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Visual sensor networks (VSN) are networks of smart cameras capable of local image

processing and data communication. Unlike traditional camera-based surveillance network

in which cameras stream all image data to a centralized server for processing, cameras in

VSNs form a distributed system, performing information extraction and collaborating on

application-specific tasks. This thesis studies how complex vision tasks can be integrated

with system resource constraints such as computation capacity, battery power and band-

width, in two different VSN contexts.

The first context is large-scale ad-hoc wireless smart cameras working on battery power

which resembles the architecture of general wireless sensor networks. In this context we

build geographic hash table based network protocols that are adapted to the nature of image

sensors. These protocols decouple the event sensing from the camera location. Simulation

results show that these protocols allow efficient distributed camera calibration and event-

based constraint processing.

The second context is smaller-scale static wired smart cameras with constant power

supplies which can be found in public spaces that need surveillance such as airports and

casinos. We study the performance advantages of applying probabilistic fusion methods in

cross-camera object tracking. Object tracking based on a single feature type can produce

high error rates due to environmental and view changes. We present a probabilistic object

matching framework which employs multiple object features and a decision mechanism to

combine results from multiple features. The framework builds matching probability distri-

butions for each feature algorithm based on empirical data and combines these historical

results into an aggregated result. Our experimental studies on realistic data show that while

there is no single feature algorithm works best all the time, our probabilistic integration

method on multiple features can almost always achieve better object matching accuracy

than the best individual feature algorithm.
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Chapter 1

Introduction

In the past decade, Visual Sensor Network has emerged as an important class of sensor

network which uses cameras to acquire image data in a distributed system. Example ap-

plications include surveillance [4], environmental monitoring, and smart homes [22]. These

systems share the goal of extracting information from acquired image data to fulfill appli-

cation specific vision tasks, such as object detection, object tracking, and other advanced

signal processing algorithms.

The topic of visual sensor networks is an interdisciplinary research area. It incorpo-

rates techniques from embedded system, image processing, network communication and

distributed systems. Recent research has been conducted largely in two directions. The first

tries to put visual sensors onto existing wireless sensor networks in which sensor nodes have

limited computation power, work on batteries, and communicate through low-bandwidth

wireless channels. Due to the severe resource limitation, visual sensors used in this context

are usually low in image resolution, image quality and frame rate [38, 41]. Researches in

this context try to prolong the system lifetime while performing vision tasks. The lifespan

of the sensor nodes are limited by their on-board battery power. When sensor nodes deplete

their battery, they are unable to exchange information with the other nodes so the entire

network may become unavailable. In wireless sensor networks, the dominant power usage

are usually spent in radio transmissions. Limiting the bandwidth usage of the sensor nodes

1
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is the main consideration for successful VSN applications in this arena.

The second research direction comes from the traditional camera-based surveillance net-

work systems [48]. These systems are equipped with wired, high resolution, and high frame

rate cameras, attaching to constant power supplies. Traditional camera-based surveillance

networks gather image data into centralized servers where high-level vision tasks can be

performed and usually supervised by human operators. Researches in this context attempt

to reduce the network bandwidth usage and computation overhead in the centralized server

by equipping cameras nodes with certain processing capabilities to allow in-network infor-

mation processing. Computer vision technologies are used to automate the surveillance

process and increase the surveillance efficiency. However, just as human operators can

make mistakes, automated computer vision techniques often makes incorrect predictions

on surveillance events. The limited processing capability on the camera nodes prevents

the usage of complex vision techniques that may yield high prediction accuracy but at the

expense of daunting processing power. This limits the VSNs to adopt generic simple vision

techniques which often show high error rates.

In this thesis, we describe novel techniques to support three complex visual tasks in

common VSN applications, namely, camera calibration, event detection and object tracking.

First, many sensor network applications need a localization service which determines the

location of sensor nodes, and allows applications to make geographically sensitive queries.

VSNs must not only be localized, but also calibrated. Calibration goes beyond localization to

include orientation and position information that is sufficiently fine-grained to allow fusion

between overlapping camera views. Once the cameras are calibrated, the visual sensor

networks can be used to detect application-specific events. However, VSNs are different

from other types of sensor networks because of the nature of visual sensors. Common sensors

found in traditional sensor networks, such as temperature sensors, humidity sensors, and

so on, provide information about the environment in the vicinity of the sensors. Fusion on

these data conflates events and sensors because they are often co-located. Visual sensors, on

the other hand, are long-range sensors that collect information about distant objects/scenes.
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An event detected by a camera can be far away from the camera’s location, even beyond

the camera node’s communication range. In the wireless sensor networks context, we show

the advantages of using a geographic hashing technique in distributed camera calibration

and event detection.

Another unique characteristic of visual sensors is their large data volume. Most common

sensors sample simple scalar data. Visual sensors produce data as sequential 2D images. The

large volume of the image data provides much richer information about the environment.

Therefore, while general sensor network tasks involve data collection and simple data fusion

such as finding the min, max and average value of data readings, the information-rich

data from visual sensors enables high-level analysis and reasoning in the VSNs. Typical

tasks that are performed in VSNs include object detection/tracking, activity recognition,

etc. These tasks often use algorithms that require image data from multiple camera nodes.

Considering the large volume of image data, it is important to process the data in-network

so that only the smaller sized preprocessed data are sent among camera nodes. In the

camera surveillance network context, we investigate the benefits of using probabilistic fusion

methods on multiple vision algorithms to boost the prediction performance in cross-camera

object tracking.

1.1 Contributions

This thesis presents several novel techniques to support complex visual tasks such as camera

calibration, event detection and object tracking.

First, to support camera calibration, this thesis presents Lighthouse, a distributed cali-

bration protocol that allows wireless smart camera networks to obtain a unified coordinate

system without manual configuration or specialized hardware beyond GPS. The Lighthouse

technique uses stereo cameras to obtain robust 3D feature sets which are matched using

incrementally built Geographic Hash Tables (GHTs). Lighthouse finds matches between

cameras, even between distant cameras, without centralizing observations. Lighthouse also
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contributes several advancements in the cooperative creation of GHTs, including bootstrap-

ping, topology determination, and consistent hashing for topology changes. Simulations

indicate that Lighthouse significantly outperforms simpler matching schemes at all feature

densities, and approximates the centralized solution in all but the most feature-poor envi-

ronments.

Second, for event detection, we argue that decoupling the event locations from the sen-

sor locations allows programmers to specify their intent more directly, and better supports

remote sensing devices such as cameras. This thesis presents Distributed Constraint Pro-

cessing (DCP), a decentralized, scalable event detection framework that allows for efficient

in-network aggregation without coupling events and sensors. In our model, complex events

are specified as aggregations of events in time or space, without regard to sensor locations or

communication paths. We describe an SQL-style declarative language with spatio-temporal

constraints between events that can be used to express complex events, then we show how

these complex events can be assembled efficiently. The distributed event detection mecha-

nism scales to very large networks, load balances work across sensors, and is fault tolerant

to network partitions and node failure.

The final part of this thesis presents a distributed probabilistic object tracking frame-

work. Visual sensor networks can be quite different in real deployment from simulations

in that simulations often assume good features can be extracted from image data to allow

reliable distributed computations. In real VSN applications, however, feature data are usu-

ally noisy and don’t always produce credible results. We develop probabilistic techniques

to perform cross-camera object tracking with multiple features. In our framework, indi-

vidual feature algorithms need not make explicit binary matching decisions, nor are they

required to understand and report their own matching confidences. The framework com-

putes matching probability distributions for each feature algorithm based on empirical data

and use these historical results to combine feature matches into aggregated results. We

build the framework on an actual deployed camera surveillance network. Our experiments

show that the probabilistic fusion mechanism outperforms the comparison fusion algorithms
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and almost always outperforms the best individual feature algorithm, even though the best

algorithm differs in various scenarios.

1.2 Outline

The rest of this thesis is structured as follows. We first provide background information

in Chapter 2. Chapter 3 presents Lighthouse, the distributed camera calibration system.

Chapter 4 talks about the decentralized, scalable event detection framework. In Chapter

5, we introduce the probabilistic object tracking framework. Related work is discussed in

Chapter 6. Finally in Chapter 7, we present our final remarks and ideas for future work.



Chapter 2

Background

In this section, we talk about the research background that motivates our work in this

thesis.

2.1 Distributed Camera Calibration

For most applications, sensor networks require localization, often through the use of spe-

cial purpose hardware. Localization determines the location of sensor nodes, and allows

geographic forwarding and location-aware queries. Smart camera networks must go a step

further to be calibrated across cameras. The cameras in a calibrated network have been so

precisely localized that shared views of the same object may be fused to create, for example,

three-dimensional models or super-resolution views.

Camera calibration requires precise positions and orientations, beyond the limits of

existing localization techniques. Even differential GPS or Cricket [37], each with accuracy in

the centimeter range, would be unable to determine the orientation of a small camera sensor.

Further, small errors in orientation may result in large absolute errors when estimating the

position of distant objects.

Multi-camera geometric calibration is an active research topic [1, 46]. With this tech-

nique, the correspondences between camera images are detected and used to compute the

6
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coordinate system transformations from world coordinates to camera coordinates. Cur-

rent solutions are centralized, usually requiring factorization of very large matrices [29, 16].

The most common approach is based on structure from motion algorithms, in which the

pose of all cameras and the location of feature points in 3D are simultaneously estimated.

Smart camera networks, on the other hand, require a robust distributed solution based on

collaborative algorithms. Furthermore, networks with dynamic nodes require incremental

approaches.

To find coordinate system transformations between cameras in a distributed system,

the correspondences between cameras have to be sent to the same processing node to allow

computation. While in the centralized approach, all data are sent to the same server for

processing, in a smart camera network, computation has to be distributed throughout the

network to avoid hot spots. Traditional wired computer networks solve this problem by use

hashing techniques to hash data of the same types to same computer IDs, and send different

types of data to different computers to distribute the computation. However, sensor nodes

in a wireless network rely on routing protocols to send data from one node to another. A

localization service is required to route data to destination nodes by their IDs. This is

impossible in VSNs before the network gets calibrated. In this case, an alternative hashing

technique, the geographic hash table (GHT) [40], has been proposed to hash data types to

geographic coordinates, and a routing protocol called GPSR [21] can be used to send data to

sensor nodes that are closest to the hashed geographic coordinates without specifying their

IDs. These hashing techniques have motivated our work of a distributed camera calibration

technique, called Lighthouse, that allows smart camera networks to incrementally obtain a

unified coordinate system.

2.2 Distributed Constraint Processing

Many wireless sensor network applications require the fusion of sensor readings from indi-

vidual sensors into meaningful events. These events draw the attention of human operators,
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activate actuators, or contribute to the construction of higher-level events. The events of

interest may vary greatly based on different application requirements. Sometimes, a single

sensor reading is significant to the application. In other cases, applications are concerned

with complex events which are the aggregations of geographically and temporally related

sensor data. In these applications, sensor data from several different sensor nodes sensed

at different moments and places must be fused to create the application-specified events.

To aggregate geographically and temporally distributed sensor data, sensor nodes could

send all readings to a single rendezvous where they could be aggregated into application-

specific events. There are several obvious drawbacks with this approach. First, sending

all sensor data to a single place requires complete connectivity, and creates communication

congestion near the base station. Sensor nodes under heavy communication often suffer

from rapid battery drain and break communication paths. Second, sensor data are often

redundant for complex event detection. Sending all data indiscriminately wastes bandwidth

and power and thus shortens the system lifetime. Existing data aggregation algorithms

generally address these problems by aggregating sensor readings into complex events at join

points while propagating toward a collection point. Unfortunately, this form of aggregation

is greatly complicated by long range sensing. It is difficult to determine whether a subevent

needs be propagated further up the tree when any given subtree might report an event from

a distant location.

Beyond tree aggregation, some systems aggregate among sensor neighborhoods [34, 50].

These neighborhoods are based on sensor locations (i.e. nodes with 10m of a given sensor),

or communication details (i.e. nodes within two communication hops of a given sensor).

These definitions are sometimes called data-centric because they abstract away the details

of node identity, and focus on the location of sensor readings.

However, truly data-centric applications will not specify their operations in terms of

sensor locations and communication paths. Notions of locality, in space or time, are best

tied to events, not sensors or pathways. This separation is critical to supporting long-range

sensors (i.e. cameras), or complex events that may be deduced to occur at a locations far
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from any single sensor (i.e. triangulated sounds detection).

For example, consider three successively more complex applications in a network of

acoustic and visual sensors deployed in an urban area.

1. Detect gunfire. The application is interested in acoustic data matching the gunshot

sound pattern. A single match indicates that gunfire is present. No data aggregation

is necessary.

2. Locate gunfire. The arrival time of the sound of a gunshot at multiple sensor nodes

must be compared in order to triangulate and locate the point of fire[42]. Triangulation

requires the exchange of timing data and processing among several sensor nodes.

3. Locate suspects near gunfire. The location and time of gunfire must be compared to

the locations of people detected by surveillance cameras. The locations of the gunfire

may be arbitrarily far from the acoustic and visual sensors. Further, the microphones

that detect the gunfire may not be co-located with the cameras that observe people.

Coordination must occur with constraints expressed on the times and locations of

events, not of sensors.

The third application has motivated our work to allow complex event detection based

on event constraints rather than sensor-based neighborhoods. In this thesis, we present

a complex event detection framework that uses geographic addressing to decouple event

locations from sensor locations while allowing maximum flexibility in choosing aggregation

nodes.

2.3 Probabilistic Object Tracking

Object tracking is a common application in visual sensor networks. The general procedure

to track objects across cameras is as follows.

1. Detect foreground blobs in a sequence of images from a camera. This is usually done
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by performing background subtraction on images and segmenting the foreground im-

ages into different objects. Basic background subtraction detects foreground objects

as the difference between the current frame and an image of the scene’s static back-

ground or the average/median of the previous frames. Foreground objects consist of

pixels that differ from the background for a value larger than predefined thresholds.

These basic methods suffer from the limitation that they don’t provide an explicit

way to choose the threshold and they cannot cope with multiple modal background

distributions. Advanced background subtraction algorithms have been proposed to

improve the accuracy of the background model, such as mixture of Gaussians, etc.

These advanced background subtraction algorithms offer better accuracy at the ex-

pense of more computation resources.

2. Compute object descriptors. There are many ways to describe an object. Common

object descriptors are positions, color histograms, edges, contours, and so on. These

descriptors are easy to compute but can be quite different between cameras because of

the change of view angles and distances to the cameras. Advanced object descriptors

provide invariance in feature sub-space but can be expensive in computation or feature

size. For example, SIFT features [27] provide scale-invariance in feature transforma-

tion but the feature extraction can hardly be done in real-time on camera images with

moderate image size and frame rate.

3. Compare object descriptors from different cameras to match object across cameras.

Different object descriptors have their own matching methods to measure the simi-

larity between two object descriptors. Because the object descriptors are computed

based on pixel blobs that are 2D projections of 3D objects, these object descriptors

can be noisy and change between cameras. Object descriptor matchings often produce

incorrect results.

Traditional object tracking systems gather all image data at a centralized server where

the computation of all three steps are performed. VSNs should track objects in a distributed
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fashion. Objects can be detected and their descriptors computed locally at each camera

node. Cross-camera object matching are enabled by carefully exchanging object descriptors

among camera nodes.

By the constrained nature of the network resources, distributed object tracking faces

several challenges. First, image feature extraction and comparison are usually resource

intensive. When the image quality, frame rate and the number of objects increase, the data

volume in exchanging the object descriptors can exceed the available network bandwidth.

In addition, the computation required to perform these vision algorithms can also exceed

the computation capacity of the camera nodes. Second, vision algorithms are also error-

prone. The matching of object descriptors can produce two types of errors: the same object

detected as different objects; different objects detected as the same object.

Oftentimes, the object tracking systems have multiple choices of object features for cross

camera object matching. The computation and bandwidth resources needed to generate

and transmit different features vary greatly. Also, any single object feature may not work

the best all time due to changes of environment and object appearances. The matching

performance of any object feature also changes for different pairs of cameras due to varying

view angles and distances from the objects to the cameras.

Since no single object feature works all the time for cross camera object matching, it

is natural to think of using multiple object features together and hopefully at least some

features will work at a given time. When color histograms are wrong, shape-based or

gradient-based features may match objects correctly. Using multiple features together can

avoid severe tracking errors when tracking condition changes. The fundamental problem

becomes how to fuse matching informations from several features when there is disagree-

ment. In this thesis, we present a probabilistic technique to fuse multiple feature matching

results using historical match probability distributions. We build match probability tables

that correlate historical match probabilities for various reported similarity levels from each

feature matching algorithm. Then, for online matching, we fuse the values from the match

probability tables to make a final match decision.



Chapter 3

Distributed Smart Camera

Calibration

3.1 Pairwise Feature Matching

Distributed calibration requires that sensors find similar features in other cameras. Unfortu-

nately, low-level two-dimensional features are very difficult to match between the images of

uncalibrated cameras. Instead, we advocate smart cameras with two image sensors. Using

two sensors with a known (short) baseline allows for local stereo reconstruction, producing

3D features from the individual 2D images. 3D features are more robust for matching across

nodes because they are immune to differences in color and brightness sensitivity.

We have prototyped pairwise 3D feature matching using several camera pods. Each

camera pod includes four rigidly mounted network cameras capable of small baseline feature

matching and stereo reconstruction. Our experiments used two cameras in each pod. First,

simple two-dimensional features (corners) were detected separately in the images of each

camera. Next, correspondences between the features of the two images were determined.

This task was greatly simplified by the short, known base-line between the images. From

these correspondences, three-dimensional locations for the features were determined. Closer

features exhibit greater parallax in the twin images. In a smart camera network, this work

12
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would be accomplished locally in a dual-imaged smart camera.

3.1.1 Three-dimensional matching

Once each camera pod possessed a set of three-dimension features (points, really), we con-

sidered the task of matching those points between pairs of camera pods. In this prototype,

all of the features of two pods were brought together, and RANSAC [23] was employed to

find the transformation that brought the largest number of 3D points into correspondence.

In a large sensor network, it would be infeasible to share all points between all pairs

of cameras. Section 3.2 describes how features can be detected without wholesale feature

exchange.

3.1.2 Geometric Hashing

Lighthouse advocates a move away from sharing all low-level features detected by a cameras

toward a strategy that shares a few, robust high-level features. A robust feature is one that

can be recognized easily by various cameras, regardless of pose. Geometric hashing maps a

complicated low-level feature set to a single, more robust feature or category.

For example, rather than sharing all 3D feature points, Lighthouse might select triples

of three-dimensional points and their relative distances. Such a triple can be recognized

regardless of camera pose.

The use of Scale Independent Feature Transforms [26] is a more powerful implementation

of the same idea. Objects are reduced to (an unfortunately large) number of SIFT keys.

These keys may be viewed as geometric hashes of the object in question, and are little

affected by scale, rotation, or noise.

As we describe Lighthouse’s operation, we assume the existence of some geometric hash-

ing function that is capable of finding robust, high-level features, and reducing them to a

form that can be used for matching. The effectiveness of these features is abstracted away

by assuming that each match may confer some certainty that a particular transform is ap-

propriate to bring two cameras into a common reference frame. Lighthouse may operate
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with any threshold level of certainty required to complete a match.

3.2 Matching with GHTs

Using robust three-dimensional features reduces the problem of distributed calibration to

the detection of non-empty set intersection among the features of all camera pairs. This

is, if node A observes features {a1, a2, a3...}, and B observes features {b1, b2, b3...} we must

discover any ai that is the same feature as some bj . If so, nodes A and B should learn of the

intersection in order to agree upon a shared reference frame. In order to control errors, it

may be important for a given node to learn of many shared features with a set of cameras

in a given reference frame. Multiple matches may be required to eliminate errors caused

by, for example, the repetition of many similar features in real-world settings, such as the

seats of a stadium.

As implied by the previous section, a simple way to find many shared features is to at-

tempt pairwise matches between neighbor nodes. Many wireless protocols require periodic

beacons in order to establish neighbor tables used during routing. Lighthouse augments

these beacons with feature announcements. When a node hears of a feature that it has

also observed, a match has been found. Of course, this technique might be extended to

announce features over multiple hops. However, extending this technique to flood all fea-

tures throughout the network would be infeasible for even moderately large networks. We

compare Lighthouse to each of these techniques in the following section.

Lighthouse uses a Geographic Hash Table (GHT) to match common features at greater

distances. A GHT, like the distributed hash tables of wired networking, allows cooperating

nodes to store data at arbitrary nodes in a network, based on the hash of the data’s key

value. In a GHT, the hash function computes a geographic coordinate, and the data item

is stored at the node nearest to that coordinate.

Finding matches in a smart camera network that has already formed a GHT is straight-

forward. A node first computes a geometric (not geographic) hash of its features. The
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Figure 3.1: The feature X is observed by the two separate camera nodes. The feature is
categorized through a geometric hash function, g(), and then a storage location is selected
with a geographic hash, h(). Each camera routes the feature toward the designated location,
where the closest node, N, stores the feature, detects matches, and informs the observers.

category is used as the key to insert the feature into the GHT. Two nodes with similar fea-

tures will hash the feature to the same category, and then geographically hash the category

to the same coordinate. The same node will therefore be responsible for storing both fea-

tures, the “collision” may be noted, and the observing nodes notified. Figure 3.1 illustrates

the matching process.

Unfortunately, GHTs rely on geographic forwarding which needs localization—which we

intended to accomplish through feature matching. The goal of Lighthouse is to bootstrap the

construction of ever larger GHTs using only the information gained during the construction

of smaller GHTs, using data-directed calibration. The key insight is that any node within

radio range of a GHT may use it for matching, even if the node in question is outside the

GHTs coordinate space. Geographic forwarding is not needed for the first hop.

3.2.1 Singleton GHTs

We begin by considering the network at the beginning of a simultaneous startup. Each

camera node is able to observe visible features, transmit in a local radio range, and listen

for broadcasts from nearby nodes. We consider each of these nodes to be a singleton GHT

with its own coordinate space. The GHT consists of one node, located at the origin and

oriented in the direction of the camera’s view. The known baseline between the node’s

image sensors allows a single camera to determine the scale of features in absolute terms.
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Of course, a singleton GHT is a degenerate case. All inserts are stored at the single

node, and no feature matches will be discovered.

3.2.2 GHT Maintenance

In order to support feature matching, a GHT should contain the features observed by each of

its constituent nodes. Although the constituent nodes of a given GHT have already agreed

upon a coordinate system, new feature matches among nodes of the GHT may allow the

nodes to eliminate errors that might otherwise build up through pairwise matching. More

importantly, we will soon see that these inserts are critical to allow merges with adjacent

GHTs.

3.2.3 Merging GHTs

Adjacent GHTs are GHTs that contain nodes within radio range of one another. We call

the set of nodes that are within radio range of a GHT, but are located within another

GHT, the neighbor set. A neighbor node may constitute an entire GHT, as in the case of

singletons, or simply a single member of a multi-node GHT.

Neighbor exchange Nodes from the neighbor set attempt to find matches between the

adjacent GHTs by inserting features from their home GHT into the neighboring GHT. These

features may have been directly observed by the neighbor, or they may have be stored at

the neighbor by another member of the neighbor’s GHT. In extreme cases, the neighbor

may actively query its GHT to find additional features to share with the adjacent GHT.

As an optimization, the proxy may respond immediately without inserting the feature if it

contains a local feature match.

Proxy responses A neighbor’s coordinate system is independent of the GHT into which

it will insert. Therefore, insertions are passed through a proxy node inside the adjacent

GHT. The proxy node performs the insertion, and forwards responses back to the neighbor.

After the neighbor receives a response the neighbor may trigger a merge of the two GHTs
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Figure 3.2: The group of gray nodes is a GHT, using the dashed box as its loose bounding
box. To store an item, X, it is hashed repeatedly (h1, h2, h3) until a locations is found
within the perimeter. If node A joins the GHT, the loose bounding box need not be
changed, therefore only those items, like X, that were placed in their current location after
after skipping a hash location that is in the new perimeter. If node B joins the GHT, the
loose bounding box must be expanded, requiring all items to be rehashed.

by broadcasting the new coordinate system to both GHTs. This decision might be triggered

only after a threshold of matches has been met.

Consistent hashing GHTs were proposed for sensornets of static extent. As such, the

range of the geographic hash function is predetermined by the geographic range of the

sensornet. In a dynamic GHT, the size of the sensornet changes, and so the range must

vary as well. The range should not exceed the true size of the sensornet by too much, or

data items will be concentrated at the edges. The range should not be too small, or data

items will be unduly concentrated in a few nodes.

To solve these problems, an appropriate range should be chosen for any GHT. One such

range is the convex hull of the nodes in the GHT, though hashing to this irregular shape

is not straightforward. In addition, because the topology of a dynamic GHT changes with

time, it is important to develop a consistent [20] hash function that leaves most data items

in the same location in response to small topology changes.

We advocate a two-phased hashing strategy, illustrated in Figure 3.2, that uses a loose

bounding box, a family of hash functions, and knowledge of the true boundary of the GHT.

To determine the location for a data item, it is hashed into the loose bounding box using the

first member of the hash-family. Using a local polygon inclusion test, if the location is also
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inside the true boundary of the GHT, the item is routed to the node closest to the hashed

location. If not, successive members of the hash-family are used until an agreed upon limit

is reached. If the limit is reached, the item is stored at the node closest to the first hashed

location. A looser bounding box leads to addition computational effort to determine the

appropriate hashed location for storage, but will lead to fewer complete rehashings which

must occur when the bounding box is changed.

3.3 Evaluations

We conduct NS [35] simulations using a simple implementation of a GHT using code from

GPSR [21]. Experiments are run in a 250m square with 100 randomly placed and oriented

cameras, each with a radio range of 40m. Features are randomly placed in or near the 250m

square where they may be detected by cameras if the camera is within 125m, and oriented

properly. Cameras are assumed to have a 30◦ viewing angle. The number of features is

varied to measure the effect of feature density.

3.3.1 Convergence

The first metric by which to measure a calibration technique is its ability to find matches and

allow for the convergence of nodes into a shared coordinate space. We compare Lighthouse

against three other strategies. The first two strategies are simple short range advertisement

schemes. In the 1-hop scheme, each camera broadcasts the set of features it observes to all

cameras within radio range. In the 2-hop scheme, features are rebroadcast by any camera

that hears them from the direct observer.

Figure 3.3 shows that Lighthouse improves upon the performance of each of these

schemes, allowing the 100 cameras to converge into approximately half the number of in-

dependent coordinate systems as the 2-hop scheme. The final scheme is an impractical

flooding protocol that propagates all features to all reachable nodes. It shows the absolute

minimum number of isolated groups that exist when all cameras are aware of the features
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of all other cameras. For example, when only 100 features are detected throughout the

network there are approximately 14 sets of camera that share no features in common.
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Figure 3.3: Lighthouse is compared to simpler 1-hop and 2-hop neighbor schemes, as well
as a perfect matching scheme that floods all features to all nodes. As the feature density
increases, all schemes are able to reduce the number of independent GHTs by finding shared
features. At all densities Lighthouse performs significantly better than the short-range
schemes. At reasonable feature densities, Lighthouse approximates complete flooding.

In should be noted that the 2-hop and flooding schemes are not viable schemes for

simultaneous calibration and GHT construction. Both schemes assume that two cameras

may merge into a single GHT, even if the nodes between them cannot. In such a case,

the merged nodes would not be able to use their coordinate system for the geographic

forwarding required to implement a GHT.

3.3.2 Scalability

In the last section we examined Lighthouse’s ability to find matches, we now consider the

cost of doing so. Figure 3.4 shows the amount of bandwidth used to disseminate features

for matching. The graph underestimate the cost, in absolute terms, because our simulation

uses very compact representations of features (integers). In reality, features are likely to be

considerably larger, but the relative effect should be similar in each case.

Thinking about the costs asymptotically, 1-hop emits a message from each node, and

receives features from d adjacent node. In 2-Hop, each node emits a feature, and the d



20

 0

 5

 10

 15

 20

 100  200  300  400  500  600  700  800  900  1000

T
ra

ff
ic

 in
 M

B

Number of Features

Network Utilization

Flooding
2-hop

Lighthouse
1-hop

Figure 3.4: As feature density increases, more features are exchanged and more bandwidth
is consumed. Lighthouse is able to grow as slowly as 2-hop, despite its ability to find
wide-spread matches.

nodes that hear it re-emit it. The O(d2) nodes within two hops share their features. In

Lighthouse, each node must store its feature in the GHT. A single GHT insert requires

O(
√
n) transmissions to cross the sensornet. Flooding requires that each node emit its

feature and that the sensor field flood it (O(n)).



Chapter 4

Distributed Event Processing

In this section, we describe the concept of complex events and describe how complex events

are detected in the Distributed Constraint Processing (DCP) framework. Complex events

are formed in a hierarchical way from simpler events with constraints. DCP detects events

in a decentralized manner, avoiding global collection trees, and balancing the computational

and network load across participating nodes. We build our constraint matching on top of

geographic hash tables because they are a natural fit for our needs: they use geographic,

rather than node-based addressing and they provide a matching mechanism that is scalable

and fault-tolerant. We extend GHTs to provide a local matching service.

4.1 Complex and Primitive Events

Events are defined as occurrences of interest in a system. A person in a room, high tem-

perature in an area, or the theft of a book might all be events in different applications.

However, unlike a single sensor observation, a “book theft” event requires many observa-

tions and computation over those events. Accordingly, we divide events into two categories:

primitive events and complex events.

Raw sensor readings are primitive events. A primitive event consists of the reading itself

annotated with metadata, such as a time and location.

21



22

Complex Events are derived from simpler events. They are produced by Event Processors

or Event Detectors, rather than individual sensors. An event processor creates complex

events when it observes the appropriate constituent events. For example, a fire detector

may require the observation of high temperature and smoke sensor readings. Further, the

detector computes a fire event only if high temperature and smoke events occur in close

proximity, in time and space.

In DCP, there are multiple event processors for every event type. Event processors of

the same type are distributed throughout the network using Regional GHTs to facilitate

distributed event aggregations. The efficient evaluation of constraints to produce complex

events will be discussed in detail in Section 4.

4.2 Event Specification Language

Our event specification language borrows event operators from active database research

where event operators were used in specifying triggers in database systems. We have also

incorporated windowing constructs from stream processing and complex event processing

research.

4.2.1 Sensor Specification

All events are derived in some way from raw sensor readings. The output of each sensor is

declared in order to reference their raw readings in derived events. The sensor specification

conforms to the following template:

sensor name
schema attr list

attr list → attr | attr list, attr
attr → attr type name

attr type → double | int | string

Figure 4.1: A sensor is given a name, and any number of named and typed attributes.
These attributes are referenced to create events.

Here are two example sensor specifications:
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sensor temperature schema double temp

sensor barometer schema double pressure

We also assume that a pseudo-sensor named node exists in all sensor platforms. Node

provides the spatial and temporal context information used during the construction of both

complex and primitive event. It has the following specification:

sensor node
schema string node id,

double[2] loc,
double time

Figure 4.2: Node specification template

node id is the unique id of the device the sensor is located on. loc specifies the platform’s

location and the time attribute is used to access the platform clock. We assume that sensors

are sufficiently synchronized, in time and space, to use these values in calculating constraint

matches.

4.2.2 Base Event Schema

Complex and primitive events are both represented as attribute collections. All event of the

same type have the same set of attributes which is called the event schema. The schema

for each event type is specified in the event type declaration.

Some attributes, such as timestamp and location, are required in both complex and

primitive events. They constitute the base event schema. The base schema includes the

attributes event id, loc, start time, end time and node id. The base event schema facilitates

the use of standardized event operators that evaluate common spatio-temporal relationships.

event id is the identifier that identifies an instance of an event type. This identifier can

be made unique by generating a fresh identifier for each complex event instantiation, or

it can be created based on a subset of the attributes of an event instance. In the latter

case, logically duplicate event instances will have the same identifier and may be suppressed

during later processing. The loc attribute stores the location assigned to the event instance.
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start time and end time represent the occurrence interval of the event. Finally, node id

identifies the node that generates the event instance.

4.2.3 Primitive Event Declaration

Primitive event declarations specify the transformation of sensor readings into primitive

events. A primitive event can be regarded as a sensor reading annotated with metadata

information. Primitive event declarations are made using the template in Figure 4.3.

primitive name
on sensor list

schema base schema, attribute list

Figure 4.3: A primitive event is created by combining attributes from one or more sensors.
The pseudosensor “node” is often used to provide the time and location required by the
base event schema.

The name symbol stands for the name assigned to the primitive event type such as

person detected, or barometer reading. Sensor list contains the sensors the primitive event

is defined upon. It may contain multiple sensors, but they must be located on the same

node. Sensor fusion across nodes is described by complex events. Finally schema specifies

the attributes of this primitive event type and the way they are assigned values. Here we

provide an example primitive event specification for a temperature reading event common

in many sensor network scenarios.

primitive temp
on temperature, node

schema event id as hash(node.node id,
node.node time),

loc as node.loc,
start time as node.time,
end time as node.time,
temp as temperature.temp

Figure 4.4: The temp primitive event consists of the temperature reading from the sensor
named temperature along with time and location information to populate the base event
scheme from the node pseudosensor.
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4.2.4 Complex Event Declaration

Complex events are combinations of simpler events, each of which may be primitive or com-

plex. For most applications, users are interested in specifying complex events which impose

spatial, temporal or attribute-based constraints on their subevents. We take a SQL-like ap-

proach to complex event specification and extend it with spatial/temporal constructs such

as time windows to support these constraints. Our complex event specification template is

given in Figure 4.5.

complex name
on source list

schema base schema, attribute list
where constraint list

Figure 4.5: Complex event declaration template

Every complex event type is assigned a unique name with the name attribute. The

source list is used to specify the subevents of a complex event type. The source list may

also contain the node pseudo-sensor. As in primitive event specifications, schema spec-

ifies the attributes of the complex event type and also defines the transformation from

subevents and their attributes into the attributes of the complex event. The constraint list

in the where clause specifies a logical expression on the subevents that must be fulfilled

to construct the complex event. Constraints can be defined over subevent attributes, and

can specify temporal or spatial patterns over subevents. We provide event operators for

easy specification of constraints over subevents. Existential constraints are also available

through subqueries. These features are described in Section 4.2.5.

As a simple example of a complex event consider the high temperature event. We define

the high temperature complex event using the previously defined temp primitive event as

follows:
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complex hitemp
on temp T, node

schema event id as hash(node.node id,
node.node time),

loc as T.loc,
start time as T.start time,
end time as T.end .time,
temp as T.temp

where T.temp > 70

Figure 4.6: A hitemp event is constructed from a single subevent when a temp event, T,
meets the constraint: T.temp > 70.

4.2.5 Constraint Specification

Temporal, spatial, attribute-based and existential constraints can be specified in the where

clause of a complex event specification. Each constraint returns a boolean result. For easy

specification of event constraints we provide event operators, as introduced in the event

languages developed in active database research. We have borrowed the event operators and,

or, and sequence from existing work in that area [6, 13, 36]. All event operators are n-ary

operators. The last argument of each event operator is the time window argument, w, which

specifies the maximum time between any two subevents of the complex event. Subevents

which are separated by more than w time units cannot be part of the same complex event

instance. When an event operator produces output on a given set of subevents we say the

corresponding event constraint is satisfied.

We also provide the SQL construct exists (subquery) for the specification of existential

constraints. The result of the exists clause is true if the subquery returns any result. An

example event specification to detect unattended luggage is given in Figure 4.7.

The unattended bag complex event is an example for a security monitoring scenario.

We assume that there is a detector for bags already implemented and we can access a bag

detection event through BagDetector. The event specification is made such that a bag is

considered unattended when no person is detected within 5 meters of the bag for 60 seconds.
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complex unattended bag
on BagDetector B, node

schema event id as hash(node.node id,
node.node time, B.bagid),

loc as B.loc,
start time as B.start time,
end time as B.end .time,
bagid as B.bagid

where not exists ( select * from person detected P
where and(P,B;60) and distance(P.loc, B.loc) < 5 )

Figure 4.7: An unattended bag event when a bag is detected, but no person is detected
within 5 meters for one minute. The base event schema is populated from the base schema
in the BagDetector event.

4.3 Example Application

Consider an example object tracking application using calibrated stereo cameras. Stereo

cameras can localize the 3D positions of the objects in their frustums, and can identify

different objects using techniques, such as histogram comparison [5]. Such a camera network

can be used to monitor behavior of people and to detect abnormal activities in an area.

Here, we present an example scenario where the monitored event is a person chasing another

person. We use our event specification language to declare the events involved in the

application.

In order to detect complex events, we break them down into simpler, lower-level events

and repeat this process until all events are primitive. For our example chase scenario, this

process is illustrated in Figure 4.8. We can think of the people chasing complex event as

two people running close to each other (e.g. 10 meters) for a certain amount of time (e.g.

5 seconds). Below is the specification for the people chasing complex event based on this

idea.

people chasing complex event is defined using the running group complex event. run-

ning group complex event detects two people running in close proximity. Its specification

is given below.

The running group complex event depends on the complex event running person. The
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Figure 4.8: The process to detect the people chasing event is decomposed into the following
steps: 1. Detect a person using the person detector on the stereo camera sensor; output a
person detected event; 2. Detect a running person by calculating the person’s moving speed
using two consecutive person detected events of the same person; output a running person
event; 3. Detect people running together by calculating the distance between two different
running people; 4. Detect people chasing each other by looking for two people keeping
running closely for a period of time, examining continuous running group events with same
person IDs; send people chasing events back to the base station.

complex people chasing
on running group as G1, running group as G2,

node
schema event id as hash(node.node id, node.time,

G1.person1 id, G1.person2 id),
loc as avg(G1.loc, G2.loc),
start time as G1.start time,
end time as G2.end time,
node id as node.node id,
person1 id as G1.person1 id,
person2 id as G1.person2 id,

where seq(G1, G2; SRC PERIOD RG) and
G1.person2 id = G2.person2 id and
G1.person1 id = G2.person1 id and
distance(G1.loc, G2.loc) <= CHASING DIST

Figure 4.9: People-Chasing event specification
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complex running group
on running person as R1, running person as R2,

node
schema event id as hash(node.node id, node.time,

R1.person id, R2.person id),
loc as avg(R1.loc, R2.loc),
start time as min(R1.start time, R2.start time)
end time as max(R1.end time, R2.end time),
node id as node.node id,
person1 id as R1.person id,
person2 id as R2.person id,

where and(R1, R2; SRC PERIOD PR) and
R1.person id != R2.person id and
distance(R1.loc, R2.loc) <= GROUP DIST

Figure 4.10: Running-Group event specification

running person complex event, which is used to find a running person, can be detected by

computing a person’s moving speed and comparing it to a threshold speed. This involves the

comparison of two person detected events of a person with different location and timestamps.

The specification of the running person complex event is given below.

complex running person
on person detected as P1, person detected as P2,

node
schema event id as hash(node.node id, node.time,

P1.person id),
loc as P2.loc,
start time as P1.start time,
end time as P2.end time,
node id as node.node id,
person id as P1.person id,
speed as distance(P1.loc, P2.loc)

/(P2.end time-P1.end time)
where seq(P1, P2; SRC PERIOD PD) and

P1.person id = P2.person id and
distance(P1.loc, P2.loc) <= RUNNING DIST and
distance(P1.loc, P2.loc)

/(P2.end time-P1.end time)
> SOURCE PERIOD PD*MAX SPEED

Figure 4.11: Running-Person event specification



30

These specifications are naturally expressed with both spatial and temporal constraints

that limit the distance and interval between subevents. People can only run so fast, so a

spatio-temporal constraint prevents spurious matches from distant, unrelated events. Fur-

thermore, these constraints allow DCP to operate efficiently, disseminating subevents only

far enough to meet other relevant events. Without such constraints, a global event detection

process would have to occur which would reduce the performance of the system.

Finally, the person detected events can be generated by the person detector on each

sensor node, which constantly analyzes the stereo images taken by the stereo camera.

sensor person detector
schema int person id,

double[2] loc

primitive person detected
on person detector as PD, node

schema event id as hash(node.node id, node.time,
PD.person id),

loc as PD.loc,
start time as node.time,
end time as node.time,
node id as node.node id,
person id as PD.person id

Figure 4.12: Person-Detected event specification

Although complex events are decomposed in a top-down manner, DCP uses a proactive

approach for event processing. Events are constantly generated by lower-level event proces-

sors and pushed into higher-level event processors. Whenever an event processor produces

an event, it looks up the system configuration to find high-level event processors that oper-

ate on this type of subevent, then sends the event to their location. In such a way, events

of all complexities can be detected with low delay.

In the following sections, we will use this example application to illustrate how our

constraint processing framework works and evaluate its performance with simulation (See

section 4.10).
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4.4 Regional GHTs

In applications that detect events in a spatial area covered with wireless sensors, we expect

that most events contain regional or temporal constraints because they are triggered by

related phenomena, perhaps detected by various nearby sensor types. In our example ap-

plication, people chasing may only be considered a suspicious behavior when it happens in a

certain high security area, and people will only be considered to be chasing if they are run-

ning in close proximity. DCP leverages these constraints to obtain significant performance

improvements without compromising correctness.

Data-Centric Storage [39] introduced the Geographic Hash Table (GHT) for wireless

sensor networks. GHTs hash keys into geographic coordinates within the network topology,

and store key-value pairs at the sensor node geographically closest to the hashed location.

The canonical form of the GHT hash function is coordinates = hash(key).

To preserve spatial locality of the events, we extend the canonical GHT hash function

to create Regional GHTs which take keys and regions into account during hashing. The

region defines the boundary of a geographic area. The extended regional hash function

returns coordinates within the specified region. The regional hash function is coordinates

= hash r(key, region).

Figure 4.13 shows the difference between a normal GHT and Regional GHT. Note that

the event is stored much closer to its original location in a Regional GHT. In a Regional

GHT, lookups must specify a matching region to find a particular event.
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Figure 4.13: Normal GHT hashes events to global coordinates. Regional GHT hashes events
to coordinates within a given region which is the lower left tile.
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4.5 Hierarchical Event Processing

To use Regional GHT for spatially constrained event detection, we first divide the sensor

network field into a grid of tiles. The size of the tiles can be determined by the constraints

expressed in event composition specifications, the resolution of sensor readings, the density

of the event detectors, or simply picked arbitrarily. When an event occurs, it is stored in

the tile covering the event location.

When processing a regional query for a particular area, the query will be sent to all

tiles overlapping the queried area. Each of these sub-queries will use the Regional GHT to

find the location where the interested data would be stored in each tile. A Regional GHT

avoids the need to store events at arbitrary locations in the (potentially large) sensor field,

though lookups may need to explore a few tiles if the queried area is large, or falls on a tile

border.

Moving beyond support for pull-based queries, we can extend Regional GHTs to detect

complex events, as specified by the language of Section 4.2.4. Here, events are not only

stored at the location they are created, they are also pushed to a rendezvous point deter-

mined by the hash of the event type of any complex event specification for which they may

be a part. Event processors at that location attempt to construct complex events that meet

the event specification.

Sensor nodes constantly produce primitive events with metadata such as timestamp and

location information. When a lower-level event is detected, it is sent to all higher-level event

processors that need the lower-level event as input. Due to the locality preserving effect

of the Regional GHT, the lower-level events only need to be sent to the higher-level event

processors in tiles that contain the lower-level event’s location (with occasional additions,

described in Section 4.7).

As higher-level events are computed, these events may be sent to the locations of even

higher level event processors. When low-level events are combined into a complex event,

redundant data is removed, and only the attributes attached to the new event are pushed
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to higher-level processors, usually at a lower rate than the lower-level events.

Hierarchical event processing is performed efficiently from bottom up. At each level,

events are hashed and distributed evenly within the tiles due to the advantage of GHTs,

and can be directly accessed by ad-hoc queries. A Regional GHT is basically a spatial index

making spatial queries efficient.

In the application of Section 4.3, there is a Person Detector on each stereo camera node,

so the person detected primitive events are stored at the nodes where they are detected,

and propagated to running person detectors. The running person and running group also

propagated to the processors for the specifications in which they are referenced. Finally,

people chasing events are sent to a base station for human attention. Figure 4.14 shows

how the events are processed in a hierarchical order. Note the people chasing events are

stored at the same node where the dependent running group events are produced. This is

an optimization decision explained in Section 4.9.
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Figure 4.14: The hierarchical event processing for people chasing detection. Each event de-
tector accepts multiple lower-level events as input and produces higher-level events. Events
are pushed from bottom up to the base station.

In DCP, the original GHT’s put() function is used for sending lower-level events to

higher-level event processors, rather than storing directly. So the key in the put() function

is key of high-level events, while the value is the lower-level event. However, the get()

function still works the same way, returning the event data associated with the key. This is
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because we use the proactive approach to propagate events. Lower-level events are pushed

to higher level event processors using the put() function, rather than the event processors

fetching the lower-level events using the get() function. Instead, the get() function is

used only to perform a regional query. After a higher-level event processor receives lower-

level events as input, it may store the lower-level events locally for the purpose of time-

related event aggregation, but these lower-level events are not returned from ad-hoc query

executions.

4.6 Temporal Rehashing

To further balance the transmission and computation load in the network, Temporal Re-

hashing periodically changes the hash location of a given key to eliminate hot spots in

the network. With Temporal Rehashing, the locations of the complex event processors will

be periodically changed, altering the nodes which receive and store the events. Therefore,

Temporal Rehashing load balances the bandwidth, CPU, and power usage among nodes.

The form of the hash function for Regional GHT with Temporal Rehashing is hash rt(key,

region, time).

time is the timestamp of the event. Just as DCP divides the sensor region into regularly

spaced grids, time is divided into periods of known length. Two events with times in the

same period (and equal keys and regions) will be hashed together. If the period differs, the

events will be hashed independently, though the returned coordinates will still fall within

the same geographic region.

4.7 Interest Area and Interest Interval

In space-related event aggregations, higher-level event processors often express constraints

between their lower-level events, rather than absolute constraints. “Find to two people with

3 meters of one another.” rather than, “Find any people in the auditorium.” This implies

that lower-level events may require forwarding to tiles besides the ones they are located in,
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so that they may be matched and high-level events can be computed.

Taking the running group event for example, when two people are running near an edge

shared by two tiles, they may be running close to each other but on different sides of the

edge. If the running person events are only sent to tiles containing their locations, this

running group event will not be detected. To detect the running group event, the Running

Group Detectors in both tiles should be able to observe both of the two running person

events. We introduce the notion of Interest Area, which represents the area around a

lower-level event’s location that may impact a higher-level event processor. The size of the

Interest Area is determined by the spatial constraints that the higher-level events place on

the lower-level events. Figure 4.15 shows how Interest Area causes events to be sent to

multiple tiles.
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Figure 4.15: Interest Area causes events to be sent to multiple higher-level event tiles to
allow space-related event aggregations. Event 1’s Interest Area overlaps with 4 tiles, so it
will be sent into all 4 tiles. Event 2’s Interest Area only overlaps with 2 tiles, so it will be
sent into 2 tiles.

For the same reason, in time-related event aggregations, when temporal rehashing is

used, events must be sent to the hash locations of different time periods to allow time-

related aggregations. Taking the running person event for example, when a person starts

running right before the time of rehashing, and stops running running immediately after
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the time of rehashing, the two person detected events happen before and after the rehashing

time need to be sent to the hash locations in both time periods. Analogously to the Interest

Area, we introduce the notion of Interest Interval which is the time interval around an

event time that may affect higher-level event processors. The length of the Interest Interval

is determined by the temporal constraints the higher-level events place on the lower-level

events. Figure 4.16 shows how Interest Intervals cause events to be sent to the hashed

locations for multiple time periods.
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Figure 4.16: Interest Interval causes events to be sent to event processors of multiple time
periods to allow time-related event aggregations. The Interest Intervals for Event B and
C overlap with two time periods, so they will be sent to hash locations for both periods.
Event A’s Interest Interval only overlaps with its own time period, so it will only be sent to
the hash location of its own time period.

Interest Area and Interest Interval are used to guarantee that no events are missed

because of the usage of Regional GHT and Temporal Rehashing. Whenever a higher-level

event has spatial or temporal constraints on its dependent lower-level events, an Interest

Area or Interest Interval will be applied to the lower-level events. When a higher-level event

depends on more than one type of lower-level events, each type of lower-level events can

have different Interest Area sizes and Interest Interval lengths. The effects of Interest Area

and Interest Interval may be compounded. For instance, if Event 1 in Figure 4.15 and Event

B in Figure 4.16 are the same event, it will be sent to 4 ∗ 2 = 8 different hashed locations.

We now show how to map the event specification to the size of Interest Area and the

length of Interest Interval, taking the running person event as an example. Referring to

the specification of the running person event in Section 4.3, if the MAX SPEED a person

can run equals to 10 m/s, and SRC PERIOD PD = 0.5s, the Interest Area for the depen-

dent person detected events will be a circle around the person’s location with a radius of

SOURCE PERIOD PD * MAX SPEED = 0.5*10 = 5 meters, which means the locations of two
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consecutive person detected events that can trigger a running person event can be at most 5

meters apart. Here we assume all the stereo camera sensors are synchronized in time. When

a person is running closer than 5 meters to the edge of a tile, this person will also be re-

ported to the Running Person Detectors in the other tiles within 5 meters range. Therefore,

when the person runs into an adjacent tile, he/she will be immediately detected running

by the Running Person Detector in the that tile. The interest interval can be easily picked

as two times the period of the person detected events being pushed to the Running Person

Detectors, which is 2*SOURCE PERIOD PD = 2*0.5 = 1 second.

In queries that match disparate events, such as “find a blue ball within 10m of a red ball,”

the sum of the Interest Areas for each event must be 10m. Any appropriate combination

may be selected, with the expected rarity of each event and the reuse of each event in other

queries playing a role in selecting an appropriate trade-off.

4.8 Event Implementation

In order to realize the Hierarchical Event Processing and perform complex event detection

in practice, the base implementation of Event has the following important fields: event id,

event type, and target type. event id is the event identifier. Events are identified by the event

name, or a system-wide unique identifier. event type indicates whether this event is primitive

or complex. target type tells how the event processors are located in the network. Its value

can be self, ght or base. When target type is self, there is an event processor on each

node, processing the lower-level events generated on the current node. When target type

is ght, the network field is divided into tiles. The field tile size indicates the size of the

tiles. There is an event processor in each tile with its location computed by the Regional

GHT. If Temporal Rehashing is used for this event, there will also be a rehash period field.

When target type is base, the event processor is on a base station, all lower-level events are

sent to the base station. There are additional target id and target loc fields to provide the

node id and geographic coordinates of the base station. This target type is used to simulate
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a global query issued from a base station for data collection purpose.

Each event has a list of source event ids, which are all the lower-level events that make

up this event. The subevents can have different spatio-temporal constraints, so each lower-

level event can have a differently sized interest area and different length of interest interval.

We assume that for any specific application, all events and their dependencies are spec-

ified a priori. The DCP framework leverages this information and forms a hierarchically

connected event processing map as discussed in Section 4.5.

Each event processor has a process() function. This function is performed whenever a

lower-level event is received by the event processor. This function aggregates lower-level

events into higher-level events, using local storage to temporarily store lower-level events

for temporal aggregation. When a new complex event is produced, it is forwarded to the

higher-level event processors that are dependent on this event type.

4.9 Optimization

If the characteristics of the queries in the application is known a priori, such as the distri-

bution of the query regions, the events being queried, and the frequency of the queries, the

tile size for Regional GHTs can be optimized to minimize the network utilization.

Supposing an Interest Area of radius R for the input events, there exists an optimal

tile size with side length L which minimizes (on average) the total distance D that an

event must be transmitted to reach all relevant event processors. When L is small, the

event location has a higher chance of being near a tile edge and the event will be sent

into multiple tiles which increases D. When L is large, the random location of the event

processor may be far away from the event location, which also increases D. Our simulation

shows the experimental relation between D/R and L/R, as shown in Section 4.10.2.

Another optimization can be done when the source events of a complex event only come

from the same node. In this case, the complex event processor can be located at the exact

node where the source events are produced. This optimization eliminates the unnecessary
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event delivery. For example, the People Chasing Detectors detect people chasing events by

comparing two running group events with same person ids, so the people chasing events

can be stored at the same node where the dependent running group events are produced,

as shown in Figure 4.14. This optimization requires prior knowledge of the queries in order

to choose a hash function that hashes the two queries together.

4.10 Evaluations

We show the the advantages of in-network processing allow distributed constraint processing

to produce more efficient sensor networks while simultaneously decreasing their complexity.

We show how DCP compares to a centralizing algorithm by examining the load distribution

and total bandwidth consumed during event collection. We separately evaluate the effec-

tiveness of temporal rehashing by showing how DCP performs without temporal rehashing.

4.10.1 Experimental Setup

We conduct experiments with the ns2 [35] network simulator. Experiments are run in a

300m by 300m square with 200 randomly placed and oriented stereo cameras, each with

an 802.11 network interface of 40m range. Several people are moving in the square using

a random way-point model with speeds between 0 and 7m/s and no pause time. Our

application seeks to find the runners, which we define to be those persons moving faster

than 5m/s. One person is considered to be the guard, constantly chasing the closest running

person. The guard starts idle and looks for anyone else that is running. If there is at least

one person running, the guard immediately starts chasing (at 10 m/s) the closest runner.

When the guard catches the running person, it matches the speed of the runner, so they

are running close together. After the person being chased changes to a speed lower than

5m/s, the guard becomes idle and looks for another running person to chase.

Objects can be seen by a camera if the objects are within 40m of the camera, and the

camera is orientated in the proper direction. Cameras are assumed to have a 90 degree
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viewing angle and take pictures twice per second. There is a Person Detector on each

camera node, producing a person detected event whenever the simulated camera sees a

person. Running Person Detectors are placed in a grid of 100m by 100m squares with a

rehashing period of 30s. Running Person Detectors receive all person detected events with

a 2.5m radius Interest Area. Running Group Detectors and People Chasing Detectors are

placed in a grid of 150m by 150m squares with rehashing period of 50s. The 10s Interest

Interval assumes a people chasing event is detected when two persons are running close to

each other for more than 5s. running person events are sent to People Chasing Detectors

every 5s and their Interest Area is a circle with 10m radius. Whenever a people chasing event

is detected, it is sent to the base-station located at (0,0). Each simulation runs for 1000s.

GHT uses the GPSR [21] routing protocol to forward packets to destination locations. We

turn off the GPSR’s perimeter mode which is used to bypass holes in the network. In our

experiments, we chose a dense node deployment to allow better camera coverage, so there

are unlikely to be any holes in the topology.

4.10.2 Tile Size Selection

We first analyze the effect of varied tile sizes on the performance of Regional GHTs. A

large tile to interest area ratio (L/R) requires every GHT store to travel further, while a

small ratio requires multiple stores due to Interest Area overlap with nearby tile edges. We

run the simulation for different ratios for the Running Person Detectors with R = 2.5m.

Figure 4.17 shows the simulation result. Since camera range and radio range are similar,

person detected events can almost always be sent to hash location in one hop when L < 40.

The hop value shown in Figure 4.17 is discrete. Each hop covers at most 40m in distance,

the maximum radio range, which is about 16R. When L is larger than 15R, the average

event delivery distance in hops increases slowly. This is due to the effect of discrete hops.

We expect that the a faster increase will be shown when L is large compared to the hop

distance, not R.
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Figure 4.17: Simulated relation between the average delivery distance (counted in hops) of
the person detected events and tile side length L. When the radius of Interest Area R is
fixed, the average event delivery distance reaches its minimum of about 1.7 hops when L is
approximately 15R.

4.10.3 Bandwidth Distribution

DCP distributes complex event processors throughout the network using the Regional GHT.

We test the network traffic with three different detection techniques: Centralized Processing

(No DCP), DCP without Temporal Rehashing, and FULL DCP (with Temporal Rehashing).

All three experiments detect the people chasing events at the base-station. Figure 4.18

shows the experimental results. The centralized algorithm, sending all primitive events

back to base-station without in-network aggregation, creates a serious hot spot near the

base-station. When DCP is used, the network traffic is evenly distributed. The network

traffic in the center of the sensor field is more than the traffic on the edge of the field. This
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Figure 4.18: Bandwidth distribution comparison of Centralized Processing (left), DCP
(right), and DCP without Temporal Rehashing (middle). Centralized algorithm sends all
primitive events back to base-station. Both DCPs send people chasing events back to base-
station. Figures show the node traffic distribution created by all event packets.

is because the moving objects tend to move near the center where more events are created.

Without Temporal Rehashing, traffic still tends to build up around several locations where

the event processors are placed. By using temporal rehashing, DCP further balances the

network traffic.

It is worth noting that abstractions that allow neighborhoods or regions of nodes to

be defined would not allow purely local aggregation. A technique similar to our Interest

Area approach would be required to find matches that span regions. This difficulty is a

core reason we avoid the intermediate notion of region and proceed directly to data-centric

event constraints.

4.10.4 Bandwidth Usage

Not only does DCP balance the network traffic, it also reduces the number of radio trans-

missions because events are usually sent to close destinations and require fewer hops. Fig-

ure 4.19 shows that DCP cuts the total network traffic by about 65%. Equally important,

the traffic of the busiest node is much lower under DCP and grows slowly with additional

moving objects, prolonging network lifetimes. The adoption of Temporal Rehashing further

reduces the requirements on the most heavily loaded node by sharing the work of event

processing over time.
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Figure 4.19: The bandwidth usage comparison of centralized algorithm, DCP without tem-
poral rehashing, and DCP. The number of moving objects is increased from 2 to 6 (including
the guard object). Left image shows the total traffic in the network. Right image shows
the traffic of the busiest node. DCP uses much less bandwidth in both cases.

4.10.5 Node Failure

The fault-tolerant aspect of GHTs is discussed in detail in [39]. Here we show the high-

level impact of this fault-tolerance. We show how the ability of the sensornet to detect

high-level events is affected by the loss of camera and radio nodes. Our example object

tracking application depends on radio connectivity, but also on camera coverage to detect

the low-level events in the first place. As cameras and radios are lost, detection suffers.

We run the simulations with fewer nodes and report the number of complex peo-

ple chasing events detected. Dead nodes are unable to generate person detected events

nor communicate through radio. We examine the low-level person detected events detected

by the live nodes to calculate the ideal number of people chasing events that could possibly

be detected in each simulation. We show the actual number of high-level events detected as

a measure of performance. We also repeat the simulation with nodes that function as radio

nodes, but lack cameras. This separates the influence of network connectivity and sensor

availability. Figure 4.20 shows that at densities over 70% of our baseline, there is little effect

on the aggregation abilities of DCP. In all cases, about 5-8% of high-level events are missed,

perhaps due to network partition or congestive losses. Below 70%, radio coverage becomes
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Figure 4.20: The effect of node density on DCP effectiveness. Simulations are run with
different node densities, from 200 cameras in a 300m by 300m field, down to 100 cameras.
With fewer cameras, fewer high level events are detected due to lack of camera coverage,
and decreased radio connectivity. The top line show how many high-level events could be
detected if all low-level events were aggregated. The middle line shows how many high-level
would be detected if some percentage of cameras, but not radios, are turned off. The bottom
line shows the effect of complete outages (camera and radio). Results are the average of
five simulations.

a problem. If the “dead” cameras continue to function as radio nodes, DCP performs well,

still finding about 90% of potential complex events. However, if “dead” nodes have neither

camera nor radio, the success rate of DCP detecting complex events degrades to about

75%.



Chapter 5

Probabilistic Object Tracking

Cross-camera object matching is an important application in visual sensor networks. It

allows moving objects to be tracked over a larger space than that be covered by any single

camera. Each camera view covers a fraction of the whole monitored space. The camera

views can be either isolated or overlapped. The goal of object tracking is to reidentify objects

as they move between camera views. When objects move from one place to another, they

will be captured by different cameras. Object matching is accomplished by identifying

equivalent objects detected in different cameras, based on object specific features.

5.1 Single Camera Object Tracking

When an object appears in a camera view, it usually appears in multiple consecutive image

frames within a time window. Tracking objects within a single camera view is relatively

easier and more straightforward than cross camera tracking. Objects detected in consecutive

image frames in a single camera share similar illumination conditions, view angles and view

distances. The similarity in object appearances makes the object features more reliable in

object matching. Besides, objects usually move at known speed and won’t immediately

change their locations. Objects in consecutive image frames can be easily tracked by their

relative locations and moving directions. In this thesis, we assume that single camera object

45
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tracking is solved and can yield reliable object matching results. Instead, our work focuses

on cross camera object tracking where large object matching error rates may occur and

studies how to improve the matching performance using probabilistic methods.

5.2 Feature Matching

In computer vision, features are parts of images that the vision problem or application

is interested, and are often associated with abstract image information called feature de-

scriptors. There are many different types of features that have been used in various vision

algorithms. Corners, for example, are image points where two edges intersect, and are rep-

resented by the pixels in the local neighbourhood. Color histograms, on the other hand,

are properties of blobs of image pixels, and are usually in the form of multi-dimensional

histograms. Feature detection is the process of finding these application specific features in

images and computing their descriptors.

To match objects using any object feature such as corners, color histograms, contours,

gradients, and so on, common steps are performed in the following order. First, each camera

isolates the foreground using background subtraction, resulting in blobs of image pixels.

Next, feature descriptors are computed upon the image blobs using feature generators.

Finally, descriptors are compared using feature matchers to determine if they belong to

the same objects. Acting individually, a feature matcher might compute the distance or

similarity between two descriptors, and then compare the match result to a preset threshold

value to determine if two objects match.

Desirable features must be repeatable. Similar features should be detected in different

images of the same scene. Repeatable features are important to object tracking applications.

Features from the same objects can not vary too much in order to be matched correctly.

However, this is not always true in cross camera matching where illumination conditions,

view angles and view distances may be quite different among cameras. This causes many

features to work much less well in cross camera matching than in single cameras.
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An object tracking system based on any individual feature may be incorrect. If the

feature matcher determines that two different objects are the same but they are actually

not, it is a false-positive match. On the other hand, if the feature matcher thinks the

same object is two different objects, it is a false-negative match. These errors come from

several sources. First, background subtraction can be imperfect. The foreground image

blobs of the objects can be missing pixels, or contain pixels from the background or from

other overlapping objects. These errors introduce noise when the foreground image blobs

are used to compute the object feature descriptors. Second, image blobs are 2D projections

of 3D objects. Image blobs of the same objects may vary considerably when the objects

are seen by the cameras from different angles and distances, or under different illumination

conditions. Third, each object feature has its own strengths and weaknesses that cause

them to work well in some scenarios and poorly in others. For example, color histograms

are usually a good object feature for object matching. However, in dimly lit environments,

the colors on the objects will be less vivid and color histogram matching will be less effective.

Further, if a team of uniformed individuals walk by, color histograms will not be a strong

indicator of object similarity. In these scenarios, alternative object features may be more

accurate for object matching.

The common way to compare two object features descriptors is to compute their simi-

larity or difference value. Each feature type has its own way to measure feature similarity.

Histogram based features, for example, often compute the euclidean distance or the inter-

section distance as the difference value [44]. Similarity is the complementary value of the

feature difference. For difference value normalized between [0,1] where 0 means no difference

and 1 means completely different, similarity value can be defined as 1− difference. Given

a similarity value between two object features, a feature matcher compares the similarity

to a predefined threshold. If the similarity is larger than the threshold, the matcher votes

“same” as the object matching result, otherwise “different”.

Figure 5.1 shows an example object matching test using the RGB color histograms.

The matching result is the similarity of the RGB color histograms of two testing object
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Figure 5.1: Normalized distribution of a RGB color histogram matcher based on 4k test
samples. The horizontal axis shows the similarity matching results of two testing image
blobs using RGB color histograms, scaled into range [0,1]. The similarity range is divided
into 100 bins. In each bin, the number of matches and unmatches are counted separately.
The overlapping area shows where the matcher may give incorrect votes.

blobs, scaled into range [0,1]. The dark line is the matching result distribution for true

matches. The gray line shows the similarity distribution when comparing different objects.

This object feature matcher achieves maximum matching accuracy using a threshold value

0.60. Using this threshold, the matcher votes “same” when similarity values are above 0.60,

otherwise “different”. However, while matching votes are always correct when similarity

values are below 0.38 or above 0.80, similarity values between 0.38 and 0.80 can come from

both true matches and false matches and will inevitably lead to wrong votes.

5.3 Multiple Feature Fusion

Since any object feature can match objects incorrectly and its matching accuracy can vary

greatly in different scenarios, using a single object feature for cross camera object tracking

is suboptimal. Instead, using multiple object features together can overcome the hard times

when some features fail to give correct matches. The fundamental problem becomes how

to fuse matching informations from several features when there is disagreement.
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5.3.1 Majority Vote

One intuitive way to combine multiple feature matchings is to ask each feature matcher for

a binary vote on whether two blobs match. The votes for “same” match and “different”

match are counted, then the majority vote is picked as the final match decision. We call this

fusion method the Simple Majority Vote (SMV). This approach suffers because the binary

matching votes of each matcher do not consider how reliable each individual algorithm’s

votes are.

The reliability of the feature algorithm can impact the fusion in several ways. First,

each feature algorithm may have different matching accuracy across different camera pairs.

For example, if two cameras share similar illumination conditions, RGB color histograms

may work well. But for a pair of cameras, one in a bright place and the other one in a dark

room, RGB color histograms will perform poorly. Treating matching votes from different

feature algorithm indiscriminately will lower the fusion accuracy towards the less accurate

features. If we assign less weights to the less accurate features in the function, the accuracy

of the fusion function will be closer to the more accurate features. This method is often

called the Weighted Majority Vote (WMV). One way to derive the weights is to use the

historical matching performance values as the weights of each feature.

Second, each individual matching vote from a feature can vary in its reliability too.

As in the previous RGB color histogram matcher example shown in Figure 5.1, when the

computed match result is above the threshold 0.6, the matcher votes for a match and is

usually correct, but the closer the match result is to the value 0.6, the probability is higher

that the match vote is incorrect. Intuitively, if a feature matcher is uncertain about its

votes, its votes should be given less weight in the final decision other than simply using

majority vote which treat each vote the same.

5.3.2 Matching with Confidence

An improvement on the above method might employ confidence scores generated by the

feature matchers. Then larger weights can be assigned to feature matching votes that report
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higher confidence scores in the final fusion function. In the simplest case, a feature matcher

like the RGB matcher discussed above, might report low confidence when the similarity

metric is near 0.6.

Going further, matchers might also be supplied with extra information about the cur-

rent environment or recent object appearances. The added information would allow them

to measure how confident they are about their matching votes. For example, we might

provide illumination information to color histogram matcher to help it decide whether the

environment favors a strong weighting of its results.

Unfortunately explicit confidence scores can be difficult to implement because their ac-

curacy is highly dependent on the feature designer’s understanding of the feature’s strengths

and weaknesses as well as a clear and complete description of the characteristics of optimal

environmental conditions for the matcher. Worse, all feature algorithms would need to

agree upon a unified measure of their confidence scores so that they can be fused “fairly”.

Consensus on such a detail is unlikely to be reached easily, which would limit the use of

independently developed feature matchers.

One way to remove the complexity of measuring confidence internally in each feature

algorithm is to use the Weighted Majority Algorithm(WMA) [25]. WMA assumes no prior

knowledge about the accuracy of the algorithms in the voter pool. Instead, the confidence

scores of the algorithms are computed by comparing their historical performances. WMA

puts a weight on each feature to express its accuracy, based on the feature’s agreement

with known ground truth. WMA does not require confidence information from the feature

algorithms and is easy to implement. However, putting one weight on each algorithm will

not work well as scenarios change. If the environment or objects change, a single weight

won’t adjust to cope with the feature matchers’ performance variations. In online tracking

applications, step-by-step ground truth is not available, so weights cannot be adjusted.

In online scenarios, a super majority vote could be used in place of ground truth, allowing

for dynamic adjustment of weights. For example, weight suppression might be applied to

matchers that disagree with a conclusion that 80% of matchers agree on. We have studied
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using online WMA for object matching but found its performance is very sensitive to its

internal parameters such as the weight suppression factor, the super majority threshold,

and the minimum weights which are used to prevent the weights from being decreased to 0.

With careful tuning, WMA can work well in certain test scenarios while performing quite

poorly in others. We believe that online WMA is too fragile to be used in our object tracking

applications and need to find a more robust approach to utilize empirical confidences.

5.3.3 Matching with Probability Distribution

This thesis presents a new technique to fuse multiple feature matching results using his-

torical match probability distributions. We build match probability tables that correlate

historical match probabilities for various reported similarity levels from each feature match-

ing algorithm. Then, for online matching, we fuse the values from the match probability

tables to make a final match decision. This technique doesn’t require explicit knowledge

about when an object matcher is confident about its votes. Nor does it require that the

match similarities scale linearly, or even monotonically with match likelihood.

Instead, our fusion technique derives match probabilities for each matching algorithm

using empirical samples, not fixed formulas, so feature matchers don’t need to know about

confidences, or even how their match similarities correspond to match probabilities — they

require no threshold, for example. Moreover, the fusion process provides a unified confidence

measure defined at an arbitrarily fine scale without explicit knowledge of the environment.

With this technique, new feature matchers can be added into the fusion function with ease.

Incorporating reliable confidence scores for match votes into the the fusion function can

boost the object matching performance in cross-camera object tracking. Computing confi-

dence scores with the feature matchers’ empirical performance is more robust than asking

designers of feature matchers to compute their confidence values. The derived confidence

values are from real-life matching samples, not from the feature designers’ guess work. The

Weighted Majority Algorithm (WMA) implements confidence by suppressing weights when

the algorithm gives wrong predictions. However, in WMA, a single weight is used for each
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feature matcher in all possible situations derived during training and is not responsive to

the algorithm’s performance variation under different circumstances. Or, if weights are ad-

justed dynamically, the lack of ground truth at runtime may lead to incorrectly decreasing

the weights of algorithms despite their correct choices.

Our probabilistic object tracking system consists of two phases. In the offline training

phase, we collect ground truth data and run the feature matchers to build match probability

distributions. These distributions indicate, for each reported similarity score, how often the

two compared image blobs were actually from the same object. In the runtime phase, we

use the reported values only to extract probabilities from the historical tables. We fuse

these derived probabilities rather than the scores reported directly from the matchers.

Building Match Probability Tables

Before we start matching objects, we need to build the match probability distributions

for all feature matchers. A match probability distribution is a table containing pairs of

similarity scores and their corresponding match probabilities reflecting historical results

when the given score was reported by that matcher.

To build the match probability distribution of a feature matcher, we first collected a

training dataset of image blobs and label each blob with an object id. Image blobs of the

same object are assigned the same object id. These object ids are used as the ground truth

data during training. When a feature matcher compares two object feature descriptors, a

matching result r between 0 and 1 is computed between these two descriptors. We divide

the matching result range into N bins with equal width. For each bin, we keep two counters

Ct, the number of matches, and Cf , the number of non-matches (based on ground truth).

Let’s assume the matching result r lies in the ith bin. Without requiring the matcher

to vote by comparing the matching result r to some threshold, we simply increment Cti

or Cfi depending on whether it is an actual match in the training dataset. Our training

set consists of an equal number of matches and unmatched tests to build up two arrays of

counters Cti and Cfi , i = 1, ..., N . We call these two arrays the match probability table of
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this feature matcher.

Taking RGB color histogram as an example of object features, Figure 5.2 shows the

match probability distribution of the same RGB color histogram matcher shown in Fig-

ure 5.1. The bins in which the values are neither 100% or 0%, indicate similarity scores for

which the matcher cannot be completed “trusted.” Historically, when the RGB matcher

reports 0.6, about 40% of the samples where actually matches, while scores above 0.78 were

only given to true matches.

Figure 5.2: Match probability of a RGB color histogram matcher. Scores above 0.78 were
only given to true matches. Scores below 0.37 always indicated a non-match. In between,
the table captures the likelihood of a match for any particular score.

Matching with Probabilities

Using match probability tables, feature matchers are not required to cast a decisive vote on

an object comparison. Instead, each matcher only contributes its own probability estimate

based on their feature matching result. With a large training dataset covering many real-life

scenarios, the probability values produced by the match probability tables indicate the real
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likelihood of a match.

In a runtime object tracking application, we use M different object features. Once an

object is detected and its image blob is extracted by background subtraction, all M features

are computed for the object. To compute cross-camera matches, each feature matcher

computes the matching result r for two object feature descriptors. The fusion process

consults the match probability table to locate the bin corresponding to the matching result

r, and computes the probability value p,

p =
Ct

Ct + Cf

In Figure 5.2 the values of bars also show the match probability values produced by the

match probability table of the RGB color histogram. When the match probability is close

to 100%, it indicates a probable match, while close to 0 means a match is unlikely based

on the matcher’s historical performance. When the match probability is 50%, the matcher

is completely uncertain whether it’s a match or not. In special cases where Ct = Cf = 0

in a bin, the training dataset doesn’t produce any sample that lies in the bin. In these

cases, we can either set p = 50% or down-sample the match probability tables to coarser

distributions. We might also set p = 50% when Ct + Cf is too low and doesn’t represent a

statistically valid probability.

With match probabilities pi, i = 1, ...,M from all features, we compute the final match

probability as the average of all pi,

P =

M∑

i=1

pi

M

If the final match probability P is above 0.5, we say it’s a match.

There are other ways of combining probabilities. For example, if the features are inde-

pendent, we can also fuse the probabilities logarithmically [3]. However, we don’t expect

independencies among features and therefore we use linear average instead. Machine learn-

ing techniques, such as neural networks, can also be used on these probability values from
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each feature to capture the importance of and relations among these features. In our ex-

perience, machine learning algorithms can sometimes yield better matching performance

comparing to linear averaging, but the improvement is limited and is always at the expense

of more computational resources. In the thesis, we argue that using probabilities instead of

binary votes can boost the matching performance, even with simple combining techniques.

We prove this argument in the next section by using simple linear averaging to fuse the

probabilities.

5.4 Fusion Performance Study

In order to evaluate our fusion technique in cross-camera object tracking, we set up a camera

network in an indoor environment with 9 D-Link DCS-900 Internet cameras [8]. Figure 5.3

shows the floor plan of our testing environment and the locations and orientations of the

cameras. These cameras take VGA sized (640x480) pictures at about 5 frame per second.

Sample images from these cameras are shown in Figure 5.4. Image frames in Motion JPEG

format are streamed to data collection computer servers through network connections. The

cameras, labelled with unique IDs coming from the last digit of their IP addresses, are

shown in Figure 5.3. We gathered various scenarios in which six individuals of varying

height, sex, and clothing walked around the area covered by the camera network. A dataset

of about 10 minutes of images is collected from all cameras. We ran background subtraction

on all image data and collected about 4,200 foreground image blobs. Each image blob was

manually labelled with the corresponding person’s name as the IDs of the objects. The

whole dataset gives us about 7.6 million different blob pairs , each containing two blobs

from two different cameras.

We have implemented several groups of object features based on different aspects of

object appearances. The first group consists of several color-based features. We select

color histograms in four different color spaces, the RGB, HSV, Intensity, and RG Chro-

maticity [32] which works well in unevenly lit environment. We added another color-based
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Figure 5.3: Indoor camera network using D-Link cameras and the floor plan. The cameras
are labelled with their unique IDs.

feature, Auto Correlogram [18], which tolerates object appearance changes due to changes in

viewing position and camera zooms. The last color-based feature is called Vertical Gradient

which divides the image blob from top to bottom into several slices with equal height, and

then computes the average intensity of all pixels in each slice to build a vertical histogram.

The second group consists of shape-based features. In this group we created a simple feature

which computes the height-width ratio of the objects, and another histogram feature, this

time based on the contours of the objects. A contour histogram is built using the slopes of

all edges on the contour of the objects. The third group contains gradient-based features.

This group includes Harris corners [15] and SIFT features [26]. In our implementation of
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Cam 58 Cam 66 Cam 91

Cam 112 Cam 121 Cam 126

Cam 128 Cam 129 Cam 139

Figure 5.4: Sample images of D-Link cameras. The cameras are set up in a way that the
object appearances in each camera view are quite different in terms of view angle and view
distance, except Cam 128 and 129 which have similar views.

these feature algorithms, we did not optimize the feature generators and feature match-

ers to achieve best matching performance because we wanted to investigate whether our

proposed fusion technique would work on reasonable, if not perfectly tuned, algorithms.

Table 5.1 shows the list of features and fusion algorithms used in our tests and their name

abbreviation that are used later.

We implemented a feature detector and a feature matcher for each feature algorithm.

In feature matching, the similarity scores of HSV, Intensity, RGB, RG Chromaticity, and

Contour histograms are derived from the intersection distance. Vertical Gradient uses

euclidean distance. These choices come from our experience and give decent matching
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Category Feature Name Abbreviation

Auto Correlogram AC
Contour Histogram CH
HSV Histogram HSV
Height/Width Ratio HWR

Object Harris Corner HC
Features Intensity Histogram INT

RGB Histogram RGB
RG Chromaticity RGC
SIFT SIFT
Vertical Gradient VG

Simple Majority Vote SMV
Fusion Weighted Majority Vote WMV
Algorithms Weighted Majority Algorithm WMA

Probabilistic Matching PROB

Table 5.1: Name abbreviations of all features and fusion algorithms

performance on our dataset. Auto Correlogram uses L1 distance as recommended in [18].

Harris Corner and SIFT features contain a list of detected feature points. They compute

the similarity score as the ratio between the number of the matched points and the size of

the shorter point list of two features. Height/Width Ratio simply divides the smaller ratio

over the larger ratio to get a score within range [0,1].

To show the overall match probability distributions of each feature algorithm, we com-

pute descriptors of all image blobs for all feature algorithms, then compute the match

results of all cross-cameras image blob pairs. We implemented features matchers in ways

that all matching results are similarity scores in range [0,1]. These similarity scores are

used to build the match probability distributions over 100 bins. Figure 5.5 and 5.6 shows

the match probability distribution of all feature algorithms in our experiments. They also

show the required storage and computation resources for each feature algorithm which we

will discuss later in Section 5.4.5.

A few properties are striking. The Vertical Gradient may be the most well-behaved

feature. Starting at a similarity score of about 0.2, there is a very nearly linear increase

in match probability as the score rises to 0.9. If the similarity score were scaled to stretch

the 0.2–0.9 range over the range 0.0–1.0 it would approximate a match probability. On
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Figure 5.5: Match probability distributions of color-based feature algorithms . Under each
graph, the average feature size, average feature generation time, and average match time
for two blobs are shown.

the other hand, all features exhibit an interesting anomaly that only our fusion technique

handles well. Similarity scores close to the the lower range do not seem to indicate that the

a match is extremely unlikely, which is what one might conclude after examining the higher

and middle range. We speculate that these very “poor” scores often occurred between a

“normal” blob, and another blob from the same object that was partially obscured by the
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Figure 5.6: Match probability distributions of non-color-based feature algorithms . Under
each graph, the average feature size, average feature generation time, and average match
time for two blobs are shown.

edge of a frame. These very poor scores are not as indicative of a mismatch as they might

seem. Finally, we can see that the SIFT feature performs poorly, with almost no trend

toward definite matches with higher scores. This is likely because our blobs are quite small

for SIFT features, and because SIFT features are better suited to images like buildings

and graphics, and less suited to the fairly simple shapes and gradients of humans and their

clothing. SIFT feature is also sensitive to view angles so it won’t work well with cameras

with large view angle variations.

5.4.1 Matching across all cameras

To evaluate the matching performance of the probabilistic object tracking framework, we

ran a matching test across all 9 cameras. The complete dataset is divided into a training

dataset and a test dataset. The training dataset size is 9 times the size of the test dataset.
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We never duplicate test data from the training process. We compute the matching accuracy

of the probabilistic matching method and the accuracy of using individual algorithms. The

individual algorithms vote using thresholds derived to minimize errors over the training

data.

We add three fusion algorithms to compare to our fusion technique. The first one is the

simple majority vote (SMV). The second one is the weighted majority vote (WMV) using

the feature algorithms’ empirical accuracy values from the training dataset as the weights.

The last one is the Weighted Majority Algorithm(WMA). As we mentioned in Section 5.3.2,

WMA is sensitive to its internal parameters and suffers from the lack of online ground truth

data. Instead of starting with equal weights and letting the weights change over time during

the tests, we run the WMA with the training dataset and average the weights from all data

samples to be the WMA’s initial weights for testing. During the tests, we do not change

the weights because we assume no online ground truth. We ran the WMA weights training

for many rounds with different combination of suppression rate and minimum weights and

calculate the accuracy with test data. Then we pick the best accuracy among all rounds to

represent the WMA’s performance.

Table 5.2 shows the accuracy of all feature algorithms and the comparison results of

all fusion algorithms. As we can see, the SIFT feature performs worst as we expected,

giving the lowest accuracy. All color-based features work better than others. All fusion

algorithms have the matching performance close to the RGB Histogram which works best

among all feature algorithms. The probabilistic matching method performs better than all

comparison fusion algorithms, and also outperforms the best single feature algorithm, with

a 1.1% absolute boost.

From Table 5.2, we can see that all individual feature algorithms work poorly, with

the best accuracy of 60.9%. This is reasonable because we test over blob pairs across all

cameras. In our setup, each camera has unique illumination conditions, view angles, and

view distances to moving objects. Mixing blob pairs from all cameras undoubtedly won’t

favor any feature algorithm in our test.
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SIFT 50.4%

Height/Width Ratio 50.9%

Contour Histogram 52.1%

Harris Corner 52.8%

Vertical Gradient 57.6%

Intensity Histogram 58.1%

HSV Histogram 58.7%

RG Chromaticity 59.5%

Auto Correlogram 60.5%

RGB Histogram 60.9%

SMV 60.4%

WMV 60.6%

WMA 60.7%

Probabilistic Matching 62.0%

Table 5.2: Matching accuracy of all feature algorithms and fusion algorithms across all
cameras. The result is based on 7.6 million cross-camera blob pairs. 9/10 of the blob
pairs are used as the training dataset, while the rest 1/10 constitute the test dataset.
The accuracy values are sorted separately in ascending order. The accuracy of all fusion
algorithms are close to the best feature algorithm, but only the Probabilistic Matching
method outperforms the best feature algorithm.

5.4.2 Matching between camera pairs

Feature algorithms will work better if they are trained and tested separately for each indi-

vidual pair of cameras, because using data only from the same camera pair will eliminate

lots of environmental variations that decrease the matching performance. At the same time,

we expect the fusion algorithms should achieve better performance boost since only votes

from same pairs of cameras are aggregated.

We performed another test to isolate this effect. This time the training and test dataset

are divided in sub-groups so that data samples in each group are from the same pair of

cameras. The results are shown in Table 5.3. The first column is the IDs of the pair of

cameras under test. The second column shows the algorithm in the all features that has

the best matching accuracy. The 3th to 6th columns show the matching accuracy of the 4

fusion algorithms, SMV, WMV, WMA and Probabilistic Matching respectively. Since we

are averaging results from multiple test runs, it is not fair to use different parameter settings

for WMA in each round. So we set up the WMA to use a fixed suppression rate of 0.95,
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and the minimum weights is set to 0.01. These parameters come from our experiences and

are likely to produce good matching performance. The last two columns are the absolute

and relative performance boost of the probabilistic matching to the best single algorithm.

The absolute performance boost is the absolute difference of the matching accuracy. The

relative performance boost is the value of the absolute boost divided by the the error rate

(1 - accuracy) of the best single algorithm. A positive boost value means our probabilistic

fusion method works better than the comparison best single algorithm. Figure 5.7 shows

the matching accuracy in ascending order by the best feature algorithms.
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Figure 5.7: Sorted matching accuracy for matching between camera pairs. The graph is
sorted in ascending order by the accuracy of the best feature algorithm for each camera
pair. The probabilistic matching method (red lines) almost alway outperforms the best
feature algorithms (black lines) and the other comparison fusion algorithms.

As we expected, the best feature algorithms from all camera pairs are all color-based

algorithms. However, the best feature algorithm of each camera pair is different, as shown

in Figure 5.8. In most cases, SMV and WMV’s performance are close to the best feature

algorithms, sometimes a little better, other times a little worse. WMA’s performance varies

a lot. In several cases, it works very well (e.g. Cam Pair 128/129), but often its accuracy is
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Cam Pair Best Ft/Acc SMV WMV WMA PROB Abs Boost Rel Boost

58/66 AC/59.4% 60.7% 60.6% 60.7% 66.7% 7.3% 17.9%

58/91 HSV/70.7% 68.9% 69.3% 70.0% 73.5% 2.8% 9.7%

58/112 RGC/69.1% 70.3% 70.2% 68.3% 72.3% 3.2% 10.5%

58/121 RGC/58.3% 59.7% 59.4% 59.7% 61.8% 3.5% 8.5%

58/126 VG/60.7% 60.4% 60.4% 55.3% 63.6% 2.9% 7.4%

58/128 VG/64.4% 63.0% 63.0% 62.3% 67.1% 2.7% 7.6%

58/129 VG/62.1% 62.2% 62.3% 55.3% 67.2% 5.0% 13.3%

58/139 HSV/65.3% 64.9% 64.6% 66.0% 70.3% 5.0% 14.5%

66/91 RGB/65.8% 64.7% 64.8% 66.2% 69.1% 3.3% 9.6%

66/112 RGC/62.0% 57.5% 56.8% 50.7% 69.1% 7.1% 18.7%

66/121 RGC/61.6% 59.8% 60.3% 58.2% 66.6% 5.0% 13.1%

66/126 RGC/61.5% 60.6% 60.6% 59.1% 67.1% 5.5% 14.4%

66/128 RGB/77.4% 71.1% 71.2% 77.0% 79.2% 1.8% 7.8%

66/129 RGB/77.9% 72.3% 72.3% 77.3% 79.5% 1.6% 7.3%

66/139 HSV/71.0% 69.0% 68.7% 68.8% 74.9% 3.9% 13.4%

91/112 RGC/68.4% 65.1% 67.4% 55.2% 69.8% 1.4% 4.3%

91/121 RGB/59.1% 59.3% 59.4% 57.8% 62.6% 3.5% 8.6%

91/126 VG/62.4% 63.9% 64.2% 58.9% 65.5% 3.1% 8.2%

91/128 VG/66.9% 67.0% 66.9% 67.7% 68.6% 1.7% 5.0%

91/129 VG/67.6% 66.1% 66.2% 66.2% 68.2% 0.6% 1.9%

91/139 RGB/67.3% 69.7% 69.2% 67.8% 71.4% 4.1% 12.6%

112/121 RGC/67.9% 62.2% 64.0% 63.4% 70.1% 2.1% 6.6%

112/126 RGC/71.2% 64.7% 65.5% 63.7% 71.3% 0.1% 0.3%

112/128 AC/63.9% 58.0% 62.8% 53.3% 68.5% 4.6% 12.7%

112/129 RGC/62.0% 60.2% 58.7% 49.4% 67.7% 5.7% 15.1%

112/139 RGB/65.5% 60.1% 60.3% 60.9% 72.8% 7.3% 21.0%

121/126 RGB/66.4% 62.9% 63.0% 64.8% 71.5% 5.1% 15.2%

121/128 RGB/57.5% 58.1% 57.5% 50.8% 65.2% 7.6% 18.0%

121/129 RGB/58.0% 59.1% 57.3% 50.4% 66.6% 8.6% 20.5%

121/139 RGB/58.2% 59.6% 59.7% 56.6% 64.4% 6.2% 14.9%

126/128 RGC/65.0% 63.3% 63.9% 54.1% 67.9% 2.9% 8.1%

126/129 RGC/65.3% 62.7% 63.7% 50.8% 69.7% 4.4% 12.8%

126/139 RGB/65.4% 63.8% 64.8% 53.8% 68.5% 3.1% 8.8%

128/129 RGB/85.8% 83.6% 84.2% 86.8% 85.8% 0.0% 0.0%

128/139 RGB/72.7% 70.3% 69.7% 72.3% 79.1% 6.4% 23.5%

129/139 RGB/72.8% 72.3% 72.1% 70.5% 79.3% 6.4% 23.6%

Table 5.3: Camera-pairwise matching accuracy of all feature algorithms. For each pair of
cameras, 9/10 of all blob pairs are used as training dataset, while the rest 1/10 constitute the
test dataset. We show the best feature algorithm and its accuracy, as well as the accuracy
of 4 fusion algorithms. The Abs/Rel Boost are the performance boost of the probabilistic
matching method over the best feature algorithm.
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closer to 50%–random chance. Without online groundtruth, fixed weights from the average

weights of training data are oftentimes not suitable for the test data. For all camera pairs

under test, our probabilistic matching method works better than the two comparison fusion

algorithms SMV and WMV. It also always works better than the best single algorithm

except one camera pair 128/129. The absolute performance boost reaches 8.6%. The

relative performance boost reaches 23.6%. The average absolute performance boost is 4.0%.

And the average relative performance boost is 11.5%. Both are better than matching

across all cameras in the previous experiment. In the only test case where our probabilistic

matching method works no better than the best single algorithm, the two cameras 128

and 129 share very similar views with same view distance and illumination conditions,

as shown in Figure 5.4. And in this test case, the best single algorithm, the RGB color

histogram works very well with matching accuracy more than 85%. These results suggest

that our probabilistic matching algorithm are usually beneficial in boosting object matching

performance, especially with camera pairs that have large variation in camera views where

no single feature algorithm achieves very good results. In these cases, our probabilistic

matching method, will increase the cross camera object matching accuracy.

R�B��1�

R�C��11

V���6

H�V��3

AC��2

Figure 5.8: Best features in matching between all 36 camera pairs. There is no single feature
algorithm works best all the time. RGB color histogram works well in general, but over
half of time it is outperformed by other features.
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Table 5.4 shows the average absolute and relative performance boost of the probabilistic

matching method over 5 runs with randomly generated training and test datasets. In all

camera pairs, our probabilistic method always boosts the matching performance up to 9.6%

absolute and 22.9% relative.

66 91 112 121 126 128 129 139

58
7.1%/ 2.8%/ 3.3%/ 3.0%/ 2.9%/ 2.3%/ 4.7%/ 5.3%/
17.6% 9.5% 10.4% 7.2% 7.5% 6.6% 12.8% 15.2%

66
3.2%/ 8.0%/ 4.9%/ 5.7%/ 1.8%/ 1.6%/ 3.9%/
9.5% 21.2% 13.1% 14.8% 8.0% 7.5% 13.9%

91
1.2%/ 3.6%/ 3.2%/ 1.6%/ 0.4%/ 4.4%/
3.7% 8.7% 8.6% 4.8% 1.2% 13.5%

112
3.6%/ 1.4%/ 5.5%/ 7.6%/ 7.6%/
11.2% 4.6% 15.0% 19.7% 22.2%

121
5.4%/ 7.3%/ 9.6%/ 6.1%/
16.0% 17.3% 22.8% 15.0%

126
2.8%/ 4.1%/ 3.4%/
7.9% 11.6% 9.8%

128
0.1%/ 5.6%/
0.6% 21.1%

129
6.2%/
22.9%

Table 5.4: Average absolute/relative matching accuracy boost of the probabilistic matching
algorithm. Data are average of 5 test runs with different randomly generated training/test
datasets. In all tests, the probabilistic fusion method is able to boost object matching
performance.

5.4.3 Number of Bins

The probability distributions are counters over a set of bins with equal width. In the

previous experiments, the default number of bins is set to 100. In this section, we study the

effect of changing the number of bins. We select 3 different camera pairs from the previous

experiments that our fusion algorithm works very well (66/112), average (58/91), and not

so well (128/129) based on the relative accuracy boost value. Cameras 66 and 112 see very

different view angle/distance and object moving pattern. Cameras 58 and 91 capture the

front and back of moving persons respectively. Cameras 128 and 129 have overlapping views
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and similar view angles and distance. The results are shown in Figure 5.9.

1� 1�� 1��� 1����

66/11� 1�.��% �1.��% 34.��% 7�.��%

5�/�1 6.��% �.5�% 11.��% 34.5�%
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Figure 5.9: Average relative matching accuracy boost of the probabilistic matching algo-
rithm with different number of bins. Data are average of 5 test runs with different randomly
generated training/test datasets. The results show a trend of increasing performance boost
with larger number of bins.

From the test results, we see a trend that the probabilistic matching method works better

with larger number of bins. Even with camera pairs that share similar views, increasing

number of bins still achieves better matching performance. However, larger number of bins

means more data to store the probability matching tables. With bin count = n, the total

number of storage require for each feature algorithm is (2 ∗ n+2) ∗ sizeof(int). It requires

about 800K bytes storage to store 10 probability match tables with bin count of 10000

(with 4 bytes integers). So the number of bins are bounded by the available capacity of

on-board storage on each camera node minus the amount needed for feature computation

and matchings. Also, depending on the number of training data, the bin count should be

small enough so that each bin has enough number of matching and unmatching samples.

Otherwise, if the bin count is too large comparing to the size of training dataset, the counter

values of lots of bins will be very small or even zero, creating an overfitting problem. The

training dataset has to include groundtruth data which usually requires manual object

identification and will not be arbitrarily large. In real-world applications, a suitable bin
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count will have to take into account both available storage capacity and training data.

5.4.4 Object Matching

As we mentioned earlier, tracking objects in a single camera is relatively easy. Due to

temporal adjacency, objects in consecutive image frames can be tracked with very high ac-

curacy. When tracking objects across cameras, if the object descriptors contain information

from more than one frame, the object matching can achieve better accuracy by leveraging

the extra information in descriptor comparison.

In all previous experiments, each object contains only one image blob. We run another

test to measure the matching accuracy improvement of using objects containing multiple

images blobs. We traverse the whole dataset. In each camera, we combine every n blobs in

consecutive image frames into a single object representation. Then we divide all objects into

training and test datasets and run the cross-camera object matching experiments. When

matching two objects, individual feature algorithms compute the matching results of all

n∗n blob pairs between two objects. All n∗n matching results are compared to the feature

algorithm’s threshold to generate a “yes” or “no” vote on whether the two blobs match.

Then the majority vote of the n∗n blob matching votes are used as the final vote for object

matching. The probabilistic matching method, on the other hand, averages the derived

matching probabilities from all n ∗ n blob pairs. In this experiment, we use half of the

objects in training, and the other half in testing. Table 5.10 show the experiment results

when n = 1, 3, 5 respectively.

From the table we can see that when the objects contain more frames, the matching

accuracy of the best feature increases. At the same time, the probabilistic matching algo-

rithm continues to improve performance. The experiment confirms that the high tracking

accuracy in single camera can be utilized to improve cross-camera objects tracking.
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Figure 5.10: Object matching accuracy boost of the probabilistic matching algorithm with
different frame counts. Here are average results of 5 runs from 3 different camera pairs.
When the objects contain more frames, the matching accuracy of the best feature, as well
as the probabilistic fusion algorithm, both increase.

5.4.5 Resource Usage

In the object matching experiments, the features from independent frames are compared

independently. However, if object features are provided with efficient aggregation methods,

features can be combined to save the bandwidth needed to transmit the object features. For

example, most histogram based features can be averaged. Interest points based features,

e.g. Harris Corner and SIFT, can reduce the total number of interest points by only keeping

the points that repeat most often. Interest points with high repeatability are often called

“stable” features.

In a visual sensor network, object tracking requires both feature descriptor detection and

feature matching. Both processes consume the computational power of the camera nodes as

well as storage and network resources. For all features we have used in our experiments, we

list the average feature size, feature generation time and feature matching time in Figure 5.5

and 5.6.

Color based and gradient based features usually have to traverse all pixels in the image

blob. The higher resolution and frame rate the images are, the more cpu cycles are needed

to generate the feature descriptors. Also, depending on the algorithm complexity, each

feature requires different amount of time to generate the features for an image blob. In
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our experiments, the Auto Correlograms, Contour Histograms and SIFT features are the

most expensive to generate. These features either involve complex algorithms or require

additional processing of neighboring pixels when traversing the pixels in an image blob.

Histogram based features have a fixed descriptor size and the matching often requires

little effort. However, the size of multi-dimensional histograms, such as HSV and RGB

histograms, can become very large when the bin count of the histogram increases. On

the other hand, interest points based features have descriptors with varied sizes, and the

matching computation is quadratic in the size of the interest point list. In our experiments,

SIFT features are generally larger in feature size than the other features. This is because

the SIFT features of each image blob contains a list of interest points, and each point is

associated with a descriptor of 128 doubles. The average count of the SIFT feature key

points for our test image blobs from the D-Link cameras is about 50. If higher resolution

cameras are used, more SIFT features can be detected in an image blob, and we will need

more storage space for longer list of SIFT features. Usually, we get more Harris Corners than

SIFT features from an image blob, therefore, although individual Harris Corners occupy

less storage space than SIFT features, it takes the longest time to match two image blobs

with Harris Corners due to their large list size.

Finding the proper size of feature descriptors is crucial to limiting the resource usage

within the system constraints while achieving the best tracking performance. Table 5.5

shows the storage requirements of HSV histogram and Vertical Gradients. Their matching

accuracy between camera 58 and 91 is also listed.

The HSV histogram is 3-dimensional, so the descriptor size increase in cubic. The D-

Link cameras used in our experiments do not have vivid color so large bin counts create

overfitting. The best matching accuracy is achieved when bin count is 4. The Vertical

Gradient is a single dimension histogram and its descriptor size increases linearly to the bin

count. Based on the relatively small image blob size in our experiments, VG achieves its

top matching performance with bin size set to 8.

A simple fusion test on HSV and VG reveals that the fusion works best with HSV2 and
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Feature Bin Size Bytes per descriptor Matching accuracy

HSV

2 32 71.9%
4 256 73.9%
8 2,048 70.3%
16 16,384 71.3%

VG

2 8 63.4%
4 16 63.7%
8 32 64.7%
16 64 64.6%

Table 5.5: Storage size and matching accuracy of HSV histogram and Vertical Gradient.
The matching accuracy results are the average of 5 test runs on camera pair 58/91. Features
with different internal parameter settings require different storage space. It is not always
better in matching accuracy to have more expensive settings.

VG8, or HSV4 and VG16, as shown in Table 5.6. Considering the storage size of the two

features, it is preferable to use HSV2 and VG8 in practice.

VG2 VG4 VG8 VG16

HSV2 73.4% 73.3% 73.8% 73.7%

HSV4 73.5% 73.4% 73.5% 73.8%

HSV8 70.8% 70.3% 71.1% 71.3%

HSV16 71.4% 71.1% 71.5% 71.8%

Table 5.6: Probabilistic fusion accuracy of HSV histogram and Vertical Gradient with
varying bin size. The matching accuracy results are the average of 5 test runs on camera
pair 58/91. Fusions of features and their variants yield different matching performance.



Chapter 6

Related Work

6.1 Camera Calibration

In computer vision, camera calibration is the process to find the camera parameters that

affect the production of camera images. The camera model has two types of parameters.

The intrinsic parameters describe the cameras internal attributes such as focal length, im-

age transformation, principle points, etc. The extrinsic parameters denote the coordinate

system transformation from the world 3D coordinates to the camera coordinates. There

parameters are represented by the camera matrix. In this thesis, we study camera calibra-

tion of distributed camera networks to find the extrinsic parameters of all cameras so that

cameras are able to compute the relative coordinate transformation between each. These

cross camera transformations allow cameras to be precisely localized.

There have been many published works dealing with the calibration of single and multi-

camera systems. Svoboda et al. published their work on multi-camera self-calibration [46].

The system computes both intrinsic and extrinsic parameters for an arbitrary number (>3)

of cameras with no prior knowledge. The user is required to to capture a relatively large

number of images with a laser pointer in the dark(or other easily detectable object) as input

data. Devarajan and Radke presented a more distributed method of camera calibration in

their paper [7]. Although in their method the calibration takes place in a distributed

72
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fashion, hand labelling of the camera ”vision graph” and feature point correspondences is

required. Similar to Devarajan and Radke, Mantzel et al. proposed a method to perform

camera localization in a distributed fashion, given known feature correspondences [31].

They introduced the notion of a camera ”microcluster”, or a set of cameras with large set

of overlapping visible feature points.

6.2 Distributed Event Processing

This thesis presents a sensornet programming model, including a declarative language to

express events with spatio-temporal constraints and an efficient event detection framework

to provide runtime support for the programming model.

Many approaches have been proposed to provide programming abstraction and commu-

nication models for sensor networks. Our work differentiates itself from existing approaches

in its focus on removing any sensor-oriented aspects of the programming abstractions.

Our programming model resembles the database-based approaches, such as TinyDB [30]

and Cougar [52], which express sensor data of interest in a network-independent way using

SQL-style queries. Comparatively, our programming model is built in a similar way of those

in the active database area [6, 13, 36] and is tailored to allow the expression of events with

complex spatio-temporal constraints.

EnviroSuite [28] is an environmentally immersive programming framework which uses

object-based model to abstract interactions between physical objects and the runtime en-

vironment. Our DCP framework is event-based and focuses on expressing hierarchical con-

straints. Hood [50], Abstract Regions [49], and Regiment [34] present sensor programming

models based on groups of nodes defined by their physical proximity or network topology.

One may view these groups as sets of nodes that follow constraints that may be laid out

in our declarative language. We believe that event constraints represent a similar level of

abstraction with the added benefit of removing the need to consider nodes at all when spec-

ifying application behaviour. Event constraints may express “a red ball within 10 meters
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of a blue ball,” while regions based on node membership cannot, if the node may detect

objects at a distance.

The DCP framework decouples event location from node location by extending GHTs [40]

as the address mechanism. GHTs were introduced to provide Data-Centric Storage (DCS) [39]

for wireless sensor networks. In DCS, events are hashed to geographic locations by event

names and stored at the closest node to the hashed location. GHT uses GPSR [21] to route

packets to the destination locations. DCP extends GHTs to Regional GHTs which preserve

spatial locality in events and allow local operation despite large-scale network partitions.

6.3 Object Tracking, Decision Fusion and Machine Learning

Object tracking is one of the most common applications in visual sensor networks. Cross

camera object tracking is often realized by the process of object reidentification. Many

previous literatures on object reidentification [19, 10, 2, 47, 43, 24, 27, 33] concentrate on

optimizing certain object features to the targeting application scenarios, or finding a better

algorithm to utilize the object features.

Our approach for object tracking doesn’t require object features that always work well,

nor focus on a single feature type. Instead, we accept the fact that in real world applications,

any object feature may fail at times. However, by combining multiple object features, our

fusion technique allows the performance of object reidentification to be better than or

retained to the best working features.

Guo et al. [14] address the cross-camera vehicles matching problem with multiple fea-

tures, such as lines, points and regions. In their experiments, each object contains a collec-

tions of image patches. They use the weighted sum of the correlation scores from all images

patches to compute the match score. Sun et al. [45] uses multidetector fusion for vehicle

reidentification. Their fusion technique is called the linear opinion pool [9] which is quite

similar to the weighted sum method.

In our fusion framework, the fusion results are probabilities that two objects match. The
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linear opinion pool or log-opinion pool [3] are traditional fusion approaches for probabilities

as well as distances. Log-opinion pool are often used when the combining independent

sources. Other fusion techniques such as voting [51] or ranking [17] are used for classifier

fusion. Object matching can be treated as a classification problem if the matching happens

between an object sample and a collection of objects. In this case, AdaBoost [11] is often

used to boost the performance of weak classifiers. In this thesis, we don’t assume the

object tracking is limited to objects that have been seen by the camera network, and always

expect that the object matching can happen with new objects. Therefore, we don’t treat

the object matching as a classification problem and take the probabilistic approach to boost

the matching performance.

Machine learning techniques are often used to learn complex patterns from empirical

data and make intelligent decisions on new test cases. In cross camera object tracking,

the similarity values from multiple features algorithms can be fed into learners to build

decision models. We have used Waffles [12], an open-source machine learning toolkit, to

run experiments on our datasets. By using different machine learning algorithms, such as

decision tree, neural networks, etc, we get mixed results depending on different internal

parameter settings. Similar to our experience with the online weighted majority algorithm,

it is important to provide a good selection of internal parameters to achieve good matching

performance. We believe our probabilistic method and machine learning techniques are

complementary in practice. For example, multiple machine learning techniques can be

used at the same time to predict the overall similarities, then their matching probabilities

and be used in our probabilistic matching method to boost the matching performance

again. On the other hand, instead of averaging the matching probabilities from multiple

feature algorithms, the matching probabilities can be used as the input of machine learning

algorithms to build decision models to learn the interesting relations among these feature

algorithms. As we mentioned in Section 5.3.3, applying machine learning techniques on the

probabilities will sometimes help us gain a little more boost on the matching performance

but at the cost of more computational resources.
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Conclusions

We believe visual sensor network is an exciting research field with real-world applications

and research challenges. Visual sensor network is an interdisciplinary research area involving

embedded system, image processing, network communication and distributed systems. In

this thesis, we designed and implemented several techniques to support complex vision tasks

in visual sensor networks. These tasks include camera calibration, complex event detection

and cross-camera object tracking.

First, we have provided an distributed solution, called Lighthouse, to the problem of

sensor localization and multi-camera calibration. Lighthouse builds GHTs incrementally,

avoiding the need for localization infrastructure or special hardware.

Second, programming sensornets is well recognized as a hard problem, and data-centric

techniques have emerged as a way of taming the associated complexity. In this thesis, we

have described an area in which existing sensornet programming paradigms have not yet

embraced a data-centric approach. We have filled that gap with a distributed constraint

processing engine for constructing complex events from subevents. Details of the sensor

network are abstracted away so that constraints may be expressed directly between events,

rather than through an intermediate abstraction based on the node location or attributes.

We believe this separation is particularly important for future sensornets that will integrate

more node that sense events at a distant. Despite the increased level of abstraction, our
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approach to distributed constraint processing is efficient, scalable, and fault-tolerant because

it uses local resources to process local events.

Last, we presented a probabilistic object matching framework to fuse multiple feature

matching results using historical match probability distributions of the feature algorithms.

In cross-camera object tracking, we cannot expect any single object feature to work well all

the time for object matching. Multiple object features based on different aspects of object

appearance can be employed together to achieve more consistent matching performance.

Fusion of multiple features can benefit from the confidence scores of the matching results

from feature matchers. Confidence scores are more reliable and easier to implement if

computed from empirical data. Our framework frees feature algorithms from making explicit

binary matching votes and matching confidences. Our evaluation of the probabilistic object

matching framework shows it outperforms the comparison fusion techniques and is able to

tolerate poorly designed feature algorithms to almost always maintain a better accuracy

than the best feature algorithm in the pool.

The above techniques have architectural, system-level and algorithmic components,

spanning from signal processing, communication protocols to decision fusion. We believe

that this thesis work will provide a good basis for interesting future research in visual sensor

networks.
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