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Hot environments pose a risk of heat illness for many emergency workers, athletes, and other 

professions especially when heavy workloads or protective clothing are necessary. Modern 

wearable physiological monitors may be able to mitigate risk of heat illness and improve 

performance if they are able to track health state and provide feedback to the user. However, 

effective algorithms and models to make use of wearable sensor information are lacking. We 

present two contributions: 1) a method for health state estimation of the latent human body core 

temperature from physiological sensors, and 2) models for policy estimation to provide 

automated advice to reduce thermal-work strain and improve physiological performance over a 

course of prescribed work. 

Continuous measurement of core body temperature, a requisite of thermal-work strain 

health state, has been an open physiology problem in the field. We show that the physiological 

dependencies of the human thermo-regulatory system can be cast into a dynamic Bayesian 

network model that allows us to estimate core body temperature from wearable physiological 

sensors.  We effectively simplify this model to use only an input of heart rate which is collected 

by many commercial wearable sensor systems. This approach is validated across different 

combinations of temperature, hydration, clothing, and acclimation states, and shows similar 

comparison accuracy to accepted laboratory measures. We finally demonstrate the use and 

effectiveness of the algorithm from experimental trials during a first responder live training event. 

We also present a Markov decision process that uses health state estimates to optimize 

individual pacing strategies to reduce the overall level of thermal-work strain. We describe the 

estimation of real world activity objectives and thermal-work strain constraints as a reinforcement 

learning problem. Using a dynamical simulation of physiology, pacing estimates from this model 

are shown to reduce overall thermal-work strain. 

Our health state and policy estimation contributions were evaluated in the context of an 

implementation to compare human self-guided pace and policy guided pace. The results show 

that the policy allowed individuals to complete the task with meaningfully lower thermal-work 

strain. We demonstrate that real-time feedback from our model was able to match the thermo-

regulatory efficiency of a well-trained athlete. 

 We envision the work in this dissertation will enable practical real-time monitoring 

systems that can improve human health through preventing thermal injury and use reinforcement 

learning to improve the physical performance of novice athletes and regular individuals.  
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Chapter 1 

Introduction 

1.1 Better Health State Estimation, Better Advice, Better 
Outcomes 
 

Today, wearable physiological monitors are becoming common place. The daily use of these 

devices, along with smart phones, offers the possibility of determining and tracking health state. 

Automated human health-state monitoring aims to identify when an individual moves from a 

healthy to a compromised state. For example, changes in diet or physical activity can lead to life-

threatening hypo or hyperglycemia in diabetics. Similarly, elderly individuals managing multiple 

chronic conditions may experience rapid changes in physical and cognitive health state that must 

be caught quickly for treatments to be most effective. Even in healthy individuals, heavy exertion 

in extreme climates can quickly lead to life-threatening situations. 

The emergence of inexpensive and unobtrusive health sensors promises to shift the 

healthcare industry’s focus from episodic care in acute settings to early detection and longitudinal 

care for chronic conditions in natural living environments. The same technologies can also be 

used to monitor healthy individuals in high-stress work situations. While these current sensing 

systems are able to provide a wealth of physiological information, these measurements are often 

quite different from those used by physicians. The medical community is accustomed to making 

decisions from high-quality clinical data from a limited set of sessions. Data from continuously-

measuring sensors requires us to draw conclusions from large quantities of lower-quality data 

from sub-acute environments where these measures are often not specific to health states of 

interest and can reflect the output of multiple latent variables.  

As the availability of body-worn data increases, we have an unprecedented opportunity to 

discover new and early predictors of clinically significant health states. Identifying these relevant 

health states will enable this information to be used to provide better and timelier interventions, 

leading to overall better health outcomes. 
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For this dissertation, we examine the problem in a more extreme setting, but we believe 

our approaches can be applied to the larger wearable-health state problem. 

1.2 The Problem of Exertional Heat Illness 

Heat illness is a risk to people in occupations where there are heavy workloads, hot environments, 

or where there is the use of protective clothing or equipment.  Athletes must often compete with 

very high work rates in extremes of temperature. Miners and steelworkers can have very hot work 

environments. Firefighters, tactical law enforcement, first responders, and military must often 

wear personal protective equipment (PPE) to protect them from the threat of fire, chemical, 

biological, nuclear, or explosive agents or devices (e.g. see Figure 1.1).  

 

 

 

 

 

 

 

 

 

Figure 1.1: National Guard Civil Support Team member during two training events wearing 

different levels of personal protective equipment.  

While these PPE ensembles offer the individual protection, they limit one’s ability to 

thermoregulate (Muza, Banderet and Cadarette 2001, Givoni and Goldman, 1972). With reduced 

vapor permeability, these PPE ensembles limit evaporative heat transfer from the body to the 

environment.  In addition, the added insulative properties of these ensembles further decreases the 

rate heat can transfer to the environment by conductive and convective routes. Thus, even in 

temperate conditions, the rate of metabolic heat produced from physical work can often exceed 

the rate at which heat can be transferred to the environment.  In these situations, first responders’ 

core body temperatures will continue to rise while working. If this heat strain is not effectively 

managed, it can lead to heat exhaustion, collapse, or even death from heat stroke (Bouchama and 

Knochel 2002). These, heat strain risks can be accentuated in a team setting by the psychological 

pressure to continue working even if an individual is aware of feeling ill (Porter 2000). 

The military often form an extreme example where they combine high work rates, wear 

protective clothing and equipment, and often have to work in extremes of climate. Steinman 
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(1987), in his historical review of the effects of heat on military operations, cites cases where heat 

illness played a significant degrading effect, including examples from the Roman army (Jarcho 

1967), the European Crusaders in the middle-ages (Lindsay 1936), Napoleon (Dible 1970), the 

British Army in India in the 19
th
 Century (Parkes 1864), and the First World War (Wilcox 1920). 

From 2008 to 2012, there were over 13,000 incidents of heat illness events in the U.S.  Military 

(MSMR 2013), including 1,867 cases of heat stroke.  

The National Fire Protection Agency has tracked firefighter fatalities in the U.S. for 

many years and finds that over the ten year period 2001-2010, heat stroke accounts for 5% of 

firefighter fatalities during training (Fahy 2012). Further, Karter and Molis (2014) identify that 

thermal stress accounts for 3% of 2013 firefighter injuries (over 2000 incidents). But this does not 

capture the full effect of thermal-work strain. The leading cause of firefighter deaths in the U.S. is 

myocardial infarction (~38%) (Fahy et al., 2006, 2013). In their analysis, Fahy et al. (2012) cite 

that the additional strain imposed by the high work demands of firefighting is likely a 

contributing factor to cardiac arrest. In these circumstances, the cardiovascular system is stressed 

from the competing needs of thermoregulation and metabolic requirements (Smith et al., 2001).  

For other occupations, the U.S. Occupational Safety and Health Administration (OSHA) 

specifically records heat fatalities for their covered industries. Their map shows fatalities in most 

regions of the U.S.
1
, and they document over 100 fatalities from 2008 to 2014

2
. 

Additionally, heat illness may be a contributing factor in other workplace accidents. 

While heat exhaustion can lead to dizziness and fainting (Bouchama and Knochel, 2002), there is 

some evidence that hyperthermia can degrade working memory (Stubblefield et al., 2006) and 

also decrease our ability to detect changes in the surrounding environment (Sun et al., 2011). 

These additional effects could easily be contributing factors for other physical workplace injuries.  

Efforts to identify and control the incidence of heat illness or injury originally focused on 

identifying high-risk environments and providing guidance for acceptable work/rest schedules 

(Yaglow and Minard, 1956, 1957; OSHA 1985; NIOSH 1986). Risk of heat illness can be 

reduced by acclimation, appropriate work/rest schedules, and proper hydration (Minard, 1961). 

However, assessing risk of heat stress from environmental conditions alone fails to account for 

individual differences, such as acclimation status, fitness, body composition and morphology, and 

prior heat injury, which can play important roles in an individual’s response to working in hot 

environments (Kark et al., 1996; Carter et al., 2005). A study of US military heat stroke training 

deaths during “World War II” found that most “fatalities associated with heavy exercise occur at 

                                                      
1
 OSHA Heat Fatalities Map https://www.osha.gov/SLTC/heatillness/map.html (accessed 2/1/2015) 

2
 OSHA Heat Fatalities https://www.osha.gov/SLTC/heatillness/map_text (accessed 2/1/2015) 

https://www.osha.gov/SLTC/heatillness/map.html
https://www.osha.gov/SLTC/heatillness/map_text
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relatively low temperatures, when the total heat stress is commonly underestimated.” (Schickele 

1947). Similarly, recent work by Owen, Leon, and McKinnon (2013) found that ~35% of heat 

stroke cases in the U.S. military from 2000-2007 occurred in low risk individuals who were 

“practicing sound heat mitigation strategies.” Abriat et al. (2014) have similar findings, where out 

of 182 cases of heat stroke, 19% occurred where the environmental temperature was less than 

15°C. The major contributing factor over all the cases was individual motivation to complete the 

task. This is a common theme in team settings, where an individual may be feeling unwell but 

does not want to let down his/her other team members. Lui et al. (2014) detail two examples 

where very experienced wildland firefighters succumbed to heat stroke even though they 

maintained proper hydration.  

It is not only the acute problem of heat illness that needs to be solved. Over the long run, 

thermal-work strain has a degrading effect upon performance (Cheuvront et al., 2010). Successive 

bouts of thermally-stressful work appear to have a cumulative effect on the thermal-work strain of 

the individual (Horn et al., 2013). The critical nature of effectively managing thermal-work strain 

over time is crystallized in the recent Ebola virus treatment centers. Here, Chertow et al. (2014) 

detail that physicians were only able to spend 45 to 60 minutes, two or three times per day, in 

direct contact with their patients because of the “substantial heat exposure and fluid losses”. 

Roberts and Perner (2014) suggest more time-intensive care for Ebola virus patients was not 

available in part because of the limited time available to health workers when in personal 

protective gear. 

Finally, while thermal-work strain may affect the performance or safety of the individual, 

the team perspective also needs to be considered. A team member not able to do his/her part 

means other team members must step in, which makes the whole team work harder. If an 

individual collapses from heat illness, this medical event is of concern to the whole team. Now 

one or more team members have to stop what they are doing and assist the individual with 

hyperthermia. This can be especially problematic for teams working in hazardous environments, 

where the team member has to be carefully extracted from a contaminated area.  

1.3 Problem Statement 

The challenge of excessive thermal-work strain has two research problems. 1) There is an acute 

component, where there is a risk of illness/injury or even death, and 2) a chronic component, 

where human performance is degraded over time. For first responders and emergency workers, 

both aspects can have life-impacting consequences.  Although personal physiological monitoring 

has been suggested as a means to assess thermal-work strain and prevent injury (Bernard and 
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Kenny, 1994; Taylor and Amos, 1997; Hoyt et al., 1997), the needed physiological measures 

have proved elusive to obtain. Real-time ambulatory monitoring and management of an 

individual's thermal-work strain state is an open problem in physiology. The requisite measure of 

core body temperature needed for accurate thermal-work strain assessment is a challenge in an 

ambulatory setting. Specifically, this problem is one of state estimation of latent core body 

temperature from noisy and ambiguous observations produced by modern body sensors (such as 

heart rate and skin temperature). A lack of thermal-work strain state information has meant that 

management of heat injury and work scheduling is primarily conducted using environmentally-

based work-rest tables. Without accounting for an individual’s continuous thermal-work strain 

response to the environment and work goals, these schedules can increase heat injury risk and 

provide sub-optimal performance over the course of proscribed work. 

To address these problems, we present an automated system that provides advice based 

upon physiological monitoring of an individual’s thermal-work strain state and their overall task 

goals and safety constraints. The system is based upon a physiological feedback loop (see Figure 

1.2), where given an individual’s thermal-work strain state and their goals and objectives, the 

system will provide optimal pacing advice. Our two areas of work focus on the perception and 

decision-making portion of the physiological feedback loop.  

 

 

Figure 1.2: The physiological feedback loop. Where s = state (human thermal-work strain index, 

distance to goal and time), R is a reward function dependent on state, Π = a policy function 

dependent upon state, and A = actions (movement speed or pace). 

Our first focus is to perceive an individual’s current thermal-work strain state using data 

from commercially available physiological sensors. Here we wish to take the easily-measured, 

non-invasive variables and determine with a high degree of accuracy the latent thermal-work 

strain state. The perception algorithm will provide us with the most likely latent-thermal strain 

state given an input of readily measured physiological variables.  
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Once we can determine an individual’s thermal-work strain health state(s), we wish to 

use this knowledge in the context of the goals and constraints of their current activity. Here we 

wish to estimate a policy that optimizes health and performance given a set of goals and 

constraints. Our estimated policy function Π(s) will provide an action (a) for a given health state 

(s) that is optimal in-terms of the current health state and the activity goals and constraints. 

1.4 Contributions 

In this dissertation, we present two main contributions to determine thermal-work strain state and 

improve human performance and health outcomes in extreme conditions. These contributions are: 

 

 

 

 

 

 

 

  The outline of this dissertation is as follows. In Chapter 2, we present background 

material on exertional heat illness, thermal-work strain measurement, ambulatory physiological 

status monitoring, the problem and current approaches to measuring core body temperature, 

current approaches to managing thermal-work strain, current pacing strategies research in 

competitive sports, and how Markov decision processes can be used to model our physiological 

feedback loop. In Chapter 3, we describe our computational physiology approach to estimating 

core body temperature and thermal-work strain. We show our dynamic Bayesian network model 

of the human thermoregulatory system, and how we simplify this model to one input parameter 

readily measurable on commercially available sensing devices. We show the validation of this 

model across multiple studies, and how the technique was used in a real-time monitoring 

application during several field training exercises. In Chapter 4, we detail a Markov decision 

process method to capture activity goals and thermal-work strain constraints, and show through 

simulation how our method can lower overall thermal-work strain compared to human pacing 

strategies on the same task. In Chapter 5, we evaluate our combined work from Chapters 3 and 4 

and its implementation as a real-time system for human participants in a laboratory study. We 

note that the work described in Chapters 3 and 4 has been published (see Buller et al., 2010, 2011, 

2013a, 2013b, and 2015). Chapter 6 presents our conclusions and future areas of work. 

 A method for the state estimation of the latent human core body temperature 

from wearable physiological sensors that enables real-time thermal-work 

strain health state monitoring and heat injury prevention. 

 Models for policy estimation to provide automated advice to improve thermal-

work strain state and performance outcomes over a course of prescribed work.  
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Chapter 2 

Background 

2.1 Components of the Physiological Feedback Loop 

The physiological feedback (see Figure 1.2) loop is intended to accomplish two goals. First, the 

thermal-work strain sensing component can prevent acute hyperthermia and the associated heat 

illness. Heat illness can lead to a marked reduction in work capacity and reduces the effectiveness 

of teams by taking time and effort of other team members to assist with treatment. Second, the 

feedback loop aims to take an individual’s current thermal-work strain state and combine this 

information with progress towards a set goal or task, to the individual provide with an optimal set 

of actions that can safely get them to that goal. An overall work goal may be to travel a set 

distance, in a certain amount of time, given certain environmental conditions, and while wearing 

personal protective equipment. Another goal may be to assist in the extraction of casualties from 

a danger area. The actions may be a series of movements at different speeds interspersed with rest 

periods to accomplish the goal. These movement speeds will have different impacts on the 

thermal-work strain state of the individual, and progress to the ultimate goal. By perceiving the 

thermal-work strain state, our problem is to optimally control the pace of the individual to 

minimize immediate heat illness/stroke risk and to allow completion of the goal with the least 

thermal-work strain possible. The physiological feedback loop has two components that need 

solutions to make the system viable: 1) accurate thermal-work strain state estimation, and 2) 

estimation of a policy that for a given thermal-work strain state can provide a set of actions that 

optimize performance. 

To provide an overview of the thermal-work strain state estimation problem, we first 

examine the basic physiology of exertional heat illness. We examine the physiological methods to 

assess thermal-work strain state that are present in the literature. Here, we identify, heart rate and 

core body temperatures as critical physiological measures needed for accurate assessment of 
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thermal-work strain. A brief history of the development of physiological sensors and an overview 

of commercially available systems is presented. While many modern sensor systems track heart 

rate, there are few that can measure core body temperature. Of these systems, core body 

temperature is measured using an ingestible thermometer pill that, in many cases, is not 

appropriate for continuous monitoring purposes. The challenges of measuring and estimating core 

body temperature are detailed along with recent attempted solutions.  

Current methods to manage the thermal-work strain risk of individuals and teams are also 

presented. We demonstrate that these methods lack individualization and act in a very 

conservative health protecting fashion. We review the literature on pacing strategies for elite 

athletes and identify several models that are presented to show how a pacing strategy is modified 

over time. The literature suggests that pacing is modified based upon subjective measures of 

perceived exertion which appears to be an integrator of afferent feedback signals and future effort 

required to complete the competitive event. These models suggest that the pacing strategy is a 

non-linear dynamical system control problem. We identify the Markov decision process (MDP) 

as a means to formulate this pacing control problem, and detail several methods that can be used 

to solve and MDP to provide an optimal policy. For performance optimization, individuals must 

complete the task safely (within thermal-work strain safety limits) and to complete the task in a 

cooler (according to core body temperature) and less fatigued (according to overall thermal-work 

strain) state. Finally, we identify the few examples in literature where an MDP has been used to 

help guide human actions. 

2.2 Thermal-Work Strain State Estimation 

2.2.1 The Physiology of Exertional Heat Illness  

Across a range of thermal environments, human core body temperature (CT
3
) is usually 

maintained to such an extent (a few tenths of a degree Celsius) that deviation is suggestive of 

some medical condition (Romanovsky 2006). Regulation of CT occurs through the balance of 

heat production and heat transfer to the environment. If the rate of heat production exceeds the 

rate of heat loss to the environment, the body will store heat and CT will rise. Conversely CT will 

decrease, if the rate of heat loss exceeds the rate of heat production. Excessive storage or loss of 

heat can lead to illness or even death. Figure 2.1 shows a typical range of human CT 

temperatures. 

                                                      
3
 Throughout this document when CT is used both as an acronym and variable within equations. Italicized 

CT indicates a variable, and normal font CT indicates the acronym for core body temperature.   
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Figure 2.1: Core body temperature ranges (Hall 2011, Bouchama and Knochel 2002, Sawka and 

Young 2006, Dubois 1948) 

 

Heat production is primarily a by-product of human metabolism. The overall metabolic 

rate includes a basal rate of all cells in the body, additional metabolism caused by the actions of 

hormones, the sympathetic stimulation of cells, demands of food digestion, and any additional 

metabolism caused by muscle activity.  

Heat loss depends on how fast metabolic heat can be transferred from the body to the 

environment. Since most heat is generated deeper within the body, heat loss has two aspects: 1) 

how fast heat can be transferred to the surface of the body or skin and 2) how fast heat can be 

transferred to the environment. The primary mechanism for heat transfer to the skin is skin blood 

flow. Blood vessels near the surface of the skin can both constrict and dilate causing a respective 

decrease or increase in blood volume at the skin. Heat transfer to the environment can occur 

through a number of mechanisms: conduction (K), convection (C), radiation (R), and evaporation 

(E) (Sawka and Young 2006).  

A change in CT can be explained by a heat balance equation (Equation 2.1). 

 

  
   

  
            ,       (2.1) 

 

where the ± sign indicates heat can either lost or gained through this mechanism. Where 

S is the rate of heat storage: positive S means heat storage and an increase in CT; and negative S, 

heat loss, and a decrease in CT. H is the rate of heat production as a byproduct of the metabolic 

rate.   

The rate of K, C, and R are dependent on the skin to environment temperature gradient, 

while the rate of E is additionally dependent on the amount of sweat and the evaporative potential 
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of the environment. Thus, if the rate of H remains constant but the environmental temperature 

increases, heat transfer from the body becomes more and more dependent upon evaporative 

cooling. As environmental temperature increases, the skin temperature to environment 

temperature gradient decreases until it becomes negative. When this gradient is negative, heat is 

being added to the body from the environment through the K, C, and R mechanisms.  Thus, heat 

loss in these conditions is dependent almost entirely on evaporative cooling alone.  

Thermoregulation can be achieved by modification of behaviors that affect heat 

generation (H) or through physiological responses to affect heat loss to the environment. If heat 

loss is too great vasoconstriction can reduce blood flow to the skin and thus decrease the skin 

temperature’s environmental temperature gradient. If heat loss is insufficient, vasodilation 

increases blood flow to the skin increasing the skin-to-environment temperature gradient. 

Similarly, sweat rate increases to increase heat loss from evaporation. 

The classical control mechanism is a centralized feedforward controller that has a CT set 

point based upon biological rhythms, fever, heat acclimation and exercise training (Sawka and 

Young 2006). This set point is compared in the hypothalamus to an integrated core body 

temperature producing an error signal, which in conjunction with skin temperature, is integrated 

into thermal effector signals for combinations of behavioral change, vaso-constriction/dilation, 

and sweating (Sawka and Young 2006). Recently, the idea of a unified control mechanism has 

been challenged (Romanovsky 2007) from evidence of multiple distinct thermal effector 

pathways suggesting there are multiple control loops that activate at different temperatures. 

However, for the purpose of this dissertation, the practical result is the same: rise in CT increases 

skin blood flow and sweat rate increase in proportion. 

The addition of protective clothing ensembles impact all the mechanisms of heat transfer. 

Once the skin is covered, heat has to be transferred through the garment to the external 

environment. The rate at which heat can be transferred is a combination of the garment’s 

insulation and vapor permeability. The higher the insulation and the more attenuated the vapor 

permeability, the smaller the rate of heat loss by C, R, and E. Figure 2.2 shows an example of the 

effectiveness of these heat loss mechanisms while working with and without PPE in temperate 

and hot humid conditions and shows typical physiological responses. 
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Figure 2.2: Components of heat transfer from clothed individual to surrounding environment.  

 

 

Table 2.1: Effects of changes in environment and ensemble on convective (∆C), radiative (∆R), 

and evaporative (∆E) heat loss where ∆E is evaporative heat loss from both sweat and 

respiration, and an increase in clo and decrease in im is indicative of greater encapsulation.  

∆ Environment ∆ Ensemble ∆C ∆R ∆E 

↑Ta, ↑ RH - ↓ ↓ ↓ 

- ↑clo, ↓im ↓ ↓ ↓ 

↑Ta, ↑ RH ↑clo, ↓im ↓↓ ↓↓ ↓↓ 

 

 

When the thermoregulatory system can compensate for the heat generated from exercise 

a steady state core body temperature will be reached. However, as the capacity of the 

thermoregulatory system for cooling is exceeded by heat generation from exercise core body 

temperature will continue to rise.  The increased rise in CT and the demand for more cooling 

elicits further increases in skin-blood flow and sweat production (see Table 2.1 for examples).  

Sweat loss can be as high as 2 liters/hour (Adams et al., 1975; Cheuvront and Haymes, 

2001). If water and electrolytes are not replaced during exercise, more stress is placed on the 

thermoregulatory system. Dehydration can elevate core body temperature, reduce the tolerance to 

high core temperatures, and for a given core body temperature, reduce the amount of sweating 

and skin blood flow. Additionally, the skin blood flow and sweating effector responses are less 

sensitive and are triggered at higher core body temperatures. In terms of cardiovascular strain 

dehydration is additive to heat strain (Sawka and Young 2006). 

The various strains of heat, exercise, dehydration and electrolyte loss can change 

compensable exercise into uncompensable exercise. As exercise continues and core body 

temperature rises, skin blood flow demands can be substantial approaching 8 liters/min (Rowell 
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1983, 1986). These skin blood flow demands compete with the finite resources of the heart to 

maintain the necessary cardiac output to service skeletal muscle and other organs of the body. 

Under these conditions, we find two physiological responses:  1) tachycardia, and 2) the 

convergence of skin temperature and core body temperature. Recent work by Cuddy et al. (2014) 

and Cheuvront et al. (2010) suggest that the skin temperature to core temperature gradient plays 

an important role in determining the level of aerobic performance. Sawka and Young (2006) also 

describe how the skin temperature to CT gradient is an indication of skin blood flow 

requirements. Indeed, Pandolf and Goldman (1978) suggested that the gradient of skin 

temperature to CT could be used as a means to assess time to fatigue.  

2.2.2 Exertional Heat Illness 

Exertional heat illness is comprised of a spectrum of heat exhaustion, heat illness and heat stroke. 

Heat exhaustion is defined by Sawka and Young (2006) as “a mild to moderate illness 

characterized by the inability to sustain cardiac output.” Bouchama and Knochel (2002) also 

include elements of heat illness in their definition where illness can also be experienced from 

dehydration or lack of salts. Symptoms include: thirst, weakness, dizziness, headache, and 

fainting. More severe heat illness can lead to “organ (e.g. liver and renal) and tissue (e.g. gut and 

muscle)” injury (Sawka and Young, 2006). Heat stroke is a severe illness that if untreated can 

lead to permanent disability or death. Heat stroke is characterized by high core body temperatures 

(>40 °C), central nervous system abnormalities such as an abnormal gait or confusion, and dry 

skin. The exact nature of the transition from heat stress to heat stroke is not known. However, 

recent work suggests that other factors such as recent or current illness, use of pharmacological 

substances or alcohol use may play a role in reducing tolerance to heat stress.  Bouchama and 

Knochel (2002) and Stacey et al. (2014) both develop pathophysiological models that suggest a 

mechanism where heat stroke is a combination of endotoxemia and a systematic inflammatory 

response and circulatory compromise. These causes can lead to the failure of thermoregulation, 

circulatory shock, and multiple organ dysfunction. Epstein et al. (2015) provide a review of 

clinical interventions beyond whole body cooling that may have a positive impact on heat stroke 

outcomes. 

2.2.3 Heat Strain Measurement 

Here, we wish to distinguish between methods that assess the potential heat stress that work, 

clothing, and environmental conditions impose on an individual and the assessment of the 

physiological strain experienced by a particular individual.  Heat strain is often coupled in a very 

dependent way with the strain from work alone. It is the combination of the two that can lead to 
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exertional heat illness. It is more practical to assess these two physiological strains together. The 

determination of thermal-work strain (TWS) has often involved measuring some combination of 

core body temperature, skin temperature, heart rate, and sweat rate or water loss  (NIOSH 1986). 

None of these parameters alone can be used to accurately assess thermal-work strain. Core body 

temperatures can indicate thermal-work strain over a large range from 38.5 °C to more than 40.0 

°C depending on the environment, clothing worn and fitness of the individual (Sawka and Young 

2006; Ely et al., 2009). High heart rate can be due to exercise effort alone or include the strain of 

vaso-dilation and supporting increased blood flow. While a symptom of heat stroke is dry hot 

skin, skin temperature can vary quite dramatically depending on the environment, clothing, and 

thermoregulatory response. Sweat rate also varies greatly depending on the environment and 

clothing that is worn. In some instances, there may be equivalent sweat rates. In very humid 

environments or when clothing with vapor barriers is worn, the thermoregulatory effectiveness is 

lower and, thus, the overall TWS strain will be higher (Hatch 1963; Sawka and Young 2006; 

Cheuvront et al., 2007). It is a combination of these physiological measures that provides some 

indication of TWS.  

Robinson et al. (1945) proposed an index that was an equally weighted combination of all 

four parameters. Their index of physiological effect is computed from Equations 2.2 to 2.6. 

 

                      (2.2) 

 

where Ep is the index of physiological effect, Eh is the heart rate component, Es is the skin 

temperature component, Er the core body temperature component, and Ew is the sweat rate. These 

component are specified as follows: 

 

   
   

         
           ,       (2.3) 

 

where Hbase is an individual’s baseline heart rate and Ht is the current heart rate. 

 

   
   

          
           ,       (2.4) 

 

where Sbase is an individual’s baseline skin temperature and St is the current skin 

temperature. 
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           ,       (2.5) 

 

where Rbase is an individual’s baseline core body temperature and Rt is the current core 

body temperature.  

 

   
   

          
            ,      (2.6) 

 

where Wbase is an individual’s baseline sweat rate and Wt is the current sweat rate. 

 

This index was developed on a small number of volunteers and was not validated with 

new data.  

Hall and Plote (1960) suggested an index that used heart rate, sweat rate, and core body 

temperature. The method however, while relatively simple, cannot be computed in real time and 

only provides an index of the physiological strain achieved after completing an exercise. The 

method is described below in Equation 2.7. 

 

     
  

   
          ,       (2.7) 

 

where Is is the index of physiological strain, HR = heart rate, Tr is rise in rectal 

temperature (°C/ hr.), and Wn is total sweat production (nude wt. loss, kg / hr.). 

 

A number of approaches have also been suggested using only two parameters. The 

convergence of skin temperature and CT has been used to predict time to exhaustion (Pandolf, 

and Goldman, 1978). While this method did not compute a thermal-work strain index explicitly, 

the time to exhaustion could be viewed as such an index. While the technique showed promise, it 

operated best in hot humid environments. The technique uses the rate of change in skin 

temperature to extrapolate a point where skin temperature and core body temperature converge.  

Yokota et al. (2005) suggest a lookup table method for determining risk of heat strain 

using HR and skin temperature along with modification for body mass index. Building on this 

work Buller et al. (2008) suggested computing the likelihood of a person having high TWS using 

just HR and skin temperature. Figure 2.3 shows the results from a cubic logistic regression where 

the decision bounds can be tuned based upon the tradeoff of false negatives and false positives. 

The approach was further validated by Cuddy et al. (2013) using different exercise rates and 

environmental conditions.  
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Figure 2.3: Cubic logistic regression to estimate likelihood of high TWSI (PSI) from TS and HR. 

Validation data classified using a 0.4 likelihood boundary (from Buller et al., 2008). 

 

Heart Rate and CT were combined by Frank et al. (1996, 2001) for their cumulative heat 

strain index (CHSI). Equation 2.8 shows how to compute their index.  

 

      
         

 
  

               
 

 
       (2.8) 

 

where hb = heart beats, HR0 is initial heart rate (beats/min), Tr is rectal temperature, Tr0 is 

initial rectal temperature and t is time in minutes elapsed from the first measurement. 

 

This index was validated on several large scale studies with over 50 participants and was 

designed to be used to evaluate heat-intolerant volunteers in the Israeli Defense Forces (IDF). 

However, while the index works for one bout of exercise, it continues to rise during rest even 

when both HR and CT decline. Identifying this drawback of the cumulative heat strain index, 

Moran et al. (1998) proposed an index that could be computed in real time from instant data, and 

that was able to reflect physiological strain from multiple bouts of work and during rest periods. 

It has the advantage of combining how hot an individual is getting (think of a temperature gauge) 

with how hard they are working (e.g. a tachometer). The physiological strain index (PSI) is a 

weighted combination of heart rate and core body temperature (see Equation 2.9) that ranges 
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from 0 (no strain) to 10 (very high strain). A PSI of 10 is achieved at a HR of 180 beats/min. and 

an CT of 39.5 °C (103.1 °F) corresponding to a level of thermal-work strain associated with a 

50% likelihood of becoming a heat casualty (Sawka and Young 2006). 

 

                               
                           

   (2.9) 

 

 Where PSI is the physiological strain index, CT is core body temperature, and HR is 

heart rate. The rest suffix denotes the HR or CT at rest prior to exercise. A high PSI indicates a 

person is hot and working very hard, therefore the strain is high. Conversely, a low PSI means the 

person is cool and is not working very hard. Table 2.2 shows the PSI scale from 0 to 10, the scale 

associated set of adjective anchors, and HR and CT values that can produce the associated PSI. 

Heart rate and CT values are based upon using CTrest of 37.0 °C and HRrest of 70 beats/min. 

 

Table 2.2: The PSI scale and corresponding HR and CTs. 

Strain PSI HR (beats/min.) CT (°C) 

 0 70 37.0 

No/Little 1 81 37.25 

 2 92 37.5 

Low 3 103 37.75 

 4 114 38.0 

Moderate 5 125 38.25 

 6 136 38.5 

High 7 147 38.75 

 8 158 39.0 

Very High 9 169 39.25 

 10 180 39.5 

 

The PSI has demonstrated efficacy in identifying individuals with high heat strain in both 

hot-dry and hot-wet environments with or without PPE (Moran, 2000). This work also explored 

how the index can be used to assess the impact of different levels of hydration (Moran et al., 

1998) and whether gender differences can be assessed utilizing the PSI (Moran 1999). 

Independently, Gotshall, Dahl and Marcus (2001) evaluated the index for exercise in a laboratory 

setting examining both hot-dry and hot-humid conditions. This work concluded that the PSI 

appropriately documented heat strain for both intermittent and continuous exercise. Yokota et al. 

(2002) examined the effectiveness of PSI in a field environment for vigorous military training 

activities and concluded that it is an appropriate index. 

The physiological basis of this method, combined with the simplicity of the scale has 

made this scale attractive for summarizing thermal-work strain. Thus, this approach has often 
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been adopted for use when measuring the thermal-work strain of workers outside of laboratory 

settings for example: wildland firefighters (Lui et. al . 2014), city firefighters (Gunga et al., 

2008), construction workers (Chan et al., 2012), and the military (Buller et al., 2008).  Finally, to 

avoid confusion Moran’s acronym of PSI, the index will be called the thermal-work strain index 

(TWSI) in this document. 

Subjective Measures of Thermal-Work Strain 

Because the TWSI combines two physiological components into one scale, there is no readily 

available single subject scale equivalent. There are, however, two standard subjective scales that 

appear to capture both components of thermal-work strain. The rating of perceived exertion 

(RPE) (Borg 1970, 1982) is a scale from 6 meaning no exertion at all, to 20 meaning maximal 

exertion. Table 2.3 shows the scale and associated exertion adjectives. Because both HR and 

oxygen consumption increase linearly with work (see Fick equation Fick 1855), the scale was 

designed in a way to purposefully match HR from rest (60 beats/min.) to a maximum HR of 200 

beats/min..  

 

Table 2.3: Rating of Perceived Exertion (RPE) scale. 

RPE Scale Exertion Adjectives 

6 No exertion at all 

7 Extremely light 

8  

9 Very light 

10  

11 Light 

12  

13 Somewhat hard 

14  

15 Hard (heavy) 

16  

17 Very hard 

18  

19 Extremely hard 

20 Maximal Exertion 

 

Lamb et al. (1999) in their assessment of the test retest reliability of the RPE show how it 

has been used to assess exertion in: cycling, walking and running, stepping, swimming, and 

rowing. The RPE scale has also been adopted by the American College of Sports Medicine as a 

means to prescribe safe and effective training intensities (ACSM 2000). However, Lamb et al. 

(1999) caution practitioners that their 95% confidence intervals show ± 3 RPE units from one 

exercise to another. 
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For the thermal component, a number of different scales have been suggested in the 

literature (see Table 2.3 for examples). The American Society of Heating, Refrigerating and Air 

Conditioning Engineers (ASHRAE) (2001) recommend a 7 point hedonic scale developed by 

Fanger (1970). This scale has been found to be most sensitive to skin temperature and sweat 

evaporation (Fanger 1982). Young et al. (1987) examined thermal comfort using their own scale 

(see Table 2.4) when examining the perceived thermal sensation from the application of a range 

of cooling techniques. They find that skin temperature, more than core body temperature, plays a 

role in perceived thermal sensation. Finally, we present a modified scale that keeps the hot cold 

balance of Fanger’s scale and extends the scale in a linear fashion. The modified scale is from -10 

to +10, and has the addition of “extremely hot” and “extremely cold” anchors. The scale has been 

modified to avoid the apparent non-linearity of the jump from very hot to unbearably hot in 

Young et al.’s scale, and to allow the scale to be used in comparison to the thermal-work strain 

index. 

 

Table 2.4: Thermal sensation scales. 

Fanger (1970) Young et al. (1987) Proposed 

Scale Verbal Anchor Scale Verbal Anchor Scale Verbal Anchor 

    −10 Unbearably Cold 

  0.0 Unbearably Cold −8 Extremely Cold 

−3 Cold 1.0 Very Cold −6 Very Cold 

−2 Cool 2.0 Cold −4 Cold 

−1 Slightly Cool 3.0 Cool −2 Cool 

0 Comfortable 4.0 Comfortable 0 Comfortable 

+1 Slightly Warm 5.0 Warm +2 Warm 

+2 Warm 6.0 Hot +4 Hot 

+3 Hot 7.0 Very Hot +6 Very Hot 

  8.0 Unbearably Hot +8 Extremely Hot 

    +10 Unbearably Hot 

 

Training individuals to utilize subjective rating scales may help to provide some self-

awareness of increasing thermal-work strain. However, work by Soule et al. (1978) would 

suggest that self-perception of thermal-work strain is complex. In their work volunteers were 

trained to complete an 8km walk within 120 minutes, in hot (40 °C) conditions with a relative 

humidity of 50%. Volunteers were provided their speed of movement, distance to goal and core 

body temperature. They were instructed to complete the foot movement on time and to avoid heat 

exhaustion. When the task was replicated with high humidity (65%), subjects did not significantly 

adjust their pace and many succumbed to heat exhaustion before finishing the foot movement.  
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From this review of literature, it can be concluded that to assess thermal-work strain, 

measures of both heart rate and core body temperature are necessary. The thermal-work strain 

index, when coupled with a physiological monitoring system, would make a simple and effective 

means to avoid heat injury or illness. 

2.2.4 Ambulatory Physiological Monitoring 

The concept of directly monitoring the physiology of free living individuals draws from a long 

line of forward-looking research beginning in the early 20th century. Many of our modern 

wearable sensors have had a long history of development including respirometers, electro-

cardiograms (ECG), and accelerometers. In 1906, Nathan Zuntz, a German physiologist, created a 

portable dry-gas measuring device capable of measuring expired gas volume to better aid his 

studies on the physiological effects of high altitude (McLean and Tobin, 1987) (see Figure 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Nathan Zuntz wearing his portable dry gas volume measuring device. (Zuntz et al., 

1906). 

 

In 1902 Willem Einthoven, a Dutch physician, published the first accurate 

electrocardiogram data using a modified wire coil galvanometer (Moukabary, 2007), and in 1928 

the first portable version (weighing 22.7 kg and powered by a 6-volt automobile battery) was 

created by the Sanborn Company (Zywietz, 2003). Accelerometers made their debut when 

McCollum and Peters developed a resistance-bridge accelerometer based on a Wheatstone half-

bridge (McCullom et al., 1924) which was commercialized in 1923 for use in bridges, 
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dynamometers, and aircraft (Walter, 2007). Initial models weighed around 450 grams and 

measured about 2 x 5 x 22 cm. 

During the latter part of the 20th century, individual sensors were light and wearable 

enough to be incorporated into systems that monitored a number of physiological parameters. 

Pioneering work circa 1955 from the U.S. Army’s Quartermasters Research and Development 

Center, Natick, MA produced a telemetry system to measure the physiological impact of clothing 

(see Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Thermal physiological strain monitoring system, Quartermaster Research and 

Development Center, Natick MA (Circa 1955). 

 

Later, prototype systems included: 1) Yale University and NASA’s joint test of a 

physiological monitoring system capable of monitoring heart rate, accelerometry, skin and core 

body temperature during an ascent of Mt. Everest (Satava et al., 2000); 2) the monitoring of 

Boston Marathon runners by Massachusetts Institute of Technology (MIT) students during a 

project named Marathon Man (Redin, 1998); 3) the development of an ingestible core 

thermometer pill (sponsored by NASA and the U.S. Army) (O’Brien et al., 1998); and 4) the U.S. 

Army’s field testing of an integrated sensor system that measured motion, heart rate, core body 

temperature, pedometry, and geo-location during military training events (Hoyt et al., 1997). 

Although nascent, these systems demonstrated the potential value of monitoring multiple 

physiological parameters. Figure 2.6 illustrates a real time monitoring system used to show the 

thermal-work strain index of a squad of warfighters using core body temperature pills and heart 

rate monitors (Hoyt et al., 2002). 
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Figure 2.6: Physiological monitoring system that measured the thermal-work strain index in real 

time (2000).  

 

Today, wearable physiological sensing devices have been demonstrated and are used in a 

wide variety of applications including home health care, elderly monitoring, physical training, 

industrial hygiene, and military uses. We refer the reader to the survey by Pantolopoulos and 

Bourbakis (2008).  Fitness and training products include heart rate monitors, global positioning 

systems, physical activity monitors, and pedometers produced by a variety number of companies 

(See Appendix A, for a list of modern sensor devices). Generally, these devices are worn during 

exercise or everyday activity and integrate sensor data (e.g., HR, activity counts, distance 

traveled, time elapsed) with user input (e.g., gender, age, weight, stride length, resting HR, 

maximal HR) to estimate energy expenditure and or physical activity often using proprietary 

algorithms. Although small, unobtrusive, and non-invasive, fitness and athletic PSM devices do 

not often meet clinical standards and provide approximate measurements. Evaluations against 

standard measures of energy expenditure using either indirect calorimetry or double labeled water 

(Chen, 2003; Chen and Basset, 2005) have found that many pedometers and accelerometer-based 

physical activity monitors accurately detect physical activity, but often underestimate energy 

expenditure (Bassett and Strath, 2002; Welk 2002). Figure 2.7, depicts typical fitness devices that 

can be purchased today, such as the Actical (Philips Respironics, Bend OR), Actigraph GT3X 
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(Actigraph, LLC, Pensacola, FL), Direct Life (Philips Electronics, Andover, MA), and Fitbit 

Tracker (Fitbit, Inc., San Francisco, CA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Various commercially available fitness physiological status monitoring devices 

commercially available for running and walking including: (A) heart rate monitor with (B) watch 

display; (C) waist and (F) foot mounted pedometers; (E) arm mounted triaxial accelerometer; 

and (D) smart phone/GPS unit. 

 

While modern wearable sensors can provide a wealth of physiological information, they 

are quite different from what a physician might measure in a clinical setting where more 

controlled or invasive techniques are available. Often the measures from the non-invasive sensors 

are not specific to most health states of interest and can reflect the output of multiple latent 

variables. Consequently, the relationship of typical ambulatory monitoring data to standard health 

state metrics of interest is often tenuous. Additionally critical physiological functions may be 

strongly defended by compensatory biological mechanisms (e.g., symptoms of shock or 

dehydration may only be measurable at a point when an individual is already too injured for 

medical intervention to be effective) (Convertino et al., 2010; Committee on Metabolic 

Monitoring 2004). In our case, for example, internal body temperature is the key to understanding 

hyperthermia, but non-invasive measures such as heart rate and skin temperature are also driven 

by the environmental conditions, clothing characteristics, individual characteristics (e.g. % body 

fat), work rate, hydration state, and thermoregulatory factors, and have a complex relationship to 

internal temperature. It is only when thermoregulation begins to fail that heart rate and skin 

temperature correlate more directly with internal temperature. 
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Finally, several manufacturers have developed first responder style physiological status 

monitoring equipment that attempts both robust healthcare measures and the wearability of fitness 

devices. While these type of devices offer unique challenges the Equivital II (Hidalgo Ltd, 

Cambridge UK) and BioHarness (Zephyr Inc. Auckland, NZ) have received Food and Drug 

Administration (FDA) 510K certification as heart rate and respiration monitors. In addition the 

Equivital II has been shown to have good comfort and acceptability when worn for extended 

periods of time (Tharion et al., 2013).  

Even though there has been great effort recently to produce wearable physiological 

monitors, the critical parameter of core body temperature is missing. While the Hidalgo Equivital 

system can receive transmissions from the core body ingestible thermometer pill, this has a 

number of drawbacks (discussed in the next section) making it impractical for daily monitoring. 

Aside from core body temperature, many of the most modern wearable physiological monitoring 

devices struggle to accurately measure core body temperature. Appendix A shows a survey of 

physiological status monitoring devices that are on the market today and the parameters they 

measure. 

Finally, it can be concluded that to provide an accurate thermal-work strain assessment 

methods are needed to approximate or estimate core body temperature given our current state of 

physiological status monitoring technology. 

2.2.5 Methods to Estimate Core Body Temperature 

Medical grade CT measurement using pulmonary arterial blood temperature is only appropriate in 

a clinical setting. The traditionally accepted laboratory rectal and esophageal probe methods are 

impractical for ambulatory settings. Ingestible thermometer pills (e.g., Jonah Pill thermometer, 

Respironics, Bend, OR) have been used successfully in field settings (e.g. Lee et al., 2010), and 

have been within acceptable limits of agreement (± 0.4 °C) and bias (< 0.1 °C) when compared to 

esophageal temperatures (Byrne and Lim 2007). However, these thermometer pills have 

drawbacks: 1) they cannot be used by all people due to medical contraindications, and 2) can 

suffer from inaccuracy when hot or cold fluids are consumed (Wilkinson et al., 2008). The 

difficulty in directly measuring CT in ambulatory settings has led to the search for a practical 

alternative technique. 

There have been a number of different efforts to measure or estimate core body 

temperature in a field setting, most of which fall into three main approaches: 1) temperature 

correlates, 2) multi-parameter approach, and 3) specialized heat flow sensors. 
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Temperature Correlates 

The temperature correlate work has sought for different body sites where either surface 

temperature or sub-surface temperature can be used to approximate core body temperature. Skin 

surface temperature can vary quite differently from core body temperature based upon the 

environment, clothing, and whether a person is sweating or not. Blood flow to the skin in 

conjunction with sweating is a mechanism used to thermo-regulate. Thus, in many circumstances 

there is no clear correlation to core body temperature (Burton 1935, Nielson 1969). However, if 

the impact of the environment, clothing and sweating can be removed there is some evidence that 

an approximation to core temperature can be made (Barnes 1967). For example, axillary 

temperature is affected less by these factors, and can show a modest correlation to core 

temperature. A review by Taylor and Amos 1997 examined various approaches using skin 

temperature to approximate CT. They conclude that for field settings skin temperature alone 

without special modifications (specialized insulation or adoption of zero heat flow approach) does 

not track with core temperature.  

 Tympanic temperature measurement takes this idea one stage further, attempting to 

measure the temperature of the tympanic membrane in the ear. This approach to measurement has 

been used fairly widely both in clinical settings and in ambulatory environments. Close 

correlations can be found in fairly steady state exercises but during periods of intermittent work 

core body temperature and tympanic temperature diverge causing one author to suggest that 

firefighter authorities find other means of assessing core body temperature (Langridge et al., 

2012). Even in clinical settings findings have been inconsistent. One clinical trial suggested that 

the method would fail to diagnose fever in 4 out of 10 children (Dodd et al., 2006). When 

conditions are ideal, it appears that the method works reasonably well, but the placement and 

particular individual differences in the ear canal can have significant impacts on the results 

(McCarthy and Heusch, 2006). Teunissen et al. (2011) suggested overcoming some of these 

problems by molding the sensor into a form fitting ear plug, but still concludes that this method 

may only be suitable in warm stable conditions. Overall Lim, Byrne and Lee (2008) report in 

their review article that using external measurements such as axillary or tympanic temperatures 

have proven unreliable.  

Multi-Parameter Approach 

Several recent approaches have examined using multiple non-invasive physiological measures to 

accurately estimate core body temperature. Kaufman and Coleman (2010), in their patent, show a 

12 parameter regression model which is shown in Equation 2.9. 
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                          (2.9) 

 

Where TA is ambient temperature, HT is height, WT is weight, MST is mean skin 

temperature, and VLF is very low frequency spectral component of heart rate. While the 

regression is derived from 60 volunteers, no validation data are presented.  

 Niedermann et al. (2014) present a core body temperature estimation equation based on 

determining two independent factors derived from principal components analysis. The method 

relies on three skin temperature measurements, heart rate and two skin heat flux measurements 

Equations 2.10 to 2.12 show the estimation approach: 

 

                               ,     (2.10) 

 

where CT is core body temperature (°C) and F1 and F2 are the factor scores computed 

from equations: 
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where Tuarm is upper arm temperature, Tlarm is lower arm temperature and Tthigh is skin 

temperature of the thigh all in °C, HR is heart rate (beats/min.), HFchest is the heat flux on the 

chest (Wm
-2

), and HFback is heat flux on the back (Wm
-2

) 
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While the approach showed reasonable root means square errors from 0.24 to 0.34 °C, it 

has the limitation of needing measurements from multiple, at least five, sites around the body. It 

is also unclear whether the heat flux measurements would be affected by sweating. The problems 

of using heat flux sensors are addressed in the skin heat flux sensor section. 
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Thermoregulatory Model Approach 

Human thermoregulatory heat transfer models (Kraning and Gonzalez, 1997; Fiala et al., 2001; 

Havenith, 2001) have been used successfully to estimate CT for groups. These models use an 

array of input variables that include metabolic rate, environmental parameters, individual 

characteristics, and clothing parameters. The SCENARIO model of Kraning and Gonzalez 

requires the following class of inputs: environmental conditions, clothing insulation and vapor 

permeability characteristics, individual characteristics (including height, weight, percent body fat 

and age), and work rate expressed in watts. In this model the human is represented as a series of 

concentric cylinders. The overall surface area of the cylinder is determined by an individual’s 

body surface area (height and weight). These cylinders are shown in Figure 2.8. 

 

Figure 2.8: Physics based human thermoregulatory model  SCENARIO (Kraning and Gonzalez 

1997). Heat dynamics modeled as a series of differential equations. 

 

In an ambulatory setting, these models suffer from the fact that not all inputs are available 

all of the time, and measuring or estimating metabolic rate in a field setting is difficult. From 

laboratory studies, where many of these model inputs are controlled, group mean core body 

temperature root mean square errors (RMSE) of 0.20 ± 0.05, 0.20 ± 0.11, and 0.19 ± 0.10 are 

reported for models proposed by Fiala et al. (2001), Havenith et al. (2001), and Kraning and 

Gonzalez (1997) respectively. The use of these models in an ambulatory environment requires 

measuring or estimating all of these input variables. 

An integrated system developed by the US Army (Tatbul et al., 2004; Buller et al., 2005; 

and Tharion et al., 2007) attempted to use the SCENARIO thermoregulatory model and multiple 

sensor inputs including real time environmental information. The combination of models and 

sensors was a system level approach. A combination of physiological and environmental sensors, 

and physiological and physics based heat transfer models were used to attempt to estimate life 
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sign and multiple health states (e.g., thermal, hydration, and cognitive). Figure 2.9 shows the 

dependencies of the health state algorithms. The system enabled relevant health states to be 

calculated in real time, but the accuracy of these health states were questionable given the indirect 

sensor readings and the number of measurements and assumptions required by the models. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Thermal state estimation: input parameters, models, and state mappings. Metabolic 

rate method 1: Moran, Heled & Gonzalez (2004); method 2: Pandolf et al. (1997); method 3: 

Spurr, Prentice & Murgatroyd (1988).   

 

One critical parameter to measure or estimate when using the thermoregulatory model 

approach is metabolic rate. In the US Army system, metabolic rate was estimated from GPS-

measured movement rates (GPS device) using the Pandolf (1977) equation estimates metabolic 

rate from weight, load, speed of movement terrain type and grade (see Equation 2.13). 

 

                                              (2.13) 

 

where    is metabolic rate (W), W is subject weight (kg), L is subject load (kg), η is 

terrain factor, V is movement rate (m/s) and G is terrain grade (%). Other similar methods have 

also been proposed (as surveyed by Potter et al., 2013).  

The American College of Sports Medicine equation (ACSM 2000) has also gained quite 

a wide acceptance. However, accurate estimation across populations, terrain grades, and types 

still remains a significant problem in the practical use of the speed and body type estimators. 

Recent work from Weyand et al. (2013) extends this approach to include stature. The technique 

for moderate walking shows a marked improvement over previous approaches, with ongoing 
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work to extend to different grades. Similarly, earlier work by Hoyt et al. (1994) based upon foot 

ground contact time and incorporated into an early Nike iPod accessory. This approach is 

accurate but has not been extended to different grades or loads.  

One current area of research interest is to estimate metabolic rate or activity from body 

worn accelerometers. Today in the market place, there are many wearable accelerometer devices 

that provide proprietary estimates of metabolic rate and a very large body of work examining 

methods to classify activity and estimate metabolic rate. A survey from the IEEE Engineering in 

Medicine and Biology Conference 2012 found 33 papers using accelerometry to estimate activity 

or metabolic rate. At the 2013 Body Sensor Networks (BSN) conference there were 16 papers, 

and at the International Conference on Ambulatory Monitoring of Physical Activity and 

Movement there were 77 papers. Many of these papers examine new accelerometry sensor 

systems or proprietary algorithms. Dannecker (2013) provides a comprehensive validation of 

some of the more popular devices and they found that the Actical, Actigraph and Fitbit devices 

significantly underestimate energy expenditure by 26%, 27% and 29% respectively.  

More sophisticated devices such as the SenseWear armband (Body Media Inc. Pittsburgh, 

PA) utilize accelerometers, and other sensor modalities such as galvanic skin response, and heat 

flux along with machine learning algorithms to estimate activity patterns. Different metabolic rate 

estimation techniques are then applied based upon the type of activity. The SenseWear armband 

performance compares well to other more complex laboratory/ambulatory approaches such as the 

IDEEA monitor (MiniSun LLC) (Welk et al., 2006). The IDEEA system consists of 5 integrated 

sensors that are taped to the soles of the feet, both thighs and the chest. The device applies a 

neural network to estimate postures and gaits from body segment angles and accelerations. 

Different metabolic rate estimators are used based upon posture and gait determination. However, 

while there is good agreement between these two devices when compared to indirect calorimetry 

methods the SenseWear arm-band can overestimate metabolic rate significantly (~70%) on level 

walking. (Machac, Prochazka, and Radvansky 2013).  

Better estimates of metabolic rate can be obtained when heart rate is added as an 

additional modality Zakeri et al. (2008). Recent work has focused on combining thermoregulatory 

heat transfer models with metabolic rate estimators that use heart rate (HR) with ambient 

temperature modifiers to account for skin blood flow (Yokota et al., 2008). This real-time model 

provided accurate group-mean CT estimates in a number of different environmental and clothing 

conditions (Degroot et al., 2008). While this method shows promise, it still requires many input 

parameters that must be measured independently from an individual such as environmental 

conditions and clothing characteristics. We compare our findings to this approach in Chapter 3. 
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Skin Heat Flux Approach 

One non-invasive approach that has received attention is the zero heat-flux (ZHF) method (Fox et 

al., 1973) where an insulated area of the skin is heated until there is no heat flow. The 

temperature of the skin is then assumed to be equivalent to deep body temperature. Most of the 

work on this approach has been in laboratory and clinical settings (Yamakage, Iwasaki and 

Namiki, 2002) with recent work focusing on improving measurement of dynamic temperature 

changes (Steck, Sparrow and Abraham, 2011), and decreasing the technique’s response time 

(Teunissen et al., 2011). In clinical settings these devices have demonstrated good agreement with 

esophageal measures, while custom sensors developed for ambulatory environments have had 

varying degrees of success depending on environmental conditions. Work by Xu et al. (2013) 

shows the difficulty of the approach demonstrating how the relationship between core 

temperature and heat flux on the skin surface can be affected by the environment, sensor 

placement, clothing, and sweating. This approach was adapted for use in ambulatory 

environments with firefighters (Gunga et al., 2008, 2009). Specialized helmet sensors were 

produced that tried to minimize the effects of the environment on the ZHF method. In chapter 3 

we examine the performance of this approach with our estimation algorithm. 

Computational Physiology Approach 

Much of the previous work in thermal-work strain state estimation has been focused on 

developing statistical associations for either core temperature directly or inputs to the 

thermoregulatory models from observed variables. However, these approaches neglect the 

complex relationships between the variables that impact core body temperature. The complexity 

of the human thermoregulatory models suggests that the responses of core body temperature and 

physiological measures are part of a dynamical system. Using current physiological monitoring 

techniques, certain variables (e.g. HR and skin temperature) can be readily observed; while 

others, core temperature in particular, can only be readily observed directly in a laboratory 

setting. Core body temperature among others is a latent variable that has an impact on our 

observed variables. Representing the dynamics and outputs of latent variables in some form 

should allow for better explanations of the observed variables. Exploiting knowledge of 

physiological relationships between variables has led to successful estimation of latent variables. 

Of note, Kashif et al. (2012) were able to estimate intracranial pressure from non-invasive 

sensors, by making use of the known physiological dynamics of blood flow through the brain 

represented in the form of an electric circuit. At their simplest, partially observable dynamical 

systems can be represented as Bayes filters with graphical model form below: 
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Figure 2.10: Graphical model showing how the typical health state estimation problem can be 

represented by a Bayes filter, where unobserved health states are represented by (X) and 

observed physiological measurements are represented by the vector (Y). 

 

In this form we assume that the dynamics are Markovian, in that the current state is all 

that is needed to predict the future next state. The joint probability can be represented by three 

factors: a prior or initial starting value P(Xt), a state-transition function P(Xt|Xt-1), and an 

observation function P(Yt|Xt) show in Equation 2.14: 

 

                              
 
            

 
       (2.14) 

 

At each time step (t), we wish to infer the most likely value of the latent variable given 

the last state and current observation (P(Xt|Xt-1, Yt)). For either the discrete state Hidden Markov 

Model (HMM) (e.g. Rabiner 1989) or continuous Kalman Filter Model (KFM) (Kalman 1960) 

representation algorithms exist to iteratively compute the most likely latent variable value. These 

models have been used with some success in other human monitoring problems (e.g. Dadashi 

2013, Sengul and Baysal 2012) but, to our knowledge, not for thermal-work strain state 

estimation.  

Graphical models provide a natural way to further express the physiological variables and 

dependencies that form the basis of biological systems. By their nature, many physiological 

processes evolve naturally over time and can be represented as Dynamic Bayesian Network 

(DBN) (e.g., Murphy 2002). Dynamic Bayesian network (DBN) models allow more complex 

dependencies to be modeled but often require more complex algorithms for learning and 

inference. Previous work by Aleks et al. (2008) described the successful use of a Bayesian 

Network approach to improve intensive care unit patient monitoring by modeling both the 

physiology and measurement equipment. A similar, but minimally validated, approach was also 

described by Borsotto et al. (2004), where they describe a large Bayesian Network to estimate 

warfighter life sign status from non-invasive physiological status monitors. In Chapter 3 we 
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develop a Bayesian network representation of the human thermoregulatory system as a starting 

point in the core body temperature estimation problem. 

2.3 Policy Estimation for Managing Thermal-Work Strain 

2.3.1 Work Rest Tables 

Current techniques to manage the long term thermal safety and performance of individuals are 

based upon work-rest tables (OSHA 1985, TBMED 507, 2003). These tables prescribe alternating 

periods of work and rest, with the duration of each phase based upon the environmental 

conditions, proposed work rates, and protective equipment being worn. These tables were initially 

based on empirical data collected from large scale field studies (Yaglou and Minard, 1956, 1957; 

and Minard 1961). These studies also formed the basis of summarizing environmental conditions 

as a single index that tried to encompass air temperature, humidity, wind and the effect of direct 

sunlight. The wet-bulb globe temperature (WBGT) is shown in Equation 2.15 (see TBMED 507, 

appendix B). 

 

                       ,      (2.15) 

 

where Tw is the wet-bulb temperature (“the wet-bulb temperature is the lowest 

temperature that can be reached under current ambient conditions by the evaporation of water 

only"
4
), Tg is the globe temperature which measures the temperature inside a standard size black 

globe (and is an indication of the added effect of solar radiation), and Ta is the air temperature. An 

example of a work rest guidance table is shown in Figure 2.11. This Figure shows the US Army’s 

field guidance for work rest schedules for given work rates and environments as measured by the 

WBGT index. While the original tables were generated from empirical data modern versions are 

based on human thermoregulatory models such as SCENARIO (Kraning and Gonzalez 1997). 

  

                                                      
4
 Wikipedia: http://en.wikipedia.org/wiki/Wet-bulb_temperature, Accessed 1/19/2015. 

http://en.wikipedia.org/wiki/Wet-bulb_temperature
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Figure 2.11: U.S. Army work rest schedules based upon human thermoregulatory models. 

While these tables address both the acute and chronic thermal-work strain concerns, they 

do not take into account the actual state of the human. Without accounting for an individual’s 

continuous thermal-work strain response to the environment and work goals these schedules are 

by necessity conservative trying to ensure that 95% of the population do not experience heat 

injury. This conservatism almost certainly means that that they provide sub-optimal performance 

over the course of proscribed work. 

Both the National Institute for Occupational Safety and Health (NIOSH) and the 

Occupational Safety and Health Administration (OSHA) suggest how the intermittent 

measurement of heart rate, core body temperature (oral thermometer) can help modify work-rest 

schedules for individuals. The guidance originally based on recovery time work by Brouha 1960, 

and Fuller and Smith (1980, 1981) shows how the work rest schedules can be modified. Table 2.5 

shows how to modify work rest schedules by taking pulse or oral thermometer readings during 

rest periods.  

Table 2.5: Modified work rest guidance based upon spot measure of heart rate or core body 

temperature. 

 At beginning of rest period Next work period adjustment 

(time multiplier) 

Heart Rate (beats/min.) >110 0.67 

Core Temperature (°C) >37.6 0.67 
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While these methods are useful in providing conservative bounds on preventing heat 

injury NIOSH (1986) admits that: 

“…they do not permit a prediction of which individuals will become heat casualties. Because of 

the wide inter-individual tolerance to heat stress, predictions of when and under what 

circumstances an individual may reach unacceptable levels of physiologic and psychologic strain 

cannot be made with a high degree of accuracy. One solution to this dilemma might be and 

individual heat-load dosimeter.” 

Individual differences can be quite large. Figure 2.12 shows the individualized thermal-

work strain responses from seven National Guard Weapons of Mass Destruction Civil Support 

Team (WMD-CST) members as they conduct a 45 minute movement while wearing fully 

encapsulating level “A” chemical/biological personal protective suits.  Although the team 

members are doing exactly the same task, the thermal-work strain ranges from moderate (5) to 

very high (10). Almost half of the team have thermal-work strain index scores indicating a high 

risk of heat illness (see Tharion et al., 2013b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Individual differences in thermal-work strain index score for seven volunteers 

walking for 45 minutes in level A chemical/biological personal protective suits. Used by 

permission of the author (in Tharion et al., 2013b). 
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As human-thermoregulatory models have increased in sophistication adjustments can be 

made for individual characteristics such as age, height, weight and body fat allowing work rest 

schedules to be more tailored or to provide team managers with a range of risk. Figure 2.13 

shows an example of a computer application that uses the Heat Strain Decision Aid (HSDA) 

human thermo-regulatory model to examine the impact of a timed U.S. Army road march across a 

range of individuals. 

 

 

 

 

 

 

 

 

 

Figure 2.13: A tool that provides a range of risk based upon a spectrum of individuals and shows 

that risk by movement pace and load carried.  

Timing of policy interventions is important. Buller et al. (2009) examined the 

physiological responses of three U.S. Marines at the end of a 90 minute foot patrol completed in 

hot dry conditions. While all the Marines rested, one removed their body armor, while the others 

did not. Previous analysis showed that removal of body armor when core temperatures were at 

resting levels had limited impact. However, removal of the body armor at the end of the foot 

patrol had a dramatic effect. For the Marine who removed body armor both skin temperature and 

core body temperature dropped by >2 ºC during a rest period (see Figure 2.14). A timely 

intervention of this sort also has long term consequences. Even though the other two Marines, 

who did not remove body armor rested they showed no skin temperature change and core body 

temperature declined by only a small amount 0.6 ºC in 30 minutes. Modeling work suggested that 

this Marine had more reserve capacity to accomplish missions with more demanding work rates. 

Thermoregulatory models showed that this Marine could work at a moderate intensity (patrolling 

or carrying out individual movement techniques, ~440W) for at least an additional 50 minutes. In 

contrast the other two Marines who only rested would reach critical thermal-work strain 

thresholds in less than 30 minutes. 
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Figure 2.14: Individual physiology response to body armor removal at the end of a thermally 

stressful patrol. 

In addition to knowledge of when and what to do, some evidence exists that there is a 

cumulative effect of thermal-work strain over time. Work by Horn et al. (2013) showed 

increasing thermal-work strain in firefighters over the course of a series of live fire training 

events. Horn’s results indicated how physiological monitoring would be more important as the 

duration of an emergency response increases. 

2.3.2 Pacing and Pacing Strategies in Competitive Sports 

Pacing in competitive sports is an attempt to optimize an individual’s energetic resources with the 

demands of the event and the environment. An athlete may approach an event with a pacing 

strategy based upon an understanding of the event demands and their own learned experience 

(Roelands et al., 2013). Their predefined pacing strategy may be modified during the event based 

upon the environmental conditions, the athlete’s volition (Robsinson et al., 1958), and the onset 

of fatigue.  

 In their review article, Abbiss and Laursen (2008) identify six different pacing strategies 

found in competitive sports. “Negative” pacing, often found in “middle distance” events, is where 

both power and speed are increased at the end of the event from a slow start. The slower start is 

thought to minimize early carbohydrate depletion and limit early accumulation of fatigue 

inducing metabolites. “All-Out” pacing, as the name suggests, is best used in short distance 

events such as sprints. “Positive” pacing is where athletes start at a fast pace and then reduce their 

speed or power output throughout the race. This kind of profile can be seen in triathletes. 

However, as Abbis and Lausen (2008) admit, more work is necessary to determine if positive 
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pacing is an optimal pacing strategy for these types of events. “Even” pacing is often found in 

sports where resistance of water or air plays an important role in the power output of the athlete. 

For example, in cycling races, where aerodynamic wind resistance is much higher compared to 

running, an optimal strategy may be to minimize the changes in acceleration through a medium 

that causes friction. “Parabolic” or “U” shaped pacing is where an athlete starts fast and then 

reduces speed in the middle of the race only to increase speed towards the end. In many instances, 

this speed increase can be thought of as the final sprint to the finish. Finally, “variable” pacing 

has been shown to provide improvements in cycling race times where athletes adjust their power 

output depending on the course. More power output during uphill sections, and less power output 

on downhill sections.  

 A pacing strategy is selected by an athlete depending on the anticipated exercise duration 

and their own prior experience (Roelands et al., 2013; Knechtle et al., 2014; Bertuzzi et al., 

2014). However, different physiological responses to exercise are critical for determining 

performance over different time frames (de Konig, 2011). For short duration events <30 minutes, 

the changes in intra-muscle metabolism play an important role in determining muscle power 

output. Core body temperature plays an important role in determining fatigue for exercise 

durations from 30 minutes to 120 minutes (Nielsen et al., 2001; Gonzalez-Alonzo et al., 2008; 

and Laurensen, 2009). For events that are longer than 90 minutes, the availability of 

carbohydrates play an increasingly important role (Coyle et al., 1983; Karlsson and Saltin, 1971).  

 “Positive” pacing, where there is a fast start followed by a reduction in pace, is the typical 

pattern for prolonged exercise (>30 minutes) (Roelands et al., 2013). This pattern is also found in 

team sports such as soccer where Waldron and Highton (2014) found a “gradual decline in total 

running intensity”.  

 The addition of a hot environment poses an additional problem for pacing. Hot 

environments have been shown to impair both performance and time to exhaustion (Galloway 

and Maughan 1997). Several mechanisms have been suggested for this reduction in performance. 

Some have suggested that fatigue is induced, as a “critical core temperature” is approached (>39 

°C), as a way for the body to guard against catastrophic collapse. Others have suggested that the 

body uses an anticipatory feed-forward control mechanism to regulate the rate of heat storage (see 

review by Cheung 2007). Ely et al. (2010) demonstrated that even with modest hyperthermia (CT 

<38.5 °C), performance in time trials was significantly reduced in the heat. Their work has also 

shown that the subjects started the hot time trial at a similar pace to the trial under temperate 

conditions. Recent work indicates that the onset of fatigue is driven by a complex integration of 

the state of the peripheral muscles/peripheral sensory system and the central nervous system 
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(Amann 2011). “This complex regulatory system adapts the work rate in order to optimize 

performance and to prevent potentially harmful (e.g. catastrophic) changes to homeostasis” 

(Roelands et al., 2013). 

 This control mechanism can be seen to great effect in the work by Adams et al. (1975) as 

they studied the thermoregulatory system of a marathon athlete across cold, moderate, and hot 

environments. In the cold (10 °C) and moderate (22 °C) conditions, heart rate, core body 

temperature and sweat rate were similar. For these two temperature conditions, the heart rate, 

sweat rate, and core body temperature were maintained throughout the run. For the hot condition 

(35.5 °C), the initial core body temperature was similar to the cold and moderate conditions for 

the first hour, as was sweat rate. However, heart rate increased in a linear fashion. At about 90 

minutes, there was a marked increase in the rise of core body temperature and sweat rate until the 

athlete had to stop when CT >40.2 °C. It appeared that while the body was trying to regulate the 

heat gain from the run, at around 90 minutes, homeostasis was no longer possible leading to 

significant heat gain.  

Ulmer (1996) proposed an optimization control mechanism of “teleoanticipation”. Here 

they integrate the concept of the previous feedback control mechanisms with a central optimizer 

“programmer” that also controls metabolic rate in anticipation of the required work necessary to 

complete a bout of exercise.  St. Clair-Gibson and Noakes (2004) extend this concept of a central 

programmer into, as they term “a complex non-linear dynamic system.” Here they suggest that a 

“central integrator” can plan a pacing strategy based upon a known distance and required 

performance. As evidence, they cite the fact that humans can “faithfully reproduce almost 

identical pacing strategies” with little overt feedback. They also draw evidence from how ants can 

accurately determine distance over differing terrains, and how migratory birds can assess the 

metabolic requirements of their travels. Further, the “central integrator” continually adjusts the 

pacing strategy based upon the perception of the current physical state of exhaustion. While their 

paper suggests a theory of pacing control, they do not provide an actual model. Tucker (2009) 

proposes a conceptual model of how the state of “physical exhaustion” can be measured and 

modeled using the subjective Rating of Perceived Exertion (RPE) scale. Figure 2.15 shows his 

dynamical system model.  

Of note is that this model is very similar to our physiological feedback loop. There is a 

known goal, a perception of the physiological state through the subjective RPE scale, and a 

“template” or policy that the brain uses to modulate pacing. There is also the concept of the 

distance remaining to the goal which in combination with RPE is important for adapting pace 

(Konig et al., 2011).   
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Figure 2.15: From Tucker (2009): “Schematic diagram showing the model for the anticipatory 

regulation of exercise performance during self-paced exercise. Black shading denotes input to the 

brain; grey shading denotes output or efferent processes. RPE, rating of perceived exertion.” 

 

Where our work differs is that we plan to learn this “hidden” policy offline from thermo-

regulatory models and use it to provide optimal pacing strategies in real-time for a novel task. 

Additionally, instead of using the subjective rating of perceived exertion, we intend to monitor, 

physiology, directly to infer thermal-work strain state. It is unclear whether the “templates” used 

by the brain are innate or learned. For experienced athletes it appears they have a reasonable 

internal template. However, for new and novel tasks it is unclear how well their “templates” are 

optimized. An additional question is, that with the added stressor of heat, would the RPE still be 

as helpful in determining pace. Learned “templates” appear to still be used even when heat is 

added as an additional factor. In work by Soule et al. (1978) volunteers learned to complete a 

timed foot movement in a hot environment. The movement was self-paced and could be 

replicated. Volunteers were then placed in a thermally more stressful environment (relative 

humidity was increased), and told to complete the same self-paced task, but were also instructed 

to not get “too hot”. Soule et al. (1978) found that the original learned “template” was followed 

and was not modified by the added environmental stressor which caused many volunteers to stop 

from heat exhaustion. 



 

39 

 

2.3.3 Markov Decision Process Models Applied to Humans 

The physiological feedback loop presented in Figure 1.2 is analogous to a partially observable 

dynamical system control problem. For our purposes, an overall work goal may be to travel a set 

distance in a certain amount of time given certain environmental conditions and while wearing 

personal protective equipment. A policy (Π) may be set that prescribes a series of movements at 

different speeds to accomplish the goal. The policy will dictate a series of different actions (A) or 

movement speeds for the individual. These movement speeds will have different impacts on the 

thermal-work strain state of the individual and progress to the ultimate goal. By perceiving the 

thermal-work strain state, our problem is to optimally control the pace of the individual to 

minimize immediate thermal-work strain risk and to allow completion of the goal with the least 

thermal-work strain possible.  

Bellman (1957b) developed a method to solve this kind of optimization problem by 

developing a discrete stochastic form of this type of dynamical system as a Markov decision 

process (MDP) and introducing the idea of an “optimal return function”.  In the MDP form, the 

optimized control problem of the dynamical system can be represented by a set of discrete system 

states (s), a set of possible actions (a), a reward function (R(s)) that assigns a value for being in a 

certain state, and a state transition probability model P(s’|s,a). The MDP, can be optimized by 

finding the sequence of states that return the most value. The goals to be modeled by the MDP 

framework have a finite horizon and thus the utility of a sequence of states can be computed from 

the sum of rewards for being in each state over time. The Bellman equation (2.16) computes the 

utility (U) of being in any state and all subsequent states, assuming that all subsequent actions are 

optimal. 

 

                                        ,     (2.16) 

 

where         is a discount factor that indicates the importance of future rewards. 

 

For any starting state an optimal set of actions can be found using dynamic programming 

(Bellman 1957a).  An overview of other methods to solve this kind of reinforcement learning 

problem can be found in Sutton and Barto (1998). 
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2.3.4 Human MDP Real-Time Applications 

There are limited applications where MDPs have been used in real-time with humans. Atkinson et 

al. (2003) describe a desired application for cycling that would provide optimal pacing strategies 

for different race profiles, but provide no details on how such an application would be 

constructed. Physiological monitors that track activity and/or heart rate are being used with some 

virtual training applications (Chi-Wai et al., 2011). Applications can provide guidance to improve 

training based on exercise at the right heart rate intensity or activity profiles, that over time, will 

meet the Center for Disease Control (CDC) guidelines. A more advanced system proposed by 

Lopez-Matencio et al. (2010) uses a k-nearest neighbors approach to advise runners, in real-time, 

which training track to take. Track advice is based upon their current heart rate, desired training 

heart rate, track footing, and ambient temperature. However, these applications focus on open 

ended goals versus the time, safety and performance constraints placed upon emergency workers. 

Hoey et al. (2007) developed a real-time system that models teeth brushing in terms of an 

MDP. This model is used to provide dementia patients guidance based upon real-time monitoring 

of their hand locations. Osais, Yu and St-Hilaire (2010) utilize an MDP model to provide optimal 

management of implanted rechargeable biosensors, controlling the sampling schedule and 

recharge schedule of the device. The paper examines constraints that the device cannot get too hot 

and must provide the longest period of sampling possible.  

Using the MDP as a basic framework for our physiological feedback loop and using 

available modern physiological monitoring systems, there are two components that need solutions 

to make the system viable: thermal-work strain state estimation, specifically core body 

temperature estimation; and pacing policy estimation.  
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Chapter 3 

Thermal-Work Strain State Estimation 

From our review of the literature, thermal-work strain state can be estimated using the 

physiological strain index developed by Moran et al. (1998). This thermal-work strain index 

(TWSI) is a weighted combination of heart rate (HR) measurements and core body temperature 

measurements (CT). But as we showed measuring CT in an ambulatory setting using non-

invasive sensors is an open problem. While are many physiological monitoring devices that 

measure HR, the ability to estimate thermal-work strain rests with the ability to estimate or 

measure CT. Thus, the goal of this work was to accurately estimate CT to allow the computation 

of the TWSI and thus assess an individual’s latent thermal-work strain state.  

This chapter details this work in three sections. In section 3.1 we show how a 

computational physiology approach proved successful in developing a CT estimation technique. 

In this work we examined the underlying physiological processes and developed a dynamic 

Bayesian network model to estimate CT. In section 3.2, we show how we simplify the parameters 

from the dynamic Bayesian network model and use only HR as a “noisy” observation of CT in a 

Kalman filter framework. This section details how we validated the model using data from 89 

subjects in both laboratory and field settings comparing how well our estimation technique works 

across different work rates,  clothing configurations, environmental conditions, heat acclimation 

states, and hydration states. Section 3.3 details how the CT estimation technique has been 

implemented in a commercial physiological monitoring system and used as part of a real-time 

monitoring system. Here we detail the performance of the algorithm in use in three training 

events with first responders encapsulated in chemical/biological personal protective equipment. 

Section 3.4 concludes by showing how our computational physiology approach was able to 

provide a technique to estimate CT from sequential observations of HR alone, and how this 

technique is being adopted by the National Guard as a requirement for a real-time telemetry 

monitoring system.  
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3.1 Dynamic Bayesian Network Model of the Human 
Thermoregulatory System 
 

In this section we develop a model that aims to represent the underlying physiology and 

interdependencies of human thermo-regulation. The intent is to accurately estimate CT from non-

invasive sensors and gain insight into the internal physiological processes that govern CT. 

Graphical models provide a natural way to express the physiological variables and dependencies 

that form the basis of biological systems. By their nature, many physiological processes evolve 

naturally over time and can be represented as Dynamic Bayesian Network (DBN) (e.g., Murphy 

2002). Previous work by Aleks et al. (2008) described the successful use of a Bayesian network 

approach to improve intensive care unit patient monitoring by modeling both the physiology and 

measurement equipment. A similar but minimally validated approach was also described by 

Borsotto et al. (2004), where they describe a large Bayesian network to estimate warfighter life 

sign status from non-invasive physiological status monitors. 

Figure 3.1 shows the key factors that affect human CT represented as a Bayesian 

network. Starting from the center of Figure 3.1, we observe that human core body temperature 

(CT) is dependent on both heat production (HP) and heat transfer (HT) to or from the body's core. 

In most exercise situations HT, results in heat loss from the core. HP is primarily dependent on 

the body's metabolism (M). Metabolism is dependent on a number of factors such as individual 

anthropometric differences, circadian rhythm (CR), pharmaceutical use (PH), and fever (FV) to 

name a few. Heat is also generated from food digestion (TEF) and during useful work (W). Heat 

is generated as a byproduct of metabolism. In the case of useful work by muscles, heat is 

generated due to inefficiencies in converting fuel (e.g. glycogen) and oxygen to muscle action. 

Much of the energy released from the chemical reaction is converted to heat (~80%) versus useful 

work (~20%). Aerobic metabolism is dependent on the transport of oxygen (O2) from the lungs 

to the muscles. On a simplified level, this supply of O2 to tissues is dependent on cardiac output 

which has a heart rate (HR) and stroke volume component (SV).  HR is helpful in estimating 

metabolic rate because of the well-known relationship of oxygen consumption to cardiac output 

derived from the Fick principle (Fick 1855) where the rate of oxygen consumption is equal to the 

cardiac output (HR x SV) multiplied by the arterio-venous difference in blood oxygen 

concentration; thus:                    
      

 . 

Heat transfer (HT) to or from the body core is influenced by a number of mechanisms. 

Heat is actively lost through water evaporation from the respiratory tract (RHL). Heat is 

transferred passively between the core and skin by conduction through body tissue (PHC). 
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Finally, heat is transferred between the core and skin by blood flow (SBF). Heat transfer to/from 

the skin is dependent on four heat transfer mechanisms: convection, radiation, conduction and 

evaporation. The effectiveness of these mechanisms is dependent on the environment and the 

insulation and water permeability of the clothing being worn. As human body temperature is 

regulated within narrow bounds (~35 - ~41 °C, Sawka and Young, 2006, p535) any change in CT 

results in a thermoregulatory response (TR). The primary mechanism for human thermoregulation 

is the control of the flow of blood to the skin (SBF) by vaso-constriction or dilation in 

conjunction with sweating. The rate of blood flow to the skin is dependent on the cardiac stroke 

volume (SV) and heart rate (HR). 

 

Figure 3.1: Factors affecting human core temperature (CT) represented as a Bayesian network. 

The figure shows CT at the center of the diagram with factors affecting heat production to the left 

and factors that provide heat transfer to or from the body core shown on the right. (See Sawka & 

Young, 2006; and Yokota et al., 2008). 

3.1.1 Dynamic Bayesian Network Model 

To simplify this complex Bayesian network, we constrain the problem to our specific area of 

interest, namely teams of young fit workers engaged in physical activity in warm environments. 

Under this constraint, we are not examining the case where fever (FV) or pharmaceuticals (PH) 

are affecting basal metabolic rates. In this area of interest, the change in CT from the other factors 

namely circadian rhythm (CR), thermic effect of food (TEF), and resting metabolic rate (RM), 
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become negligible compared to the effect of physical activity (W). Thus, the heat production 

(left) side of our model can be simplified to one node to represent heat gain (HG) from exercise.  

Similarly, the most effective means of heat transfer from the core to the environment is 

through the control of skin blood flow (SBF) and sweat rate (SR) which in exercise conditions 

overshadow the loss of heat through respiration (RHL) and the passive transfer of heat by 

conductance (PHC). As SBF and SR tend to work in tandem to effect cooling (Sawka and Young, 

2006), the heat transfer portion (right) side of our model can be simplified to one node dependent 

on skin blood flow. For convenience, we label this heat loss (HL); acknowledging that heat can 

also be gained from the environment through this mechanism (i.e., negative heat loss). Figure 3.2 

shows the graphical model representation of our DBN model. 

 

Figure 3.2: Physiology-based dynamic Bayesian network for thermoregulation. CT = core body 

temperature, HG = heat gain, HL = heat loss, HR = heart rate, AC = activity from 

accelerometry, and HF = heat flux. White nodes represent latent variables and gray nodes are 

observed variables. 

Both HG and HL are dependent on cardiac output which has heart rate (HR) and stroke volume 

components. Stroke volume amongst individuals varies significantly, but for a given normal 

individual remains relatively constant, changing with levels of aerobic fitness and dehydration. 

Stroke volume is very difficult to measure in an ambulatory setting, and it would be convenient if 

we could remove this component from our model. Ideally, we would like to assume that given a 

matched population (age, gender and fitness), stroke volume will vary amongst individuals for a 

given relative work rate (i.e., percent of maximal aerobic capacity) such that HRs and CTs will 

respond similarly across the group. For our purposes, this assumption allows us to use HR instead 

of cardiac output. In a recent paper, we demonstrated that this assumption holds true as 

environmental conditions, heat acclimation, hydration level, and clothing encumbrances are 

varied (Buller et al., 2011). 
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Finally, in constructing the model we use measures from accelerometry (AC) to provide 

an independent observation of HG, and heat flux (HF) to provide an independent observation to 

HL. For HG, we assume that greater accelerations measured on the body mean more physical 

work and thus more HG. By measuring heat flux on the skin, we have a point measurement of 

heat transfer to the environment which we assume can be used as a "noisy" observation of HL.  

As this is a directed acyclic graph, the joint distribution across all random variables can 

be factored by the chain rule for Bayesian networks as follows: 

                            (3.1) 

 

Where Y is the set of random variables {AC, HF, HR, HG, HL, CT, CTt-1, HGt-1, HLt-

1}, and YΓ refers to the joint distribution of the parents of node Xi. Thus: 

 

                                    ∙ 

                                                  (3.2) 

 

Our model then can be defined by the conditional probability distributions (CPDs) of 

these factors. From our model and any series of observations of X={AC, HR, HF}, we wish to be 

able to infer the latent variables Z={HG, HL, CT} or the posterior distribution P(Z|X). By 

assuming that our CPD are Gaussian, we can make use of the Kalman filter (Kalman, 1960) 

algorithm to iteratively compute the latent variable probability density functions for a given series 

of observations. 

3.1.2 Inference 

The Kalman filter is a Gaussian filter where the posterior probability density of the latent 

variables is computed iteratively from "noisy" observations. The Kalman filter is defined by the 

following probability density functions:  

 

Transition:                               (3.3) 

Observation:                           (3.4) 

 

Our DBN model can be defined in terms of the Kalman filter probability density 

functions, where our latent variable vector zt = [hgt, hlt, itt], and our observation vector xt = [act, 

hrt, hft,]. The Kalman filter probability density functions are defined by the following matrices: 

 



 

46 

 

    
    
    
      

    

    
    
    

    
    
      

    
     

    
    
    

    

 

For this model definition, variables have been normalized to have a zero mean and ± 1 

standard deviation = ± 1 units. The transition matrix A defines how HG, HL, and CT map from 

one time step to the next. The covariance matrix Γ is the variances associated with this mapping 

function. Matrix C defines how the latent variables map to the observed variables. Similarly, 

matrix Σ holds the variances associated with these mapping functions. 

The transition mean and covariance and the observation mean and covariance matrices 

must be learned.    
  was learned from our previous research. The initial state means (hg0, hl0, and 

it0) can be set to normal human resting values and the starting covariance matrix V0 has entries 

that are high as we are uncertain about our initial guess for the latent variables. 

At each time step, the Kalman filter uses (1) a prediction step that estimates current latent 

variable estimates (    ) and their associated variances (  
  ) based upon the previous time step, 

and (2) an update step where these estimates are updated based upon the current observations. 

The prediction and update steps follow the basic Kalman filter equations as outlined by Welch 

and Bishop (1995). 

 

(1) Prediction step:                  (3.5) 

      
        

         (3.6) 

(2) Update step:                      )    (3.7) 

             )   
      (3.8) 

         
       

             (3.9) 

 

While the Kalman filter provides the basis for our inference, the model parameters θ = 

{A, Γ, C, Σ} must be learned. Initial states for our latent variables (defined by z0 and V0) are 

assumed to take starting values typical of those found in a resting human. 

3.1.3 Parameter Learning – Expectation Maximization 

Expectation - Maximization (EM) (Dempster, Laird, and Rubin 1977) is an iterative algorithm 

that finds the maximum likelihood estimates of model parameters in cases where some of the 

variables are unobserved.  The algorithm uses a two-step process. In the first step or E-step, the 

expected values of the latent variables (Z) are estimated using a current set of model parameters 

and observed data (X). In the second step, the M-Step, the model parameters are maximized 
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according to the complete-data log likelihood P(Z,X|θ) with respect to the posterior distribution 

P(Z|X,θ). Ghahramani and Hinton (1996) and Bishop (2006) provide an overview of the EM 

approach for linear dynamical systems which is briefly reviewed here. 

E-Step 

The E-Step requires the computation of the posterior distribution of the latent variables P(Z|X, θ) 

to enable the computation of several expectations (         ,       
       and       

      ) that 

are necessary in the M-Step. These expectations require that the estimates of zt are calculated 

using data from both the past and future. The Kalman filter alone only provides a posterior 

marginal of zt based upon past and the current observations. The Kalman smoother equations 

(developed by Rauch et al., 1965; and presented in their current form by Jazwinski, 1970; and 

Shumway and Stoffer 1982) use values from the Kalman filter forward pass to compute the true 

marginals of    in a backward pass.  

Kalman Smoother Equations 

The Kalman smoother equations depend on a forward run of the Kalman filter to provide the 

values zt, Vt, and     (computed in the prediction step) and take the following form: 

 

   
            

             (3.10) 

   
            

        
  ,       (3.11) 

 

where:             
  . 

 

The expectations can now be defined for use in the M-step:  

 

            
   

      
         

    
   

    

        
             

    
     

  
       (3.12) 

M-Step 

In the M-step, we wish to maximize the function Q(θ, θ
old

) which is defined as the expectation of 

the data log likelihood with respect to the posterior distribution given by the model parameters θ: 
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                              ,      (3.13) 

 

where:  

 

             

                                    
                    

   .  (3.14) 

 

By substituting Gaussian probability density functions and taking the expectation: 
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               (3.17) 

 

Equations (3.15 – 3.17) can maximized with respect to each of the Kalman filter PDFs 

individually. To maximize the observation PDFs only element (3.17) is dependent on C and Σ, 

and thus elements (3.15) and (3.6) become part of the constant term.  To optimize the time 

dynamics which are dependent on the parameter A and Γ elements (3.15) and (3.17) become part 

of the constant term giving: 

 

           

                     
 

 
          

              
 
     

   

 
            (3.18) 

 

Similarly, for the observation parameters C and Σ Equation elements (3.15) and (3.16) 

become part of the constant term giving: 

 

                     
 

 
        

            
 
     

 

 
              (3.19) 

 

Equations (3.18) and (3.19) can be maximized by taking the partial derivative with 

respect to each of the Kalman filter model parameters θ = {A, Γ, C, Σ} to provide the following 

general M-step equations:  
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However, to maintain the sparse model structure, the individual elements of the model 

matrices are made explicit in Equations (3.4) and (3.5) and each individual parameter is 

optimized (i.e. a1, a2, a3 ... σ1, σ2, σ3).  

3.1.4 Experiments 

Five distinct data sets were used for our experiments with a total of 23 volunteers. In all data sets, 

both observable model parameters (AC, HR, and HF) and the latent variable CT were collected. 

Table 1 presents the details of each of these studies.  

Table 3.1: Model training and test data sets. 

Data Sets Description Environment: 

Temp. (°C), RH (%) 

n Age (yr.), Ht. (m), & 

Wt. (Kg) (mean±SD) 

Train: USA  Continuous 48 hr. military 

training exercise 

21-23.5°C, 77-86% 

RH  

7 26.8±2.1, 1.78±0.08, 

85.7±6.2 

A. Australia 1 

 

5km march in encapsulating 

protective equipment 

18°C, 72% RH, 8† 27.7±6.0, 1.95±0.09, 

85.7±14.2 

B. Australia 2 5 Hour high intensity 

military training exercise  

15 – 20°C, 85 – 65% 

RH 

8† 27.7±6.0, 1.95±0.09, 

85.7±14.2 

C. Afghan 1 4 hr. military patrol 13-22°C, 13-51% RH 4 21.0±1.7, 1.86±0.01, 

92.5±15.3 

D. Afghan 2 5 hr. military patrol 23-27°C, 13-18% RH 4 21.2±1.9, 1.77±0.04, 

79.1±3.7 

†Same Subjects, RH=Relative Humidity, SD=standard deviation. 

 

CT data were collected using an ingestible thermometer pill (Jonah™ Core Temp. Pill, 

Mini Mitter, Bend, OR), while the non-invasive measures of AC, HR, and HF were collected 

using a chest worn physiological monitor (Equivital I, Hidalgo Ltd., Cambridge UK). Data set A 

was used for parameter and model learning. The DBN model CPD's were learned using 

Maximum Likelihood (ML), or EM. These CPD's were then used in the Kalman filter detailed in 

section 3.1.2 to infer CT given a sequence of AC, HR, and HF observations. Differences between 

the Kalman filter CT estimate and the observed CT were examined using summary statistics of 
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root mean square error (RMSE), and non-parametric Bland-Altman percentage (BAP) (Bland and 

Altman 1999). The BAP calculates the percentage of estimated CT points falling within an a 

priori zone of the actual CT (± 0.5 ºC was used in this analysis). Differences between summary 

statistics are examined by paired Student’s t-test or Analysis of Variance (ANOVA).  

Individual model parameters were learned in the following way: Parameters a1 and a2 

(HG and HL temporal mapping function), γ1 and γ2 (HG and HL temporal mapping function 

variances), c1 - c3 and c5 (HG and HL observation mapping functions), and γ1 and γ2 (HG and HL 

observation mapping function variances) were learned using the EM algorithm. Parameters a3 and 

a4 (HG and HL to ΔCT mapping function) along with this function's variance was learned using 

Maximum Likelihood (ML). Parameters c4 and σ3 (CT to HR observation mapping function and 

variance) were learned using ML but modified according to Buller et al. (2010) to better account 

for steady state HR and CT values. Parameter a5 and γ3 used the values from our previous 

research (Buller et al., 2010), where γ3 was modified with the variance from the HG and HL to 

ΔCT mapping function.  

Model Implementation 

Two methods of implementing the DBN model were examined. Method 1 implemented the model 

outlined in section 3 as a single DBN. Method 2 implemented the model using a Kalman filter for 

estimating ΔCT from HG and HL, which in turn was used to provide a temporal update in a 

second Kalman filter that estimates CT from HR. Figure 3.3 shows the two DBN models used for 

this method. The performance of each implementation was examined using RMSE and BAP 

statistics comparing inferred CT to observed CT for the seven subjects from the training data. We 

also used the model generated in our previous work (Buller et al., 2011), which used just HR to 

estimate CT, as a comparison baseline. 

 

    (A)               (B) 

Figure 3.3: Two Physiology-based dynamic Bayesian network models used for estimation of core 

body temperature (CT) from observations of heart rate (HR), activity from accelerometry (AC), 

and heat flux (HF). Panel (A) DBN model to estimate ΔCT. Panel (B): DBN model to estimate CT. 
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Heat Gain Estimation 

As part of the "training" data total daily energy expenditure (TDEE) values were obtained for five 

of the seven subjects using the Doubly Labeled Water (DLW) method (Montoye et al., 1996). 

This method relies on differing rates of expulsion of isotopic water from the volunteers to 

measure TDEE. Assuming a fairly consistent efficiency factor (~20) from converting energy 

stores and oxygen to mechanical work, our model's HG parameter should be proportional to a 

minute-to-minute estimate of energy expenditure. To examine this relationship and our model's 

ability to accurately estimate HG, we summed our minute-to-minute estimates of HG and perform 

least squares regression with the measured TDEE values.  

Model Validation 

To test the generalizability of our model, we examined the RMSE and BAP using four new test 

conditions with different volunteers.  

3.1.5 Results 

Model Implementation 

Table 3.2 shows the RMSE and BAP statistics for both methods of implementing the DBN. The 

two phase model performed significantly better than the single phase model for both the RMSE 

and BAP statistics P<0.01.  

 

Table 3.2: RMSE and BAP statistics for the two model implementations. 

DBN Implementation RMSE  (Mean ± SD °C) BAP  (Mean ± SD %) 

Method 1: One Step Model 0.38 ± 0.09† 72.4 ± 11.4‡ 

Method 2: Two Step Model 0.27 ± 0.06† 86.6 ± 7.8‡ 

† ‡ Denotes significant difference p<0.01. 

 

Figure 3.4, shows the typical results for observed CT and CT estimated from each of the 

two DBM implementations for one volunteer. Estimated CT from Method 1 is more attenuated 

than estimated CT from method 2.  
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Figure 3.4: Typical CT estimation performance for each method for one volunteer. 

 

The learned parameters for method 2 are as follows: 

 

For kalman filter 1 to estimate HG and HL: 

   
       

       
      

       
       

      
       
             

       
   

 

   
        

        
        

         
  
  

          

  
  
  

 . 

 

For kalman filter 2 to estimate CT:  A = (1), G = (0.000784), C = (0.9197), S = (1.6876), 

D = (0.0057   -0.0005), z = (it), and x = (hr). The equation for the prediction step is: 

 

z    z     Dz       
        (3.24) 

Heat Gain Estimation 

Figure 3.5 (Panel A and C), shows observed and estimated CT along with HG and HL estimations 

for the 2 step DBN model for one volunteer. Figure 3.5 (Panel B) shows a scatter plot of ΣHG 

versus TDEE values for the five subjects with TDEE data.  One volunteer's TDEE value appeared 

excessively high, and TDEE data from an earlier time period are also presented.  
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Figure 3.5: Selected period of observed and estimated CT (A) to illustrate estimated HG and 
HL (C). (B) Correlation of ΣHG and TDEE. Gray dashed line in the least squares regression 
using an unusually high TDEE for one subject (marked '?'). Black solid line represents the 
regression equation using a prior estimate of TDEE. 

 

Model Validation 

Overall, the DBN model has a bias of -0.01 °C and variance of 0.12 with a RMSE of 0.27±0.14 

°C, and correctly estimates CT within ± 0.5°C 85.2% for all 7324 data points. Table 3.3 shows the 

RMSE and BAP performance of the DBN model for each data set, along with the performance of 

our previous baseline model. No significant differences were found between the DBN model and 

our previous work model for both RMSE and BAP comparisons (P=0.92 and 0.87 respectively).  

 

 

Table 3.3: DBN 2 Step model performance compared to previous work on four test data sets. 

 RMSE  (Mean ± SD °C) BAP (Mean ± SD %) 
Data Set DBN Model Previous Work DBN Model Previous Work 
A. Australia 1 (n=8) 0.28±0.13 0.39±0.11 84.7±14.9 70.0±11.6 
B. Australia 2 (n=8) 0.26±0.17 0.22±0.07 81.2±23.8 90.3±8.1 
C. Afghanistan 1 (n=4) 0.32±0.20 0.24±0.19 83.4±25.6 88.0±24.1 
D. Afghanistan 2 (n=4) 0.22±0.02 0.19±0.09 95.8±5.3 98.9±2.2 
Overall (n=24) 0.27±0.14 0.28±0.14 85.2±18.9 84.6±16.1 

 

  

(A) (B) 

(C) 
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Figure 3.6 shows the observed, DBN, and previous work estimated CT group mean 

responses for each of the four datasets. 

 

 

Figure 3.6: Mean observed, DBN model estimation and previous work estimation of CT for: (a) 

Australia 1, (b) Australia 2, (c) Afghanistan 1, and (d) Afghanistan 2 data sets. For observed and 

DBN estimated CT error bars represent ±1 SD. 

3.1.6 Discussion 

Our data show that we were able to learn a DBN model of the human thermo-regulation system 

using the EM algorithm and a comprehensive field data set. The DBN model when applied to 

new data, was able to provide internal temperature estimates that were statistically no different to 

our well validated previous model. By providing the model with additional information from 

accelerometry and heat flux, we demonstrated that it was possible to model heat gain and heat 

loss. Using this additional information, we were also able to identify when the thermoregulatory 

system allowed CT to rise while limiting skin blood flow and adjust our CT estimates 

accordingly.  

The better performance of the two step DBN model over the one step model is likely 

explained by the fact that HG and HL actually provide an estimate of change in CT rather than a 

steady state observation of CT. The one step DBN model convolves the HR observation of steady 

state CT and the ΔCT observations from HG and HL. A similar ΔCT can occur at any CT and thus 

it appears this convolution leads to an underestimate of CT with the HG and HL moderating or 

smoothing the expected HR from CT. 

The close correlation of ΣHG and total daily energy expenditure (r
2
=0.88 or r

2
=0.73,) 

provides confidence that the HG estimates are within the realms of reality.  

The DBN model when applied to new data, was able to provide internal temperature 

estimates that were statistically no different to our well validated previous model with an overall 

RMSE 0.27 ± 0.14 °C and estimating over 85% of the data points within ± 0.5 °C. The DBN 

model showed a small negative bias of −0.01 °C and moderate variance of 0.12 °C. For context, 
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comparisons between "gold standard" methods of measuring CT (thermometer pill, rectal and 

esophageal probes) have RMSE reported differences of 0.22 ± 0.13 ºC (Kolka et al., 1993) and 

0.23 ± 0.07 ºC (O’Brien et al., 1998). 

Since both HG and ΔCT are accurately estimated, it follows that HL must also be well 

estimated.  The HL component of the thermoregulatory system can provide insight into aerobic 

performance. Recent work has demonstrated that high skin blood flow requirements can lead to a 

reduction in aerobic performance (Kenefick et al., 2010). The HL component of our model should 

provide insight some insight into the cardiovascular strain, even when CT is not particularly high. 

By utilizing the DBN model's HG and HL information, we were able to detect and adjust our 

model output when the thermoregulatory system allowed CT to rise while limiting skin blood 

flow. Test data set A contains a specific example of this thermoregulation, and over the group of 

test subjects, our modified model is able to more accurately estimate the peak in core temperature 

(See Figure 3.6, panel a) than when we use just HR alone. The modification had minimal impact 

in the estimation of CT for the other test data sets, except in data set D, where CT was slightly 

overestimated at the CT peak. For a system that is designed to prevent thermal injury, such an 

overestimation may be a trade that can be made for safety. 

3.1.7 Conclusion 

By translating physiological knowledge into a graphical model we have been able to represent 

human thermo-regulation in terms of a dynamic Bayesian network. We were able to learn the 

conditional probability distributions of our DBN from real data using the expectation 

maximization algorithm. Using these learned conditional probability distributions in a Kalman 

filter, we were able to infer estimates of human heat production heat transfer to the environment 

and internal temperature given observations of activity from accelerometers, heart rate, and heat 

flow from the chest. The DBN model performed statistically the same as our previous well 

validated HR CT estimation model. Importantly, with the additional model information the DBN 

is able to correctly model high peaks in CT in cases where estimates from HR alone cannot. 

Representing thermo-regulation as a DBN allows for a more comprehensive understanding of the 

internal thermal state variables and shows promise to enable real time heat strain state monitoring 

applications. This computational physiology approach has demonstrated how formalizing an open 

physiology research problem into a graphical model can produce estimation results that improve 

upon current techniques and that also provides additional insight into important, otherwise 

unseen, internal states and their dependencies. 
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3.2 Estimation of Human Core Body Temperature from 
Sequential Heart Rate Observations 
 

In the previous section, we demonstrated how core body temperature (CT) can be estimated from 

observations of heart rate (HR), accelerometry (AC), and heat flux (HF). While the results 

showed promise, sensor systems that combine all three of these parameters do not exist in the 

commercial market place. 

Concentrating on estimating CT in warm to hot conditions during exercise, we simplified 

the DBN method further to use time series observations of HR only to track CT over time. Our 

method relies on a Kalman filter (Kalman 1960) which has been used extensively in engineering 

tracking problems. Here, an item or variable of interest must be tracked from a series of “noisy” 

observations and knowledge of the temporal dynamics. The Kalman filter (KF) requires two 

models defined by linear Gaussian probability density functions. One model relates how the 

variable to be tracked changes over time, while the other model relates current observations to the 

variable of interest. We hypothesized that HR could be used as a “noisy” observation of CT. 

Thus, by understanding how CT changes over time and the most likely CT for a given HR, a KF 

model to estimate a series of CT values could be learned. HR is a convenient observation of the 

expected CT at steady state or a leading indicator of CT as it contains information about both heat 

production (through the Fick (1855) equation and VO2) and heat transfer since HR is related to 

skin profusion. In our previous work (Buller et al., 2010), we demonstrated the feasibility of the 

KF method for estimating CT, but the model artificially limited CT estimation to values below 

39.5 °C and lacked systematic validation using data from a variety conditions known to impact 

CT. This paper extends our previous KF CT estimation model in the following ways: (1) we use 

an extended KF (see Welch and Bishop, 1995) to allow estimation of CT up to 41 °C, (2) the 

model’s CT time update and CT to HR mapping functions are derived from a single study 

with 17 volunteers where CT ranges from 36 °C to over 40 °C, and (3) the model is 

validated against original data sets from laboratory and field experiments where work rates 

and environment, hydration, clothing, and acclimation states are varied. Our goal was to 

provide a method of estimating CT in warm-hot environments that is simple to use, works 

with equipment that is readily available and provides a valid estimate of time-varying CT. 

3.2.1 Test Volunteers 

Data from ten laboratory and field studies with a total of 100 test volunteers were used in the 

development (N=17) and validation (N=83) of the KF model. Original data from the studies were 

used in consultation with the principal investigators. These studies are described in detail in their 
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original cited publications. All research was conducted under the oversight of Institutional 

Review Boards. In some instances, the number of volunteers used for our analyses was less than 

those reported in the cited studies. These instances occur where either the HR and/or CT data 

were not available for these participants from the original research data or where volunteers failed 

to complete the whole experiment. Table 3.4 contains a summary of study volunteers, work rates, 

and environmental conditions. 

 

Model Development Data (T) 

HR (Equivital EQ02, Hidalgo Cambridge UK) and CT (ingested - Jonah Thermometer Pill, 

Respironics, Bend OR) data were collected from 17 male U.S. Army volunteers (age = 23 ± 4 yrs, 

height = 1.79 ± 0.08 m, weight = 81.3 ± 10.8 Kg, body fat = 18 ± 3%  mean ± standard deviation 

(SD)) on one of two days of a field training exercise during July 2011 (air temperature 24 - 36 °C, 

42 - 97% relative humidity (RH), wind speeds from 0 to 4 ms
-1

 with activities during the day 

conducted under full sun) at Fort Bragg, North Carolina. The field exercise included periods of 

sleep, rest, foot movement and periods of vigorous upper body work, providing a very wide range 

of work rates. These data were chosen to develop the model as they included the largest range (36 

– 40 °C) and most dynamic CT responses of our analyzed data. 

 

Model Validation 

Data from nine studies were used to examine the performance of the model in a number of 

different conditions. Four laboratory studies were used for controlled comparisons of the effects 

of different environments, hydration states, clothing ensembles, and acclimation state; and five 

field physiological monitoring experiments were used to examine the performance under different 

climates and different levels of protective clothing. 

 

Laboratory Study (A) Environmental Conditions (Cheuvront et al., 2007): 18 volunteers (1 

female) (22 ± 4 yrs, 1.77 ± 0.04 m, 80.9 ± 15.3 kg) participated in six eight-hour bouts of 

intermittent treadmill exercises while wearing U.S. Army battledress uniform (BDU). Volunteers 

were euhydrated and heat acclimated. CT was measured using a thermometer pill suppository. 

The six test conditions were: (A.1) 20 °C, 50% RH and a total  energy expenditure (TEE)  rate of 

~460W; (A.2) 27 °C, 40% RH and a TEE rate of ~350W; (A.3) 27 °C, 40% RH, and a TEE rate 

of ~470W; (A.4) 35 °C, 30% RH and an TEE rate of ~350W; (A.5) 35 °C, 30% RH and a TEE 

rate of ~470W; and (A.6) 40 °C, 40% RH and a TEE rate of ~360W. 
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Laboratory Study (B) Hydration State (Montain & Coyle 1992): 8 heat acclimated male 

volunteers (23 ± 3 yrs, 71.9 ± 11.6 kg) completed 2 hours of cycle ergometer exercise at a TEE 

rate of ~1000W while wearing shorts and a t-shirt in environmental conditions of 33°C, 50% RH. 

CT was measured with a rectal probe. Conditions were: (B.1) Hydrated with 80% fluid 

replacement; and (B.2) Dehydrated with no fluid replacement. 

 

Laboratory Study (C) Clothing (Latzka et al., 1997; 1998): 8 heat acclimated euhydrated male 

volunteers (23 ± 6 yrs, 1.76 ± 0.06 m, 76.0 ± 15.1 kg, 18 ± 6 % body fat) participated in treadmill 

exercise at TEE rates of ~675W in an environment of 35°C and 55% RH. CT was measured with 

a rectal probe. Conditions were: (C.1) shorts and a t-shirt (n=6) for 111 minutes of exercise; and 

(C.2) totally encapsulating chemical protective clothing (n=8) for 28 minutes of exercise.  

Laboratory Study (D) Acclimation State (Kenefick et al., 2011): 7 male euhydrated volunteers (24 

± 7 yrs, 1.78 ± 0.08 m, 80.2 ± 21.3 kg , 16 ± 11 % body fat) participated in a treadmill exercise at 

a TEE rate of ~550 W while wearing shorts and a t-shirt in environmental conditions of 45°C, 

20% RH. CT was measured using a thermometer pill used as a suppository. Conditions were: 

(D.1) unacclimated for 59 minutes of exercise; and (D.2) acclimated (10 previous days of 

exercise in the heat) for 100 minutes of exercise.  

 

Field Study (E) U.S. Army Ranger Training Brigade (RTB) (Unpublished): 11 male acclimated 

euhydrated RTB students (27 ± 6 yrs, 1.77 ± 0.05 m, 81.7 ± 5.3 kg, 14 ± 3 % body fat) 

participated in an eight mile timed road march (140 minutes) while carrying ~ 35kg at night. 

Volunteers wore the Army combat uniform and had TEE rates of ~675W in 25°C, 85% RH 

environmental conditions with wind speeds ranging from 0 to 3 ms
-1

. CT was measured by 

ingested thermometer pill. 

 

Field Study (F) U.S. Special Forces (Buller et al., 2011b): 7 male heat acclimated euhydrated 

Special Forces military students (27 ± 2 yrs, 1.78 ± 0.08 m, 85.7 ± 6.2 kg) who were participating 

in multi-day selection course were studied. Volunteers were studied over a 24 hour period which 

included various training activities and sleep. Volunteers wore the Army combat uniform and had 

average TEE rates ~200W.  Environmental conditions ranged from 9 to 13 °C and 83 to 95 % RH 

with wind speeds of 0.4 to 3.0 ms
-1

 with some sun during outdoor activities. CT was measured by 

ingested thermometer pill. 

 

Field Study (G) Iraq (Buller et al., 2008): 8 male heat acclimated euhydrated U.S. Marines (21 ± 

1 yrs, 1.80 ± 0.07 m, 85.1 ± 9.0 kg, 15 ± 3 % body fat) who conducted one of two foot patrols 
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(209 and 250 min.) in Iraq were studied. Volunteers wore the standard Marine Corps combat 

shirts and body armor (~37 kg load) and had an average TEE rate of ~200W. Environmental 

conditions were 42 to 47 °C and 9 to 11% RH; and 39 to 44 °C, and 9 to 13% RH with wind 

speeds <2.0 ms
-1

. Both patrols were conducted in full sun. CT was measured by ingested 

thermometer pill.  

 

Field Study (H) Afghanistan (Buller et al., 2011a): 8 male heat acclimated U.S. Marines (21 ± 2 

yrs, 1.84 ± 0.04 m, 85.7 ± 6.2 kg, 16 ± 3 % body fat) who conducted one of two foot patrols 

during a full mission day in Afghanistan were studied (683 and 488 min.). Volunteers wore the 

standard Marine Corps combat shirts and body armor (~32 kg load). Patrols were conducted with 

average TEE rates ~400W. Environmental conditions were 20 ± 3 °C and 20 ± 11 % RH with 

wind speeds of 2.4 ± 0.8 ms
-1

; and 20 ± 5.3 °C, 26 ± 13 % RH with wind speeds of 2.0 ± 1.1 ms
-1

. 

Both monitoring periods were under full sun. CT was measured by ingested thermometer pill. 

 

Field Study (I) Australian Army Soldiers (Unpublished): 8 male heat acclimated euhydrated 

Australian Army Soldiers (28 ± 6 yrs, 1.95 ± 0.09 m, 85.7 ± 14.2 kg, 13 ± 4 % body fat) 

participated in two training activities. Conditions were: (I.1) A simulated patrol and ambush (15 – 

20°C, 65 – 85% RH, wind speed <1.5 ms
-1

, limited sun) which included periods of strenuous 

activity (297 min.). Volunteers wore chemical biological protective gear in an open configuration 

(Military Operational Protective Posture (MOPP) II). (I.2) A 5 km road march conducted in fully 

encapsulating chemical biological protective equipment worn in the MOPP IV configuration 

(18°C, 72% RH, wind speed <1 ms
-1

, dusk) with an average TEE rate of ~685W (244min.). CT 

was measured by ingested thermometer pill. 

 

Table 3.4: Volunteer characteristics, TEE rate and environment summary by study. 

S
tu

d
y
 Time 

(min.) 

n Age 

(yrs) 

Height 

(m) 

Wt. 

(kg) 

Body 

Fat 

(%) 

TEE 

Rate 

(W)† 

Air 

Temp. 

(°C) 

RH 

(%) 

T ~840 17 23±4 1.79±0.08 81±11 18±3 Various 24–36 42–97 

A ~480 x 6 18* 22±4 1.77±0.04 81±15 N/C 350/470 20–40 30–50 

B 121/121 8 23±3 N/C 72±12 N/C 1000 33 50 

C 111/28 6/8 23±6 1.76±0.06 76±15 18±6 675 35 55 

D 59/100 7 24±7 1.78±0.08 80±21 16±11 550 45 20 

E 140 11 27±6 1.77±0.05 82±5 14±3 675 25 85 

F 1441 7 27±2 1.78±0.08 86±6 N/C 200 9–13 83–95 

G 209+250 8 21±1 1.80±0.07 85±9 15±3 200 39–47 9–13 

H 683+488 8 21±2 1.84±0.04 86±6 16±3 400 20 20–26 

I 297/244 8 28±6 1.95±0.09 86±14 13±4 Var./685 15–20 65–85 

TEE = Total energy expenditure rates. †Values reported are approximate. T=Training/Development Data. 

*Includes 1 female. N/C = Not Collected. Var. = Various. Means ± SD. 
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3.2.2 Kalman Filter Model Development  

A KF model is comprised of two relationships: a time update model and an observation model. In 

the estimation of CT, the time update model relates how CT changes from time step to time step 

along with the uncertainty/noise of this change. The observation model relates an observation of 

HR to a CT value along with the uncertainty of this mapping. The time update and observation 

models are shown in Equations 3.25 and 3.26 as regression models with the uncertainty/noise 

represented as zero mean Gaussian distributions with variances of γ
2
 and σ

2
. If the model 

parameters (a0, a1, γ, b0, b1, b2, and σ) can be found, a standard set of KF equations can be used to 

iteratively compute the most likely CT given a series of HR observations (see Equations 3.27 

through 3.32 in the results section). The equations in the results section are shown using the 

model parameters from Equations 3.25 and 3.26, and where the learned model parameters have 

been substituted. Thus, given any series of one minute HR observations, these equations can be 

used to iteratively compute a series of minute-by-minute CT estimates. Welch and Bishop (1995) 

provide an extensive tutorial on the KF and the extended KF which is used in this paper. 

However, at each time step, the KF equations can be thought of as operating in the following 

way: (1) Compute an estimate of the current CT using the time update model (see Equation 3.27). 

(2) Compute the uncertainty of the current CT estimate using the time update model uncertainty 

(see Equation 3.28). (3) Adjust the current CT estimate using the current observation of HR and 

the observation model weighted by the uncertainty of the observation versus the uncertainty of 

the current CT estimate (see Equation 3.31). (4) Adjust the CT estimate uncertainty based upon 

the uncertainty of the observation (see Equation 3.32). The KF model parameters were learned in 

the following way: 

 

The time update model: was defined as a linear regression equation as follows:   

 

faCTaCT tt   011  Where: ),0(~ Nf      (3.25) 

 

Where CT = core temperature, subscript t = time point, a1 = time update model 

coefficient, a0 = time update model intercept, f = noise drawn from a Gaussian distribution (N) 

with mean 0 and SD γ. Parameters a1 and a0 were found by least squares regression of CTt by CTt-

1. The parameter γ was derived from the SD of the discrete probability distribution of ΔCT points 

from the development data.  
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The observation model:  was defined as a quadratic regression model as follows: 

 

gbCTbCTbHR ttt  01
2

2  Where: ),0(~ Ng     (3.26) 

 

Where b2 = observation model quadratic coefficient, b1 = observation model coefficient, 

b0 = observation model intercept, g = noise drawn from a Gaussian distribution with mean 0 and 

SD σ.  Equation 3.26 shows a quadratic regression model as this was found to better fit the 

development data necessitating the use of the extended KF. Parameters b0, b1, and b2 were found 

by quadratic least squares regression fit to eight pairs of CT - HR points found by searching for 

the optimal CT estimation performance of our previous KF model (Buller et al., 2010). The 

parameter σ was found by computing the mean and SD of HR values binned by CT at 0.1°C 

intervals and taking the mean of the SD values for each bin.  

Our original KF model (Buller et al., 2010) was used to search for the optimal CT - HR 

points using our developmental data. The original KF linear observation model was split into 7 

line segments at eight CT values of 36.5, 37.0, 37.5, 38.0, 38.5, 39.0, 39.5, and 40.0 °C. Our 

original KF model was modified to be run in a piecewise fashion using these seven line segments. 

For each CT (listed above) starting with the lowest, we systematically varied the HR value (±50 

beats/minute in 1 beat intervals) to redefine the KF observation model at this point. For each HR, 

we used the redefined KF model to provide estimates of CT given our development data. The HR 

that provided CT estimates with the minimum root mean square error (RMSE) compared to the 

observed development data was selected. The next highest CT line segment point was then 

selected and the process repeated. In this way, the eight CT-HR pairs were modified by our 

developmental data from our earlier observation model to a new model that better defined the 

relationship between CT and HR. A quadratic least-squares regression was fit to these points to 

become our optimized observation model. 

3.2.3 Statistical Analysis 

The limits of agreement (LoA) method (Bland and Altman, 1986) was selected as the most 

appropriate means for assessing agreement between the observed CT and KF model estimate. 

This method plots the average of observed and estimated values against the difference (estimate – 

observation). Bias is computed as the mean of the differences. Limits of Agreement are computed 

as bias ± 1.96 × standard deviation (SD) of the differences. The LoA provide a range of error 

within which 95% of all estimates using the KF approach should fall assuming a normal 

distribution. The initial observed CT values for each study were used as starting values for the KF 
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model and the initial variance was set to zero indicating high confidence in these values. The 

Kalman Filter model was developed using data with one minute intervals. Where data had 

sampling rates more frequent than the one minute intervals, the mean of all values occurring in 

that minute was used. Where the sampling rate was greater than one minute, values were linearly 

interpolated. 

The Bland and Altman method specifies no a priori limits on what forms an acceptable 

bias or range of LoA; instead they suggest these values depend on the measure and its intended 

use. For this analysis, we compared our model’s performance to how the accepted laboratory 

measures of rectal and esophageal temperatures compare. Bias limits were set to the individual 

biological variation of ±0.25°C found by Consolazio, Johnson and Pecora (1963). To set LoA we 

examined the literature for comparisons of rectal to esophageal temperatures. Table 3.5 shows 

results of bias ± SD and LoA for five studies. Taking a weighted mean of all studies suggests that 

95% of comparisons of rectal versus esophageal CTs fall within ± 0.58 °C. This LoA appears to 

reflect the difficulty in obtaining tight agreement in different methods of CT measurement. This 

difficulty is highlighted when both esophageal and rectal temperature methods are compared to 

pulmonary arterial blood temperature where LoAs are ±0.59 and ±0.78 °C respectively (Lefrant 

et al., 2003). 

 

Table 3.5: Bias and LoA for studies comparing rectal and esophageal measure of CT. 

Citation Bias ± SD LoA (1.96 * SD) N 

Kolka* -0.21±0.17 ± 0.33 4 

Lee* -0.35±0.20 ± 0.40 7 

Teunissen et al., 2011 0.01±0.32 ± 0.63 10 

Brauer et al., 1997 -0.03±0.42 ± 0.82 60 

Al-Mukhaizeem et al., 2004 0.05±0.22† ± 0.43† 80 

 Weighted Mean ± 0.58 161 

*In Byrne and Lim (2007). †Weighted mean of 3 periods in Table 1, Al-Mukhaizeem et al. (2004). 

 

We also computed the root mean square error (RMSE) for each individual volunteer and 

computed the mean RMSE ± SD for each condition. A single factor (study condition) analysis of 

variance (ANOVA) was used to test for differences in KF model performance (RMSE, bias, and 

LoA) across conditions in study A and across field studies E through I. To readily identify what 

factors were causing main effect differences we used the least significant difference (LSD) post-

hoc test. T-tests were used to examine differences in performance between laboratory baseline 

measures and dehydration, acclimation and clothing configurations studies B, C and D 

respectively.  An overall RMSE was computed, weighted by each individual and study duration. 

Overall bias and LoA were computed from all data points. Grubbs (1969) outlier detection test 
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was used to identify RMSE and bias measures that differed significantly from each study’s group 

responses.  

3.2.4 Results - Model Development 

Figure 3.2.1 (A) shows the discrete probability distribution of ΔCT used for the time update 

model and (B) a scatter plot of all CT by HR points showing the mean HR ± SD for CT binned by 

0.1 °C intervals. The discrete probability distribution mean was found to be 0.001 ± 0.022 

°C/min. The regression of previous CT with current was found to be CTt = 0.9984∙CTt−1+ 0.0622 

with an r
2
=0.99. With the mean of the discrete probability distribution close to zero, and the 

regression coefficient close to one, and because we expect it to be equally likely that CT will 

either increase or decrease we set our time update model to a1 = 1, a0 = 0 and γ = 0.022.  

The optimal piecewise line segment points that provided the best RMSE (0.27 ± 0.10 °C) and 

largest number of points within ± 0.58 °C (96.1 ± 6.7%) are shown in Figure 1(B). A quadratic fit 

to these points defines the observation mapping function as b0 = −7887.1, b1 = 384.4286, and b2 = 

−4.5714. The mean SD for the binned HR = 18.88 ± 3.78 beats/min. so σ is set to 18.88. To keep 

the KF model simple the positively (low CT) and negatively (high CT) skewed HR distributions 

at the extremes of CT are ignored. Keeping the assumption that HR is normally distributed across 

all CT has the effect of slightly under and over estimating the rate of rise of CT for low and high 

CTs respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: (A) Time update model represented as a discrete probability distribution found from 

the development data. (B) Observation model. Scatter plot of development data points showing 

mean HR by CT ± SD the optimal CT-HR line segment points (Line Segment) and the CT to HR 

mapping function (Fit).  
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The extended Kalman filter model is described in Equations 3.27 through 3.32 (below) 

and provided as a Matlab script in below.  

 

 

function CT=KFModel(HR,CTstart) 

%Inputs: 

  %HR = A vector of minute to minute HR values. 

  %CTstart = Core Body Temperature at time 0. 

%Outputs: 

  %CT = A vector of minute to minute CT estimates 

%Extended Kalman Filter Parameters 

  a=1; gamma=0.022^2;  

  b_0=-7887.1; b_1=384.4286; b_2=-4.5714; sigma=18.88^2;  

%Initialize Kalman filter 

  x=CTstart; v=0; %v=0 assumes confidence with start value.  

%Iterate through HR time sequence 

  for time=1:length(HR)  

  %Time Update Phase  

    x_prd=a*x;        %Equation 3.27 

    v_prd=(a^2)*v+gamma;      %Equation 3.28 

  %Observation Update Phase 

    z=HR(time);  

    c_vc=2.*b_2.*x_prd+b_1;     %Equation 3.29  

    k=(v_prd.*c_vc)./((c_vc.^2).*v_prd+sigma);        %Equation 3.30 

    x=x_prd+k.*(z-(b_2.*(x_prd.^2)+b_1.*x_prd+b_0));  %Equation 3.31 

    v=(1-k.*c_vc).*v_prd;     %Equation 3.32 

    CT(time)=x; 

  end 

 

 

The model is based on the linear algebra equations from Welch and Bishop (1995) which 

we have simplified for use with scalar variables. For our analysis we selected a starting CT0 value 

from the data and set the initial variance (v0) = 0. At each new one minute time point (t) the six 

equations were applied iteratively to provide a new estimate of CTt and its associated variance (vt) 

given a current observation of HRt, the previous CTt-1 estimate, and previous variance (vt-1), thus: 

 

1) Compute a CT preliminary estimate ( tTĈ ) based upon the previous CT estimate (CTt-1) 

and the time-update mapping function (a1 and a0). 

 

01ˆ
1011   ttt CTaCTaTC  

1
ˆ

 tt CTTC          (3.27) 
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2) Compute a preliminary estimate of the variance of the CT estimate ( tv̂ ) based upon 

the previous CT variance (vt-1) the time-update mapping function (a1) and variance (γ
2
). 

 
2

1
2

1
2
1 0.0221ˆ   ttt vvav    

0.000484ˆ
1  tt vv         (3.28) 

 

3) Compute the extended Kalman filter mapping function variance coefficient. 

 

 384.4286ˆ-4.57142ˆ2 12  ttt TCbTCbc  

 384.4286ˆ1428.9  tt TCc        (3.29) 

 

4) Compute the Kalman gain (kt) weighting factor based on the preliminary estimate of 

variance and using the extended KF variance coefficient. 
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ˆ
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5) Compute the final estimate of CTt using the preliminary time-update estimate, the error 

between the HRt observation and the expected HR given the preliminary estimate of CT: 

 

))ˆˆ((ˆ
01

2
2 bTCbTCbHRkTCCT tttttt   

))1.7887ˆ4286.384ˆ5714.4((ˆ 2  tttttt TCTCHRkTCCT   (3.31) 

 

6) Compute the variance of the final CT estimate (vt): 

 

tttt vckv ˆ)1(           (3.32) 

 

Table 3.6 shows the iterative application of these equations to a series of HR observations 

given a starting CT0 = 37.94 °C and a starting variance of v0 = 0. 
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Table 3.6: Use of the extended KF equations on a portion of the observed HR data. 

HR t tTĈ  

(eq. 3) 

tv̂  

(eq. 4) 

ct 

(eq. 5) 

kt 

(eq. 6) 

CTt 

(eq. 7) 

vt 

(eq. 8) 

 

0 

    
37.94 0 

124 1 37.94000 0.00048 37.55077 0.00005 37.94031 0.00048 

111 2 37.94031 0.00097 37.54791 0.00010 37.93962 0.00096 

119 3 37.93962 0.00145 37.55427 0.00015 37.93979 0.00144 

145 4 37.93979 0.00192 37.55266 0.00020 37.94525 0.00191 

Bold font = observed or initialization data. Eqs. 3 to 8 are applied iteratively to compute CTt and vt. 

 

Figure 3.8 illustrates the performance of our learned model on the development data. 

Panel (A) shows a scatter plot of estimated CT by observed CT, the line of identity and a least 

squares linear regression fit to the development data. Panel (B) shows a Bland Altman Plot of 

mean of observed and estimated CT versus estimated – observed CT. The bias = -0.04 ± 0.28 °C 

with the LoA = ± 0.55°C. Panel (C) shows a normalized histogram of the model error. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: (A) Scatter plot of observed (Obs.) CT versus estimated (Est.) CT for the development 

data, showing the line of identity (solid) and least squares regression line (dashed). (B) Bland 

Altman plot showing bias (solid) and ± 1.96SD (dashed) for the development data. (C) 

Normalized histogram of model error for all training data. 

3.2.5 Results - Model Validation 

The KF model was validated against 150 individual test sessions with 83 different volunteers 

(>52,000 CT observations) and had an overall bias of − 0.03 ± 0.32 ºC with the LoA = ± 0.63 ºC. 

The overall weighted mean RMSE was 0.30 ± 0.13 ºC. Figure 3.9 (A) shows a scatter plot of 

estimated CT by observed CT, the line of identity and a least squares linear regression fit to the 

validation data. Figure 3.9 (B) shows a Bland Altman Plot of mean of observed and estimated CT 

versus estimated – observed CT of the validation data. Figure 3.9 (C) shows a normalized 

histogram of the model error for all the validation data. 



 

67 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: (A) Scatter plot of observed (Obs.) CT versus estimated (Est.) CT for the validation 

data, showing the line of identity (solid) and least squares regression line (dashed). (B) Bland 

Altman plot showing bias (solid) and ± 1.96SD (dashed) for validation data. (C) Normalized 

histogram of model error for all validation data. 

 

Table 3.7 presents the mean RMSE, bias, and limits of agreement (LoA) for estimated 

versus observed CT for the laboratory and field validation studies. Individual Bland-Altman 

(Figure 3.10) and mean observed and estimated CT (Figure 3.11) plots for all the studies provide 

a more detailed overview of the model performance. 

 

Table 3.7: Mean RMSE, bias, and limits of agreement (LoA) for validation data. 
Study Condition # min. n RMSE Bias LoA 

A.1. Environment 20ºC, 50%RH, 460W 507 9 0.32 ± 0.16 -0.12 ± 0.33  ±0.65 

A.2 27ºC, 40%RH, 350W 461 11 0.25 ± 0.14 -0.09 ± 0.27  ±0.53 

A.3 27ºC, 40%RH, 470W 461 10 0.32 ± 0.13 0.07 ± 0.33  ±0.65 

A.4 35ºC, 30%RH, 350W 461 12 0.33 ± 0.18 -0.25 ± 0.28†  ±0.54 

A.5 35ºC, 30%RH, 470W 461 7 0.25 ± 0.12 0.07 ± 0.26  ±0.52 

A.6 40ºC, 40%RH, 360W 461 7 0.29 ± 0.09 0.00 ± 0.30  ±0.60 

B.1. Hydration Hydrated 121 8 0.44 ± 0.19† 0.31 ± 0.36  ±0.71† 

B.2 (33°C, 50%) Hypohydrated 121 8 0.26 ± 0.11 0.14 ± 0.24  ±0.48 

C.1. Clothing Shorts & T Shirt 111 6 0.21 ± 0.11 0.05 ± 0.23  ±0.45 

C.2 (35°C, 55%) Chem. Bio. PPE 28 8 0.19 ± 0.16 -0.12 ± 0.21  ±0.40 

D.1. Acclimation Heat Acclimated 59 7 0.28 ± 0.11 -0.13 ± 0.27  ±0.52 

D.2 (45°C, 20%) Unacclimated 100 7 0.26 ± 0.19 -0.01 ± 0.31  ±0.60 

E. U.S. Army Rangers (24°C, 85%) 140 11 0.29 ± 0.09 -0.06 ± 0.30  ±0.58 

F. U.S. Special Forces (SF) (11°C, 91%) 1441 7 0.29 ± 0.07 0.06 ± 0.29  ±0.56 

G. USMC Iraq (42 °C, 11%) 225 8 0.23 ± 0.08 -0.05 ± 0.24  ±0.48 

H. USMC Afghanistan (20 °C, 20%) 586 8 0.32 ± 0.14 -0.07 ± 0.34  ±0.66 

I.1. Austral. Sol. (MOPP II) (18°C, 75%) 297 8 0.26 ± 0.07 0.03 ± 0.27  ±0.53 

I.2. Austral. Sol. (MOPP IV) (18°C, 72%) 244 8 0.42 ± 0.14† -0.28 ± 0.34†  ±0.67† 

Overall*   0.30 ± 0.13 -0.03 ± 0.32 ± 0.63 

Values are mean ± SD. † Significant difference at p<0.05. PPE = Personal Protective Equipment. Bolded 

results indicate Bias and LoA thresholds have been exceeded. USMC = U.S. Marine Corps. *Overall 

RMSE weighted by study duration & n. Overall bias and LoA computed from all data points. 
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Figure 3.10: Bland Altman plots for individual studies with bias (solid) and ± 1.96SD (dashed) 

. 
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Figure 3.11: Mean observed CT (solid - black) and mean estimated CT (dashed - gray)  for 

individuals studies with ± 1 SD. Means for studies G and H are not shown as they are a 

combination of several activities over the study period. * = end points significantly different 

p<0.05. 
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At environmental conditions 35ºC, 30%RH, and an EE rate of 350W (Study A.4) the bias 

exceeded our acceptability threshold and is significantly more negative than the study conditions 

A.3, A.5, and A.6 (F=2.77, P<0.03). The hydrated baseline condition (B.1) exceeded both the 

bias and LoA criteria, and is significantly different from the dehydrated condition (B.2) on the 

measures of RMSE and LoA (t=2.21, P<0.05; and t=3.05, P<0.01 respectively).  For the field 

studies mild conditions (18°C) with high EE rate (~685W) and encapsulation in PPE (I.2) has 

significantly greater RMSE, and negative bias (F=4.24, P<0.004, F=3.78 P<0.007 respectively) 

than the other filed studies (E, F, G, H, and I.1); and significantly greater LoA than studies G and 

I.1 (F=2.68 P<0.03, respectively). 

Table 3.8 presents four individuals identified as outliers using the Grubbs criterion test 

from 7 of the studies. No individual characteristic stands out as a factor in determining the 

outliers. 

 

Table 3.8: Individuals with RMSE and/or bias identified as outliers from 2-tailed Grubbs test. 

Individual 

(age, ht., wt., %fat ) 

Study Outlying 

RMSE (°C) 

Outlying 

Bias (°C) 

23, 1.70 m , 69 kg A.2, A.3, A.4 0.60†, 0.58 , 0.74‡ −0.59†, −0.55†, −0.72 

*, 1.73 m, 72 kg, 9% C.2 0.48‡ −0.39 

38, 1.86 m, 98 kg, 28% D.1, D.2 0.38, 0.54 0.29†, 0.50‡ 

22, 1.85 m, 88 kg, 15% H 0.60‡ −0.55† 

*Individual age not available. †p<0.05, ‡Approaching significance. 

 

Table 3.9, summarizes the performance of the KF model across a range of temperatures 

and TEE rates with clothing configurations from shorts and t-shirts to partial encapsulation. 

 

Table 3.9: KF model performance for a variety of temperatures and energy expenditure rates 

with acclimated, hydrated volunteers, not encapsulated in personal protective equipment.  

  Environmental Temperature (°C) 

  9 to 13 18 to 20 24 to 27 33 to 35 40 to 45 

E
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Low  

(<=375W) 
O O

↑
 O − O

↑
 

Moderate 

(376 - 525 W) 

 
O

↑
 O

↑
 O  

High 

(526 – 675 W)  

 
O O O O 

Very High 

(>675 W) 

 
  +↑  

O = bias is < ± 0.13, 
↑ 

LoA exceeds ± 0.58 by less than 0.1 °C, ↑ LoA exceeds ± 0.58 by more than 0.1 °C, 

− underestimation of CT, + overestimation of CT, grey area =  no data. 
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3.2.6 Discussion 

The Kalman filter model has an overall bias of only −0.03 ± 0.32 °C and limits of agreement of ± 

0.63 °C, indicating that 95% of all KF model estimates fell within this range of the observed CT. 

The KF model has a similar LoA to those found when comparing rectal and esophageal 

measurements of CT (± 0.58 °C see Table 2) and is within the LoA for rectal and esophageal 

measures found by Teunissen et al. (2011) and Brauer et al. (1997) of ± 0.63 and 0.82 °C 

respectively.  

Using the aggregated results of the various studies, with clothing configurations from 

shorts and t-shirts to partial chemical biological encapsulation; it is possible to examine the 

performance of the KF model across a large temperature range for several different rates of 

energy expenditure. Table 6, summarizes the performance of the KF model in terms of our 

comparison criteria. For most temperatures and work rates the KF model provides CT estimates 

with a bias and LoA that are similar to those found in comparisons of rectal versus esophageal 

temperatures. However, at temperatures of 33 to 35 °C there are two exceptions. First, at low 

work rates the KF model significantly underestimates CT, and second at very high work rates the 

model significantly overestimates CT. These errors can be tolerated in the context of using the KF 

model for maintaining the safety of individuals. At low work rates the underestimation poses 

limited risk for missing individuals under thermal strain. In fact, the CT observations for this 8 

hour series of work rest cycles (study A.4) never exceeded 38.5 °C. Conversely, at very high 

work rates the KF model tends to err on the side of false positives rather than missing thermally 

stressed individuals.  

Analysis of the laboratory studies also demonstrates that the model provides CT estimates 

with small bias and LoAs within or close to our comparison threshold when volunteers are 

dehydrated, encapsulated in chemical biological PPE, or in an unacclimated state.  

Only one set of conditions proved difficult for using the model in a safety assessment 

context. The KF model performs significantly less-well estimating CT of individuals engaged in 

very strenuous activity, in cooler temperatures while encapsulated in chemical biological PPE 

(MOPP IV) (study I.2). This particular study examined volunteers on a 5 Km road march 

conducted at a 15 min/mile pace in full chemical biological protective garments. Here the model 

clearly does not account for the full rise in CT seen during the road march (see Figure A2, panel 

I.2 in appendix A) and hence has a large negative CT bias. Although the work rate and clothing 

vapor occlusiveness are similar to that in the clothing laboratory study (study C), the ambient 

temperature was cooler (18 °C versus 35 °C). Under these conditions it appears that the 

thermoregulatory response of the volunteers was to widen the CT-to-skin temperature gradient, 
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by allowing CT to rise, rather than increase skin blood flow (see Sawka and Young 2006). Thus, 

the observed rise in CT was greater than the rise our model would estimate from HR. Under the 

warmer conditions of the clothing laboratory study (study C) our model performed adequately. 

When compared to the other recent approaches at providing non-invasive estimates of CT 

the KF model performs well. The KF model estimates of CT have a similar bias when compared 

to the heat flux sensor proposed by Gunga et al. (2008). However, LoAs for the heat flux sensor 

in environmental conditions of 25 °C and 40 °C were much higher (± 0.71 °C and ± 0.74 °C 

respectively) than all our conditions except study B.1.  Similarly, when the KF model is directly 

compared to a real time implementation of a physics based thermo-regulatory model (Yokota et 

al., 2008) across study conditions A.1-A.5 (bias ± LoA:  −0.24 ± 0.67; −0.25 ± 0.66; −0.08 ± 

0.77; −0.23 ± 0.65; 0.10 ± 1.09 °C, respectively) (DeGroot et al., 2008, personal communication.) 

the KF model performs better with a bias closer to zero in four out of the five conditions and has 

LoAs less than those provided by the thermoregulatory model.  

As with any method there is a distribution in performance (see Figure 3) where the model 

will more accurately estimate CT in some individuals than others. The overall and individual 

study Bland Altman charts in combination with the outlier analysis show that the KF model 

predicts CT very well except for a small number of individuals.  The outlier analysis (see Table 5) 

identified 4 individuals where the model did not perform as well as the group. This same number 

is predicted by the LoA methodology (5% of 83) where 5% of the population would be expected 

to fall outside of the ± 0.63 °C LoA bounds. For the outlier from study A.2, A.3, and A.4 the error 

is systematically negative. Similarly, the individual identified as an outlier in D.1 and D.2 has a 

systematic positive bias in CT estimations. With these outliers performance of the KF model 

appears to be individual specific rather than condition specific, and so systematic biases for 

individuals appear to be correctable. The model parameters do allow for individualization by both 

age and fitness and future research will examine how individualizing the model for these 

parameters can improve CT estimation. As most volunteers in our data were drawn from 

relatively young and fit male military populations, further work will also be necessary to expand 

the model’s generalizability to females, and older and less fit populations. 

Other factors can affect HR, and thus our CT estimation, such as diet, caffeine, sleep, and 

psychological stress.  The effects of diet and caffeine on HR will likely be outweighed by activity 

and thermoregulation. There were no controls for these factors in the field studies. Since it is 

likely that many volunteers were taking caffeinated products, the performance of the model 

includes the potential influence of caffeine. During sleep HR is reduced to low levels, but the KF 

model’s estimation of CT appears appropriate in these situations given the sleep data at the mid-
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point of Study F.  However, the impact of elevated HR from sustained psychological stress on the 

KF model’s performance is unknown. While, studies G and H contain active military patrols, 

further research is necessary to examine the effects of sustained stress on the model’s 

performance.  

Although in some conditions the KF model provides LoAs that exceed our comparison 

threshold, it is important to highlight both the simplicity of the present KF model and that the 

LoA calculations include all data with HR transients from the start and end of exercise. These 

transient periods are included to demonstrate that the model can track CT during dynamic real-

world periods of work and rest. Teunissen et al. (2011) examined the LoA between rectal and 

esophageal CT across periods of rest, exercise and recovery and found a similar LoA of ±0.63°C. 

Our KF model is simple using only one variable, HR, to estimate CT, with no adjustment for 

height, weight, body composition, fitness, or age.   

Finally, while the model is not a replacement for the direct measurement of CT the 

findings suggest the KF model is accurate, precise and practical enough to provide an indication 

of thermal-work strain for use in the work place. Using an estimate of CT in conjunction with HR 

to obtain a thermal-work strain index (TWSI) value would provide a simple mechanism for 

alerting workers to possible excessive thermal-work strain.  

3.2.7 Conclusion 

Core body temperature can be estimated by a Kalman filter model using a single parameter, heart 

rate, to within similar bias and limits of agreement seen when comparing rectal and esophageal 

measurements of core temperature. The model was validated against a series of laboratory and 

field studies with 83 volunteers and 150 experimental runs across a range of environmental 

temperatures from 18.0 °C to 45 °C and work rates. We demonstrate that the model performs 

similarly in different environments, in the presence of dehydration, with limited or complete 

clothing occlusion, and whether volunteers are heat acclimated or not. While this technique is not 

a replacement for direct core temperature measurement, it offers a simple and promising new 

method for estimating individual core temperature and is accurate and practical enough to provide 

a means of real-time heat illness risk assessment. 

3.3 Real-Time Thermal-Work Strain Application 

In developing a practical real-time thermal-work strain risk assessment system there are a number 

of practical questions. For example: Who will be monitored and for how long? Who should be 

presented with thermal-work strain state information? Should this information go to individual 
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team members, medical oversight professionals or team leaders? How should the thermal-work 

strain state index information be acted upon? Is the information absolute or used as part of an 

integrated approach to heat illness management? How will the information be telemetered from 

the individual to commanders and medical personnel?  

 The National Guard Weapons of Mass Destruction Civil Support Teams (WMD-CST) 

are usually comprised of approximately 22 full time personnel specially trained in 

chemical/biological weapon response. Each U.S. state has at least one specially trained unit that 

will often attend large scale high profile public events and are often the first to respond to 

unknown hazardous material events. The WMD-CST missions offer a fairly constrained scenario. 

A few team members will be fitted with chemical/biological personal protective equipment and 

will often walk into a “hot zone” to conduct surveys of sites, sampling of unknown substances, 

and casualty extractions. They have a dedicated medical officer to oversee the health and safety 

of team members, and also set up their own communications infrastructure. Since 2006 the 

WMD-CST at a national level have called for a real-time medical telemetry system, that includes 

measurement of both heart rate and core body temperature (National Guard 2006) in an effort to 

monitor thermal-work strain in national guardsmen as they conduct their chemical biological 

hazard missions (e.g. see Figure 1.1). Their document and standard operating procedures answer 

many of the questions necessary to build a real time monitoring system. 

In 2007 the U.S. Army’s Warfighter Physiological Status Monitoring-Initial Capability 

(WPSM-IC) was adapted to demonstrate real-time physiological status of WMD-CST team 

members engaged in a two training events (Buller et al., 2007). The system was viewed well but 

was only able to provide heart rate, activity, respiration rate and skin temperature. While these 

parameters were useful the system could not provide core body temperature nor a simple index of 

thermal-work strain.  

The development of the Kalman filter method detailed in the previous section was part of 

an ongoing U.S. Army Research Institute of Environmental Medicine (USARIEM) research 

effort into real-time thermal-work strain monitoring. The validation was successful enough that 

USARIEM submitted a patent on the approach (Buller 2013) and asked the WPSM-IC vendor to 

implement the algorithm in their physiological monitoring system (Equivital EQ-02, Hidalgo 

Ltd., Cambridge UK). In addition, USARIEM in collaboration with Massachusetts Institute of 

Technology-Lincoln Laboratory (MIT-LL) and Hidalgo Ltd. developed a complete system to 

meet the needs of the WMD-CST real-time medical telemetry system. Tharion et al. (2013) 

details the complete system, how well it functioned, and concluded that that real-time monitoring 

was useful to the WMD-CST.  



 

75 

 

The work in this section examines how well the core body temperature estimation 

algorithm performed in a real-time setting. Generally we found that using HR data alone the 

Kalman filter approach estimated CT with a bias of −0.03 ± 0.32 °C with 95% of all CT estimates 

falling within ± 0.63°C. However, the validity of the CT estimates where participants were in 

encapsulating PPE was unclear. In a laboratory treadmill exercise conducted in CBRNE PPE the 

CT estimates were valid with slight negative bias (−0.12°C), and where 95% of CT estimates 

within −0.52 to +0.28°C. But for a field exercise conducted in CBRNE PPE the bias was larger 

(−0.28°C) and 95% of estimates fell within −0.91 to +0.35°C. Buller et al. (2013) suggest that, 

under this study’s particular conditions, high metabolic work rate > 680 W, and temperate 

ambient conditions (Tair = 18 °C); it appeared that the thermoregulatory response of the 

volunteers was to widen the core-to-skin temperature gradient (with increasing CT and static 

Tsk), rather than increase skin blood flow (see Sawka and Young 2006). Under these 

circumstances the HR to CT mapping learned for the algorithm was inadequate to fully model the 

increased rise in CT.  

The purpose of the present study was to examine the performance of the CT estimation 

algorithm in first responders wearing fully encapsulating PPE across three different field 

exercises with different environmental conditions and training scenarios. Specifically, answering 

the question does the work under fully encapsulating PPE; and whether the algorithm could be 

used in real-time using both a measured and “good guess” CT as the algorithm starting point.  

3.3.1 Methods 

Volunteers 

A grand total of 25 male and 2 female volunteers (Age: 30 ± 6 yr, ± SD) from the U.S. Army and 

U.S. Army National Guard took part in three different CBRNE training events. These studies 

were approved by the institute’s Institutional Review Board (IRB).  Volunteers were briefed on 

the purpose, risks, and benefits of the study and each gave their written informed consent prior to 

participation.  All had previous CBRNE training, had worn CBRNE-PPE previously, and had 

been training with their units a minimum of two years. Table 3.9 presents the volunteer 

characteristics at each of the training events (Event 1: Edgewood MD, Event 2: Hayward, CA, 

Event 3: Hanscom Air Force Base (AFB), MA). 
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Table 3.10: Descriptive statistics for the study volunteers shown as mean ± standard deviation. 

Training Event #  n  Age (yr.) Height (cm) Weight (kg) Body Fat (%) 

1: Men            10 27.7 ± 4.5 176.8 ± 5.7   77.3 ± 11.8   13.8 ± 3.7 

1: Women   2 30.0 ± 2.8   165.4 ± 5.8   74.4 ± 1.0   35.5 ± 0.7  

2: Men   8 28.1 ± 4.6 178.5 ± 9.7   85.5 ± 16.9   16.9 ± 5.8 

3: Men   7 35.1 ± 8.7 177.6 ± 7.5   88.9 ± 12.4   22.1 ± 5.1 

Overall 27 29.9 ± 6.4 176.7 ± 7.9   82.5 ± 13.3   18.5 ± 7.4 

 

Real-time Physiological Monitoring System 

The real-time physiological monitoring system was based upon the Hidalgo Equivital EQ-02 

(Hidalgo Ltd., Cambridge UK) chest belt sensor (see Figure 3.12 panel A). The Hidalgo 

Equivital™ EQ-02 is an FDA 510(k) certified system (K113054). The sensor electronic module 

weighs 38 gm, is IP67 certified and has a Class 1 Bluetooth interface.  The EQ-02 system can 

record CT by receiving transmissions from the MiniMitter (Bend OR) Jonah thermometer pill. 

The thermometer pill is a food grade polycarbonate capsule that conforms to U.S. Food and Drug, 

Cosmetic Act and Food Additive Regulations 21 CFR 177.1580. 

 The EQ-02 sensor connects via Bluetooth to an Android smartphone (Figure 3.12 panel 

B) and one of two radio systems (Figure 3.12 panel C). The Android smartphone was used as a 

“Buddy” display. The intent was for team members who worked in pairs to be aware of the 

current thermal-work strain state of their partner.  

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Real-time physiological monitoring system. Panel A: Hidalgo Equivital EQ-02 chest 

belt sensor. Panel B: Android smart phone displaying thermal-work strain index taped to the 

outside of level A personal protective equipment. Panel C: Radio worn inside personal protective 

equipment to telemeter physiology back to the medical command post. 

 

The android phone displayed the thermal-work strain index monitored in real-time from 

the EQ-02 sensor using both observed HR and observed CT from the ingested thermometer pill. 

A B C 
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The display was color coded green for TWSI values below 8, yellow for TWSI values above 8 

and below 10 and red for values above 10. The Android phone was also programmed to vibrate to 

provide a haptic alert when thermal the TWSI was at 10 or more. A TWSI of 10 relates to the 

USARIEM human use limits of CT (39.5 °C) and HR of 180 beats/min.. Figure 3.13 shows the 

Android smart phone display in each of these colored states. 

 

 

 

 

 

 

 

 

 

Figure 3.13: Android smart phone real-time thermal-work strain index display. 

 

 The radio worn under the suit telemetered the real-time physiology back to an integrated 

display at the medical officer’s work station. This display was a modified screen from Hidalgo’s 

Black Ghost
®
 real-time monitoring system and shows a history of the observed or estimated 

TWSI, along with a projection of the TWSI assuming HR remains the same for the next 15 

minutes. Figure 3.14 shows one version of the display used in the real time system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: WMD-CST Medical Telemetry Monitor showing the estimated thermal-work strain 

index value on the left and the 15 minute predict ahead TWSI value for each team member along 

with heart rate, estimated core body temperature, skin temperature, and body orientation. 
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Training Events 

All data were collected during regularly scheduled training where the programs of instruction 

were developed by the units prior to the study.  A description of the training was obtained from 

the unit prior to the study.  In addition, data collectors recorded the activities during the training 

to verify the descriptions provided by the units. A general description of the training is provided 

below for each training event.  Figure 3.15 illustrates the CBRNE-PPE used by volunteers during 

their training. 

 

 

 

 

 

 

 

 

 

 

 

             Event 1                                   Event 2                                              Event 3 

Figure 3.15:  Personal protective equipment worn by Soldiers from three training events. 

 

Event 1 (Edgewood, MD)   

The training exercise had a total of 12 U.S. Army Soldiers participate.  On the first day of training 

all were outfitted with the data collection system, while on the second day only seven individuals 

wore the data collection system.  The total duration of each day’s training exercise was 

approximately 75 minutes; individuals were fully encapsulated in their PPE for about 45 minutes 

and partially encapsulated for the remainder of the time.  The PPE consisted of the Joint Service 

Lightweight Integrated Suit Technology (JSLIST) uniform, rubber boots, protective mask (M40, 

M50, or M52) in the Mission Orientated Protective Posture IV (suit, mask, boots, and gloves 

worn). Three individuals from the day 1 group of 12 were part of an Explosive Ordinance 

Disposal (EOD) team.  In addition to the ensemble worn by the other participants they wore the 

Improved Outer Tactical Vest (IOTV) with body armor and a Kevlar Helmet. 
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 The exercise took place indoors in a large warehouse with no-air conditioning (Day 1: 

Air Temperature (Tair) = 28.7°C, Relative Humidity (RH) = 67.2%; Day 2: Tair = 28.1°C, RH =  

68.9%). On both days the training took place in the morning.  

The exercise began with EOD personnel conducting an initial entry after walking 

approximately 10 meters in their PPE.  Personnel searched and disarmed simulated explosive 

devices.  The Chemical Response Team (CRT) individuals (n=4) wore the same equipment and 

then followed the EOD personnel to the site.  That is, after any simulated explosives were 

disarmed, the EOD personnel left and the CRT sampling teams arrived to secure any chemical, 

biological, radiological, or nuclear (CBRN) samples of material.  After the EOD and CRT 

sampling teams left the site they traveled approximately 10m and went through a 

decontamination procedure, which included washing the PPE down and suit removal.  There were 

four Soldiers that worked the Decontamination Station.   One soldier was the supervisor and was 

not part of the EOD, CRT sampling or CRT decontamination teams.  Because the training was 

staggered each of these three groups worked including planning, waiting, and including their 

physical work for approximately 45 minutes (time encapsulated in PPE) of the entire 75 min 

exercise.  Training was similar on both test days. 

 

Event 2 (Hayward, CA)  

Approach March (Day 1):  Army National Guard Soldiers (n=7) in Level A CBRNE-PPE with 

self-contained breathing apparatus (SCBA) walked self-paced for approximately 45 minutes 

covering just less than 2 kilometers.  This simulated an approach to a CBRNE contamination site 

(Tair = 21.9°C, RH = 36.2%).  The training took place in the morning under direct sunlight with 

no cloud cover. 

Sampling (Day 2):  Soldiers (n=6) walked approximately 400 meters into a designated 

contaminated area which simulated an illicit drug laboratory.  Soldiers were required to search 

and secure the room.  They also secured a sample of the simulated chemical materials present, 

properly packaged and documented the sample, then returned the sample to the decontamination 

line for processing prior to transferring the sample to the CST mobile Analytical Laboratory 

System (ALS) for analysis. All volunteers were encapsulated in Level A for approximately 45 

min while doing their assigned jobs (Tair = 14.6°C, RH = 79.3%). Most of the time was spent in 

a non-air conditioned room with the doors and windows open to the outside.  The training took 

place in the morning with partly cloudy skies.  

Search and Rescue (Day 3):  Soldiers (n=6) completed a search and rescue operation in a 

four-story fire tower.  They searched the area, cleared rooms, and rescued a downed person (~85 
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kg manikin).   All volunteers were encapsulated in Level A for approximately 45 min while doing 

their assigned jobs (Tair = 16.0°C, RH = 48.5%). Most of the time was spent in a non-air 

conditioned fire tower with the doors and windows partially opened to the outside. The training 

took place in the morning, with cloudy skies.  

 

Event 3 (Hanscom Air Force Base, MA) 

All volunteers (n=7) wore Level A CBRNE-PPE during two days of training exercises.  Five 

volunteers used SCBA while two volunteers used Powered, Air-Purifying Respirator systems.  

The training exercises were less than 60 min in duration and were repeated on the second day. For 

day 1 the training took place in the morning in direct sunlight with no cloud cover (Tair = 18.1°C, 

RH = 42.9%).  For day 2 the training took place in the morning under an overcast sky of dark 

clouds (Tair = 17.7°C RH = 84.7%).  

Two soldiers constructed a subway track berm.  Activities included carrying a heavy 

container (~23 kg) and assembling materials according to a standard operating procedure to 

create this berm.  The constructed berm would collect runoff of decontaminated liquids used to 

clean the contaminated subway tracks.  The WMD-CST personnel wore CBRNE-PPE while 

constructing this berm.  Five other soldiers participated in a search and rescue operation in an 

abandoned building simulating a chemical laboratory.  They were required to secure and move a 

flexible stretcher with a simulated human casualty (~85 kg manikin), inventory chemical glass-

ware, and reassemble the chemical glassware equipment in the way they found it (cognitive and 

fine motor tasks).  Throughout this exercise, they moved up and down stairwells of a three-story 

building.   

Physiological Measures 

For all three training events, HR and CT were recorded every 15s using a chest belt physiological 

monitoring system (Equivital™ EQ-02, Hidalgo Ltd., Cambridge UK) with an associated 

ingestible thermometer pill (Jonah Core Temperature Pill, MiniMitter, Respironics, Philips, Bend 

OR).  Participants ingested one thermometer pill at least 12 hours prior to the training event and a 

second pill on the morning of the training event.  On subsequent days additional thermometer 

pills were administered if participants passed one of the earlier pills.  This method allowed for at 

least one thermometer pill to be far enough along in the intestinal tract to avoid errors from 

ingested fluids.  Prior to the training events, participants donned the physiological monitoring 

system according to the manufacturers’ instructions.  Each participant’s real time data were 

checked for accurate reporting of HR and CT prior to the training event.  In some circumstances, 
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thermometer pills could not be given prior to the start of the training event. Core temperature data 

were not used if there were obvious signs of drink signatures (rapid decrease in CT below 35 ºC 

and slow recovery to normal body temperature). 

Core Temperature Estimation 

Core body temperatures were estimated using measures of HR and the Kalman filter algorithm 

Buller et al. (2013). Heart rate and CT were reduced to one minute intervals by taking the median 

of the four 15s samples for each one minute epoch.  The CT algorithm was seeded with the actual 

starting core body temperature as measured by the ingestible thermometer pill; with the 

assumption that initial CT during these real-life events could be estimated or measured prior to 

mission start. 

Thermal-Work Strain Index (TWSI)  

Observed HR and CT were used to compute the Thermal-Work Strain Index (TWSI) according to 

Moran et al. (1998) see Equation 3.33. 

 

                                      
                           

   (3.33) 

 

 Where TWSI is the thermal-work strain index, CT is core body temperature, and HR is 

HR. The rest suffix denotes the HR or CT at rest prior to exercise. For this analysis CTrest was set 

at 37.1 °C and HRrest at 71 beats/min.. An Estimated TWSI was computed using HR and the CT 

estimate. 

Statistical Analysis 

Work rates of participants varied greatly within events, with some getting hot and others 

remaining cool. For each event the grand mean HR and mean maximum CT were computed for 

the hottest four runs (“hot”) (those runs where participants had the highest CT), coolest four runs 

(“cool”) (those runs where the participants had the coolest CT) and for the remainder of the runs 

(“moderate”). The mean maximum TWSI was computed according to Moran et al. (1998) for 

each of the three temperature groups. 

To examine the performance of the CT_est algorithm the limits of agreement (LoA) 

method (Bland and Altman 1986) and root mean square error (RMSE) 

(                    
    

   ) were selected as the most appropriate means for assessing 

agreement between the observed CT and CT_est. The LoA method utilizes a Bland-Altman chart 

to plot the average of observed and estimated values against the difference (estimate – 
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observation). The method also computes bias as the mean of the differences between CT and 

CT_est LoA are computed as bias ± 1.96 × SD of the differences.  The LoA provide a range of 

error within which 95% of all CT_est should fall assuming a normal distribution.  Bias and LoA 

from all data were computed for each training event.  Root mean square errors were computed for 

each individual volunteer for each training session and an overall mean RMSE was computed for 

each training event. At each training event there were either two or three training scenarios on 

different days that were grouped together for this analysis. This grouping meant that individual 

participants had data from one to three training sessions included in the overall event analysis. 

Overall RMSE for each training event was weighted by participant and training session duration. 

A single factor (training event) analysis of variance (ANOVA) was used to test for differences in 

CT estimation performance (RMSE, bias, and LoA) across study events.  For the ANOVA 

analysis RMSE, bias, and LoA were calculated for each participant for each training session.   

To examine whether there was a difference in the algorithm’s performance between those 

participants who were hotter and cooler based on CT and to identify whether performance 

changed over time a mixed model two factor [time (within participant) x temperature group 

(between participant)] ANOVA was conducted for RMSE and bias. The temperature group was 

composed of “hot”, “cool”, and “moderate” groups. The “hot” group was composed of the four 

runs with the highest CT from each event. The “cool” group was composed of the four runs with 

the lowest CT’s from each event; with the “moderate” group composed of the remaining runs. 

RMSE and bias were computed for each individual run at 10, 20, 30, and 40 minutes from data ± 

5 minutes around these time intervals. Pairwise comparisons were not adjusted for multiple 

comparisons to lean towards making Type I errors and identify a possible area where the 

algorithm is performing differently. To examine the limitation of knowing or measuring a starting 

CT the algorithm was re-run using an assumed resting CT of 37.1 °C and an initial model 

variance of v0=0.01. The mixed model two factor ANOVA was repeated using the RMSE and 

bias from the algorithm using the fixed start CT. 

An overall RMSE was computed, weighted by each individual and duration of the 

training event.  Overall bias and LoA were computed from all data points.  Finally thermal-work 

strain index values were computed from HR and both the observed and estimated CT. Overall 

bias, RMSE and LoA were computed for the observed versus estimated TWSI. The alpha 

significance level was set at 0.05.  Mean values are reported with ± SD.  
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3.3.2 Results 

Table 3.11 presents the weighted mean RMSE, bias and limits of agreement (LoA) for each 

training event showing the length of each individual training session and the number of 

participants who completed each training session. RMSE was weighted by length of training 

session and number of participants. Bias and LoA were computed from all data points for each 

training event and overall. 

 

Table 3.11: Mean root mean square error (RMSE), bias, and limits of agreement (LoA) for each 

of the three training events and overall.  

Event # No. of min. n RMSE (ºC) Bias (ºC) LoA (ºC) 

1 ~95 each 12 0.20 ± 0.11 0.01 ± 0.26 ± 0.50 

2 ~45 each 8 0.24 ± 0.11 0.04 ± 0.26 ± 0.51 

3 ~45 each 7 0.17 ± 0.09 0.03 ± 0.19 ± 0.37 

Overall † † 0.21 ± 0.11 0.02 ± 0.25 ± 0.48 

†Overall RMSE, Bias and LoA weighted by participant and exercise duration. 

 

Figures 3.16, 3.17, and 3.18 show two panels mean HR (A), and mean CT (B) for the 

“hot”, “moderate”, and “cool” groups from each event. Panel B also shows mean estimate CT 

(dashed line) for these same temperature groups. Error bars show the SD for the “hot” and “cool” 

groups. Table 3.12 shows the grand mean HR and mean maximum CT and TWSI for each event 

for the “hot”, “moderate”, and “cool” groups.  

 

 

Figure 3.16: Event 1. Panel (A) Mean HR for “hot”, “moderate”, and “cool” training sessions 

showing SD error bars for “hot” and “cold” sessions. Panel (B) Mean CT (Obs.) and mean 

estimated CT (Est.) for “hot”, “moderate”, and “cool” training sessions showing SD error bars 

for “hot” and “cold” sessions. 
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Figure 3.17: Event 2. Panel (A) Mean HR for “hot”, “moderate”, and “cool” training sessions 

showing SD error bars for “hot” and “cold” sessions. Panel (B) Mean CT (Obs.) and mean 

estimated CT (Est.) for “hot”, “moderate”, and “cool” training sessions showing SD error bars 

for “hot” and “cold” sessions. 

 

 

 

Figure 3.18: Event 3. Panel (A) Mean HR for “hot”, “moderate”, and “cool” training sessions 

showing SD error bars for “hot” and “cold” sessions. Panel (B) Mean CT (Obs.) and mean 

estimated CT (Est.) for “hot”, “moderate”, and “cool” training sessions showing SD error bars 

for “hot” and “cold” sessions. 
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Table 3.12: Mean heart rate (HR), and mean maximum core body temperature (CT) for each of 

the three training events for the most hottest (“Hot”), coolest (“Cool”), and other subjects 

(“Moderate”). 

 “Hot” “Moderate” “Cool” 
E

v
en

t 

Mean 

HR 

(bpm) 

Max CT 

(°C) 

Max 

TWSI Mean 

HR 

(bpm) 

Max CT 

(°C) 

Max 

TWSI Mean 

HR 

(bpm) 

Max CT 

(°C) 

Max 

TWSI 

1 135±8 38.9±0.3 8.1±1.2 110±10 38.1±0.2 5.2±1.2 82±15 37.3±0.6 2.2±1.8 

2 148±16 38.9±0.6 8.8±1.1 103±14 37.7±0.2 4.4±1.5 91±13 37.4±0.1 3.2±0.3 

3 144±21 38.6±0.4 7.8±1.6 112±10 38.1±0.2 5.2±1.2 112±4 37.7±0.1 4.3±0.2 

 

No significant differences were found for the estimation algorithm performance measures 

of RMSE, bias and LoA between testing events (F(2,49) = 1.15, p = 0.32; F(2,49) = 0.16, p = 

0.85; F(2,49) = 0.96, p = 0.39 for event 1, 2 and 3 respectively).  Figure 3.19 shows a scatter plot, 

Bland-Altman plot and histogram for the data combined from all three training events. The 

combined data show good agreement between CT and CT_est across a range of CT (36 to 39.5 

ºC) with minimal bias with 95% of errors within ± 0.48 °C. 

 

Figure 3.19: Overall results. Panel (A) scatter plot of observed (Obs.) CT versus estimated (Est.) 

CT showing the line of identity (solid). Panel (B) Bland Altman plot showing bias (solid) and ± 

1.96 SD (dashed). Panel (C) normalized histogram of algorithm error. 

 

No significant differences were found in bias for the main effect of temperature group (F 

(2,49) = 0.002, p = 0.99); time point (F(3,147) = 0.217, p = 0.88); and the interaction of 

temperature group and time point (F(6, 147) = 0.939, p = 0.47). RMSE did not vary significantly 

(F(2,49) = 0.62, p = 0.54) between temperature groups. The interaction between temperature 

group and time point was not significant (F(6,147) = 0.48, p = 0.83). However, RMSE did vary 

significantly between time points (F (3,147) = 17.33, p < 0.001). Table 3.13 shows the marginal 

means for the temperature and time point groups.  
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Table 3.13: Marginal means and SD for algorithm runs with CT start set by the initial observed 

CT, and fixed at 37.1 °C by time period and temperature group. 

  Time Period  Temperature Group 

  10 min. 20 min. 30 min. 40 min.  Low Mod. Hot 

CT Start = Obs. RMSE 

(°C) 

0.09 
a 

± 0.06 

0.15 
b
 

± 0.10 

0.20  

± 0.15 

0.23  

± 0.17 

 0.17  

± 0.08 

0.18  

± 0.12 

0.14  

± 0.08 

Bias 

(°C) 

0.00 

± 0.12 

0.01  

± 0.20 

0.01  

± 0.25 

−0.02  

± 0.28 

 0.02 

± 0.18 

0.01 

± 0.20 

0.01 

± 0.17 

          

CT Start = Fixed 

(37.1 °C) 

RMSE 

(°C) 

0.25 

± 0.21 

0.24  

± 0.17 

0.26 

± 0.19 

0.26 

± 0.20 

 0.26 

± 0.12 

0.26  

± 0.17 

0.25 

± 0.15 

Bias 

(°C) 

−0.09 
a
 

± 0.31 

−0.02  

± 0.29 

0.04  

± 0.31 

0.01  

± 0.33 

 0.08  

± 0.28 

−0.03 

 ± 0.29 

−0.07 

 ± 0.28 
a
 Significantly different from time points 20, 30, and 40 minutes (p<0.05). 

b
 Significantly different from time points 30 and 40 minutes (p<0.05). 

 

Figure 3.20 (panel B) shows the marginal RMSE means for each of the time points of 10, 

20, 30, and 40 minutes. RMSE increases significantly from 10 to 20 minutes (p <0.001) and 20 to 

30 minutes (p = 0.02). However, RMSE is not significantly different between 30 and 40 minutes 

(p = 0.99).    

When the algorithm was run with a fixed starting CT of 37.1 °C weighted mean RMSE 

was 0.29 ± 0.14, bias = −0.002 ± 0.32, and LoA = 0.63. No significant differences in RMSE were 

found between time points (F(3,147) = 0.23, p = 0.87); temperature group (F(2,49) = 0.02, p = 

0.98); and the interaction term (F(6,147) =1.16, p = 0.33). Figure 3.20 (panel B) shows the 

marginal mean RMSE for each of the four time points.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Marginal mean bias (Panel A) and marginal mean RMSE (Panel B) for algorithm 

runs using observed (Obs.) start (St.) CT (solid line) and fixed start CT = 37.1 °C (dashed line) 

for time points 10, 20, 30 and 40 minutes into runs. † Time point 10 is significantly different from 

time points 20, 30, and 40 (p <0.05). ‡ Time point 20 is significantly different from time points 30 

and 40 (p <0.05). 
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Bias was not significantly different by group (F(2,49) = 0.98, p = 0.38). However, bias 

was significantly different by both time period (F(3,147) =19.87, p < 0.001); and the time period 

by group interaction (F(6,147) = 4.06; p = 0.001). Figure 3.20 (panel A) shows the marginal 

mean bias for each of the time points. Table 3.13 shows the marginal means for the temperature 

and time point groups. Bias at time point 10 is significantly different from the bias at the other 

time points (p < 0.03). Bias is initially negative for the “hot” and “moderate” groups and positive 

for the cool group converging to around zero at time points 30 and 40.  

Thermal-Work Strain Index Comparison 

Overall the TWSI RMSE was 0.39±0.34 units, with a bias of 0.04±0.51 TWSI units. Of all the 

data points 95% fell within ±1.00 TWSI unit. Figure 3.21 shows the Bland-Altman plot (bias – 

solid; limits of agreement ±1.96•SD – dashed) which indicates there is good agreement between 

observed and estimated TWSI across the 0 to 10 range. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Bland Altman plot of observed versus estimated thermal-work strain index for data 

from all three training events. Bias is the solid line, ±1.96*SD are shown as dashed lines.  

3.3.3 Discussion 

The CT_est algorithm was validated against three groups of Soldiers conducting different field 

training exercises. The algorithm overall performed similarly to the original paper CBRNE 

laboratory study, suggesting that it is a valid estimate of CT under different field CBRNE 

conditions. Using only measures of HR, the CT_est algorithm estimated CT with a small overall 
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bias of 0.02 ºC, well within the individual biological variation of ± 0.25 °C found by Consolazio, 

Johnson and Pecora (1963), and less than the more conservative bias threshold of ± 0.1 ºC 

suggested by Byrne and Lim (2007). The overall mean RMSE of 0.21 °C ± 0.11 ºC is similar to 

the result for the laboratory study of encapsulated test volunteers (RMSE = 0.19 ± 0.16) reported 

in the original article (Buller et al., 2013).  The overall RMSE is also less than that found in other 

comparisons of different measures of core temperature (rectal vs. esophageal; rectal vs. ingested 

pill; and esophageal vs. ingested pill) with exercise under warm (RMSE = 0.30 ± 0.03, 0.22 ± 

0.06, 0.26 ± 0.03 ºC, respectively) and cold (RMSE = 0.35 ± 0.06, 0.36 ± 0.08, 0.24 ± 0.02 ºC, 

respectively) conditions reported by O’Brien et al. (1998). While the overall LoA of ± 0.48 ºC 

exceeded Byrne and Lim’s (2007) suggested acceptance threshold of ± 0.4 ºC, it is within the 

weighted average ± 0.58 ºC of five other studies (Kolka et al., 1993; Lee et al., 2000, Teunissen et 

al., 2011; Brauer et al., 1997; Al-Mukhaizeem et al., 2004) that examined how rectal and 

esophageal methods of measuring CT compare (see Buller et al., 2013, Table 2 for more details). 

In addition, when temperature measurement techniques are compared during transitions from 

rest-to-exercise, and from exercise-to-rest these laboratory probe comparison LoAs increase 

further, e.g., a LoA of ± 0.63 ºC (Teunissen et al., 2011).  Data from this study include these types 

of transition periods.  Most errors beyond ± 0.5 ºC were overestimates. While this may lead to 

several false positives for high thermal-work strain, from a safety point of view it is better to 

produce false positives rather than problematic false negatives. 

For this series of CBRNE studies the CT_est algorithm showed similar performance 

across different training activities with different environmental conditions (Tair range: 14 to 29 

ºC). The CT_est algorithm results from these CBRNE field studies had RMSE’s and LoAs less 

than when compared the performance from non-CBRNE conditions (Overall RMSE = 0.30 ± 

0.13 ºC, bias = −0.03 ± 0.32 °C, and LoA of ± 0.63 from Buller et al., 2013). The microclimate 

within the encapsulating PPE worn by the test volunteers in this study may serve to limit 

variability in CT estimation as the effects of air movement and clothing parameters are 

minimized. Importantly the CT estimation algorithm worked similarly between the participants 

who reached high core temperatures approaching 39 °C and those who remained cooler during 

the exercises.  

As one would expect starting the algorithm with an observed CT leads to initial RMSE’s 

that are small and get larger as time passes. However, at 30 minutes the RMSE begins to 

asymptote (no significant difference in RMSE at 30 and 40 minutes). A similar pattern can be 

seen in the increase in the standard deviation of the bias (see Table 4). Conversely providing the 

model with a best guess for the starting CT (e.g. a resting CT of 37.1 °C) leads to estimates where 
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the RMSE remains constant across time points, but where bias at time point 10 (bias = −0.09 °C) 

is significantly different from the bias at time point 20 (bias = −0.02 °C). When the algorithm is 

started with an with a best guess CT and the initial variance is appropriately set (a non-zero 

value) to indicate lack of confidence in the initial value, the algorithm will quickly seek an 

appropriate CT based upon the observed HR. This effect can be seen in the convergence of the 

bias values to zero as time progresses (Figure 3.20, panel A). 

These results suggest that measuring and using an initial CT provides an early accuracy 

benefit. However this benefit is lost by about minute 30 when the RMSE asymptotes. Similarly 

when using a best guess for the initial CT the algorithm bias will initially be poor since a first 

“guess” may under or overestimate the true CT. However, the model’s ability to seek the most 

appropriate CT appears to remove this early bias by minute 20. 

This effect of the algorithm to seek the most appropriate CT based upon HR is important 

to account for the increase in CT due to heat storage over successive work rest periods.  Horn et 

al. (2013) demonstrated that in addition to increases in peak CT, there was a correlated rise in 

peak HR for successive work rest training exercise bouts. While our data do not contain 

successive bouts of work the correlated rise in HR along with rises in CT found by Horn et al. 

(2013) are suggestive that the algorithm would respond appropriately. In the previous work Buller 

et al. (2013) presented a series of validation studies consisting of laboratory studies in the heat 

with six work rest periods over the space of eight hours. In these studies there does not appear to 

be any significant increase in absolute bias (group mean estimated values track observed values), 

or LoA (SD of estimated values do not appear to increase during latter parts of the study) for 

successive work bouts.  

Limitations 

There are several limitations in generalizing this work. The efficacy of the algorithm in detecting 

thermal-work strain needs to be tested in a larger population where the specificity and sensitivity 

can better be determined. The participants in this study also represent a fairly homogenous group 

in terms of age and fitness level (all had to pass the yearly U.S. Army physical fitness test) and 

the algorithm would need to be adjusted for populations that differed in these respects. For older 

volunteers the HR to CT observation function will likely need to be adjusted for maximal heart 

rate reductions with increased age. Similarly, the temporal response of the model will likely need 

to be adjusted for individuals with substantially different fitness levels. For example, an increase 

in aerobic fitness leads to an increase in stroke volume (Cox, Bennett and Dudley 1986) and thus 
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a greater cardiac output per heartbeat, greater oxygen uptake and subsequently more rapid heat 

production / blood flow to the skin.  

While there were only two women subjects in this analysis the algorithm should have 

applicability beyond just the majority population of men used in this analysis and the previous 

validation paper. Gagnon and Kenny (2012) indicate that sex differences in metabolic heat 

production and cooling can be normalized by body weight and surface area, and Cramer and Jay 

(2014) and the accompanying editorial by Cheuvront (2014) provides further evidence that sex 

plays a limited role in thermoregulation.   

Finally, the algorithm works best when started with a known CT. However there may be 

times when this is not possible. In these cases providing an initial estimate of CT can suffice, but 

overall RMSE and LoA will increase. In the case of these events when we assumed a starting CT 

of 37.1 °C the CT_est values had a weighted mean RMSE of 0.29 ± 0.14, a bias −0.002 ± 0.32, 

and LoA = 0.63 which as argued above are still reasonable estimates. 

Thermal-Work Strain Estimation 

Finally, when estimated CT is used to calculate the TWSI, 95% of all estimates fall within ±1 

TWSI unit. This appears to hold true whether the individual is at a low or high thermal-work 

strain. Most errors beyond ±1 TWSI occur when the individuals are at lower thermal-work strains 

and are almost always over estimates. When the TWSI scale is examined the difference between 

anchor words is always 2 units. This would suggest that in 95% of cases if an individual is truly at 

a TWSI of 9 (“Very High”) then the estimate derived from estimated CT would fall between a 

TWSI of 8 and 10. This at the very least this would be interpreted at the high end of “High” 

thermal-work strain. 

3.3.4 Conclusion 

Individualized thermal-work strain monitoring is important given that thermal strain responses 

differ for individuals conducting the same task (Tharion et al., 2013b). The core temperature 

estimation algorithm evaluated in this first-responder chemical-biological context was able to 

provide valid estimates of core temperature in different ambient environments. Thus, when this 

algorithm is used in conjunction with a physiological monitoring system individualized thermal-

work strain can be estimated in real-time and used to help prevent heat illness or injury and better 

manage work schedules. 
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3.4 Overall Conclusions 

Our computational physiology approach has demonstrated how formalizing an open physiology 

research problem into a graphical model can produce estimation results that improve upon current 

techniques and that also provides additional insight into important, otherwise unseen, internal 

states and dependencies in the human thermoregulatory system. Using these insights we were 

able to simplify the model and provide a general core body temperature estimation algorithm 

based only upon sequential observations of heart rate. Using previously collected data we were 

able to show that the model had a performed almost as well as laboratory methods for measuring 

core body temperature. We were able to demonstrate that the estimation technique performed 

similarly for different work rates, across a wide range of environments, when subjects wore just 

shorts and t-shirts to when they were fully encapsulated in chemical/biological personal 

protective equipment. Finally we show the estimation technique in use as part of a wearable 

thermal-work strain physiological monitoring system during real-time training missions for two 

National Guard Weapons of Mass Destruction - Civil Support Teams. When the core body 

temperature is estimated in real-time and is used in conjunction with heart rate to estimate the 

thermal-work strain index (TWSI) 95% of all estimates fall within ± 1 TWSI unit. In fact focus 

groups identified that all subjects felt that the TWSI provided in real time was an accurate 

reflection of how they were feeling (Tharion et al., 2013b). Thus we conclude that this algorithm 

when used in conjunction with a physiological monitoring system that individualized thermal-

work strain can be estimated in real-time and used to help prevent heat illness/injury and to better 

manage work schedules and practices. 

As detailed in the previous sections, the core body temperature estimation technique does 

have some limitations. The technique was validated and tested in real-time on a fairly 

homogenous set of subjects. The participants were generally young (early 20s), fairly fit - most 

having to have passed the Army physical fitness test. For older volunteers the heart rate to CT 

observation function will likely need to be adjusted for maximal heart rate reductions with 

increased age. Similarly, the temporal response of the model will likely need to be adjusted for 

individuals with substantially different fitness levels. Our future work will focus on adapting the 

model for age and fitness and testing the model in a larger population where the specificity and 

sensitivity can better be determined.  

This section has demonstrated how we have taken an open problem in the literature and 

developed a simple one parameter solution using a computational physiology approach. We have 

shown how our solution works across a wide range of settings in both laboratory and field 

experiments with better performance compared to previous work all the while using only one 
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input parameter. We have demonstrated how our solution was implemented into a real-time 

commercial physiological monitoring system and used during several first responder training 

events. The approach has been patented by the U.S. Army Research Institute of Environmental 

Medicine (Buller 2013), and has been licensed to two commercial vendors (Hidalgo Ltd, 

Cambridge UK; Zephyr Inc, Annapolis MD). Finally, the approach is being adopted by the 

National Guard as a requirement for physiological monitoring systems to be bought for the 57 

Weapons of Mass Destruction – Civil Support Teams. Our approach appears to be not only valid 

in an academic sense but shows real potential as practical solution to thermal-work strain 

monitoring. It can be readily adopted by any device that accurately measures heart rate and when 

used in conjunction with the TWSI can accurately estimate thermal-work strain state. 
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Chapter 4 

Policy Estimation using Markov Decision 

Processes 
 

The second component of the physiological feedback loop is to provide optimal advice to in 

completing a defined goal, based upon an individual’s thermal-work strain health state. We 

focused on two questions: 1) is it possible to adequately express the tasks, risks and goals 

surrounding thermal-work strain management in terms of a simple MDP that would provide a 

realistic policy, and  2) would any derived policy perform better than the solution provided by the 

human agents themselves, responding to their own self-perceived physiology? To answer these 

questions we developed an MDP to model the U.S. Army Ranger Training Brigade course 

selection road march, and compared our optimal policy and its effect on TWSI to real world data. 

The road march had several attractive features that relate to our overall systems goals. First 

Ranger school has a series of arduous tasks that must be completed for students to graduate. Thus 

finishing the road march with as low an TWSI as possible is an advantage, conserving 

physiological reserves needed for subsequent events. Second as the Ranger students are very fit, 

motivated, and experienced in extreme conditions, finding a policy that improves upon their 

performance is non-trivial. Finally, the TWSI safety constraints we wish to place upon our policy 

are needed in this training environment, as one student from our data collection was medically 

withdrawn from the road march due to hyperthermia with an TWSI of 10. 

4.1 Modeling Experiment 

The U.S. Army Ranger students needed to complete an eight-mile road march while carrying 32 

kg (70 lbs.) within 130 min or be dropped from the Ranger School. The road march was one of a 

series of demanding tasks scheduled for the week. The road march was conducted at night in 

temperatures of ~25 °C and 85 % relative humidity. The required march pace was such that 

students often needed to run parts of the course. Students applied different strategies to 
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completing the march.  Some started quickly and then reduced speed, while others started slowly 

then increased speed to complete on time, yet others kept a consistent pace. Our experimental 

goal was to demonstrate: 1) we can learn a policy that allows students to complete the course on-

time and avoid hyperthermia; and 2) that the policy also allows students to complete the course 

with lower final TWSI scores than without using our policy.  

4.2 Subjects and Measures 

Fourteen male U.S. Army Ranger students who averaged 26 ± 4 years of age; 1.77 ± 0.04 m in 

height; weighed 78.3 ± 7.3 kg; who carried loads of 31.5 ± 1.1 kg and had 14.4 ± 3.8% percent 

body fat (mean ± standard deviation (SD)) were used for this analysis.  

 Direct measures of HR (Equivital I heart rate monitor, Hidalgo Inc. Cambridge UK), and 

CT (Jonah Ingestible Thermometer Pill, Respironics, Bend OR) were collected in 1 minute 

intervals. Times to complete each mile of the course were derived from location data collected 

from GPS units worn by each student (Foretrex 101, Garmin, Olathe, KS). TWSI scores were 

computed according to Equation (2.9) using observed IT and HR and resting values of 71 

beats/min and 37.1 °C (Moran et al., 1998). Tri-axial accelerometry data were collected at the 

chest at 25.6 Hz. 

4.3 Markov Decision Process 

An MDP describes an environment by a set of states (e.g. S:={SI, distance to goal, time}) an 

agent can assume, and a set of possible actions (A:={movement speeds}) that can be taken from 

those states. An in-depth description of an MDP can be found in Russell and Norvig (2010). In 

our environment the goals and health constraints are described by assigning rewards (R) and 

penalties (negative rewards) for being in various states at certain times. Our Ranger training road 

march has a finite horizon. Thus the utility (U) of a sequence of states can be computed from the 

sum of rewards (R) for being in each state over time (Equation 4.1): 

                             
 
          (4.1) 

 The transition from one state to another is determined by the current state, the chosen 

action and the transition probabilities to the new state (P(S’|S, A)). A policy (π) is a mapping 

from states to actions that prescribes an action to be taken in each state. For any policy we can  
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compute a utility function over states for that policy starting in state s as the sum of expected 

rewards over time (Equation 4.2). 

            
                (4.2) 

 At each time point there will be an optimal policy that for each state will determine the 

optimal action to be taken which provides the most utility from that point on until the end goal is 

reached:   

                            (4.3) 

 With a constrained state space, known transition probabilities, and finite horizon this 

optimal policy can be computed using dynamic programming.  

4.3.1 Ranger Road March MDP Definition 

The goals of the actual road march were simple. Complete the 8 mile road march in 130 min or 

less or be dropped from the course. Given that thermal state (CT) changes relatively slowly, a 

time interval of 5 min was selected enabling a more thorough search of the transition probabilities 

state-action space.  

State Definition 

For states we use TWSI, in integer units; distance (D), completed in units of 0.0417 miles or the 

fraction of a mile that can be completed at 0.5 miles per hour (mph) within 5 minutes; and time. 

Thus: St:={{TWSI},{D}} Where: TWSI:={1,…,14}, D:={0, 0.0417, … , 8.9583, 9}. 

Action Definition 

Actions were constrained to just movement speeds from 0 to 7 mph in 0.5 mph increments, thus 

A:={0, 0.5, 1,…, 6.5, 7.0}. Figure 4.1 shows the resulting directed acyclic graph that represents 

our state-action space. 

 

Figure 4.1: Graph representation of state-action space. 
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Reward Definition 

Two types of rewards were used in the definition of our MDP, (a) immediate rewards for TWSI at 

each time point to model safety limits; and (b) end state rewards for D and TWSI to model the 

course completion requirement, and the goal to finish with as low an TWSI as possible. The end 

state reward (t=130) for D was represented by a reward of 0 for completing the course on time 

(D≥8 miles), and a penalty of −1000 (D<8 miles) for not. Immediate and goal reward functions 

for TWSI are presented in Table 4.1. 

Table 4.1: Immediate and end-state reward functions for TWSI. 

SI 1 to 8 9 10 11 ≥12 

Rt<130 0 −100 −500 −2000 −5000 

Rt=130 100−10(SI−1) −100 −2000 −5000 

 

The end-state TWSI rewards are designed to allow the students to complete the course 

with the lowest possible TWSI. R(TWSI)t=130 shows that finishing with a lower TWSI is better 

than finishing with a higher SI. However, finishing with TWSI’s > 9 is not good. The −100 

reward for an TWSI of 10 indicates that it is acceptable to push to complete the course on time. 

However, an TWSI > 10 is an unacceptable end state, hence the large negative penalties. The 

immediate reward function R(TWSI)t<130 shows that it is equally fine for students to have an 

TWSI between 0 and 8 during the race but above 8 penalties will accrue. The negative rewards 

for both TWSI’s of 9 and 10 allow for one or several steps to be taken at these high SI’s and still 

receive higher utility than not completing the race on time. However, the very large negative 

rewards of TWSI’s > 10 are designed to indicate that stopping the race for health is better than 

completing. 

Transition Probabilities 

For distance traveled we placed a small amount of uncertainty (N(0,1)) around the distance 

traveled in 5 minutes for a given movement speed. The transition probabilities are shown in Table 

4.2 where d=D+A(5/60). 

Table 4.2: P(D’|D,A), where d= D+A(5/60). 

D’ −.126 −.084 −.042 d +.042 +.084 +.126 

P .01 .05 .24 .4 .24 .05 .01 

 

In general, the TWSI transition probabilities are complex, and are dependent on a large 

number of factors such as work rate, personal characteristics (body surface area, fat mass, fitness, 

acclimation), environmental conditions (ambient temperature, relative humidity, wind speed, 
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solar load), and clothing characteristics (insulation properties and vapor permeability). While 

these dynamics are complex they have been captured to a high fidelity in physics- and 

physiology- based thermoregulatory models. The TWSI transition probabilities were learned by 

Monte Carlo approximation using the SCENARIO (Kraning and Gonzalez, 1997) 

thermoregulatory model to simulate the responses of humans under similar conditions to the 

Ranger training road march. For the model runs the mean personal characteristics of our students 

were used. Mean environmental conditions obtained from a nearby airport weather station were 

air temperature = 24.4 °C, relative humidity = 85.3%, black globe temperature = 24.4 °C, and 

wind speed 2.75 m/s. Clothing insulation and vapor permeability parameters for the modeling 

were measured from copper manikin tests of the uniform used by the students (clothing insulation 

factor = 1.3 CLO, and vapor permeability (im) = 0.42). Metabolic rate was computed from 

movement speed, height, weight and load (assuming an average course grade of 0 and movement 

over hard top for a terrain factor of 1) using the equation developed by Pandolf, Givoni and 

Goldman (1977) with the Givoni and Goldman (1971) running correction factor. With starting 

SI’s ranging from 1 to 9 all combinations of actions in our action set were run over six 5 minute 

intervals. Each conditional transition probability space had at least 10
4
 samples. 

4.3.2 MDP Learning 

We wish to learn a policy function that for any state (Time=t, SI=si and D=d) provides us with an 

action that maximizes the expected utility until our goal is reached. An optimal policy for any 

time point on our road march course can be defined as follows: 

   
                                       

         (4.4) 

A set of optimal policies can be solved iteratively using dynamic programming. Starting at the 

end of the race the policy at time point 125 (    
    ) is easily computed, as the utility function 

(U130(s)) is defined by the goal rewards. Next     
     can then be computed using the previously 

computed U125(s) function and so on, where the current U is computed as: 

                                      
         (4.5) 

4.4 Analysis 

For this analysis, since we were unable to provide real-time guidance to Ranger students during 

the road march, we utilized the SCENARIO model to both simulate the individual TWSI 

responses of the students using their self-paced movement (TWSImodel), and simulate the TWSI 
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responses when conforming to the learned policy (TWSIpolicy). Observed TWSI (TWSIobs) was 

compared to TWSImodel by examining the mean root mean square error (RMSE) and bias to verify 

that the model provided an accurate simulation of the Ranger student’s responses. We then 

compared TWSImodel and TWSIpolicy values at the end of the road march using a paired t-test. We 

examined the relationship between the degree of impact (TWSImodel−TWSIpolicy, at t=130) of the 

learned policy to the maximal TWSImodel and TWSIobs reached during the march by Pearson 

correlation. Finally, we examined the actual movement profile (presented as stride frequency 

spectrograms for the road march) of four students; two where the policy had the least impact and 

two where the policy had the most. Stride frequencies (proportional to movement speed) were 

found by applying fast Fourier transforms (FFTs) to the vertical axis accelerometry data. The 

alpha level for all hypothesis testing was set at 0.05. 

4.5 Results 

4.5.1 TWSI Transition Probabilities 

Figure 4.2 shows three sets of TWSI transition probabilities in a gray scale map where black = 0 

and white = 1. The learned policy can be found in Appendix B. 

 

 

 

 

 

Figure 4.2: Transition probabilities for TWSI of {1, 5, 9}. Grid shade=P(TWSI’|TWSI,A) where 

white =1 and black=0. 

4.5.2 Policy Efficacy 

Figure 4.3 shows the mean group responses for the TWSIobs (gray), TWSImodeled (black), and 

TWSIpolicy (dashed). TWSImodeled differs from TWSIobs with  a bias of −0.26 and RMSE of 1.34 ± 

0.45 TWSI units. 
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Figure 4.3: Mean group responses for the TWSIobs (gray), TWSImodeled (black), and TWSIpolicy 

(dashed). 

 

The TWSIpolicy responses have a significantly lower end point at 130 minutes than 

TWSImodel with a mean of 3.94 ± 0.88 versus 5.62±1.20 (t=2.16, P<0.001). Thus the policy had an 

overall mean impact of 1.67 TWSI units, and allowed the students to end with a “Low” thermal 

strain compared to a “Moderate” thermal strain (Moran et al., 1998). For all students the end-

point TWSIpolicy was lower than the end-point TWSImodeled and the maximum TWSIpolicy score 

reached by any student was < 8.6. 

 The mean of each student’s movement speeds when following our policy are shown in 

Figure 4.4.  

 

 

 

 

 

 

Figure 4.4: Mean of speeds taken for each student according to our optimal policy ± SD. Running 

is at speeds > 4.5 mph. 

 Figure 4.5 shows the stride frequency spectrograms for the whole road march course for 

four students. Panel A and B show the movement profiles where the policy had the least impact 

with differences in end point TWSI of 0.63 and 0.75 units. Panel C and D show the movement 

profiles where the policy had the most impact with end point differences in TWSI scores of 3.14 

and 2.18 units. The movement rates of the students can be seen as highlights around ~2 Hz 

(walking) and ~3 Hz (running). These charts show that where our policy had least effect these 
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students were already following our optimal policy (start fast, end slow). For the two students 

where the policy had the most affect it can be seen that one continually transitioned between walk 

and run (C), while the other starts and ends with walk run transitions (D).  

 The correlation between the policy impact and maximum TWSImodeled is 0.635 (P < 0.05); 

and maximum TWSIobserved is 0.352 (not significant, N=14) but 0.622 (P<0.05, N=13).  

 

 

 

 

 

 

 

 

Figure 4.5: Stride Frequency Spectrograms of Students where the Policy had the Least (Panel A 

and B) and Most (Panel C and D) Impact. Light shades indicate more energy. Stride frequency is 

proportional to movement speed. Walking speeds are around 2Hz, and running speeds around 

3Hz. Movement patterns for the whole road march run from the bottom of the chart to the top. 

4.6 Discussion and Conclusions 

The SCENARIO human thermo-regulatory model was able to accurately estimate the TWSI 

responses of the Ranger students with a small bias and RMSE close to one. Thus, SCENARIO 

provided a means to generate valid estimates of the student’s thermoregulatory responses to our 

policy. Using this modeling approach, we found that the learned policy allowed all students to 

complete the course on time, with a lower SI, and without hyperthermia. Even though our learned 

policy is conservative with respect to avoiding high SI’s, the policy allowed the students to finish 

in a significantly less thermally stressed state. Thus we conclude that this road march task can be 

modeled as a simple MDP which can generate a policy that is likely to improve the performance 

of these experienced students. This suggests that other MDP policies could be developed for other 

physically-demanding Ranger School events which could help students finish tests with the least 

amount of work and thermal stress possible. 

 While the modeling suggests that our learned policy is effective at reducing the end state 

TWSI score is it a reasonable policy that could be followed by people? The initial fast run and 

walk transitions appear, at first glance, peculiar. However, when we examine the actual 

movement rates of students (see Figure 6) many adopt this same movement pattern. This reflects 

the fact that the needed early steady state pace would force an unnatural, and energy inefficient 
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gait that is between a walk and a run (Paroczai and Kocsis, 2006). To avoid this awkward gait the 

policy we learned instead alternates between an energy-efficient walk and an energy-efficient run.  

The fact that this pattern is learned by the model where only thermal-work strain is a factor is 

notable. When we examined the movement profiles of students where the policy had minimal 

impact we found that their actual movement profiles were similar to the learned policy (start fast, 

end slow). Conversely where the policy had a large impact the student’s movement profiles were 

quite different. Additionally, we found a positive relationship between the degree of impact and 

the maximal TWSI obtained during the road march. This relationship held for TWSI from both 

modeled mile times and the observed data (albeit a student with highest TWSI had to be removed 

for the relationship to hold for N=13), suggesting that our learned policy was realistic and 

achievable and likely to result in an overall less thermally stressful road march. 

 Deploying this as a real system for the Ranger students would be fairly simple. Our 

thermal-work strain state estimator is already implemented in an Android tablet that receives data 

from a wearable physiological status monitor (see Figure 1). The tablet is GPS enabled and thus 

distance could be calculated. A policy would need to be generated for the environmental 

conditions of each prospective road march. Then, given the real time estimates of TWSI the tablet 

would be able to prompt the student with the optimum pace for each 5 minute segment. 

 These results also suggest that this technique shows promise for other areas such as 

marathon races where an athlete may desire to finish with the best time possible but avoid 

hyperthermia. Similarly, in cycling a safe and effective pacing strategy is desired. Atkinson et al. 

(2003) suggest “More research, using models and direct power measurement, is needed to 

elucidate fully how … pacing strategy might save time in a real race and how much variable 

power output can tolerated by a rider.”  

 In conclusion this study has shown that it is possible to adequately express the tasks, risks 

and goals of an arduous physical activity in terms of a simple MDP. Solving the MDP for an 

optimal policy provided a realistic policy that allowed humans to perform their task according to 

pre-set goals and finish in a state of less thermal strain than would occur if they were left to 

follow their own training and instincts. These results suggest that live physiological state 

estimation, when coupled with MDP models of constrained real-world tasks, can optimize work 

rate policies to improve safety and reduce overall thermal-work strain burdens.  
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Chapter 5 

Human Performance Optimization 

Up to this point in this dissertation, we have developed an accurate thermal-work strain state 

estimator and showed that simple work goals and safety constraints could be modeled 

successfully as an MDP. This chapter examines the convergence of these two techniques working 

in real-time on human participants. 

5.1 Laboratory Experiment Hypotheses 

Based upon our previous work, we wanted to test the following hypotheses: 

 Real-time automated pace guidance will allow participants to complete a timed treadmill 

exercise with lower thermal-work strain (e.g. lower TWSI, core body temperature, skin 

temperature, and/or heart rate) compared to completing the same goal using their own 

self-paced approach. 

 Real-time automated pace guidance will allow participants to complete a timed treadmill 

exercise with less time exceeding thermal-work-strain-prescribed “safety limits” 

compared to completing the same goal using their own self-paced approach. 

 Real-time automated pace guidance will allow participants to complete a timed treadmill 

exercise with lower perceived levels of exertion compared to completing the same goal 

using their own self-paced approach. 

 Participants will show no difference in subjective thermal sensation scores between 

automated pacing and self-pacing. 

 Real-time automated pace guidance will allow participants to complete a timed treadmill 

exercise with overall lower energy expenditure levels compared to participants who are 

self-paced (60 minute exercise session). 
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Additionally, we were interested in how the thermoregulatory-model-derived-transition 

probabilities compared to actual thermal-work strain state transitions and to how well the core-

body-temperature-estimation algorithm performed on a young and fit population. 

5.2 Laboratory Experiment Definition 

The subject’s goal of the laboratory exercise was to complete 5 miles of movement within one 

hour. This distance and time were chosen to balance several factors. First, we wanted a middle 

distance task that could be open to a variety of fit individuals. We wanted enough time to be able 

to manipulate the environmental, clothing, and load conditions to cause core body temperatures to 

rise to moderately high levels (around 39.0 °C), and we wanted a distance and time that would set 

an average pace that was somewhere between a comfortable run and a comfortable walk.  

The 5 mph movement speed was chosen as one of the speeds that would typically fall 

between a comfortable walk and a comfortable run. Speed and selected gait has an impact on the 

metabolic cost of movement. Paroczai and Kocsis (2006), show equations for estimating 

metabolic cost of movement at different movement speeds for walking and running (See Figure 

5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: The volume of oxygen (VO2) consumed per kg per km for different walking and 

running speeds. Lower VO2 indicates more efficient movement. 
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Figure 5.1 shows that at around 5 mph there is a transition point. At speeds lower than 5 

mph, walking is more efficient. At speeds above 5 mph, running is more efficient. The average 

movement speed of 5 mph for this study falls right at this transition point. Long and Srinivasan 

(2013) have shown that under time-constrained trials for these transition speeds, pace is alternated 

between a comfortable walk and a comfortable run. One hypothesis for the success of our earlier 

policy estimation work was that the computed policy makes better use of these metabolic 

efficiencies than the volunteers when left to pace themselves.  

Room environmental conditions were selected to approximate an office environment with 

a temperature of 22 °C and relative humidity of 50%. Our rationale was to avoid specialized 

environmental chambers. Instead, we planned to manipulate thermal-work strain by: 1) providing 

clothing that had high insulation and low vapor permeability; 2) increasing work load by adding a 

load to be carried; and 3) by including an uphill grade. 

Load and grade conditions were derived from experiments using the SCENARIO model 

(Kraning and Gonzalez 1997). The details of using the SCENARIO model and the specific model 

settings are outlined in the MDP transition probability modeling section. Here, we show the 

results of our early modeling work to explain our final selection of experimental conditions. 

Figure 5.2 shows modeled CT, heart rate, and thermal-work strain index from early 

model runs, where speed is 5 mph, grade is 1%, and load carried is 7.5% of body weight. This 

profile was thought ideal, as moving at the metabolically inefficient speed of 5 mph, subjects 

would end the exercise with a relatively high state of thermal stress TWSI > 8, but below protocol 

safety limits. Under these conditions, applying even a simple policy of alternating between a fast 

walk (4 mph) and a slow run (6 mph) lead to an end CT 38.5 °C and an end TWSI of 7.5 (see 

Figure 5.2).  

However, after several practice sessions, these experimental conditions appeared to be 

too difficult. The main reason for the difficulty was that, to ensure completion of the task, 

participants had to move faster, on average, than the 5 mph modeled. Figure 5.3 shows model 

responses for experimental conditions of 22 °C, 50 % relative humidity, 0 % grade, and no load, 

for speeds of 5.2 and 5.4 mph. These speeds would allow subjects to finish in 58 or 56 minutes 

respectively.  

When the modeled speed is increased slightly to 5.4 mph, there is a significant rise in 

thermal stress. With no load and 0% grade, the thermal response to 5.4 mph is similar to the 5 

mph speed with a load of 7.5% of body weight and a 1% grade. In response to our modeling of 

initial conditions and the results of our practice runs, we removed the load and grade components 
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from the experimental design. The final experimental conditions were set at an air temperature of 

22 °C, 50 % relative humidity, no load, and 0 % grade.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: SCENARIO modeling of core body temperature (CT), heart rate (HR), and thermal-

work strain index for experimental conditions of 7.5% of body weight load, 1% grade, 5 mph 

pace, 22 °C air temperature, and 50% relative humidity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: SCENARIO modeling of core body temperature (CT), heart rate (HR), and thermal-

work strain index for experimental conditions of no load, 0% grade, 22 °C air temperature, 50% 

relative humidity, and movement speeds of 5.2 (dashed) and 5.4 mph (solid). 
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These experimental conditions formed the basis of our experiment and optimization 

problem. Modeling showed that by selecting an alternating pace, under these conditions that the 

TWSI could be kept to below 7.5. This was a TWSI threshold originally chosen as a conservative 

safety line to prevent individuals from transitioning to “Very High” thermal-work strain (Buller et 

al., 2008). Our final goals for the optimization problem were for the individual to finish the 5 

miles in one hour, for TWSI to remain below a safety value of 7.5, and for an individual to finish 

as “cool” as possible in terms of having the lowest possible TWSI. 

5.3 Experimental Design 

The experiment was a within-subjects design examining the impact of the timed foot movement 

on physiological measures and self-report scales. Volunteers participated in both a GUIDED and 

UNGUIDED condition. In the UNGUIDED condition, participants completed the 5 miles using 

their own pacing strategy. In the GUIDED condition, the MDP-derived policy guided the pace of 

the participants based upon their thermal-work strain state, distance completed, and the time 

remaining. The UNGUIDED session was presented first, followed by the GUIDED session. An 

ordered presentation of conditions was adopted, rather than a counter-balanced design. Presenting 

the UNGUIDED session first avoided a training effect from presenting some subjects with our 

GUIDED session first. In the GUIDED session, we are dictating the movement strategy to the 

participant, and their previous UNGUIDED session will have a very minimal training effect. At a 

minimum, participants waited at least one week before completing their second session to allow 

adequate recovery time. Participants exercised wearing their own shorts and t-shirts under the US 

Army Physical Training (PT) long-sleeved shirts and pants. 

5.4 Markov Decision Process Definition 

As detailed in Chapter 4, a Markov decision process (MDP) is defined by a set of states (S), a set 

of actions (A), a state transition matrix (T) containing the transition probability mass function 

(PMF), and a reward function R(S). For this laboratory study, the set of states and actions were 

well defined. The state transition PMF was estimated from a physics/physiology based human-

thermo-regulatory model. The reward function was more subjective in its definition, as it 

balanced the competing goals of completing the task and finishing safely.  Each of these elements 

of the MDP are defined in the following sections. 
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5.4.1 State Space Definition 

In an MDP, the state space defines all the components necessary to model the relevant state of the 

world. For our laboratory experiment, the following three parameters were used to specify the 

state of the task: 1) time completed (t), 2) the thermal-work strain of the subject (TWSI), and 3) 

distance completed (D).  

It was necessary to discretize time completed into two minute increments, where t:={0, 2, 

…, 58, 60}. Changes in TWSI for time resolutions < 2 minute intervals for most actions were 

very small (< 0.25 TWSI units). Without decreasing the discrete steps of the TWSI beyond 0.25 

units, there would often be no transitions from one state to the next. It was also too impractical to 

guide participants more often than every two minutes.  

The thermal-work strain index was discretized into 0.25 TWSI units starting at 0.5 and 

ending at 10, where TWSI:={0.5, 0.75,…,9.75,10}. Distance (D) completed was discretized into 

units of 0.0067 miles, or the fraction of a mile that can be completed at 0.2 miles per hour (mph) 

within 2 minutes, where D:={0, 0.0067, … , 5.9933, 6}.  

Our final state action space was comprised of 30 x 39 x 900 (t x TWSI x D) discrete 

states with 27 actions permissible from each of these states. Figure 5.4 shows the resulting 

directed acyclic graph that represented our state-action space. 

 

 

 

 

 

 

 

 

Figure 5.4: Graph representation of the problem state-action space. TWSI is the thermal-work 

strain index, D is distance, and A is action. 

5.4.2 Action Space Definition 

Actions define what an agent or subject can do in a particular state. For our experiment, actions 

were constrained to movement speeds from 0 to 7 mph in 0.2 mph increments. Except for no 

movement (0 mph) speeds < 2 mph were excluded, as they are not typical movement speeds and 

would be more awkward than helpful to a pacing strategy. Thus, A:={0,  2.0,  2.2, …, 6.8, 7.0}. 

These actions were the same for every state. 



 

109 

 

5.4.3 Transition Probabilities 

A critical element to using dynamic programming in solving MDPs is that the transition 

probabilities (P(S’|S, A)) are known or can be approximated. In this MDP, there were two 

transition probability mass functions that had to be found. For any action undertaken, there will 

be a certain amount of distance completed and a change in the TWSI state.  

 Distance Completed Transition Probabilities 

Modeling distance completed on a treadmill is a relatively simple process. The treadmill will be 

set at a certain speed and there will be limited possibilities for a change in distance, unless a 

subject cannot keep the requested pace. For the distance probability mass function we placed a 

small amount of uncertainty N(0,0.2) around the distance traveled in 2 minutes. The transition 

probability mass function is shown in Table 5.1. 

 

Table 5.1: Transition probabilities for distance completed. 

D’ −0.0201 −0.0134 −0.0067 d +0.0067 +0.0134 +0.0201 

P 0.01 0.05 0.24 0.40 0.24 0.05 0.01 

d=D+A(2/60). 

Thermal-Work Strain State Transition Probability Estimation 

In contrast to distance completed, the TWSI transition probabilities can be complex and are 

dependent on a large number of factors such: as work rate, personal characteristics (body surface 

area, fat mass, fitness, and acclimation), environmental conditions (ambient temperature, relative 

humidity, wind speed, and solar load), and clothing characteristics (insulation properties and 

vapor permeability). As detailed in Chapter 2, TWSI is a weighted combination of CT and heart 

rate. While the dynamics of CT seem relatively simple if heart rate is known (Chapter 3), the 

heart rate response to different conditions is more complex. Thus, understanding how both heart 

rate and CT change given a large number of factors is critical. 

While the dynamics of HR and CT are complex, they have been captured to a high 

fidelity in physics- and physiology- based thermoregulatory models (e.g. Kraning and Gonzalez, 

1997; Fialah et al., 2001; and Havineth, 2001). The inner workings of these models will not be 

covered here to any great extent. However, given a current physiological state and an action, 

these models will provide the correct dynamic change in physiology (CT and HR) for a given 

time step (see Figure 2.8). The TWSI transition probabilities were learned by Monte Carlo 

approximation using the SCENARIO (Kraning and Gonzalez, 1997) thermoregulatory model to 

simulate the responses of humans under our laboratory conditions. This model requires the 

following class of inputs: environmental conditions; clothing insulation and vapor permeability 
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characteristics; individual characteristics (including height, weight, and age); and work rate 

expressed in watts. Obtaining accurate TWSI transition probabilities is dependent on accurately 

modeling the experimental conditions. We will examine each of the four input areas to show how 

we defined and successfully modeled our laboratory conditions in SCENARIO.  

 

Environmental Conditions 

The SCENARIO model requires the basic environmental information of air temperature, black 

globe temperature (Tg, see Equation 2.15), relative humidity, and wind speed.  The model air 

temperature parameter was set according to our research protocol to 22 °C. New air handlers 

specifically installed for this work maintained the temperature to within ±2 °C. The study was 

conducted within one of three identical, indirect calorimetry chambers (as shown in Figure 5.5). 

As the exercise took place indoors, and since there was negligible radiative sources of heat within 

the indirect calorimetry chambers, Tg was also set to 22 °C. As the chamber air temperature was 

controlled by an individual air handler, we estimated that relative humidity was similar to an 

office environment and set at 50%. Wind speed can have a large impact on model outcomes 

affecting the clothing vapor permeability and insulation factor, as well as aiding in convective 

heat loss. The chambers where we conducted our study had a constant air flow into the room from 

an outside air source and out through the O2 and CO2 gas analyzers. Additionally, a ceiling fan in 

the room was used to mix the air.  

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The indirect calorimetry chamber. 

 

To determine air flow in the chambers, we used a hot-wire anemometer (CIH20DL, 

General Tools and Instruments, New York, NY) placed at waist height on the hand rail of the 

treadmill while a person was walking and running on the treadmill. On average, wind speeds 

were low at 0.35 ± 0.2 ms
-1

. 
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Clothing Characteristics 

Clothing characteristics of vapor permeability and thermal insulation were measured on a 

sweating “copper” thermal manikin using ASTM standards (ASTM F1291-10 for thermal 

insulation and ASTM F2370-10 for evaporative resistance) (see Potter et al., 2014).  Figure 5.6 

shows the sweating copper thermal manikin with our study exercise clothing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Sweating “copper” manikin with study exercise clothing. 

 

Vapor permeability (im) is measured on a range from 0 (vapor impermeable) to 1 (no 

barrier). The SCENARIO model utilizes an insulation factor measured in CLO is closely 

correlated with the R-values used for home insulation
5
. Depending on the environment, the 

impact that a clothing ensemble can have on heat stress is a factor of both the insulation factor 

and vapor permeability. This combination is often expressed as a ratio im/CLO. Table 5.2 shows 

some typical values CLO and vapor permeability for different clothing ensembles.  

 

Table 5.2: Insulation and vapor permeability values for different clothing at wind speeds of 1ms
-1

. 

 
Insulation 

(CLO) 

Vapor 

Permeability 

(Im) 

im/CLO 

Shorts and t-shirt 0.51 0.78 1.41 

Long pants long sleeved shirt 1.08 0.51 0.47 

U.S. Army combat shirt and body armor 1.52 0.44 0.29 

Chem. bio. full encapsulation 1.92 0.11 0.06 

U.S. Army P.T. gear (study clothing) 1.22 0.41 0.34 

                                                      
5
 Clothing Insulation – WikiPedia http://www.wikipedia.org accessed 2/17/2015 

http://www.wikipedia.org/
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As these insulation and vapor permeability values for different clothing ensembles have 

non-linear relationships with wind speed, they are often approximated by a power curve. The 

SCENARIO model takes inputs of the CLO and im/CLO at 1ms
-1

 and the exponent of a power fit 

curve to these parameters across the three wind speeds. The clothing insulation and vapor 

permeability measures were taken in a chamber set to a temperature of 23 °C and RH of 50% at 

wind speeds of 0.4, 1.2 and 2.0 ms
-1

. Figure 5.7 shows the im and CLO values for the 3 wind 

speeds for our PT clothing along with the power curve fits. Equations 5.1 and 5.2 show the power 

curve equations for the CLO and im to wind speed relationships, respectively. 

 

                           (5.1) 

 

                           (5.2) 

 

Where ws=wind speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: CLO and im at varying wind speeds and power fit curve. 

 

What is important to note is that at the wind speeds associated with our chamber, the PT 

clothing has a low vapor permeability (im=0.38) and high insulation factor (1.53 CLO). 

In the SCENARIO model, a combination of movement speed and air speed are used to 

adapt dry conductance (Kc), im, and CLO. The effect of air movement on dry conductance is 
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specifically modeled for a number of conditions, including free walking, walking on a treadmill, 

no movement, or for cycling on an ergometer (Equations (5.3), (5.4), (5.5) and (5.6) respectively). 

 

Free Walking:              
             (5.3) 

Treadmill Walking:             
             (5.4) 

Stationary:                    (5.5) 

Ergometer:                  (5.6) 

 

Where: 

               
          (5.7) 

 

Where Vmove =  movement velocity ms
-1

 and Vair = air movement velocity ms
-1

. 

 

CLO and im are adjusted for effective air movement (Veff) (Equation 5.8) according to the 

power curves shown in Equations 5.1 and 5.2. The effective air movement attempts to quantify 

the reduction in insulation and increase in vapor permeability that comes from body movements. 

The reduction in insulation can come from the “pendulum effect” of moving limbs (Clark et al., 

1974); the disruption of the boundary layer of air on the skin surface; and heat loss due to the 

“pumping effect” of air and vapor expelled from the clothing due to movement. These effects are 

simply expressed as a combination of air speed and movement rate. Equation 5.8 shows the 

SCENARIO model calculation of Veff,   

 

                         (5.8) 

 

where Vair is the wind speed or air movement speed (ms
-1

) and Vmove  is the rate of 

movement (ms
-1

).  

 

This approach at first appears to be overly optimistic for our low air movement treadmill 

exercise conditions, especially as some studies have shown cooling effects when forward 

movement is simulated using fans (Shaffrath and Adams, 1984). These studies demonstrated that 

under conditions of high workload and limited air movement, performance was worse compared 

to a condition when forward air flow is simulated by use of a fan.   
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However, rather than movement speed, some argue that effective air flow should be 

adjusted for whole body metabolic rate according to Equation 5.9 (Santee and Matthew (2012), 

 

                         ,      (5.9) 

 

where    is metabolic rate in watts. 

 

For our conditions, this is comparable to                     . Further, the 

movement effects appear to differ based upon garments. Holmer et al. (1992) found that body 

movement reduced CLO to a greater extent on ensembles with lower insulative properties. More 

recently Qian and Fan (2006) used an articulated manikin to develop regression equations to 

estimate the effect of body movement at different walking speeds for different garments. They 

concluded that for high air flow environments, Veff could be calculated as a sum of air speed and a 

multiple of movement speed (see Equation 5.10). However, their articulated “walking” manikin 

only provided data on relatively slow movements of up to 0.7 ms
-1

 or 1.6 mph. 

 

                            (5.10) 

 

As our experimental conditions consisted of low airflow around a clothing ensemble with 

a fairly high CLO and low vapor permeability, we directly measured the CLO of the PT uniform 

using our articulated or “walking” manikin. The manikin was able to replicate the movement of 

walking speeds between 2 and 3 miles per hour. Figure 5.8 shows the effect of the manikin 

movement on the CLO of the PT uniform measured with an air movement of 0.4 ms
-1

.  The figure 

also shows the Veff adjustments using the standard SCENARIO equation, that proposed by Qian 

and Fan (2006), and our own Veff adjustment based upon the manikin data.  

Both the SCENARIO equation and the Veff equation proposed by Qian and Fan (2006) 

appear to underestimate the effect of movement on the PT uniform CLO.  We used our lab 

measurements to adjust the Veff according to Equation 5.11. 

 

                          (5.11) 

 

Our lab measurements and adjusted Veff equation allowed us to fix problems originally 

seen in our TWSI transition probabilities. Our original modeling did not account enough for the 

effects of body movements in reducing the CLO and im values for the ensemble. Consequently we 

had transition probabilities that gave greater positive changes to TWSI and limited negative 

changes to the TWSI. 
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Figure 5.8: CLO of PT uniform measured on a moving manikin at simulated walking speeds of 2, 

2.5 and 3 miles per hour, with adjustment for CLO and Movement speed using Equation 5.9, 

5.10, and a custom fit Equation 5.11. 

 

Metabolic Rate  

The SCENARIO model estimates metabolic rate using the Pandolf equation (Pandolf, 1977): 

 

                                            ,   (5.12) 

 

where    = Metabolic rate (W), W=subject weight (kg), L=subject load (kg), η=terrain 

factor, V= movement rate (ms
-1

) and G=terrain grade (%).  

 

For free-moving individuals, this equation is convenient as metabolic rate estimates for 

combinations of movement speed, load, grade and terrain can be computed. For our study, a 

terrain factor of 1 was chosen, as participants are running on a hard surface. Our experimental 

conditions had no load and no grade.  In addition to the Pandolf equation, we included a running 

correction proposed by Givoni and Goldman (1971) (see Equation 5.13). This addition corrects 

for the over-estimates in metabolic rate for running. Figure 5.9 shows the Pandolf estimated 

volume of oxygen (VO2) per kg per km compared to the equations for walking and running 

generated by Paroczai and Kocsis (2006) with and without the running correction factor.   

 

   
           

                     
            

 

   
    (5.13) 

 

where   =metabolic rate (W), and G=grade (%). 
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Figure 5.9: Volume of oxygen (VO2) consumed per kg per km for different walking and running 

speeds from Paroczai and Kocsis (2006), along with modeled estimates from the Pandolf 

Equation (5.12)(Pandolf 1977) without and with the Givoni and Goldman (1971) running 

correction factor (5.13). 

 

Individual Differences  

The SCENARIO model takes the following four input parameters to characterize individuals: 

age, height, weight, and percent body fat. Height and weight are used to compute body surface 

area using the Du Bois (1916) method (Equation 5.14). 

 

                 
  

   
 
     

       (5.14) 

 

where SA is body surface are in m
2
, BW is body weight in kg, and HT is height in m. 

 

Body surface area in conjunction with body weight and percent body fat sets the volume 

of each of the modeled heat exchange compartments and total blood volume. These settings are 

used during the computation of the heart’s stroke volume and as one aspect in determining sweat 

rate.  Age is used to compute maximum HR with the American College of Sports Medicine’s 

formula as given in Equation (5.15). 

 

                       (5.15) 

 

where HR is heart rate in beats/min. and age is measured in years. 
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 A significant modeling concern was whether different transition probabilities and, 

therefore, different policies would be needed for people of different ages, statures, weights, and 

percents body fat.  Recent empirical work has shown that changes in core body temperature are 

similar for different sized individuals, when the work rate is normalized by body mass (Cramer 

and Jay 2014, and Cheuvront 2014).  According to the Pandolf equation (Pandolf et al., 1977) 

(Equation 5.12), the absolute metabolic rate increases for heavier individuals, but it is the same 

when normalized by body weight. Table 5.3 shows a range of body types and the estimated 

metabolic rates. 

 

Table 5.3: Metabolic rate for exercise at five miles per hour for a range of body sizes expressed 

in absolute and body mass relative terms. 

Weight 

(Kg) 
Height (m) Age Body Fat (%) Metabolic Rate (W)† 

Metabolic Rate 

(W/Kg) 

50 1.55 25 15 450 9 

60 1.60 25 15 540 9 

70 1.70 25 15 630 9 

80 1.75 25 15 720 9 

90 1.80 25 15 810 9 

100 1.85 25 15 900 9 

110 1.90 25 15 990 9 

†Metabolic rate estimated using the Pandolf equation (Equation 5.12). 

 

Since the exercises’ weight-adjusted metabolic rate is similar across body types, we set 

the weight and height inputs to 70 Kg and 1.7m, respectively. These values represent the defaults 

used in the original SCENARIO model. With these two inputs set, we examined the effect of 

changing both age and body fat proportion on thermal-work strain modeled over the course of the 

hour-long exercise. Figure 5.10 shows CT, heart rate, and the TWSI modeled for a movement 

speed of 5.4 mph for body fat percentages from 10 to 25 with age fixed at 25 years.   

The results showed little effect for different body compositions of fat. This parameter 

would likely have a greater impact for cold exposure.  

Figure 5.11 shows CT, heart rate, and the TWSI modeled for a movement speed of 5.4 

mph for ages from 18 to 29 with body fat percentage fixed at 15%.  

 Similarly, across our narrow range of age there is limited impact on CT, HR, or TWSI. 

Thus, the final individual model parameters were set to age = 25 years, weight = 70 kg, height 

1.7m, and 15 % body fat.  
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Figure 5.10: Modeled core body temperature (CT), heart rate (HR), and thermal-work strain 

index for different levels of body fat (10% to 25%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Modeled core body temperature (CT), heart rate (HR), and thermal-work strain 

index for different ages (18 to 29 years). 

 

 After defining the input parameters for the SCENARIO model, we could simulate the 

laboratory experiment to estimate the TWSI transition probabilities. For our simulations, the 

model was started with TWSIs from 0 to 10 and simulated 30 random actions from our action 

state space (A) over the course of 1 hour. For each model run, the air temperature was randomly 
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set within the range of 20 to 24 °C, to simulate the room AC control envelope. Transitions from 

one TWSI to another for a given action were recorded as a count for each of our discrete TWSIs. 

Modeling runs were repeated to ensure that cells of our transition probability matrix (T) had at 

least 10
5
 samples for a given action. A discrete probability mass function was generated by 

dividing the counts for a recorded transition by the total number of all transitions for each action.  

Thermal-Work Strain State Transition Probability Results 

Initial model runs generated PMFs for every 2 minutes within the laboratory experiment 

simulation. Since we found negligible difference between the PMF’s at different time points, we 

collapsed the PMFs across time. Figure 5.12 shows the transition PMF plots for TWSIs 1 to 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Learned discrete transition probability distributions. Current TWSI state is 

indicated by a green vertical line. The learned discrete probability distribution is shown as a grey 

scale heat map. White shows the highest density. Black = 0. Overlaid are learned linear 

regression equations for computing the expected TWSI’ (Equations 5.16 and 5.17). 
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From Figure 5.12, two distinct relationships can be seen that reflect transitions due to 

walking and running speeds. We found that these transition relationships were remarkably 

similar, with only their intercept differing by the current TWSI state. We decided to take 

advantage of this property, and developed two regression equations, to compute the mean TWSI’ 

from current TWSI, and the action to be taken. One equation was for walking speeds ≤ 4.0 mph 

(Equation 5.16) and one for running speeds > 4.0 mph (Equation 5.17). These regression lines are 

overlaid on the PMF in Figure 5.12. The walking and running regression equations remain the 

same for each starting TWSI, just with an offset which is dependent on the current TWSI. 

 

         
                                           (5.16) 

 

where A=movement speed in mph. 

 

        
                                           (5.17) 

 

The increased sheering of the transition probability mass function at low walking speeds 

as the TWSI increased was thought to be an effect of the slower movement speeds on the 

effective air velocity calculation. Since we were excluding these movement speeds from our 

MDP, we did not model this effect. We were also not certain why the model provided such a low 

variance for the lower TWSIs. One explanation may be that this is a function of how the model 

returns to resting conditions, where the active physiological components may respond in a very 

deterministic way. We hypothesized that the actual transition variance would in fact appear 

similar to the higher TWSIs PMFs.  

We used Equations 5.16 and 5.17 as linear Gaussian probability density functions (PDF) 

with a fixed standard deviation of 0.4 TWSI units. These PDFs allowed us to generate a smooth 

transition PMF. To avoid having some probability of physiologically improbably transitions, we 

set the probability to zero, if transition probabilities were < 0.00001 and re-normalized. 

5.4.4 Reward Function Definition 

The reward function R(S) of an MDP provides a measure, score, or value for being in any 

particular state.  The utility (U) of any sequence of states can be computed simply from the sum 

of rewards (Equation 5.18):  

 

                             
 
   ,       (5.18) 

 

where U is utility, s is state, R(s) is the reward function, and t is time. 
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A policy function (Π(S)) provides an action for any given state.  In our MDP definition, 

actions are not deterministic, but have a stochastic element. This stochastic element is defined by 

the transition probability mass function P(S’|S,A). The utility of a policy starting in state S can be 

computed as the expected sum of rewards by following the policy until the end state (Equation 

5.19). 

 

           
                              

 
        (5.19) 

 

A single objective MDP can be solved using dynamic programming (Bellman 1957a) by 

making use of the Bellman equation (Bellman 1957b) (Equation 5.20). Here, the utility of being 

in any state can be computed as the sum of the immediate reward for being in the current state 

and the maximum of the discounted ( ) expected utility of the action taken to reach each next 

state.  

 

                                            (5.21) 

 

Where   is the discount factor.  

 

Since for our experiment we have a finite time horizon    , an optimal policy for being 

in any state in our lab study can then be defined as follows: 

 

  
                                       

         (5.22) 

 

Similarly, the utility for taking the optimal action is computed from Equation 5.23. 

 

                                     
         (5.23) 

 

A set of optimal policies can then be solved iteratively using dynamic programming. 

Starting at the end of 5 mile movement, both the optimal policy and utilities for all states at time 

point 58 can readily be computed from Equations 5.22 and 5.23 respectively, as the final utilities 

for all states at minute 60 are known. The policy and utilities for all states at earlier time points 

can then be computed working backwards from time point to time point until the start of the 

exercise.  
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This approach depends on the fact that the utilities used to compute a policy impose an 

ordering on the policies such that          
   . However, the reward function (R) for the 

laboratory study MDP is complex as it combines three distinct objectives: 

 

1) Complete the 5 miles of foot movement within an hour. 

2) Remain under a “safety” TWSI of 7.5. 

3) Complete the foot movement with as low a TWSI as possible.  

 

These three objectives are not necessarily compatible, as maximizing one objective may 

mean minimizing another. For example, to maximize objective three, objective number two may 

have to be ignored. In this case, the policy ordering that is used to determine an optimal policy 

does not hold with our multiple objectives. Instead of a scalar utility being returned in Equation 

5.23, there will be a vector of three utility values, one for each of the laboratory study’s goals. In 

this case, for any given state, there may not be one policy that optimizes all three goals. It may be 

the case that   
       

  
   , but it is very possible that   

       
  

   . In this situation, what 

forms an optimal policy? Depending on the nature of a multiple objective MDP, there can be a 

number of different definitions of optimal. Roijers et al. (2013) propose a multiple objective MDP 

taxonomy to help classify the different problems and help identify the nature of the optimal 

solution. They examine how objectives can be “scalarized,” or how the individual objectives can 

be combined, to provide one measure of utility. In a general form, they define a scalarization 

function that combines the individual objective utilities using weights (see Equation 5.24): 

 

  
                        (5.24) 

 

where w is a vector of weights. 

 

Depending on how the scalarization function combines the weights, and whether the 

weights are known, determines the kind of optimal solution. For this study, we chose to stick to a 

very simple scalarization function where: 

 

               
         

         
       (5.25) 

 

Additionally, instead of tuning each of the weights, we set w1=w2=w3=1 and adjusted the 

rewards of each objective in relation to all the objectives.  Under this type of scalarization 
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function there will be a single optimal solution to the MDP. However, in our application, there 

will be a range of valid weights that balance our “safety” objective and “end TWSI” objective. 

Some of these weights may favor increasing, or being more generous, in terms of exceeding the 

TWSI “safety” threshold to finish cooler. Others weight combinations may favor avoiding any 

high thermal-work strain but finish warmer. The literature is unclear on which of these is more 

beneficial for keeping individuals less thermally strained over the long run. Thus, our optimal 

solution will live within a family of optimal solutions, where the weights of our competing goals 

are adjusted differently.  

To define reward functions for our MDP, we started with our end goal of “complete 5 

miles in 1 hour”. This was a fairly simple goal that could be defined and around which the other 

rewards and penalties could be calibrated. We provided a large penalty for not completing 5 miles 

in one hour: 

 

       
      

            
                 

  , 

 

where t is time (min.) and d is distance completed (miles). 

 

With the end point set, the other goals could be defined in relation to this penalty. The 

“safety” goal could have been modeled in a couple of ways. A large penalty can be set for 

reaching a high TWSI. Alternatively, as risk of heat illness increases with increasing thermal-

work strain, an increasing penalty can be set for exceeding the safety threshold of 7.5. The 

rewards for the “end TWSI” goal are implied in the goal definition, that a lower TWSI is better 

than a higher TWSI. To examine how to balance the “safety” goal and “end TWSI” goal, we 

adjusted the weights for these two rewards from 0 to 1, where the “safety” weight was initially set 

to 0 and the “end TWSI” weight set to 1. Tables 5.4 and 5.5 show the reward functions for these 

two goals. Policies were computed for the differently weighted reward functions and used with 

the SCENARIO thermoregulatory model to predict the physiology responses of humans acting 

under these different policies.  

 

Table 5.4: Prototype rewards for “safety” goal, R2(s). 

TWSI <7.5 7.5 7.75 8 8.25 8.5 8.75 9 9.25 9.5 9.75 10 

R2 0 −4 −9 −13 −17 −21 −25 −29 −33 −37 −41 −45 

 

Table 5.5: Prototype end state rewards for “end TWSI” goal, R3(s) for t=60. 

TWSI ≤ 7.5 >7.5 

R3 500 – (4∙TWSI−2) 0 
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Figure 5.13 shows the SCENARIO model runs for weights of (0,1) (.1,.9) (.2,.8) (.5,.5) 

(.7,.3) (1,0) for “safety” and “end TWSI” goals, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: SCENARIO model runs for policies with reward weights of (0,1)[solid black], 

(.1,.9)[dashed black], (.2,.8), (.5,.5)[solid grey], (.7,.3), (1,0)[dotted grey] for “safety”, “end 

TWSI” respectively. Red dashed line indicates the TWSI “safety” threshold. Grey vertical lines 

indicate the 60 minute exercise period. 

 

Initially, when there are limited penalties for exceeding the TWSI “safety” threshold 

(black solid and black dashed line), the policy starts the agent with a high speed of movement. 

This drives TWSI to very high, and potentially physiologically dangerous, levels. However, these 

early speeds allow the agent to slow and finish early, allowing TWSI to cool by the end of the 60 

minutes. Weights of 0.3 and above for the “safety” objective appear to temper the “finish early” 

policy, as all these runs keep TWSI below the 7.5 threshold. 

These runs, however, do not tell the whole story. Figure 5.14 shows a sample (time points 

0, 18, 38, and 58 minutes) of the policy generated for a weighting of (0.5, 0.5). From this figure, 

it is important to note that when the agent is at a high TWSI but falling behind in the distance 

necessary to finish, the policy accelerates the pace (circled in red).  Although this makes sense, 

given the large penalty associated with failing to complete the necessary distance, it ultimately 

pushes the human agent to dangerously high thermal-work strain levels. 

  



 

125 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.14: Policy for minute 0, 18, 38, and 58 with equally weighted (0.5, 0.5) “safety” and 

“end TWSI” reward functions from Tables 5.4 and 5.5. Red circles indicate where the policy will 

direct an agent with very high thermal-work strain and lagging in distance to increase speed 

regardless of the increase in TWSI. 

 

To avoid this policy behavior, we added a very large penalty to both the “safety” and 

“end TWSI” reward functions of −2000 for TWSI = 10. The rationale was that there is more 

utility to not completing the five miles of movement versus completing the five miles and 

reaching a TWSI of 10. Figure 5.15 shows the same sample (time points 0, 18, 38, and 58 

minutes) of the policy generated for the same weighting (0.5, 0.5) of the reward functions, but 

where the penalty of −2000 has been added for TWSI of 10. 

To examine the extremes for “safety” and “end TWSI” reward, we also ran the 

SCENARIO model on policies derived from reward functions that contained only a large 

negative penalty at the TWSI of 10. Figure 5.16 shows the SCENARIO predicted CT, TWSI, and 

policy speeds for weightings of (0,1) (.1,.9) (.2,.8) (.5,.5) (.8,.2) (1,0) for “safety” and “end 

TWSI” reward functions, respectively. Even when the weight for the “safety” reward function 

was 0, the agent almost completes the policy run without exceeding the “safety” threshold.  Once 

there is some weight to the “safety” penalty, the agent behavior appears to converge. While these 

policies meet the idea of not exceeding the safety threshold, they do not attempt to end with a low 

TWSI.  
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Figure 5.15: Policy for minute 0, 18, 38, and 58 with equally weighted (0.5, 0.5) “safety” and 

“end TWSI” reward functions from Tables 5.4 and 5.5 with an added −2000 penalty for TWSI = 

10 . Red circles indicate where the policy no longer directs an agent with very high thermal-work 

strain and lagging in distance to increase speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: SCENARIO model runs for weights of (0,1)[solid black], (.1,.9)[dashed black], 

(.2,.8), (.5,.5)[solid grey], (.7,.3), (1,0)[dotted grey] for “safety”, “end TWSI” with only a high 

penalty of -2000 for reaching TWSI of 10. Red dashed line indicates the TWSI “safety” threshold. 

Grey vertical lines indicate the 60 minute exercise period. 
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In the end, we chose to model the problem using a fairly balanced weighting between the 

“safety” and “end TWSI” penalties. The rewards and penalties are designed to reflect the ideas 

that “ending with a low TWSI is better” and “a greater violation of the safety threshold” is worse. 

The “safety” limit penalties for exceeding the TWSI threshold of 7.5 are shown in Table 5.6, and 

the rewards and penalties for the “end TWSI” reward function are shown in Table 5.7. 

 

Table 5.6: Final rewards for R2(s) for t<60. 

TWSI <7.5 7.5 7.75 8 8.25 8.5 8.75 9 9.25 9.5 9.75 10 

R2 0 −2 −4 −8 −16 −32 −64 −128 −256 −512 −1024 −2000 

 

Table 5.7: Final end state rewards for R3(s) for t=60. 

TWSI ≤ 8 8.25 8.5 8.75 9 9.25 9.5 9.75 10 

R3 100 – (4∙TWSI−2) −4.3 −7.6 −10.9 −50 −100 −300 −700 −2000 

 

The end-state TWSI rewards are designed to promote completion of the run with the 

lowest possible TWSI. Table 5.7 shows that finishing with a lower TWSI is better than finishing 

with a higher TWSI. However, finishing with TWSIs > 8 is not beneficial, and is increasingly 

penalized. The increasing penalties for higher and higher TWSIs reflect the increasing risk of 

thermal-injury. The very large penalty of −2000 for a TWSI of 10 indicates that ending here is 

unacceptable. It is more appropriate to stop the exercise than to push to complete. In fact, a TWSI 

of 10 reflects our human use institutional review board limits set for a maximum core body 

temperature of 39.5 °C with an accompanying heart rate of 180 beats per minute. The lower 

penalties below an end state TWSI of 10 indicate that it is acceptable to push, by varying degrees, 

to complete the course on time.  

The reward function R2(TWSI) t<60 shows that it is equally fine for students to have 

TWSI between 0 and 7.25 during the race, but at or above 7.5, penalties will accrue. The negative 

rewards for TWSIs above 7.5 allow for several steps to be taken at these higher TWSI’s and still 

receive higher utility than not completing the race on time. However, the exponentially increasing 

penalties are designed to discourage straying too far into higher and higher TWSIs. These very 

large negative rewards at high TWSIs ≥ 9.5 are designed to indicate that stopping the exercise for 

health is better than completing. Figure 5.17 shows a sample (time points 0, 18, 38, and 58 

minutes) of the final policy used for the laboratory study (see Appendix C for the full policy). 

Figure 5.18 shows the SCENARIO-modeled physiological response of an agent 

following this policy. Of note is that even though the transition probabilities have been smoothed 

in the simulation, the agent is either running at or above 5 mph or walking below 4 mph, avoiding 

a range of awkward movement speeds. 
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Figure 5.17: Final policy (minutes 0, 18, 38, and 58) used for the laboratory study using the 

reward functions from Tables 5.6 and 5.7. The full policy is shown in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: SCENARIO model runs for final policy. Red dashed line indicates the TWSI 

“safety” threshold. Grey vertical lines indicate the 60 minute exercise period. 
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5.5 Methods 

5.5.1 Participants 

Sixteen volunteers (11 males and 5 females) participated in the laboratory study. Table 5.8 shows 

their individual characteristics. 

 

Table 5.8: Participant characteristics. 

 
Gender Age (yrs.) Ht. (m) Wt. (kg) %Body Fat SA (m

2
)† 

 
M 23 1.62 62.4 13 1.66 

 
F 21 1.69 55.3 19 1.63 

 
M 22 1.80 65.5 13 1.83 

 
M 21 1.79 70.2 11 1.88 

 
M 21 1.74 83.9 15 1.98 

 
M 22 1.71 67.4 9 1.78 

 
F 29 1.68 61.6 26 1.70 

 
M 19 1.79 72.2 14 1.90 

 
M 24 1.70 65.7 15 1.76 

 
M 29 1.81 74.4 12 1.94 

 
M 22 1.86 87.7 14 2.12 

 
M 21 1.64 63.2 11 1.67 

 
M 26 1.69 57.5 5 1.66 

 
F 28 1.62 66.5 31 1.71 

 
F 22 1.68 63.5 26 1.72 

 
F 21 1.64 56.7 22 1.61 

Male n=11 22.7 ± 2.8 1.74 ± 0.07 70.0 ± 9.1 11.9 ± 2.8 1.83 ± 0.14 

Female n=5 24.2 ± 4.0 1.66 ± 0.03 60.7 ± 4.7 24.8 ± 4.5 1.67 ± 0.05 

Overall N=16 23.2 ± 3.1 1.71 ± 0.07 67.1 ± 9.0 15.9 ± 7.0 1.78 ± 0.14 

Ht. = Height, Wt. = Weight. SA = Surface Area. Values are Mean ± Standard Deviation. 

†Computed using the Du Bois method (1916). 

 

5.5.2 Measures 

Individual Characteristics 

Measurements of height were made with a stadiometer and clothed weight was measured using a 

scale. Percent body fat was calculated using the U.S. Army circumference technique with 

procedures outlined in AR 600-9 (Department of the Army, 2006). Circumference measurements 

were made using a fiberglass anthropometric tape at the neck, just below the larynx; at the 

abdomen coinciding with the navel; and for women, at the hip. Measurements were made three 
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times by the same individual. Age and gender were self-reported. Body surface area was 

calculated using height and weight and the Du Bois (1917) formula. 

Movement Progress 

Speed of movement was recorded from a reflective light tachometer (Omegaette HHT-1501, 

Omega Inc., Stamford CT) on an Android tablet. Treadmills were individually calibrated. Time 

was recorded on the Android tablet. Distance was computed from time and speed of movement. 

Physiology 

Measurements of heart rate, skin temperature, and core body temperature (CT) were recorded by 

a Hidalgo (Cambridge UK) Equivital™ EQ-02 physiological status monitor (see Figure 5.19). 

The Hidalgo Equivital™ EQ-02 is an FDA 510(k) certified (K113054) device. The system 

recorded CT by receiving transmissions from the MiniMitter (Bend, OR) Jonah thermometer pill. 

The core temperature thermometer pill was ingested orally at least 12 hours preceding physical 

exercise. This would ensure that the thermometer pill temperature reading was not compromised 

by ingested water. The pill is constructed from food-grade polycarbonate and conforms to U.S. 

Food and Drug, Cosmetic Act and Food Additive Regulations 21 CFR 177.1580.  Thermometer 

pill data were used to verify the previously-defined core body temperature estimation algorithm 

and to monitor for safety during the exercise session.  

 

 

 

 

 

 

 

Figure 5.19: Equivital™ EQ-02 sensor electronics module (left) and the EQ-02 belt (right). 

 

Additionally, we used a modified version of the Equivital system to measure heat flux. 

Two high resolution thermistors and a comparator circuit were used to measure the temperature 

difference between the front and the rear of the sensor electronics module.  The heat flux devices 

have been compared to calibrated ceramic heat flow discs (Concept Engineering, Old Saybrook, 

CT) and shown to have a proportional relationship. 
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Thermal-Work Strain Index (TWSI) 

The TWSI is an index that combines scaled heart rate and scaled core body temperatures with 

equal weights into an index from 0 to 10+. TWSI was calculated according to Moran et al. (1998) 

from measures of heart rate and core body temperature (see Equation 2.9). Additionally, an 

estimated TWSI was calculated using an estimated CT calculated according to Chapter 3 (see 

Buller et al., 2013a) from measurements of HR. 

Metabolic 

Metabolic readings were taken using indirect whole room calorimetry (USDA, Beltsville MD). 

As the whole room calorimeter needs approximately 10 hours to stabilize, volunteers were 

monitored for approximately 24 hours. Volunteers slept overnight in the chamber and were then 

fed a standardized breakfast before completing the prescribed exercise bout. O2 and CO2 

concentrations were sampled every 1.3 minutes using a Mass Spectrometer (model MGA-1200, 

Perkin-Elmer Industrial Instruments, Pomona, CA). The following parameters were derived from 

these measures: oxygen consumption rate in L/min; carbon dioxide production rate in L/min; 

respiratory exchange ratio (unit less); and energy expenditure in kcal/min. 

Self-Perception Scales 

Self-perception scales were used to measure subjective ratings of perceived exertion, thermal 

sensation, and affective feelings. Volunteers completed the self-perception scales prior to exercise 

(baseline), immediately following exercise, and every 10 minutes during exercise. Scales were 

fixed above the treadmill and study staff recorded the rating scales on an Android tablet.  

 

Thermal Sensation Scale 

A thermal sensation scale (Young et al., 1987) was modified to align with the TWSI. Table 2.4 

shows the modified scale with the original anchor words, along with the addition of “extremely 

hot” and “extremely cold” anchors. The scale was been modified to try and fix the apparent non-

linearity of the jump from very hot to unbearably hot and to allow the scale to be used in 

comparison to the thermal-work strain index.  

 

Perceived Exertion Scale 

The Borg (1970) rating of perceived exertion (RPE) is a scale from 6 to 20, from no exertion at 

all (rest) to maximal exertion see Table 2.3. 
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Feeling Scale 

The feeling scale is an affective valence measure. Volunteers were asked to rate how they felt on 

an 11-point good/bad scale (+5 very good, +3 good, +1 fairly good, 0 neutral, -1 fairly bad, -3 

bad, -5 very bad) (Rejeski et al., 1987; Ekkekakis, 2003) pre-and-post exercise and every 10 

minutes during exercise.  

5.5.3 Procedures 

On the day prior to exercise, participants reported to eat a standard breakfast and collect a packed 

lunch. At 5:00 pm, they returned to start a calorimeter chamber stay. Height, weight, and 

circumferences were measured at this time. The participant was fit with the ambulatory 

monitoring device and instructed regarding the calorimeter procedures, including operation of the 

air lock, entertainment equipment (computer, TV, DVD player, radio), treadmill, air conditioning, 

telephone system, bathroom, and sleeping facilities.  At this time, participants ingested a core 

body temperature thermometer pill. The study procedures are outlined in Figure 5.20. 

 

 

 

 

 

 

 

Figure 5.20: Study timeline. 

 

At 5:30 pm, the calorimeter door was closed (not locked), and participants resided in the 

calorimeter for the next 23.5 hours.  During the stay, participants could drink as much water as 

they liked, but could only consume the provided standardized meals. Dinner was provided at 6:00 

pm, and participants were expected to completely consume all food within 30 minutes.  The 

remainder of the evening was spent by the participant in leisure activities with no exercise 

periods.  Calorimeter lights were extinguished at 11 pm, and participants were instructed to lie 

quietly in bed until awoken in the morning. 

After approximately 13.5 hours in the calorimeter, participants were woken at 6:30 am. 

At about 7:00 am, a standardized breakfast of waffles and syrup (486 kcal, 91g CHO, 11g fat, 8g 

protein) was provided, and participants were expected to consume this meal within 30 minutes. 

Following breakfast, volunteers performed sedentary tasks until about 9:30 am, when they begin 

preparation for the exercise session. At around 10:00 am, participants began either the GUIDED 
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or UNGUIDED exercise protocol under the supervision of study staff. At approximately 5:00 pm, 

subjects left the calorimetry chambers . 

Treadmill Exercise Session 

Prior to starting the treadmill exercise, written instructions for either the GUIDED or 

UNGUIDED condition were given to the volunteers to read.  

 

 

GUIDED Instructions 

This is a treadmill exercise where we want you to complete 5 miles within 60 minutes. We 

will use measurements of your heart rate to determine how fast you should go. Every 2 

minutes, we will tell you how fast you should go based upon your heart rate measurements 

and the distance you have completed already. To successfully complete this study, you 

should adjust your pace to match the speed suggested by the investigator as closely as 

possible. 

 

 

 

UNGUIDED Instructions 

This is a treadmill exercise where we want you to complete 5 miles within 60 minutes. We 

want you to pace yourself so that at the end of 60 minutes, you have completed the 5 miles 

AND are as cool as possible AND have not gotten too hot during the exercise. To complete 

these goals, there are a number of strategies that may be useful: e.g. starting quickly and 

ending slowly; starting more slowly and ending quickly; or maintaining a constant pace. 

Some of these strategies are better than others and you are free to try your own strategy. 

You will be given feedback about how far you have gone and how much time is remaining. 

But it is VERY important that you complete the 5 miles within 60 minutes. For your safety, 

we will be monitoring how hot you get. If your core body temperature is beginning to get 

too hot, we will suggest you slow your pace. If your core body temperature reaches 102.5 

°F, we will tell you to slow your pace to 3 miles per hour until your core body temperature 

is 102 °F. If your core body temperature reaches 103.1 °F, we will tell you to stop, sit on a 

chair, and remove your jacket. In this case, once your core body temperature is about 102 

°F and the on-site registered nurse says you are fit to continue, you may elect to put on your 

jacket and continue the exercise session to complete the five miles within the hour. 
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Once dressed in their exercise clothing, subjects completed a baseline set of self-

perception scales. At approximately 10:00 am, subjects began a standard warm-up sequence of 

walking at 3.5 mph, walking or running at 4.5 mph, and running at 5.00 mph each for 2 minutes. 

Once the warm-up period was completed, the subject either started a GUIDED or UNGUIDED 

exercise session. 

The exercise session was conducted on a standard powered treadmill (e.g. Smooth Fitness 

7.11.HR). Control of the speed was via the “+” and “−” buttons. Participants were able to see the 

display of the treadmill speed, time elapsed, and the distance they had moved on the treadmill. 

However, participants were warned that the treadmill display was not entirely correct and that the 

correct distance and time would be provided by the study staff. Ideally, the five miles would be 

completed as close as possible to the 60 minutes; however, if completed before 60 minutes, 

volunteers were asked to stand next to the treadmill until the full 60 minutes had elapsed.  

5.5.4 Statistical Analysis 

For most statistical hypothesis testing in this study, we utilized either a within-subject paired t-

test or t-test assuming equal variances. Since we had a fairly large number of statistical 

comparisons, we conservatively set the level of significance at α = 0.01. This was to avoid 

making a type I errors, where we would declare a statistical difference when one did not really 

exist. Unless otherwise stated, the results are presented as mean ± one standard deviation (SD). 

SCENARIO Model 

To examine how well the choice of SCENARIO model inputs represented the live experimental 

conditions, all human subject chamber-runs were simulated. The SCENARIO model inputs used 

to develop the TWSI transition probability mass function were used in addition to the observed 

movement speeds to simulate CT, heart rate, and TWSI response. The agreement of the model 

estimated CT, heart rate, and TWSI with observed values was examined using the limits of 

agreement (LoA) method (Bland and Altman 1986) and by computing the root mean square error 

(RMSE)               
    

    . The LoA method utilizes a Bland-Altman chart to plot 

the average of observed and estimated values against the difference (estimate – observation). The 

method computes bias as the mean of the differences between the observed and estimated values. 

LoA are computed as bias ± 1.96 × SD of the differences.  The LoA provides a range of error 

within which 95% of all estimates fall, assuming a normal distribution.  Paired t-tests were used 

to examine the differences in RMSE and Bias for the three CT, heart rate, and TWSI between the 

two experimental conditions. Overall, RMSE, bias, and limits of agreement LoA were computed 

for all SCENARIO model compared to the observed data for CT, heart rate, and TWSI. 
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Transition Probability Mass Function Check 

With only 480 observed TWSI transitions from the 60 minute exercise, it is difficult to directly 

assess the validity of the TWSI probability matrix. Instead, we used visual inspection to assess 

where our learned TWSI transition probabilities were appropriate and where discrepancies arose. 

Core Temperature Estimation Algorithm Performance 

To examine how well the core body temperature estimates agreed with the observed core body 

temperatures, we computed the bias and LoA from all data for each experimental condition.  Root 

mean square errors and bias were computed for each individual volunteer for both the GUIDED 

and UNGUIDED conditions. Paired t-tests were used to compare the mean RMSE and mean Bias 

computed from the individual subject runs.  This same approach was used to compare TWSI 

computed from estimated CT to the TWSI computed from observed core body temperature. 

Effect of GUIDANCE on Physiology 

To examine whether the automated guidance allowed subjects to complete the five miles of 

movement with lower physiological strain, we directly compared a number of physiological 

measures using a within-subjects t-test. Parameters were compared at the end of the 60 minutes, 

at the maximum value reached, and by the mean across the one hour of movement. The following 

measures were compared: CT, TWSI, heart rate, skin temperature, and heat flux.  Only subjects 

who completed the five miles of movement in both conditions were compared. The total energy 

expenditure for each session was also compared using a within-subjects t-test.  

The utility of the runs were compared for the “safety” objective and the “end TWSI” 

objective, using a within-subjects t-test.  To examine whether speed of completion played a role 

in end times, we correlated time to complete the five miles with the utility scores for the “safety” 

objective and the “end TWSI” objective.  

The subjective mean, max, and endpoint RPE, Thermal and Feeling indices were 

compared between the GUIDED and UNGUIDED conditions using a within-subjects t-test. 

Correlations between the RPE, Thermal, and Feeling indices were computed against CT, TWSI, 

heart rate, and skin temperature. 

Guidance to Stop 

Part of the balancing of the rewards and penalties for the MDP was to try and model 

when someone should stop versus trying to complete the goal. Individual differences for age, 

height, weight, percent body fat, and body surface area were examined by comparing the group 

means of those guided to stop and those guided to complete using a t-test. Similarly, differences 
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in mean, maximum, and end point CT, TWSI, and HR were examined by comparing the group 

means (guided to stop/complete) for both the UN/GUIDED conditions using a t-test.  

For those subjects who were given guidance to stop versus completing the 5 miles, we 

examined whether the stopping guidance was accurate based upon their estimated TWSI state. 

We also examined whether the estimated TWSI state was accurate compared to the observed 

TWSI state. As the only estimated portion of the TWSI was core body temperature, we classified 

the estimated TWSI state as accurate if the core temperature component fell within ± 0.32 °C of 

the observed CT. This represented the standard deviation found in the data from the original 

validation of the CT estimation algorithm from Chapter 3 (see Table 3.7). 

To examine whether there was any systematic difference between the CT estimation 

algorithm performance between those guided to stop and those guided to complete, the RMSE 

and bias of the estimated CT were compared using a t-test for both the UNGUIDED and 

GUIDED conditions.  

5.6 Results 

5.6.1 SCENARIO Model Performance 

No significant differences were found between RMSE and bias in the SCENARIO model 

estimations of CT, heart rate, and TWSI, between the GUIDED and UNGUIDED sessions. Table 

5.9 shows the RMSE and bias for the model estimates of CT, heart rate, and TWSI by 

experimental condition. 

 

Table 5.9: RMSE and bias for the SCENARIO modeled CT, heart rate, and TWSI compared to the 

observed values for both the GUIDED and UNGUIDED conditions. 

 CT (°C) Heart Rate (beats/min.) TWSI 

 RMSE Bias RMSE Bias RMSE Bias 

UNGUIDED 0.44 ± 0.21 0.13 ± 0.32 21.3 ± 7.6 −8.9 ± 13.4 1.5 ± 0.4 −0.1 ± 1.1 

GUIDED 0.40 ± 0.15 0.00 ± 0.29 23.3 ± 10.9 −16.1 ± 16.1 1.5 ± 0.7 −0.7 ± 1.2 

 

Figure 5.21, shows the mean observed and modeled CT, heart rate, and TWSI for all 

subjects from both the GUIDED and UNGUIDED runs combined. While a positive bias of the 

modeled CT can be seen in the left figure, and a negative bias of the modeled HR in the middle 

plot, these two effects appear to cancel out in the plot of the mean modeled TWSI (right). 

However, there is a large variability in the modeled responses versus the observed data. Figure 

5.22 shows the level of agreement according to a Bland Altman plot for the modeled TWSI. The 

modeled TWSI has a RMSE of 1.53 ± 0.58, a bias of −0.44 and limits of agreement where 95% 
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of all modeled TWSIs fall within ± 3.09 units of the mean, indicating a large degree of variance. 

For CT, the overall RMSE is 0.44 ± 0.21 °C with a bias of 0.07 °C and limits of agreement of ± 

0.88 °C. Heart rate has an RMSE of 22.3 ± 9.6 beats/min. with a bias of −12.5 beats/min. and 

limits of agreement of ± 40.7 beats/min.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Mean observed (Obs.) and mean modeled CT (left), heart rate (middle), and TWSI 

(right). Error bars are ± 1 SD. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: Bland Altman plot of SCENARIO modeled TWSI versus observed. Bias = solid line, 

dashed line is ± 1.96 SD. 
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5.6.2 Observed TWSI Transitions 

Figure 5.23 shows a heat map of the transition probability distributions learned from the 

SCENARIO thermo-regulatory model overlaid with the observed transitions for TWSIs from 1 to 

10 inclusive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Observed TWSI transitions (green ‘X’) overlaid on the learned discrete transition 

probability distributions. Current TWSI state is indicated by a white vertical line. The learned 

discrete probability distributions are shown as a grey scale heat maps, white shows the highest 

density black =0.Red lines indicate the expected TWSI’ computed from the regression functions 

used to smooth the transition probability mass function. 

5.6.3 Pacing Styles 

Figure 5.24 shows the different pacing strategies used by each subject to complete the 5 miles 

within one hour. 
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Figure 5.24: Self-pacing profiles for the 16 subjects. Subject ID 11 did not complete the 5 miles 

within the hour. This subject was forced to finish walking as their core body temperature 

exceeded the safety limits set by the protocol. 

 

Figure 5.25 show a correlation matrix for the sixteen pacing profiles. Using this and the 

speed profiles in Figure 5.24, it’s possible to group the strategies into three broad categories: 

finished early (EARLY), steady pace (STEADY), and alternating or variable speed (ALTER). 

Where EARLY:={1,9,11,12,13,15}, STEADY:={3,5,7,10}, and ALTER.:={4,6,8,14}. Subject 

ID 2 is unusual in that he/she would have been a very early completer except he/she was forced 

by the protocol to walk at ~3.0 mph for a time as his/her core body temperature had exceeded the 

IRB approved safety limit for the self-guided period. 
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Figure 5.25: Correlation matrix for the different speed profiles of each subject. White is a 

correlation close to 1 and black is a correlation close to -1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Mean core body temperature (top left), mean TWSI (top right), mean heart rate 

(bottom left), and mean speed (bottom right) for each of the three movement groups. 
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Figure 5.26 shows the movement profiles for each of the three groups, along with CT, 

TWSI, and heart rate. On average, the group that alternated between speeds almost kept their 

TWSI below the 7.5 “safety” threshold. The other two groups, however, exceed this threshold 

either during the mid-point or towards the end of the exercise session. 

5.6.4 GUIDED versus UNGUIDED  

Of the 16 subjects, 15 completed the 5 miles in one hour for the UNGUIDED session. For the 

GUIDED session, 9 subjects completed the 5 miles in one hour while 7 subjects were guided to 

stop.  Figure 5.27 shows the maximum and end thermal-work strain for all subjects for both the 

GUIDED and UNGUIDED sessions. Subjects 1 and 2 completed the GUIDED session with an 

earlier version of the policy based on incorrect transition probabilities. These two subjects were 

dropped from the comparison analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: End and maximum TWSI for all subjects for both the GUIDED and UNGUIDED 

sessions, indicating those guided to completion and those guided to stop. 

 

 

 The “Stopped” group was comprised of three “EARLY” finishers (IDs=13, 14, 16), one 

“STEADY” pacer (ID=5), one subject who adopted an alternating strategy (ALTER) (ID=15), 

and one subject who did not complete the 5 miles in the UNGUIDED session. 
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5.6.5 Core Temperature Estimation Algorithm Performance 

Figure 5.28 shows the mean-observed and mean-estimated core body temperature and TWSI for 

both the GUIDED and UNGUIDED sessions for all subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: The mean observed and mean estimated CT and TWSI for both the GUIDED and 

UNGUIDED sessions. Error bars are ± SD. 

 

Table 5.10 shows the mean RMSE, mean bias, and LoA for both the GUIDED and 

UNGUIDED conditions. Bias for both CT and TWSI is around zero for the UNGUIDED session. 

However, for the GUIDED session there is a significant positive bias for both CT and TWSI. The 

LoA indicate that 95% of all estimates fall within the same range around the mean bias for both 

the GUIDED and UNGUIDED groups. 

 

Table 5.10: Mean bias, mean RMSE, and overall LoA between obs. and estimated CT and TWSI. 

 CT (°C) TWSI 

 UNGUIDED GUIDED UNGUIDED GUIDED 

Mean RMSE 0.28 ± 0.15 0.32 ± 0.16 0.59 ± 0.32 0.68 ± 0.33 

Mean Bias 0.01 ± 0.19* 0.17 ± 0.21* 0.02 ± 0.39* 0.35 ± 0.44* 

LoA ± 0.62 ± 0.63 ± 1.30 ± 1.30 

* Significant difference between GUIDED and UNGUIDED p<0.008. 
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Figure 5.29 shows the Bland-Altman plots between the observed and estimated CT and 

TWSI for the GUIDED and UNGUIDED conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29: Bland-Altman plots showing the level of agreement between estimated and observed 

CT and TWSI for the UNGUIDED and GUIDED sessions. Bias is a solid black line and ± 1.96 

SD is shown as a dashed line. 

 

5.6.6 Physiological Differences between GUIDED and UNGUIDED Sessions 

Results in this section are from the 8 subjects who were guided to complete the 5 miles within an 

hour. Figure 5.30 show the mean responses for CT, TWSI, heart rate, skin temperature, and the 

heat flux correlate for both the GUIDED and UNGUIDED sessions. Additionally, the figure 

shows the mean movement speeds for the GUIDED and UNGUIDED sessions. The movement 

speeds from the UNGUIDED session have a large variability while the movement speeds from 

the GUIDED session show small variability, indicating that most subjects followed the speeds 

indicated by the mean fairly closely. 
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Figure 5.30: Mean CT, TWSI, movement speed, heart rate, skin temperature, and a heat flux 

correlate for both GUIDED and UNGUIDED sessions. Error bars are ± 1 SD. 

 

Table 5.11 shows the differences in CT, TWSI, heart rate, skin temperature, heat flux, 

and metabolic rate between the GUIDED and UNGUIDED conditions, for the exercise average, 

maximum, and end point. Mean CT and mean TWSI across the 60 minute exercise time are 

significantly lower in the GUIDED session.  

 

Table 5.11: Comparison of physiology between UNGUIDED and GUIDED conditions.  

 UNGUIDED GUIDED 

 Average Maximum End Point Average Maximum End Point 

CT (°C) 38.4 ± 0.2* 39.0 ± 0.3* 38.5 ± 0.6 38.1 ± 0.2* 38.4 ± 0.2* 38.1 ± 0.2 

TWSI 6.8 ± 0.8* 9.0 ± 0.9* 5.7 ± 2.4 5.7 ± 0.4* 6.7 ± 0.4* 4.8 ± 1.1 

HR (bpm) 160 ± 12† 186 ± 9* 134 ± 30 151 ± 7† 167 ± 6* 129 ± 17 

ST (°C) 34.7± 0.5† 35.7 ± 0.5† 34.7 ± 0.5† 34.0 ± 0.5† 34.9 ± 0.6† 33.0 ± 1.6† 

HF 8.9 ± 2.3 12.7 ± 3.0 7.9 ± 3.5 9.0 ± 1.6 11.9 ± 2.5 9.4 ± 2.7 

EE (Kcal)‡ 599 ± 84 617± 104 

*Difference between GUIDED and UNGUIDED p<0.003. † p<0.05 . ‡Total energy expended (EE) during 

the exercise period. HR = heart rate, ST = skin temperature, and HF = heat flux. 
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Maximum CT, maximum TWSI, and maximum heart rate reached in the GUIDED 

session are significantly lower than in the UNGUIDED session. Skin temperature appears to be 

trending lower across the mean, maximum, and end values in the GUIDED session. 

Figure 5.31 shows the utility for the two goals of finish as cool as possible (“end TWSI”) 

and do not get too hot (“Safety”). In addition, the figure shows the maximum TWSI compared to 

the end state TWSI. These are the two factors that we would like the MDP to minimize while still 

completing the five miles of movement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31: Utility of “End TWSI” and the “Safety” objectives (Left) and the maximum TWSI 

versus the end state TWSI (Right) for the UNGUIDED (Cross) and GUIDED (Circle) Conditions.  

 

There was no significant difference between the “end TWSI” objective where utility was 

33.3 ± 28.8 and 48.4 ± 13.5 for the UNGUIDED and GUIDED conditions respectively. The 

utility of the “safety” goal was significantly greater for the GUIDED (0 ± 0) condition compared 

to (−428 ± 382) for the UNGUIDED session at p<0.02 level. The one unguided subject whose 

“end TWSI” utility was zero was a very fit tri-athlete who planned an alternating pace based both 

on his/her experience and scientific articles showing the inefficiencies of the 5 mph pace.  There 

was a significant correlation between the time to complete the 5 miles and the utility score for the 

“safety” goal (r=0.73, p=0.03), indicating that the quicker a subject finished, the lower the utility 

score. Table 5.12 shows the number of minutes subjects had TWSIs at or above our safety 

threshold of 7.5 TWSI units. 
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Table 5.12: Minutes subjects were at TWSIs ≥ 7.5. 

UNGUIDED 

(min.) 

GUIDED 

(min.) 

25 0 

0 0 

33 0 

27 0 

12 0 

26 0 

23 0 

44 0 

 

 Table 5.13 shows the correlation coefficients for the subjective scales (RPE, thermal, and 

feeling) against the physiological parameters of CT, TWSI, heart rate, and skin temperature. 

 

Table 5.13: Subjective scale correlations with physiological variables. 

 RPE Thermal Feeling RPE+Thermal 

CT 0.30* 0.51* 0.26* 0.42* 

TWSI 0.55* 0.61* 0.13 0.63* 

HR 0.67* 0.57* 0.00 0.68* 

ST 0.35* 0.41* 0.08 0.41* 

CT = core body temperature, TWSI = thermal-work strain index, HR = heart rate, ST = skin temperature. 

* p<0.05. 

 

 The RPE scale was most highly correlated with HR, the thermal scale was most highly 

correlated with the TWSI, and the feeling scale does not have any strong correlations with the 

physiological variables.  The combined RPE and thermal scale has slightly better correlations 

than the individual scales to both TWSI and HR.  

The mean average, maximum, and end-point subjective ratings for both the UNGUIDED 

and GUIDED conditions are shown in Table 5.14.  

 

Table 5.14: Mean average, maximum, and end-point subjective ratings for both the UNGUIDED 

and GUIDED conditions.  

 UNGUIDED GUIDED 

 Average Maximum End Point Average Maximum End Point 

RPE 9.5 ± 0.8 12.6 ± 1.3 6.5 ± 1.1 8.7 ± 1.5 11.3 ± 2.4 6.5 ± 0.8 

Thermal 2.5 ± 0.7* 5.1 ± 0.8* 2.1 ± 1.9 1.3 ± 0.9* 3.0 ± 1.1* 1.5 ± 1.8 

Feeling 2.5 ± 1.2 3.8 ± 1.3 3.25 ± 1.3 2.9 ± 1.4 3.8 ± 1.4 3.5 ± 1.3 

* Significant differences between GUIDED and UNGUIDED conditions (p<0.01).  
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The RPE and Feeling scale had no significant differences between the GUIDED and 

UNGUIDED sessions. However, the mean maximum Thermal rating for the GUIDED condition 

was significantly lower (3.0 ± 1.1 between “Warm” and “Hot”) than the mean maximum thermal 

rating for the UNGUIDED condition (5.1 ± 0.8 between “Hot” and “Very Hot”). Similarly, the 

mean average thermal rating for the GUIDED condition was significantly lower (1.3 ± 0.9 

between “comfortable” and “warm”) than the UNGUIDED condition (2.5 ± 0.7 between “warm” 

and “hot”). 

5.6.7 Guidance to Stop 

Six subjects were stopped by the algorithm prior to completing the five miles. No significant 

differences were found between those subjects who were guided to completion and those guided 

to stop for age, height, weight, percent body fat, or body surface area. Table 5.15 presents the 

means and standard deviations for these two groups. 

 

Table 5.15: Subject characteristics for those guided to completion and those guided to stop. 

 
N Age (yrs.) Ht. (m) Wt. (Kg) %Body Fat SA (m

2
)† 

Completed n=8 (2F) 23.3 ± 3.8 1.73 ± 0.06 66.3 ± 6.2 14.9 ± 3.9 1.78 ± 0.11 

Stopped n=6 (3F) 23.3 ± 2.9 1.71 ± 0.09 69.3 ± 13.4 18.8 ± 9.4 1.80 ± 0.21 

Ht. = height, Wt. = weight. SA = surface area. Values are mean ± SD. There are no significant differences 

between the groups.  †Computed using the Du Bois method (1916).  

 

Similarly, no significant differences were found in the performance of the CT estimation 

algorithm between the stopped group and those who were guided to stop for both the GUIDED 

and UNGUIDED conditions. Table 5.16 presents the mean RMSE and Bias for the CT estimation 

algorithm for each condition and those guided to stop and those guided to completion. 

 

Table 5.16: Mean RMSE and Bias for the CT estimation algorithm for those who were stopped 

and those guided to completion. 

 UNGUIDED GUIDED 

 Stopped (n=6) Completed (n=8) Stopped (n=6) Completed (n=8) 

RMSE (°C) 0.26 ± 0.14 0.30 ± 0.17 0.32 ± 0.22 0.32 ± 0.10 

Bias (°C) 0.02 ± 0.26 −0.01 ± 0.14 0.17 ± 0.28 0.17 ± 0.17 

Values are mean ± SD. 

 

 Table 5.17 shows the group means for the mean, maximum, and end point CT, TWSI, 

and HR for those who were stopped by the algorithm and those who completed for both the 

GUIDED and UNGUIDED sessions. Mean maximum TWSI and maximum HR were 

significantly higher for those who were stopped in the GUIDED session versus those who 
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completed in the guided session.  However, there was no significant difference in the measured 

physiological parameters between those who were guided to complete and those who were guided 

to stop when looking at the UNGUIDED condition. 

 

Table 5.17: Group mean of the average, maximum, and end point CT, TWSI, and HR for those 

stopped by the algorithm and those who completed the 5 miles for both the GUIDED and 

UNGUIDED conditions. 

  UNGUIDED GUIDED 

  Stopped (n=6) Completed (n=8) Stopped (n=6) Completed (n=8) 

CT (°C) 

Ave. 38.5 ± 0.18 38.39 ± 0.21 38.18 ± 0.38 38.06 ± 0.19 

Max. 39.17 ± 0.14 39.04 ± 0.28 38.60 ± 0.43 38.43 ± 0.20 

End 38.88 ± 0.28 38.47 ± 0.59 38.45 ± 0.50 38.11 ± 0.19 

HR 

(beats/min.) 

Ave. 167 ± 12 160 ± 12 157 ± 10 151 ± 7 

Max. 185 ± 10 186 ± 9 178 ± 7* 167 ± 6* 

End 147 ± 25 143 ± 30 125 ± 26 128 ± 17 

TWSI 

Ave. 6.65 ± 0.51 6.11 ± 0.81 5.66 ± 0.84 5.09 ± 0.5 

Max. 9.25 ± 0.71 8.97 ± 0.91 7.76 ± 0.89* 6.66 ± 0.36* 

End 7.19 ± 1.60 5.74 ± 2.37 5.27 ± 2.03 4.78  1.12 

* Significant difference between those stopped versus not stopped for the GUIDED session 

p<0.01. Values are mean ± SD. 

 

Table 5.18 shows, for each subject who was stopped, the time they were stopped, their 

estimated and observed CT, their estimated and observed TWSI, the distance they had to 

complete, the speed needed to complete on time, and the projected end TWSI. 

 

Table 5.18: Ending conditions for subjects stopped by the policy before completing the 5 miles. 

Stop 

Time 

(Min.) 

Distance 

Completed 

(miles) 

Speed 

needed for 

completion 

(mph) 

CT (°C) Estimated 

CT (°C) 

TWSI Estimated 

TWSI 

Project 

Estimated 

End TWSI 

58 4.68 9.6 39.01 38.99 7.88 7.83 >10 

50 4.15 5.1 38.79 38.95 7.97 8.32 9.5 † 

54 4.33 6.7 38.05 38.96* 5.82 8.07 >10 

52 4.17 6.2 38.69 39.01 7.28 7.96 >10 

58 4.73 8.1 38.52 38.99* 6.56 7.62 >10 

30 2.25 5.5 37.89 38.75* 5.88 7.48 >10 

* Estimated CT > 0.32 °C above observed CT. 

† This subject did not finish the five miles for the UNIGUIDED condition. During the GUIDED condition, 

at minute 50, the physiological monitor was giving erroneously low heart rate readings. This provided a 

low TWSI state, and at minute 54, the subject was instructed to run at 6.7mph to try and complete the 

difference. At minute 56, the subject complained that he/she was feeling dizzy. The run was stopped at this 

point, and it is unknown whether the subject would have been able to complete. 

 

Of the six subjects who were stopped by the policy, one was stopped early according to 

the protocol safety procedures, when they complained of feeling dizzy. For this subject, the 
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physiological monitor at minute 50 was providing erroneously low heart rate readings which 

provided a low TWSI state. At minute 54, the policy instructed the subject to run at 6.7 mph to try 

and make up lost distance. At minute 56, the subject complained that they were feeling dizzy. The 

run was stopped at this point, and it is unknown whether the subject would have been able to 

complete. This subject was included in this analysis as he/she was also unable to complete the 

UNGUIDED condition by himself/herself. 

 Using the speed necessary to complete the final distance in the remaining time, all five of 

the subjects were projected to have had an end TWSI of >10 at minute 60. In the MDP, this 

would impose a penalty of −2000. The utility calculation at this point is simple. An end penalty of 

−1000 for not making the distance is better than the end penalty of −2000 for a high end state 

TWSI. Thus, according to the MDP reward structure, it is better to stop the subject and have them 

cool a little versus have them complete an end too hot. However, for three of these subjects the 

estimated CTs exceed the observed CTs by more than 0.32°C.  

5.7 Discussion 

The goal of this experiment was to examine how the combination of our thermal-work strain state 

estimation and policy estimation techniques performed with human subjects. We found that with 

these two techniques, we were able to accurately pace 11 out of 14 subjects, while the remaining 

three were guided to stop prematurely. Of those who completed the five miles in both the 

GUIDED and UNGUIDED sessions (n=8), the automated pacing allowed them to complete with 

overall less thermal-work strain. The pacing guidance allowed participants to complete with 

significantly lower average CTs (38.1 ± 0.2 °C versus 38.4 ± 0.2 °C) and lower average TWSIs 

(5.7 ± 0.4 versus 6.8 ± 0.8) over the course of the 60 minutes of exercise.  The guidance 

prevented participants from reaching high core temperatures and very high levels of thermal-work 

strain with significantly lower maximum CTs (38.4 ± 0.2 °C versus 39.0 ± 0.3 °C) and 

significantly lower maximum TWSIs (6.7 ± 0.4 “High Strain”, versus 9 ± 0.9 “Very High 

Strain”).  Additionally, the pacing guidance kept the completing participants below the TWSI 

“safety” threshold of 7.5, whereas all but one participant exceeded this threshold when self-paced, 

spending at least 12 minutes above the threshold. 

 Contrary to our hypotheses for the subjective scales, participants reported no difference 

in their perceived level of exertion, but rated the GUIDED session significantly cooler both on 

average (1.3 ± 0.9 “Comfortable to Warm” versus 2.5 ± 0.7 “Warm”) and by their maximum 

thermal sensation level (3.0 ± “below Hot” versus 5.1± “above Hot”). Additionally, the expected 
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metabolic pacing efficiency in the GUIDED session was not observed, as no difference was 

found in the overall metabolic energy expenditures between conditions. 

5.7.1 Guided to Stop versus Guided to Complete 

Our experiment had two conditions of UNGUIDED and GUIDED and was designed to examine 

whether the MDP could 1) prevent acute thermal-work strain and 2) improve thermal-work strain 

outcomes over the course of a simple exercise session. Our MDP policy guided 9 volunteers to 

complete the 5 miles in 60 minutes, while for the remaining 7 subjects, the policy guided them to 

stop the exercise. For those guided to stop, the policy provided the correct guidance given the 

MDP structure. All stopped subjects had estimated TWSIs > 7.5, and if they were guided at the 

speed necessary to complete the 5 miles, the transition probabilities indicated they would end 

with an estimated TWSI > 10.  

The thermal responses of the volunteers from their UNGUIDED session indicated that 

the treadmill task was thermally stressful with all but one subject reaching TWSIs above 8 (“Very 

High”) thermal-work strain. Similarly, these same subjects spent at least 12 minutes above our 

MDP TWSI “safety” threshold of 7.5. A combination of our low “safety” threshold and the task’s 

high level of thermal stress likely contributed to so many subjects being stopped by the MDP. 

While for some subjects core temperature was over-estimated, the results indicate that the policy 

was able to prevent acute hyperthermia. However, in the design of our experiment, we did not 

anticipate so many subjects not completing the task.  

In the analysis of whether the MDP was able to guide subjects with overall lower TWSI 

levels, the stopped subjects are a confounding element. Subjects who were guided to stop 

completed less distance within the 60 minutes invalidating a direct comparison of their 

physiology between UNGUIDED and GUIDED sessions. While the policy successfully showed a 

reduced thermal-work strain impact for those subjects guided to complete, the experimental 

design was not readily able to examine this effect in those subjects that were stopped. The only 

difference between the stopped subjects was a significantly higher maximal heart rate than those 

guided to complete. This higher maximal heart rate indicates that the task was physiologically 

more stressful under policy guidance for those guided to stop compared to those guided to 

complete. There are several reasons that the MDP-derived policy may be more effective on some 

subject’s than others. First, given our thermally stressful environment and MDP definition, these 

results may reflect normal individual differences split in a binary fashion between stopped and 

completed. These results may also indicate that the thermal-work strain efficiencies identified by 

the policy may be muted on the subjects that were stopped.  Finally, these results may also 



 

151 

 

indicate that the pacing policy determined from the MDP and transition probabilities may not be 

optimal for all people. For example, the pacing profile of the one subject who matched the MDP 

during their UNGUIDED session is completely different from the MDP policy (see Figure 5.24, 

ID=4). Further experimentation is necessary to identify the reasons behind the differences in 

those guided to stop and those guided to completion. While the stopped subjects pose a 

confounding element for our simple experimental design, requiring future experimentation, the 

thermo-regulatory effects discovered in those guided to completion are nonetheless still 

significant and germane. 

5.7.2 Thermoregulatory Efficiencies 

We had anticipated that the overall thermal-work strain benefit would be derived by the policy 

avoiding the metabolically inefficient paces between a comfortable walk and a comfortable run 

(~4.25 mph to ~5.25 mph). These metabolic efficiencies could be achieved by providing 

alternating pacing above and below these values. In fact, the one subject who did not exceed the 

TWSI “safety” threshold during their self-paced exercise employed this strategy, switching off 

between 3.5 mph and 7.0 mph runs about every 4 minutes. This pacing strategy matched the 

MDP policy in terms of overall utility. However, the MDP-derived policy started fast with a 

gradual reduction in speed over the course of the sixty minutes, with minimal switching between 

walks and runs.  In practice, the policy often paced subjects at these awkward speeds, and we 

found that, overall, there was no significant difference in total energy expenditure between the 

GUIDED and UNGUIDED sessions.  

So, where did the thermal efficiencies come from? The difference in maximum core body 

temperature between the two runs of 0.5 °C is a meaningful difference, as it represents about 20% 

of the usual operating range of CT. Re-examining our thermoregulatory dependencies from 

Chapter 3 is helpful (see section 3.1). Figure 5.32 is a simplified version of Figure 3.1 and shows 

the variables that effect core body temperature (CT). In our experiment, core body temperature 

increase is primarily due to heat production (HP) from metabolism (M) to sustain the exercise 

work. Heat is transferred away from the core (HTc) and to the skin both by skin blood flow (SBF) 

and passive heat conductance (PHC). Heat transfer to the environment (HTe) is through several 

mechanisms that include conductance, convection, and evaporation. For each session, HR, O2, M, 

and CT were measured directly. Heat transfer to the environment (HTe) and skin temperature 

were measured at a single point.  In the GUIDED session, average CT decreased, while O2, M, 

and thus heat production (HP) remained the same. For CT to decrease with the same heat 

production, the average rate of heat transfer away from the core (HTc) must increase, along with 
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the average rate of heat transfer to the environment (HTe). While our point measure of heat flow 

to the environment was the same between conditions, this was likely due to its enclosed location 

under the arm. Here, the sensor was not able to reflect an overall increase in heat loss across the 

whole body surface area. Our data show some indications for improved evaporative effectiveness 

through a trend in lower skin temperatures (p ≤ 0.05) for the GUIDED session, as one possible 

route of increased cooling. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.32: Factors affecting core body temperature. Where CT = core temperature, M = 

metabolic rate, HP = heat production, HTc = heat transfer from the core, SBF = skin blood flow, 

HTe = heat transfer to the environment, and HR = heart rate. Arrows indicate dependencies. 

White indicates variables that stay the same between GUIDED and UNGUIDED sessions. Blue 

indicates variables that decrease in the GUIDED session. RED indicates variables inferred as 

increasing in the GUIDED session. ORANGE indicates possible mechanism for efficiencies. 

  

Our heart rate-based core body temperature estimator provides some evidence of an 

increase in the proportion of cardiac output directed to skin blood flow. Heart Rate is determined 

by the stroke volume and the cardiac output required for bodily functions (e.g. blood flow to 

muscles for work, skin blood flow (SBF) necessary for heat transfer, and brain and organ 

function). The core body temperature estimation algorithm successfully takes advantage of a 

fairly consistent ratio of cardiac output for work and cardiac output for skin blood flow. However, 

in the GUIDED session, we found a significant positive bias in the estimation of core body 

temperature. If the portion of cardiac output for work remains the same between the GUIDED 

and UNGUIDED session, this then suggests that there is a larger portion of the cardiac output 

directed for skin blood flow. 
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In the current study, we lack the additional skin temperature sites necessary for a mean 

weighted skin temperature, as well as measures of local and whole-body sweat rate to identify 

which mechanisms are in play. However, our data provide evidence that the lower CTs and 

TWSIs over the course of the event were realized through efficiencies in the thermo-regulatory 

system instead of metabolic efficiencies. 

5.7.3 Self Perception 

The rating of perceived exertion (RPE) scale has been linked with modern pacing models as a 

feedback mechanism for adjusting pace based upon a predefined template stored in the brain 

(Tucker 2009).  In our experiment, we found no difference in RPE ratings between the GUIDED 

and UNGUIDED conditions.  Not surprisingly (Borg 1970 and 1982), the RPE was most highly 

correlated with HR (r=0.67) and least correlated with CT (r=0.30). The similar RPE ratings for 

the GUIDED and UNGUIDED conditions match the findings from the average HR responses.  

We had anticipated that with limited change in skin temperature, the thermal sensation 

scale would not be useful in alerting participants to their thermal-work strain state. Early thermal 

sensation work (Gagge et al., 1969) suggests that a 2.0 °C difference in skin temperature is 

needed to perceive changes from “warm” to “hot”. However, we found that the average and 

maximal thermal perceptions were significantly lower in the GUIDED condition versus the 

UNGUIDED.  Contrary to the literature (Gagge et al., 1969; Fanger, 1982; and Young et al., 

1987) the scale was least correlated with skin temperature (r = 0.41), and was most highly 

correlated with TWSI (r = 0.61). As with TWSI, the average and maximal values of the thermal 

sensation scale were significantly lower for the GUIDED session than the UNGUIDED session. 

It appears that using RPE as a feedback mechanism for optimizing pace when thermal-

work strain is a factor may not be appropriate. Whether the RPE is rating metabolic rate or heart 

rate there is no indication in this scale of the reduction in thermal-strain. Participants were, 

however, able to perceive a lower thermal sensation in the GUIDED session versus the 

UNGUIDED. The mean maximal thermal sensation scale rating was 3.0 (“Warm/Hot”) in the 

GUIDED session versus 5.3 (“Hot/Very Hot”) in the UNGUIDED. These mean ratings indicate 

that the thermal sensation scale could have been used by subjects in the UNGUIDED session to 

follow the instructions “do not get too hot”. 
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5.7.4 MDP Policy 

The underlying model parameters that were used to estimate the MDPs transition probabilities 

appear to be acceptable, on average, for our group of subjects. When the subjects’ actual speeds 

are used in the SCENARIO model, the TWSI appears to be modeled appropriately with a small 

bias (− 0.44 ± 1.57) with a RMSE of ~1.5 TWSI units.  

With so few observed total transitions (480), it is difficult to conduct a direct comparison 

with our learned transition probability estimates.  However, there appear to be two important 

features that our smoothed transition probability distributions miss. 1) For no movement, the rate 

of reduction in TWSI is less, and closer to the original Monte-Carlo values, than our smoothed 

transition probabilities suggest. 2) At high thermal-work strain states (e.g. TWSI > 7), and for 

high speed actions (speed > 6 mph) thermal-work strain increases more gradually than modeled 

by our smoothed transition probability distributions. This effect is observed in Figure 5.23 for 

TWSI 8, where an observed movement speed of 8 mph transitions to an observed TWSI of about 

8.5 versus the transition to an expected TWSI of 10 indicated by our smoothed probability mass 

function. These slower increases for the higher speeds can be seen in the original Monte-Carlo 

transition probability distributions (see Figure 5.12: TWSI index 8 and 9). The change in shape of 

the expected mean of the distribution is likely due to an individual reaching their heart rate 

maximum. At this point, only a change in CT will increase the TWSI, leading to a much smaller 

increment in TWSI even at high speeds. Not accounting for this different structure in our 

smoothed transition probability distribution likely led to at least three of our subjects being 

stopped before completing the 5 miles. 

 Overall, the policy was effective at reducing thermal-work strain for those who were 

guided to completion. Additionally, the policy was able to enforce the hyperthermia “safety” 

requirement by stopping subjects when their projected end TWSI would be > 10.  The MDP was 

able to balance both the “end TWSI” and “Safety” goals, whereas all but one subject in the 

UNGUIDED session appeared to sacrifice the “Safety” goal. Individuals in the UNGUIDED 

session appeared to be following a strategy where the TWSI profiles were similar to those found 

through our simulations where we set no penalties for exceeding a TWSI threshold of 7.5.  

The policy of starting fast and then slowing is similar to that of athletes exercising longer 

than 30 minutes (Roelands et al., 2013). The one subject who matched the MDP in terms of utility 

57.1 (UNGUIDED) compared to 53.8 (GUIDED) was a trained athlete. But, this athlete adopted a 

pacing strategy avoiding the metabolically inefficient speeds between ~4.25 and ~5.25 mph, by 

walking and running at 3.5 mph and 7.0 mph, respectively. This subject had specifically read 

research articles showing these metabolic efficiencies. It is possible, that by smoothing the 
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transition probability mass function, that information regarding these metabolic efficiencies were 

removed. However, even with unsmoothed transition probabilities, it is not certain that the 

metabolic efficiencies could be easily found with our choice of metabolic estimator. The Pandolf 

equation (Figure 5.9) appears to overestimate the metabolic rate of walking, and provides little 

benefit for alternating paces versus moving at “awkward” movement speeds. The curves from 

Paroczai and Kocsis (2006), however, show much more potential for identifying these 

efficiencies.  

An improved metabolic rate estimator could provide additional metabolic efficiency 

benefits missing in our current policy. However, these benefits for finding an alternating pace 

appear to only come into play in certain constrained tasks where an “awkward” overall speed is 

required. The thermoregulatory efficiencies found by our MDP appear to offer a more general 

pacing solution.  

5.7.5 Core Temperature Estimation Algorithm Performance 

In the UNGUIDED session, the core body temperature estimation algorithm had an overall 

RMSE of 0.28 ± 0.15 °C with a small bias of 0.01 ± 0.19 °C and with 95% of all estimates falling 

within ± 0.62 °C of the observed values. These results replicate the findings from our work in 

Chapter 3, where the overall RMSE was 0.30 ± 0.13 °C, bias was −0.03 ± 0.19 °C, and 95% of all 

estimates were within ± 0.63 °C. However, for the GUIDED session the bias of the CT estimator 

was significantly higher (0.17 ± 0.21 °C), which is why the estimated TWSI bias was also 

significantly higher. With a positive TWSI bias, the algorithm was weighted to false positives in 

terms of exceeding the TWSI “safety” goal.  Of the five subjects who were guided to stop, three 

subjects had high estimated TWSIs but much lower observed TWSIs. Using the estimated TWSI, 

our policy stopped these subjects correctly, but less error would likely have allowed them to 

continue and complete the 5 miles. For practical work, knowing that there is a positive bias in 

estimating thermal-work strain, any high estimated TWSI could be used to alert medical 

personnel to examine individuals more closely. For safety, overestimation of core body 

temperature is more desirable than underestimation. In our experiment, we did not need to stop 

anyone during the GUIDED session because their observed CT was too high compared to a lower 

estimated CT. 

Ideally, we would like to automatically identify when the CT to heart rate relationship 

used by the estimation algorithm is causing systematic bias. Our dynamic Bayesian network 

model from Chapter 3 utilized additional inputs of heat flux, and accelerometry in order to 

identify when the CT to heart rate relationship did not provide enough information to correctly 
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estimate additional CT gain. However, the results from this study show no significant differences 

between point measures of skin temperature and heat flux, making it difficult to identify where 

the CT to heart rate relationship is behaving differently. 

5.7.6 Limitations 

One limitation of this study’s design was the lack of a direct thermal-work strain state feedback 

condition to the subjects. This makes comparing time spent above the “safety” threshold difficult 

as the subjects had no objective way to assess their current TWSI state. However, our data 

suggest that the thermal sensation scale could have been used as that feedback. Indeed, the 

maximum thermal scale rating for the UNGUIDED session was 5.1 (between “hot” and “very 

hot”), while for the GUIDED session the mean maximum rating was 3.0 (between “warm” and 

“hot”). The mean subject response from the GUIDED session showed that they perceived the 

pacing guidance as not letting them get “too hot”, which met the specific instructions given to 

subjects prior to the start of the UNGUIDED session. Nevertheless, even if objective feedback 

were given, it may not be helpful without training or prior knowledge of how to make use of that 

feedback in an anticipatory manner (Tucker, 2009; Konig et al., 2011).  

 With almost half of the subjects being guided to stop, it is difficult to broadly generalize 

the thermo-regulatory efficiencies found in the subjects guided to completion. Further 

experimentation is necessary where the design allows for completion of the task by all 

participants.  In this type of design direct comparison of the physiology of all subjects between 

GUIDED and UNGUIDED conditions will be possible. 

Additionally, our results can only be applied to “novices”. While our participants were fit 

and often exercised, the particular task combined with the occlusive and insulating clothing made 

this a very novel task. Only the tri-athlete, who was used to competing in the heat, was able to 

match the performance of the MDP policy. Training the volunteers on the task would likely have 

reduced the improvement showed by the MDP policy. However, determining an efficient pacing 

policy for new and novel tasks may take many bouts of training, even for an experienced athlete. 

In hindsight, measuring each participant’s VO2 max (as a measure of fitness) would have 

helped us to identify if there was a fitness difference between those who were stopped versus 

those guided to completion. Finally, measures of multiple skin temperature sites would provide 

more insight into the thermoregulatory mechanisms behind the policy’s thermal-work strain 

efficiencies.  
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5.8 Conclusions 

Our experiment tested whether the combination thermal-work strain state estimation and policy 

estimation could provide a means to prevent heat injury and manage the longer term effects of 

thermal-work strain. The goals and thermal-work strain safety limits of a simple one hour 

exercise were modeled in terms of a reinforcement learning problem described with intuitive 

rewards and penalties. A physics- and physiology-based thermo-regulatory model was used to 

estimate probability distributions of human thermal responses across our range of possible actions 

and states. The rewards and penalties encoded the following three goals: “finish the course”; 

“don’t get too hot”; and “finish as cool as possible”. The reinforcement learning problem was 

constructed as a Markov decision process and was solved using dynamic programming.  

Our results show that the policy estimation technique was able to guide a majority of 

subjects to complete the one hour exercise task with significantly lower core body temperatures 

that translated to physiologically meaningful lower thermal-work strain levels. The remaining 

subjects were guided to stop, as they were exceeding the MDPs thermal “safety” threshold and 

stopping provided better overall utility. Our computational physiology approach allowed us to 

discover thermo-regulatory efficiencies that appear to have application beyond the scope of this 

current scenario. In this work, we successfully demonstrated the real-time management of both 

acute and chronic thermal-work strain in human subjects. We conclude that this approach shows 

the potential for use in preventing thermal injury and improving long-term performance of those 

engaged in thermally stressful work. 
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Chapter 6 

Conclusions 

6.1 Conclusion 

In this dissertation, we presented computational physiology techniques that were used in a 

physiological feedback loop to prevent hyperthermia and optimize pacing to take advantage of 

thermo-regulatory efficiencies. Our method’s feedback loop utilizes minute-to-minute measures 

of heart rate to estimate core body temperature and thermal-work strain health state. Using 

decision theoretic models, the thermal-work strain health state is used to provide optimized 

pacing feedback to an individual, preventing hyperthermia and enabling completion of a task with 

overall lower thermal-work strain. 

Previous physiological monitoring approaches for thermal-work strain health state 

monitoring have been hampered by the difficulties inherent to accurately measuring or estimating 

core body temperature. Our computational physiology approach demonstrated how formalizing 

an open physiology research problem into a graphical model allowed us to improve upon current 

estimation techniques while also providing insight into important internal states and dependencies 

in the human thermoregulatory system (Chapter 3, Section 3.1). These thermoregulatory system 

insights enabled us to simplify the model and provide a general core body temperature estimation 

algorithm based only upon sequential heart rate observations. Using previously collected data, we 

were able to estimate core body temperature to a similar degree of accuracy as laboratory 

methods. We also demonstrated that the estimation technique performed similarly for different 

work rates; across a wide range of environments; and for different clothing ensembles from just 

shorts and t-shirts to full encapsulation in chemical/biological personal protective equipment 

(Chapter 3, section 3.2). Finally, we deployed our technique for use in the field as part of a 

wearable thermal-work strain physiological monitoring system during real-time training missions 

for two National Guard chemical/biological response teams. During this study, core body 
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temperature was estimated in real-time and used in conjunction with heart rate to estimate the 

thermal-work strain index (TWSI). Our results found that 95% of all estimates fell within ± 1 

TWSI unit of the observed values. The accuracy of the approach was corroborated by focus group 

feedback that found that all subjects felt that the TWSI provided in real-time was an accurate 

reflection of how they were feeling (Chapter 3, section 3.3).  

Thus, we have shown that a computational physiology approach enabled us to develop a 

thermal-work strain state estimator that is reasonably accurate across a wide range of settings in 

both laboratory and field experiments. The approach has better performance compared to 

previous work, while only using one input. Our approach shows real potential as a practical 

solution to thermal-work strain monitoring. It can be readily adopted by any device that measures 

heart rate, and when used in conjunction with the TWSI, can provide accurate estimates of 

thermal-work strain state. 

With an accurate thermal-work strain state estimator, we were able to examine our 

second problem of developing a method to estimate a policy to provide optimal advice on 

completing a thermally challenging goal. We focused on the following two questions: 1) is it 

possible to adequately express the tasks, risks and goals surrounding thermal-work strain 

management in terms of a simple reinforcement learning problem that would provide a realistic 

policy; and 2) would any derived policy perform better than the solution provided by the human 

agents themselves? Using a human thermoregulatory model to simulate a real-world training 

event, we were able to extract thermal-work strain state transition probabilities necessary for the 

definition of a Markov decision process (MDP). The tasks, goals, and thermo-regulatory 

constraints were defined in terms of simple rewards and penalties. Simulated results showed that 

the derived policy pacing was realistic and matched the pacing profile of those who were better 

performers in the real-world task. Simulations of physiological response to the training event 

from observed paces and policy dictated paces found that the simulated agents following our 

policy finished in a state of lower thermal-work strain (Chapter 4). 

Finally, by combining the two approaches of thermal-work strain state estimation and 

optimal policy estimation, we were able to examine the effectiveness of our approach in real-time 

with human subjects. We found that our policy was able to meaningfully reduce the overall 

thermal-work strain over the course of a one-hour exercise. The approach was also able prevent 

excessive thermal-work strain by stopping individuals who were getting too hot rather than have 

them complete the task with high and unsafe levels of thermal-work strain. By providing a real-

time thermal-work strain feedback loop our computational physiology solution took advantage of 

thermo-regulatory efficiencies that were present in the physics/physiology thermo-regulatory 
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model. Our approach was able to derive an optimal pacing strategy that was only matched by a 

tri-athlete who had substantial pacing experience and had previously trained in the heat. For 

individuals with little or no experience, or for those facing a new task, this approach appears to 

offer a way to significantly improve thermal-work strain performance.  

We conclude that our approach has been able to address both the acute and chronic 

aspects of thermal-work strain management and that we have successfully developed:  

 A method for the state estimation of the latent human core body temperature 

from wearable physiological sensors that enables real-time thermal-work strain 

health state monitoring and heat injury prevention. 

 Models for policy estimation that provide automated advice to improve thermal-

work strain state and performance outcomes over a course of prescribed work. 

We envision that the work in this dissertation will enable practical real-time monitoring 

systems that can prevent heat injury and improve long-term thermal-work strain state for those in 

professions requiring physical performance in hot environments. 

6.2 Limitations and Future Work 

6.2.1 Core Temperature Estimation Algorithm 

While our core body temperature estimation technique has proven useful, it does have some 

limitations. The technique was validated and tested on a fairly homogenous set of subjects. The 

participants were generally young (early 20s) and fairly fit. For older volunteers, the heart rate to 

core temperature relationship will likely need to be adjusted, as maximal heart rate reduces with 

increased age. Similarly, the temporal response of the model will likely need to be adjusted for 

individuals with substantially different fitness levels. Future work will focus on adapting the 

model for age and fitness and testing in a larger population, where the specificity and sensitivity 

can better be determined. Additionally, we also intend to investigate individualizing the model 

parameters by learning in real-time. Our aim is to increase the accuracy of the technique by 

individualization and to make the approach more generalizable. 

6.2.2 Thermal-Work Strain Performance Optimization 

Further work is necessary to examine how direct thermal-work strain state feedback to an 

individual influences their pacing decisions. In our laboratory study, the human agents only had 

their own subjective feedback of thermal-work strain state, whereas the policy had an estimate 

based on direct physiology measures. 
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Our pacing optimization experiment also focused on a specific task of completing a 

walk/run exercise within a given time frame. The goals and constraints of the task were structured 

to stop a participant when they got too hot, but for many tasks, this structure may be too limiting. 

Instead, in many instances it may be more helpful to change the stopping behavior to allow a 

maximization of goal completion all the while meeting the thermal-work strain state management 

constraints. The mechanisms of the thermo-regulatory efficiencies identified in this study require 

further examination to determine their generalizability to other task configurations. 

Although the modeling presented here focused on just pacing, other actions could be 

incorporated into the reinforcement learning problem such as the following: removing or venting 

clothing; removing load; or hydrating. Finally, we aim to extend our approach to the management 

of teams by optimizing team goals across individual team members’ pace, rest periods, and 

shared load carriage. 

6.3 Better Health State Estimation, Better Advice, Better 
Outcomes 
 

We have demonstrated that our computational physiology approach was able to obtain better 

thermal-work strain outcomes for exercising humans over a course of prescribed exercise. The 

techniques demonstrated here have the potential for use in other aspects of health monitoring. The 

use of a physiological feedback mechanism for a diabetic could assist in optimizing food intake 

along with insulin injection to better balance blood sugar highs and lows. For individuals with 

motor problems, detecting balance instability early may allow better assistance in the 

rehabilitation process. As the commercial market for wearable monitoring devices continues to 

grow, so too will the potential for computational techniques for health state and policy estimation. 

In this market, our methods have the potential for better health state determination, which will 

allow better and timelier advice, which will improve overall health outcomes. 
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Appendix A: Modern Physiological 

Monitoring Devices 
 

Table A.1: Modern physiological monitoring devices from a market survey by Massachusetts 

Lincoln Laboratory, under contract to the United States Army Medical Material Development 

Agency (USAMMDA) Medical Support Systems (MSS) Program Management Office (PMO). 

Used by permission. Where HR = Heart Rate, BR = Breathing Rate, ST = Skin Temperature, and 

AC = Accelerometry. 

Company Device Location Cost Life HR BR ST AC Other 

Orbital 
 

arm 
  

y 

 
   

Adidas miCoach chest / shirt $120  
 

y 

 

   

AIQ  Bioman chest / shirt 
  

y 

 

   

Athos Core chest / shirt $300  10 hrs. y y 
 

y EMG 

Cityzen 

Sciences 
D-shirt chest / shirt 

  
y 

 

   

Hexoskin 
 

chest / shirt $399  14+ hrs. y y 
 

y 
 

OMSignal Lifestyle chest / shirt $199  30 hrs. y y 
 

y 
 

Qinetiq 
 

chest / shirt 
  

y y y y 
 

SenseCore SensePro chest / shirt >$1000 
 

y y y y 
 

Smartex 

Wearable 

Wellness 

System 

(WWS) 

chest / shirt TBD 19 hrs. y y 
 

y 
 

SmartLife HealthVest chest / shirt 
  

y y y 
  

CSEM PULSEAR ear 
  

y 

 
   

iriver ON! ear $199  
 

y 

 
   

Jabra 

Sport Pulse 

Wireless 

earphones 

ear 
$57-

$100 

240 hrs. 

standby 
? 
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LG 
HR 

Earphones 
ear $179.99  4 hrs. y 

 

 
y 

 

Zinc 

Software 
Zen earlobe 

 
8 hrs. y 

 

   

Withings PulseO2 

fingertip 

(non 

continuous) 
  

y 

 

  
Pulse Ox 

Zensorium Tinke 

fingertip 

(non 

continuous) 
  

y 

 

   

Impact 

Sports 
Epulse 2 forearm $83.50  6.5 hrs. y 

 

   

Scosche 
Rhythm 

Plus 
forearm $79.99  8 hrs. y 

 

   

Advanced 

Body 

Sensing 
 

forehead 
  

y 

 

   

Life-Beam 
bike helmet, 

cap 
forehead 

$229, 

$99  
y 

 

 
y 

 

Spree 

Sports 

SmartCap, 

headband 
forehead $199  8 hrs. y 

 

y y GPS 

Breath 

Research 
All-in-One headset 

  
y y 

  
Barometer 

Adidas FitSmart wrist $199  5 days y 

 
 

y 
 

Adidas 
Smart Run 

Watch 
wrist $400  4-8 hrs. y 

 

 
y GPS 

Amiigo 
Amiigo 

wristband 
wrist $179  3 days y 

 

y y SpO2 

Angel Angel wrist $159  7 days y 

 

y y SpO2 

Apple 
Apple 

Watch 
wrist $349  <1 day y 

 

 
y 

 

Basis B1 wrist $149.99  4 days y 

 

y y Sweat 

Basis Peak wrist $199.99  4 days y 

 

y y Sweat 

Empatica E3 wrist $1,000  
 

y 

 

y y 
Skin 

Conductance 

Fitbit Charge HR wrist $220? 
 

y 

 
 

y 
 

Fitbit Surge wrist $250  
 

y 

 
 

y GPS 

Healbe GoBE wrist $299  3 days y 

 
 

y Impedance 

HealthStats BPro wrist ? 24 hrs. y 

 

  
Blood Pressure 

MC10 
 

wrist 
  

y 

 
 

y 
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Mio Alpha wrist $198.99  
8-10 

hrs. 
y 

 

   

Mio Link wrist $99  
8-10 

hrs. 
y 

 

   

Omron HR-500U wrist $149.99  
 

y 

 
 

y 
 

Oxitone 
Oxitone 

Watch 
wrist 

  
y y 

  

SpO2, Blood 

Flow 

Samsung Gear Fit wrist $149.00  
2-3 

days 
y 

 

 
y Gyroscope 

Samsung SimBand wrist 
  

y 

 

y 
 

Blood Flow, 

Blood 

Pressure, 

SpO2, CO2 

Raytheon Mednet 
   

y 

 
   

Apple Watch wrist $349  ? y 

 
 

y 
 

Microsoft Band wrist $199  48 hrs. y 

 

y y 

Gyroscope, 

Skin 

Conductance, 

UV, Ambient 

Light 
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Appendix B: Policy Function for Field 

Study Simulation 
 

The figures show the policy for 5 minute increments of time, and provide a movement speed for 

an estimated TWSI and distance completed on the task. 

 

 



 

188 

 

 

 



 

189 

 

 

 



 

190 

 

 

 



 

191 

 



 

 

 

 



 

193 

 

Appendix C: Policy Function for 

Laboratory Study 
 

The figures show the policy for 2 minute increments of time, and provide a movement speed for 

an estimated TWSI and distance completed on the task. 
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