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This thesis studies various techniques that exploit correlations between attributes to significantly

improve the performance and maintainability of analytic databases. We first show how a correlation-

based secondary index developed here achieves index sizes smaller by orders of magnitude than a

conventional secondary index. We then illustrate how, in the context of analytic databases, using

a secondary index that is strongly correlated with a clustered index performs orders of magnitude

faster than the uncorrelated case. Our goal was, then, to exploit these two observations in real

database system settings. To meet the above goal, we developed (1) a data structure to store

correlations as a secondary index, and (2) a database design tool to produce correlated indexes

and materialized views. We further extended its applicability in a few directions, namely: (3) a

formulation and optimization of index deployment to achieve faster completion as well as earlier

query speed-up, (4) flexible partitioning and sorting techniques to apply the idea of correlations in

distributed systems such as MapReduce, and (5) a clustered index structure for uncertain attributes

to apply the benefits of correlations to uncertain databases.
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Chapter 1

Introduction

Databases have been central to computing systems for decades, ranging from banking applica-

tions (On-Line Transaction Processing, or OLTP) to data analysis (On-Line Analytic Processing, or

OLAP). With the quick and steady growth in the amount and complexity of data and queries, the

performance and maintainability of databases has been always the key issue in building more stable

and more advanced systems.

1.1 Database Indexes

Indexing is the most effective and prevalent technique to speed up query executions in databases.

Indexes are categorized into two groups; non-clustered (secondary) indexes and clustered (primary)

indexes, as depicted in Figure 1.1.

A non-clustered index is an auxiliary data structure that stores pointers to corresponding tuples

in the table sorted by the values of the indexed attributes (index keys). A clustered index, on the

other hand, alters the physical ordering of the table itself to be in the order of index keys.

The two types of indexes have substantially different properties in performance and maintainabil-

ity. In terms of query performance, a clustered index is generally faster than a non-clustered index

on the same index key. This is because the database must follow the pointers from the non-clustered

index to retrieve columns not included in the index, paying expensive disk seek costs. However, a

table can have only one clustered index because a clustered index is the table itself, while a table

can have an arbitrary number of non-clustered indexes.

1
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Figure 1.1: Secondary and Clustered Indexes

Some database products support a special type of clustered index called multi-dimensional-

clustering (MDC) [PBM+03], which sorts page blocks by multiple index keys. However, it must

reduce the granularity of each index key or limit the number of keys because an MDC still has to

be aligned on one-dimensional harddisks. The only way to avoid this fundamental limitation is to

duplicate the entire (or a subset of the ) table as another auxiliary data structure, called a Material-

ized View (MV). Although MVs allow the table to be aligned in multiple orders, the increased space

usage causes high overheads for data updates (INSERT/DELETE) and administrative operations

such as backups.

Consequently, it is not common to use clustered indexes aggressively. Non-clustered indexes

are handy and provide sufficient performance in some cases such as OLTP systems. However, in

OLAP systems, queries tend to scan significantly larger ranges, and thus many more tuples, to

extract analysis. As random disk seek has remained expensive for decades while the throughput of

sequential access has dramatically increased over the years, performing a random disk seek for each

tuple read by the query substantially slows down query execution.

Furthermore, the overhead of maintaining a non-clustered index against updates is known to be

proportional to the size of the index [WM11]. As OLAP systems usually have millions to billions of

tuples, non-clustered indexes significantly damage the database’s capability to keep up with updates.

Hence, the common practice in OLAP systems is not to use any non-clustered index but to scan
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the entire table, especially if the query selectivity (the fraction of data read by the query) is larger

than 1% (or even less). This inefficiency of non-clustered indexes prevents OLAP systems from

scaling up to larger and more sophisticated analysis.

1.2 Motivation

Many researchers and practitioners have made several efforts to overcome this problem in OLAP

systems. One approach is to speed up the full table scan by distributing data horizontally over many

harddisks and many machines. Google’s BigTable [CDG+08], the DataPath project at Rice Univer-

sity [ADJ+10], and the HadoopDB project at Yale University [ABPA+09] employ this approach to

speed up massive data analysis.

Another approach is to store the tables in Column-Store [Aba08]. Column-Store stores each

column as a separate file to reduce the size of data accessed per query. It also applies compression

on each column file to further reduce the I/O cost to scan the tables [AMF06]. The C-Store project

at MIT, Brown and Brandeis University [SAB+05], and its commercialized variant Vertica [Ver], the

MonetDB project at CWI [Mon] and its commercialized variant VectorWise [Vec], and BigTable fall

into this category. Both of these approaches complement the inefficiency of non-clustered indexes

in OLAP systems by not using them and speeding up the table scan instead. However, yet another

approach is developed in this thesis: speeding up non-clustered indexes by enhancing and exploiting

their correlations with clustered indexes.

We are the first to study various aspects of this approach in a systematic manner and to observe

that the correlation-based approach significantly improves the query performance and maintain-

ability of databases. The approach is also promising in that it is orthogonal to the two existing

approaches above and can be used together with them to realize even faster and more scalable

databases.

Correlations between attributes in database tables have the potentials to speed up queries sub-

stantially while keeping indexes compact. The main theme of this thesis is how to exploit such

attribute correlations to realize faster and more scalable analytic databases.

Before digging into the technical discussions of how to exploit such correlations, we first clarify

the attribute correlations we want to exploit (Section 1.3), demonstrate their potential benefits

(Section 1.4), and then list the technical challenges we need to address to exploit the correlations
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(Section 1.5). We provide the overview of the following chapters, each of which addresses the issues.

1.3 What Are Attribute Correlations?

A correlation between attribute sets A1, A2, . . . , An in the table T is a frequent co-occurrence of the

attributes’ values in the table. For example, suppose the LINEITEM table shown in Table 1.1 stores

information on each sold item.

Table 1.1: Example of attribute correlations in LINEITEM table. CommitDate is strongly correlated
with ShipDate while it has no correlation with OrderKey or Price.

OrderKey CommitDate ShipDate Price

123 1999/04/01 1999/04/06 $1,223
124 1995/09/20 1995/09/19 $210
125 1997/01/01 1997/01/11 $6,543

. . .

In this table, the values of CommitDate (the committed delivery date) and ShipDate (the actual

shipping date) in a tuple have a strong correlation. The seller ships each item well before the

committed delivery date in most cases and, even when delivery is delayed, at least by a week after

the committed date.

Thus, the two attributes CommitDate and ShipDate have a limited set of co-occurring pairs of

values shown in Table 1.2. Such a relation between table attributes is called Attribute Correlation

and is the key concern throughout this thesis. Unlike the other attribute pairs (e.g., CommitDate

and Price) that have no correlations, a correlated set of attributes have substantial potential to

improve the performance and maintainability of analytic databases.

Table 1.2: Co-occurrences of the values of CommitDate and ShipDate.

CommitDate ShipDate

1999/04/01 1999/03/01 ∼ 1999/04/08
1999/04/02 1999/03/02 ∼ 1999/04/09

. . .
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1.4 Opportunities for Correlations

Attribute correlations are observed in a variety of domains [BH03, IMH+04] and offer two significant

opportunities.

Commit
Date

Row
ID

Mar 1
Mar 1
Mar 2
Mar 2

Conventional B+Tree
Secondary Index

OrderKey Tuple Data
123
124
...

Clustered Index
on (OrderKey)

Disk
Seeks
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{ShipDate}
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⇒

⇒
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...

Correlation-Based
Secondary Index
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150 Sec

Benefit 2: Query Runtime

ShipDate Tuple Data
Jan 1
Jan 1

...

Clustered Index
on (ShipDate)

Jan 2

6 Sec

Benefit 1: Index Size

Figure 1.2: Opportunities for Correlations

Suppose we want to access the tuples with a CommitDate value of March 1st. Figure 1.2

illustrates the benefits of correlations by contrasting a conventional method to the proposed method

exploiting correlations. The conventional method uses a B+Tree secondary index on CommitDate

and a clustered index on primary key (OrderKey), while the proposed method uses a correlation-

based secondary index on CommitDate and a clustered index on ShipDate.

First, correlations between attributes can be used as a compact secondary index, which is orders

of magnitude smaller than the conventional B+Tree indexes. A B+Tree secondary index has to store

one index entry for each tuple, consisting of the index key and pointer (i.e., RowID or the value of

clustered attribute) to the corresponding tuple. Hence, the size of the index becomes quite large
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for large tables, e.g., 6 GB in TPC-H Scale 20. On the other hand, a correlation-based secondary

index stores the co-occurrences of secondary (CommitDate) and clustered (ShipDate) attributes.

As long as the attributes have strong correlations, the number of distinct value pairs is quite small

and independent of the total number of tuples, e.g., only 1 MB in the above case. Therefore, a

correlation-based secondary index is often 1,000 times or more smaller than an equivalent B+Tree

secondary index. This compact size has significant benefits in storage consumption, query runtime,

update overheads, pressures on the bufferpool and administrative costs.

Second, a secondary index that is strongly correlated with the underlying clustered index per-

forms significantly faster than the uncorrelated case. This is because, in the uncorrelated case, the

pointers from the secondary index land at random places in the table. The portions of the table we

need to access are completely scattered over the table, so that the database must do several random

disk seeks even with the help of bitmap index scan 1. In analytic databases that have less selective

queries, this means thousands or millions of disk seeks, making secondary indexes useless. On the

other hand, if the secondary and the clustered indexes are correlated, the pointers land in a small

contiguous area of the table. In such a case, the database can answer the query orders of magnitude

faster.

These two benefits of correlations have significant potential to improve the performance and

maintainability of analytic databases. The goal of this thesis is fully to exploit this potential.

1.5 Challenges in Exploiting Correlations

Despite significant potential, exploiting correlations encounters several technical challenges. Each of

these issues corresponds to the package of techniques developed in each chapter below.

1.5.1 How to Detect, Store and Utilize Correlations

The first challenge is how to detect such beneficial correlations and store them as a compact secondary

index.

Real databases have a large number of columns. Efficiently finding a strongly correlated set of

attributes is not trivial, especially when considering correlations among more than two attributes.

1Bitmap index scan is a technique to amortize disk seek costs by sorting the pointers first and then following them
in the order.
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Also, observe that the CommitDate/ShipDate pair prefers bucketing in the above example. As

the co-occurring values of ShipDate for a particular value of CommitDate span contiguous 37 days,

representing the range of secondary values as a bucket gives a much smaller index size. However,

automatically finding the best bucket size requires nontrivial analysis over the correlations.

Finally, we need to determine the best way to construct and maintain the correlations as a

secondary index.

We address these issues in Chapter 2 by developing a novel secondary index data structure,

Correlation Maps (CMs). We then study the algorithm and implementations to detect, store and

utilize a wide range of attribute correlations.

1.5.2 How to Enhance Correlations

The second challenge is how to enhance correlations between the secondary and clustered indexes.

Even though there are strongly correlated attributes, the benefits of correlations are available

only when the secondary and clustered indexes are strongly correlated. Hence, a poor choice of

clustered indexes yields slower query performances and larger index sizes.

However, choosing the best clustered index is non-trivial. Unlike secondary indexes, one table

can have only one clustered index. We must choose the attribute carefully to cluster the table so

that as many secondary indexes as possible are benefited. Another option is to build materialized

views (MVs) to have different clustering, but this approach brings yet another complication: the

trade-off between space consumption and performance.

We tackle these problems in Chapter 3. We develop a novel correlation-aware database design

tool that suggests indexes and MVs so that correlations between clustered and secondary indexes

are enhanced to improve performance for the given query workload and storage budget. Overall,

we achieve up to six times better query performance for a given storage budget compared to the

state-of-the-art design tool which does not take correlations into account.

1.5.3 How to Deploy Indexes

The third challenge is how to deploy the suggested indexes efficiently.

Although the design suggested by the aforementioned correlation-aware design tool achieves

significantly faster query performance, this design often contains many indexes, and especially many
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more clustered indexes, because fully utilizing clustered indexes is the key concept of the new design

tool.

Deploying indexes, especially clustered indexes, consumes immense hardware resources and takes

a long time on large databases. In such a situation, the order of indexes to deploy has a significant

impact on the query speed-up and the total deployment time. However, optimizing index deployment

order is quite challenging because of complex interactions between indexes and the factorial number

of possible solutions.

In Chapter 4, we formally define the problem of index deployment order and study several

optimization techniques for it. We propose a set of powerful pruning techniques to get the optimal

solution and local search methods based on constraint programming (CP) that quickly get near-

optimal solutions for larger problems.

1.5.4 Extensions for Distributed Systems

The fourth challenge is how to apply the idea of correlated clustering and secondary indexes to

distributed systems.

A wide range of applications nowadays need to store and analyze far larger data than the tra-

ditional shared-disk architecture could handle. The only possible approach is to partition and

distribute the big data over shared-nothing networks consisting of a large number of commodity

servers.

In this setting, we found the significant effect of correlations on query performance again, but for

a different reason. Here, the dominating bottleneck in query execution is shipping the data joined

or aggregated together to other nodes. Choosing a partitioning key that is well correlated with the

join key or aggregate key substantially reduces, or sometimes completely eliminates, the amount of

data that have to be transmitted.

In addition to the choice of partitioning, a new key factor is the frequent hardware and software

failures in the system due to the large number of machines and commodity hardware. Shared-nothing

distributed file systems, such as Hadoop Distributed File System (HDFS), recover the data from

replicas of the lost data block in such failures.

Our key idea is to exploit this redundancy in distributed systems to deploy differently partitioned

replicas. However, this idea comes with a challenge, namely failure recovery. A different partitioning

for each replica could worsen the recovery latency and the risk of permanent data loss.
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In Chapter 5, we develop data structures, data placement policies, and analytic models of recovery

to solve the issue.

1.5.5 Clustered Index on Uncertain Attributes

The final challenge is how to apply the idea of correlations to an emerging database type, Uncertain

Databases.

In an uncertain database, an attribute has multiple possible values instead of a single determin-

istic value. Hence, there is no trivial way to cluster a table on such uncertain attributes. However,

without a strongly correlated clustered index, none of the above techniques is meaningful.

We address this issue in Chapter 6 by devising the first clustered index for uncertain databases,

Uncertain Primary Indexes (UPIs), and a secondary index structure to exploit correlations with

UPIs. We discuss its data structure, algorithm and trade-offs between space consumption and

query performance in the chapter. We observe that UPIs achieve orders of magnitude faster query

performances and also enable secondary indexes to exploit correlations.

1.6 Contributions and Thesis Outline

With the above opportunities and technical issues of correlations in mind, we discuss the techniques

to overcome the challenges.

The key contributions in this thesis are:

1. Algorithms and data structure for a fast and compact non-clustered index that detects, stores

and exploits correlations (Chapter 2).

2. Theory and implementation of a new correlation-aware physical database designer that en-

hances and exploits correlations between clustered and non-clustered indexes to speed up the

OLAP database (Chapter 3).

3. Formulation and optimization of the index deployment problem on top of CP (Chapter 4).

4. Flexible partitioning and sorting techniques in distributed systems such as MapReduce with

emphasis on recoverability guarantees (Chapter 5).
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5. A novel clustered index structure geared for uncertain databases that significantly speeds up

analytic queries and enables the system to exploit correlations between clustered and non-

clustered indexes (Chapter 6).

6. Implementation and empirical analysis of the above techniques.

For better readability, each chapter starts by reviewing the context and prior work related to

the techniques proposed in the chapter, we thus do not have a comprehensive related work chapter.

Likewise, rather than a single experimental results chapter, we also provide the experimental results

and implementation details in each chapter.



Chapter 2

Correlation Maps: Detecting,

Storing and Utilizing Correlations

In relational query processing, there are generally two choices for access paths when performing a

predicate lookup for which no clustered index is available. One option is to use an unclustered index.

Another is to perform a complete sequential scan of the table. Many analytical workloads do not

benefit from the availability of unclustered indexes; the cost of random disk I/O becomes prohibitive

for all but the most selective queries.

It has been observed that a secondary index on an unclustered attribute can perform well under

certain conditions if the unclustered attribute is correlated with a clustered index attribute [BH03].

The clustered index will co-locate values and the correlation will localize access through the unclus-

tered attribute to a subset of the pages. In this chapter, we show that in a real application (SDSS)

and widely used benchmark (TPC-H), there exist many cases of attribute correlation that can be

exploited to accelerate queries. We also discuss a tool that can automatically suggest useful pairs of

correlated attributes. It does so using an analytical cost model that we developed, which is novel in

its awareness of the effects of clustering and correlation.

Furthermore, we propose a data structure called a Correlation Map (CM) that expresses the

mapping between the correlated attributes, acting much like a secondary index. The chapter also

discusses how bucketing on the domains of both attributes in the correlated attribute pair can

dramatically reduce the size of the CM to be potentially orders of magnitude smaller than that of

11
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a secondary B+Tree index. This reduction in size allows us to create a large number of CMs that

improve performance for a wide range of queries. The small size also reduces maintenance costs as

we demonstrate experimentally.

2.1 Introduction

Correlations appear in a wide range of domains, including product catalogs, geographic databases,

census data, and so on [BH03, IMH+04]. For example, demographics (race, income, age, etc.) are

highly correlated with geography; price is highly correlated with product industry; in the natural

world, temperature, light, humidity, energy, and other parameters are often highly correlated; in the

stock market, trends in one security are often closely related to those of others in similar markets.

Recent years have seen the widespread recognition that correlations can be effectively exploited to

improve query processing performance [BH03, IMH+04, CFPT94, CGK+99, GSZZ02]. In particular,

if a column C1 is correlated with another column C2 in table T , then it may be possible to use access

methods (such as clustered indexes) on C2 to evaluate predicates on C1, rather than using the access

methods available for C1 alone [BH03, CFPT94, CGK+99, GSZZ02].

In this chapter, we focus on a broad class of correlations known as soft functional dependencies

(soft FDs), where the values of an attribute are well-predicted by the values of another attribute.

For example, if we know that the value of city is Boston, we know with high probability but not

with certainty that the value of state is Massachusetts (since there is a large city named Boston in

Massachusetts and a much smaller one in New Hampshire). Such soft FDs are a generalization of

hard FDs, where one attribute is a perfect predictor of another attribute.

Previous work has observed that soft FDs can be exploited by introducing additional predicates

into queries [BH03, GSZZ02] when a predicate over only one correlated attribute exists. For example,

if a user runs the query SELECT * FROM emp WHERE city=’boston’, we can rewrite the query as

SELECT * FROM emp

WHERE city=’boston’

AND (state=’MA’ or state=’NH’)

This will allow the query optimizer to exploit access methods, such as a clustered index on state,

that it would not otherwise choose for query processing. Estimating and improving the performance
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of such secondary index lookups in the presence of correlations is our primary goal in this work.

In this work, we make three principal contributions beyond existing approaches: first, we describe

a set of algorithms to search for soft functional dependencies that can be exploited at query execution

time (e.g., by introducing appropriate predicates or choosing a different index). Without such a

mechanism it is difficult for the query planner to identify predicates to introduce to exploit a broad

array of soft FDs. Our algorithms are more general than previous approaches like BHUNT [BH03]

because we are able to exploit correlations in both numeric and non-numeric (e.g. categorical)

domains. Our algorithms are also able to identify multi-attribute functional dependencies, where

two or more attributes A1 . . . An are stronger determinants of the value of an attribute B than any

of the attributes in A1 . . . An alone. Consider a database of cities, states, and zipcodes. The pair

(city, state) is clearly a better predictor of zipcode than city or state alone, as there are many

cities in the US named “Fairview” or “Springfield” but there is typically only one city with a given

name in a particular state.

Our second major contribution is to develop an analytical cost model to predict the impact of

data correlations on the performance of secondary index look-ups. Although previous work has

examined how correlations affect query selectivity, our cost model is the first to describe actual

query execution using statistics that are practical to calculate on large data sets. Furthermore, the

model is general enough that we use it in our algorithms to search for soft FDs as well as during

query optimization. We show that this model is a good match for real world performance.

Our third contribution is to observe that to effectively exploit the correlations identified by any

search algorithm (including ours or those in previous work), it may be necessary to create a large

number of secondary indexes (one per pair of correlated attributes). Such indexes can be quite

large, consuming valuable buffer pool space and dramatically slowing the performance of updates,

possibly obviating the advantages gained from correlations. We address this concern by proposing

a compressed index structure called a correlation map, or CM [Huo07], that compactly represents

correlations. By avoiding the need to store an index entry for every tuple and by employing bucketing

techniques, we are able to keep the size of CMs to less than a megabyte even for multi-gigabyte tables,

thus allowing them to easily fit into RAM.

CMs are simply a mapping from each distinct value (not tuple) u in the domain of an attribute

Au to pages in another attribute Ac that contain tuples co-occurring with u in the database. Given a

clustered attribute Ac (for which their exists a clustered index), we call attribute Au the unclustered
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attribute. Queries over Au can be answered by looking up the co-occurring values of u in the

clustered index on Ac to find matching tuples.

We also evaluate the effectiveness of exploiting correlated attributes on several data sets, coming

from TPC-H, eBay, and the Sloan Digital Sky Survey (SDSS). We show that correlations significantly

improve query processing performance on these workloads. For example, we show that in a test

benchmark with 39 queries over the SDSS data set, we are able to obtain more than a 2x performance

improvement on 13 of the queries and greater than 16x improvement on 5 of the queries by building an

appropriately correlated clustered index on one of the tables. We then show that CMs can capture

these same gains during query processing with orders of magnitude less storage overhead. We

show that maintenance of CMs (including overheads for recovery) slows the performance of update

queries dramatically less than traditional B+Trees. For example, we find that in the Experiment 3

of Section 2.7.2 with 10 CMs or unclustered B+Trees, CMs can sustain an update rate of 900 tuples

per second, whereas B+Trees are limited to 29 per second, a factor of 30 improvement.

2.2 Related Work

There is a substantial body of prior work on exploiting correlations in query processing. One can

view our work as an extension of approaches from the field of semantic query optimization (SQO);

there has been a long history of work in this area [CFPT94, HZ80, Kin81, SO87]. The basic idea

is to exploit various types of integrity constraints—either specified by the user or derived from the

database—to eliminate redundant query expressions or to find more selective access paths during

query optimization.

Previous SQO systems have studied several problems that bear some resemblance to correlation

maps. Cheng et al. [CGK+99] describe predicate introduction as one of their optimizations (which

was originally proposed by Chakravarthy et al [CFPT94] and is the same technique we use in

rewriting queries), in which the SQO injects new predicates in the WHERE clause of a query based on

constraints that it can infer about relevant table attributes; in this case they use logical or algebraic

constraints (as in Gryz et al. [GSZZ02]) to identify candidate predicates to insert.

BHUNT [BH03] also explores the discovery of soft constraints, focusing on algebraic constraints

between pairs of attributes. The authors explain how to use such constraints to discover access

paths during query optimization. For example, the distribution of (delivery date – ship date)
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in a sales database may cluster around a few common values – roughly 4 days for standard UPS,

2 days for air shipping, etc, that represent “bumps” in delivery dates relative to ship dates. The

idea is a generalization of work by Gryz et al. [GSZZ02], who propose a technique for deriving

“check constraints,” which are basically linear correlations between attributes with error bounds

(e.g., salary = age ∗ 1k± 20k). Godfrey et al. [GGZ01] have also looked at discovering and utilizing

“statistical soft constraints” are similar to bumps with confidence measures in BHUNT.

If the widths of the bumps are chosen wisely, BHUNT can capture many algebraic relationships

between numeric columns. The authors describe how such constraints can be included in the WHERE

clause in a query to allow the optimizer to use alternative access paths (for example, by adding

predicates like deliveryDate BETWEEN shipDate+1 and shipDate+3). Like BHUNT, CMs also

are used to identify constraints that can be used to optimize query execution. Unlike BHUNT, CMs

are more general because they are not limited to algebraic relations over ordered domains (e.g.,

BHUNT cannot find correlations between states and zip codes). BHUNT also does not address

multi-dimensional correlations or bucketing, which are a key focus of this chapter.

The CORDS system in IBM DB2 [IMH+04] builds on the work of BHUNT by introducing a more

sophisticated measure of attribute-pair correlation that captures non-numeric domains. CORDS

calculates statistics over samples of data from pairs of attributes that satisfy heuristic pruning

rules, and it determines soft (nearly unique) keys, soft FDs, and other degrees of correlation. CMs

and CORDS are similar in their measure of soft FD strength and their use of a query training

set to limit the search space over candidate attribute sets. Relative to CORDS, our work adds

our compressed correlation map structure (CMs), a complete cost model and set of methods to

exploit the discovered correlations in query processing using CMs or secondary indices, and a set of

techniques to recommend secondary indices / CMs to build. CORDS, on the other hand, focuses on

using correlation statistics to improve selectivity estimation during query optimization, and it does

not examine how to maintain the information necessary for use during query execution. CORDS

also does not find multi-dimensional correlations or explore bucketing. Oracle 11g and PostgreSQL

have related statistics [ORA, PSQb], but they are used only for choosing execution plans, too.

Chen et al. describe an approach called ADC Clustering that is related in that it addresses the

poor performance of secondary indexes in data warehousing applications [COO08]. ADC Clustering

aims to improve the performance of queries in a star schema by physically concatenating the values

of commonly queried dimension columns that have restrictions into a new fact table, and then
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sorting on that concatenation. Though correlations in the underlying data play a major role in the

performance of their approach, ADC Clustering does not directly measure correlations or model how

they affect query performance.

When paired with an appropriate clustered index, a CM on an unclustered attribute may re-

place a much larger secondary index structure (such as a B+Tree or bitmap index) by serving as

a lossy representation of the index. There has been work on approximate bitmap index structures

(e.g. [ACFT06]), where Bloom filters are used to determine which tuple IDs may contain a partic-

ular attribute value. These techniques do not achieve as much compression as CMs because they

represent maps of tuples instead of values. Also, false positives in approximate bitmaps will result

in a randomly scattered set of records that may match a given lookup, whereas bucketing in CMs

results in a contiguous range of clustered attribute records that may match a lookup. Work on

approximate bitmaps also does not discuss how to choose the index size (the bin width, in our work)

to preserve correlations, as we do. Existing work on non-lossy index compression, such as prefix

compression [BU77] cannot achieve anywhere near the same compression gains; our experiments

with gzip and index compression on our data sets suggest they yield typical size reductions factors

of 3–4.

Microsoft SQL Server has a similar technique called datetime correlation optimization [MSD]. It

maintains a small materialized view to store co-occurring values of two datetime columns. When

one of the datetime columns is the clustered index key and the other is predicated in a query, the

MV is internally used to infer an additional predicate on the clustered index. Though the approach

is related to ours, it is unable to capture general correlations. For example, SQL Server is unable to

exploit the state-city correlation described in Figure 4 because it supports only datetime columns.

In data-warehouse queries, it is unusual for both the clustered key and predicated key to have

datetime types. Second, it cannot capture multi-attribute correlations. For example, the (longitude,

latitude)→zipcode example described in Section 6 is inexpressible by SQL Server. Detecting and

exploiting such correlations in a scalable way requires a sophisticated analysis. Third, it lacks an

adaptive bucketing scheme as described in Section 2.6 to utilize correlations over a wide range of

attribute domains. SQL Server always buckets datetime values into month-long ranges. Without an

adaptive bucketing scheme, a system would not be able to optimize both the index size (and thus

maintenance costs) and query performance unless the attribute domains are evenly and sparsely

distributed. Last, SQL Server does not publish an analytic cost model to evaluate the benefit of
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correlations, which is required to determine the pairs of attributes to exploit. To realize these

features, we establish a correlation-aware cost model to evaluate the benefit of correlations and the

CM advisor to detect general correlations and design proper bucketing schemes based on workload

queries.

2.3 B+Trees and Correlations

We begin with a brief discussion of the costs of conventional database access methods and how they

are affected by correlations, before presenting a cost model for predicting the effect of such access

methods (Section 2.4) and a discussion of our compressed CM structure (Section 2.5).

For selections when a clustered index is unavailable, a database system has two choices: it may

choose to perform a full table scan or use a secondary B+Tree index, if one exists. The cost of each

access method depends on well understood factors—table sizes, predicate selectivities, and attribute

cardinalities—as well as less well understood factors like correlations. To understand these factors,

we begin with a simple cost model and show how it changes in the presence of correlations.

In the following discussion, we assume a table with clustered attribute Ac and secondary attribute

Au on which we query. Table 2.1 summarizes the statistics that we calculate over each table. For

the hardware parameters seek cost and seq page cost the table shows measured values from our

experimental platform. We assume that all of the access methods are disk-bound.

Consider a sequential table scan. A table scan incurs no random seek costs, but it must read

each page in the table in order of the clustered key. The number of pages p in a table is total tups
tups per page .

The costscan of scanning a table is then just seq page cost × p. We note here that this model is

oblivious to external factors such as disk fragmentation and as such underestimates the true cost

of a scan in a real database implementation; our numbers show true scan cost to be approximately

10% higher in our implementation.

As our goal in this chapter is to explore secondary index costs, we present cost models for sec-

ondary index accesses in the next two sections, and then show how correlations affect such accesses.

2.3.1 Pipelined Index Scan

A secondary B+Tree index is the standard alternative to a table scan, providing an efficient way to

access a disk page containing a particular unclustered attribute value. While the B+Tree identifies
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Table 2.1: Statistics and parameters used in analytical model.

tups per page Number of tuples that fit on one page.
total tups Total number of tuples in the table.

btree height Average height of a clustered B+Tree path, root to leaf.
n lookups Number of Au values to look up in one query.

u tups Average number of tuples appearing with each Au value.

seq page cost Time to read one disk page sequentially.
Typical value: .078 ms

seek cost Time to seek to a random disk page and read it.
Typical value: 5.5 ms

the locations where relevant tuples can be found, it cannot guarantee that the tuples are accessed

without interleaving seeks. This is because the table may be clustered on a different attribute, and

a scan may result in tuple accesses scattered randomly across the physical pages on disk.

In general, if the query executor uses a pipelined iterator model (e.g., performing repeated probes

into an index that is the inner relation of a nested loops join) to feed tuples to operators, then a

B+Tree operator may need to access unclustered attribute values in an order over which it has no

control. If we ignore correlations between the unclustered and clustered attributes, then, each new

input value will send the operator on btree height random seeks. The approximate cost of n lookups

is then:

costuncorrelated = (n lookups)(u tups)(seek cost)(btree height)

Since a random seek is so expensive, a pipelined secondary B+Tree operation only makes sense

for a small number of specific value lookups. When the set of values to look up is available up

front (as in a blocked index nested loops join, or a range selection over a base table), the standard

optimization is to sort the index keys before looking them up in the hash table. We call this a sorted

index scan.

2.3.2 Sorted Index Scan

When the set of all Au values satisfying the predicate is known up front, the query executor can

perform a number of lookups on the unclustered B+Tree and assemble a list of record IDs (RIDs)

of all of the actual data tuples in the heap files. The RIDs can then be sorted and de-duplicated.

This allows the B+Tree to perform a single sequential sweep to access the heap file, rather than a
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separate disk seek for each unclustered index lookup. This sweep always performs at least as fast as

a sequential scan; it will be faster if it can seek over large regions of the file.

The sorting itself can be implemented in a variety of ways. For example, PostgreSQL uses the

index to build a bitmap (with one bit per tuple) indicating the pages that contain records that

match predicates [PSQa]. It then scans the heap file sequentially and reads only the pages where

corresponding bits are set in the bitmap. In practice, the CPU costs for sorting the offsets is typically

negligible compared to the I/O costs saved by the improved access pattern.

2.3.3 The Effect of Correlations

In this section, we show that the performance of a sorted index scan is highly dependent on cor-

relations between the clustered and unclustered values. In particular, a sorted index scan behaves

especially nicely when the clustered table value is a good predictor for an unclustered value. To

illustrate this, in Figure 2.1 we visualize the distribution of page accesses when performing lookups

on an unclustered B+Tree over the lineitem table from the TPC-H benchmark. The figure shows

the layout of the lineitem table as a horizontal array of pages numbered 1 . . . n. Each black mark

indicates a tuple in the table that is read during lookups of three distinct values of the unclustered

attribute (either suppkey or shipdate). The four rows represent four cases (in vertical order):

1. a lookup on suppkey; table is clustered on partkey

2. a lookup on suppkey; table is not clustered

3. a lookup on shipdate; table is clustered on receiptdate

4. a lookup on shipdate; table is not clustered

The suppkey is moderately correlated with partkey, as each supplier only supplies certain parts.

The shipdate and receiptdate are highly correlated as most products are shipped 2, 4, or 5 days

before they are received.

In both cases, where correlations are present, the sorted index scan visits a small number of

sequential groups of pages compared to numerous scattered pages when no correlation exists. Par-

ticularly striking is the high-correlation case (shipdate and receiptdate), where the sorted index

scan only performs a handful of large seeks to reach long sequential groups of pages. The overall
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cost of accessing the index on shipdate when the table is clustered on receiptdate is about 1/20

the cost of accessing it when no clustering is used on the table.

Page 0 . . . n
partkey (Ac) vs
suppkey (Au)

receiptdate (Ac)
vs shipdate (Au)

Figure 2.1: Access patterns in lineitem table for an unclustered B+Tree lookup
on Au (suppkey/shipdate) with and without clustering on correlated attribute Ac

(partkey/receiptdate).

2.3.4 Experiments

Based on the intuition about the potential benefit of correlations described above, in this section

we describe two experiments that demonstrate the actual benefit correlations yield when running

queries with unclustered B+Trees We describe our experimental setup and these data sets in more

detail in Section 2.7.

Varying the clustered attribute: Figure 2.2 shows the result of an experiment conducted on

the SDSS data set to demonstrate that clustering on one well-chosen attribute can speed up many

queries.

For this experiment, we devised a simple benchmark consisting of 39 queries, each of which has a

predicate over one of the attributes in the PhotoObj table of the SDSS data set with 1% selectivity.

This table contains information about the optical properties of various celestial objects, including

their color, brightness, and so on. Queries selecting objects with different combinations of these

attributes are very common in SDSS benchmarks [GST+02].

We then clustered the table in 39 different ways (once on each of the 39 attributes used in our

test queries), and ran all 39 queries over each clustering to measure the benefit that correlations can

offer.

Figure 2.2 shows the number of queries that run at least a factor of 2, 4, 8, or 16 times faster

than a pure table scan (or an unclustered sorted index scan) when using a secondary index lookup

for each choice of clustered attribute. The clustered attribute varies on the horizontal axis. For

example, attribute 1 (fieldID) is highly correlated with 12 attributes and clustering on it sped up

querying on 13 queries by at least a factor of two over a table scan, with 5 of them exhibiting more
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than a factor of 16 speed-up.
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Figure 2.2: Queries accelerated by clustering in PhotoObj table

Introducing correlated clustering: In this experiment we look at the TPC-H attributes shown

in Figure 2.1. We again highlight the benefits of a good clustered index choice.

We measured the performance of queries over TPC-H data with two different clustering schemes

on the PostgreSQL database. In the first, the lineitem table is clustered on receiptdate, which is

correlated with shipdate. In the second, we cluster on the primary key – (orderkey, linenumber)

– which is not correlated with shipdate. In both cases, we create a standard secondary B+Tree on

shipdate. The query used in the experiment is:

SELECT AVG(extendedprice * discount) FROM LINEITEM WHERE shipdate IN

[list of 1 to 100 random shipdates]

As the graph in Figure 2.3 shows, the correct choice for the clustered attribute can significantly

improve the performance of the secondary B+Tree index. For the uncorrelated case the performance

degrades rapidly, reaching the cost of a sequential scan for queries with more than 4 shipdates.

This happens because the query on the uncorrelated attribute selects receiptdate values that are

scattered (approximately 7000 per shipdate), so the bitmap scan access pattern touches a large

fraction of the lineitem table. We have observed the same behavior in other commercial database

products. Figure 2.3 also shows that we have a cost model that is able to accurately predict the
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Figure 2.3: Performance of B+Tree with a correlated clustered index on shipdate vs. an uncorre-
lated clustered index

performance of unclustered B+Trees in the presence of correlations – we present this model in detail

in the next section.

These experiments show that, if we had a way to discover these correlations, substantial perfor-

mance benefits are possible. Hence, in the next few sections, we focus on our methods for discovering

such correlations. In particular, we show how to extend our analytical cost model to capture the

effect of correlations (Section 2.4), our algorithms for building compact CM indices (Section 2.5),

and finally our approach for discovering correlations (Section 2.6).

2.4 Model of Correlation

In this section, we present our model for predicting the cost of sorted index lookups in the presence

of correlations. To the best of our knowledge, this is the first model for predicting query costs that

embraces data correlations. As a result, it is substantially more accurate than existing cost models

in the presence of strongly correlated attributes.

Table 2.2: Statistics used to measure attribute correlation.
c tups Average number of tuples with each Ac value.
c per u Average number of distinct Ac values for each Au value.

As shown in Table 2.2, we introduce two additional statistics that capture a simple measure of
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correlation between Au and Ac. The c per u value indicates the average number of distinct Ac values

that appear in some tuple with each Au value. The same measure was proposed in CORDS [IMH+04]

as the strength of a soft FD, where it was used for finding strongly correlated pairs of attributes to

update join selectivity statistics rather than building a cost model.

2.4.1 Index Lookups with Correlations

Suppose that we are using a secondary B+Tree that sorts its disk accesses when looking up a set of

Au values as described in Section 2.3.2. For each Au value v, the query must visit c per u different

clustered attribute values. We need to perform one clustered index lookup to reach each of these

clustered attribute values. Once we reach a clustered value, we need to scan at most c pages pages

to guarantee finding each tuple containing v. As before, we take the cost of an index lookup to be

btree height disk seeks. For each Ac value, we have to scan c tups/tups per page pages. Finally, as

with an uncorrelated sorted index scan, when we scan a large fraction of the file, the access pattern

becomes gradually closer to a full table scan. Hence, the index scan is upper bounded by costscan .

These observations lead to the following expression for the cost of n lookups on a secondary B+Tree

with correlations:

c pages = c tups/tups per page

costsorted = min((n lookups)(c per u)[(seek cost)(btree height)

+ (seq page cost)(c pages)], costscan)

One simplification in our model is that we ignore the potential overlap between the sets of Ac keys

associated with two particular Au values. In other words, if one Au value maps to n different Ac

values on average, then it is not true in general that two Au values map to 2n different Ac values. Our

model may overestimate the number of Ac values involved, and thus the cost of secondary indexes.

This is a concern, for example, when evaluating a range predicate over an unclustered attribute that

has linear correlation with the clustered attribute (e.g., order receipt dates will overlap heavily for

a range of ship dates).

This cost model captures two key facts: first, when both c per u and c pages are small, the cost

of an individual secondary index lookup is not much more than the cost of a lookup on a clustered

index (which costs btree height seeks plus a scan of c pages). c per u will be small when there are few
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values in the clustered attribute, or when there is a correlation between the clustered attribute and

the unclustered attribute. Second, if c per u is small because the clustered attribute is few-valued,

then c pages will likely be large, driving up the cost of each unclustered index access as it will scan

a large range of the table.

On the other hand, if c per u is small due to correlations, c pages is not necessarily large. Hence,

if we cluster a table on an attribute that has:

1. A small c pages value and,

2. Correlations to many unclustered attributes (i.e., with a small c per u value for many unclus-

tered attributes),

then we can expect to be able to exploit this clustering to get good performance from many different

secondary indices.

2.4.2 Implementing The Cost Model

To obtain performance predictions from this cost model, we have developed a tool that scans existing

tables and calculates the statistics needed by the cost model. Our approach for doing this is quite

simple and uses a sampling-based method to reduce the heavy cost of exact parameter calculation.

Given these statistics and measurements of underlying hardware properties, the cost model can

predict how much (or if) a given pair of attributes benefits from an unclustered index. The database

administrator can use these measurements to choose to build unclustered indexes and to cluster

tables on high-benefit attribute pairs that the application is likely to query. In Section 2.7, we

present the plots predicted by our cost model alongside our empirical results.

The key measure of correlation that our model relies on is the c per u statistic. As c per u is

the average number of distinct Ac values for each Au value, we can calculate its value based on the

cardinalities of columns, as follows (this approach is similar to that presented in [IMH+04]). We

write the number of distinct values over a pair of attributes Ai and Aj as D(Ai, Aj) and the number

of distinct values over a single attribute as D(Ai). Then we can write:

c per u =
D(Au, Ac)

D(Au)

The basic problem of estimating the cardinality of a column has had extensive treatment in both
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the database and statistics communities, where it is known as the problem of estimating the number

of species (e.g. [BF93]).

For estimating single-attribute cardinality, we use the Distinct Sampling (DS) algorithm by

Gibbons [Gib01], which computes estimates that are far more accurate than pure sampling-based

approaches at a cost of one full table scan. We choose DS over less costly sampling schemes because

an error in cardinality estimation for single attributes may cause substantial errors in later database

design phases (alternatively, the system catalogs may maintain this statistic accurately).

In Section 2.6 we present our CM advisor that recommends multi-column composite indexes.

It is not feasible to use DS for estimating the cardinality of all attribute combinations that our

advisor considers, so to estimate composite c per u measurements we use the Adaptive Estimator

(AE) algorithm [CCMN00]. AE estimates composite attribute cardinalities based on a random data

sample; we sacrifice some accuracy, but it is very fast because the sample can be kept in memory.

These samples are randomly collected during the DS table scan, yielding an optimum random sample

as described in [OR95].

2.5 Compressing B-Trees as CMs

We have shown the potential to exploit correlations to make unclustered B+Trees perform more

like clustered B+Trees, and we now turn our attention to describe how to efficiently store many

unclustered B+Trees in a database system. Our approach uses a compressed B+Tree-like structure

called a Correlation Map (CM) that works especially well in the presence of correlations. Com-

pressing secondary indexes is not a new concept: several approaches have been explored in prior

work [BU77]. The goals of compression are twofold; first, compression saves disk space, which can

be prohibitive when considering numerous indexes on large datasets. Second, compression improves

system performance by reducing I/O costs associated with using indexes and by reducing pressure

on the buffer pool.

Although disk space is becoming cheaper every day, it is still a limited resource. For large data

warehouses in real applications, having many B+Tree indexes can easily require petabytes of disk

space and thus does not scale [GST+02]. Existing lossless index compression might achieve up to

a 4x reduction in space while, as we show in our experimental section, CMs can reduce index sizes

by 3 orders of magnitude. There is an obvious advantage to reducing secondary index sizes – the
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database requires less disk space and index lookups during query processing consume fewer I/O

operations. However, an even more significant improvement comes from reduced index maintenance

costs.

Indexes have to be kept up-to-date as the underlying data change through inserts or deletes.

Accessing the disk on every update is prohibitively expensive. Thus, the universally applied solution

is to keep modified pages in memory and delay writing to disk for as long as possible. Unfortunately,

RAM is a much more limited resource than disk space and only a small fraction of a typical B+Tree

can be cached. As we show in Experiment 3 of Section 2.7.2, maintaining as few as 5 or 10 B+Trees

can lead to a dramatic slowdown in overall system performance. CMs on the other hand can be

usually be fully cached in memory as they are quite small; this leads to substantially lower update

cost. This means that it is realistic to maintain a large number of CMs, whereas it may not be

practical to maintain many conventional B+Trees. In the rest of this section, we describe how CMs

are structured, built, and used.

2.5.1 Building and Maintaining CMs

Given that the user wants to build a CM over an attribute T.Au of a table T (we call this is the CM

Attribute), with a clustered attribute T.Ac, the CM is simply a mapping of the form u→ Sc, where

1. u is a value in the domain of T.Au, and

2. Sc is a set of values in the domain of T.Ac s.t. there exists a tuple t ∈ T of the form

(t.Au = u, t.Ac = c, . . .) ∀c ∈ Sc.

For example, if there is a clustered index on product.state, a CM on product.city might contain

the entry “Boston→ {NH,MA},” indicating that there is a city called Boston in both Massachusetts

and New Hampshire.

The algorithm for building a CM is shown in Algorithm 1. The algorithm works as follows: once

the administrator issues a DDL command to create a CM, the system scans the table to build the

mapping (line 1). As the system scans the table, it looks up the CM key value in the mapping and

adds the clustered index key to the set of key values (line 1). The system tracks the number of times

a particular pair of (uncorrelated, correlated) values occurs using a “co-occurrence” count, which is

initialized to 1 (line 1) and incremented as needed (line 1).
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The number of times a particular correlated value occurs with each uncorrelated value in the

table is needed for deletions. When a tuple t is deleted, the CM looks up the mapping mAu
for

the uncorrelated attribute value and decrements the count c for the correlated value t.Ac. When c

reaches 0, the value t.Ac is removed from mAu
.

The insertion algorithm is very similar to the algorithm for building the table. The main loop

(line 1 in Algorithm 1) is simply repeated for each new tuple that is added. Updates can be treated

as a delete and an insert.

Since a CM is just a key-value mapping from each unclustered attribute value to the correspond-

ing clustered attribute values, it can be physically stored using any map data structure. This is

convenient because database systems provide B+Trees and Hash Indexes that can be used for this

purpose. In our implementation, we physically represent a CM using a PostgreSQL table. Whenever

a tuple is inserted, deleted, or modified, the CM must be updated as discussed above. Because the

CM is relatively compact (containing one key for each value in the domain of the CM attribute,

which in our experiments occupy 0.1–1 MB for databases of up to 5 GB), we expect they can gen-

erally be cached in memory. Rather than modify PostgreSQL internals, we implemented our own

front-end client that caches CMs (see Section 2.7.1). We report the sizes of CMs for several datasets

in our experimental evaluation in Section 2.7, showing that they are often much more compact than
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the equivalent B+Tree.

input : Relation T with attribute T.Au and clustered index I over attribute T.Ac

output: Correlation map C, a map from T.Au values to co-occurring T.Ac values, along with

co-occurrence count.

C ← new Map(Value → Set) ;

foreach tuple t ∈ T do

m← C.get(t.Au) ;

if (m.get(t.Ac) = null) then

/* Add fact that t.Ac co-occurred with t.Au to mapping for t.Au,

initializing co-occurrence count to 1 */

m.put(t.Ac, 1) ;

end

else

/* Increment co-occurrence count for t.Ac in mapping for t.Au */

cnt← m.get(t.Ac) ;

m.put(t.Ac, cnt+ 1) ;

end

end

return C ;

Algorithm 1: CM Construction Algorithm

2.5.2 Using CMs

The API for performing lookups on the CM is straightforward; the CM implements a single proce-

dure, cm lookup({vu1 . . . vuN}). It takes a set of N CM attribute values as input and returns a list

of clustered attribute values that co-occur with {vu1 . . . vuN}. These clustered attribute values are

determined by taking the union of the clustered attribute values returned by a CM lookup on each

unclustered value vui.

Given a list of clustered attribute values to access, the system then performs a sorted index scan

on the clustered index. Return values from this scan must be filtered by predicates over the CM

attribute, since some values in the clustered index may not satisfy the unclustered predicates – for

example, a scan of the states “MA” and “NH” to find records with city “Boston” will encounter
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many records from non-satisfying cities (e.g., “Manchester”.)
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Figure 2.4: Diagram illustrating an example CM and its use in a query plan, and comparing to the
use of a conventional B+Tree

Figure 2.4 illustrates an example CM and how it guides the query executor. A secondary B+tree

index on city is a dense structure, containing an entry for every tuple appearing with each city. In

order to satisfy the “Boston” or “Springfield” predicate using a standard B+Tree, the query engine

uses the index to look up all corresponding rowids. The equivalent CM in this example contains all

unique pairs (city, state). To satisfy the same predicate using a CM, the query engine looks up

all possible state values corresponding to “Boston” or “Springfield”. The resulting values (“MA”,

“NH”, “OH”) correspond to 3 sequential ranges of rowids in the table. These are then scanned and

filtered on the original city predicate. Notice that the CM scans a superset of the records accessed

by the B+Tree, but that it contains fewer entries.

2.5.3 Discussion

CMs capture the correlation between the indexed attribute and the clustered attribute. If the two

attributes are well-correlated, each value of the CM attribute will co-occur with only a few values in
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the clustered attribute, whereas if they are poorly correlated, the CM attribute will co-occur with

many clustered attribute values. The degree of compression obtained by replacing a B+Tree with

a CM is determined by the degree of correlation as the CM needs to store every unique pair of

attributes (Au, Ac).

We’ve already seen that CM performance is well-predicted by c per u. However, there is another

condition that affects the performance of correlation maps: they only perform well when the set of

relevant clustered attribute values covers a relatively small fraction of the entire table. To see this,

consider a correlation with a table clustered on a small-domain attribute, such as gender. Even if

the gender attribute is highly correlated with some unclustered attribute, the correlation is unlikely

to reduce access costs for most scans of the unclustered attribute, since the system would have to

scan about 50% of the table using the CM.

We now briefly describe how CMs can be further compressed through bucketing. An extensive

treatment of our approach to bucketing over one or multiple attributes can be found in Section 2.6.

2.5.4 Bucketing CMs

The basic CM approach described in the previous section works well for attributes where the number

of distinct values in the CM attribute or the clustered attribute are relatively small. However, for

large attribute domains (such as real-valued attributes), the size of the CM can grow quite unwieldy

(in the worst case having one entry for each tuple in the table). Keeping a CM small is important

to keep the performance benefits outlined above.

We can reduce the size of a CM by “bucketing” ranges of the unclustered attribute together into

a single value. We can compress ranges of the clustered attribute stored in the CM similarly. For

example, suppose we build a CM on the attribute temperature with a clustered index on humidity

(these attributes are often correlated, with lower temperatures bringing lower humidities). For

example, given the unbucketed CM on the left, we can bucket it into the 1oC or 1% intervals shown

on the right via truncation:
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{12.3oC} → {17.5%, 18.3%}

{12.7oC} → {18.9%, 20.1%}

{14.4oC} → {20.7%, 22.0%}

{14.9oC} → {21.3%, 22.2%}

{17.8oC} → {25.6%, 25.9%}

{12− 13oC} → {17− 18%, 18− 19%, 20− 21%}

{14− 15oC} → {20− 21%, 21− 22%, 22− 23%}

{17− 18oC} → {25− 26%}

Note that we only need to store the lower bounds of the intervals in the bucketed example above.

The effect of this truncation is to decrease the size of the CM while increasing the number of

false positives, since now each CM attribute value maps to a larger range of clustered index values

(requiring a scan of a larger range of the clustered index for each CM lookup). We address bucketing

in more detail in Section 2.6, and also discuss a sampling-based algorithm we have developed to search

for a size-effective bucketing.

The next section describes our CM Advisor tool that can identify good candidate attributes for

a CM and searches for optimal CM bucketings.

2.6 CM Advisor

In this section, we present our CM Advisor algorithm that searches for good bucketings of clustered

attributes and recommends useful CMs to build. There are several reasons why having an automatic

designer for CMs is valuable in query processing.

First, a database administrator needs to understand which attributes will benefit from the cre-

ation of CMs; although CMs are compact, creating one on every attribute is not possible, especially

when allowing composite CMs (over multiple attributes) with different bucketings. Composite CMs

are important because there are situations where two attributes can yield stronger correlations with

a third attribute than either of the attributes individually. For example an individual longitude

or latitude can occur in many different zipcodes, but a combined (longitude, latitude) pair

lies in exactly one zip code. This property still holds even if longitude and latitude are bucketed

using a relatively large bucket size. A traditional (secondary) B+Tree with a composite (longitude,

latitude) key might perform substantially worse than a bucketed CM in such a case as shown in
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Experiment 5.

Second, the query optimizer needs to be able to estimate whether a given query should use the

CM or not; using the CM adds overhead to query execution. As discussed earlier, CMs work best

when a strong correlation exists between the indexed attribute and the clustered attribute. If the

correlation is not strong enough, the access pattern using a CM might turn into a sequential scan

and thus should not be employed by the query optimizer.

For these reasons, we have developed the CM Advisor, an automatic designer for CMs based

on the statistics and cost model described in Section 2.4. In this section, we describe how the CM

Advisor finds composite correlations from a vast number of possible attribute combinations and

proposes promising bucketings that keep the size of the CM small without significantly degrading

query performance. Our experimental results show that a well designed composite CM can be both

faster than a composite B+Tree index (due to reduced I/O to read from the index and reduced

pressure on the buffer pool from index pages) and up to three orders of magnitude smaller.

Before going into the details of the composite CM selection algorithm, we first describe how the

CM Advisor chooses possible bucketings for a single attribute that contains many values. We show

how to do this for both the clustered and unclustered attribute (on which we build the CM).

2.6.1 Bucketing Many-Valued Attributes

As described in Section 2.5.4, bucketing can dramatically reduce the size of a CM; in particular,

bucketing allows the CM Advisor to consider many-valued (even unique) attributes when making

CM recommendations. However, we must be careful when choosing bucketing granularity. Very

large buckets may result in poor performance by unnecessarily reading large blocks of the correlated

attribute, while small buckets produce large data structures, increasing CM access costs (and pre-

venting them from fitting in memory). In this section we describe how our CM Advisor algorithm

finds the “ideal” bucketing granularity that strikes a balance between size and performance.

We look at two cases: bucketing the clustered attribute and bucketing the unclustered attributes

(the “key” of the CM).

Clustered Attribute Bucketing

If the clustered key is many-valued, the CM structure can become very large even in the presence

of a strong correlation between the clustered attribute and the unclustered attribute, since each
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unclustered attribute value will map to many clustered values. This causes two problems: first, each

CM access becomes more expensive due to its size. Second, if we introduce too many query predicates

to implement CM scans over clustered attributes (e.g., employing the query rewriting method used

in Section 2.7.1), the query plan itself becomes more complex, causing significant overhead in the

query optimizer.

To alleviate these problems, the CM Advisor buckets the clustered attribute by adding a new

column to the table that represents the “bucket ID.” All of the tuples with the same clustered

attribute value will have the same bucket ID, and some consecutive clustered attribute values will

also have the same bucket ID. The CM then records mappings from unclustered values to bucket

IDs, rather than to values of the clustered attribute. CM Advisor performs the actual bucketing

during its sequential scan of the table (while computing c per u statistics). The Advisor begins by

assigning tuples to bucket i = 1. Once it has read b tuples, it reads the value v of the clustered

attribute of the bth tuple. It continues assigning tuples to bucket i until the value of the clustered

attribute is no longer v, at which point it starts assigning tuples to bucket i + 1 and increments i

(this ensures that a particular clustered attribute value is not spread across multiple buckets). This

process continues until all tuples have been assigned a bucket.

Wider bucketing causes CM-based queries to read a larger sequential range of the clustered

attribute (by introducing false positives), increasing sequential I/O reads but not adding disk seeks.

When the bucketing width is chosen well, we have observed that the negative impact of this additional

sequential I/O is minimal. To illustrate this, we bucketed the Sloan Digital Sky Survey (SDSS)

dataset (see Section 2.7). We then measured the time to run query SX6, performing a lookup on

two values of the attribute fieldId, which is well correlated with the clustered attribute (ObjID

in this case). We simulated the disk behavior by counting scanned pages and seeks between non-

contiguous pages, and then calculated the runtime by applying the statistics in Table 2.1. We varied

the bucketing of the clustered attribute from 1 to 40 disk pages per bucket. The results are shown in

Table 2.3. We found that performance is relatively insensitive to the bucket size (up to some limit);

a value of b such that about 10 pages of tuples map to each bucket appears to work well, taking

only about 1 ms longer to read than a bucket size of 1.
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Table 2.3: Clustered attribute bucketing granularity and I/O cost
Bucket Size [pgs/bucket] Pages Scanned IO Cost [ms]

1 96 15.34
5 105 15.925
10 110 16.25
15 135 17.875
20 140 18.2
40 160 19.5

Bucketing Unclustered Attributes

Bucketing unclustered attributes has a larger effect on performance than bucketing clustered at-

tributes because merging two consecutive values in the unclustered domain will potentially increase

the amount of random I/O the system must perform (it will have to look up additional, possibly

non-consecutive values in the clustered attribute). This is in contrast to bucketing the clustered

attribute, which adds only sequential I/O.

The CM advisor builds equi-width histograms of several different bucket widths from the random

data sample (described in Section 2.4.2). Each of these histograms represents one possible bucketing

scheme for the attribute under consideration. For a single-attribute CM, the c per u value for each

bucketing can be computed directly from each histogram, by calculating the average number of

clustered attribute values that appear in each bin of the histogram, as described in Section 2.4.2.

Histograms with fewer, wider bins will have more clustered values per bin and a higher c per u,

whereas histograms with more, narrower bins, will have lower c per u values. For composite CMs,

computing c per u is more complex, as described in Section 2.6.1. In practice, we find that there is

often a “natural” bucketing to the data that results in little increase in c per u while substantially

reducing CM size; we show this effect in our experiments in Section 2.7. Once our CM advisor has

constructed all possible histograms (within the bucketing constraints), it iterates through each of

them to recommend CMs that will provide good performance, as described in Section 2.6.2 below.

One question that remains unanswered is how to determine the number of different bucketings

to consider for each attribute. Our algorithm considers all bucketings that yield between 22 and 216

buckets. The bucket sizes that we consider scale exponentially. For example, if a column has 100

values, the algorithm considers bucket sizes of 21, 22, 23, 24 and 25 (since a bucket size of 26 = 64

yields less than 4 buckets). The limits 22 and 216 on the numbers of buckets are configurable, but

we found that sufficiently compact bucketing designs often lie within this range in practice.
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As another example, Table 2.4 below shows the output from bucketing on the SDSS dataset. Here,

CM Advisor outputs attributes such as mode and type, which are few-valued, without bucketing.

For the many-valued attributes fieldID and psfMag g, it recommends a series of bucketings that

keep the number of buckets in the desired range.

In the case of building a composite CM, we do not directly compute c per u for each of the single-

attribute histograms, but rather pass the possible binnings and the random sample we collected to

the composite CM selection algorithm which tries to select a good multi-attribute CM, as we describe

next.

Table 2.4: Unclustered attribute bucketings considered for the SX6 query in the SDSS benchmark.
Column Cardinality Bucket Widths
mode 3 none
type 5 none ∼ 21

psfMag g 196352 22 ∼ 216

fieldID 251 none ∼ 26

Bucketing Composite Unclustered Attributes

The number of possible composite CM designs for a given table is very large because there are∏CN

c=C1
(Bucketing(c) + 1)− 1 unique combinations of N columns and bucketings (assuming we use

the bucketing scheme described above for each attribute). Consider Table 2.4 again. There are two

options for the attribute mode: whether to include it in the composite CM or not. For fieldID, there

are eight options: to include it unbucketed, to include it with bucket widths 21 through 26, or not

to include it at all. Similar choices apply for the other attributes. Hence, in total, Table 4 implies

(2 ∗ 3 ∗ 16 ∗ 8)− 1 = 767 different candidate designs for CMs from just 4 attributes. As described in

Section 2.4.2 we use Adaptive Estimation (AE) to estimate the combined c per u for each candidate

design. We observed that a sample size of 30,000 tuples gives us reasonably accurate estimates

(similar sample size was chosen in [IMH+04]). Using this sample, AE can compute cardinality and

bucketing estimates in approximately 5 milliseconds per candidate design.

2.6.2 Recommending CMs

In this section, we explain how the CM Advisor selects (possibly multi-attribute) CMs and bucket-

ings.
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Training Queries

A CM can help query execution only when some (or, ideally, all) of its attributes are used as

predicates in some query. In other words, an interesting CM design for a query should contain some

subset of the predicated attributes. To obtain a set of candidate attributes, our algorithm uses a

set of training queries (specified by the DBA) as input. For example, in our SDSS dataset, the

DBA might provide the following set of sample queries (alternatively, queries can be collected by

monitoring queries at runtime):

Query 1: SELECT . . . FROM . . . WHERE ra BETWEEN

170 AND 190 AND dec < 0 AND mode = 1

=⇒ { ra, dec, mode }

Query 2: SELECT . . . FROM . . . WHERE fieldID IN ( . . . )

AND mode = 1 AND type = 6 AND psfMag g < 20

=⇒ { fieldID, mode, type, psfMag g }

Query 3: . . .

The goal of the CM Advisor is to output one or more recommended CM designs for each query,

along with the expected speed-up factors and CM size estimates. The DBA can then choose which

CMs to create. As long as CMs are small, it is reasonable to expect that there will be several CMs

on any given table.

Searching for Recommendations

Our CM Advisor exhaustively tries all possible composite index keys and bucketings of attributes for

a given training set query. We only consider attributes actually used together in training queries as

CM keys. Previous work used similar techniques to prune candidate attribute pairs [BH03, IMH+04].

As most queries refer to a fairly small number of predicates and we only consider a limited number

of bucketings (see in Sections 2.6.1 and 2.6.1), this keeps the number of candidate CM designs small.

The search space is limited also by removing predicates less selective than some threshold (i.e. >0.5).

For the queries in our experiments the longest the CM Advisor ran was about 20 seconds. This is

for a query with 5 predicated columns. Given that the CM Advisor is an offline algorithm we believe

this is practical.

As we described in Section 2.4, the c per u value associated with a CM is a good indicator of
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the expected query runtime improvement. However, a large CM tends to be less useful, even if it

has very low c per u, because it requires too much space to fit into main memory and thus lookup

and maintenance become expensive (we further explore the overheads of lookup and maintenance on

large index structures in Section 2.7). Therefore simply recommending CM with the lowest c per u

is a poor idea. Instead, our CM designer recommends the smallest CM design within a performance

target (defined as a slowdown in query performance relative to an unbucketed design) chosen by

the user. We use the cost model developed in Section 2.4 to estimate the performance degradation

compared to a secondary B+Tree.

Table 2.5 shows estimated CM sizes for the SDSS dataset, sorted by increased runtime compared

to a B+Tree. A performance drop of +3% means that the access method using CM costs 3% more

than the access method using a B+Tree for the query. We also show the size ratio of CMs to

B+Trees. The CM Advisor recommends the smallest CM design within the user-defined threshold

on performance (e.g., up to 10% slowdown compared to a B+Tree), yielding tunable performance. If

the Advisor cannot find an unclustered index that is expected to improve performance substantially

for a given query, it may recommend that no CM be built.

Table 2.5: CM designs and estimated performance drop compared to secondary B+Trees
Runtime CM Design Size Ratio

0% psfMag g(22), type, fieldID, mode 100%
+1% psfMag g(213), type, fieldID, mode 24.1%
+3% psfMag g(214), type, fieldID, mode 14.6%
+7% type(21), fieldID 1.4%
+10% fieldID 0.8%
. . . . . . . . .

2.7 Experimental Evaluation

In this section, we present an experimental validation of our results. The primary goals of our

experiments are to validate the accuracy of our analytical model, to demonstrate the effectiveness of

our CM Advisor algorithm, and to compare the performance of CMs and secondary B+Tree indexes.

We ran our tests on a single processor machine with 1G of RAM and a 320G 7200rpm SATA

II disk. All experiments were run on PostgreSQL 8.3. We flushed memory caches between runs by

using the Linux /proc/sys/vm/drop caches mechanism and by restarting PostgreSQL for each trial.

Note that whenever we compare our results to a B+Tree, we are using the standard PostgreSQL
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Figure 2.5: Experimental System Overview

secondary index. We also configured PostgreSQL to use a bitmap index scan (see Section 2.3.2) when

it is beneficial. Because of the flushing and bitmap index scan, we also observed similar performance

results with much larger amount of RAM (e.g., 4GB) and data.

2.7.1 System

We prototyped Correlation Maps as a Java front-end application to PostgreSQL as shown in Fig-

ure 2.5. All queries are sent to the front-end. Our prototype rewrites SELECT queries to add an IN

clause over the clustered attribute. This clause restricts to the clustered attribute values mapped

by a predicate on the unclustered attribute. For example, consider the query:

SELECT * FROM lineitem WHERE receiptdate=t

If we have a CM over receiptdate and a table clustered on shipdate, the system might rewrite

the query to:

SELECT * FROM lineitem WHERE receiptdate=t

AND shipdate IN (s1 . . . sn)
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where s1 . . . sn are the shipdate values that receiptdate t maps to in the CM. PostgreSQL receives

queries with the rewritten IN clause, which causes it to use the clustered index to find blocks contain-

ing matching tuples; by including the original predicate over the unclustered attribute we ensure we

receive only tuples that satisfy the original query. For INSERT and DELETE queries, the prototype

updates internal CMs as well as table data in PostgreSQL. Although the prototype keeps CMs in

main memory and only occasionally flushes to disk on updates, we provide comparable recoverabil-

ity to a secondary B+Tree index by using a Write Ahead Log (WAL) and flushing the transaction

log file during Two-Phase Commit (2PC) in PostgreSQL. We use the PREPARE COMMIT and

COMMIT PREPARED commands in PostgreSQL 8.3 to implement the 2PC protocol.

Note that CMs could be implemented as an internal sub-module in a DBMS thereby obviating

the need for query rewriting. We expect this would exhibit better performance than the results we

present here. We employed the rewriting approach to avoid modifying the internals of PostgreSQL

(e.g., its planner and optimizer).

Datasets

Hierarchical Data: The first dataset that we use is derived from eBay category descriptions that

are freely available on the web [EBa08]. The eBay data contain 24,000 categories arranged in a

hierarchy of sub-categories with a maximum of 6 levels (e.g. antiques → architectural & garden →

hardware → locks & keys).

We have populated this hierarchy with unique ItemIDs. We chose 500 to 3000 ItemIDs uniformly

per category, resulting in a table with 43M rows (occupying 3.5GB on disk). Each category is assigned

a unique key value as its Category ID (CATID), and the sub-categories for each CATID are represented

using 6 string-valued fields – CAT1 through CAT6. The median value for the price of each category

was chosen uniformly between $0 and $1M. Individual prices within a category were generated using

a Gaussian around that median with a standard deviation of $100. Thus, there exists a strong (but

not exact) correlation between Price and CATID. The schema for this dataset is as follows:

ITEMS(CATID, CAT1, CAT2, CAT3, CAT4, CAT5,CAT6, ItemID, Price)
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TPC-H Data: For our second data source, we chose the lineitem table from the TPC-H bench-

mark, which represents a business-oriented log of orders, parts, and suppliers. There are 16 attributes

in total in which we looked for correlations. The table consists of approximately 18M rows of 136

bytes each, for a total table size of 2.5GB at scale 3. The partial schema for this database follows:

LINEITEM (orderkey, partkey, suppkey, . . . ,

shipdate, commitdate, receiptdate, . . . )

SDSS Data: Our third source is the desktop SDSS skyserver [GST+02] dataset which contains

200,000 tuples. We used the fact table PhotoObj (shown below) and its partial copy PhotoTag.

PhotoObj (objID, ra, dec, g, rho, . . . )

PhotoObj is a very wide table with 446 attributes, while PhotoTag only has a subset of 69 of

these attributes. To augment the SDSS dataset to contain a comparable number of tuples to the

other datasets, we extended PhotoTag by copying the right ascension (ra) and declination (dec)

windows 10 times in each dimension to produce a 100-fold increase in size (20M rows, 3GB).

2.7.2 Results

In Section 2.3.3 we presented two experiments demonstrating that a secondary index scan performs

better when an appropriately chosen clustered index is present and that useful correlations are

reasonably common in a real-world data set (SDSS). In this section, we describe the results of a

variety of experiments about CMs.

Experiment 1: In our first experiment, we explore the performance implications of using a CM

instead of a secondary B+Tree (with an appropriately correlated clustering attribute). Our goal is

to demonstrate that CMs capture the same benefits of correlations we showed before. Bear in mind

that CMs are substantially smaller than unclustered B+Trees; we measure these size effects and
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their performance benefit in later experiments. We experimented on the eBay hierarchical dataset

clustered on CATID. We picked a bucket size of 4096 tuples per bucket for the Price attribute (we

explain this choice in Experiment 2). We use the following query, varying price ranges as indicated

below.

SELECT COUNT(DISTINCT CAT2) FROM ITEMS WHERE Price BETWEEN 1000

AND 1000+PriceRange

In Figure 2.6, we omit the results for the full table scan as well as for a B+Tree with no

correlations, both of which take more than 100 seconds. Here, the CM performs 1s to 4s worse

than the secondary index (but still an order of magnitude better than a sequential scan or an index

lookup without clustering). This is explained primarily by the increasing number of extraneous

heap pages that the CM access pattern reads (which are avoided by the bitmap scan since they do

not contain the desired unclustered attribute value), as well as the overhead associated with query

rewriting. The observation is that CM performance is competitive, while the data structure is three

orders of magnitude smaller (the CM is 0.9MB on disk, the secondary B+Tree is 860MB).
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Figure 2.6: Performance of CM and B+Tree index (with correlated clustered attribute) for queries
over range of Price

Experiment 2: In this experiment, we explore the effects of bucketing. We optimize over bucketing

schemes by balancing the performance of the target query and the size of CM. We again use CATID

as the clustered attribute, but instead of relying on one fixed bucket layout for the unclustered
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attribute, we vary the bucket size using the approach presented in Section 2.6. We run the query:

SELECT COUNT(DISTINCT CAT3) FROM ITEMS WHERE Price BETWEEN 1000

AND 1100

The selectivity of this predicate is 6617 rows out of 43M, or 0.000154. In order to evaluate

different bucket layouts, we vary the bucket size by powers of two. Therefore, a level of 3 indicates

that each bucket holds 23 unclustered attribute values.

Looking at Figure 2.7, we see that CM performance is nearly the same as that of the B+Tree

up to a bucket level of about 13. With no bucketing, the size of the CM is 350MB, which is already

smaller than the PostgreSQL secondary B+Tree (850MB). Observe that as we increase the bucket

size, the CM size continues to decrease. It is worth noting that even a CM on a many-valued column

like Price can become very compact after bucketing.

Figure 2.7 demonstrates a tradeoff between runtime and size. The lookup runtime grows rapidly

after the CM hits a particular bucket size. The intuition behind this critical bucket size is the

following: if there are two adjacent buckets in the CM that point to the same set of buckets in the

clustered index, doubling the CM bucket size has no effect on c per u. The key bucket size in this

example occurs at 213 = 8192, which is the number of Price values closest to the 6617 selected by

the range predicate. This shows that there is an “ideal” choice for bucket size that occurs at the

knee of the curve.

Experiment 3: In this experiment, we compare the maintenance costs of CMs and secondary

B+Trees on eBay data. The table is still clustered on CATID, but this time we have multiple CMs

and secondary B+Tree indexes on the same columns. We inserted 500k tuples in batches of 10k

tuples, which is a standard approach for keeping update overhead low in data warehouses. As shown

in Figure 2.8, the total time for inserting 500k tuples quickly deteriorates for B+Trees while for CMs

it remains level. Note that we counted all costs involved in maintaining a CM, including transaction

logging and 2PC with PostgreSQL.

The reason why the B+Tree’s maintenance cost deteriorates for more indexes is that additional

B+Trees cause more dirty pages to enter the buffer pool for the same number of INSERTs, leading

to more evictions and subsequent page writes to disk. On the other hand, CMs are much smaller

than B+Trees and can be kept in memory even when all of their pages are dirty. Therefore, we can

maintain a significantly larger number of CMs than B+Trees.
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Figure 2.7: Query runtime and CM size as a function of bucket level. The query selects a range of
Price values.

We also compared the performance of B+Trees and CMs under 50 runs of a mixed workload

consisting of INSERTs of 10,000 tuples followed by 100 SELECTs. Here the SELECT query has a

predicate on one of CAT1 to CAT6

SELECT AVG(Price) FROM ITEMS WHERE CATX=X

We randomly chose the predicated attribute and value. The mixed workload gives roughly the

same runtime for SELECTs and INSERTs if there is only one B+Tree index. Figure 2.9 shows

the total runtime with 5 B+Trees and 5 CMs in the mixed workload, compared against the original

INSERT-only workload. The insertion costs on both B+Trees and CMs were higher than the original
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workload because SELECT queries consume space in the buffer pool and accelerate the overflow of

dirty pages. Interestingly, CMs are faster than B+Trees even for SELECT queries in this mixed

workload unlike the read-only workload in Experiment 1 and Experiment 2. This is because SELECT

queries over B+Trees frequently have to re-read pages that were evicted from the buffer pool due the

many page writes incurred by the updates. In total, 5 CMs are more than 4x faster than B+Trees

in the mixed workload; with more secondary indices, the disparity would be more dramatic.

To confirm that correlations benefit both CMs and secondary B+Trees, we also ran the mixed

workload for 5 B+Tree indexes after re-clustering the table on ItemID (which has no correlation with

the predicates). Query performance becomes significantly worse than the times shown in Figure 2.9;

the queries take 100x-400x longer because PostgreSQL needs to scan almost the entire table to look

up randomly scattered tuples.

In summary, these first experiments demonstrate that properly exploiting correlations can signif-

icantly speed up queries both for B+Trees and CMs. However, for multiple B+Trees, maintenance

costs quickly deteriorate as the total number of indexes increases. The same effect is not true for

CMs because they are so much smaller than B+Trees, and place less pressure on the buffer pool.

As a result, we believe CMs provide an ideal way to exploit correlations in secondary index scans.

Experiment 4: In this experiment, we demonstrate that our cost model based on c per u captures

actual query costs accurately. The data set and clustered key used in this experiment are the same
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as in Experiment 1, but we use a different query shown below which has a predicate on CAT5:

SELECT AVG(Price) FROM ITEMS WHERE CAT5=X

In other words, we select over a particular subcategory in the fifth level of the eBay product

hierarchy. We build a CM on CAT5, which is strongly correlated with CATID. We tested different

values chosen from the CAT5 category that exhibited different c per u counts (ranging from 4 to 145).

Our cost model predicts that the CM’s performance is primarily determined by how many clustered

attribute values the predicated unclustered value corresponds to. As Figure 2.10 shows, this cost

model effectively captures the performance of a CM with various c per u values.

Experiment 5: For our final experiment, we use the SDSS dataset to demonstrate a situation

where composite CMs have an advantage over single-attribute CMs as well as secondary B+Tree

indexes with a real-world query. This is an example of a non-trivial correlation that was discovered

by our CM Advisor tool. The clustered attribute objID is correlated strongly with the pair (ra,

dec), but the correlation is weaker with each individual attribute. We use the following query, a

variant of Q2 from SDSS that identifies objects having blue and bright surfaces within a region.

SELECT COUNT(*) FROM PhotoTag

WHERE ra BETWEEN 193.117 AND 194.517

AND dec BETWEEN 1.411 AND 1.555
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AND g + rho BETWEEN 23 AND 25

We choose the columns and bucket sizes for the CM recommended by the CM Advisor. As we

can see in Table 2.6, the composite CM performs much better than a single attribute CM because

neither attribute predicts the clustered value but the composition of the attributes does. Both the

CM on right ascension and the CM on declination perform worse than the B+Tree index on the

pair. However, the CM on the pair of attributes actually performs even better than the B+Tree.

The reason that the composite CM wins is that the B+Tree index performs poorly given multiple

range predicates. The secondary index is only used for the range on right ascension, which is the

prefix of the compound key. The CM does not have this problem as it is only 699 KB and can be

scanned from memory. The size of the secondary index on (ra, dec), on the other hand, is 542

MB.

Table 2.6: Single and composite CMs for an SDSS range query
Index Bucketing Runtime[s] Size[MB]

CM(ra) 212 4.0 0.67
CM(dec) 214 1.7 0.936

CM(ra, dec) 214(ra) 216(dec) 0.21 0.699
B+Tree(ra, dec) - 1.12 542
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2.7.3 Summary

In this section, we compared the performance of secondary B+Tree and CMs in PostgreSQL on a

variety of different data sets and workloads. We showed that CMs and B+Trees can both exploit

correlated clustered attributes; that our cost model is a good predictor of performance; and that

our CM Advisor can automatically select high performance multi-attribute CMs. We also showed

that bucketing can reduce CM size without substantially impacting overall performance, and demon-

strated that smaller CMs are substantially cheaper to maintain and keep in main memory, resulting

in significantly better overall performance than B+Trees.

2.8 Conclusions

In this chapter, we showed that it is possible to exploit correlations between attributes in database

tables to provide substantially better performance from unclustered database indexes than would

otherwise be possible. Our techniques exploit correlations by transforming lookups on the unclus-

tered attribute to lookups in the associated clustered index. In order to predict when CMs will

exhibit improvements over alternative access methods, we developed an analytical cost model that

is suitable for integration with existing query optimizers. Additionally, we described the CM Advisor

tool that we built to identify correlated attributes and recommend CMs and bucketings that will

provide good performance.

Our experimental results over several different data sets validate the accuracy of our cost model

and establish numerous cases where CMs dramatically accelerate lookup times over either unclus-

tered B+Trees (without an appropriate clustered column) or sequential scans. We also showed that

CMs are much smaller than conventional unclustered B+Trees, making it possible to maintain a

large number of them to speed up many different queries. For a workload with updates the compact

size of a CM reduces its maintenance overhead over that of the equivalent unclustered B+tree. Based

on these results, we conclude that CMs, coupled with our analytical model, have the potential to

offer substantial performance gains on a broad class of queries.

We are extending the work in the broader context of physical database design. Our work in this

chapter assumes a given clustered index. However, if we had the freedom to chose the clustered index

(which is fine in a data warehouse) to have stronger correlations with predicated attributes in the

workload, we would likely achieve even greater improvement. Towards this goal, the next chapter
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develops a new physical database designer which chooses a set of materialized views, clustered indexes

and CMs so that the correlations between the clustered and unclustered indexes are maximized to

optimize the performance for given workload queries within a given space budget. Another extension

is to design even more flexible bucketing for skewed value distributions. One possible solution is to

consider variable-width buckets that pack more predicated attribute values into a bucket when that

bucket has many repeated values for the associated clustered attribute. This approch might further

reduce the size of CMs without affecting the query performance.



Chapter 3

Correlation Aware Database

Designer: Designing Correlated

MVs and Indexes

We describe an automatic database design tool that exploits correlations between attributes when

recommending materialized views (MVs) and indexes. Although there is a substantial body of

related work exploring how to select an appropriate set of MVs and indexes for a given workload,

none of this work has explored the effect of correlated attributes (e.g., attributes encoding related

geographic information) on designs. Our tool identifies a set of MVs and secondary indexes such that

correlations between the clustered attributes of the MVs and the secondary indexes are enhanced,

which can dramatically improve query performance. It uses a form of Integer Linear Programming

(ILP) called ILP Feedback to pick the best set of MVs and indexes for given database size constraints.

We compare our tool with a state-of-the-art commercial database designer on two workloads, APB-1

and SSB (Star Schema Benchmark—similar to TPC-H). Our results show that a correlation-aware

database designer can improve query performance up to 6 times within the same space budget when

compared to a commercial database designer.

49
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3.1 Introduction

Correlations are extremely common in the attributes of real-world relational datasets. One reason

for this is that databases tend to use many attributes to encode related information; for example,

area codes, zip codes, cities, states, longitudes, and latitudes all encode spatial data, using slightly

different representations, and these attributes are highly correlated (e.g., a given city name usually

occurs in only one or two states.) Similar cases occur in many applications; for example, in a retail

database, there might be products (e.g., cars) with manufacturers and models. In the case of cars,

a given model is likely made by only one manufacturer (e.g., Ford Escape) for a particular set of

years (2000–2009) in a particular set of countries (US), yet these are represented by four different

attributes in the database. Correlations also occur due to natural relationships between data; for

example, in a weather database, high humidity and high temperatures are correlated, and sunny

days are also correlated with hot days. Many other examples are described in recent related work

[BH03, KHR+09, COO08].

Previous work has shown that the presence of correlations between different attributes in a

relation can have a significant impact on query performance [COO08, KHR+09]. If clustered index

keys are well-correlated with secondary index keys, looking up values on the secondary index may

be an order of magnitude faster than the uncorrelated case. As a simple example, consider the

correlation between city names and state names in a table People (name, city, state, zipcode,

salary) with millions of tuples. Suppose we have a secondary index on city names and our query

determines the average salary in “Cambridge,” a city in both Massachusetts and in Maine. If

the table is clustered by state, which is strongly correlated with city name, then the entries of

the secondary index will only point to a small fraction of the pages in the heap file (those that

correspond to Massachusetts or Maine.) In the absence of correlations, however, the Cantabrigians

will be spread throughout the heap file, and our query will require reading many more pages (of

course, techniques like bitmap scans, indexes with included columns and materialized views can

also be used to improve performance of such queries.) Thus, even if we run the same query on

the same secondary index in the two cases, query performance can be an order of magnitude faster

with a correlated clustered index. We note that such effects are most significant in OLAP (data-

warehouse) applications where queries may scan large ranges, in contrast to OLTP databases that

tend to perform lookups of single-records by primary keys.
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Moreover, such correlations can be compactly represented if attributes are strongly correlated

[BH03, KHR+09]. For example, in Chapter 2, we show that by storing only co-occurring distinct

values of the clustered and secondary index keys, the secondary index can be dramatically smaller

than conventional dense B+Trees, which store one entry per tuple rather than one tuple per distinct

value.

This means that, by selecting clustered indexes that are well-correlated with predicated at-

tributes, we can reduce the size and improve the performance of secondary indexes built over those

attributes. In many cases, these correlations make secondary index plans a better choice than

sequential scans.

Although previous work has shown the benefit of correlations on secondary index performance,

it has not shown how to automatically select the best indexes for a given workload in the pres-

ence of correlations. Conversely, previous work on automated database design has not looked at

accounting for correlations. Hence, in this work, we introduce a new database design tool named

CORADD (CORrelation Aware Database Designer) that is able to take into account attribute cor-

relations. CORADD first discovers correlations among attributes and then uses this information

to enumerate candidate materialized views (MVs) and clustered indexes over them, selecting a set

of candidates that offer good query performance in the presence of correlations. To select an op-

timal set of MVs within a given space budget, CORADD chooses amongst the candidates using

an optimized integer linear programming (ILP) technique called ILP Feedback. Finally, it builds

compressed secondary indexes on the MVs that take advantage of the strong correlations, offering

good performance especially over warehouse-style workloads that can benefit from such indexes. In

summary, our contributions include:

• An MV candidate generation method based on query grouping, which identifies groups of

queries that benefit from the same MV as a result of correlations;

• Techniques to identify the best clustered attributes for candidate MVs to maximize the benefit

from correlations;

• An MV candidate selection method based on integer linear programming and ILP Feedback;

• An implementation and evaluation of CORADD on two data-warehouse benchmarks (SSB [OOC07]

and APB-1 [Ola98]), showing that CORADD obtains up to a factor of 6 performance improve-

ment in comparison to a leading commercial product that does not consider correlations.
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The rest of the chapter is organized as follows. Section 3.2 summarizes related work on corre-

lations and automatic database design tools. Section 3.3 describes the architecture of CORADD.

Section 3.4 describes methods to generate candidate MV designs that exploit correlations. Section 3.5

describes our ILP formulation to pick candidate objects within a given space budget. Section 3.6

describes the ILP Feedback method to adaptively adjust candidate generation. Section 3.7 experi-

mentally compares CORADD with a commercial database designer. Finally, Section 3.8 concludes.

3.2 Background and Related Work

Automatically creating a set of database objects to improve query performance is a well-studied

problem in the physical database design literature [ACN00, CN97, PA07]. Most related work takes

a query workload as input, enumerates candidate database objects that potentially speed up queries,

evaluates the query performance of the objects and then selects objects to materialize.

Most previous work takes a space budget constraint as input to restrict the size of the materialized

database objects for two reasons. First, storage is a limited resource. Second, and more importantly,

the size of the database is directly linked to its maintenance costs. The cost of inserts or updates

rapidly grows as the size of the database grows because additional database objects cause more dirty

pages to enter the buffer pool, leading to more evictions and subsequent page writes to disk as shown

in the previous chapter..

3.2.1 Exploiting Correlations

Many previous researchers have noted that it is important for query processors to be able to take

into account correlations [IMH+04, BH03, KHR+09, COO08]. Chen et al. [COO08] observed that

the performance of secondary indexes in data warehousing applications is substantially affected by

correlations with clustered indexes. Their Adjointed Dimension Column Clustering aims to improve

the performance of queries in a star schema by physically concatenating the values of commonly

queried dimension columns that have restrictions into a new fact table, and then creates a clustered

index on that concatenation. They report a 10 times or more speed-up when an appropriate clustered

index is selected. In Chapter 2, we developed an analytic query cost model that exploits correlations

based on a similar observation, which we use to estimate query costs in this chapter. Details of the

cost model are in Chapter 2. We reproduce the details of the model in Section 6.6 for the readers’
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convenience; in short, the cost of a range scan via a secondary index is proportional to the number

of distinct values of the clustered index to be scanned. When the secondary index is well-correlated

with the clustered index, this number will be small and cost will be low; when it is uncorrelated,

this value will be large and cost will be high (close to a sequential scan.) We will refer to this as our

cost model in the rest of the chapter.

BHUNT [BH03], CORDS [IMH+04], and our work in Chapter 2 discover and exploit correlations

in databases. All three use random sampling to find correlations and find many usable correlations

across a range of real and synthetic data sets. BHUNT represents discovered correlations as bumps

and exception tables and uses these to rewrite queries. Microsoft SQLServer’s datetime correlation

optimization 1 also stores correlations and uses them to rewrite queries involving dates. In Chapter 2,

we developed Correlation Maps (CMs) that use a similar but more general approach; CMs are a

type of secondary index that store the clustered index values with which each value of a secondary

attribute co-occurs. Then, lookups on the secondary attribute can be performed by scanning the

co-occurring clustered attribute values. CMs are thus very compact, as they are a distinct value to

distinct value mapping, and can be quite efficient for range queries if the secondary attributes are

correlated with a clustered attribute, co-occurring with only a few values.

All of these techniques show that properly clustered primary indexes can improve secondary

index performance, but none automatically select the best combination of clustered and unclustered

designs to maximize query performance. Previous work [IMH+04, BH03, COO08] does not describe

how to search for beneficial correlations, and our work in Chapter 2 only shows how to select

beneficial CMs given a clustering (i.e., it does not search for a beneficial clustering.)

Although we believe that any compressed index technique can benefit from our approach, we

use CMs in our work here. We believe that CMs are more versatile than similar approaches (CMs

support multi-attribute correlations and non-numeric data types). CMs also provide a very flexible

compression mechanism and in Chapter 2 we demonstrated that CMs are cheap to maintain even

in the presence of heavy inserts.

3.2.2 Candidate Selection

Given a set of candidate database objects (MVs and indexes), a database designer must choose

a set of objects to materialize with the goal of maximizing overall query performance within the

1http://msdn.microsoft.com/en-us/library/ms177416(SQL.90).aspx

http://msdn.microsoft.com/en-us/library/ms177416(SQL.90).aspx


54

space budget. Previous work proposed two different types of selection algorithms: heuristic and

optimal. Heuristic algorithms [ACN00, CN97] (e.g., Greedy(m,k) [CN97]) often choose a suboptimal

set of MVs by making greedy decisions. On the other hand, optimal algorithms like integer linear

programming (ILP) [PA07] choose an optimal set in potentially exponential time by exploiting

combinatorial optimization techniques. We take the latter approach, further improving the ILP

approach from [PA07] in three ways. First, we improve the ILP structure to account for clustered

indexes, of which there is only one per table or MV. Next, we propose to use and evaluate a new

ILP-related optimization, ILP Feedback (see Section 3.6). Lastly, we formulate the design problem

so that we do not need to relax integer variables to linear variables, which reduces the error of our

approach in comparison to [PA07].

3.3 System Overview

ILP Solver

ILP Feedback

Workload

Find
Query Group

Choose
Clustered Index

MVs+CMs

Statistics

Correlation
Aware

Cost Model

CM Designer
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Generator
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in Chap. 2

CM

CM

MV Clustered
Index

Heap

Figure 3.1: CORADD architecture overview

We now describe the design of CORADD, beginning with a system overview. The goal of

CORADD is to produce a database design within a given space budget that executes a query
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workload as quickly as possible – the same goal as previous work [ACN00, PA07] – except that

we seek a correlation-aware design, The architecture of CORADD is shown in Figure 3.1. In a

nutshell, our design strategy is to choose MVs whose clustered index is well-correlated with attributes

predicated in a workload when our cost model identifies cases where such MVs perform significantly

better than uncorrelated counterparts.

First, a database workload, expressed as a list of queries that we expect to be executed by

the system, is fed into the MV Candidate Generator (Section 3.4), which produces a set of MVs.

In CORADD, an MV design consists of a query group and a clustered index. The query group

determines queries the MV can serve and attributes the MV contains. The MV Candidate Generator

first selects query groups based on the similarity of their predicates and target attributes, taking into

account correlations between those attributes. These query groups are the basis for candidate MV

designs, but they do not have clustered indexes at this point. Then, the module produces clustered

index designs for the MVs that will take advantage of correlations.

Next, the ILP Solver (Section 3.5) selects a subset of the candidate MVs that fit in a given space

budget and maximize the performance of the system. As described in Section 3.2, a space budget

is also used as a proxy for update cost, allowing CORADD to maximize read query performance

subject to constraints on update performance or space. We formulate the problem as an integer

linear program (ILP), and use an ILP solver to find an optimal solution.

Third, ILP Feedback (Section 3.6) sends hints back to the MV Candidate Generator to improve

both query grouping and clustered index design. This module is inspired by the combinatorial opti-

mization technique called Column Generation (CG) [LD05] and provides an efficient way to explore

the design space without considering an exponential number of candidate designs. Specifically, the

feedback module iteratively selects additional candidate MVs derived from the previous ILP solution

and re-solves the ILP to further improve the quality of MV designs.

Finally, the CM Designer we developed in [KHR+09] builds CMs on the MVs that are able to

exploit correlations between the clustered key and secondary attributes in the MV. Since a CM

serves as a secondary index, the output of this stage is a complete database design that is able to

answer queries over both clustered and secondary attributes efficiently. For the readers’ convenience,

a summary of the operation of the CM Designer is reproduced in the previous chapter. Although

we have chosen to describe our approach in terms of CMs, CORADD can also work with other

correlation-aware secondary index structures like BHUNT [BH03] and SQLServer’s date correlation
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feature.

3.4 MV Candidate Generator

The MV Candidate Generator produces an initial set of pre-joined MV candidates, later used by

the ILP Solver. Since the number of possible MVs is exponential, the goal of this module is to pick

a reasonable number of beneficial MVs for each query. We then use an ILP solver (see Section 3.5)

to select a subset of these possible MVs that will perform best on the entire query workload.

As discussed in Section 3.2, secondary indexes that are more strongly correlated with the clustered

index will perform better. In generating a database design, we would like to choose MVs with

correlated clustered and secondary indexes because such MVs will be able to efficiently answer range

queries or large aggregates over either the clustered or secondary attributes. Without correlations,

secondary indexes are likely to be of little use for such queries. As an added benefit, correlations

can reduce the size of secondary indexes, as described in Section 3.2.1.

A naive approach would be to choose an MV for each query (a dedicated MV) which has a

clustered index on exactly the attributes predicated in the query. Such an MV could be used to

answer the query directly. However, this approach provides no sharing of MVs across groups of

queries, which is important when space is limited. The alternative, which we explore in this chapter,

is to choose shared MVs that use secondary indexes to cover several queries that have predicates on

the same unclustered attributes. We also compare to the naive approach with our approach in the

experimental section.

The key to exploiting correlations between clustered and secondary indexes in a shared MV

is to choose a clustered index that is well-correlated with predicates in the queries served by the

MV. Given such a clustered index, secondary indexes are chosen by the CM Designer discussed

in Chapter 2 which (at a high level) takes one query at a time, applies our cost model to every

combination of attributes predicated in the query and chooses the fastest combination of CMs to

create within some space budget for the query.

Because CMs are faster and smaller when they are correlated with the clustered index, the CM

Designer naturally selects the most desirable CMs as long as CORADD can produce a clustered

index that is well-correlated with the predicates in a query group.

To find such clustered indexes, CORADD employs a two-step process. First, it selects query
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Table 3.1: Selectivity vector of SSB

year yearmonth weeknum discount quantity

Q1.1 0.15 1 1 0.27 0.48
Q1.2 1 0.013 1 0.27 0.20
Q1.3 0.15 1 0.02 0.27 0.20

Strength (yearmonth → year)=1
Strength (year → yearmonth)=0.14
Strength (weeknum → yearmonth)=0.12
Strength (yearmonth → year,weeknum)=0.19

Table 3.2: Selectivity vector after propagation

year yearmonth weeknum year,weeknum
Q1.1 0.15 0.15 (= 0.15

1 ) 1 0.15
Q1.2 0.15 (= 0.013

0.14 ) 0.013 0.11 (= 0.013
0.12 ) 0.0162

Q1.3 0.15 0.015 (= 0.0028
0.19 ) 0.02 0.0028

groups that will form MV candidates by grouping queries with similar predicates and target at-

tributes. Next, it produces clustered index designs for each MV candidate based on expected query

runtimes using a correlation-aware cost model. It also produces clustered index designs for fact

tables, considering them in the same way as MV candidate objects.

3.4.1 Finding Query Groups

We group queries based on the similarity of their predicates and target attributes. Because each MV

can have only one clustered index, an MV should serve a group of queries that use similar predicates

in order to maximize the correlation between the attributes projected in the MV. We measure the

similarity of queries based on a selectivity vector.

Selectivity Vector

For a query Q, the selectivity vector of Q represents the selectivities of each attribute with respect

to that query. Consider queries Q1.1, Q1.2, and Q1.3 in the Star Schema Benchmark [OOC07]

(SSB), a TPC-H like data warehousing workload, with the following predicates that determine the

selectivity vectors as shown in Table 3.1. For example, the selectivity value of 0.15 in the cell (Q1.1,

year) indicates that Query 1.1 includes a predicate over year that selects out 15% of the tuples in

the table. The vectors are constructed from histograms we build by scanning the database.
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Q1.1: year=1993 & 1≤discount≤3 & quantity<25

Q1.2: yearmonth=199401 & 4≤discount≤6 & 26≤quantity≤35

Q1.3: year=1994 & weeknum=6 &

5≤discount≤7 & 26≤quantity≤35

Note that the vectors do not capture correlations between attributes. For example, Q1.2 has a

predicate yearmonth=199401, which implies year=1994; thus, Q1.2 actually has the same selectivity

on year as Q1.3. To adjust for this problem, we devised a technique we call Selectivity Propagation,

which is applied to the vectors based on statistics about the correlation between attributes. We adopt

the same measure of correlation strength as CORDS [IMH+04], namely, for two attributes C1 and C2,

with |C1| distinct values of C1 and |C1C2| distinct joint values of C1 and C2, strength(C1 → C2) =

|C1|
|C1C2| where a larger value (closer to 1) indicates a stronger correlation. To measure the strength, we

use Gibbons’ Distinct Sampling [Gib01] to estimate the number of distinct values of each attribute

and Adaptive Estimation (AE) [CCMN00] for composite attributes, as in CORDS [IMH+04] and

our previous work [KHR+09] (see the previous chapter for the details of cardinality estimation).

Using these values, we propagate selectivities by calculating, for a relation with a column set C:

selectivity(Ci) = min
j

(
selectivity(Cj)

strength(Ci → Cj)

)
For each query, we repeatedly and transitively apply this formula to all attributes until no

attributes change their selectivity.

Table 3.2 shows the vectors for SSB after propagation. Here, yearmonth perfectly determines

year, so it has the same selectivity as year in Q1.1. On the other hand, year in Q1.2 does not

determine yearmonth perfectly (but with a strength 0.14). Thus, the selectivity of year falls with

the inverse of the strength. Put another way, year does not perfectly determine yearmonth, as each

year co-occurs with 12 yearmonth values. Each year value co-occurs with more distinct values of

yearmonth. CORADD also checks the selectivity of multi-attribute composites when the determined

key is multi-attribute (i.e. year, weeknum in Q1.3).

Grouping by k-means

Our next step is to produce groups of queries that are similar, based on their selectivity vectors.

To do this, we use Lloyd’s k-means [Llo82] to group queries. k-means is a randomized grouping

algorithm that finds k groups of vectors, such that items are placed into the group with the nearest

mean. In our case, the distance function we use is [v1, v2] =
√∑

ai∈A (v1[ai]− v2[ai])2 where A
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is the set of all attributes and vi is the selectivity vector of query i. We also used k-means++

initialization [AV07] to significantly reduce the possibility of finding a sub-optimal grouping at a

slight additional cost. After grouping, each query group forms an MV candidate that contains all of

the attributes used in the queries in the group. These k most similar groups are fed into the next

phase, which computes the best clustering for each group (see Section 3.4.2).

CORADD considers queries on different fact tables separately. Hence, the candidate generator

runs k-means for each fact table with every possible k-value from 1 to the number of workload

queries over that fact table. This method assumes each query accesses only one fact table. When

a query accesses two fact tables, we model it as two independent queries, discarding join predicates

for our selectivity computation.

We studied several other distance metrics and query grouping approaches with different vectors

(e.g., inverse of selectivity) but found that the above method gave the best designs. We also note

that, because query groups are adaptively adjusted via ILP feedback (see Section 3.6) it is not

essential for our grouping method to produce optimal groups.

Target Attributes and Weight

As described so far, our grouping method only takes into account predicate selectivities. It is also

important to consider which target attributes (i.e., attributes in the SELECT list, GROUP BY, etc)

an MV must include in order to answer queries. Consider the following queries from SSB [OOC07];

they have similar selectivity vectors because they directly or indirectly predicate on year. However,

Q1.2 and Q3.4 have very different sets of target attributes while Q1.1 and Q1.2 have nearly the same

set.

Q1.1: SELECT SUM (price*discount)

WHERE year=1993 & 1≤discount≤3 & quantity<25

Q1.2: SELECT SUM (price*discount) WHERE yearmonth=

199401 & 4≤discount≤6 & 26≤quantity≤35

Q3.4: SELECT c city, s city, year, sum(revenue)

WHERE yearmonthstr = ‘Dec1997’

& c city IN (‘UK1’, ‘UK5’) & s city IN (‘UK1’, ‘UK5’)

Now, suppose we have the MV candidates with the sizes and hypothetical benefits shown in

Figure 3.2. An MV candidate covering both Q1.1 and Q1.2 is not much larger than the MVs

covering each query individually because the queries’ target attributes nearly overlap, while an MV
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1 Q1.1 

150MB 

1 Q1.2 

160MB 

2 Q3.4 

290MB 

Benefit 
Queries Covered 

Size 

2 Q1.1, Q1.2 

170MB 

3 Q1.2, Q3.4 

400MB 

Figure 3.2: Overlapping target attributes and MV size

candidate covering both Q1.2 and Q3.4 becomes much larger than MVs covering the individual

queries. Although the latter MV may speed up the two queries, it is unlikely to be a good choice

when the space budget is tight.

To capture this intuition, our candidate generator extends the selectivity vectors by appending

an element for each attribute that is set to 0 when the attribute is not used in the query and to

bytesize(Attr)×α when it is used. Here, bytesize(Attr) is the size to store one element of Attr (e.g.,

4 bytes for an integer attribute) and α is a weight parameter that specifies the importance of overlap

and thus MV size. Candidates enumerated with lower α values are more likely to be useful when

the space budget is large; those with higher α will be useful when the space budget is tight. When

we run k-means, we calculate distances between these extended selectivity vectors, utilizing several

α values ranging from 0 to 0.5. We set the upper bound to 0.5 because we empirically observed that

α larger than 0.5 gave the same designs as α = 0.5 in almost all cases. The final set of candidate

designs is the union of the MVs produced by all runs of k-means; hence, it is not important to find

α precisely.

3.4.2 Choosing a Clustered Index

The next step is to design a clustered index for each of the query groups produced by k-means. The

groups produced in the previous steps consist of similar queries that are likely to have a beneficial

clustered index, but k-means provides no information regarding what attributes should form the

clustered index key. By pairing clustered indexes with query groups that maximize the performance

of the related queries, this step produces a set of MV candidates.
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At this point, our goal is not to select the single best design for an MV (this is the job of the

ILP described in Section 3.5), but to enumerate a number (t) of possible designs that may work well

for the queries. By choosing t possible clusterings for each MV, we provide a parameterized way

for our ILP solver to request additional candidates from which it searches for an optimal design.

This is important because it does not require us to fix t a priori; instead, our ILP feedback method

interactively explores the design space, running our clustered index designer with different t values.

Split

Recurse

Merge

Prune

output

Sub Group 1 Sub Group 2

Figure 3.3: Merging method overview

year disc quan
Index 1(year,disc,quan)

year ccity scity
Index 2(year,ccity,scity)

year disc quan ccity scity year ccity scity disc quan
Concatenated Merging:

year disc quanccity scity year ccity scitydisc quan
Interleaved Merging:

year disc quanccity scity year ccity scitydisc quan

Figure 3.4: Merging via concatenation vs. interleaving

Figure 3.3 illustrates the operation of our clustered index designer. For an MV of only one query,

we can produce an optimal design by selecting the clustered index that includes the attributes

predicated by the query in order of predicate type (equality, range, IN) and then in selectivity order.

We prefer predicates that are less likely to fragment the access pattern on the clustered key (an

equality identifies one range of tuples while an IN clause may point to many non-contiguous ranges).

We call such candidates dedicated MVs and observe that they exhibit the fastest performance for the

query. For example, a dedicated MV for Q1.2 is clustered on (yearmonth, discount, quantity).

For an MV with more than one query, we split the query group into single-query MVs and

merge the dedicated clustered indexes, retaining the t clusterings with the best expected runtimes
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(according to our cost model). This merging approach is similar to [CN99], but differs in that

we explore both concatenation and interleaving of attributes when merging two clustered indexes

as illustrated in Figure 3.4 while [CN99] considers only concatenation. Although the approach in

[CN99] is fast, the queries that benefit from correlations with a secondary index usually see no

benefit from a concatenated clustered index key. This is because additional clustered attributes

become very fragmented, such that queries over them must seek to many different places on disk.

We omit experimental details due to space, but we observed designs that were up to 90% slower

when using two-way merging compared to interleaved merging.

Additionally, we reduce the overhead of merging by dropping attributes when the number of

distinct values in the leading attributes becomes too large to make additional attributes useful. In

practice, this limits the number of attributes in the clustered index to 7 or 8. Furthermore, order-

preserving interleaving limits the search space to 2|Attr| index designs, rather than all |Attr|! possible

permutations.

The final output of this module is t clustered indexes for each MV. We start from a small t value

on all MVs; later, ILP feedback specifies larger t values to recluster specified MVs, spending more

time to consider more clustered index designs for the MVs.

The enumerated MV candidates are then evaluated by the correlation aware cost model and

selected within a given space budget by ILP Solver described in Section 3.5.

3.4.3 Foreign Key Clustering

In addition to selecting the appropriate clustering for MVs, it is also important to select the ap-

propriate clustering for base tables in some applications, such as the fact table in data warehouse

applications (in general, this technique applies to any table with foreign key relationships to other

tables.) In many applications, clustering by unique primary keys (PKs) is not likely to be effective

because queries are unlikely to be predicated by the PK and the PK is unlikely to be correlated

with other attributes. To speed up such queries, it is actually better to cluster the fact table on

predicated attributes or foreign-key attributes [KTS+02].

To illustrate this idea, consider the following query in SSB.

Q1.2: SELECT SUM (price*discount)

FROM lineorder, date WHERE date.key=lineorder.orderdate &

date.yearmonth=199401 & 4≤discount≤6 & 26≤quantity≤35
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One possible design builds a clustered index on discount or quantity. However, these predicates

are not terribly selective nor used by many queries. Another design is to cluster on the foreign key

orderdate, which is the join-key on the dimension date and is indirectly determined by the predicate

date.yearmonth=199401. This clustered index applies to the selective predicate and also benefits

other queries. To utilize such beneficial clusterings, CORADD considers correlations between foreign

keys and attributes in dimension tables. We then evaluate the benefit of re-clustering each fact table

on each foreign key attribute by applying the correlation-aware cost model. We treat each clustered

index design as an MV candidate, implicitly assuming that its attribute set is all attributes in the

fact table and the query group is the set of all queries that access the fact table.

Since it is necessary to maintain PK consistency, the fact table requires an additional secondary

index over the PK if we re-cluster the table on a different attribute. CORADD accounts for the size

of the secondary index as the space consumption of the re-clustered design. While designs based on

a new clustered index may not be as fast as a dedicated MV, such designs often speed up queries

using much less additional space and provide a substantial improvement in a tight space budget.

The ILP Solver described next treats fact table candidates in the same way as MV candidates,

except that it materializes at most one clustered index from the candidates for each fact table.

3.5 Candidate Selection via ILP

In this section, we describe and evaluate our search method to select database objects to materialize

from the candidate objects enumerated by the MV Candidate Generator described in the previous

section within a given space budget.

3.5.1 ILP Formulation

We formulate the database design problem as an ILP using the symbols and variables listed in

Table 3.3. The ILP that chooses the optimal design from a given set of candidate objects is:

Objective : min
∑
q

tq,pq,1
+

∑
r=2...|M |

xq,pq,r
(tq,pq,r

− tq,pq,r−1
)


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Table 3.3: Symbols and decision variables

M Set of MV candidates (including re-clustering designs).
Q Set of workload queries. F Set of fact tables.
Rf Set of re-clustering designs for fact table f ∈ F . Rf ⊂M .
m An MV candidate. m = 1, 2, .., |M |. q A query. q = 1, 2, .., |Q|.
S Space budget. sm Size of MV m.
tq,m Estimated runtime of query q on MV m.
pq,r r-th fastest MV for query q. (r1 ≤ r2 ⇔ tq,pq,r1

≤ tq,pq,r2
).

tq,m and pq,r are calculated by applying the cost model to all MVs.
xq,m Whether query q is penalized for not having MV m. 0 ≤ xq,m ≤ 1
ym Whether MV m is chosen.

Subject to:

(1) ym ∈ {0, 1} (2) 1−
r−1∑
k=1

ypq,k
≤ xq,pq,r

≤ 1

(3)
∑
m

smym ≤ S (4) ∀f ∈ F :
∑

m∈Rf

ym ≤ 1

The ILP is a minimization problem for the objective function that sums the total runtimes of

all queries. For a query q, its expected runtime is the sum of the runtime with the fastest MV for q

(tq,pq,1
) plus any penalties. A penalty is a slow-down due to not choosing a faster MV for the query,

represented by the variable xq,m. Condition (1) ensures that the solution is boolean (every MV is

either included or is not). Condition (2) determines the penalties for each query by constraining

xq,m with ym. Because this is a minimization problem and tq,pq,r
− tq,pq,r−1

is always positive (as the

expected runtimes are ordered by r), xq,m will be 0 if m or any faster MV for q is chosen, otherwise

it will be 1. For example, xq,m is 0 for all m when ypq,1 = 1 (the fastest MV for query q is chosen).

When ypq,2
= 1 and ypq,1

= 0, xq,pq,1
is 1 and all the other xq,m are 0, thus penalizing the objective

function by the difference in runtime, tq,pq,2
− tq,pq,1

. Condition (3) ensures that the database size

fits in the space budget. Condition (4) ensures that each fact table has at most one clustered index.

We solve the ILP formulated above using a commercial LP solver. The resulting variable as-

signment indicates MVs to materialize (ym = 1) and we determine the MV to use for each query

by comparing the expected runtime of the chosen MVs. We count the size of CMs separately, as

described in Section 3.5.4.
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3.5.2 Comparison with a Heuristic Algorithm

To understand the strength of our optimal solution, we compared our ILP solution against Greedy

(m,k) [CN97, ACN00], a heuristic algorithm used in Microsoft SQL Server that starts by picking m

candidates with the best runtime using exhaustive search and then greedily choosing other candidates

until it reaches the space limit or k candidates. As [CN97] recommends, we used the parameter value

m = 2 (we observed that m = 3 took too long to finish). The dataset and query sets are from SSB.
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Figure 3.5: Optimal versus greedy.

As Figure 3.5 shows, the ILP solution is 20-40% better than Greedy (m,k) for most space budgets.

This is because Greedy (m,k) was unable to choose a good set of candidates in its greedy phase.

On the other hand, Greedy (m,k) chooses optimal sets in tight space budgets (0-4GB) where the

optimal solutions contain only one or two MVs and the exhaustive phase is sufficient.

3.5.3 Shrinking the ILP

To quickly solve the ILP, CORADD reduces the number of MVs by removing dominated MVs which

have larger sizes and slower runtimes than some other MV for every query that it covers. For

Table 3.4: MV1 dominates MV2, but not MV3.
MV1 MV2 MV3 . . .

Q1 1 sec 5 sec 5 sec . . .
Q2 N/A N/A 5 sec . . .
Q3 1 sec 2 sec 5 sec . . .
Size 1 GB 2 GB 3 GB . . .
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example, MV2 in Table 3.4 has a slower runtime than MV1 for every query that can use it (Q1 and

Q3), yet MV2 is also larger than MV1. This means MV2 will never be chosen because MV1 always

performs better. As for MV3, it is larger than MV1 and has worse performance on queries Q1 and

Q3, but it is not dominated by MV1 because it can answer Q2 while MV1 cannot.

For the SSB query set with 13 queries, CORADD enumerates 1,600 MV candidates. After

removing dominated candidates, the number of candidates decreases to 160, which leads to an ILP

formulation with 2,080 variables and 2,240 constraints. Solving an ILP of this size takes less than

one second.

To see how many MV candidates we can solve for in a reasonable amount of time, we formulated

the same workload with a varying numbers of candidates. As Figure 3.6 shows, our ILP solver

produces an optimal solution within several minutes for up to 20,000 MV candidates. Given that 13

SSB queries produced only 160 MV candidates, CORADD can solve a workload that is substantially

more complex than SSB as shown in Section 3.7.
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Figure 3.6: LP solver runtime.

Finally, to account for the possibility that each query appears several times in a workload,

CORADD can multiply the estimated query cost by the query frequency when the workload is

compressed to include frequencies of each query.
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3.5.4 Comparison to other ILP-based designers

Papado et al [PA07] present an ILP-based database design formulation that has some similarity to

our approach. However, our ILP formulation allows us to avoid relaxing integer variables to linear

variables, which [PA07] relies on.

Because compressed secondary indexes are significantly smaller than B+Trees, CORADD can

simply set aside some small amount of space (i.e. 1 MB*|Q|) for secondary indexes and then

enumerate and select a set of MVs independently of its choice of secondary indexes on them (as

in MVFIRST [ACN00]). This gives us more flexibility in the presence of good correlations. As

for [PA07], they must consider the interaction between different indexes; therefore their decision

variables represent sets of indexes, which can be exponential in number. For this reason, [PA07]

relaxes variables, leading to potentially arbitrary errors. For example, in one experiment, Papado

et al converted the relaxed solution to a feasible integer solution by removing one of the indexes,

resulting in a 32% lower benefit than the ILP solution. In contrast, our approach substantially

reduces the complexity of the problem and arrives at an optimal solution without relaxation.

3.6 ILP Feedback

So far, we have described how to choose an optimal set of database objects from among the candidates

enumerated by the MV Candidate Generator. In general, however, the final design that we propose

may not be the best possible database design, because we prune the set of candidates that we supply

to the ILP. In this section, we describe our iterative ILP feedback method to improve candidate

enumeration. To the best of our knowledge, no prior work has used a similar technique in physical

database design.

Our ILP may not produce the best possible design due to two heuristics in our candidate enu-

meration approach – query grouping by k-means, and our selection of clustered indexes by merging.

Simply adding more query groups or increasing the value of t in the clustered index designer produces

many (potentially 2|Q|) more candidates, causing the ILP solver to run much longer. We tackle this

problem using a new method inspired by the combinatorial optimization technique known as delayed

column generation, or simply column generation (CG) [LD05].
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3.6.1 Methodology

Imagine a comprehensive ILP formulation with all possible MV candidates constructed out of 2|Q|−1

query groupings and 2|Attr| − 1 possible clustered indexes on each of them. This huge ILP would

give the globally optimal solution, but it is impractical to solve this ILP directly due to its size.

Instead, CORADD uses the MV candidate generator described in Section 3.4 which generates a

limited number of initial query groupings and clustered indexes.

To explore a larger part of the search space than this initial design, we employ two feedback

heuristics to generate new candidates from a previous ILP solution. ILP Feedback iteratively creates

new MV candidates based on the previous ILP design and re-solves the ILP until the feedback

introduces no new candidates or reaches a time limit set by the user.

Query
Group

Clustering

MV Size

(Budget=200MB)

Figure 3.7: ILP feedback

The first source of feedback is to expand query groups used in the ILP solution. If the previous

solution selects an MV candidate m, expanding m’s query group involves adding a new query (by

including that query’s columns in the MV). We consider an expansion with every query not in the

query group as long as it does not exceed the overall space budget. This feedback is particularly

helpful in tight space budgets, where missing a good query group that could cover more queries is a

major cause of suboptimal designs. Additionally, when m is used in the previous solution but is not

chosen to serve some query that it covers (because another MV candidate is faster for that query),

we also shrink the query group in the hope of reducing the space consumption of m. For example,

in Figure 3.7, the initial ILP solution chooses an MV candidate for the query group (Q1.1, Q1.2)

with a clustered index on (year, quantity). As this leaves 30 MB of unused space budget, we add
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I am delighted that you read this 200 page document so carefully that you noticed this unnatural gap. Contact me with this page number.

No matter who you are, when, and where, I will treat the first finder in the best su-shi place. Well, if I am still alive then.

an expanded query group (Q1.1, Q1.2, Q1.3) which does not put the overall design over-budget. If

this new candidate is chosen in the next ILP iteration, it will speed up Q1.3.

The second source of feedback is to recluster query groups used in the ILP solution. The size of

an MV is nearly independent of its choice of clustered index because the B+Tree size is dominated

by the number of the leaf nodes. So, when an MV candidate m is chosen in the ILP solution, a better

clustered index on m might speed up the queries without violating the space limit. To this end, we

invoke the clustered index designer with an increased t-value in hopes of finding a better clustered

index. The intuition is that running with an increased t value for a few MVs will still be reasonably

fast. This feedback may improve the ILP solution, especially for large space budgets, where missing

a good clustered index is a major cause of suboptimal designs because nearly all queries are already

covered by some MV. For example, in the case above, we re-run the clustered index designer for

this MV with the increased t and add the resulting MV candidates to the ILP formulation. Some

of these new candidates may have faster clustered indexes for Q1.1 and Q1.2.

3.6.2 ILP Feedback Performance

To verify the improvements resulting from ILP feedback, we compared the feedback-based solution,

the original ILP solution, and the OPT solution for SSB. OPT is the solution generated by running

ILP on all possible MV candidates and query groupings. We obtained it as a baseline reference

by running a simple brute force enumeration on 4 servers for a week. Note that it was possible to

obtain OPT because SSB only has 13 queries (213 − 1 = 8191 possible groups); for larger problems

this would be intractable.

Figure 3.8 compares the original ILP solution and the ILP feedback solution, plotting the ex-

pected slowdown with respect to OPT . Employing ILP feedback improves the ILP solution by about

10%. More importantly, the solution with feedback actually achieves OPT in many space budgets.

Note that the original ILP solution could incur more than 10% slowdown if SSB had more attributes

with more complicated correlations.

As for the performance of ILP feedback, it took the SSB workload 2 iterations to converge and

the approach added only 700 MV candidates to the 1,600 original candidates in the ILP, adding 10

minutes to 17 minutes total designer runtime. Therefore, we conclude that ILP feedback achieves
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Figure 3.8: ILP feedback improvement.

nearly optimal designs without enumerating an excessive number of MV candidates.

3.7 Experimental Results

In this section, we study the performance of designs that

CORADD produces for a few datasets and workloads, comparing them to a commercial database

designer.

We ran our designs on a popular commercial DBMS running on Microsoft Windows 2003 Server

Enterprise x64 Edition. The test machine had a 2.4 GHz Quad-core CPU, 4 GB RAM and 10k RPM

SATA hard disk. To create CMs in the commercial database, we introduced additional predicates

that indicated the values of the clustered attributes to be scanned when a predicate on an unclustered

attribute for which an available CM was used (see the previous chapter for the details of this

technique.)

We compared CORADD against the DBMS’s own designer, which is a widely used automatic

database designer based on state-of-the-art database design techniques (e.g., [ACN00, CN97].)

To conduct comparisons, we loaded datasets described in the following section into the DBMS,

ran both CORADD and the commercial designer with the query workload, and tested each design

on the DBMS. We discarded all cached pages kept by the DBMS and from the underlying OS before

running each query.
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3.7.1 Dataset and Workload

The first dataset we used is APB-1 [Ola98], which simulates an OLAP business situation. The data

scale is 2% density on 10 channels (45M tuples, 2.5 GB). We gave the designers 31 template queries

as the workload along with the benchmark’s query distribution specification. Though CORADD

assumes a star schema, some queries in the workload access two fact tables at the same time. In

such cases, we split them into two independent queries.

The second dataset we used is SSB [OOC07], which has the same data as TPC-H with a star

schema workload with 13 queries. The data size we used is Scale 4 (24M tuples, 2 GB). For

experiments in this section, we augmented the query workload to be 4 times larger. The 52 queries

are based on the original 13 queries but with varied target attributes, predicates, GROUP-BY,

ORDER-BY and aggregate values. This workload is designed to verify that our designer works even

for larger and more complex query workloads.

3.7.2 Results

Experiment 6: In the first experiment, we ran designs produced by CORADD and the commercial

designer on APB-1. Figure 3.9 shows the total expected runtime of both designs for each space

budget (determined by the cost model) as well as the total real runtime.
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Figure 3.9: Comparison on APB-1.

The expected runtime of CORADD (CORADD-Model) matched the real runtime (CORADD) very
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well and, as a consequence, it almost monotonically improves with increased space budgets. Both

expected and real runtimes rapidly improved at the 500 MB point where the fact tables are re-

clustered to cover queries, and 1 GB to 8 GB points where MVs start to cover queries. After 8

GB where all queries are already covered by MVs, the runtime gradually improves by replacing

large MVs with many small MVs that have more correlated clustered indexes. Also at that point,

CORADD stops re-clustering the fact table (saving an additional secondary index on the primary

key), spending the budget on MVs instead.

Compared with the designs produced by the commercial designer (Commercial), our designs are

1.5–3 times faster in tight space budgets (0–8 GB) and 5–6 times faster in larger space budgets (8–22

GB). The commercial designer’s cost model estimates the runtime of its designs to be much faster

than reality (shown by Commercial Cost Model). The error is up to 6 times and worse in larger

space budgets where the designer produces more MVs and indexes.

To see where the error comes from, we ran a simple query using a secondary B+Tree index on

SSB Scale 20 lineorder table. We varied the strength of correlation between the clustered and the

secondary index by choosing different clustered keys. Here, fewer fragments indicate the correlation

is stronger (see the cost model in the previous chapter for more detail). As Figure 3.10 shows, the

commercial cost model predicts the same query cost for all clustered index settings, ignoring the

effect of correlations. This results in a huge error because the actual runtime varies by a factor of

25 depending on the degree of correlation.
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Due to its lack of awareness of correlations, the commercial designer tends to produce clustered

indexes that are not well-correlated with the predicated attributes in the workload queries, causing

many more random seeks than the designer expects. CORADD produces MVs that are correlated

with predicated attributes and hence our designs tend to minimize seeks. Also, our cost model

accurately predicts the runtime of our designs.

Experiment 7: This experiment is on the augmented (52 queries) SSB. We again ran CORADD

and the commercial designer to compare runtimes of the results. This time, we also ran designs

produced by a much simpler approach (Naive) than CORADD but with our correlation-aware cost

model. Naive produces only re-clusterings of fact tables and dedicated MVs for each query without

query grouping and picks as many candidates as possible. Although this approach is simple, it loses

an opportunity to share an MV between multiple queries, which CORADD captures via its query

grouping and merging candidate generation methods.
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Figure 3.11: Comparison on augmented SSB.

As shown in Figure 3.11, our designs are again 1.5–2 times better in tight space budgets (0–4

GB) and 4–5 times better in larger space budgets (4–18 GB). Even designs produced by Naive

approach are faster than the commercial designer’s in tight space budgets (< 3 GB) because it picks

a good clustered index on the fact table, and in larger budgets (> 10 GB) because our cost model

accurately predicts that making more MVs with correlated clustering indexes will improve the query

performance. However, the improvement by adding MVs is much more gradual than in designs of
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CORADD. This is because Naive uses only dedicated MVs, and a much larger space budget is

required to achieve the same performance as designs with MVs shared by many queries via compact

CMs.

Finally, we note that the total runtime of CORADD to produce all the designs plotted in Fig-

ure 3.11 was 7.5 hours (22 minutes for statistics collection, an hour for candidate generation, 6 hours

for 3 ILP feedback iterations) while the commercial designer took 4 hours. Although CORADD

took longer, the runtime is comparable and the resulting performance is substantially better.

3.8 Conclusions

In this chapter, we showed how to exploit correlations in database attributes to improve query

performance with a given space budget. CORADD produces MVs based on the similarity between

queries and designs clustered indexes on them using a recursive merging method. This approach finds

correlations between clustered and secondary indexes, enabling fast query processing and also com-

pact secondary indexes via a compression technique based on correlations. We introduced our ILP

formulation and ILP Feedback method inspired by the Column Generation algorithm to efficiently

determine a set of MVs to materialize under given space budget.

We evaluated CORADD on the SSB and the APB-1 benchmarks. The experimental result

demonstrated that a correlation-aware database designer with compressed secondary indexes can

achieve up to 6 times faster query performance than a state-of-the-art commercial database designer

with the same space budget.



Chapter 4

A Constraint-Programming

Approach for Index Deployment:

Optimizing Index Deployment

Orders

Many database applications today need to deploy hundreds or thousands of indexes on large tables to

speed up query execution. Despite a plethora of prior work on selecting a set of indexes, no one has

studied optimizing the order of index deployment. This problem should not be overlooked because

an effective index deployment ordering can produce (1) a prompt query runtime improvement and

(2) a reduced total deployment time. However, optimizing the problem is challenging because of

complex index interactions and a factorial number of possible solutions.

In this chapter we formulate the problem in a mathematical model and study several techniques

for solving the index ordering problem. We demonstrate that Constraint Programming (CP) is a

more flexible and efficient platform to solve the problem than other methods such as mixed integer

programming and A* search. In addition to exact search techniques, we also studied local search

algorithms to find near optimal solution very quickly.

Our empirical analysis on the TPC-H dataset shows that our pruning techniques can reduce the

75
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size of search space by tens of orders of magnitude. Using the TPC-DS dataset, we verify that

our local search algorithm is a highly scalable and stable method for quickly finding a near-optimal

solution.

4.1 Introduction

Indexes are the crux of query optimization in databases. The selection and deployment of indexes has

always been one of the most important roles of database administrators (DBAs). As recent software

mandates complex data processing over hundreds or thousands of tables, selecting an appropriate

set of indexes has become impossible for human DBAs. Therefore, both industry and academia

have intensively focused their study on the automatic selection of indexes in physical database

design [CN97]. Consequently, every modern commercial database management system (DBMS)

ships an automatic design tool as its key component. These design tools support DBAs by suggesting

sets of indexes that dramatically improve query execution.

Nonetheless, little effort has been made to study another important aspect of indexing; deploy-

ment. Deploying indexes is a very costly operation and DBAs give it as much care and attention

as possible. It consumes immense hardware resources and takes a long time to complete on large

tables. For instance, deploying one index over a table that stores billions of tuples (which is not

uncommon at this time) could take days.

Moreover, it is likely that a database requires hundreds of indexes to be deployed due to the

growing number and complexity of queries and table schema. For example, a commercial database

designer suggests 148 indexes for the TPC-DS benchmark which take more than 24 hours to be

deployed even on the smallest (Scale-100) instance. Moreover, business software packages such as

SAP use tens of thousands of indexes in their databases, which have to be deployed over thousands

of tables and also occasionally re-built on upgrades, migration and so on.

The motivation of this chapter comes from an observation that, during the long process of

deploying many indexes over large databases, the order (sequence) of index deployment has two

significant impacts on user benefit, illustrated in Figure 4.1. First, a good order achieves prompt

query runtime improvements by deploying indexes that yield greater query speed-ups in early steps.

For example, an index that is useful for many queries should be created first. Second, a good order

reduces the deployment time by allowing indexes to utilize previously built indexes to speed up their
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Figure 4.1: Good vs Bad Order

deployment. For instance, an index (ItemID, Date) should be made after a wider index (ItemID,

Priority, Date) to allow building from the index, not the table. We observe in the TPC-DS case that

a good deployment order can reduce the build cost of an index up to 80% and the entire deployment

time as much as 20%.

Despite the potential benefits, obtaining the optimal index order is challenging. Unlike typical

job sequencing problems [BPN01], both the benefit and the build cost of an index are dependent

on the previously built indexes because of index interactions described in Section 4.3.2. These

database specific properties make the problem non-linear and much harder to solve. Also, as there

are n! orderings of n indexes, a trivial exhaustive search is intractable, even for small problems.

One prevalent approach for optimization problems is to quickly choose a solution by a greedy

heuristic. However, the quality of a greedy approach can vary from problem to problem and has no

quality guarantee. Another popular approach is to employ exact search algorithms such as A* or

mixed integer programming (MIP) using the branch-bound (BB) method to prune the search space.

However, the non-linear properties of the index interactions yield poor linear relaxations for the BB

method and both MIP and A* degenerate to an exhaustive search without pruning.

In this chapter, we formally define the ordering problem as a mathematical model and propose

several pruning techniques not based on linear relaxation but on the combinatorial properties of

the problem. We show that these problem specific combinatorial properties can reduce the size of

the search space by tens of orders of magnitude. We solve the problem using several techniques

including, Constraint Programming (CP) and MIP, and show that this kind of problem is easiest to
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model and has better performance in a CP framework. We then extend the CP model using local

search methods to get a near-optimal solution very quickly for larger problems. We evaluate several

local search methods and devise a variable neighborhood search (VNS) method building on our CP

model that is highly scalable and stable. In summary, our contributions are:

• A formal description of the index deployment order problem

• Problem specific properties to reduce problem difficulty

• Models and algorithms for Greedy, MIP, CP and local search

• Analysis of various solution techniques and solvers

• Empirical analysis on TPC-H and TPC-DS.

To the best of our knowledge, this work is the first to study CP methods in the context of physical

database design despite its significant potential as an accurate and scalable design method.

The remainder of this chapter is organized as follows. Section 4.2 reviews the related work.

Section 4.3 formally defines the problem of index deployment. Section 4.4 provides several techniques

to efficiently solve the problem. Section 4.5 describes our CP model for the problem. Section 4.6

extends the CP model with local search to solve larger problems. Then, Section 4.7 reports the

experimental results and Section 4.8 concludes this chapter.

4.2 Related Work

4.2.1 Physical Database Design

Because of the complexity of query workloads and database mechanics, no human database admin-

istrator (DBA) can efficiently select a set of database objects (e.g., indexes) subject to resource

constraints (e.g., storage size) to improve query performance. Hence, significant research effort

has been made both in academia and in industry to automate the task of physical database de-

sign [CN97, ZRL+04].

The AutoAdmin project [ACN00] pioneered this field by employing the what-if method [CN98]

which creates a set of potentially beneficial indexes as hypothetical indexes to evaluate their expected

benefit by the database’s query optimizer.
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Once the benefits of each index are evaluated, the problem of database design is essentially a

boolean knapsack problem, which is NP-hard. The database community has tried various approaches

to solve this problem. The most common approach is to use greedy heuristics based on the benefit of

indexes [CN97] or on their density [ZRL+04] (benefit divided by size). However, a greedy algorithm

is not assured to be optimal and could be arbitrarily bad in some cases. Hence, some research has

explored the use of exact methods such as mixed integer programming (MIP) [PA07, KHR+10] and

A* search [GM99].

Despite the wealth of research in physical database design, no one has studied the problem of

optimizing index deployment orders. Almost all prior work in this field considers both the query

workloads and the indexes as a set. The only exception is [ACN06] which considers a query workload

as a sequence, but only considers dropping and re-creating existing indexes to reduce maintenance

overhead. Bruno et al.[BC07] mentioned a type of ordering problem as an unsolved problem, but

their objective does not consider prompt query speed-ups. Also, they only suggested to use A* or

Dynamic Programming and did not solve the problem in [BC07].

4.2.2 Branch-and-Bound

All decision problems, such as the index order problem, can be formulated as tree search problems.

Such a tree has one level for each decision that must be made and every path from the root node to

a leaf node represents one solution to the problem. In this way, the tree compactly represents all the

possible problem solutions. However, exploring this entire tree is no more tractable than exhaustive

search. Therefore, many tree search techniques have been developed to more efficiently explore the

decision tree.

Branch-and-Bound (BB) is a tree search method which prunes (a.k.a. removes) sub-trees by

comparing a lower bound (best possible solution quality) with the current best solution. A* is a

popular type of BB search method which uses a user-defined heuristic distance function to deduce

lower bounds.

MIP solvers, such as IBM ILOG CPlex, are also based on BB. MIP uses a linear relaxation of

the problem to deduce lower bounds, and the pruning power of the MIP is highly dependent on the

tightness of the linear relaxation.

BB is efficient when the relaxation is strong, however it degrades as the relaxation becomes

weaker, which is often the case for non-linear problem (such as, the traveling salesman problem).
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Also, MIP only supports linear constraints, and it is tedious to model non-linear properties using

only linear constraints.

4.2.3 Constraint Programming

Similar to MIP, Constraint Programming (CP) does a tree search over the values of the decision

variables. Given a model, a CP solver explores the search tree like a MIP solver would. However,

there are a few key differences summarized in Table 4.1.

First, CP uses a branch and prune (BP) approach instead of BB. At each node of the tree, the CP

engine uses the combinatorial properties of the model’s constraints to deduce which branches cannot

yield a higher quality solution. Because the constraints apply over the combinatorial properties of

the problem, the CP engine is well suited for problems with integer decision variables. Instead of a

linear relaxation to guide the search procedure in MIP, CP models often include specialized search

strategies that are designed on a problem-by-problem basis [BPN01].

Second, CP does not suffer from the restriction of linearity that MIP models have. This is

especially helpful for our problem which has a non-linear objective function and constraints such as

nested decision variable indexing.

Third, CP models allow a seamless extension to local search. When the problem size becomes

so large that proving a solution’s optimality is impossible, the goal becomes getting a near-optimal

solution as fast as possible. In this setting, global search techniques (such as MIP and CP) often

become impractical because they exhaustively search over every sub-tree that has some chance of

containing the optimal solution regardless of how slight the chance is, and how large the sub-tree

is. Such exact methods are thus inappropriate to quickly find high quality solutions. On the other

hand, local search on top of CP such as Large Neighborhood Search (LNS) [VHM09] combines the

pruning power of CP with the scalability of local search.

In later sections, we will contrast these differences more vividly with concrete case studies for

modeling and solving the index order problem. Although we find that CP is highly effective for

physical database design, to the best of our knowledge this is the first time that CP has been

applied to this problem domain.
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Table 4.1: MIP and CP Comparison
MIP CP

Constraints Linear Linear &
& Objectives Only Non-Linear

Pruning Branch-Bound & Branch-Prune &
Method Linear Relaxation Custom Constraints

Non-Exhaustive N/A Local
Search Variant (Best Solution) Search

Best Linear Combinatorial
Suited for Problems Problems

4.3 Problem Definition

This section formally defines the index deployment order problem. Throughout this section, we use

the symbols, constant values, and decision variables listed in Table 4.2 and 4.3.

4.3.1 Objective Values
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Figure 4.2: Objective Values

Every feasible solution to the problem is a permutation of the indexes. An example permutation

of indexes {i1, i2, i3} is i3 → i1 → i2.

As discussed in the introduction, we want to achieve a prompt query runtime improvement and

a reduction in total deployment time. Hence, the metric we define to compare solutions is the area

under the improvement curve illustrated in Figure 4.2.

This area is defined by
∑

i (Ri−1Ci), the summed products of the previous total query runtime
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and the cost to create the ith index. The previous total query runtime is used because the query

speed-up occurs only after we complete the deployment of an index.

Because we would like to reduce the query runtimes and total deployment time, the smaller the

area is, the better the solution is. Thus, this objective function considers prompt query speed-ups

and total deployment time simultaneously.

Table 4.2: Symbols & Constant Values (in lower letters)
i ∈ I An index. I = {i1, i2, .., i|I|}
q ∈ Q A query.
p ∈ P A query plan (a set of indexes).

plans(q) ∈ P Feasible query plans for query q.
qtime(q) Original runtime of query q.

qspdup(p, q)
Speed-up of using plan p for query q
compared to the original runtime of q.

ctime(i) Original creation cost of index i.
cspdup(i, j) Speed-up of using index j for index i.

4.3.2 Index Interactions

This section describes the various index interactions, which make the problem unique and chal-

lenging.

Competing Interactions: Unlike typical job sequencing problems, completing a job (i.e. build-

ing an index) in this problem has varying benefits depending on the completion time of the job.

This is because a DBMS can only use one query execution plan at a time. Consider the indexes

i1(City) and i2(City, Salary) from the following query:

SELECT AVG(Salary) FROM People WHERE City=Prov

Assume the query plan using i1 is 5 seconds faster than a full scan while the plan using the covering

index i2 is 20 seconds faster.

The sequence i1 → i2 would have a 5 second speed-up when i1 is built, and only 20−5 = 15 second

speed-up when i2 is built because the query optimizer in the DBMS picks the fastest query plan

possible at a given time, removing the benefits of suboptimal query plans. Likewise, the sequence

i2 → i1 would observe no speed-up when i1 is built. We call this property competing interactions

and generalize them by constraint 4.3 in the mathematical model.

Query Interactions: It is well known that two or more indexes together can speed up query
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execution much more than each index alone. Suppose we have two indexes i1(City) and i2(EmpID)

for the following query:

SELECT .. FROM People p1 JOIN People p2

ON (p1.ReportTo=p2.EmpID) WHERE p1.City=Prov

A query plan using one index ({i1} and {i2}) requires a table scan for the JOIN and costs as much

as the no-index plan {∅}. A query plan using both i1 and i2 ({i1, i2}) avoids the full table scan

and performs significantly faster. We call such index interactions query interactions. Because of

such interactions, we need to consider the speed-ups of the three query plans separately, rather than

simply summing up the benefits of singleton query plans.

Build Interactions: As a less well known interaction, some indexes can be built faster if there

exists another index that has some overlap with the keys or included columns of the index to be

built.

For example, i1(City) and i2(City, Salary) have interactions in both ways. If i2 already exists,

building i1 becomes substantially faster because it requires only an index scan on i1 rather than

scanning the entire table. On the other hand, if there already is i1, building i2 is also faster because

the DBMS does not have to sort the entire table. We call these index interactions build interactions

and generalize it by constraint 4.5 in the mathematical model.

This means that the index build cost is not a constant in our problem but a variable whose value

depends on the set of indexes already built. Bruno et al. [BC07] also mentioned this effect earlier.

In Section 4.7 we show there exist a rich set of such interactions.

Precedence: Some indexes must precede some other indexes.

One example is an index on a materialized view (MV). A MV is created when its clustered

index is built. Non-clustered (secondary) indexes on the MV cannot be built before the clustered

index. Hence, the clustered index must precede the secondary indexes on the same MV in a feasible

solution.

Another example is a secondary index that exploits correlation [KHR+09]. For example, SQL

Server supports the datetime correlation optimization which exploits correlations between clustered

and secondary datetime attributes. To work properly, such an index requires the corresponding

clustered index to be built first.

Detection: Some prior work explored a way to efficiently find such interacting indexes [S+09].
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In our experiments, we detect interactions by calling the query optimizer with hypothetical indexes

as detailed in Section 4.7.

Table 4.3: Decision Variables (in capital letters)

Ti ∈ {1, 2, .., |I|}
The position of index i in the deployment order.
T is a permutation of {1, .., |I|}.

Ri Total query runtime after ith index is made.
Xq,i q’s speed-up after ith index is made.

Yp,i ∈ {0, 1} Whether p is available after ith index is made.
Ci Cost to create ith index.

4.3.3 Mathematical Model

Embodying the concepts of index interactions discussed above, the full mathematical model is defined

as follows,

Objective: min
∑
i

(Ri−1Ci) (4.1)

Subject to: Yp,i = {Tj ≤ i : ∀j ∈ p} : ∀p, i (4.2)

Xq,i = max
p∈plans(q)

qspdup(p, q)Yp,i : ∀q, i (4.3)

Ri =
∑
q

(qtimeq −Xq,i) : ∀i (4.4)

CTi
= ctime(i)− max

j:Tj<Ti

cspdup(i, j) : ∀i (4.5)

(4.2) states that a query plan is available only when all of the indexes in the query plan are

available. (4.3) calculates the query speed-up by using the fastest query plan for the query at a

given time. (4.4) sums up the speed-ups of each query and subtract from the original query runtime

to get the current total runtime.

(4.5) calculates the cost to create index i (CTi
because C is indexed by the order) by considering

the fastest available (Tj < Ti) interaction. For simplicity, this constraint assumes every build

interaction is pair-wise (one index helps one other index). So far we have observed this to be

the case, but this constraint can easily be extended for arbitrary interactions by doing a similar

formulation using X and Y variables.



85

Given this mathematical formulation, our goal is to find the permutation with the minimal

objective value and prove its optimality. However, for large problems where an optimality proof is

intractable we are satisfied with a near-optimal solution that can be found quickly.

4.3.4 Discussion

There could be variants of the objective. For example, putting different weights on particular

queries can be incorporated by simply scaling up or down runtimes of the queries. Or, one can

simply consider
∑
Ci as objective to minimize the deployment time like [BC07]. In either case,

most of the modeling and pruning strategies in this chapter will be usable with minor modifications.

4.4 Problem Properties

This problem has up to |I|! possible solutions. An exhaustive search method that tests all the solu-

tions becomes intractable even for small problems. Hence, in this section we analyze the combinato-

rial properties of the problem. Based on the problem specific structure, such as index interactions,

we established a rich set of pruning techniques which significantly reduce the search space. This sec-

tion describes the intuition behind each optimization technique and how we apply it to the problem

formulation. The formal proofs, cost analysis, and drill-down analysis of the pruning power of each

technique can be found in Appendix B.4.

These techniques are inherent properties of the problem which are independent of a particular

solution procedure. In fact, we demonstrate that these techniques reduce the runtime of both MIP

and CP solvers by several orders of magnitude in Section 4.7.

4.4.1 Alliances

The first problem property is an alliance of indexes that are always used together. We can assume

that such a set of indexes are always created together.

Figure 4.3 exemplifies alliances of indexes. The figure illustrates 4 query plans with 6 indexes;

{i1, i3}, {i1, i3, i5}, {i2, i5}, {i4, i6}. Observe that i1 and i3 always appear together in all query plans

they participate in. Therefore, creating only one of them gives no speed-up for any query. This means

we should always create the two indexes together. Hence, we add a constraint Ti1 = Ti3 + 1. Same

to i4 and i6. Note that i2 and i5 are not an alliance because i5 appears in the query plan {i1, i3, i5}
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Figure 4.3: Alliances

without i2. An alliance is often a set of strongly interacting indexes each of which is not beneficial

by itself. An alliance of size n essentially removes n − 1 indexes and substantially simplifies the

problem.

4.4.2 Colonized Indexes

The next problem property is a colonized index which is a one-directional version of alliances. If all

interactions of an index, i, contain another index, j but not vice versa, then i is called a colonized

index and should be created after j.

i1 i2 i3

i4

Ti1>Ti2

i1 is colonized by i2 (not i3/i4)  

Figure 4.4: Colonized Indexes

Figure 4.4 shows a case where i1 is colonized by i2. i1 always appears with i2 in all query plans

i1 participates, but not vice versa because there is a query plan that only contains i2.

In such a case, creating i1 alone always yields no speed-up. On the other hand, creating i2 alone

might provide a speed-up. Thus, it is always better to build the colonizer first; Ti1 > Ti2 .

Observe that i1 is not colonized by i3 or i4 because i1 appears in plans where only one of them

appears. In fact, if the plan {i1, i2, i4} is highly beneficial, the optimal solution is i2 → i4 → i1 → i3,

so Ti1 > Ti3 does not hold. Likewise, if the plan {i1, i2, i3} is highly beneficial, the optimal solution
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is i2 → i3 → i1 → i4, so Ti1 > Ti4 does not hold.

4.4.3 Dominated Indexes

The next problem property is called a dominated index which is an index whose benefits are always

lower than benefits of another index. Dominated indexes should always be created last.

To simplify, consider the case where indexes have the same build cost and every query plan is

used for different queries. For the full formulation without these simplifications, see Appendix B.4.

i1

i2

i3

-5s
-3s

-1s

max
min

i1

4
1

i2

5
5

Ti1 > Ti2

max(i1)<min(i2)
⇒

Figure 4.5: Dominated Indexes

Figure 4.5 depicts an example where i1 is dominated by i2. The maximum benefit of an index is

the largest speed-up we get by building the index. For example, the maximum benefit of i1 occurs

when there already exists i3, which is 1 + 3 = 4 seconds. Conversely, the minimum benefit is the

smallest speed-up we get by building the index. i1’s minimum benefit happens when there is no

i3 index; only 1 second. On the other hand, both the maximum and minimum benefits of i2 are 5

seconds.

Hence, the speed-up of building i1 is always lower than the speed-up of building i2. As our

objective favors a larger speed-up at an earlier step, we should always build i2 before i1; Ti1 > Ti2 .

4.4.4 Disjoint Indexes and Clusters

The next problem property is called a disjoint index and is an index that has no interaction with

other indexes. Such indexes do not give or receive any interaction to affect the build time and speed-

up and sometimes we can deduce powerful constraints from them. Figure 4.6 shows an example of a

disjoint index i4 and a disjoint cluster M1 = {i1, i2, i3} which has no interaction with other indexes

except the members of the cluster.

Suppose we already have a few additional constraints that define the relative order of {i1, i2, i3}
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Figure 4.6: Disjoint Indexes and Disjoint Clusters

is i1 → i2 → i3 and we need to insert i4 into the order. Among the four possible locations for i4, we

can uniquely determine the best place, which we call the dip.

We know the placement of i4 does not affect the build cost and the speed-up of any index in M1

because i4 and M1 are disjoint. In such a case, we should place i4 after an index whose density (the

gradient of the diagonal line; speed-up divided by build cost) is larger than i4’s density and before

an index with a smaller density. Otherwise, we can improve the order by swapping i4 with another

index because the shaded area in Figure 4.6 becomes larger when we build an index with a smaller

density first. In the example, the best place is between i2 and i3, which means deni1+i2 > deni4 ,

deni2 > deni4 and deni4 > deni3 where denx is the density of x. We call this location, the dip and

there is always exactly one dip.

We can generalize the above technique for non-disjoint indexes when they have special properties

which we call backward-disjoint and forward-disjoint. Consider two disjoint clusters Mi and Mj

which contain index i and j respectively. In order to determine whether i precedes or succeeds j in
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the complete order, we can investigate the interacting indexes of i and j.

i is said to be backward-disjoint regarding j when all interacting indexes of i and j are built after

i or before j. Conversely, i is said to be forward-disjoint regarding j when all interacting indexes are

built before i or after j, in other words when j is backward-disjoint regarding i. A disjoint index is

both backward and forward disjoint regarding every other disjoint index. Initially most indexes have

no disjoint properties, but with the additional constraints from other properties they often become

backward or forward disjoint.

An intuitive description of i being backward-disjoint regarding j is that i and j behave as

disjoint indexes when we are considering a subsequence j → X → i for arbitrary X, so i is disjoint

in a backwards order. Because of the property of disjoint indexes, the subsequence must satisfy

deni < denj if it is an optimal solution. Thus, if we know deni > denj , we can prune out all

solutions that build j before i. Conversely, if i is forward-disjoint and deni < denj , then i always

succeeds j.

4.4.5 Tail Indexes

Because of the inequality constraints given by the above properties, sometimes a single index is

uniquely determined to be the last index. In that case, we can eliminate the index from the problem

for two reasons. First, the last index cannot cause any interaction to speed up other indexes either

in query time or build time because all of them precede the last index. Second, the interactions the

last index receives from other preceding indexes do not depend on the order of other indexes; all the

other indexes are already built. Therefore, we can remove the last index and all of its interactions

from consideration, substantially simplifying the problem.

We can extend this idea even if there are multiple candidates for the last index by analyzing the

possible tail index patterns.

For example, in the TPC-H problem solved in Section 4.7.3, i1 and i2 turn out to have many

preceding indexes and thus the possible orders of them are n (last), n− 1 (second to last) and n− 2

(third to last). All possible patterns of the last 3 tail indexes are listed in Figure 4.7. It also shows

the last part of the objective area (tail objective) for the 3 tail indexes in each pattern (the shaded

areas). We can calculate the tail objectives because the set of preceding indexes is known therefore,

regardless of their orders, their interactions to the tail indexes are determined.

Remember that there are many other preceding indexes before the tail indexes. Therefore, we
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Table 4.4: Tail Objectives in TPC-H
Tail Obj.

i4 → i1 → i2 9.7
i4 → i2 → i1 9.9
i1 → i4 → i2 12
i5 → i1 → i2 4.0
i5 → i2 → i1 4.2
i2 → i5 → i1 4.5
i8 → i1 → i2 6.8
i8 → i2 → i1 6.9

i11 → i1 → i2 7.1
i11 → i2 → i1 7.3

i4→i1→i2

i1→i4→i2

i2→i5→i1‗

comparab
le
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mp
ar
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not
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Figure 4.7: Comparing Tail Indexes of Same Index Set in TPC-H

cannot simply compare the tail objectives. For example, the tail objective of i2 → i5 → i1 in

Figure 4.7 is smaller than that of i4 → i1 → i2. However, because the set of preceding indexes is

different, we cannot tell if the former tail pattern is better than the latter.

Nevertheless, we can compare the tail objectives if the set of tail indexes is equivalent. i4 → i1 →

i2 and i1 → i4 → i2 contain the same set of indexes, thus the set of preceding indexes is the same

too, which means the objective areas and the order of preceding indexes is exactly the same after

we optimize the order of preceding indexes (again, the tail indexes do not affect preceding indexes).

Hence, we can determine which tail pattern is better by comparing tail objectives.

Notice that the tail patterns in Figure 4.7 are grouped by the set of tail indexes and also sorted
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by the tail objectives in each group. The ones with the smallest tail objective in each group are

called the champion of the group and they should be picked if the set of indexes are the tails.

Now, observe that i2 appears as the last index in every champion (in bold font) of all groups.

This means i2 is always the last created index in the optimal deployment order because its tail is

always one of the tail champions.

4.4.6 Iterate and Recurse

We can repeat the tail analysis by fixing i2 as the last index and considering a sub-problem without

i2. Not surprisingly, we could then uniquely identify i1 as the second-to-last index.

Furthermore, by removing the determined indexes (and their query plans) and considering the

already introduced inequalities, each analysis described in this section can apply more constraints.

Therefore, we repeat this process until we reach the fixed-point. This pre-analysis reduces the

size of search space dramatically. In the experimental section, we demonstrate that the additional

constraints speed up both CP and MIP by several orders of magnitude.

4.5 Constraint Programming

In this section, we describe how we translate the mathematical model given in Section 4.3.3 into a

Constraint Programming (CP) model. We then explain how the problem is solved with a CP solver.

To illustrate why CP is well suited for this problem, we will compare the CP model to that of MIP

throughout this section.

4.5.1 CP Model

CP allows a flexible model containing both linear and non-linear objectives and constraints. The

mathematical formulation presented in Section 4.3.3 can be modeled in standard CP solvers (e.g.,

COMET) almost identically unlike MIP where the model is more obfuscated (an equivalent MIP

model is given in Appendix B.2).
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Objective: min
∑
i

(R[i− 1]C[i]) (4.6)

Subject to: alldiffrent(T ) (4.7)

Y [p, i] =
∧
j∈p

(T [j] ≤ i) : ∀p, i (4.8)

X[q, i] = max
p∈plans(q)

(qspdup(p, q)Y [p, i]) : ∀q, i (4.9)

R[i] =
∑
q

(qtime(q)−X[q, i]) : ∀i (4.10)

C[T [i]] = ctime(i)−max
j

((T [j] < T [i])cspdup(i, j)) : ∀i (4.11)

Objective: Just like the mathematical model, our CP model minimizes the sum of R[i− 1]C[i].

Although this sounds trivial, MIP cannot accept a product of variables (R and C) as objectives.

The most common technique for linearizing a product of variables in MIP is to discretize the

entire span to a fixed number of uniform timesteps and define the value of each variable at each

timestep as an independent variable [SW92].

However, in addition to losing the accuracy, discretization causes severe problems in performance

and scalability of MIP which are verified in the experimental section.

alldifferent constraint: The variable T is given in (4.7) which uses alldifferent. This interesting

constraint in CP assures all the variables in T are a permutation of their values. The same constraint

in MIP would require |I|2 inequalities on elements of T . The CP engine represents it with a single

constraint which is computationally efficient. This is one of the most vivid examples showing that CP

is especially suited for combinatorial problems and how beneficial it is for modeling and optimization

purposes.

Logical AND: The AND constraints on Y (4.2) are translated directly into (4.8). Although

this sounds trivial, again, it is challenging in MIP. Logical AND is essentially a product of boolean

variables, which is non-linear, just as the objective was. Modeling such non-linear constraints causes

MIP additional overhead and memory consumption as well as model obfuscation.

MIN/MAX as sub-problem: The constraints on X (4.3) which employ the fastest available

speed-up for each query are translated directly into (4.9). Yet again, this is not easy nor efficient in

MIP because MIN/MAX is non-linear.
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In MIP, this has to be represented as summation of Y and qspdup where only one of Y for

each query takes the value of 1 at a given time. Some MIP solvers provide min/max constraint

and internally do this translation on behalf of users, but the more severe problem is its effect on

performance. When MIP considers the linear relaxation of X, min/max constraint yields little

insight. Hence, its BB degenerates to an exhaustive search.

Nested variable indexing: The constraints on C (4.5) are translated directly into (4.11). How-

ever, this causes two problems in MIP. One is the MIN/MAX as described above, another is the

nested variable indexing CTi . Notice that T is also a variable. Such a constraint cannot be repre-

sented in a linear equation. Hence, MIP has to change the semantics of the variable C itself and

re-formulate the all of the constraints and the objective calculation.

Additional constraints: Finally, we add the additional constraints developed in Section 4.4 to

reduce the search space.

4.5.2 Searching Strategy

CP employs branch-prune (BP) instead of BB used by MIP. These two approaches have very different

characteristics. In summary, CP is a white-box approach with a smaller footprint as opposed to the

black-box approach of MIP.

Pruning: CP is able to prune the search space by reasoning over the combinatorial properties

of the constraints presented in section 4.5.1. It also utilizes the problem specific constraints we

developed in Section 4.4 to efficiently explore only high quality orders. Our experimental results

demonstrate that combinatorial based pruning is much more effective for this problem than a BB

pruning based on a linear relaxation.

Branching: Users can and must specify how CP should explore the search space. In our case,

we found that it is most effective for the search to branch on the T [i] variables and that a First-Fail

(FF) search procedure was very effective for solving this problem and proving optimality with very

small memory footprint.

A FF search is a depth-first search using a dynamic variable ordering, which means the variable

ordering changes in each node of the search tree. At each node the variables are assigned by

increasing the domain size. Due to the additional constraints, the domains of the T [i] variables vary

significantly. This helps the FF heuristic to obtain optimality.

On the other hand, MIP automatically chooses the branching strategy. This is efficient when
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the linear relaxation is strong, but, when it is not, the BB search degenerates to an exhaustive

breadth-first search which causes large memory consumption and computational overhead. In fact,

we observe that MIP finds no feasible solution for large problems within several hours and quickly

runs out of memory.

4.6 Local Search

Although CP is well suited for this ordering problem, when there is a large number of indexes with

dense interactions between them, proving optimality is intractable. In such a case, our goal is to

find a near-optimal solution quickly.

Local search is a family of algorithms for quickly finding high quality solutions. There are many

possible local search meta-heuristics to choose from such as, Tabu Search (TS) [GL97], Simulated

Annealing, Ant Colony optimization, Large Neighborhood Search (LNS) [VHM09], and Variable

Neighborhood Search (VNS). We consider two TS methods, LNS and VNS. TS is a natural choice

because it is effective on problems with a highly connected neighborhood (such as this one, where

nearly all index permutations are feasible). We also consider LNS and VNS because they are a

simple extension of a CP formulation and the CP formulation proved to be very effective on smaller

instance sizes.

4.6.1 Tabu Search (TS)

Tabu Search (TS) is a simple method for performing gradient descent on the index permutation. At

each step, TS considers swapping a pair of elements in T . To avoid being trapped in local optima and

repeating the same swap, TS maintains a Tabu list. The elements recently swapped are considered in

probation for some number of steps (called Tabu length). During those steps, TS does not consider

swapping those elements and hopefully escapes local optima.

We implemented and evaluated two Tabu Search methods; TS-BSwap (Best-Swap) and TS-

FSwap (First-Swap). TS-BSwap considers swapping all possible pairs of indexes at each iteration

except the Tabu list, and takes the pair with the greatest improvement. TS-FSwap stops considering

swaps when it finds the first pair that brings some improvement.

TS-BSwap will result in better quality while TS-FSwap will be more scalable because quadratic

time of checking all pairs may take considerable time in large problems.
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4.6.2 Large Neighborhood Search (LNS)
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Figure 4.8: Tuning Large Neighborhood Search

Figure 4.8 illustrates how a LNS algorithm executes. A LNS algorithm works by taking a feasible

solution to an optimization problem and relaxing some of the decision variables. A CP search is

then executed on the relaxed variables while the other variables remain fixed. If the CP search

is able to assign the relaxed variables and improve the objective value, then it becomes the new

current solution, otherwise the solution is reset and a new set of variables are randomly selected

for relaxation (restart). Like most local search algorithms, this procedure is repeated until a time

limit is reached. In this way, LNS leverages the power of a CP solver to efficiently search a large

neighborhood of moves from the current best solution.

The CP model for our LNS algorithm was presented in Section 4.5.1, to complete the picture

we need to explain our relaxation strategy. For simplicity we use a very basic relaxation, 5% of the

indexes are selected uniformly at random for relaxation. A new relaxation is made if one of these

two conditions is met; (1) the CP solver proves no better solution exists in this relaxation; (2) the

CP solver has to back track over 500 times during the search (in LNS this is called the failure limit).

We found this relaxation size and failure limit effectively drove the search to a high quality solution.

4.6.3 Variable Neighborhood Search (VNS)

One difficulty of a LNS algorithm is how to set the parameters for relaxation size and failure limit. As

depicted in Figure 4.8, if they are set too small it is easy to get stuck in a local minimum. If they are

too large the performance may degrade to a normal CP approach. Furthermore, different problem

sizes may prefer different parameter settings. Our remedy for this difficulty is to change the param-

eters during search. This technique is well known as Variable Neighborhood Search (VNS) [GK03].

Our VNS approach is to start the search on a small neighborhood and inspect the behavior of
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the CP solver to increase the neighborhood and escape local minima only when it is necessary. The

intuition is, if the relaxation terminates because the CP solver proves there is no better solution, then

we are stuck in a local minimum and the relaxation size must increase. However, if the CP solver hits

the failure limit without proof, then we should do more exploration in the same size neighborhood,

which is achieved by increasing the failure limit. Specifically, we group the relaxations into groups

of 20 and if more than 75% of these relaxations were proofs then we increase the relaxation size by

1%, otherwise we increase the failure limit by 20%.

In the experimental section, we find this VNS strategy has two benefits. First it guides the

algorithm to high-quality solutions faster than a regular LNS and also consistently found higher

quality solutions. Second, VNS is highly scalable and stable even for a problem with hundreds of

indexes, which is not the case with the other methods.

4.6.4 Greedy Initial Solution

As described in the introduction, greedy algorithms are scalable but have no quality guarantees.

Nonetheless, a greedy algorithm can provide a great initial solution to start a local search algorithm.

To that end, we devise a greedy algorithm which gives a much better initial solution than starting

from a random permutation. The key idea of the algorithm is to consider interactions of each index

as future opportunities to enable a beneficial query plan that requires two or more indexes. We

greedily choose the index with the highest density (benefit divided by the cost to create the index)

at each step. Here, the benefit is the query speed-up achieved by adding the index plus the potential

benefits from interactions. We find query plans that contain the index but are not yet usable

because of missing indexes, then equally attribute the speed-up of the query plan to the missing

indexes, dividing the benefit by the count of them. For more details and analysis of its quality, see

Appendix B.3.

4.7 Experiments

In this section, we study the performance and scalability of each method described in earlier sections

via empirical analysis.
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4.7.1 Implementation

Our implementation of the CP-based index ordering solution is summarized in Figure 4.9. Given a

query workload, we first run a physical database design tool to obtain a set of suggested indexes.

Then, we analyze the indexes. To avoid actually creating indexes, we use what-if [CN98] interface of

the DBMS to hypothetically create each index and evaluate its benefits using the query optimizer.

The result is a matrix which stores the benefits and creation costs of all indexes as well as the

interactions between them.
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Figure 4.9: System Overview

When formulating this matrix as CP code, we also apply the optimization techniques described

in Section 4.4 to get additional constraints to speed up the CP solver. The CP/LNS engine then

solves the problem and produces the optimized index deployment order.

We used a popular commercial DBMS and its design tool for the experiments. We also used

Comet 2.1 as a CP/LNS solver and ILOG CPlex 12.2 as a MIP solver. All experiments are done

in a single machine with a Dual-Core CPU and 2 GB of RAM. CPlex automatically parallelized the

MIP on the dual core while CP and local search in Comet only used one core.

4.7.2 Datasets

We use two standard benchmarks as datasets; TPC-H and TPC-DS. Table 4.5 shows the size of

each dataset. TPC-DS is a major revision of TPC-H to reflect the complex query workloads and
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table scheme in real data analysis applications. TPC-DS has many more queries, each of which

is substantially more complex and requires several indexes to efficiently process when compared to

TPC-H. Hence, the design tool suggested 148 indexes (up to 300 depending on configurations of the

tool). There is even a query plan that uses as many as 13 indexes together. We also found a rich

set of index interactions in both datasets.

Table 4.5: Experimental Datasets

Dataset |Q| |I| |P | Largest #Inter. #Inter.
Plan (Build) (Query)

TPC-H 22 31 221 5 Index 31 80
TPC-DS 102 148 3386 13 Index 243 1363

4.7.3 Exact Search Results

We verified the performance of each method to find and prove the optimal solution with the TPC-H

dataset.

We compared the performance of MIP and CP methods with and without the additional con-

straints, varying the number of indexes (size of the problem). For MIP, we discretized the problem

for |I| ∗ 20 timesteps. We also varied the density of the problem. low density means we remove all

suboptimal query plans and build interactions. mid density means we remove all but one suboptimal

query plan and build interactions with less than 15% effects.

Table 4.6: Exact Search (Reduced TPC-H): Time [min]. Varied the number and interaction density
of indexes. VNS: No optimality proof. DF: Did not Finish in 12 hours or out-of-memory.

|I| 6 11 13 22 31 16 21
Density low low low low low mid mid

MIP <1 11 106 DF DF DF DF
CP <1 7 214 DF DF DF DF

MIP+ <1 168 DF
CP+ <1 1 DF
VNS <1 <1?

As can be seen in Table 4.6, neither MIP nor CP could solve even small problems without problem

specific constraints, taking time that grows factorially with the number of indexes. By applying the

problem specific constraints (denoted by +), both MIP and CP were dramatically improved and

took less than one minute to solve all low-density problems. For higher density problems, they took

substantially longer because the pruning power of additional constraints decreases. MIP suffered
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more from the higher density because it results in more non-linear properties discussed in Section 4.5.

VNS quickly found the optimal solution in all cases. In the 21 indexes and mid-density problem,

VNS found a good solution within one minute and did not improve the solution for 3 hours. This

strongly implies the solution is optimal, but there is no proof as the exact search methods did not

finish.

4.7.4 Local Search Results

We also studied TPC-H and TPC-DS with all indexes, query plans, and interactions. Because of

the dense interactions and many more indexes, the search space increases considerably. Even CP

with the problem specific constraints cannot prove optimality for this problem and gets suck in low

quality solutions. Hence, we used our local search algorithms to understand how to find high quality

solutions to these large problems.

Limited Scalability of MIP: The MIP model suffers severely on these large problems and

CPlex quickly runs out of memory before finding a feasible solution with as much as 4 GB of RAM.

This is because the denser problem significantly increases the number of non-zero constraints and

variables, and CPlex cannot significantly reduce the problem size in the pre-solving step. In fact,

over 1 million integer variables remain after pre-solving for problems of this size. This result verifies

that a linear system approach does not scale well for the index ordering problem.

TPC-H Results: Due to the limited scalability of CP and MIP, we only evaluated the perfor-

mance of local search algorithms (TS, LNS, and VNS) described in Section 4.6 on these problems.

All the local search methods are implemented in Comet and given the same constraints with the

same initial solution using the greedy algorithm from Section 4.6.4.

Figure 4.10 shows the quality (y-axis) of solutions plotted against elapsed search time (x-axis)

for the TPC-H dataset. The figure compares the LNS, VNS and two Tabu Search (TS) methods

described in Section 4.6.

In this experiment, TS-BSwap achieves a better improvement than TS-FSwap because TS-BSwap

considers all possible swaps in each iteration. VNS is comparable to the two Tabu methods while

the original form of LNS takes a long time to improve the solution because it cannot dynamically

adjust the size of its neighborhood. We also observed that VNS is more stable than LNS in that it

has less variance of solution quality between runs.

TPC-DS Results:
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Figure 4.10: Local Search (TPC-H): LNS, VNS and Tabu. (MIP runs out memory)

Figure 4.11 compares VNS with Tabu Search for the TPC-DS dataset. This time, the improve-

ment of TS-BSwap is large but very slow because it takes a very long time (50 minutes) for each

iteration to evaluate
(
148
2

)
swaps. VNS achieves the best improvement over all time ranges, followed

by TS-FSwap. VNS quickly improves the solution, especially at the first 15 minutes. Considering

that deploying the 148 indexes on the Scale-100 instance takes one day, VNS achieves a high quality

solution within a reasonable analysis time.

Observations: The result verifies that VNS is a scalable and robust local search method which

quickly finds a high quality solutions in all cases. The main reason the TS methods sometimes do

not work well is essentially the same as why the LNS with fixed parameters does not perform well.

The neighborhood size is fixed and it may be too large with TS-BSwap or too small with TS-FSwap.

It is possible to devise a hybrid Tabu method that dynamically adjusts the tuning parameters

(the number of pairs to check, Tabu length, etc) for the problem, but VNS has another important

property for avoiding local optima. As VNS relaxes more than two variables at each iteration, it can

explore multi-swap neighborhoods that are necessary to influence large sets of interacting indexes.

4.8 Conclusion

In this chapter, we defined and solved the optimization problem of index deployment ordering. We

formalized the problem using a mathematical model and studied several problem specific properties
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Figure 4.11: Local Search (TPC-DS): VNS and Tabu. (MIP runs out memory)

which increase performance of industrial optimization tools by several orders of magnitude. We

developed several approaches for solving the problem including, a greedy algorithm, CP formulation,

MIP formulation, and four local search methods. We demonstrated that this problem is best solved

by a CP framework and found that our VNS local search method is robust, scalable, and quickly

finds a near-optimal solution on very large problems.

4.8.1 Future Work

One open problem is how to jointly solve the index selection problem and index deployment ordering

problem. We are currently working on an integrated solution that accounts for the index deployment

ordering while choosing a set of indexes to build. The final goal is a database design method, we call

Incremental Database Design (IDD), which reduces administrative costs for tuning large databases

without sacrificing query performance improvements.



Chapter 5

On the Recoverability of

Heterogeneously Partitioned

Replicas in Distributed Filesystems

MapReduce systems, such as Hadoop, are rapidly becoming popular in big-data analytics. They

are backed by shared-nothing distributed filesystems to replicate large objects over thousands of

commodity servers for load balancing and fault tolerance. These replicas are partitioned by the same

key to assure recoverability among them. However, the choice of partitioning keys has significant

impact on query performance when MapReduce aggregates (Reduces) over related records because it

needs to transmit a large amount of data among every node (Shuffle) otherwise. Due to the various

analyses the user requires, flexible value-based partitioning is essential to improve MapReduce’s

performance. Here, we propose a new system on top of Hadoop that allows flexible and heterogeneous

partitioning in which each replica can have a different partitioning key. The key challenge in this

direction is the recovery because a recovery between differently partitioned replicas requires fully

reading and repartitioning all blocks of another replica and also is more vulnerable to data loss.

Our key contributions are the data structure and data placement policy to reduce the work and

risk of recovery as well as an analytic model to predict the risk for a given hardware configuration

and physical design. Our simulation experiments show that the techniques significantly improve

recoverabilitiy and that our analytic model accurately captures how various factors in hardware and

102
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physical design affect recoverability.

5.1 Introduction

Many modern science and business applications generate massive amounts of data that is captured

on many storage spindles in parallel. To name a few, human gene sequencing, astrophysics, data

mining in social networks and e-commerce. These applications are struggling with processing the

enormous data volumes they generate. Such big datasets are partitioned and distributed over a large

number of machines to achieve high scalability. A MapReduce system such as Hadoop is becoming

a common platform for distributed data analytics in this setting.

MapReduce systems make possible high scalability and a flexible programming model for both

structured and unstructured data. The data is partitioned into small blocks (e.g., 64 MB chunks)

and placed on a data node in the network. The MapReduce network typically consists of multiple

racks each of which contains tens of commodity machines. Due to the large number of commodity

machines, failures are common. MapReduce systems replicate every block (typically three times)

and store them on different machines for high availability without permanent data loss or costly

recovery.

The major bottlenecks in MapReduce systems are disk and network I/O. Unlike relational

databases, current MapReduce systems such as Hadoop lack optimized data-access methods such as

indexes, materialized views, and vertical partitioning (column-store). Scanning all of the data from

disk involves massive disk I/O. MapReduce systems apply horizontal partitioning on the data, but

they allow only an implicit partitioning based on the order in which data is loaded: they cannot

have redundant copies of the data each partitioned and sorted differently.

When MapReduce systems need to process multiple datasets that are dependent on one another,

they must transmit a large amount of data over the network to make sure they have all the related

data at the same node. This network communication happens in the Shuffle phase and sometimes

causes a major bottleneck by saturating the network bandwidth. Value-based partitioning has the

potential to eliminate this bottleneck by locating related data in the same node. This idea, known

as co-partitioning and co-location, is explored in [ETÖ+11, FPST11]. However, each query might

require a very different partitioning. We propose a scheme in which each replica can be partitioned

differently in order to minimize the need for network communication.
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Figure 5.1: Motivating Experiments: Hive compared to our LVFS. LVFS achieves significantly
faster query performance by efficient storage and execution layer. Further speed-up for an order
of magnitude is available with beneficial partitioning, which suppresses the repartitioning phase.
However, the beneficial partitioning varies among queries.

5.1.1 Preliminary Experiments and Motivation

As am example, Figure 5.1 shows a performance comparison between Hive and the new distributed

file system, Las Vegas Filesystem (LVFS), described here 1. LVFS employs distributed colum-

nar storage and an optimized query-execution layer as in prior work [FPST11]. As observed in

prior work, such a native columnar storage achieves a significant query speed-up compared to Hive.

Furthermore, as the figure shows, an even more significant speed-up is possible with beneficial parti-

tioning. This observation is consistent with other prior work suggesting value-based partitioning in

Hadoop [ETÖ+11]. What is missing in this prior work is that each query requires a different

partitioning . TPC-H Q17 benefits from partkey-partitioning which suppresses repartitioning and

redistribution in the query, while TPC-H Q18 benefits from orderkey-partitioning.

A homogeneous partitioning in Hadoop or other distributed systems does not satisfy this need.

Instead, we need replicas partitioned on different keys each of which speeds up a different set of

queries. Replicas that are simply mirrors are of no advantage in query processing. The goal here is

to create such redundant and optimized data-access methods in MapReduce systems.

1Details of this preliminary experiment are given i Section 5.6.
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Figure 5.2: Key Challenge: Partitioning and Recovery.

5.1.2 Key Challenges

Simply partitioning each replica with different partitioning keys causes a few problems. First,

partitioning the data based on values could require random in-place updates in the data files when

new data are loaded, causing expensive random writes on disks. MapReduce systems usually allow

only sequential writes for exactly this reason. Second and more important, altering the partitioning

of data for each replica poses significant challenges to recovery. MapReduce systems consist of a large

number of unreliable nodes some of which fail frequently. In such settings, recovery performance

and no permanent data loss cannot be guaranteed without some additional algorithmic techniques

to be described below.

To explore the second point further, Figure 5.2 shows a case in which two replicas are differently

partitioned. Suppose Node 1 fails and its data is lost. As the figure illustrates, the corresponding

data in another replica are scattered among many nodes. Hence, if another node fails, we can lose

the data permanently. The risk is substantially higher than in the identical replication scheme in

MapReduce where the corresponding data are always stored in one block. Furthermore, recovery

time is also substantially greater because we must scan and repartition all blocks in another replica

to recover the lost block, and this increases the probability of a critical node failure during recovery.

Last but not least, if we place some blocks of different replicas in the same node, we lose the data

stored in both of them when the node is lost.

Here, we suggest an alternative way of organizing and replicating data in MapReduce systems

that addresses the aforementioned challenges. We have implemented a prototype system called

Las Vegas on top of Hadoop that uses column-store techniques to vertically partition and compress

data. It also makes possible an arbitrary number of differently partitioned and sorted data, similarly
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to materialized views in relational databases. We observe in the experimental section that these

advantages together achieve orders of magnitude faster query performance for a variety of queries by

exploiting replicas in Hadoop. Our data structures and data placement policy based on Fractures

makes possible the efficient maintenance of each replica that entails only sequential writes and also

reduces recovery time and the risk of data loss on failures. We have also devised analytic models to

calculate recovery time and the probability of permanent loss of some data in the given situation.

These models have a wide range of use. The user or automated design tools can use them

to choose the number of replicas and their partitioning, sorting, balancing recoverability, recovery

latency, storage consumption, and query latency. Also, they can be used to issue an automated alert

to the user when the risk of data loss exceeds some threshold, potentially automatically altering

replicas to lower the risk. To the best of our knowledge, this work is the first to explore such an

analytic model on recovery for differently partitioned replicas in distributed filesystems.

The remainder of this article is organized as follows. Section 5.2 gives a brief overview of our

solution. Section 5.3 and Section 5.4 describe how we organize and place data in MapReduce

systems in order to reduce the risk of data loss and speed up recovery time. Section 5.5 defines our

analytic model to quantify the recovery time and probability of permanent data loss for a given data

placement. Section 5.6 empirically evaluates our approaches, Section 5.7 reviews related work, and

Section 5.8 discusses future work.

5.2 System Overview

Figure 5.3: Las Vegas Filesystem (LVFS) Overview.
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Figure 5.3 gives an overview of the Las Vegas Filesystem (LVFS), which is a set of plugins on top

of Hadoop services. The central plugin runs as a part of the HDFS Name Node and stores metadata

for LVFS, such as the partitioning and sorting keys for each replica, and the storage node of each

partition for each replica. The slave plugin runs as a part of an HDFS Data Node and implements

the columnar storage layer that is similar to [FPST11], that vertically splits records into columnar

files and applies efficient compressions.

Every strategic decision, such as data placement and query planning, is made in the central node,

which then assigns to data nodes local tasks such as reading files, executing query fragments, and

copying files from other data nodes. The central node also periodically checks the availability of

each data node by using HDFS’s heartbeat messages. A node’s failure to respond triggers a recovery

job or an adjustment to a query plan if necessary.

The key issue here is how to organize partitions of the columnar files and how to determine their

placement to reduce the risk of data loss; this is detailed in Sections 5.3 and 5.4. Further, there

may be trade-offs between the risk of data loss and other factors, such as the replication factor (i.e.,

space consumption) and query performance. Thus, LVFS also provides an analytic model to predict

the recoverability of various data placement plans based on the metadata stored in the central node.

We detail this analytic model in Section 5.5.

Note that it is our central plugin, not HDFS, that directly governs recovery and the placement

of data stored in LVFS since HDFS lacks built-in support for differently partitioned replicas.

5.3 Data Structure

This section describes how LVFS stores user data in each data node. For efficiency and flexibility,

we organize each file in a columnar fashion similar to that in prior work [FPST11]. Each “table”

is horizontally partitioned into multiple chunks that are then vertically split into columnar files in

binary format.

There are three structural variations that differentiate the present approach from prior work.

First, we do not replicate each columnar file using the underlying HDFS. Rather, we create additional

set(s) of columnar files that store data logically identical to the original data table, but using different

partitioning and/or sorting for data placement. How this is managed is described in Sections 5.3.1

and 5.3.2.
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Second, we do not store each column in a single file. Instead, each data column is stored as a

number of different fractures that are automatically merged in the background as necessary (each

columnar file in the same table is fractured in an identical manner). The idea is similar to differential

files or log-structured merge tree (LSM-tree). This makes it possible to alter data partitioning and

sorting without random disk writes: All changes can be contained within the relevant subset of

fractures. Furthermore, keeping a reasonable number of fractures reduces the amount of work and

probability of data loss while recovering from failures. Section 5.3.3 details how it works.

Last, we apply custom placement to columnar files and the respective replicas in order to minimize

the risk of data loss in the presence of different possible failures. The failure risks and the design

to mitigate them is explained in Section 5.4 and then verified using both analytic models and

experiments in Section 5.6.

5.3.1 Partitioning (Replica Group)

Each replica has a statically defined (i.e., assigned at its creation time) partitioning key and partition

ranges. A partitioning key is typically one of the columns but can be an arbitrary expression

computed from each tuple (e.g., a hash function) and the partitioning ranges are applied to the

hash function result. As Figure 5.4 depicts, all tuples are horizontally partitioned according to

non-overlapping key ranges. Each partition is then split into columnar files.

Figure 5.4: Replica Group and Replicas.

Two replicas that share the same partitioning key and partitioning ranges are called buddy replicas

- such replicas differ only in the sorting and compression scheme, as is detailed in Section 5.3.2.
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Recovery between buddy replicas is very efficient and safe: we simply read the column file for the

particular partition that corresponds to the damaged column file in another partitioning scheme,

then sort the data as necessary to replace the damaged file. In contrast, when two available replicas

have different partitioning schemes, all the remaining partitions of the replica must be scanned to

recover the damaged file.

Figure 5.4 provides an example. Let R1 and R2 be buddy replicas sorted by column C1 and C2

respectively. When R1-1 (R1’s partition 1) is damaged, we read the data in R2-1 and sort it by

the value of C1 in order to recover R1-1. This process is extremely fast and causes little disk and

network I/O. When a partition of another replica R3 in another replica group R3-1 is damaged,

however, we need to read all partitions in R1 or R2 and then repartition the data by C2 before we

can recover R3-1. Although the amount of data transmitted over the network is the same (we first

apply filtering based on the C2 partition), this process causes a significant amount of disk I/O and

thus takes a long time.

5.3.2 Sorting, Compression and Indexing of Replicas

Each replica also has a statically defined sorting key and its own scheme to compress each of the

columnar files. A sorting key is again typically one of the columns, but it can be an arbitrary

expression or even not specified at all, in which case replica contents are not sorted. As Figure 5.4

shows, sorting is applied after partitioning and hence we call it as in-block sorting.

A columnar file may be compressed using run-length encoding, dictionary encoding, or a general

compression algorithm such as gzip 2. Columnar files support random access to arbitrary tuple

positions (e.g., 123rd tuple) through sparse indexes that refer to the byte positions of individual

tuples (e.g., 123rd value is placed at 3,422nd byte) with intervals punctuated by markers (e.g., every

1,000 tuples), except when the byte position is implicit based on the type of columnar file storage

(e.g., when the column file stores four-byte integers without compression, the byte position can be

calculated from the tuple position). The effectiveness of most compression schemes, such as run-

length encoding, depends on the partitioning and sorting scheme, and we therefore allow specifying

individual compression schemes for each replica.

We also maintain a sparse index file on the sorting column. Because the column is sorted, a

sparse index allows an efficient value-based lookup while adding negligible space.

2We support Snappy compression for lightly compressed columns and gzip for heavily compressed columns.
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5.3.3 Fracture

In addition to the value-based partitioning described in Section 5.3.1, we support another level

of partitioning, fracture, that is based on the time when the data is loaded into the system. As

Figure 5.5 illustrates, each fracture is an independent and self-contained (in terms of scheme) data

set containing all replicas, their partitions, and columnar files in it.

Figure 5.5: Fractures as Another Level of Data Partitioning.

Figure 5.6: Recovery in Fractures.

Loading and merging fractures: When a new chunk 3 of data is loaded into the system, we

consider it a new fracture and apply partitioning and sorting to the data as part of the loading

process. This performs quickly as it involves only sequential reads and writes or potentially multiple

stages of merge-sorts.

The arrival of every new chunk adds a new fracture in our data placement. However, as discussed

3If new data comes in a more ad-hoc manner, such as single-row inserts, we buffer insertions and dump them as a
chunk. However, most use cases in MapReduce systems will have only bulk data loading.
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below, having a large number of fractures can affect query performance. Therefore, we periodically

merge multiple fractures into a single (larger) fracture. Just like the loading mechanism, fracture

merging involves only sequential reads and writes, and is likely to be even faster than loading as all

data sources are already sorted and compressed in a uniform fashion.

The ideal number of fractures and frequency of merging depend on the size of the data and the

frequency of loading. For example, a small data file that is rarely changed (e.g., dimension tables

in OLAP) should be composed of just one or at most two fractures. For fault tolerance, such data

files can simply use multiple replicas with the same partitioning key.

The mechanism of converting batched updates into fracture in order to restrict the update to

sequential writes is equivalent to log-structured merge tree (LSM-Tree) [OCGO96], which is also

employed in BigTable [CDG+08]. The main difference is that we intentionally store data in a

number of fractures and control their size and placement to minimize the risk of data loss.

Query over fractures: In most cases, fractures can be treated as independent subsets of data,

and thus we can simply run the same query over each fracture and return a union of the results

from each fracture, just as in the Reduce (or Combine) phase in MapReduce systems. In this case

having many fractures does not hurt query performance.

However, when the query joins data across files (e.g., SQL JOIN), the number of fractures could

affect query execution performance because all joins must be repeated for every fracture. In the

worst case of a self-join, the execution cost could be O(n2) where n is the number of fractures in

the data set. Thus, in such cases, fewer fractures will translate into significantly improved query

performance.

Recovery in fractures: In contrast to query execution, increasing the number of data fractures

improves the latency of recovery and the risk of data loss during recovery. As explained earlier, each

fracture is an independent piece of data. As Figure 5.6 shows, damage to a file or a partition in one

fracture does not affect other fractures in any way. Nor need we read any data from other fractures

for recovery. Thus, fractures reduce the latency of recovery as well as the risk of data loss because

each fracture is smaller and thus stored on fewer nodes. In short, with a larger number of fractures,

we expect recovery to be both faster and safer.

However, there is a trade-off between query performance and recovery that will be determined

by the number of fractures. The ideal number of fractures depends on the type of query workload,

the size of entire data, redundancy of the schema, and data placement as detailed in the following



112

section.

5.4 Data Placement

The placement of columnar files affects both query performance and data recoverability. For example,

if all of the table files are placed on a single node, we cannot parallelize query execution over that

table nor can we recover the table when the node fails. However, in that particular case, the data

will be lost only if the one node holding this data fails.

In order to achieve the best balance between the query performance and recoverability, our file

placement policy considers both the number of fractures and data partitioning.

5.4.1 Fracture Placement

As described in the previous section, each fracture can be treated as an independent unit for the

purposes of recovery. Therefore we can design the best data placement strategy independently for

each fracture.

Suppose we are designing a data placement scheme for a particular fracture. Let us first consider

the groups of replicas in which buddy replicas are grouped together. Storing any two files from

different replica groups on the same node will cause permanent data loss when the node is lost.

Intuitively, as we are using a different portioning scheme across replica groups, any two files are

likely to contain at least some matching rows. A similar problem occurs when such two files are

stored in the same rack and the entire rack is lost (e.g., the switch is broken). Therefore, it is

imperative that we separate files from different replica groups.

Dedicated racks: For this reason, we exclusively designate one or more racks to every replica group

that shares a partitioning scheme. Such dedicated racks store only the files in the corresponding

replica group, also restricting the amount of inter-rack communications even if a query requires a

join of the data in the fracture. The number of racks assigned to the replica group depends on the

size of the fracture, and is designed to distribute the load evenly.

We apply this policy to each fracture when it is created. Rack assignments are independent

for each fracture, but we usually choose dedicated racks in a round-robin fashion for maximum

parallelization of query execution.
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5.4.2 Partition Placement

Figure 5.7, 5.8, and 5.9 show our techniques for placing data from each replica group; these strategies

are evaluated in Section 5.6.

Buddy exclusion: Buddy replicas in a replica group share the partitioning key and its value

ranges. Our data placement in the dedicated racks is based on the partition in the group. For

example, suppose buddy replicas A and B both have partitioning ranges 1 to 8. Corresponding

partitions of the buddy replicas, such as A1 and B1, are called buddy partitions and can be used

to efficiently restore each other. So as always to exploit this potential, we place buddy partitions in

different nodes or at least in different disk drives so that the probability of losing both simultaneously

is low. Figure 5.7 shows a buddy replica placement that will result in data loss with a single node

failure and a buddy exclusion placement that can withstand any single node failure without data

loss.

Figure 5.7: Buddy Exclusion.

Node coupling : We can further reduce the risk of data loss by coupling nodes to store the same

set of partitions. In Figure 5.8, after buddy exclusion placement is implemented, data is permanently

lost when any pair of nodes fail together. For example, when nodes 1 and 2 are lost together, we

lose partition 1. The safest way to align the partitions is to couple nodes and store the same set of

partitions in them. For instance, nodes 1 and 3 are coupled and both store partitions 1, 2, 3, and

4. Node 2 and 4 are coupled as well and store partitions 5, 6, 7, and 8. Figure 5.8 shows that the

placement after applying node coupling permanently loses data only when nodes 1-3 and nodes 2-4

are lost together. Any other combinations of node failures does not result in data loss. We choose

to couple nodes from different racks so that any single rack failure does not result in data loss.
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Figure 5.8: Node Coupling.

Buddy swapping : After applying the placement techniques described, the resulting data place-

ment may limit the the performance of queries. Because only nodes 1 and 2 store the data of replica

A, we can utilize only two nodes out of four to run queries over A. In order to achieve better par-

allelization, we swap buddy partitions so that the number of partitions for each replica is balanced

for each node. For example, we swap A2 in node 1 and B2 in node 3. After the swapping, all four

nodes store some partition of A; hence a query over A can be distributed to execute over all nodes

in the cluster, as illustrated in Figure 5.9.

Figure 5.9: Buddy Swapping.

5.4.3 Copartitioning

Our system also allows specifying a copartitioning of a replica of a table with replica of another table.

For example, let L1 be a replica of the LINEITEM table where L PARTKEY is the partitioning
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key and P1 be a replica of the PART table where P PARTKEY is the partitioning key. To run

queries that join LINEITEM and PART tables, L1 and P1 are declared to be linked, which means

our system synchronizes the partition ranges between the two replicas, placing the corresponding

partitions (with same key values) in the same node.

Global tables: For small tables that are frequently used in JOIN queries, a table can be specified

to be a global table. In that case, we copy all replicas of the table to all racks. This improves the

flexibility of data placement in linked tables.

5.4.4 Columnar File Placement

Finally, following the design approach proposed in [FPST11], we place each family of columnar files

of the same partition and the same replica in the same node. This allows a faster tuple-reconstruction

without network I/O.

5.5 Analytic Recoverability Model

Here, we discuss our analytic cost model designed to estimate the probability of an un-recoverable

data loss for a given design (a set of tables with specified partition and replication) and hardware

configuration (racks, nodes, and their individual probability of failure).

Our goal is to predict with high accuracy the probability of data loss while keeping the cost of

the estimation low. As in a query-cost model in databases, we need to evaluate this probability

many times when selecting good data placement, partitioning and sorting.

Section 5.6 evaluates the accuracy of these analytic models compared to a simulator that actually

simulates failures and recoveries over the lifetime of the system. Although such simulation is the

most accurate way to estimate the recoverability and thus works well for our purposes, it requires

huge computational resources and an exponentially large number of (or exponentially long) iterations

to evaluate a highly recoverable design. Thus, using a simulation to estimate the probability of data

loss is not a viable approach.

Let P (f, t) be the probability of permanent loss of some data in the fracture f ∈ F within a time

period t. Let P (t) be the probability of permanent loss of some data in some fracture within time
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Table 5.1: Symbols.
r ∈ R A rack (|R| is the number of racks).
n ∈ N A node (|N | is the number of nodes).
f ∈ F A fracture (|F | is the number of fractures).
g ∈ G A replica group.
s ∈ S A replica.
N(r) A set of nodes in the rack r.
R(f, g) A set of racks assigned to replica group g for fracture f .

t The period of time to consider (e.g., 10 years).

t. Assuming independence between data-loss events in each fracture yields

P (t) =

F∑
f

P (f, t)

Now consider how fracture f could permanently lose some data. Such data loss happens when

all replica groups g ∈ G concurrently lose some partition in a way that the partition cannot be

recovered within the replica group. Let P (g, f, t) be the probability of this event within a time

period t. Now, assume such an event has happened (that is, the replica group g has lost fracture

f within time period t). Once a fracture is lost, we need to recover the lost partition using other

replica groups, which requires data repartitioning. Let Qrep(f) be the expected time to repartition

the contents of the fracture from another replica group and store the resulting files in stable storage.

A concurrent failure in all replica groups occurs when one of the replica groups fails and then other

groups fail before the group can be repartitioned for recovery. Therefore,

P (f, t) =

G∑
g

(P (g, f, t)×
G∏

g′ 6=g

(P (g, f,Qrep(f))))

Qrep(f) can be calculated using the size of the fracture, the rate to repartition, and the number

of nodes assigned to each replica group. Then, in order to calculate P (g, f, t), let us consider how

replica group g can lose some partition in the group. The replica group can recover a partition

between replicas in the group. Hence, such an event happens only when all buddy replicas s ∈ S ∈ g

lose the same partition. We can easily calculate the probability of such event assuming the use of

the buddy exclusion and node coupling policies described in Section 5.4.
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As described earlier, nodes are coupled in different racks in order to endure rack failure. To

simplify, suppose |S| racks (r1, r2, . . . , r|S|) have the same number of nodes and we couple the nodes

in the racks. No node in the same rack has an overlapping partition with respect to the fracture

f and the replica group g. Therefore, the only case in which a partition can be lost is when the

coupled nodes fail at the same time.

Let n ∈ N(r) denote the node in the rack r and n′, n′′, . . . the nodes coupled with n in other racks

(there are R(f,g)
|S| such coupled racks). Let DR(r, t) be the probability that the rack r fails (e.g., switch

failure) within a time period t. Let DN (n, t) be the probability that the node n fails (e.g., HDD

dies) within a time period t. Let Qcopy(n) be the expected time to recover the node n from a crash,

assuming that replacement hardware is immediately available when node n crashes. Qcopy(n) can

be calculated based on the size of data in the node, its network bandwidth, disk bandwidth, and the

expected number of recoveries concurrently happening in the system (which might affect backbone

network availability). Similarly to the prior P (f, t) discussion, the probability of the concurrent

replica failures is calculated as:

P (g, f, t) =
R(f, g)

|S|

r1,r2,...,r|S|∑
r

(

N(r)∑
n

DN (n, t)×
r1,r2,...,r|S|∏

r′ 6=r

(DN (n′, Qcopy(n)) +DR(r′, Qcopy(n))))

We then calculate DR(r, t) and DN (n, t) from the empirically calculated mean time to failure

(MTTF) of a rack and a node, assuming exponential distribution of rack and node failures. Following

the discussion in [FLP+10], we assume exponential distribution of failures because our focus is on

node and rack failures; although expected disk failures might fit a Weibull distribution better, this

issue does not significantly affect the distribution of node and rack failures because current hard

disks are highly reliable and the disk ages in a large data center vary among machines.

Suppose MTTFN is the node MTTF. With the above assumption, DN (n, t) is simply:

DN (n, t) =

∫ t

0

exp( −t
MTTFN

)

MTTFN
dt = 1− exp( −t

MTTFN
)
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Finally, we get the probability of losing some data in some object (table) by summing the P (t)

for each object. The data loss events of each table are assumed to be independent, in addition to the

independence assumption between fractures. This is a reasonable assumption because each fracture

in each object is randomly assigned to racks and they are thus unlikely to fail together. For example,

a fracture that is assigned racks r1, r5, r9 is very unlikely to lose data together with another fracture

that is assigned racks r2, r7, r8 or even r2, r7, r9. The probability that two fractures are assigned

to the same set of racks is quite low assuming a reasonably large number of racks. However, as

observed in the experimental section, this independence assumption may not hold for designs that

are extremely unreliable and our analytic model may yield an overestimation of the risk, although

such designs will be out of the user’s choice even without the overestimation.

5.6 Experiments

5.6.1 Implementation

We have implemented the Las Vegas filesystem (LVFS) described in earlier sections on top of Hadoop

Distributed File System (HDFS). All source codes and experimental results are open-sourced at

github.com/hkimura/las-vegas.

5.6.2 Query Runtime Experiments

Before the experiments about recoverability, we ran preliminary experiments about query runtime

shown in Figure 5.1 above.

For this experiment, we used a cluster of 60 machines running Debian Squeeze with four cores and

four GB of RAM. These machines are installed in three racks and have gigabit Ethernet interfaces.

Between each query execution, we flush the disk cache in all nodes.

We loaded TPC-H Scale-1020 (1 TB without replication) onto Hadoop 0.20.2-dev, Hive 0.8.1

and our Las Vegas filesystem. For LVFS, we deployed two replicas, one partitioned by Partkey and

another partitioned by Orderkey. Table 5.2 shows a drill-down analysis of the query runtime for

TPC-H Q17 and Q18 using these replicas.

As can be seen in the simplified SQL for the two queries, Q17 needs to aggregate over Partkey

while Q18 needs to aggregate over Orderkey. Unless the underlying data files are pre-partitioned and
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sorted by each aggregate key, we need to repartition the lineitem table, redistribute them over the

network, and sort them before processing the query. On the other hand, a replica with the beneficial

partitioning and sorting completely skips the steps and performs substantially faster, achieving

speedups of two to three orders of magnitude compared to Hive.

Table 5.2: LVFS Query Runtime Drill-Down. Hive took 91 minutes for Q17 and 1245 minutes for
Q18.

TPC-H Q17 [min] TPC-H Q18 [min]
Partkey Orderkey Partkey Orderkey

Repartitioning 0 5 ∼ 6 3 ∼ 4 0
Redistribution

0 7 ∼ 9 5 ∼ 8 0
and Sorting

Other 0.85 1 ∼ 12 0.5 ∼ 1 1.1

Total 0.85 28.8 13.6 1.1

TPC-H Q17: SELECT . . . FROM lineitem JOIN part WHERE . . . AND L QUANTITY<(
SELECT 0.2*AVG(L QUANTITY) FROM lineitem WHERE

L PARTKEY=P PARTKEY)

TPC-H Q18: SELECT . . . FROM lineitem, orders, customer WHERE O ORDERKEY IN (
SELECT L ORDERKEY FROM lineitem GROUP BY L ORDERKEY HAVING . . . )

GROUP BY . . . ORDER BY . . .

We have not made comparisons with prior work on top of Hadoop or HDFS [ABPA+09, FPST11,

ETÖ+11] because the source code is unavailable. However, the relative speedups from Hadoop/Hive

achieved either by advanced storage layer techniques, such as native columnar storage, or by ben-

eficial partitionings are quite consistent with observations in [ABPA+09, FPST11, ETÖ+11]. As

remarked earlier, it was this result that motivated our exploration of multiple partitionings in dis-

tributed file systems.

5.6.3 Recoverability Experiments Setup

In order to analyze the recoverability and the accuracy of our analytic model, we have also imple-

mented a simulator similar to that in [LCZ05], but with a notion of correlated failures (e.g., rack

failures). In the simulator and our analytic model, we assumed the parameters in Table 5.3, which

are partially derived from related work [FLP+10, LCZ05].

Using these parameters, the simulator randomly generates a failure event, either a node failure

or a rack failure. Upon each failure event, the simulator simulates recovery tasks between each node

and calculates their progress based on local disk rate, network rate, and backbone network rate
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Table 5.3: Parameters for the Recoverability Simulator and Model.
Parameters Values

Number of racks 60
Number of nodes per rack 40
Number of objects (tables) 100

Size of each object
10 TB

without replication
Local disk rate 200 MB/s/node

Local network rate 100 MB/s/node
Backbone network rate 3 GB/s

Repartitioning rate∗ 20 MB/s/node
Node MTTF 4.3 month
Rack MTTF 10.2 years

Simulation period 10 years
Simulation iterations 100 times

* Repartitioning rate reflects all required steps of repartitioning: reading the replica, partitioning,
transferring to other nodes, and writing to stable storage. Hence, it is much fewer than the local

disk and network rate.

(which limits the total amount of data concurrently exchanged over the network). One iteration of

the simulator terminates as soon as it detects some permanent data loss. We make 100 iterations

and calculate the geo-mean of the time to lose some data.

Running one iteration of a 10-year simulation takes about half a minute on the simulator, so that

100 iterations take up to one hour. The analytic model, on the other hand, takes negligible time for

prediction.

5.6.4 Recoverability Experiments

Fractures: We now evaluate recoverability with our data structure and data placement policy. We ran

both the recoverability simulator as well as the analytic model described in Section 5.5. Figures 5.10

and 5.11 show the mean time to data loss (MTTDL), the time to observe a permanent data loss

in the system with varying the number of fractures in each object (table). [2] is a design having

only one replica group with two replicas, [1,1] has two replica groups with only one replica. In this

experiments, we turned on all data-placement techniques for buddy replicas described in Section 5.4.

In the designs with heterogeneous partitioning ([1,1] and [1,1,1]), we observed higher MTTDL

with more fractures because the fractures localize the risk of data loss and reduce the amount of

data to be recovered from another replica. Without fractures, any single damaged partition requires

repartitioning on another replica group that must be intact at the time.
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Figure 5.10: Recoverability and Fractures: LVFS Replication Factor = 2.
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Figure 5.11: Recoverability and Fractures: LVFS Replication Factor = 3.

On the other hand, for homogeneous partitioning ([2] and [3]), fractures do not change the

recoverability. This is because such these designs have only one partitioning key, just like HDFS,

and so the damaged partition can be recovered from a buddy partition without repartitioning anyway.

Assuming buddy exclusion and node coupling (as verified in the next experiment), the risk of data

loss is already localized.

In all cases, our analytic model accurately predicated the MTTDL, capturing how the partitioning

and fracturing affects the recoverability. It had a large error only when the expected MTTDL was

extremely low (data loss is very frequent), such as [1,1]. In such cases, the independence assumption

between the data losses does not hold: data losses of multiple tables and fractures happen at the
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same time. However, such a non-reliable design will be not a viable option to the user, so the

overestimation of the risk in this case is irrelevant.

Data Placement Techniques: In this experiment we evaluate the data placement techniques for

buddy replicas described in Section 5.4. Table 5.4 shows the results of simulations with and without

each technique. The buddy-exclusion and node-coupling techniques significantly improved recover-

ability when there are buddy replicas. The buddy-swapping technique did not affect recoverability

while it maximizes the query parallelism on the replicas.

Since these placement techniques have no drawbacks, we assume all of them are applied in

subsequent experiments.

Table 5.4: Recoverability and Data Placement Policies: LVFS. φ(x%) means that MTTDL was too
high to estimate because x% of iterations observed no data loss during 10-year simulation.

Placement Policy
log10(MTTDL minutes)
[2] [3] [4]

None 1.54 3.10 4.60
BuddyExclusion 2.54 4.42 4.80
BuddyExclusion,

3.54 5.92 φ(99%)
NodeCoupling

BuddyExclusion,
3.54 5.91 φ(99%)NodeCoupling,

BuddySwapping

HDFS Analysis: As in the previous experiment, we also simulated the recoverability of HDFS

to compare with LVFS. In this experiments, we turned on and off two data-placement techniques.

The first technique is Stripe-Chunk [LCZ05], which groups small file blocks to a large chunk that

is used as the unit of replication. The goal is the same as in the present node coupling: to reduce

the number of combinations in which the partition (block) are replicated to each node. We make

the chunk size as recommended in [LCZ05] based on the ratio of the backbone network rate to the

local bandwidth.

The second technique is trivial: the default HDFS replica placement policy places the second

replica in the same rack to the first replica, then places other replicas in other racks. However,

because of correlated failures in a rack, it is always safer to place even the second replica in other

racks.

Table 5.5 shows the MTTDL calculated from the simulator with and without the two techniques.

The result confirms that these techniques improve the recoverability of HDFS. The second-rack
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technique did not improve in the two-replica design because the MTTDL is so low in these cases

anyhow that correlated failures (rack failures) do not happen during the simulation. Thus, since all

node failures are uniformly random it does not matter whether or not we place the second replica

in the same rack.

In all subsequent experiments, we assume these techniques are applied to HDFS for fair compar-

ison.

Table 5.5: Recoverability and Data Placement Policies: HDFS.

Placement Policy
log10(MTTDL minutes)
[2] [3] [4]

Default 3.21 3.41 4.82
Stripe-Chunk 3.48 4.85 φ(71%)

Stripe-Chunk, 2nd-Rack 3.32 5.82 φ(98%)

Design Spaces: Finally, Table 5.6 compares the recoverability of various designs with all data

placement techniques enabled and with ten fractures. The results are categorized by the redundancy

(the total number of replicas). As discussed in prior work [FLP+10, LCZ05], increasing the redun-

dancy significantly improves the recoverability in both LVFS and HDFS at the cost of more space

consumption and maintenance overheads. This is the reason Hadoop provides the replication factor

(redundancy) as an important tuning parameter for users.

We extend this design flexibility to another dimension, the number of different partitionings.

While HDFS allows only homogeneous partitioning, LVFS enables each replica to be partitioned by

different keys, thereby speeding up different sets of queries. The number of different partitionings has

an interesting tradeoffs between this opportunity for query optimization and the recoverability. The

more replica groups, having fewer replicas in each replica group causes more frequent repartitioning

and sometimes data loss on node failures.

Our analytic model accurately captures the tradeoffs among the redundancy, number of parti-

tionings, and recoverability. This result shows that our analytic model can help the user choose the

best design conforming to requirements.

5.7 Related Work

Efforts have been made for decades to store and analyze large amounts of data. Parallel and

distributed databases [DGS+90] extend the scalability of datawarehouses to shared-nothing clusters.
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Table 5.6: Design Spaces: Tradeoffs among Redundancy, Number of Different Partitionings, and
Recoverability.

Design Replica #Parti- log10(MTTDL minutes)
Choice Factor tionings Simulation Model

HDFS [2] 2 1 3.32 N/A
LVFS [2] 2 1 3.54 3.60

LVFS [1,1] 2 2 3.31 2.41

HDFS [3] 3 1 5.82 N/A
LVFS [3] 3 1 5.91 6.18

LVFS [1,2] 3 2 4.89 5.17
LVFS [1,1,1] 3 3 4.37 4.28

HDFS [4] 4 1 φ(98%) N/A
LVFS [4] 4 1 φ(99%) 8.56

LVFS [2,2] 4 2 φ(93%) 7.97
LVFS [1,3] 4 2 φ(70%) 7.67

LVFS [1,1,2] 4 3 φ(3%) 6.91
LVFS [1,1,1,1] 4 4 5.47 6.20

MapReduce [DG08] systems, such as Hadoop, employ the simpler architecture for ease of use and

higher scalability.

The MapReduce are systems backed by the distributed storage system, such as HDFS, which

splits the object (file or table) into small pieces and replicates them onto a number of nodes for fault

tolerance. Dean et al. [Dea09] reported a various hardware and software failures in MapReduce

systems due to the large number of nodes and commodity hardware. Lian et al. [LCZ05] built a

Markov model to evaluate the risk of data loss in MapReduce considering the saturation of network

bandwidth by concurrent recovery tasks. Ford et al. [FLP+10] observed failure bursts in which many

nodes in a rack fail concurrently, a major risk of data loss.

MapReduce typically stores row-oriented text files, parsing the files during query execution. It

does not have special data structures to speed up queries, such as indexes and materialized views

in database systems. Pavlo et al. [PPR+09] pointed out that the lack of advanced data structures

and query optimizations sometimes causes query performance orders of magnitude slower than in

database systems.

Extensive research efforts have been made to address this drawback of MapReduce systems, es-

pecially Hadoop. Floratou et al. [FPST11] studied native columnar storage formats in MapReduce,

observing orders of magnitude faster performance than for text files and PAX-formats such as RC-

File [HLH+11]. CoHadoop [ETÖ+11] was the first to explore value-based partitioning, as opposed to

file offsets, in Hadoop. CoHadoop achieves significant query speed-up by copartitioning joined tables
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and co-locating them in same nodes. Hadoop++ [DQRJ+10] and Trojan Data Layout [JQRD11]

alter the data structure and query execution in Hadoop to inject index data in an nonintrusive way

(without affecting Hadoop’s replication and recovery features) and utilize it in query processing.

On the other hand, HadoopDB [ABPA+09] stores structured data in relational databases to exploit

advanced indexing and query optimizations in DBMS.

Despite this plethora of prior work, none has considered heterogeneously partitioned replicas,

the key issue here. Replicas in HDFS are simply identical replicas, so that recovery is much simpler.

The only exception is the Trojan Data Layout [JQRD11], which alters the data layout in each replica

to be in row, columnar, or PAX formats. However, it still assumes an identical partitioning so that

the data in corresponding replicas are logically the same. To allow multiple partitioning, one must

address the issue of recovery between replicas, the primary focus here.

5.8 Conclusions

We have proposed a new approach to data redundancy in distributed data analytic platforms such

as MapReduce systems. We demonstrated the potential of different partitioning for each replica in

distributed filesystems to speed up various queries. We then identified the key challenge that this

approach introduces to recovery.

We developed a distributed filesystem called Las Vegas filesystem (LVFS). LVFS allows flexible

partitioning in addition to sorting of the data. The data structure and data placement policies reduce

the risk of data loss and speed up recovery between replicas even if they are differently partitioned.

We also developed an analytic model to evaluate recoverability of the given design quickly and

accurately. The analytic model can be employed by users or automatic design tools to determine a

physical design that balances recoverability and query performance.

Our experiments verify that a beneficial partitioning along with an efficient storage layer in

LVFS realizes orders of magnitude faster query performance compared to Hive. We verified through

simulation that our data structure and data placement policies improve recoverability.

Our most notable observation from the simulation results is the tradeoff between recoverability

and the number of different partitionings, or the opportunity to speed up different sets of queries.

Unlike uniformly partitioned filesystems, LVFS gives users another possible design dimension to

better meet their query requirements.
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5.8.1 Future Work

The fact that LVFS allows more flexibility in the physical data layout complicates the process of

performance tuning. The user must now choose partitioning schemes and alternate query implemen-

tation for the replica with beneficial partitioning for the query. The main reason Hadoop is now a

common data analytic platform is that it is extremely easy to set up, use, and manage.

We thus plan to work on automating the design process. The key requirements are a declarative

(or semi-declarative, such as Pig-Latin) query language, a query execution layer equipped with a

cost-based query optimizer, and an automated physical design framework that uses the analytic

model developed here to satisfy the user’s recoverability requirements.

Finally, we are also interested in figuring out which of the findings here can be integrated into the

mainstream HDFS and Hive projects in a simple way. For example, unlike differently partitioned

replicas, replicas that are differently sorted in each block can be implemented on HDFS without

substantial changes in a similar way to the Trojan Data Layout [JQRD11], because in-block sorting

does not change the logical information stored in the block.



Chapter 6

Uncertain Primary Index: An

Application to Uncertain

Databases

Uncertain data management has received growing attention from industry and academia. Many

efforts have been made to optimize uncertain databases, including the development of special index

data structures. However, none of these efforts have explored primary (clustered) indexes for uncer-

tain databases, despite the fact that clustering has the potential to offer substantial speedups for

non-selective analytic queries on large uncertain databases. In this chapter, we propose a new index

called a UPI (Uncertain Primary Index) that clusters heap files according to uncertain attributes

with both discrete and continuous uncertainty distributions.

Because uncertain attributes may have several possible values, a UPI on an uncertain attribute

duplicates tuple data once for each possible value. To prevent the size of the UPI from becoming

unmanageable, its size is kept small by placing low-probability tuples in a special Cutoff Index

that is consulted only when queries for low-probability values are run. We also propose several

other optimizations, including techniques to improve secondary index performance and techniques

to reduce maintenance costs and fragmentation by buffering changes to the table and writing updates

in sequential batches. Finally, we develop cost models for UPIs to estimate query performance in

various settings to help automatically select tuning parameters of a UPI.

127
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Table 6.1: Running Example: Uncertain Author table
Name Institutionp Existence . . .
Alice Brown: 80%, MIT: 20% 90% . . .
Bob MIT: 95%, UCB: 5% 100% . . .

Carol Brown: 60%, U. Tokyo: 40% 80% . . .

Query 1: Example Uncertain Query.
SELECT * FROM Author WHERE Institution=MIT

Threshold: confidence ≥ QT (QT is given at runtime)

We have implemented a prototype UPI and experimented on two real datasets. Our results show

that UPIs can significantly (up to two orders of magnitude) improve the performance of uncertain

queries both over clustered and unclustered attributes. We also show that our buffering techniques

mitigate table fragmentation and keep the maintenance cost as low as or even lower than using an

unclustered heap file.

6.1 Introduction

A wide range of applications need to handle uncertainty. Uncertainty comes from sources such

as errors in measuring devices (e.g., sensors), probabilistic analysis, and data integration (e.g.,

integration of multiple semantic databases that are potentially inconsistent). As shown by the large

body of recent research in this area [DRS09, BSHW06, Suc08, CXP+04, SIC07], there is a high

demand to process such uncertain data in an efficient and scalable manner.

The database community has made great progress in the area of uncertain databases by establish-

ing new data models, query semantics and optimization techniques. Several models for uncertainty

in databases have been proposed. In the most general model, both tuple existence and the value of

attributes can be uncertain. For example, Table 6.1 shows 3 uncertain tuples in the Author table of

a publications database modeled after the DBLP computer science bibliography (see Section 6.7.1

for how we derived the uncertainty). Each tuple has an existence probability that indicates the

likelihood it is in the table and an uncertain attribute (denoted as p) Institution that the author

works for. In the example, Alice exists with probability 90% and, if she exists, works for Brown with

probability 80% and MIT with probability 20%.

Possible World Semantics [DRS09] is a widely used model for uncertainty in databases. It

conceptually defines an uncertain database as a probability distribution over a collection of possible
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database instances (possible worlds). Each possible world is a complete, consistent and deterministic

database instance as in traditional DBMS. For example, there is a possible world where Alice exists

and works for Brown, Bob works for MIT and Carol does not exist. The probability of such a world

is 90%× 80%× 95%× 20% ≈ 13.7%. Based on possible world semantics, a probabilistic query over

an uncertain database can output tuples along with a confidence indicating the probability that the

tuple exists in some possible world where it satisfies the query predicates. For example, Query 1

would answer {(Alice, confidence=90% × 20% = 18%), (Bob, 95%)}. Thus, confidence represents

how probable each answer is. Users can also specify thresholds on the minimum confidence they

require from query results (the QT in Query 1.)

Though possible world semantics is a widely used data model, achieving an efficient implemen-

tation is difficult. In particular, it requires a new approach to data storage, access methods and

query execution [DRS09]. One active area of research has been in building index data structures to

efficiently answer queries over such probabilistic tables [CXP+04, TCX+05, ACTY09]; the primary

addition that these data structures provide over traditional B+Trees and R-Trees is the ability to

find tuples with confidence above some specified threshold.

These proposed indexes, however, are secondary indexes. To the best of our knowledge, no work

has been done to cluster a heap file containing uncertain attributes as a primary index. To address

this limitation, the key contribution of this work is to propose techniques to build primary indexes

over probabilistic databases. Just as in a conventional (non-probabilistic) database, a primary index

can be orders of magnitude faster than a secondary index for queries that scan large portions of

tables, for example in OLAP workloads. Because a secondary index stores only index keys with

pointers to corresponding tuples in the heap file, the query executor has to access the heap file by

following the pointers to retrieve non-indexed attributes. This can cause an enormous number of

random disk seeks for an analytical query that accesses millions of tuples, even if the query executor

sorts the pointers before accessing the heap file (e.g., bitmap index scan). Furthermore, recent work

has shown that building primary indexes on appropriate attributes can also boost the performance

of secondary indexes that are correlated with the primary index [KHR+09]. In this chapter, we

demonstrate that a new primary index structures on uncertain attributes can be up to two orders

of magnitude faster than a secondary index and can boost the performance of secondary indexes by

up to two orders of magnitude when an appropriate correlated primary index is available.

However, building a primary index on uncertain attributes poses several challenges. If we simply
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cluster a tuple on one of its possible values, a query that is looking for other possible values needs

additional disk accesses. For example, if we store Carol in a Brown disk block, a query that inquires

about U. Tokyo authors must access the Brown block in addition to the U. Tokyo block. One solution

is to replicate tuples for every possible value, but this makes the heap file very large and increases

maintenance especially for long tail distributions with many low probability values. Furthermore,

building a primary index on attributes other than auto-numbered sequences imposes a significant

maintenance cost (to keep the heap clustered) and leads to fragmentation of the heap file over time,

which also slows down the query performance.

In this chapter, we develop a novel data structure we call the UPI (Uncertain Primary Index),

which is a primary index on uncertain attributes with either discrete or continuous distributions.

UPI replicates tuples for all possible values but limits the penalty by storing tuples with a probability

less than some threshold in a Cutoff Index. We propose a novel data structure for secondary indexes

built over UPIs that stores multiple pointers for each entry to take advantage of the replicated tuples.

We also describe the Fractured UPI which buffers data updates and occasionally flushes them to

a new partition, or a fracture to reduce maintenance costs and fragmentation. Our experimental

results on two real uncertain datasets show that UPI has substantial performance gains and similar

maintenance costs to (unclustered) heap files.

In summary, our contributions include:

• The UPI data structure and corresponding secondary indexes

• Algorithms to answer queries using UPIs

• Methods to reduce update cost and fragmentation of UPIs

• Cost models to help select cutoff values and guide the formation of cutoff indexes

• Experimental results on real datasets that verify our approach and demonstrate order-of-

magnitude performance gains over existing secondary indexses

In the next section, we describe a naive implementation of UPI and discuss its limitations.

Sections 6.3 through 6.6 extend UPIs to address these limitations. Section 6.7 validates our approach

with intensive experiments on two real datasets. Finally, Section 6.8 summarizes related work and

Section 6.9 concludes this chapter.
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6.2 A Simple UPI

We begin by describing a naive implementation of UPIs, followed by a discussion of their shortcom-

ings that are addressed in later sections.

To answer Query 1, an uncertain secondary index on Institution would be inefficient because

there are thousands of researchers who work for MIT, and each would require a random disk seek

to fetch. Instead, if we build a UPI on Institution, it will duplicate each tuple once for each possible

value of Institution, as shown in Table 6.2.

Also, we do not need tuples that have less than QT probability to satisfy the query. Therefore,

we order the tuples by decreasing probability of institution, which allows the query executor to

terminate scanning as soon as it finds a tuple that has a lower probability than the query threshold.

Physically, the heap file is organized as a B+Tree indexed by {Institution (ASC) and probability

(DESC)}. This is similar to the inverted index in [SMP+07] except that we duplicate the entire

tuple, rather than just a pointer to the heap file.

This scheme achieves significantly faster performance than a secondary index for Query 1 because

it requires only one index seek followed by a sequential scan of matching records. However, this naive

UPI has several limitations.

First, since it duplicates the whole tuple for every possible value of Institution, the size of the

heap file can be significantly larger than a heap file without the primary index. This is especially true

when the probabilistic distribution has a long tail (i.e., many possible values with low probabilities).

Second, now that a single tuple exists in multiple places on disk, it is not clear how we should

organize secondary indexes. Specifically, if we could use the duplicated tuples, a query could use the

secondary index to access fewer heap blocks (fewer seeks) and run substantially faster.

Third, maintaining UPIs causes two problems. As newly inserted or deleted tuples will have

different values of Institution, we need to update the B+Tree nodes in a variety of locations leading

to many disk seeks. Also, splits and merges of B+Tree nodes will fragment the disk layout of the

UPI and degenerate query performance.

Lastly, the naive approach applies only to tuples with discrete probability distributions. For

continuous distributions like Gaussians, we need index schemes other than B+Trees.

We address these problems in turn. Section 6.3 describes the design Cutoff Indexes to address

long-tail distributions and proposes a new index data structure for a secondary index that exploits
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Table 6.2: A Naive UPI. Sorted by institution and probability.
Institutionp↓ (Probability↑) TupleID Tuple Data

Brown (80%*90%=72%) Alice . . .
Brown (60%*80%=48%) Carol . . .

MIT (95%) Bob . . .
MIT (18%) Alice . . .
UCB (5%) Bob . . .

U. Tokyo (32%) Carol . . .

duplicated tuples in the UPI. Section 6.4 explains the design of Fractured UPIs that minimize UPI

maintenance cost and fragmentation. Section 6.5 extends UPIs for continuous distributions. Finally,

Section 6.6 defines cost models which are useful to design and maintain UPIs.

6.3 Improved UPI

In this section, we improve our basic UPI design by addressing issues with the database size and

improving the performance of secondary indexes on the same table as the UPI.

6.3.1 Cutoff Index

One problem with our naive UPI is that the database size can grow significantly when a tuple has

many possible values of the indexed attribute. This increased size will not only affect the storage

cost but also increase maintenance costs.

We observe, however, that for long-tailed distributions, with many duplicated values, the user

may not care about very low confidence tuples, since those are unlikely to be correct answers. For

example, Query 1 includes the threshold QT that filters out low-confidence tuples. Such queries are

called Probabilistic Threshold Queries, or PTQs, and are very common in the literature [CXP+04,

TCX+05, ACTY09]. For PTQ’s, low probability tuples can typically be ignored.

We anticipate that most queries over long-tailed distributions will be PTQs. To handle such

queries, we attach a Cutoff Index to each UPI heap file. The idea is that the query executor does

not need to read the low probability entries when a relatively high probability threshold is specified

in a PTQ. Therefore, we can remove such entries from the UPI heap file and store them in another

index, which we call the cutoff index. The cutoff index is organized in the same way as the UPI heap

file, ordered by the primary attribute and then probability. It does not, however, store the entire
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Input: t: Inserted tuple, C : Cutoff threshold.

Alternatives = sort by probability (t.primary attribute);
foreach a ∈ Alternatives do

if a = Alternatives.first OR a.probability ≥ C then
Add (key: a, tuple: t) to Heap File;

else
Add (key: a, pointer: Alternatives.first, TupleID: t.TupleID) to Cutoff Index;

end

end

Algorithm 2: Insertion into a UPI

Input: key: Queried value, QT: Probability threshold, C
Output: S: Set of tuples to return.

S = ∅;
Cur = UPI.seekTo (key);
while Cur.key = key AND Cur.probability ≥ QT do

S = S
⋃
Cur.tuple;

Cur.advance();

end
if QT < C then

Cur = CutoffIndex.seekTo (key);
while Cur.key = key AND Cur.probability ≥ QT do

CurIn = UPI.seekTo (Cur.pointer);
CurIn.moveTo (Cur.TupleID);
S = S

⋃
CurIn.tuple;

Cur.advance();

end

end

Algorithm 3: Answering a PTQ using a UPI

tuple but only the uncertain attribute value, a (pointer) to the heap file to locate the corresponding

tuple, and a tuple identifier (TupleID). For example, in Table 6.3, the Bob tuple with institution

value UCB, which has only 5% probability, is moved to the cutoff index with a pointer to another

possible value of Bob (MIT).

Top-k queries and nearest neighbor (NN) queries [SIC07] benefit from the cutoff index as well. A

top-k query can terminate scanning the index when the top-k results are identified. Thus, a cutoff

index is particularly useful when a majority of the queries on the database are PTQs or Top-k.

Algorithm 2 shows how we build and maintain UPIs and cutoff indexes. Given a Cutoff Threshold

C for the UPI, we duplicate a tuple in the UPI for every possible value that has probability equal

to or greater than C. For every possible value with probability less than C, we insert a pointer to

the first possible value of that tuple (a value that has highest probability) into the cutoff index. If
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Table 6.3: Cutoff Index to compress UPI (C=10%)
UPI Heap File

Brown (72%) Alice . . .
Brown (48%) Carol . . .
MIT (95%) Bob . . .
MIT (18%) Alice . . .

U. Tokyo (32%) Carol . . .

Cutoff Index
Key↓ TupleID Pointer

UCB (5%) Bob MIT
Stores pointers for possible values with probability

< C

a value has probability lower than C, but is the first possible value, we leave the tuple in the UPI

instead of moving it, to not lose tuples that do not have any possible value with probability larger

than C.Deletion from the UPI is handled similarly, deleting entries from the heap file or cutoff index

depends on the probability. Updates are processed as a deletion followed by an insertion.

Algorithm 3 shows how we use the UPI to answer PTQs. When C is less than QT , we simply

retrieve the answer from the UPI heap file, which requires only one index seek. When C is larger

than QT , we additionally need to look in the cutoff index to retrieve cutoff pointers and perform an

index seek for each pointer.

The value of C is an important parameter of a UPI that the database administrator needs

to decide. Larger C values could reduce the size of the UPI by orders of magnitude when the

probability distribution is long tailed. But, they substantially slow the performance of PTQs with

query threshold less than C, since such queries require pointer-following (and many random I/Os.)

Smaller values of C work well for a large mix of queries with varying QT , at the cost of a larger UPI.

To help determine a good value of C taking into account both the workload and limits on storage

consumption and maintenance cost, we developed an analytic model for cutoff index performance;

we present this model in Section 6.6.

6.3.2 Secondary Indexes on UPIs

Another challenge is exploiting the structure of UPIs to improve secondary index performance. A

secondary index in conventional databases points to a single tuple in the heap file by storing either

a RowID consisting of physical page location and page offset (e.g., PostgreSQL) or the value of the

primary index key (e.g., MySQL InnoDB). Unlike such traditional secondary indexes, in UPIs, we

employ a different secondary index data structure that stores multiple pointers in one index entry,

since there are multiple copies of a given tuple in the UPI heap.

For example, suppose Countryp is another uncertain attribute of the relation Author shown in
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Input: key: Queried value, QT: Probability threshold.
Output: P: Set of pointers to heap file.

P = ∅;
Entries = SecondaryIndex.select(key,QT );
foreach e ∈ Entries do

if e.pointers.length = 1 then
P = P

⋃
e.pointers[0];

end

end
foreach e in Entries do

if ∀p ∈ e.pointers : p /∈ P then
P = P

⋃
e.pointers[0];

end

end

Algorithm 4: Tailored Secondary Index Access

Table 6.4: Countryp in Author table
Name Institutionp Countryp Existence

Alice Brown: 80%, MIT: 20% US: 100% 90%
Bob MIT: 95%, UCB: 5% US: 100% 100%

Carol Brown: 60%, U. Tokyo: 40% US: 60%, Japan: 40% 80%

Table 6.5: Secondary Index on Countryp

Countryp↓ TupleID Pointers

Japan (32%) Carol Brown U. Tokyo
US (100%) Bob MIT <cutoff>
US (90%) Alice Brown MIT
US (48%) Carol MIT U. Tokyo

Table 6.4 with a secondary index on it as shown in Table 6.5. Each row in the secondary index

stores all possible values of the primary attribute (Institutionp), except cutoff values. Algorithm 4

shows our algorithm for answering PTQs using these multiple pointers. For example, suppose the

following PTQ is issued on Countryp with QT = 80%:

SELECT * FROM Author WHERE Country=US

We first retrieve matching entries from the secondary index (Bob and Alice) and then find entries

that have only one pointer (Bob). We record the institution for these pointers (MIT) and then check

other secondary index entries, preferentially choosing pointers to institutions we have already seen.

In the above case, Alice contains a pointer to MIT, so we retrieve tuple data for Alice from the

MIT record about her. The advantage of this is that because Bob’s data is also stored in the MIT

portion of the heap, we can retrieve data about both authors from a small, sequential region of the
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heap corresponding to MIT. If there is no pointer to an institution we have already seen, we simply

pick the first (highest probability) pointer. Note that in this case we would have accessed two disk

blocks (MIT and Brown) if the secondary index stored only the first pointers.

We call this algorithm as Tailored Secondary Index Access and demonstrate in Section 6.7 that

it can speed up secondary indexes substantially for analytical queries . One tuning option for this

algorithm is to limit the number of pointers stored in each secondary index entry. Though the query

performance gradually degenerates to the normal secondary index access with a tighter limit, such

a limit can lower storage consumption.

6.4 Fractured UPI

In this section, we describe a second extension to UPIs called Fractured UPIs. The idea of fracturing

is to reduce UPI maintenance cost and fragmentation. The approach we take is similar to that taken

in log structured merge trees (LSM-Trees) [OCGO96] and partitioned exponential files [JOY07] for

deterministic databases, which try to eliminate random disk I/O by converting all updates into

appends to a log similarly to deferred updates of transaction processing.

6.4.1 The Maintenance Problem

The problem of maintaining a UPI is that insertion or deletion may perform random I/O to the UPI

to retrieve pages. This makes the maintenance cost of UPIs much higher than for an append-only

table without primary indexes.

Another problem is that insertions cause splits of B+Tree nodes when nodes become full, and

deletions cause merges of nodes. Thus, over time, these operations result in fragmentation of the

primary index, leading to random disk seeks even when a query requests a contiguous range of the

primary index attribute.

For these two reasons, primary B+Tree indexes sometimes have adverse effects on performance

over time [JOY07], canceling out the initial benefits obtained by clustering a table on some key.

6.4.2 Fractured UPI Structure

To overcome these problems, we store UPIs as Fractured indexes [Ikh10]. Figure 6.1 shows the

structure of a Fractured UPI. The insert buffer maintains changes to the UPI in main memory.
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When the buffer becomes full, we sequentially output the changes (insertions and deletions) to a

set of files, called a Fracture. A fracture contains the same UPI, cutoff index and secondary indexes

as the main UPI except that it contains only the data inserted or deleted since the previous flush.

Deletion is handled like insertion by storing a delete set which holds IDs of deleted tuples. We keep

adding such fractures as more changes are made on the UPI, and do not immediately update the

main UPI files.

UPI
Heap File

C
u

to
ff

 I
n

d
e
x

2
n

d
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ry
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n

d
e
x

delete set

Main Fracture
Fracture 1 Fracture 2

SELECT

New
Fracture

INSERT DELETE

Insert Buffer
(on RAM)

dump

delete set delete set

Figure 6.1: Fractured UPI Structure

To answer a SELECT query, the query executor scans the insert buffer and each fracture in

addition to the main UPI, returning the union of results from each file and ignores tuples that were

contained in any delete set. In this scheme, all files are read-only and are written out sequentially

by the clustering key as a part of a single write. Therefore, the maintenance cost is significantly

lower and there is essentially no fragmentation.

One difference from prior work (e.g., [OCGO96]) is that a fracture contains a set of indexes that

constitute an independent UPI. A secondary index or a cutoff index in a fracture always points to

the heap file in the same fracture. This architecture makes query execution in each fracture simpler

and easier to parallelize. The only exception is the delete set, which is collected from all fractures

and checked at the end of a lookup.

Another benefit of independent fractures is that each fracture can have different tuning param-

eters as long as the UPI files in the fracture share the same parameters. For example, the cutoff

threshold C, the maximum number of pointers to store in a secondary index entry and even the
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size of one fracture can vary. We propose to dynamically tune these parameters by analyzing recent

query workloads based on our cost models whenever the insert buffer is flushed to disk. This kind

of adaptive database design is especially useful when the database application is just deployed and

we have little idea about the query workload and data growth.

6.4.3 Merging Fractured UPI

Although fracturing UPIs avoids slowdown due to fragmentation, query performance still deteriorates

over time as more and more fractures accumulate. The additional overhead to access the in-memory

insert buffer is negligible, but accessing each fracture causes additional disk seeks. This overhead

linearly increases for the number of fractures and can become significant over time.

Thus, we need to occasionally reorganize the Fractured UPI to remove fractures and merge them

into the main UPI (this is similar to the way in which conventional indexes need reorganization

or defragmentation to maintain their performance.) The merging process is essentially a parallel

sort-merge operation. Each file is already sorted internally, so we open cursors on all fractures in

parallel and keep picking the smallest key from amongst all cursors.

The cost of merging is about the same as the cost of sequentially reading all files and sequentially

writing them back out, as we show in Section 6.7. As the size of the database grows, this merging

process could take quite a long time, since it involves rewriting the entire database. One option is

to only merge a few fractures at a time. Still, the DBA has to carefully decide how often to merge,

trading off the merging cost with the expected query speedup. In Section 6.6, we show how our cost

model can help estimate the overhead of fractures guide the decision as to when to merge.

6.5 Continuous UPI

In this section, we extend UPIs to handle attributes with continuous distributions (e.g., spatial

attributes). For example, we might have imprecise GPS data for a position that is within a circle of

100m radius centered at (42◦, 72◦) with a uniform distribution. As the number of possible values in

such distributions is infinite, we cannot apply the basic UPI presented above to such attributes.

Our solution is to build a primary index on top of R-Tree variants like PTIs [CXP+04] and

U-Trees [TCX+05]. These indexes themselves are secondary indexes, and as such require additional

seeks to retrieve tuples. We cannot make them primary indexes by simply storing tuples in the
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leaf nodes. As tuples are orders of magnitude larger than pointers, it would significantly reduce

the maximum number of entries in a node, resulting in a deep and badly clustered R-Tree with

high maintenance costs. Instead, we build a separate heap file structure that is synchronized with

the underlying R-Tree nodes to minimize disk access. We cluster this separate heap file by the

hierarchical location of corresponding nodes in the R-Tree.

root
<2>

<2,1>

<2,2>

R-Tree Nodes
(4KB page)

Heap File
(64KB page)

overflow page

Hierarchical
node location

Tuples for
<2,1>

Tuples for
<2,2>

Figure 6.2: A Continuous UPI on top of R-Tree

Figure 6.2 shows a continuous UPI on top of an R-Tree. It consists of R-Tree nodes with small

page sizes (e.g., 4KB) and heap pages with larger page size (e.g., 64KB). Each leaf node of the

R-Tree is mapped to one heap page (or more than one when tuples for the leaf node do not fit into

one heap page). Consider the 3rd entry in the R-Tree leaf node that is the 1st child of the 2nd child

of the root node. We give this tuple the key <2, 1, 3> store it in the third position of heap page

<2, 1>. When R-Tree nodes are merged or split, we merge and split heap pages accordingly. In

this scheme, tuples in the same R-Tree leaf node reside in a single heap page and also neighboring

R-Tree leaf nodes are mapped to neighboring heap pages, which achieves sequential access similar

to a primary index as long as the R-Tree nodes are clustered well.

One interesting difference from prior work is that UPIs can exploit duplicated entries in the

underlying R-Tree to speed up secondary index accesses as described in Section 6.3.2. Duplicating

entries in an R-Tree (R+Tree) is also useful to reduce overlap of minimum bounding rectangles

(MBRs) and improve clustering, which will lead to better query performance. PTIs and U-Trees
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are based on the R*Tree which does not duplicate entries although it tries to improve clustering by

re-inserting entries. Developing an R+Tree analogue might further improve the performance of UPIs

especially when wider and less skewed (e.g., Uniform) distributions cause too much MBR overlap.

We leave this as future work.

6.6 Cost Models

In this section, we develop two cost models that capture the effects of the number of fractures and

query thresholds on the query runtime respectively. When we need to account for both effects in

one query, both estimates are added to estimate the total query runtime. The cost models are useful

for the query optimizer to pick a query plan and for the database administrator to select tuning

parameters such as the merging frequency and the cutoff threshold. We verify the accuracy of our

cost models in Section 6.7 and observe that the cost models match the observed runtime quite well.

6.6.1 Parameters and Histograms

Table 6.6 shows the list of parameters used in our cost model as well as their values in our exper-

imental environment. We get these parameters by running experiments (e.g., measure the elapsed

time to open/close a table in Berkeley DB) and by collecting statistics (using, e.g., DB::stat()) for

the particular configuration of interest.

Another input to our cost model is the selectivity of the query. Unlike deterministic databases,

selectivity in our cost model means the fraction of a table that satisfies not only the given query

predicates but also the probability threshold (QT ). We estimate the selectivity by maintaining a

probability histogram in addition to an attribute-value-based histogram. For example, a probability

histogram might indicate that 5% of the possible values of attribute X have a probability of 20% or

more. We estimate both the number of tuples satisfying the query that reside in the heap file and

that reside in the cutoff index using the histograms. We also use the histogram to estimate the size

of the table for a given cutoff threshold.

6.6.2 Cost Model for Fractured UPIs

We estimate the cost of a query on a Fractured UPI with the following equation. In addition to the

sequential read cost, it counts the cost of table initialization and an index lookup for each fracture.
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Table 6.6: Parameters for cost models
Parameter Description Typical Value
Tseek Cost of one random disk seek 10 [ms]
Tread Cost of sequential read 20 [ms/MB]
Twrite Cost of sequential write 50 [ms/MB]

H Height of B+Tree 4
Stable Size of table 10 [GB]
Nleaf Count of leaf pages Stable / 8KB
Nfrac Count of UPI fractures 10
Costinit Cost to open a DB file 100 [ms]
Costscan Cost to full scan the table Tread · Stable

Costfrac = Costscan · Selectivity +Nfrac(Costinit +HTseek)

Based on this estimate and the speed of database size growth, a database administrator can

schedule merging of UPIs to keep the required query performance. To estimate how long the merging

will take, she can simply refer the cost to fully read and write all fractures; Costmerge = Stable(Tread+

Twrite).

6.6.3 Cost Model for Cutoff Indexes

For a query whose probability threshold QT is less than the cutoff threshold C, we need to access the

cutoff index, causing random seeks that are much more expensive than the sequential reads required

to access the UPI itself. To confirm this, we ran Query 1 with various values for QT and C.

Figure 6.3 compares the runtime of a non-selective query over the Author table that could return

as many as 37,000 authors and a selective query which returns as many as 300 authors. In both

cases, the query performs slower for lower QT especially when QT < C because the query has to

access the cutoff index as expected. When QT ≥ C, the query is very fast because it is answered

purely through sequential I/O.

However, the runtime of the non-selective query is the same for all QT when C > 0.4. This

result is not intuitive because the number of pointers read from the cutoff index should be larger

for smaller values QT . In fact, QT = 0.05 retrieves 22,000 pointers from the cutoff index while

QT = 0.25 retrieves 3,000, but the query runtime is the same.

This happens because in both cases we access nearly every page in the table. We call this
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Figure 6.3: Cutoff Index Real Runtime. Non-selective (top) and Selective (bottom) queries.

case saturation. As the query needs to retrieve thousands of pointers from the cutoff index, these

pointers already cover almost all of the heap file, and the disk access pattern degenerates to a full

table scan (assuming the database performs a heap file lookup by ordering the pointers relatively to

the positions in the heap file). At this point, further increasing the number of pointers (smaller QT )

does not make the query slower. Another interesting observation is that, as demonstrated in the

QT = 0.05 curve, a query might perform faster with larger C when pointers are saturated because

the full table scan cost is smaller.

These observations suggest that query runtime is not simply the number of retrieved pointers

multiplied by the disk seek cost, especially when the number is large. Instead, the growth of the

number of real disk seeks gradually decreases for more pointers because more and more pointers will

land on the same blocks and eventually get saturated. Our main target is non-selective analytical

queries, so ignoring this effect can cause a huge error in query cost estimation.

In order to model this saturation behavior, we use a generalized logistic function f(x), which is

a type of sigmoid function. A sigmoid function is often used to model phenomena like population

growth where the rate of reproduction is proportional to the amount of available resource which

decreases as population increases. This is consistent with our notion of saturation.
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Costcut = Costscan · Selectivity + 2(Costinit +HTseek)

+f(#Pointers)

f(x) = Costscan(
1− e−kx

1 + e−kx
)

The first line is basically the same as Costfrac except that we access two tables (the UPI Heap

File and the Cutoff Index). f(x) is the cost to retrieve tuples from the heap file which satisfies

f(0) = 0 and f(∞) = Costscan. k is a parameter that represents how quickly we reach saturation.

We determine this value by applying a heuristic f(0.05 ·Nleaf ) = 0.99 ·Costscan, which is based on

experimental evidence gathered through our experience with UPIs.

We propose to use the cost models for selecting the cutoff threshold as follows: First, an admin-

istrator collects query workloads of the database to analyze the frequency of queries to have low

QT s. Second, she figures out the acceptable size of her database given available disk capacity and

expected maintenance time. Finally, she picks a value of C that yields acceptable database size and

also achieves a tolerable average (or nth percentile) query runtime.

6.7 Experimental Results

In this section, we evaluate the query and maintenance performance of UPIs as well as the accuracy

of our cost models. We implemented a prototype UPI for both discrete and continuous distributions

and compared the performance with prior uncertain indexes on two real datasets.

6.7.1 Setup

All of our UPI implementations are in C++ on top of BDB (BerkeleyDB) 4.7 except the continuous

UPI because BDB does not support R-Tree indexes. Instead, we implemented a custom heap file

layer (See Section 6.5) on top of the U-Tree provided by Tao et al [TAO] which pre-computes integrals

of probability distributions as MBRs. For other experiments, we used BDB’s B+Trees. We always

sort pointers in heap order before accessing heap files similarly to PostgreSQL’s bitmap index scan

to reduce disk seek costs caused by secondary index accesses. Our machine for all experiments runs

Fedora Core 11 and is equipped with a quad core CPU, 4GB RAM and 10k RPM hard drive. All
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results are the average of 3 runs, and were performed with a cold database and buffer cache.

DBLP Dataset and Query: Our first dataset is derived from DBLP [Ley09], the free biblio-

graphic database of computer science publications. DBLP records more than 1.3 million publications

and 700k authors. This dataset exemplifies uncertainty as a result of data integration. DBLP itself

has no uncertainty but by integrating DBLP with other data sources, we can produce uncertain

data. For instance, the affiliated institution of each author is useful information for analysis, but

is not included in DBLP. SwetoDblp [AMHBAS07] supplies it by integrating DBLP with ontology

databases. Nagy et al [NFJ09] applied machine learning techniques to automatically derive affilia-

tion information by querying a web search engine and then analyzing the homepages returned by

that search engine.

Such analysis is useful but inherently imprecise, so the resulting affiliation information is uncer-

tain. We generated such uncertain affiliations by querying all author names in DBLP via Google

API and assigning probabilities to the returned institutions (determined by domain names) up to

ten per author. We used a zipfian distribution to weigh the search ranking and sum the probabilities

if an institution appears at more than one ranks for the author.

The resulting data is the Author table exemplified in Table 6.4 which has uncertain attributes

like institution and country for all 700k authors. We also added the same uncertain attributes into

the list of publications (assuming the last author represents the paper’s affiliation) and stored it as

the Publication table which contains information about 1.3M publications.

We loaded the uncertain data into BDB and built a UPI on the Institution attribute with various

cutoff thresholds. For the Publication table, we also built a secondary index on Country, which is

correlated with Institution. We then experimented with the following queries on the two tables.

Query 1: Author Extraction

SELECT * FROM Author WHERE Institution=MIT

Query 2: Publication Aggregate on Institution

SELECT Journal, COUNT(*) FROM Publication

WHERE Institution=MIT GROUP BY Journal

Query 3: Publication Aggregate on Country
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SELECT Journal, COUNT(*) FROM Publication

WHERE Country=Japan GROUP BY Journal

Cartel Dataset and Query: Our second dataset is derived from Cartel (http://cartel.

csail.mit.edu) data. Cartel is a mobile sensor network system which collects and analyzes GPS

data sent from cars to visualize traffic. During the analysis, the raw GPS data is converted into car

observations which contain the location, estimated speed, road segment and the direction of cars.

Because of the imperfect accuracy of GPS and probabilistic analysis, the resulting car observations

are uncertain.

We generated uncertain Cartel data based on one year of GPS data (15M readings) collected

around Boston. We assigned a constrained Gaussian distribution to location with a boundary to

limit the distribution as done in [TCX+05] and added an uncertain road segment attribute based

on the location. We built our 2-D continuous UPI on the uncertain location attribute (i.e., longi-

tude/latitude) and also built a secondary index on the road segment attribute. We then experimented

with the following queries.

Query 4: Cartel Location

SELECT * FROM CarObservation

WHERE Distance(location, 41.2◦, 70.1◦) ≤ Radius

Query 5: Cartel Road Segment

SELECT * FROM CarObservation WHERE Segment=123

6.7.2 Results

UPI on Discrete Distributions: We now present our experimental results, starting with DBLP.

The DBLP dataset has discrete distributions on several attributes, therefore, we compare our UPI

with our implementation of PII [SMP+07] on an unclustered heap file. PII is an uncertain index

based on an inverted index which orders inverted entries by their probability. We compared UPI

with PII because PII has been shown to perform fast for discrete distributions [SMP+07].

http://cartel.csail.mit.edu
http://cartel.csail.mit.edu
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Figure 6.4: Query 1 Runtime
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Figure 6.5: Query 2 Runtime

Figure 6.4 and Figure 6.5 show the runtimes of Query 1 and Query 2, comparing UPIs (C = 10%)

and PIIs on Institution. Both indexes perform faster with higher thresholds as they retrieve less

data, but the UPI performs 20 to 100 times faster because the UPI sequentially retrieves tuples from

the heap file while PII needs to do random disk seeks for each entry.

Figure 6.6 shows the runtime of Query 3 which uses a secondary index on Country. This time,

we also test the UPI with and without tailored secondary index access as described in Section 6.3.2.

Although both use secondary indexes in this case, our index performs faster because of correlation

between the attributes of the primary and secondary indexes. However, the UPI without tailored
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Figure 6.6: Query 3 Runtime

index access is not very beneficial, and sometimes is even slower than the unclustered case because it

cannot capture the possible overlap of pointers from the secondary index. Our tailored index access

performs up to a factor of 7 faster than the UPI without tailored access, and up to a factor of 8

faster than PII.

UPI on Continuous Distributions:

Next, we compare a continuous UPI with a secondary U-Tree on the Cartel dataset. Figure 6.7

shows the performance comparison between a 2-D continuous UPI and a U-Tree on Query 4. We

fixed QT = 50% and varied the radius. The continuous UPI performs faster by a factor of 50 to 60

because the tuples in the UPI heap file are well clustered with the intermediate nodes. Figure 6.8

shows the runtime of Query 5, varying QT (QT = 90% returns no result). Both techniques use

secondary indexes for this query. However, as in the discrete case, the secondary index performs

much faster with a continuous UPI because of correlation between lat/long (primary index) and

segment ID (secondary index) which reduces the number of disk seeks by orders of magnitude. The

speed up is a factor of up to 180 when QT < 50%. For queries QT > 50% (more selective queries)

which have many fewer pointers to follow, heap access on both indexes are much faster so the

performance gap is less because secondary index access cost is the same. However, the gap is still

more than a factor of 50.

Fractured UPIs: We now evaluate maintenance of UPIs. To measure the maintenance cost, we

randomly delete 1% of the tuples from the DBLP Author table and randomly insert new tuples equal
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to 10% of the existing tuples. We compare an unclustered table (clustered by an auto-increment

sequence), a UPI and a Fractured UPI. For the Fractured UPI, we drop the insert buffer after all

insertions and deletions.

As shown in Table 6.7, the non-fractured UPI performs quite poorly for both insertions and

deletions because random locations in the B+Tree are read, written, split and merged. Unclustered

and Fractured UPIs perform well because they sequentially write the inserted data to disk. Note

that for deletions, even an unclustered table performs poorly because tuples are deleted from random

places. The Fractured UPI performs much faster because it simply buffers TupleIDs of deleted tuples
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Table 6.7: Maintenance Cost
Insert Delete

Unclustered 7.8 sec 75 sec
UPI 650 sec 212 sec

Fractured UPI 4.0 sec 0.03 sec

and sequentially writes them to disk as a batch.
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Figure 6.9: Q1 (C=QT=0.1) Deterioration

We also tested the query performance deterioration after a number of insert batches, each of

which consists of the 10% insertions and 1% deletions (as before). For the Fractured UPI, we made

one fracture after each insert batch. Figure 6.9 shows the query runtime deterioration. After 10

insert batches, the table size is increased by only 90% (=10*(10%-1%)), but all three approaches

show much more than 90% deterioration. The unclustered table becomes 4 times slower compared

with the initial state, the non-fractured UPI is 40 times slower and the Fractured UPI is 9 times

slower. For the unclustered table and the UPI, the slowdown is because of fragmentation caused by

deletion and (for UPI) insertion.

This result illustrates that the Fractured UPI improves not only the maintenance cost but the

query performance by eliminating fragmentation. Still, the Fractured UPI does gradually slow down

because of the overhead of querying each fracture.

Cost Models: To restore the query performance of the Fractured UPI, we implemented

merging of fractures and compared that with our cost model for fractures described in Section 6.6.2.
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Figure 6.10 shows the real and estimated query runtime during 30 insert batches.
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Figure 6.10: Fractured UPI Runtime

Table 6.8: Merging Cost
# Time DB size
1 150 sec 2.5 GB
2 247 sec 3.6 GB
3 275 sec 4.8 GB

We merged fractures after every 10 insert batches. The query performance is restored after each

merging, and the estimated runtime matches the real runtimes quite well. Table 6.8 shows the cost

of three merges. As the result shows, the merge cost is almost the same as reading and writing the

entire table in BDB (20+50 [ms/MB]) and conforms to our cost model.

Finally, we test the query runtime when a UPI has to access a cutoff index, and we verify that

our cost model can predict the behavior. We again used Query 1 and varied both QT and C. First,

we checked the accuracy of selectivity estimation described in Section 6.6.1 because our cost model

relies on accurate estimates of the number of pointers returned from the cutoff index. Figure 6.11

compares the true number and the estimated number of cutoff pointers for various QT and C settings

(except QT > C). The result shows that our selectivity estimation is accurate.

Figure 6.12 shows the runtimes estimated by our cost model with the exact same setting as

Figure 6.3 in Section 6.6.3. As the two figures show, our cost model (which estimates disk seek costs

and saturation of cutoff pointers using a sigmoid function) matches the real runtime very well for

both selective and non-selective queries.
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Figure 6.11: #Cutoff-Pointers Estimation

These results above confirm that our cost models can accurately estimate the query costs in

various settings. These cost models will be useful for the query optimizer to choose execution plans

and for a database administrator or auto tuning program to choose tuning parameters for UPIs.

6.8 Related Work

The most closely related work to UPIs relates has to do with the use of indices for uncertain data.

Some work [BSHW06] uses traditional B+Trees to index uncertain data. Other work has shown

that a special index can substantially speed up queries over uncertain data. For example, Cheng

et al [CXP+04] developed the PTI (Probabilistic Threshold Indexing) based on R-Trees to speed

up PTQs on uncertain attributes with one dimensional continuous distributions. Other research

has extended these ideas to higher dimensions (U-Trees [TCX+05]) and more variable queries (UI-

Trees [ZLZ+55]). Similarly, Singh et al [SMP+07] proposed the PII (Probabilistic Inverted Index)

for PTQs on uncertain attributes with discrete distributions based on inverted indexes as well as

the PDR-tree (Probabilistic Distribution R-tree) based on R-Trees.

Although these indexes successfully speed up query execution in some cases, they are essentially

secondary indexes and can lead to many random disk seeks when the query needs to retrieve other

attributes from the heap file. This problem arises especially when the query is not selective as shown

in Section 6.7. Hence, UPIs complement this prior work by adding support for primary indexes on
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Figure 6.12: Cutoff Index Cost Model

uncertain attributes, which are particularly useful for analytical PTQs which process thousands or

millions of tuples.

6.9 Conclusion

In this chapter, we developed a new primary index for uncertain databases called a UPI. Our

empirical results on both discrete and continuous uncertain datasets show that UPIs can perform

orders of magnitude faster than prior (secondary) indexing techniques for analytic queries on large,

uncertain databases. We proposed several techniques to improve the performance of UPIs, including

cutoff indexes to reduce their size, and tailored indexes to improve the performance of secondary

indexes built on top of UPIs. We also discussed Fractured UPIs that help handle data updates

and eliminate fragmentation, further improving query performance. Finally, we provide accurate

cost models to help the query optimizer to choose execution plans and the DBA to select tuning

parameters.

6.9.1 Future Work

As future work, we plan to apply UPIs for queries other than PTQs, especially Top-k. Top-k, or

k-NN queries, in uncertain databases need a careful handling in its semantics and optimization.
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Because simply applying the existing top-k query semantics would ignore one of the two or-

thogonal metrics, values and probabilities. Ilyas et al suggested a few query semantics and a query

processing engine to determine probabilistic top-k answers. They devise optimization techniques to

minimize the number of tuples extracted from a Tuple Access Layer (TAL) which provides tuples in

probability order [SIC07]. However, they assumed the cost of one TAL access is the same regard-

less of the underlying clustered and secondary indexes, which we observed not true throughout this

thesis. Evaluation and optimization of the underlying indexes for uncertain top-k queries is yet to

be studied.

We expect that a UPI can work as an efficient TAL if it is well correlated with the attribute ranked

by top-k. One approach is to estimate the minimum probability of tuples required to answer the

top-k query and use this probability as a threshold for the UPI. Another approach is to access UPI

a few times with decreasing probability thresholds until the answer is produced. Both approaches

are promising future work.



Chapter 7

Conclusions

We have studied techniques to improve the performance and maintainability of large analytic

databases, issues being increasingly significant due to the rapidly growing amount of data in in-

dividual repositories and on the internet. Our key discovery is that exploiting correlation in the

databases significantly contributes to these goals.

7.1 Potentials of Correlation-Awareness

In Chapter 2, we found that database indexes can be made orders of magnitude faster and also smaller

by exploiting their correlation with clustering of the table. Using this finding, we developed a new

data structure, Correlation Map (CM), which stores correlations as compact secondary indexes.

In Chapter 3, we designed and implemented a physical database design tool, CORADD, that

enhances correlations between indexes to design a faster and more maintainable database. We

demonstrated that CORADD speeds up the entire query workload by up to a factor of 6 compared

to a state-of-the-art design tool. Our experimental results confirmed that correlation-awareness

in indexing, query optimization, and physical database designs has significant impacts on analytic

databases. We then extended the potential of exploiting correlations in various settings of current

and increasing importance.
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7.2 Optimizing Index Deployment Order

To exploit the potential of correlations fully, we often need to deploy many clustered and secondary

indexes. In Chapter 4, we classified the challenges in optimizing deployment of a large number

of indexes. The primary factors about index deployment in such an environment are how long

deployment will take and how promptly users can observe the query speed-ups.

We observed that traditional optimization methods such as mixed integer programming (MIP)

cannot efficiently solve the problem because it is highly non-linear. We thus formulated and solved

the problem as a constraint programming instance with our pruning techniques; this dramatically

shrinks the search space by exploiting the combinatorial properties of the problem.

7.3 Extensions to Distributed Systems

In Chapter 5, we found that flexible partitioning is essential in applying the idea of correlations to

shared-nothing distributed file systems such as HDFS. Without partitioning that is well correlated

with the aggregating key of the query, such a distributed system must repartition and transmit a

large amount of data during query execution.

Our approach is to utilize the redundancy in the distributed file systems to deploy multiple

partitionings of the data. The key ideas in this work were to reduce the risk of permanent data loss

due to heterogeneous partitioning and to find the best balance between query performance, space

consumption, and the recoverability by an analytic model on recoverability.

7.4 Extensions to Uncertain Databases

In Chapter 6, we demonstrated a new primary index data structure, UPI, for uncertain databases.

The key challenge in this work was that uncertain attributes may have several possible values. If

we cluster the heap file based on only one of the possible values (e.g., the value with the largest

probability), the clustered index cannot answer the probabilistic queries that are necessary to probe

all possible values.

UPI addresses the problem by duplicating tuples for possible values beyond a certain probabilistic

threshold, balancing the query performance and the index size. It supports clustering on attributes

with both discrete and continuous uncertainty distributions. Our empirical results confirmed that
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UPI dramatically speeds up query execution that predicates or aggregates on the primary attribute

and also enables secondary indexes to exploit correlations with the clustering.

7.5 Future Work

Here, we discuss a few open problems that were not addressed in individual chapters.

First, in order to take the effects of correlations into account, query cost models in a DBMS require

reasonably accurate correlation statistics. Dynamically maintaining such statistics at runtime might

incur too much overheads for data update. In fact, this concern was raised by the developers of a

popular commercial DBMS when we discussed with them incorporating our work in Chapters 2 and

3 into their DBMS. An efficient yet accurate method to maintain correlation statistics is a part of

future work.

Second, as mentioned at the end of Chapter 4, a method to jointly consider the set and order

of indexes to deploy needs more research. Such an integrated approach has more applicability in

the distributed analytics setting discussed in Chapter 5. In so-called big-data analytics, the data

are often unstructured or semi-structured and even the user has no idea of its data scheme. Hence,

the query workloads and even the logical scheme can change quickly and significantly over time.

Furthermore, the order of changing the physical scheme (e.g., partitioning and sorting of each

replica) becomes even more important and more challenging to make sure the recoverability of the

entire data store satisfies requirements. Developing an automated design tool to take these issues

into account is a promising future step in realizing an efficient, scalable, and reliable distributed

analytics platform.



Appendix A

Correlation Aware Database

Design

A.1 Database Size and Maintenance Cost

In this section, we demonstrate how the size of the database is directly linked to its maintenance

costs. To illustrate this, we ran an experiment where we inserted 500k tuples into the SSB lineorder

table while varying the total size of additional database objects (e.g., MVs) in the system (see

Section 3.7 for our experimental setup). The results are shown in Figure A.1; as the size of the
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Figure A.1: Cost of 500k insertions.

materialized MVs grows, the cost of 500k insertions grows rapidly. With 3 GB worth of additional
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MVs, the time to perform the insertions is 67 times slower than with 1 GB of additional MVs.

The reason why maintenance performance deteriorates given more objects is that additional objects

cause more dirty pages to enter the buffer pool for the same number of INSERTs, leading to more

evictions and subsequent page writes to disk. The lineorder table has 2 GB of data while the machine

has 4 GB RAM; creating 3 GB of MVs leads to significantly more page writes than 1 GB of MVs.

In Chapter 2, we observed similar deterioration in update performance as we added more B+Tree

indexes while adding more CMs had almost no effects because of their small sizes.

Therefore, despite the decreasing price per gigabyte of storage, space budgets remain an im-

portant parameter of database design tools so that data warehousing workloads can be completed

within available time limits (e.g., 100k insertions between 12 am and 3 am).

A.2 Proof Sketch of Termination of Selectivity Propagation

In this section, we give a sketch of proof that Selectivity Propagation described in Section 3.4.1

always terminates in finite time.

Let a step be the process of calculating propagated selectivities for all attributes and updating

the selectivity vector. At each step, each attribute can be updated by a single parent which gives

the minimum selectivity after propagation. The parent could have been updated by its parent

(grand parent), but there can not be any cycle in the update path because the strength of functional

dependency is always less than one. Thus, the maximum length of an update path is |A| where A

is the set of all attributes. Therefore, selectivity propagation terminates at most after |A| steps and

each step takes O(|A|2), resulting in O(|A|3) computation cost.

The proof becomes more complex and runtime becomes larger when considering composite func-

tional dependencies (i.e., AB → C) but the main concept above stays the same.



Appendix B

Index Deployment Order

B.1 Source Code, Datasets

All of our source code and experimental data can be accessed on our web site (http://now preparing).

This includes Java projects, CPlex/COMET models, and problem data files.

Our purpose is two-fold. First, we would like to ensure the reproducibility of our experiments.

Second, we expect this problem will be useful for testing various solver technologies and we want to

make it available to the operation research community.

B.2 Full MIP Model

This section provides the detailed MIP model for the ordering problem. The model uses the input

data described in Table 4.2 and defines additional constants and variables in Table B.1. Variables

annotated with a hat have a slightly different semantics than those in the CP model, but their

meaning is roughly the same. The biggest decision variable change is that the B variables are used

to determine the orders of indexes.

The index order problem can be formulated as a MIP as follows,
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Table B.1: Additional Symbols & Variables
d ∈ D A discretized timestep. D = {1, 2, . . . , |D|}
Ai ∈ D Timestep to start building index i.

Bi,j ∈ {0, 1} Whether index i precedes index j.

Ĉi Cost to create index i.

X̂q,d q’s runtime (not speed-up) at time d.

Ŷq,p,d ∈ {0, 1} Whether p is used (not only available) for q at d.

Ẑi,d ∈ {0, 1} Whether i available at time d.
CYi,j ∈ {0, 1} Whether j is utilized to create i.

Table B.2: Greedy Solutions vs. 100 Random Permutations. (TPC-DS is 400 times larger in scale.)
Dataset Greedy Random (AVG) Random (MIN)

TPC-H 47.9 65.5 51.5
TPC-DS 65.9 74.1 69.6

Objective: min
∑
d

(∑
q

X̂q,d

)
(B.1)

Subject to: Bi,j +Bj,i = 1 : ∀i 6= j (B.2)

Bi,k ≤ Bi,j +Bj,k : ∀i 6= j 6= k (B.3)

Bi,j ≤ 1− Ai + Ĉi −Aj

|D|
: ∀i 6= j (B.4)∑

p

Ŷq,p,d = 1 : ∀q, d (B.5)

Ŷq,p,d ≤ Zi,d : ∀q, p ∈ plans(q), d, i ∈ p (B.6)

X̂q,d =
∑

p∈plans(q)

(qtime(q)− qspdup(p, q))Ŷq,p,d : ∀q, d (B.7)

Zi,d ≤ 1− Ai + Ĉi − d
|D|

: ∀i, d (B.8)∑
j

CYi,j ≤ 1 : ∀i (B.9)

CYi,j ≤ Bj,i : ∀i, j (B.10)

Ĉi = ctime(i)−
∑
j∈I

(cspdup(i, j)CYi,j) : ∀i (B.11)

(B.2) assures either i precedes j or j precedes i. (B.3) assures the index order preserves transi-

tivity; i cannot precede k if j precedes i and k precedes j. The A variables determine when each

index is made. (B.4) means that, when i precedes j, Ai has to be Ci (cost to create i) smaller than
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Inputs : Index set I. Query set Q.
Outputs: Ordered list of indexes N .
N = [];
while I is not empty do

bestDensity = 0;
bestIndex = null;
foreach i ∈ I do

benefit = 0;
foreach q ∈ Q do

previous = q.getRuntime(N);
next = q.getRuntime(N ∪ i);
benefit += previous - next;
// Add remaining interactions to benefit
foreach p ∈ plans(q) : i ∈ p do

interaction = next - q.getRuntime(p);
if interaction > 0 and p \N 6= φ then

benefit += interaction / |p \N |;
end

end

end
density = benefit / i.getBuildCost(N);
if bestIndex = null or density > bestDensity then

bestDensity = density;
bestIndex = i;

end

end
N .append(bestIndex);
I = I \ bestIndex;

end
return N ;

Algorithm 5: Interaction Guided Greedy Algorithm
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Aj . Ai + Ĉi −Aj is divided by |D| to normalizes the expression to a range between 0 and 1.

The Y variables determine whether the plan is used for each query at d. Therefore, the sum of

Y is always 1 (B.5). There is always an empty-plan {∅} which gives no speed-up to ensure feasibility

of (B.5). (B.6) assures the plan is available only when all indexes in the plan are available. Then,

(B.7) calculates the runtime of each query from Y .

As constraints (B.4-B.6) calculate the query performance at a given time, constraints (B.8-B.11)

calculate the query build cost at a given time. B.8 determines whether each index is available at

each time step by checking A and C. (B.9) and (B.10) are equivalent to the constraints on Y except

the interaction to build index is always pair-wise. (B.11) calculates the time to create each index

from them.

We also add the additional constraints developed in Section 4.4 by posting constraints on A and

B (e.g., i3 < i5 yields, B3,5 = 1).

The objective is simply the sum of X for all time steps, because we discretized the time steps

uniformly. We also add an imaginary query plan which requires all the indexes and makes the

runtimes of all queries zero. This ensures the objective value is 0 for time steps that remain after

all the queries are built.

This MIP model correctly solves the ordering problem but introduces many constraints and

variables (it requires more than 1 million variables for large problems) due to non-linear properties

of the problem. Because of this, MIP solvers cannot find a feasible solution after several hours when

solving large problems.

B.3 Greedy Algorithm

Algorithm 5 provides the full greedy algorithm described in Section 4.6.4. We developed this al-

gorithm to provide good initial solutions to our local search methods. Table B.2 shows that the

objective value of the greedy solutions are always better than average and minimum values of 100

random permutations of indexes.
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B.4 Full Problem Properties

This section provides formal proofs and detection algorithms for the problem properties discussed

in Section 4.4 as well as a detailed analysis of the pruning-power.

B.4.1 Proof Preparation

Notations: Let N denote a complete sequence of indexes I = {i1, i2, . . . , in}, e.g., N = i1 → i2 → i3.

Let L denote a subsequence, which is an order of a subset of the indexes, e.g., L1 = i1 → i2, or

L2 = i3. Let M denote an unordered set of indexes, e.g., M1 = {i1, i2} and let {L} denote the

unordered set of indexes in L.

Let C(i,M) be the build cost of index i when indexes in M are already built. Let C(L,M) be

the total cost of building the indexes of L in the order L specifies. As an abbreviation, we will use

C(i) ≡ C(i, ∅), e.g., L1 = i1 → i2 and C(L1) = C(i1) +C(i2, {i1}). Let S(i,M) be the query speed-

up of building i assuming the indexes of M are already built. We will also use the S(i) ≡ S(i, ∅)

abbreviation. Because the eventual speed-up achieved by the indexes does not depend on the order

of indexes, the first parameter of S can be a set of indexes unlike C.

La→i→Lb

} S(i, {La})
}
C(i, {La})

Ga

Gb

Rɸ
Gi

Figure B.1: Notations

Let Gi be the basic area of index i. Trivially, Gi = S(i, . . .)C(i, . . .). To simplify the notation,

let us extend G to subsequences as illustrated in Figure B.1. Note that the second parameter of

both C and S is the set of indexes built before. All indexes built after have no effect on the value
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of C and S.

Finally, let RM be the total query runtime when indexes in M exist, namely RM = R∅ − S(M).

For example, the total objective area (shaded area) in Figure B.1 is

Obj(La → i→ Lb) = Ga +RLa
C(La)

+Gi +RLa+iC(i, {La})

+Gb +RLa+i+Lb
C(Lb, {La + i})

The Swap Property: Here we discuss a useful building block for the other proofs in this section.

Consider the objective values of solutions N = La → Li → Lj → Lb and N ′ = La → Lj → Li → Lb

which are identical except for the swap of Li and Lj .

Obj(N) = Ga +RLa
C(La)

+Gi +RLa+Li
C(Li, {La})

+Gj +RLa+Li+LjC(Lj , {La + Li})

+Gb +RLa+Li+Lj+Lb
C(Lb, {La + Li + Lj})

Obj(N ′) = G′a +RLa
C(La)

+G′j +RLa+Lj
C(Lj , {La})

+G′i +RLa+Lj+Li
C(Li, {La + Lj})

+G′b +RLa+Lj+Li+Lb
C(Lb, {La + Lj + Li})

Because La precedes both Li and Lj , Ga = G′a. Additionally, because both query and build time

interactions depend only on the set of indexes built before, Lb receives exactly the same interaction

from indexes in Li and Lj . Therefore, Gb = G′b. Hence, we see

Obj(N)−Obj(N ′) = (Gi −G′i) + (Gj −G′j)

+RLa+LiC(Li, {La})−RLa+LjC(Lj , {La})

+RLa+Li+Lj (C(Lj , {La + Li})− C(Li, {La + Lj}))

(B.12)
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Also, consider the case when a swap occurs around an interior order, e.g. N = La → Li → Lj →

Lk → Lb to N ′ = La → Lk → Lj → Li → Lb, where Li and Lk are swapped and Lj remains in the

middle. By the same argument we can deduce,

Obj(N)−Obj(N ′) = (Gi −G′i) + (Gj −G′j) + (Gk −G′k)

+RLa+Li
C(Li, {La})−RLa+Lk

C(Lk, {La})

+RLa+Li+Lj
C(Lj , {La + Li})

−RLa+Lk+Lj
C(Lj , {La + Lk})

+RLa+Li+Lj+Lk
(C(Lk, {La + Li + Lj}

−C(Li, {La + Lk + Lj}) (B.13)

B.4.2 Alliances

Definition: Allied indexes are a set of indexes that only appear in query plans as a complete group

and have no external interactions for building cost improvements.

Theorem 1: Every problem has at least one optimal solution 1 in which allied indexes are built

consecutively.

Proof. Let i be the first created index among some allied indexes. Suppose a solution N in which

there is a non-empty sub sequence Lb between i and its allied indexes, namely N = La → i→ Lj →

Lb where Lb contains the allied index of i. Now, consider an altered solution N ′ = La → Lj → i→

Lb. We will prove the objective of N ′ is always smaller or the same as that of N .

Because i requires the allied indexes contained in Lb to speed up any query, Gi = G′i = 0 and

RLa+i = RLa , RLa+i+Lj = RLa+Lj . By definition i has no interactions that speed up building

any index in Lj , therefore Gj = G′j , and C(Lj , {La + Li}) = C(Lj , {La}). Because RLa+Lj
≤

RLa
, C(Li, {La}) ≥ C(Li, {La + Lj}), from (B.12),

Obj(N)−Obj(N ′)

= RLaC(Li, {La})−RLa+LjC(Li, {La + Lj})

≥ RLa+Lj (C(Li, {La})− C(Li, {La + Lj})) ≥ 0

1If there are not multiple optimal solutions (tie), each theorem simply means “every optimal solution should . . . ”.



166

Thus, a solution that does not create allied indexes consecutively can be improved by swapping so

that the allied indexes come closer. By induction on the swapping of indexes an optimal solution

can always contain a consecutive order of allied indexes.

Detection: We detect alliances in problem instances as follows. First, we list all interactions as

candidate alliances. Second, for each alliance, we look for overlaps with the other candidates. In the

example in Figure 4.3, i5 overlaps between {i1, i3, i5} and {i2, i5}. If there is any overlap, we break

the alliances into non-overlapping subsets. In the above case {i1, i3}, {i2} and {i5}. We remove

alliances with only one index, obtaining {i1, i3} in the example. The detection overhead is O(|P |2).

B.4.3 Colonized Indexes

Definition: An index i is called colonized by a colonizer index, j, iff all query plans using index i

also use the colonizer, j, and the index has no interaction to speed up building other indexes.

Theorem 2: Every problem has at least one optimal solution where every colonized index is

built after its colonizer.

Proof. Let i be a colonized index. Suppose a solution N in which there is a subsequence Lb between

i and its colonizer, j, namely N = La → i → Lj → Lb where Lb contains j. Now, consider an

altered solution N ′ = La → Lj → i → Lb. With the same proof as alliance, the objective of N ′ is

always smaller or same as that of N . Repeating this yields N ′′ = La → i → j → Lb which is no

worse than all the other solutions that create indexes between i and j.

Consider N ′′′ = La → j → i→ Lb. By the same discussion, we show that N ′′′ is no worse than

N ′′ and may even be better.

Once again by induction on the swapping operation, any solution that builds a colonized index

before its colonizer can be improved by moving the colonized index after its colonizer.

Detection: The detection algorithm for colonized indexes and its computational cost is quite

similar to that of alliances. For each index, we consider all the query plans it appears in and take

the intersection (overlap) of them, which is the colonizer(s). The detection overhead is O(|I||P |).



167

B.4.4 Dominated Indexes

In Section 4.4.3, we explained a simplified case of dominated indexes. Here we discuss dominated

indexes in detail.

Definition: Index i is dominated by index k iff all of the following conditions hold. ∀La, Lj , j ∈ Lj

in (B.13),

1. S(k, {La + Lj}) ≥ S(i, {La + Lj})

2. C(i, {La + Lj + k}) ≥ C(k, {La})

3. C(j, {La + i}) ≥ C(j, {La + k})

4. S(j, {La +M + i}) ≤ S(j, {La +M + k}) : ∀M ∈ Lj , j /∈M

5. C(k, {La + Lj}) = C(k, {La})

In short, k is always more beneficial and cheaper to build than i. Note that these conditions are

re-evaluated when some index is determined to be before or after i or k because indexes after both i

and k are irrelevant to these conditions. At each iteration we re-evaluate these conditions to ensure

maximum dominance detection.

Theorem 3: An optimal solution does not build i before k.

Proof. Consider two solutions N = La → i→ Lj → k → Lb and N ′ = La → k → Lj → i→ Lb. In

this setting, i and k are single indexes. Therefore, in (B.13),

Gi = C(i, {La})S(i, {La})

G′i = C(i, {La + k + Lj})S(i, {La + k + Lj})

Gk = C(k, {La + i+ Lj})S(k, {La + i+ Lj})

G′k = C(k, {La})S(k, {La})
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Also by the definition of S and R,

S(i, {La}) +RLa+i = RLa

S(i, {La + k + Lj}) +RLa+i+Lj+k = RLa+Lj+k

S(k, {La + i+ Lj}+RLa+i+Lj+k = RLa+i+Lj

S(k, {La}) +RLa+Lk
= RLa

Applying these to (B.13), we get

Obj(N)−Obj(N ′) = (Gj −G′j)

+RLa
(C(i, {La})− C(k, {La}))

+RLa+i+Lj
C(Lj , {La + i})

−RLa+k+Lj
C(Lj , {La + k})

+RLa+i+Lj
C(k, {La + i+ Lj})

−RLa+Lj+kC(i, {La + k + Lj})

Because of the condition (3) and (4),

. . . ≥ RLa
(C(i, {La})− C(k, {La}))

+RLa+i+Lj
C(Lj , {La})

−RLa+k+Lj
C(Lj , {La + k})

+RLa+i+Lj
C(k, {La + i+ Lj})

−RLa+Lj+kC(i, {La + k + Lj})
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Because C(Lj , {La + k}) ≤ C(Lj , {La}),

. . . ≥ C(Lj , {La})(RLa+i+Lj
−RLa+k+Lj

)

+RLa
(C(i, {La})− C(k, {La}))

+RLa+i+LjC(k, {La + i+ Lj})

−RLa+Lj+kC(i, {La + k + Lj})

Because C(i, {La + k+Lj}) ≤ C(i, {La}) and the condition (5) (C(k, {La + i+Lj}) = C(k, {La})),

. . . ≥ C(Lj , {La})(RLa+i+Lj
−RLa+k+Lj

)

+C(i, {La + k + Lj})(RLa
−RLa+Lj+k)

−C(k, {La})(RLa
−RLa+i+Lj

)

= C(Lj , {La})(S(k, {La + Lj})− S(i, {La + Lj}))

+C(i, {La + k + Lj})S(Lj + k, {La})

−C(k, {La})S(Lj + i, {La})

Now, by the definition of S,

S(Lj + k, {La}) = S(Lj , {La}) + S(k, {La + Lj})

S(Lj + i, {La}) = S(Lj , {La}) + S(i, {La + Lj})

From the condition (1), S(k, {La +Lj}) ≥ S(i, {La +Lj})) and S(Lj + k, {La}) ≥ S(Lj + i, {La}).

Thus,

. . . ≥= S(Lj + i, {La})(C(i, {La + k + Lj})− C(k, {La}))

From the condition (2), . . . ≥= 0

Detection: We find dominated indexes in the following way. For each index, we calculate the

minimum benefit and the maximum creation cost to make the indexes in each query plan. Then, we

compare its ratio of minimum benefit to maximum cost with every other index’s ratio of maximum
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benefit to minimum cost. During this procedure, we consider the additional constraints to tighten

the minimum/maximum. The detection overhead is O(|I||P |).

B.4.5 Disjoint Indexes and Clusters

Definition: A disjoint index is an index that has no interactions with other indexes.

Let deni(M) ≡ S(i,M)

C(i,M)
denote the density of i. Let, La → i → Lb be an optimal solution.

Suppose a suffix Lj of La such that La = L′a → Lj .

Theorem 4: Every suffix is more dense than i if i is disjoint.

Proof. We compare two solutions N = L′a → i→ Lj → Lb and N ′ = L′a → Lj → i→ Lb. Because

i is a disjoint index, Gi = G′i, Gj = G′j , thus from (B.12),

Obj(N)−Obj(N ′) = C(i)(RL′a+i −RLa+i)

−C(Lj , {L′a})(RLa −RLa+i)

= C(i)S(Lj , {L′a})− C(Lj , {L′a})S(i)

The density of i and Lj is deni =
S(i)

C(i)
, denj =

S({Lj}, {L′a})
C(Lj , {L′a})

.

Hence, Obj(N)−Obj(N ′) = S(i)S(Lj , {L′a})(den−1i −den
−1
j ). Therefore, if i has a larger density

than any suffix, we can improve the solution by placing i before the suffix which contradicts the

optimality assumption of N ′.

Likewise, the following theorem regarding a prefix of Lb holds. The proof is omitted as it is

symmetric.

Theorem 5: Every prefix is less dense than i if i is disjoint.

Let a dip be the place where we can place a disjoint index i without violating the two theorems

above. Now we prove that there is only one dip (except when there are ties).

Theorem 6: Every sequence has only one dip to insert a disjoint index i.

Proof. Suppose there are two or more dips. Let d1 < d2 be the dips. Consider the sub-sequence Lj

between the places d1 to d2. From Theorem 4, Lj has a larger density than i, but from Theorem 5,

Lj has a smaller density than i. By contradiction, there cannot be two or more dips.
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Now, we consider the more general cases of backward and forward disjoint. Their formal definition

is as follows,

Definition: i is backward-disjoint to k iff all interacting indexes of i and k succeed i or precede

k.

Definition: i is forward-disjoint to k iff all interacting indexes of i and k precede i or succeed

k.

Theorem 7: An optimal solution does not build k before i if i is backward-disjoint to k and

deni > denk.

Proof. Suppose N = La → k → Lj → i→ Lb is an optimal solution.

Consider the interactions i and k could have with Lj . Because i is backward-disjoint, none of its

interacting indexes are in Lj . Also, none of k’s interacting indexes are in Lj either. In other words,

i and k are disjoint indexes regarding the subsequence Lj .

Therefore, from Theorem 4 and Theorem 5, k must be denser than Lj and Lj must be denser

than i. However, by definition deni > denk and we have a contradiction. Therefore, N cannot be

an optimal solution. As La, Lj , Lb are arbitrary, and include empty sets, this means an optimal

solution does not build k before i.

Theorem 8: An optimal solution does not build i before k if i is forward-disjoint to k and

deni < denk.

This proof is omitted as it is symmetric to the previous one.

Detection: We detect such cases as follows. For each pair of indexes, we check whether they are

forward or backward disjoint to each other. If either of them is forward or backward disjoint, we can

determine the interactions which i and k receive and calculate deni, denk. If the situation defined

above occurs, we introduce the appropriate additional constraints. The overhead of this procedure

is O(|I|2|P |).

B.4.6 Tail Indexes

Definition: Tail indexes are the last indexes to be built in a given build order L. Given some subset

of indexes M ∈ I, we defined M ’s tail group as all solutions where tail indexes are permutations of
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M . A tail champion of M is the solution in M ’s tail group that minimizes the tail’s objective.

Theorem 9: A tail champion of M is better or same as all the other solutions in M ’s tail group.

Proof. Consider the set of preceding indexes A ≡ I \ M and its order LA. Let us compare the

objective of N = LA → LM and N ′ = LA → L′M . Suppose N ′ is a tail champion of M ’s tail group

but N is not.

Obj(N) = GA +RAC(LA) +GM +RA+MC(LM , A)

Obj(N ′) = GA +RAC(LA) +G′M +RA+MC(L′M , A)

Now, becauseN ′ andN are in the same tail group andN ′ is the tail champion, GM+RA+MC(LM , A) >

G′M +RA+MC(L′M , A) Therefore, Obj(N)−Obj(N ′) ≥ 0 for every possible LA.

Let F = {M1,M2, . . .} be the set of all possible tail groups in the problem. Let Const be a rule

that holds in all tail champions of M ∈ F .

Theorem 10: Const holds in the optimal solution.

Proof. From Theorem 9, the only possible optimal solution from M ’s tail group is the tail champion.

Because F is a comprehensive set of all possible tail groups, the optimal solution is one of the tail

champions.

Thus, regardless which tail group the optimal solution appears in, Const holds in the optimal

solution.

This theorem proves the property used in Section 4.4.5. We note that Const can be any kind of

rule. For example, “i1 appears as the last index”, “i2 is built after i1”, “i3 never appears in the last

3 indexes”.

Detection: At the end of each problem analysis iteration, we apply the tail analysis. We start

from the tail length of 3 and increase the tail length until the number of tail candidates exceeds the

threshold k. For each tail candidate, we calculate the tail objective and group them by the set of tail

indexes as explained in Section 4.4.5. The detection overhead is obviously O(k), thus k is a tuning

parameter balancing on the pruning power and the overhead of pre-analysis. In our experiments,

we used k = 50000.
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B.4.7 Additional Experiments

Table B.3 shows how the additional constraints from each problem property affects the performance

of the complete search experiment described in Section 4.7.3. We start with no additional constraint

and add each problem property one at a time in the following order, Alliances, Colonized-indexes,

Min/max-domination, Disjoint-clusters, and Tail-indexes. We only used additional constraints we

could deduce within one minute, so the overhead of pre-analysis is negligible.

Table B.3: Exact Search (Reduced TPC-H). Time [min]. (DF) Did not Finish in 12 hours.

|I| 6 11 13 18 22 25 31 16 21
Density low low low low low low low mid mid

CP <1 7 214 DF DF DF DF DF DF
+A <1 DF DF DF DF DF DF

+AC <1 69 DF DF DF DF DF
+ACM <1 249 DF DF DF DF

+ACMD <1 24 DF DF DF
+ACMDT <1 1 DF

The results demonstrate that each of the five techniques improves the performance of the CP

search by several orders of magnitude. The runtime of CP without pruning is roughly proportional

to |I|!. Hence, the total speed-up of the additional constraints is at least
31!

13!
214 = 2.7× 1026.
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