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Abstract of “ Data-Oblivious Algorithms for Privacy-Preserving Access to Cloud
Storage ” by Olga Ohrimenko, Ph.D., Brown University, May 2014

Cloud storage has emerged as the next generation of data storage where users can

remotely store their data and leave its management to a third party, e.g., Amazon S3,

Google Drive or Microsoft Azure. However, the fact that users no longer have phys-

ical possession of their data raises new challenges in terms of data privacy. Storing

the data in encrypted form is a key component in maintaining privacy against the

storage provider. However, encryption alone is not enough since information may

be leaked through the pattern in which users access the data. In this thesis, we

describe algorithms that allow data-oblivious access to remotely stored data. That

is, access patterns of such algorithms depend only on the size of the outsourced data

and algorithm input, but not their content. Hence, such algorithms reveal nothing

about the data they are processing.

We start by describing a general method that obliviously simulates user requests

to outsourced data of size n and adds O(log n) overhead in the average case, suc-

ceeding with very high probability. This method assumes a private workspace of

size O(nε) on the user side, for any given fixed positive constant ε, and does not main-

tain a state between data requests. We then show how to deamortize our method to

achieve O(log n) overhead in the worst case. Our deamortization technique is general

and can be applied to several existing oblivious simulations.

The next oblivious simulation technique presented in this thesis improves over

the O(log n) solution and demonstrates an interplay between system parameters such

as latency, bandwidth, and the size of the user’s private memory. We show that if

a user exchanges messages of size O(n1/c log n) with the storage provider, for some

constant c ≥ 2, and has access to private memory of the same size, then our method

can achieve O(1) access overhead in the worst case with very high probability.



Finally, we study application-specific access patterns and look at how to make

them oblivious without using the general oblivious simulation methods mentioned

above. In particular, we show how one can access and perform a computation in

an oblivious fashion on an externally stored graph. We also show that a number of

classic graph drawing algorithms can be efficiently implemented in this framework

while maintaining user privacy.
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Outsourcing data to a remote storage provider like Amazon S3, Dropbox, Google

Drive or Microsoft Azure has become a common alternative to data management for

single users and companies. For example, in 2012 Amazon alone reported storing

one trillion objects in their storage service Amazon S3 [4]. The popularity of storing

data in the “cloud” is explained by its cost effectiveness, since clients pay only for

the computational resources that they use, and reliability, a result of redundancy

and resilience of multiple servers around the globe. However, the lack of physical

possession of the data creates new challenges in ensuring privacy of the outsourced

data since storage providers may have commercial interest in their customers’ data

or inadvertently a third party may gain access to a user’s data. These concerns

are not unfounded: for example in 2011 an error in Dropbox code led to temporary

allowing unauthenticated access to their users’ data [14]

A key component for users to maintain the privacy of their data is to store

the data in encrypted form using a key known only to the user. However, simply

encrypting the data is not sufficient to achieve privacy since information about the

data and the user may be leaked by the pattern in which the user accesses it. Consider

the following example. A user outsources three encrypted records x, y and z. She

then wishes to execute the following program:

read x

if x ≥ 100 then read y

else read z

Although the value of x is encrypted, accessing the encrypted values of x and y

reveals that x is greater or equal to 100. Similarly, accessing x and then z reveals

that x < 100.
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In another example consider access pattern to a collection of documents out-

sourced by a company where documents can be accessed by the company’s employ-

ees, i.e., a multi-user scenario. By observing which documents the users access and

comparing their access patterns, the storage provider can infer access control on the

documents within the company, as well as the collaboration network of the employ-

ees. Again notice that such information can be inferred even if all documents are

encrypted.

Thesis Objective In this thesis, we are interested in designing data structures and

algorithms that protect user privacy while storing and accessing data at the cloud

storage provider. The information we are trying to protect is the content of the data

and the pattern of access to the data. The latter includes hiding such information

as frequency of accesses to individual data elements, whether the access is a read

or a write, if the currently accessed item has been accessed before and when, and

finally any dependencies between accesses (e.g, in the above example y is accessed

when x ≥ 100). Storing data in an encrypted form is a key component for hiding

the content of the data. However, one has to design other solutions to hide the

access pattern. The access pattern depends on the application or the algorithm the

customer of cloud storage uses to access her data. For example, if the user always

reads all of her data and never updates any records, then a scan over encrypted data

does not reveal anything to the storage provider other than that a request was made.

However, only a minority of applications require accessing the whole data collection.

The pattern in which the user accesses her data may depend on the application

the user is running, its input and outsourced data the user retrieves. If one knows a

priori how the data is accessed, then one can design algorithms that make accesses

without revealing the originally intended access locations. We refer to such algo-
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rithms as data-oblivious algorithms, since anyone observing data locations accessed

by these algorithms, besides the user herself, is oblivious to the data that the algo-

rithms are operating on and what data is being requested. For example, Batcher’s

sorting network [5] is a data-oblivious algorithm for sorting an array of elements. In

other words, this algorithm sorts the array by accessing its elements independently of

the underlying values. Moreover, this algorithm’s memory accesses are deterministic

and depend only on the size of the array but not its values.

However, there are also cases when data accesses are not as predictable as, for

example, in insertion sort. Therefore, we are interested in designing solutions that

make every request to the data look independent of the elements being requested now

or before. We refer to the schemes that take any sequence of requests and simulate

them obliviously as oblivious simulation schemes.

Oblivious RAM Goldreich and Ostrovsky [21, 18] posed a problem similar to ours

in the context of protecting software from illegitimate duplication and consequent

redistribution. In particular, they consider inferences that can be made by an adver-

sary observing interactions of the trusted CPU running the program with untrusted

memory, i.e., a sequence of addresses accessed. They define oblivious RAM (ORAM)

as an interface between the CPU and the memory that hides the access pattern by

accessing the memory in an oblivious manner. That is, the probability distribution

of the sequence of (memory) addresses accessed during an execution depends only

on the input length and is independent of the particular input. Goldreich and Ostro-

vsky [21, 18] presented two oblivious RAM constructions with different performance

guarantees, that we refer to as square root and hierarchical solutions.
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Protecting the access pattern of a program using local memory versus accessing

data from the “cloud” is similar from a theoretical point of view, however, several

aspects of the problem change when one switches to the cloud setting. First, in the

remote storage case, the user is a computer or a mobile device that has access to

private memory. The size of the private memory is likely to be proportional to the

size of the data that the user has outsourced, e.g., big documents are less likely to

be accessed from mobile devices. Secondly, the number of roundtrips one has to

make to the cloud provider to access the data becomes a bottleneck when accessing

data that is stored in a different state or country. Finally, the size of the packets

exchanged between the user and the cloud provider is no longer a single element and

the cloud API supports a richer set of queries than RAM.

Desired Properties We are interested in designing solutions that are efficient

and provably secure. For example, our schemes should not defeat the purpose of

cloud computing by using private memory equal in size to the outsourced data. It

is also desirable to minimize any overhead the oblivious scheme adds compared to

the non-oblivious implementation of the same application. More specifically, if the

user outsources n data records, then we wish to simulate a sequence of requests by

adding a constant or sublinear in n access overhead. Cloud storage providers charge

customers for storing the data as well as accessing it. Hence, oblivious schemes

should also take into account the monetary cost they add. Oblivious schemes should

also adhere to common security definitions and, hence, protect access privacy for

any request sequence, even if the adversary can influence what this sequence may

be. Informally, we wish to design schemes that make accesses to remote data storage

depending only on publicly known parameters, such as the size of the outsourced

data, the size of the user’s private memory, the number of requests in the original

sequence, and the number of elements the user can exchange with the server. The
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access pattern should not depend on the data outsourced nor the application that

the user is running.

We view the storage server as an honest-but-curious adversary, who correctly per-

forms the storage and retrieval operations requested by the user, but is nevertheless

interested in learning as much from her data as possible (indeed, some cloud com-

puting companies are basing their business model on this goal). We do not consider

timing side channel attacks that measure the time it takes for the user to make a

request or process the received data. Hiding the length of the request sequence is

also outside the scope of this thesis.

Thesis Contributions This thesis addresses several aspects of the problem of hid-

ing access patterns. To this end, we incorporate multiple cryptographic primitives

and various probabilistic data structures in order to build efficient and secure solu-

tions. In particular, we develop two oblivious access schemes: the log n-hierarchical

solution and the constant oblivious storage solution. Assume the outsourced data

set consists of n elements. The former scheme improves over the known bound on

the access overhead by adding O(log n) accesses for the oblivious simulation by in-

troducing the idea of a common stash shared between multiple cuckoo hash tables.

The latter solution exploits a tradeoff between network bandwidth and user private

memory to achieve a constant access overhead. This solution introduces a recursive

oblivious storage scheme that uses a novel algorithm for constructing a permuta-

tion obliviously. We then observe that many oblivious schemes strive to minimize

the amortized access overhead while leaving the worst case to take Ω(n) accesses,

which may not be desirable in certain applications. We develop a deamortization

technique for the log n-hierarchical solution and the square root solution of [18]. Fi-

nally we consider the access pattern of graph drawing algorithms and study their
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data-oblivious variants by performing scanning and computation over the Euler tour

representation of a tree.

Thesis Outline The rest of this thesis proceeds as follows. In the next chapter,

an overview of cryptographic primitives and data structures used in this thesis is

presented. We also give the security definition of a data-oblivious algorithm and

present the square root solution from [18, 21] as a warm-up for our oblivious schemes.

In the outline of the remaining chapters, we denote with n the size of the out-

sourced data set.

In Chapter 4, we present our first oblivious simulation scheme. This scheme is

based on a hierarchy of O(log n) hash tables, where the top hash tables are im-

plemented as hash tables with buckets followed by cuckoo hash tables that share

a common stash. This scheme incurs O(log n) access overhead since the simula-

tion must access every level. We also present experimental results to show that the

overhead of the scheme is small in practice. A preliminary version of this chapter

appeared in [27].

The second oblivious simulation scheme is presented in Chapter 5. This scheme

achieves constant overhead if private memory of size O(n1/c log n), for any constant

c ≥ 2, is available to the client and if the client and the cloud storage provider can

exchange messages consisting of O(n1/c log n) elements. This chapter is based on the

work presented in [26] and [40, 41]. An extension of the above construction that uses

memory of size O(n1/c) is presented in [40, 41].

In Chapter 6, we present deamortized variants of the original square root solution,

the log n hierarchical solution from Chapter 4 and constructions from Chapter 5.
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This technique shows that by doubling the space overhead at the cloud provider,

one can achieve O(log n) access overhead in the worst-case, avoiding the occasional

O(n) downtime that was present in the original exposition of these methods. A

preliminary version of this chapter appeared in [25].

We study several application-specific data-oblivious algorithms in Chapter 7. We

consider the problem of drawing graphs that are stored remotely. Such algorithms

involve traversing and performing computations on trees and graphs. We describe

a computational model for this problem that we call compressed-scanning. Several

graph drawing algorithms are adapted to fit the compressed-scanning model and

shown to be data-oblivious. A preliminary version of this chapter appeared in [28].

Finally, we review the work related to oblivious RAM and more recent advances

on oblivious cloud storage (OS) in Chapter 2. We also consider relevant concepts

such as private information retrieval and oblivious transfer and show how they differ

from oblivious RAM. We conclude the thesis and describe directions for future work

in Chapter 8.
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In this chapter we review work related to oblivious RAM, and its extension, oblivious

storage, that supports a richer set of queries than the RAM model. Table 2.1 provides

the comparison of different aspects of ORAM simulations. We also review oblivious

storage schemes in a two-cloud model where storage providers are non-colluding. We

end the chapter with the description of several applications of ORAM where privacy

of the access pattern is vital for the security of these applications.

2.1 Oblivious RAM

Prior work on oblivious RAM addresses the trade-off between the size of the client’s

memory, the size of the messages exchanged between the client and the server in a

single roundtrip, the access overhead, and the space overhead at the storage provider,

i.e., the additional space used beyond the n items.

Based on the assumptions about the client, oblivious RAM models can be clas-

sified into stateless and stateful solutions. A stateless oblivious RAM is not allowed

to keep a state between requests and hence can be used in a multi-user scenario.

Stateful solutions assume that the user Alice keeps information in a private storage

(which she maintains), which helps her perform her accesses obliviously in the remote

storage.

Stateless oblivious RAM simulation was first proposed by Goldreich and Ostro-

vsky in [21], who present a preliminary simple solution with O(
√
n log2 n) amortized

access overhead, referred to as the square-root solution, and a more complex solution

with O(log3 n) amortized access overhead. Goodrich and Mitzenmacher [24] improve

this result by giving a method with O(log2 n) amortized access overhead with high
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probability. Recently Kushilevitz et al. [34] show that techniques from [24] can be

extended to obtain O(log2 n/ log log n) amortized access overhead. All the above

stateless methods utilize a private memory of size only O(1) for Alice, an overly

restrictive assumption in practice.

Other solutions [51, 53] improve the overall access overhead by assuming that

a client has a workspace of non-constant size. Williams and Sion [51] achieve

O(log2 n) expected amortized access overhead and O(n log n) space overhead with

O(
√
n) private memory. Williams et al. [53] improve the method from [51] to achieve

O(log n log log n) amortized access overhead.

Damg̊ard et al. [11] and Ajtai [1] present stateless oblivious RAM simulations

that do not access a random oracle nor make cryptographic assumptions about the

existence of pseudorandom functions. Using different techniques Damg̊ard et al. [11]

and Ajtai [1] show that amortized access overhead of O(log3 n) is possible for oblivi-

ous RAM simulation without using random functions. The authors of [11] also show

that a minimum of O(log n) random bits are required for oblivious request simulation

for a memory of size n.

2.2 Oblivious Cloud Storage

Boneh et al. [7] deviated from standard ORAM schemes by introducing the oblivious

storage (OS) problem that, as they argue, is more realistic and natural than the

ORAM simulation problem. They study methods that separate access overheads

and the overheads needed for rebuilding the data structures on the server, providing,

for example, O(1) amortized overhead for accesses with O(
√
n log n) overhead for
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rebuilding operations, assuming a similar bound for the message size and the size of

the private memory on the client.

Stefanov et al. [47] study the oblivious storage simulation problem from a practi-

cal point of view, with the goal of reducing the worst-case bounds for data accesses.

They show that one can achieve an amortized overhead of O(log n) and worst-case

performance O(
√
n), with O(εn) storage on the client, for a constant 0 < ε < 1, and

an amortized overhead of O(log n) and similar worst-case performance, with a client-

side storage of O(
√
n). The scheme of [44] provides a tree-based construction that

uses Õ(n log n) server storage and incurs Õ(log2 n) overhead on each access when the

client has access to O(εn) private memory (the Õ notation hides the poly log log n

terms). Both schemes [47] and [44] can be modified using a recursive ORAM con-

struction to require O(
√
n) and O(1) private memory, correspondingly, and instead

incurring a logarithmic factor in their access overhead.

Path-ORAM is a simple oblivious construction proposed in [48] that makes

O(log n) accesses to the server and uses a position map and a stash both stored

at the client. The size of the position map is n but can be reduced by applying

the recursive ORAM construction as in [47] and [44], while the size of the stash is

logarithmic in n. With recursive construction, the method achieves O(log2 n) access

overhead and O(log n) client storage.

An interesting construction by Williams and Sion [52] achieves a constant over-

head by using computation power of the server. Most oblivious constructions incur

roundtrip overhead since they do not know where the item is in the construction

(the exceptions are [47, 44, 48] where a position map is maintained). Moreover, they

also cannot reveal to the server where the item was found since this reveals when

items were updated last. Williams and Sion outsource the search procedure to the
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server by encrypting all possible search paths for the item that one can take in the

construction. The server then executes this search by working only on encrypted

data and, hence, remains oblivious to where he finds the item. However, occasional

reshuffle operation required by the solution adds a Õ(log2 n) amortized overhead.

The oblivious simulations described above consider a single-client scenario where

all accesses, including read-only accesses, are processed sequentially. Extending these

solutions to support parallel access is not trivial since they guarantee obliviousness by

sequentially maintaining a state. The works of Stefanov and Shi [46] and Williams et

al. [54] allow parallel access. The clients access oblivious storage of [46] via a load

balancer that is responsible for scheduling client requests. On the other hand, the

clients of [54] first access a log file of pending requests and then determine if they

should send a request for a real or a fake item.

2.3 Multicloud Model

Lu and Ostrovsky [35] and Stefanov and Elaine Shi [15] consider the model of out-

sourcing the data to two non-colluding storage providers, e.g, Amazon S3 and Mi-

crosoft Azure. The construction of [35] splits a hierarchical ORAM construction

between the servers such that the servers store alternating levels only. The sim-

ulation proceeds as it does in the single-server case with accesses also alternating

between the servers. However, when it is time to rebuild one of the levels at, the

user uploads the data from one of the servers to another one according to a new

pseudorandom function. This way the servers cannot correlate the accesses before

rebuild and after since one server sees accesses to items before the rebuild and not af-

ter, while another one sees only accesses after the rebuild. This construction achieves
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O(log n) amortized access overhead by avoiding an expensive shuffle sort by simply

uploading items from one server to another one. The construction of [15] uses [47]

as the underlying ORAM construction at each server. The interaction between the

servers is done directly, not via the client as it is in [35]. Hence, the client does not

participate in the shuffling phase. The scheme of [15] achieves a constant overhead.

The authors also propose how the clients can verify if shuffling was correct when one

of the servers is malicious.

2.4 ORAM Applications

Lu and Ostrovsky [36] use ORAMs for garbling RAM programs. In their application,

a client outsources the execution of a RAM program to a server and wishes to hide

what type of computation is being executed. An ORAM scheme, similar to the one

of [52], is used to hide the access pattern of the garbled program. Gordon et al. [29]

use ORAM of [44] to securely outsource a computation of a program that can be

executed in sublinear time on a RAM. As an application, they consider a server that

stores a large dataset D and a client who has a small input x. The client then wishes

to perform a private query on D with x as the input, e.g., a search query.

Oblivious RAM simulation has also been used to protect against traffic analysis

in a networked file system [55]. Cash et al. [8] use ORAM to create a dynamic version

of proofs of retrievability scheme where the storage supports updates. Their scheme

allows the user to perform efficient reads, writes to outsourced storage, and provides

an audit functionality for verifying that the server maintains the latest copy of her

data. Williams et al. [54] propose an ORAM construction for outsourced filesystem

application where multiple users can access the storage in parallel.
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Recently, several hardware ORAM implementations have been proposed [37, 17,

43]. The works of [37] and [17] design the architecture for the hardware, while [43] is

a simulator for a secure processor. All three are based on the Path ORAM construc-

tion [48]. Optimizations and extensions for incorporating Path ORAM in a secure

hardware design, including integrity verification, are described in [43].
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Table 2.1: Comparison of Several Oblivious Simulation Methods where c ≥ 2, 0 < ε < 1 and 0 < τ < 1. The Õ notation hides poly log log n terms.
The server storage with ∗ indicates temporary storage that is required during the rebuild phase while both solutions require only O(n) during the
access phase. Hence, deamortized versions of these constructions require O(n log n) storage during the access phase as well.

User
Memory

Message
Size

Server
Storage

Amortized Access
Overhead

Worst-Case
Access

Overhead

Goldreich-Ostrovsky [21]
√
n O(1) O(1) O(n) O(

√
n log2 n) O(n log2 n)

Goldreich-Ostrovsky [21] log n O(1) O(1) O(n log n) O(log3 n) O(n log3 n)

Shi et al. [44] (BST Bucket) O(1) O(1) Õ(n log n) Õ(log2 n) Õ(log3 n)

Williams-Sion [52] O(log n) O(log n) O(n) Õ(log2 n) Õ(log2 n)

Williams et al. [53] O(
√
n) O(1) O(n) O(log2 n) Õ(n)

Goodrich-Mitzenmacher [24] O(n1/ε) O(n1/ε) O(n) O(log2 n) O(n)

Stefanov et al. [47] O(
√
n) O(1) O(n) O(log2 n) O(

√
n)

Stefanov et al. [48] O(log n) O(log n) O(n) O(log2 n) O(log2 n)

Kushilevitz et al. [34] O(1) O(1) O(n) O(log2 n/ log log n) O(log2 n/ log log n)

Boneh et al. [7] O(
√
n log n) O(

√
n log n) O(n) O(1) O(n log n)

log n-hierarchical (Chapter 4, [27]) O(nε) O(nε) O(n) O(log n) O(n)

Deamortized
√
n (Chapter 6, [25]) O(1) O(1) O(n) O(

√
n log2 n) O(

√
n log2 n)

Deamortized log n-hierarchical (Chapter 6, [25]) O(nτ ) O(nτ ) O(n) O(log n) O(log n)

Constant overhead scheme (Chapters 5.4, 6, [40, 41]) O(
√
n log n) O(

√
n log n) O(n log n)∗ O(1) O(1)

Constant overhead scheme (Chapters 5.5, 6, [40, 41]) O( c
√
n log n) O( c

√
n log n) O(n log n)∗ O(c log n) O(c log n)



Chapter Three

Preliminaries
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In this chapter we describe tools and security definitions we use for our oblivious con-

structions. We also give an overview of the square root oblivious RAM construction

by Goldreich [18] as a warm-up for our solutions.

3.1 Notation

We refer to the user who wishes to store her data remotely with a storage provider

Bob, as Alice. We use the terms user and client interchangeably. Alice has a dataset

A of n elements, that we also may refer to as items. Each item consits of a pair

(x, v), where x ∈ {0, · · · , n − 1} is the key and v is the corresponding value. We

sometimes refer to the storage provider as the server.

3.2 Adversarial Model

We consider a probabilistic computationally bounded adversary A who is limited

to running in polynomial time in the size of the private keys and seeds used by

the cryptographic primitives defined in Section 3.3. The adversary is honest-but-

curious [20], in that he correctly performs all operations and does not tamper with

the data. However, all of our solutions can protect data privacy in the malicious

case as well, by simply extending the technique of Goldreich [21] and using message

authentication codes [19].

In our scenario, the adversary A is either the storage provider, Bob, or anyone

observing the interaction between Bob and user Alice.
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3.3 Cryptographic Primitives

We let k ∈ N to denote the security parameter used in this paper. We now define

the cryptographic tools we use in our constructions.

Negligible Function [19] A function ν : N → R is called negligible if for every

positive polynomial p there exists N such that for all k > N ,

ν(k) <
1

p(k)

We will often say that undesirable events happen with negligible probability, that

is with probability 1/2k, where k is the security parameter.

Computational Indistinguishability Two distributions D1 and D2 are compu-

tationally indistinguishable, if for every probabilistic polynomial-time (PPT) algo-

rithm A there exists negligible function ν such that

|Pr[A(1k, D1) = 1]− Pr[A(1k, D2) = 1]| ≤ ν(k)

Here, input 1k means that algorithm A runs in time polynomial in security param-

eter k.

Semantically Secure Encryption (Enc-IND-CPA) We use a symmetric en-

cryption scheme (Enckey,Deckey) where key← {0, 1}k. We require this scheme to be

secure against the chosen-ciphertext attack (CPA) for multiple messages [22, 19].
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During this attack an adversary A is allowed to make queries to oracles Enckey

and Deckey on a polynomial number of sequences of l messages of his choice. After

this “warm-up” phase, A comes up with two sequences, m0 and m1, of l messages and

gives them to a challenger. The challenger secretly picks a bit b and calls Enckey on

each message of sequence mb. Let C be the sequence of ciphertexts that correspond

to mb. The challenger gives C to A who continues querying Enckey and Deckey on any

sequence of ciphertexts except those in C for a polynomial number of times. Finally,

the adversary’s task is to guess bit b. We call the above game Enc-IND-CPA and

say that A wins the game if he correctly guesses b. Then, (Enckey,Deckey) is said

to be secure if for all PPT adversaries, the probability of winning game Enc-IND-

CPA is at most 1/2 + negl(k). We omit using key when referring to (Enc,Dec). For

an intuition behind Enc-IND-CPA secure encryption scheme, consider encrypting a

message padded with a different random nonce each time it is encrypted. Hence,

re-encryptions of the same plaintext look different with very high probability.

Pseudorandom Function (PRF) [31] Let Fseed : {0, 1}m → {0, 1}m′
be a fam-

ily of efficiently computable functions keyed using a seed from the set Seeds(F) =

{0, 1}k. Then Fseed is a pseudorandom function if for all probabilistic polynomial-

time adversaries A, there exists a negligible function ν such that:

|Pr[AFseed(·)(1k) = 1]− Pr[AF (·)(1k) = 1]| ≤ ν(n)

where F is chosen from the set of all functions mapping m-bit strings to m′-bit

strings. For our purposes m will be at most m′.

Pseudorandom Permutation (PRP) [31] Let Rseed : {0, 1}m → {0, 1}m be

a family of efficiently computable permutations keyed using a seed from the set
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Seeds(R) = {0, 1}k. ThenRseed is a pseudorandom permutation if for all probabilistic

polynomial-time adversaries A, there exists a negligible function ν such that:

|Pr[ARseed(·)(1k) = 1]− Pr[AR(·)(1k) = 1]| ≤ ν(n)

where R is chosen from the set of all permutations on input of size m.

We will describe and prove security of our constructions assuming access to a

truly random function F . However, in practice, we substitute access to F with an

access to a pseudorandom function. Similarly, for pseudorandom permutations we

will assume access to a truly random permutation.

Given an array A of n (key,value) pairs (x, v) where x ∈ [1, n], we denote the

permutation π of A as B = π(A), where π = Rseed and B[x] = A[π(x)], ∀x ∈ [1, n].

We will use the same notation when A and B are encrypted. We refer to the original

permutation of A, as permutation π0. For A, sorted using x, π0 is the identity.

3.4 Hash Tables

We now describe variations of hash tables that we use for the oblivious constructions

presented in this thesis.

Hash Tables Hash tables with buckets remedy the collision problem of regu-

lar hash tables by allowing more than one item to be mapped to a location of a

hash table, called bucket. Then, insertion of n items in a table with n buckets of

size log n/ log log n causes an overflow with probability 1/n [39]. However, our con-
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struction uses hash tables of sizes ranging between O(log n) and O((log n)7) with

buckets of size c log n/ log log n to bound the probability of overflow to 1/nc (see

Section 4.3).

Oblivious Construction of Hash Tables Our schemes use hash tables as read-

only look-up tables. Hence, after all items are inserted in a hash table H, only read

queries are issued to H. Moreover, all items to be inserted in H are known before H

is built. The read phase for item with a key x is simple and consists of reading

a bucket that corresponds to h(x) index, where h is a hash function used for the

table H. The construction of H is trickier since our schemes require a data-oblivious

version of this algorithm.

We use the data-oblivious construction of a hash table H from [21] which uses

several calls to oblivious sorting. Its performance hence depends on client member

and sorting algorithm used (see Section 3.6).

Cuckoo Hash Tables Pagh and Rodler [42] introduced a cuckoo hashing scheme

consisting of two tables, each with m cells, with each cell capable of holding a single

key. We make use of two hash functions h1 and h2 that we assume can be modeled

as completely random functions. The tables store up to n items, where m = n(1+ψ)

for some constant ψ > 0, yielding a load of (just) less than 1/2; keys can be inserted

or deleted over time as long as this restriction is maintained. An item with a key x

that is stored in the hash tables must be located at either h1(x) or h2(x). As there

are only two possible locations for a key, lookups take constant time. We insert a new

item (x, v) in the cell h1(x). If the cell had been empty, the operation is complete.

Otherwise, key y previously in the cell is moved to h2(y). This may in turn require

another key to be moved, and so on, until a key is placed in an empty cell. We say
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Figure 3.1: (a) The top of the figure represents a cuckoo hash table. Keys are placed in one
subtable; the arrow for each key points to the alternate location for the key in the other subtable.
Key G is inserted, leading to the movement of several other keys for G to be placed, as shown in
the bottom of the figure. (b) Key G is to be inserted, but it cannot be placed successfully. (Seven
keys have only six locations.) This leads to a failure, or if there is a stash, then G can be placed in
a stash.

that a failure occurs if, for an appropriate constant c, after c log n steps this process

has not successfully terminated. Suppose we insert an nth key into the system. It is

known that:

• The expected time to insert a new key is bounded above by a constant (that

depends on ψ).

• The probability that a new key causes a failure is Θ(1/n2) (also depends on

ψ).

See Figures 3.1a and 3.1b for examples.

There are several natural variations of cuckoo hashing, many of which are de-

scribed in a survey article by Mitzenmacher [38]. For our purposes, it suffices to

understand standard cuckoo hashing, along with the idea of a stash [32].
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A stash represents additional memory where keys that would cause a failure can

be placed in order to avoid the failure; with a stash, a failure occurs only if the stash

itself overflows. As shown in [32], the failure probability when inserting the nth key

into a cuckoo hash table can be reduced to O(1/nc
′+2) for any constant c′ by using

a stash that can hold c′ keys. Using this allows us to use cuckoo hash tables for any

polynomially bounded number of inserts and deletions using only a constant-sized

stash. To search for an item, we must search both the two table locations and the c′

stash locations.

Similar to hash tables, we build cuckoo hash tables by a priori knowing all ele-

ments to be inserted into the table. Hence, the life cycle of a cuckoo hash table in

our construction is as follows: build a cuckoo hash table with a stash that can fit n

elements and then query the table until the next rebuild is due, rebuild the table and

the stash using a new pair of hash functions and possibly new elements, access until

the next rebuild and so on. The number of times a table can be queried between the

rebuilds will be defined in our constructions.

We use the construction of Goodrich and Mitzenmacher [24] to obliviously build

a cuckoo hash table with a stash. This construction proceeds by building a bipartite

graph, referred to as cuckoo graph, where a vertex in the first set corresponds to a

cell of the first hash table of the cuckoo table and, similarly, a vertex in the second

set corresponds to a cell in the second hash table. Hence, each vertex set is of size m.

For every element (x, v) to be inserted into the cuckoo table an edge (h1(x), h2(x))

is added to the graph. Since in our scheme all elements to be inserted are known,

the corresponding cuckoo graph can be constructed. The next phase proceeds by

finding connected components of the graph and cycles within each component. Com-

ponents with cycles that cannot be avoided by removing one of the edges result in

moving elements that correspond to cycle edges of this component to the stash. Each
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step of this algorithm proceeds using several iterations of oblivious sorting within a

MapReduce-like framework. For a detailed description of the construction we refer

the reader to [24].

Hash Functions We note that for our constructions we will assume that hash

functions used in the above data structures are truly random functions, which we

can instantiate with calls to pseudorandom functions. The analysis of cuckoo hash-

ing relies on log n-wise independent hash functions [42]. Random functions already

posses this property since every new call to a function generates a value that is ran-

dom and independent of previous calls, unless a call is made for the input that was

queried before. A similar argument holds for PRFs.

3.5 Data-Oblivious Memory

In this section we first define the notion of data-obliviousness with a running example

of a primitive oblivious RAM simulation algorithm. We then show how one measures

performance of data-oblivious algorithms, followed by several data-oblivious sorting

algorithms.

3.5.1 Definition

Let A be an array consisting of n elements where each element A[i] is of equal size. We

say that A that supports the query setQA defined as follows. QA includes read(i) and

write(i, ·) queries to access and modify elements of A[i] for indices i ∈ {0, . . . , n− 1}.
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We require that an element written by write is of the same size as the original element

in A[i].

We also define a dataset A and a set of queries QA that is supported by A. A

query q ∈ QA is executed using a call (A′, r)← apply(A, q) which returns a possibly

modified dataset A′ and a reply r to the query q according to A. We overload apply to

be able to take a sequence α of operations and apply each operation in a sequence.

The final result is then the result of the last query of α and the dataset A′ that

captures changes of all queries in the sequence. For example, an array A defined

above is also a dataset A where apply, depending on the query, either returns a read

value or overwrites an existing value in A.

Definition 1 (RAM Simulation Algorithm). We consider an algorithm V that has

access to a state δ and consists of two functions setup and simulate defined below.

• (Setup) Let A be the input array where QA is a set of virtual queries. The

setup function setup(A) returns a digest M and a dataset D (e.g., D could be

a rearranged encrypted array A), where QD is a set of real queries.

• (Simulate) The execution function simulate(D, q) takes a virtual query q ∈

QA and the dataset D, and returns a tuple (D′, r, α) where r is an answer to

query q, i.e., (·, r) = apply(A, q), α is a sequence of all real queries that were

applied to D by V, and D′ is a dataset that results from applying queries in α

to D.

To distinguish between virtual queries to A and real queries to D, we refer to

queries made to A as requests, and queries to D as accesses.
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Example For the above example D could simply be a copy of A. However, if a

dataset owner wishes to hide the content of A she could encrypt A to produce a

dataset D = {Enc(A[i]) | i ∈ {0, . . . , n − 1}}. Then QD is also just a sequence of

read(i) and write(i, ·) on the indices i, while the state M stores the secret key of the

underlying encryption scheme.

Example We now describe the above algorithm in the remote storage setting. The

user possesses an array A that she wishes to outsource to a remote data storage

provider. Instead of storing A with the storage provider, she stores D, e.g., the

encrypted array A. When she wishes to access A[i] she sends a query read(i) to the

server and the server returns element D[i] back. The user keeps state M private

since M contains the secret key of the encryption scheme she uses.

We adopt the indistinguishability security game from [50] that considers an ad-

versary who can adaptively interact with the simulation algorithm on queries of his

choice (IND-CQA Security Game).

Definition 2 (IND-CQA Security Game). A PPT adversary A provides the initial

data array A. The algorithm V runs (D,M) ← setup(A). She then flips a secret

random bit b and returns D to A. V keeps M private.

V and A then engage in the following process, repeated polynomially many times t:

1. A gives V two queries q0, q1 ∈ QA.

2. V executes query qb, that is (r, α,D)← simulate(D, qb).

3. The algorithm V returns final dataset D and transcript α to the adversary.
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After t rounds, A guesses b.

Definition 3 (Data-Oblivious RAM Simulation Algorithm). We say that algorithm

V is data-oblivious if A’s advantage in winning IND-CQA security game over a

random guess is negligible in k, where k is the security parameter.

We note that an adversary A of the IND-CQA security game can first “train”

himself by observing how V performs on a single sequence of queries by setting q0 = q1

in each round. He can then challenge V on two difference sequences of requests by

giving different q0 and q1 in at least one round that follows the training phase. After

observing the behavior of V based on the secret bit b she picked, A can continue

interacting with V by setting q0 = q1 in each round, before making his guess about b.

The above game captures the security of a simulation algorithm against a curious

server in the cloud storage model as follows. In this game, the inputs and outputs

of V that are revealed to the server in the cloud storage model are also revealed to A.

However, the secret state M kept by the client, any updates to it and computations

inside of V are kept private, since in the cloud model they are also hidden and happen

on the user side.

Example Let us continue with the above example and describe our first oblivious

algorithm for accessing a dataset A (see Algorithm 1 for the pseudo-code). Here,

in order to hide which index query q is accessing, V reads and rewrites the whole

array regardless of the index of the query q. Hence, α always contains the same set

of operations of QD. Note that we re-encrypt every value to hide whether the query

was read or write. Recall that Enc and Dec are algorithms of a semantically secure

encryption schemes, hence, re-encrytion of the same value will result in different
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Algorithm 1 An oblivious algorithm for accessing an array A with O(n) access
overhead.

setup(A):
D ← [n]
for ∀i ∈ {0, . . . , n− 1}
D[i]← Enc(A[i])

end for
simulate(D, q):

α← {}
e← ⊥

for ∀j ∈ {0, . . . , n− 1}
(·, z)← apply(D, read(j))
α← α.append(read(j))
if q = read(i)
e← Dec(z)

end if
if q = write(i, y)
z′ ← Enc(y)

else
z′ ← Enc(Dec(z))

end if
(D, ·)← apply(D,write(j, z′))
α← α.append(write(j, z′))

end for
return (e, α,D)

ciphertexts. V is data-oblivious since regardless what qb is, the access sequence α is

the same.

3.5.2 Performance Measures

We measure the overhead of a data-oblivious algorithm using several parameters:

Access overhead is the number of additional accesses V is required to do to ex-

ecute query q obliviously, i.e., the length of the access sequence α. We will

differentiate between average-case and worst-case access overhead.
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Private memory size m measures space required to be kept secret fromA to perform

oblivious accesses, i.e., m = |M |. We distinguish between two types of private

memory: state and scratch space. The former is used to keep permanent

information that V requires every time she runs exec. The scratch space is

used only while exec is running and is erased as soon as exec returns. We will

be interested in sizes of both types of private memory.

Message size is the maximum number of items that can be requested from a

dataset D in a single query q ∈ QD, which is also the maximum number

of items sent between the user and the server in a single operation.

Space overhead measures additional space required to store D versus storing the

original array A.

Example We analyze the algorithm in Algorithm 1 using the above metrics. The

algorithm has 2n access overhead since it is required to read and write n elements.

Note that the user keeps the encryption secret key in the stateful part of M , while

element e is stored in the scratch space during the data request. Hence, the size of

private memory is constant. The message size is also constant since only one element

of D is being read or written at a time. The size of D is the same as the size of A,

hence, there is no space overhead.

3.6 Data-Oblivious Sorting

Most algorithms are not data-oblivious since their efficiency depends on making

optimizations based on the data-layout. For example, quick-sort is not oblivious
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since the pattern in which it accesses the data depends on the value and the position

of the chosen pivot value and relative order of the data to be sorted.

AKS network [2] and Batcher’s [5] sorting networks are examples of data-oblivious

sorting. Their access pattern is independent of the data that is being accessed. AKS

network sorts n elements in O(n log n) accesses and Batcher’s sorting network in

O(n(log n)2). However, the constant is high in the former algorithm [9], making the

Batcher’s sorting network more efficient in practice.

In Batcher’s sorting network the data is accessed two elements at a time, swapped

if necessary, and written back. Goodrich and Mitzenmacher [24] showed that the run-

ning time of this algorithm can be improved significantly if more than two elements

are read at a time. In particular, if m is the size of the private memory M where

elements are read, sorting could be performed in O( n
m

(logm n)2) time. Hence, if the

size of private memory is m = O(
√
n), then sorting can be done in O(n) time.

Goodrich [23] proposed a randomized data-oblivious Shellsort that runs in time

O(n log n) using client memory of size O(1). It differs from the above sorting network

methods since it sometimes fails to produce the correct results, i.e., a sorted sequence.

However, the probability of this happening is inverse of a polynomial in n.

3.7 Square-Root Oblivious Access Scheme [18, 21]

We present an overview of the square-root oblivious RAM simulation method [18]

as a warm-up for our oblivious RAM schemes. We give enough details about the

method for a reader to understand our de-amortized version provided in Section 6.1

and refer the reader to [18] for the full description.
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T

B

dummy items

Figure 3.2: Memory layout of the storage provider during oblivious RAM simulation, original
version of the square-root solution [21].

Data Layout Let A be the original dataset containing n items. The square-root

solution stores a dataset D of size n+2
√
n at the storage provider (aka server). D is

split into a buffer, B, and a table, T . The buffer B has size
√
n and is used to cache

the last
√
n requests. Table T contains a random permutation of the n encrypted

data items of A and
√
n dummy items. Every time the user sends a read request

to the server we assume that she decrypts the result, and re-encrypts an item when

writing it back. (See Figure 3.2.)

Each data item of A is associated with a key (virtual address of ) x, x = 1, · · · , n

and each dummy item is given a key n+ d where d = 1, · · · ,
√
n. All items in T are

ordered according to a pseudorandom permutation function π such that π(x) gives

the location of the item with key x in T . (The full solution, which uses a binary

search, is omitted in our description since the overall complexity of the request

is O(
√
n).)

The user keeps the encryption key, the seed of the current permutation π, and the

counter of the number of requests made to the store, request count, in her private

memory M . Hence, the size of the private memory is constant.
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Request Simulation The square-root ORAM simulation method is outlined in

Algorithm 2. The simulation of a data requests consists of two phases access and

rebuild phases. The access phase consist of scanning buffer B and a read access to

table T , followed by the write access to B. When the user writes to the last free

cell of B, the user enters the rebuild phase which involves emptying B into T and

rebuilding T . Note that table T has to be rebuilt after every
√
n requests. The

rebuild phase consists of obliviously replacing the items in T for which there is a

new instance in B, associating the keys of real and dummy items with tags from

a new permutation π′, and sorting items in T according to π′. The rebuild phase

takes O(n log2 n) accesses. Since the rebuild happens only once every
√
n requests,

the amortized access overhead per request is O(
√
n log2 n): O(

√
n) accesses for the

request phase and O(
√
n log2 n) accesses for the rebuild phase.

Analysis Requests are handled by scanning buffer B and accessing T . Due to

the scheduled rebuilds, data items are associated with new tags every
√
n requests.

Between the rebuilds, unique locations are accessed in T : either an item x is not

present in the buffer and hence a unique location, π(x), is accessed, or a unique

dummy item, π(n+ request count), is accessed.
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Algorithm 2 Oblivious RAM simulation using the square-root approach [21].

Generate pseudorandom permutation function π
Initialize table T by storing the n data items and

√
n dummy items according to

permutation π
request count← 1
while true do {process a request}

found← false
Scan all the locations in buffer B. During the scan, if data item x is found, set
found← true.
if found then

Access location π(n+ request count) in T {dummy item}
else

Access location π(x) in T {data item x}
end if
Rewrite B, adding or replacing data item x
request count← request count + 1
if request count >

√
n then

Generate pseudo-random permutation function π′

Construct a new table T ′ with π′ using items in T and B.
clear B and set T ← T ′, π ← π′, and request count← 1

end if
end while



Chapter Four

The log n-Hierarchical Oblivious

Access Scheme
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In this section we present a solution that improves over the square-root solution (Sec-

tion 3.7) and achieves O(log n) amortized access overhead assuming the user has

private memory of size O(nε), for some constant ε > 0. Similarly to the square-root

solution we use a buffer, called a cache, to record previous requests and avoid access-

ing the same memory cells in case these items are requested again. However, instead

of one cache our solution makes use of a hierarchy of caches, each implemented as

either a hash table with buckets or a cuckoo hash table with a common stash.

4.1 Setup and Data Layout at the Server

Following Definition 1, we describe the setup function and its output of dataset D,

following the definition of an oblivious simulation scheme. Let n be the number of

memory cells of the original dataset A. We view each such cell as an item consisting

of a pair (x, v), where x ∈ {0, · · · , n − 1} is the index and v is the corresponding

value. Our data structure D stored at the server has four components, illustrated

in Figure 4.1. The first component is a cache of size α log n, denoted by C. The

second component is a hierarchy of hash tables with buckets of size c log n/ log log n,

H1, . . . , Hl where c ≥ 1 is a constant and l is O(log log n) (the choice for l will become

evident from the analysis). H1 can fit twice more elements than C, H2 fits twice more

elements than H1 and so on. The third component is a hierarchy of cuckoo hash

tables, T = Tl+1, . . . , TL, where Tl+1 is suitable to fit twice more elements than Hl.

Each consequent table Tj+1 is twice the size of table Tj, and TL is the first table in

the sequence of size greater than or equal to n. Thus, L is O(log n). The fourth

component is a stash, S, which is shared between all the above cuckoo tables. We

refer to a hash table Hi and a cuckoo hash table Tj using indices i ∈ {1, . . . , l} and

j ∈ {l + 1, . . . , L}.
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Cache C Stash S

l+1
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Cuckoo Hash 
Tables

O(n) items

................

H 1

H l

Hash Tables
with buckets

..

O(log n)7

O(log n) O(log n)

Figure 4.1: Illustration of the data structure stored at the server for oblivious RAM simulation
with O(log n) amortized access overhead. In the access phase of the simulation, all the items in the
cache, C and the stash, S, a bucket in hash tables Hi, plus two items for each cuckoo table Tj are
read by the server.

The items in D are stored in the data structure in an encrypted form. We use a

semantically secure encryption scheme. Recall that with this scheme re-rencyption

of the same item is very likely to produce a different ciphertext (see Section 3.3).

Hence, the server is unable to determine whether two ciphertexts correspond to the

same item or not.

The items are placed in a hash table Hi according to a function fi, for i ∈

{1, . . . , l}. In particulate an item (x, v) is mapped to a bucket fi(x) in Hi. The

items are inserted in a cuckoo hash table Tj using two functions, h1
j and h2

j , for j ∈

{l+ 1, . . . , L}. Recall that in a cuckoo hashing scheme with a stash an item (x, v) is

located in one of the two locations in Tj, h
1
j(x) or h2

j(x). We instantiate hash function

fi (and similarly h1
j and h2

j) with a family of pseudorandom functions parameterized

by a secret value, ki, for each hash table, Hi, such that value ki is not revealed to

the server. In particular, ki is stored in an encrypted form for each table Hi, so that

each user can read ki, decrypt it, and then use it to instantiate a hash function, fi.
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The content of the tables in the construction consists of real, fake and dummy

elements. The real elements are the original elements from the dataset A with

keys in the set {0, . . . , n − 1}. The fake elements are added to every level of the

construction and are used during the access phase to avoid querying real elements

more than once from this level. We add 2i×α log n fake elements to level i in the same

manner for hash tables and cuckoo hash tables. A key of the fake element is in the

range {n, . . . , 2i×α log n−1}. Overall, each level i is large enough to fit 2i+1×α log n

elements, fake and real. During the simulation we need to hide the number of

real elements at every level. For this purpose, each table is padded with dummy

elements such that table size is static and independent of how many real elements

there are in the table. For example, hash table Hi has 2i+1×α log n c logn
log logn

cells, due

to c log n/ log log n-sized buckets, but contains at most of 2i+1 × α log n elements.

We fill empty cells with dummy elements and encrypt them as well. Similarly, a

cuckoo hash table at level j contains two tables of size O(2j+1 × α log n) each but is

required to store at most of 2j+1×α log n real and fake elements. Once again, we use

probabilistic encryption scheme which makes it hard for the adversary to distinguish

whether a cell contains a real, a fake or a dummy element.

During the runtime we also keep a counter request count of the number of re-

quests that have been done to the simulator. We will show that in order to simulate

requests obliviously, clients need to know request count. However, since this counter

is small it can be stored at the server encrypted and accessed every time a request

is made, leaving the system stateless.

The data structure is initialized by storing all the n RAM items into cuckoo

table TL. However, the scheme can be adapted to the case when no items are stored

in TL or when items with sequential indices are added to the store.
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4.2 Oblivious Simulation of Data Requests

We split the sequence of accesses the algorithm produces in order to simulate a data

request obliviously into two phases, an access phase and a rebuild phase.

4.2.1 Access Phase

Suppose the user calls for an access to memory item with a key x. The access

phase consists of a search for x in the cache, C, then in the stash, S, and continues

with sequential lookups in hash tables H1, . . . , Hl, followed by two lookups in every

cuckoo hash Tl+1, . . . , TL. The lookup in each table depends on whether the item

has been found in C, S or earlier tables, or not. If the item was not found in C or

S, the bucket at location f1(x) is accessed in T1. The bucket is scanned in search

for x. We follow the same strategy for the consequent hash tables until the item is

found. If the item was not found in hash tables H1, . . . , Hl, cuckoo hash table Tl+1

is accessed in locations h1
l+1(x) and h2

l+1(x), and similarly for consequent Tj’s, if x is

not found in earlier tables.

Once the item is found, in either Hi or Tj we continue accessing consequent tables

but at random locations instead of following functions f and h. Note that although

the item is found we have to continue accessing every table, since revealing at which

level the item is found may reveal what item was being searched for. In Section 4.3

we show that accesses that result from looking for an item are indistinguishable from

the ones that are random.

Once we have completed the access phase, which takes O(log n) time, we then

switch to the rebuild phase. We begin by adding or replacing a copy of the found
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item into cache C, possibly changing its value in the case of a write operation. To

assure obliviousness, we exhaustively scan C in a sequential manner and re-encrypt

and rewrite all its items. Thus, the server cannot distinguish which item was accessed

and whether it was modified.

We note briefly that if the item is in the stash, we can obliviously remove it from

the stash when placing it into C, to help make sure the stash does not overflow. One

natural approach is to have stash cells have an associated “clean” or “dirty” bit,

which is encrypted along with the rest of the item. A clean cell can store an item;

a dirty cell is currently being utilized. When an item is found and replaced into C,

we can set the cell to clean in the stash.

4.2.2 Rebuild Phase

After adding enough items, cache C will eventually overflow. Specifically, let |C| =

α log n. We remedy the overflow by moving all the elements of C to hash table H1

after every α log n requests, i.e., when request count mod c log n = 0. The moving

down of elements cascades down through the hierarchy of hash tables at a fixed

schedule by periodically moving the elements of level i − 1 into Hi at the earliest

time Hi−1 could have become full. Now suppose that we are going to move elements

into table Hi for the second time, then we instead move the elements into table Hi+1.

Moreover, we continue applying this rule for i = 1, 2, . . . l, until we are copying the

elements into a table for the first time or we reach Hl. Once Hl is reached we move

elements to Tl+1, and continue similar table cascade but for cuckoo hash tables. The

cascade of rebuilds stops, once TL is reached. Note that rebuilds of Tj tables need to

take into account elements from stash S, i.e., elements that did not fit in Tj−1 the

last time it was built. Thus, the process of copying elements into a (cuckoo) hash
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table occurs at deterministic instances, depending only on the number of requests r

that have been specified by algorithm A so far.

In order to move m elements from level i, 0 ≤ i < l into a hash table Hi+1

obliviously, we use an algorithm of [24] to obliviously sort the items using O(m)

accesses to the outsourced memory, assuming we have a private workspace of size

O(nε), for some constant 0 < ε < 1, and m ≥ log n, which is always true in our

case. Constructing a cuckoo hash table Tj, l + 1 ≤ j ≤ L, is trickier and we use

another algorithm of [24] to obliviously construct a cuckoo table of size m and an

associated stash, S ′, of size O(log n) in O(m) time, with very high probability, while

utilizing the private workspace of size O(nε). Given this construction, we then read

S and S ′ into our private workspace, remove any duplicates and merge them into a

single stash S (which will succeed with very high probability, based on Theorem 5),

and write S back out in a straightforward oblivious fashion. Note that in order to

assure obliviousness in subsequent lookups, hash table Hi+1 (cuckoo hash table Tj+1)

is rebuilt using a new pseudorandom function (two new pseudorandom functions)

selected by the client by replacing parameter ki+1 (kj+1) with a new one.

4.3 Analysis

We first prove that hash tables and cuckoo hash tables used in the solution do

not overflow with very high probability and, hence, can be safely used for oblivious

simulation. We then show that access sequence appears to be independent of the data

to the server and, hence, our construction is data-oblivious following Definition 3.

Lemma 4. Let H be a hash table with m buckets of size c logn
log logn

for an arbitrary c ≥ e

and m between Ω(log n) and O((log n)7). Then no bucket of H overflows after m
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elements are inserted in an empty H with a very high probability is bounded by

1− 1/nc
′

where c′ is an arbitrary constant.

Proof. We use balls and bins analysis to bound the overflow event, since inserting m

elements in m buckets is equivalent to throwing m balls into m bins and computing

the maximum number of balls in any bin.

We want to prove that buckets of size s = c logn
log logn

are enough to avoid overflow

with very high probability. We use analysis similar to [39, Chapter 5], where the

probability of having at least s balls in any bin is bounded by

ps = m
(e

s

)s
If s = c logn

log logn
then

ps ≤ m

(
e log log n

c log n

) c logn
log logn

Since m is at most O((log n)7) in our case we bound the expression further:

ps ≤ log7 n

(
e log log n

c log n

) c logn
log logn

≤ 2log log7 n+ c logn
log logn

log( e log logn
c logn )

Let c1 = c/e then:

ps ≤ 2
log log7 n+ c logn

log logn
log

(
log logn
c1 logn

)

≤ 2log log7 n+ c logn log log logn
log logn

− c logn log c1 logn
log logn

≤ 2log log7 n+ c logn log log logn
log logn

−c logn

≤ 2
c log log logn

log logn
logn−(c−1) logn
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If log log n/log log log n ≥ c then c log log logn
log logn

log n ≤ log n. Otherwise, there is such a

c2 < c that c log log logn
log logn

log n ≤ c2 log n. Hence, there is a constant c′ = c− c2 that

m
(e

s

)s
≤ 1

nc′

Lemma 5. Let Tl+1, . . . , TL be a sequence of cuckoo hash tables where Tl contains

O((log n)7) elements, |Tj+1| = 2|Tj| and |L| = O(log n). A stash of size O(log n)

shared between Tl+1, . . . , TL is enough to avoid overflows with very high probability.

Proof. The probability that the stash for a cuckoo hash table of size x cells (where

x is Ω(log7 n)) exceeds a total size s is x−Ω(s) [24]. Further, as long as the hashes for

a cuckoo hash table at each level are independent, we can treat the required stash

size at each level as independent, since the number of items placed in the stash at a

level is then a random variable dependent only on the number of items appearing in

that level.

Now consider any point of our construction and let Si be the number of items at

the ith level that need to be put in the stash. It is apparent that Si has mean less than

1 and tails that can be dominated by a geometrically decreasing random variable.

This is sufficient to apply standard Chernoff bounds. Formally, let X1, X2, . . . , XL

be independent random variables with mean 1 geometrically decreasing tails, so that

Xi = j with probability 1/2j for j ≥ 1. Then the calculations of [24] imply that the

Xi stochastically dominate the Si, and we can now apply standard Chernoff bounds

for these random variables. Specifically, noting that Xi can be interpreted as the

number of fair coin flips until the first heads, we can think of the sum of the Xi as

being the number of coin flips until the `th head, and this dominates the number
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of items that need to be placed in the stash at any point. Since L = O(log n) then

for any constant γ1 there exists a corresponding constant γ2 such that the Lth head

occurs by the (γ2 log n)’th flip with probability at least 1− 1/nγ1 . (See, for example,

[39, Chapter 4].) Hence,

Pr

(
L∑
i=1

Si > L

)
≤ 1− Pr

(
L∑
i=1

Xi ≤ γ2 log n

)
≤ 1/nγ1 .

Therefore we can handle any polynomial number of insertions with high probability,

using a stash of size only O(log n) that holds items from all levels of our construction.

Theorem 6. The log n-hierarchical oblivious RAM simulation of memory of size n

presented in this chapter has an amortized access overhead of O(log n) using O(1)

space overhead and assuming that a client has access to private workspace of size

O(nε), for ε > 0, with very high probability.

Proof. We analyze the overhead of the access phase and the rebuild phase. Recall

that during the access phase every part of the data structure is accessed either for a

real or a dummy element, regardless of where the element of interest has been found.

Hence, we compute the total number of accesses one has to do to perform oblivious

simulation, that is, the sequence of accesses that starts with scanning the cache and

ends with two accesses to the last cuckoo hash table HL, rewriting the cache and the

stash.

The access phase of the simulation begins with scanning the entire cache and

the stash, both of size O(log n). It is then followed by accessing a bucket of size

c log n/ log log n from every hash table H1, . . . , Hl, where l = O(log log n). Hence,

accessing hash tables takes O(c log n/ log log n× log log n) = O(log n) calls to server.
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Accessing cuckoo hash tables is also O(log n) in total; two accesses in every ta-

ble Tl+1, . . . , TL where L = O(log n). , i.e., making c log n accesses in total, and

finally accessing two items in O(log n) cuckoo hash tables. Finally, the cache and

stash are rewriting, also giving O(log n) accesses. Summing up accesses to all the

parts of the construction we get O(log n) overhead per every access.

We now analyze the rebuild phase. Each hash tableHi is rebuilt after the previous

table is full, starting with the rebuild of H1 when the cache is full. Hence, Hi is

rebuilt after 2i × α log n simulated requests, where α log n is the size of the cache.

The rebuild of Hi consists of constant number of sorting passes using the method

of [24] with nε private memory, for ε < 1, where each pass takes time linear in the

size of the table including buckets, O(2i+1 log n× log n/ log log n) accesses. Since the

rebuilds are scheduled and always happen after 2i × α log n requests, the cost of the

rebuild of every table can be amortized over the requests that cause each level to be

full: ∑
1≤i≤l

O

(
2i+1 log n× log n

log log n
× 1

2i log n

)
= O(log n)

Similarly, for cuckoo hash tables we use the method of [24] to construct every table Tj

in O(2j log n) accesses. Every rebuild of Tj is scheduled after 2j+1×α log n simulated

requests. The total amortized cost for rebuilding O(log n) cuckoo hash tables is then:

∑
l+1≤j≤L

O

(
2j+1 log n× 1

2j log n

)
= O(log n)

Hence, the rebuild phase has O(log n) amortized overhead, giving O(log n) amortized

access overhead to the scheme.

The rebuild of a hash table can fail if a bucket of a hash table receives more than

c log n/ log log n elements. However, in Lemma 4 we show that this event happens
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with 1/nc
′

probability for some constant c′ ≥ 1. The rebuild of a cuckoo hash

table can fail if the number of elements that are required to put in the stash exceeds

O(log n). The result of Lemma 5 shows that this event also happens with probability

1/nγ1 for some constant γ1. Hence, the log n-hierarchical oblivious simulation has

O(log n) overhead with very high probability.

Theorem 7. The log n-hierarchical RAM simulation presented in this chapter is a

data-oblivious access simulation scheme as per Definition 3.

Proof. We analyze the sequence of accesses L made by the algorithm during the sim-

ulation of r requests (request count in the pseudo-code) on an n-size dataset A and

show that it can be split into two types of accesses: deterministic and probabilistic

accesses. We first show that the subsequences that correspond to the deterministic

accesses depend only on r and n. We then show that probabilistic accesses corre-

spond to a uniform distribution and, hence, are independent of the original request

sequence. We conclude that independence of L and the simulated requests relies on

the security of PRFs and semantically secure encryption scheme. Hence, a compu-

tationally bounded adversary A has a negligible advantage in distinguishing which

challenge request sequence the algorithm is simulating in the IND-CQA Security

Game in Definition 2.

We split the access sequence L into subsequences that correspond to the access

and the rebuild phase. This split can be made easily since the access phase always

makes the same number of accesses regardless of the simulated sequence and the

rebuild phase accesses are scheduled deterministically based on r and n. We further

split each subsequence into accesses that are deterministic in nature. These access

subsequences include reading and writing to the cache and stash in the beginning and

the end of the access phase for one simulated request. They also include the accesses
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from the rebuild phase since the oblivious sorting and cuckoo hash table construction

algorithms make deterministic accesses to the memory. We note that the adversary

knows whether it is a deterministic access or not, and whether an access corresponds

to the access or the rebuild phase. However, these can be determined from r and

n alone. The deterministic subsequences are, hence, data-oblivious by nature since

they do not depend on the real data being requested.

We now consider the rest of the sequence L, i.e., accesses that are probabilistic.

These accesses result from accessing hash tables and cuckoo hash tables during the

access phase. We consider the subsequence of accesses after the stash is being scanned

and until the cache and stash is rewritten. This sequence consists of reading l

buckets of size c log n/ log log n from hash tables H1, . . . , Hl and two accesses at

every cuckoo hash table Tl+1, . . . , TL. We note that the adversary knows which table

is being accessed and whether accesses correspond to reading a bucket or reading two

locations in a cuckoo hash table, since this split depends on the size of the dataset n

and is, hence, deterministic and is independent of the simulated request sequence.

We are interested in showing that when the bucket is read from hash tables Hi,

it appears to be picked uniformly at random among all 2i × α log n buckets of Hi.

Similarly for Tj we want to show that an access to the first and second table appears

to be uniform over all locations in each table.

Let an epoch of the level i be a a sequence of accesses made to the table at

this level between two of its sequential rebuilds. We consider the accesses that

happen between the rebuilds since hash functions based on different secret are used

to access Hi (Tj) before and after the current epoch. Note that only distinct keys

are accessed from Hi, and similarly, Tj, during an epoch. The distinctiveness of the

accessed keys is guaranteed from the simulation algorithm. If a real key x is accessed

from table i and is not found there, the construction guarantees that it will be found
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in level i′ > i. If i = L, the item is in Tj by construction. Once found, an item of

key x is moved to the cache and, hence, will not be accessed from level i until level

i− 1 has to be rebuilt, or if i = 1 the cache becomes full. However, in this case the

epoch in which x was accessed from level i is over and level i is rebuilt. Similarly,

a fake key x is accessed only once since this key is based on request count which is

incremented for every request. The number of fake keys at level i is the same as the

number of real keys, hence, we can accommodate the situation when all items are

found in the above levels and no real element is accessed during an epoch of level i.

The hash table Hi has 2i × α log n buckets and is accessed 2i × α log n times

during its epoch. During the epoch, Hi is accessed with buckets that correspond to

a distinct set of item keys. This set consists of real keys from the set of real keys

{0, . . . , n− 1} and set of fake keys {n, . . . , n+ 2i × α log n− 1}. Note that a bucket

could be accessed more than once due to the collisions caused by the hash function

on different keys. However, since we use a pseudorandom function (PRF) as a hash

function, the bucket assignment appears to be random and ,hence, independent of

the key due to the security properties of PRFs.

The analysis of the accesses to cuckoo hash table Tj during its epoch is similar.

The accesses to Tj are only made for a distinct set of keys, where each key is either

a real key or a fake key. The same location could be accessed more than once due

to collisions of the hash function. However, as for hash tables with buckets, a PRF

is used to assign keys to locations in the cuckoo hash table during an epoch. Hence,

the accessed locations appear to be uniform over all locations in each of the two

tables of Tj.

The accesses for fake and real elements in tables Hi and Tj cannot be distin-

guished by the adversary since these elements are stored encrypted using a seman-
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tically secure encryption scheme. Hence, the level i where the item is found and at

which the accesses are changed to fake accesses is hidden from the adversary.

Overall, the security of the scheme relies on the security properties of PRFs and

an underlying encryption schemes. The adversary has only a negligible advantage in

distinguishing between a PRF and a truly random function and, hence, determining

the key assignment in the hash tables and cuckoo hash tables. The adversary also

has only a negligible advantage in distinguishing whether a ciphertext correspond to

a fake or a real element and subsequently determining where the item is found in

the construction. Hence, for a computationally bounded adversary the sequence L

appears to be independent of the simulated requests.
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Algorithm 3 The access and rebuild phase during oblivious access simulation with
the log n-hierarchical approach (Chapter 4).

{Access phase}
found← false
scan cache C and stash S. if x is found in one of them set found← true
for each level i, 1 ≤ i ≤ l do

if found is true, y ← n+ r mod 2i|C|, else y ← x
Access bucket fi(y) in Hi.
if x is found in the bucket, found← true

end for
for each level j, l + 1 ≤ j ≤ L do

if found is true, y ← n+ r mod 2j|C|, else y ← x
Access locations h1

j(y) and h2
j(y) in Tj.

if x is found set found← true
end for
{Rebuild phase}
Rewrite S. If x was found in S, overwrite x in S with dummy.
Rewrite C, adding or replacing data item x.
read request counter request count
r ← r + 1
if (r mod |C|) = 0 then
H1 ← rebuild(C,H1)
C ← empty cache()
k ← 1
{Cascade rebuilds along hash tables}
while (r mod 2k log n) = 0 and k ≤ l do

if k = l then
T1 ← rebuild(Hk, T1)

else
Hk+1 ← rebuild(Hk, Hk+1)

end if
Hk ← init hashtable()
k ← k + 1

end while
{Cascade rebuilds along cuckoo hash tables}
while (r mod 2k log n) = 0 and k ≤ l + L do

if k = l + L then
TL ← rebuild(TL, S)

else
Tk+1 ← rebuild(Tk, Tk+1, S)
Tk ← init cuckoo hashtable()

end if
k ← k + 1

end while
end if
return x
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In this chapter, we study oblivious storage (OS), a natural way to model privacy-

preserving data outsourcing. We show that Alice can hide both the content of her

data and the pattern in which she accesses her data, with high probability, using

a method that achieves O(1) amortized rounds of communication between her and

Bob for each data request. In contrast with Chapter 4, we assume that Alice and

Bob exchange small messages of size O(n1/c log n) in a single round, for c ≥ 2. We

also assume that Alice has a private memory of size n1/c log n. These assumptions

model real-world cloud storage scenarios, where trade-offs occur between latency,

bandwidth, and the size of the client’s private memory.

5.1 The Oblivious Storage (OS) Model

We now describe the differences between the RAM storage model we consider in the

square-root solution in Section 3.7 and the log n-hierarchical solution in Section 4.

5.1.1 Client Private Memory

We assume that the client has access to a small private memory, M , which is com-

prised of permanent storage and scratch space. The permanent storage includes the

encryption key and the current seed of the permutation the client is using, which

together is of size O(1). The rest of M is used as a scratch space while performing

operations on the remote storage and is not needed in between operations. We re-

quire the size of the scratch space to be sublinear in n, in particular, we will use a

private storage of size n1/c log n, for an arbitrary integer c ≥ 2.
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Since the client can store a small number of elements at a time, we assume that

he does not try to request from the server more than he can fit and process in M .

Let the message size, denoted m, be the maximum elements that can be exchanged

by the client and server in one operation. We have that m should be less than the

size of the scratch space.

5.1.2 Server Storage

The server supports the following operations on an array of data items S. Here, S

refers to the name of the file or blob (e.g., in Microsoft Azure) where items are stored

at the server. The number of items in a single call is limited by m, the bandwidth

between the client and the server and the size of client’s private memory, which in

our case is O(n1/c log n)

• get(S, loc): return element stored at a location loc in S.

• put(S, loc, e): put element e to a location loc in S.

• getRange(S, loc, `): return an array a with elements at locations loc, . . . , loc +

`− 1 in S, where ` ≤ m.

• putRange(S, loc, a): write elements in array a to locations loc, . . . , loc + |a| − 1

in S, where |a| ≤ m.

• getRangeDist(S, 〈loc1, . . . , locc, 〉, 〈`1, . . . , `c, 〉): return an array a with elements

at locations loci, . . . , loci + `i − 1 in S,∀i ∈ [1, c], where
∑
`i ≤ m.

• putRangeDist(S, 〈loc1, . . . , locc〉, 〈a1, . . . , ac〉): write elements in each array ai to

locations loci, . . . , loci + |ai| − 1 in S, where
∑
|ai| ≤ m.
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We assume that the server can perform operations get and put in constant time

and operations getRange, putRange, getRangeDist and putRangeDist in time propor-

tional to the number of elements read or written, but each operation takes one I/O.

Definition 8 (Metadata). The name of the array S, its size, location i, l, and the

size of a are referred to as the metadata of a getRange or a putRange call. Similarly

for getRangeDist and putRangeDist, locations 〈loc1, . . . , locc〉, 〈`1, . . . , `c〉 and sizes of

a1, . . . , ac are referred as metadata as well.

5.2 Shuffle Method

One of the key techniques in our solutions is the use of oblivious shuffling. The

input to any shuffle operation is a set, A, of n items. Because of the inclusion of the

getRange operation in the server’s API, we can view the items in A as being ordered

by their keys. Moreover, this functionality also allows us to access a contiguous run

of m such items, starting from a given key. The output of a shuffle is a permutation

of the items in A with replacement keys, so that all permutations are equally likely.

During a shuffle, the server, Bob, can observe Alice read (and remove) m of the items

he is storing for her, and then write back m more items, which provides some degree

of obfuscation of how the items in these read and write groups are correlated.

During such a shuffle, we assume that Alice is wrapping each of her key-value

pairs, (x, v), as (x′, (x, v)), where x′ is the new key that is chosen to obfuscate x.

Indeed, it is likely that in each round of communication that Alice makes she will

take a wrapped (input) pair, (x′, X), and map it to a new (output) pair, (x′′, X ′),

where the X ′ is assumed to be a re-encryption of X. The challenge is to define an



55

encoding strategy that for the x′ and x′′ wrapper keys so that it is difficult for the

adversary to correlate inputs and outputs.

5.2.1 Oblivious Sorting

One way to do the oblivious shuffle is to assign each item a random key from a

very large universe, which is separate and distinct from the key that is a part of

this key-value pair, and obliviously sort the items by these keys (see Section 3.6).

That is, we can wrap each key-value pair, (x, v), as (x′, (x, v)), where x′ is the

new random key, and then wrap these wrapped pairs in a way that allows us to

implement an oblivious sorting algorithm in the OS model based on comparisons

involving the x′ keys. Specifically, during this sorting process, we would further

wrap each wrapped item, (x′, (x, v)), as (y, (x′, (x, v))), where y is an address or

index used in the oblivious sorting algorithm. So as to distinguish such keys even

further, Alice can also add a prefix to each such y, such as “Addr:” or “Addri:”,

where i is a counter (which could, for instance, be counting the steps in Alice’s

sorting algorithm). Using such addresses as “keys” allows Alice to consider Bob’s

storage as if it were an array or the memory of a RAM. She can then use this scheme

to simulate an oblivious sorting algorithm.

If the randomly assigned keys are distinct, which will occur with very high prob-

ability, then this achieves the desired goal. And even if the new keys are not distinct,

we can repeat this operation until we get a set of distinct new keys without revealing

any data-dependent information to the server.

Shuffling by sorting items via randomly-assigned keys generates a random per-

mutation such that all permutations are equally likely (e.g., see [33]). In addition,
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since the means to go from the input to the output is data-oblivious with respect to

the I/Os (simulated using the address keys), the server who is watching the inputs

and outputs cannot correlate any set of values. That is, independent of the set of

I/Os, any input set A can be mapped to any output permutation P . Thus, any input

permutation can be mapped to any of the possible n! permutations. Finally, we can

use the external-memory deterministic oblivious-sorting algorithm of Goodrich and

Mitzenmacher [24], for instance, so as to use messages of size m = O(n1/2), which

will result in an algorithm that sorts in O((n/m) logm(n/m)) = O((n/m)) I/Os.

5.2.2 Oblivious Shuffle Model

In this section, we introduce a formal model for the oblivious shuffle of an array.

Definition 9 (Shuffle). A shuffle S is a pair of algorithms (Setup, Shuffle), as follows.

• (s, S) ← Setup(1k) Given security parameter k, run the key generation algo-

rithm for a symmetric encryption scheme (Enc,Dec) and store the key in secret

state s. Also, allocate an auxiliary datastore S.

• (Enc(π(A)), α) ← Shuffle(s, S, A, π) Given secret state s, auxiliary data store

S, an array input A, and a permutation π, return (1) the encryption of the

permutation of A according to π; (2) a transcript α of the operations that

transform Enc(A) to Enc(π(A)) using auxiliary space S.

Transcript α is a sequence of l (request, response) pairs 〈(r1, g1), . . . , (rl, gl)〉 that

capture the evolution of the datastore via intermediate states S1, S2, . . . , Sl+1. An

invariant on each intermediate state is to store an encryption of some permutation
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of A along with any auxiliary data. For example S1 contains Enc(A) and Sl con-

tains Enc(π(A)). Setting S1 ← {Enc(A), S}, s0 ← s, g0 ← ⊥ define the relationship

between ri and gi as:

〈 (si, ri)← GenRequest(si−1, gi−1), (Si+1, gi)← GenResponse(Si, ri) 〉.

Operations GenRequest and GenResponse generate a request ri and a corresponding

response gi and are defined as follows:

• (si, ri) ← GenRequest(si−1, gi−1) Perform a computation based on a substruc-

ture of Si−1, gi−1, and generate next request to Si, ri.

• (Si+1, gi) ← GenResponse(Si, ri) Generate the response to request ri on Si:

Si+1 is the datastore Si updated according to ri and gi is the response to ri with

respect to Si. For example, if ri is a get request, then Si+1 = Si and gi is the

requested item. Also, if ri is a put request, then gi is empty.

The private state s is updated if needed after every request.

In our cloud storage model, a shuffle S is a distributed computation executed

by the user and the server. The user runs the Setup algorithm to generate the

encryption key and requests the server to allocate some space. He then runs the

Shuffle algorithm by accessing S through the server, that is, issuing requests to

the server using GenRequest. The set of possible requests is defined by the storage

model supported by the server. In our case this set is {get, put, getRange, putRange,

getRangeDist, putRangeDist} (see Section 5.1.2). For every request ri, the server
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executes GenResponse, locally updating S for put requests and returning to the user

the queried items for get requests.

5.2.3 Security of Oblivious Shuffle

We capture the security of a shuffle S against a curious server in the cloud stor-

age model as a game, Shuffle-IND, between S and a probabilistic polynomial-time

bounded (PPT) adversary A. In this game, the inputs and outputs of S that are

revealed to the server in the cloud storage model are also revealed to A. However,

the secret state s kept by the client, any updates to it and computations inside

of GenRequest are kept private, since in the cloud model they are also hidden and

happen on the user side.

The game starts with S running Setup once, allocating at the server space to

be used in subsequent computations. A then tries to “learn” how S performs the

shuffle on a sequence of m1 input arrays and permutations picked by A. Based

on what A learns, she picks two challenges (A0, τ0) and (A1, τ1) each consisting of

a data array to be permuted using a corresponding permutation. S secretly picks

one pair and performs the shuffle according to it. The adversary is then allowed to

observe S shuffling another sequence of m2 (input, permutation) pairs, also picked

by A. Finally, A has to guess which challenge pair (input, permutation) S picked to

shuffle. Note that at any time, A can ask S to perform a shuffle on any combination

of A0 or A1 and permutations τ0 or τ1.

We now give a formal definition of the game.

Definition 10 (Shuffle-IND). Let A be an input array of size n picked by a PPT

adversary A. A and S engage in the following game.
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S: (s, S)← Setup(1k).

for j ∈ {1, . . . ,m1}, where m1 is poly(k):

A: Pick array Bj and a permutation ρj.

S: Execute (Oj, α)← Shuffle(s, S,Bj, ρj). Reveal Oj and α to A.

A: Pick (A0, τ0) and (A1, τ1) of the same length.

S: Pick a secret bit b and execute (O,α) ← Shuffle(s, S, Ab, τb). Reveal O and α

to A.

for j ∈ {m1 + 1, . . . ,m1 +m2}, where m2 is poly(k):

A: Pick an encrypted array Bj and a permutation ρj.

S: Execute (Oj, α)← Shuffle(s, S,Bj, ρj). Reveal Oj and α to A.

A: Output bit b′.

The adversary wins the game if b = b′.

Using the Shuffle-IND game, we now define an oblivious shuffle.

Definition 11 (Oblivious Shuffle). Let k be the security parameter and n be a poly-

nomial in k. S is an oblivious shuffle over n items if for every probabilistic adversary

A running in time polynomial in k, the probability of winning the Shuffle-IND game,

Pr[b = b′], satisfies

Pr[b = b′] ≤ 1

2
+ negl(k).
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5.3 The Melbourne Shuffle Algorithm

In this section we develop an oblivious shuffle algorithm, whose goal is still to obliv-

iously permute the collection, A, of n values, but with a simpler algorithm. Classic

card shuffle methods (e.g., Knuth (or Fisher-Yates) [33], the riffle shuffle [3], Thorp

shuffle [49]) are not data-oblivious, however, as anyone observing card swaps or riffles

(interleaving two subdecks) of such methods can learn the final output permutation.

are not data-oblivious, however, as anyone observing card swaps or riffles (interleav-

ing two subdecks) of such methods can learn the final output permutation. To this

end, we propose first data oblivious shuffle algorithm, the Melbourne shuffle. The

Melbourne shuffle uses messages and private client memory of size m = n1/c log n,

for any constant c ≥ 2. We first explain and analyze m = n1/2 log n case, and later

build a solution for the general case.

5.3.1 Intuition

The Melbourne shuffle uses private memory and messages of sizeO(
√
n log n), O(n log n)

server storage and processes in O(
√
n) requests. An important ingredient of our so-

lution is probabilistic encryption. Everything stored at the server is encrypted and

every time an item is read from the server, the user decrypts it, re-encrypts it and

writes it back. Since we use CPA-secure encryption, the ciphertexts produced for

the same item always look different and, hence, the server, aka the adversary, cannot

tell whether the ciphertexts correspond to the same item or not.

The goal of our oblivious shuffle is to reveal to the adversary only information

that she would expect to see in a random permutation with very high probability. For
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example, even for a secret permutation picked uniformly at random, the adversary

can guess with probability 1/n that the first element of the input array of size n

appears in some location i of the output permutation. Continuing with this intuition,

suppose we split the input array of size n into
√
n buckets where every bucket has

√
n items, and similarly for the output permutation. In this case, using the analysis

of the balls-and-bins model, the adversary can guess that with high probability, each

bucket in the output permutation has O(log n) elements from any particular bucket

of the input array.

We build on the observation above and move elements from input buckets to

output buckets by imitating the balls-and-bins process. That is, if the size of the

input bucket is the same as the number of output buckets, we place O(log n) elements

of every input bucket in every output bucket. If the number of elements in a bucket

is much larger than the number of output buckets, i.e., the number of output buckets

is n1/c′ while input bucket has n1/c items, for constants c and c′ s.t. c′ > c, then we

move O(n1/c−1/c′) items to every output bucket.

The reader may have noticed that in the first example above, elements of an

input bucket of size
√
n are placed in

√
n output buckets in batches of O(log n)

items. What are the additional items? These additional items are referred to as

dummy items. A dummy item is a real item with a fake key and some nonce value

such that the size of the dummy and real item are equal. Moreover, since all the data

is re-encrypted every time it is written to the server, the server cannot tell which

items in a batch are real and which are dummy.
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5.3.2 Overview

We assume that each element in the input array, A, is a key-value pair (x, v) for

every x ∈ D. The algorithm has two phases: distribution and clean-up. For each

phase, the data store S is split in several logical subparts: I, T and O. I is an

array containing n encrypted items of the input A permuted according to some

permutation π0 (initially, π0 is the identity). T is an encrypted temporary array

used during the shuffle; after the shuffle is done, O contains the output, i.e., re-

encrypted items of I permuted according to π. If the shuffle needs to be executed

again, the user sets I ← O and π0 ← π. We further divide each subpart of S in

buckets of equal size. The number of buckets and how it effects the runtime of the

algorithm will be determined later.

During the distribution phase items of every bucket of I along with some dummy

items are re-encrypted and distributed equally among buckets of T . Here, the dis-

tribution of item (x, v) is done according to its final location π(x) in O. After the

distribution phase the intermediate array T contains real and dummy items. More-

over, the items appear in correct buckets but not in correct positions within each

bucket. The clean-up phase remedies this by reading one bucket at a time, removing

dummy items, distributing the real items correctly within the bucket and writing

the bucket to O.

The distribution phase alone cannot produce every possible permutation since

the number of items sent from a bucket of I to a bucket of T is limited. E.g., the

identity permutation cannot be achieved. To rectify this, we execute two shuffle

passes. First, for a permutation π1 picked uniformly at random and then for the

desired permutation π. Although this framework still allows failures, our algorithm
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can produce every permutation, failing with very small probability independent of

the desired permutation π.

5.3.3 Algorithm

The complete shuffle algorithm shuffle(I, π, O) is shown in Algorithm 4 where I is the

encryption of the input array A, π is the desired permutation and the last argument

is the output array where the algorithm is expected to put an encryption of π(A).

We omit the Setup from the discussion since it is trivial: the client simply runs a

key generation to setup a secure encryption scheme and a seed generator for pseudo

random permutations.

The algorithm makes two calls to shuffle pass (Algorithm 5), first for a random

permutation π1 and then for the desired permutation π. We proceed with the de-

scription of shuffle pass(I, T, ρ, O) where I and O are defined as in shuffle, T is a

temporary array and ρ is the desired permutation. We use the convention of giving

arrays I, T and O as inputs to the shuffle pass algorithm for the ease of explanation.

In the cloud storage scenario that we consider here, one simply specifies the location

where these arrays are stored remotely, e.g., the name of a file and a location within

it. Given an input array of size n, this method has messages and client’s private

memory of size O(
√
n log n) and server memory of size O(n log n). These user and

server memory requirements are temporary and are reduced to O(1) and n, respec-

tively, when the shuffle is finished. As mentioned before, method shuffle pass is split

into a distribution phase and a clean-up phase.
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Algorithm 4 The complete Melbourne shuffle algorithm, shuffle(I, π, O), where the
user can read and store in private memory M up to

√
n× p log n elements, p ≥ e.

I: array of n encrypted elements (x, v); π: permutation; O:
permutation of I according to π, where every element is re-
encrypted.

1: Let π1 be a random permutation
2: Let T be an empty array of size n× p log n stored remotely
3: shuffle pass(I, T, π1, O)
4: I ← O
5: shuffle pass(I, T, π,O)
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Figure 5.1: Illustration of the distribution phase of shuffle pass (Algorithm 5). Shadowed regions
represent dummy values added to pad each batch to the size of p log n. The batches are encrypted,
hence, one cannot tell where and how many dummy values there are in each batch.

Distribution Phase The distribution phase of method shuffle pass (Algorithm 5),

shown in Figure 5.1, imitates throwing balls into bins by putting elements from every

bucket of I to every bucket of T according to the permutation ρ. In particular, a

batch of p log n encrypted elements from every bucket of I is put in every bucket of

T (rev bucket[idT ] in the pseudo-code). Here, p is a constant and is determined in

the analysis.

Each batch contains real and dummy elements. The first batch is filled in with

real elements (x, v) that would go to the first bucket in O according to ρ, i.e.,
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Algorithm 5 Single pass shuffle pass(I, T, ρ, O) of the Melbourne shuffle algorithm,
where the user can read and store in private memory M upto

√
n× p log n elements.

I: array of n encrypted elements (x, v); T : auxiliary array that fits n × p log n
encrypted elements, where p is a constant that is a parameter of the algorithm;
ρ: permutation; O: permutation of I according to ρ, where every element is re-
encrypted.

1: max elems← p log n
2: num buckets←

√
n

3: {Distribution phase: distribute elements of I into T}
4: for idI ∈ {0, . . . , num buckets− 1} do {read buckets of I}
5: bucketM ← getRange(I, idI ×

√
n,
√
n)

6: rev bucketM ← empty map() {Reverse map of bucket ids in T to elements}
7: for e ∈ bucketM do {Assign elements their bucket ids in T}
8: (x, v)← Dec(e)
9: idT ← bρ(x)/

√
nc {Bucket id of element (x, v) in T according to its location

in O}
10: rev bucketM [idT ].add(Enc(x, v)) {Collect elements of same bucket}
11: end for
12: {Can be done via a single putRangeDist for

√
n batches of size max elems}

13: for idT ∈ {0, . . . , num buckets− 1} do {Distribute bucketM in buckets of T}
14: if size(rev bucketM [idT ]) > max elems then
15: fail {ρ moves more than p log n elements from a bucket of I to a bucket

of T}
16: end if
17: {Hide how many real elements go to T ’s buckets by padding with encrypted

dummies}
18: rev bucketM [idT ]← dummy pad(rev bucketM [idT ],max elems)
19: {Write a batch of max elems from every bucket of I to every bucket of T}
20: putRange(T, idT ×

√
n×max elems + max elems× idI , rev bucketM [idT ])

21: end for
22: end for
23: {Clean-up phase: clean T and write the result to O}
24: for idT ∈ {0, . . . , num buckets− 1} do {read buckets of T}
25: bucketM ← getRange(T, idT ×

√
n×max elems,

√
n×max elems)

26: {Decrypt the bucket, remove dummy, sort real elements using ρ and re-
encrypt}

27: bucketM ← clean(bucketM)
28: {The distribution phase guarantees that bucketM contains exactly

√
n ele-

ments}
29: putRange(O, idT ×

√
n, bucketM)

30: end for
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the elements for which bρ(x)/
√
nc = 0. Similarly for every other batch. Since a

bucket of I contains only
√
n elements and we put

√
n × p log n elements in total

in all buckets in T , most batches will have less than p log n elements. We pad such

batches with dummy elements to hide where and how many elements of I’s bucket

are placed in T (line 18). Note that a batch is re-encrypted before it is written to T ,

completely hiding the content and making it impossible to recognize where dummy

or real elements are (lines 10 and 18). If according to ρ more than p log n elements

are mapped from a bucket of I to a bucket of T , the algorithm fails (line 15). We

later consider what happens in case of a failure. We note that
√
n calls to putRange

in the loop in lines 13-21 is for the ease of explanation only. These calls can be

substituted by a single call putRangeDist, putting
√
n× p log n elements all at once.

Hence, for every bucket read from I, there is only one corresponding write to T .

Clean-up Phase The distribution phase leaves T with two problems: first, though

the elements are in correct buckets according to ρ they are not in the correct loca-

tions inside the buckets, and second, T contains dummy elements. To remedy these

problems, the clean-up phase in Algorithm 5, illustrated in Figure 5.2, proceeds by

reading buckets of T of size
√
n×p log n and writing in their place buckets of size

√
n.

When processing each bucket, the algorithm removes dummy elements, sorts the

remaining content of every bucket according to their final location in O (line 27). It

is important to note that each written bucket contains exactly
√
n elements before

it is being written back. This follows from the fact that elements were distributed to

buckets according to the permutation ρ and the algorithm failed in the distribution

phase for those ρ that would have resulted in more than
√
n elements in each bucket.
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Figure 5.2: Illustration of the clean-up phase of shuffle pass Algorithm 5). Shadowed regions
represent dummy values that are removed during the clean-up phase.

Performance The performance of the Melbourne shuffle is summarized in the

following theorem.

Theorem 12. Given an input array of size n, the Melbourne shuffle (Algorithm 4)

executes O(
√
n) operations, each exchanging a message of size O(

√
n log n), between

a user with private memory of size O(
√
n log n) and a server with storage of size

O(n log n). Also, the user and server perform O(n log n) work.

Proof. We first note that
√
n calls to putRange in the loop in lines 13-21 is for the

ease of explanation only. These calls can be substituted by a single call putRangeDist,

putting
√
n× p log n elements all at once.

A single shuffle pass in Algorithm 5 requires 2
√
n calls to getRange,

√
n calls

to putRangeDist, and
√
n calls to putRange, assuming the user and the server can

exchange up to
√
n× p log n elements in a single request. The shuffle in Algorithm 4

requires 8
√
n requests in total since it makes 2 calls to the shuffle pass procedure.

The private memory required at the user to perform the shuffle is
√
n× p log n. The
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required server’s memory is n × p log n. However, this overhead is temporary since

the increase in memory happens only during the shuffle pass and is reduced to n

when the shuffle is finished. Similarly for the user, the memory of size
√
n× p log n

is required only during the shuffle. We note that the total computation for the user

and the server is O(n log n).

5.3.4 Security Analysis

In this section, we show that the Melbourne shuffle (Algorithm 4) is oblivious for

every permutation π with high probability.

Definition 13. Let A be an array of n elements such that every x ∈ [1, n] is at

location π0(x) in A. Let B be an array that stores a permutation π of elements in A,

i.e., B = π(A). Split A and B in
√
n buckets of equal size and fix a constant p ≥ e.

Let π be a permutation on n elements where every bucket of B contains at most

p log n elements of every bucket of A. We refer to the set of all such permutations

as P (π0).

Lemma 14. The size of set P (π0) is (1− negl(n))× n!, for every permutation π0.

Proof. Let π be a random permutation from all possible n! permutations. We con-

sider the relationship between the input array A and a permutation of A, B = π(A).

We start by splitting A and B in buckets of size
√
n and numbering buckets from

1 to
√
n using their order in each array. The analysis below estimates how many

permutations can be constructed by restricting the maximum number of elements

from a bucket of A appearing in any bucket of B to p log n.
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Let Xb
a be a random variable that measures the number of elements from ath

bucket of A present in bth bucket of B. The mean value of Xb
a is 1, since we are dis-

tributing
√
n elements of a among

√
n buckets of B. Although Xb

a, for 1 ≤ a, b ≤
√
n,

variables are dependent between each other, we can use the Poisson Approxima-

tion [39, Chapter 5.4] and instead work with n independent Poisson random variables

Y b
a with mean 1.

Given n variables Y b
a we are interested in bounding the probability of the event

that there is no a and b such that Y b
a ≥ p log n. For a specific a and b it is:

Pr[Y b
a ≥ p log n] ≤ 1

e

(
e

p log n

)p logn

.

Using union bound, the probability that at least one of the Y b
a s is greater than p log n

is at most

n
1

e

(
e

p log n

)p logn

.

Since Y b
a s are a Poisson approximation of the variables Xb

a, the probability that at

least one of the Xb
as is greater than p log n is at most

2n
1

e

(
e

p log n

)p logn

.

Setting p ≥ e we get

2n
1

e

(
e

p log n

)p logn

≤ 2n

(log n)p logn
=

2n

np log logn
= 2negl(n) = negl(n).

Lemma 15. Let π0 be the initial permutation of n elements in the input array I.

Method shuffle pass (Algorithm 5) succeeds for all permutations ρ ∈ P (π0).
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Proof. The algorithm allocates elements of I inO according to ρ by first putting them

into corrects buckets (lines 4–22) and then sorting every bucket using ρ (line 27).

By construction the algorithm fails for any permutation ρ that requires more than

p log n elements from a bucket of I mapped to buckets of O (line 14–16).

Lemma 16. Method shuffle(I, π, O) (Algorithm 4) is a randomized shuffle algorithm

that succeeds with very high probability.

Proof. Let π0 be the initial permutation of the input array I. Algorithm 4 makes

two calls to shuffle pass which succeeds for all possible permutations except for

1/nΩ(log logn) fraction of them (Lemmas 14 and 15). The first shuffle pass is executed

for permutation π1 on an input permuted according to some permutation π0. Since

π1 is picked using internal random coins, the probability of the shuffle pass failing is

independent of π0 and is bounded by 1/nΩ(log logn). If the first shuffle pass did not fail,

the shuffle pass is executed second time with input permutation π. The second shuffle

is executed on the input array that is permuted according to a random permutation

π1 ∈ P (π0). The second pass does not fail iff π1 ∈ P (π). Hence, Algorithm 4 fails if

π1 6∈ P (π0) or π1 6∈ P (π). By Lemma 14, the probability of either of these events is

negligible in n, hence the basic Melbourne shuffle succeeds with very high probability

for any π0 and π.

We show that method shuffle pass (Algorithm 5) is oblivious by mapping it to the

Oblivious Shuffle Model in Section 7.2, extracting the corresponding transcript and

showing that the transcript reveals no information about the underlying permutation

if the encryption scheme is CPA secure (see Section 3.3).

Method shuffle pass (Algorithm 5) corresponds to GenRequest. Calls to getRange

and putRange trigger calls to GenResponse at the server. We do not describe GenResponse
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since it depends on the implementation of the storage provider. We are only inter-

ested in the fact that it uses server’s state S to store and maintain arrays I, T and O.

The transcript α of the shuffle execution is defined as follows. The request ri is either

getRange(S, i, l) or putRange(S, i, a), e.g., in line 29 (S, x, a) is (O, idT×
√
n, bucketM).

The response gi to getRange is an array a, e.g., a contains
√
n elements in line 5 and

is stored in bucketM . The response to putRange is empty. We first analyze the

metadata (Definition 8) that corresponds to every request between the client and

the server, and show that, unless the algorithm fails, they depend on the size of

the input only, and are independent from the input array and the desired permu-

tation. Hence, we obtain that the Melbourne shuffle is a data independent shuffle

algorithm. We finally show that if the content exchanged is encrypted, as it is in

method shuffle pass (Algorithm 5), the Melbourne shuffle (Algorithm 4) is oblivious.

Lemma 17. The metadata of requests exchanged between the client and the server

in method shuffle pass (Algorithm 5) is independent of permutation π0 of the input I

and output permutation ρ ∈ P (π0), and depends only on n.

Proof. Let α be a sequence of (request, response) pairs exchanged between the client

and the server, denoted as (ri, gi), where ri is either a getRange or putRange and gi

is bucketM for getRange and empty for getRange. The sequence α can be further

split in
√
n (getRange, putRange) calls that correspond to distribution phase and

√
n

(getRange, putRange) during the clean-up phase.

The metadata of putRange is the name of the array, the location within the

array and how many elements should be read. In the algorithm these correspond

to reading an array of size n sequentially in buckets of size
√
n (distribution phase,

line 5) and
√
n× p log n (clean-up phase, line 25). These data depend only on n and

p. The metadata for a putRange call consists of the array to be accessed, the location
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where to put the data and the size of the data to be written. In the algorithm, first

calls to putRange place
√
n batches of size p log n in the temporary array to locations

that depend on the input bucket that has been read using getRange (line 20). These

locations are deterministic since getRange simply scans the input array. The second

sequence of calls to putRange happens during the clean-up phase when buckets of

size
√
n are written sequentially to the output array (line 29). These calls are also

deterministic. It is also easy to show that the transcript where a sequence of
√
n

calls to putRange in lines 13-21 is substituted with a single call to putRangeDist is

also deterministic.

Lemma 18. Let π0 be the initial permutation of n elements in the input array I

and let ρ be a permutation from the set P (π0). Method shuffle pass(I, T, ρ, O) (Algo-

rithm 5) is an oblivious shuffle according to Definition 11.

Proof. We showed in Lemma 15 that Algorithm 5 succeeds for all ρ ∈ P (π0). We

also showed that all metadata in the transcript that is revealed to the adversary A

in the Shuffle-IND game in Definition 10 after every call to Shuffle is independent of

data content and hence can be determined based only on n and is the same for any

choice of input and output. The data content exchanged in each call does depend on

the data, however, it is always encrypted. We show that the security of the shuffle

depends on the security of the underlying encryption scheme.

To the contrary, we assume that there is a PPT adversary A that can distinguish

with a non-negligible advantage two permutations τ0 and τ1 by observing the tran-

script of one of them. Hence, this adversary can win Shuffle-IND game. We show

that if A exists then we can construct an adversary B who can use A to win Enc-

IND-CPA game with a non-negligible advantage, which would break our assumption

about the encryption scheme. We recall that in Enc-IND-CPA game B has access
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to oracles Enc and Dec and can encrypt and decrypt sequences of messages of his

choice, except asking for the decryption of the challenge ciphertext.

We construct the adversary B as follows. B does not need to run Setup since

he has oracle access to Enc and Dec. A starts making calls to Shuffle on chosen

pairs of input arrays and permutations. B imitates the shuffle by responding with

the encrypted permutation and a transcript α, that he can produce himself. He

continues doing so until A comes up with a challenge of two (input, permutation)

pairs (A0, τ0) and (A1, τ1). B first creates a static transcript that will be the same

for both permutations. He then, extracts all the calls to be made to Enc into two

sequences: one that corresponds to (A0, τ0) and one to (A1, τ1). He gives these two

sequences of elements to be encrypted to his own challenger. The challenger picks

one sequence at random, encrypts all its plaintexts (i.e., elements) one by one and

gives the result to B. B combines the ciphertexts with the metadata, that depend

only on n, to create a valid transcript α and sends it to A. He continues, responding

to Shuffle requests from A until A outputs his guess b for the pair (Ab, τb). B

outputs b as his guess for which sequence of messages his challenger picked. Since

A’s advantage in winning the game is non-negligible so is B’s.

Theorem 19. The Melbourne Shuffle (Algorithm 4) is a randomized shuffle algo-

rithm that succeeds with very high probability and is data-oblivious according to Def-

inition 11.

Proof. Algorithm 4 makes two calls to method shuffle pass, which is oblivious by

Lemma 18. If Algorithm 4 is not oblivious, then there is a PPT adversary A who

can distinguish shuffle of two permutations. If A exists, we can build an adversary B

who can break the security of the underlying shuffle pass using A. Whenever A

makes a call to Shuffle for a permutation π, B first picks a random permutation π1
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and calls shuffle pass on π1. It then uses the output of this call and π to make

another call to shuffle pass, this time returning the output to A. This continues until

A comes up with two challenge pairs (input, permutation) (A0, τ0) and (A1, τ1). B

first picks a random permutation and runs shuffle-pass on it. He then gives his own

challenger the output of this shuffle along with (A0, τ0) and (A1, τ1). The challenger

returns to B the shuffle according to (Ab, τb), keeping b secret. B forwards what he

receives to A. B continues replying shuffle requests of A as he did before until A

makes a guess for b. B outputs this guess as his own.

Note that method shuffle pass outputs fail for some permutations. Whenever it

does so, B sends this information to A. However, as showed in Lemma 16 this

happens with negligible probability for any pair of input and output permutations

and reveals nothing to the adversary about the output permutation since the failure

is due to secret random bits.

5.3.5 The Melbourne Shuffle with Small Messages

The Melbourne shuffle can be extended to work with messages and private memory

of size n1/c log n, for c ≥ 3.

The idea behind the approach is to run the algorithm recursively with depth c−1.

For a fixed c, one first splits the output in large buckets of size n(c−1)/c and executes

the shuffle as in the square root case: distributing n1/c among n1/c large buckets.

We call this the first level of the recursion. After this, each large bucket has correct

elements but not in correct buckets nor positions. The square root shuffle is executed

again on each large bucket, but now splitting the large bucket of size O(n(c−1)/c log n)

in n(c−2)/c buckets and again using only n1/c private memory. The client follows the
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recursion until the size of the inner buckets becomes O(n2/c) when elements can

be distributed in their correct buckets of size n1/c. At this point, the buckets are

small enough that they can be read to private memory during the clean-up phase

and be placed in correct positions within their bucket. Hence, there are c− 1 levels

of recursion. Each level i requires a block of n(c−i)/c buckets, each of size n1/c, to

be distributed among n1/c output buckets. Since every level has n(i−1)/c blocks,

the square root solution is required to be executed n(i−1)/c times per level, each

making O(n(c−i)/c) accesses. Hence, the total number of requests can be expressed

as
∑c−1

i=1 O(n(c−i)/c × n(i−1)/c) = O((c− 1)n(c−1)/c).

The Melbourne shuffle uses private memory and messages with a multiplicative

log n factor. Hence, a naive extension of this algorithm to small messages could

accumulate the O((log n)c) factor. This happens due to reading n1/c elements and

writing back O(n1/c log n) elements and clean-up phase not being able to reduce this

to n1/c until the last level of the recursion. One can prevent this by observing that

when distributing n2/c elements among n1/c output buckets, every bucket will have at

most n1/c of its elements in every output bucket, with very high probability (by using

Chernoff bounds [39, Chapter 4]). Hence, after distributing O(log n) elements from

buckets of size n1/c, we can make another sequential pass, reading n1/c log n elements

at a time (i.e., the elements that were contributed by batches of size log n from n1/c

buckets) and applying the fact that all together they could not contribute more

than O(n1/c) elements, and hence writing back only O(n1/c). Note that we remain

data-oblivious, since again we are using the observation of what the adversary would

expect to see with very high probability.

We note that each recursive level does not depend on higher levels and, hence,

has the same memory requirements as a single shuffle pass of the corresponding

algorithm.
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Theorem 20. Given an integer constant c ≥ 3 and an input array of size n, the

Melbourne shuffle executes O(cn(c−1)/c) operations, each exchanging a message of size

O(n1/c log n) between a user with private memory of size O(n1/c log n) and a server

with storage of size O(n log n). Also, the user and server perform O(cn log n) work.

5.4 The Square-Root Based OS Solution

In this section, we give an overview of a secure and efficient oblivious storage scheme

that uses the Melbourne shuffle. The oblivious storage (OS) we consider here follows

the framework proposed in [21] (see Section 3.7 for the description). Here, we assume

that the user and the server can exchange messages of size O(
√
n log n) and the

client’s memory is also O(
√
n log n). We change the solution of [21] as follows.

Setup This phase follows the description in Section 3.7 until one the shuffle of I

is required. The client picks a secret permutation, PRP π and calls the Melbourne

shuffle via shuffle(I, π, O) where O is the location at the server where the shuffled

and encrypted array of A is stored. We set I ← O for the access phase. Similar

to the original square-root solution, the user also allocates at the server an empty

cache C that can fit encryptions of up to
√
n requested elements. Recall that the

number of non-empty locations in C is the total number of requests that were made

to remote storage since the last time I was shuffled. We refer to how many elements

are present in C as l. As before, the client remembers the seed that generated π so

that he can find the elements during the access phase and the encryption key in his

private memory.
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Access Phase Access phase also follows the description in Algorithm 2 but request

the cache C with a single request since the cache fits in one request message and in

client’s memory. It decrypts the cache and checks if an element with the key x is

present in C. If so, it remembers the element (x, v). Then, a location in I is accessed

as follow. If the element was found in the cache a fake element with the key n + l

is accessed by requesting the location π(n + l) of I. Otherwise, the location that

stores the element with the key x is accessed, by requesting location π(x) of I. After

reading the cache and making one request to I, the user has the desired element

(x, v). If the original request was read he writes encrypted element (x, v) to the first

empty location in C on the server, if it was a write, the client writes (x, v′) instead.

This phase can proceed this way for
√
n − 1 more requests, after that the cache

fills up and the rebuild phase follows. This phase requires 3 accesses to the remote

storage per every requested element.

Rebuild Phase Recall that the goal of the rebuild phase is to free C by plac-

ing updated elements back to I and shuffle I using a new secret permutation π′

that is independent of π. This step has to be done in a data-oblivious manner to

prevent correlations between access patterns to I before and after reshuffle. One

first writes C to I by reading C in private memory and then reading buckets of

size
√
n of I, updating them with elements of C, if needed, and writing them back

re-encrypted. After merging the cache C and I we are ready to call the Melbourne

shuffle via shuffle(I, π′, O). (Recall that in [21] this step was made using oblivious

sorting algorithms such as Batcher’s sorting network or AKS making O(n log2 n) or

O(n log n) requests, respectively). The client updates the seed that generated π′ in

his private memory and allocates an empty cache C at the server. The rebuild takes

O(
√
n) accesses if we use the Melbourne Shuffle. Since the shuffle happens after

√
n
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accesses we can amortize the rebuild overhead over the
√
n elements that caused it

achieving O(1) amortized overhead for every element.

The performance of the above OS scheme based on the Melbourne shuffle is

summarized in the following theorem.

Theorem 21. The randomized oblivious storage scheme based on the Melbourne shuf-

fle has the following properties, where n is the size of the outsourced dataset:

• The private memory at the client and each message exchanged between the

client and server have size O(
√
n log n).

• The memory at the server has size O(n log n) during the rebuild phase and

O(n) during the access phase.

• The amortized access overhead to perform a storage request is O(1).

In Chapter 6 we show that we can perform access and rebuild in parallel and

deamortize the rebuild overhead to achieve the worst case overhead of O(1).

5.5 The cth-Root Based OS Solution

We apply recursion to the square root solution to support messages and private user

memory of size n1/c log n. This solution uses a cache of size n1/c, which fits into

private memory, and c − 1 levels of additional storage. Each level i is large enough

to contain n(i+1)/c real elements and ni/c fake elements. The cache and levels 1 to

i − 1 have a similar cache functionality for level i as the cache C in the square

root solution, except they can store together O(ni/c) previously accessed elements.



79

Each level i < c− 1 contains n(i+1)/c + ni/c buckets of size O(log n) that allows one

to store n(i+1)/c + ni/c elements in a hash table and avoid collisions with very high

probability (see Section 3.4). Buckets with fewer than log n elements, real or fake,

are filled in with dummies. The last level, level c − 1, has n real and n(c−1)/c fake

elements, hence a permutation can be used to store and access the elements. Given

the above memory arrangement at the server, the access and rebuild phases proceed

as follows.

Access phase requires a total of c + 1 accesses to the server: read the cache of

size n1/c, read O(log n) size bucket from every c − 2 levels, read one element from

the last level, write an updated cache back. Note that each bucket can be read

into memory since we assume private memory and messages of size O(n1/c log n).

Hence, O(c) accesses are required to access an element obliviously. The access phase

proceeds as follows: read the cache, if an element is found access a new fake element

from level 1, and proceed with fake accesses from then on. Otherwise, look up the

bucket using a hash function of level 1 where the element is supposed to be if it was

read before. Again, proceed with consequent fake accesses, if the element was found,

or keep looking for the element.

Rebuild phase After n1/c elements have been accessed, level 1 is rebuilt tak-

ing O(n1/c log n) accesses to be rebuilt using the Melbourne Shuffle for small mes-

sages (see Section 5.3.5). Similarly, when (i-1)th level is full it requires shuffling of

n(i+1)/c log n elements at level i using O(i×ni/c log n) accesses. Finally, the last level

requires O((c − 1)n(c−1)/c) accesses to rebuild. We could amortize the cost of the

rebuilds to get O(c log n) amortized, access overhead per every element.
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Though, this solution resembles the Hierarchical Solution of [21] by using buckets

of size log n at every level, it has two important differences. The expansion factor

from level to level is n1/c, instead of 2, hence, we only have c levels, and the rebuild

phase uses our shuffle algorithm instead of a more expensive oblivious sort.

Theorem 22. The randomized oblivious storage scheme based on the Melbourne shuf-

fle with small messages has the following properties, where n is the size of the out-

sourced dataset and c is a constant such that c ≥ 3:

• The private memory at the client and each message exchanged between the

client and server have size O( c
√
n log n).

• The memory at the server has size O(n log n) during the rebuild phase and

O(n) during the access phase.

• The amortized access overhead to perform a storage request is O(c log n).

In the next Chapter we show that we can perform access and rebuild in parallel

and deamortize the rebuild overhead to achieve the worst case overhead of O(c log n).



Chapter Six

Deamortization of Oblivious

Access Schemes
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The oblivious RAM solutions that we have presented in Sections 4 and 5, including

some of the solutions in Table 2.1, try to minimize the amortized access overhead

of each simulated request. However, depending on when the request occurs the

user may have to wait for as many as Ω(n) accesses till she can proceed with her

requests. In this chapter we deamortize solutions [21] (Section 3.7) and Section 4

such that each request takes a sub-linear worst-case bounded amount of time. The

technique for [21] can be trivially extended to the solution in Section 5 where we

use the Melbourne Shuffle instead of oblivious sorting during the rebuild phase. The

technique presented here can be also used to deamortize other hierarchical-based

ORAM solutions [50, 34].

6.1 The Square-Root Scheme

We first present an oblivious RAM simulation method with O(
√
n log2 n) access

overhead in the worst case to demonstrate some of the ideas behind the more efficient

technique developed in Section 6.2. The method is based on the square-root approach

originally proposed in [21], which has O(n log2 n) worst-case access overhead and

O(
√
n log2 n) amortized access overhead (see Section 3.7).

Intuition The most expensive step of the square-root approach is building a new

table, where items and dummy values are ordered using a new pseudo-random permu-

tation. This step is executed every
√
n requests and takes O(n log2 n) accesses. Our

idea is to split the accesses for the rebuild into
√
n batches, each with O(

√
n log2 n)

accesses, and to execute each batch after processing a request so that the new table

is ready to be used after processing
√
n requests. We will show how this idea can be
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Memory to handle requests

Bcur Bprev

T
next

W

Workspace to handle rebuilds

dummy items
Tcur

Figure 6.1: Memory layout of the data repository during oblivious RAM simulation of our deamor-
tized version of the square-root solution (Section 6.1).

implemented while preserving obliviousness and keeping the same asymptotic access

overhead and storage overhead as the original method.

6.1.1 Setup

Memory Layout We organize the memory on the data repository into five areas.

We make use of two buffers, Bcur and Bprev, each of size
√
n. We also have two

tables, Tcur and Tnext, each of size n +
√
n. These tables are built using different

pseudo-random permutations on the n data items outsourced by the client and
√
n

dummy values. Finally, we employ a workspace W of size n+ 2
√
n for constructing

incrementally the new table, Tnext, while the current table, Tcur, and the two buffers,

Bcur and Bprev, are being used to process requests. (See Figure 6.1 for illustration.)

Initialization We split a sequence of requests into epochs, each consisting of
√
n

requests. Initially, buffers Bcur and Bprev are empty and each of the tables Tcur and

Tnext contains the n items and
√
n dummy items permuted according to a pseudo-

random permutation, where Tcur uses permutation π0 and Tnext uses permutation π1.
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6.1.2 Access Simulation

Processing an Epoch Buffer Bcur caches the
√
n items being requested in the

current epoch while buffer Bprev caches the
√
n items that were requested in the

previous epoch. Thus, Bprev is empty during the first epoch. Also, table Tcur is used

for processing requests and workspace W is used to build incrementally a new table,

based on a new pseudo-random permutation.

Transitioning to the Next Epoch At the end of an epoch, the new table is

copied from W to Tnext. Next, table Tcur and buffer Bcur are copied to W . Finally,

table Tnext is copied to Tcur to accommodate the requests from the next epoch. Also,

we overwrite Bprev with items from Bcur and we empty Bcur.

Incremental Table Construction The construction of the new table, Tnext in

workspace W takes as input Tcur and Bcur from the previous epoch. We say that the

instance of a data item in Tcur is stale if there is an instance of the same data item

in Bcur. Using an algorithm from [21], we obliviously filter out the stale instances

of the data items and we construct a table for the set consisting of the n data

items and
√
n dummy items, storing them according to newly generated pseudo-

random permutation. Since this algorithm performs O(n log2 n) accesses to the data

repository, we deamortize it by splitting its sequence of accesses to workspace W into

√
n batches of c

√
n log2 n accesses each, for some constant c > 0. The construction

of table Tnext starts at the beginning of the epoch and a batch of accesses is executed

after processing each request. Hence, the new table Tnext is ready by the end of the

epoch.
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Algorithm 6 Oblivious RAM simulation with our deamortized version of the square-
root approach (Section 6.1).

Generate pseudo-random permutation function πcur

Initialize table Tcur by storing the n data items and
√
n dummy items according

to permutation πcur

Initialize W with n data items and
√
n dummy items

while true do {process the requests in an epoch}
Generate pseudo-random permutation function πnext

request count← 1
while true do {process request for data item x}

found← false
Scan all the locations in buffers Bcur and Bprev. During the scan, if data item
x is found, set found← true.
if found then

Access location πcur(n+ request count) in Tcur {containing a dummy item}
else

Access location πcur(x) in Tcur {containing data item x}
end if
Rewrite Bcur, adding or replacing data item x
Execute the next batch of c

√
n log2 n accesses to workspace W to construct

table Tnext using permutation πnext

request count← request count + 1
if request count >

√
n then

break {end of the epoch}
end if

end while
Copy the new table from W to Tnext

Copy Bcur to Bprev

Copy Tcur and Bcur to W
Empty Bcur

Copy Tnext to Tcur

πcur ← πnext

end while

Our oblivious RAM simulation algorithm based on the square-root approach is

outlined in Algorithm 6 and its properties are summarized in Theorem 23.

Theorem 23. Our oblivious RAM simulation method based on the square-root ap-

proach has O(
√
n log2 n) worst-case access overhead per request, O(

√
n) space over-

head at the data repository, and O(1) client memory, where n is the number of data

items.
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Proof. The worst-case access overhead of each request is O(
√
n log2 n) since we scan

two buffers of size
√
n, access one table entry, and execute O(

√
n log2 n) accesses to

perform one batch of the table rebuild. Also, O(n) additional space is used at the

server.

We now consider the obliviousness of our method. During each epoch, unique

items are accessed in table Tcur. Namely, if the requested data item is not found in

the buffer, we access it in Tcur, else we access a new dummy item in Tcur. Moreover,

in the beginning of each epoch Tcur is initialized with a new permutation over n items

and
√
n dummy values.

The method is correct since the user is always returned the most up-to-date

instance of the requested item: if the requested data item was last requested in the

current epoch then it is found in Bcur, else if it was last requested in the previous

epoch, it is found in Bprev, else Tcur has the latest instance.

Read/Write Data Repository In Algorithm 6 we assumed that the data repos-

itory allows us to manage outsourced memory using a copy operator. However, we

can achieve the same worst case overhead of O(
√
n log2 n) without this operator. We

provide some intuition behind this approach. If the data repository supports only

read and write operations one can alternate blocks of memory used for rebuilding and

for handling requests between the epochs, e.g. during even numbered epochs Bcur

is used to cache current requests while during odd epochs it serves as a buffer of

requests from the previous epoch.
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6.2 The log n-Hierarchical Scheme

We now describe the deamortization of our oblivious RAM simulation method pre-

sented in Chapter 4, which is based on a hierarchical memory layout at the server and

has O(log n) amortized access overhead. The intuition behind the deamortized ver-

sion of this method is similar to that for the square-root solution: we incrementally

rebuild tables while handling requests using previous versions of tables and buffers.

Requests are handled using two sets of buffers: one for items requested in the current

epoch and the other for items requested in the previous epoch. However, recall that

the construction of the hierarchical solution has O(log n) buffers implemented either

as hash tables with buckets or cuckoo hash tables. This complicates our task since

now we need to have a copy of each hash table and cuckoo hash table. Also due

to the dynamic arrangement of the buffers, one buffer spills into the next one and

so on. We eventually need to construct O(log log n) hash tables with buckets and

O(log n) cuckoo hash tables during each epoch.

6.2.1 Setup

Memory Layout Our memory layout at the data repository is schematically il-

lustrated in Figure 6.2. Extending the oblivious RAM data structure of the scheme

in Chapter 4), we employ two caches, Ccur and Cprev, of size q = O(log n), one

stash, S, of size O(log n), 2l hash tables H1, H
′
1, H2, H

′
2, . . . , Hl−1, H

′
l−1, Hl, H

′
l , and

2(L − l) cuckoo hash tables Tl+1, T
′
l+1, Tl+2, T

′
l+2, . . . , TL, T

′
L. Recall from Section 4

that l = O(log log n) and L = O(log n) and every Hi+1 can fit twice more elements

than Hi, for i ∈ {1, . . . , l − 1}, Tl+1 twice more than Hl, and Tj+1 twice more than
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Figure 6.2: Memory layout of the data repository during oblivious RAM simulation of our deamor-
tized version of the log n-hierarchical solution in Section 6.2. (See Figure 4.1 for comparison with
the original solution.)

Tj, for j ∈ {l+ 1, . . . , L−1}. Finally TL can fit all n elements. The expansion factor

for H ′i and T ′j is the same.

We also keep a workspace W for rebuilding each level. The workspace stores

the last 2Lq requested items in a list, D. In addition, it contains L work areas

for rebuilding the hash tables. We proceed with the explanation for the levels that

contain cuckoo hash tables, while similar ideas apply for hash tables with buckets

as well. The i-th work area consists of storage space TWi of size O(2iq) for a cuckoo

hash table at level i, and of overflow space SWi of size O(log n) for the corresponding

stash.

Initialization We build TL as a cuckoo hash table for the n data items and put

into stash S any items that did not fit. Both caches Ccur and Cprev and other tables

Hi, H
′
i (for 1 ≤ i ≤ l), Ti and T ′i (for l ≤ i < L) are empty.
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6.2.2 Access Simulation

Processing an Epoch In this section an epoch is defined as a sequence of q

requests. During an epoch, cache Ccur stores data items last requested in the current

epoch and cache Cprev stores data items last requested in the previous epoch. Thus,

these caches play roles similar to those of buffers Bcur and Bprev in Section 6.1.

Each request is processed by scanning caches Ccur and Cprev, scanning stash S, and

accessing buckets of H1, H ′1, H2, H ′2, . . ., Hl, H
′
l , and locations in tables Tl+1, T ′l+1,

. . ., TL−1, T ′L−1, TL. In addition, a batch of accesses is made to workspace W toward

rebuilding its cuckoo tables. The incremental rebuilding process guarantees the

completion of a cuckoo table in TWi and its stash in SWi after 2i−1 epochs.

Incremental Construction of L Cuckoo Hash Tables Recall that a cuckoo

hash table Ti of size 2iq can be constructed obliviously using 2iq accesses to the

data repository and O(nν) private memory [24]. To help us explain the concurrent

oblivious rebuild of L cuckoo hash tables, we introduce a data structure I that stores

the set of indices of the cuckoo tables that need to be rebuilt in workspace W . Note

that Queue depends only on the number of requests made so far hence it can be

computed in constant time. I starts empty. After every 2i−1 epochs index i is added

to I . When an index i is added to I a sequence of 2ibq accesses is required for a

rebuild of TWi , for some constant b > 0. After each request, the client executes

2b accesses for each index in I so that the construction of table TWi is completed

in 2i−1 epochs. Observe that after the first 2i−1, epochs index i is always present

in I . Moreover, after 2L−1 epochs indices 1, 2, . . . , L are present in I and I does not

change from then on. This also means that eventually all L tables are being rebuilt

during an epoch. (See Figure 6.3 for an illustration of the rebuilding process.) To

accommodate L concurrent rebuilds, we increase the requirement on the size of
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Figure 6.3: Sequence of accesses during oblivious RAM simulation: (a) original version of the
log n hierarchical solution (Section 4); (b) our deamortized version (Section 6.2). The size of the
cache is denoted by q, which is O(log n).

client’s private memory from O(nν) in Chapter 4 to O(nτ ), for some fixed constants

τ > ν and ν > 0.

Transitioning to the Next Epoch We append items in Ccur to D, the list in

workspace W that keeps track of the 2Lq previously requested items. We then copy

Ccur to Cprev and empty it. Hence Ccur can be used to cache requests during the next

epoch. We then check which tables are finished, i.e. TWi is finished if the current

number of epochs is a multiple of 2i−1 since TWi takes 2i−1 epochs for a rebuild. Each

such table TWi is then copied to either Ti or T ′i . If Ti and T ′i are both empty or both

full TWi is copied to Ti, stash SWi is merged with S and T ′i is cleared. If only Ti is

full TWi is copied to T ′i , stash SWi is merged with S. If TL, the table from the last
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level, is finished we clear first 2Lq items from D since all these items are now in TL

and no table from earlier levels requires them for a rebuild.

Stash Size In Section 4.3 we show that a single stash of size O(log n) is enough

to avoid overflows in cuckoo hash tables Tl+1, . . ., TL where Ti contains 2iq items. In

this construction, we use a single stash S for two collections of cuckoo hash tables.

A single stash ensures that if item x happened to not fit into two tables Ti and

T ′j then only the most recent copy is present in S. One can view stash S as a

joint stash between tables Tl+1, . . . , TL and T ′l+1, . . . , T
′
L−1. Suppose a stash of size

s log n is used in the log n-hierarchical construction, where s > 1 is a constant. Then

we set our stash S to be of size 2s log n, where the first s log n locations are used

for tables Tl+1, . . . , TL and the remaining s log n locations for T ′l+1, . . . , T
′
L−1, with

the additional constraint that only unique items can be present in S. The latter

constraint is enforced when we merge stash SWi of a new table TWi with S.

Our oblivious RAM simulation algorithm based on the log n hierarchical approach

is outlined in Algorithm 7 and its properties are summarized in Theorem 24.

Theorem 24. Our oblivious RAM simulation method based on the log n hierarchical

approach has O(log n) worst-case access overhead per request, O(n) space overhead

at the data repository, and O(nτ ) client memory, where n is the number of data items

and τ is any fixed positive constant.

Proof. We first show that handling of each request using the above protocol takes

O(log n) accesses. Retrieving a data item takes O(log n) accesses since three blocks

of size O(log n) are scanned and two accesses are made to 2L tables, where L is

O(log n). The batch of accesses for table rebuilding made after each request consists

of 2b accesses for every table in I , where I has at most L indices and b is a constant.
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The method clearly requires only O(n) space on the data repository. For every

rebuild, we use the method of [24] which requires O(nν), ν > 0, of client private

memory. Since our method concurrently makes O(log n) rebuilds O(nτ ) of private

memory is required for τ > ν.

We now consider the obliviousness of the method. Table rebuilds remain oblivious

since they follow a predetermined schedule that depends on n and request count and

are performed in the same way as in the original ORAM construction in Section 4.

It remains to show that each request remains oblivious. Accesses to the caches,

Ccur and Cprev, and the stash, S, are oblivious since their memory locations are

scanned (read and rewritten entirely) for each request. Since accesses to table Ti

depend on whether an item is found in T ′i we first show the obliviousness of access

sequence to T ′i . Observe that when T ′i is substituted with a new cuckoo hash table

TWi cache Ccur and all tables T ′j<i are empty. Since each table on level i can store up

to 2i−1q items before it is emptied there is space to remember the following number

of requests:

q +
∑i−1

j=1 2j−1q = 2i−1q.

If an item is not found in previous levels, it is accessed according to pseudo-

random hash functions hi
′

1 and hi
′

2 . Otherwise, T ′i is accessed in random locations. T ′i

is cleared as soon as next table for this level, i.e. next TWi , is ready. This happens

2i−1q requests after T ′i was last substituted with a new table. Hence, T ′i is never

accessed more than once for the same item.

An access to table Ti follows an access to T ′i and is random if an item is found

in earlier tables or in T ′i . Note that similarly to T ′i cache Ccur and all tables T ′j<i



93

are empty when Ti is ready. Moreover T ′i is empty as well. Hence, there is space to

remember the following number of requests:

q +
∑i−1

j=1 2j−1q + 2i−1q = 2iq.

However, Ti is replaced with a new table every 2iq requests. Hence, no location is

accessed more than once in table Ti as well.

To prove the correctness of the method, we observe that the most current copies

of the data items are present in the caches or smaller tables. Moreover, table T ′i

contains more recent requests than Ti and stash S contains any items that did not

fit in their corresponding tables. When newly constructed tables are moved from

W to the memory for handling requests, we merge the stash of larger tables with S

first. In this case, if the same item did not fit into more than one table, only the

most recent copy is in S. Since we first scan the caches, the stash and start accessing

tables from smaller levels, with T ′i before Ti, our method returns to the user the

latest instance of the requested item.

Read/Write Data Repository Similarly to the deamortized version of the square-

root solution from Section 6.1, we can relax the assumption on the interface that

data repository provides us. If read and write are the only supported operations, we

can alternate the blocks of memory used for rebuilds and for handling the requests

depending on the epoch count.
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6.3 The Oblivious Storage

We now consider how deamortization techniques can be applied to the constant

overhead solutions proposed in Section 5. We first consider the square-root based

construction in Section 5.4 and then the construction with smaller message size

in Section 5.5.

Square-Root OS We recall that the main difference between the square-root so-

lution considered in the beginning of this Chapter and that of Section 5.4 lies in the

message size, O(1) vs. O(
√
n log n), and the rebuild method, oblivious sorting vs.

oblivious shuffle. We proceed by having the same Setup phase as in Section 6.1.1

where we split the server memory in Bcur, Bprev, Tcur, Tnext and W . The size of W

is increased to O(n log n) since this is the temporary size that is required by the

Melbourne Shuffle.

The access phase proceeds as follows. Instead of scanning Bcur and Bprev the

client retrieves the buffers in a single I/Os since their size fits in a single message

and into private memory, which is O(
√
n log n). The access to Tcur remains the same

and rewrite of Bcur is done in a single I/O. Once the access part of the request is

done we can proceed with O(1) steps of the Melbourne Shuffle.

Cth-Root OS The deamortization of the construction with O( c
√
n log n) messages

follows from extending the deamortization of the log n-hierarchical solution in Sec-

tion 6.2, where every level is doubled to store the copy of the hash table with buckets

from the previous access phase. The rebuild accesses are made according to several

iterations of the Melbourne Shuffle with small messages.
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Algorithm 7 Oblivious RAM simulation with our deamortized version of the log n
hierarchical approach (Section 6.2). For simplicity we remove references to the first l
hash tables with buckets from the pseudo-code.

Initialize TL and S with a cuckoo hash table with a stash using n data items.
I ← {}, request count← 0
while true do

while true do {on request x}
found← false
Scan all the locations in caches Ccur and Cprev and stash S. During the scan,
if data item x is found, found← true.
for each level i, 1 ≤ i ≤ L do

if i 6= L and T ′i is not empty
if found is true access random locations in T ′i .
else access locations hi

′
1 (x) and hi

′
2 (x) in T ′i .

if x is found, found← true.
if Ti is not empty

if found is true access random locations in Ti.
else access locations hi1(x) and hi2(x) in Ti.
if x is found, found← true.

end for
Rewrite Ccur, adding or replacing data item x.
if x is found in stash S remove x from S. Rewrite S.
for i ∈ I

Make next 2b accesses towards a rebuild of table TWi
request count← request count + 1
if request count mod q = 0 then
{end of the epoch}
Copy Ccur to Cprev and append it to D.
Empty Ccur.
for i ∈ sorted decr order(I )

if request count mod 2i−1q = 0
if i = L

copy TWi to TL.
else if Ti and T ′i are both full or both empty

Empty T ′i and copy TWi to Ti.
else

copy TWi to T ′i .
Merge SWi and S.

for each level i, 1 ≤ i ≤ L
if request count mod 2i−1q = 0

Copy last 2i−1q items from D to TWi
if i 6∈ I

I ← I ∪ {i}.
if i = L

empty D.
end if

end while
end while



Chapter Seven

Hiding Access Patterns of Graph

Drawing Algorithms
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So far in this thesis we have looked at general access simulations that can be ap-

plied to an arbitrary algorithm and simulate its request sequence obliviously. But as

we saw these solutions involve fairly complicated simulation techniques for generic

algorithms that increase the running time of the client by a polylogarithmic factor

when the client has a small workspace. In this chapter, we instead study oblivious

algorithms that protect the pattern of a specific application. In particular, we design

algorithms to protect the access patterns that result from the application of graph

drawing to a cloud-computing context where data is stored externally and processed

using a small local storage. We show that a number of classic graph drawing al-

gorithms can be efficiently implemented in such a framework where the client can

maintain privacy while constructing a drawing of her graph.

7.1 Overview

We are interested in allowing a client to access her graph and perform computations

on it in a privacy-preserving way. For example, an administrator for a fast-growing

company may be revising (and visualizing) the organizational chart for the leader-

ship of her company, and leaking this chart to the press or a rival could negatively

impact the company. As in previous constructions we assume that the client en-

crypts her graph before outsourcing it. She is also interested in hiding the pattern

in which she accesses the graph. For example, accessing the memory associated with

a certain department while preparing a new organizational chart leaks the fact that

that department is being reorganized.

Our aim is to develop simple privacy-preserving algorithms for some classic graph

drawing problems that fully obfuscate the access pattern from the data server. To en-
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able data-oblivious algorithms for graph drawing problems, we introduce compressed-

scanning, an algorithmic design framework based on a series of scans. Our method

is related to the massive, unordered, distributed (MUD) model [16] for efficient com-

putation in the map-reduce framework. We assume that the server holds a set of n

data items and the client has a small private workspace of size O(log n). The data

items at the server are encrypted with a semantically secure encryption (Section 3.3)

so that it is hard for the server to determine whether two items are equal.

An algorithm for the compressed-scanning model consists of a sequence of rounds,

where in each round the entire data set is scanned by the client. During the scan,

each item is processed exactly once by the client: first the client downloads the

item from the server into workspace; next, the client performs some internal-memory

computation on the item and the content of the workspace; finally the item is written

out to an output stream at the server. When a round is completed, the output stream

is either confirmed as the algorithm’s output or it is used as the input data set for the

next round. The efficiency of such an algorithm is measured, therefore, by the number

of rounds needed and the size of the local workspace that is required. Ideally, the

number of rounds should be O(1) and the workspace should be sublinear. As shown

in Section 7.2.2, an algorithm designed in the compressed-scanning framework can

be implemented in a data-oblivious way by randomly shuffling the items in between

scans.

Using the compressed-scanning approach, we provide efficient data-oblivious al-

gorithms for a number of classic graph drawing methods [12], including symmetric

straight-line drawings and treemap [30] drawings of trees, dominance drawings of

planar acyclic digraphs [13], and ∆-drawings of series-parallel graphs [6]. Our meth-

ods result in privacy-preserving graph drawing algorithms with a smaller overhead
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than could be achieved by applying general-purpose privacy-preserving techniques

we discussed so far.

7.2 Compressed-Scanning Model

In this section, we formally define the compressed-scanning model for designing

client-server algorithms that can be efficiently implemented using a small workspace,W ,

at the client. We assume that the server holds an array, S, of n data elements.

7.2.1 Model

An algorithm for our model consists of a sequence of t rounds. A round involves

accessing each of the elements of S exactly once in a read-compute-write operation.

This operation consists of reading an element from the server into private workspace,

using the element in some computation, and writing a new element to an output

stream, O, at the server. When a round completes, either the output stream O

and/or a set of values in W are confirmed as the output of the algorithm, or we

assign S = O and start the next round. Hence, the running time of an algorithm in

our model is O(tn).

This size of the workspace, W , is a parameter of our model, and is intended to

be small (e.g., constant or O(log n)). The name of our model is derived from the

fact that each round scans the set S and computations are performed using a small,

or “compressed”, amount of workspace. Simple examples of algorithms that fit our

model include the trivial methods for summing n integers in an array or traversing a
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linked list from beginning to end, which can be done with a constant-size workspace,

or any algorithm in the standard data streaming model, which would have W being

equal to the workspace for that algorithm.

7.2.2 Privacy Protection

Suppose we are given a compressed-scanning algorithm, A, which runs in t rounds

using a workspace, W , and a data set, S, of size n. We can implement A in a

privacy-preserving way as follows. The input stream, S, is stored encrypted at the

server and whenever we write elements to the output stream, O, we also encrypt

them. Hence, the server will not be able to distinguish whether two data elements

are equal or whether the output element of a read-compute-write operation is equal

to the input element.

The next step in ensuring privacy is hiding the access pattern from the server.

In other words, the accesses to S should be data independent in each round and one

should not be able to correlate accesses between the rounds. Each round in our model

consists of scanning S one element at a time, performing local computations using

the value of this element, and possibly modifying it and writing it back. Even if we

have nothing to output, we can always write a dummy element, for the sake of being

oblivious. However, a single scan is not enough to perform complex computations

over data. The computation in the next round usually relies on computations from

previous rounds and may require rearrangement of the data to allow a sequential

access of that round. This shuffle of the data can be carried out by sorting over one

of element’s fields.
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We employ an oblivious sorting algorithm for the purpose of hiding the correla-

tion of accesses between the rounds. As mentioned in Section 3.6, several oblivious

sorting techniques have been developed. Each oblivious sorting algorithm B offers a

tradeoff between the time it takes the client to sort n items, sortB(n), and the size

of the client’s private workspace, workspaceB(n). In oblivious Batcher’s sorting net-

work, either sortB(n) is O(n log2 n) and workspaceB(n) is constant or sortB(n) is O(n)

and workspaceB(n) is O(
√
n) [24]. In oblivious randomized shell short [23], which

succeeds with high probability, we have that sortB(n) is O(n log n) and workspaceB(n)

is constant. We can use one of the above methods depending on the tradeoff we are

willing to take and from now on, we refer to the oblivious algorithm as a black box

algorithm, B.

In conclusion, our simulation of algorithm A consists of t scans of S and a call to

an oblivious sort procedure B between the rounds. Each round requires O(sortB(n))

time while fully hiding the pattern of access to the items in S. Thus, the simulation

of A takes time O(t sortB(n)) and uses workspace of size proportional to that of A

plus the space required between the rounds for sorting, workspaceB(n).

Theorem 25. Let A be an algorithm in the compressed-scanning model for an input

of size n that uses a workspace of size workspaceA(n). Algorithm A can be simulated

by a data-oblivious algorithm if the number of rounds and the number of elements

written to the output stream at each round depend only on n. Also, the simula-

tion uses a workspace of size O(workspaceA(n) + workspaceB(n)) and runs in time

O(t sortB(n)), where t is the number of rounds of A and B is an oblivious sorting

algorithm.

Proof. (Sketch) Each round is simulated by reading elements from S, writing ele-

ments to O, and reshuffling the next input set. Accesses to locations in S are made
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in a sequential order. This ensures that accesses to S in a single round are data-

oblivious. Write accesses to O are also data-oblivious, since they happen on every

access to S. After every round, the input sequence is reshuffled (data-obliviously);

hence, one cannot correlate accesses between rounds as well. Thus, accesses to S

and O depend only on size of S while the number of rounds is fixed by the algorithm

regardless of S.

In the next section we describe graph drawing algorithms that fit the compressed-

scanning model and, hence, can be implemented in a data-oblivious manner.These

algorithms guarantee that their access patterns do not reveal the combinatorial struc-

ture of the graphs that are given as inputs (e.g., number of outgoing or incoming

edges for a particular node) and run in a constant number of rounds using W of

logarithmic size.

7.3 Graph Drawing Algorithms

Most existing graph drawing algorithms are designed without privacy concerns in

mind; hence, if they are run in a cloud-computing environment, they can reveal

potentially sensitive information from their access patterns. For example, a recursive

binary-tree drawing algorithm implemented in the standard way can reveal the depth

of the tree from the access patterns used for the recursion stack, even if all the

nodes in the tree are encrypted. In this section, we present several graph drawing

algorithms modified to fit the compressed-scanning model. In order to build a graph

drawing algorithm that fits this model, we modify the representation of the graph

so that we never access the same location more than once in the same round. For

example, consider a tree represented with a set of nodes and pointers from each node
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to its children and a parent. Traversing the tree in this case involves accessing an

internal node several times depending on its degree, which reveals information about

the tree.

7.3.1 Euler Tours in the Compressed-Scanning Model

Traversing a tree in the compressed-scanning model requires that we access each

memory location exactly once; hence, we need to reorganize how we normally perform

data accesses, since, for example, we cannot access a parent again when coming from

its left child after we have already visited it. Given small private storage, W , we

cannot store previously accessed nodes. Thus, we need a representation of a tree

that allows for a traversal where elements are accessed only once. For this purpose,

we construct an Euler tour over a tree that is based on duplicating edges and defines

a left to right traversal of a tree. Each copy of an edge contains a pointer to a copy

of the next edge in the tour so we can go to the next edge without using recursion

and visiting each edge of the tour only once.

For an ordered tree, T = (V,E), we store an Euler tour as a set of items, C,

where |C| = 2|E|. Each item represents an edge of the tour and stores information

related to the tree, e.g., parent, child node names, and the order of the child among

all its siblings. Additionally, it stores information related to the actual cycle of the

Euler tour: (a) tag: a unique tag associated with this item, 0 ≤ tag < 2|E|. This is

used to locate and sort the items. (b) direction: up or down. This indicates which

direction in the tree we are following. (c) next: tag of the next edge in the cycle.

We assume that tag = 0 for the leftmost edge of the root of T . Suppose we

shuffle the items in C using the tag field. Then a traversal of C is a simple scan of
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the memory and is data-oblivious revealing only the number of edges and nodes in

the tree.

7.3.2 Computation over Euler Tour Representations

Many graph drawing algorithms collect information from a tree representation of

the graph to determine the layout. Such information could be the height, width,

or subtree size of each node of the tree. We now show how one can use an Euler

tour representation of a rooted tree to compute for each node of the tree, the size

(number of nodes) of its subtree in a data-oblivious manner.

For this computation, we add a new field subsize for every edge in the Euler tour

C. The algorithm maintains in local memory, W , a variable, total subsize, initially set

to 0. Edges in C are traversed as described in the previous section. However, every

time we now read an edge, i, we update i.subsize with the value stored at total subsize

and write it back. When we are going up, i.e., i.direction = up, total subsize is

incremented by 1. Once the traversal finishes, we observe that for every two items, i

and i′, that represent a traversal of the same edge, i.e., i.parent = i′.parent, i.child =

i′.child, i.direction = down and i′.direction = up, the value (i′.subsize − i.subsize) is

the size of the subtree rooted at i.child and the final value of total subsize is subsize

of the root. However, we need to associate nodes of the tree T with these values

in the compressed-scanning model as well. For this purpose, we obliviously sort the

values in C using the fields, parent and child, to bring items that correspond to the

same edge next to each other. We then simply scan the resulting sorted list and after

reading a pair of items, i and i′, output a pair (i.child, i′.subsize − i.subsize). (See

Figure 7.1.)
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Figure 7.1: Computing the size of the subgraph via Euler tour. During the tour a locally main-
tained variable total subsize is incremented when the tour goes up the tree (red numbers in the
figure) and is assigned to currently visited edge. The size of the node’s subgraph is the counter at
the edge going up from this node minus the counter of the duplicate of this edge. For example, the
size for g is (4-1) = 3.

The above computation consists of two rounds: the first round reads one item

of C at a time, modifies it and writes it back. The second round starts after the

sorting is complete, where items are read one at a time and a new item is written to

the output after every two reads. We can compute the depth of each node using a

similar technique.

7.3.3 Drawing of Planar Acyclic Digraphs

We adopt an algorithm for dominance drawings of planar acyclic st-digraphs from [13],

which is simple and elegant but is not data-oblivious. To find the x-coordinate of

each node, one builds a spanning tree based on leftmost incoming edges of the nodes

and then traverses this tree from left to right, numbering each node in this order. The

resulting numbering of each node is its x-coordinate. The algorithm to determine

the y-coordinates uses the rightmost spanning tree.

Input: We assume that the graph, G, is given as a set of edges, E, where e ∈ E

is an edge directed from node a to b storing indegree, the number of incoming edges



106

to b, and child num, the order of a among all incoming edges to b; the leftmost edge

has order 0.

Data-oblivious algorithm: Following the original algorithm, we show how one

can construct a spanning tree and number the nodes to get the final drawing. Our

first task is to augment each edge with information about a spanning tree of G. We

augment e with additional fields, left spanning and right spanning, which are set to

true or false depending on which spanning tree e belongs to. In the compressed-

scanning model, one simply accesses e, sets e.left spanning to true if e.indegree equals

e.child num or e.right spanning to true if e.child num is 1, and writes e back.

Given annotated edges, we construct an Euler tour over each spanning tree. Note

that given that the number of nodes in G is revealed, we do not need to hide the

number of edges in either of the spanning trees. For ease of explanation, we say that

we traverse an edge down when we follow an edge of the spanning tree in its direction

in G. The left spanning tree is traversed starting with the leftmost outgoing edge of

the root, and rightmost outgoing edge for the right tree. We are now ready to make

a tour traversal and assign coordinates to the nodes. We adopt a compressed version

of the algorithm that minimizes the area of the drawing and start with traversal of

the left tree. In private memory, a counter for x-coordinates is maintained, set to 0.

Initially, we output (source, 0, x). For every edge e that has direction = down, and

e.indegree > 1 or e is the first traversed edge of a, we output (e.b, counter, x). If e has

down direction but is not the first edge of a traversed (in Euler tour this corresponds

to remembering the latest visited edge) or is the only incoming edge to b, then we

increment the counter by 1 and output (e.b, counter, x). If e.direction is set to up,

then we output (dummy, 0, x). The algorithm for computing y-coordinates is similar

and outputs values with (e.parent, counter, y). Note that access pattern of reads and
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Figure 7.2: (a) A planar acyclic st-digraph with its left and right spanning trees. (b) The order
of the visit to each edge of Euler tour of the left spanning tree and the counter of x coordinate for
child nodes, e.g., edge a-g is visited third and g is assigned x coordinate of 1. (c) The final drawing.

writes is always the same: read an edge of the Euler tour and output a tuple of three

values.

The output of the above procedure contains tuples of real and dummy values.

We can remove dummy values and bring x, y coordinates of each node together by

obliviously sorting tuples by the first field (node name) such that string dummy is

always greater than any real node name. The resulting list contains all dummy tuples

at the end. Also, each node has its x- and y-coordinates adjacent. See Figure 7.2

for an example.
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7.3.4 Treemap Drawings

Treemaps are a representation designed for human visualization of complex tree

structures, where arbitrary trees are shown with a 2-d space-filling area. Here, we

present how one can draw a treemap using an algorithm from [30] adapted to the

compressed-scanning model. The original algorithm takes a rectangle area and splits

it vertically into two sections. The area of the first section is enough to fit the first

child, child1, of the root and the rest is enough to fit the rest of its children. The

next step is to divide the first section among children of child1 but this time splitting

the area horizontally. The algorithm continues in the same manner for all decedents

of child1. Once finished, it proceeds to splitting the second section between second

child of the root, child2, and the rest of root’s children.

Input: A tree, T , where each leaf also contains a value area and the size of a

rectangle area, w × h, where T should be drawn. We build an Euler tour, C, from

T and add two fields parent area and child area to each edge in C.

Output: Each node is labeled with (x, y) coordinates of the top-left corner, P ,

and bottom-right corner, Q, of the rectangle area where the node should be placed

in.

Data-oblivious algorithm: We first run a procedure similar to the one for

computing subsize, to assign area values to inner nodes of T . The original algorithm

labels the nodes with values P and Q via pre-order traversal of T . The algorithm

we propose here first goes down the leftmost subtree computing values P , Q and

labeling the nodes on the way. In private memory, it maintains only one copy of

the last two assigned values of P and Q, prevP and prevQ. It then goes up the

tree “undoing” all the computations made to prevP and prevQ. We do it in such a
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way that when going up and reaching some node, we recover its P and Q values as

they were before we visited any of its children or other nodes in its subgraph. This

algorithm fits the traversal of Euler tour C of the tree T . When going down the

tree, we read each item i of tour C and output P,Q values corresponding to i.child.

However, when going up we cannot retrieve earlier written P,Q values, since this

will not be data-oblivious and we reveal that we are going up, which consequently

reveals the depth of the tree. This is where “undoing” computations when going up

on prevP and prevQ helps. This is possible since the information used to compute

P and Q is stored twice in C: once for edge with direction set to down and once for

up. The pseudocode of the algorithm appears in Algorithm 8. Figure 7.3 shows an

execution of the algorithm on a small tree.

7.3.5 Series-Parallel Graphs

A series-parallel (SP) graph is a directed acyclic graph that can be decomposed

recursively into a combination of series-parallel digraphs. The base case of such a

graph is a simple directed edge. A series composition consists of two series-parallel

graphs G1 and G2 where the sink of G1 is identified with the source of G2. A parallel

composition of two series-parallel graphs G1 and G2 is the digraph where source of

G1 is identified with the source of G2 and similar for their sink nodes. For example,

consider the series-parallel digraph shown in Figure 7.4a. The subgraph S ′ induced

by its edges c-d and d-a is a series composition of graphs c-d and d-a. While S ′ and

edge c-a is a parallel composition.

An SP graph G can be represented with a binary tree (SPQ tree) with three

types of nodes, S, P and Q. Q nodes are leaves of the tree and correspond to

individual edges of G. An internal node is of type P if it is a parallel composition
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Figure 7.3: Treemap graph drawing. (a) The original graph. (b) The final drawing. (c) Execution
of algorithm in Section 7.3.4 on the graph in (a) on a 10×4 rectangle area. The values in dashed
rectangles are written for every edge and are never accessed. Variables prevP, prevQ, axis and unit
are kept in memory.

of the children digraphs. If a node corresponds to a series composition it is called

S node. Here, we use a right-pushed embedding of G such that a transitive edge in

parallel composition is always embedded on the right. (Figure 7.4b shows the SPQ

tree of the graph of Figure 7.4a.)

Original ∆-drawing algorithm: We adopt the ∆-drawing algorithm from [6].

This algorithm recursively produces a drawing of G inside a bounding triangle 4(G)

which is isosceles and right-angled. In the drawing of a series composition, the two
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bounding triangles, 4(G1) and 4(G2), are placed one on top of another and, hence,

produce a bounding triangle big enough to fit them both. For a parallel composition,

4(G2) is placed on the right of4(G1) and a larger triangle is drawn to fit this parallel

composition. The algorithm works by traversing the SPQ tree and identifying the

size of the bounding triangles of each node. The length of the hypotenuse, b, is

enough to store this information. Each Q node is assigned a triangle with b = 2,

while for series and parallel nodes b is the sum of b values at the children nodes. When

traversing the tree we also compute value b′, which makes sure that in a drawing of

a parallel graph G the edge that goes from the source of G to G1, the left subgraph

of the composition, does not intersect the drawing of G2. This value b′ for a Q node

is simply b, for S node it is b′(4(G1)) and for P node it is b′(4(G1)) + b′(4(G2)).

Note that for a parallel node it is the sum of b′ values of both graphs since we want

to make sure that if subgraph G is later a part of a parallel composition no node will

intersect either G1 or G2. If G is a transitive edge then b′(4(G)) = b(4(G)). (See

Figure 7.4b.)

Once b and b′ are computed for every node, i.e., every bounding triangle, the

algorithm computes the (x, y) value of the bottom node of each triangle. The outer

most triangle is positioned at (0, 0). Given coordinates (x, y) of a triangle corre-

sponding to the S node with hypotenuse of size b and children with hypotenuses b1

and b2, we place the first triangle at (x, y) and second at (x, y + b1). Given coordi-

nates (x, y) of a triangle corresponding to a parallel node, we place the first triangle

at (x−0.5b2, y+0.5b2) and second at (x, y+b′1). Given that we know the coordinates

of each triangle, we can now assign coordinates for individual nodes. The source of

G is placed at (0,0) and sink is placed at (0, b(4(G))). We then look at each node

in G and place it at (x, y + b(4(Gnode))) where Gnode is a subgraph and node is its

sink. (See Figure 7.4c for an example.)
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We are now ready to explain the algorithm in compressed-scanning model.

Input: SPQ tree from a right-pushed embedding of SP digraph G and nodes

that are annotated as S, P or Q. We convert this tree into an Euler tour with

addition of parent and child node type: parent spq type and child spq type which are

either S, P or Q.

Data-oblivious algorithm: The above algorithm makes several computations

over the tree to annotate the nodes of the SPQ tree with values b, b′ and (x, y). Value

b can easily be computed in the same manner as we computed the subgraph size in

Section 7.3.2. Value b′ of the left child is added only for parents of P nodes. When

an Euler tour is going up the tree we can always check the value of parent spq type

to know if b′ of the left subgraph should be carried to the right one. Coordinates

(x, y) for each node are computed from a small modification of the Euler tour: the

left child needs know value b(4(G2)) and right child needs to know b′(4(G1)). It is

easy to do this by always reading the next edge and remembering the last edge.

Given that we know the coordinates of each triangle, we can now assign coor-

dinates for individual nodes. Recall that every leaf node of SPQ tree is associated

with an edge while an internal node is either a DAG or a path of edges in the subtree

rooted at this node. Hence, we can associate each internal node of SPQ tree, and

edges in the corresponding Euler tour, with two nodes of the series-parallel graph

that correspond to the source and the sink of the underlying subgraphs. Given a

parent node of SPQ tree and source and sink nodes of its children, c1 and c2, if csink1

and csource2 are equal then node csink1 is placed at (c1.x, c1.y + c1.b). Otherwise, we

output a dummy.
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Figure 7.4: (a) A series-parallel graph. (b) SPQ tree representation annotated with values b and
b′ (dashed rectangles). (c) The final drawing.

7.3.6 Drawing Trees with Bounding Rectangles

In this section, we present an algorithm that draws a binary tree T using a bound-

ing rectangle approach from [10], adapted to the compress-scanning model. This

algorithm is slightly different from the approaches we took in previous algorithms

and involves a more complex way of converting it to fit data-oblivious mode. The

original algorithm recursively assigns bounding rectangles to nodes of the tree. A

leaf node is assigned a rectangle of size 2×1, while an internal node is assigned a

rectangle that fits the bounding rectangles of its children. Each rectangle is rep-

resented by parameters width, height, and refpoint (left top corner). For a leaf,

width = 2. For an internal node, width is the sum of the widths of its children.

The height of the rectangle is defined as 1 + maxi childi.height. The bounding rect-

angle of the root has refpoint = (0, tree height). The refpoint of the ith child of

node p is (p.refpoint.x +
∑

j<i childj.width, p.height). A leaf node l is placed at

point (x, y) = (l.refpoint.x + l.width/2, l.refpoint.y). An internal node is placed be-

tween its children, hence, a node l with children childi (i = 1, 2) is placed at point

(
∑

childi.x/2, l.refpoint.y).

Data-oblivious algorithm: An Euler tour over T allows to compute the width,

level and refpoint values of the nodes. Computing the coordinates of an internal node
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requires knowing the coordinates of its children, and thus can be done only after the

subtrees of both children are processed. If we use an Euler tour traversal, we need

to store the coordinates of the points in the left subtree while processing the right

subtree. We cannot store these coordinates in the private workspace since in the

worst case their number is linear in the size of the tree. Indeed, in our previously

described methods, we only store a constant number of values when traversing a

tour. Therefore, in this section we propose a different technique that is based on

a dashed-solid representation. This representation allows us to store only O(log n)

coordinates in the worst case, which fits our compressed-scanning model.

In the dashed-solid representation of a tree [45], an edge parent-childi is said to be

solid if parent.subsize/2 < childi.subsize and dashed otherwise. If the children have

the same subsize, the right edge is solid and the left one is dashed. Thus, a parent

node has a solid edge to only one of its children whose subtree has size equal or

larger than that of the sibling. The main property of the dashed-solid assignment is

that any path of the tree has O(log n) dashed edges. The dashed-solid representation

can be computed from the subsize values using another Euler tour traversal (Section

7.3.2)

Given a dashed-solid representation, we compute the (x, y) coordinates by cre-

ating a tour around the tree where edges are accessed in a specific order. First,

we go down the path of solid edges starting at the root. When a leaf is reached,

we go back up until a node with a dashed edge is reached. We then recursively

traverse the subtree connected to the dashed edge. To construct this traversal one

needs to store with every node which one of its children is solid. The coordinates

are computed as follows. We follow a solid edge path until a leaf l is reached and

then the leaf node is assigned to coordinates (l.refpoint.x + l.width/2, 0). We store

these coordinates in variable s in private memory. When going up, if the parent
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node p does not have any other children, then we assign it to (s.x, s.y) and continue

traversing up the tree. If instead node p has a dashed edge to child c, then we recur-

sively traverse the subtree of c, which results in the computation of the coordinates

of c, denoted d. Once this traversal is finished, node p is assigned to coordinates

f = ((s.x + d.x)/2, 1 + max(s.y, d.y)). We now set s = f and keep going up the

solid path. Note that in the recursive traversal of the subtree of node c, we will store

additional coordinates in private memory. Since a root-to-leaf path in the tree has

no more than log n dashed edges, a private workspace of size O(log n) is enough to

store all the coordinates needed by the traversal. (See Figure 7.5 for an example of

the drawing.) We note that this algorithm can be extended to arbitrary trees if we
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Figure 7.5: Example of the algorithm in Section 7.3.6. Tree annotated with the width, height
and x coordinate of the top left corner of the bounding rectangle (refpoint). Figure on the right is
the resulting drawing.

represent the dashed edges of a node as a balanced binary tree (see [10] for details).

7.3.7 Analysis

We have given drawing algorithms in the compressed-scanning model that consist of

a constant number of Euler tours. In Section 7.3, we have shown that an Euler tour

can be implemented with a single-round compressed scan, where, from the server’s
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perspective, the items associated with the edges of the tour are accessed sequentially.

Thus, the following theorem is a consequence of Theorem 25.

Theorem 26. The drawing algorithms described in this section are data-oblivious

according to Definition 3 and run in time O(sortB(n)) where n is the size of the input

graph/tree and B is the oblivious sorting algorithm used between the rounds. Also,

the private workspace has size O(log n + workspaceB(n)) for the bounding-rectangle

tree-drawing algorithm and has size O(workspaceB(n)) for the other algorithms.

Our algorithms hide the combinatorial structure and layout of the graphs, while

the number of edges and vertices is revealed. One can achieve even stronger privacy

if dummy edges and nodes are added. From the point of view of the model, the input

S is a larger set of elements and the running time of algorithm A increases as well.
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Algorithm 8 Data-oblivious algorithm to compute a treemap drawing of an arbi-
trary tree.

out.node← root, out.P ← [0, 0], out.Q← [w, h]
write out
read π(0) into e {Get an edge corresponding to the leftmost edge from the root
of T}
axis← 0, unit← w/e.parent area
{prevP, prevQ, unit, axis are maintained in private memory, W}
prevP← [0, 0], prevQ← [w, h]
while e.parent 6= root and e.direction 6= up do

if e.direction = down then
prevQ[axis]← prevP[axis] + unit× e.child area
out.node← child, out.Q← prevQ, out.P ← prevP
if e.child outdeg = 0 and e.child num < e.parent outdeg then

prevP[axis]← prevQ[axis] {Move the top left corner for the next child}
else if e.child outdeg > 0 then
{Go further down the branch}
unit← (prevQ[1− axis]− prevP[1− axis])/e.child area
axis← 1− axis

end if
else

if e.child num = e.parent outdeg then
{Going up again. Undo previous P , Q changes.}
branch size← unit× e.parent area
unit← (prevQ[1− axis]− prevP[1− axis])/e.parent area
prevP[axis]← prevQ[axis]− branch size
prevP[1− axis]← prevQ[1− axis]
axis← 1− axis

end if
out.node← dummy, out.Q← [0, 0], out.P ← [0, 0]

end if
write out
read π(e.tag) into e

end while
Sort all output values by node field such that dummy values are in the end.



Chapter Eight

Conclusions
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In this thesis we have developed several efficient and provably secure data-oblivious

algorithms for privacy-preserving access to cloud storage. We have presented two

schemes that obliviously simulate the access sequence of a general-purpose algorithm

to memory of size n. In the first scheme, the log n-hierarchical scheme, the client

interacts with the server in the RAM model and has access to private memory of

size nε, 0 < ε < 1. Each access is simulated obliviously with an amortized overhead

of O(log n), with very high probability. The oblivious simulation is performed by

random-looking accesses to a data structure based on hash tables and cuckoo hash

tables that are stored at the server.

The second scheme is defined in the oblivious storage model. This model is

arguably a more natural way to model interaction between the client and the cloud

provider. The client and the server exchange messages of size O(n1/c log n), c ≥ 2,

and the client can ask the server more complex queries than read and write. The

construction uses our data-oblivious shuffle algorithm, the Melbourne shuffle, which

is the first data-oblivious shuffle algorithm that is not based on sorting. This scheme

incurs a constant amortized overhead over a non-oblivious access to the cloud storage.

We then have presented an optimization that is applicable to several oblivious ac-

cess schemes, including our constructions. These schemes usually provide an efficient

amortized access overhead but tend to have Ω(n) slowdown in the worst case. We

have described a deamortization technique that makes worst case access overhead as

efficient as the average case.

Finally, we have studied oblivious algorithms that hide the access pattern of

specific applications instead of being general-purpose access simulations, such as

above. We have introduced the compressed-scanning technique for designing data-

oblivious algorithms in a cloud-computing environment. In a nutshell, this technique
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involves specifying an algorithm as a series of scans where data is processed using

a small working storage. Using this technique, we have shown how to implement

classic drawing algorithms for trees, series-parallel graphs, and planar st-digraphs

(and variations of these algorithms) so that the client needs only a small amount of

working storage (constant or logarithmic in the size of the data set) and can fully

protect the privacy of the graph and its layout, beyond what can be accomplished

by encryption alone.
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