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One of the major goals in cryptography is to design protocols that withstand malicious behavior

of an adversary. Traditionally, the focus was on a setting where honest users followed their protocol

exactly, without fault. But what if an adversary can induce faults, for example a physical attack

that changes the state of a user’s computation, forcing a user to accept when he should be rejecting;

or tries to use a modified secret key? Can any security guarantees still be given when such errors

occur? My PhD work studies the implications of various types of errors and develops techniques

that protect against them.

I have delved into the following topics for different scenarios of errors: (1) cryptography with

imperfect hardware, where the adversary can cause the cryptographic device to leak some secret

information and tamper with the device’s memory; (2) secure delegation protocols, where a user can

delegate some computation to an untrusted server that causes errors.

To highlight some of my results:

• I gave a generic construction to secure any cryptographic functionality against continual mem-

ory tampering and leakage errors in the split-state model. My main tool is to construct a

non-malleable code that is also leakage resilient in this model, which resolves one central open

problem in the previous work (due to Dziembowski et al. – ICS 10).

• I developed new delegation protocols that allow a user, who only stores a short certificate of

his data (potentially very large), to delegate the computation on the data to the cloud, and

then verify the outcome in time sub-linear in the data size.

In the thesis, I elaborate my work in these two lines, and some potential future directions.
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Chapter 1

Introduction

One of the major goals in cryptography is to design protocols that withstand malicious behavior

of an adversary. Traditionally, our focus has been on a setting where honest users followed their

protocol exactly, without fault. For example, a user who follows an encryption algorithm correctly

should be able to generate a ciphertext that is totally unintelligible to adversaries. This model is

simple and elegant, and captures many useful scenarios; thus many important applications have

been developed based on the model. A classic example is when two users want to communicate

privately at a distance, they can achieve this task through the internet by sending encryptions of

their messages, and the security of the encryption algorithm guarantees that any adversary who

eavesdrops on the communication channel cannot learn anything meaningful.

As we mentioned, a crucial condition assumed in this model is that the honest party can execute

the prescribed protocols without fault. In recent years, however, many scenarios have emerged in

which this assumption may not hold. This thesis is devoted to the study of two important scenarios

that traditional models fail to capture, because the adversary may induce errors.

• The first scenario considers secure delegation in cloud computing, where a user may store some

(potentially very large) data on an untrusted cloud server, and request some computation be

preformed over the data. For example, a Gmail user stores all her mails in the Google server

and may request some search over all the mails. In this scenario, the cloud may not follow the

required computation operations, either deliberately or by random errors. As cloud computing

becomes more and more popular (e.g. many companies such as Amazon, Google, Microsoft,

1
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etc. all provide some forms of cloud services), whether a user can enforce authentication of

computation from untrusted clouds is an important issue with significant implications.

• The second scenario is tamper and leakage resilience in mobile computing. In the past five

years, mobile devices such as smart phones or RFID cards have been widely used in our daily

lives. These devices often interact with other devices at a (physically) close distance, and

thus, an adversary may launch some physical attacks to interfere with the computation, such

as tampering with or getting some partial information of the secret in the device. There has

been a line of research studying physical attacks on implementations [Koc96, BS97, AARR02,

HSH+08] that dramatically weaken the security guaranteed by traditional schemes. How to

obtain secure implementations in the presence of physical attacks is a challenging issue and

becomes more and more important as mobile devices are going to be the next generation of

computation.

I propose new models that capture security in the presence of new errors induced by a malicious

cloud, or physical attacks. In both scenarios, I develop new techniques that achieve stronger secu-

rity guarantees. Before presenting the formal descriptions of these models, I will present detailed

introductions of the two scenarios.

1.1 Part I: Secure Delegation

Delegating computation is a scenario where one party, the delegator, wishes to delegate the compu-

tation of a function f to another party, the worker. The challenge is that the delegator may not

trust the worker, and thus it is desirable to have the worker prove that the computation was done

correctly. Obviously, verifying this proof should be easier than doing the computation.

This concept is also known as outsourcing computation and has received a lot of attention in

recent years, partly due to the increasing interest in cloud computing, where the goal is to outsource

all the computational resources to a (potentially untrusted) cloud. There are several reasons why

the client (or delegator) may not trust the cloud; for example, the cloud may have an incentive to

return incorrect answers. Such an incentive may be a financial one, if the real computation requires

a lot of work, whereas computing incorrect answers requires less work and is unlikely to be detected

by the client. Moreover, in some cases, the applications outsourced to the cloud may be so critical
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that the delegator wishes to rule out accidental faults during the computation. Those incorrect

computations for whatever reasons are referred to as “errors” as in the title of this thesis. For these

reasons, the delegator would like to receive proofs of correctness of the computation.

In order to ensure that the worker (or the cloud) performs the computation correctly, we would

like the worker to prove this to the delegator, but it is essential that the time it takes to verify

the proof is significantly smaller than the time needed to actually run the computation; otherwise

the delegator could do the computation herself and there is no point delegating the task. At the

same time, the running time of the worker carrying out the proof should also be reasonable, i.e.

comparable to the time it takes to do the computation.

The problem of delegating computation has been studied extensively (see Section 1.1.1 for an

overview of previous work). However, most previous work on delegation allows the delegator to run

in time polynomial in the input size, as long as this runtime is significantly smaller than the time it

takes to do the computation. For example, when delegating the computation of a function f that

runs in time T and has inputs of size n, typically the desired runtime of the delegator is poly(n, log T )

and the desired runtime of the worker is poly(T ).

In this work, we want the delegator to run in time that is even smaller than the input size n.

Namely, sometimes it can be prohibitively expensive for the delegator to have to read the entire

input. At first, this may seem unreasonable. So, let us start by motivating this feature with two

specific scenarios to address.

Memory delegation. Suppose that Alice would like to store all her memory in the cloud. The size

of her memory may be huge (for example, may include all the emails she ever received). Moreover,

suppose she does not trust the cloud. Then, every time she asks the cloud to carry out some

computation (for example, compute how many emails she has received from Bob during the last

year), she would like the answer to be accompanied by a proof that indeed the computation was

done correctly. Note that the input to these delegated functions is her entire memory, which can be

huge. Therefore, it is highly undesirable that Alice runs in time that is proportional to this input

size. More importantly, Alice does not even hold on to this memory anymore, since she delegated it

to the cloud.

Thus, in a memory delegation scheme, a delegator delegates her entire memory to the cloud,

and then may ask the could to compute functions of this memory, and expects the answers to be
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accompanied by a proof. In order to verify the correctness of these proofs, the delegator must save

some short certificate of her memory, say a certificate of size polylog(n), where n is the memory

size. The proofs should be verifiable very efficiently; say, in time polylog(n, T ), where T is the time

it takes to compute the function. Moreover, Alice should be able to update her memory efficiently.

Streaming delegation. Suppose that there is some large amount of data that is streaming by,

and suppose that a user, Alice, wishes to save this data, so that later on she will be able to compute

statistics on this data. However, Alice’s memory is limited and she cannot store this data. Instead,

she wishes to delegate this to the cloud. Namely, she asks the cloud to store this streaming data for

her, and then she asks the cloud to perform computation on this data. As in the case of memory

delegation, in order to later verify the correctness of these computations, Alice must save some short

certificate of this streaming data. Unlike the setting of memory delegation, this certificate should

be computed (and updated) in a streaming manner.

The settings of memory and streaming delegation are quite similar: in both settings Alice asks

the cloud to store a huge object (either her memory or the streaming data). There are two main

differences between the two: (1) In the setting of streaming delegation, the certificates and updates

must be computed in a streaming manner. Thus, in this sense, constructing streaming delegation

schemes may be harder than constructing memory delegation schemes. Indeed, our streaming dele-

gation scheme is more complicated than our memory delegation scheme, and proving soundness in

the streaming setting is significantly harder than proving soundness in the memory setting. (2) In

the setting of streaming delegation, the memory is updated by simply adding elements to it. This

is in contrast to the setting of memory delegation, where the memory can be updated in arbitrary

ways, depending on the user’s needs. However, in the memory setting, we allow the delegator to

use the help of the worker when updating her certificate (or secret state), whereas in the streaming

setting we require that the delegator updates her certificate on her own. The reason for this dis-

crepancy, is that in the memory setting the delegator may not be able to update her certificate on

her own, since she may want to update her memory in involved ways (such as, erase all emails from

Bob). On the other hand, in the streaming setting, it seems essential that the delegator updates her

certificate on her own, since in this setting the data may be streaming by very quickly, and there

may not be enough time for the delegator and worker to interact during each update.
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1.1.1 Prior Work

As we mentioned in the previous section, various delegation protocols have been proposed. Some

provide delegation protocols that are sound against any cheating worker, whereas others provide

delegation protocols that are secure only against computationally bounded cheating workers (i.e.,

arguments as opposed to proofs. See below for the references.) Some of these protocols are interac-

tive, whereas others are non-interactive. We survey some of the work below, however, we emphasize

that in essentially all these solutions (except if we allow non-standard assumptions), the delegator

runs in time that is (at least) linear in the input size, and thus their results do not apply to our

settings of memory delegation or streaming delegation.

Interactive proofs. Briefly speaking, an interactive proof system consists of a (possibly) all-

powerful prover and a computationally bounded verifier. Via some interactions, the prover can

convince the verifier of the validity of some statement, and even if the prover is cheating, the verifier

will not be convinced (with high probability) if the statement is false. The celebrated IP=PSPACE

1 Theorem [LFKN92, Sha92] yields an interactive proof protocol for any function f computable in

polynomial space, with a verifier (delegator) running in polynomial time. Thus, the protocol can

be seen as a delegation protocol for languages in PSPACE. However, the complexity of the prover

(worker) is only bounded by polynomial space (and hence may be exponential time). This theorem

was refined and scaled down in [FL93] to give verifier complexity poly(n, s) and prover complexity

2poly(s) for functions f computable in time T and space s, on inputs of length n. Note that the

prover complexity is still super-polynomial in T , even for computations that run in the smallest

possible space, namely s = O(log T ).

The prover complexity was recently improved by Goldwasser et al. [GKR08] to poly(T, 2s), which

is poly(T ) when s = O(log T ). More generally, Goldwasser et al. [GKR08] give interactive proofs

for computations of circuits of small depth d. For these circuits, they achieve prover complexity

poly(T ) and verifier complexity poly(n, d, log T ). (This implies that we can delegate space-bounded

computations because an algorithm that runs in time T and space s can be converted into a circuit

that runs in time poly(T, 2s) and depth d = O(s2).) However, if we do not restrict to computations of

small space or depth, then we cannot apply the results of interactive proofs mentioned above. Indeed,

1IP is the set of all decision problems that have interactive proof systems. PSPACE is the set of all decision
problems that can be solved by a Turing machine using a polynomial amount of space.
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any language that has an interactive proof with verifier running time (and hence communication)

TV can be decided in space poly(n, TV ).

Interactive arguments. Interactive arguments [BCC88] (also known as computationally sound

proofs [Mic00]) relax the soundness condition so that it only holds against malicious computa-

tionally bounded provers. Namely, instead of requiring that no prover strategy whatsoever can

convince the verifier of a false statement, we instead require that no computationally feasible

prover strategy can convince the verifier of a false statement. In this model, Kilian [Kil92] and

Micali [Mic00] gave constant-round protocols with prover complexity poly(T, k) and verifier complex-

ity poly(n, k, log T ) (where k is the security parameter), assuming the existence of collision-resistant

hash functions2 [BG02].

Towards non-interactive solutions. The possibility of efficient non-interactive arguments was

suggested by Micali [Mic00], who showed that non-interactive arguments with prover complexity

poly(T, k) and verifier complexity poly(n, k, log T ) can be constructed in the random oracle model3

(the oracle is used to eliminate interaction a la Fiat–Shamir [FS86]). Heuristically, one might

hope that by instantiating the random oracle with an appropriate family of hash functions, we

could obtain a non-interactive solution to delegating computation: first the delegator (or a trusted

third party) chooses and publishes a random hash function from the family, and then, the proofs

are completely non-interactive (just one message from the prover to the verifier). However, the

random oracle heuristic is known to be unsound in general [CGH04] and even in the context of Fiat–

Shamir [Bar01, GK03]. Thus, despite extensive efforts, the existence of efficient non-interactive

arguments remains a significant open problem in complexity and cryptography.

There has been some recent progress in reducing the number of round of interaction needed. Using

a transformation of Kalai and Raz [KR09], the GKR delegation protocol [GKR08] can be converted

into a 2-round argument (assuming the existence of single-server private-information retrieval (PIR)

schemes4). Like the interactive proofs of [GKR08], however, this solution applies only to small-depth

computations, as the verifier’s complexity grows linearly with the depth.

2A collision-resistant hash function guarantees that it is computationally infeasible to find two different inputs that
hash to the same value.

3In the random oracle model, all parties can access one truly random function via their oracle tapes. This random
function is referred to as the random oracle.

4A PIR scheme allows a user to retrieve an item from a database server without revealing the item’s information
(e.g. the index of the item). See Definition 5.
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Gennaro, Gentry, and Parno [GGP10], and a followup work of Chung, Kalai, and Vadhan [CKV10],

gave a 2-round delegation scheme for arbitrary functions. Yet these constructions need an additional

offline phase, where the delegator invests time poly(T, k) and computes a secret state (T is the time it

takes to compute the function, and k is the security parameter). In the online phase, the delegator’s

running time is reduced to poly(n, k, log T ) for an input of length n, and the worker’s complexity

is poly(T, k). Thus, the delegator’s large investment in the offline phase can be amortized over

many executions of the online phase to delegate the computation of f on many inputs. Their online

phase is not completely non-interactive, but rather consists of two rounds, i.e. a message from the

delegator followed by a response from the worker. However, in many applications, two rounds will

be necessary anyway, as the delegator may need to communicate the input x to the worker.

We remark that one main drawback of that line of work [GGP10, CKV10] is that soundness is

only guaranteed as long as the adversarial worker does not learn whether the delegator accepted

or rejected the proofs. Very recently, Parno et al. [PRV12] resolved this issue by using a technique

of attribute-based encryption (ABE)5. In their scheme, the verifier (delegator) does not need to

hold any secret information, but only keeps some public certificate instead. Thus, the verifications

can be done in public, and their scheme does not suffer from the problem. The main limitation

of this approach comes from the constructions of ABE – currently the state of the art of the ABE

construction can only give a delegation scheme for bounded polynomial-sized circuits. We also

remark that it is not clear how to extend their results to our memory and streaming delegation

settings.

In another work, Applebaum, Ishai, and Kushilevitz [AIK10] consider the offline/online setting,

but focus on efficient solutions for one-time delegation (i.e., the online phase can only be executed

one time). They consider the case when delegation functions are represented as arithmetic circuits.

Streaming interactive proofs. Cormode, Thaler, and Yi [CTY10] considered streaming inter-

active proofs, which is a strengthening of interactive proofs where the input is given to the verifier in

a streaming manner and the verifier is restricted to have sub-linear (ideally, poly-logarithmic) space.

They observed that both the GKR protocol [GKR08] and the universal arguments [BG02] can be

modified to yield efficient streaming interactive proofs/arguments.

Streaming interactive proofs are closely related to streaming delegation. The main difference is

5Briefly speaking, in an attribute encryption ciphertexts are labeled with sets of attributes, and private keys are
associated with access structures that control which ciphertexts a user is able to decrypt.
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that streaming interactive proofs correspond to one-time streaming delegation, where the delegator

can only delegate one computation. In our streaming delegation model, the delegator is allowed

to delegate as many computations to the worker as she want. Indeed, the GKR protocol and the

universal arguments are also the starting points of our construction of streaming delegation schemes.

The main effort is to make the scheme many-time secure.

Solutions based on non-standard assumptions. A series of concurrent work [GLR11, DFH12,

BCCT12] constructed efficient and 2-round delegation protocols for any polynomial-time computable

functions, using some extractable hash functions as building blocks; however, their constructions of

the extractable hash functions are based on some non-standard (formally non-falsifiable, see the

work of Naor [Nao03]) assumptions. Their techniques can be used to construct efficient memory and

streaming delegation, yet the security can only be based on non-standard assumptions. Approaches

based on standard assumptions are much desirable, and in this thesis we only consider solutions

whose security can be proven under standard assumptions.

Delegation of specific functionalities. In this thesis, we only focus on delegations of a large

class of functionalities, yet we remark that there have been lots of studies for delegations of specific

functionalities. For example, Hohenberger and Lysyanskaya [HL05] studied delegation of modular

exponentiations; Papamanthou, Tamassia, and Triandopoulos [PTT11] studied delegation of set op-

erations; Benabbas, Gennaro, and Vahlis [BGV11], and Papamanthou, Shi, and Tamassia [PST13]

studied delegation of some operations of polynomials, e.g. polynomial evaluation, computing deriva-

tives, etc. This direction has been extensively studied by the cryptography community since many

specific functionalities have important applications in practice.

Other delegation models. There have been several variants of delegation models. Belenkiy et

al. [BCE+08] considered a model where parties are modeled as rational players, and given rewards

if they do computations correctly. Choi et al. [CKKC13] considered multi-client delegation where

multiple clients want to do a joint computation on their inputs through a server. This line of research

is outside the scope of this paper, but we highlight this as an interesting open area for future studies.
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1.1.2 Our Contributions

Although there have been many delegation protocols studied as mentioned in the above section, we

recall that their results (for those based on standard assumptions) cannot be applied to our setting

of memory and streaming delegation. The main reason is their delegators’ complexity in the context

of general functionality delegation– the prior work’s delegators run in time that is (at least) linear in

the input size, whereas in our settings of memory and streaming delegation, we want the delegator

to run in time that is even smaller than the input size n. In the first part of this thesis, we construct

both memory delegation and streaming delegation schemes in which the verifications can be done

in sub-linear time in the input size, with the help of some short certificate. Let us elaborate on the

ideas.

The memory delegation scheme consists of an offline phase, where the delegator D delegates her

memory x ∈ {0, 1}n to a worker W. This phase is non-interactive, where the delegator sends a

single message, which includes her memory content x to the worker W. The runtime of both the

delegator and the worker in the offline phase is poly(n), where n is the memory size. At the end

of this phase, the delegator saves a short certificate σ of her memory, which she will later use when

verifying delegation proofs.

The streaming delegation scheme, on the other hand, does not have such an offline phase. In

the streaming setting, we consider the scenario where at each time unit t a bit xt is being streamed.

The delegator starts with some secret state (or certificate) σ0, and at time unit t + 1 she uses her

secret state σt and the current bit xt+1 being streamed, to update her secret state from σt to σt+1.

Moreover, we require the update procedure be efficient.

In both settings, each time the delegator D wants the worker W to compute a function f(x),

they run a delegation protocol, which we denote by Compute(f). The memory delegation scheme

has an additional Update protocol, where the delegator D asks the worker W to update her memory

and to help her update her secret state σ. The latter can be thought of as a delegation request, and

the efficiency guarantees (in term of runtime and communication complexity) are similar to those of

the Compute protocol.

In the streaming setting, the delegator updates her secret state on her own in time polylog(N),

where N is an upper bound on the length of the stream. Namely, the update function, which takes

as input a certificate σt and a bit xt+1, and outputs a new certificate σt+1, can be computed in time
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polylog(N).

We present two memory and streaming delegation protocols. The first protocol has 2-round

message exchanges (i.e, Compute(f) consists of two rounds of message exchanges, the first sent by

the delegator and the second sent by the worker). They are based on the non-interactive version

of the delegation protocol of Goldwasser et al. [GKR08, KR09], denoted by GKR (though are

significantly more complicated than merely running GKR). As in the GKR protocol, the efficiency

of the delegator depends linearly on the depth of the circuit being delegated, so such construction is

efficient only for delegation of low-depth functions. Our second memory and streaming delegation

protocols are interactive (i.e., Compute(f) consists of four rounds). These schemes are based on a

variant of the computational sound proofs of Micali [Mic94], and allow for efficient delegation of all

functions in P.

In what follows we state our theorems formally. We refer the reader to Section 5.1 for the formal

definition of a memory delegation scheme, and to Section 6.1 for the formal definition of a streaming

delegation scheme.

Theorem 1 (Memory Delegation) Assume the existence of a poly-log PIR scheme(as defined in

Definition 5), and assume the existence of a family of collision resistant hash functions. Let F be

the class of all L-uniform poly-size boolean circuits6. Then there exists a 2-round memory delegation

scheme mDel, for delegating any function f ∈ F . The delegation scheme, mDel has the following

properties, for security parameter k.

• The scheme has perfect completeness and negligible soundness error.

• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the

worker run in time poly(k, n).

• The worker is efficient in the online phase. More specifically, it runs in time poly(k, S) dur-

ing each Compute(f) and Update(f) operation, where S is the size of the L-uniform circuit

computing f . The delegator runs in time poly(k, d) during each Compute(f) and Update(f)

operation, where d is the depth7 of the L-uniform circuit computing f .8

6The class contains all poly-size boolean circuits that can be output by a deterministic Turing machine using a
logarithmic space.

7We assume that d ≥ logn.
8Thus, for every constant c ∈ N, if we restrict the depth of f to be at most kc, then the delegator is considered

efficient.
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In particular, assuming the existence of a poly-logarithmic PIR scheme, and assuming the existence

of a collision resistant hash family, we obtain a memory delegation scheme for L-uniform NC com-

putations9 (L stands for logarithmic space, see the footnote for the description of the class), where

the delegator D runs in time poly-logarithmic in the length of the memory.

Theorem 2 (Streaming Delegation) Let k be a security parameter, and let N be a parameter

(an upper bound on the length of the stream). Let F be the class of all L-uniform poly-size boolean

circuits. Assume the existence of a fully-homomorphic encryption scheme secure against poly(N)-

size adversaries. Then there exists a streaming delegation scheme sDelF for F with the following

properties.

• sDelF has perfect completeness and negligible soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable by an L-uniform

circuit of size S and depth d, the delegator D runs in time poly(k, d, logN), and the worker W

runs in time poly(k, logN,S).

In particular, assuming the existence of a fully-homomorphic encryption scheme 10 secure against ad-

versaries of size poly(N), we obtain a streaming delegation scheme for L-uniform NC computations,

where the delegator D runs in time poly-logarithmic in the length of data stream.

The following two theorems present memory and streaming delegation for all polynomial-time

computable functions, at a cost of two extra rounds of message exchanges. The constructions are

based on a variant of the computational sound proofs of Micali [Mic94]. We present the technical

details in Chapter 7.

Theorem 3 (Interactive Memory Delegation) Assume the existence of a family of collision

resistant hash functions. Then there exists a memory delegation scheme mDel, for delegating any

function computable by a polynomial-time Turning machine. The delegation scheme, mDel has the

following properties, for security parameter k.

• The scheme has perfect completeness and negligible soundness error.

9This is the class of all polynomial-sized logarithmic depth circuits that can be output by a deterministic Turing
machine running in logarithmic space.

10A fully homomorphic encryption (FHE) scheme allows one to compute a function f (from some function class)
and produce a ciphertext Enc(f(x)) given input a ciphtertext Enc(x). See Section 3.2 for the detailed description.
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• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the

worker run in time poly(k, n).

• The worker is efficient in the online phase. More specifically, it runs in time poly(k, T ) dur-

ing each Compute(f) and Update(f) operation, where T is an upper-bound on the running

time of f . The delegator runs in time poly(k, log T ) during each Compute(f) and Update(f)

operation.

• Both Compute(f) and Update(f) operations consist of 4 rounds of message exchanges.

Theorem 4 (Interactive Streaming Delegation) Let k be a security parameter, and let N be

a parameter (an upper bound on the length of the stream). Let F be the class of all functions

computable by a polynomial-time Turning machine. Assume the existence of a fully-homomorphic

encryption scheme secure against poly(N)-size adversaries. Then there exists a streaming delegation

scheme sDelF for F with the following properties.

• sDelF has perfect completeness and negligible soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable in time T , the delegator

D runs in time poly(k, logN, log T ), and the worker W runs in time poly(k, logN,T ). The

delegation protocol consists of 4 rounds of message exchanges.

We note that in the random oracle (RO) Model [BR97], the delegation scheme of Micali is non-

interactive. This yields a non-interactive memory delegation scheme and a non-interactive streaming

delegation scheme, for delegating all polynomial-time computable functions, in the RO model.

1.2 Part II: Tamper and Leakage Resilience

The second part of this thesis studies how to achieve secure implementations under tampering and

leakage attacks. Briefly speaking, this task can be formulated as various flavors of the following

general problem. Suppose that we have a device that implements some cryptographic functionality

(for example, a signature scheme or a cryptosystem). Further, suppose that an adversary can, in

addition to input/output access to the device, get some side-channel information about its secret
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state, potentially on a continual basis; for example, an adversary can measure the power consumption

of the device, timing of operations, or even read part of the secret directly [Koc96, HSH+08].

Additionally, suppose that the adversary can, also possibly on a continual basis, somehow alter

the secret state of the device through an additional physical attack such as microwaving the device

or exposing to heat or EM radiation [BS97, AARR02]. These are also referred to as another type

of “errors” as the title of this thesis. What can be done about protecting the security of the

functionality of the device under such errors?

Unfortunately, strong negative results exist even for highly restricted versions of this general

problem. For example, if the device does not have access to randomness, but is subject to arbitrary

continual leakage, and so, in each round i, can leak to the adversary just one bit bi(si) for a predicate

bi of the adversary’s choice, eventually it will leak its entire secret state. Moreover, even in a very

restricted leakage model where the adversary can continually learn a physical bit of the secret state

si, if the adversary is also allowed to tamper with the device and the device does not have access

to randomness, we [LL10] showed that the adversary will eventually learn the entire secret state.

Further, even with tampering alone, Gennaro et al. [GLM+04] show that security from arbitrary

tampering cannot be achieved unless the device can overwrite its memory; further, they show that

security can only be achieved in the common reference string model.

Thus, positive results are only possible for restricted versions of this problem. If we only al-

low leakage, but not tampering, and access to a source of randomness that the device can use

to update itself, devices for signatures and decryption can be secured in this model under appro-

priate assumptions [BKKV10, DHLAW10, LRW11, LLW11]. Devices that don’t have access to

randomness after initialization can still be secure in the more restricted bounded-leakage model,

introduced by Akavia, Goldwasser, and Vaikuntanathan [AGV09], where the attacker can learn

arbitrary information about the secret, as long as the total amount is bounded by some prior pa-

rameter [AGV09, NS09, ADW09, KV09].

If only tampering is allowed, Gennaro et al. [GLM+04] gave a construction that secures a device

in the model where the manufacturer has a public key and signs the secret key of the device.

Dziembowski et al. [DPW10] generalized their solution to the case where the contents of the device

is encoded with a non-malleable code; they consider the case where the class of tampering functions

is restricted, and construct codes that are non-malleable with respect to these restricted tampering

functions. Specifically, they have non-constructive results on existence of non-malleable codes for



14

broad classes of tampering functions; they construct, in the plain model, a non-malleable code with

respect to functions that tamper with individual physical bits; in the random-oracle model, they

give a construction for the so-called split-state tampering functions, which we will discuss in detail

below. Recently, Choi, Kiayias, and Malkin [CKM11] improved the construction (in the plain model)

of non-malleable codes that can withstand block-by-block tampering functions for blocks of small

(logarithmic) sizes.

Finally, there are positive results for signature and encryption devices when both continual

tampering and leakage are possible, and the device has access to a protected source of true random-

ness [KKS11]. One may be tempted to infer from this positive result that it can be “derandomized”

by replacing true randomness with the continuous output of a pseudorandom generator, but this

approach is ruled out by Liu and Lysyanskaya [LL10]. Yet, how does a device, while under a physical

attack, access true randomness? True randomness is a scarce resource even when a device is not

under attack; for example, the GPG implementations of public-key cryptography ask the user to

supply random keystrokes whenever true randomness is needed, which leads to non-random bits

should a device fall into the adversary’s hands.

In the second part of this thesis, we investigate general techniques for protecting cryptographic

devices from continual leakage and tampering attacks without requiring access to true randomness

after initialization. Since, as we explained above, this is impossible for general classes of leakage and

tampering functions, we can only solve this problem for restricted classes of leakage and tampering

functions. Which restrictions are reasonable? Suppose that a device is designed such that its memory

M is split into two compartments, M1 and M2, that are physically separated. For example, a laptop

may have more than one hard drive. Then it is reasonable to imagine that the adversary’s side

channel that leaks information about M1 does not have access to M2, and vice versa. Similarly,

the adversary’s tampering function tampers with M1 without access to M2, and vice versa. This

is known as the split-state model, and it has been considered before in the context of leakage-

only [DP08, DLWW11] and tampering-only [DPW10] attacks.

1.2.1 Prior Work

Indeed the cryptography community has extensively studied security against different classes of

physical attacks. Here we give a table summarizing the state of the art in tolerating continual

leakage and tampering attacks; specific attacks we consider are split-state attacks (abbreviated as
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“SS”), attacks on physical bits (abbreviated as “bits”), attacks on small blocks (abbreviated as

“blocks”), and attacks by any polynomial-sized circuits (abbreviated as “any”). Also, we consider

solutions in the random oracle models (abbreviated as “RO”) where all parties have access to an

un-tamperable random oracle, the common reference string model (abbreviated as “CRS”) where

all parties have access to an un-tamperable common reference string sampled by a trusted party,

and the plain model where no trusted setup is needed.

Type of Type of Local Known results about

leakage tampering coins continual attacks

None Any No Signature and decryption in the CRS model [GLM+04]

Any None No Trivially impossible

Bits Any No Impossible [LL10]

Any None Yes Signature and encryption in the plain model

[BKKV10, DHLAW10, LRW11, LLW11]

None Bits Yes All functionalities in the plain model [DPW10]

None SS Yes All functionalities in the RO model [DPW10]

None Blocks Yes All functionalities in the plain model [CKM11]

Any Any Yes Signature and encryption in the CRS model [KKS11]

SS SS No All functionalities in the CRS model [This thesis]

We remark that all the results referenced above apply to attacks on the memory of the device,

rather than its computation (with one exception). The exception [LLW11] is the work that con-

structed the first encryption and signature schemes that can leak more than logarithmic number of

bits during their update procedure (but cannot be tampered with). Thus, all these works assume

computation to be somewhat secure. In this work, for simplicity, we also assume that computa-

tion is secure, and remark that there is a line of work on protecting computation from leakage or

tampering [ISW03, MR04, IPSW06, DP08, Pie09, DP10, FRR+10, GR10, JV10, FPV11]. This is

orthogonal to the study of protecting memory leakage and tampering. In particular, we can combine

our work with that of Goldwasser and Rothblum [GR10], or Juma and Vahlis [JV10] to obtain a

construction where computation is protected as well; however, this comes at a cost of needing fresh

local randomness. All known cryptographic constructions that allow an adversary to issue leakage
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queries while the computation is going on rely on fresh local randomness.

We must also stress that the previous positive results on leakage resilient (LR) encryption are

weaker than ours. This is because the definition of LR encryption is, of necessity, rather unnatural:

once a challenge ciphertext has been created, the adversary can no longer issue leakage queries. Of

course, without this restriction, security is unattainable: if the adversary were still allowed to issue

a leakage query, it can get leakage of the challenge ciphertext. This means the security can only

be guaranteed only when the device stops leaking, which is unnatural in the setting of continual

leakage. This important problem was first addressed by Halevi and Lin [HL11] who defined and

realized the notion of after-the-fact leakage resilience for encryption in the bounded (i.e. one-time)

split-state leakage model. Our results are much more general: we secure general functionalities (not

just encryption) from tampering as well as leakage, and we attain security under continuous rather

than one-time attacks, solving several problems left explicitly open by Halevi and Lin.

Since we consider the split-state model, we can allow the adversary to keep issuing leakage and

tampering queries after the challenge ciphertext is generated: we just make sure that any ciphertext

cannot be decrypted via split-state leakage functions. In this sense, our results provide stronger

guarantees (for LR encryption) than prior work [BKKV10, LRW11, LLW11, KKS11], even if one

does not care about trusted local randomness and tamper-resilience.

1.2.2 Our Contributions

We construct a generic compiler that secure any cryptographic functionality against tampering and

leakage attacks in the split-state model. Let G(·, ·) be any deterministic cryptographic functionality

that, on input some secret state s and user-provided input x, outputs to the user the value y,

and possibly updates its secret state to a new value s′; formally, (y, s′) = G(s, x). For example,

G can be a stateful pseudorandom generator that, on input an integer m and a seed s, generates

m + |s| pseudorandom bits, and lets y be the first m of these bits, and updates its state to be the

next |s| bits. A signature scheme and a decryption functionality can also be modeled this way. A

participant in an interactive protocol, such as a zero-knowledge proof, or an MPC protocol, can also

be modeled as a stateful cryptographic functionality; the initial state s would represent its input

and random tape; while the supplied input x would represent a message received by this participant.

A construction that secures such a general stateful functionality G against tampering and leakage

is therefore the most general possible result. This is what we achieve: our construction works
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for any efficient deterministic cryptographic functionality G and secures it against tampering and

leakage attacks in the split-state model, without access to any randomness after initialization. Any

randomized functionality G can be securely derandomized using a pseudorandom generator whose

seed is chosen in the initialization phase; our construction also applies to such a derandomized

version of G. Quantitatively, our construction tolerates continual leakage of as many as (1− o(1))n

bits of the secret memory, where n is the size of the secret memory.

Our construction works in the common reference string (CRS) model (depending on the com-

plexity assumptions, this can be weakened to the common random string model); we assume that

the adversary cannot alter the CRS. Trusted access to a CRS is not a strong additional assumption.

A manufacturer of the device is already trusted to produce a correct device; it is therefore reasonable

to also trust the manufacturer to hard-wire a CRS into the device. The CRS itself can potentially

be generated in collaboration with other manufacturers, using a secure multi-party protocol.

Our construction makes the following complexity assumptions:

(1) The existence of a public-key cryptosystem that remains semantically secure even when an

adversary is given g(sk) for an arbitrary poly-time computable g : {0, 1}|sk| 7→ {0, 1}|sk|Θ(1)

; for

example, the decisional Diffie-Hellman (DDH) assumption is sufficient: the cryptosystem due to

Naor and Segev [NS09] relies on DDH and is good enough for our purposes; in fact it gives more

security than we require. Very recently, Hazay et al. [HLAWW12] showed how to construct a leakage-

resilient cryptosystem (encryption scheme) using a regular one (i.e. semantic secure encryption

schemes). Their parameters are worse, but their construction does not rely on specific number

theoretic assumptions.

(2) The existence of robust non-interactive zero-knowledge proof systems for an appropriate NP

language. For example, de Santis et al.’s [DDO+01] construction of robust NIZK for all languages

in NP suffices; although a construction for a more specialized language suffices as well.

In Section 11.3 we discuss the complexity assumptions needed here in more detail; we also

analyze the efficiency of our construction and show that when instantiated with the NIZK due

to Groth [Gro06] and a technique due to Meiklejohn [Mei09], we get efficiency that is compatible

with practical use (as opposed to instantiating with NIZK due to de Santis et al., which is only of

theoretical interest).
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Additional result. Dziembowski et al. [DPW10] only give a random-oracle-based construction of

non-malleable codes for the split-state tampering functions; a central open problem from that paper

was to construct these codes without relying on the random oracle. We give such a non-malleable

code in the CRS model, under the assumptions above. We then use this result as a building block

for our main result; but it is of independent interest.

Very recently, Dziembowski et al. [DKO13] constructed non-malleable codes for one bit in the

split-state model. Their scheme is information-theoretically secure and leakage resilient, and does not

require CRS. The only drawback is that it can only encode one-bit. A follow up work by Aggarwal

et al. [ADL13] constructed information theoretically secure non-malleable codes for strings in the

split-state model. We also remark that our compiler uses an underlying non-malleable code in a

black-box way, and thus any further improvement of the construction will give a direct improvement

of our result.
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Chapter 2

Overview

In what follows we present the high-level overview of our constructions of memory and streaming

delegation schemes. For more elaborate overviews, we refer the reader to Section 5.2.1 for an overview

of our memory delegation scheme, and to Section 6.2.1 for an overview of our streaming delegation

scheme.

2.1 Overview of our Memory Delegation Scheme

The starting point of this work is the observation of Goldwasswer et al. [GKR08], that their delegation

protocol can be verified very efficiently (in time sub-linear in the input size), if the delegator has

oracle access to the low-degree extension of the input x (we refer the reader to Section 3.3 for the

definition of a low-degree extension). Moreover, as observed by [GKR08], the delegator needs to

access this low-degree extension LDEx at a single point z, which depends only on the random coin

tosses of the delegator.

This observation immediately gives rise to a memory delegation scheme with one-time soundness:

The delegator’s secret state will be (z,LDEx(z)). Then, she will use this secret state in order to

verify computation using the GKR protocol. As was argued by Goldwasswer et al., this indeed works

if the delegator runs the delegation protocol once. However, the soundness crucially relies on the

fact that the delegator’s secret state is indeed secret, and if the delegator uses this state more than

once, then soundness breaks completely.

One idea, following the idea of Gennaro et al. [GGP10], is to use a fully homomorphic encryption

20
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(FHE) scheme1 to encrypt all the communication, in order to hide the secret state. This indeed

works if the worker does not learn whether the delegator accepts or rejects his proofs. However, if the

worker does learn the verdict of the delegator, then there are known attacks that break soundness.

In the streaming setting, we follow this approach, and we succeed in overcoming this problem,

and construct a scheme that is sound even if the worker does learn the verdict of the delegator. We

could follow this approach in the memory delegation setting as well. However, for several reasons,

we choose to take a different approach. First, the approach above relies on the existence of an FHE

scheme, whereas our memory delegation scheme relies on the existence of a poly-logarithmic PIR

scheme (see Definition 5), arguably a more reasonable assumption. Second, the approach above

results with the delegator having a secret state, whereas in our memory delegation scheme, the state

of the delegator is public. Finally, the construction and proof of the memory delegation scheme is

simpler.

In our approach, instead of having (z,LDEx(z)) as the delegator’s secret state, the delegator

keeps a tree-commitment of the entire LDEx as her secret state (see Section 3.5 for the definition of

a tree-commitment). Namely, she chooses a random hash function h from a collision-resistant hash

family, and keeps (h, Th(LDEx)) as her state. In addition to giving the worker her memory x, she

also gives him the hash function h. We stress that her state is not secret, which makes the proof

of security significantly simpler than that in the streaming setting (where the delegator’s state is

secret).

Very roughly speaking, when the delegator wishes to delegate the computation of a function f ,

they execute Compute(f) by simply running the (non-interactive) delegation protocol GKR(f). Re-

call that at the end of the GKR protocol the delegator needs to verify the value of LDEx(r) for a

random r. However, she doesn’t have x, since it was delegated to the prover, and all she has is the

state (h, Th(LDEx)). So, rather than computing the value of LDEx(r) on her own, the worker will

reveal this value, by sending the augmented path in the Merkle tree corresponding to the leaf r.

Unfortunately the high-level description given above is a gross oversimplification of our actual

scheme, and there are several technical issues that complicate matters. We elaborate on these in

Section 2.3.

1A fully homomorphic encryption (FHE) scheme allows one to compute a function f (from some function class)
and produce a ciphertext Enc(f(x)) given input a ciphtertext Enc(x).
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We mention that when the delegator wishes to update her memory from x to g(x), she needs to

update her secret state from (h, Th(LDEx)) to (h, Th(LDEg(x))).
2 However, she cannot perform this

operation on her own, since she does not have x. Instead she will delegate this computation to the

worker, by requesting a Compute(g′) operation, where g′(x) = Th(LDEg(x)).

2.2 Overview of our Streaming Delegation Scheme

Our streaming delegation scheme is similar to our memory delegation scheme described above, and

the main difference is in the way the certificate is generated and updated, and in the way the worker

reveals the value LDEx(r).

Generating and updating the certificate. Recall that in the memory delegation scheme, the

certificate of the delegator D consists of a tree-commitment to the low-degree extension of her

memory x. Namely, her certificate is (h, Th(LDEx)), where h is a collision resistant hash function.

Note that this certificate cannot be updated in a streaming manner, since any change to x changes

the low-degree extension LDEx almost everywhere.

Instead, in the streaming setting, we replace the tree commitment with an “algebraic commit-

ment”, which has the property that it can be updated efficiently when new data items arrive. The

resulting certificate is a random point in the low-degree extension of the stream x; i.e., (z,LDEx(z))

for a random point z. This certificate is efficiently updatable, if we assume some upper-bound N on

the size of the stream, and we take parameters H,F,m of the low-degree extension, such that

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|) (2.1)

(this follows from Proposition 6).

As in the memory delegation scheme, at the end of each delegation protocol, the delegator needs

to verify the value of LDEx(r) at a random point r. In the memory delegation scheme this was done

using a Reveal protocol where the worker reveals the augmented path of the leaf r in the Merkle

tree-commitment of LDEx. In the streaming setting, the Reveal protocol is totally different, since

the delegator cannot compute the tree-commitment of LDEx. Unfortunately, unlike in the memory

2Actually, for technical reasons she will need to choose a fresh hash function h′ ← H during each Update. We
discard this technical issue here.
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delegation scheme, in the streaming setting constructing a reusable and sound reveal protocol is

highly non-trivial.

The Reveal protocol. Our starting point is a basic reveal protocol Reveal1 described in Fig-

ure 2.1. Note that the soundness of Reveal1 relies on the secrecy of the certificate σ. Namely,

assuming that W does not know the point z, it is not hard to see, by the Schwartz-Zippel Lemma,

that an adversarial worker can cheat with probability at most d/|F|, where d is the (total) degree of

LDEx.

Reveal1 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

• D sends to W the line `sz that passes through the points s and z. More specifi-
cally, D chooses two random points α1, α2 ← F, and defines `s,z to be the line
that satisfies `s,z(α1) = z and `s,z(α2) = s.

• W returns a univariate polynomial p : F → F, which is the polynomial LDEx
restricted to the line `s,z (i.e., p = LDEx|`s,z ).

• D checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) =
LDEx(s). Otherwise, she rejects.

Figure 2.1: Reveal1 protocol

However, note that the Reveal1 protocol is not reusable. Suppose that D uses the above reveal

protocol to learn the value of LDEx on two random points s, s′ ∈ Fm. From the two executions, an

adversarial worker W∗ receives two lines `s,z and `s′,z, and can learn the secret point z by taking the

intersection of the two lines. Once W∗ learns z, W∗ can easily cheat by returning any polynomial

p∗ that agrees with LDEx only on point z but disagrees on the remaining points.

As observed by Gennaro et al. [GGP10], a natural way to protect the secret point z, is to

run the above Reveal protocol under a fully-homomorphic encryption (FHE) scheme. Namely, D

generates a pair of keys (pk, sk) for a FHE (Gen,Enc,Dec,Eval), and sends pk and an encrypted line

ˆ̀
s,z = Encpk(`s,z) to W, who can compute the polynomial p = LDEx|`s,z homomorphically under

the encryption. Indeed, by the semantic security of FHE, an adversarial worker W∗ cannot learn

any information from D’s message ˆ̀
s,z. This indeed makes the protocol reusable provided that W∗

does not learn the decision bits of D, as proved in [GGP10, CKV10].

However, since the decision bit of D can potentially contain one bit information about the secret

point z, it is not clear that security holds if W∗ learns these decision bits. In fact, for both of the
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delegation schemes of [GGP10, CKV10], which use FHE to hide the delegator D’s secret state, there

are known attacks that learn the whole secret state of D bit-by-bit from D’s decision bits.

Fortunately, we are able to show that a variant of the Reveal1 protocol described in Figure 2.2 is

reusable even if W∗ learns the decision bits of D. The main difference between Reveal1 and Reveal2

is that in Reveal2, the delegator D uses a random two-dimensional affine subspace instead of a line,

and uses an FHE to mask the entire protocol.

Reveal2 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

• D does the following.

1. Generate a pair of keys (pk, sk) ← Gen(1k) for a fully homomorphic en-
cryption scheme FHE.

2. Choose a random two-dimensional affine subspace Ss,z ⊂ Fm that contains
the points s and z. More specifically, choose two random points α1, α2 ←
F2 and let Ss,z ⊂ Fm be a random two-dimensional affine subspace that
satisfies Ss,z(α1) = z and Ss,z(α2) = s.

3. Send Ŝs,z ← Encpk(Ss,z) and pk to W.

• W homomorphically computes the two-variate polynomial p = LDEx|Ss,z
under

the FHE (denote the resulting ciphertext p̂), and sends p̂ to D.

• D decrypts and checks whether p(α1) = LDEx(z), and if so accepts the value
p(α2) = LDEx(s).

Figure 2.2: Protocol Reveal2

We prove that no efficient adversarial W∗ can learn useful information about the secret point

z from the Reveal2 protocol. We note that the proof of the above statement is highly non-trivial,

and is one of the main technical difficulties in this work. Informally, the proof first uses Lemma 16,

which claims that the ciphertext Ŝs,z and the decision bit b of D (which depend on the strategy of

W ∗) do not give too much information about Ss,z to W∗. In other words, the random subspace Ss,z

still has high (pseudo-)entropy from the point of view of W∗. Then it uses an information-theoretic

argument to argue that a random point z in a sufficiently random (with high entropy) subspace

Ss,z is statistically close to a random point in Fm, which implies that W∗ does not learn useful

information about z. We refer the reader to Section 4.1 for the techniques developed in order to

prove the reusable soundness.
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The Field Size. Recall that by Schwartz-Zippel Lemma, an adversarial worker can cheat with

probability at most d/|F|, where d is the (total) degree of LDEx. Recall that in our setting of

parameters:

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|).

Thus, a cheating worker can cheat (and more importantly, obtain information about the secret z)

with probability d/|F| = O(1/polylog(N)), which is not low enough.

The idea is to reduce the cheating probability to negligible by simply increasing the field size to

be super-polynomial. However, we cannot increase the field size in the GKR protocol, since it will

increase the complexity of the worker. Instead, we use an extension field F̃ of F, of super-polynomial

size, only in the certificate and the Reveal protocol, but run the GKR protocols as before. Namely,

the secret state is σ = (z,LDEF̃,H,m(z)) where z ← F̃m, The GKR protocol is run exactly as before

with the parameters (H,F,m).

2.3 Additional Technicalities

The high-level description given above (in Sections 2.1 and 2.2) is a gross oversimplification of our

actual schemes, and there are several technical issues that complicate matters.

Recall that in the overview above, we claimed that Compute(f) merely runs GKR, in addition to

a Reveal protocol which helps the delegator verify the GKR protocol.3 There are several technical

reasons why this actually does not work. In what follows, we explain what are the main technical

problems with this simple idea, and we give the highlevel idea of how to overcome these problems.

1. The first technicality (the easiest one to deal with), is that the GKR delegation scheme does not

have a negligible soundness error. In our setting, especially in the setting of memory delegation,

it is very important to have negligible soundness. The reason is that if the soundness is non-

negligible, then a cheating worker may cheat in the update procedure of the memory delegation

scheme (which is also being delegated). The problem is that if a worker cheats even once in

an update procedure, all soundness guarantees are mute from that point on. So, we really

need the soundness error to be negligible. In order to reduce the soundness error, we will run

the GKR protocol in parallel u times (for any parameter u such that 1/2u = ngl(k), where

3The Reveal protocol in the memory setting is totally different from the Reveal protocol in the streaming setting.
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k is the security parameter). We denote the u-fold parallel repetition of GKR by GKR(u).

As a result the worker will need to reveal to u random points in the low-degree extension:

LDEx(r1), . . . ,LDEx(ru).

2. The second technical point is more subtle. In the offline stage, when the delegator computes

the tree commitment Th(LDEx), she needs to choose the parameters H,F,m for the low-degree

extension. The typical choice for these parameters is:

|H| = polylog(n), |F| = poly(|H|), m = O

(
log n

log log n

)
,

where n = |x|. When delegating the computation of a function f , the worker and delegator

run GKR(u)(f) and need to verify LDEx(ri) = vi for random points r1, . . . , ru. However,

here the parameters of the low-degree extension LDEx depend on the depth d of the circuit

computing f . Namely, looking at the parameters given in [GKR08] (see Theorem 8), the

parameters of the low-degree extension are

|H′| = θ(d · log n), m′ = θ

(
log n

log d

)
, |F′| = poly(|H′|).

Therefore, the worker cannot simply execute the Reveal protocols of the memory delegation

or the streaming delegation. In the memory setting, the tree commitment is w.r.t. parameters

H,F,m whereas the delegator needs to verify LDEF′,H′,m′
x (ri) = vi. In the streaming setting,

the secret state of the delegator is (z,LDEF,H,m
x (z)), as opposed to (z,LDEF′,H′,m′

x (z)), thus

the Reveal protocol described in Section 2.2 doesn’t work.

We get around this technical problem by delegating the functions gri(x) , LDEF′,H′,m′
x (ri).

Luckily, these functions can be computed by a poly-size circuit of depth at most log2 n, assum-

ing the delegated function f is of poly-size (see Proposition 6). We delegate the computation

of each of these gri using GKR(u) to ensure negligible soundness. Thus, finally the worker will

need to reveal to u2 points in LDEx (u points for each gri).
4

3. The final technical difficulty is that all these algorithms need to run in parallel, since we

want our final delegation schemes to be non-interactive (i.e., to consist of only two messages).

4We note that there are several ways to improve efficiency, such as thinking of (gr1 , . . . , gru ) as one function.
However, for the sake of simplicity of exposition, we focus on the simplest (rather than most efficient) solution.
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Typically, there is no problem in running several two-message protocols in parallel [BIN97,

CHS05]. However, in our case, the delegator uses a common secret input in these protocols.

Namely, the delegator uses secret randomness r1, . . . , ru ∈ (F′)m′ in the parallel repetition of

the delegation protocol GKR(f) which ends with her needing to verify that LDEF′,H′,m′
x (ri) =

vi for every i ∈ [u]. In addition she uses these same ri’s in the delegation protocols GKR(gri).

Moreover, at the end of each of the GKR(gri) protocols, the delegator needs to verify that

LDEF,H,m
x (zi,j) = wi,j for random points zi,1, . . . , zi,u ∈ Fm. Finally, they also run a reveal

protocol for each zi,j , denoted by Reveal(zi,j).

We note that the protocol GKR(f) (resp. GKR(g)) is not sound if the ri’s (resp. zi,j ’s) are

a priori known to the worker. To ensure that soundness still holds even if we run all these

algorithms in parallel, we mask parts of the delegator’s message using a PIR scheme or an

FHE scheme, and then we claim that the soundness error remains negligible. To this end,

we use our parallel composition lemma (Lemma 28), which roughly states that if a set of

protocols Π1, . . .Πt are executed in parallel, and the verifiers use the same common private

randomness p in all these protocols, then the soundness remains if the messages of the verifiers

hide this common secret randomness p. (We refer the reader to Section 4.2 for details.)
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Preliminaries

In this chapter, we present some cryptographic primitives that we will use for our constructions.

3.1 Computation Private Information Retrieval (PIR)

Definition 5 Let k be the security parameter and N be the database size. Let QPIR and DPIR be

probabilistic circuits, and let RPIR be a deterministic circuit. We say that PIR = (QPIR,DPIR,RPIR)

is a poly-logarithmic private information retrieval scheme if the following conditions are satisfied:

1. (Size Restriction:) QPIR and RPIR are of size ≤ poly(k, logN), and DPIR is of size ≤

poly(k,N). The output of QPIR and DPIR is of size ≤ poly(k, logN) .

2. (Perfect Correctness:)1 ∀N, ∀k, ∀database x = (x1, x2, . . . , xN ) ∈ {0, 1}N , and ∀i ∈ [N ],

Pr
[
RPIR(k,N, i, (q, s), a) = xi|(q, s)← QPIR(k,N, i), a← DPIR(k, x, q)

]
= 1

3. (User Privacy:) ∀N, ∀k, ∀i, j ∈ [N ], and ∀adversary A of size at most 2k
3

,

∣∣Pr[A(k,N, q) = 1|(q, s)← QPIR(k,N, i)]− Pr[A(k,N, q) = 1|(q, s)← QPIR(k,N, j)]
∣∣ ≤ 2−k

3

.

1For simplicity, we only define perfect correctness. However, usually a PIR scheme allows a negligible probability
of error.

28
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3.2 Fully Homomorphic Encryption

A public-key encryption scheme E = (KeyGen,Enc,Dec) is said to be fully homomorphic if it is

associated with an additional polynomial-time algorithm Eval, that takes as input a public key

pk, a ciphertext x̂ = Encpk(x) and a circuit C, and outputs, a new ciphertext c = Evalpk(x̂, C),

such that Decsk(c) = C(x), where sk is the secret key corresponding to the public key pk. It is

required that the size of c = Evalpk(Encpk(x), C) depends polynomially on the security parameter

and the length of C(x), but is otherwise independent of the size of the circuit C. We also require

that Eval is deterministic, and the the scheme has perfect correctness (i.e. it always holds that

Decsk(Encpk(x)) = x and that Decsk(Evalpk(Encpk(x), C)) = C(x)). For security, we simply require

that E is semantically secure.

In a recent breakthrough, Gentry [Gen09] proposed a fully homomorphic encryption scheme

based on ideal lattices. Following this, Dijk, Gentry, Halevi and Vaikuntanathan [vDGHV10] pro-

posed an alternative construction based on the extended GCD assumption. More recently, Brak-

erski and Vaikuntanathan [BV11], Barkerski, Gentry, and Vaikuntanathan [BGV12], and Braker-

ski [Bra12] constructed amuch more efficient FHE schemes based on a more well-studied problem

– learning with error (LWE) problems [Reg09]. In these schemes, the complexity of the algorithms

(KeyGen,Enc,Dec) depends linearly on the depth d of the circuit C, where d is an upper bound

on the depth of the circuit C that are allowed as inputs to Eval. However, under the additional

assumption that these schemes are circular secure (i.e., remain secure even given an encryption of

the secret key), the complexity of these algorithms are independent of C.

Our streaming memory delegation scheme relies on the existence of a fully homomorphic scheme.

For the sake of simplicity, we assume that the FHE scheme has perfect completeness. We note that

the FHE schemes of both [Gen09] and [vDGHV10] indeed have perfect completeness, and the later

latticed-based constructions can be tweaked slightly such that they have perfect completeness.

3.3 Low Degree Extension

Let H be an extension field of GF[2], and let F be an extension field of H (and in particular, an

extension field of GF[2]), where |F| = poly(|H|).2 We always assume that field operations can be

2Usually, when doing low degree extensions, F is taken to be an extension field of GF[2], and H is simply a subset
of F (not necessarily a subfield). In this work, following the work of [GKR08], we take H to be a subfield. However,
all that is actually needed is that it is of size 2` for some ` ∈ N.
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performed in time that is poly-logarithmic in the field size. Fix an integer m ∈ N. In what follows,

we define the low degree extension of an n-element string (w0, w1, . . . , wn−1) ∈ Fn with respect to

F,H,m, where n ≤ |H|m.

Fix α : Hm → {0, 1, . . . , |H|m−1} to be any (efficiently computable) one-to-one function. In this

paper, we take α to be the lexicographic order of Hm. We can view (w0, w1, . . . , wn−1) as a function

W : Hm → F, where

W (z) =


wα(z) if α(z) < n,

0 otherwise.

(3.1)

A basic fact is that there exists a unique extension of W into a function W̃ : Fm → F (which

agrees with W on Hm; i.e., W̃ |Hm ≡W ), such that W̃ is an m-variate polynomial of degree at most

|H| − 1 in each variable. Moreover, as is formally stated in the proposition below, the function W̃

can be expressed as

W̃ (t1, . . . , tm) =

n−1∑
i=0

β̃i(t1, . . . , tm) · wi,

where each β̃i : Fm → F is an m-variate polynomial, that depends only on the parameters H,F, and

m (and is independent of w), of size poly(|H|,m) and degree |H| − 1 in each variable.

The function W̃ is called the low degree extension of w = (w0, w1, . . . , wn−1) with respect to

F,H,m, and is denoted by LDEF,H,m
w . We omit the index of F,H,m when the context is clear. Also,

sometimes we use W̃ for simplicity.

Proposition 6 There exists a Turing machine that takes as input an extension field H of GF[2],3

an extension field F of H, and integer m. The machine runs in time poly(|H|,m) and outputs the

unique 2m-variate polynomial β̃ : Fm×Fm → F of degree |H|−1 in each variable (represented as an

arithmetic circuit of degree |H|−1 in each variable), such that for every w = (w0, w1, . . . , wn−1) ∈ Fn,

where n ≤ |H|m, and for every z ∈ Fm,

W̃ (z) =
∑
p∈Hm

β̃(z, p) ·W (p),

3Throughout this work, when we refer to a machine that takes as input a field, we mean that the machine is given
a short (poly-logarithmic in the field size) description of the field, that permits field operations to be computed in
time that is poly-logarithmic in the field size.
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where W : Hm → F is the function corresponding to (w0, w − 1, . . . , wn−1) as defined in Equa-

tion (3.1), and W̃ : Fm → F is its low degree extension (i.e., the unique extension of W : Hm → F

of degree at most H− 1 in each variable).

Moreover, β̃ can be evaluated in time poly(|H|,m, log |F|). Namely, there exists a Turing machine

that runs in time poly(|H|,m, log |F|) that takes as input parameters H,F,m (as above), and a pair

(z, p) ∈ Fm × Fm, and outputs β̃(z, p). Furthermore, there exists a circuit for evaluating β̃ in the

above sense with size poly(|H|,m, log |F|) and depth poly(m, log |F|).

Corollary 7 There exists a Turing machine that takes as input an extension field H of GF[2], an

extension field F of H, an integer m, a sequence w = (w0, w1, . . . , wn−1) ∈ Fn such that n ≤ |H|m,

and a coordinate z ∈ Fm. It runs in time n ·poly(|H|,m, log |F|), and outputs the value W̃ (z), where

W̃ is the unique low-degree extension of w (with respect to H,F,m). Furthermore, there exists a

circuit for the same task with size n · poly(|H|,m, log |F|) and depth poly(m, log |F|).

3.4 Delegation Schemes

In recent years, as cloud computing is gaining popularity, there have been many attempts to construct

efficient delegation schemes. Loosely speaking, a delegation scheme is a protocol between a delegator

D and a worker W, where the delegator asks the worker to do some computation, and prove that

he indeed did the computation correctly. Typically, a delegation scheme is with respect to a class

of functions F , and the requirement is that on input (f, x) where f ∈ F and x is in the domain of

f , the worker outputs f(x), along with a proof (which may be interactive or non-interactive). The

requirement is that the worker runs in time that is polynomial in the size of f (when representing f

as a circuit), and the delegator runs in time that is significantly shorter than the size of f (as

otherwise, it would simply compute f(x) on its own). In this work, we use the 2-round delegation

protocol of [GKR08], which in turn uses a round reduction technique from [KR09]. The protocol

has the following guarantees.

Theorem 8 [GKR08, KR09] Assume the existence of a poly-logarithmic PIR scheme, as defined

in Definition 5. Let k be the security parameter, and let F be the family of functions computable

by L-space uniform boolean circuits of size S and depth d ≥ logS. Then, there exists a delegation

protocol for F with the following properties.
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1. The worker runs in time poly(S, k) and the delegator runs in time n · poly(k, d), where n is

the length of the input.

2. The protocol has perfect completeness and soundness s ≤ 1
2 (can be made arbitrarily small),

where soundness is against any cheating worker of size ≤ 2k
3

.

3. The protocol consists of two messages, with communication complexity d ·poly(k, logS). More-

over, the first message sent by the delegator depends only on her random coin tosses, and is

independent of the statement being proved.

4. If the delegator is given oracle access to the low-degree extension of x, rather than being given

the input x itself, then it runs in time poly(k, d), and the protocol still has all the proper-

ties described above, assuming the parameters H,F,m of the low-degree extension satisfy the

following:

|H| = θ(d · log n), m = θ

(
log n

log d

)
, |F| = poly(|H|)

where poly is a large enough polynomial.4 Moreover, the delegator queries the low-degree

extension of x at a single point, which is uniformly random (over his coin tosses).

Throughout this paper, we denote this protocol by GKR.

3.5 Merkle Tree Commitments

Definition 9 Let h : {0, 1}k × {0, 1}k → {0, 1}k be a hash function. A Merkle tree commitment of

a sting x ∈ {0, 1}n w.r.t. h, denoted by Th(x), is a k-bit string, computed as follows: The input x

is partitioned into m = dn/ke blocks x = (B1, . . . , Bm), each block of size k.5 These blocks are

partitioned into pairs (B2i−1, B2i), and the hash function h is applied to each pair, resulting in m/2

blocks. Then, again these m/2 blocks are partitioned into pairs, and the hash function h is applied

to each of these pairs, resulting with m/4 blocks. This is repeated logm times, resulting in a binary

tree of hash values, until one block remains. This block is Th(x).

4The larger poly is, the smaller the soundness becomes.
5For simplicity, we assume that m is a power of 2.
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Our Entropy and Parallel

Composition Lemmas

In this section, we are going to present two important lemmas for our constructions. The first one

is a leakage lemma that argues a distribution that has high “computational entropy” still has high

computational entropy even given a “short” leakage. We will elaborate the term computational

entropy and state the precise quantity of short in the following section. The second lemma argues

that t two-round protocols Π1,Π2,Πt who share some common random secret, when composed in

parallel, have soundness error bounded roughly by ε1 + ε2, . . . , εt, where each εi is the soundness

error of Πi
1. Thus, composing a polynomial number of two-round protocols that have negligible

soundness error yields a two-round protocol that has negligible soundness error. This lemma plays

an important role in that our final protocols of the schemes compose several 2-round protocols (with

some common secret) in parallel. The lemma is crucial In order to argue the soundness of the final

protocol.

4.1 Our Leakage Lemma

In this section, we define some machinery that is needed in order to prove the soundness of our

streaming delegation scheme in Section 6.2. The main contribution of this section is a leakage

lemma (Lemma 22), which essentially says that given an encryption (pk,Encpk(S)) of a random

1Protocols Πi’s need some additional structure. We elaborate the details in the later section.

33



34

2-dimensional subspace S ← Fm×2, and given any additional arbitrary (not necessarily efficient) bit

of leakage b = L(pk,Encpk(S)), then a random vector z ← S is computationally indistinguishable

from a truly random vector u← Fm. We formally state and prove this lemma in Section 4.1.2.

This lemma plays a central role in analyzing the (reusable) soundness of our streaming delegation

scheme. In this scheme, the delegator has a secret state, and we need to prove that a cheating worker

cannot learn any information about her secret state, even after running several delegation protocols

with the delegator, and learning the bit of whether she accepted or rejected. In the soundness proof,

this verdict bit is thought of as a leakage bit.

In the proof of Lemma 22, which is our main leakage lemma, we use another leakage lemma

(Lemma 16), which is formally stated below and proved in Section 4.1.1. This leakage lemma

roughly says that conditioning on a short leakage cannot decrease the conditional pseudo-entropy of

a random variable too much.

In order to even state these lemmas formally, we first need to define the notion of conditional

pseudo-entropy. There are several possible notions of conditional pseudo-entropy with subtle differ-

ences. In the following, we present our definition along with discussions on other possible notions.

We start with the information-theoretic notion of min-entropy and conditional min-entropy.

Definition 10 (Min-Entropy) Let X be a distribution over finite support. The min-entropy of X

is defined as

H∞(X) = min
x∈supp(X)

log
1

Pr[X = x]
= − log

(
max

x∈supp(X)
Pr[X = x]

)
.

Definition 11 (Conditional Min-Entropy) Let (X,C) be a joint distribution over finite support.

The (worst-case) conditional min-entropy of X conditioned on C is defined as

H∞(X|C) = min
(x,c)∈supp(X,C)

log
1

Pr[X = x|C = c]
= min
c∈supp(C)

H∞(X|C=c).

The above worst-case definition may seem too stringent as it requires X to have good min-

entropy conditioned on every possible c ∈ supp(C). Several relaxed definitions have been used.

For example, Renner and Wolf [RW05] defined a smooth version of the above definition, where X

has ε-smooth conditional min-entropy n conditioned on C if (X,C) is ε-close in statistical distance

to a distribution (X ′, C ′) with H∞(X ′|C ′) = n. Such a slackness will be implicitly allowed in
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our definition of conditional pseudo-entropy. On the other hand, Dodis, Ostrovsky, Reyzin, and

Smith [DORS08] defined an average-case version of conditional min-entropy, where Havg
∞ (X|C) =

− log(Ec←C [maxx{Pr[X = x|C = c]}]).2

In the computational setting, Hsiao, Lu, and Reyzin [HLR07] defined conditional HILL entropy.

Informally, X has high conditional HILL entropy conditioned on C if there exists a random variable

Y = Y (C) such that (1) (X,C) is computationally indistinguishable from (Y,C), and (2) Y has high

average conditional min-entropy conditioned on C (a la [DORS08]). In this work, we use a slightly

different definition. The only difference between our definition and the [HLR07] definition is that we

use the worse-case version of conditional min-entropy, as opposed to the average-case version. We

work with the worst-case definition since it is more convenient for our application and makes the

analysis simpler. For convenience, we refer to our notion also as conditional HILL entropy.

Definition 12 (Conditional HILL Entropy) Let (X,C) be a joint distribution over a finite sup-

port, and let n, s ∈ N and ε ∈ (0, 1) be parameters. We say that X conditioned on C has conditional

HILL entropy at least n against circuits of size s with advantage ε, denoted by HHILL
ε,s (X|C) ≥ n, if

there exists a distribution Y = Y (C) jointly distributed with C such that (1) H∞(Y |C) ≥ n, and (2)

(X,C) and (Y,C) are computationally indistinguishable against circuits of size s with advantage ε.3

In the asymptotic setting where there is a security parameter k, we say HHILL(X|C) ≥ n, if for

every constant c ∈ N, HHILL
k−c,kc(X|C) ≥ n.

Remark 13 Note that in the above definition, we only consider distributions (Y,C) that are in-

distinguishable from (X,C), i.e., we do not allow modifying the distribution of C. An alternative

weaker definition is to consider all distributions (X ′, C ′) that are indistinguishable from (X,C). The

two definitions may not be equivalent in general.4 We emphasize that the more stringent definition

seems more relevant for cryptographic applications, since C is often some leakage information on

X learned by an adversary. We further emphasize that we do not claim that our definition is the

“right” one, and we only use it as a tool to prove our main result.

Our goal is to show that if X has high conditional HILL entropy conditioned on C (say,

HHILL(X|C) ≥ n) and B = B(X,C) is an arbitrary, but short (say, one bit) leakage informa-

tion on X, then after further conditioning on B, X still has high conditional HILL entropy (i.e.,

2We note that the two notions of [RW05] and [DORS08] are equivalent up to an additive log(1/ε) term. A detailed
discussion can be found in Appendix B of [DORS08].

3Note that the ε slackness is inherent in the above HILL-type definition.
4We note that the two definitions are equivalent when the length of C is short (≤ O(log k)).
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HHILL(X|C,B) ≥ n− t for some small t). When B can be efficiently generated from (X,C), this is

very easy to prove. However, proving this for general B = B(X,C) is not trivial. Indeed, in order

to prove this, we need to further strengthen our definition of conditional HILL entropy.

Definition 14 (Conditional HILL Entropy w.r.t. Samplable Distributions) Let k be a se-

curity parameter. For a finite distribution (X,C), we say HHILL(X|C) ≥ n w.r.t. samplable distri-

butions if there exists a distribution Y = Y (C) such that the following holds.

1. H∞(Y |C) ≥ n.

2. (X,C) and (Y,C) are computationally indistinguishable.

3. There exists a poly(k) time algorithm Smp that on input c ∈ supp(C), outputs a sample

y ← (Y |C=c).

Remark 15 This definition differs from Definition 12 in two ways. First, we require the distribu-

tions Y |C=c to be efficiently samplable for every c. Second, we require a single distribution Y = Y (C)

such that (X,C) and (Y,C) are indistinguishable for any poly(k)-size distinguisher; whereas in Def-

inition 12, we fix the size kc of distinguisher first and require a distribution Y = Y (C) such that

(X,C) and (Y,C) are indistinguishable for kc-size distinguishers.

Lemma 16 Let k be a security parameter and n, `, t be any parameters such that n ≤ poly(k),

` = O(log k), and t = ω(log k). Let (X,C) be a joint distribution over {0, 1}∗ × {0, 1}∗ of poly(k)

length. If HHILL(X|C) ≥ n w.r.t. samplable distributions, then for any distribution B = B(X,C)

over {0, 1}`, we have

HHILL(X|C,B) ≥ n− t.

The lemma says that further conditioning on O(log k) bits can only decrease the conditional

HILL entropy by ω(log k). Note that an upper bound of O(log k) on the length of B is necessary,

since the pseudo-entropy of X could be generated from merely ω(log k) bits of real entropy. For

example, X can be the output of a pseudo-random generator (PRG) with sub-exponential stretch,

and B can be the whole seed, if the length limit on B is relaxed. On the other hand, we do not

know whether the samplability assumption on Y (C) is necessary or not. Moreover, we do not know

whether we inherently need ω(log k) entropy loss, or whether one can prove ` = O(log k) entropy

loss.
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Before presenting the proof of the lemma, we first compare it with previous results of [DP08,

RTTV08]. Dziembowski and Pietrzak [DP08] (implicitly in Lemma 3), and Reingold, Trevisan,

Tulsiani, and Vadhan [RTTV08] (Theorem 1.3, phrased in a different language of “dense model

theorem”) proved that if HHILL(X) ≥ n and E is an event that occurs with probability p ≥ 1/poly(k),

then after conditioning on the event E, HHILL(X|E) ≥ n− log(1/p).5 This implies a special case of

our Lemma 16 where C is not present: Suppose HHILL(X) ≥ n and B = B(X) is of length O(log k),

then HHILL(X|B) ≥ n− ω(log k).

In contrast, we consider a more general setting where a (possibly long) prior leakage information

C is presented, which may information-theoretically determine X. Indeed, in our setting, C is an

encryption of X and hence determines X.

4.1.1 Proof of Lemma 16

Preliminaries

We proceed to present the proof of Lemma 16. The first part of our proof follows the same line as

previous results [DP08, RTTV08], where we convert (conditional) HILL-type entropy to (conditional)

“metric-type” entropy, defined by Barak, Shaltiel, and Wigderson [BSW03]. On the other hand, the

second part of our proof is more involved than previous results. We start by defining a conditional

version of metric entropy.

Conditional Metric Entropy. Loosely speaking, metric entropy is weaker than HILL entropy

and is defined by switching the order of quantifiers in the definition of HILL entropy. Recall that

the HILL definition says that X has HILL entropy n if there exists a random variable Y with min-

entropy n such that every small distinguisher D fails to distinguish between X and Y . In contrast,

the definition of metric entropy requires that for every small distinguisher D, there exists a random

variable Y (which may depend on D) with min-entropy n such that D fails to distinguish between

X and Y .

Definition 17 (Conditional Metric Entropy) Let (X,C) be a joint distribution over a finite

support. Let n, s ∈ N and ε ∈ (0, 1) be parameters. We say X conditioned on C has condi-

tional metric entropy at least n against randomized circuits of size s with advantage ε, denoted by

5This is also pointed out by Fuller and Reyzin [FR11].
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Hmetric
ε,s (X|C) ≥ n, if for every randomized circuit D of size at most s, there exists a distribution

Y = Y (C) jointly distributed with C such that H∞(Y |C) ≥ n, and

|Pr[D(X,C) = 1]− Pr[D(Y,C) = 1]| ≤ ε.

In the asymptotic setting where there is a security parameter k, we say Hmetric(X|C) ≥ n, if it holds

that Hmetric
k−c,kc(X|C) ≥ n for every constant c ∈ N.

We emphasize that, except for the natural generalization to the conditional version, our defini-

tion differs from that of [BSW03] in that we allow the distinguishers to be randomized, as opposed

to deterministic.6 The reason is that, as pointed out by Vadhan [Vad10] and Dziembowski and

Pietrzak [DP08], the result of [BSW03] does not hold when deterministic distinguishers are consid-

ered, and randomized distinguishers should be used instead.7

Lemma 18 (Theorem 5.2 of [BSW03], generalized) Let (X,C) be a joint distribution over

{0, 1}m1×{0, 1}m2 , and let ε, δ > 0, s, k ∈ N be parameters. If Hmetric
ε,s (X|C) ≥ n, then HHILL

ε+δ,s′(X|C) ≥

n for s′ = s ·O(δ2/(m1 +m2)).

Lemma 18 is proved in exactly the same way as the proof in [BSW03], where one uses von-

Neuman’s min-max theorem [Neu28] to switch the order of quantifiers. For the sake of completeness,

we give a proof sketch below.

Proof. (sketch) For the sake of contradiction, assume that HHILL
ε+δ,s′(X|C) < n. This means that

for every distribution Y = Y (C) with H∞(Y |C) ≥ n, there exists a size s′ distinguisher D that

distinguishes (X,C) from (Y,C) with advantage ≥ ε + δ. Applying min-max theorem, we obtain

the following statement. There exists a distribution D over size-s′ distinguishers such that for every

Y = Y (C) with H∞(Y |C) ≥ n, we have

∣∣∣∣ E
D←D

[D(X,C)]− E
D←D

[D(Y,C)]

∣∣∣∣ ≥ ε+ δ.

6Note that, for HILL-type entropy, randomized distinguishers and deterministic distinguishers are essentially equiv-
alent, since one can turn a randomized distinguisher to a deterministic one by fixing the “best” coins that preserves
the advantage for distinguishing two distributions. In contrast, for the case of metric entropy, it is unclear whether
randomized distinguishers can be converted into deterministic ones since the distinguisher needs to work for all
distributions.

7[DP08], instead of using randomized distinguishers, use deterministic [0, 1]-valued distinguishers. We choose to
use randomized circuit distinguishers since we find them to be more natural than circuits with [0, 1]-valued output.
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Now, it can be shown by standard Chernoff and union bounds that there exists a set S = {D1, . . . , DO((m1+m2)/δ2)}

of circuits in supp(D) such that for every (z, c) ∈ {0, 1}m1 × {0, 1}m2 ,

∣∣∣∣ E
D←D

[D(z, c)]− E
Di←S

[Di(z, c)]

∣∣∣∣ ≤ δ/2.
Since this holds point-wise, it follows that for every Y = Y (C) with H∞(Y |C) ≥ n,

∣∣∣∣ E
Di←S

[Di(X,C)]− E
Di←S

[Di(Y,C)]

∣∣∣∣ ≥ ε.
We obtain a contradiction by observing that choosing a random circuit Di ← S and outputting

Di(z, c) can be implemented by a size s = s′ ·O((m1 +m2)/δ2) randomized circuit.

As a corollary, the lemma implies that conditional HILL entropy and conditional metric entropy

are equivalent in the asymptotic setting.

Corollary 19 Let k be a security parameter. For every joint distribution (X,C) of polynomially

bounded length |(X,C)| ≤ poly(k), we have HHILL(X|C) = Hmetric(X|C).

Formal Proof of Lemma 16

Proof. Suppose for contradiction that there exists a distribution B = B(X,C) such that

HHILL(X|C,B) < n − t. By Corollary 19, this implies that Hmetric(X|C,B) < n − t. Namely, there

exist some constant c0 ∈ N and a randomized circuit D of size kc0 such that for every distribution

Z = Z(C,B) with H∞(Z|C,B) ≥ n− t,

|Pr[D(X,C,B) = 1]− Pr[D(Z,C,B) = 1]| > k−c0
def
= ε. (4.1)

On the other hand, the fact that HHILL(X|C) ≥ n w.r.t. sampleable distributions implies that

there exists a distribution Y = Y (C) such that (1) H∞(Y |C) ≥ n, (2) (X,C) and (Y,C) are

computationally indistinguishable, and (3) there exists a PPT algorithm Smp that on input c ∈

supp(C), outputs a sample y ← (Y |C=c).

For notational convenience, let

pc,b(z) , Pr[D(z, c, b) = 1].
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We construct a polynomial-size (randomized) circuit D′ that distinguishes between (X,C) and

(Y,C), as follows. On input (w, c) which comes from either (X,C) or (Y,C), D′ does the following:

1. Use the sampling algorithm Smp to sample s = (4 · 2`/ε) independent samples of yi ← Y |C=c.

2. For every b ∈ {0, 1}`, compute estimators for pc,b(w) and pc,b(yi), denoted by p̃c,b(w) and

p̃c,b(yi), respectively. More specifically, run D(w, c, b) (resp., D(yi, c, b)) with fresh randomness

t , Θ(`(log2 k)(log s)/ε2) times, and let p̃c,b(w) (resp., p̃c,b(yi)) be the average of the outputs.

3. If there exists some b∗ ∈ {0, 1}` such that

p̃c,b(w) ≥ max
yi
{p̃c,b(yi)}+ ε/4,

then output 1. Otherwise, output 0.

Note that D′ can be implemented by a randomized circuit of size poly(k, 2`, 1/ε) = poly(k). We

also note that the parameter t = Θ(`(log2 k)(log s)/ε2) defined in Step 2 is chosen so that, with

overwhelming probability, all estimators have error less than ε/8, i.e.,

|p̃c,b(w)− pc,b(w)| < ε/8, and |p̃c,b(yi)− pc,b(yi)| < ε/8. (4.2)

This follows from a standard Chernoff bound,8 which says that a single estimator has error less than

ε/8 with probability 1− e−Ω(tε2) = 1− e−Ω(`(log2 k)(log s)). Since there are 2` · (s+ 1) estimators, by

a union bound, the probability that all estimators have error less than ε/8 is at least

1− e−Ω(`(log2 k)(log s)) · 2` · (s+ 1) ≥ 1− ngl(k).

We proceed to prove the following two claims, which jointly imply that D′ distinguishes between

(X,C) and (Y,C) with advantage ε/4− ngl, and thus complete the proof.

Claim 20 Pr[D′(Y,C) = 1] ≤ ε/4.

Claim 21 Pr[D′(X,C) = 1] ≥ ε/2− ngl.

8We use the following basic version of Chernoff bound: Let A1, . . . , An be i.i.d. boolean random variables with
Pr[Ai = 1] = p, and let ε ∈ (0, 1) be a parameter. Then

Pr

[∣∣∣∣( 1

n

∑
Ai

)
− p
∣∣∣∣ ≥ ε] ≤ e−Ω(nε2).
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Proof of Claim 20. Note that when (w, c)← (Y,C), then w and yi’s are i.i.d. copies of (Y |C=c).

Hence, for every b ∈ {0, 1}`,

Pr[pc,b(w) > max
yi
{pc,b(yi)}] < 1/s.

By a union bound,

Pr[∃b∗ ∈ {0, 1}` s.t. pc,b∗(w) > max
yi
{pc,b∗(yi)}] < 2`/s = ε/4.

Denote by EGood the event that Equation (4.2) holds; i.e., the event that all estimators have error

less than ε/8. Recall that we chose the parameter so that event EGood holds with overwhelming

probability (i.e., probability 1− ngl(k)). Note that if event EGood holds,

p̃c,b(w) ≥ max
yi
{p̃c,b(yi)}+ ε/4 ⇒ pc,b(w) > max

yi
{pc,b(yi)}

Therefore,

Pr[D′(Y,C) = 1]

= Pr

[
∃b ∈ {0, 1}` s.t. p̃c,b(w) ≥ max

yi
{p̃c,b(yi)}+ ε/4

]
≤ Pr

[(
∃b ∈ {0, 1}` s.t. p̃c,b(w) ≥ max

yi
{p̃c,b(yi)}+ ε/4

)
∧ EGood

]
+ Pr[¬EGood]

≤ Pr

[
∃b ∈ {0, 1}` s.t. pc,b(w) > max

yi
{pc,b(yi)}

]
+ ngl(k)

≤ ε/4 + ngl(k).

Proof of Claim 21. We first argue that we can assume, without loss of generality, that for every

Z with H∞(Z|C,B) ≥ n− t,

Pr[D(X,C,B) = 1]− Pr[D(Z,C,B) = 1] > ε. (4.3)
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The reason is the following: Suppose for the sake of contradiction that there exists some distribution

Z with H∞(Z|C,B) ≥ n− t such that

Pr[D(X,C,B) = 1]− Pr[D(Z,C,B) = 1] > ε,

and yet there exists another distribution Z ′ with H∞(Z ′|C,B) ≥ n− t such that

Pr[D(Z ′, C,B) = 1]− Pr[D(X,C,B) = 1] > ε.

Then one can construct a distribution Z ′′, by taking an appropriate convex combination of Z and

Z ′, such that H∞(Z ′′|C,B) ≥ n − t and Pr[D(X,C,B) = 1] = Pr[D(Z ′′, C,B) = 1], contradicting

Equation (4.1).

For every pair (c, b) ∈ supp(C,B), let Hcb be a set of the “heaviest” 2n−t points w that maximize

pcb(w). Consider the distribution Z+ = Z+(C,B) such that Z+|(C,B)=(c,b) is the uniform distribution

over Hc,b. Note that H∞(Z+|C,B) = n− t. For every (c, b) ∈ supp(C,B), define

p+
c,b , Pr[D(Z+|C=c,B=b, c, b) = 1].

Using these notations, Equation (4.3) implies that

E
(x,c,b)←(X,C,B)

[pc,b(x)]− E
(c,b)←(C,B)

[p+
c,b] ≥ ε.

By a Markov argument, with probability at least ε/2 over (x, c, b)← (X,C,B),

pc,b(x)− p+
c,b ≥ ε/2.

We next prove that in this case, Pr[D′(x, c) = 1] ≥ 1− ngl(k), which implies that

Pr[D′(X,C) = 1] ≥ (1− ngl(k)) · (ε/2) ≥ ε/2− ngl(k).
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Fix any x, c, b such that pc,b(x)− p+
c,b ≥ ε/2. It remains to prove that

Pr[D′(x, c) = 1] ≥ 1− ngl(k).

Note that by definition, pcb(w) ≤ p+
c,b for every w /∈ Hcb. Recall that we choose the parameter so

that with overwhelming probability, all estimators have error at most ε/8. As before, denote by

EGood the event that indeed all estimators have error at most ε/8.

Pr[D′(x, c) = 1]

≥ Pr[p̃cb(x) ≥ max
yi
{p̃cb(yi)}+ ε/4]

≥ Pr[(p̃cb(x) ≥ max
yi
{p̃cb(yi)}+ ε/4) ∧ EGood]− Pr[¬EGood]

≥ Pr[pcb(x) ≥ max
yi
{pcb(yi)}+ ε/2]− ngl(k)

≥ Pr[∀i, yi /∈ Hcb]− ngl(k)

≥ (1− ngl(k))− ngl(k)

≥ 1− ngl(k),

where the second-to-last inequality follows from the fact that |Hcb| = 2n−t and H∞(Y |C=c) ≥ n.

4.1.2 Main Leakage Lemma

Throughout this section, we consider the following setting. Let k ∈ N be a security parameter. Let

F be a finite field of size q ≥ 2log2 k, and let E = (Gen,Enc,Dec) be any semantic secure public-key

encryption scheme. Let m ≤ poly(k) be a parameter. We define the following random variables.

1. Let S ∈R Fm×2 be a random m-by-2 matrix representing a random 2-dimensional linear

subspace

{a1v1 + a2v2 : a1, a2 ∈ F},

where v1, v2 are columns of S.

2. Let (pk, sk)← Gen(1k), and let Ŝ = Encpk(S).
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3. Let L : {0, 1}∗ → {0, 1} be an arbitrary (randomized, not necessarily efficient) leakage function

that maps (Ŝ, pk) to one bit, and let b = L(Ŝ, pk).

4. Let u← Fm be a random point in Fm, and z be a random point in S. Specifically, z = S · a =

a1v1 + a2v2 where a = (a1, a2) is a uniformly random vector in F2.

Our goal in this section is to prove the following lemma.

Lemma 22 In the above setting, the distributions (z, Ŝ, pk, b) and (u, Ŝ, pk, b) are computationally

indistinguishable.

The lemma says that computationally, the encryption (Ŝ, pk) together with an arbitrary leak-

age bit b does not leak any information about z. Note that information-theoretically, (Ŝ, pk) does

contain information about z, since we know that z is in S. Also note that when b is not present,

semantic security readily implies that (z, Ŝ, pk) and (u, Ŝ, pk) are computationally indistinguishable.

However, when the bit b is present, the proof becomes highly non-trivial, and in particular, our proof

makes use of Lemma 16.

Proof. We first consider the distribution (S, Ŝ, pk). By the semantic security, (S, Ŝ, pk) is compu-

tationally indistinguishable from (S′, Ŝ, pk), where S′ is an i.i.d. copy of S. Note that this implies

HHILL(S|Ŝ, pk) ≥ 2m · log q

w.r.t. sampleable distributions. By Lemma 16,

HHILL(S|Ŝ, pk, b) ≥ (2m · log q)− t,

where we set t = (log q)/4 = ω(log k). Namely, for every constant c ∈ N, there exists a distribution

T = T (Ŝ, pk, b) such that:

1. H∞(T |Ŝ, pk, b) ≥ (2m · log q)− t, and

2. (S, Ŝ, pk, b) and (T, Ŝ, pk, b) are computationally indistinguishable against circuits of size kc

with advantage k−c.

Note that z ← S is efficiently sampleable, say, using a circuit of size m3 = poly(k) . Therefore,

the distributions (zS , S, Ŝ, pk, b) and (zT , T, Ŝ, pk, b), where zS ← S and zT ← T are random points
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in S and T respectively, are computationally indistinguishable against circuits of size (kc−m3) with

advantage k−c.

Clearly, we can remove S and T from the distributions while preserving the indistinguishabil-

ity. Namely, the distributions (zS , Ŝ, pk, b) and (zT , Ŝ, pk, b) are computationally indistinguishable

against circuits of size (kc −m3) with advantage k−c.

We next claim that for any distribution T = T (Ŝ, pk, b) over Fm×2, with

H∞(T |Ŝ, pk, b) ≥ (2m · log q)− t,

the distributions (zT , Ŝ, pk, b) and (u, Ŝ, pk, b) are statistically close (i.e., have distance ngl(k)). This

would imply that (z, Ŝ, pk, b) and (u, Ŝ, pk, b) are computationally indistinguishable against circuits

of size (kc − m3) with advantage k−c + ngl(k). Observing that the above argument holds for all

constants c ∈ N, we conclude that (z, Ŝ, pk, b) and (u, Ŝ, pk, b) are computationally indistinguishable,

as desired.

Thus, it remains to prove that indeed (zT , Ŝ, pk, b) and (u, Ŝ, pk, b) are statistically close. To this

end, we use Lemma 23 below, which states that if a distribution T over Fm×2 has min-entropy at least

(2m·log q)−t and a = (a1, a2)← F2, then z = T ·a is ε-close to uniform, where ε ≤ 2m·q−1/4 = ngl(k).

Recall that according to our definition of conditional min-entropy (which is a worse-case defini-

tion), H∞(T |Ŝ, pk, b) ≥ (2m · log q) − t implies that H∞(T |(Ŝ,pk,b)=σ) ≥ (2m · log q) − t for every

σ ∈ supp(Ŝ, pk, b). Thus, Lemma 23 implies that conditioned on any (Ŝ, pk, b) = σ, the random vari-

able zT is ngl(k)-close to uniform. This clearly implies (zT , Ŝ, pk, b) and (u, Ŝ, pk, b) are statistically

close, as desired.

Lemma 23 Let X be a distribution over Fm×2 with H∞(X) ≥ (2m · log q) − (log q)/4, and a =

(a1, a2)← F2. Then (X · a) ∈ Fm is ε-close to uniform with ε ≤ 2m · q−1/4.

We prove the lemma in the next section.
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4.1.3 Proof of Lemma 23

Let x1, . . . , xm ∈ F2 denote the m rows of X, and let H be the following hash function family

H = {ha : F2 → F s.t. ha(x) = a1x1 + a2x2 ∀a ∈ F2}.

In the above notation, X · a = (ha(x1), . . . , ha(xm)). Loosely speaking, Lemma 23 holds for the

following reasons:

• All rows of X have high min-entropy. Note that there are only (log q)/4 bits of entropy missing

from X, so intuitively, all rows xi of X have at least 2 log q − (log q)/4 bits of entropy.

• H is a 2-universal hash function family. By Leftover Hash Lemma (Lemma 27 below), ha ← H

can extract randomness from all rows xi of X.

We proceed to present necessary preliminaries for proving Lemma 23.

Definition 24 (Block Source) Let X = (X1, . . . , Xm) be a distribution, and let ` ∈ N be a

parameter. We say that X is a block `-source if for every i ∈ [m] and every (x1, . . . , xi−1) ∈

supp(X1, . . . , Xi−1), H∞(Xi|(X1,...,Xi−1)=(x1,...,xi−1)) ≥ `.

The following lemma says that if X = (X1, . . . , Xm) has sufficiently high min-entropy, then X is

(statistically close to) a block source.

Lemma 25 (see, e.g., [Vad10]) Let X = (X1, . . . , Xm) be a distribution over {0, 1}m×n. Let

∆ ∈ N and ε ∈ (0, 1) be parameters. If H∞(X) ≥ mn−∆, then X is (mε)-close to a block k-source

with k = n−∆− log(1/ε).

Definition 26 (2-universal) A hash function family H = {h : {0, 1}n1 → {0, 1}n2} is 2-universal

if for every x 6= x′ ∈ {0, 1}n1 ,

Pr
h←H

[h(x) = h(x′)] ≤ 1/2n2 .

It is easy to verify that the hash function family H = {ha : F2 → F} defined above is 2-universal.

Lemma 27 (Leftorver Hash Lemma (see, e.g., [Vad10])) Let H = {h : {0, 1}n1 → {0, 1}n2}

be a 2-universal family of hash functions. Let k ∈ N and ε > 0 be parameters such that n2 ≤

k − 2 log(1/ε). For any distribution X with H∞(X) ≥ k, the distribution (h, h(X)) is ε-close to

uniform in statistical distance.
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Moreover, if X = (X1, . . . , Xm) is a block k-source, then the distribution (h, h(X1), . . . , h(Xm))

is (mε)-close to uniform.

Lemma 23 follows readily by Lemma 25 and 27.

Proof. (of Lemma 23) Let ε = q−1/4, and k = 1.5 log q. By Lemma 25, X = (x1, . . . , xm) is

mε-close to a block k-source. By Lemma 27, X · a = (ha(x1), . . . , ha(xm)) is (mε + mε)-close to

uniform.

4.2 Parallel Composition Lemma

In this section we give soundness guarantees for a protocol Π that executes several protocols

Π1, . . . ,Πt in parallel, where in each Πi = 〈Pi, Vi〉 the verifier Vi uses the same private random-

ness p. Such a parallel composition lemma will be used to prove soundness both of our memory

delegation scheme (in Section 5.2) and the streaming delegation scheme (in Section 6.2). For the sake

of simplicity, we focus on 2-message protocols, though our results hold for protocols with arbitrary

number of messages.

Let Π1,Π2, . . . ,Πt be protocols, where each Πi = 〈Pi, Vi〉 is a 2-message protocol (where the first

message is sent by the verifier Vi and the second message is sent by the prover Pi) for proving xi ∈ Li.

Let Π = 〈P, V (p)〉(x1, . . . , xt) be the two-message protocol that runs the protocols Π1, . . . ,Πt in

parallel, where each Πi is run with the input xi, and each verifier Vi uses the same private random

coin tosses p (in addition to some independent private randomness which each Vi may use). V

accepts (x1, . . . , xt) if and only if at least one of the Vi’s accepts xi ∈ Li. Thus, Π(x1, . . . , xt) should

be thought of as a proof that there exists i ∈ [t] such that xi ∈ Li.

We say that a protocol Πi has soundness error si if for every false statement x /∈ Li, and for

every efficient cheating prover P ∗,

Pr
p

[Vi accepts the interaction 〈P ∗, Vi(p)〉(x)] ≤ si,

where the randomness is over p and over any additional random coins that Vi may use.

In what follows we prove that if in each protocol Πi, the verifier’s messages are computationally

indistinguishable for all different p’s (of length at most poly(k)), then the soundness of all the Πi’s

implies the soundness of Π.
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Lemma 28 Let k be the security parameter and t ≤ poly(k). Suppose that a protocol Π consists of

a parallel composition of Π1,Π2, . . . ,Πt of the above form, and suppose that for each i the following

two properties hold:

1. Πi has soundness error si.

2. Let {MVi(xi,p)} be the distribution of Vi’s first message, where xi is the common input of Vi

and Pi, and p is the the common private random coins of V1, . . . , Vt. Then, for all xi, p, p
′ (of

length bounded by poly(k)), the distributions {MVi(xi,p)} and {MVi(xi,p′)} are computationally

indistinguishable.

Then Π has soundness error at most
∑
i∈[t] si + ngl(k).

Proof. Suppose for the sake of contradiction that there exists an efficient (parallel) cheating prover

P ∗ and a false input x = (x1, . . . , xt) (i.e., an input x such that for every i ∈ [t], xi /∈ Li) such

that P ∗ succeeds in convincing the verifier V running Π to accept x with probability

ε >
∑
i∈[t]

si + α(k),

for some non-negligible function α. We argue that there exists a coordinate i ∈ [t] and an efficient

cheating prover P ∗i for the protocol Πi that succeed in convincing Vi to accept the false xi with

probability greater than si + α/t− ngl(k), which contradicts the assumption.

For every i ∈ [t], let Wi be the event that P ∗ successfully cheats on the i’th coordinate in the

protocol Π(x), and define εi , Pr[Wi]. By definition, if P ∗ cheats on Π then at least one Wi holds.

Using the union bound, this implies that
∑
i∈[t] εi ≥ ε.

Now for each i ∈ [t] we define a cheating prover P ∗i for the protocol Πi(xi) with the following

strategy. P ∗i , upon receiving a message MVi(xi,p) from Vi, simulates the interaction between P ∗ and

V by embedding the real message of Vi into the i-th coordinate, and setting the other Vj ’s messages

to be MVj(xj ,0) for j 6= i. Then P ∗i replies what P ∗ does in the i’th coordinate.

Denote the success probability of P ∗i by ε̃i. By the message indistinguishability of {MVj(xj ,0)}

and {MVj(xj ,p)} for j 6= i, we know that ε̃i > εi − ngl(k); otherwise there is a distinguisher that

distinguishes between the distributions {MVk(xk,0)} and {MVk(xk,p)} for some k 6= i (by a standard

hybrid argument).
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Thus, ∑
i∈[t]

ε̃i ≥
∑
i∈[t]

εi − t · ngl(k) ≥ ε− ngl(k) ≥
∑
i∈[t]

si + α(k)− ngl(k).

This implies that there exists i such that ε̃i ≥ si + α/t− ngl(k), which contradicts the assumption.

We note that in the streaming delegation and memory delegation schemes, the delegator (verifier)

uses an FHE scheme or a PIR scheme to achieve the property that {MVi(xi,p)} and {MVi(xi,p′)} are

computationally indistinguishable. This allows us to make use of Lemma 28.



Chapter 5

Memory Delegation

5.1 Memory Delegation Model

In this section, we formally define our memory delegation model. We present our memory delegation

scheme in Section 5.2.

Definition 29 (Memory Delegation Scheme) Let F ,G be two sets of functions. A memory

delegation scheme for functions in F and updates in G, is an interactive protocol mDelF,G = 〈D,W〉

between a delegator D and a worker W, of the following form:

1. The scheme mDel consists of two stages: an offline/preprocessing stage and an online stage.

The offline stage is executed only once before the online stage, whereas the online stage can be

executed many times.

2. In the offline stage, both the delegator D and the worker W receive a security parameter 1k and

an input x ∈ {0, 1}n.The worker stores x, and the delegator computes a short (possibly secret)

string σD and stores it for future use.

3. In the online stage, the delegator can interact with the worker via the following two operations.

• A computation operation Compute(f) where both parties take as input a function f ∈ F .

This input is in addition to the inputs that the parties store throughout the delegation

protocol: the security parameter 1k, the current memory content x ∈ {0, 1}n stored only

50



51

by the worker W, and the short (possibly secret) string σD stored only by the delegator D.

Then, W proves to D that y = f(x), for some y ∈ {0, 1}∗.

• An update operation Update(g) where both parties take as input a function g : {0, 1}n →

{0, 1}n′ ∈ G. This is in addition to the inputs that the parties store throughout the

delegation protocol: the security parameters 1k, the current memory content x ∈ {0, 1}n

stored only by the worker W, and the short (possibly secret) string σD stored only by the

delegator D. Then W and D interact, where W “helps” D update her secret σD. At the

end of the interaction, if D accepts, she updates her secret to some σ′D and believes that

the stored x has been updated to g(x). Otherwise, she keeps her secret σD (and thinks of

the previous x as unchanged).

At the end of each operation, D sends W a decision bit b ∈ {0, 1} for her acceptance or rejection.

For a delegation scheme to be meaningful, it needs to have efficiency, completeness and soundness

properties, defined below.

Definition 30 (Efficiency) A delegation scheme mDelF,G has an efficient delegator in the offline

stage if D runs in time poly(k, n) in the offline stage. It has an efficient delegator in the online

stage if D runs in time poly(k) (independent of n) during each operation in the online stage.

A delegation scheme mDelF,G has an efficient worker if the runtime of W is poly(k, n) during

both the offline stage and during each operation in the online stage, where n is the length of the

delegated memory.

Definition 31 (Completeness) For any sets of functions F ,G, a delegation scheme mDelF,G =

〈D,W〉 has perfect completeness if for every k, n ∈ N, and for every x ∈ {0, 1}n, the following holds

with probability 1:1 When D and W run the offline stage with input (1k, x), and then run the online

stage polynomially many times with the operations Update(g), for any g ∈ G, and Compute(f), for

any f ∈ F , the delegator D always accepts (i.e., sends W the decision bit 1).

The definition of soundness is more elaborate, and requires defining the following security game.

We emphasize that our soundness definition is reusable in the sense that we require that a (com-

putationally bounded) cheating worker cannot convince the delegator to accept a wrong statement,

1It has completeness 1− ε if the following holds with probability 1− ε.
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even after interacting with the delegator polynomially many times, and each time learning whether

the delegator accepted or rejected the proof.

One could define security w.r.t. cheating workers of size T (k) for any (possibly super-polynomial)

function T . However, for the sake of simplicity of notation, we define soundness w.r.t. poly-size

cheating workers.

Definition 32 (Reusable Security Game) Let mDelF,G = 〈D,W〉 be a delegation scheme. For a

security parameter k ∈ N and for a PPT (cheating) worker W∗, the security game GW∗(k) is defined

as follows.

The game starts with the offline stage of mDelF,G, and is followed by polynomially many rounds

of the online stage.

1. (Initial Phase) W∗(1k) first chooses a parameter n = poly(k) and an input x ∈ {0, 1}n.

Then, D and W∗(1k) run the offline stage on inputs (1k, x).

2. (Learning Phase) At the beginning of each round of the online stage, W∗ can do one of the

following:

(a) Terminate this phase.

(b) Choose a function f ∈ F and interact with D in the online stage with the operation

Compute(f).

(c) Choose a function g ∈ G and interact with D in the online stage with the operation

Update(g).

After each round, if W∗ did not terminate the phase, D sends her decision bit to W∗.

3. (Challenge Phase) If the learning phase is terminated, W∗ chooses a function f ′ ∈ F , and

D and W∗ execute Compute(f ′).

W∗ succeeds in the game GW∗(k) if D accepts a wrong value y′ 6= f ′(x), where x is the latest

updated memory.

Definition 33 (Reusable Soundness) A delegation scheme mDelF,G = 〈D,W〉 has reusable

soundness error ε if for every k ∈ N and every PPT worker strategy W∗,

Pr[W∗ succeeds in GW∗(k)] ≤ ε(k),
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where GW∗(k) is the security game corresponding to mDelF,G, as defined above. We say that mDelF,G

is sound if it has a negligible soundness error.

Remark. We stress that in the soundness definition, we allow the adversary W∗ to learn the

decision bit of the delegator D after each execution of the delegation protocol. This is in contrast to

the two delegation schemes of [GGP10, CKV10], which are only sound if the adversary W∗ does not

learn the decision bit of the delegator D. We elaborate on this point when we discuss the streaming

setting, in Section 6.1.

In what follows we define the notion of one-time soundness. The reason we need this definition

is that the soundness proof of our memory delegation scheme (in Section 5.2), consists of two parts.

We first prove that our scheme has one-time soundness, i.e., it is sound assuming the delegation

protocol is executed only once. Then, we argue that the fact that it is one-time sound, implies that

it is also sound from multiple interactions (i.e., has reusable soundness.)

Definition 34 (One-time Security Game and One-time Soundness) Let mDelF,G = 〈D,W〉

be a delegation scheme. For a security parameter k ∈ N and for a (cheating) worker W∗, the one-

time security game GW∗

1 (k) is defined similarly to the security game in Definition 41, except that they

do not execute the learning phase, and just proceed to the challenge phase directly from the initial

phase.

We say mDelF,G = 〈D,W〉 has one-time soundness error ε if for every k ∈ N and every PPT

worker strategy W∗,

Pr[W∗ succeeds in GW∗

1 (k)] ≤ ε(k).

We say that mDelF,G is one-time sound if it has a negligible one-time soundness error.

Theorem 35 (Memory Delegation) Assume the existence of a poly-log PIR scheme (as defined

in Definition 5) and a collision resistant hash function family. Then there exists a 2-round memory

delegation scheme mDel, for delegating any function computable by an L-uniform poly-size circuit.

The delegation scheme, mDel has the following properties, for security parameter k.

• The scheme has perfect completeness and negligible (reusable) soundness error.

• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the

worker run in time poly(k, n).
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• The worker is efficient in the online phase. More specifically, it runs in time poly(k, S) dur-

ing each Compute(f) and Update(f) operation, where S is the size of the L-uniform circuit

computing f . The delegator runs in time poly(k, d) during each Compute(f) and Update(f)

operation, where d is the depth of the L-uniform circuit computing f .2

5.2 Memory Delegation Scheme

In this section, we prove Theorem 35, by constructing a non-interactive memory delegation scheme

with the desired properties.

5.2.1 Overview of our Memory Delegation Scheme

The initial idea behind our memory delegation scheme, is the observation of Goldwasswer et. al. [GKR08],

that their delegation protocol can be verified very efficiently (in time sub-linear in the input size),

if the delegator has oracle access to the low-degree extension of the input x (we refer the reader to

Section 3.3 for the definition of a low-degree extension). Moreover, as observed by [GKR08], the

delegator needs to access this low-degree extension LDEx at a single point z, which depends only

on the random coin tosses of the delegator.

This observation immediately gives rise to a memory delegation scheme with one-time soundness:

The delegator’s secret state will be (z,LDEx(z)). Then, she will use this secret state in order to

verify computation using the GKR protocol. As was argued by Goldwasswer et. al., this indeed

works if the delegator runs the delegation protocol once. However, the soundness crucially relies on

the fact that the delegator’s secret state is indeed secret, and if the delegator uses this state more

than once, then soundness breaks completely.

One idea, following the idea of Gennaro et. al. [GGP10], is to use a fully homomorphic encryption

(FHE) scheme to encrypt all the communication, in order to hide the secret state. This indeed works

if the worker does not learn whether the delegator accepts or rejects his proofs. However, if the worker

does learn the verdict of the delegator, then there are known attacks that break soundness.

In the streaming setting, we follow this approach, and we succeed in overcoming this problem,

and construct a scheme that is sound even if the worker does learn the verdict of the delegator. We

could follow this approach in the memory delegation setting as well. However, for several reasons,

2Thus, for every constant c ∈ N, if we restrict the depth of f to be at most kc, then the delegator is considered
efficient.
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we choose to take a different approach. First, the approach above relies on the existence of an

FHE scheme, whereas our memory delegation scheme relies on the existence of a poly-logarithmic

PIR scheme, arguably a more reasonable assumption. Second, the approach above results with the

delegator having a secret state, whereas in our memory delegation scheme, the state of the delegator

is public. Finally, the construction and proof of the memory delegation scheme is simpler.

In our approach, instead of having (z,LDEx(z)) as the delegator’s secret state, the delegator keeps

a tree-commitment of the entire LDEx as her secret state (recall the definition of a tree-commitment

in Section 3.5). Namely, she chooses a random hash function h from a collision-resistant hash family,

and keeps (h, Th(LDEx)) as her state. In addition to giving the worker her memory x, she also gives

him the hash function h. Notice that her state is not secret, which makes the proof of security

significantly simpler than that in the streaming setting (where the delegator’s state is secret).

When the delegator wishes to delegate the computation of a function f , they will execute

Compute(f), by simply running the (non-interactive) delegation protocol GKR(f). Recall that

at the end of the GKR protocol the delegator needs to verify the value of LDEx(r) for a random r.

However, she doesn’t have x, since it was delegated to the prover, and all she has is the state

(h, Th(LDEx)). So, rather than computing the value of LDEx(r) on her own, she will ask the worker

to reveal to this value, by sending the augmented path in the Merkle tree corresponding to the

leaf r.3

When the delegator wishes to update her memory from x to g(x), she will need to update her

secret state from (h, Th(LDEx)) to (h, Th(LDEg(x))). As before, she cannot perform this operation on

her own, and instead she will delegate this computation to the worker, by requesting a Compute(g′)

operation, where g′(x) = Th(LDEg(x)).

Unfortunately the high-level description given above is a gross oversimplification of our scheme,

and there are several technical issues that complicate matters.

The first technicality (the easiest one to deal with), is that the GKR delegation scheme does not

have a negligible soundness error. In our setting, it is very important to have negligible soundness,

since if the soundness is non-negligible, then a cheating worker may cheat in the update procedure

(which is also being delegated). The problem is that if a worker cheats even once in an update

procedure, all soundness guarantees are mute from that point on. So, we really need the soundness

3As we shall see in a few paragraphs, this is an oversimplification, and due to technical reasons, the actual protocol
is more complicated.
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error to be negligible. In order to reduce the soundness error, we will run the GKR protocol in

parallel u times (for any parameter u such that 1/2u = ngl(k)). We denote the u-fold parallel

repetition of GKR by GKR(u). As a result the worker will need to reveal to u augmented paths of

the Merkle tree.

The other technical point is more subtle. In the offline stage, when the delegator computes the

tree commitment Th(LDEx), she needs to choose the parameters H,F,m for the low-degree extension.

The typical choice for these parameters is: |H| = polylog(n), |F| = poly(|H|), and m = O
(

logn
log logn

)
,

where n = |x|. However, when delegating the computation of a function f , the worker and delegator

run GKR(u)(f) and need to verify LDEx(ri) = vi for random points r1, . . . , ru. However, here the

parameters of the low-degree extension LDEx depend on the depth d of the circuit computing f .

Namely, looking at the parameters in Theorem 8, the parameters of the low-degree extension are

|H′| = θ(d · log n), m′ = θ

(
log n

log d

)
, |F′| = poly(|H′|).

Therefore, the worker cannot simply send the augmented path, since the tree commitment is w.r.t.

parameters H,F,m whereas the delegator needs to verify LDEx(ri) = vi w.r.t. the parameters

H′,F′,m′.

We get around this technical problem by delegating the functions gri(x) , LDEF′,H′,m′
x (ri).

Luckily, Corollary 7 implies that these functions can be computed by a poly-size circuit of depth

logc(n) for some constant c (assuming the delegated function f is of poly-size). Again, we delegate

the computation of each of these gri using GKR(u) to ensure negligible soundness. Thus, finally the

worker will need to reveal the augmented paths of u2 points in LDEx (u points for each gri).
4

The final technical difficulty is that all these algorithms need to run in parallel, since we want

our final memory delegation scheme to be non-interactive (i.e., to consist of only two messages).

Typically, there is no problem in running several two-message protocols in parallel. However, in

our case, the delegator uses a common secret input in these protocols. Namely, the delegator

uses secret randomness r1, . . . , ru ∈ (F′)m′ in the parallel repetition of the delegation protocol

GKR(f) which ends with her needing to verify that LDEF′,H′,m′
x (ri) = vi for every i ∈ [u]. In

addition she uses these same ri’s in the delegation protocols GKR(gri). Moreover, at the end

of each of the GKR(gri) protocols, the delegator needs to verify that LDEF,H,m
x (zi,j) = wi,j for

4We note that there are several ways to improve efficiency, such as thinking of (gr1 , . . . , gru ) as one function.
However, for the sake of simplicity of exposition, we focus on the simplest (rather than most efficient) solution.
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random points zi,1, . . . , zi,u ∈ Fm. Finally, they also run a reveal protocol for each zi,j , denoted by

Reveal(zi,j), where the worker simply reveals to the augmented path of the leaf zi,j in the Merkle

tree of LDEF,H,m
x .

We note that the protocol GKR(f) (resp. GKR(g)) is not sound if the ri’s (resp. zi,j ’s) are a

priori known to the worker. To ensure that soundness still holds even if we run all these algorithms

in parallel, we mask parts of the delegator’s message using a PIR scheme, and then we use Lemma 28

to claim that the soundness error remains negligible.

5.2.2 Formal Description of our Memory Delegation Scheme

Our construction uses the following building blocks

1. A collision resistant hash family H = {Hk}k∈N, where every h ∈ Hk satisfies

h : {0, 1}k × {0, 1}k → {0, 1}k.

2. The delegation scheme GKR = 〈D′,W′〉 from [GKR08, KR09] (see Theorem 8 for the properties

of this delegation scheme). The main property we use here, is that the delegator can verify

proofs by accessing its input x at a single random point in LDEx.

• Parameters. Let k ∈ N be the security parameter, and let n ∈ N be the length of the (initial)

memory being delegated. Let H be an extension field of GF[2], and let m ∈ Z such that

|H| = polylog(n), m = θ
(

logn
log logn

)
, and let F be an extension field of H of size |F| = poly (|H|).

• Offline Phase. In the offline phase, both the delegator D and the worker W take as input the

security parameter 1k and a string x ∈ {0, 1}n. The worker W simply saves x. The delegator D

does the following.

1. Compute the low-degree extension of x w.r.t. H,F,m, denoted by LDEx : Fm → F (see

Section 3.3 for the definition of a low-degree extension). She interprets LDEx as a vector

in F|F|m .

2. Choose a random collision resistant hash-function h← Hk, and sends h to W.

3. Compute the root of the Merkle tree of LDEx with respect to the hash function h. Namely,

compute σ = Th(LDEx), which is the root of the Merkle tree corresponding to the hash
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function h (we refer the reader to Section 3.5 for the definition of a Merkle tree).

The delegator D saves (h, σ) as a short certificate for x.

• Online-Phase.

– Compute(f). When the delegator D sends the worker W a computation request Compute(f),

they run the following three protocols in parallel.

1. Run the underlying delegation protocol GKR = 〈D′,W′〉 for delegating the compu-

tation of f(x). However, since the soundness of the GKR protocol is only 1/2, we

amplify this soundness by repeating the GKR protocol u times in parallel. Namely,

W and D run GKR(u) which is a u-fold parallel repetition of of the GKR proto-

col, and thus has soundness 1/2u + ngl(k) = ngl(k) (assuming we take u such that

1/2u = ngl(k)).

If D′ rejects, then D rejects. Otherwise, at the end of this protocol the delegator D

needs to verify that LDEx(ri) = vi for some random points r1, . . . , ru. Recall that

these points depend only on the delegators random coin tosses, and can be efficiently

computed by the delegator D before the protocol execution begins (see Theorem 8).

Recall that the low-degree extension LDEx, is not w.r.t. the parameters H,F,m,

but rather w.r.t. parameters H′,F′,m′ that depend on the depth d of the L-uniform

circuit computing f (see Theorem 8 and the discussion in Section 5.2.1). Thus, the

delegator cannot verify that

LDEF′,H′,m′
x (ri) = vi

by simply asking the worker to “decommit” to the leaves r1, . . . , ru of the Merkle tree,

by sending their augmented paths (since the tree commitment was on the low-degree

extension of x w.r.t. H,F,m). Instead they will run the following additional protocol

(in parallel).

2. The idea is to run for every i ∈ [u], the delegation protocol GKR(u) = 〈D′,W′〉 for
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delegating the functions gri , where

gri(x) = LDEF′,H′,m′
x (ri).

(As in Step 1, we use parallel repetition in order to reduce the soundness error

to ngl(k)). However, note that since these delegation protocols are running in par-

allel with the delegation protocol GKR(u) of Step 1, the ri’s (which are part of the

description of gri) must be kept secret, to ensure the soundness of the GKR(u) pro-

tocol of Step 1.

Thus, to ensure the secrecy of the ri’s, instead of running the GKR(u) protocols of

Step 2 “in the clear”, we mask them using a PIR scheme. In what follows, we explain

what a single masked GKR(u) protocol for computing gri looks like, and this protocol

will be repeated in parallel u times (once for each i ∈ [u]).

Recall that in the GKR protocol (and thus in the GKR(u) protocol), the message sent

by the delegator D′ depends only on the parameters (and her random coin tosses),

and is independent of the actual function being delegated (see Theorem 8). Thus, this

message can be sent in the clear, as it reveals no information about the function gri

being delegated (except for its size and depth), and thus reveals no information about

the secret value ri. On the other hand, the message sent by the worker W′ obviously

does depend on gri , and thus on ri. Since the ri’s should be kept secret, this message

will be sent using a PIR scheme.

Namely, the worker W prepares a database DB′ with N ′ , |F′|m′ entries, where the

entry r ∈ (F′)m′ contains the message he would have sent (in the parallel version

GKR(u)) if the delegated function was gr(x) = LDEF′,H′,m′
x (r). The delegator D,

in addition to sending a GKR(u) message, also sends a query q′i ← QPIR(k, ri, N
′).

Then, the worker W answers the PIR query q′i using the database DB′; i.e., he sends

a′i ← DPIR(k,DB′, q′i). Finally, the delegator D retrieves the “worker’s message”

using the Retrieve algorithm RPIR, and accepts this message if and only if (D′)(u)

would have accepted it, and if it is consistent with Step 1; i.e., if the worker proved

that indeed gri(x) = vi, for the same value vi obtained in Step 1.
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As before, for every i ∈ [u], to verify the i’th delegation protocol GKR(u) for comput-

ing gri(x) = LDEF′,H′,m′
x (ri), the delegator D′ needs to verify that LDEx(zi,j) = wi,j ,

for random values zi,1, . . . , zi,u that depend only on the parameters and on the del-

egator’s random coin tosses. However, here LDEx is w.r.t. the parameters H,F,m,

since the function gri is computable by L-uniform circuit of depth polylog(n) (follows

from Corollary 7). In order to verify this, they run the following Reveal protocol u

times per each i ∈ [u], and thus altogether they run the Reveal protocol u2 times.

3. The delegator and worker run a Reveal protocol u2 times, where the delegator sends

zi,j ∈ Fm and the worker reveals the augmented path of the Merkle tree corresponding

to the leaf zi,j , denoted by aug(zi,j). However, since zi,j needs to remain secret for the

GKR(u) protocols in Step 2 to remain sound, this will be done using a PIR scheme.

Namely, the worker W does the following. He prepares a database DB of size N ,

|F|m, where for any z ∈ Fm the z’th entry contains aug(z) (i..e, the augmented path

corresponding to the leaf z in the Merkle tree of LDEx). The delegator D sends a

query qi,j ← QPIR(k, zi,j , N), and the worker W answers according to his database

ai,j ← DPIR(k,DB, qi,j). Finally, the delegator D retrieves the answer using the

retrieving algorithm RPIR, and accepts this answer if and only if the retrieved string

is a valid augmented path of the Merkle tree corresponding to the leaf zi,j , and if the

leaf value is wi,j .

We denote the delegation protocol of Step 1 by

GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

We denote the masked delegation protocols of Step 2 by

PIR
(
〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)

)
.

We denote the reveal protocols of Step 3 by Reveal(zi,j). Note that the memory x is

implicit in all these notations. We summarize the Compute(f) protocol in Figure 5.1.

– Update(g). When the delegator D sends the worker W an update request Update(g) for

some g ∈ G, indicating that she wishes to update her memory x to g(x), the worker and
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Compute(f):

The delegator D stores a state (h, σ) where σ = Th(LDEF,H,m
x ) and wants to learn the

value of f(x) from the worker W, who stores x ∈ {0, 1}n.

1. D and W run GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

(a) If D′(u) rejects, then the delegator D outputs “reject”.

(b) At the end of this protocol, the delegator D′ needs to verify that

LDEF′,H′,m′
x (ri) = vi for some values vi.

2. For every i ∈ [u], run PIR(〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)).
(a) The delegator D makes sure that in these protocols the worker still claims

that indeed gri(x) = vi, where gri(x) = LDEF′,H′,m′
x (ri). If this is not the

case, then the delegator D outputs “reject”.

(b) If at any point D′ rejects, then the delegator D outputs “reject”.

(c) In order to verify these protocols, the delegator D needs to verify that
LDEF,H,m

x (zi,j) = wi,j for some values wi,j .

3. For every i, j ∈ [u], run Reveal(zi,j).
If for some i, j ∈ [u], the worker fails in revealing to wi,j , then the delegator D
outputs “reject”.

4. The delegator D outputs “accept”, assuming he didn’t output “reject” at any
point.

Figure 5.1: Compute(f)

delegator do the following.

1. The delegator D uses the help of the worker W in order to update her short certificate.

Specifically, D chooses a fresh hash function h′ ← Hk, and sends h′ to W. Then, she

delegates to the worker W the computation Compute(g′), where

g′(x) = Th′(LDEg(x)),

where LDEg(x) is w.r.t. H′,F′,m′, where letting n′ , |g(x)|, the field H′ is an

extension field of GF[2] of size |H′| = polylog(n′), m′ = θ
(

logn′

log logn′

)
, and F′ is an

extension field of H′ of size poly(|H′|). If she rejects this proof, then no update is

performed. Otherwise, she updates her short certificate from σ to σ′ , Th′(LDEg(x)).

2. The worker W updates his state from x to g(x).

Note that if the function g is computed by an L-uniform circuit of depth d, then the

function g′ is computable by an L-uniform circuit of depth d + poly(k) + polylog(n′) ≤

poly(d, k).
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5.2.3 Proof of Theorem 35.

In this section, we prove that the construction above satisfies the properties of Theorem 35. The

perfect completeness follows immediately from the completeness of the underlying delegation scheme

GKR, the completeness of the PIR scheme, and the completeness of the Reveal protocol. The

efficiency guarantees follow immediately from the efficiency guarantees of GKR and the efficiency

guarantees of the underlying PIR scheme.

The main difficulty is in proving soundness. We shall prove the one-time soundness of our

memory delegation scheme in Lemma 36, and establish the reusable soundness in Lemma 37. At a

very high level,

• the one-time soundness of our scheme follows from the soundness of the GKR protocol, the

security of tree commitments, and the parallel composition lemma (Lemma 28).

• the reusable soundness of our scheme follows from the one-time soundness, since the short

certificate of the delegator is not secret, and the worker can compute this short certificate on

his own.

Lemma 36 The memory delegation scheme constructed in Section 5.2.2 is one-time sound, i.e., it

has negligible one-time soundness error.

Proof. Suppose for the sake of contradiction that there exists a PPT worker W∗ and a polynomial q

such that for infinitely many k’s

Pr[W∗ succeeds in GW∗

1 (k)] ≥ 1

q(k)
, (5.1)

where G1 is the one-time soundness game. Recall that in the game G1, the worker W∗(1k) first

chooses a parameter n = poly(k) and a string x ∈ {0, 1}n. Then, D and W∗ run the offline phase,

where D chooses a random hash function h← Hk, computes σ , Th(x), and sends h to W∗. Then,

W∗ chooses a function f ∈ F , and D and W∗ execute Compute(f).

Suppose that W∗ succeeds in proving a false statement f(x) = y′. Namely, W∗ and D run the

protocol Compute(f) and at the end D accepts a wrong statement f(x) = y′.

Recall that the Compute(f) protocol consists of 1 + u+ u2 sub-protocols: an execution of

Π0 = GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f),
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for every i ∈ [u], an execution of

Πi = PIR
(
〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)

)
,

and for every i, j ∈ [u], an execution of Πi,j = Reveal(zi,j).

Suppose that in the Compute(f) protocol, Π0 reduces verifying that f(x) = y′ to verifying the u

statements

LDEF′,H′,m′
x (ri) = vi,

and each Πi reduces verifying that LDEF′,H′,m′
x (ri) = vi to verifying the u statements

LDEF,H,m
x (zi,j) = wi,j .

We note that for W∗ to succeed in G1, W∗ must successfully “cheat” in at least one of Π0,Πi, or

Πi,j . Namely, one of the following cases holds.

1. Case 1. y′ 6= f(x), and for every i ∈ [u], vi = LDEF′,H′,m′
x (ri).

2. Case 2. There exists i ∈ [u] such that vi 6= LDEF′,H′,m′
x (ri), and for every j ∈ [u], wi,j =

LDEF,H,m
x (zi,j).

3. Case 3. There exists i, j ∈ [u] such that wi,j 6= LDEF,H,m
x (zi,j).

Intuitively, each of the above cases should hold with only negligible probability. This is due to

the soundness property of the GKR protocol and the security of the tree commitments.

We next use Lemma 28 to claim that each of the above cases holds with negligible probability,

even when Π0,Πi, or Πi,j are executed in parallel, contradicting Equation (5.1).

In order to make use of Lemma 28, we consider a slightly modified version of the protocols

Π0, Πi, and Πi,j , denoted by Π′0, Π′i, and Π′i,j . The messages sent in these protocols are identical

to the ones sent in the original Π0,Πi,Πi,j protocols, and the only difference is in the verification

procedure. Note that the protocols Π0,Πi,Πi,j are interleaved in the sense that the verifier of Π0

doesn’t actually verify the correctness of Π0, but rather uses the protocols Πi to verify the correctness

of Π0. Similarly, the verifier uses the protocols Πi,j to verify the correctness of Πi. Instead, we define

Π′0,Π
′
i,Π
′
i,j to be stand-alone protocols (with their own verification procedures) for recognizing the

empty language.
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Recall that Π0 = GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f) is a u-fold parallel repetition of GKR,

where the delegator delegates the computation of f(x) to the worker. In Π′0, the verifier actually

computes on her own (using x) the correct values of y = f(x) and vi = LDEF′,H′,m′
x (ri) for every

i ∈ [u]5, and the verifier accepts if and only if at the end of GKR(u), the worker convinces the

delegator to accept some incorrect y′ 6= f(x). Note that the the soundness of GKR(u) implies that

Π′0 has negligible soundness error.

Recall that each Πi = PIR(〈W′(u),D′(u)(zi,1, . . . , zi,u)〉(gri)) is a masked u-fold parallel repetition

of GKR, where the delegator delegates the computation of gri(x) = LDEF′,H′,m′
x (ri) to the worker,

and ri is a random point masked by the PIR scheme. In each Π′i, the verifier actually computes on

her own (using x) the correct value vi = LDEF′,H′,m′
x (ri) and the values wi,j = LDEF,H,m

x (zi,j) for

every j ∈ [u], and the verifier accepts if and only if the worker convinces the delegator to accept some

incorrect v′i 6= LDEF′,H′,m′
x (ri). Note that the soundness of GKR(u) implies that Π′i has negligible

soundness error.6

Finally, recall that each Πi,j = Reveal(zi,j) is a masked tree commitment reveal protocol, where

the delegator asks the worker to reveal the value of LDEF,H,m
x (zi,j) by giving a valid augmented path

aug(zi,j) of Th(LDEx), and zi,j is a random point masked by the PIR scheme. In each Π′i,j , the

verifier actually computes on her own (using x) the correct values of wi,j = LDEF,H,m
x (zi,j), and the

verifier accepts iff the worker convinces the delegator to accept some incorrect wi,j 6= LDEF,H,m
x (zi,j).

Note that the security of tree commitments implies that Π′i,j has negligible soundness error.

In all the protocols Π′0, Π′i, and Π′i,j , we think of x as the common input, and we think of

p =
(
(ri)i∈[u], (zi,j)i,j∈[u]

)
as the common private randomness.

Let Π′ be the corresponding parallel execution of Π′0,Π
′
i, and Π′i,j , where the verifier of Π′ accepts

if and only if any one of Π′0,Π
′
i, and Π′i,j accepts. Lemma 28 implies that the fact that each of the

protocols Π′0,Π
′
i, and Π′i,j has negligible soundness error, implies that Π′ has negligible soundness as

well. Recall that whenever W∗ succeed in G1, at least one of the above three cases holds. Namely,

the verifier in Π′0 accepts when Case 1 holds, the verifier in Π′i accepts when Case 2 holds, and and

5Note that the verifier in these protocols runs in time poly(|x|), which is too long in our setting, but this is only
in the analysis.

6Note that we didn’t use the soundness of the PIR scheme. Indeed, the PIR scheme is added only in order to later
apply Lemma 28.
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the verifier in Π′i,j accepts when Case 3 holds. Thus,

Pr[W∗ succeeds in GW∗

1 (k)] ≤ Pr[D accepts in Π′] ≤ ngl(k),

contradicting Equation (5.1).

Lemma 37 The memory delegation scheme constructed in Section 5.2.2 is sound, i.e., it has neg-

ligible reusable soundness error.

Proof. Suppose for the sake of contradiction that there exists a PPT worker W∗ such that

Pr[W∗ succeeds in GW∗(k)] ≥ α(k), (5.2)

for a non-negligible function α, where G is the reusable soundness game. We construct a PPT worker

W∗1 which succeeds in the one-time security game G
W∗1
1 (k) with non-negligible probability.

Recall that the game G proceeds in three phases, as follows.

• In the initial phase, the worker W∗(1k) first chooses a parameter n = poly(k) and a string x ∈

{0, 1}n. Then, D and W∗ run the offline phase, where D chooses a random hash function

h← Hk, computes σ , Th(x), and sends h to W∗.

• In the learning phase, W∗ and D execute polynomially many Compute(f) and Update(g) op-

erations, where each f ∈ F and g ∈ G are chosen by W∗. In the Update(g), D chooses a

fresh hash function h′ ← Hk, sends h′ to W∗, and then D and W∗ execute Compute(g′) where

g′(x) = Th′(LDEg(x)). If D accepts, then the memory is updated to x′ = g(x), and if D rejects,

then the memory x remains unchanged.

• In the challenge phase, W∗ chooses f ′ ∈ F , and D and W∗ execute Compute(f ′). W∗ succeeds

if D accepts a wrong value y′ 6= f ′(x), where x is the latest updated memory.

Intuitively, noting that the short certificate of the delegator is public, one-time soundness seems

to immediately imply reusable soundness, since in this case a (one-time) cheating worker W∗1 can

simulate the learning phase of 〈D,W∗〉 on his own. However, this intuition is an oversimplification,

since W∗ may cheat in one of the Update computations, and thus convince the delegator D to update
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her certificate to some incorrect value, which allows W∗ to cheat easily in the challenge phase. In

this case, simulating the learning phase does not help W∗1 cheat in the one-time security game G1.

Therefore, instead of simply simulating the entire learning phase, roughly speaking, W∗1 does the

following.

1. Guess the first time that W∗ cheats successfully in either an update or a compute operation

(we refer to this as the first cheating operation).

2. Guess the last valid update operation (that D accepts) before the cheating operation (we refer

to this as the last update operation).

3. Embed the one-time game G1 into the reusable game G, as follows: Simulate 〈D,W∗〉 in G

up to the last update operation, and use the memory at that time to interact with D1 in the

initial phase of G1. Then, continue to simulate 〈D,W∗〉 in G up to the first cheating operation,

and interact with D1 in the challenge phase of G1 by using W∗ in this first cheating operation

in G.

In order to describe W∗1 more formally, we use the following notation. Let L(k) ≤ poly(k) be an

upper bound on the total number of Compute and Update operations that W∗ makes in the (reusable)

game G. We call each such operation in G a round. We refer to the initial phase as round 0, the

learning phase starts at round 1, and the challenge phase is the last round. Denote by xi the memory

content at the end of round i, and let fi be the delegation function of the Compute(·) operation in

round i. Recall that Update(g) is implemented via a compute operation, so fi is defined for every

round.

Using this notation, we define W∗1 more formally, as follows:

1. Choose at random j ← [L] and choose at random i← {0, 1, . . . , j − 1}, where j is a guess for

the first cheating operation of W∗, and i is a guess for the last successful Update operation

of W∗ before round j. (i = 0 corresponds to the guess that W∗ doesn’t update successfully the

initial input x0 before round j.)

2. Simulate the interaction of 〈D,W∗〉 in the reusable game G up until the end of round i. Denote

by xi the memory at the end of round i in the simulated game G.

3. Start the initial phase of G1, with the memory xi.
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4. Upon receiving a hash function h← Hk from D1 in the offline phase, view this h as chosen by

D in round i of the simulated (reusable game) G, and continue the simulation of G until the

beginning of round j.

5. If at round j, W∗ chooses to perform Compute(fj), then start the challenge phase of G1 with

the function fj , and interact with D1 by simulating W∗ (who supposedly executes Compute(fj)

with D).

We next analyze the success probability of W∗1. To this end, for any j ∈ [L] and any i ∈ {0, 1, . . . , j−

1}, let Wi,j be the event that (1) the first time that W∗ cheats successfully is in round j, and (2)

the last valid update operation (that D accepts) before round j is in round i.

Note that by definition, whenever W∗ succeeds in G, there must exist some such i, j such that

event Wi,j holds. Thus, a simple counting argument, together with Equation (5.2), implies that

there exists some such i, j such that

Pr[Wi,j ] ≥
α

L2
,

which implies that

Pr[W∗1 succeeds in G
W∗1
1 (k)] ≥ α

L2
,

contradicting Lemma 36, which asserts that the scheme is one-time secure.



Chapter 6

Streaming Delegation

6.1 Streaming Delegation Model

In this section, we formally define our streaming delegation model. We present our streaming

delegation scheme in Section 6.2.

Definition 38 (Streaming Delegation Scheme) Let F be a class of boolean functions. A stream-

ing delegation scheme sDelF , for a function class F , consists of a streaming generator S and an

interactive protocol 〈D,W〉 between a delegator D and a worker W with the following structure.

1. The scheme sDel starts at time 0, at which all parties receive a security parameter 1k and a

parameter N (in binary) which specifies the maximum length of the data stream. On input

(1k, N), D generates some (possibly secret) state σ0.

2. At each time t ∈ [N ], S generates a data item xt ∈ {0, 1}, which is received by both D and W.

Upon receiving xt, D updates her secret state from σt−1 to σt, and W simply stores xt. Let

xt = xt−1 ◦ xt denote the current received data items, where ◦ represents a concatenation.

3. At any time t ∈ [N ], D may choose a delegation function f : {0, 1}t → {0, 1} ∈ F and run the

delegation protocol 〈D,W〉 on input (f, t). In addition to the common input (f, t), the delegator

D takes as input her secret state σt, and the worker W takes as input the data stream xt.1

1For simplicity of presentation, we omit the security parameter when it is clear from the context.

68



69

Remark 1. For the sake of readability, we try to keep the definition of the model as simple as

possible. For example, we assume that data items are bits and delegation functions are boolean

functions, while it is natural to consider non-boolean data items and non-boolean delegation func-

tions. Also, we implicitly assume that D delegates at most one function of the current data stream

at any given time t, while it is natural to allow D to delegate multiple functions at the same time.

Nevertheless, it will be easy to see that our solution presented in Section 6.2 generalizes to these

extensions readily.

Remark 2. Note that in Definition 38, we require that D updates her fingerprint of the data

stream on her own efficiently (ideally, in time polylog(N); see Definition 39 below). The reason

is that in the streaming setting, the data stream arrives constantly at a high rate. Thus, if the

update function would be delegated at time t, this delegation protocol may not end before time

t + 1. Hence, it may be infeasible and unreliable to ask the worker for his help in updating the

delegator’s fingerprint. We note that this is in contrast to the setting of memory delegation, where

we do allow the update procedure to be delegated (see Section 5.1 for details).

Definition 39 (Efficiency) A streaming delegation scheme sDelF has an efficient delegator if the

runtime of D each time she updates her (secret) fingerprint is polylog(N), and her runtime during

each execution of the protocol 〈D,W〉(f, t) is poly(k, logN, logS), where S is the size of the circuit

computing f . A streaming delegation scheme sDelF has an efficient worker if the runtime of W during

an execution of 〈D,W〉(f, t) is poly(k, logN,S), where S is the size of the circuit computing f .

We proceed to define the completeness and soundness of a streaming delegation scheme.

Definition 40 (Completeness) For any function class F , a streaming delegation scheme sDelF

has perfect completeness if for every parameters k,N ∈ N, t ∈ [N ], every function f : {0, 1}t →

{0, 1} ∈ F , and every xt ∈ {0, 1}t generated by S, the following holds with probability 1:2 When D

and W run the delegation protocol 〈D,W〉(f, t), D always accepts and outputs y = f(xt).

The definition of the soundness property is more elaborate, since D and W may run the delegation

protocol multiple times with different inputs. We provide the following game-based definition, where

2It has completeness 1− ε if the following holds with probability 1− ε.
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we allow the adversary W∗ to choose the data stream and delegation functions, and W∗ wins if he

convinces D to accept an incorrect function value.

Definition 41 (Streaming Security Game) Let k be a security parameter and N be a param-

eter. Let F be a function class and let sDelF be a delegation scheme for F . The corresponding

streaming security game GW∗(k,N) played by an (adversarial) worker W∗ is defined as follows.

1. At time 0, the delegator D, on input (1k, N), generates her secret state σ0.

2. At each time t ∈ [N ], W∗ chooses a data item xt ∈ {0, 1} and sends it to D, who then updates

her secret state to σt. Furthermore, W∗ may choose a function f : {0, 1}t → {0, 1} ∈ F and

run with D the delegation protocol 〈D,W∗〉 on input (f, t).

At the end of each delegation protocol, W∗ learns whether D accepts or rejects.

3. W∗ may terminate the game at any time t ∈ [N ].

W∗ succeeds in the game GW∗(k,N) if there exists a time t such that W∗ chooses to run the

delegation protocol on input (f, t) for some function f ∈ F , and convinces D to accept a wrong value

y 6= f(xt).

Definition 42 (Soundness) Let k be a security parameter, and F a (boolean) function class that

is poly-time computable. A delegation scheme sDelF has soundness error ε if for every worker

strategy W∗ with runtime poly(N), where N = N(k),

Pr[W∗ succeeds in GW∗(k)] ≤ ε(N),

where GW∗(k) is the security game corresponding to sDelF , as defined above. We say that sDelF is

sound if it has a negligible soundness error in the parameter N .

Remark. Note that in the above definition, we refer to k as the security parameter, but require

the soundness to hold against any poly(N)-time adversaries as opposed to standard poly(k)-time

adversaries. This is because the honest worker needs to run in time poly(N) even to evaluate

the delegation function f . One should think of k as the security parameter of the cryptographic

primitives used by D in the delegation scheme, where the primitives are required to be secure against

poly(N)-time adversaries.
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Typically, one may assume that k and N are polynomially related. However, in the context of

streaming algorithms, it is common to think of the data stream as having length super-polynomial

in the computational resource of the streaming algorithms. For example, the space complexity of a

streaming algorithm is typically limited to polylog(N), which usually implies the process time per

data item is also polylog(N). We note that a stronger security assumption on the cryptographic

primitives is necessary when the data stream is of length super-polynomial in the computational

power of the delegator.

Remark. Note that, as in the memory delegation model, in the soundness definition, we allow

the adversary W∗ to learn the decision bit of the delegator D after each execution of the delegation

protocol. This is in contrast to the two delegation schemes of [GGP10, CKV10], which are sound

only if the adversary W∗ does not learn the decision bit of the delegator D.

We stress that our streaming delegation scheme (in Section 6.2) has the property that the state

of the delegator must be secret, in order to ensure soundness.3 The only other delegation schemes

that we are aware of which have this property, are [GGP10, CKV10]. However, these schemes are

sound only if the adversary W∗ does not learn the decision bit of the delegator D. The reason why

in these schemes the decision bit needs to be kept secret is that the delegator uses her secret state

to verify the worker’s answer, and thus, her decision bit can potentially reveal one bit of information

about her secret state. Indeed, in both schemes of [GGP10, CKV10], if D’s decision bits are revealed,

then there are known attacks to learn the secret state of D bit by bit and break the soundness of

the schemes.

We didn’t have to deal with this issue in our memory delegation scheme mDel, since the state of

the delegator in mDel is not secret. In contrast, the delegator of our streaming delegation scheme

constructed in Section 6.2 does hold a secret state, and handling this reusability issue is one of the

main technical challenges of this work. It is for this reason that we need all the machinery that was

developed in Section 4.1.

In what follows we define the notion of one-time soundness. The reason we need this definition,

is that our soundness proof (for our streaming delegation scheme in Section 6.2), consists of two

3This is in contrast to our memory delegation scheme (in Section 5.2), where the state of the delegator was not
secret.
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parts: We first prove that our scheme has one-time soundness, i.e., it is sound assuming the delega-

tion protocol is executed only once. Then, we argue that the one-time soundness implies reusable

soundness.

Definition 43 (One-time Soundness) Let k be a security parameter and let N be a parameter.

Let F be a function class and let sDelF be a delegation scheme for F . The corresponding one-time

streaming security game GW∗

1 (k,N) played by an (adversarial) worker W∗ is defined the same

as GW∗(k,N), except that the game is terminated after the first execution of the delegation protocol

〈D,W∗〉.

We say that sDelF has one-time soundness error ε if for every worker strategy W∗ with

runtime poly(N), where N = N(k),

Pr[W∗ succeeds in GW∗

1 (k,N)] ≤ ε(N).

sDelF is one-time sound if it has a negligible one-time soundness error (in parameter N).

We proceed to state our main theorem for streaming delegation.

Theorem 44 (Streaming Delegation) Let k be a security parameter, and let N be a parameter.

Let F be the class of all L-uniform poly-size boolean circuits. Assume the existence of a fully-

homomorphic encryption scheme secure against poly(N)-size adversaries. Then there exists a 2-

round streaming delegation scheme sDelF for F with the following properties.

• sDelF has perfect completeness and negligible soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable by an L-uniform

circuit of size S and depth d, the delegator D runs in time poly(k, d, logN), and the worker W

runs in time poly(k, S, logN).

In particular, assuming the existence of a fully-homomorphic encryption scheme secure against

adversaries of size poly(N), we obtain a streaming delegation scheme for L-uniform NC computa-

tions, where the delegator D runs in time poly-logarithmic in the length of data stream.

We proceed to present our streaming delegation scheme in the next section.
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6.2 Streaming Delegation Scheme

In this section, we prove Theorem 44, by constructing a non-interactive streaming delegation scheme

with the desired properties.

6.2.1 Overview of our Streaming Delegation Scheme

Our streaming delegation scheme is similar to our memory delegation scheme mDel, presented in

Section 5.2, and the main difference is in the way the certificate is generated and updated, and in

the Reveal protocol of the Compute operation.

Generating and updating the certificate. Recall that in the memory delegation scheme, the

certificate of the delegator D consists of a tree-commitment of the low-degree extension of her

memory x. Namely, her certificate is (h, Th(LDEx)), where h is a collision resistant hash function.

Note that this certificate cannot be updated in a streaming manner, since any change to x changes

the low-degree extension LDEx almost everywhere.

Instead, in the streaming setting, we replace the tree commitment with an “algebraic commit-

ment”, which has the property that it can be updated efficiently when new data items arrive. The

resulting certificate is a random point in the low-degree extension of the stream x; i.e., (z,LDEx(z))

for a random point z. Proposition 6 implies that this certificate is efficiently updatable,if we as-

sume some upper-bound N on the size of the stream, and we take parameters H,F,m such that

Hm = θ(N). The parameters we take are

|H| = polylog(N), m = θ

(
logN

log logN

)
, |F| = poly(|H|). (6.1)

The Compute operation. The Compute operation of our streaming delegation scheme is very

similar to the Compute operation of the memory delegation scheme mDel, and the main distinction

is in the Reveal protocol. Namely, in Compute(f) the delegator and worker run GKR(u)(f), which

is the u-fold parallel repetition of GKR(f) (the parallel repetition is in order to get negligible

soundness). In order to verify correctness, the delegator needs to verify the value of LDEx(ri) for

random r1, . . . , ru. Recall that this low-degree extension is w.r.t. the parameters H′,F′,m′ given in
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Theorem 8. Namely,

|H′| = θ(d · log n), m′ = θ

(
log n

log d

)
, |F′| = poly(|H′|).

where d is the depth of the circuit computing f , and n is the input length (i.e., the current size of

the stream). Also, recall that the certificate of the delegator is of the form (z,LDEx(z)), where here

the low-degree extension is w.r.t. the parameters H,F,m as in Equation (6.1).

In the memory delegation scheme we overcome this gap by delegating the computation of the

functions gri , which are defined by

gri(x) , LDEF′,H′,m′
x (ri),

using GKR(u) with respect to (H,F,m). In order to verify the correctness of these u protocols, the

delegator needs to verify u2 values LDEF,H,m
x (zi,j), where each zi,j is a random value in Fm.

Remark. In our setting this approach is too costly since the running time of the worker W during

the delegation protocols of gri is polynomial in N (where N is an upper bound on the stream

size), as opposed to polynomial in n, which is the actual stream size (see Theorem 8). However,

it turns out that with a slight modification, we can ensure that W runs in time poly(k, n, logN)

during these delegation protocols, where k is the security parameter. The idea is the following: Let

m′′ = d logn
log logN e so that n ≤ |H|m′′ ≤ n · polylog(N). The delegator will delegate the functions

gri(xi) by running GKR(u) with respect to (H,F,m′′). Note that the runtime of W during these

protocols is poly(n, k, logN), as desired. At the end of these protocols the delegator needs to verify

u2 values LDEF,H,m′′
x (z′′i,j), where each z′′i,j is a random value in Fm′′ .

We next argue that for every z′′ ∈ Fm′′ ,

LDEF,H,m′′
x (z′′) = LDEF,H,m

x (0m−m
′′
, z′′).

To this end, recall (from Section 3.3) that

LDEF,H,m
x (z) =

∑
p∈Hm

B̃(z, p) · xα(p) (6.2)
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and similarly

LDEF,H,m′′
x (z) =

∑
p∈Hm′′

B̃(z, p) · xα′′(p)

where for every z ∈ Hm (or z ∈ Hm′′ respectively) it holds that B̃(z, p) = 1 if z = p, and B̃(z, p) = 0

otherwise. The functions α : Hm → {0, 1, . . . , N − 1} and α′′ : Hm′′ → {0, 1, . . . , n − 1} are the

lexicographic order, and thus for every p ∈ Hm′′ it holds that α′′(p) = α(0m−m
′′
, p). Therefore, for

every x ∈ {0, 1}n and for every z ∈ Hm′′ ,

LDEF,H,m
x (0m−m

′′
, z) = LDEF,H,m′′

x (z). (6.3)

This, together with the Schwartz-Zippel lemma, and with the fact that both LDEF,H,m
x and LDEF,H,m′′

x

are polynomials of degree at most |H| − 1 in each variable, implies that for every z ∈ Fm′′ it holds

that

LDEF,H,m
x (0m−m

′′
, z) = LDEF,H,m′′

x (z).

Therefore, it remains to verify the values of LDEF,H,m
x (zi,j), where zi,j , (0m−m

′′
, z′′i,j). In the

memory delegation scheme this was done using the Reveal(zi,j) protocol where the worker reveals the

augmented path of the leaf zi,j in the Merkle tree-commitment of LDEx. Here the Reveal protocol

needs to be totally different, since the delegator cannot compute the tree-commitment of LDEx.

Unfortunately, unlike in the memory delegation scheme, in the streaming setting constructing a

reusable and sound reveal protocol is highly non-trivial.

The Reveal protocol. Our starting point is a basic reveal protocol Reveal1 described in Fig-

ure 6.1. Note that the soundness of Reveal1 relies on the secrecy of the certificate σ. Namely,

assuming that W does not know the point z, it is not hard to see, by Schwartz-Zippel Lemma, that

an adversarial worker can cheat with probability at most d/|F|, where d is the (total) degree of

LDEx.

However, note that the Reveal1 protocol is not reusable. Suppose that D uses the above reveal

protocol to learn the value of LDEx on two random points s, s′ ∈ Fm. From the two executions, an

adversarial worker W∗ receives two lines `s,z and `s′,z, and can learn the secret point z by taking the

intersection of the two lines. Once W∗ learns z, W∗ can easily cheat by returning any polynomial

p∗ that agrees with LDEx only on point z but disagrees on the remaining points.
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Reveal1 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

• D sends to W the line `sz that passes through the points s and z. More specifi-
cally, D chooses two random points α1, α2 ← F, and defines `s,z to be the line
that satisfies `s,z(α1) = z and `s,z(α2) = s.

• W returns a univariate polynomial p : F → F, which is the polynomial LDEx
restricted to the line `s,z (i.e., p = LDEx|`s,z ).

• D checks whether p(α1) = LDEx(z), and if so accepts the value p(α2) =
LDEx(s). Otherwise, she rejects.

Figure 6.1: Reveal1 protocol

As observed by Gennaro et. al. [GGP10], a natural way to protect the secret point z, is to

run the above Reveal protocol under a fully-homomorphic encryption (FHE) scheme. Namely, D

generates a pair of keys (pk, sk) for a FHE (Gen,Enc,Dec,Eval), and sends pk and an encrypted line

ˆ̀
s,z = Encpk(`s,z) to W, who can compute the polynomial p = LDEx|` homomorphically under the

encryption. Indeed, by the semantic security of FHE, an adversarial worker W∗ cannot learn any

information from D’s message ˆ̀
s,z. This indeed makes the protocol reusable provided that W∗ does

not learn the decision bits of D, as proved in [GGP10, CKV10].

However, since the decision bit of D can potentially contain one bit information about the secret

point z, it is not clear that security holds if W∗ learns these decision bits. In fact, for both of the

delegation schemes of [GGP10, CKV10], which use FHE to hide the delegator D’s secret state, there

are known attacks that learn the whole secret state of D bit-by-bit from D’s decision bits.

Fortunately, we are able to show that a variant of the Reveal1 protocol described in Figure 6.2 is

reusable even if W∗ learns the decision bits of D. The main difference between Reveal1 and Reveal2

is that in Reveal2, the delegator D uses a random two-dimensional affine subspace instead of a line,

and uses an FHE to mask the entire protocol.

Using our techniques developed in Section 4.1 (and in particular using Lemma 22), we show in

Section 6.2.3 that no adversarial W∗ can learn useful information about the secret point z from the

Reveal2 protocol. We note that the proof of the above statement is highly non-trivial, and is one of

the main technical difficulties in this work. Informally, the proof first uses Lemma 16, which claims

that the ciphertext Ŝsz and the decision bit b of D (which depend on the strategy of W ∗) do not

give too much information about Ssz to W∗. In other words, the random subspace Ss,z still has high

(pseudo-)entropy from the point of view of W∗. Then it uses an information-theoretic argument to
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Reveal2 protocol: D stores a secret state σ = (z,LDEx(z)), where x ∈ {0, 1}N and z
is a random point in Fm, and wants to learn the value of LDEx(s) from W.

• D does the following.

1. Generate a pair of keys (pk, sk) ← Gen(1k) for a fully homomorphic en-
cryption scheme FHE.

2. Choose a random two-dimensional affine subspace Ss,z ⊂ Fm that contains
the points s and z. More specifically, choose two random points α1, α2 ←
F2 and let Ss,z ⊂ Fm be a random two-dimensional affine subspace that
satisfies Ss,z(α1) = z and Ss,z(α2) = s.

3. Send Ŝs,z ← Encpk(Ss,z) and pk to W.

• W homomorphically computes the two-variate polynomial p = LDEx|Ss,z
under

the FHE (denote the resulting ciphertext p̂), and sends p̂ to D.

• D decrypts and checks whether p(α1) = LDEx(z), and if so accepts the value
p(α2) = LDEx(s).

Figure 6.2: Protocol Reveal2

argue that a random point z in a sufficiently random (with high entropy) subspace Ss,z is statistically

close to a random point in Fm, which implies that W∗ does not learn useful information about z.

The Field Size. Recall that by Schwartz-Zippel Lemma, an adversarial worker can cheat with

probability at most d/|F|, where d is the (total) degree of LDEx. Recall that in our setting of

parameters:

|H| = polylog(N), m = O

(
logN

log logN

)
, |F| = poly(|H|).

Thus, a cheating worker can cheat with probability d/|F| = O(1/polylog(N)), which is not low

enough.

The idea is to reduce the cheating probability to negligible by simply increasing the field size

to be super-polynomial. However, we cannot increase the field size in the GKR protocol, since it

will increase the complexity of the worker. Instead, we use an extension field F̃ of F, of super-

polynomial size, only in the certificate and the Reveal protocol, but run the GKR protocols as

before. Namely, the secret state is σ = (z,LDEF̃,H,m(z)) where z ← F̃m, The GKR protocols are run

exactly as before (one GKR(u) protocol with the parameters (H′,F′,m′), and u GKR(u) protocols

with the parameters (H,F,m′′)). In the Reveal protocol, the worker reveals to a point LDEF,H,m
x (s)

as follows: The delegator sends an encryption of a random two-dimensional subspace Ss,z ⊂ F̃m,

containing the points s and z, and the worker sends an encryption of LDEx|Ss,z
. The delegator
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verifies correctness exactly as in Reveal2.

Reveal Multiple Points in Parallel. Finally, recall that in memory delegation, the reveal pro-

tocol is executed in parallel u2 times to reveal u2 random points zi,j . However, if all reveal protocols

use the same algebraic commitment (z,LDEx(z)), then proving that z remains secret after W∗ learns

the decision bits of D becomes somewhat tricky.4 Instead, we could use u2 independent commit-

ments, one for each copy of the Reveal protocol. However, it blows up the size of D’s secret state

as well as her runtime during the update procedure. It also makes the analysis somewhat more

complicated.

Therefore, instead of running multiple copies of the Reveal protocol in parallel, we use a classic

“many-to-one” reduction to reduce the number of points to a single point, so that D only needs to

run a single copy of the Reveal protocol. Briefly, the idea is to let D choose a random degree-u2

curve `, passing through zi,j ∈ Fm for i, j ∈ [u] and passing through an additional random point

s ← F̃m, and send ` to W. More specifically, D will choose u2 + 1 random points α0, αi,j ← F̃ for

i, j ∈ [u], and let ` be the u2-degree polynomial such that `(α0) = s and `(αi,j) = zi,j for every

i, j ∈ [u]. The worker W returns a univariate polynomial p : F̃→ F̃, which is supposed to be LDEx

restricted on the line `. If W is honest, then D learns the values LDEx(zi,j) = p(αi,j) for i, j ∈ [u],

as desired. To verify that W was indeed honest, D and W run the Reveal protocol on the point s,

to reveal to LDEx(s), and D checks whether indeed p(α0) = LDEx(s).

To summarize, our Compute(f) protocol runs the above many-to-one protocol and the Reveal

protocol, in parallel, in order to reveal to {LDEx(zi,j)}i,j∈[u].

6.2.2 Formal Description of Our Streaming Delegation Scheme

In this section, we give a formal description of our streaming delegation scheme for delegating L-

uniform depth-d circuits. Our construction uses the following building blocks

1. A fully homomorphic encryption scheme E = (Gen,Enc,Dec,Eval) where the semantic security

holds against poly(N)-time adversaries (with negligible advantage in N).

2. The delegation scheme GKR = 〈D′,W′〉 from [GKR08, KR09] (see Theorem 8 for the properties

of this delegation scheme). The main property we use here, is that the delegator can verify

4We can make it work, but the analysis becomes more complicated. We decide to avoid this unnecessary compli-
cation.
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proofs by accessing its input x at a single random point in LDEx.

• Parameters. Let k be the security parameter, and let N be an upper bound on the length

of the data stream. Let H be an extension field of GF[2] of size |H| = polylog(N), let m =

θ
(

logN
log logN

)
, and let F be an extension field of H of size |F| = poly (|H|). Let F̃ be an extension

field of F of size |F̃| = N logN .

• Generating and updating the secret state.

1. At the initial time t = 0, the delegator D chooses a random point z ← F̃m, and stores

σ0 = (z, 0) as her secret state.

2. At each time t ∈ [N ], when a data item xt ∈ {0, 1} arrives, D updates her secret state

from σt−1 = (z,LDExt−1(z)) to σt = (z,LDExt(z)), by using Proposition 6.5 (Recall that

xt = (x1, . . . , xt) denotes the entire data stream up until time t.)

• Compute(f, t). At any time t ∈ [N ] when the delegator wants the worker to compute some

function f , where f is an L-uniform depth-d circuit, they run the following protocols in parallel.

1. Run GKR(u), which is the u-fold parallel repetition of the underlying delegation protocol

GKR, for delegating the computation of f(x), where u is any parameter such that 1/2u =

ngl(N). If at any time the GKR delegator rejects, the delegator D rejects.

Let F′,H′,m′ be the parameters used by GKR(u), and recall that at the end of the

protocol, D needs to verify the value of LDEF′,H′,m′
xt at u random points r1, . . . , ru ∈ (F′)m′ ,

i.e. it needs to check whether LDEF′,H′,m′
xt (ri) = vi for some values vi.

2. For each i ∈ [u], run GKR(u) for delegating the computation in gri(x
t) , LDEF′,H′,m′

xt (ri).

These GKR(u)(gri) protocols are done with respect to (H,F,m′′), wherem′′ = θ
(

log t
log logN

)
.6

Moreover, these protocols are masked using a PIR scheme to keep the secrecy of the ri’s,

which is necessary to ensure the soundness of the GKR(u) protocol of Step 1.

5More explicitly, the update is done using the following formula.

LDExt (z) = LDExt−1 (z) + xt · LDEet(z),

where et ∈ {0, 1}N denotes the N -bit string with 1 at the t-th bit, and 0 otherwise. Note that LDEet (z) can be
computed in polylog(N) time by interpolation.

6Recall that since computing gri (·) can be done by a polylog(N)-depth poly-size circuit, this setting of parameters

works for GKR(u).
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We note that Steps 1 and 2 above are almost identical to Steps 1 and 2 of the Compute(f)

operation of our memory delegation scheme, constructed in Section 5.2.2, and we refer the

reader to Section 5.2.2 for a detailed description of the masked GKR(u)(gri) protocols.7

If the GKR delegator rejects at any point, then the delegator D rejects. Otherwise, in

order to verify these protocols, D needs to check that LDEF,H,m′′
xt (z′′i,j) = wi,j for u2

random points z′′i,j ∈ Fm′′ , and some values wi,j ∈ F. However, as was argued above (see

Equation (6.3)), LDEF,H,m′′
xt (z′′i,j) = LDEF,H,m

xt (zi,j) where zi,j = (0m−m
′′
, z′i,j). Thus, D

needs to check that LDEF,H,m
xt (zi,j) = wi,j for u2 points zi,j ∈ Fm.

3. Run a many-to-one protocol to reduce computing LDEF,H,m
xt (zi,j) for u2 points zi,j ∈ Fm,

to computing LDEF̃,H,m
xt (s) for a single random point s ← F̃m. Note that s is a random

point in the extension field F̃m, as opposed to Fm. As before, the points (zi,j)i,j∈[u] must

be kept secret to ensure the soundness of the GKR(u) protocols of Step 2. We ensure this

secrecy by simply running the protocol under an FHE scheme.

We note that we cannot use a PIR scheme here, since F̃ is of super-poly size, and therefore

the use of a PIR scheme will result with the worker running in super-polynomial time.

Instead we use an FHE scheme, which keeps both the worker and the delegator efficient.

More specifically, the delegator D chooses a random s ← F̃m and computes a canon-

ical representation of the unique degree-u2 curve `~z,s passing through ~z = (zi,j)i,j∈[u]

and s. Then D generates (pk1, sk1) ← Gen(1k), computes ˆ̀
~z,s = Encpk1

(`~z,s), and sends

(pk1,
ˆ̀
~z,s) to W. The worker W computes, homomorphically under encryption, a univari-

ate polynomial p1 , LDEF̃,H,m
xt ◦ `~z,s, and returns the resulting ciphertext p̂1 to D, who

decrypts to obtain the polynomial p1.

Let α0, αi,j ∈ F̃ for i, j ∈ [u] be such that `~z,s(α0) = s and `~z,s(αi,j) = zi,j . D checks

whether wi,j = p1(αi,j) (which are supposed to be LDEF,H,m
xt (zi,j)). If not, she rejects.

4. In order to verify that indeed p1 = LDEF̃,H,m
xt ◦ `~z,s, the delegator D checks whether

LDEF̃,H,m
xt (s) = p1(α0), using the Reveal protocol described in Figure 6.3, and using its

certificate σt = (z,LDEF̃,H,m
xt (z)).

Note that in the Reveal protocol, we are specific about the representation of the random

affine space Ss,z. This representation will be useful when we apply our main leakage

7We mention that, we can also mask the GKR(u) protocol using an FHE scheme, as opposed to a polylog PIR
scheme, which is what we do in Step 3.
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lemma (Lemma 22), established in Section 4.1, to prove the reusable soundness of sDel

in Section 6.2.3.

If D rejects in the Reveal(s) protocol, or if the accepted p2(αs) is not equal to the claimed

value p1(α0), then D rejects.

5. The delegator accepts the interaction if and only if she did not reject in any place above.

Note that the first two steps are (almost) the same as that in our memory delegation scheme

(Section 5.2.2). As before, we denote the delegation protocol of Step 1 by

GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

We denote the masked delegation protocols of Step 2 by

PIR
(
〈W′(u),D′(u)(z′′i,1, . . . , z

′′
i,u)〉(gri)

)
.

We denote the masked many-to-one protocol of Step 3 by u2-to-1(~z, s) and the reveal protocol

of Step 4 by Reveal(s). Note that the streaming data xt is implicit in all these notations. We

summarize the Compute(f) protocol in Figure 6.4.

Remark. We note that our streaming delegation scheme can also be used as a memory delegation

scheme. Recall that the only component that a memory delegation scheme has, and a streaming

delegation scheme does not have, is the Update operation. Also recall that in our memory delegation

scheme, the delegator D delegates the update of her state (from (h, Th(x)) to (h′, Th′(g(x)))) to the

worker W. The same idea can be applied to the streaming delegation scheme as well.8 As mentioned

in Section 5.2.1, our memory delegation scheme has several advantages over the one that could be

obtained from our streaming delegation scheme.

6.2.3 Proof of Theorem 44.

In this section, we prove that the construction above satisfies the properties of Theorem 44.

8We note that to ensure that D’s secret state is kept secret from the worker W after the Update operation, we
would need to run the Compute operation (for updating D’ secret state) under FHE.
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Reveal(s):

The delegator D stores a secret algebraic commitment σt = (z,LDEF̃,H,m
xt (z)) and

wants to learn the value of LDEF̃,H,m
xt (s) from the worker W, who stores x ∈ {0, 1}N .

• D does the following.

1. Choose a random two-dimensional affine subspace Ss,z ⊂ F̃m that contains
the points s and z.

2. Let X = Ss,z − s , {v − s : v ∈ Ss,z}. Namely, X is a random two-
dimensional subspace that contains the point z − s.

3. Choose a random representation for X, by choosing two random points
x1, x2 ← X, and represent X as a matrix in F̃m×2 where the first column
is x1 and the second column is x2.

Thus, every point a ∈ Ss,z is represented by a = X ·α+ s for some α ∈ F̃2.

4. Generate a pair of keys (pk2, sk2)← Gen(1k) and compute an encryption

Ŝs,z , (X̂, ŝ) = (Encpk2
(X),Encpk2

(s)).

5. Send (pk2, Ŝs,z) to W.

• W homomorphically computes the two-variate polynomial p2 = LDEx ◦ Ss,z
under the FHE (denote the resulting ciphertext p̂2), and sends p̂2 to D.

• D decrypts p̂2 to obtain p2. Let αs, αz ∈ F̃2 be such that Ss,z(αs) = s and

Ss,z(αz) = z. D checks whether p2(αz) = LDEF̃,H,m
xt (z). If so, D accepts the

value LDEF̃,H,m
xt (s) = p2(αs). Otherwise, D rejects.

Figure 6.3: Formal description of the Reveal protocol.

The perfect completeness follows immediately from the completeness of the underlying GKR del-

egation scheme, the completeness of the FHE scheme, and the completeness of the Reveal protocol.

The fact that the delegator D can update her secret state in time polylog(N) follows from Propo-

sition 6. The efficiency guarantees of the Compute protocol follow immediately from the efficiency

guarantees of GKR, the efficiency guarantees of the underlying PIR scheme, and the efficiency of

the u2-to-1 protocol and the Reveal protocol, under FHE.

The main difficulty is in proving soundness. First we observe that the streaming delegation

scheme is one-time sound. This proof is very similar to the proof that our memory delegation scheme

is one-time sound (Lemma 36). However, it is at all not clear how to reduce one-time soundness to

many-time soundness, since the delegator uses the same secret state in all the executions, and each

decision bit of the delegator may leak one bit information about this secret state.
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Compute(f, t):

The delegator D stores a secret state σt = (z,LDEF̃,H,m
x (z)) and wants to learn the

value of f(x) from the worker W, who stores x ∈ {0, 1}N .

1. D and W run GKR(u) = 〈W′(u),D′(u)(r1, . . . , ru)〉(f).

(a) If D′(u) rejects, then the delegator D outputs “reject”.

(b) At the end of this protocol, the delegator D′ needs to verify that

LDEF′,H′,m′
x (ri) = vi for some values vi.

2. For every i ∈ [u], run PIR(〈W′(u),D′(u)(z′′i,1, . . . , z
′′
i,u)〉(gri)) with parameters

(H,F,m′′) where m′′ = θ
(

log t
log logN

)
.

(a) The delegator D makes sure that in these protocols the worker still claims

that indeed gri(x) = vi, where gri(x) = LDEF′,H′,m′
x (ri). If this is not the

case, then the delegator D outputs “reject”.

(b) If at any point D′ rejects, then the delegator D outputs “reject”.

(c) In order to verify these protocols, the delegator D needs to verify that

LDEF,H,m′′
x (z′′i,j) = wi,j for some values wi,j , which is equivalent to ver-

ifying that LDEF,H,m
x (zi,j) = wi,j where zi,j = (0m−m

′′
, z′′i,j) ∈ Fm (see

Equation (6.3)).

3. Run u2-to-1(~z, s) where ~z = (zi,j).

Recall that in this protocol, D sends W a message (pk1,
ˆ̀
~z,s), where `~z,s is a

canonical representation of the u2-degree curve that passes through the points
zi,j and the point s; namely, `~z,s(αi,j) = zi,j and `~z,s(α0) = s, for some αi,j , α0 ∈
F̃. Then, W sends p̂1, where supposedly, p1 = LDEF̃,H,m

xt ◦ `~z,s
The delegator D verifies that p1(αi,j) = wi,j for every i, j ∈ [u]. If this is not
the case, then the delegator D outputs “reject”.

4. The delegator D verifies that LDEF̃,H,m
x (s) = p1(α0) by running Reveal(s).

If D rejects in the Reveal(s) protocol, or if p1(α0) 6= p2(αs) (where p2 and αs
are defined in the Reveal(s) protocol in Figure 6.3), then D rejects.

5. The delegator D outputs “accept”, assuming she didn’t output “reject” at any
point.

Figure 6.4: Compute(f)
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Soundness: high-level intuition. Intuitively, we would like to prove that in our construction,

the decision bit of the delegator does not reveal any information about her secret state z, and thus

this secret is “reusable”, and hence the protocol is many-time sound.

Recall that in our Compute protocol, the delegator D uses her secret state z only in the Reveal

protocol, where she sends the worker an encryption of a random two-dimensional affine subspace Ss,z

that contains z. Intuitively, the idea is to use our main leakage lemma (Lemma 22 in section 4.1)

to argue that in the Reveal protocol, any one-bit leakage about the subspace Ss,z does not reveal

information about z (i.e., z looks totally random from the worker’s view). While it is indeed true

that any bit of leakage about Ss,z does not reveal any information about z, note that the decision

of the delegator in the Reveal protocol does depend on the actual point z, and not just on the

subspace Ss,z (as she checks the value of p2(αz)).

One way of going around this, is by considering another delegator D̃, which is a “somewhat

cautious” delegator, in the sense that she does not check the validity of the polynomial p2 at the

specific point αz, as this depends on her secret point z. Instead, D̃ is an inefficient delegator that

holds the entire stream x ∈ {0, 1}t, and checks that p2 = LDEx ◦Ss,z. The point is that D̃ does not

use the actual point z, but only the random subspace Ss,z.

Now we can try to use our main leakage lemma (Lemma 22) to claim that each execution of

Compute does not reveal any information about the delegator’s secret state z, and thus she can

safely use this secret state again. It still remains to argue that if a cheating worker could cheat

when talking to a “somewhat cautious” delegator, then he could also cheat when talking to the real

delegator. The idea here is to use the Schwartz-Zippel lemma (with a computationally hidden z).

Towards our formal proof. In our formal proof, we take another route. We define a “cautious”

delegator (as opposed to a “somewhat cautious”) to be one that each time uses a fresh new secret

state z′. As above, our cautious delegator is inefficient, and has the entire stream x ∈ {0, 1}t. The

many-time soundness of this cautious scheme follows immediately from its one-time soundness.

Next, we consider a sequence of N hybrid games, G0, . . . ,GN , where in Gt the delegator is

cautious during the first t Compute protocols, and runs the protocol of the original delegator D from

the t+ 1’st execution onwards. Note that G0 is the real soundness game (with the real delegator D),

as defined in Definition 41, whereas GN is the soundness game with the cautious delegator D̃. Thus,

if there exists a cheating worker W ∗ that cheats in the original game G0, by a standard hybrid
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argument, there must exist two games Gt−1 and Gt where there is a noticeable gap between the

success probability of W ∗ in Gt−1 and its success probability in Gt.

The idea is to use this fact to contradict our main leakage lemma (Lemma 22), as follows.

Simulate the first t− 1 Compute operations. Note that in both Gt−1 and in Gt the delegator uses a

fresh secret state in these executions. Then, in the t’th Compute operation, use the subspace given

by the leakage lemma.

Recall that the leakage lemma claims that it is hard to distinguish between (x,Encpk(X), pk, b)

and (u,Encpk(X), pk, b), where x ← X and u ← F̃m. So, the idea is to use pk,Encpk(X) in the

Reveal(s) protocol. Then continue the simulation of the rest of the Compute operations using the

secret state w + s, where w is either a random element in X or a random element in F̃m. However,

as was noted above, we cannot use the leakage lemma, since the original delegator actually used the

secret point to check the validity of the polynomial p2 sent by the worker. This, slightly complicates

matters.

We define our “cautious” delegator to be really cautious, so that not only does he use a fresh

secret state z′ for each round, but he also checks the validity of the polynomial p2 sent by the worker,

by actually checking that p2 ≡ LDEx ◦ Ss,z′ (as opposed to checking its validity at a single point).

Then, assuming we have a gap between Gt−1 and Gt, we consider another hybrid game between

these two games, which we denote by G∗. This game is similar to the game Gt−1, in the sense that

the delegator uses the real secret state z in the t’th round, but it differs from Gt−1 in that it checks

the validity of p2 by checking that p2 = LDEx ◦ Ss,z.

We use the Schwartz-Zippel lemma to prove that Gt−1 and G∗ are statistically indistinguishable,

and we use our main leakage lemma (Lemma 22) to prove that G∗ and Gt are computationally

indistinguishable. The latter is done by contradiction. If there exists a distinguisher between the

games G∗ and Gt, then we construct a distinguisher that distinguishes between the distributions

given the leakage lemma. This is done by simply embedding the input given by the leakage lemma

in the t’th round of the Reveal protocol.

Remark 45 We remark that the security reduction is inherently non-uniform, due to the use of

the machinery developed in Section 4.1. Specifically, the proof of Lemma 16 uses the equivalence of

HILL and Metric entropy, which only holds in the non-uniform setting. Therefore, the cryptographic

primitives that we rely on need to be secure against non-uniform adversaries. In contrast, the security
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proof of our memory delegation scheme in Section 5.2 is uniform.

In what follows we formally define the notion of a cautious delegator (or a cautious streaming del-

egation scheme), followed by a formal proof of the (reusable) soundness of our streaming delegation

scheme.

Cautious Streaming Delegation Scheme ˜sDel = 〈W, D̃〉. For the purpose of our analysis,

we consider a variant of sDel, called cautious streaming delegation scheme, which we denote by

˜sDel = 〈W, D̃〉. In ˜sDel the worker is exactly the same as the worker in sDel, but the delegator is

“cautious.”

More specifically, in ˜sDel, the delegator D̃, instead of maintaining a secret state σt = (z,LDEx(z)),

she stores the entire data stream xt ∈ {0, 1}t. Recall that in the original sDel scheme, during the

Compute protocol, the delegator uses her secret state σt only in the Reveal protocol. In ˜sDel,

the Compute protocol is exactly as in sDel, except for the following modification to the Reveal(s)

protocol.

• D̃ generates her message in the same way as D, except that D̃ chooses a random two-dimensional

affine subspace Ss ⊂ F̃m containing s, instead of choosing a random affine space Ss,z ⊂ F̃m

containing both s and z.

• To verify the polynomial p2 returned by W (after decryption), D̃ computes LDEx ◦ Ss on her

own and checks if p2 = LDEx ◦ Ss, instead of checking its consistency with LDEx ◦ Ss on a

single point.

In other words, D̃ is doubly-cautious in the Reveal protocol: First, D̃ doesn’t reuse the same secret

point z, but rather chooses the affine subspace at random, with the only restriction that it contains s.

Second, she checks whether the polynomial p2 returned by W is correct, instead of only checking if

p2 is correct on a random point z.9 Our analysis proceeds in the following two steps.

• We first show, that ˜sDel has negligible one-time soundness error, which immediately implies

the (reusable) soundness of ˜sDel, since these executions are totally independent, as D̃ does not

use a secret state.

The proof is very similar to the proof of the one-time soundness of our memory delegation

scheme (Lemma 36).

9Note that D̃ runs in time poly(N), which is not efficient in our setting, but this is only for the sake of the analysis.
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• Let G and G̃ be the (reusable) security games of sDel and ˜sDel, respectively. We shall show,

that the main-leakage lemma (Lemma 22), together with a hybrid argument, implies that no

poly(N)-size worker W∗ succeeds with noticeably higher probability in G than in G̃. In other

words, there is no need to be cautious!

Lemma 46 The streaming delegation scheme sDel constructed in Section 6.2.2 is one-time sound,

i.e., it has negligible one-time soundness error.

The proof of this lemma is essentially the same as the proof of Lemma 36, and is omitted.

Lemma 47 The streaming delegation scheme sDel constructed in Section 6.2.2 is sound, i.e., it has

negligible soundness error.

Proof. Suppose for the sake of contradiction that there exists a poly(N)-size worker W∗ such that

Pr[W∗ succeeds in GW∗(k,N)] ≥ ε(N), (6.4)

for some noticeable ε(N). Lemma 46 implies that ˜sDel has negligible soundness error. Namely

Pr[W∗ succeeds in G̃W∗(k,N)] ≤ ngl(N). (6.5)

From Equation (6.4) and (6.5), we derive a contradiction to Lemma 22, using the following hybrid

argument. Consider the following hybrid games Gt for every t ∈ {0, . . . , N}.

• Hybrid Game Gt: The reusable security game for the streaming delegation scheme with a

hybrid delegator Dt, who is cautious until (and including) time t, and behaves as the original

delegator D after time t. More precisely, for every time t′ ≤ t, the hybrid delegator Dt stores

the whole data stream xt′ and behaves as the cautious delegator D̃. At the beginning of time

t + 1, the hybrid delegator Dt generates a secret state σt+1 = (z,LDExt+1(z)) by choosing

a random z ← F̃m and computing LDExt+1(z). Then, for every time t′ ≥ t + 1, the hybrid

delegator Dt behaves as the original delegator D.

By definition, the hybrid games G0 and GN are simply G and G̃, respectively. By a standard

hybrid argument, Equations (6.4) and (6.5) imply that there exists some t ∈ [N ] such that

Pr[W∗ succeeds in GW∗

t−1]− Pr[W∗ succeeds in GW∗

t ] ≥ ε/N − ngl(N). (6.6)
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Note that the only difference between Gt−1 and Gt is at time t, where Dt−1 behaves as the original

delegator D, but Dt is still cautious. More precisely, at time t, the two delegators behave differently

in the Reveal(s) protocol (if executed), as follows.

• Dt−1 sends (Ŝs,z, pk) = (X̂, ŝ, pk) to W∗, where Ss,z is a random 2-dimensional affine space

containing s and z, and X ∈ F̃m×2 is a random representation of the two-dimensional subspace

Ss,z − s , {v− x : v ∈ Ss,z}. Let αz ∈ F̃2 be such that z = X ·αz + s. Then Dt−1 checks that

p2(αz) = LDExt(z), where p2 is the polynomial sent by W∗ (after decryption).

• Dt sends (Ŝs, pk) = (X̂, ŝ, pk) to W∗, where X ∈ F̃m×2 is a random two-dimensional subspace,

and S = X + s. Then Dt checks that p2 = LDExt ◦Ss, where p2 is the polynomial sent by W∗

(after decryption).

Note that Dt−1 continues to use z as her secret state after time t. Also note that in both cases,

X ∈ F̃m×2 is a random representation of a random 2-dimensional linear subspace, so X is statisti-

cally close to a uniformly random m-by-2 matrix (with statistical distance O(1/|F̃|) = ngl(N)).

Looking ahead, we want to use the noticeable gap between the success probability of W∗ in Gt−1

and Gt (in Equation (6.6)) to contradict Lemma 22. To this end, we construct a distinguisher A

that distinguishes distributions (x, X̂, pk, b)← D1 and (u, X̂, pk, b)← D2, where

• X ← F̃m×2 is a random m-by-2 matrix.

• pk is a public key generated by (pk, sk)← Gen(1k), and X̂ ← Encpk(X).

• b = L(X̂, pk) is a leakage bit, where L : {0, 1}∗ → {0, 1} is a leakage function, to be specified

later.

• x← X and u← F̃m.

To this end, the distinguisher A, upon receiving (w, X̂, pk, b), distributed according to D1 or

D2, tries to simulate the game Gt−1 or Gt, respectively, by embedding the received distribution

(w, X̂, pk, b) in the game. At a high level, we let A embed the distribution in the Reveal protocol

at time t (if executed), where (X̂, pk) is (part of) the delegator’s message, and b is the decision bit

indicating whether the delegator accepts or rejects in the Reveal protocol. However, note that (the
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original) D and (the cautious) D̃ decide whether to accept in the Reveal protocol in a different way,

and in particular, D’s decision depends on the secret point z.

Therefore, in addition to Gt−1 and Gt, we consider an intermediate hybrid game G∗, which is a

hybrid of Gt−1 and Gt: It is the same as Gt−1 and Gt except in the t’th protocol, where the delegator

D∗ sends the same message as Dt−1 (which is less cautious since she uses z), but decide whether to

accept in the same way as Dt (which is cautious). Namely,

• D∗ sends (Ŝs,z, pk) = (X̂, ŝ, pk) to W∗, where Ss,z is a random 2-dimensional affine space

containing s and z, and X ∈ F̃m×2 is a random representation of Ss,z − s. Then D∗ checks the

polynomial p2 returned by W∗ (after decryption) by checking whether p2 = LDExt ◦ Ss,z.

Note that both Dt−1 and D∗ continue to use z in their secret state after time t.

We first argue that the hybrid games Gt−1 and G∗ are statistically close. Recall that the only

difference between them is in the Reveal(s) protocol at time t, where Dt−1 (resp., D∗) checks the

polynomial p2 sent by W∗ (after decryption) by checking whether p2(αz) = LDExt(z) (resp., p2 =

LDExt ◦ Ss,z). Note that Dt−1 and D∗, being cautious before time t, use the (random) point z for

the very first time at time t, so we can think of z as being generated from z ← Ss,z after they send

the message (Ŝs,z, pk).10 It follows by the Schwartz-Zipple lemma that

Pr[ Dt−1 and D∗ make a different decision ]

≤ Pr[(p2 6= LDExt ◦ Ss,z) ∧ (p2(αz) = LDExt(z))]

≤ O(d/|F̃|) ≤ ngl(N),

where d = polylog(N) is the total degree of LDExt . Since this is the only difference between Gt−1

and G∗, the statistical distance of the two hybrid is ngl(N).

Now, since Gt−1 and G∗ are statistically close, Equation (6.6) implies

Pr[W∗ succeeds in (G∗)W
∗
]− Pr[W∗ succeeds in GW∗

t ] ≥ (ε/N)− ngl. (6.7)

This time, we are able to use the noticeable gap between the success probability of W∗ in G∗ and

Gt in Equation (6.7), to contradict Lemma 22.

10More precisely, first choosing a random z ← F̃m and then choosing a random Ss,z containing z (and s) is equivalent
to first choosing a random S containing s, and then choosing z ← S.
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Let us take a close look at the difference between G∗ and Gt. Again, the only difference is in

the Reveal(s) protocol at time t, where D∗ (resp., Dt) sends (Ŝs,z, pk) (resp., (Ŝs, pk)) to W∗. Note

that, however, the distribution of both Ss,z and Ss are actually the same, both being a random

2-dimensional affine space containing s. The real difference is that, after time t, D̃t−1 (resp., Dt)

uses z ← Ss,z (resp., z ← F̃m), in her secret state. Noting that this is exactly the difference between

(z, X̂, pk, b) ← D1 and (u, X̂, pk, b) ← D2, we are ready to define the distinguisher A, as follows,

from which the choice of leakage bit b = L(X̂, pk) would become clear.

On input (w, X̂, pk, b), distributed either according to D1 or according to D2, the distinguisher A

does the following.

1. Simulate the interaction between W∗ and D̃ until the end of time t− 1.

2. At time t, if there is a Compute execution, then simulate the Compute operation as follows.

• Simulate for both parties all (sub-)protocols except the Reveal(s) protocol. This includes

choosing s ∈ F̃m.

• For the Reveal(s) protocol, simulate the delegator’s message by (X̂, ŝ, pk), where (X̂, pk)

is part of its input, and ŝ← Encpk(s). Then simulate W∗’s message. Finally, use the bit

b (which is part of A’s input) as the decision bit of the delegator. (Note that A does not

have a secret key sk and cannot compute the delegator’s decision bit efficiently.)

3. Compute σt = (w + s,LDExt(w + s)) and continue to simulate the interaction between W∗

and D after time t using σt as D’s secret state.

4. Output 1 if and only if W∗ ever cheats successfully during the interaction.

We define the leakage function L(X̂, pk) to be the decision of D∗ and Dt in the Reveal(s) protocol

at time t, if executed, and 0 otherwise. More precisely, let S = X + s; L(X̂, pk) = 1 if and only if

p2 = LDExt ◦ S. Note that L is a randomized function, which uses its randomness to simulate the

game until the end of time t, and determine the decision of the delegator in the Reveal(s) protocol.

Also note that the secret key sk is missing from (X̂, pk, r), so L cannot be computed in poly(N)

time.

Note that when (z, X̂, pk, b) ← D1, the distinguisher A perfectly simulates G∗, and when
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(u, X̂, pk, b)← D2, the distinguisher A perfectly simulates Gt. Therefore, Equation (6.7) implies

Pr[A(z, X̂, pk, b) = 1]− Pr[A(u, X̂, pk, b) = 1] ≥ ε/N − ngl(N),

contradicting Lemma 22. This completes the proof.



Chapter 7

Interactive Delegation of Any

Efficient Computation

In this section, we construct memory and streaming delegation schemes based on universal arguments

of Barak and Goldreich [BG02]. This allows the delegator to delegate computation for all of P rather

than NC, at the price that the Compute(f) protocol becomes interactive with 4 rounds of message

exchanges.

Recall that when we constructed our memory and streaming delegation schemes in Sections 5.2

and 6.2, the key property we need from the GKR protocol is that the verifier does not need to read

the entire input, but rather only needs to access a few random points in the low-degree extension of

the input. The main observation is that, the same property also holds for universal arguments, when

the underlying PCP is substituted by an efficient PCP of Proximity (PCPP), a notion introduced

by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BSGH+05] and Dinur and Reingold [DR06].

(We remark that this observation has been made independently by Cormode, Thaler, and Yi [CTY10]

in the context of “streaming interactive proofs.”) Therefore, we can use universal arguments with

PCPP to construct memory and streaming delegation schemes for any (efficient) computation. In

fact, the construction becomes simpler. Moreover, for memory delegation, we can avoid the use of

poly-log PIR schemes, and only require the existence of collision-resistant hash functions.

Formally, we obtain the following theorems. For the sake of simplicity, we state the theorems

for delegating computation of polynomial time Turing machines. The theorems extend readily to

92
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non-uniform Turing machines, where the running time of the delegator and the worker in both the

offline and the online stage depends polynomially on the length of the non-uniform advice.

Theorem 48 (Interactive Memory Delegation) Let k be a security parameter, and let F be

the class of all functions computable by polynomial time Turning machines. Assume the existence

of collision-resistance hash functions. Then there exists a memory delegation scheme sDelF for F

with the following properties.

• The scheme has perfect completeness and negligible (reusable) soundness error.

• The delegator and worker are efficient in the offline stage; i.e., both the delegator and the

worker run in time poly(k, n), where n is the size of the memory.

• The worker is efficient in the online stage. More specifically, it runs in time poly(k, T (n))

during each Compute(f) and Update(f) operation, where T (n) is a time bound of the delega-

tion function f on inputs of length n. The delegator runs in time poly(k, log T ) during each

Compute(f) and Update(f) operation.

• Both Compute(f) and Update(f) consist of 4 rounds of message exchanges.

Theorem 49 (Interactive Streaming Delegation) Let k be a security parameter, and let N

be a parameter bounding the maximum length of the stream. Let F be the class of all functions

computable by polynomial time Turning machines. Assume the existence of a fully-homomorphic

encryption scheme secure against poly(N)-size adversaries. Then there exists a streaming delegation

scheme sDelF for F with the following properties.

• sDelF has perfect completeness and negligible (reusable) soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F computable in time T (n), the dele-

gator D runs in time poly(k, logN, log T ), and the worker W runs in time poly(k, logN,T (n)),

where n is the length of the stream.

• The delegation protocol Compute(f) consists of 4 rounds of message exchanges.
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In Section 7.1, we present some necessary preliminaries, where we briefly review how to construct

a (standard) delegation scheme using universal arguments and define PCP of Proximity. We then

present a (standard) delegation scheme with the key property we need in Section 7.2. Finally,

we construct the memory and streaming delegation schemes described in Theorem 48 and 49 in

Sections 7.3 and 7.4, respectively.

7.1 Preliminaries

Universal Arguments

In this section, we briefly review how to delegate computation using universal arguments [BG02], as

presented implicitly in [CKV10, Section 9].

Let k be the security parameter. To delegate the computation of a uniform function f (specified

by a Turing machine M with a time bound T ) on input x ∈ {0, 1}n,1 the delegator D sends f, x to

the worker W, who returns the answer y = f(x) to D. Then they engage in a universal argument,

where W proves to D that indeed y = f(x). More specifically, W proves to D that (M,x, y, T ) is in

the following language Luni.

Luni , {(M,x, y, T ) : M is a Turing machine s.t. M(x) outputs y in ≤ T steps}.

In more detail, in the universal argument, the prover commits to a PCP proof π using a tree

commitment Th(π) with the hash function h← H chosen by the verifier. Then the verifier plays the

role of a PCP verifier, with the prover answering her PCP queries by revealing the corresponding

bits πi’s in the commitment Th(π).

The universal argument consists of 4 rounds of message exchanges, so the delegation protocol as

described above requires 6 rounds of message exchanges. However, as argued in [CKV10], the first

two rounds can be parallelized with the first two rounds of the universal argument, which yields a

4-round delegation protocol.

Clearly, the complexity of the delegation scheme depends on the complexity of the universal

argument, which depends on the underlying PCPs. We note that the delegator needs to run in time

Ω(n) since the verification of the underlying PCP proof π using standard PCPs (as opposed to PCPs

1Assume that T ≥ n.
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of proximity) depends on the whole input (M,x, y, T ).

In the following theorem, we state the delegation scheme obtained by using the universal argu-

ment of [BG02].

Theorem 50 ([BG02]) 2 Let k be the security parameter. Let n denote the input length, and let

T be a time bound such that T ≥ n ≥ k. Let F be the family of boolean functions computable by

time T Turing machines. Assume the existence of collision resistant hash functions secure against

poly(T )-time adversaries. Then, there exists a delegation protocol for F with the following properties.

1. The protocol has perfect completeness and negligible soundness error.

2. The worker runs in time poly(T ), and the delegator runs in time poly(n, log T ).

3. The protocol consists of four messages, with communication complexity poly(k, log T ). More-

over, the protocol is public-coin.

PCPs of Proximity

In this section, we present necessary preliminaries on PCPs of proximity and state the PCPP theorem

of [BSGH+05].

Definition 51 (Pair-language) A pair-language L is simply a subset of the set of string pairs

L ⊆ {0, 1}∗ × {0, 1}∗. For every a ∈ {0, 1}∗, we denote La = {b ∈ {0, 1}∗ : (a, b) ∈ L}. We usually

denote ` = |a| and K = |b|.

The reader can think of a as a Turing machine M , and b as an input encoding, and (a, b) ∈ L iff

M accepts the input encoded by b within some time bound.

Definition 52 (PCPP verifier [BSGH+05]) Let r, q : N → N and t : N × N → N. An (r, q, t)-

PCPP verifier V is a probabilistic oracle machine with the following structure.

• V receives as input a string a ∈ {0, 1}∗ and a number K ∈ N (in binary), and has oracle access

to two strings b ∈ {0, 1}K , and π ∈ {0, 1}∗.

• V uses at most r(|a| + K) coins, makes at most q(|a| + K) non-adaptive queries to the two

oracles (in total), runs in at most t(|a|,K) time, and outputs a verdict bit, indicating her

acceptance/rejection.

2The theorem statement slightly differs from the one given in [BG02] and is tailored to our application.
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The parameters r, q, t are the randomness, query, and time complexity of V , respectively.

The reader can think of r, q, t as being sub-linear.

Definition 53 (PCPP for Pair-language [BSGH+05]) Let r, q : N → N, t : N × N → N, and

ε, δ : N → [0, 1]. A pair-language L ⊆ {0, 1}∗ × {0, 1}∗ is in PCPPε,δ[r, q, t] if there exists an

(r, q, t)-PCPP verifier V with the following properties.

• (Completeness) If (a, b) ∈ L, then there exists a PCPP proof π ∈ {0, 1}∗ such that V b,π(a, |b|)

accepts with probability 1.

• (Soundness) If (a, b) is such that b is δ(|a| + |b|)-far from La ∩ {0, 1}|b|,3 then for every

π ∈ {0, 1}∗, it holds that

Pr[V b,π(a, |b|) = 1] ≤ ε.

The parameter δ is called the proximity parameter.

Theorem 54 (Efficient PCPP for Pair-language (Theorem 2.5 of [BSGH+05])) Let T : N→

N be a non-decreasing function, and let L = {(a, b)} be a pair-language. If L can be decided in time

T ,4 then L ∈ PCPP1/2,δ[r, q, t] with

• proximity parameter δ = 1/polylog(T ),

• randomness complexity r = log2 T +O(log log T ),

• query complexity q = polylog(T ), and

• verification time complexity t(`,K) = poly(`, logK, log T ), where ` , |a|,K , |b|, and T =

T (`+K).

Furthermore, the PCPP proof π for inputs in L (that makes V accepts) can be computed in time

poly(T ), and has length at most q · 2r = T · polylog(T ).

We mention that the result of [BSGH+05] holds for languages decidable in non-deterministic time

T , but we are only interested in deterministic languages for the purpose of delegating computations.

3A string b is δ-far from a set S ⊂ {0, 1}|b| if for every b′ ∈ S, the relative Hamming distance ∆(b, b′) ≥ δ, where
the relative Hamming distance is defined by ∆(b, b′) , |{i : bi 6= b′i}|/|b|.

4L can be decided in time T if there exists a Turing machine M such that for every input (a, b) ∈ {0, 1}∗×{0, 1}∗,
M(a, b) = 1 iff (a, b) ∈ L, and M(a, b) runs in time T (|a|+ |b|).
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We also mention that [BSGH+05] does not discuss the complexity of constructing the PCPP proof,

but the efficiency follows by a close inspection of their construction [Vad10].

We note that the soundness error 1/2 can be reduced to 1/2u by running V with independent

coins u times. This blows up the randomness, query, and time complexity of V by a (multiplicative)

factor of u (but does not increase the proof length).

7.2 Delegation Scheme using Universal Arguments with PCPP

In this section, we present a 4-round (standard) delegation scheme for any (efficient) computation,

that possesses the same key property we need from the GKR protocol for memory and streaming

delegation. Namely, the delegation protocol can be verified very efficiently (in sub-linear time in the

input size), if the delegator has oracle access to the low-degree extension of the input x.

The starting point is the 4-round delegation scheme using universal argument [BG02] presented

in Section 7.1. Recall that the delegator runs in time Ω(n) since the verification of the underlying

PCP proof π depends on the whole input (M,x, y, T ). To make the delegator run in sub-linear time

in n, we substitute the underlying PCP for the language Luni by the efficient PCPP of [BSGH+05]

from Theorem 54 for the following pair-language.

Luni−pair , {((M,y, T ),LDEF,H,m
x ) : M is a Turing machine s.t. M(x) outputs y in ≤ T steps},

where the low-degree extension LDEF,H,m
x is a Reed-Muller code of x ∈ {0, 1}n with

|H| = log n, m = θ

(
log n

log log n

)
, |F| = log2 n.

Since in Section 7.1, a language L is always defined to contain bit strings, we think of the codeword

LDEF,H,m
x as a bit string, parsing every field element in F as log |F| bits. Thus, the length of the

codeword is |F|m · log |F| = Õ(n2). The parameters H,F,m are chosen so that the codewords have

sufficient relative Hamming distance to each other, for establishing the soundness property (we

discuss this later).

Note that there exists a Turing machineM that on input ((M,y, T ), x̃), decides whether ((M,y, T ), x̃) ∈

Luni−pair in time poly(n, T ) as follows: check if x̃ is a valid codeword (i.e., x̃ = LDEx for some x),

decode x̃ to obtain x, simulate M(x) for T steps, and check if M outputs y. Hence, Theorem 54
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implies the existence of a PCPP system Πpcpp for Luni−pair such that on instance ((M,y, T ),LDEx),

the PCPP verifier V LDEx,π(M,y, T ; |LDEx|) runs in time polylog(T ).

Therefore, when the underlying PCP of the delegation scheme in Section 7.1 is replaced by this

PCPP system Πpcpp,
5 and when the delegator D is given oracle access to the low-degree extension

LDEx of x, D runs in time poly(k, log T ), and makes at most polylog(T ) queries to the oracle LDEx.

Furthermore, the queries to LDEx depend only on D’s coin tosses. On the other hand, the worker

W runs in time poly(k, T ), since the PCPP proof π can be computed in time poly(T ). For the sake

of completeness, a formal description of the modified protocol can be found in Figure 7.1.

Del = 〈D,W〉:
D delegates the computation of a uniform function f , specified by a Turing machine
M and a time bound T , on input x ∈ {0, 1}n to W.

• D has (M,T ) and x as the input.

1. D sends (M,T ) and x to W.

2. W computes and sends y = M(x) to D.

3. W and D engage in a universal argument with PCPP, where W proves to D that
((M,y, T ),LDEx) ∈ Luni−pair.

• D sends a collision-resistant hash function h← H to W.

• W computes a PCPP proof π of the statement ((M,y, T ),Enc(x)) ∈
Luni−pair, and sends the tree commitment Th(π) to D.

• D runs the PCPP verifier V to generate a PCPP query q and sends it to
W.

• W reveals the bits πi’s queried by q from the commitment Th(π) to D.

• D checks if πi’s are revealed validly, and runs the PCPP verifier
V LDEx,π(M,y, T ; |LDEx|).

4. D accepts y = f(x) if D accepts in the universal argument.

Figure 7.1: A (standard) delegation protocol Del for any (efficient) computation.

We briefly check the completeness and soundness of Del. The completeness follows by the com-

pleteness of the PCPP. For the soundness, note that to convince the delegator D of an incorrect

answer y 6= f(x), an adversarial worker W∗ needs to make D accept ((M,y, T ),LDEx) /∈ Luni−pair in

the universal argument. Note that by the choice of parameters F,H,m and Schwartz-Zippel Lemma,

5Namely, to prove f(x) = y, instead of proving (M,x, y, T ) ∈ Luni using PCP, the worker W proves to D that
((M,y, T ),LDEx) ∈ Luni−pair using universal argument with PCPPs.
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the relative Hamming distance between any two codewords LDEx,LDEx′ is at least

F−m · |H|
|F|

· 1

log |F|
= Ω

(
1

log log n

)
≥ 1

polylog(T )
.

Hence, the soundness property of the PCPP implies that for every ((M,y, T ),LDEx) /∈ Luni−pair

and for every π ∈ {0, 1}∗,

Pr[V LDEx,π(M,y, T ; |LDEx|) = 1] ≤ 1/2.

Since the soundness of the universal argument follows by the security of collision-resistance hash

functions and the soundness of the underlying PCP / PCPP, the delegator D would accept y 6= f(x)

with probability at most 1/2+ngl. Namely, the delegation protocol has soundness error 1/2+ngl. The

soundness error can be reduced to negligible if the soundness of the underlying PCPP is negligible,

which as mentioned, can be achieved by repeating the PCPP verifier with fresh randomness u times

for some u satisfying 1/2u ≤ ngl.

As in Section 7.1, the protocol Del, as defined in Figure 7.1, consists of 6 message exchanges.

However, note that the first message of D in the universal argument does not depend on the statement

((M,y, T ),LDEx), and hence the worker’s first message can be delayed to be sent together with the

first prover’s message of the universal argument, which yields a 4-message delegation protocol.

We summarize the properties of Del in the following theorem.

Theorem 55 (Interactive Delegation Scheme for Any (Efficient) Computation) Let k be

the security parameter. Let n denote the input length, and let T be a time bound such that T ≥ n ≥ k.

Let F be the family of boolean functions computable by time T Turing machines. Assume the

existence of collision resistant hash functions secure against poly(T )-time adversaries. Then, there

exists a delegation protocol for F with the following properties.

1. The protocol has perfect completeness and negligible soundness error.

2. The worker runs in time poly(T ), and the delegator runs in time poly(n, log T ).

3. The protocol consists of four messages, with communication complexity poly(k, log T ). More-

over, the protocol is public-coin.

4. If the delegator is given oracle access to the low-degree extension of x, rather than being given
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the input x itself, and if the worker is given x as an input, then she runs in time poly(k, log T ),

and the protocol still has all the properties described above, for the following choice of param-

eters H,F,m of the low-degree extension.

|H| = log n, m = θ

(
log n

log log n

)
, |F| = log2 n.

Moreover, the delegator queries the low-degree extension of x at polylog(T ) points, depending

only on her coin tosses.

Remark 56 We remark that the parameters F,H,m are chosen so that LDEx is a Reed-Muller

code with good rate and minimum distance. Let N > n be a parameter. We can also set F,H,m by

|H| = logN, m =

⌈
log n

log logN

⌉
, |F| = log2N,

Then LDEx has length at most poly(n, logN) and (relative) minimum distance at least Ω(1/ log logN).

One can verify that the delegation scheme in Figure 7.1 is also sound with this setting of parameters

(provided that T ≥ logN , which can be assumed without loss of generality by padding dummy

steps), and the runtime of the delegator and the work are poly(k, logN, log T ) and poly(k, logN,T ),

respectively. This will be useful for our streaming delegation scheme presented in Section 7.4.

7.3 Memory Delegation Scheme Based on Theorem 55

In this section, we outline how to construct the memory delegation scheme (Theorem 48) using

the above delegation scheme (Theorem 55). Let x ∈ {0, 1}n be the memory being delegated. We

observe that the delegator in Theorem 55 is efficient (poly(k, log T )) if she is given the oracle access

to the low-degree extension of x with respect to some parameters |F| = log2 n, |H| = log n, and

m = θ(log n/ log log n). Thus, we can use similar techniques to the once in Section 5.2.2 where the

delegator can verify points on the low-degree extension oracle using a tree commitment.

The Construction.

• Offline Phase. The delegator chooses parameters F,H,m with |F| = log2 n, |H| = log n, and

m = θ(log n/ log log n), and a random function h from a collision resistant hash familyH. Then
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the delegator computes the root of the Merkle tree of LDEF,H,m
x , namely σ = Th(LDEF,H,m

x ),

and saves (h, σ) as a short certificate of x.

• Online Plase.

– Compute(f): The worker and the delegator run the delegation scheme given by Theorem

55. In order to verify, the delegator needs to access poly log T points in LDEF,H,m
x , and she

can achieve this task by asking the worker to reveal the augmented paths corresponding

to the Merkle tree. She accepts if and only if all the openings are accepted, and their

corresponding values together with the answers to the PCPP queries are accepted in the

verification of the delegation scheme.

– Update(g): The delegator chooses a fresh collision resistant hash function h′ ← H, then

the delegator and the worker run Compute(Th′(LDEg(x))). Note that Th′(LDEg(x)) is

polynomial time computable (in x) given g. Finally, the worker replaces the memory x

with g(x).

Putting it together, we obtain Theorem 48. The proof is very similar to the proof of Theorem 35

in Section 5.2.3, and therefore is omitted. In what follows, we give a very high level overview of the

proof.

Proof Overview of Theorem 48.

• The completeness follows from those of the delegation scheme from Theorem 55 and the tree

commitment. The soundness can be proved in a similar way to the proof in Section 5.2.3.

• Both parties are efficient in the offline stage, i.e. run in time poly(k, n) since the computation

of the root of the Merkle tree takes poly(k, |F|m) = poly(k, n) time.

• In the online phase during each Compute(f) operation, the worker runs in time poly(k, T ), and

the delegator runs in time poly(k, log T ), where T is the running time of f . This follows from

the efficiency of the delegation scheme from Theorem 55 and from the fact that only poly log T

leaves of the tree commitment need to be revealed.

• The protocol has 4 rounds of message exchanges, by running the delegation scheme from

Theorem 55 and the Reveal protocols in parallel. Specifically, in the first two messages, the
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delegator sends a random hash function and the worker uses it to commit to a PCPP proof.

Then in the third message, the delegator queries both the PCPP proof and points on the low

degree extension of the memory. The worker answers the corresponding queries in the fourth

message. An illustration of the protocol can be found in Figure 7.2.

W D
hUA←−−−−−−−−−−−−−−

ThUA
(πpcpp)−−−−−−−−−−−−−−→

qπ, qLDE←−−−−−−−−−−−−−−
ansπ, ansLDE−−−−−−−−−−−−−−→

Figure 7.2: Compute(f) protocol of our interactive memory delegation scheme: hUA is a collision
resistant hash function chosen by the delegator in the universal argument. ThUA

(πpcpp) is the tree
commitment of the PCPP proof πpcpp. qπ and q

LDE
denote the queries that the delegator makes to

the PCPP proof and the Reed-Muller encoding LDEx of the input x, respectively. ansπ and ans
LDE

denote the corresponding answers together with the corresponding augmented paths.

7.4 Streaming Delegation Scheme Based on Theorem 55

In this section, we outline the construction of our streaming delegation scheme. Let N be the

bound of the stream, and we choose the following parameters: F̃,F,H,m such that |F| = log2N ,

|H| = logN , m = θ(logN/ log logN), and |F̃| = N logN where F̃ is an extension field of F.

The Construction.

• Generating and updating the secret state. At time 0, the delegator keeps a secret

σ0 = (z, 0), where z ← F̃m. At each time t ∈ [N ], when a data item xt ∈ {0, 1} arrives, the

delegator updates her secret state from σt−1 = (z,LDEF̃,H,m
xt−1 (z)) to σt = (z,LDEF̃,H,m

xt (z)), by

using Proposition 6. (Recall that xt = (x1, . . . , xt) denotes the entire data stream up until

time t.)

• Compute(f, t). At any time t, when the delegator wants to execute Compute(f, t), both parties

run the delegation scheme from Theorem 55 with a modified parameter setting

|H| = logN, m′′ =

⌈
log n

log logN

⌉
, |F| = log2N
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as stated in Remark 56. Here in order to verify, the delegator needs to verify the value

of LDEF,H,m′′
xt on a few points z′′i ∈ Fm′′ . As argued in Section 6.2.1 (see Equation (6.3)),

LDEF,H,m′′
xt (z′′i ) = LDEF,H,m

xt (zi) where zi = (0m−m
′′
, zi). Hence, the delegator can instead

verify the values LDEF,H,m
xt (zi), which can be done by using a many-to-one protocol together

with a Reveal protocol in exactly the same way as in Section 6.2.2 (see Steps 3 and 4 in

Figure 6.4).

This gives us a streaming delegation scheme satisfying Theorem 49. As in Section 7.3, the proof

is very similar to the proof of Theorem 44 in Section 6.2, and is therefore omitted.

Proof Overview of Theorem 49.

• The completeness follows from that of the delegation scheme from Theorem 55, the many-

to-one protocol, and the Reveal protocol of the algebraic commitments (see Section 6.2 for

details). The soundness can be proved in a similar way to the proof in Section 6.2.3.

• The delegator runs in time polylogN to update her secret per data item.

• The worker runs in time poly(k, logN,T ) for the delegation of a time T computable function,

and the delegator runs in time poly(k, logN, log T ). This follows from the efficiency of the

underlying delegation scheme from Theorem 55, the many-to-one protocol, and the Reveal

protocol of the algebraic commitments.

• The protocol has 4 rounds of message exchanges, by running the the delegation scheme from

Theorem 55, the many-to-one protocol, and the Reveal protocol in parallel, in a similar way to

that of the memory delegation scheme described in Section 7.3. An illustration of the protocol

can be found in Figure 7.3.
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W D
hUA←−−−−−−−−−−−−−−

ThUA
(πpcpp)−−−−−−−−−−−−−−→

qπ, qLDE−−−−−−−−−−−−−−→ many-to-one
Reveal(s)ansπ, ansLDE−−−−−−−−−−−−−−→

(z, s)

Figure 7.3: Compute(f) protocol of our interactive streaming delegation scheme, where qLDE = z =
{zi} is the queries that the delegator makes to the Reed-Muller encoding LDEx of the input x. In
parallel to the universal argument, the delegator and the worker run a many-to-one protocol and a
Reveal protocol in the same way as in Section 6.2.2 (see Steps 3 and 4 in Figure 6.4) to verify the
values of LDEx on points z.



Part II

Tamper and Leakage Resilience in

the Split-State Model
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Chapter 8

Overview

We give an overview of our approach of achieving tamper and leakage resilient constructions. First

we review a powerful cryptographic primitive – non-malleable code, which we use as our main

building block. We present the high level concepts of the primitive and leave the overview of our

new construction in Section 10.2. Then we present an overview of our security model and how we

can achieve security against tampering and leakage attacks using non-malleable codes as building

blocks.

8.1 Our building block: non-malleable codes

Non-malleable codes were defined by Dziembowski et al. [DPW10]. Let Enc be an encoding proce-

dure and Dec be the corresponding decoding procedure. Consider the following tampering experi-

ment [DPW10]: (1) A string s is encoded yielding a codeword c = Enc(s). (2) The codeword c is

mauled by some function f to some c∗ = f(c). (3) The resulting codeword is decoded, resulting in

s∗ = Dec(c∗). (Enc,Dec) constitutes a non-malleable code if tampering with c can produce only

two possible outcomes: (1) f leaves c unchanged; (2) the decoded string s∗ is unrelated to the

original string s. Intuitively, this means that one cannot learn anything about the original string s

by tampering with the codeword c.

It is clear [DPW10] that, without any restrictions on f , this notion of security is unattainable. For

example, f could, on input c, decode it to s, and then compute s∗ = s+ 1 and then output Enc(s∗).

Such an f demonstrates that no (Enc,Dec) can satisfy this definition. However, for restricted classes
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of functions, this definition can be instantiated.

Dziembowski et al. constructed non-malleable codes with respect to bit-wise tampering func-

tions in the plain model, and with respect to split-state tampering functions in the random ora-

cle model. They also show a compiler that uses non-malleable codes to secure any functionality

against tampering attacks. In this paper, we improve their result in four ways: first, we construct

a non-malleable code with respect to split-state tampering, in the CRS model (which is a signifi-

cant improvement over the RO model). Second, our code has an additional property: it is leakage

resilient. That is to say, for any constant ε ∈ (0, 1), any efficient shrinking split-state function

g : {0, 1}n × {0, 1}n → {0, 1}(1−ε)n × {0, 1}(1−ε)n, g(c) reveals no information about the s (where c

is a codeword encoding s). Third, we prove that plugging in a leakage-resilient non-malleable code

in the Dziembowski et al. compiler secures any functionality against tampering and leakage attacks

at the same time. This gives a randomized secure implementation of any functionality. Fourth, we

give another compiler that gives a deterministic secure implementation of any functionality where

after initialization, the device (implementation) does not need access to a source of randomness.

8.2 Our continual tampering and leakage model

We consider the same tampering and leakage attacks as those of Liu and Lysyanskaya[LL10] and

Kalai et al. [KKS11], which generalized the model of tampering-only [GLM+04, DPW10] and leakage-

only [BKKV10, DHLAW10, LRW11, LLW11] attacks. (However, in this attack model we achieve

stronger security, as discussed in the introduction.)

Let M be the memory of the device under attack. We view time as divided into discrete time

periods, or rounds. In each round, the adversary A makes a leakage query g or a tampering query

f ; as a result, A obtains g(M) or modifies the memory: M := f(M). In this work, we consider both

g, f to be split-state functions.

In this paper, we consider the simulation based security that generalized the Dziembowski et

al. definition [DPW10]. On a high level, let the memory M be an encoded version of some secret

s. Security means there exists a simulator who does not know s and only gets oracle access to

the functionality G(s, x), but can still respond to the adversary’s attack queries in a way that is

indistinguishable from the real game. This means that tampering and leakage attacks do not give

the adversary more information than black box access to the functionality G(s, x). This is captured
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formally in Definition 67.

8.3 Our approach

We take a simple and natural approach given any leakage resilient non-malleable code. Let G(s, x)

be the functionality we want to secure, where s is some secret state and x is the user input. Given

such coding scheme, our compiler takes G as input, outputs G′(Enc(s), x), where G′ gets an encoded

version of the state s, emulates G(s, x) and re-encodes the new state at the end of each round. Then

we will argue that even if the adversary can get partial information or tamper with the encoded

state in every round, the compiled construction is still secure. Intuitively, by leakage resilience, the

encoding of s gives no information from partial leakage of the codeword, and by non-malleability,

tampering with the codeword will result in some unrelated message. Thus the adversary cannot

gain any extra power via leakage and tampering attacks.



Chapter 9

Definitions and Models

9.1 Definitions

In this section, we formally define the tools we need for the construction. We need robust NIZK,

one-time leakage-resilient encryption scheme, and universal one-way hash functions. Moreover, our

construction needs these tools to have some additional properties. We describe these properties here

and will show that they are without loss of generality.

Definition 57 (Robust NIZK [DDO+01]) Π = (`,P,V,S = (S1,S2)) is a robust NIZK proof/argument

for the language L ∈ NP with witness relation W if ` is a polynomial, and P,V,S ∈ PPT, there

exists a negligible function ngl(·) such that:

• (Completeness): For all x ∈ L of length k and all w such that W(x,w) = 1, for all strings

Σ ∈ {0, 1}`(k), we have V(x,P(x,w,Σ),Σ) = 1.

• (Extractability): For all non-uniform PPT adversary A, we have

Pr


(Σ, τ)← S1(1k); (x, π)← AS2(·,·,Σ,τ)(Σ);

w ← Ext(Σ, τ, x, π) :

(x,w) ∈W ∨ (x, π) ∈ Q ∨ V(x, π,Σ) = 0

 = 1− ngl(k)

where Q denotes the successful statement-query pairs (xi, pi)’s that S2 has answered A.

• (Multi-theorem Zero-Knowledge): For all non-uniform PPT adversary A, we have |Pr[X(k) =
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1]−Pr[Y (k) = 1]| < ngl(k) where X,Y are binary random variables defined in the experiment

below:

X(k) =
{

Σ← {0, 1}`(k);X ← AP(·,·,Σ)(Σ) : X
}

;

Y (k) =
{

(Σ, τ)← S1(1k);Y ← AS2(·,·,Σ,τ)(Σ) : Y
}
.

Remark 58 We remark that in this paper, we assume a robust NIZK system that has an additional

property that different statements must have different proofs. That is, suppose V(Σ, x, π) accepts,

then V(Σ, x′, π) must reject for all x′ 6= x.

This property is not required by standard NIZK definitions, but can be achieved easily by ap-

pending the statement to its proof. In the construction of robust NIZK [DDO+01], if the underlying

NIZK system has this property, then the transformed one has this property as well. Thus, we can

assume this property without loss of generality.

Definition 59 (Universal One-way Hash Functions - UOWHF [HHR+10]) A family of func-

tions Hk = {hz : {0, 1}n(k) → {0, 1}k}z∈{0,1}k is a universal one-way hash family if:

• (Efficient): given z ∈ {0, 1}k, and x ∈ {0, 1}n(k), the value hz(x) can be computed in time

poly(k, n(k)).

• (Compressing): For all k, k ≤ n(k).

• (Universal One-way): For any non-uniform PPT adversary A, there exists a negligible

function ngl(·):

Pr

 x← A(1k); z ← {0, 1}k;x′ ← A(1k, z, x) :

x, x′ ∈ {0, 1}n(k) ∧ x′ 6= x ∧ hz(x) = hz(x
′)

 < ngl(k).

Definition 60 (One-time Leakage Resilient Encryption [AGV09]) Let E = (KeyGen,Encrypt,Decrypt)

be an encryption scheme, and G be a set of functions. Let the random variable LEb(E , A, k,G) where

b ∈ {0, 1}, A = (A1, A2, A3) and k ∈ N denote the result of the following probabilistic experiment:
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LEb(E , A, k,G) :

• (pk, sk)← KeyGen(1k).

• g ← A1(1k, pk) such that g is a leakage function in the class G.

• (m0,m1, stateA)← A2(pk, g(sk)) s.t. |m0| = |m1|.

• c = Encryptpk(mb).

• Output b′ = A3(c, stateA).

We say E is semantically secure against one-time leakage G if ∀ PPT adversary A, the following

two ensembles are computationally indistinguishable:

{
LE0(E , A, k,G)

}
k∈N
≈c
{
LE1(E , A, k,G)

}
k∈N

Additional Properties. Our construction of LR-NM codes in Section 10 needs additional prop-

erties of the encryption scheme:

• Given a secret key sk, one can derive its corresponding public key pk deterministically and

efficiently. This property is easy to achieve since we can just append public keys to secret

keys.

• It is infeasible for non-uniform PPT adversaries that receive a random key pair (pk, sk) to

output another valid key pair (pk, sk′) for some sk′ 6= sk. This property is not guaranteed by

standard definitions, but for leakage resilient encryption schemes, this is easy to achieve. We

formalize this claim in the following lemma.

Lemma 61 Let E = (KeyGen,Encrypt,Decrypt) be a leakage resilient encryption scheme that al-

lows t(k)-bit leakage for t(k) > k, and Hk : {hz : {0, 1}poly(k) → {0, 1}k}s∈{0,1}k be a family of

universal one-way hash functions.

Then there exists an encryption scheme E ′ = (KeyGen′,Encrypt′,Decrypt′) that is leakage re-

silient that allows (t − k)-bit leakage and has the following property: for all non-uniform PPT

adversary A,
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Pr
(pk,sk)←KeyGen′(1k)

[(sk′, pk)← A(sk, pk) : (sk′, pk) is a key pair and sk′ 6= sk] < ngl(k).

Proof. [Sketch] The construction is as follows: KeyGen′(1k): sample z ← {0, 1}k, and (pk0, sk0)←

KeyGen(1k). Set pk = pk0 ◦ z ◦ hs(sk0), and sk = sk0.

The Encrypt′ and Decrypt′ follow directly from Encrypt,Decrypt. It is easy to see that, since

it is safe to leak t bits of sk as the original cryptosystem, after publishing h(sk) in the public key,

it is still safe to leak (t − k) bits. On the other hand, this additional property holds simply by the

security of the universal one-way hash function and can be proved using a standard reduction.

In the rest of the paper, we will assume the encryption scheme has this property. Now we give

an instantiation of one-time leakage resilient encryption scheme due to Naor-Segev1:

Theorem 62 ([NS09]) Under the Decisional Diffie-Hellman assumption, for any polynomial `(k),

there exists an encryption scheme E that uses `(k) + ω(log k) bits to represent its secret key and is

semantically secure against one-time leakage G` = {all efficient functions that have `-bit output}.

9.2 Our Model

In this section, we define the function classes for split-state leakage and tampering attacks, Ghalf

and Fhalf , respectively. Then we define an adversary’s interaction with a device that is vulnerable

to such attacks. Finally, we give the definition of a compiler that transforms any cryptographic

functionality G(s, x) to a functionality G′(s′, x) that withstands these attacks.

Definition 63 Define the following three function classes Gt,Fhalf ,Ghalft1,t2 :

• Let t ∈ N, and by Gt we denote the set of all polynomial-sized circuits that have output length

t, i.e. g : {0, 1}∗ → {0, 1}t.

• Let Fhalf denote the set of length-preserving and polynomial-sized functions/circuits f that

operate independently on each half of their inputs. I.e. f : {0, 1}2m → {0, 1}2m ∈ Fhalf if there

1Actually the Naor-Segev scheme can tolerate more leakage up to (1 − o(1)) · |sk|, and the leakage function can
even be computationally unbounded. In this work, this weaker version suffices for our purposes.
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exist two polynomial-sized functions/circuits f1 : {0, 1}m → {0, 1}m, f2 : {0, 1}m → {0, 1}m

such that for all x, y ∈ {0, 1}m, f(x, y) = f1(x) ◦ f2(y).

• Let t1, t2 ∈ N, and we denote Ghalft1,t2 as the set of all polynomial-sized leakage functions that

leak independently on each half of their inputs, i.e. g : {0, 1}2m → {0, 1}t1+t2 ∈ Ghalft1,t2 if there

exist two polynomial-sized functions/circuits g1 : {0, 1}m → {0, 1}t1 , g2 : {0, 1}m → {0, 1}t2

such that for all x, y ∈ {0, 1}m, g(x, y) = g1(x) ◦ g2(y).

We further denote Ghalft1,all
as the case where g1(x) leaks t1 bits, and g2(y) can leak all its input

y.

We remark that the security parameter k with respect to which efficiency is measured is implicit in

the definitions.

Next, let us define an adversary’s access to a functionality under tampering and leakage attacks.

In addition to queries to the functionality itself (called Execute queries) an attacker has two more

operations: he can cause the memory of the device to get tampered according to some function f ,

or he can learn some function g of the memory. Formally:

Definition 64 (Interactive Functionality Subject to Tampering and Leakage Attacks) Let

〈G, s〉 be an interactive stateful system consisting of a public (perhaps randomized) functionality

G : {0, 1}u × {0, 1}k → {0, 1}v × {0, 1}k and a secret initial state s ∈ {0, 1}k. We consider the

following ways of interacting with the system:

• Execute(x): A user can provide the system with some query Execute(x) for x ∈ {0, 1}u. The

system will compute (y, snew)← G(s, x), send the user y, and privately update its state to snew.

• Tamper(f): the adversary can operate tampering attacks against the system, where the state s

is replaced by f(s) for some function f : {0, 1}k → {0, 1}k.

• Leak(g): the adversary can obtain the information g(s) of the state by querying Leak(g).

Next, we define a compiler that compiles a functionality 〈G, s〉 into a hardware implementation

〈G′, s′〉 that can withstand leakage and tampering attacks. A compiler will consist of two algorithms,

one for compiling the circuit for G into another circuit, G′; the other algorithm is for compiling the

memory, s, into s′. This compiler will be correct, that is to say, the resulting circuit and memory
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will provide input/output functionality identical to the original circuit; it will also be tamper- and

leakage-resilient in the following strong sense: there exists a simulator that, with oracle access to

the original 〈G, s〉, will simulate the behavior of 〈G′, s′〉 under tampering and leakage attacks. The

following definitions formalize this:

Definition 65 Let CRS be an algorithm that generates a common reference string, on input the secu-

rity parameter 1k. The algorithms (CircuitCompile,MemCompile) constitute a correct and efficiency-

preserving compiler in the CRS(1k) model if for all Σ ∈ CRS(1k), for any Execute query x, 〈G′, s′〉’s

answer is distributed identically to 〈G, s〉’s answer, where G′ = CircuitCompile(Σ, G) and s′ ∈

MemCompile(Σ, s); moreover, CircuitCompile and MemCompile run in polynomial time and output

G′ and s′ of size polynomial in the original circuit G and secret s.

Note that this definition of the compiler ensures that the compiled functionality G′ inherits all

the security properties of the original functionality G. Also note that the compiler, as defined here,

works separately on the functionality G and on the secret s, which means that it can be combined

with another compiler that strengthens G′ is some other way (for example, it can be combined with

the compiler of Goldwasser and Rothblum [GR10]). This definition allows for both randomized

and deterministic G′; as we discussed in the introduction, in general a deterministic circuit is more

desirable.

Remark 66 Recall that G, and therefore G′, are modeled as stateful functionalities. By convention,

running Execute(ε) will cause them to update their states.

As defined above, in the face of the adversary’s Execute queries, the compiled G′ behaves iden-

tically to the original G. Next, we want to formalize the important property that whatever the

adversary can learn from the compiled functionality G′ using Execute, Tamper and Leak queries, can

be learned just from the Execute queries of the original functionality G.

We want the real experiment where the adversary interacts with the compiled functionality

〈G′, s′〉 and issues Execute, Tamper and Leak queries, to be indistinguishable from an experiment

in which a simulator Sim only has black-box access to the original functionality G with the secret

state s (i.e. 〈G, s〉). More precisely, in every round, Sim will get some tampering function f or

leakage function g from A and then respond to them. In the end, the adversary halts and outputs

its view. The simulator then may (potentially) output this view. Whatever view Sim outputs needs
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to be indistinguishable from the view A obtained in the real experiment. This captures the fact

that the adversary’s tampering and leakage attacks in the real experiment can be simulated by only

accessing the functionality in a black-box way. Thus, these additional physical attacks do not give

the adversary any additional power.

Definition 67 (Security Against F Tampering and G Leakage) A compiler (CircuitCompile,

MemCompile) yields an F-G resilient hardened functionality in the CRS model if there exists a sim-

ulator Sim such that for every efficient functionality G ∈ PPT with k-bit state, and non-uniform

PPT adversary A, and any state s ∈ {0, 1}k, the output of the following real experiment is indistin-

guishable from that of the following ideal experiment:

Real Experiment Real(A, s): Let Σ ← CRS(1k) be a common reference string given to all

parties. Let G′ ← CircuitCompile(Σ, G), s′ ← MemCompile(Σ, s). The adversary A(Σ) interacts with

the compiled functionality 〈G′, s′〉 for arbitrarily many rounds where in each round:

• A runs Execute(x) for some x ∈ {0, 1}u, and receives the output y.

• A runs Tamper(f) for some f ∈ F , and then the encoded state is replaced with f(s′).

• A runs Leak(g), and receives some ` = g(s′) for some g ∈ G, where s′ is the current state.

Then the system updates its memory by running Execute(ε), which will update the memory

with a re-encoded version of the current state.

Let viewA = (stateA, x1, y1, `1, x2, y2, `2, . . . , ) denote the adversary’s view where xi’s are the

execute input queries, yi’s are their corresponding outputs, `i’s are the leakage at each round i. In

the end, the experiment outputs (Σ, viewA).

Ideal Experiment Ideal(Sim,A, s): Sim first sets up a common reference string Σ, and SimA(Σ),〈G,s〉

outputs (Σ, viewSim) = (Σ, (stateSim, x1, y1, `1, x2, y2, `2, . . . )), where (xi, yi, `i) is the input/output/leakage

tuple simulated by Sim with oracle access to A, 〈G, s〉.

Note that we require that, in the real experiment, after each leakage query the device updates

its memory. This is necessary, because otherwise the adversary could just keep issuing Leak query

on the same memory content and, over time, could learn the memory bit by bit.

Also, note that, following Dziembowski et al. [DPW10] we require that each experiment faithfully

record all the Execute queries. This is a way to capture the idea that the simulator cannot make
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more queries than the adversary; as a result, an adversary in the real experiment (where he can

tamper with the secret and get side information about it) learns the same amount about the secret

as the simulator who makes the same queries (but does NOT get the additional tampering and

leakage ability) in the ideal experiment.



Chapter 10

Main Tool – Leakage Resilient

Non-Malleable Code

In this section, we present the definition of leakage resilient non-malleable codes (LR-NM codes), and

our construction. We also extend the definition of Dziembowski et al. [DPW10] in two directions:

we define a coding scheme in the CRS model, and we consider leakage resilience of a scheme. Also,

our construction achieves the stronger version of non-malleability, so we present this version. For

the normal non-malleability and the comparison, we refer curious readers to the paper [DPW10].

First we define a coding scheme in the plain model and in the CRS model.

10.1 Definitions

Definition 68 (Coding Scheme [DPW10]) A (k, n) coding scheme consists of two algorithms:

an encoding algorithm Enc : {0, 1}k → {0, 1}n, and decoding algorithm Dec : {0, 1}n → {0, 1}k∪{⊥}

such that, for each s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, over the randomness of the encod-

ing/decoding algorithms.

Definition 69 (Coding Scheme in the Common Reference String Model) Let k be the se-

curity parameter, and Init(1k) be an efficient randomized algorithm that publishes a common ref-

erence string (CRS) Σ ∈ {0, 1}poly(k). We say C = (Init, Enc,Dec) is a coding scheme in the CRS

model if for every k, (Enc(1k,Σ, ·),Dec(1k,Σ, ·)) is a (k, n(k)) coding scheme for some polynomial

117
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n(k).

For simplicity, we will omit the security parameter and write Enc(Σ, ·),Dec(Σ, ·) for the case in

the CRS model.

Now we define the two properties of coding schemes: non-malleability and leakage resilience.

Definition 70 (Strong Non-malleability [DPW10]) Let F be some family of functions. For

each function f ∈ F , and s ∈ {0, 1}k, define the tampering experiment

Tamperfs
def
=

 c← Enc(s), c̃ = f(c), s̃ = Dec(c̃)

Output : same* if c̃ = c, and s̃ otherwise.


The randomness of this experiment comes from the randomness of the encoding and decoding

algorithms. We say that a coding scheme (Enc,Dec) is strong non-malleable with respect to the

function family F if for any s0, s1 ∈ {0, 1}k and for each f ∈ F , we have:

{Tamperfs0}k∈N ≈ {Tamperfs1}k∈N

where ≈ can refer to statistical or computational indistinguishability.

When we refer to non-malleable codes in the common reference string model, for any CRS Σ we

define

Tamperf,Σs
def
=

 c← Enc(Σ, s), c̃ = fΣ(c), s̃ = Dec(Σ, c̃)

Output : same∗ if c̃ = c, and s̃ otherwise.

 .

We say the coding scheme (Init, Enc,Dec) is strong non-malleable if we have {(Σ,Tamperf,Σs0 )}k∈N ≈

{(Σ,Tamperf,Σs1 )}k∈N where Σ← Init(1k), any s0, s1 ∈ {0, 1}k, and f ∈ F .

Definition 71 (Leakage Resilience) Let G be some family of functions. We say a coding scheme

(Init, Enc,Dec) is leakage resilient with respect to G if for every function g ∈ G, every two states

s0, s1 ∈ {0, 1}k, and every efficient adversary A, we have Pr[A(Σ, g(Σ, Enc(Σ, sb)) = b] ≤ 1/2 +

ngl(k), where b is a random bit, and Σ← Init(1k).
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10.2 Construction Overview

In this section, we describe our construction of an LR-NM code. Before presenting our construction,

we first consider two bad candidates.

Consider the following idea, inspired by Gennaro et al. [GLM+04]: a seemingly natural way to

prevent malleability is to add a signature to the code; an attacker (it would seem) would have to

forge a signature in order to tamper with the codeword. Thus, to encode a string s, we sample a

signing and verification key pair (sk, vk) and set M1 = sk and M2 = (vk,Signsk(s)). Intuitively, M1

has no information about s, and M2 cannot be tampered with by the unforgeability of the signature

scheme. However, the problem is that the latter is true only as long as M1 is not tampered with. An

adversary can easily defeat this construction: first he resamples another key pair (sk′, vk′) and then

sets M1 = sk′, and M2 = (vk′,Signsk′(s)). This creates a valid codeword whose underlying message

is highly correlated to the original one, and thus it cannot satisfy the definition.

Another possible approach (inspired by the work on non-malleable cryptography [DDN00]) is to

use a non-malleable encryption scheme. To encode a string s, we sample a key pair (pk, sk) and set

M1 = sk and M2 = (pk,Encryptpk(s)). If the adversary tampers with the ciphertext Encryptpk(s)

only, then by the definition of non-malleable encryption, the tampered message cannot be related

to s, which is what we need. However, if the adversary tampers with the keys as well, it is unclear

how non-malleability can be guaranteed. In fact, we are not aware of any encryption scheme that

has this type of non-malleability in the face of key tampering.

Although we just saw that non-malleable encryption does not work directly, the techniques of how

to achieve non-malleability, due to Naor and Yung [NY90], Sahai [Sah99] and Dolev et al. [DDN00],

give us a good starting point. In particular, these works used a non-interactive zero-knowledge

(NIZK) proof to enforce consistency such that the adversary cannot generate valid ciphertexts by

mauling the challenger’s ciphtertext. Here we consider a similar technique that uses an encryption

scheme and an NIZK proof, and sets M1 = sk, M2 = (pk, ŝ = Encryptpk(s), π) where π is a proof

of consistency (i.e. it proves that there exists a secret key corresponding to pk and that ŝ can be

decrypted using this secret key).

Does this work yet? If the attacker modifies ŝ, then the proof π has to be modified as well. If the

underlying proof system is malleable, then it could be possible to modify both at the same time, so

that the attacker could obtain an encoding of a string that is related to the original s. So we require
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that the proof system be non-malleable; specifically we use the notion of robust NIZK given by de

Santis et al. [DDO+01], in which, informally, the adversary can only output new proofs for which he

knows the corresponding witnesses, even when given black-box access to a simulator that produces

simulated proofs on demand; there exists an extractor that can extract these witnesses.

Now let us try to give a high-level proof of security. Recall that we need to show: for any poly-time

adversary A that breaks the non-malleability with some split-state tampering function f = (f1, f2),

there exists an efficient reduction that breaks the semantic security of the encryption. Given a public

key pk, and a ciphertext c, it is the reduction’s job to determine whether c is an encryption of s0

or s1, with the help of the adversary that distinguishes Tamperfs0 and Tamperfs1 . A natural way for

the reduction is to pretend that M1 = sk, and put the public key pk and the ciphertext ŝ = c with

a simulated proof into M2, setting M2 = (pk, ŝ, πSim). Then the reduction simulates the tampering

experiment Tamperfs . Clearly, irrespective of f1 the reduction can compute f2(M2) = (pk′, ŝ′, πSim),

and intuitively, the non-malleability of the proof assures that the adversary can only generate valid

(pk′, ŝ′) if he knows sk′ and s′. So at first glance, the outcome of the tampering experiment (i.e. the

decoding of the tampered codeword) should be s′, which can be simulated by the reduction. Thus,

the reduction can use A to distinguish the two different experiments.

However, there are several subtle missing links in the above argument. The reduction above does

not use any property of f1, which might cause a problem. Suppose f1(sk) = sk′, then the decoding

of the tampered codeword is really s′, so the reduction above simulates the tampering experiment

faithfully. However, if not, then the decoding should be ⊥ instead. Thus, the reduction crucially

needs one bit of information: sk′
?
= f1(sk). If the reduction could get leakage f1(sk) directly, then it

could compute this bit. However, the length of f1(sk) is the same as that of sk itself, and therefore no

leakage-resilient cryptosystem can tolerate this much leakage. If the reduction, instead, tried to guess

this bit, then A will be able to tell that it is dealing with the reduction rather than with the correct

experiment, and may cancel out its advantage. (This is a common pitfall in indistinguishability

reductions: they often don’t go through if the adversary can tell that he is not operating “in the

wild.”)

Our novel observation here is that actually a small amount of leaked information about the secret

key sk is sufficient for the reduction to tell the two cases apart. Let h be a hash function that maps

input strings to strings of length `. Then, in order to check whether f1(sk) = sk′, it is very likely

(assuming appropriate collision-resistance properties of h) sufficient to check if h(f1(sk)) = h(sk′).



121

So if we are given a cryptosystem that can tolerate ` bits of leakage, we can build a reduction that

asks that h(f1(sk)) be leaked, and this (in addition to a few other technicalities that we do not

highlight here) enables us to show that the above construction is non-malleable.

Besides non-malleability, the above code is also leakage-resilient in the sense that getting partial

information about a codeword does not reveal any information about the encoded string. Intuitively,

this is because the NIZK proof hides the witness, i.e. the message, and partial leakage of the secret

key does not reveal anything about the message, either. Thus, this construction achieves non-

malleability and leakage resilience at the same time.

10.3 The Construction

Recall Gt is the function class that includes all poly-sized circuits with t-bit output. Now we are

ready to describe our tools and coding scheme.

Our tools: Let t be a polynomial, E = (KeyGen,Encrypt,Decrypt) be an encryption scheme

that is semantically secure against one-time leakage Gt, and Π = (`,P,V,S) be a robust NIZK proof

system (see Definitions 60 and 57 in Section 9.1). The encryption scheme and robust NIZK needs

to have some additional properties, and we briefly summarize them here: (1) given a secret key sk,

one can efficiently derive it corresponding public key pk; (2) given a key pair (pk, sk), it is infeasible

to find another valid (pk, sk′) where sk 6= sk′; (3) different statements of the proof system must have

different proofs.

In Section 9.1 we give formal definitions of these additional properties and show that simple

modifications of leakage-resilient crypto systems and robust NIZK proof systems satisfy them. Now,

we define a coding scheme (Init, Enc,Dec) as follows:

The coding scheme:

• Init(1k): sample a common reference string at random, i.e. Σ← {0, 1}`(k).

• Enc(Σ, s): on input message s ∈ {0, 1}k, sample (pk, sk) ← KeyGen(1k). Then consider the

language L with the witness relation W defined as following:
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L =

(pk, m̂) : ∃w = (sk,m) such that
(pk, sk) forms a public-key secret-key pairs for E and

m = Decryptsk(m̂).

 ,

and W is the natural witness relation defined in the above language L.

Compute the proof π ← P((pk, ŝ), (sk, s, r),Σ) of the statement that (pk, ŝ) ∈ L. Then output

the encoding c = (sk; pk, ŝ = Encryptpk(s), π).

• Dec(Σ, c): If (1) V((pk, ŝ), π,Σ) accepts and (2) (pk, sk) form a valid key pair, output Decryptsk(ŝ).

Otherwise, output ⊥.

Let n = n(k) be the polynomial that is equal to the length of sk ◦ pk ◦ ŝ ◦ π. Without loss of

generality, we assume that n is even, and |sk| = n/2, and |pk ◦ ŝ ◦ π| = n/2 (these properties can be

easily guaranteed by padding the shorter side with 0’s). Thus, a split-state device where n(k)-bit

memory M is partitioned into M1 and M2 could store sk in M1 and (pk, ŝ, π) in M2.

Remark 72 Note that the decoding algorithm Dec is deterministic if the verifier V and the decryp-

tion algorithm Decrypt are both deterministic; as almost all known instantiations are. In the rest

of the paper, we will assume that the decoding algorithm is deterministic.

Theorem 73 Let t : N → N be some non-decreasing polynomial, and Gt,Fhalf ,Ghalft,all be as defined

above. Suppose the encryption scheme E is semantically secure against one-time leakage Gt; the

system Π is a robust NIZK as stated above; and Hk : {hz : {0, 1}poly(k) → {0, 1}k}z∈{0,1}k is a

family of universal one-way hash functions.

Then the coding scheme is strong non-malleable (Def 70) with respect to Fhalf , and leakage

resilient (Def 71) with respect to Ghalft,all.

Proof. The proof contains two parts: showing that the code is non-malleable and that it is leakage

resilient. The second part is easy so we only give the intuition. First let us look at M2 = (pk, ŝ, π).

Since π is a NIZK proof, it reveals no information about the witness (sk, s). For the memory M1 = sk,

since the encryption scheme is leakage resilient, getting partial information about sk does not hurt

the semantic security. Thus, for any g ∈ Ghalft,all, g(M1,M2) hides the original input string. We omit

the formal details of the reduction, since they are straightforward.
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Now we focus on the proof of non-malleability. In particular, we need to argue that for any

s0, s1 ∈ {0, 1}k, and f ∈ Fhalf , we have (Σ,Tamperf,Σs0 ) ≈c (Σ,Tamperf,Σs1 ) where Σ← Init(1k). We

show this by contradiction: suppose there exist f = (f1, f2) ∈ Fhalf , s0, s1, some ε = 1/poly(k), and

a distinguisher D such that Pr[D(Σ,Tamperf,Σs0 ) = 1] − Pr[D(Σ,Tamperf,Σs1 ) = 1] > ε, then we can

construct a reduction that breaks the encryption scheme E .

The reduction will work as discussed in the overview. Before describing it, we first make an

observation: D still distinguishes the two cases of the Tamper experiments even if we change all the

real proofs to the simulated ones. More formally, let (Σ, τ) ← S1(1k), and define Tamperf,Σ,τs be

the same game as Tamperf,Σs except proofs in the encoding algorithm Enc(Σ, ·) are computed by the

simulator S2(·,Σ, τ) instead of the real prover. We denote this distribution as Tamperf∗s . We claim

that D also distinguishes Tamperf∗s0 from Tamperf∗s1 .

Suppose not, i.e. D, who distinguishes Tamperf,Σs0 from Tamperf,Σs1 does not distinguish Tamperf∗s0

from Tamperf∗s1 . Then one can use D, f, s0, s1 to distinguish real proofs and simulated ones using

standard proof techniques. This violates the multi-theorem zero-knowledge property of the NIZK

system Π. Thus, we have Pr[D(Σ,Tamperf∗s0 ) = 1]− Pr[D(Σ,Tamperf∗s1 ) = 1] > ε/2.

In the following, we are going to define a reduction Red to break the leakage resilient encryption

scheme E . The reduction Red consists of an adversary A = (A1, A2, A3) and a distinguisher D′

defined below.

The reduction (with the part A) plays the game LEb(E , A, k,F) with the challenger defined in

Definition 60, and with the help of the distinguisher D and the tampering function f = (f1, f2).

• First A1 samples z ∈ {0, 1}t−1 (this means A1 samples a universal one-way hash function

hz ← Ht−1), and sets up a simulated CRS with a corresponding trapdoor (Σ, τ)← S1(1k).

• A1 sets g : {0, 1}n/2 → {0, 1}t to be the following function, and sends this leakage query to

the challenger.

g(sk) =

 0t if f1(sk) = sk,

1 ◦ hz(f1(sk)) otherwise.

This leakage value tells A1 if the tampering function f1 alters sk.

• A2 chooses m0,m1 to be s0, and s1 respectively. Then the challenger samples (pk, sk) and sets

m̂ = Encryptpk(mb) to be the ciphertext, and sends pk, g(sk), m̂ to the adversary.
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• ThenA3 computes the simulated proof π = S2(pk, m̂,Σ, τ), and sets (pk′, m̂′, π′) = f2(pk, m̂, π).

Then A3 does the following:

1. If g(sk) = 0t, then consider the following cases:

(a) pk′ 6= pk, set d = ⊥.

(b) Else (pk′ = pk),

i. if (m̂′, π′) = (m̂, π), set d = same∗.

ii. if m̂′ 6= m̂, π′ = π, set d = ⊥.

iii. else (π′ 6= π), check whether V((pk′, m̂′), π′,Σ) accepts.

A. If no, set d = ⊥.

B. If yes, use the extractor Ext to compute (sk′′,m′′)← Ext(Σ, τ, x′ = (pk′, m̂′), π′),

where the list Q = ((pk, m̂), π). If the extraction fails, then set d = ⊥; other-

wise d = m′′.

2. Else if g(sk) = 1 ◦ hz(f1(sk))
def
= 1 ◦ hint , then consider the following case:

(a) if π′ = π, then set d = ⊥.

(b) else, check if V(pk′, π′, crs) verifies, if not set d = ⊥. Else, compute (sk′′,m′′) ←

Ext(Σ, τ, x′ = (pk′, m̂′), π′), where the list Q = ((pk, m̂), π). If the extraction fails,

then set d = ⊥; otherwise consider the following two cases:

i. If hz(sk
′′) 6= hint , then set d = ⊥.

ii. Else, set d = m′′.

• Finally, A3 outputs d, which is the output of the game LEb(E , A, k,Fhalf).

Define the distinguisher D′ on input d outputs D(Σ, d). Then we need to show that A,D′ break

the scheme E by the following lemma. In particular, we will show that the above A’s strategy

simulates the distributions Tamperf∗sb , so that the distinguisher D’s advantage can be used by D′ to

break E .

Claim 74 Given the above A and D′, we have

Pr[D′(LE0(E , A, k,Fhalf)) = 1]− Pr[D′(LE1(E , A, k,Fhalf)) = 1] > ε/2− ngl(k).
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To prove this claim, we argue that the output d does simulate the decoding of the tampered

codeword c̃ = (f1(sk), f2(pk, m̂, π)) = (sk′, pk′, m̂′, π′). Here A does not know f1(sk) so he cannot

decode c̃ directly. Although A can get the help from leakage functions, however, f1(sk), as sk itself,

has n/2 bits of output, which is too long so A cannot learn all of them. Our main observation is

that getting a hash value of f1(sk) is sufficient for A to simulate the decoding. In particular, we will

show that with the leakage g(sk), A can simulate the decoding with at most a negligible error.

Proof of claim: First we make the following observations. Consider the case where

sk = sk′
def
= f1(sk) (the tampering function did not modify the secret key).

• If pk′ 6= pk, since pk can be derived from sk deterministically as pointed out in

Definition 60 and its remark, the correct decoding will be ⊥ by the consistency

check, which is that A3 outputs. (case 1a).

• If f2 does not modify its input either, the correct decoding equals d = same∗, as A3

says (case 1(b)i).

• if pk′ = pk, m̂′ 6= m̂ but π′ = π, then the correct decoding will agree with A3

and outputs ⊥. This is because V(pk′, m̂′, π,Σ) will output a rejection since the

statement has changed and the old proof to another statement cannot be accepted,

by the robustness of NIZK (case 1(b)ii).

• if pk′ = pk, π′ 6= π, the correct decoding algorithm will first check V(pk′, m̂′, π′). If

it verifies, by the extractability of the proof system, the extractor Ext will output

a witness w = (sk′′,m′′) of the relation W. Then A will use m′′ as the outcome of

the decoding. The only difference between the decoding simulated by A and the

correct decoding algorithm (that knows sk and can therefore decrypt m̂′) is the case

when the extraction fails. By the property of the proof system, we know this event

happens with at most ν(k), which is a negligible quantity. (case 1(b)iii).

Then we consider the case where sk′ 6= sk (the tampering adversary modified the

secret key).

• If π′ = π, then the correct decoding will be ⊥ with probability 1−ngl(k). This is by

the two additional properties: (1) the property of the encryption scheme stated in



126

Lemma 61 that no efficient adversary can get a valid key pair (pk, sk′) from (pk, sk)

with non-negligible probability. (2) the proof of statement x cannot be used to

prove other statements x′ 6= x.

Thus, in this case A3 agrees with the correct decoding algorithm with overwhelming

probability (1− ngl(k)). (case 2a).

• If π′ 6= π, and V(pk′, m̂′, π′,Σ) accepts, then with probability 1 − ν(k) the ex-

tractor will output a witness (sk′′,m′′). The correct decoding algorithm checks

whether (pk′, sk′) forms a key pair. Here A emulates this check by checking whether

hz(sk
′′) = hz(sk

′). Since hz is a universal one-way hash function, the probability

that hz(sk
′′) = hz(sk

′)∧sk′′ 6= sk′ is at most ngl(k). Otherwise, we can construct an-

other reduction B who simulates these games to break the universal one-wayness. B

simulates both the adversary and the challenger of the interaction LEb(E , A, k,Fhalf),

and when A queries the leakage g that contains a description of f1, B sets its x to

be sk′ = f1(sk). Then B receives a index z, and then B continue to simulate the

game. Then B can find out another x′ = sk′′ where hz(x) = hz(x
′) ∧ x′ 6= x′ from

in the game with non-negligible probability. This is a contradiction.

Thus by a union bound, with probability 1−ν(k)−ngl(k), A emulates the decoding

algorithm faithfully. (case 2b).

Let event E1 be the one where Ext extracts a valid witness w = (sk′′,m′′) in cases

1(b)iii and 2b, . Let event E2 be the one where in case 2b, h(sk′′) = h(sk′) ∧ sk′′ = sk′.

By the above observations, we have

Pr
[
(Σ, LEb(E , A, k,Fhalf)) = Tamperf∗sb

∣∣∣E1 ∧ E2

]
= 1, and Pr[¬E1] + Pr[¬E2] < ngl(k).

Thus we have Pr
[
(Σ, LEb(E , A, k,Fhalf)) = Tamperf∗sb

]
> 1−ngl(k), which implies the

claim directly.

2

This completes the proof of the Theorem.



Chapter 11

The Construction of Compiler

In this section, we present two compilers that use our LR-NM code to secure any functionality

G from split-state tampering and leakage attacks. The first compiler, as an intermediate result,

outputs a compiled functionality G′ that has access to fresh random coins. The second one outputs

a deterministic functionality by derandomizing G′ using a pseudorandom generator.

11.1 Randomized Implementation

Let G(s, x) be an interactive functionality with a k-bit state s that we want to protect, and let C =

(Init, Enc,Dec) be the LR-NM coding scheme we constructed in the previous section. Our compiler

works as follows: first it generates the common parameters Σ← Init(1k). Then MemCompile(Σ, s)

outputs an encoding of s, (M1,M2)← Enc(Σ, s); and CircuitCompile(G, C,Σ) outputs a randomized

functionality G′ such that 〈G′, Enc(Σ, s)〉 works in the following way: on user input x, first G′

decodes the memory using the decoding algorithm Dec. If the outcome is ⊥, then G′ will always

output ⊥ (equivalently, self-destruct); otherwise it obtains s. Then G′ computes (snew, y)← G(s, x)

and outputs y. Finally G′ re-encodes its memory: (M1,M2) ← Enc(Σ, snew). There are two places

where G′ uses fresh randomness: the functionality G itself and the re-encoding step.

We denote this randomized hardware implementation of the compiler as Hardwarerand(C, G)
def
=

〈G′, Enc(s)〉. Obviously the compiler is correct, i.e. the implementation’s input/output behavior is

the same as that of the original functionality. Next, we will show it is also secure against leakage

and tampering attacks.

127
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Theorem 75 Let t : N → N be some non-decreasing polynomial, and Gt,Fhalf ,Ghalft,all be as defined

above.

Suppose we are given a cryptosystem E = (KeyGen,Encrypt,Decrypt) that is semantically se-

cure against one-time leakage Gt; a robust NIZK Π = (`,P,V,S); and Hk : {hz : {0, 1}poly(k) →

{0, 1}k}z∈{0,1}k , a family of universal one-way hash functions. Then the randomized hardware im-

plementation presented above is secure against Fhalf tampering and Ghalft,all leakage.

Let us explain our proof approach. In the previous section, we have shown that the coding

scheme is leakage-resilient and non-malleable. This intuitively means that one-time attacks on the

hardware implementation Hardwarerand(C, G) are useless. Therefore, what we need to show is that

these two types of attacks are still useless even when the adversary has launched a continuous attack.

Recall that, by definition, to prove tamper and leakage resilience, we need to exhibit a simulator

that simulates the adversary’s view of interaction with Hardwarerand(C, G) based solely on black-box

access to 〈G, s〉. The simulator computes M1 and M2 almost correctly, except it uses s0 = 0k instead

of the correct s (which, of course, it cannot know). The technically involved part of the proof is to

show that the resulting simulation is indistinguishable from the real view; this is done via a hybrid

argument in which an adversary that detects that, in round i, the secret changed from s0 to the

real secret s, can be used to break the LR-NM code, since this adversary will be able to distinguish

Tamperf,Σs0 from Tamperf,Σs or break the leakage resilience of the code. In doing this hybrid argument,

care must be taken: by the time we even get to round i, the adversary may have overwritten the

state of the device; also, there are several different ways in which the security may be broken and

our reduction relies on a careful case analysis to rule out each way.

Proof. [Theorem 75] To prove the theorem, we need to construct a simulator Sim that gets black-

box access to any adversary A who issues Execute, Tamper, and Leak queries, and functionality

〈G, s〉 that only answers Execute queries, and outputs an indistinguishable view from that of the

real experiment, in which A talks directly to the harden functionality for 〈G, s〉. Define Sim as the

following procedure:

On input 1k, Sim first samples a common reference string Σ ← {0, 1}`(k). (Recall ` is the

parameter in the NIZK Π = (`,P,V,S)). In the first round, the simulator starts with the normal

mode defined below:

• Normal mode, while the adversary keeps issuing queries, respond as follows:
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– When the adversary queries Execute(x), the simulator queries the input x to 〈G, s〉 and

forwards its reply y back to A.

– When the adversary queries Tamper(f) for some f ∈ Fhalf , the simulator samples t from

the distribution Tamperf,Σ
0k . If t = same∗, then Sim does nothing. Otherwise, go to the

overwritten mode defined below with the state t.

– When the adversary queries Leak(g) for some g ∈ Ghalft,all, the simulator samples a (random)

encoding of 0k, Enc(0k), and sends g(Enc(0k)) to the adversary.

• Overwritten mode with state t, while the adversary keeps issuing queries, respond as follows:

– The simulator simulates the hardened functionality with state t, i.e. 〈G′, Enc(t)〉, and

answers execute, tampering and leakage queries accordingly.

• Suppose A halts and outputs viewA = (stateA, x1, `1, . . . ) where xi denotes the query, and

`i is the leakage in the i-th round. Then the simulator sets viewSim = viewA, and outputs

(Σ, viewSim) at the end. We remark that if in the i-th round, A did not make an Execute

query, then xi = φ; similarly if he did not query Leak, then `i = φ.

Intuitively, the normal mode simulates the adversary’s queries before he mauls the secret state,

and the overwritten mode simulates those after he mauls it. Intuitively, the coding scheme is non-

malleable, so the adversary can either keep the secret state unchanged or change it to something

he knows. This is captured by the above two modes. On the other hand, the (one-time) leakage

resilient encryption protects the secret against leakage attacks.

In the end of each round, the secret state is re-encoded with fresh randomness. Thus we can use

a hybrid argument to show that the hardened functionality is secure for many rounds. We remark

that since there are three possible queries and two different modes in each round, in our hybrid

argument, a case study of many options should be expected.

In the rest of the proof, we are going to formalize this intuition and show that this simulated view

is indistinguishable from that of the real experiment. In particular, we will establish the following

lemma:

Lemma 76 Let Sim be the simulator defined above. Then for any adversary A and any state

s ∈ {0, 1}k, Real(A, s) = (Σ, viewA) is computationally indistinguishable from Ideal(Sim,A, s) =

(Σ, viewSim).
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Proof. Suppose there exists an adversary A running the experiment for at most L = poly(k)

rounds, a state s, and a distinguisher D such that Pr[D(Σ, viewReal) = 1] − Pr[D(Σ, viewSim) =

1] > ε for some non-negligible ε, then we will construct a reduction that will find a function f ∈ Fhalf ,

two states s0, s1, and a distinguisher D′ that distinguishes (Σ,Tamperf,Σs0 ) from (Σ,Tamperf,Σs1 ). This

breaks non-malleability of the coding scheme, which contradicts to Theorem 73.

To show this, we define the following hybrid experiments for i ∈ [L]:

Experiment Sim(i)(A, s):

• Sim(i) setups the common reference string to be Σ← {0, 1}`(k).

• In the first i rounds, Sim(i) does exactly the same as Sim.

• From the i+ 1-th round, if Sim(i) has already entered the overwritten mode, then do the sim-

ulation as the overwritten mode. Otherwise, let scurr be the current state of the functionality,

and the simulation does the following modified normal mode:

– When the adversary queries Execute(x), the simulator queries the functionality (y, snew)←

G(x, scurr). Then it forwards y, and set scurr = snew.

– When the adversary queries Tamper(f) for some f ∈ F , the simulator samples t from the

distribution Tamperf,Σscurr . If t = same∗, then the simulator does nothing. Otherwise, go to

the overwritten mode with the state t.

– When the adversary queries Leak(g) for some g ∈ G, the simulator samples a (random)

encoding of scurr, Enc(scurr), and replies g(Enc(scurr)) to the adversary.

We remark that Sim(i) behaves like Sim in the first i rounds, and in the later rounds, it behaves

exactly the same as 〈GΣ,Enc,Dec, Enc(Σ, scurr)〉 if the simulation does not enter the overwritten mode.

Then we observe that Sim(0)(A, s) is the output of the real experiment (Σ, viewA), and Sim(L)(A, s)

is that of the ideal experiment (Σ, viewSim). By an averaging argument, there exists some j ∈ [L]

such that

Pr[D(Σ,Simj(A, s)) = 1]− Pr[D(Σ,Simj+1(A, s)) = 1] > ε/L.

Since Sim(j) and Sim(j+1) only differ at round j + 1 and D can distinguish one from the other,

our reduction will take the advantage of D on this round. First we define the following four possible

events that can happen in round j + 1:
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• E1: the simulation has entered the overwritten mode by the j + 1-st round.

• E2: the simulation is in the normal mode and the adversary queries Execute in the j + 1-st

round.

• E3: the simulation is in the normal mode and the adversary queries Leak in the j+1-st round.

• E4: the simulation is in the normal mode and the adversary queries Tamper in the j + 1-st

round.

Claim 77 The probability of E3 ∨ E4 is non-negligible.

Proof of claim: We can easily see that conditioning on the events E1, E2, Sim(j) and

Sim(j+1) are identical. Thus if E3 ∨E4 happens with negligible probability, then Sim(j)

and Sim(j+1) are statistically close up to negligible probability, which is a contradiction

to the fact that D distinguishes them with non-negligible probability. 2

Then we are going to show the following claim:

Claim 78 Pr[E4] > α for some non-negligible α.

Proof of claim: We will show this by contradiction. Suppose Pr[E4] = ngl(k). Then

we are going to construct a reduction B that breaks the encryption scheme E . First we

observe an easy fact that Pr[E3] is non-negligible. This follows from the previous claim,

and our premise that Pr[E4] = ngl(k).

Let LEb
def
= LEb(E , B, k,Gt) be the game and B does the following:

• First B receives pk, and then B sets up a common reference string along with a

trapdoor from the NIZK simulator, i.e. (Σ, τ)← S1(1k).

• Then B simulates the interaction of Sim(j)(A, s) for the first j rounds except when-

ever the simulation requires a proof, B uses S2(·, ·,Σ, τ) to generate it. We remark

that to simulate this experiment, B needs to run the adversary A and the func-

tionality G(·, ·). In particular, B keeps tracks of the current state of 〈G, s〉 at each

round, and let let scurr be the current state at the end of the j-th round.
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• In the j + 1-st round, if the event E3 does not happen, then B gives up: B simply

sends any dummy messages m0,m1 to the challenger, but then guesses a bit at

random on input challenge ciphertexts.

• Otherwise if the adversary queries Leak(g) for some g = (g1, g2) ∈ Ghalft,all, B chooses

m0 = 0k and m1 = scurr and then asks for the leakage g1(sk).

• Then B receives pk, m̂b = Encryptpk(mb), g1(sk), and then B computes a simulated

proof π. Then B sends to A g1(sk), g2(pk, m̂b, π) as the response to Leak(g) and

simulates the rest of Simj+1. Once A halts, A outputs a view, and B set view′Sim

to be that view.

• In the end, B outputs D(Σ, view′Sim): if D thinks that his view came from S(j)

then B outputs m0, else m1.

Then we are going to show that |Pr[LE0 = 1] − Pr[LE1 = 1]| > ε′ for some non-

negligible ε′. First we observe that

Pr[LE0 = 1]− Pr[LE1 = 1]

=
∑
i∈[4]

(
Pr
[
LE0 = 1

∣∣∣Ei] · Pr[Ei]− Pr
[
LE1 = 1

∣∣∣Ei] · Pr[Ei]
)

=
(

Pr
[
LE0 = 1

∣∣∣E3

]
− Pr

[
LE1 = 1

∣∣∣E3

])
· Pr[E3].

This follows from the fact that conditioning on ¬E3, the output of LEb is uniformly at

random from the construction of the adversary B. In the following, we are going to show

this is a noticeable quantity.

Let Sim(j)′ denote the experiment identical with Sim(j) except that the common

reference string and all the proofs are set up by the NIZK simulator S. Similarly we

have Sim(j+1)′ . By the zero knowledge property, we have,

∣∣∣∣ Pr
Σ←{0,1}`(k)

[D(Σ,Sim(j)) = 1]− Pr
Σ←S(1k)

[D(Σ,Sim(j)′) = 1]

∣∣∣∣ < ngl(k),

∣∣∣∣ Pr
Σ←{0,1}`(k)

[D(Σ,Sim(j+1)) = 1]− Pr
Σ←S(1k)

[D(Σ,Sim(j+1)′) = 1]

∣∣∣∣ < ngl(k).
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From the assumption we know

∣∣∣∣ Pr
Σ←{0,1}`(k)

[D(Σ,Sim(j)) = 1]− Pr
Σ←{0,1}`(k)

[D(Σ,Sim(j+1)) = 1]

∣∣∣∣ > ε/L.

Thus we have

∣∣∣∣ Pr
Σ←S(1k)

[D(Σ,Sim(j)′) = 1]− Pr
Σ←S(1k)

[D(Σ,Sim(j+1)′) = 1]

∣∣∣∣ > ε/L− ngl(k).

Then we express this equation with the four conditioning probabilities:

Pr
Σ←S(1k)

[D(Σ,Sim(j)′) = 1]− Pr
Σ←S(1k)

[D(Σ,Sim(j+1)′) = 1]

=
∑
i∈[4]

(
Pr

Σ←S(1k)

[
D(Σ,Sim(j)′) = 1

∣∣∣Ei] · Pr[Ei]− Pr
Σ←S(1k)

[
D(Σ,Sim(j+1)′) = 1

∣∣∣Ei] · Pr[Ei]

)
= ∆3 · Pr[E3] + ∆4 · Pr[E4]

≥ ε/L− ngl(k),

where ∆3 = PrΣ←S(1k)

[
D(Σ,Sim(j)′) = 1

∣∣∣E3

]
− PrΣ←S(1k)

[
D(Σ,Sim(j+1)′) = 1

∣∣∣E3

]
,

and ∆4 = PrΣ←S(1k)

[
D(Σ,Sim(j)′) = 1

∣∣∣E4

]
− PrΣ←S(1k)

[
D(Σ,Sim(j+1)′) = 1

∣∣∣E4

]
.

The first equality follows from the Bayes’ equation. The second equality follows from

the fact that conditioning on E1 or E2, Sim(j)′ and Sim(j+1)′ are identically distributed.

Recall that the two distributions become identical once the simulation has entered the

overwritten mode before round j + 1. If the adversary queries Execute with the normal

mode in the j + 1-th round, the two experiments are the same also. The last inequality

just follows from the above equation.

Then from the premise, we have Pr[E4] = ngl(k), we have ∆4 · Pr[E4] = ngl(k), and

thus: ∆3 · Pr[E3] ≥ ε/L− ngl(k).

Then we observe that for B’s strategy, conditioning on the event E3, if b = 0, B

will simulate according to Sim(j)′ , and if b = 1, Sim(j+1)′ . This means Pr[LE0 =
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1|E3]− Pr[LE1 = 1|E3] = ∆3, and thus from the previous calculations, we have

Pr[LE0 = 1]− Pr[LE1 = 1]

=
(

Pr
[
LE0 = 1

∣∣∣E3

]
− Pr

[
LE1 = 1

∣∣∣E3

])
· Pr[E3]

= ∆3 · Pr[E3]

≥ ε/L− ngl(k).

This means B breaks the scheme E with non-negligible probability.

2

We wish to show that the simulator Sim we give satisfies Definition 67. So far we have shown

that if it does not provide a good simulation, then there exists some state s, index j such that Pr[E4]

happens with non-negligible probability. We must now construct a reduction that with s and j as

advice, and with access to the adversary A, breaks non-malleability of the coding scheme. The idea

is to use A’s tampering query in round j+1, which we know A makes such query with non-negligible

probability.

The reduction we will construct needs to find with advice s, j, two strings s0, s1, and a tampering

function fΣ = (fΣ
1 , f

Σ
2 ) ∈ Fhalf , and distinguishes (Σ,Tamperf,Σs0 ) from (Σ,Tamperf,Σs1 ).

Both the reduction and the function fΣ will run Sim(j) as a subroutine, and will have oracle

access to Σ. A subtlety in this approach is that Sim(j) is a randomized algorithm while fΣ is deter-

ministic (a polynomial-sized circuit). To overcome this, our reduction will simply fix the randomness

of Sim. Let R be a random tape. By Sim(j)[R] we denote that Sim(j) uses randomness R; similarly

Sim(j+1)[R].

Now we describe the reduction. First it picks R uniformly at random as the randomness for

the simulator. It runs Sim(j)[R](A, s) for j rounds, to obtain the current state scurr. Then it sets

s0 = 0k, s1 = scurr. Next the reduction computes a description of the polynomial-sized circuits

for fΣ = (fΣ
1 , f

Σ
2 ) ∈ Fhalf . This fΣ is the tampering function that A outputs when running

Sim(j)[R](A, s) at round j + 1. If A does not query Tamper or the simulation has entered the

overwritten mode at this round (the event E4 does not happen), then let fΣ be a constant function

that always outputs ⊥. We call this event Bad (i.e. Bad = ¬E4). We remark that there is an efficient

algorithm that on input circuits A, 〈G, s〉, Sim(j)[R], outputs the function f .
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Next let us argue that with s0, s1, fΣ = (fΣ
1 , f

Σ
2 ) as above, one can distinguish (Σ,Tamperf,Σs0 )

from (Σ,Tamperf,Σs1 ). We construct a distinguisher D′ as follows.

On input (Σ,Tamperf,Σsb ), D′ first usesR to do the simulation of the first j rounds of Sim(j)[R](A, s).

Then if the event Bad happens, D outputs 0 or 1 uniformly at random. Otherwise, D′ uses the out-

come of Tamperf,Σsb and continues to simulate the remaining rounds from round j + 2 to L. Let

viewb be the view of this simulation in the end. Then D′ runs D(Σ, viewb); if D thinks that he was

interacting with Sim(j), D′ outputs 1; else D′ outputs 0.

From the above arguments, we know that (1) conditioning on the event ¬Bad, view0 is exactly

the view of Sim(j+1), and view1 is exactly that of Sim(j); (2) conditioning on Bad, the output of

D′ is randomly over 0/1; (3) Pr[¬Bad] > α for some non-negligible α by the above claim. Thus we

have

Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

]
− Pr

[
D′(Σ,Tamperf,Σs1 ) = 1

]
=

(
Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

∣∣∣¬Bad] · Pr [¬Bad] + Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

∣∣∣Bad] · Pr [Bad]
)
−(

Pr
[
D′(Σ,Tamperf,Σs1 ) = 1

∣∣∣¬Bad] · Pr [¬Bad] + Pr
[
D′(Σ,Tamperf,Σs0 ) = 1

∣∣∣Bad] · Pr [Bad]
)

= (Pr [D(Σ, view0) = 1]− Pr [D(Σ, view1) = 1]) · Pr [¬Bad]

=
(

Pr
[
D(Σ,Sim(j)) = 1

]
− Pr

[
D(Σ,Sim(j+1)) = 1

])
· Pr [¬Bad]

≥ ε/L · α, a non-negligible quantity.

This completes the proof of the lemma.

This proof of the theorem follows directly from the construction of Sim and the lemma.

11.2 Deterministic Implementation

In the previous section, we showed that the hardware implementation Hardwarerand with the LR-

NM code is leakage- tampering-resilient. In this section, we show how to construct a deterministic

implementation by derandomizing the construction. Our main observation is that, since the coding

scheme also hides its input string (like an encryption scheme), we can store an encoding of a random
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seed, and then use a pseudorandom generator to obtain more (pseudo) random bits. Since this seed

is protected, the output of the PRG will be pseudorandom, and can be used to update the encoding

and the seed. Thus, we have pseudorandom strings for an arbitrary (polynomially bounded) number

of rounds. The intuition is straitforward yet the reduction is subtle: we need to be careful to avoid

a circular argument in which we rely on the fact that the seed is hidden in order to show that it is

hidden.

To get a deterministic implementation for any given functionalityG(·, ·), we use the coding scheme

C = (Init, Enc,Dec) defined in the previous section, and a pseudorandom generator g : {0, 1}k →

{0, 1}k+2`, where ` will be defined later. Let s ∈ {0, 1}k be the secret state of G(·, ·), and seed ∈

{0, 1}k be a random k-bit string that will serve as a seed for the PRG. Now we define the compiler.

The compiler first generates the common parameters Σ ← Init(1k). Then on input s ∈ {0, 1}k,

MemCompile(s) first samples a random seed seed ∈ {0, 1}k and outputs (M1,M2) ← Enc(Σ, s ◦

seed) where ◦ denotes concatenation. CircuitCompile(G) outputs a deterministic implementation

Hardwaredet(C, G)
def
= 〈G∗,Σ,Enc,Dec, Enc(Σ, s ◦ r)〉 that works as follows:

On input x:

• G∗ first decodes Enc(Σ, s ◦ seed) to obtain s ◦ seed. Recall that the decoding scheme Dec is

deterministic.

• Then G∗ computes seed′ ◦ r1 ◦ r2 ← g(seed), where seed′ ∈ {0, 1}k, and r1, r2 ∈ {0, 1}`.

• G∗ calculates (snew, y) ← G(s, x) (using the string r1 as a random tape if G is randomized),

then outputs y, and updates the state to be snew.

• G∗ calculates the encoding of s′ ◦ seed′ using the string r2 as a random tape. Then it stores

the new encoding Enc(Σ, snew ◦ seed′).

In this implementation Hardwaredet, we only use truly random coins when initializing the de-

vice, and then we update it deterministically afterwards. Let us show that the implementation

Hardwaredet(C, G) is also secure against Fhalf tampering and Ghalft,all leakage. We prove the following

theorem.

Theorem 79 Let t : N→ N be some non-decreasing polynomial, and Gt,Fhalf ,Ghalft,all be as defined in

the previous section.



137

Suppose we are given a crypto system E = (KeyGen,Encrypt,Decrypt) that is semantically

secure against one-time leakage Gt; a robust NIZK Π = (`,P,V,S); and Hk : {hz : {0, 1}poly(k) →

{0, 1}k}z∈{0,1}k , a family of universal one-way hash functions. Then the deterministic hardware

implementation presented above is secure against Fhalf tampering and Ghalft,all leakage.

Combining the above theorem and Theorem 62, we are obtain the following corollary.

Corollary 80 Under the decisional Diffie-Hellman assumption and the existence of robust NIZK,

for any polynomial t(·), there exists a coding scheme with the deterministic hardware implementation

presented above that is secure against Fhalf tampering and Ghalft,all leakage.

To show this theorem, we need to construct a simulator Sim such that for any non-uniform PPT

adversary A, any efficient interactive stateful functionality G, any state s we have the experiment

Real(A, s) ≈c Ideal(Sim,A, s). Recall that Real(A, s) is the view of the adversary when interacting

with Hardwaredet(C, G). We will show that the simulator constructed in the proof of Theorem 75

provides a good simulation for this case as well.

First, we define a related modification of the implementation. For any interactive stateful system

〈G, s〉, define 〈G̃, s ◦ s′〉 as the system that takes the state s ◦ s′ and outputs G(s, x), for any state

s ∈ {0, 1}k, s′ ∈ {0, 1}k, and input x. I.e. G̃ simply ignores the second part of the state, and does

what G does on the first half of its input.

Claim 81 For any efficient interactive stateful functionality G, any state s, any non-uniform PPT

adversary A, the following two distributions are computationally indistinguishable: (1) A’s view when

interacting with Hardwarerand(C, G̃)
def
= 〈G̃Σ,Enc,Dec, Enc(Σ, s ◦ 0k)〉 (running Execute, Tamper, and

Leak queries), and (2) A’s view when interacting with Hardwaredet(C, G)
def
= 〈G∗,Σ,Enc,Dec, Enc(Σ, s ◦

r)〉.

Let us see why this claim is sufficient to prove Theorem 79. From Theorem 75, we know

that there exists a simulator Sim such that for any adversary A, Ideal(Sim,A, s ◦ 0k) is indis-

tinguishable from the real experiment when A is interacting with Hardwarerand(C, G̃). Also since

G̃ ignores the second half of the input, we can easily see from the construction of Sim that

Ideal(Sim,A, s ◦ 0k) who gets oracle access to 〈G̃, s ◦ 0k〉 is identical to Ideal(Sim,A, s) who gets

oracle access to 〈G, s〉. Therefore, A’s view when interacting with Hardwarerand(C, G̃) is indistin-

guishable from Ideal(Sim,A, s). Once we have established the claim that A cannot distinguish
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from Hardwarerand(C, G̃) from Hardwaredet(C, G), it will follow that A’s view when interacting with

Hardwaredet(C, G) is indistinguishable from Ideal(Sim,A, s). This completes the proof of the theo-

rem.

Let us prove Claim 81. Denote by ~r the set of strings {(seedi, r(i)
1 , r

(i)
2 )}i∈[L]. Let R(i) be

the distribution over ~r where for j ≤ i, (seedj , r
(j)
1 , r

(j)
2 ) are truly random; for j > i, we have

(seedj , r
(j)
1 , r

(j)
2 ) = g(seedj−1) where g is the pseudorandom generator.

Given an adversary A, for every i ∈ [L], define new experiments Reali(A, s)[R(i)] where the

adversary is interacting with the following hybrid variant of implementation of 〈G, s〉 with the

random tape R(i):

• For every round j, the implementation computes (sj+1, y)← G(sj , x) using r
(j)
1 as its random

tape, where sj denotes the state at round j and similarly sj+1.

• For rounds j ≤ i, the implementation computes and stores Enc(Σ, sj ◦ 0k) using r
(j)
2 as its

random tape.

• For round j > i, it computes and stores Enc(Σ, sj ◦ seedj) using r
(j)
2 as its random tape.

• In the end, A outputs his view.

We define experiments Real′i(A, s)[R(i)] to be the same as Reali(A, s)[R(i)] except in the i-th

round, the implementation computes and stores Enc(Σ, si ◦ seedi). In the following sometimes we

will omit the A, s,R(i) and only write Real′i and Reali for the experiments if it is clear from the

context.

We observe that Real0 is the view of A when interacting with Hardwaredet(C, G) and RealL is the

view when interacting with Hardwarerand(C, G̃). Thus we need to show that Real0 ≈c RealL. We do

this by showing the following neighboring hybrid experiments are indistinguishable by the following

two claims:

Claim 82 For any non-uniform PPT adversary A, state s, and every i ∈ [L], Reali−1 ≈c Real′i.

Proof of claim: This follows directly from the fact that g is a PRG. Suppose there

exist A, s such that D can distinguish Reali−1 ≈ Real′i. Then there is a reduction that

can distinguish X = (seedi, r
(i)
1 , r

(i)
2 ) from Y = g(seedi−1) where X is truly random.
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The reduction first simulates the first i − 1 rounds of the experiment Reali−1 using

truly random strings as the random tape, and then embeds the input as the random

tape for round i, and then simulate the remaining rounds. By this way X will produce

exactly the distribution Real′i and Y will produce Reali−1. Thus the reduction can use

D to distinguish the two distributions.

2

Claim 83 For any non-uniform PPT adversary A, state s, and every i ∈ [L], Real′i ≈c Reali.

Proof of claim: Before proving the claim, first we make the following observations.

Given any adversaryA, let viewA
0k denoteA’s view when interacting with Hardwarerand,0k

def
=

〈G̃Σ,Enc,Dec, Enc(s◦0k)〉; let viewA
seed denoteA’s view when interacting with Hardwarerand,seed

def
=

〈G̃Σ,Enc,Dec, Enc(s◦seed)〉. Let Sim be the simulator defined in the proof of Theorem 75,

and viewSim0k be the output of Sim when interacting with A and 〈G̃, s ◦ 0k〉; let viewSimseed

be the output of Sim when interacting with A and 〈G̃, s ◦ seed〉. From the construction

of the simulator and the fact that G̃ simply ignores the second half of the input and acts

as G does, we know that the in both viewSim0k and viewSimseed , the simulator gets exactly

the same distribution of input/output behavior from G̃. Thus, viewSim0k and viewSimseed are

identical. Putting it together, we know that viewA
seed ≈c viewSimseed = viewSim0k ≈c viewA

0k .

Now we are ready to prove the claim. Suppose there exist a adversary A, a state s,

and a distinguisher DA that distinguishes Real′i(A, s)[R(i)] from Reali(A, s)[R(i)]. Then

we can construct a reduction B such that viewB
0k and viewB

seed are distinguishable. The

reduction gets as input a random seed, a state s, and interacts with either Hardwarerand,0k

or Hardwarerand,seed for a random seed. The goal of the reduction is to output a view

such that a distinguisher can tell Hardwarerand,0k from Hardwarerand,seed.

B will do the following:

• B first simulates i − 1 rounds of the interaction of A with Hardwarerand,0k
def
=

〈G̃Σ,Enc,Dec, Enc(Σ, s ◦ 0k)〉. This simulation is exactly the same distribution as the

first i rounds of the interaction of Reali(A, s)[R(i)], which is identical to Real′i(A, s)[R(i)].

• In the i-th round, B routes A’s query to the challenge device.

• Then B sets seedi = seed.
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• From the remaining rounds j > i, B simulates the interaction of A with the deter-

ministic implementation Hardwaredet(C, G̃)
def
= 〈G∗,Σ,Enc,Dec, Enc(Σ, s ◦ seedj)〉.

• In the end, B simply outputs viewB as the output view of A.

Now we construct a distinguisher DB as follows: on input B’s output view, DB

runs DA(viewB). If DA thinks it is Reali, then DB outputs Hardwarerand,0k , otherwise

Hardwarerand,seed.

To analyze the reduction, observe that if B’s challenge device is Hardwarerand,0k , then

viewB will be identical to Reali(A, s); if it is Hardwarerand,seed, then viewB will be identical

to Real′i(A, s). Therefore, DA can distinguish one from the other, so the reduction B

produces a distinguishable view. This contradicts to the previous observation we have

made.

2

Claim 81 follows from Claims 82 and 83 by a standard hybrid argument. Thus, we complete the

proof to the theorem.

We remark that in the proof above, we only rely on the security of the PRG and the randomized

hardware implementation. Thus, we can prove a more general statement:

Corollary 84 Suppose a coding scheme C with the randomized implementation Hardwarerand is se-

cure against F tampering and G leakage where F and G are subclasses of efficient functions. Then C

is also secure against F tampering and G-leakage with the deterministic implementation Hardwaredet

presented in this section.

11.3 Discussion of Complexity Assumptions and Efficiency

We just showed a leakage and tampering resilient construction for any stateful functionality in the

split-state model. Our construction relied on the existence of (1) a semantically secure one-time

(bounded) leakage resilient encryption scheme (LRE), (2) a robust NIZK, (3) a universal one-way

hash family (UOWHF), and (4) a pseudorandom generator (PRG). In terms of the complexity

assumptions that we need to make for these four building blocks to exist, we note that UOWFHs

and PRGs exist if and only if one-way functions (OWFs). (Rompel [Rom90] showed that (OWFs)
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imply UOWHFs and H̊astad et al. [HILL99] showed OWFs imply PRGs; and both UOWFGs and

PRGs imply OWFs); thus both UOWHFs and PRGs are implied by the existence of a semantically

secure cryptosystem. So we are left with assumptions (1) and (2).

It is not known how LRE relates to robust NIZK. No construction of LRE is known from general

assumptions such as the existence of trapdoor permutations (TDPs). LRE has been proposed based

on specific assumptions such as the decisional Diffie-Hellman assumption (DDH) and its variants, or

the learning with error assumption (LWE) and its variants [AGV09, NS09, ADW09, KV09]. Robust

NIZK [DDO+01] has been shown based on the existence of dense cryptosystems (i.e. almost every

string can be interpreted as a public key for this system), and a multi-theorem NIZK, which in turn

has been shown from TDPs [KP98, FLS99] or verifiable unpredictable functions [GO92, Lys02].

Note that using general NIZK for all NP from TDPs may not be desirable in practice because

those constructions rely on the Cook-Levin reduction. Therefore, finding a more efficient NIZK

for the specific language we use is desirable. Note that, if we use the DDH-based Naor-Segev

cryptosystem, then the statement that needs to be proved using the robust NIZK scheme is just

a statement about relations between group elements and their discrete logarithms. Groth [Gro06]

gives a robust NIZK for proving relations among group elements (based on the XDH assumption

which is stronger than DDH), and in combination with a technique due to Meiklejohn [Mei09] it can

be used as a robust NIZK for also proving knowledge of discrete logarithms of these group elements.

Groth’s proof system’s efficiency is a low-degree polynomial in the security parameter, unlike the

general NIZK constructions. Therefore, we get a construction that is more suitable for practical

use.
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