounded number of challenge messages to be created as well as efficient encoding and decoding.

Much early work for PoRs assumed that the encoded data was static, and the scheme could not

be readily extended to the dynamic case. In [147], Shi et al. use a hierarchical log structure, where

each level is erasure encoded, combined with Merkle trees and MACs to achieve an efficient dynamic

proof-of-retrievability. They achieve efficiency logarithmic in the number of blocks (multiplied by the

security parameter) for both bandwidth and server computation with audit costs also logarithmic in

the number of blocks and quadratic in the security parameter.

Entangled Storage. In a follow-on to PoRs, Ateniese et al. define entangled cloud storage in [8],

where a client (or a group of clients) combine their files together (i.e., “entangle” them) such that it

is infeasible to corrupt or destroy a large part of the entangled data without affecting all of the input

files (called “all-or-nothing integrity”). The entanglement procedure is distributed among the clients

and no coordination is needed among the clients for any of them to recover their own files from the

entangled storage. The goals of the entangled storage are similar to one of our goals in designing

AuthECC-NM in that we strive to force the adversary to corrupt both the code symbol and its MAC

(and the counter). They achieve their construction through a combination of pseudorandom pads

and polynomial interpolation (where the individual files are the result of evaluating the polynomial

at a specific point). Our construction of AuthECC-NM, uses a non-malleable cipher to provide

entanglement since, intuitively, the non-malleable cipher cannot be manipulated or mauled to corrupt

only the symbol or only the MAC.

Non-malleable Codes. Looking at cryptography and codes, there are primitives known as non-

malleable codes, first defined and constructed Dziembowski et al. in [39]. The work was further

developed by Faust et al., described in [40], Cheraghchi and Guruswami in [28]. Non-malleable codes

seek to encode a message such that, if it is tampered with, it will decode to a message unrelated to
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the original message. They were designed to protect against malicious hardware tampering so that

any manipulation by an adversary results in a random internal state (rather than an adversarially

chosen one). Intuitively, non-malleable codes seek to exacerbate errors rather than correct them.

3.8.4 Secure Networking

Multicast Authentication. Lysyanskaya et al. in [106], couple digital signatures with list decoding

to achieve error correction beyond the unique decoding radius (i.e., half the minimum distance of

the code). Specifically, they sign the input message and then apply an efficiently list-decodable code

(e.g., a Reed-Solomon code) to the message-signature pair. When decoding, the codeword is list

decoded and the correct entry in the list is located by checking the signatures. This technique of using

signatures to achieve unique decoding from list decoding over a computationally-bounded channel

was independently discovered by Micali et al. in [111]. This latter work also developed a theoretical

foundation for a computationally-bounded channel that attacks a block code.

In [121], Pannetrat and Molvathe combine error correcting codes with cryptographic hashes and

digital signatures for efficient multicast authentication against adversarial erasure channels (the

channel can erase up to a constant fraction p of the packets). Specifically, they break the packets up

into blocks of n packets, hash the packets, sign the hashes, and then use a systematic erasure code to

encode the hashes and signature. The parity symbols generated from the systematic encoding are then

concatenated and divided up, evenly, among the packets. This results in just tens of bytes overhead

per packet. Given (1− p)n packets, the hashes are computed for the packets and the parity symbols

for the encoded hashes and signature are reconstructed. Since the erasure coding was systematic, the

combination of (1− p)n hashes with the rebuilt parity symbols is enough to recover all of the hashes

and the signature. The signature is then verified and the packets are all thrown out if the signature

is invalid.

Distillation codes are a class of fixed-rate error correcting codes, first described by Karlof et al.

in [76], that can withstand adversarial corruptions of the symbols including injection of extra symbols

into the codeword. Essentially, distillation codes are an erasure code augmented with a one-way

accumulator and a signature scheme. They use a Merkle tree as an example accumulator. The input

message is “tagged” (e.g., signed) and then erasure encoded; the encoded symbols are then used as

the leaves in a Merkle tree. Each symbol is sent with the neighbors on the path from the symbol to

the root of the tree. When decoding, the received symbols are partitioned into groups based on the
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root hash value computed when verifying each symbol. Each group is then erasure decoded, and for

any successful decodings the tag is verified and all groups with an invalid tag are discarded. The

decoder then randomly selects one of the remaining groups and outputs the decoding.21 This work is

designed to allow for arbitrary errors in addition to pollution attacks, where the adversary injects

extra (spurious) symbols into the stream. Their scheme is secure over a computationally-bounded

channel, though this is not stated nor formalized.

The work in [91] by Krohn et al. provides an efficient construction for online verification of erasure

encoded symbols produces by a rateless code, such as Raptor or Online codes, for content distribution

in peer-to-peer networks. Their adversary is one that sends spurious blocks to clients requesting a

given file. The authors use homomorphic hashing—via exponentiation in a group of prime order—on

the message symbols to produce a succinct digest of the file for verification. Hashes for code symbols

can be calculated by multiplying together the hashes for the corresponding message symbols. Since

the hashes for a file can be quite large—for example, an 8GB file would have 64MB of hashes—they

also give a recursive hashing scheme that can greatly reduce the number of hashes sent over the wire.

The security of the scheme reduces to the difficulty of computing discrete logarithms in the group.

Their scheme has several “knobs” that allow adjusting the trade-offs between verification speed,

amount of authentication information sent, and how quickly a malicious server can be identified (i.e.,

how many blocks must be received before maliciousness is detected). In comparing with our scheme,

we note that we allow the adversary to have access to entire file and all of authentication tags while

they assume reliable delivery of, at least, the root hash computed over an encoded file.

In [158], Tartary and Wang build on the work of Lysyanskaya et al. in [106], and use LT codes as

part of a multicast authentication scheme over an (α, β)-network.22 Specifically, they apply an LT

code to a set of n packets and generate N code symbols. Each symbol is then hashed along with the

indices of its neighbors. The hashes are signed and the signature is appended to their concatenation.

The N hashes and signature are then encoded with an [N,αN ] Reed-Solomon code. Each code

symbol ci from the LT code has the indices of its neighbors appended as well as the i-th code symbol

of the encoded hashes and signature. To decode, they apply list decoding to encoded hashes and use

the signature to achieve unique decoding (as in [106] and [111]) and recover the hashes which are

used to detect corruption of the LT code symbols.
21If the client knows the correct Merkle tree root hash, then this partitioning and random selection is not necessary.
22Recall that an (α, β)-network is a network work, when sending n packets at least an αn packets will arrive

unscathed, and at most βn will arrive total.
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Network Coding. In [65], Ho et al. present an information-theoretically secure construction for

random network coding where the adversary A is computationally-unbounded and controls a constant

fraction of the network (but not all of it). Each packet is augmented with a polynomial hash of the

packet, and then at each step in the network, all incoming packets are combined in a random linear

combination. The decoder collects enough linearly independent packets to recover the input packets,

checking the polynomial hashes against the decoded data and throwing out anything corrupted.

Since A does not control the entire network, some of the packets are unknown to A and he is unable

(except with small probability) to manipulate the packets to cause a decoding error. The probability

of corruption detection is a tunable design parameter of the network itself (i.e., must be set before

any transmissions).

3.9 Conclusion

In this work, we presented new concrete definitions for keyed coding schemes as well as a new adversarial

model that is stronger than previously considered. We then provided two different constructions

of keyed coding schemes: one public-key coding scheme combining list decoding with signatures

and secure hash functions, and another private-key scheme combining message authentication codes

with a pseudorandom permutation and a non-malleable cipher. The list-decoding-based construction

achieves greater decoding efficiency than previous schemes (i.e., [106, 111]) by applying the list

decoding to a small set of (short) authentication tags rather than the whole message, and hence can

perform the decoding in a much smaller field. Also, our second construction avoids list decoding

altogether and achieves greater throughput than the list decoding schemes when face with a high

error rate. We also proved these schemes to be secure in our new model and with a detailed, concrete

analysis we also demonstrated their practical efficiency.



CHAPTER Four

Falcon Codes

4.1 Introduction

By increasing the reliability of computing systems that may experience loss or corruption of data at

rest or in transit, due to unreliable storage units or channels, error correcting codes comprise today a

particularly useful tool that finds numerous applications in distributed systems and network security.

Among a rich set of existing codes, due to their simplicity and strong error correcting capacity (i.e.,

information-theoretic rather than probabilistic), Reed-Solomon codes, or RS codes,1 are employed

widely in secure protocol design. Although their asymptotic efficiency depends on the implementation,

RS codes typically involve encoding costs that are quadratic in the message size k,2 thus in reality

they tend to be costly.

Several alternative codes have been proposed to overcome the quadratic encoding/decoding

overheads of RS codes. For instance, using layered encoding, Tornado codes [23] achieve encod-

ing/decoding speeds that are 102 to 104 times faster than RS codes. At the fastest end of the range

lie LT codes [103], which achieve O(k log k) encoding/decoding speed and are very practical. Based

on LT codes, Raptor codes [148] and Online codes [108] are the first (rateless) code to achieve linear

coding times. Each of these LT-based codes is a rateless (or fountain) code that can generate a

practically unbounded stream of output code symbols. But this great efficiency comes at a qualitative
1In an RS code, the input message is broken up into fixed-sized pieces and the pieces are regarded as coefficients of

a polynomial, which is then repeatedly evaluated on different points to produce the output symbols.
2RS codes with input size k and output size n = O(k) are practically of quadratic in k complexity: even if in

specific configurations they can achieve asymptotically O(k log k) encoding time, in most practical cases encoding with
polynomial evaluation in O(kn) time is faster.

128
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drawback: fountain codes have been designed and analyzed over a random (erasure) channel rather

than an adversarial (corruption) channel, essentially being capable to tolerate only random symbol

erasures and no (or very limited) symbol corruption. And even current standardized implementations

of these codes are easy to attack by adopting malicious (non-random) corruption strategies.

Vulnerabilities to Adversarial Corruptions. LT codes employ a random sparse bipartite graph

to map message symbols, in one partition, into encoded symbols, in the other partition, via simple

XORing (see Figure 4.1). By design, this graph provides enough coverage among symbols of the two

partitions so that a belief-propagation decoding algorithm can recover the input symbols (with a small,

encoder-determined probability of failure) despite random symbol erasures. But this algorithm will

also readily propagate (and amplify) any error in the message encoding into the recovered message!

This by itself is a serious problem as LT codes provide no mechanism for checking symbol integrity,

thus, an attacker can trivially inflict a decoding failure or cause decoding errors that result in an

incorrect recovered message (or even in a maliciously selected specific recovered message).

Even worse, an attacker can exploit the graph structure to (covertly) increase the likelihood of a

decoding failure by only inflicting a few adversarial symbol erasures, in a class of attacks we term

targeted-erasure attacks. Here, the attacker’s goal is to maliciously select those symbol erasures that

are more likely to cause decoding failure. For instance, one can selectively erase symbols of high-degree

nodes in the encoding graph so that with high probability not all input symbols are sufficiently

covered by the surviving encoded symbols.3 Unfortunately, such targeted-erasure attacks have been

neglected by existing RFCs (e.g., [101, 102]) that describe Raptor/RaptorQ codes for object delivery

over the Internet: indeed, to increase the practicality of these codes, their encoding graph is either

completely deterministic or easily predictable by anyone,4 thus trivially enabling high-degree symbol

(or other targeted) erasures! This raises a serious threat for real-life applications that (will) employ

RaptorQ codes—the most advanced fountain code that is being adopted for protecting digital media

broadcast, cellular networks, and satellite communications. Surprisingly, until very recently, such

vulnerabilities had been inadequately addressed in the literature (cf. Section 4.8).
3LT decoders based on solving the implicit system of linear equations relating input symbols to encoded symbols

suffer from the same problems.
4For instance, each encoded symbol contains a list of the indices of its covering input symbols or a seed for a PRG

to generate these indices, trivially allowing an adversary to selectively corrupt the symbols for maximum impact.
Encrypting symbols and the associated index lists is not sufficient as the RFCs contain explicit tables of random
numbers to be used in the encoding process.
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In the context of secure P2P storage, Krohn et al. [91] identified distribution (similar to targeted-

erasure) attacks against Raptor-encoded data but their mitigation was left as an open problem.

Recently, in the context of data transmission, Lopes and Neves identified [99] and successfully

implemented [100] such an attack against RaptorQ codes, by relating encoded symbols to input

symbols and deriving data independent erasure patterns that can increase the likelihood of decoding

failure by orders of magnitude. Lopes and Neves [100] also informally proposed a basic remediation

strategy that aims at making harder to discover input-output symbol associations by employing a

cryptographically strong pseudorandom generator (PRG) for mapping encoded symbols to input

nodes in the encoding graph. In Section 4.2, we explain why this strategy alone is inadequate to

provide a secure solution,5 and further justify the importance of (provable) secure rateless codes

against fully adversarial corruptions both in terms of motivation and applications.

Then, in view of this inconvenient trade-off between practicality and security, in this chapter we

consider the following natural question: is it possible to have codes that are simultaneously strongly

tolerant to adversarial errors and very efficient in practice? Alternatively: what are the counterparts

of RS codes within the class of fountain codes? Or, is it possible to devise extensions of Raptor codes

that withstand malicious corruptions while maintaining their high efficiency?

Contributions. This work shows that it is possible to achieve both coding efficiency and strong

tolerance of malicious errors for computationally-bounded adversaries. Specifically, we introduce

Falcon codes, a class of authenticated error correcting codes6 that are based on LT codes. Falcon

codes can tolerate malicious symbol corruptions but also maintain very good performance, even

linear encoding/decoding time. This can be viewed as a best-of-two-worlds quality, because existing

authenticated codes (e.g., [21, 32, 88, 106, 111]) are typically Reed-Solomon based, thus lacking

efficiency, and existing linear-time coding schemes (e.g., [108, 148]) are fountain codes that withstand

only random erasures.

We develop the first adversarial model for analyzing the security of fountain codes against

computationally-bounded adversaries.7 We first introduce private LT-coding schemes, which model
5Intuitively, although the suggested approach holds some promise for tolerating data independent targeted erasures,

it is inadequate to tolerate other types of targeted-erasure attacks, e.g., those that depend on symbol contents.
6By this term, here, we informally refer to error correcting codes that employ cryptography to withstand adversarial

symbol corruptions, typically (but not exclusively) by authenticating the integrity of the encoded symbols.
7Previous adversarial models studied only fixed-rate codes, e.g., RS codes.
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the abstraction of authenticated rateless codes that combine the structure of LT codes with secret-

key cryptography, and we then define a security game in which a stateful and adaptive adversary

inflicts corruptions over message encodings that aim at causing decoding errors or failures (i.e.,

a wrong message or no message is recovered).8 Finally, we define security for private LT-coding

schemes as the inability of the adversary to inflict corruptions that are (non-negligibly) more powerful

than corruptions caused by a random erasure channel, i.e., security holds when any adversarial

(corruption) channel is effectively reduced to the random (erasure) channel. Section 4.3 introduces

technical background on relevant coding theory and cryptography, and Section 4.4 details our security

formulation in our new adversarial setting applied to rateless codes.

We then provide three constructions of authenticated LT codes (which are our core Falcon codes)

that achieve this new security notion against adversarial corruptions while preserving the efficiency

of normal LT codes. Our main scheme Falcon (shown schematically in Figure 4.3) leverages a simple

combination of a strong PRG (to randomize and protect the encoding graph), a semantically secure

cipher (to encrypt encoded symbols and hide the encoding graph), and an unforgeable MAC (to

authenticate symbols). By partitioning the input message into blocks and applying the main scheme

in each block, we extend Falcon to get two scalable and highly optimized (but more elaborate in

terms of parameterization and analysis) schemes: a fixed-rate code FalconS and its rateless extension

FalconR that can produce unlimited encoded symbols.

Moreover, our core Falcon codes can be readily extended to meet the performance qualities of

any other fountain code that employs an LT code. Specifically, our coding schemes can meet the

performance optimality of Raptor or Online codes, while strictly improving their error correcting

properties. In this view, Falcon codes provide a general design framework for devising authenticated

error correcting codes, which overall renders them a useful general-purpose security tool. Section 4.5

details our design framework and three core Falcon codes, whereas Section 4.6 provides their security

analysis.

In Section 4.7, we perform an extensive experimental evaluation of the Raptor-extensions of our

core Falcon codes (since Raptor codes are perhaps the fastest linear-time fountain code at present)

showing that, indeed, they achieve practical efficiency with low overhead. In particular, our schemes

can achieve encoding and decoding speeds up to 300MB/s on a Core i5 processor, several times
8As we explain, we impose only minimal restrictions on the adversary: symbol corruptions and erasures can be

arbitrary, but inducing trivial decoding failures by destroying (almost) all symbols is disallowed.
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Construction Rateless Efficiency Strong PRG Weak PRG Corruption
Falcon yes O(k log k) yes no yes
FalconS no O(bk(log k + log b)) yes yes yes
FalconR, small b yes O(bk log k) yes no yes
FalconR, large b yes O(b log b+ bk log log b) yes no yes
Reed-Solomon no O(nk) n/a n/a yes
LT code & crypto yes O(k log k) no yes no

Table 4.1: Comparison of three Falcon code variants with Reed-Solomon and LT codes. Here, k is
message length, b is number of blocks, and n is the codeword length. Falcon is the basic scheme and
FalconS and FalconR are the scalable variants. For FalconS and FalconR, k indicates the number of
symbols per block.

faster than the standard RS encoding coupled with encryption and MACs. The overhead from

our cryptographic additions to LT codes results in a slowdown of no more than 60% with typical

slowdown close to just 25%. Table 4.1 compares our constructions with a standard RS code, as

well as the naïvely “secure” LT code also coupled with encrypts and MACs the output symbols,

according to the following criteria: (1) whether or not the code is rateless, (2) asymptotic efficiency

of encoding and decoding (FalconR’s performance depends on the number of blocks, as we discuss in

Section 4.5.3), (3) the need for a strong PRG (FalconS can safely employ a weak, but fast, PRG for

increased efficiency), (4) and the achieved security related to adversarial data corruption. All of our

constructions can withstand this worst-case behavior.

Applying Falcon codes to reliable data transmission and storage is out of the scope of this

work, but we believe that many such applications are feasible. In particular, as we briefly discuss in

Section 4.2, our schemes can be used as drop-in replacements for any error correcting code used against

computationally-bounded adversaries to provide immediate efficiency gains. Finally, we overview

related work in the overlap of coding and security in Section 4.8 and conclude with Section 4.9.

4.2 Motivation & Applications

Our goal is this work is to design fast, authenticated (rateless) codes that offer both strong tolerance

to adversarial symbol corruptions and operate at practical encoding rates. This problem lies in the

intersection of security and coding and is motivated by an interesting trade-off between security and

efficiency that we can observe in two wide application areas:
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• Distributed or cloud storage systems: For better fault-tolerance guarantees against server

failures or security guarantees against malicious cloud providers, several storage systems employ

(adversarial) error correcting codes, which are typically RS codes, thus protecting against

malicious corruptions of data at rest but often being less practical.

• Data transmission systems: For fast data recovery against lossy channels, several data

transmission systems employ linear-time fountain (rateless) codes, thus being very practical

but protecting data in transit only against random symbol erasures.

To reconcile the above desired properties—strong resilience to adversarial corruptions and fast,

linear time, encoding of data both at rest and in transit—we study rateless codes, in particular LT

codes and Raptor codes, in a new adversarial model where an attacker has full control over the

message encoding. This means that the attacker can maliciously corrupt (i.e., alter or erase) symbols

in any subset of its choice in a message encoding. In this case, we capture security by requiring

that any attacker in this setting is essentially equivalent to a much more limited attacker in the

weaker setting where only random symbol erasures are allowed. That is, using some cryptographic

terminology, the real-model adversarial channel is reduced to the ideal-model random channel.

Therefore, we define private LT-coding schemes as the secure equivalents of LT codes in this new

adversarial model, implying that private LT-coding schemes (and Falcon codes), when operating

over an adversarial channel, inherit all the properties of LT codes operating over a random channel.

Most importantly, as we discuss in Section 4.3, LT codes assume a minimum number (1 + ε)k

of randomly-selected intact symbols in the encoding of a k-symbol message in order to guarantee

successful decoding with probability at least 1− δ (where ε > 0 controls the redundancy required

to ensure the decoding-failure probability it at most δ > 0, where ε depends on δ). We, thus, have

to assume that the same precondition for successful decodings holds also for our private LT-coding

schemes. Namely, given any minimum number of (1 + ε)k (but this time) adversarially-selected intact,

along with any number of adversarially-altered, encoded symbols, the attacker cannot induce any

decoding failure or error, except with probability at most δ.9 Similarly, an attacker is not allowed to

corrupt or erase all encoded symbols—which would trivially incur a decoding error—because such a

contrived attack is already inconsistent in the ideal-model random channel.10

9Note, however, the qualitative difference between (standard) LT codes and Falcon codes: in both cases there exist
some “bad” subsets of (1 + ε)k intact encoded symbols that produce decoding failures; but with high probability
such “bad” subsets cannot be computed by an attacker from a Falcon encoding, whereas they can almost always be
computed from standard LT encodings, as we discuss below.

10Indeed, this attack is practically infeasible in a channel that independently erases symbols with probability p < 1.
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In practice, there are several adversarial settings that match (and justify) our security model above.

First and foremost, in any application, we want to ensure that, with all but negligible probability,

whenever the decoder outputs a message, it is the same message that was encoded. That is, we

wish to avoid corruption of the decoded message.11 Then, since total corruption or deletion of a

message is catastrophic—and presumably users would stop using such an unreliable channel—it is

realistic to consider attacks that do not destroy or maul the entire message (which is also a standard

assumption when analyzing error correcting codes). In storage systems, for instance, client data may

be encoded and distributed among several cloud providers, a subset of which are compromised by the

adversary, limiting corruption to those servers. Or, in transmission systems, the adversary may be a

malicious network router that sees some, but not all of the symbols in a message encoding, which

it can arbitrarily corrupt. Finally, we want to protect against targeted-erasure attacks, which are

minimalistic attacks where the attacker maliciously erases a carefully selected subset of the encoded

symbols to significantly increase the chances of a decoding failure way above the bound of δ. In

the case above of the malicious router, for instance, the attacker may erase all high-degree symbols

(i.e., those combining many input symbols), leaving only low-degree symbols untouched, causing the

decoder to then receive mostly low-degree symbols and be much more likely (i.e., with probability

greater than δ) to fail and output nothing. This is a stealthy DoS, or at least a quality-of-service

attack, and is a violation of the upper-bound on the decoding failure probability. To mitigate this, the

receiver could wait for more good symbols from other non-malicious routers, but this would still break

the LT code’s guarantee of needing only (1 + ε)k (randomly sampled) uncorrupted symbols to decode

with probability greater than 1− δ. We wish security even from such low-profile targeted-erasure

attacks, especially because they are feasible: there are easy to perform and they are very effective.

Indeed, the work of Lopes and Neves [100] illustrates the practicality of the targeted-erasure

attack against RaptorQ codes. They demonstrate data independent attacks on encoded data such

that the probability of decoding failure is increased by several orders of magnitude. The attack is as

follows. RaptorQ codes include unique identifiers with each symbol to allow easy reconstruction of

the encoding graph by the decoder. Each message symbol is associated to an “Internal Symbol ID”

(ISI) label and each parity symbol to an “Encoded Symbol ID” (ESI) label. (RaptorQ is a systematic

code, so some ISI and ESI labels will coincide.) RaptorQ codes generate a parity symbol’s degree
11Note that errors propagate and amplify for a belief-propagation LT decoder: When the value of a message symbol

is fixed, it is propagated to every encoded symbol associated to that message symbol, setting each of these to erroneous
values, which can then lead to the corruption of other symbols as well.
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and associated neighbors by feeding the ISI and the message length k into a “tuple generator” which

utilizes a (very) weak PRG (utilizing a fixed table of random values). The attack leverages the fact

that given the ESI it is possible to derive the ISI and thereby determine how a given parity symbol

was encoded. Then, a brute-force algorithm is used to find minimal erasure patterns for selectively

deleting symbols to ensure (with some probability) that decoding fails.

Lopes and Neves [100] also informally suggest (without any correctness or security arguments)

some possible mitigations, based on an observation that simply using a strong pseudorandom generator

for the encoding is sufficient to protect against malicious erasures. Their suggested mitigations include

to: (M1) encrypt and permute the symbols; (M2) give each ISI a random ESI and then randomly

“interleave” the symbols; or (M3) give each ESI a random ISI (and do not permute). Although

(probably) sufficient to mitigate the specific attack in [100], the above strategies seem insufficient to

provide a viable and secure solution in the design of authenticated LT codes, for the following reasons:

(R1) they rely on a random permutation (or random interleaving) that undermines ratelessness; (R2)

they only hide the input to the weak PRG (tuple generator), but they do not modify the PRG itself

whose biased output can still be exploited to predict the encoding graph structure; and (R3) they do

not protect against data-dependent attacks (i.e., inferring graph structure from message contents).

In particular, we next show that it is possible for an attacker to look at the symbols to infer

the encoding graph structure and again enact the targeted-erasure attack. While this is hard in

general, for structured data or attacker-known input messages, the low-degree symbols can be readily

identified. Symbols of degree 1 are trivial to identify in transit and, with a known input message, the

attacker can take all pairs of message symbols and compute all degree 2 symbols.12 Then with this

knowledge, the attacker can perform three different attacks:

A1 Identify the low-degree symbols and delete all others; with high probability these low-degree

symbols will not provide enough coverage of the input symbols and decoding will fail;

A2 If the receiver is known to use a belief-propagation decoder, the attacker only needs to delete

the symbols of degree 1 to prevent decoding from even starting;13

A3 If one of the input symbols is distinguished (e.g., the only one with the MSB set), then it is

trivial to identify which code symbols contain that input symbol; deleting all symbols with

that bit set guarantees that decoding will fail.14

12If the input is small enough, the attacker may even be able to compute all symbols of degree 3.
13However, a decoder based on Gaussian elimination to solve the system of linear equations that describe the encoding

graph would likely still succeed.
14As an example, consider an input message consisting of at most 256 ASCII characters with the length prepended
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Thus, we must provide additional protections (namely encryption) to prevent these data-dependent

attacks. Overall, given the many subtleties in such complicated structures, a formal proof of security

is required for any suggested solution.

Overall, our Falcon codes comprise private LT-coding schemes, thus realizing fast, authenticated

rateless codes that achieve both desired properties described at the beginning of the section. As such,

they can be used as drop-in replacements for any error correcting code used against a computationally-

bounded adversary and provide immediate efficiency gains. For instance, Falcon codes can replace

RS codes to provide fault-tolerance in secure storage with almost the same guarantees as RS codes

but much higher efficiency. They also readily find application in PoR systems that provide auditing

checks on the retrievability of cloud data—we provide some more details about this application in

Appendix B. Similarly, Falcon codes can be applied to secure against corruptions in any application

where Raptor codes are used (see, e.g., [136]), including 3GPP, MBMS, streaming media [1], IP TV,

IP Datacast over DVB-H [133], or satellite communications [132].

4.3 Preliminaries

In what follows, we let λ denote the security parameter, and PPT refer to probabilistic polynomial-

time algorithms. We also let [Alg] denote the set of all possible outputs of a PPT algorithm Alg,

running on input parameters π, and τ ← Alg(π) the particular output derived by a specific random

execution of Alg(π). Analogously, we let x R← S and x ← D, respectively, denote the process of

sampling x from the set S uniformly at random or according to distribution D. We have (a, b) denote

the open interval from a to b. Finally, we let ◦ denote string concatenation and |S| denote the

cardinality of a set S.

4.3.1 Coding Theory

An error correcting code (ECC) is a message encoding scheme that can tolerate some corruption of

the encoded data and still allow recovery of the message from the (possibly corrupted) codeword.

Codes that are designed to recover only from partial data loss, but not data corruption, are called

erasure codes. We first present the definition of fixed rate codes (also called block codes) which are

the most common type of ECCs. Later, we will define rateless codes.

to the message. If the length is ≥ 128 characters, then all symbols that include the length byte are easily identifiable.
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Defined over a fixed, finite set of symbols Σ (called the alphabet) and parameterized by integers

k and n ≥ k (called the message length and block length, respectively), a fixed-rate ECC specifies

mappings between elements of the set of messages Σk and the set of codewords Σn. (Examples

alphabets include Σ = {0, 1}l, the set of all l-bit strings, or a finite field F.) The ratio R = k/n is

the rate of the code, capturing the amount of information transmitted per codeword. For m ∈ Σk

and c ∈ Σn, the components mi and ci are called message symbols and code symbols, respectively.

Any given message m ∈ Σk is encoded to a corresponding valid codeword c ∈ Σn, and any invalid

codeword ĉ, derived as a bounded distortion of c, can be uniquely decoded back to the original

message m. If the first k symbols of a valid codeword corresponds to original k message symbols,

then the code is said to be systematic. The rate R of a code typically controls the recovery strength

of the code as follows. The Hamming distance between two n-symbol words x and y is the number of

symbols in which they differ, defined as ∆(x, y) = |{i | 1 ≤ i ≤ n, xi 6= yi}|. The (minimum) distance

of an ECC is d, if for all valid codewords c, c′ ∈ Σn such that c 6= c′, we have ∆(c, c′) ≥ d (capturing

the minimum number of changes needed to transform one valid codeword into another). Then, any

code with minimum distance d allows for decoding invalid codewords distorted by up to bd/2c errors

back to a unique message;15 typically, smaller values of R imply a larger minimum distance d.

Definition 4.1. [Error Correcting Code]An error correcting code C over an alphabet Σ with rate R

and minimum distance d, is a pair of maps (Encode,Decode), where Encode : Σk → Σn and Decode :

Σn → Σk, such that k = Rn, and for all m ∈ Σk and for all c ∈ Σn with ∆(c,Encode(m)) ≤ bd/2c,

Decode(c) = m.

Rateless ECCs. Error correcting codes that employ no fixed block length n are called called

rateless or fountain codes. These codes can generate an unbounded stream of encoded symbols (i.e.,

a continuous “fountain”), allowing recovery of the original message (with high probability) from any

random subset of these symbols that is sufficiently large. Typically, for message length k, (1 + ε)k

correct encoded symbols are needed to decode the message with probability at least 1− δ. Here, ε is

called the overhead of the code and δ refers to the decoding failure probability of the code, the latter

determining the range of possible values that the former may have; in particular, smaller values of δ

require larger values of ε and vice versa. We denote this relationship by F (δ, ε).
15Not considered in this work is list-decoding, which allows mapping any invalid codeword, distorted with errors

beyond this half-the-distance bound, back to a list of messages that always contains the correct original message.
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Figure 4.1: LT-encoding: Each code symbol (bottom) is the XOR of O(log k) randomly selected
message symbols (top).

Rateless codes operate over the random erasure channel, where each symbol is independently

erased with some fixed probability p, and it is relative to this channel that its probabilistic guarantees

hold.16 We denote the channel by RECp. (Note, this channel can be generalized so that the value of

p varies per-symbol and can even depend on the symbols previously sent.) One desirable feature of

rateless codes is that the value of p does not need to be known to the encoder a priori.

Definition 4.2. A (k, δ, ε)-rateless error correcting code C over an alphabet Σ with decoding failure

probability δ and overhead ε so that F (δ, ε), is a pair of maps (Encode,Decode), where Encode

maps elements of Σk to infinite sequences {ci}∞i=1, with ci ∈ Σ, and for any m ∈ Σk and any finite

subsequence s of Encode(m) of length at least (1 + ε)k received over RECp for some p ∈ (0, 1),

Decode(s) = m with probability at least 1− δ.

Examples of rateless ECCs include LT codes [103], along with their derived extensions Raptor

codes [148] and Online codes [108]. For LT codes, the main focus in this work, the encoding/decoding

mappings take an extra input parameter: the degree distribution D. Here, D is used to construct

a sparse bipartite graph with input (message) symbols in one partition and code symbols in the

other, also called input and parity nodes—see Figure 4.1. The degree of each parity node is selected

according to D and its corresponding neighbors (message symbols) are selected uniformly at random.

The code symbol corresponding to a given parity node is simply the XOR of the message symbols

of the neighboring input nodes (and, thus, is very fast to compute). The distribution used must

be carefully chosen to achieve the desired success probability of 1 − δ for a given message length

k, hence D is implicitly parameterized by k and δ. (For notational simplicity, we will leave this

parameterization implicit.) The value of δ and, now also, distribution D determine the possible values

of ε. For LT codes, we denote this relationship by F (δ,D, ε).
16However, as shown in [100], these guarantees can fail to hold when the channel is malicious.
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Often, D instantiates to the robust soliton distribution, described in the original LT Code pa-

per [103], which ensures that the average node degree is O(log k). This implies that: (1) using a

balls-in-bins analysis, with high probability, every input symbol is covered by at least one of the

(1 + ε)k code symbols, and thus can be decoded; and (2) encoding and decoding take O(k log k) time.

Decoding uses a standard belief-propagation algorithm,17 thus correcting only symbol erasures, but

not symbol errors. The decoding method of [104] augments belief propagation to also correct random

errors with erroneous values distributed uniformly in Σ, but not adversarial errors.

Raptor (rapid tornado) codes [148], a main application in our work, improve the performance

of LT codes by employing precoding of the input message m ∈ Σk before LT-encoding as follows.

First, a linear-time erasure code (e.g., a low-density parity check code) is applied to m to get a

group of intermediate symbols. Then, an LT code is used to produce each output symbol, again

as the XOR of a random subset of the intermediate symbols, where these subsets, drawn via a

variant of the robust soliton distribution (see [148]), are of constant size; this process is repeated

until enough output symbols are produced. Overall, Raptor codes have encoding/decoding time that

is linear in k, and achieve high data rates with low overhead.18 However, based on LT codes, they

are essentially erasure codes and do not tolerate symbol corruption well. Analysis of Raptor codes

over noisy channels (see [120, 129]) is also restricted to random (but not necessarily uniform) errors

rather than adversarial ones.

4.3.2 Cryptographic Tools

We overview the cryptographic primitives we employ to enhance LT codes to withstand adversarial

errors—namely, message authentication codes (MACs), symmetric ciphers (SCs), and pseudorandom

generators (PRGs), with which basic familiarity is assumed.

Keyed by secret sk ← Gen1(1λ), a MAC produces a tag t = Mac(sk,m) for message m, which can

be used to verify the integrity of m by checking VerifyMac(sk,m, t) = 1. We require that a MAC is

existentially unforgeable so that an adversary A cannot forge the tag for any message, even a message

of its own choosing. Here, A is allowed to query a MAC oracle to receive any number of example
17Briefly, a belief-propagation decoding algorithm works by searching for a code symbol that has degree 1 and then

setting the corresponding message symbol to the value of the code symbol. The message symbol is then XORed with
each of its neighboring code symbols, decrementing each of their degrees by one. This process repeats until there are
no more code symbols of degree one. Then, the decoder processes the next received code symbol. If there are no more
code symbols and there are still undetermined message symbols, then decoding fails.

18Since only a linear number of symbols are output, Raptor codes only strive to recover a constant fraction of the
intermediate symbols via LT-decoding. Any gaps in these symbols are recovered by decoding the precode.
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message-tag pairs before it outputs a target message-tag pair (m∗, τ∗) that does not belong in the

queried pairs; then, with all but negligible probability in λ it holds that VerifyMac(sk,m∗, t∗) 6= 1.

Keyed by secret sk ← Gen2(1λ), a symmetric cipher is an encryption scheme (Enc,Dec) so that

Dec(sk,Enc(sk,m)) = m for any message m (in the appropriate message space). We require that

an SC is semantically secure so that a ciphertext c = Enc(sk,m) “hides” all the information about

a given message m. Here, for any adversary A computing any function f on the message m given

ciphertext c (and any auxiliary input), f(m) can still be computed without the ciphertext, with all

but negligible probability in λ. Intuitively, knowing the ciphertext c leaks no additional information

about m.

Finally, given a short random seed s R← {0, 1}λ, a pseudorandom generator (PRG) serves as an

efficient source of randomness by producing a long sequence of random-looking bits. A PRG is secure

if its output is indistinguishable, with all but negligible probability in λ and with respect to any

polynomial-time distinguisher, from a string of truly random bits. Equivalently, any algorithm taking

random bits as input behaves only negligibly different when given pseudorandom bits instead.

4.4 Security Model

Our main goal is to extend LT codes to endure adversarial corruptions inflicted by a computationally-

bounded adversary. Here, we present a new definitional framework for private LT-coding schemes, a

new class of rateless codes that are based on LT codes and employ the use of secret-key19 cryptography

to resist polynomial-time adversarial errors. We introduce a corresponding new security notion we

call computationally secure rateless coding. Our security model is general enough to also capture

security for block codes.

Motivating Scenarios. There are several adversarial settings which motivate our security model.

First and foremost, we want to ensure that, with all but negligible probability, whenever Decode

outputs a message, it is the same message that was encoded. That is, we wish to avoid corruption of

the decoded message. Since total corruption or deletion of a message is catastrophic—and presumably

users would stop using such an unreliable channel—we consider attacks that do not destroy or maul
19Our schemes use a PRG, a MAC, and a semantically secure cipher: the latter two can be replaced with public-key

equivalents, while the PRG is inherently a secret-key scheme. However, coupling our schemes with a public-key
key-agreement protocol (over a noiseless channel) for distribution of the PRG seed would break the dependence on
secret-key cryptography. But, for simplicity of analysis and presentation, we only utilize secret-key schemes.
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the entire message, which is standard when analyzing ECCs. For example, a client may encode their

data and distribute it among several cloud providers, a subset of which are compromised by the

adversary A, limiting corruption to those servers.

An alternative scenario is where A is malicious network router that sees some, but not all of an

encoded message. A can attack an LT-encoded message by erasing high-degree symbols (i.e., those

combining many input symbols) and leaving low-degree symbols untouched. The decoder would then

receive mostly low-degree symbols and be much more likely (i.e., with probability greater than δ) to

fail and output nothing (see [100] for an implementation of this attack). This is a stealthy DoS, or

at least a quality-of-service attack, and is a violation of the upper-bound on the decoding failure

probability. To mitigate this, the receiver could wait for more good symbols from the non-malicious

routers, but this would break the LT code’s guarantee of needing only (1 + ε)k uncorrupted symbols

to decode with probability greater than 1− δ. We seek to be secure even from this targeted-erasure

attack, an attack which was previously identified by Krohn et al. in [91] (and called a distribution

attack), but was left as an open problem and only partially mitigated by Lopes and Neves in [100]

(see Section 4.2).

4.4.1 Private LT-coding Schemes

Prior work formalizing computationally-bounded adversaries only considered block codes. In particular,

in his seminal paper [98], Lipton first modeled a computationally-bounded adversarial channel that can

corrupt at most a constant fraction ρ of the encoded symbols. Later, Lysyanskaya et al. [106] studied

an (α, β)-network (or channel) that can arbitrarily corrupt (alter or delete) the n code symbols in

an encoded message, and also insert new symbols into the codeword (even multiple versions of a

symbol), subject to two restrictions: (1) at least αn symbols survive corruption and (2) at most βn

total symbols are received. Subsequent work by Micali et al. [111] provided a more involved security

game that includes several rounds of encoding, bounded symbol corruptions, and decoding between a

sender, an adversarial channel, and a receiver.

Bowers et al. [21] define an adversarial ECC which is a code that can withstand some amount of

adversarial corruption of the codeword. Their adversarial channel is described via a game where the

adversary A is given access to Encode and Decode oracles and seeks to output two codewords c and

c′that decode to different messages while minimizing ∆(c, c′). However, their game is intrinsically

tied to block codes and does not generalized to rateless codes since it measures (and bounds) the
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number of changes A must perform to have c and c′ decode to different messages, which is potentially

unbounded for rateless codes.20

By explicitly bounding the fraction of all symbols that can be corrupted, however, these security

models cannot capture corruptions against rateless codes. Since fountain codes can produce an

unbounded number of symbols, the rate of corruption introduced by the adversary can continually

grow and, indeed, can become arbitrarily close to 1, which would directly conflict with any bounded

corruption rates. A more accurate modeling of errors over a rateless code is to lower bound the

amount of non-corruption rather than upper-bound the amount of corruption, but as an absolute

number (typically defined by the message length), not as a fraction of the encoded symbols. That

is, we wish to ensure that there is some minimum number of “good” encoded symbols that remain

intact, and allow the remainder to be bad. In a block code, an upper-bound on badness implies a

lower-bound on goodness (and vice versa), but this symmetry breaks in rateless codes.

We first provide the definition of private LT-coding schemes. This extends the definition of

private coding schemes given in [111], via changes in the parameters and function specifications,

to suit the class of rateless codes that are based on LT codes (instead of block codes). This class

generically captures fountain codes that can produce an unlimited number of encoded symbols using

the LT-coding technique over a set of “input” symbols (not necessarily the message symbols) using

an appropriate degree distribution D (thus encompassing LT codes, Raptor codes and Online codes).

Recall that for a degree distribution D for a message length k, we want that, given (1 + ε)k code

symbols, decoding succeeds with probability 1 − δ. This relationship is denoted by F (δ,D, ε). As

in [98], we assume that the sender and receiver have a shared secret key sk. We also use nonces to

prevent replays.

Definition 4.3. [Private LT-Coding Scheme] A (k, δ,D, ε)-private LT-coding scheme over an alphabet

Σ with message length k, decoding failure probability δ, overhead ε and degree distribution D such

that F (δ,D, ε), and key space K, is a triple of PPT algorithms (Gen,Encode,Decode), where:

• Gen: on input security parameter 1λ, outputs a random secret key sk ∈ K;

• Encode: on input (1) secret key sk, (2) nonce `, (3) decoding failure probability δ, (4) degree

distribution D, (5) overhead ε, (6) and the message m ∈ Σk, outputs an infinite sequence

{ci}∞i=1, with ci ∈ Σ, referred to as a codeword or an encoding of m;
20The game also explicitly disallows decoding failure from being an adversarial victory and so cannot model the

targeted-erasure attack.
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• Decode: on input (1) secret key sk, (2) nonce `, (3) decoding failure probability δ, (4) degree

distribution D, (5) overhead ε, (6) and a string c ∈ Σ∗, where |c| ≥ (1 + ε)k, outputs a string

m′ ∈ Σk or fails and outputs ⊥.

We require that for all m ∈ Σk, Decode(sk, `, δ,D, ε, c) = m with probability at least 1− δ, where c

is a finite subsequence of Encode(sk, `, δ,D, ε,m), of length at least (1 + ε)k, received over RECp for

some p ∈ (0, 1).

The above definition is general enough to also express two types of “crypto-enabled” block codes.

First, any ECC with fixed rate ρ can be captured by having a null distribution D, if necessary, and

adjusting δ and ε according to the code (e.g., for Reed-Solomon codes δ = ε = 0, while for Tornado

codes δ, ε > 0). More importantly, we can refine Definition 4.3 to get block versions of LT-coding

schemes that simply produce codewords of fixed size (above the decoding threshold). A (k, δ,D, ε)-

private block LT-coding scheme with block-size n is defined as a (k, δ,D, ε)-private LT-coding scheme

where Encode, given an additional input parameter n, produces codewords c with |c| = n ≥ (1 + ε)k.

In what follows, let LT S = (Gen,Encode,Decode, π), denote a (k, δ,D, ε)-private LT-coding scheme

with π = (1λ, k, δ,D, ε), its n-symbol refinement by LT Sn = (Gen,Encode,Decode, π, n), and any

(rateless or block) LT-coding scheme by LT S∗.

Also, note that the probabilistic decoding requirement expressed by relation F (δ,D, ε) imposes

a minimum expansion factor (1 + ε) on message encoding. However, due to its dependence on the

distribution D, the failure bound δ holds when there are “enough” code symbols produced in an

absolute sense. In practice, this further restricts message length k to be sufficiently large.21

4.4.2 Security Game

We next present our general security model against computationally-bounded adversaries that is

applicable to private LT-coding schemes (and their fixed-size-output variants). Our goal is to capture

tolerance against adversarial symbol corruptions for LT-coding schemes, thus defining a much stronger

security notion over the existing one that considers only random symbol corruptions and erasures.

We thus consider a transmission channel that is fully controlled by a computationally-bounded

adversary A. That is, as new code symbols are produced by a private LT-coding scheme LT S, A can

maliciously corrupt any new or past such symbols. Moreover, the adversary is allowed to adaptively
21For example, the distribution used in Raptor codes works well when k is in the tens of thousands or greater

(see [148]). Distributions for smaller k (e.g., in the thousands) must be carefully designed, see Section VII of [148].
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interact with the channel. That is, A is allowed to examine any symbols of its choice of the encoding

(produced by LT S) of any message of its choice and, additionally, to examine the decoded message

(produced by LT S) on any corrupted set of symbols of its choice. Finally, we consider a stateful

channel where A can remember any past selected message, its encoding, symbol corruptions and the

corresponding recovered message, and depend current actions on the full such past history. (Do note,

however, that A is never given the bipartite graph underlying any of the LT-encodings.) We call

adversaries that do not remember prior rounds of encoding and decoding stateless or memoryless.

We define security in terms of a game ChannelExpA,LT S∗(π), shown in Figure 4.2, that the

adversary A seeks to win. A wins by either: (1) causing a decoding failure, where Decode outputs ⊥;

or (2) by causing a decoding error, where Decode outputs a message different from the one originally

encoded. There are three participants in the game: the encoder Encode and decoder Decode of a

given LT-coding scheme LT S∗ with parameters π = (1λ, k, δ,D, ε), and the adversary A. The game

consists of a “learning” phase and an “attack” phase. In the learning phase, there is a sequence of

at most a polynomial number of rounds where, in the i-th round: (1) A selects a message mi to be

encoded by Encode; (2) Encode initializes itself with mi; (3) A queries different symbols from Encode

by having oracle access to symbols of the encoding of mi; in particular, A interacts with oracle

Omi which given as input an index j, it returns the j-th encoded symbol produced by Encode (for

block codes, if j > n then Omi(j) outputs ⊥); (4) A outputs a (corrupted) codeword ci consisting of

Ni symbols in Σ ∪ {⊥}, where a symbol σi =⊥ if it has been erased; (5) ci is given to Decode for

decoding; (6) Decode outputs a message ri that is returned to A. For simplicity, we assume that A

outputs at least (1 + ε)k symbols, good or bad, at each step (otherwise Decode trivially fails and

outputs ⊥). Memoryless adversaries skip the learning phase.

Eventually, A decides to enter the attack phase against scheme LT S∗. The game proceeds with a

special final round: A selects attack message ma, queries encoded symbols of ma using the oracle

Oma(·), and tries to cause decoding failure or a decoding error by computing a corrupted codeword

ca that decodes into message ra. If Decode failed (i.e., ra =⊥) or decoded the wrong message (i.e.,

ra 6= ma), then A wins; else, A loses. However, we require that, in the case of decoding failure, A

must output at least (1 + ε)k unerased and uncorrupted symbols to win. Otherwise, A can trivially

cause Decode to fail simply outputting only corrupted symbols, or by erasing almost all symbols.22

22Note, forged symbols are superfluous when trying to cause decoding failure since if a forgery causes a decoding
failure, then the corresponding uncorrupted symbol would have caused the same failure.
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For a decoding error, we have no such restriction. Let Qm denote the set of symbols queried by A

from Om. Abusing notation, let c ∩ Qm denote the subset of symbols in codeword c (which was

output by A) that are in Qm. Thus, for decoding failure, we require that |ca ∩Qma | ≥ (1 + ε)k.

The game ChannelExp that we define here is similar to the game (of the same name) defined in

Chapter 3 Section 3.4. In that game, the adversary A goes through several rounds of submitting

messages for encoding, attacking the encoded messages, and then seeing the results of the attacks.

A wins that game if any round results in a decoding error, but not a decoding failure (which was

modeled on the security game for ECCs in [111]). Here, we provide a novel security game and in it

we divide the adversary’s actions into two phases: a learning phase and an attack phase, putting the

game in line with typical cryptographic-style games (e.g., the game for ciphertext indistinguishability).

ChannelExp in this chapter models adversarial interactions with rateless codes while the game in

Chapter 3 is intended to model attacks on fixed-rate (e.g., by giving the entire encoded message to A,

which is not possible with rateless codes). Indeed, the game in Figure 4.2 allows for the adversary A

to win by causing a decoding failure, e.g., via a targeted-erasure attack (an attack that is not possible

on a fixed-rate code) while decoding failures are explicitly disallowed for A to win in Section 3.4.

As a technical note, we disallow A from querying symbols that are arbitrarily far along in the

stream produced by LT S∗ on any input message, thus avoiding the situation where A queries symbols

that are infeasible for Encode to produce sequentially—this could give A an unrealistic amount of

power.23 In the above game, we call a query Om(i) for the i-th symbol (τ, p)-feasible if Qp(i) ≥ τ ,

where Qp(i) = P (Encode outputs at least i symbols over RECp), and, further, we call τ -admissible

any A making only τ -feasible queries for a given p.

Note, we must also restrict p so that 1− p is a non-negligible function of λ (we call such values

of p feasible) to ensure that a non-negligible fraction of the code symbols are expected to survive

transmission (i.e., we assume it is feasible to communicate over the channel). If p is permitted to be

negligibly close to 1, then Qp(i) is non-negligible for super-polynomial values of i. For a block code

with message length k and block length n, we assume that p ∈ (0, 1− k/n) and define p to be feasible

if it is non-negligibly different from 1− k/n. If A is τ -admissible for all feasible p and, additionally, τ

is also non-negligible in λ, then we call A admissible. In what follows, we consider only admissible

adversaries and feasible p.
23If LT S∗ employs a PRG with finite state, A can simply query symbols at multiples of the period of the PRG,

thus getting identically encoded symbols (as they use the same randomness) which renders decoding impossible.
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ChannelExpA,LT S∗(π):
1. ψ ←⊥ . Initial state of A
2. mR ←⊥ . Storage for decoded messages
3. i = 1 . Number of queries
4. s← Gen(1λ) . Secret-key generation
5. while A has a new query do . Learning phase

(a) A(π, ψ,mR)→ (ψ′,mi) . Message selection
(b) Generate a fresh nonce `
(c) Set π′ = (1λ, s, `, δ,D, ε)
(d) Initialize oracle Omi to provide access to

output symbols of Encode(π′,mi)
(e) A(π, ψ′,mi)Omi (·) → (ψ′′, ci) . Codeword corruption where ci = (σ1, . . . , σNi)
(f) Decode(π′, ci)→ ri . Message recovery
(g) Set mR ← ri, ψ ← ψ′′, i← i+ 1, and continue

6. end while
7. A(π, ψ,mR)→ (ψ′,ma) . Attack phase
8. Generate a fresh nonce `
9. Set π′ = (1λ, s, `, δ,D, ε)

10. Initialize Oma to access symbols of Encode(π′,ma)
11. A(π, ψ′,ma)Oma (·) → (ψ′′, ca)
12. Decode(π′, ca)→ ra
13. If ra 6= ma and ra 6=⊥ then output 1
14. Else if ra =⊥ and |ca ∩Qma | ≥ (1 + ε)k then output 1
15. Else output 0

Figure 4.2: Security game for private LT-coding schemes.

Computationally-secure LT-coding Schemes. In normal operation over the random erasure

channel, the probability that Decode fails is bounded by δ. We want to ensure that an adversary

can neither: (1) cause Decode to output an incorrect message; nor (2) cause Decode to fail with

probability significantly greater than δ.

We do this by defining computationally secure (rateless or block) LT-coding schemes where we

wish to ensure that the adversary A is only negligibly more likely to cause a decoding error or

failure than an adversary who attacks the codeword with random erasures.24 Thus, we first define a

random adversary R interacting in a restricted manner with LT S∗ in the above game. R takes as

input the same tuple of parameters π and a probability p, where 1 − p is non-negligible. Then R

proceeds as follows: (1) it directly chooses an attack message ma ∈ Σk and outputs (⊥,ma), so that

oracle Oma is initialized; (2) it queries Oma sequentially for encoded symbols; (3) for each retrieved

symbol, it erases the symbol with probability p; otherwise it adds the symbol to a list (if the code

has block-size n, then R erases at most pn symbols); (4) when R has more than (1 + ε)k symbols (or
24We define security relative to a random channel rather than in absolute terms since the LT code itself reduces a

random channel to a noiseless channel. That is, the cryptographic enhancements reduce the adversary to a random
channel which is further reduced by the LT code to a noiseless channel.
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at least (1− p)n symbols) in the list, it outputs the list and exits. Note that R’s output is distributed

identically to RECp.

Let LT S∗ be a private (rateless or block) LT-coding scheme, and let ExpAdvA,LT S∗(π) be the

experiment ChannelExpA,LT S∗(π) as defined above, where A is a PPT admissible adversary. Also,

let ExpRandLT S∗(π, p) be ChannelExpRp,LT S∗(π) where Rp = R(π, p) and p is (feasible) the erasure

probability. Let AdvA,LT S∗(π, p) = |P [ExpAdvA,LT S∗(π) = 1]− P [ExpRandLT S∗(π, p) = 1]|.

Definition 4.4. We say that a private (rateless or block) LT-coding scheme LT S∗ is computationally

secure (or just secure) if, for all PPT admissible adversaries A where π = (1λ, k, δ,D, ε), and for all

feasible p ∈ (0, 1) (or p ∈ (0, 1− k/n) for block variants), we have that AdvA,LT S∗(π, p) is negligible

in λ.

4.5 Core Falcon Codes

We now present our core technical constructions of three private LT-coding schemes. Based on LT

codes and designed with a variety of efficiency goals, our new schemes define a broad class of rateless

(fountain) codes as well as some corresponding block-oriented refinements which we generically term

as Falcon codes. By construction, Falcon codes enjoy two desirable properties: they are designed to

maintain the asymptotic performance of LT codes, thus allowing great degrees of efficiency, including

fast encoding/decoding; and at the same time, they are crypto-enhanced to achieve strong error-

correction capabilities. Our three LT-coding schemes described below comprise of: a main scheme

Falcon that is rateless and particularly simple, a scalable scheme FalconS that is block refinement of

our main scheme achieving better scalability, and a randomized scheme FalconR that is a rateless

refinement of our scalable scheme. We refer to these as core Falcon codes, which in essence provide a

new design framework for secure LT-based codes tolerant to malicious errors.

Our schemes are designed and analyzed for static data and fall to an adversary that can see

updates to the data. Crucially, the schemes’ security relies on hiding the structure of the underlying

bipartite LT-coding graph. Any data updates would reveal the structure of this graph since a change

to any input symbol would propagate to all associated code symbols. To prevent this information

leakage, we would need to employ techniques such as Oblivious RAM (see, for instance, [49] and [154]).

But, such techniques can be costly and need to “touch” much of the data when performing updates.

We leave it as an open problem to construct efficient private LT codes for dynamic data.
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(1) Apply LT code with
a strong PRG

(2) Encrypt & MAC
encoded symbols

Figure 4.3: An example encoding via authenticated LT codes.

4.5.1 Main LT-coding Scheme

As explained in Section 4.3, LT codes [103] are a family of erasure codes of high efficiency, both

theoretically (encoding/decoding time of O(k log k) for message length k) and practically. The encoder

works by selecting (through the robust soliton distribution) O(log k) message symbols on average to

combine to form a code symbol. The analysis in [103] was originally over the binary erasure channel,

though it easily generalizes to larger symbols.

While there has been some work on extending LT codes to withstand errors (e.g., [104, 120, 129]),

the studied channels have particular noise characteristics—such as additive white Gaussian or

uniformly distributed noise—and adversarial errors are not considered. For Raptor codes, which are

derived from LT codes, IETF standard RFC5053 [101] and its amendment RFC6330 [102], suggest

using a simple checksum (e.g., CRC32) to detect any random corruptions of the encoded symbols.

While this method may be sufficient for small, random errors, it will crumble quickly when faced

with a malicious attacks.

Authenticated LT Codes. Our main scheme Falcon solves the challenge above by combining

three cryptographic ingredients that are applied in a very simple and rather intuitive manner during

LT-encoding (cf. Figure 4.3): a cryptographically strong PRG, a semantically secure cipher, and an

existentially unforgeable MAC. (A nonce is also used to prevent replays.) First, the key change we

perform in Encode compared to standard LT-encoding is to select each parity node’s degree and

its neighbors using the secure PRG. Then, after LT-coding, we encrypt all of the encoded (parity)

symbols and compute a MAC tag for each encrypted symbol and the nonce (alternatively, we could use

authenticated encryption with the nonce as additional authenticated data).25 See also Algorithm 4.1.
25We also include each symbol’s index i in the stream of symbols to prevent reorder and deletion attacks. When

transmitting over a FIFO channel where, in addition, the receiver learns which symbols were erased, then we can omit
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Algorithm 4.1 Encoder of main LT-coding scheme Falcon.
Input: 1λ, keys kenc and kmac, master seed s, nonce `, message size k, decoding failure probability

δ, degree distribution D, overhead ε, message m
Output: Authenticated codeword c
1: Set s′ ← f(s, `) . f is a key-derivation function; use s′ to seed the PRG
2: Set i← 0 and π ← (1λ, s′, k, δ,D, ε,m)
3: Initialize LT-Encode(π)
4: for as long as required do
5: Set σ ← LT-Encode(π, i) . Generate the i-th LT code symbol σ
6: Set ei ← Enc(kenc, σ ◦ i) . Encrypt and MAC each symbol
7: Set τi ← Mac(kmac, ei ◦ `)
8: Output ci ← ei ◦ ` ◦ τi
9: i← i+ 1
10: end for

Intuitively, the encryption, MACs, and secure PRG work together to maintain the “goodput” of the

channel by ensuring that each (uncorrupted) received symbol is just as “helpful” for decoding as

when sent over a random erasure channel.

Note, in Algorithm 4.1, we use the subroutine LT-Encode which takes as input the seed s for the

PRG, message size k, decoding failure probability δ, degree distribution D, overhead ε, the message

m, and an index i, and then outputs the i-th code symbol. Note that we also use a key-derivation

function (KDF) f to generate a seed for the PRG using the master seed s and the nonce `. Any

any secure KDF can be used as long as the output is sufficiently long to seed the PRG. If we have

message size k, decoding failure probability δ, degree distribution D, and overhead ε, then we denote

this as (k, δ,D, ε)-Falcon. The decoder for Falcon is shown in Algorithm 4.2 and is essentially the

reverse of the encoder.

This simple design provides a secure LT code (see Section 4.6). First observe that the use of

MACs ensures that any corruption in an encoded symbol is detected so that the symbol may be

discarded. This step implements the standard known technique for reducing errors to erasures, that

of authenticating the encoded symbols; we thus, informally, refer to our main scheme and its variants

as an authenticated LT code.

But although a necessary condition, symbol verification is not sufficient for achieving security:

input and parity symbols are interrelated through the underlying bipartite graph, so corruption of

certain parity symbols may seriously disrupt recovery of certain input symbols. An adversary can

partially infer this graph structure by looking at symbol contents (since code symbols are simply the

a symbol’s index from the encoding.
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Algorithm 4.2 Decoder of main LT-coding scheme Falcon.
Input: 1λ, keys kenc, kmac, master seed s, nonce `, message size k, decoding failure probability δ,

degree distribution D, overhead ε, authenticated codeword c = (c1, . . . , cN )
Output: Message m = (m1, . . . ,mk)
1: Set Rem = ∅ (i.e., the empty set)
2: for 1 ≤ j ≤ N do . Sieve out corrupted symbols
3: Parse cj = ej ◦ `′ ◦ τj
4: if `′ 6= ` or VerifyMac(kmac, ej ◦ `, τj) = 0 then
5: Discard cj and continue
6: else
7: σj ◦ j′ ← Dec(kenc, ej)
8: Rem← Rem ∪ {(σj , j′)}
9: end if

10: end for
11: Set s′ ← f(s, `) . f is a key-derivation function; use s′ to seed the PRG
12: Output m← LT-Decode(1λ, s′, k, δ,D, ε,Rem)

XOR of a random subset of message symbols) and target specific symbols for erasure, seeking to

maximally disrupt decoding.26 Symbol encryption ensures that the content of each symbol (and any

information about the graph structure contained therein) is hidden from the adversary. Similarly,

the strong PRG ensures that the adversary cannot exploit any biases or weaknesses in the PRG

(e.g., output that is initially biased, cf. RC4) to aid in guessing what the digraph structure may be.

Overall, as the structure of the graph is unpredictable, an adversary will, intuitively, be unable to do

better than random corruptions and erasures.

As a side effect of our use of encryption, Falcon also provides message privacy. In situations where

the encoded data is encrypted by the channel (e.g., tunneling over SSH), then Falcon need only use a

PRG and a MAC, reducing the overhead of our modifications. If Falcon is used in combination with

an encrypted and authenticated channel—e.g., IPsec—then only a PRG is needed and the overhead is

further reduced. (In the case of IPsec, however, “PRG-only” Falcon would be vulnerable to malicious

proxies.)

Batching. Note that secure MACs require input lengths to be at least as large as the security

parameter, thus Falcon operates on message alphabets where each symbol is at least λ bits in size, i.e.,

typically at least 10 or 16 bytes. Authenticating multiple symbols with a single MAC (as a single batch)

is a reasonable implementation in many circumstances—for instance, when grouping symbols together

to be sent in a single network packet. Note, however, that this results in corruption amplification
26E.g., for a message containing a single 1 bit (the rest being 0’s), A can easily discern which parity symbols include

the non-zero message symbol.
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during decoding (a single symbol corruption can cause many other possibly valid symbols to be

discarded). But, in channels where errors are of low rate or are bursty, authenticating a batch of

symbols would increase throughput since the cryptographic overhead is reduced. (Additionally, to

further reduce overhead, we note that a batch can be treated as a single plaintext and encrypted

as a unit.) Batching also loosens the lower-bound on the symbol size and instead requires that

the batch is at least λ bits. Note that batching increases the decoding overhead ε since (1 + ε)k

is not necessarily divisible by the batch size. With a batch of b symbols, the decoder must receive

(1 + ε)k ≤ d(1 + ε)k/beb ≤ (1 + ε)k + b− 1 symbols, giving an effective overhead of ε ≤ ε′ ≤ ε+ b−1
k .

Since the presence or absence of batching does not affect our security analyses (except the fixed-rate

block-oriented code, detailed next), we assume batches of size 1.

Finally, we note that appending MACs to parity symbols increases the space overhead per symbol.

For both block and rateless codes, the number of raw bits transmitted increases by a factor of

(1 +m/s), where m is the MAC size and s is the symbol size. For instance, if s = m (the minimum

symbol size), then size of an output symbol is doubled. However, if m � s, then this overhead is

small (e.g., for s = 1024 bytes and m = 16 bytes, the overhead is ≈ 1.5%). Batching b symbols per

MAC decreases the overhead to m/(bs+m).

4.5.2 Scalable (Block) LT-coding Scheme

Although simple and efficient, the authenticated LT code presented above suffers from scalability

problems in certain cases. In particular, if the input file and the internal state of the encoder do not

fit into main memory, then the operating system will need to continually swap pages in and out.

Then, on average, O(log k) random disk reads will be needed to produce a single parity symbol, as

any such symbol depends on randomly selected message symbols. Magnetic disks have random read

latencies around 5–10 milliseconds while SSDs have read latencies on the order of 10s of microseconds.

But both of these are orders of magnitude larger than the 10s of nanoseconds required to read from

RAM. Hence, the large amount of IO required when paging in and out will drastically slowdown the

encoder and decoder (see Figure 4.13 in Section 4.7).

We can mitigate this limitation by adopting a simple divide-and-conquer strategy on our main

scheme Falcon, towards the design of a new scalable scheme FalconS: we divide the input into blocks

(of symbols) and then encode each block independently using Falcon. This immediately increases data

locality during message encoding, which provides better scalability (as only a portion of the input
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must reside in memory at any given time) and further allows for easy parallelization (see Figures 4.9,

4.10, and 4.14 in Section 4.7). This method, though, introduces a new security concern: depending

on parameterization, an adversary may apply all of its effort to corrupt parity symbols in a single (a

few selected) block(s), thus significantly increasing its advantage in causing a decoding failure, even

if all block encoders have produced symbols beyond the LT-decoding threshold.

To defend against this attack type, we adopt a technique due to Lipton [98]. We apply a random

permutation π over all produced parity symbols across all blocks. This ensures that any corruptions

performed by an adversary are distributed uniformly both among all blocks and within each block

which, in turn, allows Falcon to use a weaker and faster PRG when producing an individual block

encoding, since any corruption on this block cannot be targeted, but only random. Applying π over

all parity symbols, though, necessitates a fixed upper bound on their total number, thus making

FalconS a block code—this can be considered a useful byproduct of our new scheme. But employing

(rateless) Falcon within (block) FalconS, as above, requires careful encoding parameterization. Given

an adversarial corruption rate γ—with which an adversary corrupts a γ-fraction of all symbols, or a

γ-fraction of batches—and by applying a random permutation π to all of the code symbols from all

of the blocks, we have that the number of symbol corruptions per block are binomially distributed.

Therefore, we add extra redundancy to each encoded block produced by Falcon, expressed by tolerance

rate τ , to absorb any variance in per-block errors—otherwise, block (and also total) decoding fails.27

Algorithm 4.3 details the above encoding using permutation π explicitly—we call this variant of

our scalable (block) scheme FalconSe—but it is possible for the permutation to be applied implicitly,

which we detail next. As before, we use a secure KDF f to derive a session seed for G using the master

seed s and nonce `. The algorithm as shown does not simply use Falcon as a black-box subroutine;

rather, the Falcon encoding algorithm directly integrated. This is done to include the block index i

with each message symbol which is used to ensure that any re-ordering of symbols by the adversarial

channel can be mitigated.28 The decoder for FalconSe is shown in Algorithm 4.4 and is essentially

the reverse of the encoder.

However, there is a drawback to using an explicit permutation π: new parity symbols must be

buffered until they are all generated (and then can be permuted!).29 If resources are constrained, this
27These losses can be mitigated by applying an additional level of erasure coding to the input before breaking it up

into blocks, but any erasure code can only tolerate a certain number of block losses. In any case, we must bound the
probability that a block receives “too many” corrupted symbols.

28This is necessary even if the channel is FIFO, since we also allow the adversary to delete symbols.
29At most, symbols can be output piece-meal by pre-computing π and placing a generated symbol in its final place.
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Algorithm 4.3 Encoder of scalable LT-coding scheme FalconSe.
Input: 1λ, keys kenc and kmac, master seed s, nonce `, symbols per block k, block decoding failure

probability δ, degree distribution D, overhead per block ε, corruption rate γ, block-corruption
tolerance τ , number of blocks b, message m

Output: Authenticated codeword c
1: Set s′ ← f(s, `) . f is a key-derivation function
2: Seed PRG G with s′
3: Set M ← 1

1−(1+τ)γ (1 + ε)k
4: Generate random permutation Π of b ∗M elements
5: Partition m into blocks B1, . . . , Bb
6: for 1 ≤ i ≤ b do
7: Generate a seed si using G
8: Set π ← (1λ, si, k, δ,D, ε,M)
9: Use a weak (but fast) PRG H as the source of randomness for LT-Encode

10: Set (σi,1, . . . , σi,M )← LT-Encode(π,Bi) . Compute M parity symbols over Bi
11: for 1 ≤ j ≤M do
12: Set ei,j ← Enc(kenc, σi,j ◦ i ◦ j)
13: Set τi,j ← Mac(kmac, ei,j ◦ `)
14: Set ci,j ← ei,j ◦ ` ◦ τi,j
15: end for
16: end for
17: Map each ci,j to position Π(i ∗M + j) to get c′ = (c′1, . . . , c′bM )
18: Output c′ = (c′1, . . . , c′bM )

extra buffering can demand too much memory, induce swapping, and greatly reduce performance. In

such a situation an implicit permutation would be better (see Figure 4.13 in Section 4.7). In this

variant, π is generated first and then parity symbols are produced (by Falcon from the appropriate

block encoder) in the order of their final position (i.e., after π would have been applied). This allows

a Falcon encoder to output parity symbols in a streaming manner (but out-of-order). We call this

variant of our scalable scheme FalconSi. For FalconSi or FalconSe, if we have k message symbols

per-block, block decoding failure probability δ, degree distribution D, overhead ε, an adversarial

corruption rate of γ, corruption-tolerance parameter τ , and b blocks in the encoding, we denote this

as (k, δ,D, ε, γ, τ, b)-FalconS, where FalconS can be either FalconSe or FalconSi.

To minimize the overhead of managing the implicit permutation, it is desirable that the PRG

state in each encoder—used to generate the bipartite graph—can be easily and quickly reset to

produce a desired segment of pseudorandomness (like in the Salsa20 stream cipher [15]). That is, the

PRG state would be reset to produce the pseudorandom bits that would have been output if the

symbol generation was done in order.30 If this feature is not present, all needed pseudorandom bits

But the output could be blocked for some time waiting for the appropriate symbol to be produced.
30This would, of course, require the pre-computation of all node degrees; otherwise, it is impossible to know “where”

a given node’s randomness lies.



154

Algorithm 4.4 Decoder of scalable LT-coding scheme FalconSe.
Input: 1λ, keys kenc, kmac, master seed s, nonce `, symbols per block k, block decoding failure

probability δ, degree distribution D, overhead per block ε, corruption rate γ, block corruption-
tolerance τ , number of blocks b, authenticated codeword c = (c1, . . . , cbM )

Output: message m or ⊥
1: Set M ← 1

1−(1+τ)γ (1 + ε)k
2: Set s′ ← f(s, `) . f is a key-derivation function
3: Seed the PRG G using s
4: Generate a random permutation Π over bM elements
5: Set B1 ← ∅, . . . , Bb ← ∅
6: for 1 ≤ i ≤ bM do . De-permute and gather into blocks
7: Parse ci = (ei, `′, τi)
8: if `′ 6= ` or VerifyMac(kmac, ei ◦ `, τi) = 0 then
9: Discard ci and continue
10: end if
11: Set σi ◦ i′ ◦ j′ ← Dec(kenc, ei)
12: Set Bi′ ← Bi′ ∪ {(σj′ , j′)}
13: end for
14: for 1 ≤ j ≤ b do
15: Generate a seed sj using G
16: Use (weak) PRG H as the source of randomness for LT-Decode
17: Set π ← (1λ, sj , k, δ,D, ε)
18: Set mj = (mj,1, . . . ,mj,k)← LT-Decode(π,Bj)
19: if mj =⊥ then . If decoding fails
20: Output ⊥ and exit
21: end if
22: end for
23: Output m = (m1,1, . . . ,mb,k)

can be pre-computed (namely, computing the degree and neighbors of a parity node). Fortunately, the

space needed to store the pre-computed bits can be much less than what would be required to store

the output symbols, e.g., in storage applications with large message symbols (say 1KB in size). For

example, say we have k = 216 input symbols and that the average node degree is log k = 16. Then,

a given node will only require, on average, 2 ∗ 16 + 2 = 34 bytes to store the degree and neighbor

indices (we assume that the degree can fit in 2 bytes).

Decoding Failure Probability. Suppose we want to achieve an overall decoding failure probability

of δ for this scheme. Decoding fails when any of the individual blocks fail to decode, and this could

be from either too many corrupted symbols in a block, so that there are fewer than (1 + ε)k good

symbols, or we were unlucky and the code symbols did not cover all input symbols. The probability

of the first case can be made negligible via the corruption tolerance parameter τ ; the second case is

intrinsic to the schemes themselves. Note that in this case, the failures are independent and so are the
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successes. Hence, the probability of decoding success is (1− δ′)b = 1− δ and solving for δ′, we have

δ′ = 1− b
√

1− δ. For example, with b = 100 and δ = 0.05, we have δ′ = 1− 100
√

1− 0.05 ≈ 0.000512.31

Note that the smaller value of δ′ implies that the decoding overhead for each block ε′ is increased.

Error Analysis. In FalconS, the symbols of each block are all combined together uniformly at

random, giving us, via a balls-in-bins analysis, that the number of corruptions in a given block is

binomially distributed. Hence, there is no way to ensure that each block receives at most a fixed

number of corruptions. To mitigate this, we add additional redundancy to each block to absorb the

variance in the number of corrupted symbols per block, increasing the total number of code symbols

generated by a factor of (1 + τ), where τ is the tolerance rate. Ideally, we wish to minimize this extra

redundancy while also ensuring that the probability that we exceed the error-correction capacity of a

block is negligible in λ.

Suppose, there are b blocks, where each block has k input symbols and is encoded into m output

symbols, giving n = bm total symbols. Suppose a γ-fraction of symbols are corrupted. If we encode a

block so that it can tolerate (1 + τ)γm corruptions (were γm is the mean number of corruptions per

block), then we must generate m = 1
1−(1+τ)γ (1 + ε)k symbols per block. We use a Chernoff-bound to

bound the probability that there are more than (1+τ)γ corruptions in a given block. For a binomially

distributed random variable X with mean µ and for some τ > 0 it holds that,

P (X ≥ (1 + τ)µ) ≤
(

eτ

(1 + τ)(1+τ)

)µ
.

For our parameters, we have that µ = γ 1
bn = γm. Suppose we want the probability to be less than

some value q. Note that, ( eτ

(1+τ)(1+τ) )µ ≤ q is not solvable algebraically in terms of τ . However, it can be

solved numerically. Consider the following parameterization where the message consists of k = 15000

symbols in each of b = 100 blocks and the decoding overhead is ε = 0.05. The adversary A corrupts

a γ = 0.2-fraction of the output symbols and we add a τ -fraction additional redundancy to each

block. Thus, each block consists of m = 1
1−0.2(1+τ) (1 + 0.05)15000 = 15750

0.8−0.2τ symbols and the average

number of corrupted symbols is γm = 3150
0.8−0.2τ . Suppose that we want P (X ≥ (1 + τ)µ) ≤ q = 2−128.

Solving for τ , we have that τ ≈ 0.21354. If we calculate the tail of the distribution exactly, we find

that the value of τ is close to 0.20788. So, the approximation overestimated the necessary redundancy

by just 2.7%, and for larger values of q the overestimation is smaller.
31 If we apply a [n, b] erasure code across the blocks, then the probability of decoding success (i.e., that at most

n− b blocks fail to decode) is
∑n−b

i=0

(
n
i

)
(1− δ′)n−i(δ′)i, which can be solved for δ′ via numerical methods.
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Asymptotic Efficiency. We wish for our FalconS codes to achieve theO(k log k) encoding/decoding

time for each block that LT codes (and our Falcon codes) achieve. The permutation step can be

performed in linear time by using the Fisher-Yates algorithm [42], but the extra redundancy added

requires a careful analysis. We show next that the tolerance parameter τ is o(1), and so we maintain

O(k log k) encoding and decoding. Recall the Chernoff-bound above, where µ = γm = γ
1−(1+τ)γ (1+ε)k

is the mean number of corruptions per block. Let µ′ = γ
1−γ (1 + ε)k, then

(
eτ

(1 + τ)(1+τ)

)µ
≤
(

eτ

(1 + τ)(1+τ)

)µ′
.

If we bound the right-hand side by q, then we have,

µ′ ln
(

eτ

(1 + τ)(1+τ)

)
≤ ln q

µ′(τ − (1 + τ) ln(1 + τ)) ≤ ln q

(1 + τ) ln(1 + τ)− τ ≥ − ln q
µ′

.

Since the left-hand side is monotonically increasing, to minimize τ we must set the two sides equal.

Thus we have,

(1 + τ) ln(1 + τ)− τ = − ln q
µ′

= −(1− γ) ln q
γ(1 + ε)k .

Since γ, q, and ε are constants, we have (1+τ) ln(1+τ)−τ = O( 1
k ) = o(1). Since τ = o((1+τ) ln(1+τ)),

this implies τ = o(1); i.e., the amount of extra redundancy is bounded by a constant and we preserve

O(k log k) encoding and decoding times.

4.5.3 Randomized Scalable LT-coding Scheme

Our block-oriented code FalconS does indeed achieve better scalability than Falcon. (As we show in

Section 4.7, it can, for instance, provide over a 50% speed-up for an input file 32MB in size.) However,

FalconS codes are inherently no longer rateless codes: any permutation that is explicitly/implicitly

applied to all symbols across all blocks precludes the possibility of rateless encoding.32

We now present an alternative approach that is block-oriented, thus still scalable, yet allows

for rateless encoding. As before, the idea is to break the input up into blocks, and then apply a

Falcon code to each block. However, the key idea now is to produce symbols for the output encoding
32To create the permutation, the number of code symbols must be known.
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Algorithm 4.5 Encoder of FalconR scalable LT-coding scheme.
Input: 1λ, keys kenc, kmac, master seed s, nonce `, symbols per block k, block decoding failure

probability δ, degree distribution D, overhead per block ε, number of blocks b, message m
Output: authenticated codeword c
1: Set s′ ← f(s, `) . f is a key-derivation function
2: Seed G with s′
3: Generate b seeds s1, . . . , sb using G
4: Divide m into b blocks m1, . . . ,mb

5: Set πi ← (si, k, δ,D, ε) for 1 ≤ i ≤ b
6: Initialize b encoders LT-Encode1(π1,m1), . . . , LT-Encodeb(πb,mb)
7: for as long as required do
8: Sample a block index i from G
9: Let σ be the j-th symbol of LT-Encodei
10: Let e← Enc(kenc, σ ◦ i ◦ j)
11: Let τ ← Mac(kmac, e ◦ `)
12: Output e ◦ ` ◦ τ
13: end for

by applying Falcon codes in parallel to the blocks, giving the randomized, scalable, and rateless

scheme FalconR. In particular, for each block an independent instance of Falcon is initialized with a

unique random seed generated by a strong PRG. Then, another strong PRG, keyed with another

random seed, is used to iteratively select a block at random whose encoder will simply output its

next symbol; this random selection is repeated (at least) until each block encoding has reached the

required decoding threshold. See Algorithm 4.5 for the encoder and Algorithm 4.6 for the decoder. As

before, we use a KDF f to derive a seed for G using the master seed s and nonce `. As with FalconS,

we integrate Falcon directly into the FalconR encoder, allowing us to include with each symbol the

index of its block, mitigating symbol deletion and reordering attacks. If we have b blocks and encode

each using a (k, δ,D, ε)-Falcon code, then we denote this (k, δ,D, ε, b)-FalconR.

We emphasize the subtle difference between codes FalconSi and FalconR: in a FalconSi code, the

encoder for each block produces its symbols in a random order induced by π, but in FalconR code

these are produced in the (correct) order induced by the block encoder itself.

FalconR codes retain the rateless property of the original Falcon codes: new symbols can be

produced by continuing to select blocks at random and outputting symbols. The security of FalconR

reduces to the security of Falcon codes: the random selection of encoders ensures that adversarial

corruptions are randomly and uniformly distributed among the blocks preventing too many corruptions

from landing in any one block. Moreover, the secure encoder used on each block ensures that, for any

corruptions that occur in that block, the adversary can do no better than a random channel. Note
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Algorithm 4.6 Decoder of FalconR scalable LT-coding scheme.
Input: 1λ, keys kenc and kmac, master seed s, nonce `, symbols per block k, block decoding failure

probability δ, degree distribution D, overhead ε per block, number of blocks b, authenticated
codeword c

Output: message m or ⊥
1: Set s′ ← f(s, `) . f is a key-derivation function
2: Seed the PRG G using s′
3: Generate b seeds s1, . . . , sb using G . Used for the strong PRGs in the LT-encoders
4: Set πi ← (1λ, si, k, δ,D, ε) for 1 ≤ i ≤ b
5: Initialize b decoders LT-Decode1(π1), . . . , LT-Decodeb(πb) . LT-Decodei decodes the i-th block
6: for each symbol ci in c do
7: Parse ci = (ei, `′, τi)
8: if ` 6= `′ or VerifyMac(kmac, ei ◦ `, τi) = 0 then
9: Discard ci and continue
10: end if
11: Set σi ◦ i′ ◦ j′ ← Dec(kenc, ei)
12: Update LT-Decodei′ with σi as its j′-th symbol
13: end for
14: for 1 ≤ i ≤ b do
15: Let (mi,1, . . . ,mi,k) be the message symbols output by LT-Decodei
16: If (mi,1, . . . ,mi,k) = (⊥, . . . ,⊥), then output ⊥ and exit
17: . If any block fails to decode, output nothing
18: end for
19: Output m = (m1,1, . . . ,mb,k)

that while FalconS can use a weak PRG when encoding an individual block, here each instance of

Falcon must use a strong PRG.

Efficiency. The asymptotic efficiency of our randomized scheme is not immediately obvious. Enough

encoded symbols must be produced for each block, namely at leastm code symbols, for somem = Ω(k),

where k is the number of input symbols per block. This problem is a generalization of the standard

balls-in-bins problem which asks how many balls must be thrown at random into b bins to ensure

that each bin has at least one ball. Here, what is relevant is how many balls must be thrown into b

bins to get at least m balls in each bin. In [117], it is shown that, as b goes to infinity, the expected

number of balls thrown is b[log b + (m − 1) log log b + Cm + o(1)], for some constant Cm. That is,

the expected number is b log b + b(m − 1) log log b + O(b). Thus, on average, we gain (at least) an

additional log log b factor in the time to encode and decode the file.33 The tolerance parameter τ of

FalconS is no longer needed here; each block uses the Falcon encoder and FalconR is rateless, so more

symbols can always be produced.
33If we use batching, then the same analysis applies if we have the “transmission unit” be a batch instead of a single

symbol.
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Figure 4.4: Diagram illustrating the FalconR encoder.

If, however, we have a small b (e.g., b = 10), then since k must be sufficiently large (and hence, so

must m), by the law of large numbers the average number of balls thrown is O(bm). The asymptotic

behavior of FalconR as b grows is important since we would like this scheme to scale up to very large

files (e.g., 10s of gigabytes or more). Suppose the degree distribution requires 12000 code symbols

to recover the input with high probability, and that symbols are at least 10 bytes in size, then we

get an implicit lower-bound on block size of about 128KB (less if symbols in a block are batched

together). As a 1GB file will contain approximately 8000 such blocks, both the case where there are

many blocks and the case where there are few must be considered.

4.6 Security Analyses

Our various constructions of Falcon codes seek to reduce an adversarial corrupting channel to a

random erasure channel (REC). Through such a reduction, our LT-coding schemes inherit many of

the properties of the original LT codes (e.g., the overhead ε and failure probability δ). We next provide

proofs of the security of our core Falcon code schemes. For simplicity and clarity, the theorems and

lemmas are stated using asymptotic security, but several of our proofs are exact where the resources

used by the adversary are specified.

The adversary A can win the game ChannelExp by causing a decoding failure (Decode outputs

⊥) or a decoding error (Decode outputs an incorrect message). Since these are mutually exclusive

events, they are considered separately in the following lemmas. Lemma 4.1 states that the ability
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of A to cause a decoding error in authenticated LT code is directly reducible to the security of the

message authentication code. Lemma 4.2 states that the probability of causing decoding failure

is only negligibly different from a random channel. Recall that, as stated in Section 4.4, we only

consider admissible adversaries A that are compared to random erasure channels with a feasible

erasure probability p.

Intuitively, in Lemma 4.1, for A to force Decode to make a decoding error, it must accept at least

one corrupt code symbol, which can only happen if the MAC for the symbol has been forged. Recall

that Om denotes the encoder Encode initialized to encode message m. A query of i to Om returns the

i-th code symbol. Recall that F is a relation that holds when given ε, D, and δ, using distribution D

in the LT-encoding, after receiving (1 + ε)k symbols decoding succeeds with probability at least 1− δ.

Lemma 4.1. Let M = (Gen1,Mac,VerifyMac) be an existentially-unforgeable MAC used to authenti-

cate the symbols of a (k, δ,D, ε)-Falcon code LT S, where F (δ,D, ε) holds, and let λ be the security

parameter. For all sufficiently large k and for all PPT A, the probability that A wins ChannelExpA,LT S

via a decoding error is negligible in λ.

Proof. First, suppose that the adversary A that causes a decoding error, with A running in time

T , making q queries in the learning phase (each of which is comprised of at most n symbols), and

succeeding with advantage ε. Since A seeks to cause a decoding error, it will not make corruptions

in an attempt to cause a decoding failure. So the probability that decoding fails is still δ and the

probability of a decoding error is ε. We will construct an algorithm A′ that breaks M and runs in

polynomial time, making at most (q+ 1)n MAC oracle queries, and succeeds with probability at least
ε
n (and at most ε).

A′ is given access to a MAC oracle Omac and simulates the ChannelExp game, using A as a

subroutine. Given an LT S code with parameters k, ε,D, δ and security parameter 1λ, on input 1λ

A′ runs the ChannelExp with parameters π = (1λ, k, δ,D, ε). For A′ to produce a successful forgery,

we require that none of its queries to Omac are used as the final message output by A′.

To simulate ChannelExp(π),A′ usesOmac to create the MACs for the code symbols when simulating

Encode. To simulate Decode, A′ tracks the symbol-MACs pairs from the queries from A and uses

this list to filter out the symbols output by A that were either not previously queried or have a MAC

that is different from the result given by Omac (i.e., the symbols that contain forged MACs). After

q rounds in the learning phase, A outputs ma for the attack phase. After simulating Encode and



161

giving the result to A, the algorithm A outputs the corrupted code symbols (σ1, . . . , σn′) (for some

(1 + ε)k ≤ n′ ≤ n).

We require that the output of A′ was not queried to Omac and so can exclude those symbol-MAC

pairs that match the Encode oracle queries.34 But, there are at most n bad symbols to choose from.

A′ selects one symbol-MAC pair from the remaining pairs at random and outputs it as the attempted

forgery. Since A succeeds with advantage at most ε, A′ succeeds with probability at least ε
n . Thus, A

′

runs in time T+O(qn), making at most (q+1)n queries to Omac (with T and q polynomially-bounded),

and succeeds with advantage ε
n ≤ ε

′ ≤ ε. Since M is existentially unforgeable, it must be that ε′ is

negligible; hence, ε is negligible.

For the next lemma, we will prove that the advantage of any adversary in causing a decoding

failure is only negligibly greater than δ. Roughly, the proof proceeds as follows. Since we are using

a semantically secure cipher to encrypt the code symbols, the codeword c leaks no “information”

about the underlying encoding of m to the adversary A. Suppose A succeeds with probability µ.

The semantic security of the cipher implies that there exists an A′ that without access to c—that

is, independent of c—but given some information about m, outputs a set of indices of symbols to

be erased such that Decode fails with probability ≈ µ (i.e., negligibly different from µ). Since the

symbols to be erased are chosen independently of the encoding c, the remaining symbols form a

random graph over the input symbols and, thus, A′ succeeds with probability exactly δ. Thus, A’s

advantage (i.e., |µ− δ|) is at most negligible.

Lemma 4.2. Let LT S be a (k, δ,D, ε)-Falcon code where the relation F (δ,D, ε) holds, let Π =

(Gen2,Enc,Dec) be a semantically secure symmetric cipher used by LT S, and let G be a secure PRG

used by LT S. Then, for all sufficiently large k and for all PPT admissible A, the probability that A

wins ChannelExpA,LT S via a decoding failure is negligibly different from δ.

Proof of Lemma 4.2. Suppose we have an adversary A that causes a decoding failure with probability

µ. Initially, assume that A only erases symbols instead of corrupting them (we will remove this

assumption later). Let π = (1λ, k, δ,D, ε) be the parameters for a Falcon coding scheme LT S. Define

h(m) (the “history” of m) to be h(m) = (π, ψ′,m).

Recall that Om is an encoding oracle for LT S initialized to encode message m, where on input i,

Om outputs the i-th code symbol for the encoding of m. Om is reinitialized with a new m chosen by A
34Since M is existentially unforgeable, this is indistinguishable from having a MAC verification oracle.
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at each round. A takes as input π, ψ′, runs in time t, and is given access to Om. After interacting with

Om, A outputs (ψ′′, σ′1, . . . , σ′n), where σ′i ∈ Σ ∪ {⊥} (Σ is the code alphabet and ⊥ is an erasure).

Define B, such that, on input (π, ψ′,m) and access to Om, it outputs (i1, . . . , in′), where n′ ≤

n− (1 + ε)k, n is the total number of symbols requested from Om by A, and each ij is the index of

an erased symbol. Note that we can construct B by simply using A as a subroutine and outputting

the indices of all ⊥ symbols. We define B to be successful if, after erasing the symbols corresponding

to the ij ’s in the encoding of m, and giving the result to Decode, decoding fails. Note that B succeeds

exactly when A does and runs in time tB = t+O(n).

Since we are using a semantically secure cipher Π, there exists B′1 such that on input h(m) and

without access to the first code symbol, B′ outputs (i1, . . . , in′), where n′ and each ij are as before.

Let γ denote the difference in the advantage of B′1 and B. Note that B′1 runs in time tB + o where o

is the “overhead” in running time that B1 requires (o is polynomially bounded). Now, define B′i such

that B′i does not have access to the first i symbols of the encoding of m. By induction, we have that

B′i’s probability of success is at most iγ different from B and its running time is at most tB + io.

Note that B′n succeeds with probability at most nγ different from µ without seeing the encoding

of m at all. This implies that B′n can be run and select which symbols to erase independently of the

encoding of m. Hence, after applying the output of B′n to c, the remaining unerased symbols form

a random graph over the symbols of m, where the degree distribution for the uncorrupted symbols

is identical to the distribution used to encode m. Thus we have that, given (1 + ε)k uncorrupted

symbols, the probability of decoding failure is at most δ. This implies that |µ− δ| = nγ, and since Π

is semantically secure, the advantage of A in winning the game is at most negligible.

Note that the above assumes that the randomness used to encode m is true randomness. The

actual definition of Encode actually uses the pseudorandom generator G. By definition of a PRG, for

any PPT algorithm Alg running in time tG,

|P [x← Uλ; Alg(1λ, x) = 1]− P [s← Uλ;x← G(1λ, s); Alg(1λ, x) = 1]| = γ′

where Uλ is the uniform distribution over strings of length λ and γ′ is negligible. Thus, by replacing

true randomness in Encode with the output of G, the advantage of A increases by at most γ′. Hence,

the advantage of A in causing a decoding failure is γn+ γ′, which is negligible.

Finally, if we allow A to corrupt symbols instead of just erasing, then the result still holds. That

is, corrupting gives A no additional advantage. To see this, note that A must output at least (1 + ε)k
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uncorrupted symbols for a decoding failure to count as a win in ChannelExp. If any corrupted symbols

are accepted by Decode (i.e., a MAC is successfully forged), then their acceptance cannot increase

the probability of decoding failure. Rather, forgeries will decrease the probability of decoding failure

by giving the LT-decoder more code symbols to use in decoding and thereby increase the coverage of

message symbols by code symbols. This directly undermines the effort to cause a decoding failure.

Hence, it is to A’s advantage to only erase symbols.

The following theorem summarizes the security of our scheme. The result follows directly from

the two lemmas above.

Theorem 4.1. Let LT S be a (k, δ,D, ε)-Falcon code utilizing an existentially-unforgeable MAC

scheme M , a semantically secure cipher scheme Π, and a secure PRG G. Then, for all sufficiently

large k, for all PPT A, and for all feasible p, where π = (1λ, k, δ,D, ε), we have that AdvA,LT S(π, p)

is negligible in λ.

Proof. Suppose not, then there exists a PPT adversary A such that, AdvLT S,A(1λ, k, δ,D, ε) is non-

negligible in λ and k, call this advantage γ. A can win the game ChannelExp by causing a decoding

failure (Decode outputs ⊥) or a decoding error (Decode outputs the incorrect message). Since these

are mutually exclusive events, we can consider them separately. By Lemma 4.1 and Lemma 4.2 we

know that each event happens with negligible advantage. Hence γ is negligible.

Note that the above theorem and lemmas apply to non-systematic Falcon codes. With a systematic

code, A knows that the first k code symbols are equal to the input symbols. A can then make

corruptions that are decidedly non-random against these symbols. That is, A has some a priori

knowledge of the underlying encoding graph, and can adjust its strategy accordingly. Though we

believe our construction is secure in the systematic case, we leave it to future work to prove this.

For our scalable FalconS codes (both with an explicit permutation and without), the security of

the scheme follows from the results of Lipton’s work on scrambled codes in [98]. In particular, the

random permutation of the symbols ensures that the erasures and errors are uniformly distributed

among the blocks and within each block as well, which is the definition of a random channel. Note

that in this model, the adversary Rγ erases up to a γ-fraction of symbols (or a γ-fraction of batches)

rather than erasing with probability γ. Recall that each block has N = 1
1−(1+τ)γ (1 + ε)k symbols

with a corruption-tolerance parameter of τ .
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Theorem 4.2. Let LT SbN be a (k, δ,D, ε, γ, τ, b)-FalconS code that uses an existentially-unforgeable

MAC scheme M , a semantically secure symmetric cipher Π, a secure PRG G to generate the

permutation, divides the input into b blocks, and generates N symbols per block. Then, for all sufficiently

large k and for all PPT A that corrupt up to a γ-fraction of symbols, letting π = (1λ, k, δ,D, ε), we

have AdvLT SbN ,A(π, γ) is negligible in λ.

Proof. As shown in [98], the random permutation applied to the code symbols combined with perfectly

secure encryption reduces A to a random channel. The use of G to produce the pseudorandomness

to generate the permutation gives A at most a negligible advantage. Similarly, the semantic security

of Π hides all but a negligible amount of information in the code symbols and gives A at most a

negligible advantage over a random erasure channel. Finally, the existential unforgeability of M

ensures that A can produce a decoding error with at most negligible probability.

Finally, for our randomized Falcon codes, we utilize the main Falcon code as a subroutine and

then use a strong PRG to select the block to produce the next symbol. The security of this scheme

reduces to that of the PRG and the main Falcon code to get the following theorem. This result,

however, does not follow directly from Lipton’s work as above, since the symbols are output in order

from each block. Rather, the PRG ensures that, when receiving symbols, with high-probability, after

receiving O(b[log b+ (m− 1) log log b]) uncorrupted symbols we can decode successfully. Using the

main Falcon code ensures that the adversarial corruptions by A using a priori knowledge of the

scheme—A knows that the first symbols in the stream are the first symbols encoded by the individual

blocks—does not give A a significant advantage.

Theorem 4.3. Let LT SR be a (k, δ,D, ε, b)-FalconR code that uses an existentially-unforgeable MAC

scheme M , a secure PRG G, a semantically-secure symmetric cipher Π, a secure (k, δ,D, ε)-Falcon

code LT S, and divides the input into b blocks. Then, for all sufficiently large k and for all PPT

admissible A, and for all feasible p, where π = (1λ, k, δ,D, ε), we have that AdvLT S,A(π, p) is negligible

in λ.

Proof. First, we assume that any PPT A cannot distinguish between MACs and ciphertexts produced

by different keys. That is, any PPT A cannot tell that Mac(k1,m1) and Mac(k2,m2) where produced

using different keys, similarly for ciphertexts. While this is a limitation on the MACs and ciphers

used, any symmetric cipher cipher or MAC used in practice will satisfy this requirement.
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Suppose we have a PPT adversary A who can win ChannelExpLT SR,A with non-negligible advan-

tage. Then we will construct A′ who will break LT S with non-negligible advantage. First, assume

that G produces perfect randomness. Construct A′ as follows. A′ generates keys kenc and kmac and

runs A as a subroutine with parameters π = (1λ, k, δ,D, ε, b). A′ then simulates the FalconR encoder

by instantiating b separate instances of LT S and encoding each query of A appropriately.

Eventually, A outputs its challenge message m. A′ selects one of the blocks at random (call it

B) and then queries it to the Falcon oracle OB (note, A′ skips the query phase entirely). A′ then

initializes the encoders for the other blocks as before. A′ then responds to A’s symbol requests by

either replying with a symbol from one of its encoders or, if the symbol is in B, sends it to OB.

Eventually A outputs the code symbols (σ1, . . . , σn) for the challenge message. A′ selects the symbols

that are for B, call these (σ′1, . . . , σ′n′) where n′ ≤ n, and outputs only those as its corruption of B.

Note that, with high-probability, n′ ≥ (1 + ε)k, call this probability p. If n′ < (1 + ε)k, then A′ fails.

Note that if A succeeds, then at least one of the blocks in the decoded message will either fail

to decode or have a decoding error. If A′ guessed B correctly, then A′ succeeds as well. Hence, if

A has advantage ε in succeeding, then A′ succeeds with advantage at least pε/b (and at most ε).

Since we assume Falcon is secure, ε is negligible and so is the advantage of A′. If we change G to use

pseudorandomness instead, then the advantages of A and A′ increase only by a negligible amount.

4.7 Experiments

In this section we detail several experiments performed that demonstrate the practicality of our

constructions. The experiments were run on two machines: one with “abundant” resources and the

other with more limited CPU power and RAM. We use these two machines to measure the raw speed

and efficiency of our schemes without constraints and to show that our scalable schemes do achieve

better performance, especially when RAM becomes scarce.

The majority of the experiments were performed on the powerful machine with two 2.6GHz AMD

Opteron 6282SE with 16 cores each and 64GB RAM running 64-bit Debian Linux with the 3.2.0

kernel and gcc version 4.7.2. The “resource-constrained” benchmarks were run on a 2.6GHz, Intel

Core i5 processor with 4GB of RAM running 64-bit Arch Linux with the 3.14.19 kernel and gcc

version 4.9.1. All implementations are a mix of C and C++ and are single threaded unless otherwise

specified—the parallel implementation (detailed below) utilized pthreads—and were compiled with
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Figure 4.5: The encoding throughput of Falcon compared to RS codes.

the ’-O2’ optimization flag. All schemes use the Salsa20 stream cipher (see [15]) as the secure PRG,

SFMT as the fast/insecure PRG (see [141]), and PBKDF2 for key derivation [74]. The Jerasure v2.0

library [71] was used for the Reed-Solomon erasure code.

We use authenticated encryption for both confidentiality and authentication: specifically, we use

AES in Galois/Counter Mode (GCM) provided in the OpenSSL library (version 1.0.1e and 1.0.1i on

the Opteron and Core i5 machines, respectively). An alternative implementation would be to use

AES in counter mode and pair it with a fast MAC, such as VMAC [93]. In some rough tests on the

Core i5, we found the AES-VMAC combination to be the fastest for symbols more than 2KB in size

and AES-GCM to be faster for smaller symbols.35 The largest symbol size we consider is 4KB, with

almost all tests run on symbols 1KB or smaller. Thus, for simplicity, we use AES-GCM in all tests.

We did not use batching and, hence, encrypted and MACed each symbol individually.

The algorithms we benchmark are Falcon Raptor codes: we combine our authenticated LT code

with a precoding step (where an erasure code is applied to the input data) to give us a secure Raptor

code. Raptor codes are among the most efficient erasure-correcting codes available and we show below

that our authenticated raptor codes themselves achieve high efficiency. Our implementations of both

Falcon codes and Raptor codes are based on the libwireless code written by Jonathan Perry [126].

We used an LDPC-Triangle code as the precoding step using the implementation from [155]. Unless

noted otherwise, all encoding and decoding was performed with 1KB symbols and adding 25%

redundancy and the numbers given are an average of 10 trials.
35For example, on a 16KB input, AES-GCM achieved 2.4 cycles-per-byte (cpb) while AES-VMAC achieved 1.7cpb;

for a 256 byte input, AES-GCM was 7.6cpb and AES-VMAC was 14.0. All rates include key setup.
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Figure 4.6: Slowdown of Falcon versus an insecure Raptor code (no crypto).

Main Scheme Falcon. First, we compare our Falcon scheme to that of Reed-Solomon codes

(RS codes), which is the de facto standard for encoding a file to withstand adversarial corruption. In

Figure 4.5, we see the encoding and decoding speeds for Falcon versus an RS code on various file

sizes when run on the Core i5. For Falcon, the number of symbols was held constant at ≈ 10000 for

all files with symbol sizes ranging from 16 bytes to 128KB. The RS encoder utilized a systematic

erasure encoding with k = 204 and n = 255 (for 20% redundancy) over GF (28) utilizing striping.36

This allows us to quickly detect any tampering with the symbols and discard any that are corrupted

and correct up to n− k errors, the theoretical maximum.37 As is clear from the graph, our scheme

can achieve high throughput, reaching over 300MB/s for both encoding and decoding, and is several

times faster than the RS encoder. Note that for inputs larger than 16MB, the throughput of Falcon

can saturate a 1Gb network link.38

In Figure 4.6, we see a comparison of Falcon against an insecure Raptor code where no cryptography

was used (i.e., no encryption, MAC, or secure PRG). The numbers shown are the average of 50

trials. The simple scheme is generally between a factor of 1.25 and a factor of 1.6 slower than the

(completely) insecure scheme, and is usually less than 1.5 times slower. Note that the overhead from

the use of the secure PRG results in a slowdown of approximately 10-15% (shown in the lower two

lines). For larger files, the percent overhead from the cryptography declines as the LT and precode
36Striping is a technique where, instead of performing field operations over large symbols, the file is divided into

symbols over a much smaller field (while using the same k and n) and encoded in small “batches” or “stripes.” The
small symbols are then grouped together to produce the large, output symbols. This can increase both encoding and
decoding speeds.

37It is possible to use list-decoding for RS codes instead of MACs to correct up to n− k errors, but list decoding
algorithms, even the best ones, are many times slower than simply computing a MAC.

38The slowdown of the RS code for large files is from an increased miss-rate in the L3 cache: going from ≈ 5.8% to
≈ 11.8% when moving from 256MB input to 512MB input, as measured by the cachegrind tool of valgrind [115].
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Figure 4.7: Ratio of the total time spent in each part of encoding process for Falcon.
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Figure 4.8: Ratio of the total time spent in each part of decoding process for Falcon.

encoding takes a larger percentage of the total encoding time. (This is also seen in Figures 4.7

and 4.8.) The “increase” in speed for decoding a 256KB file when using the secure PRG instead of

an insecure one is due to environmental noise and the very short encoding times. The difference in

the encoding times for the secure and insecure PRG is around 20 to 30 microseconds.

Figures 4.7 and 4.8 show a breakdown of the time to encode and decode various file sizes by the

Falcon scheme. For encoding, the cost to create the encoder is negligible compared to the remainder

of the encoding while for decoding creating the decoder can take a significant amount of time. This

is due to the decoder pre-computing much of the LT-decoding information (i.e., node degrees and

neighbor sets) to achieve faster overall decoding. Note that in both cases, as files become larger,

the overhead from the cryptographic “post-processing” (i.e., encryption and MAC computation)

decreases as a percentage of the total time.
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Figure 4.10: Ratios of the decoding times of various file sizes by all schemes. Files were encoded with
64 blocks and 128 byte symbols.

Scalability: Abundant Resources. In Figure 4.9, we can see that the FalconSe and FalconSi and

schemes are, indeed, more scalable than Falcon. Note that FalconR performs worse than Falcon on

smaller inputs and almost identically on larger inputs. (The difference in performance of these two is

evident in Figure 4.13.) Falcon is slower than FalconSe and FalconSi primarily because it utilizes a

secure PRG in the LT-coding and it has worse locality of reference: when performing the LT-coding, it

combines symbols from across the entire file rather than just a segment of it. FalconSe is more efficient

than FalconSi due to better locality of reference both for code and data since FalconSi continually

switches between the encoders for each block. FalconSe encodes one block at a time and thus keeps

less data resident at any given time, better utilizing caches. FalconR is the least efficient for three

reasons: (1) it undermines locality by switching between encoders, (2) it generates more symbols

than all other schemes (cf. Figure 4.11), and (3) it uses a secure PRG in the LT-coding, in contrast
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Figure 4.12: Encoding/decoding speeds of FalconSe and FalconR.

to the FalconS schemes. The benefit of using FalconR is shown in Figure 4.13 where it performs well

when RAM is limited.

FalconR requires that we generate more symbols than FalconSe to ensure that we have enough to

properly decode each block (see Section 4.5.3). FalconSe, in contrast, generates exactly the number of

symbols required. In Figure 4.11 we can see the growth in the number of symbols needed by FalconR

as compared to FalconSe. The input was a 2GB file and both schemes used 4KB symbols. The FalconR

encoder works by having each block require a minimum number of symbols m to be produced and

then generating symbols until each block has at least m symbols. When adding 25% redundancy,

the encoder simply requires (1.25)m symbols for each block. As mentioned in Section 4.5.3, the

paper [117] proves that for a small number of blocks, the expected number of symbols output is

O(bm). This is evident in in the figure since the number of symbols produced is close to optimal for

b < 40. However, for larger b, the expected number produced is O(b[log b+ (m− 1) log log b]), visible

in the growing number of symbols generated as b increases.
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Figure 4.13: Encoding throughput of the different schemes in a more limited environment. Scalable
schemes used 64 blocks.

Figure 4.12 compares the speed of FalconR to FalconSe on the same input as Figure 4.11. As the

number of blocks increases, the size of each block decreases, allowing each individual block to be

encoded faster. This is evident in the increasing speed of encoding and decoding for FalconSe. FalconR

does not display this behavior: rather, its speed decreases since it must generate more symbols as the

number of blocks increases as seen in Figure 4.11.

Scalability: Strained Resources. The benchmarks with strained resources were run on a 2.6GHz,

Intel Core i5 processor with 4GB of RAM running Arch Linux. The tests compare the throughput

of the encoder for each schemes given in Section 4.5, on files ranging from 768MB to 3.5GB in

increments of 256MB. In each test, we read in the entire file prior to encoding, but did not include

this time in the measurements.

In Figure 4.13, Falcon does reasonably well compared to the other schemes until the data and

the overhead from the encoder take up too much RAM. As soon as Falcon needs to use external

memory the throughput plummets and declines to almost zero. Comparing to Falcon, we can see that

FalconSe fairs poor for files above 2.5GB since it must buffer all symbols before emitting them as it

must have all symbols available before permuting them (while the other schemes can output symbols

immediately) and its throughput goes to essentially zero. FalconSi and FalconR, on the other hand,

fare better and can encode files larger than Falcon and provide good throughput until just after 3GB

when they start heavily swapping.

Parallelism. Each of our schemes allows for some level of parallelism and can take advantage of

multiple processing cores on a CPU. Falcon allows for parallelism at the symbol level: once the degree
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and neighbor set of a given symbol has been computed, it can be encoded independently of the

other symbols. Each of the scalable schemes are trivially parallelizable at the block level, which we

implemented and measured.

Figure 4.14 shows the results of running a multi-threaded version of FalconSe on the abundant-

resource machine, using a 2GB file as input with various numbers of blocks and threads. In each case,

the performance increases until there are 8 threads, and then it levels off.39 This plateau is due to

the AES-GCM encryption in the OpenSSL library reaching its peak throughput for the machine. In

particular, we measured the performance of AES-GCM on the Opteron 6282SE for 1024 byte inputs

and a peak throughput of approximately 620MB/s including key setup.40 The cost of the remainder

of the encoding process (e.g., XORing symbols, allocating and deallocating memory, etc.) accounts

for the difference between the measured throughput of 500-600MB/s and the theoretical maximum of

620MB/s. The slow decline in performance as the number of threads increases is (at least partly) due

to increased contention for the data caches. In particular, the fraction of data references that miss

the last level cache increase from 19% to 23.8% when increasing from 8 to 32 threads, as measured

by Linux’s perf utility, averaging over 20 runs with a standard deviation between 0.1% and 0.7%

depending on the number of threads—though, usually, it was around 0.3%. Thus we can see that the

scalable Falcon encoders can, indeed, achieve very high performance using multiple threads and are

limited primarily by the efficiency of the cryptography used.
39The version of libc on the machine is eglibc version 2.13 from 2011. The implementation of malloc and free in

this version do not scale to multiple threads and, indeed, multiple threads can easily cause each other to block. To
avoid this we used the lockless memory allocator library [68].

40The test simply set up a fixed key and encrypted the same 1024 byte ‘buffer 100000 times and measured the total
elapsed time.
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4.8 Previous Work

Computationally-bounded Channels. In this work, we prove our constructions secure against

a computationally-bounded adversary. This is more limited than the general, information-theoretic

approach generally taken in information theory. But, since attacks in the real world are restricted to

feasible computations, this limitation gives a more accurate model of the world. This approach was

first proposed in [98], in which Lipton introduces and formalizes the concept of a computationally-

bounded adversarial channel (this was further developed in the unpublished manuscript [55]). In

this, he shows via a simple construction (called “code scrambling”), that any code that has success

probability q over the binary symmetric channel with error probability p, has success probably q over

any (computationally-bounded channel) with error probability p. The construction works by simply

generating and applying a random permutation of n elements to the code word than then adding in

a random pad. This requires Θ(n logn) random bits, but by assuming the existence of a PRG with

security parameter λ, then the construction only needs O(λ) truly random bits (where λ� n). He

also presents a construction that divides the input into blocks of size a logn (for a suitably chosen

a), independently encodes them, and then scrambles them all together. Before the scrambling, the

construction could handle O(logn) errors in the worst case, but after it can handle O(n) errors.

In [95], Langberg defines the notion of a private code: i.e., a code that takes a secret key as a

parameter. In this work, he proves that any code over the binary symmetric channel (with error

probability p) can be turned into a private code over an adversarial channel that corrupts at most

pn symbols. This is done, as in [98], via random permutation over the code symbols. The difference

between [95] and [98], is that the former does not make any cryptographic assumptions (so the

key must be Θ(n logn) bits). In addition to this simple construction, Langberg proves a lower

bound of Ω(logn) on the number of random bits needed to be secure against an adversarial channel.

Additionally, he provides a construction that meets this lower-bound (i.e., requires only O(logn)

random bits). This construction works via a careful partitioning the space of code words for a

list-decodable code. Decoding is performed with a maximum-likelihood decoder.

In [111], Micali et al. describe a game for a stateful, computationally-bounded adversarial channel

and provide a construction that is secure against that channel. They describe a game—modeled after

cryptographic games—involving multiple rounds where the channel chooses a message to be encoded,

corrupts the encoding, and gives the result to the receiver. The adversary wins if at any point the
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decoder decodes to an incorrect message. The construction they provide is essentially a combination

of digital signatures and list-decoding. Specifically, they sign a message before encoding it with

an efficiently list-decodable code. When decoding, the received codeword is list decoded and the

signature is used to disambiguate the list and achieve unique decoding. This is essentially the same

construction found in the earlier paper [106] by Lysyanskaya et al. that applied the same technique

to authenticate a group of packets. In both works, adversarial success reduces to forging a signature.

In work combining cryptography and error correcting codes, Luby and Mitzenmacher in [104]

describe a “verification decoding” algorithm based on belief propagation for LDPC codes. They

assume that a corrupted packet takes on a uniformly random value. The decoder performs two steps

repeatedly: (1) if the sum of all neighbors of a parity node is 0, then mark all nodes as verified, (2) if

a parity node has a single unverified neighbor, then it is marked as verified and its value is set to

the sum of all other neighbors. With this decoder, they are able to correct errors over the binary

symmetric channel. Building on this, they independently rediscover the result of Lipton [98] and

reduce an adversarial channel to the binary symmetric channel. They accomplish this by applying

a random linear transformation to all code symbols and then permuting them. (The same authors

also use this technique in [114] to reduce adversarial corruptions to random ones for a code based on

invertible Bloom lookup tables; see [114] for details.)

Smith has also worked to protect against adversarial errors in [150], where he sought to use

only a few random bits and avoid any unproven computational assumptions (e.g., the existence

of a cryptographically strong PRG). In particular, he draws a random permutation from a t-wise

independent family, where t = o(n).41 Moreover, this is accomplished using n+ o(n) random bits

instead of the previous best of Θ(n logn). The basic construction is the same as that of Lipton in [98],

where a plain ECC is applied to a message, and then random permutation is applied to the code word,

scrambling it. The resulting codes are capacity approaching and correct pn errors with probability

exponentially close to 1. Our work makes additional assumptions (i.e., the existence of secure MACs,

encryption, and PRGs) and allows us to use far less randomness, i.e., we need λ� n bits.

Guruswami and Smith in [59] present several results for codes against computationally-bounded

adversaries that corrupt up to a p fraction of the code symbols. First, they provide constructions

for codes that approach channel capacity for additive (i.e., oblivious) channels. Second, they give

polynomial time list-decodable codes with optimal rate for log-space adversaries. Their construction
41Such a permutation can be generated using O(t logn) bits using a specific (non-cryptographic) PRG.
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for list-decodable codes can be extended to handle an adversary with nc space for any fixed c > 1

(but c must be fixed beforehand). For the first two constructions, they only assume the existence of

one-way functions, and for the latter they assume the existence of PRGs that can fool circuits of

size nc. In their constructions, the sender and receiver do not have pre-shared secret unknown to the

adversary. They hide the secret randomness in the message itself such that the adversary (with only

log-space) cannot locate it, but the receiver (who has super-logarithmic space) can.

Secure LT Codes. The work in [91] by Krohn et al. provides an efficient construction for online

verification of erasure encoded symbols produces by a rateless code, such as Raptor or Online codes,

for content distribution in peer-to-peer networks. Their adversary is one that sends spurious blocks

to clients requesting a given file. The authors use homomorphic hashing—via exponentiation in a

group of prime order—on the message symbols to produce a succinct digest of the file for verification.

Hashes for code symbols can be calculated by multiplying together the hashes for the corresponding

message symbols. Since the hashes for a file can be quite large—for example, an 8GB file would

have 64MB of hashes—they also give a recursive hashing scheme that can greatly reduce the number

of hashes sent over the wire. The security of the scheme reduces to the difficulty of computing

discrete logarithms in the group. Their scheme has several “knobs” that allow adjusting the trade-offs

between verification speed, amount of authentication information sent, and how quickly a malicious

server can be identified (i.e., how many blocks must be received before maliciousness is detected). In

comparing with our scheme, we note that we allow the adversary to have access to entire file and

all of authentication tags while they assume reliable delivery of, at least, the root hash computed

over an encoded file. The authors observe the possibility of targeted-erasure attacks (which they call

“distribution attacks”), but they leave resilience to such attacks to future work.

In [158], Tartary and Wang build on the work of Lysyanskaya et at. in [106], and use LT codes as

part of a multicast authentication scheme over an (α, β)-network.42 Specifically, they apply an LT

code to a set of n packets and generate N code symbols. Each symbol is then hashed along with the

indices of its neighbors. The hashes are signed and the signature is appended to their concatenation.

The N hashes and signature are then encoded with an [N,αN ] Reed-Solomon code. Each code

symbol ci from the LT code has the indices of its neighbors appended as well as the i-th code symbol

of the encoded hashes and signature. To decode, they apply list decoding to encoded hashes and use
42Recall that an (α, β)-network is a network work, when sending n packets at least an αn packets will arrive

unscathed, and at most βn will arrive total.
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the signature to achieve unique decoding (as in [106] and [111]) and recover the hashes which are

used to detect corruption of the LT code symbols. The authors only consider attacks that corrupt

the data and do not consider the targeted-erasure attack.

Codes & Cryptography. There are several examples of schemes that combine cryptography and

ECCs together. An early such example is by Krawczyk in [88] where he computes the hashes of

erasure encoded symbols and then uses an error-correcting code to encode each hash. The shares

of each encoded hash are then distributed with the symbols; this technique is an application of

distributed fingerprints [87], also by Krawczyk, and is used to detect corruption of code symbols.

An example where cryptography is used in the heart of an ECC is by Perry et al. in [127] (further

developed in [128]) where they present a new rateless error correcting code called a spinal code. Spinal

codes work by breaking the input message of n bits into blocks of k bits and then applying a random

hash function to each block to produce a real number in the interval [0, 1) (called a spine). The

encoder then makes passes over the spines and applies a deterministic function to map a portion of

each spine to an output bit.

Computational Locally Decodable Codes. Chandran et al. in [26] define locally-updatable,

locally-decodable codes (LULDCs) and present constructions that are constant rate while allowing

for local updates to an encoded message and providing local decodability. Update operations have

a locality of O(λ log k) and a read locality of O(λ log2 k). The constructions are secure against

computationally-unbounded adversaries, but the adversaries are limited such that they do not corrupt

“too many” of the recently updated bits: that is, only a few of the new bits can be corrupted, but

many of old bits can be. This is accomplished by having a logarithmic number of buffers arranged

in a hierarchy and exponentially growing in size. Updates start in the lowest (and smallest) levels

and percolate up to the higher levels as more updates are made. Each level is encoded with a

locally-decodable code. Against computationally-bounded adversaries, they can detected arbitrary

errors (via MACs) and can correct a limited class of corruptions.

In [119], Ostrovsky et al. present several constructions for private locally decodable codes against

computationally-bounded adversaries. By assuming the existence of one-way functions, they construct

asymptotically good locally decodable codes over a binary alphabet. They can correctly decode

any bit after querying ω(log2 λ) bits in a codeword, with probability greater than 1 − λ−ω(1). If
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the sender and receiver have a shared state (e.g., a public counter), then their query complexity is

ω(log λ). Furthermore, they show that ω(log λ) is necessary to achieve negligibly small probability of

incorrectly decoding.

Proofs-of-Retrievability. A proof-of-retrievability (PoR), first defined and explored by Juels and

Kaliski in [72], is scheme that makes heavy use of cryptography and error correcting codes to secure

remote storage. PoRs consist of encoding, decoding, and audit protocols, the last of which is used

to detect data corruption. Intuitively, a PoR guarantees that if the adversary does not corrupt too

much, then the damage can be repaired; conversely, if the damage cannot be repaired, then it will be

detected with high probability.

There have been several follow-up works to [72]. Shacham and Waters in [145] present two PoRs:

the first is secure in the random oracle model and has short audit query and responses, while the

second is secure in the standard model and also has short audit responses but longer queries. The

work of [20] by Bowers et al. combines Reed-Solomon codes and universal hashing to produce secure,

homomorphic MACs over the data that gives an efficient audit protocol. In addition, the adversary is

a mobile adversary that may (over time) corrupt all servers but at any given time it only has up

to a constant fraction compromised. PoRs are further explored in [21] where Bowers et al. provide

rigorous theoretical framework for designing PoRs and provide improved variants of the constructions

in [72] and [145]. They also define an adversarial error correcting code, which is a code that can

tolerate some amount of adversarial corruption, but their definition is limited to block codes and

cannot be generalized to rateless codes. Moreover, their security game for the codes explicitly forbids

the adversary from causing a decoding failure which we allow here. In [142], Sarkar and Safavi-Naini

present a PoR that utilizes raptor codes: specifically, they apply an erasure code to the data and

apply a homomorphic authenticator. The audit protocol then performs (standard) LT encoding

allowing both an unbounded number of challenges to be created and efficient encoding and decoding.

Much early work for PoRs assumed that the encoded data was static, and the resulting schemes

could not be readily extended to the dynamic case. Shi et al. provide an efficient PoR for dynamic

data in [147] where they use a hierarchical log structure, where each level is erasure encoded, combined

with Merkle trees and MACs. They achieve efficiency that is logarithmic in the number of blocks

(multiplied by the security parameter) for both bandwidth and server computation with audit costs

also logarithmic in the number of blocks and quadratic in the security parameter.



178

Network Coding. Ho et al. present in [65] an information-theoretically secure construction for

random network coding where the adversary A is computationally-unbounded and controls a constant

fraction of the network (but not all of it). Each packet is augmented with a polynomial hash of the

packet, and then at each step in the network, all incoming packets are combined in a random linear

combination. The decoder collects enough linearly independent packets to recover the input packets,

checking the polynomial hashes against the decoded data and throwing out anything corrupted.

Since A does not control the entire network, some of the packets are unknown to A and he is unable

(except with small probability) to manipulate the packets to cause a decoding error. The probability

of corruption detection is a tunable design parameter of the network.

Jaggi et al. in [70] provide information theoretically secure network codes that can tolerate

byzantine nodes in the network. If the network has capacity c and the adversary can eavesdrop on all

links and jam a z-fraction of the links, then their codes achieve a rate of c− 2z. If the adversary has

limited knowledge, e.g., can only eavesdrop on a fraction of the links, then their codes have rate c− z.

The also provide construction can also utilize a secret, noiseless side channel between the sender and

receiver to facilitate decoding. In particular, the receiver uses list decoding to recover a list containing

the correct decoding and then uses a hash of the original message (sent over the side channel) to

disambiguate the list decoding.

Multicast Authentication. Lysyanskaya et al. couple signatures with list-decoding to achieve

error correction beyond the unique decoding radius [106]. Specifically, they sign the input message

and then apply an efficiently list-decodable code (e.g., a Reed-Solomon code). When decoding, the

codeword is list-decoded and the signature on each entry in the list is checked and is used to select the

correct message as the output. This technique of using signatures to achieve unique decoding from

list-decoding over a computationally-bounded channel was independently discovered by Micali et al.

in [111]. This latter work also developed a theoretical foundation for a computationally-bounded

channel that attacks a block code.

Pannetrat and Molva combine error correcting codes with cryptographic hashes and signatures

for efficient multicast authentication over adversarial erasure channels, where the channel can erase

up to a constant fraction p of the packets [121]. Specifically, they break the packets up into blocks,

hash the packets, sign the hashes, and then use a systematic erasure code to encode the hashes

and signatures. The parity symbols generated from the encoding are then concatenated and divided
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up, evenly, among the packets. This results in tens of bytes overhead per packet. Given (1 − p)n

packets (where n is the number of packets per block), the hashes are computed for the packets and

the parity symbols for the encoded hashes and signature are reconstituted. Since the erasure coding

was systematic, the combination of (1− p)n hashes with the reconstituted parity symbols is enough

to recover all the hashes and signature. The signature is verified and the packets are all thrown out if

the signature is invalid.

Karlof et al. define distillation codes in [76] for use in authenticated multicast. Essentially,

distillation codes are an erasure code augmented with a one-way accumulator and a signature scheme.

(For concreteness, they use a Merkle tree as the accumulator.) For the scheme, the input is “tagged”

(e.g., signed or MACed) and then encoded. The encoded symbols are then hashed as the leaves in a

Merkle tree. Each symbol is then sent with the neighbors on the path from the symbol to the root

of the Merkle tree. When decoding, the received symbols are partitioned into groups based on the

calculated root hash value. Each group is then erasure decoded, and for any successful decodings the

tag is “validated” and all groups with an invalid tag are discarded. The decoder then randomly selects

one of the remaining groups and outputs the decoding. This work is designed to allow for arbitrary

errors in addition to “pollution” attacks, where the adversary injects extra (spurious) symbols into

the stream. Their scheme is secure over a computationally-bounded channel, though this is not stated

nor formalized.

In [158], Tartary and Wang build on the work of Lysyanskaya et al. [106] and use LT codes as

part of a multicast authentication scheme. Specifically, they apply an LT code to a set of n packets

and generate N code symbols. Each symbol is then hashed along with the indices of its neighbors.

The hashes are signed and the signature is appended to them. These are then broken into k pieces

and regarded as coefficients of a polynomial p(x) in F2r [x]. The polynomial p(x) is then evaluated at

the first N points of F2r . Code symbol ci then has the indices of its neighbors appended as well as the

value of p(i). In decoding, they apply Reed-Solomon list decoding to the polynomial values and use

the signature to achieve unique decoding (as in [106] and [111]). Their security model only considers

data corruption attacks does not take into account the targeted-erasure attack that we described

earlier. This leads to a gap in their security proof since the probability of decoding failure δ for LT

codes is computed based on the assumption of random erasures. That is, even if the adversary is not

specifically trying to cause a decoding failure, because the corruptions are not necessarily random,

we lose the guarantee that δ is an upper-bound on the probability of decoding failure.
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Secure Storage. Cao et al. utilize LT codes, bilinear maps, and homomorphic MACs for a secure

cloud storage scheme that allows for asymptotically efficient encoding and decoding, as well as repair

of the data if any servers are lost using a designated repair server [25]. In this setting, they consider

computationally-bounded adversaries, but only consider attacks against the data servers and not

against the repair server. They take into consideration the targeted-erasure attack that we described

earlier. Though, their solution was simply to check that all subsets of size k out of n code symbols can

be successfully decoded and re-encoding the whole file if this was not the case. There is no analysis

of the likelihood of this “decodability check” failing, nor any measurement of how long this check

could take.

Non-malleable Codes. Looking at cryptography and codes, there are primitives known as non-

malleable codes, first defined and constructed by Dziembowski et al. in [39]. The work was further

developed by Faust et al. [40] and Cheraghchi and Guruswami [28]. Non-malleable codes seek to

encode a message such that, if it is tampered with, it will decode to a message unrelated to the

original message. They were designed to protect against malicious hardware tampering so that any

adversarial manipulation results in a random internal state (rather than a maliciously chosen one).

Cheraghchi and Guruswami provide a construction for a non-malleable code that is superficially

similar to our block, scalable construction [28]. Specifically, the message is encoded with a linear

error correcting secret sharing scheme, then they divide a message up into blocks and apply a weak

non-malleable code to each block. The blocks are then randomly permuted. In this way, if an adversary

corrupts a small portion of the message, then the error-correction will fix the corruption. If, however,

the adversary corrupts more than the ECC can handle, then the (weak) non-malleability of each

block will cause the corruption to “blow up” and be detected. In contrast, we divide the input into

blocks, apply a weak encoder to each block and then permute all the symbols. We parameterize the

scheme so that we add enough redundancy to the block that the attacker can only “overwhelm” a

block with negligible probability.

4.9 Conclusion

We introduced a new security model for analyzing fountain codes over computationally-bounded

adversarial channels, and presented Falcon codes, a class of (block or rateless) authenticated ECCs that
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are based on the widely used LT codes. Falcon codes are provably secure in our model while maintaining

both practical and theoretical efficiency (including linear-time coding for Falcon Raptor codes). Their

efficiency makes them a useful, general-purpose security tool for many practical applications such as

secure and reliable data transmission over a noisy (and possibly malicious) channel and secure data

storage.



CHAPTER Five

Conclusion

In this thesis, we detailed several novel tools that readily enhance the privacy, integrity, and fault-

tolerance of cloud storage. We provided a simple, yet itself novel, architecture for increasing data

integrity and fault-tolerance in cloud storage (without modifying the service provider), and we showed

how our constructions can greatly improve the efficiency of even such a simple scheme.

The first tools we described were the Slow and Fast Squeeze ciphers, two new and provably

secure ciphers that provide data compression in addition to privacy. These are the first provably

secure schemes that combine together data compression with encryption. The algorithms themselves

are derived from the well-known LZW compression algorithm [165] which allowed for efficient

implementations of our schemes, demonstrated through a thorough experimental evaluation. We also

provided a new definitional framework for proving the security of combined compression-encryption

schemes and showed that it relates in a simple way to the standard definitions of security for ciphers.

Moreover, we proved that our constructions achieve the strongest possible security in this model.

We then presented a new adversarial model for analyzing the error-correcting properties of certain

codes when attacked by computationally-bounded adversaries. This model is more powerful than

previously considered and is able to capture more real-world adversarial behaviors. We also provided

two general constructions—which we call authenticated error correcting codes—that cryptographically

enhance erasure codes to (provably) provide error correction when attacked by our powerful adversary,

with only a small loss in code rate. The first construction combined list decoding with collision-resistant

hash functions and digital signatures to correct errors more efficiently than previous list-decoding-

based schemes (i.e., [106] and [111]). Our second construction utilized a non-malleable cipher, a
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message authentication code, and a generic pseudorandom permutation to achieve the same (provably

secure) error correction without using list decoding.

Finally, we introduced a novel family of error-correcting codes—called Falcon codes—that enhance

LT codes (an efficient family of rateless erasure codes) by integrating a pseudorandom generator,

semantically secure encryption, and a message authentication code into the LT code itself. These

changes allow Falcon codes to withstand adversarial corruption of data and we proved—in our new

adversarial model for rateless codes—that any computationally-bounded adversary can do no better

(when attacking the code) than simply erasing symbols at random. Additionally, we provided two

alternative scalable variants that can encode and decode large files more efficiently than the basic

scheme. Falcon codes are a generic construction that can replace any LT code and immediately

enhance the error tolerance and security of the scheme. For example, we used Falcon codes in the

LT coding step of Raptor codes to produce an error correcting Raptor code and experimentally

demonstrated its practicality (along with the scalable constructions).



APPENDIX A

Equivalence of Indistinguishability and Reseedable Indistinguishability

Here we prove the equivalence of normal indistinguishability for a pseudorandom generator and our

notion of reseedable-indistinguishability. Intuitively, these notions seem equivalent since a distinguisher

D could always generate random seeds for the PRG G and look at its output. Moreover, the

distinguisher could also generate all the random bits it desires. So, reseeding the source of input bits

should give only a negligible benefit in distinguishing. We prove this below.

Lemma (Indistinguishability Equivalience). Any (t, b, ε)-indistinguishable pseudorandom generator G

is also a (εr2, r+ 1, t− r)-reseedably-indistinguishable pseudorandom generator, where a distinguisher

may run in time t and request r + 1 reseeding operations.

Proof. The proof proceeds via a standard hybrid argument. Suppose we have a distinguisher D that

makes r + 1 re-seeding requests and can distinguish the output of G from a random oracle with

probability at least δ. And suppose we have an input string s that may be the output of G under a

random seed or a random string. D outputs 1 if it thinks its input was the output of G under random

seeds and 0 otherwise.

Define Hi, where 1 ≤ i < r + 1, be the distribution where the first i samples given to D are from

G using a random seed for each sample, the i+ 1-th sample being the input string, and all remaining

samples are random strings. Note that D can distinguish H1 from Hr+1 with probability at least δ.

So, there exists some 1 ≤ j < r + 1 where D can distinguish Hj and Hj+1 with probability at least

δ/r. We construct algorithm A to distinguish the output of G from random using D as a subroutine.

First, on input 1λ and string s (where s← Db, with b
R← {0, 1},D0 = Un andD1 = {G(s)|s← Uλ}),

choose a random index j between 1 and r (inclusive). Run D on input 1λ. For the first j samples
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given to D, choose a random seed sk and give D the output of G(sk). For the j + 1-th query, give D

the input string s, and for all remaining requests, give D a random string. D then outputs a bit b′,

and A outputs it as well.

Note that the input given to D is from either Hj or Hj+1. With probability at least 1
r , the j

selected is then one where D successfully distinguishes the distributions with probability at least δ/r.

That is, D outputs 0 when its input is from Hj and 1 when its input is from Hj+1 with probability

at least δ/r (in each case). This means that A succeeds with probability at least δ/r2. Since G is

(ε, t)-indistinguishable, we have that it is also (εr2, r + 1, t− r)-reseedably-indistinguishable.1

1Note that we assume that generating a random string and generating G(s) for a random seed both take constant
time.



APPENDIX B

Application of Falcon Codes to Proofs-of-Retrievability

Bowers et al. [21] describe a framework for constructing proofs-of-retrievability (PoRs). Their frame-

work includes two phases: (1) a challenge-response phase where the client sends challenges to a

(possibly malicious) server to ensure (with high-probability) that at most an ε-fraction of the input

has been corrupted; and (2) an extract phase that, given an adversary that corrupts an ε-fraction of

the file, executes a series of challenges and responses that allow the client to extract the original file.

Their example construction utilizes two layers of error correcting codes: (1) an outer code applied

to the original file, and (2) an inner code used in the challenge-response phase. In particular, the

inner code ensures that the adversary corrupts at most an ε-fraction of the file (else, this excess

corruption is detected), while the outer code ensures that the client can correct up to an ε-fraction of

file corruption. The outer code must be what they term an adversarial error correcting code (AECC),

which intuitively operates by turning a computationally-bounded adversary into a random one (as

we also do). In [21], an [n, k] ECC is defined to be a (β, δ)-bounded AECC if the probability that the

adversary can produce two valid codewords that are at most βn apart is at most δ.

Falcon codes reduce adversarial corruptions to random erasures but do not precisely fit into the

definition of an AECC [21]. Specifically, Falcon codes are rateless codes rather than block codes

and so there is no fixed n. However, if we take the n-symbol block variant of Falcon codes (where

exactly n symbols are output by the encoder), then we have that a (k, δ,D, ε)-Falcon code F is a

(1, nεMAC)-bounded AECC where εMAC is the probability of forging a MAC for the MAC scheme

used in F (cf. Lemma 2 for Falcon). Thus, Falcon codes can be employed as an efficient outer code

for a PoR. Moreover, Falcon does not require striping as in [21].
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