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Data processing frameworks provide application programmers an interface to manipulate and ana-

lyze data. This thesis studies a novel parallel stream processing model, designed for workflow-based

data processing frameworks, that leverages application performance requirements to motivate the

flexible scheduling and fine-grained allocation of data to computing nodes.

We feature this processing model through the design and implementation of the Continuous-

MapReduce (C-MR) data processing framework. C-MR abstracts away the complexities of parallel

stream processing and workflow scheduling while providing the simple and familiar MapReduce

programming interface with the addition of stream window semantics. Its novel processing model

enables: 1) fine-grained, workflow-wide load balancing across computing nodes; 2) the evolving ap-

plication of data and task parallelism models as guided by application performance requirements;

and 3) a novel scheduling framework which supports gradual transitions between scheduling policies

relative to application performance and/or resource availability.

This work explores the potential of the C-MR processing model by studying our single-host

implementation of C-MR that supports parallel execution on non-dedicated and heterogeneous com-

puting nodes (both multi-core CPUs and GPUs). We then study this processing model through

the implementation of a distributed version of C-MR that supports execution on multiple hosts.

This endeavor involved the generalizable strategy of employing hierarchical instances of the C-MR

processing model while requiring modifications to the data acquisition and load balancing strategies.

Experimental results from these studies show that the C-MR processing model can effectively support

the continuous execution of workflows of MapReduce jobs for stream processing while being resilient

to stream and resource fluctuations due to the processing model’s flexibility and diversification of

processing responsibilities.
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Chapter 1

An introduction to data processing

frameworks

Often times, a programmer is tasked with the job of processing data. Data processing frameworks are

designed to facilitate the analysis and/or transformation of data while minimizing implementation

complexities for the programmer.

In the most trivial of cases, the job of the programmer may be quite easy. For instance, if a

person wanted to simply take the total word count of all text files within a directory they could

simply execute the following command in a shell: wc *.txt. However, data processing applications

can also be substantially more sophisticated. It may be that the application has numerous inputs

and that there are a variety of processing steps (perhaps some conditionally, dependent on the

data) which are required to occur in a specific sequence. Organizing the flow of data through a

workflow of computational operations can take quite a bit of effort regarding the communication,

synchronization, and assembling of data and intermediate results.

The difficulty of managing such applications will continue to increase as the complexity of the

workflow of processing operations increases and as parallelism is leveraged to include many com-

puting nodes in the case that the computational demands of a job cannot be satisfied on a single

computer. A programmer might require results within a certain period of time and a single com-

puter alone may not be able to produce the results within the required time constraints. Likewise,

a single computer may not have the memory capacity required to perform the task at hand and

the work might therefore need be distributed to multiple computers. Performing this management

by hand, for each data processing application, is time consuming, error prone, and not fulfilling

work. Furthermore, for applications of a similar type, there may be a large degree of commonalities

1
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between the management of those applications. What a programmer will find themselves with, after

managing their own suite of data processing applications, is that they will have a large amount of

boilerplate code and framework whereas the application-specific code is quite small in comparison.

The goals of data processing frameworks is to relieve programmers from the burden of managing

the execution of their applications. Such frameworks will handle parallelization of code onto clusters

of computers, manage network communications, handle issues regarding fault tolerance and high

availability, and provide a simple means for the application developer to outline the actual data

analysis that is to occur. In this way, the programmer will only be responsible for writing application-

specific code and specifying the inputs to the application. This is usually accomplished by distilling

the application logic into a sequence of succinct operations and defining a directed acyclic graph

denoting in what order to apply those operations on the data. Data will then flow through graph

from the inputs of the application and be processed by the intermediate operators before being

produced on the outputs of the graph as the application results. The specification of such graphs

can be manual or derived from a higher-level language such as SQL or Pig[34].

1.1 Requirements

The requirements of data processing frameworks vary depending on the types of applications they

serve.

Batch processing frameworks are intended to support applications which analyze or transform a

fixed volume of data. Examples of such processing include analyzing collections of web logs, sorting

large amounts of data, document clustering, applying statistical machine learning algorithms, and

even the application of SQL queries to databases. The goal, when executing these types of jobs,

is to return the results of the task as quickly as possible. In other words, the goal is to maximize

throughput (accomplishing as much processing per unit of time as possible) in order to minimize

the latency of the job at hand.

Stream processing frameworks support a different class of applications. These applications, by

definition, continuously consume and process data while continuously producing results. Such con-

tinuous flows of data are called streams. Examples of streams include event logs, user-click streams,

image/video feeds, network traffic, sensor readings (temperature, GPS coordinates, accelerometers,

traffic movement), and various other data feeds.

The requirements of stream processing applications are different than those of batch processing

applications. Stream processing applications are temporally sensitive – the order of data within the

stream can have an impact on the results of the application. They are generally time-critical such
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that their utility is proportional to the promptness of the results. For example, stream applications

which seek out network intrusions or financial fraud patterns are meant to respond quickly to an

observed threat. Other examples of stream applications include automated stock trading, real-time

video processing, geo-spatial trajectory modification, and vital-signs monitoring. Results produced

by such applications are often urgent and require immediate attention. As the outputs of these

applications become more and more delayed, their worth and applicability rapidly decrease. This is

apparent in the financial sector regarding stock analysis – firms that are able to observe important

trends in stock ticker streams, before their competing firms, will be able to reap financial rewards.

In order to support time-critical stream processing applications, it is important to minimize the

average latency of the continuously emitted results instead of throughput. On the other hand,

stream applications which are not time-critical exist such that their aim is to simply process as large

a stream as possible with the goal of maximizing throughput.

In addition to latency and throughput requirements, batch and stream applications also have

usability requirements such as requiring a simple programming interface and abstracting the pro-

grammer away from the demanding jobs of parallel task management, network communication, fault

recovery, and load balancing.

1.2 Challenges

The computational complexity and/or data volume of batch jobs and stream applications can be

quite substantial. In order to meet their performance requirements, it is often necessary to distribute

their workloads to many computing nodes to be processed in parallel.

Doing so effectively, however, requires:

• Balancing workloads across the given set of computing nodes such that the contributing nodes

are being efficiently utilized

• Scheduling workflow operators in a manner that is conducive to meeting performance expec-

tations

• Ensuring high-availability to provide correct results and speedy recoveries in the midst of faults

While there have long been policies in place to perform load balancing, operator scheduling, and

provide high-availability, it is important to provide solutions for these challenges that are mindful

of the users performance expectations.
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1.2.1 Load balancing

In the case of batch jobs, all participating computing nodes should ideally finish their alloted portion

of work as quickly as possible with the allocation distributed in such a way that all hosts will finish

their allocations simultaneously to eliminate the presence of stragglers. For stream applications,

the processing power of the computing nodes should be distributed across the workflow to provide

minimal end-to-end workflow latencies.

Unfortunately a number of factors, relating to both the computing hardware and the workload

itself, increase the difficulty of finding such optimal workload allocations.

• Hardware Volatility: Leveraging increasingly large clusters of computing nodes can will

increase the probability of failures as well as the impact of stragglers due to various software

and/or hardware issues. Given the sheer number of participating computing nodes in some

modern-day compute centers and the size of the infrastructures required to support them,

these problems are to be expected. In non-dedicated computing environments, we may also

expect the computing potential of nodes to vary due to external workloads. These days,

with the emergence of the cloud and virtualization, truly non-dedicated computing nodes are

increasingly difficult to find.

• Workload Volatility: It is common to experience volatility in the data for both batch and

streaming workloads. Data skew can cause significant imbalances for operations that performs

aggregate operations over like data items. In a parallel processing environment, data of the

same type must ultimately be aggregated at the same physical site and therefore skew in the

data distribution among data types can result in hot spots at computing nodes. A different kind

of skew can be observed in the computational effort required to process individual data items

leading some nodes to spend more processing time on data than others while perhaps being

allocated the same amount of data. Data bursts, in the case of streams, can also cause load

balancing troubles when we incorrectly predict future processing requirements of operations

in a workflow.

These uncertainties, with respect to both hardware and data, require processing frameworks

(both batch and stream-oriented) to be dynamic and adapt to such volatility in order to maintain

high-efficiency of computing resources and to meet application requirements.

1.2.2 Scheduling

Load balancing alone is not enough to ensure efficient utilization of computing nodes. We must also

consider dependencies between operators, the computing node on which data should be processed,
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and the order of data execution. In other words, it is important to determine what balance or

mixture of data, task, and pipelined parallelism will be appropriate for an application given its

performance requirements. Such decisions have a significant impact on throughput and end-to-end

latency.

The challenge here arises in how to maximize the use of the computing nodes in a way that is

beneficial to the goals of the application. For instance, in batch processing, where individual data

latency is unimportant, we should aim to minimize expensive disk reads and context switches. For

stream processing applications, however, it can be beneficial to incur additional context switches

in the effort to quickly progress data items down the workflow and towards the output in order to

minimize the average latency of the results.

In non-ideal circumstances, this becomes even more challenging due to volatility in both the

hardware and workload (just as in load balancing). As precious resources such as available main

memory deplete with bursts in the workload, it will be necessary to adapt our scheduling policies to

avoid catastrophic events such as running into swap space or buffering data to disk.

1.2.3 High-availability

As mentioned earlier, hardware failures are inevitable and should be expected when using clusters

of computing nodes. It is vital to ensure that correct results are produced in the midst of failures

and that we con recover from these failures quickly and with little cost.

Batch processing frameworks are often used to process such large volumes of data that much of

the intermediate data that are generated must be stored on disk. By using distributed file systems

with fault tolerant properties[21, 1], batch processing frameworks can be protected from some degree

of hardware failures. Any data lost after one of the intermediate checkpoints can be replayed to

working computing nodes.

Stream processing frameworks, on the other hand, have such strict end-to-end latency require-

ments that buffering data to disk is unacceptable. Disk seek and read/write times result in such

significant time penalties that shedding stream load (and sacrificing result correctness) can often

be a preferred alternative[40]. For this reason, intermediate buffers are generally managed in main

memory. To then preserve data in the event of faults, it is necessary to resort to replicating the

effort of computing nodes (to instantly replace failed nodes) or replicating data (to replay a copy of

prior data to other working nodes).

Coordinating replications and points of aggregation in elastic computing architectures is a chal-

lenge in itself. As nodes come and go (or fail), it is necessary for the remaining nodes to synchronously

be aware of updated aggregation points and replication destinations.
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1.3 Background

Batch and stream processing frameworks have both been around for quite some time. We have

leveraged previous work and concepts from both types of frameworks.

1.3.1 Distributed batch processing

Batch processing frameworks and database management systems have been using data parallelism

to process large workloads for quite some time. Volcano[22] was proposed in the early 90’s as a

means of encapsulating the tasks of distributing data and gathering results for partitioned operator

parallelism in a workflow. Other tools such as MPI[32] implementations and OpenMP[35] require

the programmer to invoke specialized libraries to parallelize specific sections of their applications.

MapReduce[20], and associated implementations such as Hadoop’s MapReduce[2], have isolated

these portions of parallel code in order to free application developers from the management of

their execution. In this way, programmers do little more than simply define transformation and

aggregation operations which are then automatically replicated across many computing nodes for the

purpose of data parallel processing. Languages have been created to provide SQL-like expressiveness,

such as Pig[34], in order to define workflows consisting of MapReduce jobs. Schedulers such as

Oozie[3] (Hadoop’s workflow scheduler) then try to optimize the execution of these jobs over the

available set of computing nodes in order to increase the throughput of these batch jobs.

1.3.2 Distributed stream processing

Stream applications are expressed as a set of computations performed over streams. Each basic

computation is represented as an operator in the stream and receives input data from upstream

operators or stream sources while producing output data to downstream operators or application

outputs. In this way, application programmers would construct a directed acyclic graph (DAG)

which represents how an application processes a stream. It is the responsibility of stream processing

frameworks to facilitate the execution of such a workflow of operators for each application it supports.

Early distributed stream processing engines did not support data parallelism but did support

pipelined and task parallelism[12, 17]. Workflows of operators were generally partitioned into subsec-

tions with each computing node handling a different set of consecutive operations. Fault tolerance

in these systems was usually handled through either: 1) a mirrored set of secondary computing

nodes on standby which would be utilized if a primary node went down[25]; or 2) by holding onto

upstream backup copies of data in which such case data could be replayed downstream to a still

working node[38, 25].
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Later, partitioned parallelism was integrated into stream processing engines via concepts laid out

by RiverDQ [14]. This strategy involved interposing load balancing operators within a workflow to

direct data to a set of pre-defined computing nodes that were allocated to a parallelized operator.

Flux[37] would enable this strategy to be used for content-sensitive data partitioning to support

aggregations with appropriate intra-operator load balancing and would later be expanded to provide

fault tolerance[38].



Chapter 2

A Generic-Node Processing Model

Distributed stream processing engines often employ rigid operator allocation strategies: they allocate

the entire workload of a subset of operators [45, 36, 44] and/or a portion of the workload from a

single but expensive operator [14, 37] to each computing node. “Pinning” nodes to operators,

in this way, results in coarse-grained workload balancing — on the scale of nodes to operators.

Additionally, pinning nodes to a specific set of operators prevents those nodes from contributing to

other operators across the workflow in times of need to withstand stream or resource volatility. In

effect, these nodes’ operator schedulers (which determine the order of execution for the operators

that have been assigned to a node) have been restricted to choosing the best plan of execution for

only a subset of the workflow instead of the whole.

Statically employing data, task, and/or pipeline parallelism by pinning operators to nodes may

not efficiently meet end-to-end latency objectives. The forms of parallelism enacted by nodes, at any

moment, should be motivated by application performance objectives (such as minimizing latency).

To this end, we present a distributed stream processing model that supports workload allocation and

scheduling frameworks that are able to manage parallelism in real-time. Instead of pinning nodes to

operators, we partition all operator workloads for parallel processing while supplying a novel strategy

to maintaining the sorted integrity of streams for temporally sensitive operators amidst data parallel

processing. We then distribute those partitions across the set of all computing nodes, to encourage

forms of parallelism which reduce latency, and employ a latency-oriented, workflow-wide operator

scheduler to concentrate the nodes’ collective efforts on the portions of the workflow that are most

important to minimizing latency at any given time.

We claim that supporting the processing of volatile and fluctuating stream workloads with het-

erogeneous and non-dedicated computing nodes requires a flexible processing model.

8
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2.1 Generic computing nodes

We have coined the term Generic computing nodes to represent computing nodes that have not

been restricted to participating only in a specific subsection of the workflow; instead they have the

flexibility to receive and process data from any workflow operator[15].

Our processing model uses this concept to allow generic computing nodes to flexibly move

throughout the workflow to support workflow-wide scheduling, to withstand stream and workload

volatility by diversifying processing efforts of computing nodes, and to provide fine-grained distri-

bution of the entire application’s load across the available computing resources. The remainder of

this section discusses these benefits and how generic computing nodes enable them.

2.1.1 Pinned vs. non-pinned computing nodes

Both batch processing frameworks and traditional parallel stream processing engines generally re-

strict the participation of a computing node to a specific operation.

Computing nodes used in batch processing frameworks such as MapReduce are assigned (“pinned”

to) large batches of data to process and may not process data from another operation until all par-

ticipating nodes have finished the entirety of their allocated workloads.

In distributed stream processing engines, operator workloads are generally assigned (“pinned” to)

computing nodes using one of the following policies: 1) nodes can be statically assigned to operators

in an arrangement which is meant to be resilient to observed patterns of fluctuation within a data

stream[26, 44]; 2) the entire workload of an operator may be migrated from one computing node to

another[12, 36, 45]; and 3) load-balancing operators may be interposed into the workflow to migrate

portions of an operator’s data parallel workload between the computing nodes assigned to that

operation[14, 37].

These strategies all constrain the computing nodes to participate with only a specific subset of

the operators within a workflow. This inflexibility results in an inability to perform both workflow-

wide load balancing and workflow-wide scheduling in the midst of resource volatility and stream

volatility caused by bursts and skew.

The generic node processing model, on the other hand, removes these restrictions. By allowing

computing nodes to consume data from any operator in a workflow, it is possible to attempt to

balance the entire workload of the application across all available nodes. Likewise, all nodes can be

scheduled with respect to the entire workflow of operators. Therefore, if the workload of a particular

operator increases significantly, all computing nodes can be scheduled to execute that operator in

order to alleviate its burden. In the case of a pinned assortment of computing nodes, on the other
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hand, the nodes assigned to the burdened operator will likely be overloaded while the remainder of

the computing nodes might be underutilized.

Load distribution comparison

To show this, we provide a simple C-MR workflow (leveraging our C-MR framework which is defined

in the following chapter) containing a single MapReduce job (with no Combine step) and compare

C-MR’s use of generic, non-pinned computing nodes to all possible pinned node allocation strategies.

We used an Amazon EC2 High-CPU Extra Large instance and supplied 6 cores to be allocated to

the workflow. The cost of the Map and Reduce operators were derived artificially with busy waits

and the Reduce operation consumed windows with a size and slide of 1 second.

To test the effects of volatility on the two strategies, we inserted two anomalies over the testing

interval. The first is a burst at the 10 second mark which lasts for 10 seconds and nearly doubles

the input rate. The second anomaly is a cycle-stealing process, simulating external workloads, that

is collocated with one of the cores for 10 seconds starting at the 40 second mark. The results of this

experiment are depicted in Figure 2.1.

The assignment of 3 nodes to the Map and 3 nodes to the Reduce is the best possible allocation

the pinned strategy can provide given the specified workflow and available resources. The generic

nodes used by C-MR, however, consistently outperform the best Pinned strategy as generic nodes

experienced better utilization and were able to collectively contribute to hot-spots in the workflow

as they occurred. The fine-grained load balancing of all workflow data onto all computing nodes

allowed the generic node strategy to have better utilization across the cores while allowing the cores

to collectively assist at operators experiencing bursts or take load from cores that are burdened.

2.1.2 Data vs. task vs. pipelined parallelism

There are three types of parallelism common to data stream processing. Data parallelism is the act

of partitioning the workload of a single operator among multiple computing nodes. Task parallelism

enables the concurrent processing of separate workflow operations. Pipelined parallelism dedicates

nodes to differing regions of a pipeline in order to reduce the overhead of each node (reducing context

switches and improving cache utilization).

The simple application of any these parallelism concepts with pinned computing nodes, how-

ever, is not necessarily beneficial for low-latency stream processing. Strict pipelined parallelism can

result in poor node utilization and an inability to prioritize differing areas in the workflow on-the-

fly. Distributing computational effort temporally across a workflow can be counter-productive to

minimizing the average latency of results. Pipelined parallelism implies de-coupling efforts across
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Figure 2.1: Pinned vs. Non-Pinned computing nodes

time (and therefore provides the concurrent execution of data of differing priorities), but it may be

beneficial to instead keep efforts coupled (i.e., to process oldest data first). These same problems can

also be experienced with the fixed provisioning of data and parallel parallelism within a workflow.

The goal of a processing framework is not simply to achieve parallelism, but to use parallelism to

meet the performance requirements of the application. This may require the right balance of these

different kinds of parallelism as identified by an operator scheduling policy. Data, task, and pipeline

parallelism are therefore not themselves targets to aim for but they are instead the tools we should

use to do the work of our scheduling policies.

2.1.3 Fitting heterogeneous architectures

The use of generic, non-pinned computing nodes, in contrast to pinned computing nodes, results in

the benefit that an additional node will supplement the entire workflow and not just a subset of it.

Our processing model treats computing nodes as black boxes — they simply consume, process, and

emit data and any underlying implementation details are completely abstracted away. This affords
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us the opportunity to utilize fundamentally different architectures such that computing nodes can be

any individual processing elements including CPUs/cores and even GPUs. Many computers are cur-

rently being packaged with GPUs capable of performing general purpose computations instrumented

via parallel processing frameworks such as CUDA[4] and OpenCL[5] and therefore the utilization of

these processors can provide substantial benefits.

To test the ability of our processing model to handle the utilization of differing architectures, we

adapted and integrated Mars[24], a MapReduce framework for graphics processors using NVIDIA’s

CUDA architecture, into our C-MR framework (defined in the following chapter), in which we’ve

implemented our processing model, to support the inclusion of GPU computing nodes. Since com-

puting nodes are abstracted away as black boxes, when they are issued data to process data, we

simply invoke an instance of Mars underneath the abstraction and return the results.

GPUs are excellent at performing SIMD operations but are not well suited for operations where

the threads executing on the GPU’s many cores will take differing execution paths. Therefore, GPUs

will not be appropriate for all types of streaming applications but they certainly have their place.

Since GPUs are meant to process numerous data simultaneously, our GPU computing node

performed an internal layer of batching under the black-box abstraction. In this way, it would fetch

many data items before internally processing the batch of them. Thus, GPUs are beneficial for

batch-heavy, or high volume, streams which includes processing replayed streams that are stored on

disk.

To show the combined benefits of utilizing both CPU and GPU computing nodes, we performed

an experiment varying the number of CPUs and GPUs used for a stream application.

This experiment was performed on an Intel R©CoreTM2 Quad Processor Q6600 with a GeForce

9800 GX2. In these tests, a single CPU core was dedicated to the purposes of GPU kernel invocation

and other supplemental work for Mars. We delivered a high volume stream (too large of a volume for

CPUs to handle alone) to a simple MapReduce workflow which performed a series of mathematical

operations suited for SIMD processing on GPUs. The results of this experiment are shown in Figure

2.2 as we show the benefit of the cumulative effort of heterogeneous nodes both with and without

the GPU.

The GPU node is certainly a power-house and can quickly work through much of the data. When

used alone, the CPU nodes struggle under the load of the stream. However, the addition of CPU

nodes when the GPU node is operating does provide a valuable incremental benefit. Therefore,

we find that heterogeneous nodes are able to complement each other in C-MR due to the use of a

generic-node, pull-based processing model which allow nodes to consume data as quickly as they are

able to.
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Figure 2.2: Contributions of heterogeneous computing nodes

2.1.4 Resilience to volatility

This arrangement of non-pinned computing nodes encourages node participation at all points in the

query plan. If there is a sudden hotspot developing at the input to an operator then many computing

nodes will be able to collectively alleviate these bottlenecks. Otherwise, a node that is constrained

to only participate in a specific region of the workflow may sit idly during a lull as other nodes are

overloaded due to a burst in data. Non-pinned nodes are better able to share variances in stream

volume and skew.
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2.1.5 Workflow-wide scheduling opportunities

The scheduler is able to sway the collective set of computing nodes together such that each node

consumes the data item with the highest priority, according to the scheduling policy, out of the

entire workflow. For instance, for an end-to-end latency oriented policy, each node might be told to

process the oldest data item in the workflow.

Also, since the computing nodes come to the scheduler independently, as they are ready to

process new data, the scheduler can use different policies for different nodes or even toggle between

policies for the same node. An example of this might be when the goal is to minimize end-to-end

latency and the amount of free main memory drops significantly. In such a case it can be beneficial

to leverage a memory-aware scheduling policy that reduces the memory used in order to not run

into swap space. Running into swap space would incur tremendously large latency penalties and

therefore it may be beneficial to the goal of latency minimization to prevent depleting main memory.

By toggling only a few of those nodes that request data to instead process data that will provide

a memory reduction benefit, we can keep the rest of the nodes using a latency minimization policy

while still protecting ourselves from hitting swap space.

2.2 Preservation of stream order

Some stream operators process individual data items from the stream independently from all other

data in the stream. Others perform an analysis or transformation on a range within a stream.

Stream processing applications therefore define windows which identify these ranges for processing.

Windows are a natural concept to stream processing. They facilitate concepts such as temporal

aggregation — for instance, a window would support a query which computing the moving average

of a stock price over the last 5 minutes while being evaluated every 1 minute. As identified in this

example, windows have a size to define the span of the window and a slide to define the frequency

of evaluation.

When operators consume windows for processing, their input streams must maintain a sorted

order so that windows enacted on them will capture the appropriate data. While windowed data

streams have been studied by the stream processing community for years, the application of windows

to data parallel stream processing has been less closely examined.

As windows can only be formed on sorted streams, we find that streams delimited by data-parallel

operations pose a complication in that data parallel processing does not guarantee the preservation

of stream order for the results produced. It is therefore necessary to put in place provisions to re-sort

the stream prior to temporally-sensitive operations.
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2.2.1 Punctuation insertion and replication

As mentioned previously, the inclusion of data-parallel operations in a workflow violates the integrity

of a stream’s temporal ordering. We cannot be assured in which order parallel computing nodes will

return results, therefore, we must assume that the intermediate results produced by a data-parallel

operation will arrive out-of-order.

To correct the temporal order of our streams, we use a basic form of punctuations[43]. These

punctuations are inserted into sorted streams at some interval relative to an application or system

attribute (i.e., application timestamp or system time) to denote the ends of windows within a stream.

They are, however, only useful when the stream is sorted. Punctuations would become invalidated

if, for example, one arrives prior to the end of the window it is meant to terminate. In the case

of a data-parallel operation, the merged stream that the computing nodes collectively produce may

be unsorted, however, the streams which they consume are sorted. With our processing model, we

exploit this characteristic and replicate window boundary punctuations and insert them into each

of those parallel streams (one for each active computing node). When a node receives a replicated

punctuation, it performs no operation but instead simply passes on the punctuation to the merged

downstream buffer.

2.2.2 Window materialization

After collecting all replicated punctuations at the downstream buffer, we can be assured that all of

the window’s corresponding data has been received. This triggers a materialization of the window

which can be sent to the downstreamwindow-consuming operator. The data within each materialized

window is not required to be sorted since DSMSs only require windows to be a relation of temporally

adjacent records, however it is trivial to also sort the data within the window at this time.

An example of punctuation replication, nodes passing punctuations, and punctuation collection

for window materialization is depicted in Figure 2.3.

Notice that punctuations are only necessary for aggregate operations that require windowing,

and that punctuations can only be inserted into streams that have already been sorted. Therefore,

we require the application’s input stream to be sorted by some timestamp, whether application

timestamp or system timestamp. This constraint allows us to punctuate the sorted input stream for

downstream windowing operations. Likewise, we can insert punctuations at the next downstream

window materialization point after the stream has been sorted and so on for additional downstream

operations.

As an alternative to requiring sorted inputs, one could employ a commonly used technique to
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Figure 2.3: Punctuation management and window materialization
Punctuations denoting window slide boundaries are inserted into the workflow prior to aggregation
at a point where the stream has been sorted. A node will consume the punctuation from the sorted
stream (2.3a) and then replicate that punctuation to the other nodes (2.3b). After all replications
are received at the intermediate buffer, we collect values of like keys, whose timestamps falls into

the window interval, and materialize them as our window.
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tolerate tuple delays until a threshold period of “slack” time has passed at which point punctuation

insertion would occur. However, this goal is not pertinent to the focus of our paper and has been

covered by previous stream processing systems [13, 30, 27].



Chapter 3

The C-MR Framework

We developed a new stream processing framework, Continuous-MapReduce (C-MR), intended for

execution on a single host to demonstrate the benefits of our generic-node processing model. To

effectively leverage the generic computing nodes in our processing model, we decided to use a pro-

gramming interface for our framework that supported the simple definition of parallelized operators

and resulted in the creation of intermediate data that could be consumed by any computing node.

The MapReduce programming model provided these properties so we based our framework around

the notion of stream-oriented MapReduce jobs to process unbounded streams.

MapReduce[20] has become very popular since its debut, largely due to its simplistic program-

ming model and automatic handling of the parallelization, scheduling, and communication associated

with parallel data processing. Hiding these intricacies has lowered the barrier to entry for application

programmers to begin parallelized, batched data processing.

Recently, programmers have found it useful to leverage MapReduce to process data streams,

going so far as to write scripts to periodically invoke MapReduce implementations over subsets of

streams as they arrive. This approach, however, becomes complicated when faced with elaborate

workflows of MapReduce jobs dependencies, the need to evaluate overlapping windows (which incurs

redundant computations), and the desire to optimize the execution of the workflow.

To facilitate its easy adoption and efficiently support the continuous application of MapReduce

to data streams using heterogeneous parallel hardware platforms, it was necessary to provide the

following key features and functionalities:

• Little or no changes to the standard MapReduce programming model

• Support for complex workflows of multiple MapReduce jobs

• Automatic stream window management under parallelized operation

18
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• A workflow-wide, latency-oriented scheduler that would effectively utilize the available parallel

resources and deal with time-varying load and spikes common in real-world streams

Continuous-MapReduce (C-MR) extends the traditional MapReduce processing model to support

continuous execution over unbounded data streams. To understand C-MR, it is important to first

understand the traditional MapReduce processing model.

3.1 MapReduce processing model

Google developed the MapReduce framework[20] to leverage clusters of commodity computers for

large-scale, data-parallel processing while abstracting away the difficulties of managing the comput-

ing resources from the application programmers. These programmers are supplied with a notion of

Map and Reduce operations whose functionality they implement to manipulate their data.

The MapReduce processing model begins with a Map Phase in which data are read from

a distributed file system, partitioned among a set of available computing nodes, and consumed by

those nodes as (key, value) pairs. The Map tasks, as implemented by the application programmer,

will process each of its input records, independently of the other records, and for each record generate

intermediate results of the form list(key, value). The intermediate data is buffered to the local

disk.

After the Map tasks on all computing nodes have been completed, the Reduce Phase begins

in which all intermediate data with the same key are collected at the same node to perform an

aggregation specified by the application programmer. As computing nodes are allocated to become

reducers, they will contact a centralized oracle to be assigned a set of keys to aggregate over. They

then fetch the corresponding data from all nodes that produced those keys as output during the

Map phase. This data is retrieved and sorted locally after which the data is processed and results

of the form list(value) are produced for each key.

Optionally, there is a Combine Phase which enables a mapper to perform a Reduce-like aggre-

gation over the output values of a Map task that have identical keys before they are written to disk

and subsequently sent to the Reduce nodes. This phase serves to conserve network bandwidth.

3.2 Continuous-MapReduce

Continuous-MapReduce[16], like MapReduce, allows programmers to define Map and Reduce op-

erations to manipulate streaming data while being free of the burdens associated with parallelized

task and resource management.
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3.2.1 Window semantics

The most fundamental difference between C-MR and MapReduce lies in the scope by which the

operations execute. Streams, by definition, are unbounded and can therefore not be aggregated by

standard blocking operations such as Reduce. A Reduce operation will never be able to produce

output because the end of a stream will never arrive. To deal with such blocking operations, the act

of stream aggregation is performed as the periodic analysis of finite temporal ranges of data. These

ranges are known as windows and slide over the stream with respect to time.

The boundaries of such a temporal window are parameterized by a size and slide. A window

with a size of 60 seconds and a slide of 15 seconds will allow us to process all data within the past

minute at 15 second intervals. In this way, Continuous-MapReduce provides an analysis of temporal

relations within an infinite stream.

With this in mind, it is of the utmost importance that these temporal relations be sorted with

respect to time to provide a correct analysis. Parallelized operations (the foundation of MapReduce)

do not preserve stream order. We previously discussed the solution to this problem, which our

processing model implements, in Section 2.2.

3.2.2 Asynchronous Processing

C-MR differs from MapReduce regarding when and where data are scheduled to be processed.

MapReduce is concerned only with the scheduling of a single batch of data through a single MapRe-

duce job. The data is first processed entirely by the Map operation and then by the Reduce operation.

Continuous-MapReduce, on the other hand, involves an infinite number of “batches,” in the form

of windows, as well as potentially many MapReduce jobs for large workflows. Such an arrangement

requires the concurrent execution of many operations.

Streaming input sources, as well as intermediate connection between MapReduce jobs within

a workflow, result in the asynchronous arrival of data. The input queues to such operators can

then regularly be filled with data. For Map operations, this data can be processed immediately.

For Reduce operations, on the other hand, the data must be batched until all data relevant to the

window of interest has been received. Once such a window has been materialized and is ready to

be processed, we have data in the form of discrete computable units. These units, whether Map or

Reduce data, can be processed at any computing node.

If computing nodes are logically removed from the burden of preparing these computable units,

then they need only worry about processing the data that is available. This opens a wide range of

scheduling opportunities as each computing node is able to actively process data from any operation
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in a workflow. With an assortment of data ready to be processed at their respective operators in

the workflow, we have the ability to enact scheduling policies which emphasize a data consumption

order that is designed to meet application performance requirements.

In a multi-core system, for instance, each computing node would have available to it the same

data as the other computing nodes. The C-MR scheduler can identify the data each node should

consume to process. In this way, nodes consume as they are able to and at their corresponding rates

in a pull-based manner. The scheduler also has the opportunity to flexibly enact different scheduling

policies for individual computing nodes. These characteristics of our processing model allowed for

the creation of novel operator scheduling strategies that we will explain in Section 3.7.

3.3 C-MR programming interface

In defining the C-MR programming interface, we made a conscious effort to mimic the original

MapReduce interface so that porting applications between frameworks would be trivial. Only minor

interface differences are present and application logic need not be modified. Our framework is written

in C++ and supports sliding window definitions, connections to input/output streams, the creation

of complex workflows of MapReduce jobs, and the sharing of common sub-workflows. An example

workflow of continuous MapReduce jobs, as specified by the C-MR programming interface, might

look like the one seen in Figure 3.1.
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Figure 3.1: An example C-MR workflow.

3.3.1 MapReduce interface

Like batch-oriented MapReduce jobs, the continuous MapReduce jobs in C-MR are defined by a Map

operation and a Reduce operation which the application programmer specifies. Similarly to Google’s

MapReduce [20], classes deriving from Map and Reduce superclasses implement corresponding map

and reduce functions to facilitate application logic. These functions may then produce results using



22

the provided emit function. The function signatures for the MapReduce interface are defined in

Table 3.1.

void map(
void* key, int keySize,
void* val, int valSize,
timeval timestamp);

void reduce(
void* key, int keySize,
vector<void*> val, vector<int> valSize,
timeval timestamp);

void emit(
void* key, int keySize,
void* val, int valSize,
timeval timestamp);

Table 3.1: MapReduce interface function prototypes

3.3.2 Stream interface

For a MapReduce job to continuously process data and produce results, it must be attached to

input and output streams. The input and output streams of the workflow must also be defined

by the application programmer to insert data into the workflow and to make use of the results.

These streams are represented by user-defined functions. Input streams are associated with a file

descriptor (e.g., standard input, TCP socket connection, opened file) and the input function will

continually fetch key/value information from the stream and return the results (encapsulated into

the Data format) to the workflow. Stream output functions will continually receive and handle Data

as specified by the application programmer. Examples of these function formats can be found in

Table 3.2.

Data*myStreamInputFunc(FILE* inStream) { . . . }

void myStreamOutputFunc(Data* data) { . . . }

Table 3.2: Stream input/output function formats

3.3.3 Workflow construction interface

To create complex workflows of continuous MapReduce jobs, we define a Query for which we add

inputs, outputs, and intermediate MapReduce operations. Each intermediate operator and output

takes a unique identifier so that data can be directed to them. Similarly, each input and intermediate

operator defines the number of downstream locations it will forward data to and then lists those
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locations by their unique identifiers. The addInput function takes an input stream, input parsing

function, and a list of attached operators as input. The addMapReduce function defines a unique ID,

instances of a pair of Map and Reduce subclasses (contained within a MapReduce object), an instance

of the Window class (specifying the window size and window slide of the Reduce operation), and a

list of downstream locations to deliver data to. The addOutput function simply denotes its unique

ID and the user-defined function that will handle the results. These function signatures are specified

in Table 3.3. Similarly, C-MR supports the addition of individual Map or Reduce operators to a

Query through an addOperator function.

void Query::addInput(
FILE* stream,
Data* (*inputFunc)(FILE*),
int numOpsConnected,
...);

void Query::addMapReduce(
uint16 t id,
MapReduce mapReduce,
Window window,
int numOutputs,
...);

void Query::addOutput(
uint16 t id,
void (*outputFunc)(Data*));

Table 3.3: Workflow creation interface function prototypes

A sample windowed moving average stock application can be seen in Appendix A.

3.3.4 Schema

A standard MapReduce job consumes a set of input key/value pairs and produces a set of output

key/value pairs. The intermediate data produced by Map and consumed by Reduce are a set of keys

with corresponding lists of values. Since the input and output of the MapReduce job can also be

represented in this way, we define the input and output schema of each workflow operator in C-MR

to similarly consume and produce a set of keys with corresponding lists of values. Therefore, the

output of any MapReduce job can be sent to any other MapReduce job with the impetus on the

programmer to process the data accordingly.
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3.4 Architecture design

C-MR allows for continuous execution of complex MapReduce workflows on multi-core and sym-

metric multiprocessor systems. We define each processing element on a computer (i.e., processor,

core, GPU) to be a computing node capable of executing any defined Map, Reduce, or Combine

operation.

Our computing nodes have a different execution strategy than is seen in MapReduce. Tradition-

ally, a computing node is scheduled to execute a set of Map or Reduce tasks and once all nodes

processing these like-tasks have finished the node may be re-allocated to other tasks. The single-host

implementation of C-MR uses a, pull-based data acquisition mechanism allowing computing nodes

to execute any Map or Reduce workload as they are able. In this way, they fetch data from the

intermediate workflow buffers, process the data, and deposit the data into downstream intermediate

workflow buffers. Therefore, the computing nodes communicate with each other via shared memory

and avoid buffering data to disk . We have outlined the physical architecture of our system in Figure

3.2.

3.4.1 Host

A computer running an instance of C-MR will launch a C-MR Host process. This process is re-

sponsible for determining the number of available processors/cores and/or GPUs on the computer

and launching threads for each of those we wish to use. The Host will then instantiate a variety of

Map and Reduce operators, as specified by the application programmer, which are accessible by the

nodes to execute tasks via the corresponding application code. With the workflow instantiated as a

directed acyclic graph of Map and Reduce operations, the Host will proceed to attach input streams

to the workflow.

3.4.2 Computing nodes (CPU & GPU)

The Host launches a computing Node thread for each core (or GPU) available on the computer. The

thread is confined to run only on that core with the use of the Linux sched setaffinity function

to prevent the operating system from scheduling Node threads on the same computing resource – we

do this because we want to manage the scheduling of our processing resources ourselves. Each Node

will constantly try to consume data as it is directed by a scheduler. When data are issued, Nodes will

process them with respect to the corresponding operation and forward the results to downstream

workflow buffers. A Node will give priority to handling replicated punctuations, pushing them back

into the workflow as they arrive, to encourage the materialization of windows which may contain
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Figure 3.2: C-MR architecture
The host invokes a node thread for each local processor/core and then manages the workflow

inputs and outputs while the nodes asynchronously execute the arbitrary tasks they are issued by
the scheduler.

high-priority data to be made available to the scheduler.

3.4.3 Workflow buffer

Intermediate data in the workflow are stored in a staging area, known as the Workflow Buffer,

to be materialized into windows and/or consumed by Nodes. To ensure that the temporally aware

Reduce operators consume an ordered stream, it is necessary to collect and sort their data in these

intermediate buffers in anticipation of window materialization.

To sort the stream, punctuations are inserted into the workflow by the Workflow Buffer at a

location upstream from each Reduce operation. The punctuations are inserted at intervals corre-

sponding to the Reduce window’s slide value and at a location where the stream is already sorted

(e.g., at the input to the workflow or just prior to an upstream Reduce operation whose input has
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just been sorted). Punctuations move along the stream like any other data and once they leave the

sorted intermediate streams they are replicated to all Nodes. They are then consumed by the Nodes,

and delivered back to the Workflow Buffer. The receipt of the last punctuation denotes that all

data has arrived for the window that is to be reconstructed. Upon receiving all of these punctuations

at the Workflow Buffer, the corresponding window will be materialized and made eligible to the

Scheduler for propagation along the workflow.

3.4.4 Scheduler

As Nodes go to the Workflow Buffer to consume data, they first interact with a Scheduler routine.

The Scheduler returns data to a Node from the Workflow Buffer based on the current scheduling

policy in place. The Scheduler and its related scheduling policies are discussed in more detail in

Section 3.7.

3.5 Workload partitioning

As streams are connected to a C-MR host, key-value pairs will begin to arrive off the stream as

defined by the programmers input parsing function. This workload must then be divided among the

computing nodes that will be processing it.

3.5.1 Partitioning types

Data can be partitioned in multiple ways and across multiple dimensions. When partitioning data for

parallel processing however, we must be conscious of any relationships between data and operations

which require some data to be grouped together (aggregations of like data, for instance). In this

way, a sub-stream containing Map data can be partitioned arbitrarily among computing nodes as

the data for Map tasks are processed independently. On the other hand, Reduce data must be

partitioned along two dimensions. First, data must be partitioned into sub-streams which consist of

like keys. Then, the resulting sub-streams must be partitioned along the time dimensions to support

windowed analysis as defined by the application programmer.

Content-based

Whenever the grouping of data, as we partition a stream, is a result of the contents of the data

itself, then we are performing content-based partitioning. In the case of MapReduce, Reduce data

is partitioned by key. While Google’s MapReduce stores keys as strings, C-MR allows keys to be

any type and simply stores a pointer to data of an arbitrary type. We simply ensure that the
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keys containing identical data are grouped together. Again, for Map, the partitioning type can be

arbitrary as the data can all be processed independently.

Context-based

We define the event of partitioning data by its metadata as context-based partitioning. For instance,

in the parallel processing of video streams, an individual video frame in a sequence of image can often

be partitioned into subregions. In this way, the data within each subregion itself does not dictate

how the data is partitioned. Instead we use auxiliary information to determine how to partition

each frame within the stream. Likewise, the partitioning of a stream into temporal regions, for the

purpose of temporal aggregation via windows, is another form of context-based partitioning. In

C-MR we use punctuations to denote the boundaries of these partitions in the stream.

3.6 Load balancing

After the workload has been partitioned into pieces that are consumable by computing nodes, we

must make the decision regarding where each of these data should be processed. There are two

fundamental forms by which a computing node can consume data. Data can be allocated to a

computing based on the node’s current workload, or they can be retrieved by the nodes as the nodes

become available to process new data.

3.6.1 Push-based data allocation

If data are to be delivered to computing nodes as they arrive, then the data allocator should be

aware of the cost of the data to be allocated and the cost of the data that the node has already been

allocated but has yet to finish processing. These data costs are relative to the computing potential

of the computing nodes. For instance, a data item may be quickly processed at a dedicated node

and processed more slowly at a non-dedicated node.

For the sake of load balancing, and the minimization of the latency of results, we would ideally

like to deliver a new data item to the computing node who will be able to finish processing it

soonest. This requires a significant amount of profiling of both data and computing nodes in order

to determine the average processing cost of data in addition to the current processing potential of

a computing node. Even if the computing nodes on a C-MR host are identical, it may be possible

that external workloads are running in the background on some of those computing nodes and are

contending for computing resources.
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When dealing with advanced allocation, it is required to make assumptions about the future.

One must assume how long it will take to process the remaining data a node has been allocated,

assume how long it will take to process the new amount of data, and hope that the computing

potential of the node doesn’t change in the meantime. If we are dealing with a static environment

with homogeneous, dedicated nodes and no complexity skew in the workload, then we can be at ease

with some of these assumptions. Otherwise, if these assumptions are wrong then we will experience

disparities in what we would have hoped were balanced workloads.

3.6.2 Pull-based data consumption

Given that this implementation C-MR is for a single-host architectures, we have another option

available to us for balancing load between computing nodes. As described in Section 3.4.3, the

Workflow Buffer, which stores all intermediate workflow data, is stored in shared memory. This

results in quick access to the buffer by all nodes. In the previous scenario, for advanced data

allocation, data allocated to a node is similarly located in the shared memory buffer thus access

times are similar. There is, however, a small degree of contention as the centralized Workload Buffer

is accessed by the nodes through a locking mechanism to allow for thread safety.

The benefits of on-demand data consumption lie in the ability for multiple computing nodes to

collectively consume from the same hypothetical queue. Using this method, it is not possible to to

accidentally over or under-allocate data to any computing node. Instead, a computing node will

naturally consume data at the rate which it is able to. In this way, slower computing nodes will less

frequently visit the Workflow Buffer for new data while the faster ones will. In our observations,

contention over the Workflow Buffer locks for operator queues did not present a problem given

the relatively small number of cores on the commodity hardware we used and due to the cost of

processing and managing data exceeding that of scheduling.

3.7 Operator scheduling

The C-MR processing model uses generic computing nodes to consume data, in a pull-based manner,

from the centralized Workflow Buffer as directed by the scheduler. We have structured our scheduler

in a way that it can leverage a number of different scheduling policies based on a variety of metrics.

3.7.1 Scheduling Policies

Nodes invoke a scheduler routine that is responsible for selecting prepared data to process from the

intermediate workflow buffers as defined by a scheduling policy.
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These policies evaluate the input queue to each workflow operator, giving it a rank, to determine

which will be the best candidate for a node to consume data from. Ranks are represented as a

signed integer with preference being given to operator queues with higher ranks. Table 3.4 defines

the methods that the policies will use to rank an individual operator.

Ranking Expression applied to Operator
ODF -(timestamp of data at front of queue)
YDF (timestamp of data at front of queue)
CTO -(breadth-first-traversal order from sink)

MEM avgInputSize-(selectivity)(avgOutputSize)
avgProcessingTime

Table 3.4: Scheduling policies

ODF uses the negated timestamp of the data at the front of an operator’s queue, resulting in

old data (with lower timestamps) earning higher ranks. Conversely, YDF uses the timestamp as-is

to give newer data (with higher timestamps) the higher rank. The CTO strategy assigns the rank

to each operator according to its ordinal value in a breadth-first-traversal of the workflow starting

from the output. These values are negated, such that the values closer to 0 were visited earlier in

the traversal and would therefore be ranked highest. Lastly, MEM observes the expected difference

between the average size of an input tuple and the average size of an output tuple of an operator

with consideration of the operators selectivity. This difference (the expected loss in memory usage)

is then divided by the processing time to assess the expected number of bytes reduced per unit of

time.

One advantage of having generic computing nodes with access to all data in a workflow is that

scheduling policies will allow nodes to collectively concentrate their efforts on hot spots within the

workflow. They will all collectively process the area in the workflow that the scheduler deems most

important. In contrast, strategies which pin continuous Map and Reduce operators to nodes[19, 42]

can find their computing nodes under or over-burdened due to variations in the stream, workload,

or system resources. For instance, if a burst of data targets a single operator in the workflow, only

the nodes which the operator has been pinned to will be able to face this burden. In our system,

however, any computing node will be capable of contributing to alleviate this burden. Our operator

scheduler assures us that a computing node will not sit idle if there is ever data available to be

processed anywhere in the workflow.
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3.7.2 Hybrid & probabilistic scheduling

The arrangement of generic computing nodes and a centralized scheduler affords us the ability

to use multiple scheduling policies concurrently by executing new policies on each node’s request

for data. We present a novel hybrid and probabilistic scheduling framework which enables the

gradual transition between scheduling policies based on resource availability. This strategy allows

the application to benefit from the benefits of multiple scheduling policies as the need arises. For

instance, we instantiated a hybrid ODF and MEM scheduling policy that aims to keep latency

minimization a priority while also trying to prevent the depletion of available main memory. When

the amount of memory remaining becomes sufficiently limited, the hybrid policy begins to increase

the probability that a node’s request for data will be satisfied with the use of the MEM strategy.
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Figure 3.3: Progressive scheduling policy
This CDF shows the rate at which our hybrid progressive scheduler transitions to the MEM policy
as available memory becomes more scarce. Here we use a transition threshold of 50% resulting in
the remaining interval being represented as a beta CDF with parameters α = 2.5 and β = 1.

We used this progressive scheduling arrangement in order to improve end-to-end latency when

conditions in our system change in a way such that one specific policy is no longer advantageous.

We generally find that ODF does a very good job of minimizing end-to-end latency, however, when

experiencing bursty loads resulting in the sudden depletion of available main memory, the ODF

policy begins to perform extremely poorly as swap space begins to be used. For this reason, we

pair the ODF and MEM policies in the progressive scheduler in a way that leverages ODF when

memory is not limited and gradually transitions over to the MEM policy when in danger of hitting

swap space. Here our goal is to achieve the best of both worlds — trying to maintain a focus on

minimizing latency while protecting ourself from exhausting the memory which would result in an

increase in end-to-end latency.
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To model this transition, we used the cumulative distribution function of the beta probability

distribution. The beta distribution provides us with a continuous probability distribution on the

interval [0, 1]. We use this interval to define a transition to the MEM policy once memory usage

exceeds a threshold, T , signifying that it would be beneficial to begin the transition between policies.

In Figure 3.3 we show that we stretch this beta CDF over the interval corresponding to [T =

50%, 100%] memory usage with beta parameters α = 2.5 and β = 1.

To decide whether or not we will use the MEM policy for a particular node’s data request, we

take the percentage of memory currently in use, x, and pass it into the CDF depicted in Figure

3.3 which is expressed mathematically in Equation 3.1. The result is the probability that we will

use the MEM policy for operator scheduling. For each Node’s request to the scheduler, we can then

generate a random number on the interval [0, 1] to probabilistically determine which policy to use.

If rand(0, 1) < F (x), then we use MEM and we would use ODF otherwise.

F (x) =







0, x < T

BetaCDF( x−T
1.0−T

, α, β), otherwise
(3.1)

We used the Beta CDF, which can be parameterized to be as linear or as exponential as desired, to

allow application programmers to define for themselves the rate at which they would like to transition

between scheduling policies. This desired rate of the transition may depend on the type of application

being used or may simply depend on the personal preference of the application programmer – an

especially risky person may wish to use an ODF policy for as long as possible before resorting to a

sudden increase in the MEM policy upon expiration of main memory.

3.7.3 Analysis

The combination of generic computing nodes and our scheduler allows us to consciously schedule

complex workflows with regard to end-to-end application performance requirements. We evaluate

our scheduling policies on the workflow depicted in Figure 3.4. The Map and Reduce operators have

been assigned varying selectivities, resulting output value sizes, and processing times.

The results of this test, including a burst in the stream at time 10 (like the previous test), are

shown in Figure 3.5 for both latency and memory consumption.

The results show that ODF is the clear winner with respect to minimizing latency. The remaining

policies all suffer substantially at the onset of the burst. It is interesting to note that, with this

particular workflow, the ODF policy also results in the minimum memory consumption during the

burst time, beating out the MEM policy. This is likely due to the fact that ODF operates to push

data through the workflow which can result flushing data and punctuations to materialization points
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Figure 3.4: C-MR workflow to evaluate scheduling policies

where better memory trade-offs can be achieved. A policy that considers cumulative downstream

efforts could help remedy this effect.

The MEM policy actually excels for many other workflow configurations, including those where

highly selective/filtering operations are located early in the workflow which is often the case. For

such a workflow, we tested our hybrid scheduling policy which transitions between the ODF policy

(with the goal of general latency minimization) and the MEM policy (to prevent hitting swap space)

in the hopes of preventing huge spikes in latency.

In this test a burst in the stream is initiated at the 4 second mark and we observe how the

scheduling policies ODF, MEM, and Hybrid are able to cope with the significant volume given only

2GB of available RAM. Figure 3.6 shows the results for both latency and memory usage.

Initially, we find that the Hybrid policy mimics that of ODF with respect to both latency and

memory consumption. It is only once the memory footprint of the stream application starts to

significantly increase that we see Hybrid deviate and become more memory concious. From the

latency graph, we find that, after the burst hits, the Hybrid policy always outperforms MEM with

respect to latency and is only outdone by ODF just before ODF goes into swap space due to ODF’s

recklessness. The hybrid policy consistently provides good latencies throughout the experiment.

3.8 Re-purposed Combine phase

In C-MR we provide an optimization which re-purposes MapReduce’s optional Combine phase to

process sub-windows which are common to overlapping Reduce windows. This concept was ini-

tially explored for traditional stream processing window evaluation in [29]. We represent the C-MR

Combine phase as an extra Reduce operator in the workflow, situated between Map and Reduce

operators, with a window size that is a common factor of the Reduce window’s size and slide. An
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Figure 3.5: Operator scheduling policy comparison

example of this type of workflow can be seen in Figure 3.7. The sub-window size and slide values

are equal such that there is no overlap between sub-windows. Such a window is referred to as a

tumbling windows.

These tumbling windows allow for the incremental aggregation of the full Reduce windows as

processing occurs before the full reduce window has materialized. The results are computed only once

and can be integrated with the corresponding downstream Reduce windows. The only redundant

computation remaining is the aggregation of the results of the sub-windows at the Reduce operator.

The cost of this redundancy equates to simply aggregating over a value per sub-window in the

Reduce window – aggregating aggregates.
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Figure 3.6: Progressive scheduling results

3.8.1 Sharing sub-windows

The precomputed sub-windows produced by Combine can be shared among all other Reduce windows

that happen to share the sub-window. For instance, if a Reduce operator aggregates over 60 minutes

worth of data every 5 minutes and Combine sub-windows have a size and slide of 5 minutes, then

after the workflow has been primed with data each new Reduce window can be computed with the

results of the previous pre-computed 11 sub-windows provided by Combine and the latest freshly

computed sub-window produced by Combine.

C-MR also allows for the sharing of sub-windows between Reduce operators of similar types but

have differing window sizes. For instance, a Reduce operator that has a size of 60 minutes and a
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Figure 3.7: Re-purposed Combine phase
C-MR can use Combine to process sub-windows of Reduce operations. This encourages incremental
processing of Reduce windows, data parallelism within Reduce windows, and mitigates redundant

processing of shared sub-window regions across temporally overlapping Reduce windows.

slide of 5 minutes can share Combine sub-windows with another Reduce operator that has a size of

45 minutes and a slide of 5 minutes as long as those operators both have the same input sources

and have a common factor for the slide values.

3.8.2 Overhead analysis

To determine if a C-MR Combine phase will be worthwhile in a workflow, we compare the expected

average number of values a Reduce window would aggregate over both with and without the Combine

phase. If we denote a Reduce window’s size as w and the slide as s with the size and slide of the

Combine’s sub-window to be the highest common factor of these values, k, then we can predict the

work spent for both strategies in the following manner using t to denote the average number of

values observed in the stream per unit of time within such windows.

Cost of No-Combine = wt

Cost of Combine = st+ w
k

The average cost of No-Combine is equal to the value density of the window (wt), whereas the

average cost of Combine is equal to value density of the slide amount of the window that has not

been observed yet (st) plus the cost to aggregate the aggregates (w/k) which simply corresponds to

the number of sub-windows in a window. Thus, the Combine phase will be beneficial if the following

statement is true:
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wt > st+ w
k

(wt)− (st+ w
k
) > 0

t(w − s) > w
k
= w

HCF (w,s)

The result is intuitive. That is, if t (the volume of data per unit of time) is sufficiently large

then the Combine phase will be beneficial in aggregating over the bulk of this volume only once.

Similarly, if (w − s) (the degree of overlap between adjacent Reduce windows) is sufficiently large

then the Combine phase will aid us in not recomputing this significant portion for each window.

In all other cases, the benefit of the Combine phase will not outweigh it’s cost. A simple check of

this expression allows us to make an informed decision regarding whether or not to implement the

Combine phase, although it does not consider the potential benefit that the Combine phase provides

by encouraging incremental processing of the Reduce workload which may improve latency.

Additionally, there is an extra trade-off to consider should we pick the sub-window size to be

a common factor of the Reduce window’s size and slide that is smaller than their highest common

factor. Picking smaller common factors will encourage additional incremental processing but at the

expense of overhead incurred due to managing extra sub-windows.

3.9 Experimental results

The tests in this section were performed on a computer with an Intel R©CoreTM2 Quad Processor

Q6600. The following tests involve stream applications that determines the moving average of

stock prices over time. The applications use both transformation (Map) and aggregation (Reduce)

operations to parse data into stock symbols and prices and to calculate the average of stock prices,

observed within a window, for each stock symbol present. Example code can be seen in Appendix

A.

To facilitate these application, we replayed NYSE stock data from the TAQ3 data release of

January 2006 [6]. The stream contains records representing stock trades which include a symbol,

price, and a time stamp of 1-second granularity. For each second, anywhere from 100 to 1703 trades

were captured with a range of 71 to 794 unique symbols appearing per second. This provided a large

amount of skew in both volume and stock symbol. The stream was played back at an accelerated

rate to provide an increased workload.
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3.9.1 Continuously execute a MapReduce job

Näıve windowing can easily be integrated into traditional batch-oriented implementations of MapRe-

duce. Without making changes to these implementations, and by treating them as narrow MapRe-

duce interfaces, we can manually construct time-based windows and then invoke the batch-oriented

MapReduce framework to process them. We would then shift the input buffer by the slide-amount

of the window. This results in large amounts of data replication (to maintain data both outside the

framework, for stream management, and within), redundant processing (at both Map and Reduce

operations due to overlapping windows), and an inability to incrementally process data (due to hav-

ing to wait for the entire window to arrive before being able to invoke the MapReduce job) which

all contribute to a higher latency.

Additionally, this method of supporting stream processing with MapReduce places the burden

on the application programmer to perform stream and window management themselves. We imple-

mented exactly this kind of stream and window management to invoke MapReduce jobs with the

Phoenix++ framework. Phoenix++ Is a single-host, shared memory, multi-core implementation of

MapReduce in its third major revision [39]. We compare repeated invocations of Phoenix++, sup-

porting stream processing, to a C-MR MapReduce job and a C-MR MapReduce job which leverages

a Combine operation, interposed between the Map and Reduce operators, to decrease that amount

of redundant Reduce computations that occur as a result of overlapping, sliding windows.

This experiment uses a single MapReduce job which determines the moving average of stock

symbol prices over a data stream. Figure 3.8 shows the results of executing each strategy using

various window sizes (all with a window slide of 1 second) while replaying a finite stream of stock data.

The results show that redundant computations incurred by Phoenix++ ultimately hurt latency; as

the size of the workload increased (with larger windows), the latency of Phoenix++ increased more

rapidly than the C-MR variants. C-MR hit the overload point (where the CPUs became saturated

with work to do) just prior to Phoenix++, due to additional storage and organization requirements

of intermediate data. C-MR with Combine, however, supported the processing of significantly larger

workloads before reaching saturation.

It is also worth noting, that the Combine strategy only began to outperform the standard C-MR

strategy after a window size of 15 was reached. Prior to this point, the inclusion of an intermedi-

ate operator (along with bucketing keys, ordering streams, and materializing windows) was more

expensive than the savings it provided from redundant Reduce computations.
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Figure 3.8: C-MR vs streaming Phoenix++ implementation
Repeatedly invoking a Phoenix++ MapReduce job over a stream results in many redundant

computations (at both Map and Reduce operations). C-MR allows data to be processed only once
by Map and the inclusion of the Combine operator significantly decreases redundant work

performed at the Reduce operator.

3.9.2 Workflow optimizations

By enabling the creation of complex workflows of MapReduce jobs, C-MR supports the ability

to perform a variety of workflow optimizations which includes sharing common sub-workflows.

To show this, we used a financial analysis application which performs a moving average conver-

gence/divergence (MACD) query. This query, common to financial trading applications, performs

two moving averages of differing window sizes at similar slide intervals over the same stream. The

difference of the two moving averages is returned as the result. In Figure 3.9, we depict three different

workflow implementations – one using a wrapper interface to pipeline data to multiple Phoenix++

instances and the other two being a simple C-MR workflow and an optimized C-MR workflow.

With C-MR we can fork output streams to decrease redundant computations through stream

sharing; C-MR handles the generation and propagation of window-boundary punctuations through
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Figure 3.9: MACD workflow implementation strategies

these forks towards their specific downstream operators. In the optimized C-MR workflow, we

allowed the two Reduce steps to share both the Map operator and an introduced Combine operator.

Even though the two Reduce window sizes are different, the Combine operator produces sub-window

aggregates which both Reduce operators can consume to populate their windows. This prevents a

large amount of redundant computations. The Phoenix++ workflow required a considerable amount

of work to pipeline data between its MapReduce jobs and to also perform stream synchronization

at the input for the MapReduce job which merged and processed its two input streams.

This test performed a MACD analysis on a replayed stock data stream with window sizes of

5 minutes and 10 minutes and a common window slide of 1 minute. In the optimized workflow,

the Combine operation produced sub-window aggregates of 1 minute window sizes to the parallel

Reduce operations. The latency results of this test are shown in Figure 3.10. We see that the

Phoenix++ workflow performs the worst because it incurs a large amount of redundant processing

and because of its inability to facilitate latency-oriented scheduling. Also, the optimized C-MR

workflow outperforms the simple C-MR workflow with a 31% decrease in average latency.

We also replayed the same stock data stream as one large batch which arrived instantaneously
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Figure 3.10: Latency of MACD workflow implementations

to perform a throughput. The results of this test can be seen in Figure 3.11. Given this particular

workload, we see that both of the C-MR strategies outperform the Phoenix++ workflow with regard

to the volume of data they can process. The performance gap for throughput is somewhat smaller

than we saw for latency as Phoenix++ is quite optimized for throughput performance. C-MR, on

the other hand, currently employs a latency-oriented scheduling policy and incurs a higher per-tuple

overhead for doing so. In spite of this, the computation savings and workflow optimizations provided

by C-MR allows for better performance.
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Chapter 4

Distributing C-MR

The C-MR framework presented thus far has been suitable for supporting stream applications whose

computational requirements do not exceed that of a single high-performance computer. The next

natural step is to support applications which leverage larger amounts of data and data with higher

processing costs to achieve higher throughputs while maintaining low latencies.

We have extended the C-MR framework to support its distribution onto multiple computing

resources. This chapter explains the requirements and challenges that were faced to accomplish this

endeavor as well as our implementation details and an analysis of the benefits achieved.

4.1 Requirements

Distributing the C-MR framework to multiple physical computers (Hosts) was a task that required

both extending the C-MR architecture and considering the general requirements of large-scale dis-

tributed applications. This section discusses both required extensions to the C-MR architecture and

the requirements posed by modern distributed applications (as motivated by the prevalence of the

cloud computing and infrastructure-as-a-service models).

4.1.1 Distributed application requirements

For most of the past decade, there has been a tremendous increase in the cloud computing movement.

This movement champions the concept of delegating the management of complex infrastructures and

software services to third parties. These third parties manage the hardware and/or software that

the client wishes to use.

Cloud services lower the barrier to entry for leveraging large amounts of compute power. It

42
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is no longer necessary to acquire and facilitate one’s own personal cluster which would require

the management of hardware, networks, power, failures, and possibly even heating, ventilation,

and air conditioning services. Instead, through these cloud services, a client can rent access to the

infrastructure or software platforms they need for the period of time that they desire. Infrastructure-

as-a-Service (IaaS) providers give clients the ability to host their own virtualized computers that

are entirely within their control. A client could then pay IaaS providers to launch compute hosts

to facilitate their data processing needs. Platform-as-a-Service (PaaS) providers abstract away

the management of infrastructure from the user while allowing software solutions (including data

processing frameworks) to be deployed across resources hidden from the end-user. In this way, a

client will simply pay to use the service or frameworks that the PaaS provider offers.

Batch processing and stream processing frameworks, such as C-MR, may be hosted by a user

explicitly through IaaS offerings or accessed indirectly through PaaS offerings. Examples of cloud

computing service providers (including IaaS and PaaS) are Amazon EC2[7], Windows Azure[8],

Rackspace[9], and Linode[10].

The increasingly prevalent cloud-computing ecosystem encourages the use of distributed appli-

cations which can scale with ease. In addition to being readily scalable, these ecosystems also

encourage elasticity. Elasticity, in this context, is the on-the-fly addition or removal of hosts from

the working set of computing resources that are facilitating the application. Cloud computing clients

need only to pay for the resources they use, therefore it is advantageous to decrease the resources

used when in a state of underutilization and increase the pool of resources that are used when there

is an increase in computational demand.

Stream applications are often volatile in their processing requirements as fluctuations in stream

volume can occur over time. Therefore, they are an ideal candidate for cloud computing services

which allow elastic support. As we designed and extended C-MR for distributed use, we kept

scalability and elasticity in mind as a necessary features to support.

Scalability

Data volumes continue to increase at an incredible rate. Data commonly processed by stream

applications include event logs, click streams, image/video feeds, network traffic, and various other

data feeds. The increase of network-attached devices, data collection, and the pervasiveness of social

networking into our lives has provided a goldmine of data that companies are rushing to analyze.

Therefore, processing frameworks facilitating the analysis of such huge volumes of data must keep

up by distributing and managing these computations across a similarly growing set of computing

resources. As stream applications are often time-critical such that their utility is proportional to the
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promptness of the results (e.g., network intrusion or fraud detection), it is important that we use

distributed resources in a manner that efficiently meets the objectives of the stream applications.

Elasticity

Data streams are often characterized by bursts and volatility – the amounts and types of data a

stream may contain can change over time. For example, an application analyzing network traffic

may observe higher loads during business hours while experiencing much smaller load between 2-

5am. We therefore find ourselves in the situation of having to meet the performance requirements of

stream processing applications while being faced with regularly changing processing requirements.

The computing resources that processing frameworks use are certainly not free. Many applica-

tions compete to use these resources and therefore it is important to not acquire more computing

nodes than is needed to meet the performance objectives of the application at hand. There is also a

large financial cost to hosting and facilitating one’s own large cluster of computing nodes which has

opened up a large space in the market for cloud computing in which processing jobs can be shipped

off to virtualized sources. Using such cloud computing infrastructures results in monetary fees for

each virtualized computing node used for the time that they are acquired (whether in use or not).

This results in the goal, yet again, to only use the computing power that an application will require

to meet its performance objectives or money will have been wasted.

With various computing resources available for use, whether local or in the cloud, it is important

for modern stream processing frameworks to support the real-time addition or removal of these

resources on-the-fly to ensure that application objectives are met while minimizing the cost of using

them.

4.1.2 Extensions to C-MR

As presented in the previous chapter, the single-host C-MR architecture supported multiple process-

ing elements (CPUs/GPUs) while facilitating all of the intermediate workflow data within shared

memory buffers accessible by each of the processors. The move to a distributed architecture neces-

sitates a variety of changes to C-MR which are outlined below.

Multi-host communication

The first, and most obvious, difference between C-MR and a distributed version of C-MR is that

multiple hosts are being leveraged in the distributed version. Therefore, there must be a communica-

tion mechanism established so that hosts can transmits control information as well as data between
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each other. Further, it is necessary to determine what kind of communication model should be

established.

As our goal is to focus on user-provided performance goals, such as latency, a large part of our

work deals with predicting performance of stream applications being executed. To accomplish this,

it is important to coordinate information and statistics between all of the participating hosts so that

we can provide a global analysis of the processing environment. To this end, we use a client-server

model such that client hosts produce statistics to a server (a “master” host) which then performs

load balancing and directs the client in regard to the specific workloads they will be responsible for.

These control data (statistics and routing policies) are communicated via this client-server model.

Application data, on the other hand, may be communicated from any one host to any other

host participating in the application. This is the nature of Reduce-like data – Reduce keys are not

always predictable, and therefore it is possible to generate data from a Map operation that may have

any possible Reduce key. This permits the possibility of having all-to-all communication within the

Reduce step in which the data are not routed through the master.

Distributing workflow buffers

Stream processing framework are meant to process unbounded streams with high throughput and low

latency. Therefore, it has always been a design decision for stream processing engines to keep data

in main memory whenever possible – accessing disk drives to fetch memory results in extraordinarily

long latencies and is avoided at all costs. Thus, when handling larger stream volumes, it may be

necessary to distribute workflow data to multiple hosts such that a single host is not overloaded

and forced to push data into swap space. Likewise, there may be an incentive to distribute data for

parallel processing in order to reduce end-to-end latency.

To distribute the shared memory workflow buffers in C-MR, it is important to remember their

purpose. Both data and punctuations are stored in these buffers. Map data were instantly placed

in operator queues, ready to be processed by the local processors, and Reduce data were batched

into a staging area and waited for window-bounding punctuations. Once enough window-bounding

punctuations had arrived (one for each of the local processors), then a Reduce window could be

materialized and, like the Map data, placed in an operator queue to be processed.

With this in mind, distributing workflow buffers still requires the local processors within a C-MR

host to replicate and propagate punctuations and it is now also necessary for hosts to do the same

for the benefit of each other. An inter-host window-bounding punctuation scheme will ensure the

arrival of data from all hosts before finalizing and materializing windows.
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Assigning data to hosts

Communicating data between hosts was not a challenge faced within the previous implementation

of C-MR. The single-host implementation kept data in the shared memory buffers until a processor

requested data (via the scheduler) to consume. A processor would then take and process that data

and then deposit it back into the workflow buffers. In this sense, the single-host implementation

maintained pull-based acquisition of data. In shared memory, this strategy was convenient, fast,

and effective at serving heterogeneous or non-dedicated processors at differing rates.

Employing a similar strategy of pull-based data acquisition at the distributed level between C-

MR hosts, however, would result in a large increase in latency. This latency would occur during each

request for data by one of the host’s local processors. Such a protocol for requesting and transferring

data for each of the local processors is not scalable and introduces too much wait time over the

expensive network medium. Instead, data should use a push-based data distribution strategy which

optimistically communicates data to hosts relative to their expected processing ability. If an error is

made by under- or over-serving a host data, then data can be retro-actively migrated between hosts

or expectations can be altered for the future push-based distribution of data.

It is also quite important to be aware of the types of processing that will occur on the data

that are assigned to the hosts. Data meant to be processed by a Map operation may, literally,

be sent to any host to be processed as each data belonging to a similar Map operation can be

processed independently of the others. With data destined for a Reduce operator, on the other

hand, the destination is quite important as the data must be grouped together by similar keys and

then processed in batches defined by the temporal windows. Therefore, all participating hosts must

send each data that is intended for a Reduce operator to a known and pre-determined location. This

is even the case when two hosts produce data with the same and never-before-seen keys – they must

be able to simultaneously, and without coordination, determine the location to deliver data for that

specific key.

While the single-host strategy simply collected Reduce data of a similar key together within the

intermediate buffers, it is now necessary to apply another higher-level mapping which associates

such Reduce keys with a specific C-MR host. Once the data arrives at the appropriate host, it can

be inserted into the local workflow buffer of that host and managed as it was in the single-host

implementation.
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4.2 Challenges

While the general types of challenges faced in distributing C-MR have been faced by other distributed

data processing frameworks, C-MR imposes constraints which make many of those previous strategies

ineligible for implementation.

Given n computing nodes to participate in workflow processing, we’d ideally like them all to

constantly do valuable work when able; here, we define valuable work as being directed by the

user-defined scheduler to accomplish workflow-wide goals. Inadequate load balancing and restrictive

operator scheduling policies both result in underutilization of computing nodes. By not properly

utilizing computing resources, stream applications can under-perform.

Our single-host implementation of C-MR leveraged centralized workflow buffers that lived in

shared memory. The pull-based acquisition of this data, by computing nodes, resulted in the fine-

grained balancing of the data of the entire workflow across the C-MR nodes. In a distributed

environment, however, where the workflow buffers must be distributed and are therefore decentral-

ized, an alternative method must be used to allocate workloads to hosts in a fine-grained manner

for appropriate utilization.

4.2.1 Estimating latency

The principles used behind designing C-MR, from the beginning, have been to encourage computing

nodes to perform work that is beneficial to improving the bottom-line of the stream application. As

most stream applications are time-sensitive, this bottom-line most often refers to maintaining low

end-to-end latencies and is therefore is our focus with regard to stream application performance.

The generic-node processing model allows nodes to freely contribute to operators situated across the

workflow as directed by the scheduler to assist in meeting application performance requirements.

In a single-host setting, the task at hand was simply to perform good operator scheduling. Load

balancing was taken out of the equation as all processors were able to simply consume data from the

same shared-memory buffers. In a distributed setting, however, we now have the added challenge

of getting data to the distributed hosts. Once the data arrive at the distributed hosts, we must

still employ the operator scheduling strategies that we used before. However, in order to effectively

use the processors at the individual hosts we must have an understanding of their capacity to do

work in order to meet the application’s performance requirements. If there is a large load imbalance

between hosts then we may find the case in which the processors on one host may spin idly while

the processors on another hosts are overburdened. We must perform due diligence in attempting to

balance the load such that all processors can simultaneously do good work.
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Now, to ensure we can achieve load balancing configurations that support our applications perfor-

mance requirements, we must be able to predict the benefits of possible load allocation configurations.

In other words, if we have a large unallocated chunk of work to assign to the available hosts, we

must try to determine how to divide that workload amongst those hosts such that the total workload

can be processed the quickest. Applications contain many different types of workloads (represented

by the operators within the workflow) and we must therefore develop a method for understanding

the complex end-to-end relationship of load balancing across the workflow with respect to how such

changes ultimately impact our bottom-line – average latency. Any transfer in load throughout the

workflow of operators can have an impact in this regard and we must determine how to use the

information available to estimate the result of potential workload balancing configurations which

include the speculative addition and removal of hosts.

4.2.2 Enacting redistributions of load

The single-host implementation of C-MR did not have any form of explicit load balancing policy in

place. The fact that the C-MR computing nodes could access the data directly from shared memory

buffers enabled them to consume data in a pull-based manner without the need to pre-allocate data

to the nodes. In this way, no single node was ever more burdened than any other. Instead, the

nodes collectively processed whatever load existed.

With the transition to a distributed implementation of C-MR a pull-based data acquisition

strategy is ineligible due to latency constraints, as was discussed earlier. Instead it is necessary

to implement a push-based data distribution strategy which will naturally require a load-balancing

strategy to determine the amount of data to push to each host. Such a load-balancing strategy

would not only determine the amount of data each host would consume (as would be the case for

Map operations) but must also determine which types of data a host will consume as well (in the

case of Reduce operations aggregating values belonging to a specific key).

Employing even a standard load-balancing strategy is not entirely straight-forward within the

C-MR framework. We must consider that hosts can be added to or removed from the working set

of hosts in real time and that changes directed by the load balancer must be enacted synchronously

by all hosts. This raises the challenge of implementing a mechanism to control the data routing

policies related specifically to Reduce operations. For Reduce operations, we must ensure that, as

the working set changes or as routing policies change, all Reduce data that are both of a like-key

and share a window will be collected at the same host.

Therefore, the distributed implementation of C-MR must have synchronization primitives in

place to ensure that Reduce data are routed to the correct locations from the participating hosts in
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the event of host addition/removal and load balancing.

4.2.3 Conserving network bandwidth

While Google’s MapReduce[20] and other implementations, such as Hadoop[2], do not themselves

support workflows of MapReduce jobs, it is possible to string together a sequence of jobs to sup-

port workflow execution. There are frameworks designed to do specifically this including: Pig[34],

Nova[33], Hive[41], and Cascading[11]. The results of MapReduce jobs, and even their intermediate

results, are written to disk. Therefore between the Map and Reduce phase, and between invocations

of MapReduce jobs within a workflow, there is not a large degree of communication of data. Instead,

MapReduce mappers and reducers are more commonly executed on the hosts which already contain

the data to preserve data locality.

Stream processing applications attempt to perform finer-grained load balancing, and may there-

fore find it necessary to communicate inter-job data (for instance from a Reduce operation to a

downstream Map operation) between hosts on-the-fly. As load balancing policies are enacted, this

can impact where a host will send such data. However, unlike with data consumed by Reduce oper-

ations, we have some leniency with data destined for Map operations as such data can be processed

anywhere – even locally. It should therefore be a design goal to minimize the amount of network

transmissions that occur, with regard to data destined for map operations, while maintaining the

workload proportions defined by the load balancer.

4.3 Design and implementation

To meet the requirements of a distributed stream processing framework, to support real-time stream

applications and address the requirements and challenges listed above, we outline the following design

decisions and modifications to the C-MR architecture.

4.3.1 Hierarchical application of C-MR processing model

The C-MR processing model used for the single-host implementation need not change to support

distributed execution, but changes to the implementation to support that model are required. We

first simply re-define the definition of a computing node. In the previous single-host model, the

computing nodes were represented by both CPUs and GPUs, whereas in the distributed processing

model they can be represented by hosts (the computers themselves).

In this regard, the processing model does not change at all. The nodes still consume data from

intermediate stream buffers and then produce their results to output intermediate stream buffers. In
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this way, the data works its way from the inputs to the outputs. The differences are now that: 1) the

intermediate workflow buffers are now distributed across multiple hosts; 2) data are now propagated

in a push-based manner; and 3) the computing nodes (now hosts) process data differently once they

are received. The result is a hierarchical application of our processing model as seen in Figure 4.1.

Once data are received by a host, they enter an inner C-MR instance which processes data in a

manner that is quite similar to the single-host C-MR design.

Figure 4.1: Hierarchical application of processing model

It is not difficult to see that this abstraction can be taken even further with another step up

the hierarchy whereas clusters of hosts may be considered computing nodes. This could be done to

maintain a degree of data locality if one were to increase the network of hosts that would facilitate

the stream computations.

4.3.2 Hierarchical punctuation handling

By nesting a modified C-MR instance within each of the participating hosts, it is now necessary to

have two layers of punctuation management to preserve stream order and bound windows. In fact,

it is necessary to ensure stream order at any time in which a stream is partitioned. By using this

hierarchical model, we effectively partition streams at two levels due to the fact that data parallelism

is actually occurring at two levels – across hosts and then within hosts and across processors.
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The stream ordering strategy defined in section 2.2 can be similarly applied, hierarchically, to

this scenario. In fact, all intermediate workflow streams within the distributed variant of C-MR are

always partitioned. Beyond the application inputs and outputs, there is no point, as there was with

the single-host implementation, where the stream is entirely merged and re-sorted. Instead, it is

necessary to maintain within each parallel stream the semantics of a window-bounding point.

Take for example a host waiting for the entirety of window x to arrive at a Reduce operation. This

host can begin to materialize window x as soon as it knows that all other hosts have finished sending

all material relevant to window x. Therefore, if those hosts each maintain their own individual

window-bounding punctuations relative to window x, then our host will know that the relevant data

for window x has fully arrived when it has received punctuations from each of those hosts denoting

the end of window x. That is to say, that as long as each host’s parallel stream remains sorted then

it can produce a window-bounding punctuation downstream to notify other hosts that it has seen

the end of its respective window.

The distributed punctuation passing differs from the single-host variant in that this scenario

includes all-to-all communication between the hosts whereas the single-host variant entailed all

hosts reading from the same, single input buffer and merging results to the same output queue.

Figure 4.2 depicts an example in which host i is waiting to bound a specific window. Given

the existence of n different hosts, we can expect each of those n host to deliver window-bounding

punctuations to the input of host i to denote that they have each seen the end of the window (Fig

4.2a). Once the host has received all n of those window bounding punctuations, then the host can

certify that the window has fully arrived and may be materialized (Fig 4.2b). This materialization

will trigger the release of lists of data for each relevant key in this window and may even result

in the propagation of additional punctuations for subsequent downstream windows that must be

materialized. If this is the case, then the stream would eventually be sorted yet again downstream

requiring the introduction of new punctuations at this point to bound that downstream window. In

this way, the inner-instance of C-MR would produce a new punctuation for each ofm local processors

(Fig 4.2c). After the processors have produced these punctuations into the merged output stream,

we can be sure that the host’s stream has again been bounded for this particular window (Fig 4.2d).

At this point, the host must inform all of the other hosts (which it has been producing data to all

along) that all of the relevant data for the window has been sent. It does this by sending to each

host a punctuation denoting that host i has seen the end of the given window (Fig 4.2e). Those

punctuations will travel down the stream (Fig 4.2f) and can later be collected as in Figure 4.2a.
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Figure 4.2: Inter-host and intra-host punctuation replication and collection

4.3.3 Distributed C-MR architecture

The architecture of the distributed implementation of C-MR differs from the single-host variant

in quite a few significant ways. The single-host variant included the following three significant

components:

• A host process which launches a node process for each of the CPUs/GPUs used and facilitates

the connections from the application’s inputs and outputs to the workflow.

• The node processes which repeatedly consume data from the workflow buffers via the

scheduling policy while producing results back into the workflow buffers.

• The workflow buffers which buffer Reduce data and punctuations to materialize windows

(potentially producing additional punctuations) and populate operator input queues with data

(both for Map and Reduce) and punctuations that are ready for consumption by nodes.
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The distributed implementation of C-MR makes a few significant changes to the previous ar-

chitecture and adds another layer of complexity on top. It is now required to facilitate both client

instances of C-MR (which will bear similarities to the single-host variant with new modules added

to facilitate data/control message communication) and a “master” instance which has the following

additional responsibilities:

• Managing application inputs/outputs: While the stream processing that takes place may

be distributed, the inputs and outputs to the application may not be distributed and may

originate at a single and specific point. Similarly, a programmer using this data processing

framework will expect a single interface for stream application deployment. The master will

receive the application inputs from a user and deliver the results back to that user. Therefore,

an additional responsibility of the master will be to perform the initial partitioning of the

input streams.

• Load Balancing: Any form of run-time optimizations or adaptive query processing ought

to be motivated by improving application performance. Therefore, the distributed implemen-

tation of C-MR utilizes a centralized load balancer which attempts to predict the impact of

the load balancing policies it enacts. This is done through analysis of the stream workload

and client-reported indicators to a centralized point (the master) to enable estimations of the

latency benefits of potential load balancing configurations.

• Statistics collection: To perform load balancing with any knowledge of how re-allocations

of load will affect the application’s bottom line requires the collection of statistics to estimate

performance. Therefore hosts will regularly report statistics to the master so that this in-

formation can be used to keep the load balancer up-to-date with information concerning the

stream workload and the participating computing resources.

The module supporting load balancing duties will only be invoked on the host that is responsible

for consuming the application input streams and producing results to the end-user – the host pro-

viding the interface to the user. All other hosts will be running an instance of the distributed C-MR

client to communicate with each other as well as the master. The newly modified architecture that

will be run by all of the non-master clients can be seen in Figure 4.3.

As you can see, these clients now support the ability to consume their streams from an external

source other than the application inputs. Data received are accessed via the Input Manager which

listens for data from other clients (including the master). Data received from the Input Manager

is placed into the Workflow Buffers from which Nodes can fetch data to process. As Nodes finish

processing data they produce their results to a Routing Table facilitated by the Output Manager. If
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Figure 4.3: The architecture for the C-MR client that is designed for use on distributed hosts.

the results are to be propagated to another host then the Output Manager will transmit that data

over the network. If the results can be kept locally for continued processing down the workflow then

the data can be re-inserted back into the Workflow Buffers.

As the application runs, the Nodes (processors) report observed statistics regarding data process-

ing times and the wait times exhibited before processing. The Output Manager periodically reports

these statistics to the master. There they provide the necessary information to update routing tables

in order to balance load across the available hosts.

The Host thread for clients does very little. It only serves to initialize the Node threads and the

workflow buffers. The master, on the other hand, makes much more use of the Host thread. The

master host uses the host thread, as in the single-host architecture, to read in the application’s input

streams and to write to the application’s output streams. Another extra responsibility is the role of

performing load balancing. Figure 4.4 shows the architecture for a master host with the additional

responsibilities of the Host thread as well as the load balancing modules.

As the master reads from the application’s input streams via the Host thread, the results are

sent directly to the routing table of the Output Manager. This is where the initial partitioning of

the input streams takes place. Data can either be directed to other client instances of C-MR on the

available hosts or can be consumed locally at the master by being inserted directly into the local
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Figure 4.4: The architecture for the C-MR master.

Workflow Buffer. As the master is also the terminal point for all workflow results, data may be

received from the Input Manager (from any of the clients) and directed to the Host thread to be

produced as the application’s results.

The master also includes an additional load balancing module as it is responsible for performing

the centralized updating and reporting of the routing tables. With statistics collected from the avail-

able clients, the master is able to predict the performance of varying load configurations (including

configurations employing additional or fewer hosts as directed by the application programmer). For

varying configurations of hosts elected for use, the master will produce a candidate load balancing

strategy and estimate the resulting latency. Upon finding a load balancing strategy that meets the

applications requirements, the master’s routing table can be updated accordingly and the routing

table can then be forwarded to all of the client hosts to take effect.
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4.4 Workload allocations

As with any distributed system that performs data parallel processing, it is necessary to define how

a workload should be parallelized. This section discusses how partitions are formed, allocated, and

describes how data are associated with partitions in the case of both Map and Reduce operations.

4.4.1 Partitioning the hash space

The Google[20] and Hadoop[2] MapReduce implementations have all of their input data already

pre-partitioned. That is, the data is read from a distributed file system (the Google File System

(GFS)[21] and the Hadoop Distributed File System (HDFS)[1], respectively) such that the input data

is already distributed onto a number of hosts. Hosts that posses this data can launch a MapReduce

process to begin consuming that data. In this sense, effort is taken to try to launch MapReduce jobs

where the data “lives” to preserve locality.

The data is not, however, pre-partitioned for the Reduce phase – instead each partition is likely

scattered over many hosts. As we know, Reduce operations aggregate data that share a key. There-

fore, all data with a like key must be grouped together for this aggregation to take place. When hosts

facilitating Map operations produce key/value pairs for consumption by a Reduce operation, those

hosts must ensure that all data with identical keys are deposited at the same host for aggregation.

MapReduce, however, deals with “black-box” style operations where the code of Map and Reduce

operations are not known to the underlying framework. Therefore, it is impossible to generally

predict with any certainty what kinds of keys (and therefore partitions) will be produced by a Map

operation. MapReduce resolves this issue by taking the hash of the key to create a unique identifier

that lives in the hash-space. It is this hash space that can be partitioned amongst participating

hosts to divide the workload of a Reduce operation.

C-MR uses this same strategy – hashing keys into identifiers, and then partitioning the hash-

space amongst participating distributed hosts. However, C-MR must also employ a strategy to

partition and distribute data destined for Map operations. At some level, we follow a very similar

strategy but one that does not involve hashing. For Map data, we again partition a “space”. For

the purpose of partitioning it does not really matter what space, so we simply partition the same

range used for Reduce data. That space is divided up into partitions which are assigned to the

participating distributed hosts. In the Reduce case, a partition corresponds to a very specific set

of data (the data whose keys hash into that partition’s region of the hash-space). In the Map case,

however, the partition simply represents the proportion (from the whole hash-space) of data which a

host should process. Therefore, if a host has ultimately been allocated 15% of the hash-space, then
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the host would be responsible for processing 15% of that data.

4.4.2 Partition granularity

Before partitions can be allocated to the distributed hosts which facilitate the data-parallel com-

putations, it is necessary to first determine how to partition the hash-space. There are multiple

relevant strategies that we explored, each with their own strengths and weaknesses:

• Elastic Partitions: One eligible strategy focuses on what we’ve termed “elastic partitions”

which may grow and shrink in size. Each host would only be allocated a single elastic partition

but that partition would be resizable in order to accommodate the proportion of the workload

that a host is capable of processing. Therefore, high performance hosts may have larger elastic

partitions than the low performing hosts.

Implementing such a partitioning strategy would involve the placement of a single index into

the hash space for each host. If we think of the hash-space as laid out linearly, then the

elastic partitions for each host would be represented by the space between their index into the

hash-space and the next index to the left (or the end of the hash space if no others are found

to the left). In this way, the index of the final host would be the right boundary of the linear

hash space. An example of this can be seen in Figure 4.5.

Elastic partitions provide ultimately fine-grained partitioning such that each host’s allocated

workload can match, as close as possible, its processing capacity. To transfer load between

elastic partitions we can simply decrease the width of a donor partition, increase the width of

the receiver partition, and correspondingly offset the host indexes in-between those partitions.

• Many Partitions: An alternative would be to use a larger number of fixed sized partitions.

The goal would then be to distribute those partitions to the hosts in amounts that are propor-

tional to their respective processing capacities. The resulting implementation would require

a larger routing table for hosts as there are more possible partitions for a key to hash into

when determining its destination host. While it is possible for the many partition strategy

to support perfectly fine-grained load balancing (as the elastic partition strategy can) doing

so would be unwieldy as this would result in a partition for every single possible value in

the hash-space. By supporting partitions of any fixed size, this partitioning strategy supports

variable granularity. It is common, however, to simply allow the number of available partitions

to be defined as a multiple of the total number of participating hosts.

Transferring load from one host to another, using this strategy, would simply involve the trans-

fer in ownership of one or many partitions – this corresponds to updating the corresponding
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host ID for the transfered partition in the hash space. Therefore, the hash-space acts as a rout-

ing table which provides an entry per partition and identifies the host which will be allocated

that partition. An example of this partitioning strategy is depicted in Figure 4.6.
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Figure 4.5: Elastic partitioning provides a single adjustable partition per host.
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Figure 4.6: Many partitions enable the transfer of fixed-sized partitions between hosts.

When comparing these two strategies, we can find benefits to both. The elastic strategy is

elegant and supports perfectly fine-grained workload partitioning. On the other hand, using many

fixed-sized partitions is intuitive, trivially supports workload transactions, and provides fine-grained

partitioning (but can not reasonably support perfectly fine-grained partitioning). Picking a strategy

to use becomes much more straightforward when we consider the requirements of moving state

between hosts. When Reduce operators consume temporal windows which are not tumbling –

meaning that they have overlap – then a transfer of workloads would be required between the hosts.
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Given such workload transition there are two possibilities to enable this state migration:

1. The state at the donor host can be instantly and entirely moved to the receiver host such that

the receiver host can compute the very next window. The cost of this is the movement of all

non-expired state and is initiated immediately once the change in ownerships is confirmed.

2. The upstream hosts, who deliver future data for this partition, would send the data to both

hosts (donor and receiver) allowing the donor to continue to process the subsequent windows

until the receiver’s state has caught up fully such that it can commence processing the sub-

sequent windows. The cost here is the replication of data over the network and the penalty

that the load migration does not actually occur until the receiver host has fully populated its

window for the relevant partition.

In both cases the communication cost is the same – the same amount of data is being transfered

(either upfront or staggered). It is easy to see, then, that as a goal it is important to minimize state

transfers while doing load balancing. The elastic partitioning strategy, unfortunately, requires quite

a bit of unnecessary state migration when transferring load between two hosts. In fact, if one host

increases the size of its elastic partition while another host decreases the size of its partition, then all

hosts with partitions in between those two will be required to offset their index into the hash-space

which will result in those portions of partitions being transfered to adjacent hosts. In other words,

hosts which may keep their partition size perfectly static may have to participate in expensive state

migrations simply due to the fact that their partitions moved along the hash-space.

Another reason to shy away from the use of the elastic partitioning strategy is because it is most

effective when there is no data skew. If it is deemed that a host should receive a slightly larger

partition size, then that host may increase its elastic partition to cover a portion of the hash-space

that is extremely populated with data (more-so than other portions of the hash-space). Therefore,

it is not safe to reason that the hash-space has data uniformly distributed across it and the elastic

partition model is unable to account for such skew.

Using many fixed-sized partitions simplifies all of these problems. Regarding state migration, a

migration in a workload is simply performed as the change in ownership of a partition. Therefore,

only the parties taking place in the transfer will have a modified workload as a result of a partition

exchange. Also, statistics can be observed regarding the data density of each of the partitions. By

keeping track of the number of data observed, over time, within each of the partitions, then it is

possible to estimate the likelihood of future data densities for those partitions. Therefore we can be

aware of the data density of partitions we choose to move between hosts and even choose partitions

of densities more appropriate for the desired adjustment in processing obligations for the hosts.
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Being aware of such data densities allows us to be slightly more fine-grained in how we distribute

work between hosts.

For these reasons, we implemented the many partitions strategy in the distributed implemen-

tation of C-MR. In its current implementation we simply assign the starting number of partitions

to be a multiple of the number of hosts used upon startup of the stream application. Future work

should analyze how this partitioning granularity should change with respect to the elastic addition

or removal of distributed hosts. It is possible that changes in data skew within the stream can

also cause for need to modify partition granularity to provide a finer-grained distribution of data

density. However, changing partition granularity on-the-fly can possibly result in many immediate

state migrations if the subsequent partition sizes are not a common factor of the previous partition

sizes.

4.5 Distributed punctuation implementation

Section 4.3.2 described how the distributed processing model can maintain stream order, amidst the

hierarchical application of the C-MR model, by hierarchically applying a punctuation management

strategy. This section explains the implementation details that accomplish this and how it fits within

the distributed C-MR architecture.

4.5.1 Inter-host punctuation management

Data-parallel stream processing will always pose a challenge to maintaining stream order as the data

produced to a merged output stream may not maintain the order of the input stream. Hosts can

process data at varying rates and therefore a data may be accelerated or slowed down such that it

advances beyond or falls behind the rest of the data it is meant to be processed within. While not

all window-based operations require that order to be maintained within windows, it is still necessary

to ensure that all data relevant to a window has arrived before the window can be materialized and

then processed.

The distributed C-MR processing model performs exactly this type of stream partitioning. En-

acting data parallelism results in a series of parallel streams, each being consumed by a differing

host, that each maintain their sorted order (prior to parallel execution within the hosts). By repli-

cating window bounding punctuations from the sorted stream to the parallel streams, each of these

parallel streams will maintain the window-bounding property of the punctuation. By the time all of

the replicated punctuations have arrived at the merged output stream, the same window-bounding

property will be satisfied on that stream. The challenge faced by the distributed implementation of
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C-MR, however, is that there is no merged output stream until the results are produced to the user –

the stream remains partitioned at all intermediate points within the workflow. This is addressed by

replicating punctuations which maintain the window-bounding property to all of the parallel output

streams as is depicted in Figure 4.2 from section 4.3.2.

Replication

Confirming that the window-bounding property indicated by replicated punctuations has been sat-

isfied will occur in one of two ways based on if: 1) an operator’s input stream is consumed directly

from the application input via the master; or 2) if the operator’s input stream is consumed by

merging parallel output streams from separate hosts from an upstream operator. We discuss both

of these cases below:

1. As is the case in the single-host implementation of C-MR, we assume that the application

inputs are themselves sorted. As the master consume these application input streams it will

insert the initial punctuations (relative to the downstream Reduce operator’s slide intervals)

to denote that the window-bounding property is satisfied. At this point, the stream is sorted

and properly punctuated and must be parallelized to the distributed hosts that will process the

data. The master sends the input data on to the hosts via the Output Manager and instead of

simply sending on a punctuation via the Output Manager, the Master instead sends each host

n replicated punctuations (one replica for each active host) for a total of nxn punctuations. In

this way, the master mimics the behavior of the collection of hosts which would have otherwise

done the same had this workflow stream not been derived directly from the application input.

Ultimately, each host will receive from the master n punctuations – the receipt of which will

satisfy the window-bounding property.

2. In the case where punctuations are not being received from the master via the application’s

inputs, punctuations are received (and hence replicated) from the collection of hosts themselves.

Each of these hosts will manage one of the parallel streams that a “whole” stream is divided

into. Therefore, these hosts will consume data, process data, and produce data from their

Output Managers which may be directed to one of any of the active hosts. Likewise, these

hosts will have window-bounding punctuations reach their Output Managers to be forwarded

on to other hosts. At this point (when a window-bounding punctuation reaches a host’s Output

Manager) the punctuation will be replicated n times with one replica being sent to each host.

Once a host receives a punctuation for the downstream operator from all n hosts, then the

relevant window can be materialized.
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Collection

A receiving host will know that its merged (yet still parallel) stream will satisfy the window-bounding

property when one replica punctuation from every active node has been received at its input. The

Input Manager receives these replicated punctuations and buffers them within the Workflow Buffer.

Once the Input Manager has received and placed a replica from each host at the Workflow Buffer –

signifying that all hosts have produced the contents of the relevant window – the corresponding data

within the Workflow Buffer can be materialized and made available to be processed by the host’s

interior processors (CPUs/GPUs). At this point the host’s interior stream is properly sorted so that

the host may produce punctuations for additional downstream Reduce operators if applicable.

Ultimately, the replicas are generated at a host’s Output Manager when the host’s local/interior

stream has been sorted (by intra-host punctuation management, as will be discussed in section 4.5.2)

and punctuations are collected by the Input Manager within the Workflow Buffers where they can

be materialized upon receipt of all punctuations.

4.5.2 Intra-host punctuation management

The previous section just discussed how a host can confirm that its merged input streams can satisfy

window-bounding properties through punctuation management. Immediately after this property has

been satisfied, the stream may be partitioned locally, yet again, for parallel consumption by multiple

local processors (CPUs/GPUs). To ensure the window-bounding properties of the merged output of

these local processors, it is necessary to yet again punctuate the stream – this time within the host.

Replication

Punctuation replication within the host will occur immediately before the stream is partitioned for

parallel consumption. Therefore, right after the inter-host punctuation collection has occurred to

sort the stream and materialize punctuations, we will immediately apply intra-host punctuation

replication upon observing a punctuation from the workflow buffers. Similarly to in the single-host

implementation (depicted in Figure 2.3 from Section 2.2.2), when a processor consumes a punctuation

from the workflow buffer, it will replicate and push a copy to each of the other processors. Since the

processors have serialized access to any operator’s input buffer, we can guarantee that the replicas

will properly bound each of the processor’s parallel streams with respect to the given window.
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Collection

As the local processors produce their results to the Output Manager, they also produce any replicated

punctuations that have been issued to the Output Manager. It is at the Output Manager that these

replicas are collected. Once all replicas have arrived at the output manager, the window-bounding

property has been satisfied. At this point, the inter-host punctuation management policy will kick

in and produce a corresponding punctuation for each of the other hosts to transition from intra-host

to inter-host punctuation management.

4.6 Network and communication management

This section discusses the networking considerations that were made for the distributed implementa-

tion of C-MR to provide many-to-many communication, facilitate efficient use of network bandwidth,

and how specific networking modules were implemented within the distributed C-MR architecture.

4.6.1 Networking model

They very nature of MapReduce requires many-to-many communication. Mappers are initially

launched on hosts which contain relevant data situated within GFS or HDFS, process that work,

and then they forward their results to potentially all of many Reducers. MapReduce uses a strict

two-phase process in which the Mappers finish processing their data fully before the Reducers are

launched. As Mappers process their data, the results are spilled back to disk. Once the Mappers

have finished, an optional Combine step can be executed to further consolidate results. Then a

Shuffle step takes place in which the Mapper’s output data is sorted by key and then distributed to

the Reducers – one after the other.

In this sense, implementations of MapReduce enable a Mapper to send a large batch of data to

each Reducer in a single shot. The Mapper can establish a TCP connection, send the data, close the

TCP connection, and then move on to the next Reducer. C-MR requires a very different networking

model.

In the case of the distributed implementation of C-MR, there are Map operations and Reduce

operations across a workflow of MapReduce jobs that can all be running simultaneously. At any

given moment, a host can process data belonging to a Map operation which will produce a key.

That key will be hashed into the hash-space to determine which partition it will belong to and the

routing table in the Output Manager will determine which host has ownership of that partition.

The result will then be sent on to the appropriate host. Given that Reduce keys produced by Map

operations are not predictable, and that it is vitally important to maintain low latencies, we do not
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have a means to know in advance where data are headed to establish a connection to a TCP socket.

Because a host may, at any time, be required to communicate data to any other host, it is necessary

to have extremely quick access to an established TCP connection to the destination host. This is

clearly obvious in the case of inter-host punctuation replication in which replicated punctuations are

immediately fired off to every active host.

Therefore, we employ a many-to-many networking model with TCP connections established

between hosts at startup and maintained throughout the application’s lifetime. While this many-

to-many socket relationship has the potential to limit the scalability of data processing platforms,

stream processing applications generally require far fewer hosts than large-scale batch processing

applications employ.

4.6.2 Host communication modules

The following sections describe the communication modules implemented in the distributed C-MR

framework and detail the types of data and control messages communicated and the manner in

which connections are maintained.

Input Manager

The Input Manager actually operates as a pair of threads which are launched by the host thread

at startup. The first thread is responsible for establishing a TCP socket to listen for and receive

data, punctuations, and any control messages that may arrive from hosts or the master. Data and

punctuations are placed into an input buffer. The second thread consumes from this input buffer

and inserts the contents into the Workflow Buffers. Both threads are expanded upon below:

1. TCP Listening Thread: The listening thread establishes and listens on a single TCP socket

that all other hosts (including the master) will write to. This socket receives data, punctuations

from the hosts, and routing table updates from the master. The data and punctuations are

placed into an input queue which are then later consumed by the input queue thread. This

allows the TCP Listening Thread to be free to handle incoming data from other hosts while

leaving the efforts of integrating data into the Workflow Buffers to the other thread.

In addition to receiving data and punctuations, the listening thread also receives control mes-

sages which may either be statistics updates (received only on the host running the master)

or routing table updates. If statistics updates are received by the master, then the statistics

are inserted into the load balancing module. Otherwise, if routing tables are received, they

are appended to the routing table used by the Output Manager for future use.
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2. Input Queue Thread: A secondary thread is used to take data received from the TCP

listener and insert it into the workflow because it is possible that inserting punctuations into

the workflow may trigger window materialization which need not detract from the duties of

the TCP listening thread. Materializing windows involves moving data into the queues that

processors consume from and also may require the creation of additional punctuations if there

are subsequent downstream Reduce operations. In addition to this, the normal work of hashing

key values and inserting data into appropriate buffers need not hinder the progress of the TCP

listening thread and those other hosts waiting on its immediate responsiveness.

Output Manager

The Output Manager is facilitated by its own thread which is launched at startup by the host

thread. It then establishes TCP socket connections between the TCP listeners facilitated by the

Input Managers on all of the other hosts.

The Output Manager is then free to handle data produced by the host’s local processors. As the

processors consume data, they produce the results to a buffer that is read by the Output Manager.

The Output Manager reads from this buffer, determines how to route the data (by consulting the

routing table), and then sends the data to the appropriate host. That data may be sent via TCP

connection to a remote host or, if the data is determined to stay locally, the data will be re-inserted

into the workflow manager.

In addition to receiving data produced by the processors, the Output Manager will also receive

punctuations from the processors via the same buffer. The Output Manager is responsible for

counting the received punctuations and expects to receive replicas from all processors for each window

that those punctuations bound. Therefore, it is the Output Manager which, on receiving all local

punctuation replicas, produces new replica punctuations for inter-host punctuation management to

send to the other hosts. In this sense, it performs the collection phase for intra-host punctuation

management and the replication phase for inter-host punctuation management.

Beyond these responsibilities, the Output Manager also maintains an interface for communicating

statistics to the master and for sending new routing tables from the master to all hosts.

4.6.3 Network conservation

C-MR takes steps to minimize the amount of data communicated over the network. The steps taken

in the subsequent sections serve to reduce latencies by avoiding unnecessary network transfers or by

batching communication together to initiate fewer transfers.
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Routing Map data

We’ve previously established that data destined for Reduce tasks must be collected at a very specific

location so that it can be aggregated with all other data of a similar key while data destined

for Map operations can be processed literally anywhere. Map data have this flexibility because the

straightforward transformations and filtering performed by Map operations can occur independently

on each data item in the stream.

When it comes to produce data that is destined for a Map operation, we must determine if

or where it should be sent. Suppose that a processor has finished aggregating data for a Reduce

operation, and its results are destined for a downstream Map operator. The processor will take the

resulting data and put it into the output buffer to be read by the Output Manager. The Output

Manager then takes this data and consults the routing table – not to determine which partition the

data hashes to, but to determine which proportion of the overall map workload the local host is

required to process.

By observing statistics regarding the quantity of data produced by an operator and by also being

aware of how much data a host is meant to process, regarding the downstream operator, we can

develop an understanding of: 1) how much of the resulting data to process locally; 2) how much

of that data we should forward to other hosts who will not produce enough of their own data to

process; and, 3) how much data a host can expect to receive from other hosts if the local host will

not produce enough of the data to fulfill its processing obligations.

In other words, if through the act of load balancing and the exchange of partitions we find that a

host is meant to process 30% of a Map operator’s workload and we find that this host will generate

40% of the Map operator’s workload from the upstream operator, then we can retain a large portion

of the workload produced by this host (75%) and transmit the remaining portion (25%) to those

that are expected to under-produce from their upstream operators. By observing the statistics

regarding the amount of data produced by operators and being aware of each host’s relative share

of that processing work, we can estimate the amount of data each host will produce. The routing

tables tell us the proportion of data that each host will consume for the immediately downstream

operation. We then note the hosts which will under-produce data for their downstream workloads.

For those hosts that over-produce data for their downstream workloads, they can take the excess

of their workloads and divide it proportionally amongst the hosts that are known to under-produce

relative to the amounts by which those hosts have each under-produced.

In the distributed C-MR implementation, we interleave the local processing and shipment of

excess data to under-producing hosts in such a way that does not result in only sending excess

data once all of the local data has been processed. This allows processing to occur during the
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data communication (both sending and receiving) on behalf of both the over-producing and under-

producing hosts.

Data batching

Another strategy that can be used to decrease the number of network transfers is data batching.

For instance, the Output Manager can send a number of data items to a remote host in one transfer

instead of sending each data item individually.

There is a significant trade-off to be aware of when batching data for network communication.

When only sending a single data at a time, we are assuring that the first data item sent will have a

low latency. However, subsequent data items may have increasingly larger latencies (providing that

they were all ready for transfer within a relatively small amount of time). Batching data together for

transfer decreases the total number of transfers and therefore decreases the total amount of network

traffic. Depending on the inter-arrival rate of the data, a batching strategy may reduce the average

latency of transferring a large amount of data between two points. However, this is very much

dependent on the characteristics of the application and data arrival rates. If data are significantly

spaced apart, then batching will only introduce delays.

C-MR, therefore, supports the use of batching for both network transfers as well as for batch

processing at the host’s local processors (in an attempt to reduce overhead while receiving cache

coherency benefits) but does not try to actively learn whether batching is suitable for the application

at hand or what amount of batching is most appropriate. This would be an excellent avenue for

future work that would have wide ranging implications for a number of stream and batch processing

frameworks.

4.7 Load balancing

The distributed implementation of C-MR does not share the luxury of the single-host implementation

which allows the local processors (CPUs/GPUs) to consume data from the shared workflow buffers

in a pull-based manner. In this way, load was not pre-partitioned to each of the processors. Instead

load was perpetually shared between all processors. Load balancing was implicit; a processor would

never be idle if there was data available to able to be consume and no single processor was ever more

burdened than any other.

Performing such pull-based data acquisition from a shared workflow buffer is not a feasible

option for a distributed system. The single-host implementation could get away with this because

the communication cost of a processor fetching data from the shared workflow buffer was essentially
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free – the host would just acquire a pointer to the data’s location in the shared memory. In a

distributed scenario, such data acquisition would result in a costly network transmission each time

a host requests data. While it’s true that data must be communicated to these hosts anyway, as

data must be distributed in order to apply parallel processing, the additional cost comes from a host

engaging in the protocol to request data, wait for a response, and wait for the data to arrive before

processing could begin.

In an ideal scenario, we would already know exactly how much data each host should consume

to adequately balance an application’s workload. Then, it would be possible to just transmit this

portion of data to a host without it ever having to ask. This would allow the host’s local processors to

spend their time doing useful processing work without large delays between data. Therefore C-MR

aims to facilitate this case – predicting the appropriate portion of workload to allocate each host.

Thus, instead of pull-based data acquisition, a pre-determined data allocation strategy is employed.

4.7.1 Balancing objective

In most stream and batch processing systems, the act of load balancing is performed on homogeneous

computers. These computers are usually presumed to be equal and what data is available to process

is evenly distributed between them. In this sense the “load” or amount of work to be done is what

is being balanced between the hosts. When using heterogeneous hosts, however, we do not have the

assurance that each host will be able to handle equal load as gracefully as the others.

The general goal of batch processing frameworks is to finish processing a large amount of data as

quickly as possible. In this sense, the goal is to minimize the time between starting the batch load

and finishing the batch load. A “fast” computer might be allocated a larger workload than a “slow”

computer as it will be able spend less computing time on that workload than the slow computer.

The use of heterogeneous computers, therefore, requires not strictly balancing data, but allocating

data to hosts in order to minimize the start-to-finish processing time.

The situation is quite similar in stream processing frameworks when using heterogeneous com-

puters. The goal in stream processing frameworks is often to minimize the average latency of results.

Supposing we must allocate a new piece of data to one of any available hosts, the question that we

should ask is: “given the workloads already present at each computer, which host can be allocated

this data such that the average data latency across all hosts is increased the least?” The objective is

really quite similar to that in the batch processing scenario. Given a large workload distributed onto

heterogeneous hosts, each host will actively produce data at a specific rate relative to the volume

of data it has to process and its processing potential. Increasing or decreasing the workload of each

host may increase or decrease the latency of the results it produces. Therefore, when possible, our
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goal is to transfer load from the poorer performing computers (those with higher tuple latencies)

to those that are currently performing better (with lower tuple latencies) such that the resulting

transfer brings down the overall average latency across the pair of hosts.

4.7.2 Latency prediction

The workload balancing goal we focus on with C-MR is to reduce the end-to-end latency of stream

processing applications. Knowing how to move load between computers requires being aware of their

individual host performances with respect to the partitions they are processing. As C-MR uses a

centralized load balancing strategy, it is necessary to collect statistics such as these at a centralized

location in order to make judgements regarding the exchange of load between hosts.

Further, we use these latency statistics to build a latency prediction model to estimate the

potential latency outcomes of candidate load balancing strategies.

4.7.3 Latency prediction models

When determining how to estimate latency, we investigated three possible strategies.

1. Curve exploration: This method requires finding high-dimensional curves which denote

operator latencies given workload allocations for each of the available hosts. For each workload

configuration employed, actual latency observations would be noted as a sampled point within

this curve. As workload balancing changes are enacted, additional configurations will be

achieved and therefore new sampled points will be identified in the high-dimensional space.

These sampled points will be used to estimate the slope of the curve at various points in space

in order to attempt to generate new sample points in locations where we hope to find a minima.

2. Simulation-based latency estimation: End-to-end workflow latencies can also be derived

through discrete event simulation. After workload allocation strategies have been defined, a

simulation could mimic input stream rates to produce simulated data to simulated hosts. The

simulator would implement the very same operator scheduler used on the hosts and simulate

the processing of its data in the corresponding order. To do this, the simulator would need to

maintain statistics on the stream arrival rates, processing speeds, and partition characteristics.

3. Queue Length estimation: Another strategy we investigated was to determine the average

latency of data through each workflow operator and then calculate an end-to-end latency

through the composition of the latencies of each of the workflow operators. To estimate the

average latency of data through an operator we identify the components that contribute to
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latency. Those are: 1) network transmission time; 2) time spent waiting in a host’s queue to

be processed; and 3) time spent being processed. We therefore determine how these latency

components are effected by increasing or decreasing the load of a workflow operator while also

considering the impact on queuing wait-times perceived due to other operator workloads at

each host. With a new configuration of workloads for each of the operators, this strategy aims

to estimate new queueing times in order to predict average operator latencies.

After careful consideration of each of these three strategies, we quickly realized that the curve

exploration method had many significant hurdles. The first problem with such a strategy is that

exploring and determining the features of such a high-dimensional curve would be very difficult to

do without a large number of sampling points. Investigating new sampling points would, in fact,

take quite a bit of time since it is required that the workload configuration corresponding to each

sampled point be executed in the actual processing environment to acquire the latency observation.

Secondly, the shape of the curve is not actually static and as the “shape” can change due to any of

the following events: 1) modifications to scheduling policies; 2) changes to host processing potentials

due to external workloads; and 3) changes in the skew/volume of any of the stream partitions. Such

a strategy is simply not tractable and not suitable for a dynamic stream processing environment.

The simulation-based approach obviously requires a bit of computational effort to perform dis-

crete event simulation for a fully filled pipeline of streaming data through potentially large workflows

of operators. In fact, a discrete event simulator incurs all of the busy-work and bookkeeping work

that the real-time system incurs (including punctuation replication and collection). Further, the sim-

ulation would only be executed once all workload allocation strategies have been assigned through

the load balancer. Therefore, the simulator would not provide end-to-end latency insight regarding

the distribution of individual workload partitions (without resulting in the performance penalty of

a simulation invocation for each individual transfer). Instead, the simulator is only intended only

for evaluating workload partitioning candidates.

The queueing-time estimation strategy, on the other hand, can provide insight regarding the re-

distribution of even a single partition. This strategy creates a model of the average latency associated

with each host for each operator and can easily reflect changes as a host’s workload increases or

decreases. The model is not expensive to maintain – only requiring simple extrapolation of queueing

times given workload re-allocations. As the computational complexity of this model is the lesser of

the available options and the required statistical information to drive the model is easily produced

by the hosts, we decided to use the strategy as we moved forward in creating latency predictions.
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4.7.4 Building a wait-queue model

In this section we further expand on the implementation of the queue-length estimation model. To

do so, we must first discuss what components contribute the latency of a data item through an

operator as is facilitated by a host. The following steps occur:

1. A data item is transmitted to a host

2. The data item waits to be processed

3. The data is processed by a computing node at the host

The transmission time of data to a host can involve the transfer of data over the network or

simply the re-insertion of data into a host’s own workflow buffer. In either case the latency penalty

for each type of transmission is easily determined and rather constant. Likewise, the processing

time for data is also rather constant. Hosts can report variations in processing times (if hosts have

background processes stealing CPU cycles or if there is skew in data complexity) but there result of

workload balancing will not specifically impact the time it takes to process a data.

What is impacted by workload balancing and the redistribution of partitions is the wait time

perceived by the data waiting to be processed. Also, these wait times can be changed instantaneously

through the sudden switch of scheduling policies or they can be changed gradually through the use

of a progressive scheduling policies. In the long run, the expectation of host transmission times and

host processing times are relatively fixed whereas there can be great variability in the amount of

time data wait to be processed.

Factors behind wait-time variability

Due to the use of the generic-node processing model, enabling computing resources on a host to be

used to process data from any workflow operator which has data available to be processed, a data

item may perceive wait times from data of any other type as they are processed before it. More

generally, as a data item waits to be processed, a number of other data items corresponding to

different (or even the same) operators may be processed first. In the case where a host has a single

processor or core, the summation of these times will correspond to the time that a data item waited

before being processed. This is the notion that we use to build our model.

We capture the average amount of time that a data item of each operator type will spend waiting

on data from other operators before being processed. For example, we might observe that, given

operators of type A, B, and C, that data from operator A would, on average, wait for 3 data items

of type A, 1 data item of type B, and 0.5 items of type C before having its turn to be processed.
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Since the processing times of each type of data is being observed at each host, it is straightforward

to multiple the processing time of each operator type by the corresponding number of data waited

on by for each type to achieve the average time spent waiting.

In C-MR we implement an internal counter system to detect the average number of data types

that each data item wait on before being processed. Keeping these wait-time averages, for each

operator type, allows us to maintain a model the predicts the latency of data item of any operator

type through a host.

Let’s consider how this model represents variability in the processing environment. If a host’s

workload for operator B increased, then we would see no change in the communication or processing

times corresponding to operators A or C on that host. However, we would see the potential for

increases in the amount of time data for operators A and C waited to be processed. Lets drill down

on data for operator A. Let the total wait time perceived by operator A be expressed as WA. That

wait time is composed from waits perceived by data being processed that belongs to various other

operators. Therefore, we can express WA as:

WA = WA,A +WA,B +WA,C

such that WA,i represents the average amount of time that a data item destined for operator A will

wait on the processing of data destined for operator i. So, if this particular host’s workload for

operator B increased, then we would only see a potential increase in the wait time data of type A

perceive from data of type B: (WA,B). This is because WA,B is specifically related to the processing

effort required of the host for operator B. Therefore, as the workload of B increases, so does the

potential for Wi,B to increase for any operator i. We can be sure, however, that no other wait times

of the type (Wi,j |j 6= B) will increase as their waits are derived specifically from the processing

of workload types not affiliated with operator B and are therefore not subject to change given the

increase to only the workload of operator B.

Likewise, we can similarly expect the decrease of a workload of operatorB to have a corresponding

impact such that only wait times of type Wi,B are affected. Given a change to the workload of an

operator at a specific host, we perform a linear extrapolation of the wait times of type Wi,B such

that the wait time is scaled proportionally to the change in workload. Thus, as the workload of

operator i changes for a given host, we perform a scaling of the wait times of types (∀j,Wj,i) relative

to the change in the workload allocation. So, if the workload of operator B decreased by 20%, then

we would modify the model in the following way:

∀i,W ′

i,B = Wi,B · 1.0−0.2
1.0
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The linear extrapolation we apply to wait times, given changing workloads, is used with the

assumption that the arrival distribution of the newly allocated/de-allocated workload follows an

arrival distribution identical to that of the prior workload. In reality, it is possible that a large

amount of newly allocated data for operator B could possibly arrive specifically during a time when

there is no other data to be processed (some regular period of down-time). In such a scenario,

there would be no increase to the wait times of data from other operators as there would be no

additional contention. Likewise, it is possible to see the removal of a workload that never contended

with any other and therefore never contributed to wait times of other operators. In both of these

cases, a linear extrapolation of wait times which is proportional to the change in workload would not

be appropriate. However, predicting the arrival distribution of workload partitions and, likewise,

detecting the arrival skew of certain types of data within the stream is a challenging task which

is not addressed in this thesis. Our assumption, that arrival distributions are similar prior to and

after a change in workload is based on the following notion. At any time a data item of interest X

may be processed, and before it is processed other data of various types will be processed. In other

words, in hindsight (after a data is processed), we can assume the average data item X to initially

be situated at the end of a queue of other data that were processed first:

X A B B C A C C A A B B A A B A C

That is to say, the average data item X from operator i might be proceeded by 7 data of type A, 5

data of type B, and 4 data of type C. Here, we hold the assumption that if the workload of operator

j ∈ A,B,C changes, then the proportion of data of type j proceeding X in the queue will increase

or decrease proportionally. To make any other type of consideration would assume a knowledge of

the data arrival distribution of all intermediate streams and the skew of arrivals between partitions

of (like-key) data within the stream. Without this information, we can make no other assumption

than to assume consistency with recent observations.

Our observations do capture some of this data distribution and skew in arrival patterns, but

we do not use this information to predict future variations. Our assumption simply expects arrival

distributions to be similar to previous observations.

4.7.5 Statistics collection

For the master host to predict the average latency of data through operators for each host and to

predict the average end-to-end latency of data through the workflow, it is necessary to maintain

information about the performance of the hosts, the distribution of data in the workload partitions,

and the scheduling habits of the hosts. This information must be observed at each host, reported
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to the master, and then collected and maintained by the master for use during load balancing.

Statistics observed

We now further discuss the types of statistics that each host observes and reports for each operator

in the workflow.

1. Average processing times: The time it takes a host to process a data item of a specific

workflow operator is a vital component to estimating the latency of data through that operator.

Likewise, processing time is a vital in calculating latency. Therefore, each host observes and

reports this statistic for each workflow operator so that the master can build and maintain a

model to determine a host’s processing performance for each of the workflow operators. This

information will further help the master when determining how to move workload partitions

between hosts.

To calculate this statistic, a host simply observes the time it takes to process data and computes

a moving average of these times to report. A moving average is used so that the average can

reflect changes in the processing environment. If a host becomes burdened with an external

workload then the observed processing times will increase. Likewise, if an external process

stops stealing CPU cycles then the processing time may decrease. Observing and reporting a

moving average allows the master to be aware of the real-time performance changes of each of

the hosts to better distribute workloads across those hosts.

2. Partition size: As the fundamental unit of workload transfered between hosts is a partition,

the load balancing process must be aware of the processing requirements of each of those

partitions. When balancing Map workloads, the sum of all data observed in all partitions

gives us a notion of total workload size for the operator. From this the load balancer can

determine what portion of the total workload should be consumed by each host. However,

for Reduce workloads, hosts must aggregate data belonging to the partitions they have been

assigned. As hashing schemes are used to map such data to partitions, it will be the case

that partitions will have differing numbers of data in them. Likewise, the nature of dynamic

streams will also result in data skew over time such that each partitions size may change with

the subsequent windows that will be processed.

Hosts, therefore, report the number of data belonging to each partition they receive (or, in the

case of Map operations, report the total amount of data received) so that the load balancing

process will be aware of the data complexity contained within each partition as it balances

load.
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3. Average wait time per operator: For the purpose of allowing the master to produce a wait-

queue model for each of the hosts, all hosts will report the average amount of time that data

from the identified operator will wait on data from all operator types before being processed.

The wait times for each individual data are collected and summed over the period of statistics

collection. This results in the total amount of time that each data, for a particular operator,

waits due to processing from data of all other types (include its own type) and for each of

the local processors. Once the statistics collection time period ends, we divide this sum by

the number of data observed for the relevant operator and by the number of local processors.

Then, we use the sum of the wait times perceived from each of the operators to represent the

average amount of time a data spends in the queue waiting to be processed.

We modify this running sum which represents wait time when the following events occur:

• When a processor finishes processing a data. We then take the time it took for

the local processor to process the data, multiply it by the volume of the items waiting in

the queue, and add it to the wait-time for that queue. The intuition here is that each

of those data were required to wait while the local processor was doing this processing.

There are, however, two edge cases which we address in the subsequent bulleted items.

• When a data is removed from the queue to be executed. The above case doesn’t

consider data that wait while one processor processes but are then selected to be processed

by another processor. This prevents the first, running, processor from applying its wait

time for the newly scheduled data. To correct this, when a data is removed from the

queue, we take the current timer values from each of the currently processing processors

and add those values to the wait-times corresponding to each queue holding data. Thus,

we add partial processing times to include as the wait time for a data.

• When a data is added to the queue. The first bulled point notes that processing times

are multiplied by the number of data in a queue to add to the wait time. This doesn’t

correctly reflect the wait time for data that were added to the queue after those processors

began processing. To remedy this, when a data is added to a queue we subtract the timer

values from each of the running processors from the appropriate wait sums. Thus, if a

processor is 3
4 finished processing its data, we subtract that amount of the processing time

from the queue. Once that processor finishes, it will add a full portion of the processing

time for the given data. Therefore, there will be a 1
4 net addition of processing time to the

wait-sum for the newly added data. If the recently added data is scheduled by another

processor in the meantime, then we will add to the wait times as indicated in the second
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bullet point and the resulting net addition will still equate to the amount of time the data

spent waiting in the queue.

Instead of using timers, one can simply calculate the number of data processed while another

data waits and multiply those times by the respective processing times to estimate wait time.

Likewise, sampling can be used to detect these processing times. However, this strategy does

not account for partial wait times (as outlined in the bullet points above) and is therefore less

accurate.

Reporting statistics

Currently, the distributed implementation of C-MR employs punctuation-driven statistics reporting

to communicate the previously mentioned statistics to the master host for load balancing.

Reduce operations are very much punctuation-oriented. Punctuations define when the data they

are batching may be materialized into windows and processed, and they also denote delineations

within the stream that offer opportunities to modify routing tables. That is, punctuations provide a

synchronization mechanism that allows hosts to alter reduce-key routing tables for windows bounded

by future punctuations. Likewise, they offer an opportunity to synchronize the reporting of statistics

to the master host.

At present, the interval denoting the period between the start of statistics collection and the time

of statistics reporting is defined as a common multiple of all workflow window sizes. During this

interval operators will collect statistics. Once the interval has elapsed (as confirmed by a punctuation

which is a multiple of the interval being received at a host) then the host will report the statistics

of its operators to the master.

Upon the master’s receipt of all operator statistics, from each host, load balancing can begin.

4.7.6 Workload re-distribution

To do load balancing on a set of hosts, the master first needs updated statistics reported from all

operating hosts; these hosts must report information relating to each of the workflow operators.

This information provides the master host with knowledge of the performance each host is currently

able to deliver with respect to each workflow operator.

The inputs to this load balancing process are: 1) the reported statistics; 2) the working set of

hosts that will facilitate workflow processing; and 3) the previously used routing tables which define

the current workload allocations. With this information, the master host then begins balancing load

on each operator in the workflow individually.
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Balancing operator load

The first step in balancing the load of an operator is taking account of the working set of hosts to be

used. As mentioned previously, the set of hosts to be used is passed to the load balancer as input.

It is possible for that set of hosts to be different than the set of hosts used previously. The new

working set may include the addition of a new host or might not include a host that was previously

present.

For those hosts that are new to the working set of hosts, we will not have up-to-date statistics

as they have not been processing data. When faced with the addition of a host, we take the average

of statistics from other hosts that did report statistics. This allows the estimation of processing

abilities of the new host to be similar to those hosts that are already active; for a homogeneous set

of hosts, this is to be expected. Given a set of heterogeneous hosts of specific types (such as those

types that can be utilized on Amazon EC2[7]) we instead take the averages of statistics reported by

hosts of the same type which are active in the system. For hosts of an unknown or never-before-seen

type, we can simply assume the average of all host types for an initial estimation before statistics

are later reported which will more accurately describe that new host type.

It is also possible that a host will be removed from the working set of hosts. In such a case,

we would find that a host is defined in the previously used routing table and is no longer found in

the set of hosts to be used. Upon identifying such hosts and their orphaned workloads, we mark

those workload partitions as unallocated. Before the load balancing process officially begins, for

each operator, we quickly and simply distribute those unallocated partitions to the available set of

hosts in a round-robin manner.

With statistics in place for the active set of hosts and no unallocated workload partitions left

to distribute, we then determine the average latency of data through each host with regard to the

operator at hand. First, for each host, we iterate through each of the partitions it is currently

allocated and take the sum of the counts of data within those partitions. The result is a total

number of data processed by each contributing host for each workflow operator. We then compute

the expected average latency of data through the operation, using operator workload quantities as

well as wait time and processing time statistics, as depicted in equation 4.1.

averageLatency(h, i) = Ph,i +
∑

j

(Wh,i,j ·Dh,j) (4.1)

This function takes arguments h and i which describe the host ID and the operator ID, respec-

tively. The master host uses this information in combination with gathered statistics (processing



78

time P and wait time W ) and routing table information (data quantity allocated Dh,i to host h for

operator i) to produce latency estimations to compare host workload allocations. The value Ph,i

denotes the observed amount of time that host h spends, on average, processing a single data item

for operator i. The value Wh,i,j denotes the expected amount of wait time that data from operator

i will perceive per data of operator j on host h. Thus, once data from operator i are eligible to be

processed, their average latency through host h, given workloads specified by D, will include the

processing time of that data as well as the time spent waiting to be processed. The first term in the

equation is straightforward and represents the processing time. The second term in the equation

represents the summation of the wait times perceived at the hands of all other operator data.

Having applied this function for all hosts for a particular operator, the result is an average

latency for each participating host. This is used as the basis of determining which hosts are better

performing and which hosts are poorer performing with regard to the current workloads. Hosts are

sorted with regard to this latency metric. The intuition we use for load balancing is that if there

is a single data to be allocated onto the set of hosts, then it would most likely be processed the

quickest by issuing it to the host with the lowest average data latency for that operator. Likewise, we

assume that if we were to free up a data item to be allocated to the fastest host, it is intuitive that

it would be most beneficial to remove that data item from the host reporting the highest latency.

Therefore, it follows that we can create donor-receiver pairs of hosts (pairing high-performing hosts

with low-performing hosts) to transfer and balance workload processing responsibilities.

We follow a strategy used in [14, 37] which pairs the best performing host with the worst per-

forming host, the second best performing host with the second worst performing host, and so on.

We then iterate through these pairs and consider transferring workload partition ownership from

the donors (poorer performers) to the receivers (higher performers). Given the available partitions

the donor has ownership over, we first consider sending the larger partitions – those the reported

statistics have shown to include the largest amount of data. Given a candidate partition to transfer

from the donor and receiver, we estimate the average latencies of the hosts that would result from the

transfer using a modified form of equation 4.1. The modified form scales the value Dh,j where j = i

to reflect an increased (in the case of the receiver) or decreased (in the case of the donor) workload

on operator i. The modified equation is expressed in equation 4.2 in which Iverson Notation[23] is

used to represent the conditional summation.

expectedLatency(h, i, f) = Ph,i +
∑

j

(Wh,i,j ·Dh,j)[j 6= i] + (Wh,i,i ·Dh,i · f) (4.2)

The expected latency function is similar to the previous function but allows for a third parameter
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f to represent the degree by which the original workload in scaled. Thus, if the original workload

for host h given operator i was a volume of Dh,i = 90 data items over the observed statistic period

but the proposed increase of d = 20 would result in 110 data items, then the scaling factor would

be the following:

f =
Dh,i + d

Dh,i

=
110

90
= 1.22 (4.3)

Likewise, if the host’s operator workload decreased by d = 20 then the scale factor value would

be:

f =
Dh,i − d

Dh,i

=
70

90
= 0.77 (4.4)

After determining the expected changes in the average latencies of the donor/receiver pair, we

only allow the partition to change hands if the average data latency between the two hosts has

decreased. That is, given a data volume, d, to transfer between a donor host and a receiving host,

we check to see if the following statement is true:

Let donorL =averageLatency(donor, i)

Let recvrL =averageLatency(recvr, i)

Let donorL′ =expectedLatency(donor, i,
Ddonor,i−d

Ddonor,i
)

Let recvrL′ =expectedLatency(recvr, i,
Drecvr,i−d

Drecvr,i
)

donorL ·Ddonor,i + recvrL ·Drecvr,i > donorL′ · (Ddonor,i − d) + recvrL′ · (Drecvr,i + d) (4.5)

If the resulting expected latency is lower, then we commence a transfer in ownership of the

partition. After transferring ownership, it is necessary to reflect the changes in the routing table

which will also update D to modify the data counts of the hosts in preparation for future data

migrations and latency estimations. The process can then be repeated for subsequent pairings of

hosts.

Once all pairs of hosts finish swapping data, as they are able, we repeat the process for the

remaining operators in the workflow. It is important to note that changes made by balancing one

operator will be propagated through the statistics for the balancing of subsequent operators. That is

to say, as workloads are reallocated for operators, the wait-queue model will be updated accordingly.

Therefore, if a host h receives an additional volume of data to process for operator i, then the wait-

queue model will be updated to reflect an increase in latency at operator j due to the increased wait

time perceived via Wh,i,j .
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4.7.7 Enacting new routing policies

Once the workloads of all operators have been balanced, the master can report the new set of routing

tables back to the hosts.

Routing tables for Map operators can be implemented immediately once received by a host. In

contrast to Reduce operations, the partitions identified in the routing table for a Map operator do

no correspond to a specific set of data. Instead, we use them to represent a portion of the whole

operator workload. Therefore, when a new routing table is received, a host will aim to consume a

portion of the entire operator workload that corresponds to the portion of partitions it has been

allocated. This change in workload can be implemented immediately, upon arrival of a new routing

table, as Map data are processed independently of each other and therefore there is no need to

synchronize routing policy changes.

Routing tables for Reduce operators, on the other hand, must have their changes imposed syn-

chronously across all participating hosts. For each window of data in the stream, it must be the case

that all data with a similar key must arrive at the same host. Therefore, when a change in the rout-

ing table occurs, it must happen between windows. In this way, the transition from one window to

the next may also include a transition between routing policies. As transitions between windows are

already synchronized by control punctuations, we use this same mechanism to implement a change

to the routing table. Therefore, the master host will identify a window-boundary timestamp (being

a multiple of all reduce window slide values) in which the changes should be implemented.

When a host receives a new routing table, it stores that routing table (and the timestamp at

which it will become activated) alongside of the routing table that is currently in use. As data

are produced for downstream Reduce operations, the timestamp on the data will be checked to see

which routing policy will be used. The appropriate routing table will be identified and the data will

be forwarded on appropriately.

4.7.8 Balancing operator load

The distributed implementation of C-MR uses an observation-oriented method of characterizing the

potential of hosts because we consider them, and the operators they execute, to be black boxes.

Hosts with a similar number of cores and clock speeds may process similar data items in different

times due to the underlying differences in their micro-architectures (e.g., cache sizes). Our goal is

to identify these differences at runtime and to balance workloads in a way that reduces latency.

As an example of this, we present the results of an experiment in which we use C-MR to execute

a streaming image processing application. The application receives a stream of images of size
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1920x1080, performs a grayscale conversion of the pixels within the image, computes the average

pixel value, and performs a transformation on pixels beneath a threshold which was derived from

the average pixel value.

We deployed this stream application onto four quad-core hosts. Each host had a different un-

derlying architecture and processor speed. These processors included a 3.6 GHz AMD Phenom II

X4 975, a 3.4 GHz AMD Phenom II X4 965, a 2.6 GHz AMD Phenom 9950, and a 2.4 GHz Intel

Core2 Quad CPU. Upon starting the application, the load balancer uniformly distributed the load

between the hosts. Only after observing reported statistics did the load balancer step in to take

corrective measures.

Figure 4.7 shows the results of load balancing iterations over time. As each set of snapshots were

sent back from the hosts to the master regarding average processing times and average wait times,

the master used this information and predicted whether latency will be decreased through workload

migrations. The figure shows not only the actual performance observed due to the actions of the

load balancer but also the load balancer’s prediction of its performance.
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Initial reports showed that the time data spent on the hosts waiting to be processed was small

– no host was overloaded by consuming 25% of the total workload. However, some hosts reported

significantly lower processing times than the other hosts. This observation enabled the master to

estimate that the average latency of processing data could be reduced by migrating workload parti-

tions to the hosts with the lower processing times. As seen in the figure, this pattern of decreasing

latency converges somewhat quickly after the fourth round of load balancing and ultimately finds

an equilibrium at around about 40.25 milliseconds. At this point, moving additional partitions to

the host with the lower processing time resulted in a slight overload which was observed as a sud-

den increase in the wait time of data on that host Wh,i,i. After observing this overload, workload

partitions were migrated back before additional load balancing took place.

In contrast to other frameworks which literally try to balance load, C-MR attempts to reduce

the average latency of results. In the previous experiment, the application started with a perfectly

divided workload with each host doing the same amount of work. However, the load balancing

algorithm was able to improve latency performance by skewing the distribution of the workload

across the hosts such that the faster hosts would receive the larger portions of the workload. In this

experiment, we found that skewing the workload distribution towards the faster hosts resulted in a

15% decrease in the average latency of results.



Chapter 5

Related Work

As mentioned in the introduction, a large body of work exists with regard to workflow processing

for both stream and batch applications.

Fault-tolerant and partitioned parallel processing for stream processing engines was presented

in Flux[37, 38]. Flux operators provided the encapsulation of content-sensitive partitioned paral-

lelism with fine-grained load balancing for an individual parallel operator in a workflow. If multiple

parallel operators existed, then a different Flux operator would be invoked for each of them. Flux

therefore provided only localized load-balancing which resulted in an inability to perform inter-

operator optimizations such as migrating computing potential from one operator to another. Our

worked stemmed from the desire to provide a similar form of fine-grained load balancing but across

all operators in a workflow in a way that would allow the computing resources to collectively be

instrumented by a centralized scheduler.

The Hadoop Online Prototype (HOP)[18] (later MapReduce Online[19]) was developed concur-

rently to our own work and addressed online aggregation for Hadoop’s MapReduce framework[2].

HOP enables pipeline parallelism between Map and Reduce tasks and supports incremental process-

ing of Reduce tasks through periodic snapshot evaluation of partial intermediate results produced by

Map tasks. By supporting pipelined parallelism to attach continuously running mappers and contin-

uously running reducers, HOP was able to provide elementary stream processing support. However,

it’s reliance on Hadoop’s MapReduce implementation as well as disk buffers and HDFS[1], to provide

fault tolerance, resulted in a significantly constrained and inflexible infrastructure to support general

stream processing. HOP suffers from pinned allocations of computing nodes to operators (via the

Hadoop job and task trackers) which requires that an invocation of a continuous task corresponds to

a task thread and occupied task slot on a computing node. This prevents elasticity and the ability to
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do any form of dynamic load balancing between the nodes producing output from one MapReduce

job to the nodes consuming the input for another MapReduce job. Our solution provides not only

fine-grained intra-job load balancing but also inter-job balancing while supporting workflow-wide

operator scheduling to coordinate the impact of computing resources across a stream application.

In-situ MapReduce (iMR) [31, 42] uses the MapReduce programming interface to deploy a single

MapReduce job onto an existing DSMS where the inputs are read only from disk. The DSMS allows

for count- or time-based sliding windows, pipelining between Map and Reduce operations, and in-

network, multi-level aggregation trees for Reduce operations. iMR computing nodes are fixed to

specific Map or Reduce jobs and are therefore unable to benefit from any form of load balancing

and cannot adapt to workload or resource volatility.

IBM’s DEDUCE[28] modularizes the functionality of MapReduce into an operator within a

DSMS. This operator consumes a delimited list of files/directories (each tuple likened to a window

definition) to invoke MapReduce on. Therefore, The stream is a layer of indirection to execute

MapReduce jobs where the scheduling of resources for the batch and stream processing workloads

are separate. Also, the burden of window management is placed on the application developer to

insert window definitions into the stream and removes the possibility for well known stream pro-

cessing optimizations such as incremental processing and the reduction of redundant computations

in overlapping windows.



Chapter 6

Conclusions

6.1 Generic node processing model

The processing model used by C-MR presents a number of measurable benefits as shown in this

dissertation. While previous stream processing engines have traditionally pinned the contributions

of a computing node to a specific subset of an application workflow, we have shown that a pro-

cessing model which allows for computing nodes to contribute to multiple data-parallel operations

simultaneously allows for: 1) finer-grained application load balancing; 2) diversification of processing

responsibilities to withstand stream and resource volatility; and 3) and novel scheduling opportuni-

ties.

Our processing model orchestrates the forms of parallelism enacted by participating computing

nodes on-the-fly relative to the performance objectives of the stream application. Static allocations

of computing nodes to operators result in the rigid application of data and task parallelism. Our

dynamic workload-wide scheduling strategy supports the real-time application of parallelism strate-

gies, employing those that are found to be beneficial for the current processing environment relative

to application objectives.

6.2 Single-host C-MR implementation

We presented the C-MR framework which supports the continuous execution of complex workflows of

MapReduce jobs on unbounded data streams. By modifying the underlying MapReduce processing

model, we were able to preserve stream order and execution semantics while providing a hybrid and

probabilistic, latency-oriented scheduling framework.
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Unlike batch-processing applications, the unbounded nature of data-streams and end-to-end la-

tency objectives of stream applications prevent the possibility of simple bottom-up workflow pro-

cessing that is used to execute batch workloads on MapReduce workflows. To support stream

applications, it is necessary to schedule an entire workflow of stream operators simultaneously and

facilitate the interactions between them. Doing so opens up the possibility for us to employ end-

to-end latency-oriented scheduling policies and many of the workflow optimization techniques that

the stream processing community has exploited in the past such as sub-query sharing, incremental

sub-window processing, and adaptive query processing.

6.3 Distributed C-MR implementation

We presented a distributed implementation of C-MR which supports execution on multiple hosts.

We identify and address the major challenges in distributing the C-MR processing model, namely:

1) employing the hierarchical application of C-MR and its punctuation management scheme; 2)

achieving latency-oriented load-balancing given black-box computing hosts and black-box workflow

operators; and 3) synchronizing routing table changes that occur due to load balancing across

participating hosts for window-based aggregation operators.

We also present preliminary results from the distributed implementation using multiple hosts to

show the benefit the C-MR processing model brings to distributed workflow processing architectures.

6.4 Open Challenges

The C-MR processing model deviates significantly from prior stream processing models. Therefore,

a large part of this thesis involved defining how to perform stream processing management tasks in

this processing model (such as load balancing and operator scheduling). There are additional areas

we have not explored such as a fault tolerance model for the use with the generic-node processing

model. Additionally, we predict that there would be benefits from the application of the processing

model to executing batch workflows.

6.4.1 A generic node fault tolerance model

MapReduce implementations, and frameworks which provide support for the continuous execution

of MapReduce jobs, leverage distributed file systems to replicate and replay data in the occurrence

of faults.

In a streaming context, however, regularly buffering data to disk is generally unacceptable due
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to the high overhead and incurred latencies. Therefore to protect from data loss in the case of

faults, it is necessary to replicate and replay data from someplace faster than disks. That is, the

data must be replicated and replayed from the main memory of other hosts in the set of distributed

computers. One strategy is to simply clone the full set of distributed computers and processing

workflow so that if one host goes off-line, one from the other set can pick up immediately where

the failed host left off. However, this doubles processing and infrastructures costs while wasting

computing resources that could otherwise be improving application performance. The generic node

processing model allows for a novel extension to upstream backup [25] while providing true K-safety

such that upstream data is preserved at k different locations. This differs from the standard K-

safety approach to upstream backup which requires replaying data through the previous k upstream

operators. Instead, it is possible to use the characteristics of the distributed workflow buffers and

routing tables to replicate data across multiple hosts in a manner that does not require playback

through k upstream operators..

Generally, when a host produces data for a downstream operator it may have to send portions of

that data to many (potentially all) other hosts. This is plain to see with data destined for Reduce

operations. Those data have their descriptors hashed into the partitioned space and will be shipped

to the appropriate host while a portion of the data remains at the local host to be processed since

the local host will also be the destination for a fraction of the data. If a fault occurs, and local

copies of the data are not retained at the sending hosts, then we would suffer permanent data loss.

To remedy this problem we can to do two things:

Figure 6.1: Backup data aggregation sites

1. Retain a copy of the data at the sending host until the receiving host has finished
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processing the data and has transmitted the results of the work. If a host fails, all other hosts

can resend replicas of the data lost on the failed host to the host with the next higher host ID

number (or the lowest ID if the host with the highest ID failed).

2. Send a copy of the data that isn’t required to change hands to another host for

replication. If a host fails, then the upstream data it received from itself will be lost unless

we can replicate it elsewhere. This data can be replicated to the host with the next highest

ID. If a failure occurs, all other hosts will have also send their replicas to this host which will

temporarily take over the responsibilities of the failed host.

Both of these steps ensure that another available host will be the recipient of backup data in

the case of a fault, as can be seen in Figure6.1 which shows the ordering of hosts relative to ID

in a ring structure. In order for this arrangement to support additional replication for K-safety, it

will be necessary to ship replicated data to even more hosts. This would require individual hosts to

not only retain their copy of data destined for another host but to also ship copies to the k hosts

immediately following the target host. Likewise, the local data that a host will expect to process

itself must also be sent to the next k hosts.

The hosts can release their replicated data once they all receive a punctuation downstream in the

logical workflow that denotes that the relevant data has been successfully processed and transmitted.

This removes the traditional requirements of having an additional form of control messages to manage

the garbage collection of replications beyond the punctuations that are already in place using the

generic node processing model.

6.4.2 Generic node processing for batch workflows

Additionally, we believe that the application of our model to batch processing frameworks will enable

cross-job scheduling opportunities within a workflow. Batch processing frameworks have the general

goal of trying to process as much as data as possible as quickly as possible thereby aiming for high

throughputs.

Given large datasets that must be buffered to disk and a goal of optimizing for throughput, it

is disk reads and writes that dominate per-tuple latency costs causing low throughputs. By apply-

ing our processing model to batch processing frameworks, it will be possible to utilize progressive

scheduling techniques to decrease these costs.

While the goal of throughput-oriented scheduling policies has generally been to decrease context

switches and increase cache coherency by minimizing pipelined and task parallelism in favor of data

parallelism, it may instead be beneficial to maximize the amount of processing that can be done
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before writing to disk. This can be in the form of occasionally scheduling highly selective operators to

free up shared-memory buffers or even by transferring data to computing nodes that have substantial

availability in their shared memory buffers. Exploiting shared memory buffers before disk buffers

will allow us to resort to disk access only when absolutely necessary and only when the cost does

not outweigh that of potential data transfers to other computing nodes with available RAM.

The order of executing operators across a workflow also results in interesting opportunities for

scheduling strategies in order to minimize the amount of data that is spilled to disk. For instance,

if a substantial portion (or all) of the intermediate data produced by an operation is able to fit

into shared memory without spilling to disk, then it can be advantageous to execute the immediate

downstream operation next. This pattern can be continued down the workflow (with intermediate

data being maintained in shared memory and without reading from disk) until some type of blocking

operation is met. While following that path, and as the size of the resident working set potentially

decreases, we can also begin to pre-fetch blocks from disk for other operations that we will later

begin to execute.



Appendix A

Sample C-MR application

The following code defines Map and Reduce operations to parse an input stream of stock trades

to evaluates a 60-second moving average for each symbol at 15-second intervals. ParseStock and

StockAverage were written such that StockAverage can be re-used as a Combine step.

// Intermediate data format

struct IData {

float value;

int count;

};

// Mapper operator class that parses stock

// symbols and values from raw input strings

class ParseStock : public Map {

void map(void* key, uint32_t keySize,

void* val, uint32_t valSize,

DataIterator* di)

{

string emitKey; IData emitVal;

// Parse "STOCK_SYMBOL STOCK_PRICE" string

istringstream iss((char*)val);

iss >> emitKey >> emitVal.value;

emitVal.count = 1;

emit((void*)emitKey.c_str(), emitKey.length()+1,
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(void*)&emitVal, sizeof(emitVal),

di);

}

};

// Reduce operator class that computes the

// average stock price of a list of values

class StockAvg : public Reduce {

void reduce(void* key, uint32_t keySize,

DataIterator* di)

{

float sum = 0; int count = 0;

void* val;

while ((val = di->getNextValue()) != NULL) {

IData *data = (IData*)val;

sum += data->value * data->count;

count += data->count;

}

float avg = sum / (float)count;

emit(key, keySize,

(void*)&avg, sizeof(avg), di);

}

};

// Extracts data from a specified input stream

Data* readStream(FILE* inputStream) {

Data* data = NULL;

char key[] = "stock_average";

char* val = NULL;

size_t bufSize = 0;

if (getline(&val, &bufSize, inputStream) > 0) {
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data = new Data;

data->setData( (void*)key, strlen(key)+1,

(void*)val, strlen(val)+1);

}

return data;

};

// Handles data received at the output

void outFunc(Data* data) {

cout << data->timestamp.tv_sec << " "

<< (char*)data->key << " "

<< *(float*)data->value << endl;

}

int main(int argc, char** argv) {

int winSize = 60; // 60 second window

int winSlide= 15; // 15 second slide

Query q;

// Attach the input stream and stream

// reading function to the workflow

q.addInput(

stdin, // input stream

readStream, // stream reading function

1, // # ops attached downstream

1); // downstream operator ID(s)

// Insert a MapReduce job into the

// workflow with a window specified

q.addMapReduce(

1, // ID in workflow

MapReduce(new ParseStock, new StockAvg),

Window(winSize,winSlide),

1, // # ops attached downstream

2); // downstream operator ID(s)
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// Attach an output function to the workflow

q.addOutput(

2, // ID in workflow

outFunc); // output handler function

// Instantiate cmrHost, load query, and run

Host cmrHost;

cmrHost.addQuery(q);

cmrHost.run();

return 0;

}
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