
Abstract of “Efficient Cryptography for Information Privacy” by Foteini Baldimtsi, Ph.D., Brown

University, May 2014.

In the modern digital society, individuals, businesses and governments perform numerous everyday

tasks such as shopping, banking and commuting using electronic media. Although these electronic

transactions provide efficiency and convenience, they usually overlook the privacy of the users. This

thesis studies privacy-enhancing technologies in order to get the best of both worlds: all the benefits

of electronic transactions but without sacrificing user privacy. Using efficient cryptographic tools

such as digital signatures, zero-knowledge proof systems and encryption schemes, we propose secure

protocols that protect user privacy and at the same time are practical.

Anonymous credential systems allow users to obtain and demonstrate possession of digital creden-

tials in order to authenticate themselves in a privacy-preserving manner. We first show impossibility

results on proving the security of one of the most well-known anonymous credential systems, the

one due to Stefan Brands, that is currently being implemented by Microsoft under their credential

management project, U-prove. Our impossibility result not only applies to Brands but generalizes to

a much broader class of protocols. We then propose Anonymous Credentials Light : the first efficient

single-use anonymous credential scheme that is provably secure.

Cryptographic e-cash allows secure and private electronic payments and provides similar unforge-

ability and untraceability as physical cash does. Our Anonymous Credentials Light can be extended

to an efficient e-cash scheme that moreover has the nice property of encoding users’ attributes in

the coins. We provide a smartphone implementation of our proposed scheme and explain how it

can be used for efficient and private payments in the public transportation scenario. A limitation

of traditional cryptographic e-cash, however, is that it does not allow users to transfer coins to each

other. We present the first practical, fully anonymous transferable e-cash scheme that does not

2

depend on a trusted authority to detect double spending.

Finally, we study how to revoke users’ secret keys or credentials when, for example, a user mis-

behaves or a secret key was compromised. We propose efficient generic revocation mechanisms that

can be used as building blocks for various constructions.

Efficient Cryptography for Information Privacy

by

Foteini Baldimtsi

B. Sc., Applied Informatics, University of Macedonia, 2008

M. Sc., Computer Science, Brown University, 2011

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2014

c© Copyright 2014 by Foteini Baldimtsi

This dissertation by Foteini Baldimtsi is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Anna Lysyanskaya, Director

Recommended to the Graduate Council

Date
Roberto Tamassia, Reader

Date
Leonid Reyzin, Reader

(Boston University)

Approved by the Graduate Council

Date
Peter M. Weber

Dean of the Graduate School

iii

Vita

Foteini Baldimtsi was born and grew in Kolhiko, a small town next to Thessaloniki, Greece. In 2004

she started her undergraduate studies in the Applied Informatics Department at the University of

Macedonia, Thessaloniki, Greece. She soon became very interested in theoretical computer science

and cryptography and participated in relevant research projects. She obtained her Bachelor’s degree

in 2008 and then, in 2009 she moved to the US to attend the graduate program of the Computer

Science Department at Brown University. In 2011 she received a Masters degree and in 2014 a

Doctorate degree both in Computer Science from Brown University. Her research interests are on

cryptography, data security and privacy. While at Brown, she spent the summer of 2012 as an intern

in IBM Research in Zurich and the fall of 2013 as an intern in Microsoft Research in Redmond, WA.

Foteini is a proud recipient of the Paris Kanellakis fellowship and scholarships from Gerondelis

Foundation and Bodossaki Foundation.

iv

Acknowledgements

My deepest appreciation goes to my thesis advisor Anna Lysyanskaya. I would have never been able

to conclude this thesis if it was not for her support, encouragement and guidance. Anna has shown

me the kind of scholar that I want to be as a passionate researcher as well as a tolerant, effective

teacher. She taught me to never give up on a proof and that if I cannot prove that something holds,

then I should be able to prove that it is impossible. Anna’s advice and insightful comments on both

academic and personal matters have helped me to develop both as a researcher and as a person. It

has been a great privilege to work with her!

I am very grateful to my committee members Roberto Tamassia and Leo Reyzin. Despite his

busy schedule as the chair of the CS department, Roberto, would always find the time to meet with

me and his academic advice has been invaluable. I am very honoured that Leo has been the external

member of my committee. His research questions and feedback in my talks were of great help and

I am very happy that I will have the chance to keep working with him in the future.

During the past five years, I had the pleasure of working with a great set of colleagues from

whom I learned a great deal. Gesine Hintewälder has been a close collaborator in many parts of this

thesis and taught me everything I know about efficient implementation of cryptographic systems.

I also greatly enjoyed working with Wayne Burleson, Georg Fuchsbauer, Markulf Kohlweiss, Anja

Lehmann, Gregory Neven, Christof Paar, Andy Rupp and Christian Zenger. A special thanks goes

to Melissa Chase and Jan Camenisch for giving me the opportunity to collaborate with them while

v

interning in Microsoft and IBM respectively.

I would have never have started a PhD in cryptography if it was not for my undergraduate

advisor George Stephanides. George taught me my first class in cryptography and showed me how

fascinating research can be. Along with him, I would also like to thank professors Alexandros

Chatzigeorgiou, Ioannis Refanidis and Dimitris Varsakelis, as well as my colleague Konstantinos

Chalkias, for all their help, support and encouragement during all these years.

My days in the CIT would not have been the same without my friends in the department. Babis

was the student who hosted me when I was visiting Brown back in 2009 and he proved to be one

of my closest friends and colleagues. I will always thank him for being there to mentor and cheer

me up in all of my breakthroughs and breakdowns during my first years in graduate school. I am

truly going to miss my beloved friend Alexandra when I leave Brown. I am very grateful to her for

standing by me in sadness and happiness in both personal and academic aspects of my life. A big

thanks goes to Evgenios for all of the coffee breaks and laughs we had the last couple of years. I

would also like to thank my academic siblings and officemates Feng-Hao and Sasha for making our

office a fun place to work and for always being willing to discuss a technical problem, proofread a

paper or attend a practice talk. Finally, I owe a debt of gratitude to Lauren Clarke who always had

the best answer for everything in the department.

My friends in Providence made sure that the past five years would be unforgettable. Thank you

Anastasia S., Anastasia V., Asli, Daniel, Giorgo, Harry, Irina, Jessica, Kosta, Maria, Pari, Sophia,

Saki, Tania, Taso and Vasili for all the fun times we had together! A very special thanks goes to my

dear friend Katerina, that was always next to me no matter what time of the day (or the night :) it

was. Andrea, Dimitri and Yianni although our time together in Providence was short, it has been

really fun meeting you all over Europe the years after. Thalia and Antonis, back in Greece, were

always ready to support me from afar - thank you guys for all the “online coffees” we had together!

vi

I am very grateful to my parents Kostas and Voula and my brother Christos for their love and

everything they have done to get me to this point. They would also always supported my choices no

matter how difficult it was for them. Finally, nobody has provided more support, encouragement,

and love than my husband Socrates. Words cannot express how much I thank you!

Eυχαριστώ!

This thesis was supported by NSF grant 0964379, as well as from a Brown University fellowship,

a Paris Kanellakis fellowship and scholarships from Bodossaki and Gerondelis foundations.

vii

Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Private Authentication - Anonymous Credentials . 3

1.2 Electronic Payments and Applications . 6

1.3 Revocation . 10

1.4 Thesis Outline . 12

2 Preliminaries 13

2.1 Notation and Assumptions . 13

2.1.1 Cryptographic Assumptions . 14

2.2 Cryptographic Primitives . 14

2.2.1 Witness Relations and Proofs of Knowledge 14

2.2.2 Σ-Protocols . 16

2.2.3 OR-proof Technique . 17

2.2.4 Composition of Proofs . 18

2.2.5 Commitment Schemes . 19

2.2.6 Range Proofs . 20

viii

2.2.7 Dynamic Accumulators . 21

2.3 Digital Signatures . 23

2.3.1 Blind Signatures . 25

2.3.2 Malleable Signatures . 28

3 Security of Blind Signatures 31

3.1 Security of Schnorr Blind Signature . 32

3.2 Intractability Assumptions . 34

3.3 Generalized Blind Schnorr Signature . 34

3.4 Security of Generalized Blind Schnorr Signatures . 35

3.4.1 Naive RO Replay Reductions . 36

3.4.2 Theorem for Perfect Naive RO Replay Reduction 38

3.4.3 Theorem for Non-perfect naive RO replay reductions 44

3.5 Related work . 49

3.6 Conclusions . 50

4 Security of U-Prove 52

4.1 Brands’ Blind Signature . 52

4.1.1 Security of Brands’ Blind Signatures . 53

4.1.2 DLP with Schnorr Prover . 54

4.2 Modifying Brands’ Signature . 55

4.2.1 Unforgeability of Modified Brands Blind Signature 57

4.3 Conclusions . 64

5 Anonymous Credentials Light 65

5.1 More on Cryptographic Commitments . 65

5.1.1 Combined Commitment Schemes . 66

ix

5.1.2 Blinded Pedersen Commitment Scheme . 66

5.2 Defining Blind Signatures with Attributes . 67

5.3 From Blind Signatures with Attributes to Single-Use Anonymous Credentials 70

5.4 Our Construction: ACL . 72

5.4.1 Proof of Security . 77

5.5 Related Work and Comparisons. 87

5.6 Conclusions . 89

6 Efficient Payments for Public Transportation Systems 90

6.1 Payment System Requirements of the Transportation Setting 93

6.2 E-cash with Attributes . 95

6.2.1 Brands’ E-cash with Attributes . 97

6.2.2 ACL E-cash with Attributes . 101

6.3 Framework Implementation . 104

6.3.1 Near Field Communication (NFC) Framework 105

6.3.2 Cryptographic Framework . 105

6.3.3 Efficient Execution of EC Scalar Multiplication Using the ECDH Key Agreement107

6.4 Implementation Results . 108

6.5 Related Work . 112

6.6 Conclusions . 113

7 Transferable E-cash 114

7.1 Defining Transferable E-Cash . 115

7.1.1 Global Variables and Oracles . 117

7.2 Security Properties . 121

7.3 Anonymity Properties . 123

7.4 Double-Spending Detection . 126

x

7.4.1 Properties of Serial Numbers and Doublespending Tags 127

7.4.2 A Double Spending Detection Mechanism . 128

7.5 Transferable E-Cash Based on Malleable Signatures 132

7.5.1 Allowed Transformations . 133

7.5.2 A Transferable E-Cash Construction . 135

7.6 Security and Privacy of the New Construction . 137

7.7 Instantiation . 146

7.8 Related work . 147

7.9 Conclusions . 149

8 Anonymous Revocation 150

8.1 Anonymous Revocation Data Structure . 151

8.1.1 Security Model . 153

8.2 A generic construction of ARDS using Range Proofs 157

8.2.1 Range Proofs Generic Framework . 158

8.2.2 Security Proof . 160

8.3 A Generic Construction of ARDS Using Accumulators 162

8.3.1 Security Proof . 164

8.4 Instantiations . 165

8.4.1 ARDS With Range Proofs Instantiation . 165

8.4.2 ARDS With Accumulators Instantiation . 166

8.5 Efficiency Comparisons . 166

8.6 Related Work . 167

8.7 Conclusions . 168

9 Conclusions 169

xi

Bibliography 171

xii

List of Tables

4.1 Brands Blind Signature . 53

4.2 Brands’ blind signature modified . 56

5.1 Comparison of anonymous credentials . 88

6.1 Brands’ with Attributes Account Opening Protocol 98

6.2 User Identification Phase . 98

6.3 Brands’ with Attributes Withdrawal Protocol . 99

6.4 Brands’ with Attributes Spending Protocol when not Revealing Attributes 100

6.5 Brands’ with Attributes Spending Protocol when Revealing the Attribute Lj 100

6.6 ACL with Attributes Account Opening Protocol . 102

6.7 ACL with Attributes Withdrawal Protocol . 102

6.8 ACL with Attributes Spending Protocol . 103

6.9 ACL with Attributes Revealing the Attribute Lj Protocol 104

6.10 Execution time of withdrawal per coin for I) Brands and Abe not supporting attributes

and II) Brands and ACL supporting the encoding of and revealing 2 attributes. . . . 109

6.11 Execution time of spending per coin for I) Brands and Abe not supporting attributes

and II) Brands and ACL supporting the encoding of and revealing 2 attributes. . . . 109

6.12 Coin size in byte for the cases I) Brands and Abe not supporting attributes and II)

Brands and ACL supporting the encoding of 2 attributes. 112

xiii

List of Figures

5.1 Proposed ACL Construction . 75

6.1 Execution times of withdrawal protocols for the cases I) not supporting attributes

and II) supporting the encoding and revealing 2 attributes. 110

6.2 Execution times of spending protocols for the cases I) not supporting attributes and

II) supporting the encoding and revealing 2 attributes. 111

7.1 Withdrawal . 138

7.2 Transfer . 138

xiv

1
Introduction

We live in a digital society. Electronic technologies have radically changed the way individuals,

businesses and governments communicate and exchange information. Consider for example how

many tasks of your everyday life you now perform online or using electronic means: from reading the

news on a website and interacting with friends through social media to shopping, banking or renewing

your driver’s license. The benefits of these electronic transactions are numerous as they provide ease

and convenience, high efficiency, accuracy and reduced operating costs among others. However, this

does not come without a price; these technologies usually overlook the privacy of the users and limit

the control they have on the dissemination of their personal information. Consequently, as users

fulfill various transactions electronically they leave a life-long trail of personal information of which

they might not even be aware of.

At the same time handling digital information has become significantly easier given the rapid

advances in big data technologies. Storage space is very cheap even for massive amounts of data while

collection, aggregation and analysis of information has become very effective and efficient. This, in

combination with the immense amount of personal information that is being revealed electronically

has imposed various threats to user privacy. A study by Latanya Sweeney in 2000 has shown

1

2

that 87% of the US population can be uniquely identified by their gender, date of birth and zip

code [135] - information that users comfortably submit in various electronic transactions. As a

result, researchers have been combining user data from various sources and using advanced mining

techniques have managed to identify individuals or reveal their location [81, 87, 98, 101].

A recent survey performed by the Pew Research Center’s Internet Project underwritten by

Carnegie Mellon University shows that US citizens are actually more concerned about their pri-

vacy online than they were in the past [102]. 59% of internet users said that they should be able

to use the internet anonymously and 85% claimed that they have taken at least one step trying to

mask their identities online. These concerns have been even more intense in the last year with the

revelations about government surveillance programs such as Prism [139] dominating the headlines.

A group of cryptography experts signed an open letter [2] against massive surveillance where among

other things they highlight the problem of online privacy:

“Indiscriminate collection, storage, and processing of unprecedented amounts of personal

information chill free speech and invite many types of abuse, ranging from mission creep

to identity theft. These are not hypothetical problems; they have occurred many times

in the past. Inserting backdoors, sabotaging standards, and tapping commercial data-

center links provide bad actors, foreign and domestic, opportunities to exploit the resulting

vulnerabilities.”

But what does privacy mean in the online world? One of the most prominent definitions is due

to Alan Westin from his book “Privacy and Freedom” [138]: “Privacy is the claim of individuals,

groups, or institutions to determine for themselves when, how, and to what extend information about

them is communicated to others.” Individuals should have the right to determine how much of their

personal information is disclosed and to whom, as well as how it is maintained and disseminated.

Governments have defined the so-called data minimization principles [100] along these lines: no

electronic transaction should require its participants to needlessly reveal private information. These

3

principles are at the core of European privacy standards [119] and also the National Strategy for

Trusted Identities in Cyberspace (NSTIC) published by the U.S. government [69]. The goal is to

limit the scope of the data that organizations are allowed to collect; so, to make sure that it is not

in violation of this directive, an online bank or vendor interacting with a user has an incentive to

learn as little as possible about this user.

This thesis studies privacy-enhancing technologies in order to get the best of both worlds: all

the benefits of electronic transactions but without sacrificing user privacy. Privacy in a digital

society is a rather challenging problem. One of the main barriers is that usually privacy preserving

solutions are significantly more computationally expensive than the non-privacy friendly ones. We

propose and use efficient cryptographic tools such as digital signatures, zero-knowledge proof systems

and encryption schemes to construct secure protocols that protect user privacy and at the same

time are practical. The main contribution of this thesis is on two sub-fields of privacy preserving

technologies: (a) privacy preserving authentication methods (anonymous credentials) and (b) private

electronic payments (e-cash). The goal of our research is to provide solutions for a digital society

where individuals will be able to perform electronic transactions in a secure and intuitive way while

retaining control of their personal information throughout their lives.

1.1 Private Authentication - Anonymous Credentials

Anonymous credentials, envisioned by David Chaum [59], and first fully realized by Camenisch and

Lysyanskaya [45], allow users to authenticate by proving possession of credentials without revealing

any other information about themselves; when such a proof is carried out, it cannot be linked

to previous uses of the same credential, or to any other identifying information about the user.

Additionally, they give the users the ability to privately obtain credentials. The reason that they

have become so popular is that they strictly adhere to data minimization principles mentioned above.

Anonymous credentials have proved to be a centrally important building block in privacy-minded

4

identity management systems currently under development [49, 118, 136].

A variety of anonymous credential schemes has been proposed in the literature [19, 20, 36, 37,

39, 40, 41, 46]. There exist two main categories of anonymous credentials: the multi-use credentials,

where an issued credential can be used multiple times, and the single-use credentials, where each

credential is meant to be used only once: in order to unlinkably re-use a credential, a user must

get it reissued. Multi-use credentials are useful in certain applications like subscription services

where a user might access her subscription multiple times. On the other hand, single-use credentials

are essential in applications like electronic cash or electronic voting where each credential (which

might be a coin or a ballot) is not supposed to be used more than once. Moreover, for state-of-

the-art constructions, both issuance and usage of single-use credentials is considerably more efficient

than the multi-use ones. The most well known multi-use scheme is the one due to Camenisch-

Lysyanskaya [45] that is being implemented by IBM as part of their Idemix project [136]. On the

other side, the scheme due to Stefan Brands [36, 37] which is being implemented by Microsoft under

their U-Prove project [118] is the most widely known single-use credential construction.

Efficiency considerations are important when deploying these schemes in practice. While on a

PC, the Camenisch-Lysyanskaya credentials [45] and follow-up work [20, 39, 41, 46] take only a

fraction of a second of CPU time, in mobile devices, smartcards and RFID cards, they are not yet

as practical as we may wish for certain applications. The issue is that they make use of either the

RSA group, or groups that admit bilinear pairings, and the security parameter choice needed to

provide security under the required assumptions in these groups makes these systems too expensive

for smartcards and mobile devices (i.e. original CL credentials require an RSA group with bit-length

2048 or a pairing with 128 bits of security). From the efficiency point of view, therefore, the U-

Prove credential system based on Brands’ work [36, 37] seems attractive. The U-Prove credential

issuing protocol, as well as the algorithm for verifying a credential, are practical enough for the more

advanced end of RFID technology, since they can work in any group where the discrete logarithm

problem is hard (thus can be based on ECC), and require just a few exponentiations in this group.

5

Note that software implementations of ECC multiplication are much faster than the equivalent RSA

exponentiation [91].

So perhaps one could use these single-use anonymous credentials and just have them reissued

as many times as needed. Unfortunately, though, the only well known efficient single-use credential

scheme is not provably secure! No proof of security has ever been given for U-Prove under any

reasonable assumption. As part of this thesis we study the security of U-Prove and in particular

the unforgeability of Brands blind signature [36] which is its main building block. We show that all

known approaches for proving unforgeability of Brands blind signature in the random oracle model

will fail no matter how strong an assumption one makes [15]. This impossibility result generalizes

to a much broader class of blind signatures, as for example the blind Schnorr signature [131] and

the blind GQ signature [90].

One might ask what happens if, instead of the Brands blind signature, one tries to construct

single-use anonymous credentials from another provably secure blind signature scheme. Unfortu-

nately, blind signatures as traditionally defined [3, 99, 125, 123] do not give any consideration to

users’ attributes. In a blind signature, a user is free to choose whichever message he wants signed.

In a credential scheme, a user should be able to get his particular attribute set signed by the signer.

The signers can verify that what they are signing is the correct attribute set, even though they

cannot see exactly what they are signing. For example, a signer might want to sign a user’s secret

key, his age, and his citizenship information, and wants to be able to verify that this is indeed what

she is signing. Attributes are, in fact, essential: without them, it is impossible to tie a credential to a

particular user’s identity, and so users would be able to just pool each others’ credentials as desired,

instead of tying them to a particular secret key. Moreover, giving the user the ability to choose any

message means that the content of the signed messages has not been vetted by the signer at all.

Thus, a natural question is: how do we extend the notion of a blind signature so that it can

efficiently accommodate single-use anonymous credentials? In this thesis, we propose a new single-

use anonymous credential scheme [14] called Anonymous Credentials Light that has comparable

6

efficiency to U-Prove and it is provably secure (in the random oracle model). In particular, it

is unlinkable under the decisional Diffie-Hellman assumption, and unforgeable under the Discrete-

Logarithm assumption for sequential composition (the extension to concurrent self-composition is

an open problem). Our scheme was inspired by Abe’s three-move blind signature [3] which did not

support attributes 1. For the construction, we define a new cryptographic building block, called

blind signatures with attributes, and discusse how it can be used in combination with a commitment

scheme to directly construct a single-use anonymous credential system.

1.2 Electronic Payments and Applications

Payments made with debit or credit cards do not provide any privacy guarantee for the users since

the corresponding financial institution can track all their transactions. In contrast, electronic cash

(e-cash) schemes allow secure and private electronic payments by providing similar security and

anonymity as physical cash. The general e-cash concept describes the interaction between three

types of entities: the bank, users, and merchants. Monetary value is represented by electronic coins,

which are pieces of data blindly signed by the bank. During withdrawal, the bank issues electronic

coins to users where each coin encodes a unique serial number and the identity of its possessing user.

The issuance happens in a blind fashion so that the bank cannot link a coin to a specific user. Users

can spend their electronic coins to pay a merchant while remaining anonymous. Note that, the bank

does not have to be online during the transaction (off-line cash). When a merchant deposits the

coins that received from users, the bank retrieves the serial numbers and checks whether a deposited

coin had been deposited before. If so, the bank can also check whether the merchant deposited the

same coin twice, or whether a user double-spent a coin, in which case her identity will be revealed.

Chaum [59] was the first to come up with the idea of an anonymous e-cash system and then

1When Abe’s blind signature was proposed it came with a proof of security in the RO model for concurrent
composition. However, it was later found that the original proof suffered some restrictions since it was only valid for
an adversary with overwhelming success probability and a new proof was given but this time in the generic group
model [112].

7

together with Fiat and Naor they defined e-cash secure against double spending in the off-line

setting [58]. Following Chaum’s et al. paradigm more schemes were proposed [3, 20, 36, 41, 54, 115]

which were either improving efficiency or adding extra properties. A very useful property of certain

e-cash schemes is the encoding of users’ attributes into coins (i.e. user’s age or zip code). This is

very convenient since at the time of spending allows the user to prove statements on his attributes

on a privacy preserving way. For example, a user can prove that he is over 18 at the time of spending

a coin if his age attribute is encoded in the coin.

The most efficient e-cash scheme with attributes is the one due to Brands [36] which, similarly

to his credential scheme (U-Prove), is based on his blind signature scheme. However, as discussed

above, we have showed an impossibility result for proving Brands blind signature unforgeable [15].

For the e-cash setting, this means that there is no guarantee that a malicious attacker cannot forge

coins. Luckily, as we show in this thesis, our Anonymous Credentials Light scheme can be extended

to an efficient e-cash scheme with attributes [97]. Our new e-cash scheme is very efficient: the

issuance of a coin takes approximately 300 milliseconds while the spending of a coin takes about 380

milliseconds when implemented in a smartphone device. This makes it very attractive for various

applications where private payments are important such as payments for the public transportation

scenario.

Public Transit Application. More and more public transportation systems have introduced

pre-paid or monthly cards/devices such as MetroCards in NYC, Charlie Cards in Boston or E-

ZPass for toll payments to replace their older systems based on actual cash or tickets. These new

systems provide many advantages but at the same time introduce concerns as to the privacy of their

customers. Essentially, one’s MetroCard or Charlie Card is a persistent identifier, and the MTA in

New York, or MBTA in Boston, has the ability to locate an individual in a large metropolis, which

prompts concerns among privacy advocates [130]. Privacy is an especially challenging problem in this

context since it not only spans cryptographic theory and many engineering fields but extends into

public policy areas such as environmental justice policy and sociology issues such as “fair access to

8

all”. However, in order to enable a large-scale deployment and broad acceptance of such a payment

system, adequate security and privacy mechanisms are an essential requirement.

In theory, cryptographic techniques like e-cash with attributes can be used to allow private pay-

ments in the public transit scenario. By using attributes appropriate one can implement additional

features such as variable pricing (e.g. reduced fare for senior customers) and privacy-preserving data

collection. For example, if the age attribute is included in the electronic coins, a senior user can

prove that he is over 65 years old and receive a senior discount. The open problem here is whether we

can have implementations of cryptographic e-cash that work with the same speed and convenience

as non-privacy-preserving MetroCards?

In this thesis we present an implementation of several e-cash schemes on an smartphone (used as

a payment device) that supports Near Field Communication (NFC) [1]. NFC allows the smartphone

to communicate with other NFC-enabled devices within a range of a few centimeters. The benefit of

this type of communication is its simple and hence fast establishment, as the smartphone can connect

to the reader by bringing them into proximity of a few inches. For transportation authorities the

advantage of relying on users’ NFC-enabled smartphones, is that no additional (electronic) tokens

will have to be handed out. Instead, only a software application has to be installed to the user’s

phone. This decreases the revenue collection cost, and further allows the payment system to be

updated easily. To make a change to the system, the transportation authority only needs to provide

a software update, rather than a hardware rollout.

Transferable E-cash. In traditional cryptographic e-cash, users can only transfer their coins to

merchants, who must then deposit the coin at the bank. It would be natural to allow coins to change

hands multiple times before they get deposited. Moreover, it would be desirable if these transfers

could be done without being connected to the bank, i.e., offline. One of the main advantages of such

a transferability property is that it would decrease the communication cost between the bank and

the users. Moreover, it would allow to implement more real world scenarios: Consider the example of

coins of different denominations. A store, which is offline, wants to give back change to a customer,

9

using previously received coins. In order to do so, coins need to be transferable multiple times.

Transferability of e-cash was proposed in the 1990s [114, 115] and the desired security properties

have been analyzed; however, so far no schemes have been proposed that are both practical and

satisfy the proposed security and privacy requirements.

As part of this thesis we present the first efficient and fully anonymous transferable e-cash

scheme [10]. We provide a formal treatment of the security and anonymity properties of transferable

e-cash by giving game-based definitions. In transferable e-cash, the owner of a coin should be able to

transfer the coin/signature he received from the bank to another user such that the transferred coin

is valid, carries all the information necessary to detect double spending and preserves anonymity.

Thus, we need a digital signature scheme that allows to compute a “fresh” version of a valid signature

(unlinkable to the original one to ensure anonymity) and extends the current signature to include

more information (such as an attribute that allows for double spending detection).

A recent proposal of a signature scheme that satisfies the above properties is due to Chase et

al. [57]. They propose malleable signatures: an extension of digital signatures, where anyone can

transform a signature on a message m into a signature on m′, as long as T (m) = m′ for some

allowed transformation T . In our construction, a coin withdrawn by the bank is signed using a

malleable signature scheme. Whenever a user wishes to transfer a coin to another user he computes

a “mauled” signature on a valid transformation of the coin. A valid transformation guarantees that

the transferred coin is valid, it is indeed owned by the sender (i.e. the sender’s secret key corresponds

to the information encoded in the coin) and the new coin/signature created will encode the right

information of the receiver so that a double spending can be successfully detected.

Double spending detection for transferable e-cash is a complex issue, since it needs to ensure

that the culprit is identified while the anonymity of honest owners of the coin will be preserved. We

propose an efficient double-spending detection mechanism, which is independent of our scheme and

could be used by other transferable e-cash constructions.

10

1.3 Revocation

Anonymous credential schemes and group signatures are very attractive because they allow users

to demonstrate possession of credentials or group memberships in a way that does not reveal any

additional information. Yet, despite significant advances that allow anonymous authentication and

group signatures to have efficiency that is comparable to their non-privacy-preserving counterparts,

adoption in practice has been slow. One of the main arguments against using such privacy-preserving

mechanisms is that revoking them is rather complicated.

It is impossible to eliminate key compromise and user misbehavior. Thus, the ability to revoke

privileges of users whose keys have been compromised, or who have violated their terms of service,

is a key requirement of any system. In the non-anonymous setting, revocation of credentials is very

easy: it can be done via white lists where a user is valid if her public key or identity is on a white

list. Alternatively, one can blacklist the identities or public keys of the revoked users; anyone not on

this blacklist can be presumed to be a valid user. This can be done in conjunction with expiration

dates that make it possible to delete old blacklists.

In the non-anonymous setting, a user can demonstrate that she is valid such that (1) the user’s

computation is independent on the number of valid and revoked users; (2) the verifier needs to look

up the list of valid (resp. revoked) users to ensure that the user is on (resp. not on) it; (3) the

credential issuer needs to keep the list up to date, and needs to digitally sign the current list, which,

if Merkle trees are used to organize a membership list of size n, means a O(ri log n + c) amount of

work per time period i in which ri users got revoked (and a constant c amount of work per time

period in which no user got revoked). This is because to update a leaf of a Merkle tree one needs

to recompute log n nodes; to tie the resulting tree to the current time period, one needs to sign the

root of the Merkle tree.

In the anonymous setting, this seems harder. Neither the blacklist nor the white list approaches

work at all, because often even the issuer of a credential does not know the identities of the credential

11

recipients. Suppose a credential issuer knows his users by pseudonyms, and can form black- or white

lists accordingly. Then the first solution that comes to mind — that of using a zero-knowledge proof

to show that a user is not on a blacklist — incurs a computation penalty proportional to the size of

the blacklist. The first white list solution that comes to mind — one in which every valid user gets

a new membership certificate whenever there is a need to update the membership list — requires

the group manager to perform work linear in the number of valid members upon each update.

Numerous solutions that are much more clever than the above approach have been proposed:

solutions based on cryptographic accumulators [42, 44] and zero knowledge proofs [45] or solutions

based on the NLL broadcast encryption scheme [103]. However these previous solutions suffer

from certain limitations. Most of the proposed methods are tied to a specific group signature or

anonymous credential scheme. A natural question would be whether we can construct a generic

revocation mechanism that can be used as a plug-in in other constructions. We would like this

mechanism to be simple and efficient and work in both the random oracle and standard models

under different assumptions depending on the required level of security.

In this thesis we propose a generic revocation mechanism called “Anonymous Revocation Data

Structure” (ARDS) that can be instantiated in several ways depending on the desired efficiency

and security level. This is achieved by building generality into the definitions: a user’s membership

certificate consists of a signature on her joining order and secret key (the secret key is not revealed

in the clear, the signature is the result of a two party protocol). Whenever a user is involved in

an algorithm, such as Join, ProveMembership or Verify, a commitment to her secret key is given as

input. This allows to use it in combination with group signatures or anonymous credential schemes

that require commitments to user secrets and certain types of proofs.

12

1.4 Thesis Outline

The rest of this dissertation is organized as follows: in Chapter 2 we present some basic cryptographic

notation and definitions. In Chapter 3 we show impossibility results on the unforgeability of certain

classes of blind signatures (main building block for various privacy preserving applications). Then,

in Chapter 4 we explain why U-Prove, one of the most famous anonymous credential schemes,

cannot be proven secure based on our impossibility result and present a proposed extension that

would satisfy unforgeability. Our new anonymous credential system is presented in Chapter 5, and in

Chapter 6 we show how it can be extended to an electronic payment scheme. Moreover, we present an

implementation of our new e-cash scheme for private payments in the public transportation scenario.

In Chapter 7 we present the first fully anonymous transferable e-cash scheme that does not depend

on a trusted authority to detect double spending. In Chapter 8 we study how to revoke users’

secret keys or credentials when, for example, a user misbehaves or a secret key was compromised

and propose efficient generic revocation mechanisms that can be used as building blocks for various

constructions. Finally, Chapter 9 presents the conclusions of the thesis.

2
Preliminaries

In this chapter we set the notation to be used throughout the thesis and we review some of the

known cryptographic assumptions, definitions and constructions that will be used in the following

chapters.

2.1 Notation and Assumptions

Throughout the thesis k will denote the security parameter which determines the desired level of

security of the scheme. 1k denotes the string of 1’s of length k. When a probabilistic polynomial

time (PPT) algorithm A is given 1k as input, then, A is allowed to work in time polynomial in k.

For a set S, notation x ← S denotes that the element x is chosen uniformly at random from S.

By A(·, . . . , ·) we denote the multiple inputs of an algorithm A and by y ← A(x) we denote the

output of the algorithm on input x. For algorithms A and B, 〈A,B〉 denotes their interaction. A

function ν(k) is called negligible if for all polynomials p(k), and for all sufficiently large k it holds

that ν(k) < 1/p(k).

13

14

2.1.1 Cryptographic Assumptions

We now review some basic cryptographic assumptions which will be used in the thesis.

Definition 2.1.1 (Discrete Logarithm Assumption). Let k be the security parameter. Let G be

a group of order q (k-bit prime) and g be a randomly chosen generator of G. Then, for every

polynomial time algorithm A it holds that:

Pr[h← G;x← A(h) : x = logg h] ≤ ν(k)

where ν(k) is a negligible function.

Definition 2.1.2 (Decisional Diffie-Hellman (DDH) Assumption). Let k be the security parameter.

Let G be a group of order q (k-bit prime) and g be a randomly chosen generator of G. Then, for

every polynomial time algorithm A it holds that:

Pr[a, b← Zq;h0 ← gab;h1 ← G; b← {0, 1}; b′ ← A(ga, gb, hb) : b′ = b] ≤ 1

2
+ ν(k)

where ν(k) is a negligible function.

Definition 2.1.3 (RSA Assumption). Let k be the security parameter. Let N = pq where p and q

are k-bit, distinct odd primes. Let e be a randomly chosen positive integer less than and relatively

prime to φ(N) = (p− 1)(q − 1). Then, for every polynomial time algorithm A it holds that:

Pr[h← Z∗N ;x← A(N, e) : xe ≡ h mod N] ≤ ν(k)

where ν(k) is a negligible function.

2.2 Cryptographic Primitives

2.2.1 Witness Relations and Proofs of Knowledge

A witness relation for a language L ∈ NP is defined as:

Definition 2.2.1 (Witness relation [83]). A witness relation for a language L ∈ NP is a binary

15

relation RL that is polynomially bounded (i.e., (h, x) ∈ RL implies |x| ≤ poly(|h|)), is polynomial-

time-recognizable and characterizes L by: L = {h : ∃x s.t. (h, x) ∈ RL}.

For h ∈ L, any x satisfying (h, x) ∈ RL is called a witness (for the membership h ∈ L). By RL(h)

we denote the set of witnesses for the membership h ∈ L; that is, RL(h) = {x : (h, x) ∈ RL}. If for

each h ∈ L, there exists a unique x ∈ RL(h) then we say that RL is a unique-witness relation. The

discrete logarithm problem is an example of a unique witness relation where: RG,g,q = {h, x s.t. x ∈

Zq and gx = h}. A relation RL is said to be “hard”, if one can efficiently generate (h, x)’s such that,

when given h it is hard to find the witness x.

Definition 2.2.2. (Interactive Proof System [84, 85]) An interactive proof system (with soundness

error s ∈ [0, 1]) for a language L with witness relation RL is a pair of algorithms (P, V), where V is

probabilistic polynomial time algorithm, and the following properties hold:

1. Completeness. For every h ∈ L the verifier always accepts:

Pr[〈P, V 〉(h) = 1] = 1.

2. s-Soundness. For every h 6∈ L and every computationally unbounded P ∗,

Pr[〈P ∗, V 〉(h) = 1] ≤ s.

If soundness error, s, is negligible, then this interactive proof system has strong soundness. A useful

property in the above setting would be if the verifier V wouldn’t learn anything useful from P about

the witness x besides the fact that P knows a witness x [85]. This property is called zero-knowledge.

Definition 2.2.3. (Honest Verifier Zero-Knowledge (HVZK)) An interactive proof system (P, V)

for a language L is said to be honest verifier zero-knowledge if there exists a probabilistic polynomial

time algorithm S (the Simulator) such that for all h ∈ L:

viewV [P (h)↔ V (h)] ≈ S(h),

where viewV is the view of the honest verifier V of the interaction between V and P on input h. If

16

there is a single message transmitted from the prover to the verifier (i.e. one-round protocol), then

the proof system is called non-interactive.

A proof of knowledge [21] is an extension of a zero-knowledge proof in which the prover succeeds

to convince a verifier that he knows a certain witness x that h ∈ L (instead of proving that there

exists a witness x).

Definition 2.2.4. (Proof of Knowledge) Let RL be a binary realation for a language L and k ∈ [0, 1].

We say that V is a knowledge verifier for the relation R with knowledge error k if the following two

conditions hold:

1. Non-triviality. There exists a prover P such that for all (h, x) ∈ RL:

Pr[〈P (h, x), V (h)〉 = 1] = 1.

2. Validity (with error k). There exists an extractor algorithm, K, such that for all h ∈ RL, for

all computationally unbounded P ∗, if

p∗(h) = Pr[〈P ∗, V 〉(h) = 1] ≥ k

then, on input h and access to the prover, K computes a value x such that (h, x) ∈ RL, within

an expected number of steps bounded by (q(|h|))
p∗(h)−k for a polynomial q(·).

2.2.2 Σ-Protocols

Σ-protocols are a class of interactive proofs where the Prover and the Verifier (P, V) have a common

input h and P proves in zero-knowledge that he knows a value x such that (h, x) ∈ RL. Their main

characteristic is that they have exactly 3 rounds of the following type: (1) P sends a message a to

V , (2) V responds with a random challenge c chosen from a domain of size Θ(k) and (3) P resents a

reply r. V decides whether to accept or not given the information he has seen: (h, a, c, r). Formally:

Definition 2.2.5. (Σ-Protocol) A protocol P is said to be a Σ-protocol for a relation RL if:

1. P is of the above three rounds form, and if (P, V) follow the protocol, the verifier always

17

accepts.

2. From any h and any pair of accepting conversations on input h, (a, c, r), (a, c′, r′) where c 6= c′,

one can efficiently compute x such that (h, x) ∈ RL (special soundness).

3. There exists a polynomial-time simulator S, which on input h and a random c outputs an ac-

cepting conversation of the form (a, c, r), with the same probability distribution as conversations

between the honest P, V on input h (special honest-verifier zero-knowledge).

A Σ-protocol is said to be unique-witness Σ-protocol (UWΣ) if RL is a unique-witness relation.

An example of a Σ-protocol is the Schnorr identification scheme [131]. This scheme is essential a

proof of knowledge of a discrete logarithm. Let G be a group of prime order q with generator g, and

let Zq denote the field of integers modulo q. Schnorr’s identification scheme works as follows:

Prover(q, g, h = gx) Verifier(q, g, h)

y ← Zq, a = gy a−−−→

c←−−− c← Zq

r = y + cx mod q r−−−→ gr
?
= ahc

Σ-protocols are an essential building block for blind signatures and anonymous credentials. For

example Brands’ [36] and Abe’s [3] blind signature schemes are based on a Σ-protocol, while CL

anonymous credentials [45] uses ZK proofs which are based on Σ-protocols.

2.2.3 OR-proof Technique

Let P be a Σ-protocol for a relation RL, (h0, h1) be a common input to (P, V) and P knows a x

such that hb, x ∈ RL for b ∈ {0, 1}. An OR-proof protocol POR is a Σ-protocol for proving that

either (h0, x) ∈ RL or (h1, x) ∈ RL [71]1.

The main idea of an OR-proof is that P will complete two Σ protocols Σ0,Σ1, one for h0 and

one for h1 in such a way that the verifier will not be able to tell for which of the two P knows the

1This is based on a more general result due to Cramer et. al. [68] where they present a protocol in which the
prover demonstrates knowledge of the solution to some subset of n problem instances out of a collection of subsets.

18

corresponding witness. For hb the prover can actually follow the real Σ protocol while for h1−b he

will have to use a simulator M to create his answers. A POR protocol works as follows:

1. P computes the first message of Σb, ab, using (hb, x) as input. P randomly chooses c1−b and

runs the simulator M on input (h1−b, c1−b) and receives (a1−b, c1−b, r1−b) as an output. Then,

P sends a0, a1 to V .

2. V chooses a random string e and sends it to P .

3. P sets cb = e⊕ cb−1 and computes the answer rb to challenge cb using hb, ab, cb, x as input. He

sends c0, c1, r0, r1 to V .

4. V checks that e = c0⊕c1 and that both (a0, c0, r0) and (a1, c1, r1) are accepting conversations.

Let ROR = {((h0, h1), x)|(h0, x) ∈ RL or (h1, x) ∈ RL}. Then:

Theorem 2.2.6 ([71]). The POR protocol is a Σ-protocol for ROR. Moreover, for any verifier V ∗,

the probability distribution of conversations between P and V ∗, where x is such that (hb, x) ∈ RL,

is independent of b.

2.2.4 Composition of Proofs

It is possible to compose proofs of knowledge in order to prove that more than one statement hold

simultaneously, AND of proofs, or that at least one of the statements holds, OR of proofs. As an

example, assume that the prover wishes to prove knowledge of integers α, β such that y = gα and

ỹ = gβ holds. In order to perform a proof of this type (where the User is proving that two or more

statements simultaneously hold) the prover needs to send the first round messages simultaneously to

the verifier, who replies with a single challenge (or, in the non-interactive setting, compute a single

e), and then execute the rest of the protocol using this single challenge. The verifier accepts if all

the verification equations hold [63]. Let’s now see how an OR proof is possible. Assume a prover

P who proves knowledge of either α or β such that either y = gα or ỹ = gβ holds. Without loss of

19

generality assume that P knows α; he first picks random r1, e2, z2, sets a1 = gr1 and a2 = gz2 ỹ−e2

and sends a1, a2 to the verifier. Upon receiving a1, a2, the verifier sends a random challenge e to

P . Then, the prover computes e1 = e ⊕ e2, z1 = r1 + eα and sends e1, z1, e2, z2 to the verifier who

accepts if e1 ⊕ e2 = e, a1y
e1 = gz1 and a2ỹ

e2 = gz2 [67].

2.2.5 Commitment Schemes

A non-interactive commitment takes as input a message (or set of messages) x and randomness

R and outputs a value that, on the one hand, reveals no information about the message but, on

the other hand, it is hard to find a (x′, r′) such that Commit(x; r) = Commit(x′, r′) but x 6= x′

(see [106] for a standard definition and treatment). A commitment scheme is secure secure if it

is both hiding : the receiver learns nothing about the committed message and binding : there is a

unique value that opens the commitment and validates during the reveal stage. Two of the most

well studied commitment schemes are the one due to Pedersen [121] and the one due to Fujisaki

and Okamoto [80] both of which are information theoretically hiding and computationally binding.

It is also important to note that there are efficient zero-knowledge proof protocols for proving that

a commitment C is to a particular set of values; or to a set of values that satisfy a rich class of

relations [36, 47, 70].

The Pedersen commitment is based on the discrete logarithm assumption and works as follows:

1. PedCommitSetup(1λ): On input the security parameter 1λ pick a group G of prime order

q = Θ(2λ) with generators g, h.

2. PedCommit(x; r) = gxhr; where x, r ∈ Zq.

The Pedersen commitment scheme is information theoretically hiding and computationally binding.

It is also important to note that there are efficient zero-knowledge proof protocols for proving that

a commitment C is to a particular set of values; or to a set of values that satisfy a rich class of

relations [36, 47, 70].

20

The Fujisaki and Okamoto (FO) scheme [80] is an extension of the Pedersen commitment scheme

to the RSA modulus instead of a prime order group (thus, it yields to more efficient range proofs as

we will later see). The FO commitment consists of:

1. FOCommitSetup(1λ): Let p, q be safe primes, n = pq be an RSA modulus, g1 be a generator

of QRn and g2 = gα1 for α ∈ Zn. Output n, g1, g2.

2. FOCommit(x; r) = gx1g
r
2; where x ∈ Zn and r ∈ Z2λn.

2.2.6 Range Proofs

Range proofs are a special category of zero-knowledge proofs of knowledge which allow a prover to

convince a verifier that he has committed to a value that lies in a specific range. Range proofs are

particularly useful for many applications such as anonymous credentials or e-cash and a variety of

schemes has been proposed in the literature. Lipmaa [104], based on earlier work due to Boudot [35],

gave an efficient construction of a range proof which is based in the observation that any positive

number can be represented as a sum of four squares. Informally, in order to show that a committed

value x inside a Fujisaki-Okamoto(FO) commitment C lies in the integer interval [a, b], one just

needs to show that x1 = x− a > 0 and x2 = b−x > 0. This is possible by performing the following:

the prover and the verifier jointly compute commitments to x1, x2: Cx1
= C/ga, Cx2

= gb/C and

the prover commits to their representation as a sum of four squares. It is straightforward to show

that a committed value is a sum of other committed values: let C1, C2 be commitments to values

c1, c2 respectively, to show that C is a commitment to c = c1 + c2 just show that C is a commitment

to C1C2. The above range proof technique is quite efficient and it is based on the hardness of the

Strong RSA problem.

In case that one doesn’t wish to rely on the Strong RSA assumption, the folklore method would

be to have the prover commit to every bit of his k-bit secret x, prove that the commitments are

to bits of x and then the verifier is convinced that x ∈ [0, 2k+1 − 1] since there are exactly k

21

commitments. This method results in a proof of size O(k) group elements. Camenisch et al. [38]

present a way to reduce this size asymptotically and also use smaller constants which results in a

protocol which is a magnitude more efficient than previously known ones for the discrete logarithm

based setting. Briefly their idea is to use a u-ary basis instead of a binary one: write the secret

value x in base u (optimally chosen) and commit to all ` of those u-ary digits in order to show that

x ∈ [0, u`]2. This immediately reduces the proof size to O(`u) for each commitment and requires

O(u · `) communication. Then, in order to come up with an even more efficient scheme, Camenish

et al. [38] suggest reusing part of one u-ary proof in all ` proof instances: i.e. the verifier could send

one list of u signatures representing u-ary digits and then the prover can use this same list to prove

that all ` digits are indeed u-ary ones. This reduces the communication complexity to O(u+ `) and

for appropriate choice of u and ` their approach yields a proof of size O
(

k
log k−log log k

)
. The above

construction was proven secure under the (log k)-Strong Diffie Hellman assumption.

In many applications we need non-interactive range proofs. The above proofs can be transformed

to non-interactive by instantiating them as Σ−protocols and then making them non-interactive in

the random-oracle model using the Fiat-Shamir heuristic (see below). For non-interactive range

proofs without the use of random oracles please refer to [127, 53].

2.2.7 Dynamic Accumulators

An accumulator scheme allows to combine a large set of values into a short one, called the accu-

mulator, such that there is a short witness that a given value was indeed incorporated into the

accumulator. Accumulators were first proposed by Benaloh and de Mare [25] and have many ap-

plications including anonymous credentials and group signatures. Camenisch and Lysyanskaya [44]

extended the notion of accumulators, by introducing dynamic accumulators which allow to dynam-

ically delete and add values from or into the original set.

2Their protocol can also handle arbitrary ranges [a, b] by using a trick suggested by Schoenmakers [132].

22

Definition 2.2.7 (Dynamic Accumulator 3). An accumulator for a family of inputs {Xk} is a family

of families of functions G = {Fk} with the following properties:

Efficient Generation: There is an efficient probabilistic algorithm G that in input 1k produces a

random element f of {Fk} and some auxiliary information about f called auxf .

Efficient evaluation: f ∈ {Fk} is a polynomial time circuit that, on input (u, x) ∈ Uf × Xk, outputs

a value v ∈ Uf , where Uf is an efficiently computable input domain for the function f ; and Xk is

the intended input domain whose elements are to be accumulated.

Quasi-commutative: For all k, for all u ∈ Uf , for all x1, x2 ∈ Xk, f(f(u, x1), x2) = f(f(u, x2), x1).

If X = {x1, . . . , xm} is a list of elements of Xk, possibly with repetitions, then by f(u,X) we denote

f(f(. . . (u, x1), . . .), xm).

Witnesses: Let v ∈ Uf and x ∈ Xk. A value w ∈ Uf is called a witness for x in v under f if

u = f(w, x).

Deletion: There exist efficient algorithms D,W such that, if v = f(u,X), x, x′ ∈ X, and f(w, x) = v

then

• D(auxf , v, x
′) = v′ such that v′ = f(u,X/{x′});

• W(f, v, v′, x, x′) = w′ such that f(w′, x) = v′.

In the definition given above the addition operation is already implied by the efficient evaluation

and the quasi-commutative properties.

A dynamic accumulator is secure against an adaptive adversary A who tries to produce a witness

for a value x′ which is not included in the current accumulator v. A is given access to an addition

oracle: Add(x) oracle which allows the addition of the value x to the accumulator i.e. such that

v = f(u,X ∪ x) and a Del(x) oracle which checks whether x ∈ X and, if so, sets v = D(auxf , v, x)

and X = X/{x}. In both cases, the value v is returned to A.

3This definition is originally due to Baric and Pfitzmann [17] but was modified by Camenisch and Lysyanskaya
[44] by adding the quasi-commutative property instead of the generation and the verification algorithms used before.

23

Definition 2.2.8. A dynamic accumulator is secure if, for any poly-time adaptive adversary B

involved in the following experiment, we have AdvAccuSec(A) := Pr[ExptAccuSec(k) = 1] ∈ negl(k).

Experiment ExptAccuSec(k)

(f, auxf , u)← G(1k);

Initialize X := 0, v := u;

(x,w,X)← AAdd(·),Del(·)(f, v) :

If X ⊂ Xk, w ∈ U ′f , x ∈ X′k, x 6∈ X, f(w, x) = f(u,X) return 1;

Return 0;

For the definition above note that only the legitimate accumulated values, (x1, . . . , xm), must belong

to Xk; the forged value x can belong to a possibly larger set X′k.

Let’s now briefly describe how the CL accumulator works: let n = pq where p and q are strong

primes. In order to add a value x̃ to the accumulator value v, one can do v′ = vx̃ mod n. To delete

a value x̃ compute v′ = vx̃
−1 mod (p−1)(q−1) mod n. To update a witness u after x̃ has been added,

simply compute u′ = ux̃. In case that a value x̃ 6= x has been deleted, the update of the witness uses

the extended GCD algorithm to compute values a, b such that ax+bx̃ = 1 and then sets u′ = ubcv′a.

2.3 Digital Signatures

A digital signature signature scheme consists of the following algorithms:

1. KeyGen(1k): is a probabilistic polynomial time key-generation algorithm which takes as input

the security paremeter 1k and outputs a pair of secret and public key (sk , pk).

2. Sign(m, sk): is a probabilistic algorithm that outputs a signature σ on message m using signing

key sk .

3. Verify(m,σ, pk): outputs 1 if σ is a valid signature on m under the public key pk .

Definition 2.3.1 (Secure Signature Scheme [134]). We say that a signature scheme is secure

(against adaptive chosen message attacks) if it is Correct and Unforgeable.

24

1. Correctness.

∀m : Pr[(sk , pk)← KeyGen(1k);σ ← Sign(m, sk) : Verify(m,σ, pk) = 1] = 1

2. Unforgeability. Let A be an adversary with access to a signing oracle Sign(sk , ·). Let Q be A’s

query tape where A records all his queries to the oracle. Then,

Pr[(sk , pk)← KeyGen(1k); (Q,m, σ)← ASign(sk ,·)(sk) : (m 6∈ Q) ∧Verify(m,σ, pk)] ≤ ν(k).

Fiat-Shamir Heuristic. Fiat and Shamir [74] proposed a method to transform any three-round

interactive proof system (Def. 2.2.2) with negligible soundness error, like Σ-protocols (Def. 2.2.5),

into a digital signature scheme using a hash function, modeled as a random oracle.

To transform a three-round proof system into a signature scheme, one could, instead of a random

challenge c, compute c = H(a,m), where H → {0, 1}∗ is a hash function. Famous digital signatures

that have been constructed from Σ-protocols using the Fiat-Shamir heuristic include Schnorr’s [131]

and GQ signatures [90] and they have been proven secure in the RO model [123].

Going back to our running example, Schnorr’s proof of knowledge scheme can be easily turned

into a signature scheme using the Fiat-Shamir heuristic. The Schnorr signature scheme is defined

as follows:

1. KeyGen(1k): (h, x)← RL, sk = x, pk = (h,H).

2. Sign(m, sk): produce a honestly using x, set c = H(m, a), produce r honestly for this c, output

σ(m) = (a, r).

3. Ver(m, (a, r)): c = H(a,m) and check if (a, c, r) is valid.

The Signer has a secret/public key pair (h, x) and a message m. To sign m the following steps

take place: (1) y ← Zq, (2) a = gy, (3) c = H(m, a), and (4) r = y + cx mod q. The signature

on the message is σ(m) = (c, r) and in order to verify the signature, one should check whether

c = H(m, gr/hc).

25

2.3.1 Blind Signatures

In a blind signature scheme, first introduced by Chaum in 1982 [59], a user can have a document

signed without revealing the contents of the document to the signer, and in such a way that the

signer will not be able to recognize it later, when he sees the signature. Blind signatures have proven

to be a very useful building block in applications requiring both anonymity and unforgeability, such

as electronic cash (ecash) and anonymous credentials [36, 58, 45, 41, 20, 115].

We present the formal definitions for blind signatures as they were described in [99]. A blind

signature scheme is a four-tuple consisting of two interactive Turing machines, the Signer and the

User, (S,U) and two algorithms (Gen,Verify).

• Gen(1k): is a probabilistic polynomial time key-generation algorithm which takes as an input

a security parameter 1k and outputs a pair (pk, sk) of public and secret keys.

• S(pk, sk), U(pk,m): are polynomially- bounded probabilistic Interactive Turing machines who

have the following (separate) tapes: read-only input tape, write-only output tape, a read/write

work tape, a read-only random tape, and two communication tapes, a read-only and a write-

only tape. They are both given (on their input tapes) as a common input a pk produced by a

key generation algorithm. Additionally, S is given on her input tape a corresponding private

key sk and U is given on her input tape a message m, where the length of all inputs must

be polynomial in the security parameter 1k of the key generation algorithm. Both S and U

engage in an interactive protocol of some polynomial (in the security parameter) number of

rounds. At the end of this protocol S outputs either “completed” or “not-completed” and U

outputs either “fail” or σ(m).

• Verify(pk,m, σ(m)): is a deterministic polynomial-time algorithm, which outputs “accept”/“reject”

with the requirement that for any message m, and for all random choices of key generation

algorithm, if both S and U follow the protocol then S always outputs “completed”, and the

output of U is always accepted by the verification algorithm.

26

A blind digital signature scheme is secure if for all the probabilistic polynomial time algorithms

A there exists a security parameter kA, such that, for all k > kA the following properties hold [99]:

- Blindness: the signer is unable to view the messages he signs (protection for the user). Further-

more, a malicious signer cannot link a (m,σ(m)) pair to any particular execution of the protocol.

In order to define blindness formally consider the following experiment. Let A control the signer

but not the user and b ∈ {0, 1} is a randomly chosen bit which is kept secret from A. A will try to

guess the value of b by performing the following steps:

1. (pk, sk)← Gen(1k)

2. {m0,m1} ← A(1k, pk, sk) (i.e. A produces two documents, polynomial in 1k, where {m0,m1}

are by convention lexicographically ordered and may even depend on pk and sk).

3. We denote by {mb,m1−b} the same two documents {m0,m1}, ordered according to the value

of bit b, where the value of b is hidden from A. A(1k, pk, sk,m0,m1) engages in two parallel

(and arbitrarily interleaved) interactive protocols, the first with U(pk,mb) and the second with

U(pk,m1−b).

4. If the fist User outputs on her private tape σ(mb) (i.e. does not output fail) and the second

user outputs on her private tape σ(m1−b) (i.e., also does not output fail) then A is given as

an additional input {σ(m0), σ(m1)}.(We remark that we do not insist that this happens, and

either one or both users may output fail).

5. A outputs a bit b′ (given her view of steps 1 through 3, and if conditions are satisfied on step

4 as well).

Then the probability, taken over the choice of b, over coin-flips of the key-generation algorithm, the

coin-flips of A, and (private) coin-flips of both users (from step 3), that b′ = b is at most 1
2 + ν(k),

where ν(k) is a negligible function.

27

-One-more Unforgeability: a user interacting with a signer S cannot output an additional, valid

message/signature pair (m,σ(m)) no matter how many pairs of messages/ signatures of S he has

seen (protection for the signer). To define that formally, consider an adversary A who controls the

user but not the signer and executes the following experiment in order to get “one-more” signature

(this is also called “one-more” forgery).

1. (pk, sk)← Gen(1k)

2. A(pk) engages in polynomially many (in k) adaptive, parallel and arbitrarily interleaved inter-

active protocols with polynomially many copies of S(pk, sk), where A decides in an adaptive

fashion when to stop. Let ` be the number of executions, where the Signer outputted “com-

pleted” in the end of Step 2.

3. A outputs a collection {(m1, σ(m1)), . . . , (mj , σ(mj))} subject to the constraint that (mi, σ(mi))

for 1 ≤ i ≤ j are all accepted by V erify(pk,mi, σ(mi)), and all mi’s are distinct.

Then the probability, taken over coin-flips of key-generation algorithm, the coin-flips of A, and over

the (private) coin-flips of the Signer, that j > ` is at most ν(k).

Shnorr Blind Signature. Schnorr’s blind signature scheme is the most efficient of all the blind

signature schemes proposed in the literature given that it can also be implemented using elliptic

curves.

As described in Section 2.3, Schnorr’s signature was constructed by applying the Fiat-Shamir

heuristic over Shnorr’s identification scheme. The blind version of Schnorr’s signature would work

as follows [66]:

Signer(q, g, h = gx) User(q, g, h,m)

y ← Zq, a = gy a−−−→

c←−−− α, β ← Zq, c′ = H(m, agαhβ), c = c′ + β

r = y + cx mod q r−−−→ gr
?
= ahc, r′ = r + α, output r′, c′

28

We denote gr
′
h−c

′
by a′. The signature is: σ(m) = (a′, c′, r′) and the verification checks whether

c′ = H(m, a′).

2.3.2 Malleable Signatures

A malleable (or homomorphic) signature scheme [7, 9, 57] is a special class of digital signatures that

allows anyone to compute a signature of a message m′ from a signature of m as long as m and m′

satisfy some predicate. A mauled signature on m′ reveals no extra information about the parent

message m.

We adapt the definition by Chase et al. [57], who instead of a predicate consider a set of allowable

transformations. A malleable signature scheme consists of the algorithms KeyGen, Sign, Verify and

SigEval, of which the first three constitute a standard signature scheme. SigEval transforms multiple

message/signature pairs into a new signed message: on input the verification key vk, messages

~m = (m1, . . . ,mn), signatures ~σ = (σ1, . . . , σn), and a transformation T on messages, outputs a

signature σ′ on the message T (~m).

Definition 2.3.2 (Malleability). A signature scheme (KeyGen,Sign, Verify) is malleable with respect

to a set of transformations T if there exists an efficient algorithm SigEval that on input (vk, T, ~m,~σ),

where (vk, sk)
$←− KeyGen(1λ), Verify(vk, σi,mi) = 1 for all i, and T ∈ T , outputs a signature σ′ for

the message m := T (~m) such that Verify (vk, σ′,m) = 1.

In order to achieve stronger unforgeability and context-hiding notions, Chase et al. [57] provide

simulation-based definitions for malleable signatures. Simulatability requires the existence of a

simulator, which without knowing the secret key can simulate signatures that are indistinguishable

from standard ones. Moreover, a simulatable and malleable signature scheme is context hiding if a

transformed signature is indistinguishable from a simulated signature on the transformed message.

A malleable signature scheme is unforgeable if an adversary can only derive signatures of messages

that are allowed transformations of signed messages. Malleable signatures can be constructed [57]

29

using controlled-malleable NIZKs [55] instantiated under the Decision Linear assumption [31].

Security Properties of Malleable Signatures. Assume the following expanded notion of a

signature scheme in which the key generation process splits into two parts: a trusted algorithm Gen

for generating universal parameters crs, and an algorithm KeyGen that, given these parameters,

generates a keypair specific to a given signer.

Definition 2.3.3 (Simulatability). A signature scheme (Gen,KeyGen,Sign, Verify), where Gen out-

puts common parameters, is simulatable if there exists a PPT algorithm KeyCheck that on input

(crs, vk , sk) outputs 1 iff (vk , sk) is in the range of KeyGen(crs), and a PPT simulator (SimGen,SimSign)

such that the crs in (crs, τs)← SimGen(1λ) is indistinguishable from crs ← Gen(1λ) and the signa-

tures produced by SimSign are indistinguishable from honest signatures; i.e., for all PPT adversaries

A:

Pr
[
crs ← Gen(1λ) : AS(crs,·,·,·)(crs) = 1

]
≈ Pr

[
(crs, τs)← SimGen(1λ) : AS

′(crs,τs,·,·,·)(crs) = 1
]
,

where S on input (vk , sk ,m) outputs ⊥ if KeyCheck(crs, vk , sk) = 0 and otherwise Sign(crs, sk ,m).

Similarly S′ outputs ⊥ if KeyCheck(crs, vk , sk) = 0 and SimSign(crs, τs, vk ,m) otherwise.

Definition 2.3.4 (Simulation context hiding). For a simulatable malleable signature scheme, a bit

b, and an algorithm A, let pAb (λ) be the probability that b′ = 0 in the following game:

1. (crs, τs)← SimGen(1λ)

2. (state, vk , ~m,~σ, T)← A(crs, τs)

3. If Verify(crs, vk , σi,mi) = 0 for some i or T 6∈ T then output ⊥

4. If b = 0 then σ ← SimSign(crs, τs, vk , T (~m))

If b = 1 then σ ← SigEval(crs, vk , T, ~m,~σ)

5. b′ ← A(state, σ)

30

The signature scheme is simulation context hiding if for all PPT algorithms A it holds that |pA0 (λ)−

pA1 (λ)| is negligible in λ.

For Unforgeability Chase et al. require the existence of an extractor which given the transformed

message and signature as well as the set of signed messages, outputs the transformation used. For

this they assume an amplified setup SimExtGen that outputs (crs, τs, τe) where τe is the extraction

trapdoor.

Definition 2.3.5 (Simulation Unforgeability). For a simulatable malleable signature (Gen, KeyGen,

Sign,Verify, SigEval) for a class of transformations T with an associate PPT simulator and extractor

(SimExtGen, SimSign,SigExt), an adversary A and a table Q = Qm × Qσ that contains messages

queried to SimSign and their responses, consider the following game:

1. (crs, τs, τe)← SimExtGen(1λ); (vk , sk)← KeyGen(crs)

2. (m∗, σ∗)← ASimSign(crs,τs,vk ,·)(crs, vk , τe)

3. (~m′, T)← SigExt(crs, vk , τe,m
∗, σ∗, Q)

The signature scheme is simulation unforgeable if for all PPT algorithms A the probability that

Verify(vk , σ∗,m∗) = 1 and (m∗, σ∗) 6∈ Q but either (1) ~m′ 6⊆ Qm, (2) m∗ 6= T (~m′), or (3) T 6∈ T is

negligible in λ.

3
Security of Blind Signatures

As discussed in the Introduction, blind signatures have proved an essential building block for ap-

plications like anonymous credentials or electronic cash. One of the oldest, and most efficient blind

signature schemes is the one due to Schnorr that is based on his famous identification scheme and

we presented in Section 2.3.1. Although Schnorr’s blind signature was proposed over twenty years

ago, its unforgeability remains an open problem, even in the random-oracle model. In this Chapter,

we show that current techniques for proving unforgeability in the random oracle model do not work

for the Schnorr blind signature by providing a meta-reduction [33] which we call “personal nemesis

adversary”. Our meta-reduction is very interesting since it is the first that does not need to reset the

adversary and thus can also rule out reductions to interactive assumptions. Our results generalize to

other important blind signatures, such as the one due to Brands (which is at the heart of Microsoft’s

UProve system).

What are the implications of our results on the security of Schnorr blind signatures and gener-

alizations? We must stress that our results do not in fact constitute an attack, and so for all we

know, these schemes might very well be secure. However, we have essentially ruled out all known

approaches to proving their security. So in order to give any security guarantee on these signature

31

32

schemes, the cryptographic community would have to come up with radically new techniques.

3.1 Security of Schnorr Blind Signature

As previously discussed, Schnorr’s blind signature is based on his corresponding identification

scheme. Thus, if the Schnorr identification scheme is not secure (i.e., after some number of in-

teractions with the prover, the adversary can impersonate him), then the blind Schnorr signature

is not one-more unforgeable. It was recently proved that the security of the Schnorr identification

scheme cannot be proven under the discrete-logarithm assumption using black-box reductions in the

standard model [120], so at the very least, it seems that Schnorr blind signatures require that we

assume the security of Schnorr identification (also studied by Bellare and Palacio [23]). Perhaps an

even stronger assumption may be reasonable. Can we prove it secure under even this or a stronger

assumption?

To make this question more interesting, let us make it more general. Let us consider not just

the Schnorr blind signature, but in general the blind variants of all Fiat-Shamir based signature

schemes where the signer acts as the prover in an identification protocol. And let us see if they can

be proven secure under any reasonable assumption (by reasonable, we mean an assumption that is

not obviously false), not just specific ones.

Pointcheval and Stern showed that we can prove the security of blind signature schemes in the

RO model when the underlying identification scheme is a witness-indistinguishable proof protocol

for proving knowledge of a secret key, such that many secret keys are associated with the same

public key [123, 125]. Their result does not apply to the original Schnorr blind signature, in which

there is exactly one secret key corresponding to the public key. Other important blind signatures

to which it does not apply are the Brands’ blind signatures (the ones at the heart of Microsoft’s

UProve system), and the blind signatures based on the GQ signature [36, 90].

33

Oracle Replay Reduction. The idea of the Pointcheval-Stern reduction (also called “an oracle

replay reduction”) is to replay the attack polynomially many times with different random oracles

in order to make the attacker successfully forge signatures. More precisely, we first run the attack

with random keys, tapes and oracle f . Then, we randomly choose an index j and we replay with

same keys and random tapes but with a new, different oracle f ′ such that the first j − 1 answers

are the same as before. We expect that, with non-negligible probability we will obtain two different

signatures, σ, σ′ of the same message m and we will be able to use them to solve a hard algorithmic

problem (usually the one underlying the blind signature scheme) in polynomial time.

This proof technique works for standard (i.e. not blind) versions of the Schnorr, Brands and GQ

signatures. They also showed that it works for a modification of Schnorr blind signature which is

less efficient than the original Schnorr’s. A very natural question is: can it work for the original

Schnorr blind signature and its generalizations, such as the Brands or GQ blind signatures?

Let us take a closer look at oracle replay reductions, as used by Pointcheval and Stern. Their

reduction can be modeled as a Turing machine that has a special tape that is used specifically for

answering random oracle queries; it always uses the next unused value when answering, afresh, the

next random oracle query. We call this type of reductions: Naive RO replay reductions and as we

will discuss in Section 3.4.1 it can be used to model every known reduction for proving the security

of digital signature schemes. Our result is that, in fact, naive RO replay reductions cannot be used

to prove security of generalized Schnorr blind signatures, no matter how strong an assumption we

make. Our result also holds for interactive assumptions or even if we assume the security of the

blind signature scheme itself! Put another way, any such reduction can be used in order to break

the underlying assumption.

34

3.2 Intractability Assumptions

Our meta-reduction rules out reductions for proving security of blind signatures under any in-

tractability assumption. We will use the definition given by Pass [120]: an intractability assumption

is modeled as an interaction between a probabilistic machine C (the challenger) and an attacker A

where they are both given as input 1k (k is the security parameter). A’s running time is measured

as a function of k.1 Once A halts, the challenger outputs 1 or 0. Any challenger C together with a

threshold function t(·) intuitively corresponds to the assumption:

For every polynomial time adversary A there exists a negligible function ν such

that for all k, the probability that C outputs 1 after interacting with A is bounded

by t(k) + ν(k).

We say that A breaks C with respect to t with advantage p if: Pr[〈A,C〉(1k) = 1] ≥ t(k) + p.

As Pass [120] notes, we can easily model all standard cryptographic assumptions as a challenger

C and a threshold t. For example, the discrete logarithm assumption (Def. 2.1.1) corresponds to

the threshold t(k) = 0 and the 2-round challenger C who on input 1k picks a random x and sends

gx to A. If the attacker responds with x′ = x then C outputs 1.

3.3 Generalized Blind Schnorr Signature

Recall the definitions of a unique witness relation, Σ-protocols and blind signatures from Chapter 2.

Our impossibility result refers to Schnorr’s blind signature and its generalizations, defined as follows:

Definition 3.3.1 (Generalized Blind Schnorr Signature). A blind signature scheme (Gen, S, U,Verify)

is called Generalized Blind Schnorr Signature if:

1. (pk , sk) ∈ RL is a unique witness relation for a language L ∈ NP.

1Pass also requires that there be a limit to the rounds of interaction between A and C: an r-bounded assumption
is one in which there exists some polynomial r(·) such that C on input 1k communicates with A for at most r(k)
rounds; in this paper, however, assumptions that do not bound the number of rounds are still meaningful.

35

2. There exists a Σ-protocol (P, V) for RL such that for every (pk , sk) ∈ RL the prover’s algo-

rithm, P (pk , sk), is identical to the signer’s blind signing algorithm S(pk, sk).

3. Let Sign(pk , sk ,m) be the signing algorithm implicitly defined by (S,U). Then, there exists a Σ-

protocol P (pk , sk), V (pk) such that, in the random oracle (RO) model, a signature σ = (a, c, r),

where c = H(m, a) is distributed identically to a transcript of the Σ-protocol.

4. There exists an efficient algorithm that on input (pk , sk), a “valid tuple” (a, c, r) and a value

c′, computes r′ s.t. (a, c′, r′) is a valid tuple. (By “valid tuple” we mean a signature for which

the verification equation holds.) Note that no additional information about a is required, such

as, e.g. its discrete logarithm.

Schnorr’s blind signature falls under the generalized blind Schnorr signature category since: (1) The

secret/public key pair is an instance of the DL problem which is a unique witness relation; (2) the

signer’s side is identical to the prover’s side of the Schnorr identification scheme, which is known to

be a Σ-protocol; (3) the signature σ(m) = (a′, c′, r′) is distributed identically to the transcript of

the Schnorr identification protocol since a′ comes uniformly at random from G; c′ is truly random

in the RO model, and r′ is determined by α (4) finally, for a tuple (a, c, r) and a value c′ one can

compute r′ = r − cx+ c′x so that (a, c′, r′) is still a valid tuple.

The definition also captures other well-known blind signature schemes, such as the blind GQ [90]

and Brands [36] (for Brands also see Chapter 4).

3.4 Security of Generalized Blind Schnorr Signatures

As we mentioned above, one-more unforgeability of generalized blind Schnorr signatures is an open

problem. In this section we will first define a general class of RO reductions and we will then prove

that generalized blind Schnorr signature schemes cannot be proven unforgeable, and thus secure,

using these reductions.

36

In our proof we make use of the “meta-reduction” method [33]: a separation technique com-

monly used to show impossibility results in cryptography. Let A be an adversary who breaks the

unforgeability of generalized Schnorr blind signatures with non-negligible probability. We will use a

meta-reduction (which we call “personal nemesis adversary”) to show that there cannot exist a naive

RO replay reduction, B, which turns A into a successful adversary for any hard assumption that

may be considered. We do that by transforming B through the meta-reduction into an algorithm

that breaks the underlying assumption, without relying on the existence of a successful adversary.

3.4.1 Naive RO Replay Reductions

We first explicitly describe the type of reductions that our result rules out.

Definition 3.4.1 (Naive RO replay reduction). Let B be a reduction in the random-oracle model

that can run an adversary A, and may also reset A to a previous state, causing A to forget B′s

answers to its most recent RO queries. We assume, without loss of generality, that if A has already

queried the RO on some input x, and hasn’t been reset to a state that’s prior to this query, then A

does not make a repeat query for x.

We say that B is a naive RO replay reduction if: B has a special random tape for answering the

RO queries as follows: when A queries the RO, B retrieves the next value v from its RO tape, and

replies with c = f(b, v) where b is the input to the reduction, and f is some efficiently computable

function.

Let’s now take a closer look at known reductions for proving security of signatures in the RO

model and see whether they fall under the naive RO replay reduction category. We first look at

the reduction given by Pointcheval and Stern [123] for proving security of blind signatures. Their

reduction could be easily modeled as a naive RO replay reduction with f being the identity function.

PS reductions are perfect since they always create a signature. The same holds for the reduction

given by Abe [3]. To convince the reader that our way of modeling reductions in the RO model is

37

a very natural one, let us also look at the reduction given by Coron [65] proving the security of full

domain hash (FDH) RSA signature. Coron’s reduction works as follows: the reduction, B, gets as

input (N, e, y) where (N, e) is the public key and y is a random element from Z∗N and tries to find

x = yd mod n. B runs an adversary A, who can break the signature, with input the public key. As

usual, A makes RO and signing queries which B answers. Whenever A makes an RO query, B picks

a random r ∈ Z∗n and either returns h = re mod N with probability p or returns h = yre mod N

with probability 1 − p. So, it is pretty straightforward that we could model Coron’s reduction as

a naive RO replay reduction by interpreting the contents of an RO tape as r and the output of a

p-biased coin flip (return either re or yre). Other well-known reductions used in the literature to

prove security of digital signatures in the RO model can be modeled as naive RO replay reductions

as well [30, 22, 24].

Note that B may invoke a new run of A based on an RO query received from an existing run.

In that case, we still assume that, when B is ready to respond to an RO query from A, it will do so

with the value that is currently next up in the RO tape.

Programmability. Let us compare naive RO replay reductions with other previously defined

types. Non-programmable random-oracle reductions [110] do not give the reduction the power to

set the answers to the RO queries; instead these answers are determined by some truly random

function. Naive RO replay reductions can be more powerful than that: they can, in fact, answer the

adversary’s queries in some way they find convenient, by applying the function f to the next value

of their RO tape. However, they are not as powerful as the general programmable RO reductions:

naive RO replay reductions are not allowed, for example, to compute an answer to an RO query as

a function of the contents of the query itself. Fischlin et al. [76] also consider an intermediate notion

of programmability, called “random re-programming reductions”, which are incomparable to ours

(but it would be interesting to extend our results to these reductions as well).

38

3.4.2 Theorem for Perfect Naive RO Replay Reduction

Our first result is on a simpler class of reductions called “perfect”. We will extend it to non-perfect

reductions in Section 3.4.3.

Definition 3.4.2 (Perfect-Naive RO replay reduction). A naive RO replay reduction B is called

perfect naive RO replay reduction if B always gives valid responses to A, i.e. its behavior is identical

to that of the honest signer.

We show that perfect naive RO replay reductions cannot be used to prove security of generalized

blind Schnorr signature schemes.

Theorem 3.4.3. Let (Gen, S, U, V erify) be a generalized blind Schnorr signature scheme. Assume

that there exists a polynomial-time perfect naive RO replay reduction B such that BA breaks an

interactive intractability assumption C for every A that breaks the unforgeability of the blind signature

(S,U). Then, C can be broken in polynomial time.

We prove this theorem below. What are the consequences of this theorem for the Schnorr blind

signatures, which is our running example? What we have shown is that, even if we assume security

of the Schnorr identification scheme, and not just the hardness of the discrete logarithm problem,

we still cannot exhibit a perfect naive RO replay reduction that will prove Schnorr blind signatures

secure. In fact, somewhat oddly, even if we assume that the Schnorr blind signature scheme is secure,

we still cannot find a perfect naive RO replay reduction B that will break this assumption should

A be able to violate the unforgeability of the scheme. This is because a perfect naive reduction

requires that the hash function queries be handled in a very specific way.

Proof of Theorem for Perfect Naive RO Replay Reduction. We start by introducing some

terminology. Note that the reduction B is given black-box access to A and is allowed to run A as

many times as it wishes, and instead of running A afresh every time, it may reset A to some previous

state. At the same time, B is interacting with its own challenger C; we do not restrict C in any way.

39

Consider how B runs A. B must give to A some public key pk for the signature scheme as input.

Next, B runs the blind signing protocol with A; recall that a generalized blind Schnorr signing

protocol always begins with a message a from the signer to the user. When B runs A again, it can

choose to give it the same (pk , a) or different ones. It is helpful for the description of the adversary

we give, as well as for the analysis of the interaction, to somehow organize various calls that B makes

to A.

Every time that B runs A, it either runs it “anew”, providing a new public key pk and first

message a, or it “resets” it to a previous state, in which some pk and a have already been given to

A. In the latter case, we say that A has been “reincarnated”, and so, an incarnation of A is defined

by (pk , a). Note that B may reincarnate A with the same (pk , a) several times. In this case, we say

that this incarnation is repeated. Thus, if this is the ith time that A has been reset to a previous state

for this specific (pk , a), then we say that this is the ith repeat of the (pk , a) incarnation. Without

loss of generality, B never runs A anew with (pk , a) that it has used (i.e., if B has already created

an incarnation for (pk , a), it does not create another one).

Let us consider what happens once A receives (pk , a). The signing protocol, in which A is acting

as the user, expects A to send to B the challenge c. Additionally, A is free to make any random oracle

queries it chooses. Once B receives c, the signing protocol expects it to send to A the response r.

After that, the security game allows A to either request another signature, or to output a one-more

signature forgery, i.e., a set of signatures (one more than it was issued); also, again, A can make RO

queries. The adversaries that we consider in the sequel will not request any additional signatures,

but will, at this point, output two signatures (or will fail).

Note that, if B is a perfect naive RO replay reduction (as defined above), then it will always

provide to A a valid response r to the challenge c; while if it is not perfect, then it may, instead,

provide an invalid response, or stop running A at this point altogether. Thus, a particular run can

be:

• Uncompleted: no valid response, r, was given by B at the end of the protocol (cannot happen

40

if B is perfect).

• Completed but unsuccessful: a valid r was given but A was not able to output a forgery.

• Completed and successful: a valid r was given and A did output a forgery.

The technique we follow to prove our theorem is the following. We first define a special adversary

which we call the super adversary, sA, who exists if it is easy to compute the signing key for this

signature scheme from the corresponding verification key. We do not show how to construct such an

adversary (because we do not know how to infer the signing key for generalized blind Schnorr, and

in fact we generally assume that it is impossible to do so in polynomial time); instead, we construct

another adversary, the personal nemesis adversary, pA, whose behavior, as far as the reduction B

can tell, will be identical to sA.

Note that, generally, an adversary is modeled as a deterministic circuit, or a deterministic non-

uniform Turing machine: this is because, inside a reduction, its randomness can be fixed. Thus, we

need sA to be deterministic. Yet, we need to make certain randomized decisions. Fortunately, we

can use a pseudorandom function for that. Thus, sA is parametrized by s, a seed to a pseudoran-

dom function Fs : {0, 1}∗ → {0, 1}k 2. Additionally, it is parameterized by two messages m1,m2:

signatures on these messages will be output in the end.

Consider a Perfect super adversary, sAs,m1,m2
, that interacts with a signer as follows: on input

the system parameters:

1. Begin signature issue with the signer and receive (pk, a).

2. Find sk .

3. Use sk to compute the signatures: pick a1, a2 and make two RO queries (m1, a1) and (m2, a2).

Produce two forged signatures for m1,m2, denote them as σ1 and σ2 (remember that sA is

deterministic so if reincarnated he makes the same RO queries).

4. Resume the signature protocol with the signer: send to the signer the value c = Fs(trans)

where trans is the current transcript between sAs,m1,m2
, the RO and the signer, and receive

2We know that if B exists then secure signatures exist which imply one way functions existence and pseudorandom
functions existence, so this is not an extra assumption.

41

from the signer the value r in response (which will always be valid for the perfect naive RO

reduction B).

5. Output the two message-signature pairs, (m1, σ1) and (m2, σ2).

Note that when sA executes the signature issue protocol with the signer it computes c as a pseu-

dorandom function of its current transcript with the RO and the signer. Thus, there is only a very

small probability (of about 2−k) for sA to send the same c in another run.

The following lemma follows directly from the definition of a reduction B:

Lemma 3.4.4. If a perfect naive RO replay reduction B exists, then BsA(·) (pk, system params)

solves the assumption C.

Lemma 1 works even if the assumption C is an interactive one. That is why, sA and pA are defined

in such a way that they do not reset the reduction B.

Next, we define the personal nemesis adversary, pA. Similarly to sA, it is parameterized by

(s,m1,m2); and so we denote it pAs,m1,m2 . To the reduction B, pAs,m1,m2 will look exactly the

same as sAs,m1,m2
, even though pAs,m1,m2

cannot compute sk . Instead, pAs,m1,m2
looks inside the

reduction B itself; this is why we call pAs,m1,m2
“B’s personal nemesis”. The perfect B’s personal

nemesis adversary works as follows: on input the system parameters, pAs,m1,m2 performs a “one-

more” forgery attack, using the following special powers: (1) pAs,m1,m2
has full access to B’s random

oracle tape; (2) in case pAs,m1,m2
is rewound, he remembers his previous state.

pAs,m1,m2 performs the one-more forgery for ` = 1. Thus, he runs one signature issuing session

with the signer and then outputs two valid signatures. Specifically, in it’s ith incarnation, pA does

the following:

1. Begin signature issue with the signer, and receive (pk, a).

2. Do nothing (pA cannot find sk).

3. • If (pk , a) is the same as in some previous incarnation j then make the same RO queries as

the last time this incarnation was run (sA remembers the previous RO queries; obviously

42

it will receive different c1, c2 than before).

• If (pk , a) is a new tuple, then this is a new incarnation; do the following:

– If pA has already computed the sk for this pk , then use this power to forge two

signatures on (m1, m2); call the resulting signatures σ1 and σ2,

– else (if sk not already known), pA computes two signatures using its special access

to B by looking in advance what the next c1, c2 are going to be, then picking random

3 r1, r2 and solving for a1, a2 using the third property of generalized blind Schnorr

signatures and the simulator from the underlying Σ-protocol. pA makes two RO

queries of the form (m1, a1), (m2, a2) and gets c1, c2 in response. Call the resulting

signatures σ1 and σ2.

4. Resume the signature issue protocol with the signer: send to the signer the value c = Fs(trans)

where trans is the current transcript between pA, the RO and the signer, and receive from the

signer the value r in response (which will be valid for the perfect naive RO reduction B).

5. • If this is the first time for this incarnation, then output the two message-signature pairs,

(m1, σ1) and (m2, σ2) (completed and successful run).

• If this is a repeat of some incarnation j, and the value c = Fs(trans) 6= cj , where cj is the

corresponding value from incarnation j, then using r and rj , property 3 of generalized

blind Schnorr signatures and the extractability of the Σ-protocol, compute sk (if you don’t

already know it for this pk). Next, compute σ1 and σ2 consistent with the RO queries

from incarnation j, using property 4 of generalized blind Schnorr signatures (completed

and successful run).

• If i is a repeat of j, and the value c = Fs(trans) = cj , then fail (completed and unsuccessful

run).

Lemma 3.4.5. If B is a perfect naive RO replay reduction, then B’s view in interacting with

3Recall that pA uses a PRF that takes as input its current state in order to make each random choice.

43

pAs,m1,m2
is indistinguishable from its view when interacting with sAs,m1,m2

.

Proof. In order to prove this, we will analyze the behavior of sA and pA step by step, as they were

defined, and we will show that B receives indistinguishable views when interacting with sAs or pAs

with all but negligible probability (to simplify notation we will omit writing the messages m1,m2

to the parameters given to the adversaries). We begin by defining sARand and pARand who behave

exactly as sAs and pAs do but using a truly random source instead of the pseudorandom function

Fs. We will use the following hybrid argument:

sAs ≈ sARand ≈ pARand ≈ pAs

Let us first argue that sAs ≈ sARand. This follows by a straightforward reduction that contra-

dicts the pseudorandomness of Fs. Similarly, it holds that pARand ≈ pAs.

We prove that sARand ≈ pARand by examining step by step the behavior of sARand and pARand.

1. In the first step, both sARand and pARand begin the signature issuing with the Signer and wait

for him to respond with (pk, a). From the point of view of B there is no difference whether

talking to sARand or pARand.

2. In the second step there is no interaction with B.

3. Here we have two different cases on pARand’s behavior depending on whether the current

incarnation is repeated or not. In both cases the interaction between pARand and B consists of

pARand making two RO queries where pARand either makes two RO queries on fresh values that

it computed on the current step or makes the same RO queries as in the repeated incarnation

(so, there is no difference for B). Thus, in Step 3, no matter who B is talking to, B receives

two RO queries distributed identically.

4. Step 4 is identical for both sARand and pARand. Just send c = R(trans), where R is a random

function and receive from the signer the value r in response.

44

5. Since r will always be a valid response (recall that B is perfect), sARand will always output two

message-signature pairs, (m1, σ1) and (m2, σ2). pARand will also output (m1, σ1) and (m2, σ2),

which are distributed identically to the ones output by sARand unless it is the case that the

incarnation is a repeat of j and c = R(trans) = cj . In that case pARand fails. The probability

that c = R(trans) = cj is only 2−Θ(k). Thus, with probability 1− 2−Θ(k) B’s view is identical

no matter whether he is talking to sARand or pARand.

So, by the hybrid argument we defined at the beginning of the proof, it holds that sAs ≈ pAs.

3.4.3 Theorem for Non-perfect naive RO replay reductions

Let’s apply our result to a broader class of reductions by removing the requirement that our reduction

be perfect, i.e. always outputs valid responses. Instead, we will require an upper bound L on the

number of times that the reduction can invoke the adversary which is independent of A’s success

probability. Note that, of course, B’s success probability needs to depend on A’s success probability.

However, the number of times it invokes A need not; in fact known reductions (such as Coron or

Pointcheval and Stern) as a rule only invoke the adversary a constant number of times.

Definition 3.4.6 (L-Naive RO replay reduction). A naive RO replay reduction B is called L-naive

RO replay reduction if there is a polynomial upper bound L on how many time B resets A; this

upper bound is a function of the number of RO queries that A makes, but otherwise is independent

of A, in particular, of A’s success probability.

Our previous analysis wouldn’t work for the L-naive RO replay reduction. Think of the scenario

where pA receives a message a from B for the first time but is not given a valid r at the end. Then

in the repeat of this incarnation, pA will have to make the same two RO queries he did before and

output forgeries if given a valid r at the end. But, given the definitions of B and pA we gave before,

pA will now get different c1 and c2 for his RO queries and thus he will not be able to output the

same forgeries he had prepared before.

45

What changes in our new analysis is that: (a) pA is also given write access to B’s RO tape, and

(b) both pA and sA will be successful in producing a forgery with probability only 1/(
(
L
2

)
+ L).

The following theorem shows that L-naive RO replay reductions cannot be used to prove security

of generalized blind Schnorr signature schemes.

Theorem 3.4.7. Let (Gen, S, U, V erify) be a generalized blind Schnorr signature scheme. Sup-

pose that there exists a polynomial-time L-naive RO replay reduction B such that BA breaks an

intractability assumption C for every A that breaks the unforgeability of the blind signature (S,U).

Then, C can be broken in polynomial time.

This theorem rules out a broader class of security reductions. If we look back to our running example

of Schnorr blind signatures, this theorem shows that under any assumption (DL, security of Schnorr

identification, etc.) we cannot find an L-naive RO replay reduction to prove its security.

Proof of theorem for L-naive RO replay reduction Similar to what we did before, we first

define the super adversary sAs,m1,m2,L who knows L and works as follows: on input the system

parameters:

1. Begin signature issue with the signer and receive (pk, a). Decide whether this is going to be

a successful incarnation: choose “successful” with probability 1/(
(
L
2

)
+ L) and “unsuccessful”

with probability 1− 1/(
(
L
2

)
+ L).

2. Find sk.

3. Use sk to compute the signatures: pick a1, a2 and make two RO queries (m1, a1) and (m2, a2).

Produce two forged signatures for m1,m2, denote them as σ1 and σ2.

4. Resume the signature protocol with the signer: send to the signer the value c = Fs((trans))

where trans is the current transcript between sA, the RO and the signer, and receive from the

signer the value r in response.

5. • If r is not valid, then this was an uncompleted run, then fail.

46

• If r valid (completed run) and in Step 1 it was decided that this is a successful incarnation,

output the two message-signature pairs, (m1, σ1) and (m2, σ2). Otherwise fail.

The following lemma (similar to Lemma 1) follows from the definition of B:

Lemma 3.4.8. If an L-naive RO replay reduction B exists, then BsA(·) (pk, system params) solves

the assumption C.

Now we are going to define the personal nemesis adversary, pAs,m1,m2,L, which on input the system

parameters, pAs,m1,m2,L performs a “one-more” forgery attack, using the following special powers:

(1) pAs,m1,m2,L has full read and write access to B’s random oracle tape; (2) in case pAs,m1,m2,L is

rewound, it does remember his previous state.

pAs,m1,m2,L performs the one-more forgery for ` = 1. Thus, it runs one signature issuing session

with the signer and then outputs two valid signatures with probability 1

(L2)+L
. Specifically, in it’s

ith incarnation4, pAs,m1,m2,L does the following:

1. Begin signature issue with the signer, and receive (pk, a).

2. Do nothing.

3. • If (pk, a) is received for the first time, then this is a new incarnation; do the following:

– If pA has already found sk for this pk, then use this power to forge two signatures

on (m1,m2) (still required to make two RO queries); call these signatures σ1 and σ2,

– else, pA guesses (i1, i2) where i1(≤ i2) denotes the repeat where c1 will be given in

response to pA’s next RO query; and i2 is pA’s guess for the first completed repeat

of this incarnation. Then, pA randomly picks v1, v2, computes c1 = f(v1), c2 =

f(v2), picks r1, r2, solves for a1, a2 using the third property of generalized blind

Schnorr signatures and the simulator from the underlying Σ-protocol and computes

two signatures σ1 and σ2.

4Recall that the terms “incarnation”, “completed” run, “successful run” were defined in Section 3.4.2.

47

• pA makes two RO queries of the form (m1, a1), (m2, a2) (the two RO queries are always

the same for a specific incarnation).

• If this is the repeat incarnation i1, and B wants a fresh answer to the query (m1, a1) then

write v1 on B’s RO tape; else (if this isn’t repeat i1) write a random v′1.

• If this is the repeat incarnation i2 then write v2 on B’s RO tape; else (if this isn’t repeat

i2) write a random v′2.

4. Resume the signature issue protocol with the signer: send to the signer the value c = Fs(trans)

where Fs is a PRF and trans is the current transcript between pA, the RO and the signer,

and wait to receive the value r as a response from the signer.

5. • If r is valid (completed run):

– If already know the secret key, sk, then output (m1, σ1) and (m2, σ2) with probability

1

(L2)+2
or else fail.

– If this is the first time for this incarnation, then output the two message-signature

pairs, (m1, σ1) and (m2, σ2).

– If this is the second successful repeat for this incarnation and the value c = Fs(trans) 6=

cj , where cj is the corresponding value from the jth run of this incarnation, then us-

ing r and rj solve for sk using property 4 of generalized Schnorr signatures. Next,

compute σ1 and σ2 consistent with the RO queries from this incarnation.

– If this is the second successful repeat for this incarnation but c = Fs(trans) = cj ,

then fail (unsuccessful run).

– If the guess (i1, i2) was correct (that is, this is repeat i2 of this incarnation, it was

successful, and B’s answer to (m1, a1) was the same as in incarnation i1; and in

incarnation i1, B wanted a fresh answer to the (m1, a1) RO query) then output the

two message-signature pairs, (m1, σ1) and (m2, σ2).

– If the guess (i1, i2) was wrong then fail (unsuccessful run).

48

• If r is not valid or r was not received then fail.

Lemma 3.4.9. If B is an L-naive RO replay reduction, then B’s view in interacting with pAs,m1,m2

is indistinguishable from its view when interacting with sAs,m1,m2
.

Proof. Similarly to the proof of Lemma 2, we first consider pA and sA that, instead of access

to a pseudorandom function Fs have access to a truly random function Rand . Just as before,

by pseudorandomness of Fs, pAs,m1,m2 ≈ pARand,m1,m2 and sAs,m1,m2 ≈ sARand,m1,m2 ; so it is

sufficient to show that pARand,m1,m2
≈ sARand,m1,m2

. (We will omit the subscripts “Rand ,m1,m2”

in the rest of the proof.)

Consider B’s view when interacting with sA for fixed (pk , a), i.e. in a given incarnation. Until B

completes the incarnation by sending a valid response r, B does not know whether this incarnation

is successful or not; thus B’s view with sA is identical to his view with sA′ defined as follows: sA′

remembers previous times when B ran it. It is identical to sA, except that it decides (at random)

whether or not this incarnation is successful the first time that B correctly completes this incarnation

by sending to sA′ the correct r in Step 4. The way that sA′ will determine whether this is a successful

incarnation is by picking (i1, i2) the way that pA does, and then making the incarnation successful if

it picked them correctly; note that sA′ makes an incarnation successful if it picks the unique correct

(i1, i2) out of
(
L
2

)
+ L possibilities (

(
L
2

)
ways of picking i1 6= i2, L ways to pick i1 = i2).

Next, let us compare B’s view with sA′ with his view with pA. They make identically distributed

queries to the RO; then they successfully produce forgeries whenever they have correctly guessed

i1 and i2 (except if pA sends the same query c in both the first and second complete run of this

incarnation, which happens with only negligible probability). Therefore, the views that B receives

when talking to sA′ and pA are statistically indistinguishable, which completes the proof of the

lemma.

49

3.5 Related work

Security of blind signature schemes. Schnorr and Jakobsson [66] proved security of the Schnorr

blind signature in the combined random oracle and generic group model. The generic group model

is a very restricted setting in which the only way to sample group elements is by applying group

operations; this does not correspond to any intractability assumption.

Fischlin and Schröder [77] show that proving security of a broad class of blind signature schemes

(which, in particular, includes what we refer to as generalized Schnorr blind signatures) via black-

box reductions in the standard model is as hard as solving the underlying hard problem. Their

technique uses the meta-reduction paradigm to show that black-box reductions for this type of blind

signatures can be turned into solvers for hard non-interactive assumptions. However, their result

does not rule out reductions in the random-oracle model, and in fact is technically very different

from ours for that reason.

Rafael Pass studied the assumptions needed for proving security of various cryptographic schemes [120].

In particular, relevant to our work, he considers the Schnorr identification scheme and variants, and

a category of blind signatures called “unique blind signatures.” Pass considers whether so-called

r-bounded-round assumptions are strong enough to prove, in a black-box fashion in the standard

model, the security of certain schemes when repeated more than r times. His results apply to

Schnorr blind signatures (and their generalizations) in the following way: he shows that no so-called

bounded-round assumption can imply secure composition of the Schnorr identification scheme using

black-box reductions (and therefore the Schnorr blind signature).

Here is how our work goes beyond what was shown by Pass [120] for “unique blind signatures.”

First of all, we do not limit our consideration to r-bounded-round assumptions but we show that

our result applies for every possible intractability assumption. Thus, we rule out the existence of a

very special type of reduction, the naive RO replay one, that models all the known reductions for

proving security of digital signatures, irrespective of assumption. As an example, consider the One

50

More Discrete Logarithm assumption (OMDL) [22] which has been used to prove security of the

Schnorr identification scheme against active attacks [23]. Our result directly implies that Schnorr

blind signature cannot be proven secure under the OMDL assumption in the RO model. Finally, our

result applies even after just one signature was issued whereas Pass’ result questions the security of

schemes when repeated more than r times.

Finally, we study a very specific way of programming the random oracle reductions. Other vari-

ants of random oracle reductions have been considered in the literature and their relative strengths

have been studied in prior work [76, 110]. In Section 3.4.1, we compare these variants with ours.

The Meta-Reduction Technique. On a relevant note, the meta-reduction technique has been

used to analyze security of Schnorr signatures among other cryptographic schemes. Paillier and

Vergnaud [117] showed that the security of Schnorr signatures cannot be based on the difficulty of

the one more discrete logarithm problem in the standard model. Fischlin and Fleischhacker [75]

extended their result by showing that the security of Schnorr signatures cannot be based to the

discrete logarithm problem without programming the random oracle. Their work is also relevant to

ours since the meta-reduction they define also doesn’t need to reset the reduction5. However, their

result applies to non-programming reductions while our naive RO replay reductions fall somewhere in

between the programmable and non-programmable setting (see Section 3.4.1 for a discussion about

programmability). Finally, their result holds only for reductions to the discrete logarithm problem

and holds for a very limited class of reductions: those that run a single copy of the adversary. Thus,

our result is much broader.

3.6 Conclusions

In this Chapter we showed that current techniques for proving security of Schnorr blind signature

in the random oracle model do not work. To prove our result we provided a meta-reduction which

5This is a result that Fischlin and Fleischhacker [75] obtained after the first version of our manuscript appeared
on eprint [13]; our result is in fact the first in which a meta-reduction works without resetting the reduction B.

51

we call “personal nemesis adversary”. What makes our technique particularly interesting is that for

the first time we introduce a meta-reduction (our personal nemesis adversary) that does not need to

reset the reduction B, as it is usually done when using the meta-reduction paradigm. For example,

our personal nemesis adversary could reset the reduction B, get an additional signature and return

this signature back to B as his forgery. However, this resetting makes things more complicated

since the two executions are correlated. Our technique, instead, is much simpler: the personal

nemesis adversary, pA, will simply interact with the reduction B the way an actual adversary would

(but taking advantage of powers not available to an adversarial algorithm, such as remembering its

prior state if and when the reduction resets it, and having access to the reduction’s random oracle

tape), without resetting it at any time. When B halts, if it succeeded in breaking the assumption

(as it should with non-negligible probability, or it wouldn’t be a valid security reduction), pA has

succeeded too — but without assuming the existence of an actual adversary that breaks the security

of the underlying signature scheme.

As we will see in the next Chapter, our results generalize to other important blind signatures, such

as the one due to Brands. Brands’ blind signature is at the heart of Microsoft’s newly implemented

UProve system, which makes this work relevant to cryptographic practice as well.

4
Security of U-Prove

In this Chapter we investigate the security of U-Prove which is the most well known single-use

credential scheme and is currently implemented by Microsoft. U-Prove is based on the blind signature

scheme proposed by Stefan Brands [36]. As we will show, Brands blind signature falls under the

category of generalized blind Schnorr signatures (as defined in Def. 3.3.1), and thus, we cannot

prove its unforgeability using currently know techniques. We then propose a modification of Brands

blind signature that is provably unforgeable. As a blind signature, the resulting signature scheme is

inferior, in efficiency, to the provably secure variant of the Schnorr blind signature. As far as its use

in an anonymous credentials system is concerned, it is still an open problem since there is no proof

that a user who shows the same (single-use) credential more than once, will be identified.

4.1 Brands’ Blind Signature

Let us first describe Brands blind signature scheme [36] . G is a group of order q, where q is a k-bit

prime, and g is a generator of the group. The signer holds a secret key x← Zq and the corresponding

public key h = gx, while the user knows signer’s public key h as well as g, q. H is a collision resistant

52

53

hash function. The signature issuing protocol works as follows:

Signer (g, h, x) User(g, h)
a ∈R Zq

α←−−−−−− m = gα

w ∈R Zq
z ← mx

a← gw

b← mw z, a, b
−−−−−−−→

s, t ∈R Zq
m′ ← msgt

z′ ← zsht

u, v ∈R Zq
a′ ← augv

b′ ← autbus(m′)v

c←−−−−− c′ ← H(m′, z′, a′, b′)

c← c′/u mod q

r ← w + cx mod q r−−−−−−→ hca
?
= gr

zcb
?
= mr

r′ ← ur + v mod q

Table 4.1: Brands Blind Signature

A signature on m′ is σ(m′) = (z′, a′, b′, c′, r′). Anyone can verify a signature by first computing

c′ = H(m′, z′, a′, b′) and then checking whether the following equations hold: hc
′
a′

?
= gr

′
, (z′)c

′
b′

?
=

(m′)r
′
.

4.1.1 Security of Brands’ Blind Signatures

We now argue that the security of Brands blind signature cannot be proved via a perfect naive or

an L-naive RO replay reduction.

Corollary 4.1.1. If there exists a perfect or an L-naive RO replay reduction B that solves any

intractability assumption C using an adversary A that breaks the unforgeability of Brands’ signature,

then assumption C can be solved in polynomial time with non-negligible probability.

Proof. In order for this corollary to hold we need to show that Brands’ blind signature is a generalized

blind Schnorr signature. We can show this by inspecting one by one the needed requirements:

54

1. Brands public/secret key pair is (h = gx, x), which is a unique witness relation for L = {h :

gx = h} ∈ NP,

2. the signer’s side of Brands blind signature is the same as the prover’s side in Schnorr’s identi-

fication scheme, which is known to be a Σ-protocol,

3. Brands blind signature is of the form σ(m′) = ((z′, a′, b′), c′, r′) which has identical distribution

to a transcript of a Σ-protocol, as we will explain below

4. given the secret key x and a valid transcript of Brands scheme: (â, c′1, r
′
1), where â = (z′, a′, b′),

then ∀ c′2 we can compute r′2 as: r′2 = r′1− c′1x+ c′2x so that (â, c′2, r
′
2) is still a valid transcript.

Let’s take a closer look at Brands blind signature and see why it is a Σ-protocol. We will do so by

inspecting the three properties of Σ-protocols: (a) it’s a three-round protocol, (b) for any h and any

pair of accepting conversations (â, c′1, r
′
1) and (â, c′2, r

′
2) where c′1 6= c′2 one can efficiently compute x

such that h = gx and (c) there exists a simulator S who on input h and a random c′ picks r′, m and

z, solves for a′, b′, so he can output an accepting conversation of the form ((z′, a′, b′), c′, r′).

Thus, by applying Theorems 3.4.3 and 3.4.7, we rule out perfect and L-naive RO replay reductions

for Brands’ blind signatures.

4.1.2 DLP with Schnorr Prover

It was originally claimed that Brands scheme was secure under the existence of a Schnorr prover

[36]. Here, we define the discrete logarithm problem (DLP) under a Schnorr prover and show that

it can be modeled as an intractability assumption. Thus, even if we give a perfect or an L- naive

RO replay reduction access to the prover side of the Schnorr identification scheme (we will call him

Schnorr prover from now on) and an adversary A that performs a one-more forgery attack on the

Brands signature scheme, the reduction cannot solve the discrete logarithm problem unless the DLP

is easy in this setting. Let us now define the discrete logarithm problem in the setting with a Schnorr

prover.

55

Definition 4.1.2 (DLP with the Schnorr prover). Let A(·)(·) be an oracle Turing machine that

takes as input a discrete logarithm instance (G, q, g, h) and has oracle access to the Schnorr prover

Schnorr(G, q, g, x) for h = gx. (That is to say, A may act as the verifier in the Schnorr protocol,

as many times as it wishes.) Upon termination, A outputs a value x′. We say that A solves the

discrete logarithm problem with the Schnorr prover if x′ = x.

Definition 4.1.3 (Security of DLP with Schnorr). For any probabilistic poly-time family of oracle

Turing machines, A(·)(·), there exists a negligible function ν(k) such that

Pr[(G, q, g, gx)← S(1k);x′ ← ASchnorr(g,x)(g, gx) : x′ = x] = ν(k).

where S(1k) samples Discrete Logarithm instances of size k.

DLP with Schnorr can easily be modeled as an intractability assumption similar to the standard

DLP. It corresponds to threshold t(k) = 0 and a 2-round challenger C who on input 1k picks a

random x and sends gx to the adversary A which works as defined in Definition 10. A, having oracle

access to the Schnorr prover responds with x′ to the challenger. If x′ = x then C outputs 1.

4.2 Modifying Brands’ Signature

As mentioned in Section 3.1, Pointcheval and Stern [123] showed that we can prove the security

of a blind signature scheme in the RO model if the underlying identification scheme is a witness-

indistinguishable proof protocol for proving knowledge of a secret key, such that many secret keys

are associated with the same public key. One could modify Brands’ scheme similarly to how the

original Schnorr blind signature was modified to obtain the variant that Pointcheval and Stern proved

secure. In this Section we propose such a modification; the public key of the signer will be of the

form H = Gw1
1 Gw2

2 where (H,G1, G2) are public and (w1, w2) are the secret key.

The setup is as follows: letG be a group of prime order q and three generatorsG1, G2, g2 ∈ Gq. No

56

one in the system should be able to compute logG1
G2. The secret key of the signer is sk = (w1, w2),

where w1, w2 ∈ Zq and the public key is pk = (H,G1, G2) where H = Gw1
1 Gw2

2 . The new blind

signature is described in Table 4.2.

Signer((H,G1, G2), (w1, w2)) User(H,G1, G2)
U ∈ Zq
g1 = GU1 G2, π = proof of knowledge of U

g1, π←−−−−−−−−
verify π
w3 ∈ Zq
h = gw1

1 gw3
2

v1, v2.v3 ∈R Zq
V1 = Gv11 G

v2
2

V2 = gv11 gv32

h, V1, V2−−−−−−−−−→
r′, z′1, z

′
2, z
′
3 ∈R Zq

V ′1 = G
z′1
1 G

z′2
2 H

−r′

V ′2 = g
z′1
1 g

z′3
2 h
−r′

s, k ∈R Zq
h̃ = hsgk2
g̃1 = gs1
Ṽ1 = V1V

′
1

Ṽ2 = (V2V
′
2)s

b1, b2 ∈R Zq
m = Gb11 G

b2
2

r̃ = H(m, (H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2))
r = r̃ − r′

r←−−−−−−
zi = rwi + vi, i ∈ {1, . . . , 3}

z1, z2, z3−−−−−−−−−→
V1H

r ?
= Gz11 G

z2
2

V2h
r ?

= gz11 g
z3
2

z̃1 = z1 + z′1
z̃2 = z2 + z′2
z̃3 = (z3 + z′3)s+ kr̃

Table 4.2: Brands’ blind signature modified

The blind signature on (m, g̃1) is σB(m, g̃1) = ((H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2), (z̃1, z̃2, z̃3)).

57

In order for somebody to verify the signature, he needs to check:

Ṽ1H
r̃ ?

= Gz̃11 G
z̃2
2

Ṽ2h̃
r̃ ?

= g̃1
z̃1gz̃32 .

4.2.1 Unforgeability of Modified Brands Blind Signature

By modifying Brands blind signature scheme so that the signer’s public key is constructed by using

more than one secret keys, we can apply the technique proposed in [123] to prove the unforgeability

of the modified withdrawal protocol. We will prove the following Theorem.

Theorem 4.2.1. Consider the modified Brands’ blind signature scheme in the random oracle model.

If there exists a probabilistic polynomial time Turing machine which can perform a “one - more”

forgery, with non-negligible probability, even under a parallel attack, then the discrete logarithm can

be solved in polynomial time.

Proof. We first describe an outline of the proof, then we will simplify the notations and finally we

will complete the proof.

Outline of the proof Let A be the attacker who can be described as a probabilistic polynomial

time Turing machine with random tape ω. Thus, there exists an integer ` such that after ` in-

teractions with the signer (v1,i, v2,i, ri, z1,i, z2,i, z3,i) for i ∈ {1, . . . , `}, and a polynomial number

Q of queries asked to the random oracle, Q1, . . . ,QQ, A returns ` + 1 valid signatures (coins),

(mi, g̃1,i), h̃i, (Ṽ1,i, Ṽ2,i), (z̃1,i, z̃2,i, z̃3,i, for i = 1, . . . , ` + 1 (to verify the signature (coin) you would

first need to compute r̃i = H(mi, (H,G1, G2), (h̃i, g̃1,i, g2), (Ṽ1,i, Ṽ2,i))).

The signer possesses a secret key (w1, w2) associated to a public key H = Gw1
1 Gw2

2 , and a random

tape Ω. The secret key is stored on the knowledge tape of the Turing machine.

Through a collision of the signer and the attacker, we want to compute the discrete logarithm of

G1 relatively to G2. The technique used is the one described in [124] as technique of “oracle replay”.

58

We first run the attack with random keys, tapes and oracle f (which answers the hash queries).

We randomly choose an index j and then replay with same keys and random tapes, but a different

oracle f ′ such that the first j − 1 answers remain unchanged. We expect that, with non-negligible

probability, both executions output a common Ṽ1 and Ṽ2 coming from the jth query having two

distinct representations relatively to G1 and G2. Specifically, we expect to get the same Ṽ1 for the

two different sets (r̃, z̃1, z̃2, z̃3) and (ˆ̃r, ˆ̃z1, ˆ̃z2, ˆ̃z3), whereˆdenotes the second execution. We could also

choose to work with Ṽ2 but it wouldn’t make any difference. So, we would have:

Ṽ1 = H−r̃Gz̃11 G
z̃2
2

Ṽ1 = H−
ˆ̃rG

ˆ̃z1
1 G

ˆ̃z2
2

and

logG1
G2 =

r′1 − w1c
′ − r̂′1 + w1ĉ′

r̂′2 − w2ĉ′ − r′2 + w2c′

where the reduction knows the secret key of the signer, (w1, w2).

Cleaning up Notations. Before proceeding to the actual proof we will clean up some notation

issues. Without loss of generality, we assume that all the (mi, (H,G1, G2), (h̃, g̃1,i, g2), (Ṽ1,i, Ṽ2,i))

are queries which have been asked during the attack (otherwise, the probability of success would

be negligible due to the randomness of the random oracle outputs). Then, we can assume that

the indices, (Ind1, . . . , Ind`+1), of (m1, (H,G1, G2), (h̃, g̃1,1, g2), (Ṽ1,1, Ṽ2,1), . . . , (m`+1, (H,G1, G2),

(h̃, g̃1,`+1, g2), (Ṽ1,`+1, Ṽ2,`+1)) in the list of queries is constant. As a result, the probability of success

decreases from ε to ρ ≈ ε/Q`+1 (where Q the number of queries asked to the random oracle).

(w1, w2) is the secret key used by the signer. The random tape of the signer, Ω, determines the

pairs (v1,i, v2,i, v3,i) such that V1,i = G
v1,i
1 G

v2,i
2 and V2,i = g

v1,i
1 g

v3,i
2 for i = 1, . . . , `. The distribution

of (w1, w2, H) where w1 and w2 are random and H = Gw1
1 Gw2

2 , is the same as the distribution

59

(w1, w2, H) where w1 and H are random and w2 is the unique element such that H = Gw1
1 Gw2

2 .

Accordingly, we replace (w1, w2) by (w1, H) and, similarly, each (v1,iv2,i) by (v1,i, V1,i) and (v1,iv3,i)

by (v1,i, V2,i).

For the rest of the proof, we will group (ω,H, (V1,1, V1,2), . . . , (V1,`, V1,`)) under variable ν, and

(v1,i, . . . , (v1,`) under the variable τ . S will denote the set of all successful data, i.e. quadruples

(ν, w1, τ, f) such that the attack succeeds. Then,

Prν,x1,τ,f [(ν, w1, τ, f) ∈ S] ≥ ρ.

Before continuing with the proof we state a well - known probabilistic lemma:

Lemma 4.2.2. (The probabilistic lemma). Let A be a subset of X×Y such that Pr[A(x, y)] ≥ ε,

then there exists Ω ⊂ X such that

1. Pr[x ∈ Ω] ≥ ε/2

2. whenever a ∈ Ω, Pr[A(a, y)] ≥ ε/2.

The probabilistic lemma is useful to split a set X in two subsets, a non-negligible subset Ω consist-

ing of “good” x’s which provide a non-negligible probability of success over y, and its complement,

consisting of “bad” x’s.

Lemma 4.2.3. (The forking lemma.) Randomly choose an index j, the keys and the random

tapes. Run the attack twice with the same random tapes and two different random oracles, f and f ′,

providing identical answers to the j − 1 first queries. With non-negligible probability, the different

outputs reveal two different representations of some Ṽ1,i, relatively to G1 and G2.

Proof. By proving this lemma we basically prove Theorem 4.2.1. What we want to show is, that

60

after a replay, we can obtain a common Ṽ1,i such that:

Ṽ1,i = G
z̃1,i
1 G

z̃2,i
2 H−r̃i = G

z̃1,i−w1r̃i
1 G

z̃2,i−w2r̃i
2

= G
ˆ̃z1,i
1 G

ˆ̃z2,i
2 H−

ˆ̃ri = G
ˆ̃z1,i−w1

ˆ̃ri
1 G

ˆ̃z2,i−w2
ˆ̃ri

2

where, z̃1,i − w2r̃i 6= ˆ̃z1,i − w1
ˆ̃ri. We can remark that, for each i, Ṽ1,i only depends on (ν, w1, τ)

and the first Indi − 1 answers of f . What is left to study is whether or not the random variable

χi = r′1i−x1c
′
i is sensitive to queries asked at steps Indi, Indi + 1, etc. We expect the answer to be

yes. We can consider the most likely value taken by χi when (ν, w1, τ) and the Indi−1 first answers

of f are fixed. Then, we are led to consider a function ei(ν, w1, τ, fi), where fi ranges over the set

of answers to the first Indi − 1 possible queries. Set

λi(ν, w1, τ, fi, e) = Pr
f

[(χi(ν, w1, τ, f) = e) & ((ν, w1, τ, f) ∈ S) |f extends fi] .

We define ei(ν, w1, τ, fi) as any value e such that λi(ν, w1, τ, fi, r) is maximal. We then define

the “good” subset G of S whose elements satisfy, for all i, χi(ν, w1, τ, f) = ei(ν, w1, τ, fi), where

fi denotes the restriction of f to queries of index strictly less than Indi, and the “bad” B its

compliments in S.

Definition 4.2.4. We denote by Φ the transformation which maps any quadruple (ν, w1, τ, f) to

(ν, w1 + 1, τ − c, f), where τ − r = (v1,1 − r1, . . . , v1,` − r`).

Lemma 4.2.5. Both executions corresponding to (ν, w1, τ, f) and Φ(ν, w1, τ, f) are totally identical

with respect to the view of the attacker. Especially, outputs are the same.

Proof. Let (ν, w1, τ, f) be an input for the collusion. Replay with ŵ1 = w1 + 1 and τ̂ = τ − r, the

same ν and the same oracle f . The answers of the oracle are unchanged and the interactions with

61

the signer become

ˆz1,i(ŵ1, v̂1,i, ri) = v̂1,i + ŵ1ri = (v1,i − ri) + ri(w1 + 1) = v1,i + riw1 = z1,i(w1, v1,i, ri).

Thus, everything remains the same.

Corollary 4.2.6. Φ is a one-to-one mapping from S onto S.

Lemma 4.2.7. For fixed (ν, w1, τ), the probability

Pr
f

[((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G) ≤ 1/q.

Which means that Φ sends the set G into B, except for a negligible part.

Proof. We will prove the above lemma by contradiction. Assume that Prf [(ν, w1, τ, f) ∈
⋃
r1,...,r`

Y (r1, . . . , r`)] > 1/q, where the set Y (r1, . . . , r`) is defined by the conditions (ν, w1, τ, f) ∈ G,

Φ(ν, w1, τ, f) ∈ G and (r1, . . . , r`) are the successive questions asked to the authority. Then, there

exists a `-tuple (r1, . . . , r`) such that Prf [Y (r1, . . . , r`)] > 1/(q`+1). Thus, there exist two oracles f

and f ′ in Y (r1, . . . , r`) which provide distinct answers for some queries QIndj = (mj , (H,G1, G2),

(h̃j , g̃1,j , g2), (Ṽ1,j , Ṽ2,j)) to the oracle, for some j ∈ 1, . . . , `+ 1, and are such that answers to queries

not of the form of QIndj are similar. We will denote by i the smallest such index j. Then fi = f ′i

and r̃i 6= ˆ̃
ir. Also, we have (ν, w1, τ, f) ∈ G, Φ(ν, w1, τ, f) ∈ G and similarly (ν, w1, τ, f

′) ∈ G,

62

Φ(ν, w1, τ, f
′) ∈ G. Because of the property of Φ, and by definition of G,

ei(ν, w1, τ, fi) = z1,i(ν, w1, τ, f)− w1r̃i

= z1,i(Φ(ν, w1, τ, f))− w1r̃i

= ei(ν, w1 + 1, τ − r, fi) + ((w1 + 1)− w1)r̃i

ei(ν, w1, τ, f
′
i) = z1,i(ν, w1, τ, f

′)− xw1 ˆ̃
ir

= z1,i(Φ(ν, w1, τ, f
′))− w1

ˆ̃
ir

= ei(ν, w1 + 1, τ − r̂, f ′i) + ((w1 + 1)− w1) ˆ̃
ir

The equality fi = f ′i implies ei(ν, w1, τ, fi) = ei(ν, w1, τ, f
′
i). Since we have assumed (r1, . . . , r`) =

(r̂1, . . . , r̂`), then ei(ν, w1 + 1, τ − r, fi) = ei(ν, w1 + 1, τ − r̂, f ′i). Thus, r̃i = ˆ̃ri which contradicts the

hypothesis.

Lemma 4.2.7 says that for any (ν, w1, τ),

Prf [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G)] ≤ 1/q.

By making the sum over all the triplets (ν, w1, τ), and using the bijectivity of Φ (Corollary 4.2.6),

we obtain

Pr[G] = Prν,w1,τ,f [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G)]

+Prν,w1,τ,f [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ B)]

≤ 1

q
+ Prν,w1,τ,f [Φ(ν, w1, τ, f) ∈ B] ≤ 1

q
+ Pr[B]

Then, Pr[B] ≥ (Pr[S] − 1/q)/2. Since 1/q is negligible w.r.t Pr[S], for enough large keys, we have,

Pr[B] ≥ Pr[S]/3 ≥ ρ/3.

63

Conclusion. We will use this probability to show the success of forking.

ρ

3
≤ Pr[B] = Prν,w1,τ,f [S & ((∃i)χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi))]

≤
∑`+1

i=1
Pr

ν,w1,τ,f
[S & (χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi))].

There exists k such that Pr[S & (χk(ν, w1, τ, f) 6= ei(ν, w1, τ, fk))] ≥ ρ/3`+ 1. Let us randomly

choose the forking index i. With probability greater than 1/(` + 1), we have guessed i = k. The

probabilistic lemma ensures that there exists a set X such that

1. Prν,w1,τ,f [(ν, w1, τ, fi) ∈ X] ≥ ρ/6(`+ 1)

2. for all (ν, w1, τ, fi) ∈ X, Prf [(ν, w1, τ, f) ∈ S & (χi 6= ei)| extends fi] ≥ ρ/6(`+ 1).

Let us choose a random quadruple (ν, w1, τ, f). With probability greater than (ρ/6(` + 1))2,

(ν, w1, τ, f) ∈ S, (ν, w1, τ, fi) ∈ X and χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi). We will denote by α

the value χi(ν, w1, τ, f) and by β the value ei(ν, w1, τ, fi). Then, two cases appear relatively to

λi(ν, w1, τ, fi, α):

• if λi(ν, w1, τ, fi, α) ≥ ρ/12(` + 1), then, by definition of ei, we know that λi(ν, w1, τ, fi, β) ≤

ρ/12(`+ 1).

• otherwise,

λi(ν, w1, τ, fi, α) + Prf ′ [S & (χi(ν, w1, τ, fi, α
′) 6= α)|f ′ extends fi]

= Prf ′ [S|f ′ extends fi]

≥ Prf ′ [S & (χi(ν, w1, τ, f
′) 6= β)|f ′ extends fi] ≥ ρ/6(`+ 1).

Both cases lead to Prf ′ [S & (χi(ν, w1, τ, f
′) 6= α)|f ′ extends fi] ≥ ρ/12(` + 1). Thus, if we replay

with the same keys and random tapes but another random oracle f ′ such that f ′i = fi, we obtain,

with probability at least ρ/12(`+ 1), a new success with χi(ν, w1, τ, f
′) 6= α. Then, both executions

provide two different representations of ai with respect to G1 and G2.

64

Global Complexity of the Reduction By using a replay oracle technique with a random forking index,

the probability of success is greater than

1

`+ 1
×
(

ρ

6(`+ 1)

)2

× ρ

12(`+ 1)
×
(

1

6(`+ 1)
× ε

Q`+1

)3

where ε is the probability of success of an `, `+ 1-forgery and Q the number of queries asked to the

random oracle.

4.3 Conclusions

In this Chapter we proved that Brands’ blind signature scheme can be described as a Generalized

Schnorr Blind Signature and thus its security cannot be proved via a perfect naive or an L-naive

RO replay reduction. This implies that proving Brands’ blind signature unforgeable would require

radically new techniques. We then propose a modification of Brand’s blind signature in which

the public key is constructed using two pieces of a secret. This allows the Pointcheval and Stern

reduction go through and we prove the new scheme unforgeable. However, whether the new scheme

can be used for a secure single-use anonymous credential scheme (or an e-cash scheme) is still an

open problem since there is no guarantee that one can detect a malicious user who uses the same

credential (or coin) more than once1.

The fact that Brands’ blind signature is in the heart of Microsoft’s anonymous credentials scheme,

U-Prove, makes this work relevant to cryptographic practice as well. In the next Chapter we will

describe a new anonymous credential scheme that will have comparable efficiency to U-Prove but

will be provable secure.

1Note that this is an open problem for U-Prove as well.

5
Anonymous Credentials Light

As already discussed in the previous Chapter, U-Prove, the most efficient single-use anonymous

credential scheme, is unlikely to be proven secure under currently known techniques. In this Chapter,

we propose a new anonymous credential scheme called Anonymous Credentials Light [12, 14] that has

comparable efficiency to the one due to Brands and it is provably secure (in the random oracle model).

In particular, it is unlinkable under the decisional Diffie-Hellman assumption, and unforgeable under

the Discrete-Logarithm assumption for sequential composition (the extension to concurrent self-

composition is an open problem). For the construction, we defined a new cryptographic building

block, called blind signatures with attributes, and discussed how it can be used in combination with

a commitment scheme to directly get an anonymous credential system.

5.1 More on Cryptographic Commitments

In Section 2.2.5 we defined cryptographic commitments and we presented the Pedersen commit-

ment scheme. Here we give a generalized version that allows a commitment to a set of messages

(L1, . . . , Ln). The scheme is defined as follows:

65

66

1. Setup: On input the security parameter 1k and the maximum number of messages n, pick a

group G of prime order q = Θ(2k) with generators h, h1, . . . , hn.

2. Commit(L1, . . . , Ln;R) = hR
∏n
i=1 h

Li
i ; and Li ∈ Zq.

The Pedersen commitment scheme (constructed from a corresponding Σ-protocol) is information

theoretically hiding and computationally binding. It is also important that there are efficient zero-

knowledge proof protocols for proving that a commitment C is to a particular set of values; or to a

set of values that satisfy a rich class of relations [36, 47, 70].

5.1.1 Combined Commitment Schemes

Let Commit1 be a commitment scheme that takes as input its parameters params1, n messages

(L1, . . . , Ln) to which we will refer to as attributes from now on and randomness R1 and outputs

a commitment C1. Let Commit2 be a commitment scheme that takes as input its parameters

params2, an attribute L0 and randomness R2 and outputs a commitment C2. Suppose that another

commitment scheme, Commit , is a combination of these two commitments; i.e., on input C1 and C2

it produces a commitment C to the combined attributes (L0, L1, . . . , Ln) with combined randomness

R = R1 +R2.

For example, this can be instantiated by a generalized Pedersen commitment scheme: the

parameters for the combined scheme are generators (h, h0, . . . , hn), Commit1(L1, . . . , Ln;R1) =

(
∏n
i=1 h

Li
i)hR1 , Commit2(L0;R2) = hL0

0 hR2 , and a combined commitment can be obtained ei-

ther by multiplying together the two component commitments, or by computing it from scratch

as Commit(L0, L1, . . . , Ln;R) = (
∏n
i=0 h

Li
i)hR.

5.1.2 Blinded Pedersen Commitment Scheme

Here, we note that the Pedersen commitment scheme can be further extended. Let (h, h1, . . . , hn)

be the parameters of the Pedersen commitment. Consider an additional parameter z ∈ G, where

z 6= 1. Let C = Commit(L1, . . . , Ln;R). Then the values (zγ , Cγ) can also be viewed as a

67

commitment to the same (L1, . . . , Ln) with randomness (R, γ). Let us define a new commit-

ment scheme, which we will call the blinded Pedersen commitment scheme: CommitB(L1, . . . ,

Ln;R, γ) = (zγ ,Commit(L1, . . . , Ln;R)γ), where Commit is the Pedersen commitment. It is easy

to see that this commitment is unconditionally hiding, same as Pedersen. It is also easy to see that

it is binding: given (zγ , Cγ), γ is uniquely defined, and therefore so is C, which is binding. Finally,

using well-known Σ-protocols, it is easy to see that the same set of relations that can be proven

about values inside a Pedersen commitment can be proven about values inside a blinded Pedersen

commitment.

5.2 Defining Blind Signatures with Attributes

In this section, for the first time, we define what a blind signature scheme with attributes is and

its security properties. For definitions of standard (without attributes) blind signatures please refer

to Section 2.3.1. In a blind signature scheme with attributes, the signer and the user both get as

input a cryptographic commitment C to the user’s attributes; this way, the user can prove that

the commitment contains the correct attributes via a separate zero-knowledge proof. As output,

the user obtains another, unlinkable, commitment C̃ to the same attributes, and a signature on

this commitment and a message of the user’s choice. Blindness ensures that, even upon seeing two

signatures obtained this way on commitments of his own choice, the signer cannot link a signature to

its issuing. Unforgeability ensures that a user cannot produce more signatures than he was issued,

and also that the multiset of openings to the input commitments is the same as the multiset of

openings to the output commitments. Formally:

Definition 5.2.1 (Blind Signature With Attributes). Let Commit(x; r) be a non-interactive com-

mitment scheme. A blind signature scheme with n attributes, for this commitment scheme, consists

of three algorithms: KeyGen,BlindSign, Verify where BlindSign is a protocol between the Signer(S)

and the User(U).

68

• KeyGen(1 k): is a probabilistic polynomial time key generation algorithm. It takes a security

parameter k as input and outputs a pair (pk, sk) of public and secret keys for the system and

the maximum number of attributes n that can be embedded during BlindSign.

• BlindSign: is an interactive, probabilistic polynomial time protocol between S and U . The

public parameters are the Signer’s public key pk, the parameters of the commitment scheme

and C = Commit(L1, . . . , Ln;R) where (L1, . . . , Ln) is the set of attributes and R is some

randomness. The Signer’s private input is sk and User’s private input is (L1, . . . , Ln, R) and

the message, m, that he wishes to have signed. The User’s output in the protocol is a pair (R̃, σ),

where σ = σ(m, C̃) is the Signer’s signature on (m, C̃), and C̃ = Commit(L1, . . . , Ln; R̃) ; the

Signer’s output is “completed”.

• Verify(PK,m, C̃, σ): is the signature verification algorithm; i.e. a deterministic polynomial

time algorithm that gets as input the public key, the message, a commitment to the attributes

and the blind signature on the message and attributes and checks the validity of the signature

σ. If it is valid the algorithm outputs “1”, otherwise outputs “0”.

A blind signature scheme with attributes is secure if it is both blind and unforgeable. Blindness is

defined in a similar way as in blind signature schemes without attributes: the Signer is unable to view

the messages and the attributes he signs (protection for the User). A malicious Signer, A, cannot

link a (m, C̃, σ) tuple to any particular execution of the protocol, even if A chooses m,L1, . . . , Ln.

Definition 5.2.2 (Blindness for Blind Signatures with Attributes). Let A be a malicious Signer

and b ∈ {0, 1} be a randomly chosen bit which is kept secret from A. A will try to guess the value b

by performing the following steps:

1. (pk, sk)← KeyGen(1k)

2. {m0,m1,
−→
L0,
−→
L1, R0, R1} ← A(1k, pk, sk) (i.e. A produces two messages {m0,m1}, polynomial

in 1k, and two attribute vectors
−→
L0,
−→
L1 with the corresponding randomness).

69

3. A(1k, pk, sk,m0,m1,
−→
L0,
−→
L1, R0, R1) engages in two parallel (and arbitrarily interleaved as de-

sired by A) interactive protocols, the first with U(pk, {mb,
−→
L0, R0}) and the second with U(pk,

{m1−b,
−→
L1, R1}).

4. If neither of the User instances failed, then A gets two signatures and the corresponding blinded

commitments: σ(m0, C̃b), C̃b and σ(m1, C̃1−b), C̃1−b.

5. A outputs a bit b′.

Then the probability, taken over the choice of b, over coin-flips of the key-generation algorithm, the

coin-flips of A, and (private) coin-flips of both users (from step 3), that b′ = b is at most 1
2 + ν(k),

where ν(k) is a negligible function.

We give the definition of one-more unforgeability for the sequential composition case.

Definition 5.2.3 (Sequential One-More Unforgeability for Blind Signatures with Attributes). (Key-

Gen, BlindSign, Verify) is a one-more unforgeable blind signature scheme with respect to Commit if

∀ ppt A, the probability that A wins in the following game is negligible:

1. (pk, sk)← KeyGen(1k)

2. A(pk, Ci,mi) engages in polynomially many (in k) adaptive, sequential interactive protocols

with polynomially many copies of S(pk, sk), where A decides in an adaptive fashion when to

stop. Let ` be the number of executions, where the Signer output “completed” in the end of the

protocol.

3. A outputs a collection {(C̃1,m1, σ1), . . . , (C̃j ,mj , σj)} where (C̃i,mi, σi) for 1 ≤ i ≤ j are all

accepted by V erify(pk, C̃i,mi, σi), and all (C̃i,mi)’s are distinct.

We say that A wins the game if either:

1. j > ` (i.e. A outputs more (C̃,m, σ) tuples than he received).

2. A opens the sets of commitments {Ci} and {C̃i} and the resulting multisets do not match.

70

5.3 From Blind Signatures with Attributes to Single-Use Anony-

mous Credentials

It is easy to see that blind signatures with attributes is the right building block for single-use

anonymous credentials: a user with a particular set of attributes can form a commitment C to these

attributes, prove in zero-knowledge that he has committed to the correct attributes, and then obtain

a credential by running a blind signature with attributes on input this commitment. He can then

prove that he has a credential with the desired attributes by revealing his signature and the output

commitment C̃, and proving in zero knowledge that C̃ corresponds to the needed attributes.

For example, suppose that we allow users to obtain and anonymously show age credentials. Then

Alice will form a commitment C to her secret key sk and her age age, prove to the signer, who serves

as an identity validator, that she has committed to sk that corresponds to her pk and to the correct

age, and run a blind signature with attributes protocol to obtain a fresh commitment C̃ on the

same sk and age, and a signature σ. Then, when she needs to prove her age, she can reveal (C̃, σ)

and prove that the age inside commitment C̃ allows her entry to some age-restricted resource, for

example a video store that requires viewers to be over 13. If she wants to do it again, she needs to

run the blind signature with attributes protocol with the signer again. She can further anonymously

obtain credentials that are connected to her identity: let’s say that the video store wants to give her

a credential for a free movie; she can obtain it by running a blind signature with attributes with

the video store. She will form her input commitment C ′ by committing to the same sk and age as

in C̃ and proving to the video store that she did so (by proving equality of committed values); once

she runs the protocol with the video store, she receives an output (C̃ ′, σ), which is a credential from

the video store (and not from the original signer) on her (sk , age) — even though the video store

never saw the public key at all. More interestingly, we can require the free movie to be a single-use

credential, by additional clever use of attributes (see Section 5.3), so that Alice can be traced if she

tries to get two free movies using the same single-use credential more than once. Thus we see that

71

blind signatures with attributes are the right building block for single-use anonymous credentials.

Recall our definition of generalized commitment schemes (Commit1,Commit2,Commit) from

Section 5.1.1. Consider the following construction of a single-use credential with n attributes from

a blind signature scheme with n + 1 attributes. The common inputs to the User and Signer are

the Signer’s public key for verifying signatures, and a commitment C1 to the User’s attributes

(L1, . . . , Ln). We assume that the attribute L1 contains the user’s identity, so that learning that

attribute will allow one to trace the user. The Signer’s private input is its signing key, while the

User’s private input is the message m that the user wants signed (m will serve as the serial number

for this credential, so the user needs to have chosen it at random during the signing protocol) and

the opening to C1, (L1, . . . , Ln;R1). The commitment C1 corresponds to this user’s identity and

never changes; each time this user obtains a signature, they input the same C1.

First, the User forms a commitment C2 = Commit2(L0;R2) for random (L0, R2); this commit-

ment is specific to this credential, and the value L0 will be used in the double-spending equation,

below. Next, the user submits C2 to the signer and provides a zero-knowledge proof of knowledge

of its opening.

Next, the User and the Signer carry out the blind signature protocol relative to the combined

commitment scheme Commit , whereby the User’s output is a fresh commitment C̃ to the values

(L0, . . . , Ln) and randomness R̃, and the signature σ on (m, C̃).

To use this credential to a verifier V , the User reveals (m, C̃, σ), obtains from V a challenge c,

and reveals the double-spending equation cL1 + L0 (the multiplication and addition is in whatever

ring the committed values belong to) and whatever other attributes are needed for the transaction;

the User then provides a zero-knowledge proof that these values were revealed correctly, relative to

commitment C̃.

To trace a user who spent a single-use credential twice, it is sufficient to examine two double-

spending equations for the same credential. If double spending occurred, then the attribute L1,

which encodes the User’s identity, will be revealed.

72

The following theorem is stated informally because we omitted a formal definition of single-use

anonymous credentials.

Theorem 5.3.1. (Informal) Let KeyGen,BlindSign,Verify be a blind signature scheme with n+ 1

attributes, associated with the commitment scheme Commit which is a combination of Commit1 and

Commit2 as explained above. Then the above construction is a single-use credential scheme with n

attributes.

5.4 Our Construction: ACL

Let us now describe our proposed construction of a blind signature scheme with attributes, called

“Anonymous Credentials Light” (ACL). ACL is based on Abe’s blind signature scheme [3] which has

been modified appropriately so that it will also allow the users to encode attributes in the signatures

they get in a provably secure way. Abe’s scheme is a witness indistinguishable variant of the Schnorr

signature scheme where the Signer owns a real public key y = gx and a tag public key z = gw. The

idea is that the signature can be issued only with the real secret key x but no one can distinguish

which of the two (real or tag) secret keys was used (remember the OR-proof technique presented

above).

Although the modification seems straightforward, proving the security of the resulting scheme

turns out to be challenging as we will see later in the next section. Also note that Abe’s construction,

as it was first presented, had a faulty proof of security as it was later found by Abe and Ohkubo [112].

The original proof was in the RO model for concurrent composition but it turned out to only be

valid for an adversary with overwhelming success probability so they ended up presenting a new

proof in the generic model.

Setup. Let G be a group of order q and g is a generator of this group. Let H : {0, 1}∗ → Zq be

a hash function. We assume the existence of a trusted party, TP , which chooses G, g and outputs

73

params = (q,G, g, z, h, h0, . . . , hn) where z, h, h0, . . . , hn ∈ G and n is the maximum number of

attributes a User can possibly have. We will use (h0, . . . , hn) as parameters of the generalized

Pedersen commitment scheme Commit ; we will use (z, h0, . . . , hn) as parameters for the blinded

Pedersen commitment scheme CommitB .

The Signer picks his secret key x ∈R Zq and computes his real public key to be y = gx mod q.

The TP given (p, q, g, h, y) outputs z which is the tag public key of the Signer. The public key of

the Signer is (p, q, g, h, y, z), and the private key is x.

Signature/ Credential Issuing. The signature issuing protocol will be described in three phases:

registration, preparation and validation. The registration phase actually only needs to happen once

for each user/set of attributes and also, preparation and validation phases can happen simultaneously

(we choose to present them separately in order to describe the construction in a more modular way).

The signature issuing protocol is basically a POR-protocol for proving knowledge of one of the

following:

• y-side: proof of knowledge x of y = gx

• z-side: proof of knowledge (w1, w2) of z1 = gw1 , z2 = hw2 (where z1, z2 are the so called

“one-time” tag keys that the signer creates).

Notice that the z-side witness in not known to the Signer, so the z-side proof will be done by

simulation following the OR-proof technique paradigm described in Section 2.2.3.

Registration. The User’s input includes the system parameters params, the signer’s real public

key y, the message m to be signed and (L1, . . . , Ln;R) where L1, . . . , Ln is a set of attributes and R

is some randomness. The Signer also gets as input the system parameters params, a commitment

C = Commit(L1, . . . , Ln;R) and his secret key x. During registration the User and the Signer carry

out a standard interactive zero-knowledge proof of knowledge protocol where the User creates a

proof π1 to convince the Signer that he knows an opening of the commitment C.

74

Preparation. The Signer prepares z1 and z2 (the z-side proof). He first picks rnd ∈ Zq and

creates the “one-time” tag keys: z1 = Cgrnd and z2 = z/z1. The Signer sends rnd to the User in

order to convince him that logg z1 is not known to him. The User computes himself z1 = Cgrnd and

then picks γ ∈ Z∗q and blinds z, z1, z2 into ζ = zγ , ζ1 = zγ1 , ζ2 = ζ/ζ1 so that logz z1 = logζ ζ1 holds.

Finally, the User picks τ ∈ Zq and computes η = zτ (this will serve as an element of an additional

Schnorr signature that proves knowledge of γ such that ζ = zγ).

Validation. In this phase two Σ protocols are going to take place and combined according to the

OR-proof. By (a, c, r) we are going to denote the transcript of Σy and by (a′, c′, r′) we will denote

the transcript of Σz. The Signer will compute Σz himself and Σy in interaction with the user.

1. The Signer begins by creating a for Σy by picking a random u ∈ Zq and computing a = gu.

Then, for Σz, following the OR-proof he picks random c′ ∈ Zq and r′ = {r′1, r′2 ∈ Zq}. and

sets a′1 = gr
′
1zc
′

1 and a′2 = hr
′
2zc
′

2 . Finally he sends to the User a, a′ = {a′1, a′2}.

2. The User checks whether a, a′1, a
′
2 ∈ G and then picks blinding factors t1, t2, t3, t4, t5 ∈R Zq

and blinds a into α = agt1yt2 and a′1, a′2 into α′1 = a
′γ
1 g

t3ζt41 and α′2 = a
′γ
2 h

t5ζt42 . We denote

α′ = {α′1, α′2}. Then, computes ε = H(ζ, ζ1, α, α
′, η,m) where m is the message to be signed.

The User sends to the Signer e = (ε− t2 − t4) mod q.

3. The Signer, according to the OR-proof technique, computes c = e − c′ mod q and r = u −

cx mod q. Then, sends (c, r, c′, r′) to the User.

4. Finally, the User “unblinds” the received values and gets: ρ = r+ t1 mod q, ω = c+ t2 mod q,

ρ′1 = γr′1 + t3 mod q, ρ′2 = γr′2 + t5 mod q, ω′ = c′ + t4 mod q, µ = τ − ω′γ mod q.

A signature is a 8-tuple σ = (m, (ζ, ζ1, ρ, ω, ρ
′ = {ρ′1, ρ′2}, ω′, µ)) where ζ1 encodes the attributes

of the User ((ζ, ζ1) corresponds to C̃, which is a blinded Pedersen commitment to (L1, . . . , Ln) with

randomness (R, γ)).

The complete signature issuing protocol is also described in Figure 5.1.

75

Figure 5.1: Proposed ACL Construction

76

Verification. A signature tuple (m, ζ1, σ) (where ζ1 corresponds to C̃) verifies if ζ 6= 1 and

ω + ω′ = H(ζ, ζ1, g
ρyω, gρ

′
1ζω

′

1 , hρ
′
2ζω

′

2 , zµζω
′
,m) mod q.

Discussion. As briefly mentioned in the description of our construction there are certain “tricks”

we can do to improve its efficiency. First of all notice that the Registration phase only needs to

happen once for each User and a corresponding set of attributes. The Signer stores the attribute

commitment C together with some identification information asked from the User (e.g. passport,

ID).Then, it is sufficient if every time in the beginning of the Signature Issuing protocol the User

identifies himself to the Signer in order to prove ownership of his account. Moreover, notice that

Preparation and Validation phases can be combined and executed simultaneously. As a result, the

whole signing protocol consists of three rounds.

Let’s now discuss the differences between our ACL construction and the blind signature protocol

described by Abe [3]. The basic advantage of ACL is that allows for the encoding of users’ attributes

in the signatures they receive from the Signer. In order for this to happen we need the Registration

phase during which the User commits to his set of attributes. Those attributes are then encoded in

the signature in ζ1. The crucial difference from Abe’s approach is that z1 can no longer be computed

as the result of some hash function given a random input rnd. In ACL, z1 needs to include the

attribute commitment C so z1 = Cgrnd (we need the grnd factor so that two different signature

issuings with the same user cannot be linked to each other). This is the step where the blinded

signature inherits some structure from the values the signer can see in the signing step, and allows

the encoding of attributes. The fact that z1 is not the result of a hash function H′ makes our security

analysis different from Abe’s. We can no longer define H′ so that it will return the output we need,

instead we will have to make use of ZK extractors. Unfortunately, we cannot take advantage of

Abe’s analysis because it only applied to special types of adversaries [112]. Of independent interest,

our analysis indicates that, for sequential composition, Abe’s blind signature may still be provably

77

secure under DDH in the RO model. The formal analysis follows in the next section.

5.4.1 Proof of Security

The correctness of the scheme is straightforward:

ω + ω′ = c+ t2 + c′ + t4 = e+ t2 + t4 = ε mod q

gρyω = gr+t1yc+t2 = gr+cxgt1yt2 = α

gρ
′
1ζω

′

1 = gγr
′
1+t3ζc

′+t4
1 = (a′1z

−ω′
1)γgt3ζc

′+t4
1 = a

′γ
1 g

t3ζt41 = α′1

gρ
′
2ζω

′

2 = hγr
′
2+t5ζc

′+t4
2 = (a′2z

−ω′
2)γht5ζc

′+t4
2 = a

′γ
2 h

t5ζt42 = α′2

zµζω
′

= zτ−ω
′γζω

′
= ζγ = η.

Theorem 5.4.1 (Blindness). The proposed scheme satisfies blindness under the Decisional Diffie-

Hellman assumption in the random oracle model.

Proof. We wish to show that, when interacting with a challenger as described in the definition of

blindness, the adversary cannot guess which signature is which (i.e. the adversary should not be able

to tell which signature corresponds to each instance and each attribute set). We distinguish between

two types of signatures that a challenger might output: a signature σ = (m, (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ))

is correct for a particular interaction with the signer if there exists a value γ such that ζ = zγ and

ζ1 = zγ1 where z1 is the value corresponding to this interaction with the signer, and the signature

verifies. A signature is fake if no such γ exists. Note that it is easy for a challenger to generate both

kinds of signatures: a correct signature can simply be output by correctly following the user’s side of

the protocol. With control of the random oracle, a fake signature is computed as follows: first, the

challenger picks ζ and ζ1 at random from G, and let ζ2 = ζ/ζ1. Next, it picks random ρ, ω, ρ′1, ρ
′
2, ω
′, µ

from Zq and sets the random oracle such that ω+ω′ = H(ζ, ζ1, g
ρyω, gρ

′
1ζω

′

1 , hρ
′
2ζω

′

2 , zµζω
′
,m), which

ensures that the fake signature verifies.

78

We will prove the theorem by a hybrid argument. Consider the following three games in which

the adversarial signer engages in two signature issuing instances with a challenger who outputs two

signatures:

1. Real: The challenger outputs two correct signatures, σ1, σ2, in random order by honestly

following the protocol. A correct signature is one that is honestly generated by interacting

with the signer. Thus, in a correct signature the user blinds z, z1 by the same γ so that

logz(z1) = logζ(ζ1).

2. Hybrid: The challenger’s output consists of a randomly picked correct signature and a fake

signature, in random order. In a fake signature the challenger doesn’t use the same random

γ to blind z and z1 so that logz(z1) 6= logζ(ζ1) except for negligible probability. Above, we

explained how a fake signature can be generated, assuming that the challenger controls the

random oracle.

3. Fake: The challenger outputs two fake signatures.

What we need to prove is that Real≈Hybrid and then that Hybrid≈Fake. Then, it holds that

Real ≈ Fake. This proves the blindness of the ACL scheme since the view of the adversary is

indistinguishable no matter if he receives two correct or two fake signatures.

We will first show that Real≈Hybrid and then that Hybrid≈Fake.

Case 1: Real≈Hybrid

Suppose that there exists a poly-time adversary A who is successful in distinguishing between Real

and Hybrid with probability 1/2 + ε, where the advantage ε is not negligible. We then show that

there exists a poly-time algorithm B that solves the DDH problem with non-negligible advantage.

The reduction B gets as input an instance (g,A,B,D) where (g,A,B,D) is a DDH instance. B

first fixes z = A and then sets h0 = ge0 , and h1, . . . , hn to Ae0 , . . . , Aen for randomly chosen ei ∈ Zq.

B sends the parameters to A. The adversary A creates his public key y and sends y to B along

with messages m0,m1, commitments C0, C1 and openings (
−→
L0,
−→
L1) which are two attributes vectors

79

of size n. A and B engage in two interleaving registration and signature issuing instances. During

the registration phase we have: C(j) = Ak
(j)
1 , (k

(j)
1 = e0R + e1Lj,1 + · · ·+ enLj,n) honestly created,

for j ∈ {0, 1}. Note that the value k
(j)
1 is known to the reduction B.

Then, during the two signature issuing instances, A computes z
(j)
1 = Ak

(j)
1 grnd

(j)

where rnd(j)

was sent to B. B responds with random e(j) and then computes two signatures σ1, σ2 in the following

way:

B flips two random coins: coin, b ∈ {0, 1}. Then, lets σ2−coin be the correct signature on

(m0, C̃b) (where C̃ is denoted as ζ1 in our ACL scheme) for the corresponding instance, and σcoin+1

be a signature on (m1, C̃1−b) generated from the input to B, as follows: set ζ(j) = D and ζ
(j)
1 =

Dk
(j)
1 Brnd

(j)

; let ζ
(j)
2 = ζ(j)/ζ

(j)
1 , randomly choose ρ, ω, ρ′1, ρ

′
2, ω
′, µ, and then define H so that the

signature verifies.

After receiving the signatures, A outputs Real or Hybrid. If A outputs Real then B outputs

“DH” or B outputs “random” otherwise.

Let us analyze the success of B in distinguishing Diffie-Hellman tuples from random tuples. If

the input (g,A,B,D) is a DH tuple, then: ζ(j) = D = gab = Ab = zb and ζ
(j)
1 = Dk

(j)
1 Brnd

(j)

=

gabk
(j)
1 gbrnd

(j)

= (gak
(j)
1 grnd

(j)

)b = (Ak
(j)
1 grnd

(j)

)b = zb1 so, the signature σcoin+1 is distributed identi-

cally to a correct signature, and this is precisely the Real game. Similarly, if the input is not a DH

tuple then it is the Hybrid game. Therefore, B will be correct exactly when A is and will distinguish

a DH tuple with probability 1/2 + ε, which contradicts to the DDH assumption.

Case 2: Hybrid≈Fake

Similarly, we build a reduction B which given an adversary A, who distinguishes between Hybrid

and Fake with probability 1/2 + ε, solves the DDH problem.

Working in a similar way we did before, B will now create a fake signature and one using the

input tuple. If A outputs Hybrid then B will output “DH” or “not DH” otherwise. If the input is a

DH instance then the output will correspond to the Hybrid game and to the Fake otherwise. So, B

80

will be successful whenever A is and will break the DDH assumption with non-negligible advantage

ε which is a contradiction.

Finally, since Real≈Hybrid and Hybrid≈Fake it follows that Real≈Fake.

Theorem 5.4.2 (One-More Unforgeability). The signature issuing protocol is (`, `+1)−unforgeable

for polynomially bounded ` if the discrete logarithm problem is intractable and H is a random oracle.

Outline of the proof We first discuss the witness indistinguishability of the protocol (Lemma 5.4.4),

which allows us to to simulate the Signer with either y-side or z-side witness(es) to extract the

witness of the other side. Then, in Lemma 5.4.5 we prove that in order for the User to get a valid

signature, he has to blind (z, z1) into (ζ, ζ1) only in such a way that logz ζ = logz1 ζ1. In Lemma 5.4.6

we prove that is infeasible to create a valid signature without engaging in the issuing protocol with

the legitimate Signer. From Lemmas 5.4.5 and 5.4.6 we see that if a User engages in the signature

issuing protocol ` times and outputs `+ 1 signatures, then, there exist at least two valid signatures

linked to a particular run of the issuing protocol. Finally, it needs to be proven that a forger who

manages to produce two signatures from a single protocol run can be used to solve the discrete

logarithm problem.

We will denote the i-th execution of the issuing protocol by runi. Recall that a transcript of runi

of the issuing protocol contains values (z1,i, z2,i); by the z-side witness of runi we denote (w1,i, w2,i)

such that z1,i = gw1,i and z2,i = hw2,i .

Consider an alternative signing algorithm that, instead of using the y-side witness in the issuing

protocol, uses the z-side witness. Let params = (q,G, h, z, {hj}) be the public parameters, and y be

the public key of the Signer. Suppose that the registration and the preparation phases of the signing

protocol for runi resulted in the signer and the user setting up the values z1,i = gw1,i , z2,i = hw2,i .

The alternative signing algorithm takes as input the public parameters params, the public key y, the

preparation phase output (z1, z2) and the values (w1,i, w2,i) instead of the secret key x, and works

81

as follows:

1. Generate ci, ri ∈U Zq and set ai := griyci .

2. Compute a′1,i := gu1,i and a′2,i := hu2,i with u1,i, u2,i ∈U Zq.

3. Sends ai, a
′
1,i, a

′
2,i to the user.

4. Given ei from user, compute c′i := ei − ci mod q, r′1,i := u1,i − c′iw1,i mod q and r′2,i :=

u2,i − c′iw2,i mod q.

5. Send ri, ci, r
′
1,i, r

′
2,i, c

′
i to the user.

Definition 5.4.3. The signing protocol described above is called the z-side signer.

Lemma 5.4.4. The signer’s output is perfectly indistinguishable from the output of a z-side signer.

Proof. Lemma 5.4.4 follows from the result of Cramer [68].

Note that, in order to run the z-side signer, it is necessary to somehow get the corresponding witness.

We will see later that, with black-box access to an adversarial user in the registration phase, a

reduction can use standard Σ-protocol extraction techniques in order to learn the representations of

C; if the reduction is, in addition, given the discrete logarithms of all the public parameters to the

base g, it will be able to compute the z-side witness, and so, inside a reduction, the z-side signer

can be invoked.

Lemma 5.4.5. (Restrictive Blinding) Let A be a User that engages in the signature issuing protocol

` times, and outputs a valid signature σ = (m, (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ)). Let runi denote the i-th

execution of the protocol and z1,i denote z1 used by the signer S in runi. For polynomially bounded

` and for all polynomial-time A, the probability that logz ζ 6= logz1,i ζ1 holds for all i, is negligible if

the discrete logarithm problem is intractable and H is a random oracle.

Proof. Let A have at most qh accesses to H and ask at most ` signatures to B. Let σ = (m, (ζ, ζ1, ρ,

ω, ρ′1, ρ
′
2, ω
′, µ)) be a signature that A outputs and satisfies logz ζ 6= logz1,i ζ1 for all i with probability

ε0 which is not negligible in n (qh and ` are bounded by a polynomial in the security parameter

82

n). We randomly fix an index I ∈ {1, . . . , `} and regard A as successful only if the RO query for

the resulting signature was during the I-th run. (If the resulting signature does not correspond to

any query, then A is successful only with negligible probability due to the randomness of H.) Let

(p; q; g; Y) be an instance of the DL problem.

Reduction Algorithm: B first sets (p, q, g) := (p,q,g). Then, it flips a coin χ ∈U {0, 1} to either

select y := Y (case χ = 0), or h := Y (case χ = 1) and also guesses a random index I ∈ {1, . . . , `}.

Case y = Y: (extracting y-side witness)

1. Key Generation: B selects k, k′, {kj} ∈U Zq, for 0 ≤ j ≤ n, and sets h := gk and hj := gkj ,

z = gk
′
. As a result of setting the parameters this way, B will always be able to compute

z-side witnesses, as long as B can successfully extract the user’s attributes and randomness in

the registration phase.

2. Registration: B extracts values (L1, . . . , Ln;R) using a knowledge extractor for proof π1 (since

we only worry about sequential composition the extractor may rewind) and defines K =

k0R+
∑n
ij1 kjLj (so that C = gK).

3. Preparation: B selects w1,i ∈ Zq and sets rnd = w1,i − K. Then, computes w2,i = (k′ −

w1,i)/k mod q (so we have z1,i = gw1,i , z2,i = hw2,i). B sends rnd to A.

4. Validation B runs A using the z-side signer described above. At the end of each runi the z-side

signer sends: ri, ci, r
′
1,i, r

′
2,i, c

′
i to A. B simulates H by returning ε ∈U Zq to the random oracle

queries issued by A. A outputs a signature σ = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ), that corresponds to

some ε.

5. If the RO query for the resulting signature σ happened in runI then move to the next step,

otherwise the reduction fails.

6. Rewinding : Reset and restart A with the same setting. For runI and after, B simulates H

with ε̃ ∈U Zq. A outputs a signature, say σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃
′
2, ω̃
′, µ̃).

If ω 6= ω̃, B outputs x := (ρ− ρ̃)/(ω̃ − ω) mod q. The simulation fails, otherwise.

83

Case h = Y: (extracting z-side witness)

1. Key generation: B selects x, {kj} ∈U Zq and sets y := gx and hj := gkj . It also selects

w1, w2 ∈U Zq and sets z := gw1hw2 .

2. Signature Issuing : B runs A simulating the signer as follows.

(a) For i 6= I, B follows the protocol with y-side witness, x.

(b) For i = I, B engages in the issuing protocol using the z-side witness (w1, w2) as follows.

i. Registration Extract values (L1, . . . , Ln;R) using a ZK extractor and define K =

k0R+
∑n
i=1 kiLi (so that C = gK).

ii. Preparation Set rnd = w1 −K (so we have z1,J = gw1 , z2,J = hw2). B sends rnd to

A.

iii. Validation B runsA using the z-side signer and at the end of runI sends (rI , cI , r
′
1I , r

′
2I , c

′
I)

to A.

B simulates H by returning ε ∈U Zq to the RO queries made by A.

3. A outputs a signature, say σ = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ), that corresponds to some ε. If the RO

query for the forged signature didn’t happen in runI then fail, else move to the next step.

4. Rewinding : Rewind and restart A∗ with the same setting. For runI and forward, B simulates

H by returning ε̃ ∈U Zq.

5. A outputs a signature, say σ̃ = (ζ, ζ1, ρ̃, ω̃, ρ̃′1, ρ̃
′
2, ω̃
′, µ̃), that corresponds to some ε̃. If ω′ 6= ω̃′,

B computes w′1 = (ρ′1 − ρ̃′1)/(µ − µ̃) mod q, w′2 = (ρ′2 − ρ̃′2)/(µ − µ̃) mod q, and outputs

w = (w1 − w′1)/(w′2 − w2) mod q (where w = logg h). Simulation fails otherwise.

Evaluation of Success Probability. The reduction is successful when it gets ω 6= ω̃ for χ = 0 or when

it gets ω′ 6= ω̃′ for χ = 1. What we need to argue about is that, independently of the choice of χ, the

above will happen with non negligible probability. Note that we construct the reduction by giving

different responses after the Ith run (for a randomly chosen I ∈ {1, . . . , `}) when rewinding and we

let the reduction fail if the forgery didn’t happen in runI .

84

Let us now fix the adversary’s view and his RO tape. Once everything is fixed, we notice that

A’s forgery, is uniquely determined by c′ and ε. We now consider two cases: (1) ω′ = ω with non

negligible probability even if ε and c′ change (after rewinding). In this case ω′ = ω̃′ and thus ω 6= ω̃:

ω + ω′ = ε 6= ε̃ = ω̃ + ω̃′, so the y-side witness can be extracted. (2) ω′ 6= ω with non negligible

probability if ε and c′ change. So, when we run the adversary again with access to z-side witness

and with different ε̃ we get two signatures from him where ω = ω̃ and thus ω′ 6= ω̃′ and thus we

can extract the z-side witness. Since we fail if the forgery didn’t happen in runI we do not need to

consider what happens when we run A with y-side witness for χ = 1 and i 6= I.

What is left to show is that for χ = 1, the z-side witness, (w′1, w
′
2), extracted is not the one

that B already knows Remember that the reduction in the beginning, selects w1, w2 ∈U Zq and sets

z := gw1hw2) and in runI sets rnd so that z1,I = gw1 , z2,I = hw2 . The signature that A produces

contains proofs that ζ = zγ , ζ1 = gw
′
1 and ζ2 = hw

′
2 , so w′1 = γw1 and w′2 = γw2 and we can extract

those w′1, w
′
2 by rewinding. For the forgery that A outputs it holds logz ζ 6= logz1,I ζ1 (by definition

of Lemma 2) which guarantees that we will obtain two different representations of z.

Lemma 5.4.6. Any poly-time adversary A outputs a valid signature without interacting with the

Signer only with negligible probability if the discrete logarithm problem is intractable and H is a

random oracle.

Proof. Suppose that there exists adversary A that outputs `+ 1 valid signatures with probability ε

not negligible after interacting with the Signer at most ` times. The case ` = 0 has been ruled out

by Lemma 5.4.6. We consider ` ≥ 1.

By Lemmas 5.4.5 and 5.4.6, among the `+1 signatures, there exist at least two signature-message

pairs which contain (ζ, ζ1) and (ζ̄, ζ̄1) such that logζ ζ1 = logζ̄ ζ̄1 = logz z1I holds for z1I used in runI

for some I in {1, . . . , `}. Now, there exist two queries to H that correspond to those signatures. In

a similar way as in the proof of Lemma 5.4.5, we guess the indices of these queries and regard A as

being successful only when the guess is correct. We consider an equivalent adversary A∗ that asks

85

H only twice and succeeds with probability ε∗ = ε/
(
qh
2

)
in producing two signatures in the expected

relation.

We construct a reduction B that, given (p,q,g,Y), solves logg Y in Zq by using A∗.

Reduction Algorithm: B sets (p, q, g) := (p,q,g). It then flips a coin, χ ∈U {0, 1}, to select

either y := Y (case χ = 0), or y := gx with randomly chosen x (case χ = 1).

1. Setup If χ = 0, set up and use the z-side signer. Set h, h0, . . . , hn such that their discrete

logarithm base g is known. Else, set up the y-side signer by letting y = gx for a randomly

chosen x; set up h, h0, . . . , hn such that their discrete logarithm base Y is known.

2. Registration If χ = 0, extract (R,L0, . . . , Ln). Else follow the protocol.

3. Preparation Follow the protocol.

4. Validation If χ = 0, use the z-side signer, else follow the protocol.

5. Responding to the RO queries B simulates H by returning random values, say ε1 and ε2, to

the two RO queries.

6. Rewinding WhenA∗ outputs two signatures (σ(1) = (ζ(1), ζ
(1)
1 , ρ(1), ω(1), ρ′

(1)
1 , ρ′

(1)
2 , ω′

(1)
, µ(1)))

and (σ(2) = (ζ(2), ζ
(2)
1 , ρ(2), ω(2), ρ′

(2)
1 , ρ′

(2)
2 , ω′

(2)
, µ(2))) corresponding to ε1 and ε2, B resets the

adversary and this time responds to the two RO queries with ε̃1 and ε̃2.

7. Interacting with A∗ after rewinding is the same as before, according to the value of χ.

8. Extracting WhenA∗ again outputs two signatures (σ̃(1) = (ζ(1), ζ
(1)
1 , ρ̃(1), ω̃(1), ρ̃′

(1)

1 , ρ̃′
(1)

2 , ω̃′
(1)
, µ̃(1))

and (σ̃(2) = (ζ(2), ζ
(2)
1 , ρ̃(2), ω̃(2), ρ̃′

(2)

1 , ρ̃′
(2)

2 , ω̃′
(2)
, µ̃(2)) corresponding to ε̃1 and ε̃2, do: if χ = 0

and ω(1) 6= ω̃(1) or ω(2) 6= ω̃(2), then extract the y-side witness as described in the proof of

Lemma 5.4.5; else if χ = 1 and ω′(1) 6= ω̃′
(1)

or ω′(2) 6= ω̃′
(2)

, then extract the z-side witness

as described in Lemma 5.4.5.

Evaluation of Success Probability. Here we need to show that B will extract the witness that it

doesn’t already know with non-negligible probability (otherwise, χ is revealed). Consider all the q2

possible (ε1, ε2) pairs that can be given as responses to A∗’s two RO queries. Let succ be the set

86

of pairs (ε1, ε2) for which A∗ succeeds: succ = {(ε1, ε2)|A breaks the seq. one-more unforgeability}.

What we want to show is that for a random pair (ε1, ε2) ∈ succ there exists (ε̃1, ε̃2) ∈ succ such

that A∗ produces the same e with non-negligible probability in the run where the first RO query

happened. Notice that the transcript (i.e. the messages exchanged between the Signer and A∗) of

these two runs has to be the same. We call such a pair (ε̃1, ε̃2) good for (ε1, ε2).

Consider A∗ is run twice: once with (ε1, ε2) and once with (ε̃1, ε̃2), both times producing two

message-signature pairs corresponding to z1I . Taken together, (ε1, ε2), (ε̃1, ε̃2), the transcript of the

runs and the four message-signature pairs allow the reduction to compute either a y side or a z side

witness. However, we need to argue that, with non-negligible probability, this will be a witness the

reduction doesn’t already know. Since the transcripts are identical, the joint distribution of the two

views (A∗’s view in the first run and its view, after the rewinding, in the second run) is independent

of χ.

First, note that there are only q possible e’s but q2 possible (ε̃1, ε̃2), and so there can only be

a negligible fraction of (ε1, ε2) for which no good (ε̃1, ε̃2) exists. Suppose that (ε̃1, ε̃2) is good for

(ε1, ε2) but (ε∗1, ε
∗
2) is not; moreover, the reduction that gives (ε1, ε2) before rewinding, and (ε∗1, ε

∗
2)

after rewinding, can only compute the witness it already knows (i.e. if χ = 0, it can compute the

z-side witness, and for χ = 1 the y-side). Then for the same choice of χ, the reduction would

be computing the witness it does not already know if, instead, it used (ε̃1, ε̃2) and (ε∗1, ε
∗
2). For

example, if χ = 0 we would have ω 6= ω̃ and ω = ω̃∗ respectively, which implies that ω̃ 6= ω̃∗ and

thus by choosing (ε1, ε2) and (ε∗1, ε
∗
2) the y side witness could be extracted. Since it is just as likely

to pick (ε1, ε2) or (ε̃1, ε̃2) for the values before rewinding, it is just as likely to succeed as to fail,

independently of χ (this analysis was first given by Abe and Okamoto [6]).

Finally, the only thing left to prove is that an adversary cannot open the sets of commitments

{C(i)} and {ζ(i), ζ
(i)
1 } to two different multisets. Note that ζ(i) uniquely determines γ(i), and by

Lemma 5.4.5, it follows that for every i, there exists some z
(i′)
1 such that ζ

(i)
1 = (z

(i′)
1)γ

(i)

. Thus,

an alternative opening of the commitment {ζ(i), ζ
(i)
1 } gives rise to an alternative representation of

87

z
(i′)
1 in bases h, h1, . . . , hn, g. In turn, by standard techniques, this breaks the discrete logarithm

assumption. (The reduction will just honestly emulate the signer, and embed the DL instance into

the parameters h, h1, . . . , hn, g.)

Setting Parameters. Note that our reduction is not tight: an adversary A whose success proba-

bility is ε gives rise to the reduction B with the same runtime but success probability ε/
(
qh
2

)
≈ ε/q2

h.

This, in other words means that if A takes time t to break unforgeability with probability ε, then our

reduction, B, in order to break the discrete logarithm assumption with the same success probability

would need time t · q2
h. So, if A breaks unforgeability faster than in time 2k, then B breaks DL in

time faster than 2k · q2
h = 2k+2 log qh . Thus, we need to set the parameters to be sufficiently large so

that is reasonable to assume that the reduction would take time 2k+2 log qh to break DL directly.

As suggested by NIST [111] in order to tolerate an adversary whose computational power is 2k,

one needs an elliptic curve group of size 22k which for our reduction should be 22(k+2 log qh). Now,

let’s be very conservative and assume that qh = 280, thus the factor
(
qh
2

)
we lose is of 160-bits. Thus,

if we want to achieve 128-bit security we would need an elliptic curve group where the bit size of

an element is 2(128 + 2 · 80) = 576-bits. Note that the equivalent security level for RSA requires

3072-bit keys.

5.5 Related Work and Comparisons.

Let’s now take a closer look in our ACL construction and compare it with other well known blind

signature and credential schemes. For our comparisons we focus on the efficiency of signing (which

is analogous to the credential issuing), the cost of verification of the signature/credential, the size of

the signature/credential, the security of the schemes i.e. blindness and unforgeability and whether

the schemes support attributes which is obviously not going to be the case for a “traditional” blind

signature scheme.

88

Brands Abe ACL CL credentials [45]

[36] [3] Scheme Rsa Pairings

Efficiency S1 U2 S U S U S U S U

Signing3 2 12 6 12 7 13 10 8 15 14p

Verification 7 0 11 1 11 1 NC4 5+6p 9+6p

Sign. size 6 elem. 9 elem. 9 elem. ∼ 05 ∼ 05

Blindness 3 3 3 3 3

Prov. Unforg. 7 GM6 3 3 3

Attributes 3 7 3 3 3
1 Signer, 2 User, 3 In number of exponentiations

4 Non-comparable, 5 It can be used multiple times
6 Generic group model

Table 5.1: Comparison of anonymous credentials

The ACL construction consists of three phases: registration, preparation and validation. Regis-

tration is the most expensive phase, but it need not be repeated for the same user/signer pair should

the user need his credential reissued (as long as his attribute set is the same). Preparation and valida-

tion require the signer to perform 7 exponentiations, while the user performs 13; verification requires

8 exponentiations. These numbers are essentially the same as Abe’s blind signature; Brands’ blind

signature at the heart of UProve requires essentially the same number of exponentiations for signa-

ture issue, and 4 exponentiations fewer for verification. Thus, we get comparable efficiency to the

most efficient examples of protocols that either lack essential features (such as previously provable

secure blind signatures) or provable security (such as UProve). We also compare ourselves to the

Camenisch-Lysyanskaya [45] which is significantly less efficient during issuing due to the use of pair-

ings or RSA group but is a multi-use credential, thus we denote the signature/credential size to be

close to zero since it can be used multiple times. See Table 5.1 for the comparisons.

A related work is due to Guajardo et al. [89] where they proposed “encrypted anonymous cre-

dentials”. The idea is that an issuer can certify encrypted attributes in such a way that none of

the involved parties, including the user, can learn the value of the attributes. This is an interesting

application but cannot be used as a building block so it is incomparable to our work. Moreover, their

construction [89] is based on Brands scheme which as mentioned above cannot be proven one-more

unforgeable [13].

89

Recommended parameter setting. For 128 bit security we recommend using a group of 576

bits1. In order to achieve an equivalent security level with CL credentials keys of 3072 bits would

be required.

5.6 Conclusions

We defined and proposed an efficient and provably secure construction of blind signatures with at-

tributes. Prior notions of blind signatures did not yield themselves to the construction of anonymous

credential systems, not even if we drop the unlinkability requirement of anonymous credentials. Our

new notion in contrast is a convenient building block for anonymous credential systems. In ad-

dition to the definition, we solve the open problem of constructing anonymous credentials based

on the DDH assumption. Our new construction is efficient: it requires just a few exponentiations

in a prime-order group in which the decisional Diffie-Hellman problem is hard. Our construction

is inspired by the Abe blind signature [3] in which, unlike other provably secure blind signatures

[30, 43, 113, 123, 133], blinding still preserves some structural elements into which attributes can

be embedded. In the random-oracle model, our construction is unlinkable under the decisional

Diffie-Hellman assumption, and unforgeable under the discrete-logarithm assumption for sequential

composition (we leave extending it to concurrent self-composition as an open problem).

The fact that our new construction works in elliptic curve groups makes it very appealing for

applications in mobile devices, RFIDs and smartcards. In the next Chapter we present an application

of our Anonymous Credentials for private payments in the public transportation scenario.

1Please refer to the proof of Theorem 5.4.2 for a justification of this number.

6
Efficient Payments for Public Trans-
portation Systems

Electronic cash (e-cash) can be viewed as a subcategory of anonymous credentials. It is a single-use

credential scheme with an extra mechanism that allows double spending detection. You think of

the electronic coins as being single-use credentials issued by the Bank to a user. The Anonymous

Credentials Light construction we just presented can be extended to an efficient e-cash scheme that

moreover has the nice property that allows the encoding of users attributes in the coins (i.e. user

age, address etc.).

In this Chapter we are going to discuss how to use cryptographic e-cash in the public transporta-

tion scenario in order to achieve secure and private electronic payments. One of the main challenges

of such an attempt is how to implement e-cash constructions efficiently on lightweight devices like

smartphones or RFID cards. We present NFC-smartphone implementations of: Brands’ e-cash

scheme [36] (with and without attributes), Abe’s e-cash scheme [3] (which is without attributes)

and the e-cash constructed by Anonymous Credentials Light [14] and we compare and evaluate

the performance of those four different schemes in Section 6.4. Due to their efficiency during the

spending phase, when compared to other schemes, and the fact that payments can be verified offline,

90

91

these schemes are especially suited for, but not limited to, use in public transport. Additionally,

the encoding of validated attributes (e.g. a user’s age range, zip code etc.) is possible in the coins

being withdrawn, which allows for additional features such as variable pricing (e.g. reduced fare for

senior customers) and privacy-preserving data collection. We present a subtle technique to make

use of the ECDHKeyAgreement class that is available in the BlackBerry API (and in the API of

other systems) and show how the schemes can be implemented efficiently to satisfy the tight timing

imposed by the transportation setting.

Electronic Cash. Electronic payments have been becoming more and more prevalent and the two

major required properties are security and privacy. Payments made with debit or credit cards do not

provide any privacy guarantee for the users since the corresponding financial institution can track

all their transactions. Starting with Chaum [59], the cryptographic community worked on electronic

analogues to physical money (e-cash) that guarantee secure and private payments [59, 58, 36, 41, 20].

As discussed in the Introduction, typical e-cash system consists of three types of entities: the Bank,

the Users and the Merchants. Users withdraw electronic coins from the Bank, spend them to

merchants who finally deposit them back to the Bank. E-cash systems should satisfy two main

properties (1) unforgeability : an adversarial user cannot spend more e-coins than he withdrew; and

(2) anonymity : nobody (including the Bank) can link spending transactions to each other or to

specific withdrawal instances. As opposed to physical cash, it is easy to duplicate electronic coins,

so mechanisms ensuring a user cannot spend one coin multiple times are needed. Two solutions have

been proposed in the literature: the first is online e-cash [60], in which the merchants are constantly

connected to the Bank and can therefore check whether a coin has already been deposited before

accepting it. In order to overcome the strong requirement of an online Bank, a second solution is to

use a double-spending mechanism [58]. The idea is that as long as a user is honest, his anonymity

is preserved, but once he tries to cheat the system by spending the same e-coin multiple times his

identity is revealed. In this thesis we focus on off-line e-cash since we believe it is much more realistic

92

to not assume the bank always being online.

Privacy in Public Transportation Payments. Electronic payments in transit systems are

very convenient, but at the same time, they raise concerns about the security and the privacy

of their customers. Currently employed electronic public transportation payment systems have

suffered security attacks [82, 8], and they do not incorporate means to protect the user’s (locational)

privacy. For example it is reported that “in the period from August 2004 to March 2006 alone, the

Oyster system (electronic payment system for public transport in greater London) was queried 409

times” [126], which shows that location data about customers is collected and stored and later used

by other agencies. “Anonymous” cards are offered in some systems, but even with those cards user

privacy can be sacrificed. The reason is that there is a unique identifier assigned in each card which

makes payments made using the same card linkable.

Privacy is an especially challenging problem in this context since it not only spans cryptographic

theory and many engineering fields but extends into public policy areas such as environmental

justice policy and sociology issues such as “fair access to all”. However, in order to enable a large-

scale deployment and broad acceptance of such a payment system, adequate security and privacy

mechanisms are an essential requirement. Indeed, current users of FasTrak, the electronic toll

collection system of California, rank “more secure technology to prevent security and privacy issues”

in the top three recommendations of a recent study [128].

One may argue that giving up one’s privacy is a small price to pay for such important benefits as

ease and convenience, not to mention the fact that the information collected can facilitate advanced

traveler information dissemination, traffic management, travel time estimation, emergency man-

agement, congestion pricing and carbon emissions control, and environmental justice assessments.

However, by using e-cash with attributes one can get all the benefits of electronic payments without

sacrificing privacy.

93

NFC. In order to satisfy the tight timing requirements imposed by the transportation setting, we

choose a payment device that can communicate with an access point in a contactless fashion. A

standard for contactless communication integrated in modern smartphones is Near Field Communi-

cation (NFC) [1]. It allows a smartphone to communicate with other NFC-enabled devices within

a range of a few centimeters. While the throughput is moderate, the benefit of this type of com-

munication is its simple and hence fast establishment, as electronic devices can be connected with a

simple touch. There are predictions that in the long run NFC devices will replace the multitude of

smart cards that many users carry around currently. For transportation authorities the advantage

of relying on users’ NFC-enabled smartphones, is that no additional (electronic) tokens will have to

be handed out. Instead only a software-app has to be provided that the user can download to his

phone. This contributes to decreasing the revenue collection cost, and further allows the payment

system to be updated easily. If a change to the system is made, the transportation authority only

needs to provide a software update, rather than a hardware roll-out.

6.1 Payment System Requirements of the Transportation

Setting

Several features of the considered e-cash schemes are especially useful for the design of a payment

system that fulfills the requirements of transportation payments. These will be presented in the

following.

Verifying a Payment Offline We envision a scenario that is based on currently employed trans-

portation payment systems, where a user buys fares at a vending machine and pays for a fare at an

entrance point of the transportation system. An access granting device grants the user access after

validating the payment. For example in the case of buses it cannot be assumed that those access

granting devices are permanently connected to the back-end system of the transportation authority.

Yet, we assume temporary connection to transfer the data of collected payments. Consequently,

94

verifying a payment needs to be possible in an offline fashion. This holds for the chosen schemes,

where a verification of the payment does not require access to the database. However, in this case

fraud cannot be detected at the time of the payment, as it requires comparing the received data

with the database. Alternatively the chosen e-cash schemes reveal a crime after the fact, and allow

a user to be penalized, when misusing the system.

Modular Payment System In case of multiple transportation authorities the e-cash concept offers

great convenience advantages for users, as it allows for multiple banks and shops. A user does not

need multiple payment devices to use different transportation systems. Rather he can withdraw

coins at one transportation authority TA1 and use them to pay for a trip in the transportation

system of another transportation authority TA2. Thus TA1 would act as the bank and TA2 as a

shop. TA2 can later deposit the received coins to its account at TA1. This is achieved, as no trust

between shops and banks is assumed in the e-cash concept.

Different Denominations A transportation authority needs to offer different fare prices. This can

be accomplished by assigning a low monetary value to coins and letting the user spend many coins

to pay for a fare. Yet, spending many coins increases the execution time of a payment. It is desirable

to keep the amount of coins that have to be spent low. Allowing for different denominations of coins

reduces the number of coins that need to be spent. This can be achieved, in the e-cash setting. One

way to accomplish this is to have the bank possess multiple public keys, one key for each possible

denomination of coins.

Encoding Attributes As mentioned above the collection of user data is important to improve the

system. A system is desirable, where data that is needed to analyze the system can be collected

from users, without sacrificing their privacy. With the use of e-cash this can be achieved by encoding

attributes into coins. Those attributes allow the user to reveal some information, as for example

his zip code, while keeping further information hidden, and hence hiding his identity. Apart from

private data collection, encoding attributes into coins allows for private variable pricing. The system

could require the users to encode specific information like their age and then, when the coin is spent,

95

compute the right fare according to the presented attributes.

6.2 E-cash with Attributes

In this section we describe how e-cash with attributes works and we provide instantiations based on

Brands’ e-cash scheme [36] and ACL [14]. The descriptions are tailored to match the transportation

setting but can be easily adopted for other settings as well. To our knowledge this is the first time

that an explicit description of how Brands and ACL schemes can be used as e-cash schemes with

attributes is given. Although at the end we will compare the implementation results of Brands with

attributes, Brands without attributes, ACL and Abe’s e-cash (which is essentially ACL without

attributes), here we will only provide the detailed construction of the attribute supporting schemes.

In our descriptions we will point out the differences between the attribute and the corresponding

non-attribute version.

A transportation payment system based on e-cash is described as an interaction between three

kinds of players: the transportation authority TA, with vending machines that are connected to its

database, the users of the system U and the payment machines M that are placed at the entrance

points and, after receiving a valid payment, grant a user access to the transportation system.

We now give an informal, generic description of the protocols that constitute an e-cash scheme

with attributes.

Setup. During the setup phase the transportation authority (or another trusted authority) generates

the public parameters for the system together with the TA’s secret key.

Account opening. Initially, users need to register with the TA and open an account. To do so, a

user U , would have to present some form of identification (e.g. a passport) to the TA and provide

a cryptographic commitment C for a set of attributes (L1, . . . , Ln) that are required for the system

and for his public key pkU = gskU . The attribute types and their order are determined by the TA

during the setup of the system. A possible setting is to use attribute L1 for the user’s secret key

96

(skU = L1), L2 for his age, L3 for his zip code etc. Note that for efficiency reasons we may require

all attributes that are revealed during the spending phase to be binary attributes i.e. L2 equals 0 if

the user is more than 18 and less than 65 years old and 1 otherwise (used for age discounts). This

way we avoid range proofs which are rather costly. Besides, for the transportation setting binary

attributes would work rather well, given that we need the attributes mainly for variable pricing or

private data collection. For both settings it is sufficient to just have binary attributes. Also note that

we may require the users to update their accounts say once a year in order to update attributes that

change over the year. After the account opening phase, the TA stores for each user his commitment

C and a copy of his identification.

Withdrawal. Whenever U wants to withdraw coins from the TA, he first needs to prove ownership

of his account and then he runs the withdrawal protocol. In order to prove ownership of his account,

we require U to form digital signature (i.e. a Schnorr signature [131]) on a message that describes

the number of coins he wishes to withdraw and includes some kind of timestamp. This is useful

for two reasons: (1) the TA can easily identify the user by checking whether the signature is valid

under the user’s public key and (2) it provides an extra level of security against a man in the middle

who may intercept the communication and try to withdraw more coins. Note that depending on

the protocol the adversary may not be able to actually spend these coins (since he needs the user’s

secret key to execute the payment protocol). However, he can still hurt U by reducing his account

balance. Alternatively, we could require the execution of the identification phase for every single

coin withdrawn but this is obviously less efficient than identifying U once for all the coins he wishes

to withdraw.

Spending. In order for a user U to spend a coin at a payment machine, U runs the spending protocol

as described in the corresponding e-cash system. During this spending phase he may choose to reveal

some of his attributes depending on the setting of the system. When a User reveals an attribute

Lj he can either send the attribute value in clear or provide a proof of knowledge of that attribute.

Note that in each case he needs to prove that the attribute he reveals is the same one he committed

97

to during the account opening phase.

Deposit. The payment machines present the spending transcript to the TA. Here, an extra mecha-

nism is required to protect the TA against cheating users, this mechanism is called: double spending

detection. The double spending detection is executed off-line in order to detect and penalize users,

who spent the same coin more than once. In order for double spending detection to be possible,

the TA needs to preserve a special database where all the deposited coins are stored. Obviously we

cannot assume that all the coins are stored there forever, thus we need to introduce some kind of

coin expiration date after which the coin will be deleted from the database. This could be done

either by having the expiration date encoded as an attribute in the coins (so the user would have

to prove that the coin is still valid during spending) or by changing the TA’s public key (i.e. once a

year) and thus invalidating the coins issued under the old key.

6.2.1 Brands’ E-cash with Attributes

We describe how Brands’ e-cash scheme [36] can be modified to support the encoding of users’

attributes. The main differences between the attribute and the non-attribute version can be found in

the account opening and the spending phases (when attributes are revealed). The actual withdrawal

protocol is essentially the same.

Setup. The TA (or another trusted authority) picks a group G of prime order q, generators

h, g, g1, . . . , gn of this group, where n is the maximum number of attributes needed for the sys-

tem, and a hash function H : {0, 1}∗ → Z∗q . The public key of the TA is y = gx, where x ∈ Zq is its

secret key.

Account Opening. The account opening procedure of Brands with attributes is presented in Table

6.1.

When a user U wants to open an account with the TA, he first presents an identification document

to the TA and then encodes his attributes (L1, L2, . . . , Ln ∈ Zq) into a commitment I 1. The value

1How the user obtains these attributes is out of the scope of this paper. Similar to a credential system the user

98

TA(y = gx) U(pkU = gL1
1)

I = gL1
1 . . . gLnn

π = PK{(Λ1, . . . ,Λn) :

I/pkU = gΛ2
2 . . . gΛn

n ∧ pkU = gΛ1
1 }

Verify π
I,pkU ,π←−−−−−−−− If Ih 6= 1

Store identifying information
of U together with I

z = (Ih)x
z−−−−−−−−→ Store z

Table 6.1: Brands’ with Attributes Account Opening Protocol

L1 (which is not revealed to the TA) serves as the user’s secret key. His public key is pkU = gL1
1 .

Then the user needs to provide a proof of knowledge π that he knows the opening of the commitment

I and that the same value L1 has been used to generate I and pkU . The proof π can be computed

as a standard Schnorr AND proof of knowledge of several discrete logarithms [131, 105]. Upon

receiving π, I, pkU , the TA checks the validity of the proof and then stores the user’s information

and computes z = (Ih)x which it sends to the user. The corresponding protocol for Brands without

attributes only required the user to proof knowledge of his secret key.

Withdrawal. To withdraw k coins, U first has to identify himself to the TA. In this identification

phase the user proves knowledge of his secret key and claims how many coins he wants to withdraw.

These two actions can be achieved simultaneously by computing a Schnorr signature [131] σ(m) on

a message m of the form: m =“# of coins + time/date”. The identification phase is presented in

Table 6.2 and it is the same for the non-attribute version of Brands as well.

TA(y = gx) U(pkU = gL1
1)

m =“# of coins + time/date”

Check σpkU
m,σpkU (m)

←−−−−−−−−−− Compute signature σpkU (m)

Table 6.2: User Identification Phase

The TA will authorize the user to perform the withdrawal, if the signature validates under the

user’s public key and there are sufficient funds in his account. Then the user runs the withdrawal

could either reveal these attributes to the TA when committing to them or obtain those attributes from some other
trusted authority and then just prove knowledge of them to the TA.

99

protocol k times, once for each coin he withdraws. Brands’ withdrawal protocol, when supporting

the encoding of attributes, is shown in Table 6.3.

TA(y = gx) U(pkU = gL1
1)

w ∈R Zq
a = gw, b = (Ih)w

a,b−−−−−−−−−→ s ∈R Z∗q , A = (Ih)s

z′ = zs

x0, x1, . . . , xn, u, v ∈R Zq
B = Ax0gx1

1 . . . gxnn
a′ = augv, b′ = bsuAv

c′ = H(A,B, z′, a′, b′)
c←−−−−−−−−− c = c′/u mod q

r = cx+ w mod q
r−−−−−−−−−→ gr

?
= yca, (Ih)r

?
= zcb

r′ = ru+ v mod q

Table 6.3: Brands’ with Attributes Withdrawal Protocol

For each coin, U needs to store the values: A,B, sign(A,B)=̂A,B, z′, a′, b′, r′ together with s and

the values x0, x1, . . . , xn, where sign(A, b) is essentially a blind Chaum-Pedersen signature [63]. In

order to verify the signature one needs to check whether: gr
′

= yc
′
a′ and Ar

′
= z′c

′
b′. Note that

the basic difference of Brands withdrawal when using attributes is found in the computation of B

since you need to pick as many random values xi as the number of attributes in the scheme and

compute B = Ax0gx1
1 . . . gxnn . Those random values xi will be used later, during the spending phase

in order for the user to prove knowledge of his attributes. For Brands withdrawal without attributes

the value B is computed as B = Ax0gx1
1 : only one random value x1 is required and it will be used

for proving knowledge of user’s secret key in the spending phase.

Spending. When U spends a coin to M (with identifying information IM) the spending protocol

is executed. In Table 6.4 we present Brands spending protocol when supporting the encoding of but

not revealing any attributes. During this phase the user presents the coin A,B, sign(A,B) toM and

also proves knowledge of the representation of A (i.e. U proves knowledge of his attributes). After

the transaction and if the signature verifies (i.e. the coin is valid), M saves the payment transcript

consisting of A,B, sign(A,B), (R, r1, . . . , rn) and the time stamp date/time.

This protocol is significantly less efficient compared to Brands e-cash without attributes, since

100

the user needs to prove knowledge of the representation of A, which now includes n+ 1 exponents.

For Brands without attributes the user only needs to compute r1 to prove knowledge of his secret

key.

U(pkU = gL1
1) M

A,B,sign(A,B)−−−−−−−−−−−−→ A
?

6= 1

r1 = −dL1 + x1 mod q
d←−−−−−−−−−−− d = H0(A,B, IM,date/time)

. . .
rn = −dLn + xn mod q

R = d/s+ x0 mod q
(R,r1,...,rn)−−−−−−−−−−−−−→ gr11 . . . grnn h−d

?
= A−RB

Verify sign(A,B)

Table 6.4: Brands’ with Attributes Spending Protocol when not Revealing Attributes

What if U additionally wants to reveal an attribute, say Lj , during the spending protocol? For

the transportation setting we assume that revealing attributes in clear is good enough and doesn’t

violate user’s privacy given that for efficiency reasons we are only using binary attributes anyway.

So in order to reveal Lj , U does not need to compute rj , when receiving the value d from M.

Instead, he sends the attribute value Lj together with its blinding value xj in his response to M,

which is shown in Table 6.5. Thus, revealing a larger number of attributes reduces the user-side’s

computation, but increases the amount of data that U sends to the payment machine M.

U(pkU = gL1
1) M

A,B,sign(A,B)−−−−−−−−−−−−→ A
?

6= 1

r1 = −dL1 + x1 mod q
d←−−−−−−−−−−− d = H0(A,B, IM,date/time)

. . .
rj−1 = −dLj−1 + xj−1 mod q
rj+1 = −dLj+1 + xj+1 mod q
. . .
rn = −dLn + xn mod q

R = d/s+ x0 mod q
(R,r1,...rj−1,rj+1,...,rn)(Lj ,xj)−−−−−−−−−−−−−−−−−−−−→ gr11 . . . g

−dLj+xj
j . . . grnn h−d

?
= A−RB
Verify sign(A,B)

Table 6.5: Brands’ with Attributes Spending Protocol when Revealing the Attribute Lj

Deposit. In order to deposit a coin, M submits the payment transcript to the TA. The TA first

101

checks the validity of the coin (i.e. it verifies sign(A,B) and checks whether gr11 . . . grnn h−d
?
= A−RB)

and then queries the database, where all deposited coins are recorded, to check whether this coin

had been deposited before. This double spending check does not need to happen during the deposit

phase. The TA could run it at specific time intervals for all the coins in the database. If the deposited

coin had not been recorded in the database before, the TA will store (A,date/time, R, r1, . . . , rn) in

her database. However, if the coin had been recorded, it means that it was spent twice by U (we

assume that the payment machines in our system are trusted and will not try to submit the same

coin twice: yet, this could easily be checked by storing the payment machine’s identification IM

together with each coin that is stored). If a coin had been double spent the identity of the cheating

user can be revealed by computing: I = g
(r1−r′1)/(R−R′)
1 . . . g

(rn−r′n)/(R−R′)
n which was stored together

with some identifying information of U during the account registration phase.

6.2.2 ACL E-cash with Attributes

In this section we explicitly describe how our ACL scheme can be used as e-cash with attributes.

Note that Abe’s blind signature scheme itself is immediately an e-cash scheme (without attributes

though) and has been described in the past [3]. Thus, as mentioned above, we will not provide a

detailed description of Abe’s instead we will just point out the differences while describing ACL.

Setup. The setup phase of ACL e-cash is similar to the original ACL scheme. The TA chooses a

group G of order q, a generator g and a hash function H : {0, 1}∗ → Zq. It also picks z, h, h0, h1,

h2, . . . hn ∈R G, where n is the maximum number of attributes. The secret key of the transportation

authority is x ∈R Zq and the public key is: y = gx. y will serve as the real public key, whereas z is

the tag public key.

Account opening. When a user U with attributes (L2, . . . , Ln), secret key L1 ∈R Zq and public

key pkU = hL1
1 wants to open an account at the TA he presents a valid identification document

and commits to his attributes and public key, as shown in Table 6.6. For each User the TA stores:

pkU , C/pkU and a copy of his identification document. U also needs to store the randomness R that

102

corresponds to his commitment C.

TA(y = gx, z) U(pkU = hL1
1)

R ∈R Zq
C = hR0 h

L1
1

∏n
i=2 h

Li
i

π = PK{(P,Λ1, . . . ,Λn) :

Check π
C/pkU ,pkU ,π←−−−−−−−−−−−−− C/pkU = hP0 h

Λ2
2 . . . hΛn

n ∧ pkU = hΛ1
1 }

Store identifying information
of U together with C

Table 6.6: ACL with Attributes Account Opening Protocol

Withdrawal. To withdraw k coins from his account U first identifies himself to the transportation

authority. This identification phase can be executed similar to the one in Brands’ scheme (Table 6.2).

Then U runs the ACL blind signature protocol k times (Table 6.7) once for every coin.

TA(y = gx, z) U(pkU = hL1
1)

rnd ∈R Zq
z1 = Cgrnd, z2 = z/z1

u, c′, r′1, r
′
2 ∈R Zq

a = gu, a′1 = gr
′
1zc
′

1 , a′2 = hr
′
2zc
′

2

rnd,a,a′1,a
′
2−−−−−−−−−−−−→ z1 = Cgrnd

γ ∈R Z∗q , ζ = zγ

ζ1 = zγ1 , ζ2 = ζ/ζ1
τ ∈R Zq, η = zτ

Check whether a, a′1, a
′
2 ∈ G

t1, t2, t3, t4, t5 ∈R Zq
α = agt1yt2 , α′1 = a′γ1 g

t3ζt41

α′2 = a′γ2 h
t5ζt42

ε = H(ζ, ζ1, α, α
′
1, α
′
2, η)

c = e− c′ mod q
e←−−−−−−−−−−− e = (ε− t2 − t4) mod q

r = u− cx mod q
c,r,c′,r′1,r

′
2−−−−−−−−−−−−→ ρ = r + t1 mod q

ω = c+ t2 mod q
ρ′1 = γr′1 + t3 mod q
ρ′2 = γr′2 + t5 mod q
ω′ = c′ + t4 mod q

Table 6.7: ACL with Attributes Withdrawal Protocol

After each execution of the withdrawal protocol U obtains a coin = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′), which

he stores together with rnd, τ and γ. Note that he omits to compute and store the value µ of the

original ACL scheme. Instead, during the spending phase (Table 6.8), he computes µp to “bind” the

coin to a specific transaction. For each withdrawn coin, the TA stores z1 together with the public

103

key of U that this coin corresponds to (z1 is going to be used to reveal the identity of the user in

case of double-spending). The withdrawal of Abe’s e-cash is essentially the same.

Spending. During the spending phase a user U simply releases the coin to the merchant together

with εp and µp. The spending protocol for ACL e-cash and Abe’s e-cash is identical and presented

in Table 6.8.

U(pkU = hL1
1) M

εp = H(zτ , coin,desc)
desc←−−−−−−−−−− desc = H(IM,date/time)

µp = τ − εpγ mod q
εp,µp,coin−−−−−−−−−−−→ ζ

?

6= 1

εp
?
= H4(zµpζεp ,coin,desc) mod q

ω + ω′

?
= H(ζ, ζ1, g

ρyω, gρ
′
1ζω

′

1 , hρ
′
2ζω

′

2 , zµpζεp) mod q

Table 6.8: ACL with Attributes Spending Protocol

In order for a user U to also reveal an attribute Lj during spending, he will have to execute the

Revealing Attribute Lj protocol (Table 6.9) additionally to the Spending protocol. In this protocol

he needs to prove that the attributes on his initial commitment correspond to the attributes encoded

in the withdrawn coin (i.e. in value ζ1). In other words, the user needs to provide a proof of equality

of committed values under different commitment keys and bases [105], for a new commitment C’

that the user computes for the attribute Lj and ζ1 in which the attributes are encoded.

From a theoretical point of view the user side of the spending protocol of ACL (Table 6.8),

when supporting the encoding but not revealing attributes, is more efficient than the one of Brands’

scheme, since, following the trick that was first suggested by Abe [3], the user only needs to compute

the updated µp value for the coin verification instead of proving knowledge of all his attributes. In

practice this depends on the relative cost for executing modular arithmetic in Zq compared to the

hash function and the communication cost.

Deposit. During deposit, the payment machine M sends the coin as well as εp, µp, desc and the

date and time of the transaction to the TA which verifies that both the coin is valid and desc correctly

encodes date/time and IM . Double spending can be checked later in an off-line fashion. In order to

104

U(pkU = hL1
1) M

recall ζ1 = hRγ0 hL1γ
1 . . . hLnγn grndγ

rnd′ ∈R Zq
C ′ = h

Ljγ
j grnd

′γ

= h
Ljγ
j 1Rγ1L1γ . . . 1Lj−1γ1Lj+1γ . . . 1Lnγgrnd

′γ

r, r′, r0, . . . , rn ∈R Zq
ζ̃1 = hr00 . . . hrnn g

r

C̃ ′ = 1r01r1 . . . h
rj
j . . . 1rngr

′

c = H(ζ1, ζ̃1, C
′, C̃ ′,date/time)

s0 = r0 + cRγ
s1 = r1 + cL1γ
. . .
sn = rn + cLnγ
s = r + c rnd γ

s′ = r′ + c rnd′ γ
Lj ,ζ1,ζ̃1,C

′,C̃′,s0,...,sn,s,s
′

−−−−−−−−−−−−−−−−−→ c = H(ζ1, ζ̃1, C
′, C̃ ′,date/time)

ζ̃1ζ
c
1

?
= hs00 . . . hsnn g

s

C̃ ′C ′c
?
= 1s01s1 . . . h

sj
j . . . 1sngs

′

Table 6.9: ACL with Attributes Revealing the Attribute Lj Protocol

do that the TA needs to check whether a coin has been deposited with two different desc and desc′.

In this case we will have (εp, µp) and (ε′p, µ
′
p) and the TA can calculate: γ = (µ′p−µp)/(εp− ε′p) and

z1 = ζ
1/γ
1 , the TA can find the user to whom z1 was given and “punish” him. A useful observation

is that in the ACL scheme, when a user is found cheating, his identity can be revealed without the

TA learning his secret key and attribute values. From a privacy point of view this is much better,

since the user does not need to form a new secret key and commit to his attributes all over again,

after getting “punished” by the TA .

6.3 Framework Implementation

In our measurement setup the terminal, which represents the vending machines as well as the

turnstiles, is composed of a personal computer and an OMNIKEY smart card reader from HID

Global that is connected to the computer via USB. The payment device of the user is represented

by a BlackBerry Bold 9900, featuring NFC-capabilities. The BlackBerry Bold 9900 is programmed

105

using the BlackBerry Java SDK API 7.1.02 provided by RIM.

We base the schemes on Elliptic Curve Cryptography. Thus, both the smartphone and the

terminal had to be provided with the ECC and the NFC functionality. Implementation aspects of

these frameworks will be described in the following.

6.3.1 Near Field Communication (NFC) Framework

All aspects of NFC are specified in ISO/IEC standards. We use the so-called card-emulation mode

provided by the BlackBerry API, in which the NFC-smartphone emulates a standard-conform smart

card. Building the payment system on standard appliances, makes it conform to already installed

payment infrastructure and hence facilitates deployment. The underlying standard of the card

emulation mode is ISO/IEC 14443-A. This standard describes the communication signal interface

of contactless smart cards, operating at 13.56 MHz with a bandwidth of 106 kbit/s. Both the Java

SDK API 7.1.0 of the BlackBerry device, and the JRE 6 System Library of the terminal support

this standard.

Data is exchanged between the terminal and the smart card using so called Application Protocol

Data Units (APDUs). The reader initializes the communication by sending a command APDU to

the smart card. The smart card executes this command and replies with a response APDU. This

communication procedure is specified in standard ISO/IEC 7816-4. Note that the size of an APDU

is limited to 256 bytes, which impacts the execution time of the protocols, as will be discussed

further in Section 6.4.

6.3.2 Cryptographic Framework

We deduce from [34] that a 160-bit elliptic curve presents sufficient security for a micro-payment

system. We chose the standardized curve secp160r1 from [52]. This curve is based on a 160-bit prime

field Zp. The modulus of Zp is a generalized Mersenne prime, namely p = 2160 − 231 − 1, which

2http://www.blackberry.com/developers/docs/7.1.0api/

106

allows for an efficient implementation of the reduction, and thus leads to an efficient implementation

of the curve arithmetic. On the terminal side we use the Bouncy Castle Crypto Library version

1.53. This library provides a general elliptic curve framework that allows the use of many different

curves. A dedicated implementation of the elliptic curve functionality for the terminal’s hardware

could lead to a better performance of the execution of the payment schemes and is realistic in the

transportation setting. However, our investigations focus on the execution of the protocols on the

user device and the communication of the protocols, which is why we chose to use a standard library

for the terminal side’s implementation.

The data formats required for transmission as well as the two different finite algebraic structures

involved in Elliptic Curve Cryptography force us to use different data types. Since the size of the

byte-array representation of the integer values can be shorter than the designated 20 or 21 bytes, we

have to pad with leading 0x00. It is important to consider the property of signed/unsigned for the

classes CryptoInteger (on the BlackBerry) and BigInteger (on the terminal). The conversion of a

CryptoInteger to byte-array to a BigInteger variable has to be bijective. We had to take care of this

in detail, because BigInteger is a signed variable and CryptoInteger an unsigned. If the source is the

CryptoInteger class and the value has a leading 1 in the binary representation, then the BigInteger

constructor will interpret it as a negative number that makes it mod p or mod n to a different

element. The solution is to always put a leading 0x00 in front of the array before constructing a

BigInteger.

The BlackBerry API 7.1.0. supports the chosen curve. As such, an implementation of the

ECDH key agreement based on this curve is provided by the API. Yet, the BlackBerry API does

not implement all functionality necessary for the implementation of the proposed e-cash schemes,

and hence had to be extended. Point addition and doubling were implemented in Java making

use of the modular arithmetic functionality provided in the BlackBerry API. The implementation

method to execute the scalar multiplication efficiently is described in detail in the following. Note,

3http://www.bouncycastle.org/

107

the description is ajar on curve secp160r1, but could easily be adapt to the following Certicom SEC2

[52] curves which are supported by BlackBerry API since version 3.6.0: SECP192R1, SECP224R1,

SECP256R1, SECP384R1, SECP521R1, SECT163K1, SECT163R1, SECT163R2, SECT233K1,

SECT233R1, SECT239K1, SECT283K1, SECT283R1, SECT409K1, SECT409R1, SECT571K1,

and SECT571R1.

6.3.3 Efficient Execution of EC Scalar Multiplication Using the ECDH

Key Agreement

An implementation of the scalar multiplication Qk = k·P in Java, making use of the modular

arithmetic functionality provided in the BlackBerry API, leads to an execution time for the scalar

multiplication of about 141 ms. Fortunately, the API contains the ECDHKeyAgreement class. This

class offers the method generateSharedSecret, which executes a scalar multiplication of the input

point P = (xP , yP) with the input scalar k. This method executes in 1 ms, but only returns the

x-coordinate xQk of the resulting point Qk. In the protocols of the considered payment schemes

multiple point multiplications have to be executed. Hence, knowledge of the y-coordinate yQk of Qk

is essential for further computations.

This drawback can be overcome. Going from the short Weierstrass equation (y2 = x3 + ax+ b),

on which the chosen elliptic curve is based, the magnitude of yQk can be calculated from xQk using

Equation 6.1. Algorithm 3.36 in [106] describes how to calculate the square root in Zp, if p ≡ 3

mod 4, which holds for the chosen curve.

± yQk =
√
x3
Qk

+ axQk + b mod p (6.1)

This results in two options for the resulting point Qk:

108

Qk = (xQk ,±yQk)


Q

(+)
k = (xQk ,+yQk)

Q
(−)
k = (xQk ,−yQk)

(6.2)

To choose the correct option (Q
(+)
k or Q

(−)
k) for Qk we verify yQk over the coherence

Qk+1 = Qk+P = (k + 1)·P .

We pick the positive result +yQk and calculate the x-coordinate of Q
(+)
k+1 by adding Q

(+)
k and

P , using the group law for point addition on an elliptic curve [92]

x
(+)
Qk+1

= (
+yQk − yP
xQk − xP

)2 − xP − xQk mod p. (6.3)

Then we check whether the result is equal to the x-coordinate of Qk+1 returned when executing

the generateSharedSecret function on (k + 1) and P . While this algorithm, which is summarized

as Algorithm 4.1, executes the generateSharedSecret method twice and calculates a square root in

the prime field Zp, it still achieves a major speed-up in execution time, when compared to the Java

implementation based on the arithmetic functionality that is provided in the BlackBerry API, i.e.

yields an execution time of around 4 ms.

6.4 Implementation Results

The time critical phases of the e-cash schemes are the withdrawal and especially the spending phase,

as those have to be executed frequently, whereas the account opening only happens once for each

user. We limit the discussion of our results to those time critical parts.

The results for the execution of the withdrawal phase for all schemes are presented in Table 6.10,

and the results for the spending phase in Table 6.11. We present two cases: I) Brands’ e-cash

109

Algorithm 6.3.1: Recovering the y-coordinate, when using the ECDH key agreement class
for point multiplication

Data: input point P , input scalar k
Result: x- coordinate and y-coordinate of resulting point Q = (xQ, yQ)

1 begin
2 xQk ← generateSharedSecret(k, P)
3 xQk+1

← generateSharedSecret((k + 1), P)

4 ±yQk =
√
x3
Qk

+ a · xQk + b mod p

5 x
(+)
Qk+1

= (
+yQk−yP
xQk−xP

)2 − xP − xQk mod p

6 if xQk+1
== x

(+)
Qk+1

then

7 return (xQk ,+yQk);
8 else
9 return (xQk ,−yQk);

scheme, when not allowing the encoding of any attributes, and Abe’s scheme, which also does not

allow the encoding of attributes, and II) Brands’ scheme and ACL when allowing the encoding of

two attributes and revealing both of them. Note that the private key of the user is not counted as

an attribute. The user encodes two attributes, L2 and L3, additionally to his private key L1. Of

course, our implementation could support a bigger number of attributes if the transportation system

requires so, but keep in mind that there is a trade-off between the number of attributes and the

spending time.

Scheme
Execution time in milliseconds

Terminal Communication Smartphone Total

I) Without attributes
Brands 66.1 45.1 123.8 235

Abe 93.6 69.6 137.5 301

II) With attributes
Brands 73.2 44.1 128.7 246

ACL 93.6 69.9 137.5 301

Table 6.10: Execution time of withdrawal per coin for I) Brands and Abe not supporting attributes and II) Brands and ACL
supporting the encoding of and revealing 2 attributes.

Scheme
Execution time in milliseconds

Terminal Communication Smartphone Total

I) Without attributes
Brands 58.8 96.8 1.4 157

Abe 79.3 81.0 10.7 171

II) With attributes
Brands 87.3 114.8 2.0 204

ACL 151.2 221.4 11.4 384

Table 6.11: Execution time of spending per coin for I) Brands and Abe not supporting attributes and II) Brands and ACL
supporting the encoding of and revealing 2 attributes.

110

Figures 6.1 and 6.2 illustrate those results, where the execution times of the different protocols

have been summarized to: Terminal all computation executed on the terminal side, Communication

execution time of the entire communication, and Smartphone all computation executed on the

BlackBerry smartphone. In our implementation all steps are executed serially, i.e. while waiting

for the terminal the execution on the smartphone is suspended. This resembles the execution on

a standard smart card. Due to the extended capabilities of the smartphone computations on the

smartphone and the terminal could be parallelized, which would lower the total execution time.

Thus what is summarized as the total time is an upper limit of the execution time of the protocols.

0

50

100

150

200

250

300

350

400

450

Brands Abe Brands ACL

I) Without attributes II) With attributes

Terminal Communication Smartphone

m
ill

is
ec

on
ds

Figure 6.1: Execution times of withdrawal protocols for the cases I) not supporting attributes and II) supporting the encoding
and revealing 2 attributes.

An advantage of the ACL scheme is that for the revealing attributes phase (Table 6.9) the

values C ′, ζ̃1, C̃ ′ can be precomputed, which has been realized for the implementation at hand. The

computation time for those precomputed values is 39 ms and is not included in the results. By doing

so the total execution time for spending a coin of all schemes does not exceed 400 ms, which is the

acceptance threshold for spendings in the transportation domain.

While the terminal side is represented by a powerful computer the execution of a scalar multipli-

cation on the terminal takes longer than on the BlackBerry device; on the BlackBerry an execution

of the point multiplication takes 4 ms, whereas on the computer it takes 6 ms. As mentioned

in Section 6.3 we focus on the execution time on the payment device and of the communication.

111

0

50

100

150

200

250

300

350

400

450

Brands Abe Brands ACL

I) Without attributes II) With attributes

Terminal Communication Smartphone

m
ill

is
ec

on
ds

Figure 6.2: Execution times of spending protocols for the cases I) not supporting attributes and II) supporting the encoding
and revealing 2 attributes.

The implementation results could be improved when not relying on a Java implementation for the

terminal side, which is a realistic scenario, since the TA has full control over those devices.

Surprisingly, a limiting factor for the execution of the different protocols is the card emula-

tion mode supported by the BlackBerry device. The communication bandwidth is limited to

106 kbits/sec, while the maximum bandwidth supported by the NFC standard is 424 kbits/sec.

An additional deceleration limits the practical bandwidth on the application layer to 62.5 kbit/s.

Since the communication plays an integral part in the execution of the spending protocol, a faster

communication could significantly improve the execution timings, as easily can be verified by looking

at Figures 6.1 and 6.2. Moreover the length of an APDU is limited to 256 bytes. For some protocol

steps data had to be sent by two APDUs. Hence, the overall execution time could be improved when

allowing longer APDUs.

A further observation is that the computational complexity of Brands’ spending protocol, when

allowing attributes, decreases the more of them are revealed. Yet, at the same time the data to be

communicated increases. For our implementation the increase in data that needs to be communi-

cated, dominates the change in execution time. This could be different for other platforms, where

the communication plays a less important role in the overall execution time of the protocol.

Table 6.12 shows the coin size for each of the schemes, i.e. the data that needs to be stored on the

112

user device for each coin. Since for the ACL scheme C ′, ζ̃1, C̃ ′ have been precomputed, they need to

be stored on the device as part of the coin. If storage space would be more critical in comparison to

the communication, those values could be computed on-the-fly when spending a coin, which would

lead to the same storage amount for a coin as in Abe’s scheme, but longer execution times.

Scheme Coin Elements Coin Size in bytes

I) Without attributes
Brands A,B, z′, a′, b′, r′, s, x0, x1 289

Abe ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, τ, γ 229

II) With attributes
Brands A,B, z′, a′, b′, r′, s, x0, x1, x2, x3 331

ACL ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, τ, γ, C ′, ζ̃1, C̃ ′ 352

Table 6.12: Coin size in byte for the cases I) Brands and Abe not supporting attributes and II) Brands and ACL supporting
the encoding of 2 attributes.

The implementation shows that it is feasible to spend a coin meeting the extreme time constraints

of the transportation setting. Spending several coins serially exceeds these time constraints. Yet, the

execution time could be further reduced by batching the executions that are required for spending

a coin.

6.5 Related Work

Privacy Preserving Payment Schemes. Sadeghi et al. [129] and Blass et al. [28] proposed

RFID-based, privacy-preserving e-ticket schemes for transit applications which are limited to only

protect the users’ privacy against outsiders and not against the transportation authority. Pirker et

al. described how to make use of certain hardware capabilities of some mobile phones to build a

secure, NFC-based, privacy-preserving, prepaid payment system [122], but the system requires the

devices accepting a payment to be online at all times. Heydt-Benjamin et al. [95] proposed the use

of recent advances in anonymous credentials and e-cash to design offline privacy-preserving public

transportation payment systems. They consider a hybrid system with two kinds of tickets: passive

RFID transponders and embedded systems such as cell phones.

113

E-Cash Implementations. Implementations of anonymous credentials on Java cards have been

presented in [26] and [18]. Hinterwälder et al. presented an implementation of Brands’ e-cash

scheme for a computational RFID tag [96]. It is shown that it is feasible to execute the spending

part efficiently on the tag, while the execution of the withdrawal part is still problematic. Derler

et al. [72] implemented an NFC-based mobile ticketing system, which is based on Brands’ private

credential scheme. Execution times of several seconds are achieved, which can be a limiting factor in

some application settings. Similarly, [64] presented a PDA implementation of an offline e-cash scheme

that is based on Brands’, which achieves an execution time of several seconds for the withdrawal

phase.

6.6 Conclusions

In this Chapter we discussed the benefits of using e-cash with attributes in the public transporta-

tion setting. We presented an explicit description of e-cash with attributes for both Brands’ [36]

and ACL [14] schemes. Further we showed a full implementation of Brands’ with and without at-

tributes, Abe’s and ACL on a BlackBerry Bold 9900. We proposed a method that allows the use

of the ECDHKeyAgreement class of the BlackBerry API to calculate the point multiplication, by

recovering the y-coordinate of the resulting point, which led to transaction times that meet real-

world requirements of transportation payment systems for all considered schemes. Our results are

very promising: first of all we provide the first efficient and practical implementation of e-cash in

smartphones, and moreover, we show that a provable secure e-cash scheme like ACL is actually

practical and has comparable running time to those of schemes without rigorous security proofs.

7
Transferable E-cash

As discussed in Chapter 6, in traditional e-cash users can only transfer their coins to merchants,

who must then deposit the coin at the Bank. It would be natural to allow users to transfer coins to

other users (which might be merchants or not), who should be able to transfer the received coins,

and so on. Moreover, it would be desirable if these transfers could be done without being connected

to the bank, i.e., offline. One of the main advantages of such a transferability property is that it

would decrease the communication cost between the Bank and the users. Moreover, it would allow

to implement more real world scenarios: Consider the example of coins of different denominations.

A store, which is offline, wants to give back change to a customer, using coins previously received. In

order to do so, coins need to be transferable multiple times. Transferability of e-cash was proposed

in the 1990s and the desired security properties have been analyzed; however, so far no schemes have

been proposed that are both practical and satisfy the proposed security and privacy requirements.

In this Chapter we present the first efficient and fully anonymous transferable e-cash scheme [10].

We first provide a formal treatment of the security and anonymity properties of transferable e-cash

by giving game-based definitions. We then proposed a practical construction based on malleable

signatures that does not assume any trusted party. Finally, we present an efficient double-spending

114

115

detection mechanism, which is independent of our scheme and could be used by other transferable

e-cash constructions.

7.1 Defining Transferable E-Cash

In this Section we define anonymous and secure transferable e-cash. The first definitions for trans-

ferable e-cash were given in [50] and then modified in [29] for the scenario that there is a trusted

judge. We strengthen those older definitions in several aspects and in particular, we introduce a

stronger anonymity notion.

In a transferable e-cash scheme there are two types of parties: the bank B and users Ui. Coins

are denoted by c and each coin is uniquely identifiable via a serial number SN, which will be retrieved

by the bank during deposit to check for double spending. We let CL denote the list of deposited

coins; if multiple coins with the same serial number were deposited, we keep all of them in CL. Note

that in contrast to previous versions of these definitions we add a protocol for user registration and

we also merge the Deposit and Identify protocols.

A transferable e-cash scheme consists of the following algorithms (which are probabilistic unless

otherwise stated):

ParamGen(1λ) on input the security parameter λ outputs the system parameters par (we assume

that λ can be deduced from par, which is a default input to the remaining algorithms).

BKeyGen() and UKeyGen() are executed by B and a user U respectively and output (skB, pkB) and

(skU , pkU). The bank’s key skB might be divided into two parts: skW for the registration

and withdrawal phase and skD for the deposit phase. Thus, we define two extra algorithms

WKeyGen() and DKeyGen() for the bank’s key generation. We also assume that during the bank

key generation the list, CL, is initialized to be empty.

Registration(B[skW , pkU],U [skU , pkB]) is an interactive protocol between B and a user. At the

end the user receives a certificate certU ; both parties output either ok or ⊥ in case of error.

116

Withdraw(B[skW , pkU],U [skU , pkB]) is a protocol between B and a user. At the end the user either

receives a coin c and outputs ok or outputs ⊥. B’s output is its view VW
B of the protocol or ⊥.

Spend(U1[c, skU1 , certU1 , pkB],U2[skU2 , pkB]) is a protocol in which U1 spends/ transfers the coin c

to U2. At the end, U2 either outputs a coin c′ and ok or it outputs ⊥; U1 either marks the coin

c as spent and outputs ok, or it outputs ⊥ in case of error.

Deposit(U [c, skU , certU , pkB],B[skD, pkU , CL]) is a protocol where a user U deposits a coin c at the

bank. We split the deposit protocol into two subroutines. First CheckCoin checks whether the

coin c is consistent, and if not outputs ⊥. Else, the subroutine CheckDS is run by B, which

outputs the serial number SN of the deposited coin. B checks whether CL already contains

an entry for SN. If not, B includes SN in CL, credits U ’s account and returns “success” and

CL. Otherwise, the coin was double-spent: the subroutine DetectDS is run, which outputs

(pkU ,Π), where pkU is the public key of the user being accused, and Π is a proof that pkU is

the registered key of a user that double spent the coin. Note that Π reveals nothing about the

coin itself.

VerifyGuilt(pkU ,Π) is a deterministic algorithm that can be executed by anyone. It outputs 1 if

the proof verifies and 0 otherwise.

VerifyDSCounter(pkU , t,Π
′) is a deterministic algorithm only required in order to achieve stronger

flavors of exculpability. On input a user’s public key, the number t of double spends the user

is accused of, and a proof Π′, it outputs 0 or 1. We can assume that the output proof Π of

Deposit contains Π′ and t.

Notice that in our definition a transferable e-cash scheme is stateless since there is no common state

information shared between the algorithms. This means that a coin withdrawn will be the same,

whether it was the first or the nth coin the bank issues to a specific user. Moreover, when a user

receives a coin from another user then the transferred coin will only depend on the original coin (not

on other coins received by U2 or coins transferred by U1). Thus, the bank and the users do not need

117

to remember anything about past transactions—for transfer the information already stored in the

coin must be sufficient.

7.1.1 Global Variables and Oracles

In order to formally define the security properties of transferable e-cash, we first define some global

variables and oracles.

Global variables. In the user list, UL, we store all the information about users, keys and certifi-

cates. Its entries are of the form (i, pk i, sk i, cert i, udsi), where uds indicates how many times this

user double-spent (this counter will be useful for the exculpability definition). If user i is corrupted

then sk i = ⊥; if it has not been registered then cert i = ⊥. We keep a counter n of the total number

of generated/registered users which is initialized to 0.

In the coin list, CL, we keep information about the coins created in the system. For each original

coin withdrawn we store a tuple (j, owner, c, fc, fd, cds, origin), where j is its index in CL, owner

stores the index i of the user who withdrew the coin1 and c is the coin itself. The flag fc indicates

whether the coin has been corrupted2 and the flag fd indicates whether the coin has been deposited.

We also keep a counter, cds, of how many times this specific instance of the coin has been spent,

which is initialized as cds = 0. In origin we write “B” if the coin was issued by the honest bank and

“A” if the adversary issued it.

After a coin was transferred, we add a new entry to CL of the following format: (j, owner, c, cds, pointer),

where position in CL, owner shows the current owner, c is the new, transferred coin and cds indicates

how many times the coin has been spent. In pointer we store a pointer j′ indicating which original

coin this transferred coin corresponds to. Once a transferred coin is deposited or corrupted, we mark

the original coin’s flags fc, fd appropriately.

We keep a counter AC that shows the total number of corrupted coins (which should be equal

1We do not store the coins withdrawn by the adversary.
2A corrupted coin is defined as a coin that was under the adversary’s control at some point. Once a coin is flagged

as corrupted, it cannot be “un-flagged”, even if it is later under the control of an honest user.

118

to the number of original coins that are marked as corrupted in CL). We also define the list DCL,

where we store the set of deposited coins.

Finally, note that for the description of the oracles below we assume that if the corresponding

algorithm fails (outputs ⊥), then the oracle also stops. Otherwise the call to the oracle is considered

to be successful (except for the oracles used for deposit where a successful call is one that also didn’t

detect any double spending).

Creation, registration and corruption of users. The adversary can instruct the creation of

honest users, can play the role of the Bank during registration, passively observe registration or

corrupt users:

Create() sets n = n+ 1, executes (skn, pkn)← UKeyGen() and sets UL[n] = (n, pkn, skn,⊥, 0) and

outputs pkn.

BRegister(pk) plays the bank side of the Register protocol and interacts with A. Let cert be the

generated certificate. If pk 6∈ UL then set n = n+ 1 and UL[n] = (n, pk ,⊥, cert , 0), else abort.

URegister(i), for i ≤ n, plays the user side of the Register protocol and adds cert to the corre-

sponding field of UL.

Register(i), for i ≤ n, simulates both sides of the Register protocol. If user i was not registered

then add cert to the corresponding field of UL.

Corrupt(i, S), for i ≤ n, allows the adversary to corrupt a subset, S, of user i’s coins. If sk i = ⊥

(i.e. this user is already corrupted) then abort. The set S consists of coin indices in CL. For

every j ∈ S look in CL and if owner 6= i then ignore this coin and remove it from S. The

oracle first outputs sk i and then updates UL by setting sk i = ⊥ to mark this user as corrupted.

Then, the non-corrupted coins in the set S are given to the adversary A and the AC counter

increases accordingly. The coins that are given to A are marked as corrupted i.e. we set the fc

flag of the corresponding original coin to fc = 1. Note that if A tries to corrupt unregistered

119

users, this doesn’t give him any extra power. Also, once a user is corrupted he is considered

to be an adversarial user and thus A will be running instead of him3.

Withdrawal oracles. The adversary can either withdraw a coin from a trusted Bank, play the

role of the Bank or passively observe a withdrawal.

BWith() plays the bank side of the Withdraw protocol. It increases the counter of adversarial coins

AC = AC + 1. Note that coins belonging to A are not added to the list CL.

UWith(i) plays user i in a Withdraw protocol. It adds the entry (j, owner = i, c, fc = 0, fd = 0, cds =

0, origin = A) to the coin list CL.

With(i) simulates a complete Withdraw protocol playing both B and user i. It adds (j, owner =

i, c, 0, 0, 0,B) to CL and outputs the transcript.

Spend and deposit oracles.

Rcv(i) allows A to spend a coin to user i. The oracle plays the role of U2 with the secret key of

user i in the Spend protocol. A new entry (j, owner = i, c, fc = 1, fd = 0, cds = 0, origin = A)

is added to CL.

Spd(j) enables A to receive coin number j in CL. If the coin belongs to a corrupted user it aborts.

Otherwise, it plays the role of user U1 in the Spend protocol with the secret key of the owner

i of the coin j in CL. It increases the coin spend counter cds of entry j in CL by 1. If cds was

already greater than zero (i.e., this specific user has already spent this coin) then the double

spending counter, uds, of the owner of coin j is increased by one.

- If the coin has been deposited, i.e. fd = 1, or

- if the coin is marked as corrupted, i.e. fc = 1, then do not increase AC;

- else set AC = AC + 1.

3 This means that A cannot run honest user oracles on corrupted users: i.e. cannot run oracles
With, UWith, Rcv,S&R.

120

Finally, whenever a coin is received by A, we mark the original instance of this coin as

corrupted, i.e., we set fc = 1. This ensures that in case an honest user double-spent a coin and

the coin reached the adversary more than once, it will not be added to AC multiple times.

S&R(i, j) is the Spend-and-Receive oracle that allows A to passively observe spending of coin j by

its owner to user i (who must not be corrupted). It increases n by 1 and adds (n, owner =

i, c, cds = 0, pointer) to CL, where pointer = pointerj if pointerj /∈ {A,B}, else pointer = j. It

also increases the coin spend counter cdsj in entry j by 1. If cdsj was already greater than

zero then the double spending counter uds of user i1 is also increased by 1.

BDepo() interacts with A playing the role of the bank during Deposit. It updates DCL accordingly.

UDepo(j) simulates the role of the owner (who must not be corrupted) of coin j in the Deposit

protocol, interacting with the adversary playing the bank. It increases the spend counter cdsj

in entry j in CL by 1. If cdsj was already greater than zero then the double spending counter

uds of the owner of coin j is increased by 1. It also marks fd = 1 for the original coin.

Depo(j) simulates a Deposit of coin j between the bank and the owner of j (who must not be

corrupted). It increases cdsj in entry j of CL by 1. If cdsj was already greater than zero then

uds of the owner of coin j is increased by one. It also marks fd = 1 in the original coin and

adds the coin to DCL.

Let size(c) be a function that outputs the size of a coin. A coin just withdrawn from the bank

has size 1 and after a transfer the size increases by 1. We say that coins c1 and c2 are compatible,

comp(c1, c2) = 1, if size(c1) = size(c2). We need this property, since transferred coins necessarily

grow in size [62] and thus an adversary may break anonymity by distinguishing coins of different

sizes.

121

7.2 Security Properties

We define the security properties of transferable e-cash by refining previous definitions by [50, 29]. In

the beginning of security games the challenger typically runs par← ParamGen(1λ) and (skB, pkB)←

BKeyGen(), which we merge into one algorithm AllGen.

Unforgeability. This notion protects the bank in that an adversary should not be able to spend

more coins than the number of coins he withdrew. In [29] an adversary can interact with honest users

and wins the unforgeability game if the number of coins he withdrew is smaller than the number of

coins he successfully deposited (were “successfully” means that no double spending was detected).

We simplify the definition noticing that is not necessary for the adversary to create, corrupt or

instruct honest users to withdraw, spend, receive and deposit, since the adversary could simulate

these users itself. An unforgeability definition without honest user oracles implies thus the definition

with these oracles given in [29]. (We also avoid the While loop in the definitions from [29].) Consider

the following experiment:

Experiment ExptunforgA (λ);

(par, skB, pkB)← AllGen(1λ);

ABRegister,BWith,BDepo(par, pkB);

Let qW , qD be the number of successful calls to BWith, BDepo respectively;

If qW < qD then return 1;

Return ⊥.

Definition 7.2.1 (Unforgeability). A transferable e-cash system is unforgeable if for any PPT

adversary A, we have Advunforg
A (λ) := Pr[ExptunforgA (λ) = 1] is negligible in λ.

Identification of Double Spenders. No collection of users can spend a coin twice (double-spend)

without revealing one of their identities. Consider the following experiment:

Experiment ExptidentA (λ)

122

(par, skB, pkB)← AllGen(1λ);

ACreate,BRegister,Register,Corrupt,BWith,With,Rcv,Spd,S&R,BDepo,Depo(par, pkB);

Let (pk i∗ ,ΠG) be the output of the last call to BDepo;

Return 1 if any of the following hold:

– VerifyGuilt(pk i∗ ,ΠG) = 0;

– pk i∗ 6∈ UL;

– pk i∗ ∈ UL and cert i = ⊥;

Return ⊥.

Definition 7.2.2 (Double-Spender Identification). A transferable e-cash system is secure against

double-spending if for any PPT adversary A, we have Advident
A (λ) := Pr[ExptidentA (λ) = 1] is

negligible in λ.

Note that we cannot detect double-spending unless both of the double-spent coins are deposited.

Exculpability. Exculpability ensures that the bank, even when colluding with a collection of

malicious users, cannot falsely accuse honest users of double-spending. We present two flavors

of exculpability: Weak exculpability guarantees that an adversarial bank cannot output a double

spending proof (pkU , t,Π
′) that verifies if the (honest) user U has not double-spent. This notion is

similar to the definition of exculpability in [29]. However, we allow the adversary to generate the

bank’s keys himself, he just needs to output the index of the user being accused of double spending

and the corresponding proof.

Our stronger version of exculpability guarantees that a user cannot be accused of double spending

more coins than the ones he did double-spend. It is for this notion that we introduced the algorithm

VerifyDSCounter, which verifies the number of double spendings a user is accused of.

123

Experiment Exptweak-exculA (λ)

par← ParamGen(1λ);

(pkB, st)← A(par);

(i∗, d,Π∗)← A
Create,URegister,Corrupt,
UWith,Rcv,Spd,S&R,UDepo (st);

If VerifyGuilt(pk i∗ ,Π
∗) = 1

& sk i∗ 6= ⊥ & udsi∗ = 0 then return 1;

Return ⊥.

Experiment ExptexculA (λ)

par← ParamGen(1λ);

(pkB, st)← A(par);

(i∗, t,Π∗)← A
Create,URegister,Corrupt,
UWith,Rcv,Spd,S&R,UDepo (st);

If VerifyDSCounter(pk i∗ , t,Π
∗) = 1

& sk i∗ 6= ⊥ & udsi∗ < t then return 1;

Return ⊥.

Definition 7.2.3 (Exculpability). A transferable e-cash system is (weakly) exculpable if for any

PPT adversary A, we have Advexcul
A (λ) := Pr[ExptexculA (λ) = 1] is negligible in λ (and analogously

for weak exculpability).

7.3 Anonymity Properties

We first consider the three anonymity notions given in [29]:

Observe-then-Receive Full Anonymity (OtR-FA). The adversary, impersonating the bank, cannot

link a coin he receives as an adversarial user or as the bank to a previously (passively) observed

transfer between honest users. This covers both the case where the adversary receives a coin

during a transfer or receives a coin when impersonating the bank during deposit.

Spend-then-Observe Full Anonymity (StO-FA). The adversary, impersonating the bank, cannot

link a (passively) observed coin transferred between two honest users to a coin he has already

owned as a “legitimate” user.

Spend-then-Receive Full Anonymity (StR-FA). When the bank is honest, the adversary cannot

recognize a coin he previously owned when he receives it again.

These three notions are incomparable as proved in [50]. Their formal definitions are given

below. Note that we allow A to pick the secret keys himself, in particular that of the bank when

impersonating it (in contrast to [50, 29], where the bank’s keys are created by experiment).

124

In the OtR-game the adversary outputs two indices of coins owned by honest users and receives

one of them, either as a Spend (by setting v = 0) or as a Deposit (setting v = 1). The adversary

must not receive the coin a second time (impersonating the bank, he could otherwise distinguish

them), which the game ensures by resetting the flags to 0 and checking whether they remain that

way.

Experiment ExptOtR-faA,b (λ)

par← ParamGen(1λ); (pkB, st)← A(par);

(j0, j1, st, v)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo(st);

If comp(j0, j1) = 0 or fcj0 = 1 or fcj1 = 1 or fdj0 = 1 or fdj1 = 1 then return ⊥;

If v = 0 simulate Spd(jb) to A, else if v = 1 simulate UDepo(jb), else return ⊥;

Reset the flags to fdj0 = 0, fdj1 = 0, fcj0 = 0, fcj1 = 0;

b∗ ← ACreate,URegister,Corrupt,With,Rcv,Spd,S&R,UDepo(st);

If fdj0 = 1 or fdj1 = 1 or fcj0 = 1 or fcj1 = 1 then abort;

Return b∗.

For the StO game we use a modified Spend&Receive oracle S&R∗: for the coin c being transfreed, it

creates a new entry in CL in the form of an original coin whose origin is marked to be Challenger

while owner = i and fd = 0, fc = 0. If the adversary tries to corrupt, receive or deposit this coin (or

a transferred coin whose “parent” in CL is the Challenger) then we abort.

Experiment ExptStO-faA,b (λ)

par← ParamGen(1λ); (pkB, st)← A(par);

(j0, j1, i, st)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo(st);

For β = 0, 1, let uβ be index of the owner of coin jβ (i.e., ownerjβ = uβ);

If comp(j0, j1) = 0 or skUj0 = ⊥ or skUj1 = ⊥ or sk i = ⊥ then return ⊥;

Run out← S&R∗(jb, i);

b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo(out, st);

If for the coin with origin Challenger it is fd = 1 or fc = 1 then abort;

125

Return b∗.

In the Spend-then-Receive game we assume that the bank is honest. The adversary picks two coins

of the same size, with indices j0, j1, whose owners are uncorrupted. We then transfer the coin jb

to A for a randomly selected coin b and his goal is to guess b. When he runs again we have to

make sure that he will not try to deposit any of the coins: j0, j1 or else he could trivially win by

also depositing his coin and checking whether a double spending happened. To avoid this scenario,

whenever he deposits a coin we check if it collides with one of the j0, j1 and if it does we deposit all

j0, j1 and his coin so that he will not gain any knowledge about which was the coin.

Experiment ExptStR-faA,b (λ)

(par, skB = (skW , skD), pkB)← AllGen(1λ);

(j0, j1, st)← ACreate,Register,Corrupt,With,Rcv,Spd,S&R,BDepo,Depo(par, skW , pkB);

For β = 0, 1, let uβ be index of the owner of coin jβ (i.e., ownerjβ = uβ);

If comp(j0, j1) = 0 or sku0 = ⊥ or sku1 = ⊥ then return ⊥;

Simulate Spd(jb) to A;

b∗ ← ACreate,Register,Corrupt,With,Rcv,Spd,S&R,BDepo,Depo(st);

Whenever A calls BDepo or Depo first run the CheckCoin subroutine of Deposit.

If OK, initialize DCL′ = ∅ and run Deposit(j∗0), Deposit(j∗1) and then CheckDS

for the coin A deposits but using DCL′ instead. If double spending detected then

run Deposit for coins j0, j1 and A’s coin and add the three coins to DCL;

Else run CheckDS with DCL and add A’s coin to DCL;

Return b∗.

Finally, we introduce a new, stronger notion of anonymity we call Spend-then-Receive* : although

the adversary, when impersonating the bank, can tell whenever he receives a coin he owned before,

he should not be able to learn anything about the identities of the users that owned the coin in

between. We define this as an indistinguishability game in which the adversary picks a pair of users,

one of which (according to a random bit b) the coins are transferred to. The goal is to guess this bit

126

b.

Experiment ExptStR*-faA,b (λ)

par← AllGen(1λ); (pkB, st)← A(par);

(i∗0, i
∗
1, 1

k)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo(st);

If sk i∗0 = ⊥ or sk i∗1 = ⊥ then return ⊥;

Run Rcv(i∗b) and let c∗1 be the received coin;

(i0, i1)← A(st); If sk i0 = ⊥ or sk i1 = ⊥ then return ⊥;

For α = 1, . . . , k, let jα be index of the coin c∗α in CL;

Run S&R(ib, j1); Let c∗2 be the received coin; i∗b ← ib;

Repeat the last two steps k times;

Run Spd(jk) to A;

b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo(st);

If for any of coins c∗1, . . . c
∗
k we have cds > 1 then output ⊥;

If any of the owners of c∗1, . . . c
∗
k is corrupted then output ⊥;

Return b∗.

Definition 7.3.1. (Anonymity) A transferable e-cash scheme is fully anonymous if for any PPT

adversary A we have AdvOtR-fa
A (λ) := Pr[(ExptOtR-faA,1 (λ) = 1]− Pr[(ExptOtR-faA,0 (λ) = 1] is negligible

in λ (and analogously for ExptStO-faA,b , ExptStR-faA,b , and ExptStR*-faA,b).

7.4 Double-Spending Detection

We start by describing our independent double-spending detection mechanism. In our construction,

every coin in the system contains a serial number SN = SN1‖ . . . ‖SNk where SN1 was jointly generated

by the bank and first user who received the coin, SN2 was generated by the second user who received

the coin and so on, and a set of doublespending tags DS = DS1‖ . . . ‖DSk−1 which allows the bank to

identify which user doublespent whenever a coin is deposited twice. (These values will be encrypted

so that only the bank can see them, to satisfy our anonymity requirements.)

127

Here we first describe abstractly the properties we need from the serial number and doublespend-

ing tag. Section 7.4.2 will describe concrete instantiations satisfying these properties, and Section

7.5 will use these properties in our transferable e-cash construction.

7.4.1 Properties of Serial Numbers and Doublespending Tags

As we will see in Section 7.4.2, for transferable e-cash it seems essential that generation of each SNi

use both randomness chosen by the user who receives the ith coin, and the secret key of that user.

We thus define a Serial Number Function, fSN, which on input a nonce and a secret key (ni, sk i) or

just a nonce (ni) outputs the serial number of the coin. We require a form of collision resistance,

which essentially guarantees that different (ni, sk i) generate different SN. Formally:

Definition 7.4.1 (Serial Number Function). A serial number function fSN for parameters GenSN

takes as input parameters parSN ← GenSN , a nonce and a secret key (ni, sk i), and outputs a serial

number SNi. (We omit parSN when it is clear from context.)

• fSN is called collision resistant if given parSN ← GenSN , it is hard to find (sk i, ni) 6= (sk ′i, n
′
i)

such that fSN(parSN , ni, sk i) = fSN(parSN , n
′
i, sk ′i).

We also define a Double Spending Tag Function, fDS, that takes as input the nonce ni that the coin

owner Ui had picked when receiving the coin, Ui’s secret key sk i and the serial number, SNi+1 that is

computed by the receiver of the coin. We also allow it to take as input some additional identifying

information, ID i, about Ui. The output is a double-spending tag that reveals nothing about the

owner, Ui, unless she transfers that same coin to more than one users (i.e. double spends). In that

case, the bank can, given a database of public keys of all the users (and associated info ID for each)

identify which user doublespent and produce a proof accusing that user. More formally:

Definition 7.4.2 (Double Spending Tag Function). A double spending tag function fDS for parame-

ters GenSN and Key Generation algorithm KeyGen takes as input parSN ← GenSN , (ID i, ni, sk i, SNi+1)

and outputs the double spending tag DSi.

128

• fDS is 2-show extractable if whenever we compute DSi and DS′i for the same (ID i, ni, sk i, parSN)

but different SNi+1 6= SN′i+1, there exists an efficient function fDetectDS that on input DSi and

DS′i and a list of identifiers I such that (ID i, pk i) ∈ I for a pk i corresponding to sk i (according

to KeyGen), efficiently extracts (pk i,Π) where Π is an accepting proof for pk i.

• fDS is exculpable if, given pk i produced by KeyGen and parSN ← GenSN , it is computationally

difficult to compute an accepting proof for pk i.

Finally, we want to be able to guarantee some anonymity even against a malicious bank who

gets to see the serial numbers and doublespending tags for deposited coins. Thus, we require that

as long as the nonce ni is fresh and random, these values reveal nothing about the other values used

to generate them.

Definition 7.4.3 (Anonymous Double Spending Tag and Serial Number Functions). We say that

a doublespending tag function fDS and a serial number function fSN are anonymous if, for all

ID i, sk i, SNi+1, ID ′i, sk ′i, SN
′
i+1, if parSN ← GenSN and ni is chosen at random, then (parSN , fSN(parSN , ni, sk i),

fDS(parSN , ID i, ni, sk i, SNi+1)) is computationally indistinguishable from (parSN , fSN(parSN , ni, sk ′i),

fDS(parSN , ID ′i, ni, sk ′i, SN
′
i+1)).

7.4.2 A Double Spending Detection Mechanism

Here we propose a concrete instantiation for the functions fSN, fDS used to generate the serial numbers

and double spending tags. To give some intuition, we first consider the natural translation of

traditional (non-transferable) ecash double spending techniques [61], and show why it is not sufficient

in the transferable setting. Assume that Ui,Ui+1 execute the Spend protocol where the first user

transfers a coin to the second one. Let SNi+1 be the nonce that the second user randomly picks and

sends to Ui in the clear. Then, Ui could compute the double spending tag as follows: DSi = pk
ni+1

i hni

with SNi+1 = ni+1. Assume now that Ui double spends the coin (i.e. transfers it to users Ui+1 and

U ′i+1) and the two coins eventually get deposited at the bank. If the bank detects a double spending,

129

it looks for the first difference in the sequences of the nonces in SN, SN′ and will find out that

SNi+1 6= SN′i+1 and thus Ui double spent. Combining the double-spending tags DSi and DS′i, the bank

can compute the public key of the double spender: pk i = (DSi(DS
′
i)
−1)(ni+1−n′i+1)−1

But what if a

coin was double spent and the two different receivers picked the same nonce ni+1? We consider two

cases:

Case 1: Ui transfers the same coin (double spends) to the same user twice and user Ui+1 picks

the same nonce ni+1 in both transactions. When the coins is deposited and the bank compares

the serial numbers, the first difference occurs at position i+ 2 (assuming that Ui+1 spent the two

instances to users that pick different nonces ni+2 and n′i+2). From the double-spending tags, the

bank computes pk i+1 and will accuse Ui+1 of double spending.

Case 2: Ui transfers the same coin to two different users with pk i+1 and pk ′i+1 who pick the same

nonce ni+1 when receiving the coin. As before, the bank’s serial numbers will diverge at position

i + 2. However, in this case computation of a public key will fail, since DSi+1 and DS′i+1 contain

different public keys.

The first case seems unavoidable. However, a user who picks a fresh nonce each time when

receiving a coin will not be falsely accused of double spending, and a malicious user who does choose

the same nonce twice could be seen to be cooperating in the doublespending. To address the second

case, we need to ensure that different users cannot use the same nonce when receiving a coin. A

possible idea is to ask the users to use some fixed value, unique to each user, (for instance the

user’s secret key) together with the nonce. In the above construction this means we’d need the

exponent to be some combination of sk i, ni, in such a way that it would be hard for two users to

find sk i, ni, sk ′i, n
′
i that produce the same value (otherwise we haven’t solved the problem) and in

such a way that we can still generate efficient proofs that DS is well formed. Unfortunately t is

not clear how to do this using existing proof systems. Briefly, we overcome this by duplicating the

double-spending tag: DSi = (Ai, Bi). The Ai tags use only the nonce value and the Bi tags use a

combination of the secret key and the nonce.

130

Our construction In our solution, parSN will define an asymmetric pairing group of prime order

q (G1, G2, GT , e, q), and five random generators of G1, (g, h, h′, h̃, h̃′). We assume that secret keys

and the info ID are elements of Zq. We define the serial number function, fSN, as follows: when a

user Ui+1 receives a coin, he picks a random ni+1 ∈ Zq and computes

fSN(ni+1, sk i+1) = {Ni+1 = gni+1 , Mi+1 = gski+1·ni+1} .

The serial number of the coin is SNi+1 = (Ni+1,Mi+1) which is sent to Ui. Now, the user Ui

forms the double-spending tags to be:

fDS(ID i, ni, sk i, (Ni+1,Mi+1)) = {Ai = N IDi
i+1 h

ni , Bi = M IDi
i+1 h

′ni ,

Ãi = N ski
i+1h̃

ni , B̃i = M ski
i+1h̃

′ni}.

Our Construction Satisfies the Properties Defined in 7.4.1 . It is easy to see that our

fSN function is collision resistant : the only way to get Ni+1 = N ′i+1 is for the adversary to pick

ni+1 = n′i+1 but then the only way to get Mi+1 = M ′i+1 is to pick sk i+1 = sk ′i+1.

Next we consider doublespending. We assume that the bank stores a database of pairs (pk , ID)

for all registered user, and that the ID ’s are unique. When a coin is deposited, the bank retrieves

the serial number of the coin which is SN = SN1‖ . . . ‖SNk. In case a double spending is detected,

i.e., there is another coin deposited with SN 6= SN′ but SN1 = SN′1, the bank looks for the first pair

such that SNi = (Ni+1,Mi+1) 6= SN′i = (N ′i+1,M
′
i+1) in order to detect where the double spending

happened. If both Ni+1 and Mi+1 are different then the bank can use either ((Ai, A
′
i), (Ni+1, N

′
i+1))

or ((Bi, B
′
i), (Mi+1,M

′
i+1)) to reveal the ID of the user who double spent by checking for all ID ∈

DBB :

(Ai(A
′
i)
−1)

?
= (Ni+1(N ′i+1)−1)ID or (Bi(B

′
i)
−1)

?
= (Mi+1(M ′i+1)−1)ID

This is a relatively cheap operation that can be implemented efficiently. (In our ecash construction

131

in Section 7.5, ID will be the user’s position in the registered user list. Then all these values will be

fairly small, so these should be very efficient operations.) If we have KeyGen that outputs pk i = ĝski

for a fixed generator ĝ of G2, then when the bank detects the ID that satisfies the equation above,

it can look up in its database the public key of the user associated with ID and check whether the

following pairing was also satisfied:

e(Ãi(Ã′i)
−1, ĝ) = e(Ni+1(N ′i+1)−1, pk i) (7.1)

or similar for B̃i, B̃′i,Mi+1,M
′
i+1 if these equations where used. Obviously, if a double spending was

detected and (Ni+1,Mi+1) 6= (N ′i+1,M
′
i+1) but (Ni+1 = N ′i+1) or (Mi+1 = M ′i+1) then the bank will

have to use Ai, A
′
i or Bi, B

′
i respectively to detect the ID of the double spender. (If none of these

produces a match with a pk , ID in the database, the bank outputs (⊥,⊥), but this should never

happen.) Thus, the function fDetectDS on input DSi, DS
′
i,DBB outputs pk and Π = (DSi, DS

′
i). The

verification for this proof just checks equation 7.1. (Thus, our fDS function is 2-show extractable.)

Informally, the double spending function is exculpable by SXDH: If A can take pk i = ĝx and

produce Ai, Ã
′
i, Ni+1, N

′
i+1 satisfying 7.1, then we could use these values to distinguish e.g. ĝxy from

random and break SXDH (DDH in G2).

Finally the anonymity property of fSN, fDS follows from SXDH (DDH in G1).

Discussion. Note that we could just use the equations: (Ãi, B̃i) to detect double spending. However,

this ends up to a less efficient double spending detection since it requires the bank to check a pairing

equation for every public key in its database. Also, if exculpability is not required (i.e. the bank is

honest and will not try to falsely accuse honest users of double spending) then we could only use

the Ai, Bi double spending tags.

132

7.5 Transferable E-Cash Based on Malleable Signatures

We now describe a generic construction of a transferable e-cash scheme using malleable signa-

tures. Assume the existence of: a malleable signature scheme (MSGen,MSKeyGen,MSign,MSVerify,

MSigEval) with allowed transformation class T as defined below, a signature scheme (SKeyGen, Sign,

Verify), a randomizable public key encryption scheme (EKeyGen, Enc,REnc, Dec), a commitment

scheme (ComSetup,Com), a zero knowledge proof system 〈P, V 〉 and a hard relation R4. We also

assume the existence of the functions fSN, fDS, fDetectDS for GenSN as defined above.

A re-randomizable encryption scheme allows to re-randomize a ciphertext c to a new ciphertext

c′ such that are both encryptions of the same plaintext but are statistically independent.

Definition 7.5.1 (Re-Randomizable Encryption Scheme [93]). A public key cryptosystem (EKeyGen,Enc,Dec)

is statistically re-randomizable if:

• (EKeyGen,Enc,Dec) is semantically-secure (IND-CPA)

• There exists an efficient algorithm REnc such that if r′ is chosen uniformly at random from

coins(REnc) and r0 is chosen from coins(Enc), where coins() is a randomness source for the

system, then the distributions

{Enc(pk,m, r0)} ≈s {REnc(Enc(pk,m, r1), r′)}

for all public keys pk, messages m, and randomness r1.

If (EKeyGen,Enc,Dec) is homomorphic, then re-randomization is possible by REnc(pk, c, r′) = c ·

Enc(pk , 0, r′). This holds for all known homomorphic cryptosystems such as ElGamal [73], Pail-

lier [116] and Goldwasser-Micali [86].

Back to the construction, the bank’s withdrawal key consists of (vk
(MS)
B , sk

(MS)
B)← MSKeyGen(1λ)

and (vk
(S)
B , sk

(S)
B) ← SKeyGen(1λ) while the deposit key is (pkD, skD) ← EKeyGen(1λ). Users have

4Informally, a relation R is said to be hard if for (x,w) ∈ R, a PPT adversary A given x will output wA s.t.
(x,wA) ∈ R with only negligible probability

133

keys (pkU , skU) and when registering with the bank they receive a certificate certU = Sign
sk

(S)
B

(pkU ,

IU), where IU is their joining order.

7.5.1 Allowed Transformations

In a malleable signature scheme we define a class of allowed transformations, and then unforgeability

must guarantee that all valid signatures are generated either by the signer or by applying one of

the allowed transformations to another valid signature. In the following we will define two different

types of transformations: one to be used when a coin is transferred from a user to another, TCSpend,

and a second one that will be used when a user withdraws a coin from the bank TCWith.

Coin Spend Transformation. A coin that has been transferred i times (counting withdrawal

as the first transfer) will have the following format: c = (par, (CSNi
, CDSi−1

), (ni, RSNi), σ) where par

denotes the parameters of the transferable e-cash scheme and CSNi
= CSN1 ‖ · · · ‖ CSNi , CDSi−1

=

CDS1 ‖ · · · ‖ CDSi−1 , for CSNj = Enc(SNj) and CDSj = Enc(DSj) respectively (all the encryptions are

done under pkD). By DSi−1 we denote the double spending tag that was computed by the user Ui−1

when he transferred the coin to user Ui, ni is a nonce picked by Ui when he received the coin5, and

by RSNi the randomness used to compute the encryption of SNi, i.e., CSNi = Enc(SNi;RSNi). Finally,

σ is a malleable signature on (CSNi
, CDSi−1

).

Assume now that the user Ui wishes to transfer the coin c to Ui+1. First, Ui+1 will pick a nonce

ni+1 and will send SNi+1 = fSN(ni+1, sk i+1) to Ui. Then, Ui will compute the new signature to be

(with T defined below):

σ′ = MSigEval(par, T, (CSNi
, CDSi−1

), σ).

The transferred coin that Ui+1 will eventually obtain has the form:

c′ = (par, (CSNi+1
, CDSi

), (ni+1, RSNi+1
), σ′).

5Depending on the instantiation, the nonce, ni might be computed as the output of a function on a random number
the user picks.

134

Note that the value ni+1 is only known to Ui+1 and he will have to use it when he wants to further

transfer the coin, while the randomness RSNi+1
, used to encrypt SNi+1, was sent by Ui. What is

left is to define the transformation T which will take as input m = (CSNi
, CDSi−1

) and will output

T (m) = (CSNi+1
, CDSi

). A transformation of this type is described by the following values: (i.e. this

is the information that one must ”know” in order to apply the transformation)

〈T 〉 = ((sk i, Ii, cert i), (ni, RSNi , RSNi+1
, RDSi , R), SNi+1).

The output of T as defined by these values on input m = (CSNi
, CDSi−1

) is then computed as follows:

1. If Enc(SNi;RSNi) 6= CSNi or SNi 6= fSN(ni, sk i), then output ⊥.

2. The new part of the serial number is encoded using randomnessRSNi+1
: CSNi+1

= Enc(SNi+1;RSNi+1
).

3. The new part of the double spending tag is first computed using fDS and then encrypted:

DSi = fDS(Ii, ni, sk i, SNi+1) and CDSi = Enc(DSi;RDSi).

4. These encryptions are appended to the re-randomizations of CSNi
and CDSi−1

:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi ;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R′1) ‖ . . . ‖ REnc(CDSi−1

;R′i−1) ‖ CDSi

where R1, . . . , Ri, R
′
1, . . . , R

′
i−1 are all parts of the randomness R included in the description

of the transformation.

We define TCSpend to be the set of all transformations of this form such that:

1. The certificate cert i is be valid (verifiable under the bank’s verification key) and correspond

to the secret key sk i and some additional info Ii.

2. The random values RSNi ,RSNi+1
, RDSi , R picked from Ui belong to the correct randomness space

as defined by the encryption scheme.

135

Coin Withdrawal Transformation. A coin that was just withdrawn has a format different from

a coin that has already been transferred, as there is no need to include double spending tags (we

ensure that each coin withdrawn is a different coin) by the bank and the user. When a user Ui with-

draws a coin from the bank, she picks a nonce n1, computes a commitment com = Com(n1, sk i; open)

on n1 and her secret key and sends it to the bank. (For the user to remain anonymous it is important

that the bank does not learn n1.) The bank computes σ = MSign(skW , com) and sends it to the user.

The latter computes SN1 = fSN(n1, sk i), chooses randomness RSN1 and sets CSN1 = Enc(SN1;RSN1)

and computes a new signature σ′ = MSigEval(par, T, com, σ) , which yields the coin defined as

c = (par, CSN1 , (n1, RSN1), σ′). A transformation T ∈ TCWith, which takes as input m = com and

outputs T (m) = CSN1 is described by 〈T 〉 = ((sk i, Ii, cert i), (n1, open), RSN1 , SN1). We define

T (comn1
) =


CSN1 = Enc(SN1;R1) if Com(n1, sk i; open) = com & SN1 = fSN(sk i, n1)

⊥ otherwise.

We define TCWith to be the set of all transformations of this form such that:

1. The certificate cert i is valid (verifiable under the bank’s verification key) and correspond to

the secret key sk i and Ii.

2. Randomness RSN1 belongs to the appropriate randomness space.

The class of allowed transformations We will allow users to apply a transformation in TCWith

followed by any number of transformations in TCSpend. Thus, we define the allowed class of trans-

formations T for our malleable signature to be the closure of TCWith ∪ TCSpend.

7.5.2 A Transferable E-Cash Construction

Below we describe a transferable e-cash scheme based on malleable signatures. For our construction

we assume secure channels for all the communications, thus an adversary cannot overhear or tamper

136

with the transferred messages.

ParamGen(1λ): Compute crs ← MSGen(1λ), parSN ← GenSN (1λ), and par′ ← ComSetup(1λ).

Output par := (1λ, crs, par′, parSN).

UKeyGen(par): Output a random pair (pkU , skU) sampled from R.

BKeyGen(par): Compute the withdrawal keys of the bank as (vk
(MS)
B , sk

(MS)
B) ← MSKeyGen(1λ)

and (vk
(S)
B , sk

(S)
B)← SKeyGen(1λ) and the deposit keys as (pkD, skD)← EKeyGen(1λ). Define

pkW = (vk
(MS)
B , vk

(S)
B) and skW = (sk

(MS)
B , sk

(S)
B) and output ((pkW , skW), (pkD, skD)). The

bank maintains a list UL of all registered users and a list DCL of deposited coins.

Registration(B[skW , pkU],U [skU , pkW]): if pkU 6∈ UL, the bank computes certU = Sign
sk

(S)
B

(pkU ,

IU), where IU = |UL|+ 1. Add pkU , cert , IU to the user list UL and output (certU , IU) or ⊥.

Withdraw(B[skW , pkU],U [skU , pkW]): The user picks a nonce n1 and sends comCom(n1, skU ; open).

The bank computes σ ← MSign(sk
(MS)
B , com) and sends it to the user. If MSVerify(crs, pk

(MS)
B ,

σ, com) = 0, the user aborts; otherwise she sets SN1 = fSN(n1, skU), chooses randomness RSN1

and computes CSN1 = Enc(SN1;RSN1). Then she sets 〈T 〉 = ((sk i, cert i), (n1, open), RSN1 , SN1)

and computes the new signature as σ′ = MSigEval(par, T, com, σ). The output is the coin

c = (par, CSN1 , (n1, RSN1), σ′).

Spend(U1[c, skU1 , certU1 , pkW],U2[skU2 , pkW]) Parse the coin as

c = (par, CSNi
, CDSi−1

), (ni, RSNi), σ) .

U2 picks a nonce ni+1, computes SNi+1 = fSN(ni+1, skU2) and sends it to U1. U1 computes

the double spending tag DSi = fDS(skU1 , ni, SNi+1) and defines the transformation 〈T 〉 =

((skU1 , certU1), (ni, RSNi , RSNi+1 , RDSi , R), SNi+1). Next, he computes CSNi+1 = Enc(SNi+1;RSNi+1)

137

and CDSi = Enc(DSi;RDSi), which he appends to the randomized ciphertext contained in c:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi ;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R′1) ‖ . . . ‖ REnc(CDSi−1

;R′i−1) ‖ CDSi

U1 computes σ′ = MSigEval(par, T, (CSNi+1
, CDSi

), σ) and sends (σ′, Ri+1, (CSNi+1
, CDSi

)) to U2.

If MSVerify(crs, pk
(MS)
B , σ′, (CSNi+1

, CDSi
)) = 0 then U2 aborts. Otherwise, U2 outputs c′ =

(par, (CSNi+1
, CDSi

), (ni+1, RSNi+1
), σ′).

Deposit(U [c, skU , certU , pkB],B[skD, pkU , CL]): First, U runs a Spend protocol with the bank

playing the receiver: Spend(U [c, skU , certU1 , pkW],B[⊥, pkW]) (the bank can set the secret

key to ⊥, as it will not transfer this coin). If the protocol did not abort, B holds a valid

coin c = (par, (CSNi
, CDSi−1

), (ni, RSNi), σ). Next, using skD, B decrypts the serial number

SNi = SN1 ‖ · · · ‖ SNi and the double spending tags DSi−1 = DS1 ‖ · · · ‖ DSi−1. It checks if in

CL there exists another coin c′ with SN′1 = SN1; of not then adds coin to CL.

Otherwise, a double spending must have happened and the bank looks for the first position

d, where SN′d 6= SNd. (Except with negligible probability such a position exists, since SNi

was chosen by the bank.) It applies the double-spending detection function fDetectDS on the

corresponding double spending tags DSd−1 and DS′d−1. If fDetectDS outputs ⊥ then B aborts.

Otherwise, it outputs (pkU ,Π)) = fDetectDS(DSd−1, DS
′
d−1,UL).

VerifyGuilt(pkU ,Π): it outputs 1 if the proof Π verifies and 0 otherwise.

Withdraw and Spend are depicted in Figures 7.1 and 7.2.

7.6 Security and Privacy of the New Construction

Theorem 7.6.1. If the malleable signature scheme (MSGen,MSKeyGen,MSign,MSVerify,MSigEval)

is simulatable, simulation unforgeable and simulation hiding with respect to T , the signature scheme

138

B(par, skW , pkU) U(par, skU , pkW)

pick random n1
comn1←−−−−−−− comn1

= Com(n1; open)

σ = MSign(skW , comn1
)

σ−−−−−−→
check σ
SN1 = fSN(n1, skU)
pick randomness RSN1

CSN1 = Enc(SN1;RSN1)
〈T 〉 = ((n1, open), RSN1 , SN1))
σ′ = MSigEval(par, T, comn1 , σ)
c = (par, CSN1 , (n1, RSN1), σ′)

Figure 7.1: Withdrawal

U1(par, c, skU1 , certU1 , pkW) U2(par, skU2 , pkW)

Parse c = (par, (CSNi
, CDSi−1

), (ni, RSNi), σ)

pick random ni+1
SNi+1←−−−−−−−−−−−−−−− SNi+1 = fSN(ni+1, skU2)

DSi = fDS(skU1 , ni, SNi+1)
〈T 〉 = ((skU1 , certU1), (ni, RSNi , RSNi+1

, RDSi , R), SNi+1)
CSNi+1

= Enc(SNi+1;RSNi+1
)

CDSi = Enc(DSi;RDSi)
CSNi+1

= REnc(CSN1 ;R1)‖ . . . ‖REnc(CSNi ;Ri)‖CSNi+1

CDSi
= REnc(DDS1 ;R′1)‖ . . . ‖REnc(CDSi−1

;R′i−1)‖CDSi

σ′ = MSigEval(par, T, (CSNi+1
, CDSi), σ)

σ′,(CSNi+1
,CDSi

),RSNi+1−−−−−−−−−−−−−−−−→
check σ′

c′ = (par, (CSNi+1
, CDSi),

(ni+1, RSNi+1), σ′)

Figure 7.2: Transfer

(SKeyGen,Sign,Verify) is existentially unforgeable, the randomizable public-key encryption scheme

(EKeyGen, Enc, REnc,Dec) is semantically secure and statistically re-randomizable, and the commit-

ment scheme (ComSetup,Com) is computationally hiding and perfectly binding, then the construc-

tion in Section 7.5.2 describes a secure and anonymous transferable e-cash scheme as defined in

Section 7.1.

Lemma 7.6.2 (Unforgeability). If (MSGen,MSKeyGen,MSign,MSVerify, MSigEval) is simulatable

and simulation unforgeable as defined in Definition 2.3.5 and (ComSetup,Com) is perfectly binding,

then the construction in Section 7.5.2 describes an unforgeable transferable e-cash scheme.

139

Proof. Assume that there exists an adversary A that breaks unforgeability as defined in Defini-

tion 7.2.1 with non-negligible probability. We can construct a reduction A′ that either breaks the

unforgeability of the underlying malleable signature scheme or the binding property of the com-

mitment scheme with non-negligible probability. The input that A′ receives is (1λ, crs, vk (MS), τe).

Then, the following steps take place:

• A′ runs par′ ← ComSetup(1λ) and parSN ← GenSN (1λ) to generate the parameters of the

transferable e-cash scheme and sends par := (1λ, crs, par′, parSN) to A. It also initializes

qW = 0, qD = 0, DCL = ∅, CL = ∅ and a table Q with all the queries and answers submitted

to SimMSign.

• The reduction, A′, will act as the bank when answering A’s queries. A′ generates the

bank’s keys: (vk (S), sk (S)) ← SKeyGen(1λ), and (pkD, skD) ← EKeyGen(1λ). It sets pkW =

(vk (MS), vk (S)) and sends (pkW , pkD) to A. Note that A′ does not know sk (MS).

• The adversary A, has access to the following oracles: BRegister, BWith, BDepo Depo. When-

ever A queries BRegister the reduction just follows the real protocol.

• When A queries BWith, again the real withdrawal protocol is invoked, except that A′ cannot

run MSign since it doesn’t know sk (MS). Thus, when a malleable signature is needed, A′ calls

its own SimMSign oracle on input comn1
and receives a signature σ which it forwards to A as

part of the withdrawal. A′ stores all the signature queries and corresponding responses in Q.

A′ then adds the corresponding coin to CL and sets qW = qW + 1.

• When A queries BDepo, A′ just simulates the real protocol. If a successful deposit happens,

A′ increases the counter qD and adds the coin to DCL.

Note that A cannot distinguish between interacting with A′ or the unforgeability game since

A′ follows the real protocols and MSign is indistinguishable from SimMSign (by simulatability of

140

the malleable signatures). Thus, the above game will still produce qD > qW with non-negligible

probability.

Next, let SigExt be the extractor defined by simulation-unforgeability of the malleable signature

scheme. When A concludes the game (and is successful, i.e. qW < qD), we apply SigExt to all qD

successfully deposited coins, and extract all the messages and corresponding transformations. Note

that all messages signed were of the form comn1 and the signed messages in deposited coins must

have the form (CSN(1,t1)
, CDS(1,t1−1)

), so by the definition of our allowed transformations, SigExt should

produce for each deposited coin an initial message comn1,t, for t = 1, . . . , qD, and a transformation

including the opening ((n1,t, skUt), opent), and the resulting serial number SN1,t, as well as the

randomness R1,t used to encrypt it. Let LE = {comn1,t
, ((n1,t, skUt), opent)}t=1,...,qD

Note that the Deposit algorithm will accept a deposit as successful if the first component of the

serial number, SN1, is different from all previously deposited coins. Now we argue that for every

SN1 that is revealed during a deposit there will be a corresponding distinct comn1
∈ Q, so we must

have qD ≤ qW . We will show that if this does not hold we will be able to break either the binding

property of the commitment or the simulation-unforgeability of the malleable signature.

• If there exists a commitment comn1,t
in LE that doesn’t correspond to any of the commitments

queried to SimMSign and stored in Q, then the extractor has failed to produce a valid initial

message. In this case A′ outputs the corresponding signature (σ∗,m∗ = (CSN(1,t1)
, CDS(1,t1−1)

))

and thus breaks the unforgeability of the malleable signature scheme.

• If the extractor fails to produce values of the appropriate form, or for some t it produces

an invalid opening (n1,t, skUt), opent for com1,t, or fails to produce SN1,t = fSN(n1,t, skUt)

or randomness Rt such that CSN1,t = Enc(SN1,t, Rt), then the extractor failed to extract an

appropriate allowed transformation T ∈ T , and A′ wins simulation unforgeability again by

outputting (σ, (CSN(1,t1)
, CDS(1,t1−1)

)). (Note that if A′ does not win in this way, then it means

that the SN1 decrypted by the Deposit algorithm on the t-th successful deposit is equal to

141

fSN(n1,t, skUt).

• Check if LE contains two entries with the same commitment comn(1,t)
but different messages

(n1,t, skUt). If so then we could construct an algorithm which runs like A′, and outputs

com∗ = comn1,i
= comn1,j

and the two openings and thereby breaks the binding property of

the commitment scheme.

If note of these cases hold, each deposit yielding a different SN1 corresponds to a different pair

(n1, skU) and thus to a different commitment comn1
, which must have been signed at withdrawal.

The number of successful deposits must therefore be lower than the number of withdrawals.

Lemma 7.6.3 (Double-Spender Identification). If (MSGen,MSKeyGen,MSign, MSVerify, MSigEval)

is simulatable and simulation unforgeable, as defined in Definition 2.3.5, and (SKeyGen, Sign, Verify)

is existential unforgeable and fDS is 2-show extractable, then the construction in Section 7.5.2 de-

scribes a transferable e-cash scheme secure against double spending.

Proof. Let A be an adversary who breaks the double spending security of the transferable e-cash

scheme. Then, we can construct an adversary A′ who breaks the unforgeability of the underlying

malleable signature scheme with the same probability. A′ receives as input (1λ, crs, vk (MS), τe).

• A′ generates the parameters of the transferable e-cash scheme by running par′ ← ComSetup(1λ)

and parSN ← GenSN (1λ) and sends par := (1λ, crs, par′, parSN) toA. It also initializes UL = ∅,

DCL = ∅, CL = ∅, AC = 0 and a list of all the malleable signing queries that it asks and their

responses: Q = ∅.

• The reduction, A′, will act as the bank when answering A’s queries. A′ generates the

bank’s keys: (vk (S), sk (S)) ← SKeyGen(1λ), and (pkD, skD) ← EKeyGen(1λ). It sets pkW =

(vk (MS), vk (S)) and sends (pkW , pkD) to A. Note that A′ does not know sk (MS).

• When A queries any oracle but BWIth and With, A′ follows the real protocol and adds the

generated users to UL or updates CL, DCL, AC according to the oracles.

142

• When A queries BWith or With, A′ invokes the withdrawal protocol, except, not knowing

sk (MS), it cannot compute malleable signatures. Instead A′ will call its oracle SimMSign

on input comn1 and will forward the received signature σ to A. A′ will also keep all the

commitments in a list Lcom . If withdrawal was successful, A′ adds the corresponding coin to

CL.

• A′ simulates the honest user oracles by running the honest algorithms.

A cannot distinguish between interacting with A′ or the double-spending game. The only difference

is whether signatures are created by MSign (in the real game) or by SimMSign (via A′’s oracle). By

simulatability of the malleable signatures (Definition 2.3.3), this is indistinguishable. Thus, A still

wins the game with non-negligible probability.

Say that the last call BDepo outputs (pk i∗ ,ΠG) and A wins the double-spending identification

game. Similarly to the proof of unforgeability above, we use SigExt to extract all the messages and

corresponding transformations for all qD successfully deposited coins. Here we also need to store

the (sk1, I1, cert1), . . . , (sk `, I`, cert`) from each of the extracted transformations.

If a double spending was detected for user pk∗i , by definition of Deposit, this means that there

are two coins that, when decrypted, have both the same SN1, . . . , SNj , but have different SNj+1 (for

some j), pk∗i is extracted from the two double-spending equations DSj and DS′j .

1. If the extractor fails on either of these two coins, i.e. if for either coin it fails to produce valid

(sk j , Ij , certj),or it fails to produce SN1, . . . , SN`, DS1, . . . , DS` and valid randomness explaining

the encryptions CSN, CDS, or it fails to produce nj such that DSj = fDS(Ij , nj , sk j , SNj+1) and

SNj = fSN(nj , sk j), then A′ outputs the signature and message from the coin where extraction

failed, and breaks simulation-unforgeability.

2. If the extractor is successful when run on these two coins and produces SNj = fSN(nj , sk j) and

SN′j = fSN(n
′
j , sk ′j) where SNj = SN′j but sk j 6= sk ′j or nj 6= n′j , then we could construct an

algorithm that runs like A′ and breaks collision resistance of fSN.

143

3. If the extractor is successful when run on these two coins and extracts sk j = sk ′j and Ij 6= I ′j ,

then we can construct a similar algorithm which will choose one of the two coins at random and

output (pk j , Ij), certj as a forgery. Note that by construction, we only ever issue one signature

for each Ii (because Ii is the joining order), so this algorithm will break unforgeability of the

signature scheme.

Note that if none of the above failures happen, then we are guaranteed by DS-security that

the Deposit algorithm will extract the same Ij = I ′j as was produced by the extractor, and

that the Deposit algorithm will produce an accepting proof.

4. Finally, if double spending was detected, and none of the above occur, but pk i∗ 6∈ UL or

pk i∗ ∈ UL but the user hasn’t registered i.e. cert i = ⊥, then as argued above SigExt will

extract the same IDj as is produced by Deposit, along with a valid certificate. However, if

pk i∗ 6∈ UL or pk i∗ ∈ UL but the user hasn’t registered i.e. cert i = ⊥, then that means that

this IDj was never signed. Thus we can define an algorithm that runs like A′ and outputs the

extracted certificate to break unforgeability.

Lemma 7.6.4 (Weak Exculpability). If (MSGen, MSKeyGen, MSign, MSVerify, MSigEval) is sim-

ulatable, as defined in Definition 2.3.5, (ComSetup,Com) is computationally hiding, fSN, fDS are

anonymous, and fDS is exculpable with respect to KeyGen, then the construction in Section 7.5.2

describes a transferable e-cash scheme secure against weak exculpability.

Proof. Assume that there exists an adversary A that breaks weak exculpability of the transferable

e-cash scheme. Then, we can use A to construct an algorithm A′ that breaks unforgeability of the

signature scheme or exculpability of the double-spending function. In the exculpability game A

plays the role of the bank. In order for A to win it will have to either (1) make an honest user spend

two coins with the same ni (without intentionally double-spending), or (2) forge the proof Π.

144

The first case only occurs with negligible probability, since whenever an honest user receives a

coin with Receive, he chooses a fresh value ni. So every coin he receives has a different ni.

We now modify the game by replacing all malleable signatures by simulated signatures. (By

simulatability (Definition 2.3.5) this is indistinguishable even when the adversary generates the

signing key.) Next, we guess which user i the adversary will attempt to frame, and replace each

pair fSN(ni, sk i), fDS(Ii, ni, sk i, SNi+1) with a pair constructed with a random sk i (if we have guessed

correctly and this honest user never double-spends, i.e. udsi = 0, then this will be indistinguishable

by the anonymity of fSN and fDS). Finally, we observe that in this new game A is only given pk i

and we never use sk i, thus if A successfully frames user i, then we can break exculpability of the

double-spending function.

Note that our proposed construction does not satisfy the (strong) exculpability property defined

in Section 7.1.

Lemma 7.6.5 (OtR-FA). If (MSGen,MSKeyGen,MSign,MSVerify, MSigEval) is simulation context

hiding, fDS and fSN are computationally hiding and we are assuming secure channels, then, the con-

struction in Section 7.5.2 describes an Observe-then-Receive anonymous transferable e-cash scheme.

Proof. Given the use of secure channels when the adversary observes a coin transfer/withdrawal

does not get see the coin itself. When the adversary picks two coin indices, j0, j1, that belong to

honest users and have not been deposited, the only information he has about them is their transfer

“history” (i.e. who were the previous user owners). Now assume that the coin jb is transferred to A.

Then, A receives cb = (σ′, (CSNi
, CDSi−1

), RSNi . Given that A owns the the decryption secret keys,

he can obtain SN = SN1 ‖ · · · ‖ SNi and DS = DS1 ‖ · · · ‖ DSi−1, however given the hiding properties

of fSN and fDS he does not learn anything about the encoded secret keys. Thus, he doesn’t learn

anything about who were the previous owners of the coin and cannot link it to j0, j1. Also, given

that the malleable signature, σ, is simulation context hiding the adversary learns nothing about the

transformation description, since the signature is indistinguishable from a fresh simulated signature

145

on the transformed message. The proof is similar when A receives the coin as part of a deposit.

Lemma 7.6.6 (StO-FA). Assuming secure channels the construction in Section 7.5.2 describes a

Spend-then-Observe anonymous transferable e-cash scheme.

Proof. In the spend then observe definition the adversary picks two coin indices j0, j1 and a user

index i such that the coins belong to uncorrupted users, and user i is also uncorrupted. Then,

observes a spending of the coin jb, for b ∈ {0, 1}, to the user i. Even if the adversary owned the

coin with index jb before, i.e. know the full serial number and double spending tags, he can still not

link it to a coin he observes being transferred since during transfer he sees no information about the

coin itself due to secure channels.

Lemma 7.6.7 (StR-FA). If (MSGen,MSKeyGen,MSign,MSVerify, MSigEval) is simulation context

hiding and simulation unforgeable, fDS and fSN are computationally hiding and (EKeyGen,Enc,REnc,Dec)

is a re-randomizable encryption scheme, then, the construction in Section 7.5.2 describes a Spend-

then-Receive anonymous transferable e-cash scheme.

Proof. In this game the adversary picks two coin indices j0, j1 belonging to uncorrupted users.

Remember that now A does not know the bank’s deposit secret key, thus cannot decrypt. If at

some point the adversary owned the j0 coin he has seen CSNk
and CDSk−1

. Also, when he further

transferred the coin to an honest user, he received SNk+1 and computed DSk (similar for j1). Say

that now A receives one of the coins back and he sees CSNi
and CDSi−1

. Given that the encryption

scheme is statistically re-randomizable he cannot link these encryptions to the previous ones he had,

thus he cannot link the two values. Also, since the encryption scheme is semantically secure, he

cannot recognize the encryption of the values SNk+1 and DSk that he knows. As part of the coins

the adversary also sees malleable signatures σk and σi. Because of the simulation context-hiding

property of the malleable signature scheme, these values are also unlinkable.

Finally, the adversary has access to the Deposit oracle. Given the simulation unforgeability and

simulatability properties of malleable signatures, we can extract all the information from σ and

146

simulate deposit to A. The adversary cannot distinguish between the real and the simulated game,

by simulatability of the malleable signatures.

Lemma 7.6.8 (StR*-FA). If (MSGen,MSKeyGen,MSign,MSVerify, MSigEval) is simulation context

hiding, fDS and fSN are computationally hiding and (EKeyGen,Enc,REnc,Dec) is a re-randomizable

encryption scheme, then, the construction in Section 7.5.2 describes an Spend-then-Receive* anony-

mous transferable e-cash scheme.

Proof. In the strong version of Spend then Receive anonymity game the adversary knows the deposit

secret key, thus, for a coin he receives he can tell whether he owned it before. However, he should

not be able to tell who of the honest users owned the coin in between. The adversary’s coin is

transferred to a random user i∗b, and then the adversary picks pairs of honest users and the coin

is randomly transferred to one of them. When A, transfers the coin c∗1 to user i∗b he receives

SNi+1 = fSN(ni+1, ski∗b) but because of the hiding property of fSN he cannot tell anything about

ski∗b . Then, when A receives coin c∗k, he can decrypt CSNk
and CDSk−1

but again because of the

hiding properties of fSN, fDS he cannot tell anything about the secret keys of the users who owned the

coin. Finally, the malleable signature σ which is part of c∗k also does not reveal anything because

of the simulation context-hiding property of malleable signatures.

7.7 Instantiation

In order to instantiate our scheme we need to make concrete choices for a malleable signature scheme

which supports the allowable transformations TCSpend and TCWith, a signature scheme for the signing

of certificates, a randomizable public key encryption scheme, a commitment scheme (ComSetup,Com)

and a zero knowledge proof system 〈P, V 〉.

We can use the malleable signature construction given by Chase et al. They provide a generic

construction of malleable signatures is based on cm-NIZKs [55]. There exist two constructions of

cm-NIZKs, both due to Chase et al.: the first [55] is based in Groth-Sahai proofs [88], the second [56],

147

less efficient but simpler one is based on succinct non-interactive arguments of knowledge (SNARGs)

and fully homomorphic encryption. Since efficiency is critical for payment systems we suggest using

the Groth-Sahai instantiation. To do this we have to extend the TCSpend, TCWith transformations to

include the identity and show that our relation and transformations are CM-friendly which means

that all of the objects (instances, witnesses and transformations) can be represented as elements of a

bilinear group so that the system is compatible with Groth-Sahai proofs. Regarding the rest of the

building blocks, a possible candidate for the signature scheme is the structure preserving signature

due to Abe et al. [4] and the El Gamal encryption scheme [73]. Finally, we need to modify the

above construction very slightly, to map elements of Zp (like ni, sk i, Ii) into the pairing group for

the transformation, but this is straightforward and does not affect the security. A full instantiation

is left as an open problem since it is rather complicated especially when trying to improve efficiency

of malleable signature.

7.8 Related work

Transferable e-cash was originally proposed in 1989 by Okamoto and Ohta [114, 115], who gave e-

cash schemes that satisfy various properties such as divisibility and transferability but only provide

weak levels of anonymity. While an adversary cannot link a withdrawal to a payment, it can link

two payments by the same user; this property was called weak anonymity (WA). A notable work is

due to Chaum and Pedersen [62], who proved that (1) transferred coins have to grow in size and

(2) an unbounded adversary can always recognize coins he owned when seeing them spent later.

Moreover, they extended the scheme due to van Antwerpen [137] to allow coin transfer.

The resulting scheme satisfies strong anonymity (SA), guaranteeing that an adversary cannot

decide whether two payments were made by the same user. However, he can recognize coins he

observed in previous transactions. Strong anonymity is also satisfied by the schemes constructed

in [51, 27].

148

Anonymity for transferable e-cash has been a pretty subtle notion to define. In 2008 Canard

and Gouget [50] gave the first formal treatment of anonymity properties for transferable e-cash. In

addition to weak and strong anonymity, which do not yield the guarantees one would intuitively

expect, they defined full anonymity (FA): an adversary, impersonating the bank, cannot link a coin

previously (passively) observed to a coin he receives as a legitimate user (Observe-then-Receive).

They also define perfect anonymity (PA): an adversary, impersonating the bank, cannot link a

coin previously owned to a coin he receives. They showed that PA⇒FA⇒SA⇒WA. Chaum and

Pedersen [62] showed that perfect anonymity cannot be achieved against unbounded adversaries. In

the same paper Canard and Gouget [50] prove that it cannot be achieved against bounded adversaries

either. They therefore introduce two modifications of perfect anonymity which are incomparable

to PA, namely PA1: an adversary, impersonating the bank, cannot link a coin previously owned

to a coin he passively observes being transferred between two honest users (Spend-then-Observe);

and PA2 (Spend-then-Receive): an adversary cannot link a coin previously owned to a coin he

receives, assuming the bank is honest (If the adversary could impersonate the bank, the notion is

not achievable due to the impossibility results mentioned above.) In the same paper they present

a construction which satisfies all achievable anonymity properties, but is only of theoretical interest

due to its inefficiency.

The first practical scheme that satisfies all FA, PA1 and PA2 is the scheme due to Fuchsbauer

et al. [79], who base their construction on commuting signatures [78]. However it has two main

drawbacks: (1) the users have to store the data of all transactions they were involved in to prove

innocence in case of fraud; and even worse (2) when a double-spending is detected, all users up to

the double spender lose their anonymity. Blazy et al. [29] addressed this problem and proposed a

new scheme that overcomes the above drawbacks by assuming the existence of a trusted entity called

the judge. This entity is responsible for the tracing of double spenders, but can also trace all the

coins and users in the system at any time. This clearly contradicts one of the main goals of e-cash:

as long as users do not double-spend, they remain anonymous.

149

7.9 Conclusions

I this Chapter we presented the first transferable e-cash scheme that satisfies all anonymity properties

from the literature (FA, PA1, PA2) and more, is practical and does not assume any trusted party. We

gave a formal treatment of the security and anonymity properties of transferable e-cash in a game-

based fashion and defined a new anonymity requirement that was not captured before. Namely, we

introduced a strengthening of Spend-then-Receive anonymity (a.k.a. PA2), which guarantees that

an adversary, impersonating the bank—although able to link a coin that he previously owned to one

he receives—should not be able to tell anything about the honest users who possessed the coin in

between.

We presented a construction, where a coin withdrawn by the bank is signed using a malleable

signature scheme. Whenever a user wishes to transfer a coin to another user he computes a mauled

signature on a valid transformation of the coin. A valid transformation guarantees that the trans-

ferred coin is valid, it is indeed owned by the sender (i.e. the sender’s secret key corresponds to the

information encoded in the coin) and the new coin/signature created will encode the right infor-

mation of the receiver i.e. the serial number SNi+1 picked by the receiver and the double spending

tag DS formed by the owner. After k transfers, the coin’s serial number is SN = SN1 ‖ · · · ‖ SNk,

and there are k − 1 double spending tags DS1, . . . , DSk−1. The serial number and the double spend-

ing tags are encrypted under the bank’s public key, allowing it to check for double spending on

deposit. Moreover, the encryptions are re-randomized in every transfer, which ensures anonymity.

We proved our scheme secure and anonymous and discussed an instantiation that can be proved

secure under standard assumptions (Decision Linear and SXDH). Finally we proposed an efficient

double-spending detection mechanism, which is independent of our scheme and could be used by

other transferable e-cash constructions.

8
Anonymous Revocation

In the previous Chapters we presented new constructions for anonymous credentials as well as

electronic payment schemes. In this Chapter we are going to discuss how is it possible to revoke a

user who misbehaves. We are going to propose a generic revocation mechanism called “Anonymous

Revocation Data Structure” (ARDS) that can be instantiated in several ways depending on the

desired efficiency and security level. This is achieved by building generallity into the definitions

already: a user’s membership certificate consists of a signature on her joining order and secret

key (the secret key is not revealed on the clear, the signature is the result of a two party protocol).

Whenever a user is involved in an algorithm, such as Join, ProveMembership or Veirfy, a commitment

to her secret key is given as input. This allows to use it in combination with group signatures or

anonymous credentials schemes that require commitments to user secrets and certain types of proofs.

We will present two possible instantiations of our generic construction; one based on range proofs

and one based on dynamic accumulators.

150

151

8.1 Anonymous Revocation Data Structure

In this section we give the definition of a new building block called: ARDS - anonymous revocation

data structure. ARDS is a data structure of maximum size N that allows the addition of new mem-

bers, revocation of old ones and supports efficient membership queries. ARDS allows members/users

to anonymously show that they belong to the current data structure, or in other words, haven’t been

revoked.

We assume, without loss of generality, that every time the revocation data structure is updated,

this is a new revocation epoch t. Let Commit(x; r) be a non-interactive commitment scheme and let

par be its corresponding public parameters selected by a trusted party by running CommitParams.

An anonymous revocation data structure scheme consists of seven algorithms which describe the

interactions between Users U , the ARDS manager M and the opening authority OA:

1. Setup(1λ, N, par): on input a security parameter 1λ, the upper bound on the size of the data

structure N and the parameters of the commitment scheme par , this probabilistic algorithm

outputs the public key of the scheme PK (which from now on will also include the parameters of

the commitment scheme par), the ARDS manager’s secret key SKM and the opening authority’s

secret key SKOA. It also initializes the revocation list for epoch t = 0 to be empty: RLt = ε and

finally sets an index i = 0 which will denote the users joining order.1

2. UserKeyGen(1λ, par): this is a probabilistic algorithm that on input the security parameter

1λ and the parameters of the commitment scheme par , outputs a pair of secret and public key

for a user (skU , pkU).

3. Join: this is a protocol between the ARDS manager M and a user U who wishes to join

the data structure, which we will denote as two interactive Turing machines JM and JUser .

By [JU (PK, skU , pkU , r), JM(PK, SKM , i, CU)] we refer to an execution of the protocol, where

1Note that we could have an extra algorithm called OAKeyGen preceding Setup that generates a key pair
(PKOA, SKOA) for the opening authority and then SKOA is also given as input to Setup.

152

CU = Commit(skU ; r) is a commitment to the user’s secret key and r is some randomness2.

The output of the Join protocol has two components:

• the user’s output is a membership certificate cert ,

• the public transcript trans which includes CU and an index i ≤ N which denotes the

user’s joining order and uniquely identifies each user.

4. Revoke(PK, SKM , RLt−1, Rt): this algorithm is run by the ARDS manager to generate an up-

dated revocation list RLt for a new revocation epoch t. It takes as input the public key of

the scheme PK, the manager’s secret key SKM , the revocation list of the previous epoch RLt−1

and the set of members to be revoked Rt ⊂ {1, . . . , N}. The output is the revocation list

RLt = {
⋃t
j=1Rj , aux}, where aux is some additional cryptographic output. It is desirable

that Revoke is sublinear in the size of RLt−1 (i.e. it works by editing RLt−1).

5. ProveMembership(PK,RLt, cert , skU , pkU , CU , r, i): is a probabilistic algorithm, run by a user,

that takes as input the system public key PK, a membership certificate cert , the user’s secret and

public keys (skU , pkU) and a commitment to the user’s secret key CU with the corresponding

randomness r (CU is a fresh commitment, i.e. it doesn’t have to be the same with the one

that the user computed during Join). It also takes as input the user’s joining order i and

the revocation list RLt for the specific revocation epoch t and outputs ⊥ if the user’s index

i belongs to the set of revoked members i.e. i ∈
⋃t
j=1Rj or a proof of membership πmemb

otherwise. It is desirable that ProveMembership is sublinear in the size of RLt (i.e. it just

performs a few lookups in RLt).

6. Verify(PK, t, CU , πmemb): is a deterministic algorithm that gets as input the system public key

PK, the revocation epoch t, a commitment to the user’s secret key CU and a proof of membership

πmemb and outputs 1 if the proof is valid and 0 otherwise (note that, interestingly, there is no

need for RLt at all).

2Using a commitment to the user’s secret key in order to register makes our scheme anonymous. Alternatively, in
a non-anonymous setting, we could have the user to register by simply showing his public key.

153

7. Open(PK, SKOA, t, πmemb): takes as input a proof πmemb , the group’s public key PK, the opening

authority’s private key SKOA and the revocation epoch t and if the membership proof is valid

outputs the unique index i that identifies the user or outputs ⊥ otherwise.

8.1.1 Security Model

An anonymous revocation data structure scheme will have to be correct, anonymous and secure. In

this section, we formally define the above notions. When we write cert ∈ Join(PK, i, pkU) we mean

that cert was the output of an honest user with public key pkU who ran the Join protocol with the

honest manager and joined the structure with order i.

Correctness. An ARDS scheme is correct if the following conditions are both satisfied for any

honestly generated PK, SKM , skU , pkU :

• For each revocation epoch t and any cert ∈ Join(PK, i, pkU), if i 6∈
⋃t
j=1Rj , it always

holds that Verify (PK, t, CU , πmemb) = 1, where πmemb = ProveMembership(PK, RLt, cert ,

skU , pkU , CU , r, i).

• For each revocation epoch t and any cert ∈ Join(PK, i, pkU) such that i 6∈
⋃t
j=1Rj , if πmemb =

ProveMembership (PK,RLt, cert , skU , pkU , CU , r, i), then

Open(PK, SKOA, t, πmemb) = i.

Anonymity. Let’s first discuss what anonymity means for ARDS. The idea is that a malicious

group manager, when given a membership proof πmemb shouldn’t be able to successfully find who

the user that created the proof was. Given that ARDS allows the users to anonymously join the

structure, anonymity will actually guarantee that the group manager cannot guess the joining order

i of the user, when given πmemb .

In order to formally describe anonymity, we will use a simulation based definition. We create a

154

simulator S who is given some trapdoor information τ to the system parameters and then creates

valid membership proofs without having any information about a user’s membership certificate cert

or having access to any pair of user public/secret key (skU , pkU).

We will now define an adversary A who will play the role of the ARDS manager and will interact

either with honest users who truthfully follow the protocols, this will be called the real game, or he

will interact with the simulator and thus play the ideal game. We require that there is no adversary

who can distinguish between the two games with non-negligible probability. Let’s first define the

two games:

REAL(1λ):

1. par ← CommitSetup(1λ);

2. PK← Setup(1λ, N, par);

3. AJU (PK,·,·,·),ProveMembership(PK,·,·,·,·,·,·,·)(par , PK, SKM);

4. output b

IDEAL(1λ):

1. (par , τ)← SimCommitSetup(1λ);

2. PK← Setup(1λ, N, par);

3. AJU (PK,·,·,·),SimProve(PK,τ,·,·,·,·,·,·,·)(par , PK, SKM);

4. output b

The oracle JU represents the user side of the Join protocol where the JM side is executed by

the adversary. The oracles SimCommitSetup and SimProve are parts of the simulator S. The

SimCommitSetup oracle takes as input a security parameter 1k and outputs the parameters for

the commitment scheme par , together with some trapdoor τ . The SimProve oracle takes as fixed

input the public key of the scheme PK and the trapdoor information τ . The adversary then gives

as input of his choice a revocation list RLt for an epoch t, a membership certificate cert , a user’s

secret and public keys (skU , pkU), a commitment to the user’s secret key CU with the corresponding

155

randomness r and the joining order of the user i. SimProve then will have to first run the actual

ProveMembership algorithm and check whether the output verifies. If it does it will compute and

output the new simulated proof using the trapdoor information τ . Otherwise it will just output ⊥.

Definition 8.1.1. An ARDS scheme is anonymous if there exists a polynomial time simulator

S = (SimCommitSetup, SimProve) such that for all probabilistic polynomial-time adversaries A

there exists a negligible function ν such that for all λ it holds that:

∣∣∣∣∣∣∣∣
Pr [b← REAL(1λ)) : b = 1]

−Pr [b← IDEAL(1λ)) : b = 1]

∣∣∣∣∣∣∣∣ = ν(λ).

Note that in the definition given above we assume, without loss of generality, that the algorithm

ProveMembership always outputs a proof πmemb that verifies, or otherwise outputs ⊥.

Security Here we want to ensure that an unauthorized member cannot successfully prove mem-

bership and cannot make a membership proof correspond to a different skU that the one of the

authorized user who owns the membership certificate and computes the proof.

Let A be an adversary who can corrupt the opening authority and obtain her secret key SKOA.

The adversary is also allowed to do the following:

- Generate honest users by having access to an oracle called HonestJoin which first triggers

UserKeyGen() and then the interaction between (JU , JM). Let Uh be the set the of users

generated by HonestJoin(PK). The adversary only learns the joining order i and the public

key pkU of the honest users.

- Introduce malicious users (i.e. users under A’s control) by running the JM (PK, SKM , ·, ·) side

of the Join algorithm. Let Um be the set of malicious users.

- Direct honest users to prove membership through an oracle HonestProve(PK, ·) which on input

i causes the user with joining order i to output a proof of membership.

- Cause the ARDS managerM to run the Revoke(PK, SKM , RLt−1, ·) protocol in order for users

156

in Uh or Um of the adversary’s choice to be revoked.

His purpose is to come up with a proof π∗memb and a commitment C∗U that verifies with respect

to RLt∗ , where t∗ denotes the current revocation epoch. Let π∗memb open to i when the Open

algorithm is run. Then, A is successful if the opening of the produced proof, i, does not correspond

to any unrevoked adversarially controlled user or if for the commitment C∗U associated to π∗memb

and the commitment C
(i)
U associated to user with joining order i, it holds that sk∗U 6= skU , where

C∗U = Commit(sk∗U , r
∗) and C

(i)
U = Commit(skU , r

(i)).

Definition 8.1.2. An ARDS scheme is secure if, for any PPT adversary A involved in the experi-

ment hereafter, we have Advsec(A) := Pr[Exptsec(λ) = 1] ∈ negl(λ).

Experiment Exptsec(λ)

(par)← CommitSetup(1λ);

PK← Setup(1λ, N, par);

(π∗memb , C
∗
U , t
∗, (skU , pkU), (sk∗U , pk

∗
U))←

A(par , PK, SKOA)
JM ,HonestJoin,HonestProve,Revoke

If Verify(pk , π∗memb , C
∗
U , t
∗) = 0 return 0;

i = Open(PK, SKOA, t
∗, π∗memb);

If i = ⊥ or i 6∈ Um\ ∪t
∗
j=1 Rj or

sk∗U 6= skU , where C
∗
U = Commit(sk∗U , r) and

C
(i)
U = Commit(skU , r), return 1;

Return 0;

Let’s now discuss how our security notion relates to the misidentification and framing properties

of group signatures. It’s pretty straightforward to see that misidentification is fully covered by our

security defitinion. Framing is a little bit more complicated. The general idea of a framing attack is

that a set of malicious colluding users can combine their keys to produce a valid proof of membership

in such a way that the opening algorithm will attribute the signature to an honest user [22]. A flavor

of framing attacks is already captured by the definition given above. The adversary cannot make a

157

proof of membership that he created open to an honest user i.e. if i ∈ Uh the adversary wins in the

Exptsec(λ) experiment defined above.

For now we do not capture framing attacks if the ARDS manager is corrupted i.e. the adversary

has SKM . In that case the adversary could assign a joining order of an honest user to a malicious

one and thus later make a proof open to i ∈ Uh.

8.2 A generic construction of ARDS using Range Proofs

In this section we are going to give our first generic construction of an anonymous revocation data

structure which is based on the use of range proofs. The idea is that in each revocation epoch,

the group manager will partition the unrevoked users in integer intervals according to their joining

order and then the users will use range proofs to anonymously prove that they belong to one of these

intervals.

By N ∈ poly(λ) we denote the maximum number of users that can join the data structure which

we will realize as a list of size N . Let i be a counter of how many users have joined the structure

so far. The first user who joins the structure will be placed in the first position and will receive a

unique identification number ID that shows his joining order ID = i = 1, the second is placed in

the second position and receives ID = i = 2 and so on. The user’s membership certificate will be

σcert = Sign(SKM , (skU , ID)) where skU is the user’s secret key.

At the beginning of each revocation epoch t, the ARDS manager, M, partitions the unrevoked

users into m subsets/intervals S1, . . . , Sm where S1 ∪ · · · ∪ Sm is equal to the set of unrevoked users

which we will call current membership list. If Rt ⊂ {1, . . . , N} is the set of users to be revoked

in epoch t, the manager, M , computes the subsets as integer intervals that exclude the IDs of the

revoked users. As an example, let t = 1 (i.e. there is no revoked user up to now) and two users are

going to be revoked: R1 = {ID = a, ID = b} for a < b and a, b ∈ {1, . . . , N}. Then, M will compute

the current membership list ULt to be the intervals [1, a− 1], [a+ 1, b− 1], [b+ 1, N] and will output

158

ULt = ([1, a− 1], [a+ 1, b− 1], [b+ 1, N]) together with σULt = Sign(SKM , [1, a− 1], [a+ 1, b− 1], [b+

1, N], t) for authentication. Sign() is a signature protocol on committed values and SKM the secret

key of the ARDS manager. The membership list consists of r = | ∪tj=1Rj |+ 1 intervals at maximum

and it takes O(r) time to compute it.

Say now that an ARDS member, U , wants to prove in an anonymous fashion that he belongs

to the list of unrevoked users. First he looks into the current membership list ULt to identify the

interval Si in which his ID lies in. Then, he computes a range proof that his identifier belongs in

that interval. Range proofs allow the user to do that in a way that he keeps both his identifier and

the interval secret. Finally, the user has to convince the verifier that the interval he belongs to is

a valid one, i.e. is listed on the current membership list. To do so, U just proves knowledge of a

signature on that interval [38].

8.2.1 Range Proofs Generic Framework

Let Commit= (CommitSetup, Commit) be a commitment scheme andΠ=(ΠSetup, ΠProve, ΠCommit)

be a NIZKPoK system. Let par be the corresponding parameters generated by running an augmented

setup AugSetup = (CommitSetup,ΠSetup). Let SigS=(SigKeyGen, Sign, Verify) be a public key

signature scheme that allows signing on committed values and allows efficient NIZK proofs of knowl-

edge of signatures on committed values. Finally, assume a semantically secure encryption scheme

EncS= (EncGen, Enc, Dec) and a key generation algorithm for a user KeyGen. Then, the generic

framework is defined as follows:

Setup(1λ, N, par): the input is the security parameter 1λ, the maximum number of users N = 2`−1

for some integer ` and the parameters of the commitment scheme. During setup the following steps

take place:

1. Run SigKeyGen twice to receive two signing key pairs for the group manager: (SKM , PKM) and

(SK′M , PK
′
M). Those signing keys will be used for signing the user certificates and the ranges

159

respectively.

2. Set t = 0, RL0 = ε, i = 0.

3. Run EncGen to receive an encryption key pair for the opening authority (SKOA, PKOA).

4. Publish PK which includes (PKM , PK
′
M , PKOA).

UserKeyGen(1λ, par): Output a pair of secret, public key for a user: (skU , pkU) using KeyGen.

Join: is executed between a User, Ui, and the ARDS manager, M, and the following steps take

place:

1. The User picks a random value r and generates a commitment CU = Commit(skU , r), CU is

sent to M.

2. M increments i and then assigns ID = i to Ui. The user together with M together run a

signature protocol on committed values to compute σcert = Sign(SK′M , (skU , ID)) to bind the

user’s position on the structure, i, to a commitment CU for a user secret key skU .

3. The user outputs cert i = (ID , CU , σcert).

Revoke(PK, SKM ,RLt−1, Rt): for a revocation epoch t where Rt is the list of the users to be revoked.

1. The ARDS manager computes a cover of the unrevoked user set {1, . . . , N} \ ∪tj=1Rj as the

union of intervals S1, . . . , Sm.

2. For k = 1 to m computes a signature σSk = Sign(SKM , (Sk, t)) in order to authenticate.

3. Return RLt = (t,∪tj=1Rj , {Sk, σSk}mk=1).

ProveMembership (PK, RLt, certi, skU , CU , ru): if i ∈ ∪tj=1Rj then return ⊥. Else, to prove

membership do the following:

1. Using RLt, find the interval Sk that contains the user’s identifier ID . In order for the user

to show that he belongs to this interval without leaking ID , Ui first commits to Sk, ID , and

160

σSk : CSk , CID , CσSk and generates a range proof πRP that his index ID lies in the range [a, b]

defined by Sk.

2. Then, Ui needs to prove that Sk is a certified interval for epoch t. So, the user provides a

NIZK proof that σSk verifies: πSk .

3. Ui also needs to prove that σcert is a signature on committed values (ID , skU) inside commit-

ments CU , CID by generating a NIZK proof πσi .

4. Using PKOA the user encrypts ID : encPKOA(ID) together with a NIZK proof πID that the en-

crypted ID is the one that corresponds to the user’s certificate.

5. By com we denote all the commitments generated and by π all the proofs. The proof of

membership πmemb consists of: (encPKOA(ID), com,π).

Verify: In order to verify the membership proof πmemb one needs to verify all the proofs in π.

Open: takes as input a membership proof πmemb and using the opening authority’s secret key

SKOA and the revocation epoch t outputs the user’s unique ID (or joining order) ID = i by simply

decrypting encPKOA(ID) which is part of the membership proof. If the decryption is not successful

output ⊥.

8.2.2 Security Proof

In this section we will show that our proposed generic framework of ARDS with range proofs, satisfies

the security definitions given in Section 8.1.1.

Theorem 8.2.1. If the commitment scheme Commit is secure and the NIZK proof system Π is zero-

knowledge, then the above construction is an anonymous ARDS scheme as defined in Definition 8.1.1.

Proof. Remember that the simulator S was defined to consist of S = (SimCommitSetup,SimProve).

The SimCommitSetup oracle outputs the parameters for the commitment scheme par and the

161

NIZKPoK scheme parameters, together with some simulation trapdoor τ for the NIZK proof system.

Then, SimProve outputs a simulated proof for a user with membership certificate cert and secret

and public keys (skU , pkU) of the adversary’s choice. Let’s take a closer look on how the simulator,S,

works. Let S always commit to joining order ID = 0. In order to prepare a proof of membership

πmemb § the simulator runs KeyGen to compute a secret/public key for a user: (skU , pkU) and then

for a revocation epoch t, commits to a random interval Sj and computes CSj , Cσ(Sj) as well as a

simulated range proof πRP that his ID = 0 belongs to that range. Then, S also creates a NIZK

proof that σcert is a signature on committed values (ID = 0, skU) inside committments CU , CID.

Finally, the simulator produces an encryption of 0 under the opening authority’s public key: encPKOA .

Now, let A be an adversary that can successfully distinguish between membership proofs which

were honestly generated by ProveMembership and simulated proofs generated using SimProve with

advantage ε. It is straightforward to use A to construct an adversary B that breaks security of the

commitment scheme with the same advantage (B will simply output the same guess b as A does).

Theorem 8.2.2. If the commitment scheme Commit is computationally binding, the range proof is

zero-knowledge and sound and the signature scheme SigS=(SigKeyGen, Sign, Verify) is existentially

unforgeable then the above construction is a secure ARDS scheme as defined in Definition 8.1.1.

Proof. Let A be an adversary as defined in Def. 8.1.1 who is given access to HonestJoin, HonestProve

and Join oracles and outputs (π∗memb , C
∗
U , t
∗, (skU , pkU), (sk∗U , pk

∗
U)). Let i be the opening of π∗memb .

In order for A to win in the security experiment one of the following forgeries has to happen:

Type I: i 6∈ Um\ ∪t∗j=1 Rj . In order for this forgery to take place the adversary to either create

a forged membership certificate and create a proof for it or to generate a false range proof that

the index i of one of the users under his control has been revoked while it hasn’t. The first case

is impossible due to the assumed unforgeability of the signature scheme. The second case is also

impossible since that would break the soundness of the underlying range proof.

Type II: sk∗U 6= skU , where C∗U = Commit(sk∗U , r) and C
(i)
U = Commit(skU , r). This forgery

162

happens if the adversary manages to make a proof of membership for a different sku that the one,

the membership certificate has been issued to. Luckily, due to the fact that the commitment scheme

is binding this is not possible.

8.3 A Generic Construction of ARDS Using Accumulators

Let’s now see how it is possible to realize ARDS using accumulators. Here, the idea is that the joining

order of the user will be used as the value to be accumulated. Whenevever a new user joins the

structure he is assigned a unique ID (joining order) which also gets accumulated to the accumulator

value. The user’s membership certificate consists of a witness that his ID belongs to the current

value of the accumulator v = f(u,X ∪ ID) given that u is the current value of the accumulator and

X is the set of IDs of users who haven’t been revoked and are members of the structure. In order

for the user to prove membership in the structure he will have to provide a witness w such that

f(w, ID) = v. Given that we want the proof of membership to happen in an anonymous fashion,

the user instead of providing the actual witness will give a proof of knowledge of such a witness.

Remember that this also serves as a unique identification for the user.

Let Commit= (CommitSetup, Commit), Π=(ΠSetup, ΠProve, ΠCommit), par , SigS=(SigKeyGen,

Sign, Verify), EncS= (EncGen, Enc, Dec) and KeyGen be as before. Let G be an efficient prob-

abilistic algorithm that produces a secure, dynamic accumulator. Then, the generic framework of

ARDS with accumulators is defined as follows:

Setup(1λ, N, par): the input is the security parameter 1λ, the maximum number of users N = 2`−1

for some integer ` and the parameters of the commitment scheme. During setup the following steps

take place:

1. Run SigKeyGen twice to receive two signing key pairs for the group manager: (SKM , PKM)

and (SK′M , PK
′
M). Those signing keys will be used for signing the accumulator value and the

user certificates respectively.

163

2. Generate the accumulator (f, auxf , u)← G(1λ) and set X = 0, v = u.

3. Set t = 0 and i = 0.

4. Run EncGen to receive an encryption key pair for the opening authority (SKOA, PKOA).

5. Publish PK which includes (PKM , PK
′
M , PKOA, (f, v)).

UserKeyGen:(1λ, par): Output a pair of secret, public key for a user: (skU , pkU) using KeyGen.

Join: is executed between a User Ui and the ARDS managerM and the following steps take place:

1. The User picks a random value r and generates a commitment CU = Commit(skU , r), CU is

sent to M.

2. M increments i and then assigns ID = i to Ui. The manager computes the user’s witness w

such that f(w, ID) = v where v is the current value of the accumulator. The user together with

M run a signature protocol on committed values to compute σcert = Sign(SK′M , (skU , ID , w))

to bind the user’s position on the structure, i, to a commitment CU for user’a secret key skU

and to the witness, w, that this value has been added to the accumulator.

3. The user outputs cert i = (i, CU , σcert).

Revoke(PK, SKM ,RLt−1, Rt): for a revocation epoch t where Rt is the list of the users to be revoked.

1. The ARDS manager removes from the accumulator all the values listed in Rt using the deletion

algorithm. The new value of the accumulator will be v′ = f(v,X/{Rt}) and the group manager

also computes a signature on it: σv = Sign(SKM , (v, t)) in order to authenticate.

2. Return RLt = (t,∪tj=1Rj , v, σv).

ProveMembership (PK, RLt, certi, skU , CU , ru, v): if i ∈ ∪tj=1Rj then return ⊥. Else, to prove

membership do the following:

164

1. Compute a witness w that verifies that the user’s ID belongs to the accumulator value for

epoch t and compute a proof of knowledge of this value πw.

2. Then, Ui needs to prove that v is a certified accumulator value for epoch t. So, the user

provides a NIZK proof that σv verifies: πv.

3. Ui also needs to prove knowledge of that σcert is a signature on committed values (ID , skU)

inside commitments CU , CID by generating a NIZK proof πσi .

4. Using PKOA the user encrypts ID : encPKOA(ID) together with a NIZK proof πID that the en-

crypted ID is the one that corresponds to the user’s certificate.

5. By com we denote all the commitments generated and by π all the proofs. The proof of

membership πmemb consists of: (encPKOA(ID), com,π).

Verify: In order to verify the membership proof πmemb one needs to verify all the proofs in π.

Open: takes as input a membership proof πmemb and using the opening authority’s secret key

SKOA and the revocation epoch t outputs the user’s unique ID (or joining order) ID = i by simply

decrypting encPKOA(ID) which is part of the membership proof. If the decryption is not successful

output ⊥.

8.3.1 Security Proof

We will now show that our proposed generic framework of ARDS with accumulators, satisfies the

security definitions given in Section 8.1.1.

Theorem 8.3.1. If the commitment scheme Commit is secure and the NIZK proof system Π is zero-

knowledge, then the above construction is an anonymous ARDS scheme as defined in Definition 8.1.1.

Proof. The proof is the same as for ARDS with range proofs.

165

Theorem 8.3.2. If the commitment scheme Commit is computationally binding, the accumulator

is secure and the signature scheme SigS=(SigKeyGen, Sign, Verify) is existentially unforgeable then

the above construction is a secure ARDS scheme as defined in Definition 8.1.1.

Proof. The proof is again essentially the same with the range proofs case.

8.4 Instantiations

The main purpose of our work is to give a generic framework for revocation that can be used as a

building block in various scenarios. For this reason we chose not to give a single concrete instantia-

tion; instead we discuss how to instantiate our generic constructions under various assumptions. In

order to use ARDS for a specific scheme, one should select the right set of building blocks depenting

on the system requirements.

8.4.1 ARDS With Range Proofs Instantiation

In order to instantiate ARDS with range proofs we need to make concrete choices for a commitment

scheme Commit, a NIZKPoK system Π, a signature scheme SigS (it should allow signing on com-

mitted values and efficient NIZK proofs of knowledge of signatures on committed values) and for

the encryption scheme EncS.

We first discuss an instantiation in the RO model under the Strong RSA assumption. A possible

selection for a commitment scheme is the one due to Fujisaki and Okamoto [80] and for a NIZKPoK

that allows range proofs the scheme due to Lipmaa [104]. As a signature scheme one could choose

the Camenisch Lysyanskaya(CL) signature [44] and finally, an option for an encryption scheme is

the Camenisch and Shoup verifiable encryption [48].

A bilinear pairing based instantiation in the standard model is also possible. Such an instan-

tiation could use the Groth-Sahai(GS) proof techniques [88], the Abe et al. structure preserving

signatures [5] and the Camenisch and Shoup verifiable encryption [48].

166

Schemes Params Memb. Cert. Revocation Prove memb. Verify memb. Revocation Notes
Size Size List Size Cost Cost Cost

NFHF1[107] O(N) O(1) O(r) O(1) O(1) O(r) RO model -GS
BS[32] O(1) O(1) O(r) O(1) O(r) O(1) RO model -GS
LPY[103] O(logN) O(1) O(r) O(1) O(1) O(r) Standard model -GS
This work (RP) O(1) O(1) O(r) O(1) O(1) O(r) RO & Standard model - GEN
This work (Accum) O(1) O(1) O(r) O(1) O(1) O(r) RO model - GEN

8.4.2 ARDS With Accumulators Instantiation

For the instantiation of the generic construction with accumulators we need concrete choices for

a commitments cheme Commit, a NIZKPoK system Π, a signature scheme SigS and an encryp-

tion scheme EncS. Let G be an efficient probabilistic algorithm that produces a secure, dynamic

accumulator.

A possible instantiation in the RO model could be given under the Fujisaki and Okamoto [80]

commitment scheme, Schnorr proofs of knowledge [131] of discrete logarithms, Camenisch Lysyan-

skaya(CL) signatures [44], Camenisch and Shoup verifiable encryption [48] and the Camenisch

Lysyanskaya dynamic accumulator.

A standard model instantiation would require pairing based accumulators as for example the one

due to Camenisch et al. [42] or the one due to Nguyen [109]

8.5 Efficiency Comparisons

In this section we compare our two generic revocation mechanisms with some of the techniques

used in related work. The comparisons are given in terms of the size of the public parameters,

the membership certificate and the revocation list and the computational costs in order to prove

membership, verify membership and perform the revocation. In the column “notes” we note in

which model each revocation method is proven secure and whether it was defined a part of a group

signature “GS”, part of an anonymous credential scheme “AC” or is a generic mechanism “GEN”. By

n we denote the maximum number of user members, by Rac the maximum number of accumulations

and by r the number of revocations.

167

8.6 Related Work

Revocation has been extensively studied in the literature but almost exclusively in combination

with other mechanisms. The only exception is the work due to Henry and Goldberg [94] where they

formalize an anonymous blacklisting system (which is essentially an anonymous revocation system).

They first survey the literature on anonymous blacklisting systems and categorize the existing so-

lutions into three broad categories based on architecture, security, performance and functionality.

Then, they describe an anonymous blacklist as a system that consists of five algorithms: registra-

tion, token extraction, authentication, revocation and blacklist audit protocol and also define the

privacy and security properties. However, they do not provide a framework of how to construct such

a scheme which is the goal of this work. Moreover, given their definitions it is not straightforward

how use their defined scheme as a “plug and play” mechanism with anonymous credentials or group

signatures.

The rest of the proposals of revocation mechanisms where tied to credential or signature schemes.

Specifically:

Accumulators. A revocation mechanism based on cryptographic accumulators requires that the

user update her witness every time that a revocation has occured; therefore, the total amount of

work that each user needs to do is Ω(r), where r is the number of revoked users (if the user is very

active, this can be amortized over many transactions in many time periods and thus may, overall,

be very cheap); while the verifier’s work is much lower: he just needs to keep track of the current

value A. The credential issuer’s work is constant per member addition or revocation, which is even

more attractive than the trivial Merkle-tree-based non-anonymous solution outlined above.

The fact that each user needs to do Ω(r) work is unattractive. It would be more convenient,

especially on constrained devices, if users did not need to do this much work. Indeed, in the non-

anonymous case, this is not needed.

NNL Method. In two recent papers, Libert, Peters and Yung [103] adapt the Naor-Naor-Lotspiech [108]

168

(NNL) broadcast encryption scheme to the problem at hand. On a high level, the NNL algorithm

allows, given a tree with 2`−1 leaves, of which r are revoked, to partition the set of unrevoked leaves

into m disjoint sets; each such set can be represented using nodes (a, b) of the tree, such that b is a

descendant of a and a leaf i is in the partition that corresponds to nodes (a, b) if i is a descendant

of a but not a descendant of b. In the bilinear map setting, in the standard model, Libert, Peters

and Yung construct revocable group signature schemes in which the group manager organizes the

unrevoked users according to the NNL partition, and valid user, as part of his group signature,

demonstrates that she is in a valid partition, i.e. that her membership certificate i corresponds to a

valid NNL subset. In contrast to the accumulator-based solution, the amount of work each user has

to do is independent of the total number of users revoked; on the other hand, this comes at a price:

the group manager will have to perform O(r) work in order to publish the updated revocation tree in

each time period, where r is the number of users revoked so far. Another drawback of their solution,

is that it is not generic: it is tailored for the bilinear-map setting. Also, it is a group signature, and

it is not obvious how to extend the approach to anonymous credentials.

8.7 Conclusions

In this Chapter we presented a generic framework for revocation that can be used as a building block

in various settings. We present an anonymous revocation data structure (ARDS). We gave formal

definitions of security and provide two generic constructions, one using revocation lists and range

proofs and one using dynamic accumulators. Finally we discussed how our generic mechanism can

be instantiated under various assumptions.

9
Conclusions

In this thesis we proposed new privacy preserving mechanisms for user authentication (anonymous

credentials) and for electronic payments. We investigated the security of one of the most well-known

and efficient anonymous credential schemes, U-Prove and we showed that his credential scheme

cannot be proven secure under currently known techniques [15]. Specifically, we showed that the

Brands blind signature (in the heart of his credential scheme) cannot be proven unforgeable in the

random oracle model under any intractability assumption. Our impossibility result generalizes to a

broader class of blind signatures, in particular, the blind Schnorr signature [131] and the blind GQ

signature [90]. This result holds no matter how strong an assumption we make.

We then proposed a new anonymous credential scheme [14] called Anonymous Credentials Light

that has comparable efficiency to the one due to Brands and it is provably secure (in the random

oracle model). In particular, it is unlinkable under the decisional Diffie-Hellman assumption, and

unforgeable under the Discrete-Logarithm assumption for sequential composition (the extension to

concurrent self-composition is an open problem). For the construction, we defined a new crypto-

graphic building block, called blind signatures with attributes, and discussed how it can be used in

combination with a commitment scheme to directly get an anonymous credential system.

169

170

Our Anonymous Credentials Light can be extended to an efficient e-cash scheme [97] that more-

over has the nice property of encoding of users attributes in the coins (i.e. user age, address etc.) We

showed a real world application of our electronic cash scheme and specifically payment systems for

subways and trains [11, 97]. We worked on a smartphone and the results are promising: a payment

transaction takes about 400ms on a BlackBerry Bold 9900 (depending on the number of attributes

being revealed), which we believe is quite practical.

The next proposed scheme was a transferable e-cash construction [10]. Our work had both a

definitional and a constructive contribution. We gave formal definitions of transferable e-cash cap-

turing properties that previous definitions failed to address. Then, we constructed a fully anonymous

transferable cash that does not depend on any “judge” (a trusted authority responsible for double

spending that can trace all coins and users in the system). The construction is based on malleable

signatures for the transfer of the coins. Finally, we gave an independent mechanism for efficient

double spending detection in transferable e-cash.

Finally, we proposed a generic revocation mechanism [16] that can be used as a building block

for various schemes. Apart from the definitions we gave two possible instantiations of our scheme:

one using range proofs and one using dynamic accumulators.

Bibliography

[1] Near Field Communication Forum. http://www.nfc-forum.org/, 2008.

[2] An open letter from us researchers in cryptography and information security.

http://masssurveillance.info/, January 2014.

[3] Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures.

In International Conference on the Theory and Applications of Cryptographic Techniques, EU-

ROCRYPT’01, volume 2045 of Lecture Notes in Computer Science, pages 136–151. Springer,

2001.

[4] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and

Miyako Ohkubo. Constant-size structure-preserving signatures: Generic constructions and

simple assumptions. In Proceedings of the 18th International Conference on The Theory and

Application of Cryptology and Information Security, ASIACRYPT’12, volume 7658 of Lecture

Notes in Computer Science, pages 4–24. Springer-Verlag, 2012.

[5] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.

Structure-preserving signatures and commitments to group elements. In Proceedings of the

30th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’10,

volume 6223 of Lecture Notes in Computer Science, pages 209–236. Springer, 2010.

171

172

[6] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Interna-

tional Cryptology Conference on Advances in Cryptology, CRYPTO’00, volume 1880 of Lecture

Notes in Computer Science, pages 271–286, London, UK, 2000. Springer-Verlag.

[7] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent Wa-

ters. Computing on authenticated data. In Theory of Cryptography, TCC’12, volume 7194 of

Lecture Notes in Computer Science, 2012.

[8] Zack Anderson, RJ Ryan, and Alessandro Chiesa. The Anatomy of a Subway Hack: Breaking

Crypto RFID’s and Magstripes of Ticketing Systems. In DEFCON’08, 2008.

[9] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing on authenticated

data: New privacy definitions and constructions. In International Conference on The Theory

and Application of Cryptology and Information Security, ASIACRYPT’12, volume 7658 of

Lecture Notes in Computer Science, pages 367–385. Springer-Verlag, 2012.

[10] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss. Fully anonymous

transferable e-cash without a judge. In Manuscript, 2014.

[11] Foteini Baldimtsi, Gesine Hinterwalder, Andy Rupp, Anna Lysyanskaya, Christof Paar, and

Wayne P. Burleson. Pay as you go. In Workshop on hot topics in privacy enhancing technolo-

gies, HotPETSs, Vigo, Spain, 2012.

[12] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous Credentials Light. Cryptology ePrint

Archive, Report 2012/298, 2012.

[13] Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind signature

schemes. Cryptology ePrint Archive, Report 2012/197, 2012.

[14] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous Credentials Light. In ACM Conference

on Computer and Communications Security, CCS’13, pages 1087–1098. ACM-CCS, 2013.

173

[15] Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind signature

schemes. In International Conference on the Theory and Application of Cryptology and Infor-

mation Security, ASIACRYPT’13, volume 8270 of Lecture Notes in Computer Science, pages

82–99. Springer Berlin Heidelberg, 2013.

[16] Foteini Baldimtsi and Anna Lysyanskaya. An anonymous revocation data structure. In

Manuscript, 2014.

[17] Niko Baric and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes

without trees. In International conference on Theory and application of cryptographic tech-

niques, EUROCRYPT’97, Lecture Notes in Computer Science, pages 480–494, Berlin, Heidel-

berg, 1997. Springer-Verlag.

[18] Lejla Batina, Jaap-Henk Hoepman, Bart Jacobs, Wojciech Mostowski, and Pim Vullers. De-

veloping Efficient Blinded Attribute Certificates on Smart Cards via Pairings. In CARDIS,

pages 209–222, 2010.

[19] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and

Hovav Shacham. Randomizable proofs and delegatable anonymous credentials. In Proceed-

ings of the 29th Annual International Cryptology Conference on Advances in Cryptology,

CRYPTO’09, Lecture Notes in Computer Science, pages 108–125, Berlin, Heidelberg, 2009.

Springer-Verlag.

[20] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash

and simulatable VRFs revisited. In Pairing-Based Cryptography, Pairing 2009, volume 5671

of Lecture Notes in Computer Science, pages 114–131. Springer Berlin Heidelberg, 2009.

[21] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Proceedings of the

12th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’92,

174

volume 740 of Lecture Notes in Computer Science, pages 390–420. Springer Berlin Heidelberg,

1993.

[22] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-

more-rsa-inversion problems and the security of chaum’s blind signature scheme. Journal of

Cryptology, 16:185–215, 2003.

[23] Mihir Bellare and Adriana Palacio. Gq and schnorr identification schemes: Proofs of security

against impersonation under active and concurrent attacks. In Proceedings of the 22th Annual

International Cryptology Conference on Advances in Cryptology, CRYPTO’02, pages 162–177,

2002.

[24] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing

efficient protocols. In ACM conference on Computer and communications security, CCS’93,

CCS ’93, pages 62–73. ACM, 1993.

[25] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative

to digital sinatures (extended abstract). In Tor Helleseth, editor, International Conference on

the Theory and Application of Cryptographic Techniques, EUROCRYPT’93, volume 765 of

Lecture Notes in Computer Science, pages 274–285. Springer, 1993.

[26] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anonymous credentials on

a standard java card. In ACM conference on Computer and communications security, CCS

’09, pages 600–610. ACM, 2009.

[27] Marina Blanton. Improved conditional e-payments. In Proceedings of the 6th International

Conference on Applied Cryptography and Network Security, ACNS’08, pages 188–206, Berlin,

Heidelberg, 2008. Springer-Verlag.

175

[28] Erik-Oliver Blass, Anil Kurmus, Refik Molva, and Thorsten Strufe. PSP: private and secure

payment with RFID. In Proceedings of the 8th ACM Workshop on Privacy in the Electronic

Society, WPES ’09, pages 51–60, New York, NY, USA, 2009. ACM.

[29] Olivier Blazy, Sébastien Canard, Georg Fuchsbauer, Aline Gouget, Hervé Sibert, and Jacques

Traoré. Achieving optimal anonymity in transferable e-cash with a judge. In 4th International

Conference on Cryptology, AFRICACRYPT’11, volume 6737 of Lecture Notes in Computer

Science, pages 206–223. Springer, 2011.

[30] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on

the gap-diffie-hellman-group signature scheme. In International Conference on Practice and

Theory in Public Key Cryptography, PKC’03, Lecture Notes in Computer Science, pages 31–46,

London, UK, 2003. Springer-Verlag.

[31] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Proceedings of the

24th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’04,

volume 3152 of Lecture Notes in Computer Science, pages 41–55, 2004.

[32] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In ACM

Conference in Computer and Communications Security, CCS’04, pages 168–177, New York,

NY, USA, 2004. ACM.

[33] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.

In International Conference on the Theory and Applications of Cryptographic Techniques,

EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 59–71. Springer

Berlin Heidelberg, 1998.

[34] Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, and Peter L. Mont-

gomery. On the security of 1024-bit rsa and 160-bit elliptic curve cryptography. Cryptology

ePrint Archive, Report 2009/389, 2009.

176

[35] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Interna-

tional Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT’00,

Lecture Notes in Computer Science, pages 431–444, 2000.

[36] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In

Proceedings of the 13th Annual International Cryptology Conference on Advances in Cryptol-

ogy, CRYPTO’83, volume 773 of Lecture Notes in Computer Science, pages 302–318. Springer,

1993.

[37] Stefan Brands. Rethinking public key infrastructures and digital certificates: Building in

privacy. MIT Press, Cambridge-London, August 2000.

[38] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set membership and

range proofs. In International Conference on the Theory and Application of Cryptology and

Information Security, ASIACRYPT’08, Lecture Notes in Computer Science, pages 234–252,

Berlin, Heidelberg, 2008. Springer-Verlag.

[39] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In ACM

conference on Computer and communications security, CCS’08, pages 345 – 356. ACM, 2008.

[40] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira

Meyerovich. How to win the clonewars: Efficient periodic n-times anonymous authentication.

In ACM Conference on Computer and Communications Security, CCS’06, pages 201–210, New

York, NY, USA, 2006. ACM.

[41] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In International

Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT’05,

volume 3494 of Lecture Notes in Computer Science, pages 302–321. Springer, 2005.

[42] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilin-

ear maps and efficient revocation for anonymous credentials. In International Conference on

177

Practice and Theory in Public Key Cryptography, PKC’09, volume 5443 of Lecture Notes in

Computer Science, pages 481–500. Springer, 2009.

[43] Jan Camenisch, Maciej Koprowski, and Bodgan Warinschi. Efficient blind signatures without

random oracles. In Proceedings of the 4th international conference on Security in Communi-

cation Networks, SCN’04, pages 134–148, Berlin, Heidelberg, 2005. Springer-Verlag.

[44] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Pro-

ceedings of the 3rd international conference on Security in communication networks, SCN’02,

pages 268–289, Berlin, Heidelberg. Springer-Verlag.

[45] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous

credentials with optional anonymity revocation. In International Conference on the Theory

and Application of Cryptographic Techniques, EUROCRYPT’01, Lecture Notes in Computer

Science, pages 93–118, London, UK, 2001. Springer-Verlag.

[46] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from

bilinear maps. In Proceedings of the 20th Annual International Cryptology Conference on

Advances in Cryptology, CRYPTO’04, volume 3152 of Lecture Notes in Computer Science,

pages 56 – 72, London, UK, 2004. Springer-Verlag.

[47] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product

of two safe primes. International Conference on the Theory and Applications of Cryptographic

Techniques, EUROCRYPT’99, pages 107–122. Springer-Verlag, 1999.

[48] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete

logarithms. In Proceedings of the 23rd Annual International Cryptology Conference on Ad-

vances in Cryptology, CRYPTO’03, volume 2729 of Lecture Notes in Computer Science, pages

126–144. Springer, 2003.

178

[49] Jan Camenisch, Fischer-Habner Simone, and Kai (eds.) Rannenberg. Privacy and identity

management for life. In ISBN 978-3-642-20316-9. Springer, 2012.

[50] Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In Steven M. Bellovin,

Rosario Gennaro, Angelos D. Keromytis, and Moti Yung, editors, ACNS, volume 5037 of

Lecture Notes in Computer Science, pages 207–223, 2008.

[51] Sébastien Canard, Aline Gouget, and Jacques Traoré. Improvement of efficiency in (uncondi-

tional) anonymous transferable e-cash. In Gene Tsudik, editor, Financial Cryptography and

Data Security, FC 2008, volume 5143 of Lecture Notes in Computer Science, pages 202–214.

Springer-Verlag, Berlin, Heidelberg, 2008.

[52] Certicom Research. Standads for Efficient Cryptography (SEC) 2: Recommended Elliptic

Curve Domain Parameters, version 1.0 edition, 2000.

[53] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A non-interactive range proof with

constant communication. In Financial Cryptography and Data Security, FC’12, volume 7397

of Lecture Notes in Computer Science, pages 179–199. Springer, 2012.

[54] Agnes Chan, Yair Frankel, and Yiannis Tsiounis. Easy come : Easy go divisible cash. In

International Conference on the Theory and Applications of Cryptographic Techniques, EU-

ROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 561–575. Springer

Berlin / Heidelberg, 1998.

[55] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable proof

systems and applications. In David Pointcheval and Thomas Johansson, editors, International

Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT’12,

volume 7237 of Lecture Notes in Computer Science, pages 281–300. Springer Berlin Heidelberg,

2012.

179

[56] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Succinct mal-

leable nizks and an application to compact shuffles. In Theory of Cryptography, TCC’13,

Lecture Notes in Computer Science, pages 100–119, Berlin, Heidelberg, 2013. Springer-Verlag.

[57] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Malleable sig-

natures: Complex unary transformations and delegatable anonymous credentials. In to appear

in Computer Security Foundations Symposium, CSF’14, 2014.

[58] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Proceedings of the 8th Annual

International Cryptology Conference on Advances in Cryptology, CRYPTO’88, Lecture Notes

Computer Science, pages 319–327, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[59] David Chaum. Blind signatures for untraceable payments. In Proceedings of the 2nd Annual

International Cryptology Conference on Advances in Cryptology, CRYPTO’82, Lecture Notes

Computer Science, pages 199–203. Springer-Verlag, 1982.

[60] David Chaum. Blind signature system. In Proceedings of the 3rd Annual International Cryp-

tology Conference on Advances in Cryptology, CRYPTO’83, page 153. Springer, 1983.

[61] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Proceedings of the

8th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’88,

volume 403 of Lecture Notes in Computer Science, pages 319–327. Springer, 1988.

[62] David Chaum and Torben P. Pedersen. Transferred cash grows in size. In International

conference on Theory and application of cryptographic techniques, EUROCRYPT’92, Lecture

Notes in Computer Science, pages 390–407. Springer-Verlag, 1992.

[63] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Proceedings of the

12th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’92,

Lecture Notes in Computer Science, pages 89–105, London, UK, 1992. Springer-Verlag.

180

[64] Efrén Clemente-Cuervo, Francisco Rodŕıguez-Henŕıquez, Daniel Ortiz Arroyo, and Levent Er-

taul. A PDA Implementation of an Off-line e-Cash Protocol. In Selim Aissi and Hamid R.

Arabnia, editors, Security and Management, pages 452–458. CSREA Press, 2007.

[65] Jean-Sébastien Coron. On the exact security of full domain hash. In Proceedings of the 20th

Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’00, Lecture

Notes in Computer Science, pages 229–235. Springer-Verlag, 2000.

[66] C.P.Schnorr and M.Jakobsson. Security of discrete log cryptosystems in the random oracle +

generic model. In The Mathematics of Public-Key Cryptography, The Fields Institute, 1999.

[67] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In Proceedings of the 14th Annual International

Cryptology Conference on Advances in Cryptology, CRYPTO’94, Lecture Notes in Computer

Science, pages 174–187, London, UK, 1994. Springer-Verlag.

[68] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In Proceedings of the 14th Annual International

Cryptology Conference on Advances in Cryptology, CRYPTO’94, pages 174–187. Springer-

Verlag, 1994.

[69] Howard A. Schmidt (National cybersecurity coordinator). National strategy for trusted iden-

tities in cyberspace. In Cyberwar Resources Guide, Item 163, http: // www. projectcyw-d.

org/ resources/ items/ show/ 163 , 2010.

[70] Ivan Damg̊ard. Commitment schemes and zero-knowledge protocols. In Lectures on Data

Security, Modern Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July

1998. Springer-Verlag, 1999.

[71] Ivan Damg̊ard. On σ- protocols. In Course Notes, http: // www. daimi. au. dk/ ~ ivan/

Sigma. ps , 2002.

http://www.projectcyw-d.org/resources/items/show/163
http://www.projectcyw-d.org/resources/items/show/163
http://www.daimi.au.dk/~ivan/Sigma.ps
http://www.daimi.au.dk/~ivan/Sigma.ps

181

[72] David Derler, Klaus Potzmader, Johannes Winter, and Kurt Dietrich. Anonymous Ticketing

for NFC-Enabled Mobile Phones. In Liqun Chen, Moti Yung, and Liehuang Zhu, editors,

INTRUST, volume 7222 of Lecture Notes in Computer Science, pages 66–83. Springer, 2011.

[73] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete log-

arithms. In Proceedings of the 5th Annual International Cryptology Conference on Advances

in Cryptology, CRYPTO’85, pages 10–18, New York, NY, USA, 1985. Springer-Verlag New

York, Inc.

[74] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and

signature problems. In Proceedings of the 6th Annual International Cryptology Conference on

Advances in Cryptology, CRYPTO’86, pages 186–194. Springer-Verlag, 1986.

[75] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique: The case

of Schnorr signatures. In International Conference on the Theory and Applications of Cryp-

tographic Techniques, EUROCRYPT’13, volume 7881 of Lecture Notes in Computer Science,

pages 444–460. Springer Berlin Heidelberg.

[76] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam, and

Stefano Tessaro. Random oracles with(out) programmability. In International Conference on

the Theory and Application of Cryptology and Information Security, ASIACRYPT’10, Lecture

Notes in Computer Science, pages 303–320. Springer Berlin Heidelberg, 2010.

[77] Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind signature

schemes. In International Conference on the Theory and Applications of Cryptographic Tech-

niques, EUROCRYPT’10, volume 6110 of Lecture Notes in Computer Science, pages 197–215.

Springer Berlin Heidelberg, 2010.

182

[78] Georg Fuchsbauer. Commuting signatures and verifiable encryption. In International Confer-

ence on the Theory and Applications of Cryptographic Techniques, EUROCRYPT’11, volume

6632 of Lecture Notes in Computer Science, pages 224–245. Springer Berlin Heidelberg, 2011.

[79] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable constant-size fair

e-cash. In Proceedings of the 8th International Conference on Cryptology and Network Security,

CANS’09, pages 226–247, Berlin, Heidelberg, 2009. Springer-Verlag.

[80] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular

polynomial relations. In Proceedings of the 17th Annual International Cryptology Conference

on Advances in Cryptology, CRYPTO’97, Lecture Notes in Computer Science, pages 16–30,

London, UK, 1997. Springer-Verlag.

[81] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. Show me how

you move and i will tell you who you are. In Proceedings of the 3rd ACM SIGSPATIAL

International Workshop on Security and Privacy in GIS and LBS, SPRINGL ’10, pages 34–

41, New York, NY, USA, 2010. ACM.

[82] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van Rossum, Roel Verdult,

Ronny Wichers Schreur, and Bart Jacobs. Dismantling MIFARE Classic. In ESORICS, pages

97–114, 2008.

[83] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press,

2001.

[84] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof

systems. In ACM symposium on Theory of computing, STOC’85, pages 291–304, New York,

NY, USA, 1985. ACM.

[85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof

systems. SIAM J. Comput., 18(1):186–208, 1989.

183

[86] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker

keeping secret all partial information. ACM Symposium on Theory of Computing, STOC’82.

ACM, 1982.

[87] Philippe Golle and Kurt Partridge. On the anonymity of home/work location pairs. In Hideyuki

Tokuda, Michael Beigl, Adrian Friday, A.J.Bernheim Brush, and Yoshito Tobe, editors, Perva-

sive Computing, volume 5538 of Lecture Notes in Computer Science, pages 390–397. Springer,

2009.

[88] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In

Nigel Smart, editor, International Conference on the Theory and Applications of Cryptographic

Techniques, EUROCRYPT’08, volume 4965 of Lecture Notes in Computer Science, pages 415–

432. Springer Berlin Heidelberg, 2008.

[89] Jorge Guajardo, Bart Mennink, and Berry Schoenmakers. Anonymous credential schemes with

encrypted attributes. In Cryptology and Network Security, pages 314–333. Springer, 2010.

[90] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol fitted to

security microprocessor minimizing both transmission and memory. In International Confer-

ence on the Theory and Applications of Cryptographic Techniques, EUROCRYPT’88, Lecture

Notes in Computer Science, pages 123–128. Springerg, 1988.

[91] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang Shantz. Com-

paring elliptic curve cryptography and RSA on 8-bit CPUs. In Marc Joye and Jean-Jacques

Quisquater, editors, Cryptographic Hardware and Embedded Systems - CHES 2004, volume

3156 of Lecture Notes in Computer Science, pages 119–132. Springer Berlin Heidelberg.

[92] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptog-

raphy. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

184

[93] Brett Hemenway, Benôıt Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption:

Constructions from general assumptions and efficient selective opening chosen ciphertext secu-

rity. In International Conference on the Theory and Application of Cryptology and Information

Security, ASIACRYPT’11, volume 7073 of Lecture Notes in Computer Science, pages 70–88.

Springer, 2011.

[94] Ryan Henry and Ian Goldberg. Formalizing anonymous blacklisting systems. In IEEE Sym-

posium on Security and Privacy, pages 81–95, 2011.

[95] Thomas S. Heydt-Benjamin, Hee-Jin Chae, Benessa Defend, and Kevin Fu. Privacy for Public

Transportation. In George Danezis and Philippe Golle, editors, Privacy Enhancing Technolo-

gies, volume 4258 of Lecture Notes in Computer Science, pages 1–19. Springer, 2006.

[96] Gesine Hinterwalder, Christof Paar, and Wayne P. Burleson. Privacy preserving payments on

ultra-low power devices with application in intelligent transportation systems. In Workshop

on RFID Security – RFIDSec’12, Nijmegen, Netherlands, June 2012.

[97] Gesine Hinterwälder, Christian T. Zenger, Foteini Baldimtsi, Anna Lysyanskaya, Christof

Paar, and Wayne P. Burleson. Efficient e-cash in practice: NFC-based payments for public

transportation systems. In Privacy Enhancing Technologies - PETS’13, pages 40–59, 2013.

[98] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. ”i know what you did last summer”:

Query logs and user privacy. In Proceedings of the Sixteenth ACM Conference on Conference

on Information and Knowledge Management, CIKM ’07, pages 909–914, New York, NY, USA,

2007. ACM.

[99] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended

abstract). In Proceedings of the 17th annual international cryptology conference on advances

in cryptology, CRYPTO’97, pages 150–164. Springer-Verlag, 1997.

185

[100] Marc Langheinrich. Privacy by design principles of privacy-aware ubiquitous systems. In Ubi-

comp 2001: Ubiquitous Computing, volume 2201, pages 273–291. Springer Berlin, Heidelberg,

2001.

[101] Abua Abu Latanya Sweeney and Julia Winn. Identifying participants in the personal

genome project by name. Harvard University. Data Privacy Lab. White Paper 1021-1.

http://dataprivacylab.org/projects/pgp/1021-1.pdf.

[102] Ruogu Kang Lee Rainie, Sara Kiesler and Mary Madden. Anonymity, privacy, and security

online. Pew Research Center’s Internet at Carnegie Mellon University, 2013.

[103] Benôıt Libert, Thomas Peters, and Moti Yung. Group signatures with almost-for-free revoca-

tion. In Proceedings of the 32nd Annual International Cryptology Conference on Advances in

Cryptology, CRYPTO’12, volume 7417 of Lecture Notes in Computer Science, pages 571–589.

Springer, 2012.

[104] Helger Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In In-

ternational Conference on the Theory and Application of Cryptology and Information Security,

ASIACRYPT’03, Lecture Notes in Computer Science, pages 398–415. Springer-Verlag, 2003.

[105] Anna Lysyanskaya. Signature schemes and applications to cryptographic protocol design. In

PhD Thesis. Massachusetts Institute of Technology, 2002. AAI0804606.

[106] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptog-

raphy. CRC Press, 1996.

[107] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable group signature

schemes with constant costs for signing and verifying. In International Conference on Practice

and Theory in Public Key Cryptography, PKC’09, volume 5443 of Lecture Notes in Computer

Science, pages 463–480. Springer Berlin Heidelberg, 2009.

186

[108] Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes for stateless

receivers. In Proceedings of the 21st Annual International Cryptology Conference on Advances

in Cryptology, CRYPTO’01, Lecture Notes in Computer Science, pages 41–62, London, UK,

UK, 2001. Springer.

[109] Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred Menezes, editor,

Topics in Cryptology, CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science,

pages 275–292. Springer Berlin Heidelberg, 2005.

[110] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The

non-committing encryption case. In Proceedings of the 22nd Annual International Cryptol-

ogy Conference on Advances in Cryptology, CRYPTO’03, volume 2442 of Lecture Notes in

Computer Science, pages 111–126, 2002.

[111] NIST. The case for elliptic curve cryptography, 2009. http://www.nsa.gov/business/

programs/elliptic_curve.shtml.

[112] Miyako Ohkubo and Masayuki Abe. Security of three-move blind signature schemes reconsid-

ered. In Symposium on Cryptography and Information Security, SCIS’03, Japan, 2003.

[113] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In

Theory of Cryptography, TCC’06, volume 3876 of Lecture Notes in Computer Science, pages

80–99. Springer, 2006.

[114] Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-knowledge authentications and their

applications to untraceable electronic cash. In Proceedings of the 9th Annual International

Cryptology Conference on Advances in Cryptology, CRYPTO’89, pages 481–496. Springer-

Verlag New York, Inc., 1989.

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/business/programs/elliptic_curve.shtml

187

[115] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Proceedings of the 12th

Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’91, pages

324–337, London, UK, 1991. Springer-Verlag.

[116] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In

International Conference on Theory and Application of Cryptographic Techniques, EURO-

CRYPT’99, Lecture Notes in Computer Science, pages 223–238. Springer-Verlag, 1999.

[117] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent

to discrete log. In International Conference on the Theory and Application of Cryptology and

Information Security, ASIACRYPT’05, volume 3788 of Lecture Notes in Computer Science,

pages 1–20, 2005.

[118] Christian Paquin. U-prove cryptographic specification v1.1. In Microsoft Technical Report,

http://connect.microsoft.com/site1188, February 2011.

[119] European Parliament and Council of the European Union. Directive 2009/136/ec. In Official

Journal of the European Union, 2009.

[120] Rafael Pass. Limits of provable security from standard assumptions. In ACM Symposium on

Theory of Computing, STOC’11, pages 109–118, 2011.

[121] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-

ing. Proceedings of the 11th Annual International Cryptology Conference on Advances in

Cryptology, CRYPTO’91. Springer-Verlag, 1991.

[122] Martin Pirker and Daniel Slamanig. A Framework for Privacy-Preserving Mobile Payment

on Security Enhanced ARM TrustZone Platforms. In Geyong Min, Yulei Wu, Lei (Chris)

Liu, Xiaolong Jin, Stephen A. Jarvis, and Ahmed Yassin Al-Dubai, editors, TrustCom, pages

1155–1160. IEEE Computer Society, 2012.

188

[123] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Inter-

national Conference on the Theory and Application of Cryptology and Information Security,

ASIACRYPT’96, volume 1163, pages 252–265. Lecture Notes in Computer Science, 1996.

[124] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In International

Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT’96,

volume 1070 of Lecture Notes in Computer Science, pages 387–398. Springer, 1996.

[125] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind

signatures. In Journal Of Cryptology, volume 13, pages 361–396, 2000.

[126] Wolfgang Rankl and Wolfgang Effing. Smart Cards in Transportation Systems, pages 869–891.

John Wiley & Sons, Ltd, 2010.

[127] Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable adaptive priced

oblivious transfer. In Proceedings of the 3rd International Conference Palo Alto on Pairing-

Based Cryptography, Pairing ’09, pages 231–247, Berlin, Heidelberg, 2009. Springer-Verlag.

[128] Patrick F. Riley. The tolls of privacy: An underestimated roadblock for electronic toll collection

usage. Computer Law & Security Review, 24(6):521 – 528, 2008.

[129] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. User Privacy in Transport

Systems Based on RFID E-Tickets. In Claudio Bettini, Sushil Jajodia, Pierangela Sama-

rati, and Xiaoyang Sean Wang, editors, PiLBA, volume 397 of CEUR Workshop Proceedings.

CEUR-WS.org, 2008.

[130] Bill Saderson. E-z pass could take toll on right to privacy. In New York Post, 1996.

[131] Claus P. Schnorr. Efficient identification and signatures for smart cards. In Proceedings of

the 9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’89,

Lecture Notes in Computer Science, pages 239–252. Springer-Verlag New York, Inc., 1989.

189

[132] Berry Schoenmakers. Some efficient zero knowledge proof techniques. Slides presented at:

International Workshop of Cryptographic Protocols, March 2001.

[133] Dominique Schröder, Dominique Unruh, Sanjam Garg, Vanishree Rao, and Amit Sahai. Round

optimal blind signatures. In Proceedings of the 31st Annual International Cryptology Confer-

ence on Advances in Cryptology, CRYPTO’11, volume 6841 of Lecture Notes in Computer

Science, pages 630–648. Springer, 2011.

[134] Silvio Micali Shafi Goldwasser and Ronald R. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM J. Comput., 17:281–308, February 1988.

[135] Latanya Sweeney. Simple demographics often identify people uniquely. Carnegie Mellon, Data

Privacy Working Paper 3. http://dataprivacylab.org/projects/identifiability/.

[136] IBM Security Team. Specification of the identity mixer cryptographic library, version 2.3.0.

In IBM Research Report, 2010.

[137] H. van Antwerpen and Technische Universiteit Eindhoven. Off-line Electronic Cash. Eindhoven

University of Technology, 1990.

[138] Alan Westin. Privacy and freedom, 1967.

[139] Wikipedia. Prism (surveillance program). [Online; accessed 29-March-2014].

	List of Tables
	List of Figures
	Introduction
	Private Authentication - Anonymous Credentials
	Electronic Payments and Applications
	Revocation
	Thesis Outline

	Preliminaries
	Notation and Assumptions
	Cryptographic Assumptions

	Cryptographic Primitives
	Witness Relations and Proofs of Knowledge
	-Protocols
	OR-proof Technique
	Composition of Proofs
	Commitment Schemes
	Range Proofs
	Dynamic Accumulators

	Digital Signatures
	Blind Signatures
	Malleable Signatures

	Security of Blind Signatures
	Security of Schnorr Blind Signature
	Intractability Assumptions
	Generalized Blind Schnorr Signature
	Security of Generalized Blind Schnorr Signatures
	Naive RO Replay Reductions
	Theorem for Perfect Naive RO Replay Reduction
	Theorem for Non-perfect naive RO replay reductions

	Related work
	Conclusions

	Security of U-Prove
	Brands' Blind Signature
	Security of Brands' Blind Signatures
	DLP with Schnorr Prover

	Modifying Brands' Signature
	Unforgeability of Modified Brands Blind Signature

	Conclusions

	Anonymous Credentials Light
	More on Cryptographic Commitments
	Combined Commitment Schemes
	Blinded Pedersen Commitment Scheme

	Defining Blind Signatures with Attributes
	From Blind Signatures with Attributes to Single-Use Anonymous Credentials
	Our Construction: ACL
	Proof of Security

	Related Work and Comparisons.
	Conclusions

	Efficient Payments for Public Transportation Systems
	Payment System Requirements of the Transportation Setting
	E-cash with Attributes
	Brands' E-cash with Attributes
	ACL E-cash with Attributes

	Framework Implementation
	Near Field Communication (NFC) Framework
	Cryptographic Framework
	Efficient Execution of EC Scalar Multiplication Using the ECDH Key Agreement

	Implementation Results
	Related Work
	Conclusions

	Transferable E-cash
	Defining Transferable E-Cash
	Global Variables and Oracles

	Security Properties
	Anonymity Properties
	Double-Spending Detection
	Properties of Serial Numbers and Doublespending Tags
	A Double Spending Detection Mechanism

	Transferable E-Cash Based on Malleable Signatures
	Allowed Transformations
	A Transferable E-Cash Construction

	Security and Privacy of the New Construction
	Instantiation
	Related work
	Conclusions

	Anonymous Revocation
	Anonymous Revocation Data Structure
	Security Model

	A generic construction of ARDS using Range Proofs
	Range Proofs Generic Framework
	Security Proof

	A Generic Construction of ARDS Using Accumulators
	Security Proof

	Instantiations
	ARDS With Range Proofs Instantiation
	ARDS With Accumulators Instantiation

	Efficiency Comparisons
	Related Work
	Conclusions

	Conclusions
	Bibliography

