
Semantics and Types for Safe Web Programming

by

Arjun Guha

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2012

© Copyright 2012 by Arjun Guha

This dissertation by Arjun Guha is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Shriram Krishnamurthi, Director

Recommended to the Graduate Council

Date
Matthias Felleisen, Reader
Northeastern University

Date
Steven P. Reiss, Reader

Brown University

Date
Cormac Flanagan, Reader

University of California, Santa Cruz

Approved by the Graduate Council

Date
Peter M. Weber

Dean of the Graduate School

iii

Acknowledgements

This dissertation is the work of many.

My advisor, Shriram, has been incredibly patient in his training and always had more faith in

my abilities than myself. This work started as Claudiu Saftoiu’s undergraduate research project,

which clearly grew out of control. We had a wonderful time discovering the true depth of his project

together. Shortly after, Joe Politz pushed our semantics and type-checker until it could respectably

tackle object-oriented programs and security problems. But, we could not have completed our work

without Doug Crockford’s support and insight. During a particularly trying time, Joe observed that

“Some decisions in life are so important, like picking a career or a spouse, but you can’t really iterate

until you make the right decision, so you just have to do it”. He thus inspired me to press on.

This dissertation draws heavily from Matthias Felleisen’s work, style, and his invaluable feedback

over the years. It would not have been possible without his support. I’ve made frequent and even

unannounced visits to Northeastern University. My conversations with Dave Herman, Sam Tobin-

Hochstadt, and the rest of NEU PRL have been invaluable. Our type-checker for JavaScript borrows

heavily from Sam’s pioneering work on Typed Racket.

Cormac Flanagan and I have had wonderful, helpful conversations about this work, and I look

forward to many more. Steve Reiss provided invaluable feedback and very carefully read my drafts.

Robby Findler and Casey Klein have always answered my novice questions on PLT Redex, which

was an instrumental tool for this work.

I had two wonderful breaks at Google Research and Microsoft Research during the course of my

work. At Google, Mark Lentczner was simply the best manager, and also taught me how to test

code. I had several illuminating conversations on varied topics with Mark Miller; I’d like to thank

him for his support, and for introducing me to all his capabilities. At Microsoft Research, Nikhil

Swamy greatly informed my perspective of type theory, which is central to this dissertation, and

iv

Ben Livshits taught me how to focus on essential problems.

Early on, the Flapjax project introduced me to JavaScript, Leo Meyerovich, and Michael Green-

berg. Leo reliably provides helpful provocation, and Michael always answers my arcane type theory

questions over Google Chat. In addition, I’d like to thank Michael for his judgment.

I first joined Brown PLT as an undergraduate intern, where Guillaume Marceau introduced me to

macrology. That summer, Spiros Eliopoulos, who shared my fascinations and enthusiasm, convinced

me to come to Brown. My introduction to programming languages happened at Grinnell College,

under the guidance of Sam Rebelsky and John Stone.

Since I was terribly bored working on the last bits of this dissertation, Andrew Ferguson let me

work on his instead. I look forward to many more fun projects in the future. I’m similarly thrilled

that Saurabh Das, my fellow QBASIC hacker, is hacking again.

This past year, the Brown PLT office has been a wonderful place to work. We’ve grown from a

two-student operation to include Andrew Ferguson, Ben Lerner, Betsy Hilliard, Danny Yoo, Hannah

Quay-de la Vallee, Joe the Shark, and other guests and animals. The faculty, staff, and other students

have been very tolerant and even supportive of our antics.

Ma and Buba always encouraged my years spent in study, while Peen still provides endless

entertainment. I’ve abused the hospitality of Phyo, Htike Htike, Davis, and Tiffany several times

while at Brown. For example, I visited the Kyaw Soe Ba Kyu hotel ten times last year. These

escapes made graduate school significantly easier.

This dissertation is dedicated to Ammi, Dadu, and Thamma, whose principles will always guide

my work.

v

Contents

List of Figures x

1 Introduction 1

1.1 Why JavaScript? . 1

1.2 Overview of Contributions . 2

2 Semantics 3

2.1 λJS : A Tractable Semantics for JavaScript . 4

2.1.1 Functions, Objects and State . 4

2.1.2 Prototype-Based Objects . 7

2.1.3 Prototypes . 8

2.1.4 Statements and Control Operators . 11

2.1.5 Static Scope in JavaScript . 13

2.1.6 Type Conversions and Primitive Operators 16

2.2 Soundness and Adequacy of λJS . 17

2.3 Conclusion . 19

2.4 Related Work . 20

3 Verifying a Simple Web Sandbox 22

3.1 Isolating Untrusted Code . 22

3.2 Isolating JavaScript . 23

3.3 Types for Securing λJS . 24

3.4 Scaling to JavaScript . 26

3.4.1 Safety for Addition . 27

vi

3.4.2 A Safe Sub-Language . 28

3.4.3 Safety for lookup . 29

3.5 Perspective . 30

4 Typing Control and State 32

4.1 Patterns of Control and State . 32

4.1.1 Heap-Sensitive Reasoning . 35

4.2 Semantics and Types . 36

4.3 Relating Static Types and Runtime Tags . 38

4.4 Automatically Inserting Safe tagchecks . 41

4.5 Flow Analysis via CPS . 44

4.5.1 CPS Transformation . 44

4.5.2 Modular Flow Analysis . 45

4.5.3 Combining Typing and Flow Analysis . 50

4.6 Related Work . 51

5 Typing Objects 54

5.1 λobS : A Core Calculus of Lightweight Objects . 54

5.2 Idiomatic λobS : Type-Checking Challenges . 56

5.3 Types for Objects . 59

5.3.1 Simple Records . 59

5.3.2 Field Patterns . 60

5.3.3 Presence Annotations . 61

5.3.4 Reflection . 63

5.3.5 Type-Checking Examples . 64

5.4 Subtyping . 67

5.5 Typing . 70

5.5.1 Soundness and Mutable State . 72

5.6 Implementation . 72

5.7 Related Work . 73

vii

6 Assisted Type Refactoring 76

6.1 Approximating Types by Runtime Instrumentation 76

7 Evaluation I: Documentation 79

7.1 Type-Checking Gadgets and Chrome Experiments 79

8 Evaluation II: Security 82

8.1 Mashups . 83

8.2 Language-based Web Sandboxing . 83

8.3 Code-Reviewing Web Sandboxes . 84

8.4 Verifying a Sandbox: Our Roadmap . 88

8.5 Modeling Secure Sublanguages . 90

8.5.1 A Type for Widgets . 90

8.5.2 Widget and JSLint Correspondence . 92

8.6 Modeling JavaScript and the Browser . 93

8.7 Verifying the Reference Monitor . 94

8.7.1 Required Refactorings . 97

8.7.2 Cheating and Unverifiable Code . 99

8.8 ADsafety Redux . 100

8.9 Bugs Found in ADsafe . 102

8.9.1 Missing Static Checks . 102

8.9.2 Missing Runtime Checks . 103

8.9.3 Counterexamples to Non-Interference . 105

8.10 Beyond ADsafe . 106

8.11 Related Work . 107

9 Related Scripting Languages 110

9.1 Objects, Dictionaries, and Inheritance . 110

9.2 Inheritance in Scripting Languages . 112

9.3 Classes and Prototypes . 113

9.4 Methods? . 113

9.5 Reflection and Pattern Matching . 115

viii

9.6 Control Operators . 117

9.7 A Scripting Language Object Calculus . 118

9.8 Limitations . 122

9.9 Soundness . 122

10 Conclusions and Future Work 123

A Further Details of ADsafe Verification 126

A.1 Differences Between JSLint and Typed Widgets . 126

B Characteristic Uses of Objects 128

C Proofs: Flow Typing 133

C.1 Full Typing Relation . 133

C.2 Type Safety . 135

C.3 CPS Transformation . 140

C.4 Additional Rules for Flow Analysis . 146

C.5 Flow Analysis . 147

C.6 Combined Soundness Theorems . 150

D Proofs: Fluid Object Types 152

D.1 Definitions . 152

D.2 Auxilliary Lemmas . 154

D.3 Subtyping . 155

D.4 Typing . 163

E The ADsafe Environment 171

F Desugared Lookup Function 176

ix

List of Figures

2.1 Functions and Objects . 5

2.2 Mutable References in λJS . 6

2.3 Array Processing in JavaScript . 6

2.4 Prototype-Based Objects . 7

2.5 Desugaring JavaScript’s Object Syntax . 8

2.6 Implicit this Parameter . 9

2.7 Using instanceof . 11

2.8 Control operators for λJS . 12

2.9 Primitive Operators . 16

2.10 Testing Strategy for λJS . 18

2.11 Test Suite Coverage . 18

3.1 Safe Wrapper for λJS . 24

3.2 Type System that Disallows Field Lookup . 24

3.3 Type System for Blocking Access to XMLHttpRequest 25

3.4 Auxiliary Typing Rules for Blocking Access to XMLHttpRequest 25

4.1 Non-local control . 33

4.2 Heap-Sensitive Reasoning . 35

4.3 Syntax and Semantics of λS . 37

4.4 Subtyping in λS . 38

4.5 Typing λS (Essential Rules) . 39

4.6 Relationship Between Types and Tags . 40

4.7 Typing and Evaluation of Checked Tags . 41

x

4.8 Syntax of λS in CPS . 44

4.9 Analysis Domains . 45

4.10 tagcheck Insertion . 46

4.11 Acceptability of Flow Analysis—Metafunctions and Values 47

4.12 Acceptability of Flow Analysis (Essential Rules) . 48

4.13 Assignment and Aliasing . 49

4.14 If-splitting in Typed Scheme [86] . 52

5.1 Syntax and Semantics of λobS . 55

5.2 Types for λobS . 59

5.3 Functions and Predicates over String Types . 60

5.4 Algorithmic Subtyping . 66

5.5 The inherit Metafunction . 67

5.6 Typing Basics . 70

5.7 Typing Fluid Objects . 71

6.1 JSTrace output on Firefox . 77

7.1 Annotation overhead on JavaScript code . 80

8.1 Web sandboxing architecture . 83

8.2 Similar Rewritings for obj[name] . 87

8.3 The Widget type . 92

8.4 A Fragment of the Type of window . 94

8.5 Annotations on the dom object . 94

8.6 The Unverified Portion of ADsafe . 98

8.7 Exploiting JSLint . 103

8.8 Firefox-specific Exploit for ADsafe . 104

9.1 Changing Object Shapes in Ruby . 111

9.2 Fluid Class Hierarchies in Python . 113

9.3 Tag Checks and Related Checks . 115

9.4 Reflection APIs . 115

xi

9.5 Banned Check from ADsafe . 116

9.6 Control Features of Scripting Languages . 117

9.7 Syntax and Semantics of λSc . 119

9.8 Encoding Python’s Method Binding in λSc . 121

D.1 Auxiliary Typing Rules for If-Splitting . 164

D.2 Usage of Auxiliary Typing Rules by Substitution . 164

xii

Chapter 1

Introduction

Thesis Statement JavaScript programs use prototype-based objects, flow-based type reasoning

and other techniques that confound existing type systems. We can design a practical type system

that admits the features and idioms of third-party JavaScript programs that were not written with a

type-checker in mind. We can integrate a type system with dataflow analysis in a principled manner

to account for flow-based type reasoning.

1.1 Why JavaScript?

JavaScript is the lingua franca of the Web. Programs written in JavaScript are fundamentally

distinct from traditional programs in two key ways. First, applications freely compose code from

several sources. Second, the user often cannot control which programs run; Web programs are

visited, not installed. Social networks, such as Facebook, are an exemplar of this behavior. Not

only do third-party apps and games embed themselves in Facebook, but Facebook embeds itself

in many Web pages. For example, to integrate with Facebook, the The New York Times runs an

amalgamation of its own code and Facebook’s code (in addition to code from advertising networks).

In essence, The New York Times’ readers must visit Facebook.

JavaScript and the DOM—the language and libraries of the Web—lack modularity mechanisms

needed to safely compose programs. Moreover, JavaScript has many quirks and mis-features that

make it difficult to write and reason about even simple snippets of code. As Web programs grow

larger and more complex, programmers need tools to reason about JavaScript.

1

2

1.2 Overview of Contributions

This dissertation presents a type system for JavaScript and demonstrates that it allows programmers

to reason about Web programs. Specifically, we type-check a collection of third-party programs,

making few refactorings and finding various bugs (chapter 7). In addition, we use our type-checker

find bugs in and verify ADsafe, a security-critical JavaScript framework (chapter 8).

This dissertation presents two novel type-checking techniques to tackle idiomatic JavaScript

programs that confound existing techniques. First, we observe that JavaScript programmers use

control and state to reason about the types of variables. We present flow typing, a method by which

a traditional type-checker uses information from a dataflow analysis in a simple and modular way

to account for stateful and flow-sensitive reasoning (chapter 4). Second, we observe that objects

in JavaScript have arbitrary and dynamically constructed fields. We present fluid object types to

account for these dynamic objects (chapter 5).

In the tradition of programming languages research, the type systems and program analyses

above are accompanied by proofs of soundness. However, such proofs require a dynamic semantics

for JavaScript. This dissertation therefore presents λJS , a core calculus for JavaScript (chapter 2).

We employ λJS in all our technical work and in our implemented tools. Unlike most core calculi,

λJS is accompanied by an implemented desugaring function that translates JavaScript programs

to λJS programs. Furthermore, we test our semantics and achieve bug-compatibility with real

implementations on a portion of a third-party JavaScript test suite. This gives us confidence that

our tools and theorems have some bearing on reality. Testing is particular important for security;

malicious programs attack implementations, not theorems.

This dissertation focuses on JavaScript, but many of the ideas are applicable to other scripting

languages, such as Ruby, Python, and Lua. We discuss how the ideas in our semantics and our type

systems may be employed to build systems for these other languages (chapter 9).

Chapter 2

Semantics

JavaScript, due to its pervasiveness, is a popular research target. There are many frameworks,

tools, and sub-languages of JavaScript (e.g, [15, 18, 25, 37, 38, 51, 66]) that tackle security and other

problems in JavaScript-based Web applications. These works do not demonstrate soundness, partly

because they lack a tractable semantics of JavaScript. The JavaScript standard [22] is capacious

and informal while one major formal semantics [58] is large, not amenable to conventional proof

techniques, and inherits the standard’s complexities, as we discuss in section 2.4. These prior

semantics leave unanswered some basic questions. (Such as: Is JavaScript lexically scoped?) More

significantly, the sheer size of these semantics makes them unsuitable for building tools and doing

detailed proofs. We need a tractable semantics for JavaScript.

In this chapter:1

• We present a core calculus, λJS , that embodies JavaScript’s essential features, excluding eval.

λJS fits on three pages and lends itself well to proof techniques such as subject reduction. We

exploit these properties in subsequent chapters.

• We show that we can desugar JavaScript to λJS . In particular, desugaring handles some of

JavaScript’s most notorious features, such as this and with, so λJS itself remains simple (and

thus simplifies proofs that utilize it).

• We mechanize both λJS and desugaring.

1This chapter is based on joint work with Claudiu Saftoiu [40].

3

4

• To show compliance with reality, we successfully test λJS and desugaring against a portion of

the actual Mozilla JavaScript test suite.

2.1 λJS: A Tractable Semantics for JavaScript

JavaScript is full of surprises. Syntax that may have a conventional interpretation for many readers

often has a subtly different semantics in JavaScript. To aid the reader, we introduce λJS incremen-

tally. We include examples of JavaScript’s quirks and show how λJS faithfully models them.

Figures 2.1, 2.2, 2.4, 2.8 and 2.9 specify the syntax and semantics of λJS . We use a Felleisen-

Hieb small-step operational semantics with evaluation contexts [26]. Throughout this dissertation,

we typeset λJS code in a sans-serif typeface, and JavaScript in a fixed-width typeface.

2.1.1 Functions, Objects and State

We begin with the small subset of λJS specified in fig. 2.1 that includes just functions and objects.

We model operations on objects via functional update. This seemingly trivial fragment already

exhibits some of JavaScript’s quirks:

• In field lookup, the name of the field need not be specified statically; instead, field names may

be computed at runtime (E-GetField):

let (obj = { ”x” : 500, ”y” : 100 })

let (select = func(name). obj[name])

select(”x”) + select(”y”)

↪→∗ 600

• A program that looks up a non-existent field does not result in an error; instead, JavaScript

returns the value undefined (E-GetField-NotFound):

{ ”x” : 7 }[”y”] ↪→ undefined

• Field update in JavaScript is conventional (E-UpdateField)—

{ ”x” : 0 }[”x”] = 10 ↪→ { ”x” : 10 }

—but the same syntax also creates new fields (E-CreateField):

{ ”x” : 0 }[”z”] = 20 ↪→ {”z” : 20, ”x” : 10 }

5

c = num | str | bool | undefined | null

v = c | func(x · · ·).e | { str:v· · · }
e = x | v | let (x = e) e | e(e · · ·) | e[e] | e[e] = e | delete e[e]

E = • | let (x = E) e | E(e · · ·) | v(v · · · E, e · · ·)
| {str: v · · · str:E, str:e · · · } | E[e] | v[E] | E[e] = e | v[E] = e

| v[v] = E | delete E[e] | delete v[E]

let (x = v) e ↪→ e[x/v] (E-Let)

(func(x1 · · ·xn).e)(v1 · · · vn) ↪→ e[x1/v1 · · ·xn/vn] (E-App)

{ · · · str: v · · · }[str] ↪→v (E-GetField)

strx 6∈ (str1 · · · strn)

{ str1: v1 · · · strn: vn } [strx] ↪→ undefined
(E-GetField-NotFound)

{ str1: v1 · · · stri: vi · · · strn: vn } [stri] = v

↪→ { str1: v1 · · · stri: v · · · strn: vn }
(E-UpdateField)

strx 6∈ (str1 · · ·)
{ str1: v1 · · · } [strx] = vx ↪→ { strx: vx, str1: v1 · · · }

(E-CreateField)

delete { str1: v1 · · · strx: vx · · · strn: vn } [strx]

↪→ { str1: v1 · · · strn: vn }
(E-DeleteField)

strx 6∈ (str1 · · ·)
delete { str1: v1 · · · } [strx] ↪→ { str1: v1 · · · }

(E-DeleteField-NotFound)

Figure 2.1: Functions and Objects

• Finally, JavaScript lets us delete fields from objects:

delete { ”x”: 7, ”y”: 13}[”x”] ↪→ { ”y”: 13 }

JavaScript also supports a more conventional dotted-field notation: obj.x is valid JavaScript, and

is equivalent to obj["x"]. To keep λJS small, we omit the dotted-field notation in favor of the more

general computed lookup, and instead explicitly treat dotted fields as syntactic sugar.

Assignment and Imperative Objects

JavaScript has two forms of state: objects are mutable, and variables are assignable. We model

both variables and imperative objects with first-class mutable references (fig. 2.2).2 We desugar

2In the semantics, we use E〈e〉 instead of the conventional E[e] to denote a filled evaluation context, to avoid
confusion with JavaScript’s objects.

6

l = · · · Locations
v = · · · | l Values
σ = (l, v) · · · Stores
e = · · · | e = e | ref e | deref e Expressions
E = · · · | E = e | v = E | ref E | deref E Evaluation Contexts

e1 ↪→ e2

σE〈e1〉 → σE〈e2〉

l 6∈ dom(σ) σ′ = σ, (l, v)

σE〈ref v〉 → σ′E〈l〉
(E-Ref)

σE〈deref l〉 → σE〈σ(l)〉 (E-Deref)

σE〈l = v〉 → σ[l := v]E〈v〉, if l ∈ dom(σ) (E-SetRef)

We use � to denote the reflexive-transitive closure of →.

Figure 2.2: Mutable References in λJS

function sum(arr) {

var r = 0;

for (var i = 0; i < arr["length"]; i = i + 1) {

r = r + arr[i] };

return r };

sum([1,2,3]) � 6

var a = [1,2,3,4];

delete a["3"];

sum(a) � NaN

Figure 2.3: Array Processing in JavaScript

JavaScript to explicitly allocate and dereference heap-allocated values in λJS .

Example: JavaScript Arrays JavaScript has arrays that developers tend to use in a traditional

imperative style. However, JavaScript arrays are really objects, and this can lead to unexpected

behavior. Figure 2.3 shows a small example of a seemingly conventional use of arrays. Deleting the

field a["3"] (E-DeleteField) does not affect a["length"] or shift the array elements. Therefore,

in the loop body, arr["3"] evaluates to undefined, via E-GetField-NotFound. Finally, adding

undefined to a number yields NaN; we discuss other quirks of addition in section 2.1.6.

7

strx /∈ (str1 · · · strn) ” proto ” 6∈ (str1 · · · strn)

{ str1 : v1 , · · · , strn : vn } [strx] ↪→ undefined
(E-GetField-NotFound)

strx /∈ (str1 · · · strn)

{ str1 : v1 · · · ” proto ”: null · · · strn : vn } [strx] ↪→ undefined
(E-GetField-Proto-Null)

strx /∈ (str1 · · · strn)

{ str1 : v1 · · · ” proto ”: l · · · strn : vn } [strx] ↪→ (deref l)[strx]
(E-GetField-Proto)

Figure 2.4: Prototype-Based Objects

2.1.2 Prototype-Based Objects

JavaScript supports prototype inheritance [11]. For example, in the following code, animal is the

prototype of dog:

var animal = { "length": 13, "width": 7 };

var dog = { "__proto__": animal, "barks": true };

Prototypes affect field lookup:

dog["length"] � 13

dog["width"] � 7

var lab = { "__proto__": dog, "length": 2 }

lab["length"] � 2

lab["width"] � 7

lab["barks"] � true

But, prototype inheritance does not affect field update. The code below creates the field

dog["width"], but it does not affect animal["width"], which dog had previously inherited:

dog["width"] = 19

dog["width"] � 19

animal["width"] � 7

However, lab now inherits dog["width"]:

lab["width"] � 19

Figure 2.4 specifies prototype inheritance. The figure modifies E-GetField-NotFound to only

apply when the ” proto ” field is missing.

8

desugarJ{prop: e · · ·} K =

ref {

prop : desugarJeK · · ·,
” proto ”: (deref Object)[”prototype”]

}

desugarJfunction(x · · ·) { stmt · · · } K =

ref {

”code”: func(this, x · · ·) { return desugarJstmt · · ·K },

”prototype”: ref { ” proto ”: (deref Object)[”prototype”] } }

desugarJnew ef(e · · ·)}K =

let (constr = deref desugarJef K)
let (obj = ref { ” proto ” : constr[”prototype”]})

constr[”code”](obj, desugarJeK · · ·);
obj

desugarJobj[field](e · · ·)K =

let (obj = desugarJobjK)
let (f = (deref obj)[field])

f[”code”](obj, desugarJeK · · ·)

desugarJef(e · · ·)K =

let (obj = desugarJef K)
let (f = deref obj)

f[”code”](window, desugarJeK · · ·)

desugarJobj instanceof constrK =

let (obj = ref (deref desugarJobjK),
constr = deref desugarJconstrK)

done: {

while (deref obj !== null) {

if ((deref obj)[” proto ”] === constr[”prototype”]) {

break done true }

else { obj = (deref obj)[” proto ”] } };

false }

desugarJthisK = this (an ordinary identifier, bound by functions)
desugarJe.xK = desugarJeK[”x”]

Figure 2.5: Desugaring JavaScript’s Object Syntax

Prototype inheritance is simple, but it is obfuscated by JavaScript’s syntax. The examples in this

section are not standard JavaScript because the ” proto ” field is not directly accessible by JavaScript

programs.3 In the next section, we unravel and desugar JavaScript’s syntax for prototypes.

2.1.3 Prototypes

JavaScript programmers can indirectly manipulate prototypes using syntax that is reminiscent of

class-based languages like Java. In this section, we explain this syntax and its actual semantics. We

3Some browsers, such as Firefox, can run these examples.

9

var obj = {

"x" : 0,

"setX": function(val) { this.x = val } };

// window is the name of the global object in Web browsers

window.x � undefined

obj.setX(10);

obj.x � 10

var f = obj.setX;

f(90);

obj.x � 10 // obj.x was not updated

window.x � 90 // window.x was created

Figure 2.6: Implicit this Parameter

account for this class-like syntax by desugaring it to manipulate prototypes directly (section 2.1.2).

Therefore, this section does not grow λJS and only describes desugaring. Figure 2.5 specifies the

portion of desugaring that is relevant for the rest of this section.

The this Keyword

JavaScript does not have conventional methods. Function-valued fields are informally called “meth-

ods”, and provide an interpretation for a this keyword, but both are quite different from those of,

say, Java.

For example, in fig. 2.6, when obj.setX(10) is applied, this is bound to obj in the body of the

function. In the same figure however, although f is bound to obj.setX, f(90) does not behave like

a traditional method call. In fact, the function is applied with this bound to the global object [22,

Section 10.1.5].

In general, this is an implicit parameter to all JavaScript functions. Its value is determined by

the syntactic shape of function applications. Thus, when we desugar functions to λJS , we make this

an explicit argument. Moreover, we desugar function calls to explicitly supply a value for this.

Functions as Objects

In JavaScript, functions are objects with fields:

f = function(x) { return x + 1 }

f.y = 90

f(f.y) � 91

We desugar JavaScript’s function to objects in λJSwith a distinguished code field that refers to the

actual function. Therefore, we also desugar application to lookup the code field.

10

We could design λJS so that functions truly are objects, making this bit of desugaring unneces-

sary. In our experience, JavaScript functions are rarely used as objects. Therefore, our design lets

us reason about simple functions when possible, and functions as objects only when necessary.

In addition to the code field, which we add by desugaring, and any other fields that may have

been created by the programmer, all functions also have a distinguished field called prototype. As

fig. 2.5 shows, the prototype field is a reference to an object that eventually leads to the prototype of

Object. Unlike the __proto__ field, prototype is accessible and can be updated by programmers. The

combination of its mutability and its use in instanceof leads to unpredictable behavior, as we show

below.

Constructors and Prototypes

JavaScript does not have explicit constructors, but it does have a new keyword that invokes a function

with this bound to a new object. For example, the following code—

function Point(x, y) {

this.x = x;

this.y = y }

pt = new Point(50, 100)

—applies the function Point and returns the value of this. Point explicitly sets this.x and this.y.

Moreover, new Point implicitly sets this.__proto__ to Point.prototype. We can now observe prototype

inheritance:

Point.prototype.getX = function() { return this.x }

pt.getX() � pt.__proto__.getX() � 50

In standard JavaScript, because the __proto__ field is not exposed, the only way to set up a prototype

hierarchy is to update the prototype field of functions that are used as constructors.

The instanceof Operator

JavaScript’s instanceof operator has an unconventional semantics that reflects the peculiar notion of

constructors that we have already discussed. In most languages, a programmer might expect that

if x is bound to the value created by new Constr(· · ·), then x instanceof Constr is true. In JavaScript,

however, this invariant does not apply.

11

function Dog() { this.barks = "woof" };

function Cat() { this.purrs = "meow" };

dog = new Dog();

cat = new Cat();

dog.barks; � "woof"

cat.purrs; � "meow"

function animalThing(obj) {

if (obj instanceof Cat) { return obj.purrs }

else if (obj instanceof Dog) { return obj.barks }

else { return "unknown animal" } };

animalThing(dog); � "woof"

animalThing(cat); � "meow"

animalThing(4234); � "unknown animal"

Cat.prototype = Dog.prototype;

animalThing(cat); � "unknown animal"

animalThing(dog) � undefined // dog.purrs (E-GetField-NotFound)

Figure 2.7: Using instanceof

For example, in fig. 2.7, animalThing dispatches on the type of its argument using instanceof.

However, after we set Cat.prototype = Dog.prototype, the type structure seems to break down. The

resulting behavior might appear unintuitive in JavaScript, but it is straightforward when we desugar

instanceof into λJS . In essence, cat instanceof Cat is cat.__proto__ === Cat.prototype.4 In the figure,

before Cat.prototype = Dog.prototype is evaluated, the following are true:

cat.__proto__ === Cat.prototype

dog.__proto__ === Dog.prototype

Cat.prototype !== Dog.prototype

However, after we update Cat.prototype, we have:

cat.__proto__ === the previous value of Cat.prototype

dog.__proto__ === Dog.prototype

Cat.prototype === Dog.prototype

Hence, cat instanceof Cat becomes false. Furthermore, since animalThing first tests for Cat, the test

dog instanceof Cat succeeds.

2.1.4 Statements and Control Operators

JavaScript has a plethora of control statements. Many map directly to λJS ’s control operators

(fig. 2.8), while the rest are easily desugared.

4The === operator is the physical equality operator, akin to eq? in Scheme.

12

label = (Labels)
e = · · · | if (e) e else e | e;e | while(e) e | label: e

| break label e | try e catch (x) e | try e finally e

| err v | throw e

E = · · · | if (E) e else e | E;e | label: E | break label E

| try E catch (x) e | try E finally e | throw E

E′ = • | let (x = v · · · x = E′, x = e · · ·) e | E′(e · · ·) | v(v · · · E′, e · · ·)
| if (E′) e else e | { str: v · · · str: E′, str: e · · · }
| E′[e] | v[E′] | E′[e] = e | v[E′] = e | v[v] = E′ | E′ = e | v = E′

| delete E′[e] | delete v[E′] | ref E′ | deref E′ | E′; e | throw E′

F = E′ | label: F | break label F (Exception Contexts)
G = E′ | try G catch (x) e (Local Jump Contexts)

if (true) e1 else e2 ↪→ e1 (E-IfTrue)

if (false) e1 else e2 ↪→ e2 (E-IfFalse)

v;e ↪→ e (E-Begin-Discard)

while(e1) e2 ↪→ if (e1) e2; while(e1) e2 else undefined (E-While)

throw v ↪→ err v (E-Throw)

try F 〈err v〉 catch (x) e ↪→ e[x/v] (E-Catch)

σF 〈err v〉 → σerr v (E-Uncaught-Exception)

try F 〈err v〉 finally e ↪→ e; err v (E-Finally-Error)

try G〈break label v〉 finally e ↪→ e; break label v (E-Finally-Break)

try v catch (x) e ↪→ v (E-Catch-Pop)

try v finally e ↪→ e; v (E-Finally-Pop)

label: G〈break label v〉 ↪→ v (E-Break)

label1 6= label2

label1: G〈break label2 v〉 ↪→ break label2 v
(E-Break-Pop)

label: v ↪→ v (E-Label-Pop)

break label1 G〈break label2 v〉 ↪→ break label2 v (E-Break-Break)

Figure 2.8: Control operators for λJS

13

For example, consider JavaScript’s return and break statements. A break l statement transfers

control to the local label l. A return e statement transfers control to the end of the local function

and produces the value of e as the result. Instead of two control operators that are almost identical,

λJS has a single break expression that produces a value.

Concretely, we elaborate JavaScript’s functions to an expression with a label ret:

desugarJfunction(x · · ·) { stmt · · · } K = func(this x · · ·).(ret: desugarJstmt · · ·K)

Thus, return statements are desugared to break ret:

desugarJreturn eK = break ret desugarJeK

while break statements are desugared to produce undefined:

desugarJbreak labelK = break label undefined

2.1.5 Static Scope in JavaScript

The JavaScript standard specifies identifier lookup in an unconventional manner. It uses neither

substitution nor environments, but scope objects [22, Section 10.1.4]. A scope object is akin to an

activation record, but is a conventional JavaScript object. The fields of this object are interpreted

as variable bindings.

In addition, a scope object has a distinguished parent-field that references another scope object.

(The global scope object’s parent-field is null.) This linked list of scope objects is called a scope

chain. The value of an identifier x is the value of the first x-field in the current scope chain. When

a new variable y is defined, the field y is added to the scope object at the head of the scope chain.

Since scope objects are ordinary JavaScript objects, JavaScript’s with statement lets us add

arbitrary objects to the scope chain. Given the features discussed below, which include with, it

is not clear whether JavaScript is lexically scoped. In this section, we describe how JavaScript’s

scope-manipulation statements are desugared into λJS , which is obviously lexically scoped.

Local Variables

In JavaScript, functions close over their current scope chain (intuitively, their static environment).

Applying a closure sets the current scope chain to be that in the closure. In addition, an empty

14

scope object is added to the head of the scope chain. The function’s arguments and local variables

(introduced using var) are properties of this scope object.

Local variables are automatically lifted to the top of the function. As a result, in a fragment

such as this—

function foo() {

if (true) { var x = 10 }

return x }

foo() � 10

—the return statement has access to the variable that appears to be defined inside a branch of the

if. This can result in somewhat unintuitive answers:

function bar(x) {

return function() {

var x = x;

return x }}

bar(200)() � undefined

Above, the programmer might expect the x on the right-hand side of var x = x to reference the

argument x. However, due to lifting, all bound occurrences of x in the nested function reference the

local variable x. Hence, var x = x reads and writes back the initial value of x. The initial value of

local variables is undefined.

We can easily give a lexical account of this behavior. A local variable declaration, var x = e, is

desugared to an assignment, x = e. Furthermore, we add a let-binding at the top of the enclosing

function:

let (x = ref undefined) · · ·

Global Variables

Global variables are subtle. Global variables are properties of the global scope object (window), which

has a field that references itself:

window.window === window � true

Therefore, a program can obtain a reference to the global scope object by simply referencing window.5

5In addition, this is bound to window in function applications (fig. 2.5).

15

As a consequence, globals seem to break lexical scope, since we can observe that they are prop-

erties of window:

var x = 0;

window.x = 50;

x � 50

x = 100;

window.x � 100

However, window is the only scope object that is directly accessible to JavaScript programs [22, Section

10.1.6]. We maintain lexical scope by abandoning global variables. That is, we simply desugar the

obtuse code above to the following:

window.x = 0;

window.x = 50;

window.x � 50

window.x = 100;

window.x � 100

Although global variables observably manipulate window, local variables are still lexically scoped. We

can thus reason about local variables using substitution, α-renaming, and other standard techniques.

With Statements

The with statement is a widely-acknowledged JavaScript wart.6 A with statement adds an arbitrary

object to the front of the scope chain:

function(x, obj) {

with(obj) {

x = 50; // if obj.x exists, then obj.x = 50, else x = 50

return y } } // similarly, return either obj.y, or window.y

We can desugar with by turning the comments above into code:

function(x, obj) {

if (obj.hasOwnProperty("x")) { obj.x = 50 }

else { x = 50 }

if ("y" in obj) { return obj.y }

else { return window.y } }

6Indeed, the latest revision of the JavaScript specification [23] has a strict mode that eliminates some of JavaScript’s
most offensive misfeatures, including with.

16

e = · · · | opn(e1 · · · en)
E = · · · | opn(v · · ·E e · · ·)
E′ = · · · | opn(v · · ·E′e · · ·)
δn : opn × v1 · · · vn → c+ err

opn(v1 · · · vn) ↪→ δn(opn, v1 · · · vn) (E-Prim)

Figure 2.9: Primitive Operators

Nested withs require a little more care, but can be dealt with in the same manner. However,

desugaring with is non-compositional. We will return to this point in section 3.4.

What are Scope Objects? Various authors (including ourselves) have developed JavaScript

tools that work with a subset of JavaScript that is intuitively lexically scoped [5, 18, 25, 38, 43, 66].

We show how JavaScript can be desugared into lexically scoped λJS , validating these assumptions.

As a result, we no longer need scope objects in the specification; they may instead be viewed as an

implementation strategy.7

2.1.6 Type Conversions and Primitive Operators

JavaScript is not a pure object language. We can observe the difference between primitive numbers

and number objects:

x = 10;

y = new Number(7)

typeof x � "number"

typeof y � "object"

Moreover, JavaScript’s operators include implicit type conversions between primitives and corre-

sponding objects:

x + y � 17

We can redefine these type conversions without changing objects’ values:

Number.prototype.valueOf = function() { return 0 }

x + y � 10

y.toString() � "7"

7Scope objects are especially well suited for implementing with. Our desugaring strategy for with increases code-
size linearly in the number of nested withs, which scope-objects avoid.

17

Both + and * perform implicit coercions, and + also concatenates strings:

x + y.toString() � "107" // 10 converted to the string "10"

x * y.toString() � 70 // "7" converted to the number 7

This suggests that JavaScript’s operators are complicated. Indeed, the standard specifies x + y

with a 15-step algorithm [22, Section 11.6.1] that refers to three pages of metafunctions. Buried in

these details are four primitive operators: primitive addition, string concatenation, and number-to-

string and string-to-number type coercions.

These four primitives are essential and intuitive. We therefore model them with a conventional δ

function (fig. 2.9). The remaining details of operators are type-tests and method invocations; as the

examples above suggest, JavaScript internally performs operations such as y.valueOf() and typeof x.

In λJS we make these type-tests and method calls explicit.

This chapter does not enumerate all the primitives that λJS needs. Instead, the type of δ

constrains their behavior significantly, which often lets us reason without a specific δ function. (For

instance, due to the type of δ, we know that primitives cannot manipulate the heap.)

2.2 Soundness and Adequacy of λJS

Soundness We mechanize λJS with PLT Redex [26]. The process of mechanizing helped us find

errors in our semantics, particularly in the interactions of control operators (fig. 2.8). We use our

mechanized semantics to test [56] λJS for safety. Note that we do not prove this property, since a

progress proof for an untyped language is straightforward. We believe that PLT Redex’s randomized

testing is sufficient.

Property 1 (Progress) If σe is a closed, well-formed configuration, then either:

• e ∈ v,

• e = err v, for some v, or

• σe→ σ′e′, where σ′e′ is a closed, well-formed configuration.

This property requires additional evaluation rules for runtime type errors, and definitions of well-

formedness. We elide them as they are conventional.

18

JavaScript Program
desugar //

Real Implementations

��

λJS Program

λJS interpreter

��
stdout oo

diff
// stdout

Figure 2.10: Testing Strategy for λJS

Syntactic Form Occurrences (approx.)
with blocks 15
var statements 500
try blocks 20
functions 200
if and switch statements 90
typeof and instanceof 35
new expressions 50
Math library functions 15

Figure 2.11: Test Suite Coverage

Adequacy λJS is a semantics for the core of JavaScript. We have described how it models many

aspects of the language’s semantics, warts and all. Ultimately, however, a small core language has

limited value to those who want to reason about programs written in full JavaScript.

Given our method of handling JavaScript via desugaring, we are obliged to show that desugaring

and the semantics enjoy two properties. First, we must show that all JavaScript programs can be

desugared to λJS .

Claim 1 (Desugaring is Total) For all eval-free JavaScript programs e, desugarJeK is defined.

Second, we must demonstrate that our semantics corresponds to what JavaScript implementations

actually do.

Claim 2 (Desugared Code Produces the Same Output) For all eval-free JavaScript programs,

e, desugarJevalJavaScript(e)K produces the same output as evalλJS
(desugarJeK).

We could try to prove these claims, but that just begs the question:

What is evalJavaScript?

A direct semantics would require evidence of its own adequacy. In practice, JavaScript is truly

defined by its major implementations. Open-source Web browsers are accompanied by extensive

JavaScript test suites. These test suites help the tacit standardization of JavaScript across major

19

implementations.8 We use these test suites to test our semantics.

Figure 2.10 outlines our testing strategy. We first define an interpreter for λJS . This is a

straightforward exercise; the interpreter is a mere 100 LOC, and easy to inspect since it is based

directly on the semantics.9 Then, for any JavaScript program, we should be able to run it both

directly and in our semantics.10 For direct execution we employ three JavaScript implementations:

SpiderMonkey (used by Firefox), V8 (used by Chrome), and Rhino (an implementation in Java).

We desugar the same program into λJS and run the result through our interpreter. We then check

whether our λJS interpreter produces the same output as each JavaScript implementation.

2.3 Conclusion

Our tests cases are a significant portion of the Mozilla JavaScript test suite. We omit the following

tests:

• Those that target Firefox-specific JavaScript extensions.

• Those that use eval.

• Those that target library details, such as regular expressions.

The remaining tests are about 5,000 LOC unmodified.

Our λJS interpreter produces exactly the same output as Rhino, V8, and SpiderMonkey on the

entire test suite. Figure 2.11 indicates that these tests employ many interesting syntactic forms,

including statements like with and switch that are considered complicated. We make the following

observations:

• No prior semantics for JavaScript accounts for all these forms (e.g., Maffeis et al. [58] do not

model switch).

• We account for much of JavaScript by desugaring. Therefore, these tests validate both our

core semantics and our desugaring strategy.

• These tests give us confidence that our implemented tools are correct.

8For example, the Firefox JavaScript test suite is also found in the Safari source.
9PLT Redex can evaluate expressions in a mechanized semantics. However, our tests are too large for Redex’s

evaluator.
10To observe output, we add a primitive operator printing operator to the δ function.

20

2.4 Related Work

JavaScript Semantics JavaScript is specified in 200 pages of prose and pseudocode [22]. This

specification is barely amenable to informal study, let alone proofs. Maffeis, Mitchell, and Taly [58]

present a 30-page operational semantics, based directly on the JavaScript specification. Their se-

mantics covers most of JavaScript directly, but does omit a few syntactic forms.

Our approach is drastically different. λJS is a semantics for the core of JavaScript, though we

desugar the rest of JavaScript into λJS . In section 2.2, we present evidence that our strategy is

correct. λJS and desugaring together are much smaller and simpler than the semantics presented

by Maffeis, et al. Yet, we cover all of JavaScript (other than eval) and account for a substantial

portion of the standard libraries as well.

Maffeis, Mitchell, and Taly [58] define an operational semantics for JavaScript that closely follows

the JavaScript specification. In contrast, our semantics is factored as a core calculus and a translation

to the core. We believe this factoring makes it easier to build tools and proofs for our semantics. An

further difference is that we demonstrate faithfulness to implementations by desugaring and running

third-party tests in our semantics.

A technical advantage of our semantics is that it is conventional. For example, we use substitution

instead of scope objects (section 2.1.5). Therefore, we can use conventional techniques, such as

subject reduction, to reason in λJS . It is unclear how to build type systems for a semantics that

uses scope objects.

David Herman [46] defines a CEKS machine for a small portion of JavaScript. This machine is

also based on the standard and inherits some of its complexities, such as implicit type conversions.

CoreScript [93] models an imperative subset of JavaScript, along with portions of the DOM,

but omits essentials such as functions and objects. Moreover, their big-step semantics is not easily

amenable to typical type safety proofs.

Object Calculi λJS is an untyped, object-based language with prototype inheritance. However,

λJS does not have methods as defined in object calculi. Without methods, most object calculi cease

to be interesting. However, we do desugar JavaScript’s method invocation syntax to self-application

in λJS [1, Chapter 18].

λJS and JavaScript do not support cloning, which is a crucial element of other prototype-based

languages, such as Self [88]. JavaScript does support Self’s prototype inheritance, but the surface

21

syntax of JavaScript does not permit direct access to an object’s prototype (section 2.1.3). Without

cloning, and without direct access to the prototype, JavaScript programmers cannot use techniques

such as dynamic inheritance and mode-switching [1].

Chapter 3

Verifying a Simple Web Sandbox

This chapter1 is a simple application of λJS (chapter 2) to verify a commonly employed language-

based Web sandboxing technique. In chapter 8, we verify an actual third-party Web sandbox and

consider its high-level design. This chapter details some of the programming language techniques

employed in chapter 8 in a simple setting.

3.1 Isolating Untrusted Code

Web platforms often combine programs from several different sources on the same page. For instance,

on a portal like iGoogle, a user can build a page that combines a weather widget with a stock ticker

widget; on Facebook, users can run applications. Unfortunately, this means distinct programs can

interfere with each other, which creates the possibility that a malicious application may steal data

or cause other harm. To prevent both accidents and malice, sites must somehow sandbox widgets.

To this end, platform developers have defined safe sub-languages (often called “safe subsets”) of

JavaScript like ADsafe [18], Caja [66], and Facebook JavaScript (FBJS) [25]. These are designed

as sub-languages of JavaScript to target developers who already know how to write JavaScript Web

applications. These sub-languages disallow blatantly dangerous features such as eval. However,

they also try to establish more subtle security properties using syntactic restrictions, as well as

runtime checks that they insert into untrusted code. Naturally, this raises the question whether

these sub-languages function as advertised.

1This chapter is based on joint work with Claudiu Saftoiu [40].

22

23

Let us consider the following property, which is inspired by FBJS and Caja: we wish to prevent

code in the sandbox from communicating with a server. For instance, we intend to block the

XMLHttpRequest object:

var x = new window.XMLHttpRequest()

x.open("GET", "/get_confidential", false)

x.send("");

var result = x.responseText

For simplicity, we construct a sub-language that just disallows access to XMLHttpRequest. A

complete solution would use our techniques to block other communication mechanisms, such as

document.write and Element.innerHTML.

We begin with short, type-based proofs that exploit the compactness of λJS . We then use our

tools to migrate from λJS to JavaScript.

3.2 Isolating JavaScript

“Disallow access to XMLHttpRequest” is ambiguous and must be precisely defined. In JavaScript,

window.XMLHttpRequest references the XMLHttpRequest constructor, where window names the global

object. We make two assumptions:

• In λJS , we allocate the global object at location 0. This is a convenient convention that is

easily ensured by desugaring.

• The XMLHttpRequest constructor is only accessible as a property of the global object. This

assumption is valid as long as we do not use untrusted libraries (or can analyze their code).

Given these two assumptions, we can formally state “disallow access to XMLHttpRequest” as a

property of λJS programs:

Definition 1 (Security) e is safe if e 6= E〈〈 deref (ref 0)〉 [”XMLHttpRequest”]〉.

Note that in the definition above, the active expression is (deref (ref 0)), and the evaluation context

is E〈•[”XMLHttpRequest”]〉.

Intuitively, ensuring safety appears to be easy. Given an untrusted λJS program, we can elaborate

property accesses, e1[e2], to lookup(e1,e2), where lookup is defined in fig. 3.1.

24

lookup = func(obj, field) {

return if (field === ”XMLHttpRequest”) { undefined }

else { (deref obj)[field] }

}

Figure 3.1: Safe Wrapper for λJS

T = JS

Γ ` string : JS (T-String)

Γ(x) = T

Γ ` x : T
(T-Id)

Γ, x1 : JS, · · · , xn : JS ` e : JS

Γ ` func (x1 · · ·xn) { return e } : JS
(T-Fun)

Γ ` e1 : JS · · · Γ ` en : JS

Γ ` δn(opn, e1 · · · en) : JS
(T-Prim)

The type judgments for remaining forms are similar to T-Prim and T-Fun: namely, Γ ` e : JS if
all subexpressions of e have type JS. However, e1[e2] is not typable.

Figure 3.2: Type System that Disallows Field Lookup

This technique2 has two problems. First, it blocks access to the ”XMLHttpRequest” property of

any object. Second, although lookup may appear “obviously correct”, the actual wrapping in Caja,

FBJS, and other sub-languages occurs in JavaScript, not in a core calculus like λJS . Hence, lookup

does not directly correspond to any JavaScript function. We could write a JavaScript function that

resembles lookup, but it would be wrought with various implicit type conversions and method calls

(section 2.1.6) that could break its intended behavior. Thus, we start with safety for λJS before

tackling JavaScript’s details.

3.3 Types for Securing λJS

Our goal is to determine whether a λJS program is safe (definition 1). We wish to do so without

making unnecessary assumptions. In particular, we do not assume that lookup (fig. 3.1) is itself safe.

We begin by statically disallowing all field accesses. The trivial type system in fig. 3.2 achieves

this, since it excludes a typing rule for e1[e2]. This type system does not catch conventional type

errors. Instead, it has a single type, JS, of statically safe JavaScript expressions (definition 1). The

2Maffeis et al.’s blacklisting [59], based on techniques used in FBJS, has this form.

25

T = · · · | NotXHR

NotXHR <: JS (Sub-Safe)

Γ ` e : S S <: T

Γ ` e : T
(T-Sub)

v 6= ”XMLHttpRequest”

Γ ` v : NotXHR
(T-SafeValue)

Γ ` e1 : JS Γ ` e2 : NotXHR

Γ ` e1[e2] : JS
(T-GetField)

x ∈ dom(Γ) Γ ` e2 : JS Γ[x : NotXHR] ` e3 : JS

Γ ` if (x === ”XMLHttpRequest”) { e2 } else { e3 } : JS
(T-IfSafe)

Figure 3.3: Type System for Blocking Access to XMLHttpRequest

Γ ` e2 : JS

Γ ` if (”XMLHttpRequest”=== ”XMLHttpRequest”) { e2 } else { e3 } : JS
(T-IfTrue-XHR)

Γ ` e2 : JS

Γ ` if (true) { e2 } else { e3 } : JS
(T-IfTrue)

Figure 3.4: Auxiliary Typing Rules for Blocking Access to XMLHttpRequest

following theorem is evidently true:

Theorem 1 For all λJS expressions e, if · ` e : T and e� e′ then e′ is safe.

We need to extend our type system to account for lookup, taking care not to violate theorem 1.

Note that lookup is currently untypable, since field access is untypable. However, the conditional

in lookup seems to ensure safety; our goal is to prove that it does. Our revised type system is

shown in fig. 3.3. The new type, NotXHR, is for expressions that provably do not evaluate to the

string ”XMLHttpRequest”. Since primitives like string concatenation yield values of type JS (T-Prim

in fig. 3.2), programs cannot manufacture unsafe strings with type NotXHR. (Of course, trusted

primitives could yield values of type NotXHR.)

Note this important peculiarity: These new typing rules are purpose-built for lookup. There are

other ways to establish safe access to fields. However, since we will rewrite all expressions e1[e2] to

lookup(e1,e2), our type system need only account for the syntactic structure of lookup.

26

Our revised type system admits lookup, but we must prove theorem 1. It is sufficient to prove

the following lemmas:

Lemma 1 (Safety) If · ` e : JS, then e 6= E〈v[”XMLHttpRequest”]〉, for any value v.

The proof of this lemma is by induction on typing derivations, given the typing rules in fig. 3.2 and

fig. 3.3. This lemma also holds for the typing rules in fig. 3.4, which we introduce below.

Lemma 2 (Preservation) If · ` e : JS, and e→ e′, then · ` e′ : JS.

Proof Technique The typing rules for lookup (fig. 3.3) require a technique introduced in occur-

rence typing for Typed Scheme [86].

Although lookup is typable, subject reduction requires all expressions in this reduction sequence

to be typable:

lookup(window, ”XMLHttpRequest”)

→ if (”XMLHttpRequest” === ”XMLHttpRequest”) { undefined }

else { (deref window)[”XMLHttpRequest”] }

→ if (true) { undefined }

else { (deref window)[”XMLHttpRequest”] }

→ undefined

The intermediate expressions above are not typable, although they are intuitively safe. We can

make them typable by extending our type system with the typing rules in fig. 3.4, which let us prove

subject reduction.

However, we have to ensure that our new typing rules do not violate safety (lemma 1). Intuitively,

lemma 1 still holds, since our newly-typable expressions are not of the form e[”XMLHttpRequest”].

Our type system may appear ad hoc, but it simply reflects the nature of JavaScript security

solutions. Note that our type system is merely a means to an end: the main result is the conclusion

of theorem 1, which is a property of the runtime semantics.

3.4 Scaling to JavaScript

Since we can easily implement a checker for our type system, we might claim we have a result for

JavaScript as follows: desugar JavaScript into λJS and type-check the resultant λJS code. This

27

strategy is, however, unsatisfying because seemingly harmless changes to a typable JavaScript pro-

gram may result in a program that fails to type-check, due to the effects of desugaring. This would

make the language appear whimsical to the widget developer.

Instead, our goal is to define a safe sub-language (just as, say, Caja and FBJS do). This safe

sub-language would provide syntactic safety criteria, such as:

• The JavaScript expression e1 + e2 is safe when its subexpressions are safe.

• e1[e2], when rewritten to lookup(e1, e2), is safe, but fails if e2 evaluates to "XMLHttpRequest".

Our plan is as follows. We focus on the structure of the desugaring rules and show that a

particular kind of compositionality in these rules suffices for showing safety. We illustrate this

process by extending the λJS result to include JavaScript’s addition (which, as we explained in

section 2.1.6, is non-trivial). We then generalize this process to the rest of the language.

3.4.1 Safety for Addition

By theorem 1, it is sufficient to determine whether Γ ` desugarJe1+e2K : JS. Proving this, however,

would benefit from some constraints on e1 and e2. Consider the following proposition:

Proposition 1 If Γ ` desugarJe1K : JS and Γ ` desugarJe2K : JS, then Γ ` desugarJe1 + e2K : JS.

By lemma 1, this proposition entails that if e1 and e2 are safe, then e1 + e2 is safe. But is the

proposition true? desugarJe1+e2K produces an unwieldy λJS expression with explicit type-conversions

and method calls. Still, a quick inspection of our implementation shows that:

desugarJe1 + e2K = let (x = desugarJe1K) let (y = desugarJe2K) · · ·

desugarJe1 + e2K simply recurs on its subexpressions and does not examine the result of desugarJe1K

and desugarJe2K. Moreover, the elided body does not contain additional occurrences of desugarJe1K

and desugarJe2K. Thus, we can write the right-hand side as a two-holed program context :

desugarJe1 + e2K = C+〈desugarJe1K, desugarJe2K〉

C+ = let (x = •1) let (y = •2) · · ·

Therefore, desugaring e1 + e2 is compositional.

A simple replacement lemma [90] holds for our type system:

Lemma 3 (Replacement) If:

28

i. D is a deduction concluding Γ ` C[e1, e2] : JS,

ii. Subdeductions D1,D2 prove that Γ1 ` e1 : JS and Γ2 ` e2 : JS respectively,

iii. D1 occurs in D, at the position corresponding to •1, and D2 at the position corresponding to

•2, and

iv. Γ1 ` e′1 : JS and Γ2 ` e′2 : JS,

then Γ ` C〈e′1, e′2〉 : JS.

Replacement, along with weakening of environments, gives us our final lemma:

Lemma 4 If:

• x : JS, y : JS ` C+[x, y] : JS, and

• Γ ` desugarJe1K : JS and Γ ` desugarJe2K : JS,

then Γ ` C+〈desugarJe1K, desugarJe2K〉 : JS.

The conclusion of lemma 4 is the conclusion of proposition 1. The second hypothesis of lemma 4

is the only hypothesis of proposition 1. Therefore, to prove proposition 1, we simply need to prove

x : JS, y : JS ` C+〈x, y〉 : JS.

We establish this using our tools. We assume x and y are safe (i.e., have type JS), and desugar

and type-check the expression x + y. Because this succeeds, the machinery above—in particular, the

replacement lemma—tells us that we may admit + into our safe sub-language.

3.4.2 A Safe Sub-Language

The proofs of lemma 3 and 4 do not rely on the definition of C+. For each construct, we must

thus ensure that the desugaring rule can be written as a program context, which we easily verify by

inspection. We find this true for all syntactic forms other than with, which we omit from our safe

sub-language (as do other sub-language such as Caja and FBJS). If with were considered important,

we could extend our machinery to determine what circumstances, or with what wrapping, it too

could be considered safe.

Having checked the structure of the desugaring rules, we must still establish that their expansion

does no harm. We mechanically populate a type environment with placeholder variables, create

expressions of each kind, and type-check. All forms pass type-checking, except for the following:

29

• x[y] and x.XMLHttpRequest do not type—happily, as they are unsafe! This is acceptable because

these unsafe forms will be wrapped in lookup.

• However, x[y]++, x[y]--, ++x[y], and --x[y] also fail to type due to the structure of code they

generate on desugaring. Yet, we believe these forms are safe; we could account for them with

additional typing rules, as employed below for lookup.

3.4.3 Safety for lookup

As section 3.3 explained, we designed our type system to account for lookup (fig. 3.1). However,

lookup is in λJS , whereas we need a wrapper in JavaScript. A direct translation of lookup into

JavaScript yields:

lookupJS = function(obj, field) {

if (field === "XMLHttpRequest") { return undefined }

else { return obj[field] } }

Since lookupJS is a closed expression that is inserted as-is into untrusted scripts, we can desugar

and type-check it in isolation. Doing so, however, reveals a surprise: desugarJlookupJSK does not

type-check.

When we examine the generated λJS code, we see that obj[field] is desugared into an expression

that explicitly converts field to a string. (Recall that field names are strings.) If, however, field

is itself an object, this conversion includes the method call field.toString(). Working backward, we

see that the following exploit would succeed:

lookupJS(window, { toString: function() { return "XMLHttpRequest" } })

where the second argument to lookupJS (i.e., the expression in the field position) is a literal object

that has a single method, toString, which returns "XMLHttpRequest". Thus, not only does lookupJS

not type, it truly is unsafe!

Our type system successfully caught a bug in our JavaScript implementation of lookup. The fix

is simple: ensure that field is a primitive string:

safeLookup = function(obj, field) {

if (field === "XMLHttpRequest") { return undefined }

else if (typeof field === "string") { return obj[field] }

else { return undefined } }

30

This code truly is safe, though to prove it we need to extend our type system. We design the

extension by studying the result of desugaring safeLookup.3

We have noted that desugaring evinces the unsafe method call. However, toString is called only

if field is not a primitive. This conditional is inserted by desugaring :

if (typeof field === ”location”) { ... field.toString() ... }

else { field }

Thus, the second if in safeLookup desugars to:

if (typeof field === ”string”) {

obj[if (typeof field === ”location”) { ... field.toString() ... }

else { field }] }

To now reach field.toString(), both conditions must hold. Since this cannot happen, the unsafe code

block is unreachable.

Recall, however, that we designed our type system for λJS around the syntactic structure of

the lookup guard. With this more complex guard, we must extend our type system to employ if-

splitting—which we already used in section 3.3—a second time. As long as our extension does not

violate safety (lemma 1) and subject reduction (lemma 2), the arguments in this section still hold.

3.5 Perspective

In the preceding sections, we rigorously developed a safe sub-language of JavaScript that disallows

access to XMLHttpRequest. In addition, we outlined a proof of correctness for the runtime “wrap-

per”. To enhance isolation, we have to disallow access to a few other properties, such as document.write

and Element.innerHTML. We could do so with simple variants of the proofs in this chapter.

However, verifying a realistic sub-language of JavaScript requires more effort. Chapter 8 presents

our verification of ADsafe, a third-party Web sandbox, which use the main ideas from this chapter:

• We state the safety properties of ADsafe in the same manner as definition 1.

• This chapter used a small, special-purpose type system to verify a safety property. Our ADsafe

verification uses a general-purpose JavaScript type system, to tackle the many programming

patterns that ADsafe employs.

3Desugaring produces 200 LOC of pretty-printed λJS (appendix F).

31

– The type system in this chapter has a single if-splitting rule. Chapter 4 demonstrates

that JavaScript programs, including ADsafe, use many more control and state dependent

patterns to reason about types. The ADsafe verification relies on those techniques.

– This chapter’s type system only ensures that an object’s "XMLHttpRequest" field is inac-

cessible. ADsafe enforces many more invariants on objects, some of which cannot be

expressed in existing object type systems. Chapter 5 presents an object type system that

can express these invariants, which we use to verify ADsafe.

• In section 3.4.2, we used types to derive a safe subset of JavaScript. We derive a safe subset

for ADsafe in the same manner. However, we also use tests to ensure our derived safe subset

corresponds to JSLint, which is ADsafe’s own ad hoc subset.

Our verification of ADsafe also uses λJS . In fact, the primary goal of this chapter is not to define

a safe sub-language of JavaScript, but rather to showcase a simple application of λJS :

• λJS is small. It is much smaller than other definitions and semantics for JavaScript. Therefore,

our proofs are tractable.

• λJS is adequate and tested. This gives us confidence that our arguments are applicable to

real-world JavaScript.

• λJS is conventional, so we are free to use standard type-soundness techniques [90]. In contrast,

working with JavaScript’s scope objects would be onerous. This section is littered with state-

ments of the form Γ ` e : JS. Heap-allocated scope objects would preclude the straightforward

use of Γ, thus complicating the proof effort (and perhaps requiring new techniques).

• Finally, desugar is compositional. Although we developed a type system for λJS , we were able

to apply our results to most of JavaScript by exploiting the compositionality of desugar.

Chapter 4

Typing Control and State

JavaScript programs employ idioms that confound conventional type systems. In this chapter,1 we

highlight one important set of related idioms: the use of local control and state to reason informally

about types. We account for these idioms in two steps. First, we formalize run-time tags and their

relationship to types. We then use this relationship to develop a novel strategy that integrates type-

checking with flow analysis in a modular way. We demonstrate that in our separation of typing and

flow analysis, each component remains conventional, their composition is simple, but the result can

handle these idioms better than either one alone.

4.1 Patterns of Control and State

JavaScript (and many other scripting languages) do not support pattern-matching or tagged data

constructors. Therefore, programmers have to use reflection to reason about values. For example,

the following program uses the typeof operator, which returns a string representing the “runtime

type” of its argument:2

/*: Num ∪ {x : Num, y : Num} → Num */

function fromOrigin(p) {

if (typeof p === "object") {

return Math.sqrt(p.x * p.x + p.y * p.y);

}

1This chapter is based on joint work with Claudiu Saftoiu [41].
2To be precise, typeof does not return a (static) type but a (runtime) tag. This distinction becomes significant

when we retrofit an actual type system onto JavaScript (section 4.3).

32

33

0 /*: > → Str ∪ Bool */

function serialize(val) {

switch (typeof val) {

case "undefined":

case "function":

5 return false;

case "boolean":

return val ? "true" : "false";

case "number":

return "" + val;

10 case "string":

return val;

}

if (val === null) { return "null"; }

15

var fields /*: [Str] */ = [];

for (var p in val) {

var v = serialize(val[p]);

if (typeof v === "string") {

20 fields.push(p + ": " + v);

}

}

return "{ " + fields.join(", ") + " }";

}

Figure 4.1: Non-local control

else {

return Math.abs(p);

}

}

Such patterns are pervasive and they suggest we need untagged union types, as written in the

comment. If we use union types, then we have to account for the if-statement above, which narrows

the type of p to {x : Num, y : Num} and Num in the respective branches. However, JavaScript has

other control operators that are also used to reason about types. We consider more examples before

devising a type-checking strategy.

The function in fig. 4.1 serializes arbitrary values to strings (> is the type of all expressions).3

Functions and the special value undefined cannot be serialized, so for these it returns false. Let us

informally reason about serialize to determine if it is type-safe.

On line 3, the function branches on the result of typeof val:

• For case "undefined", control falls through to line 5.

• On line 6, for case "function", the function returns false.

3This example is based on toJSON from the popular Prototype library.

34

• On line 8, for case "boolean", the function branches on val and returns either "true" or "false".

val is a boolean because none of the preceding cases fall through to line 8.

• On line 10, for case "number", the function uses string concatenation to coerce the number val

to a string. val is a number because none of the preceding cases fall through to line 10.

• On line 12, for case "string", the function returns val. val is a string because none of the

preceding cases fall through to here.

This switch is missing a case. If typeof val === "object", then none of the cases above will match

and control will fall through. However, since all the explicitly handled cases return, we know that

typeof val === "object" holds on lines 15—24.

JavaScript has a value null and typeof null === "object". Therefore, line 15 tests for null and

if the test is true, the program returns "null". However, if the test is false, since the conditional

does not have a false-branch, control proceeds to line 17. Since the true-branch returns, val !== null

holds on lines 17–24. We can safely use val as an object on these lines. Lines 20—21 also employ

flow-directed reasoning, but are relatively trivial. Therefore, we can conclude that serialize is safe.

We reasoned about serialize by following its convoluted control-flow instead of merely following

its syntactic structure. JavaScript forces such reasoning on programmers. The primary culprit

is return, which aborts control flow and produces a result. Since serialize uses multiple return

statements, our reasoning relies on return aborting its local continuation.

Can we rewrite this function in a style that enables syntactic reasoning? Using the ternary

operator instead of if and switch statements, we might try:

function syntactic_serialize(val) {

return (typeof val === "undefined") ? false :

...

(val === "null") ? "null" :

var fields = []; // syntax error: statement

for (var p in val) // // syntax error: statement

... }

Unfortunately, variable bindings and loops are statements, which do not compose with expressions.

(This syntactic defect is shared by Ruby, Python, and other scripting languages.) This complicates

the rewriting (which, in turn, could negatively impact error reporting), and suggests it would be

better to tackle serialize directly.

35

/*: [a] ∗ Int ∗ Int ∪ Undef→ [a] */

function slice(arr, start, stop) {

var len = /*: Int */ arr.length;

if (typeof stop === "undefined") { stop = len - 1; }

if (start < 0 || stop > len || start > stop) {

throw "Invalid arguments";

}

var r = /*: [a] */ [];

for (var i = 0; i <= stop - start; i++) {

r[i] = arr[start + i];

}

return r;

}

Figure 4.2: Heap-Sensitive Reasoning

4.1.1 Heap-Sensitive Reasoning

The function slice (fig. 4.2) returns a section of an array:4

slice(["A", "B", "C", "D"], 1, 2) � ["B", "C"]

However, the third argument (stop) is optional:

slice(["A", "B", "C", "D"], 1) � ["B", "C", "D"]

JavaScript does not have optional arguments and default parameters. Instead, elided arguments

receive the value undefined and extraneous arguments are dropped. slice relies on this peculiarity to

simulate optional arguments.

If stop is undefined, then the side-effect stop = len ensures that stop is an integer in the continuation

of the if-statement. This function relies not only on control-flow, but on the interaction of control

and state to reason about types.

Dynamic Dispatch and Type Tests We reasoned about the use of serialize and slice by

following their convoluted control-flow and side-effects, instead of merely following their syntactic

structure. A reader may argue that these functions are “bad style”, so a type system can legitimately

reject them. For example, an easily typable alternative to serialize is to extend the builtin prototypes

(Object, String, etc.) with a serialize method and rely on dynamic dispatch, instead of reflection.

Unfortunately, extending builtin classes runs into the fragile base class problem [65] and is thus

considered bad practice (e.g., [35]).

4slice is part of the JavaScript standard, but is not implemented by some older browsers. This definition is from
the 4umi compatibility library.

36

Perspective The examples above make heavy use of local control and state to reason informally

about “types”. Section 9.5 shows that such patterns are prevalent in actual JavaScript code (and

other scripting languages). A static type system that admits these programs will need to support

this style of reasoning and various other features (e.g., objects). The book-keeping needed to account

for control and state can pervade the entire type system and occlude its typing of other features.

4.2 Semantics and Types

λJS , presented in chapter 2 is an adequate model of JavaScript, but contains various details, such

as objects, that are orthogonal to our technical presentation. We instead present flow typing using

a smaller calculus, λS .

Figure 4.3 specifies the syntax and semantics of λS , which is a core calculus that is sufficient for

our exposition of flow typing. λS includes higher-order functions, mutable references, conditionals,

a control operator (break), and basic primitives. Type annotations (discussed below) are ignored

during evaluation.

In this chapter, the static types of λS are much richer than its runtime tags. Therefore, we use a

more technically precise name, tagof, to model the typeof operator of real scripting languages. The

break operator can model both break and return statements of JavaScript. The break operator aborts

the current continuation up to a matching label and returns a value. We specify the semantics of three

primitives, of which physical equality (===) and tagof appear extensively in flow-directed reasoning

(fig. 4.1). Other expressions, such as tagof x !== ”string”, are a simple extension of our theory.

Figure 4.3 also specifies the syntax of types, T . Types include untagged unions and a top type

>, which were motivated in section 4.1. We also include the type of locations, Ref T , and a bottom

type ⊥ for control operators that do not return a value. Given these types, subtyping (fig. 4.4) is

conventional.

Our typing relation is also mostly conventional. We present select typing judgments in fig. 4.5.

Note that the typing environment binds identifiers and labels. By T-SetRef, we can write subtypes

to locations.5 Finally, like JavaScript, λS programs cannot break across function boundaries, so we

statically disallow it by dropping labels when typing functions (T-Abs).

5This is a simple restriction of source and sink types [71, Chapter 15.5].

37

identifiers x
locations l
constants c = num | str | bool | undefined

values v = x | c | func(x · · ·):T { e } | l
expressions e = v | let x = e1 in e2 | ef(e1 · · · en) | opn(e1 · · · en)

| if (e1) { e2 } else { e3 } | break label e | label:T { e }

| ref e | deref e | setref e1 e2

evaluation contexts E = • | let x = E in e | E(e1 · · · en) | vf(v · · ·Ee · · ·)
| opn(v · · ·Ee · · ·) | break label E | if (E) { e2 } else { e3 }

| label:T { E } | ref E | deref E | setref E e | setref v E

stores σ = · | (l, v)σ
types T = Str | Bool | Undef | T1 ∪ T2 | T1 · · · → T | Ref T | ⊥ | >

(E-Let) σE〈let x = v in e〉 → σE〈e[x/v]〉

(E-Prim) σE〈opn(v · · ·)〉 → σE〈δn(opn, v · · ·)〉

(βv) σE〈func(x · · ·) { e }(v · · ·)〉 → σE〈e[x/v · · ·]〉

(E-Break) σE1〈label:{ E2〈break label v〉 }〉 → σE1〈v〉, when label /∈ E2

(E-Label-Pop) σE〈label:{ v }〉 → σE〈v〉

(E-Ref) σE〈ref v〉 → (l, v), σE〈l〉 l fresh

(E-Deref) σE〈deref l〉 → σE〈σ(l)〉

(E-SetRef) σE〈setref l v〉 → σ[l/v]E〈l〉

δ1(tagof, num) = ”number” δ2(===, v, v) = true

δ1(tagof, undefined) = ”undefined” δ2(===, v1, v2) = false, when v1 6= v2

δ1(tagof, str) = ”string” δ2(-, num1, num2) = num1 − num2

δ1(tagof, bool) = ”boolean”

δ1(tagof, l) = ”location”

δ1(tagof, func(x · · ·) { e }) = ”function”

Figure 4.3: Syntax and Semantics of λS

38

T <: T (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

⊥<: T (S-Bot)
T <: > (S-Top)

S′ <: S · · · T <: T ′

S · · · → T <: S′ · · · → T ′
(S-Arr)

T <: S S <: T

Ref S <: Ref T
(S-Ref)

S1 <: T S2 <: T

S1 ∪ S2 <: T
(S-UnionE)

S <: S ∪ T (S-UnionL)
T <: S ∪ T (S-UnionR)

Figure 4.4: Subtyping in λS

4.3 Relating Static Types and Runtime Tags

Consider the following JavaScript program:

function f(x) {

if (typeof x === "string") { return 0; }

else { return (x-1); } }

f(200)

We can model this in λS as follows, with x as a local variable and the breaks representing return

statements and the intended type annotation inserted:6

let f = ref func(y) : Num ∪ Str→ Num {

return:Num {

let x = ref y in

if (tagof (deref x) === ”string”) { break return 0 }

else { break return ((deref x) - 1) } } }

in (deref f)(200)

Both the λS and original JavaScript programs run without error, returning 199.

This λS program fails to type in the type checker of the previous section because the - (minus)

operator expects its operands to be numbers, but deref x has type Num ∪ Str. However, the tag-test

informs us, the reader, that x has the static type Str in the true branch; the type annotation on y

bounds its range of values, and thus enables us to conclude that x has type Num in the false branch.

Thus, the dynamic test and static type annotation collude to demonstrate that this program is

6Chapter 2 desugars JavaScript to λJS in this form.

39

ty1(tagof) = > → Str ty2(===) = >×> → Bool ty2(-) = Num× Num→ Num

Σ(l) = T

Σ; Γ ` l : T
(T-Loc)

Σ; Γ ` e : S S <: T

Σ; Γ ` e : T
(T-Sub)

Σ; Γ′, x : S, · · · ` e : T Γ′ = Γ with labels removed

Σ; Γ ` func(x · · ·):S · · · → T{ e } : S · · · → T
(T-Abs)

Σ; Γ ` e1 : Ref S Σ; Γ ` e2 : T T <: S

Σ; Γ ` setref e1 e2 : Ref T
(T-SetRef)

Σ; Γ ` e1 : Bool Σ; Γ ` e2 : T Σ; Γ ` e3 : T

Σ; Γ ` if (e1) { e2 } else { e3 } : T
(T-If)

Σ; Γ, label : T ` e : T

Σ; Γ ` label:T { e } : T
(T-Label)

Γ(label) = T Σ,Γ ` e : T

Σ; Γ ` break label e : ⊥
(T-Break)

Figure 4.5: Typing λS (Essential Rules)

statically safe. Our goal is to enable the static type checker to arrive at the same conclusion.7

To support such reasoning, a retrofitted type system must relate static types and runtime tags.

We show this in fig. 4.6. runtime maps types to tag sets (due to the presence of unions), but since

types are much richer than tags, we cannot distinguish all static types at runtime, e.g., all arrow

types are mapped to the tag ”function” (objects would be modeled similarly). static lets us narrow a

type based on a known tag. For example, if a value has type Str∪Num and its tag set is {”number”},

then static produces the type Num. Note that static is partial: for example, static({”number”},Str)

is undefined.

Since static relates types and tags, our type system can use it to account for runtime tag-tests.

We use static by extending λS with an auxiliary construct, tagcheck R e (fig. 4.7), which narrows

the type of e based on the tag set R. By judiciously inserting tagchecks, we can make our example

typable.8 We thus offer tagcheck as an appropriate cast-like operator for scripting languages.

7Occurrence typing [86] is a different approach that can also type-check this example.
8Section 4.4 presents an efficient technique to insert tagchecks automatically, so they are hidden from the program-

mer.

40

r = {”string”, ”boolean”, ”number”, ”undefined”, ”function”, ”location”}
R = P(r)

runtime : T → R
runtime(Str) = {”string”}
runtime(Bool) = {”boolean”}
runtime(Num) = {”number”}
runtime(Undef) = {”undefined”}
runtime(S ∪ T) = runtime(S) ∪ runtime(T)
runtime(S · · · → T) = {”function”}
runtime(⊥) = ∅
runtime(>) = r
runtime(Ref T) = {”location”}

static : R× T → T
static(R,Str) = Str, if ”string” ∈ R
static(R,Bool) = Bool, if ”boolean” ∈ R
static(R,Num) = Num, if ”number” ∈ R
static(R,Undef) = Undef, if ”undefined” ∈ R
static(R,S · · · → T) = S · · · → T, if ”function” ∈ R
static(R,S ∪ T) = static(R,S) ∪ static(R, T)
static(R,S ∪ T) = static(R,S), if static(R, T) is undefined
static(R,S ∪ T) = static(R, T), if static(R,S) is undefined
static(R,>) = >
static(R,Ref T) = Ref >

Figure 4.6: Relationship Between Types and Tags

A tagcheck expression can fail in three ways. Two are static: when the tag set R is incompatible

with the type of e, static is undefined; even if it is compatible, the resulting type may not be what

the context expects. However, the third failure is dynamic: if e reduces to v and tagof(v) /∈ R, then

evaluation gets stuck with a tagerr (E-TagCheck-Err). This error condition manifests itself when we

try to prove a type soundness theorem.

The preservation lemma is conventional:

Lemma 5 (Preservation) If Σ, · ` e : T , Σ ` σ, and σe→ σ′e′, then there exists a Σ′, such that:

i. Σ′, · ` σ′e′ : T ,

ii. Σ′ ` e′, and

iii. Σ ⊆ Σ′.

However, programs can get stuck on tagerrs:

Lemma 6 (Progress) If Σ, · ` e : T and Σ ` σ, then either:

41

e = · · · | tagcheck R e | tagerr

E = · · · | tagcheck R E

δ1(tagof, v) ∈ R
σE〈tagcheck R v〉 → σE〈v〉

(E-TagCheck)

δ1(tagof, v) /∈ R
σE〈tagcheck R v〉 → σE〈tagerr〉

(E-TagCheck-Err)

Σ; Γ ` e : S static(R,S) = T

Σ; Γ ` tagcheck R e : T
(T-Check)

Σ; Γ ` tagerr : ⊥ (T-TagErr)

Figure 4.7: Typing and Evaluation of Checked Tags

i. e ∈ v, or

ii. there exist σ′ and e′, such that σe→ σ′e′, or

iii. e = E〈tagerr〉, for some E.

Thus, the type soundness theorem is unsatisfying because of (iii.) of the lemma above. We could try

to “repair” the type system; indeed, a sufficiently complicated type system might not need tagchecks

and tagerrs at all. Our key idea is to admit tagerrs to keep the type system simple, and then discharge

them by other means.

4.4 Automatically Inserting Safe tagchecks

We need a way to automatically insert tagchecks that fail neither statically nor at runtime. The

tagcheck-insertion technique needs to be sound and handle uses of local control and state that we

presented in section 4.1. Unlike conventional type systems, flow analyses are well-suited to such

reasoning styles, so we consider flow analysis here. Unfortunately, whole-program analysis of func-

tional and object-oriented languages is non-modular and expensive (section 4.6). Moreover, we need

to relate abstract heaps produced by flow analysis to types produced by type-checking. We address

these problems broadly, before formally presenting one particular analysis (section 4.5).

The goal of the flow analysis is to compute the tag-sets necessary for tagcheck expressions. There-

fore, the domain of the analysis will be tag-sets augmented by some book-keeping information.

42

Returning to the example from section 4.3, the comments illustrate the kind of information we need

from flow analysis:

0 let f = ref func(y) : Num ∪ Str→ Num {

return:Num { /* tagof(y) ∈ {"number", "string"} */

let x = ref y in /* x = ref y, tagof(y) ∈ {"number", "string"} */

if (tagof (deref x) === ”string”) { /* same as line 3 */

break return 0 /* x = ref y, tagof(y) ∈ {"string"} */

5 }

else {

break return ((deref x) - 1) /* x = ref y, tagof(y) ∈ {"number"} */

} } }

in (deref f)(200)

The flow analysis should compute that x = ref y at all program points, and that on lines 4

and 8, tagof(y) ∈ {"number", "string"} and tagof(y) ∈ {"number"}, respectively. This infor-

mation is enough to mechanically transform the program, replacing the (deref x) expressions with

tagcheck {"number", "string"} (deref x) on line 4 and tagcheck {"string"} (deref x) on line 8. Section 4.5

details a control-sensitive, heap-sensitive analysis that produces results such as this.

This analysis, like our type system, is mostly conventional. It is peculiar in populating the initial

abstract heap with tagof(y) ∈ {"number", "string"}. A whole-program analysis might have used

the application on line 9 to populate the heap with the argument value of 200. In contrast, our

analysis remains local but exploits the type annotation on y, thus determining that tagof(y) is in

runtime(Num ∪ Str) = {"number", "string"}.

We thus use types to modularize our flow analysis, so the analysis can remain strictly in-

traprocedural. The time complexity of flow analysis is therefore a function of the size of individual

functions in the program, which does not tend to grow as programs get larger. (Of course, the choice

of function calls as modularity boundaries is not essential.) However, this does reduce precision, as

we see below.

Assignment and Aliasing Our analysis is locally heap-sensitive and can type-check the following

imperative variant of the example function:

let f = ref func(y) : Num ∪ Str→ Num {

let x = ref y in

let = if (tagof (deref x) == ”string”) { setref x 1 }

43

else { false } in

(deref x) - 1 /* x = ref y, tagof(y) ∈ {"number"} */ }

in (deref f)(200)

However, since we restart the analysis at function applications, we do not track non-local effects.

In the following example, since foo(x) may assign either a number or a string to x, the analysis we

present in section 4.5 simply restarts on all function applications. Thus we cannot insert a useful

tagcheck around the subsequent deref x, so the example is untypable:

let g = ref func(y) : Num ∪ Str→ Num {

let x = ref y in

let = setref x 10 in

let = foo(x) in

(deref x) /* x = ref y, tagof(y) ∈ {"number", "string"} */}

in (deref g)(”test”)

More sophisticated analyses that tracked ownership or aliasing could make such examples typable.

Soundness Given that our flow analysis ignores actual arguments, is it sound? To show that a

flow analysis is sound, we must define an acceptability relation and prove that statically computed

abstract heaps remain acceptable under evaluation. However, here is a trivial variation of our

example that violates acceptability:

let f = ref func(y) : Num ∪ Str→ Num { /* ... as before ... */ }

in (deref f)(true)

The flow analysis ignores the actual argument true (tagged ”boolean”) and instead assumes that the

type annotation is correct. That is, it assumes that at runtime, y is tagged either ”number” or ”string”.

Thus, we obtain only a weak preservation of solutions result (lemma 8).

Although flow analysis admits such mis-applied functions, the type system ensures that function

applications are well-typed. Conversely, although the type system admits tagerrs at runtime, the

flow analysis only inserts tagchecks that provably do not produce tagerrs. Hence, each component

eliminates the other’s weakness and in concert they combine to statically check programs that they

cannot verify alone.

44

values V = x | c | l | func(x · · ·):T { M } | func(x · · ·) { M }

binding expressions B = V | ref V | deref V | setref V1 V2 | opn(V1 · · ·Vn)
| tagcheck R V | tagerr

unlabeled expressions N = let x = B in M | Vf(V · · ·)
| if (V) { M1 } else { M2 }

labelled expressions M = N l̂

stores S = · | (l, V)S

Figure 4.8: Syntax of λS in CPS

4.5 Flow Analysis via CPS

A glaring issue with λS is that it has a single control operator, while real scripting languages

support a plethora of control operators (section 2.1.4 and fig. 9.6). To avoid presenting an overly

break-specific program analysis, we convert λS to CPS. CPS has the added advantage of naming

intermediate terms, thereby simplifying our analysis. CPS is, however, not a requirement; we only

use it for convenience.

4.5.1 CPS Transformation

Figure 4.8 specifies the syntax of CPS-λS , which, with the exception of V , is a syntactic restriction

of λS . V includes administrative functions (explained shortly). We specify the CPS transformation

using a technique developed by Sabry and Felleisen [75]. The transformation is defined by four

mutually-recursive functions that respectively map programs, expressions, values, and evaluation

contexts from direct-style to CPS:

Pk : σe→ SM Φ : v → V Ck : e→M Kk : E → V

For illustration, consider representative cases of these functions:

PkJ(l, v) · · · eK = (l,Φ(v)) · · · CkJeK

ΦJfunc(x · · ·):S · · · → T { e }K = func(k,x · · ·):(T → ⊥)× S · · · → ⊥ { CkJeK }

CkJE〈vf(varg · · ·)〉K = ΦJvf K(KkJEK,ΦJvargK · · ·)

KkJE〈let x = • in e〉K = func(x) { CkJE〈e〉K }

In the last case above, the transformation introduces functions not found in the source program to

receive the bound value. Since all evaluation contexts are transformed into such “administrative”

45

Ŝ : l̂→ R abstract store

Γ̂ : x→ V̂ abstract environments

V̂ = R | Ref l̂ | Deref l̂ R | LocTagof l̂ | LocType l̂ R

R1 ⊆ R2

R1 v R2

LocTagof l̂ v {”string”}

LocType l̂ R v {”boolean”}

Deref l̂ R v R

Ref l̂ v {”location”}

Figure 4.9: Analysis Domains

functions, all control structures are thus transformed into applications of administrative functions.

For succinctness, we do not introduce continuation-passing operators, and instead let-bind oper-

ators’ results. We elide the semantics of CPS-λS , since it is essentially the same as the semantics

in fig. 4.3. This style of definition makes it easy to prove that direct-evaluation corresponds to

CPS-evaluation, which is necessary to relate typing and flow analysis.

Lemma 7 (Soundness of CPS Transformation) If σe → σ′e′ using reduction rule R, then

PkJσeK� PkJσ′e′K using reduction rules R, E-Let, and β̂v.

In the lemma above, β̂v denotes the reduction rule for administrative functions (defined exactly as

βv). The lemma roughly states that intermediate redexes in CPS are applications of administrative

functions and let-expressions.

4.5.2 Modular Flow Analysis

Figure 4.9 specifies our abstract values and the lattice that relates them. Abstract stores (Ŝ) map

abstract locations (l̂) to tag sets (R). (Abstract locations are labels on expressions, introduced by

CPS.) On the other hand, abstract environments (Γ̂) map identifiers to abstract values (V̂) that will

account for tag-tests.

For example, fig. 4.10 presents our example from the previous section in CPS. The comment on

line 2 specifies the initial abstract environment, computed by applying runtime to the arguments.

46

0 let f = func(k, y):(Num→ ⊥)× Num ∪ Str→ ⊥ {

// By V-Restart, k = {"function"}, y = {"number", "string"}
let x = ref y in // By F-Alloc, x = Ref l̂; l̂ = {"number", "string"}
let t1' = deref x in // By F-Deref, t’ = Deref x Ŝ(l̂)
let t1 = tagcheck {”number”,”string”} t1' in // By F-TagCheck, t1 = t1’

5 let t2 = typeof t1' in // By F-Typeof, t2 = LocTypeof l̂

let t3 = (t2 === ”string”) in // By F-TypeIs-Str, t3 = LocType l̂ {"string"}
if (t3) { // By F-If-Split applied to l̂

k(0) } // By F-App, with l̂ = {"number"}
else {

10 let t4' = deref x in // By F-Deref, t4’ = Deref x Ŝ(l̂); l̂ = {"number"}
let t4 = tagcheck {”number”} t4' in // By F-TagCheck, t4 = t4’
let t5 = t4' - 1 in

k(t5) } }

in let f' = deref f
15 in f'(kinit,200)

Figure 4.10: tagcheck Insertion

The remaining comments specify how the abstract heap and environment are transformed by each

statement. These transformation are acceptable, as specified by our acceptability relation (figs. 4.11

and 4.12).

Note that the user-written identifier x is bound to a heap-location. However, the CPS-introduced

identifiers, which name the subexpressions that reason about x, are not heap-allocated. We exploit

this stratification in our analysis domains to simplify the proof of soundness. The abstract heap and

environment contain values that locally reason about the heap. For soundness, V-Restart therefore

discards the abstract heap and uses reset and del to widen heap-dependent abstract values to simple

tag sets.

Assignment and Aliasing In fig. 4.13, we account for the effects of assignments to tag sets. If

a program sets an abstract location l̂, then F-SetRef simply updates l̂ in the abstract store of its

continuation. However, the environment may bind identifiers to abstract values that reason about

l̂. Therefore, we use del to widen l̂-dependent values to simple tag sets.

Local variables cannot reference each other. However, we use references to model mutable objects

as well. A local variable bound to a mutable object is a reference to a reference, and these objects

can be aliased. In these cases, we stop tracking the potentially-aliased abstract location, once again

using del. F-Ref-Alias in fig. 4.13 tackles aliasing in ref expressions. Similar rules apply to other

syntactic forms.

47

del : l̂, Γ̂→ Γ̂

del(l̂, ·) = ·
del(l̂, x : Deref l̂ R, Γ̂) = x : R, del(l̂, Γ̂)

del(l̂, x : LocTagof l̂, Γ̂) = x : {”string”}, del(l̂, Γ̂)

del(l̂, x : LocType l̂ R, Γ̂) = x : {”boolean”}, del(l̂, Γ̂)

del(l̂, x : Ref l̂, Γ̂) = x : r, del(l̂, Γ̂)

del(l̂, x : V̂ , Γ̂) = x : V̂ , del(l̂, Γ̂)

reset(Γ̂) = del(l̂1, del(l̂2, ..., del(l̂n, Γ̂))),∀l̂i ∈ Γ̂

Γ̂ . V V̂

·;x : runtime(T) · · · , reset(Γ̂) �M

Γ̂ . func(x · · ·):T · · · → ⊥ { M } ”function”
(V-Restart)

Γ̂ . c δ1(, c) (V-Const)

Γ̂ . x Γ̂(x) (V-Id)

Γ̂ . V V̂ V̂ v V̂ ′

Γ̂ . V V̂ ′
(V-Sub)

Figure 4.11: Acceptability of Flow Analysis—Metafunctions and Values

Monotone Framework Our algorithm for computing tagchecks is a simple monotone frame-

work [55] directly derived from the rules in figs. 4.11 and 4.12. The monotone framework computes

the abstract store and environment at each labelled expression. We use this information to insert

tagchecks into our programs.

Consider each expression of the form:

letl̂ r = deref x in M

Let Γ̂ and Ŝ be the computed abstract environment and store at l̂. If Γ̂(l̂) = Ref l̂′, then we transform

the expression to:

let r′l̂ = deref x in

let r = tagcheck Ŝ(l̂′) r′ in

M

For type-checking, this inserted tagcheck is mapped back to the original, direct-style program.

The administrative functions, if applied, can exponentially increase the size of programs. There-

fore, we leave certain administrative redexes unapplied (e.g., continuations of if-expressions). The

48

Ŝ; Γ̂ �M

Γ̂ . V V̂

Ŝ;x : V̂ , Γ̂ �M

Ŝ; Γ̂ � let x = V in M
(F-LetVal)

Γ̂ . V R

l̂ : R, Ŝ;x : Ref l̂, Γ̂ �M

Ŝ; Γ̂ � letl̂x = ref V in M
(F-Alloc)

Γ̂ . V Ref l̂ Ŝ(l̂) = R Ŝ;x : Deref l̂ R, Γ̂ �M

Ŝ; Γ̂ � let x = deref V in M
(F-Deref)

Γ̂ . V Deref l̂ R Ŝ;x : LocTagof l̂, Γ̂ �M

Ŝ; Γ̂ � let x = tagof V in M
(F-Tagof)

Γ̂ . V LocTagof l̂ Ŝ;x : LocType l̂ {”string”}, Γ̂ �M
Ŝ; Γ̂ � let x = V === ”string”in M

(F-TypeIs-Stra)

Γ̂ . V R Ŝ;x : R, Γ̂ �M

Ŝ; Γ̂ � let x = tagcheck R V in M
(F-TagCheck)

Γ̂ . V LocType l̂ R Ŝ[l̂ := R]; Γ̂ �M1 Ŝ[l̂ := Ŝ(l̂)\R]; Γ̂ �M2

Ŝ; Γ̂ � if (V) { M1 } else { M2 }
(F-If-Split)

Γ̂ . Vf V̂f Γ̂ . V R · · ·
Ŝ; Γ̂ � Vf(V · · ·)

(F-App)

aF-TypeIsStr is easily generalized to arbitrary tags; we specialize it to strings for presentation only.

Figure 4.12: Acceptability of Flow Analysis (Essential Rules)

49

Γ̂ . V1 Ref l̂ Γ̂ . V2 R Ŝ[l̂ := R];x : Ref l̂, del(l̂, Γ̂) �M

Ŝ; Γ̂ � let x = setref V1 V2 in M
(F-SetRef)

Γ̂ . V Ref l̂ Ŝ;x : r, del(l̂, Γ̂) �M

Ŝ; Γ̂ � let x = ref V in M
(F-Ref-Alias)

Figure 4.13: Assignment and Aliasing

CPS transformation is therefore linear time and our flow analysis computes meets through admin-

istrative functions.

Complexity Our flow analysis is a monotonic ascent of a lattice of finite height. For a program

of N terms our analysis computes an abstract store and environment at each term. The domain of

abstract stores and environments are both of size O(N). The range of the abstract store is R, and

|R| is a constant. The range of the abstract environment is V̂ , where V̂ contains the elements of R.

The additional elements of V̂ are incomparable with each other and are all less than the elements

of R. Hence, the height of V̂ is just 1 greater than the height of R (i.e., O(1)). Thus, the analysis

needs time quadratic in the program size. In practice, our prototype implementation type-checks

real-world JavaScript programs in seconds on modest machines. This is the payoff of using types to

modularize the program analysis at function boundaries.

In contrast, a program analysis of untyped, higher-order code, such as 0CFA [78], must compute

the set of all functions that may be applied (O(N) functions) at all call sites (O(N) call sites). The

range of abstract environments in 0CFA thus has size O(N), which makes the algorithm cubic.

Soundness In addition to fig. 4.12 and fig. 4.13, we require trivial rules for cases where our flow

analysis cannot determine useful information. These additional rules admit all other expressions,

except tagerrs and possibly-faulty tagchecks. Soundness also requires auxiliary rules that reason about

the concrete values in the store that are introduced by evaluation. We elided the concrete store from

figures 4.12 and 4.13 for clarity; in the following lemmas, we introduce it.

Lemma 8 (Soundness) If Ŝ, · � SM and SM → S′M ′ then either:

i. Ŝ′, · � S′M ′, or

ii. M is a βv-redex of shape (func(x · · ·) : T · · · → ⊥.N) (V · · ·), where for some V , δ1(tagof, V) /∈

runtime(T).

50

4.5.3 Combining Typing and Flow Analysis

We can now prove a stronger progress result that eliminates tagerrs.

Theorem 2 (Strengthened Progress) If:

i. Σ; · ` e : T ,

ii. Σ ` σ, and

iii. Ŝ; · � PkJσeK,

then either:

i. e ∈ v, or

ii. There exist σ′ and e′, such that σe→ σ′e′.

Proof: This follows from lemma 6, with the possibility of tagerrs eliminated by inspection of

fig. 4.12—flow analysis does not admit expressions with tagerrs. �

Theorem 2 requires a corresponding, combined preservation theorem.

Theorem 3 (Combined Preservation) If:

i. Σ; · ` e : T ,

ii. Σ ` σ,

iii. Ŝ; · � PkJσeK, and

iv. σe→ σ′e′,

then there exist Σ′ and Ŝ′, such that:

i. Σ′; · ` e′ : T ,

ii. Σ′ ` σ′,

iii. Σ ⊆ Σ′, and

iv. Ŝ′; · � PkJσ′e′K.

51

Proof: Conclusions (i.), (ii.), and (iii.) follow immediately from lemma 5. For conclusion (iv.),

apply lemma 7 to hypothesis (iv.) to get a reduction sequence, PkJσeK� PkJσ′e′K. Apply lemma 8

at each step, eliminating case (ii.) of the lemma as follows. By lemma 7, intermediate expressions

are not βv-redexes, so case (ii.) does not apply. Suppose e itself has an active βv-redex:

e = E〈func(x · · ·) : U · · · → S { ef }(v · · ·)〉

Once transformed to CPS, e has the form

func(k,x · · ·) : (S →⊥)× U · · · →⊥ { Mp }(V · · ·)

where V · · · are v · · · in CPS. Since e is typed, there exists a Γ such that:

Σ; Γ ` func(x · · ·) : U · · · → S { ef }(v · · ·) : S

For all v, Σ; Γ ` v : U by inversion. Hence δ1(tagof, v) ∈ runtime(U). Since conversion to CPS does

not change tags, δ1(tagof, v) = δ1(tagof, V), case (ii.) of lemma 8 does not apply. �

4.6 Related Work

Typed Scheme Typed Scheme [86, 87] is a type system designed to admit Scheme idioms. Typed

Scheme uses occurrence typing to account for type tests and type predicates. However, occurrence

typing is unsound in the presence of imperative features; thus, it is “turned off” when imperative

features are used. Unlike the Scheme programs that Typed Scheme types, programs in mainstream

scripting languages make heavy use of imperative features, which we handle.

Technically, we develop a type system and flow analysis that are complementary by design (Lem-

mas 6 and 8), which combine soundly (Theorems 2 and 3), and which can be enriched independently

within the framework of these two lemmas. We conjecture that a similar structure could be ex-

tracted from Typed Scheme, as the type system is augmented with meta-functions that update the

environment (see Typed Scheme’s use of Γ+ and Γ− to affect the environment, and combpred to

prop type tests to the context in if (fig. 4.14)). We believe these are similar to transfer functions

for dataflow analyses. However, Typed Scheme is not organized in this manner.

52

Γ ` e1 : τ1;φ1 Γ + φ1 ` e2 : τ2;φ2 Γ− φ1 ` e3 : τ3;φ3

` τ2 <: τ ` τ3 <: τ φ = combpred(φ1, φ2, φ3)

Γ ` (if e1 e2 e3) : τ ;φ

Figure 4.14: If-splitting in Typed Scheme [86]

Intensional Polymorphism Intensional polymorphism [17] provides a typecase construct that

allows programs to inspect and dispatch on the type of values at runtime. This requires a term-level

representation of types at runtime, which is only possible when the static and dynamic semantics of

a programming language are co-designed. The present work, Typed Scheme, and other retrofitted

type systems (discussed below) do not have access to their types at runtime. Type dispatch in a

retrofitted type system happens indirectly. For example, Typed Scheme uses predicates [86], while

our work relies on the relationship between static types and runtime tags (section 4.3).

Other Retrofitted Type Systems Soft Scheme [91] performs type inference for Scheme pro-

grams. It handles the full language of the time, and has a limited form of if-splitting. It does not

pay any additional attention to the interaction of types and control flow. This is reasonable because

it, like Typed Scheme, is focused on Scheme programs that are mostly functional. However, this

means that it too cannot handle the kinds of examples shown in this chapter and found in many

scripting languages.

Anderson et al. [5] tackle type inference for JavaScript. However, their language is extremely

limited, and their type system cannot tackle the idioms discussed in this chapter (section 4.1).

Heidegger and Thiemann’s [43] recency types account for ad hoc object initialization patterns

that are pervasive in JavaScript, but does not address the problems that this chapter does. Our

work does not account for objects. Our preliminary investigation suggests that the two approaches

are complementary and can fruitfully be combined.

Henglein and Rehof [45] present a translation of Scheme to ML that uses type inference to mini-

mize runtime projections. However, their “type system does not model control flow information” [45,

Section 6.5], which is the goal of our work.

Diamondback Ruby [33] is a type system and type inference for Ruby. Although its type language

includes union types, it does not account for type-tests to discriminate members of unions, which is

the focus of our work. The authors state that “support for occurrence types would be useful future

work”.

53

Types and Flow Analysis Shivers shows how control-flow can be extended to account for type-

tests [78, Chapter 9]. However, whole-program analysis for functional and object-oriented languages

is non-modular and expensive [31] or difficult to make effective [30]. Meunier et al. [63] develops

a modular analysis for an untyped language by using contracts as sources and sinks for abstract

values. We exploit type annotations in the same manner. Since all functions have type annotations,

our flow analysis problem is significantly more tractable than in an untyped language with optional

contracts.

Jensen et al. [51, 52] and MrSpidey [31] use flow analysis to recover precise type-like information

for arbitrary JavaScript and Scheme programs, respectively. A significant advantage of flow analysis

is that it does not require type annotations. Our work requires and exploits type annotations to

achieve modularity, which leads to quadratic time complexity in theory that appears to translate

into practice (section 4.5.2).

There are known equivalences between various type systems and control-flow analyses, e.g.,

Heintze [44], Nielson and Nielson [68], and Palsberg and O’Keefe [69]. The aforementioned works

extend type systems to calculate information that is conventionally calculated by flow analyses. In

contrast, our type system is oblivious to control flow information (fig. 4.5). We use a separate flow

analysis to account for control-sensitive and heap-sensitive reasoning (section 4.4). We independently

prove typing and flow analysis sound, then show that they combine in a simple way (section 4.5.3).

Definite assignment analysis is a commonly used flow analysis that augments typing (e.g., see the

Java Language Specification [36, Chapter 16]). Definite assignment analysis conservatively ensures

that variables are assigned before they are used. Hence, the analysis rejects programs as untypable

when all variables are not definitely assigned. In contrast, our analysis augments the type system

to accept programs that would otherwise be untypable.

Chapter 5

Typing Objects

In most statically-typed object-oriented languages, an object’s type or class enumerates its member

names and their types. This set of names is finite and the names are first-order, barring cumbersome

reflection APIs. In contrast, in JavaScript, reflection is trivial, class hierarchies are fluid, objects’

shapes are amorphous, and member names are first-class strings that can be computed dynamically.

These features are difficult to type-check.

This chapter1 presents fluid object types, a type language for describing the dynamic, reflective

idioms employed by JavaScript. Fluid object types have two novel features: they employ string pat-

terns to describe possibly-infinite collections of fields and presence annotations to precisely state the

position of inherited fields. We demonstrate that fluid object types account for many programming

patterns that are conventionally untypable. Furthermore, chapter 8 demonstrates that fluid object

types provide a simple account of language-based Web sandboxes.

5.1 λob
S : A Core Calculus of Lightweight Objects

λJS (chapter 2) is fully capable of modeling JavaScript’s objects. However, λJS also models various

other details of JavaScript that are inessential for understanding objects. We thus present fluid

object types using a smaller core calculus of lightweight objects.

Figure 5.1 defines the syntax and semantics of λobS , a calculus of lightweight objects. The ob-

jects of λobS are extensible records with inheritance and field-deletion. λobS distinguishes ”parent” as

1This chapter is based on joint work with Joe Gibbs Politz [39].

54

55

P = · · · Patterns
c = num | str | bool Constants
v = c | func(x : T).e | Λα <: T.e | { str:v· · · } Values
e = x | v | e(e) | { str: e · · · } | e[e] | e[e = e] | delete e[e] | e(T) Expressions
| if (e1) e2 else e3 | e1 hasfield e2 | e matches P

| fix (f:T).e | e1 + e2

E = • | E(e) | v(E) | { str: v · · · str:E, str:e · · · } | E[e] | v[E] Contexts
| v[v = E] | E[e = e] | v[E = e] | delete E[e] | delete v[E]

| if (E) e2 else e3 | E hasfield e | v hasfield E | E matches P

| E + e | v + E

βv (func(x : T).e)(v) ↪→ e[x/v]
E-Fix fix(f:T).e ↪→ e[f/fix(f:T).e]
E-TApp (Λα <: S.e)(T) ↪→ e[α/T]
E-GetField { · · · str: v · · · }[str] ↪→ v
E-Inherit { str : v · · · ”parent”: vp }[strx] ↪→ vp[strx], if strx /∈ (str · · ·)
E-Update { · · · str: v · · · }[str = vx] ↪→ { · · · str: vx · · · }
E-Create { str: v · · · } [strx = vx] ↪→ { strx: vx, str: v · · · }if strx 6∈ (str · · ·)
E-Del delete { · · · strx: vx · · · } [strx] ↪→ { · · · }
E-NoDel delete { str: v · · · } [strx] ↪→ { str: v · · · }if strx 6∈ (str · · ·)
E-IfTrue if (true) e2 else e3 ↪→ e2

E-IfFalse if (false) e2 else e3 ↪→ e3

E-Has { · · · str:v · · · } hasfield str ↪→ true

E-HasNot { str:v · · · } hasfield str ↪→ false, when str′ /∈ (str · · ·)
E-Match str matches P ↪→ true, str ∈ P
E-¬Match str matches P ↪→ false, str /∈ P
E-String+ str1 + str2 ↪→ str1 str2

E-Cxt E〈e1〉 → E〈e2〉, when e1 ↪→ e2

let x = e1 in e2 ≡ (func(x:T).e2)(e1)

let rec x = e1 in e2 ≡ (func(x:T).e2)(fix x:T.e1)

func(x1:T1 · · ·xn:Tn).e ≡ func(x1:T1).· · ·.func(xn:Tn).e

ef(e1 · · · en) ≡ ef(e1)· · ·(en)

Figure 5.1: Syntax and Semantics of λobS

a reference to the parent object for inheritance (E-Inherit). However, ”parent” is otherwise undistin-

guished; a program can retrieve, update, or even delete ”parent”. Field names are first-class strings,

not first-order labels. A single program may work with an arbitrary collection of field names, or even

dynamically construct names by concatenating strings (E-String+). λobS programs can use reflec-

tion (hasfield) to determine which fields are present on an object. In addition, λobS programs can use

matches to determine if a string matches a particular pattern. We leave the representation of patterns

unspecified. (Other languages use a mix of regular expressions and ad hoc testing to achieve the

same effect.) Finally, λobS includes explicit type annotations and instantiations; we introduce types

56

in section 5.3.

The primary distinction between λobS and λJS is that λobS lacks mutable state for clarity of

presentation. As discussed in section 5.5.1, all our proofs and theorems are over an imperative λobS .

λobS does have additional expressions for string-concatenation and string-matching, but these are

trivially expressible as primitives in λJS(section 2.1.6).

5.2 Idiomatic λob
S : Type-Checking Challenges

The examples below demonstrate that λobS can model many characteristic uses of objects in scripting

languages. (In appendix B, we translate these examples to various scripting languages.) For now, we

leave the static types unspecified. We type-check these examples in section 5.3.5, after developing

fluid object types.

Example 1: Prototype-based Objects λobS can easily encode prototype inheritance:

let Rect = { ”area”: func(self:?) . self[”x”] * self[”y”] } in

let Cuboid = { ”parent”: Rect,

”vol”: func(self) . self[”area”](self) * self[”z”] } in

let shape = { ”x”: 2, ”y”: 5, ”z”: 10: ”parent”: Cuboid } in

let vol = shape[”vol”](shape) // vol is 100

Above, methods are simply function valued-fields that take an explicit self argument. With this

encoding, a program can directly access the ”parent” field to redefine methods or apply methods to

other objects.

Example 2: Extracting Methods Supporting method-extraction promotes code reuse across

structurally similar values. For example, arrays may have a collection of utility methods in their

common parent:

let ArrParent = { ”slice”: func(self:?,begin:?,end:?). · · · , · · · } in

let arr1 = { ”0”: 3, ”1”: 20, ”2”: 59, ”length”: 3, ”parent”: ArrParent }

The implementation of slice may only require that self[”len”] be defined; it does not actually need

self to be an array. Therefore, this single slice method can be copied and applied to other kinds of

collections. This exact scenario occurs frequently in JavaScript programming. Web browsers have

57

other kinds of collections, such as HTMLNodeList, that are not arrays and thus do not have various

array methods:

let nodeList = { ”0”: htmlElementA, ”1”: htmlElementB, ”2”: htmlElementC,

”len”: 3, ”parent”: HTMLNodeListParent } in

let eltArray = ArrParent[”slice”](nodeList,0,1)

// returns an array containing htmlElementA and htmlElementB

However, in the code above, slice is applied to an HTMLNodeList to convert it to an array and make

other utility methods (e.g., map and reduce) available.

Example 3: Classes λobS can also encode classes by having methods close over a particular value

of self. Although explicitly passing self to each method is enormously flexible, it is error-prone.2 We

build on the prototypal shapes of Example 1 below:

let rec shape2 = {

”x”: 2, ”y”: 5, ”z”: 10”,

” class ”: Cuboid,

”parent”: {

”vol”: func() . shape2[” class ”][”vol”](shape2)

}

} in

let f = shape2[”vol”]

let vol2 = f() // vol2 is still 100, f closes over shape2

In this encoding, methods do not require an explicit self argument, but the underlying methods

are still accessible via the ” class ” field.3 This encoding allows methods themselves to manipulate

objects’ structure. However, it also allows other code to freely modify objects. We will use types to

hide the class field from other code.

Example 4: Ad Hoc Private Fields All fields are public in λobS ’s lightweight objects. In such

object systems, it is common to use a convention, such as “field names that begin with an underscore

are private”.4 This convention is easily violated by malicious or buggy code. A module may wish to

protect some of the fields in objects in its implementation, and only provide client code with access

to a safe lookup function.

2JavaScript suffers exactly this error; this is an implicit argument but is supplied at each method call (fig. 2.5).
3Python and Ruby have similar encodings; methods close over their self argument, but the underlying method is

still accessible.
4Python and Dart employ such conventions.

58

For example, a simple dynamic check to ensure that untrusted code does not access fields that

begin and end with underscores is as follows:

let safeGetField = Λα <: ?.func(obj:?,fieldName:?,default:?).

if (fieldName matches ” .∗ ”) default

else if (obj hasfield fieldName) obj[fieldName] else default in

safeGetField(?)({ ” private ”: 42, ”pub”: 23 },

” private ”, 0) // returns 0

These checks are notoriously difficult to implement in full-fledged scripting languages. Our type

system for λobS will demonstrate techniques for statically verifying that such code is correct.

Example 5: Dictionaries as Dictionaries There is no need to implement dictionaries in λobS ;

objects can be used as dictionaries themselves. Some care must be taken in implementation, however,

as a näıve approach may accidentally extract a method from the object’s parent, or the parent itself:

let ObjectParent = { ”serialize”: func(self:?).· · ·, · · · } in

let dict = { ”habitat”: ”a natural home or environment”,

”park”: ”a large enclosed piece of ground”,

”parent”: ObjectParent } in

dict[”habitat”] // returns ”a natural home or environment”

dict[”serialize”] // returns func(self) ... !

dict[”parent”] // returns ObjectParent!

To avoid such mishaps, programmers should guard dynamic dictionary accesses:5

let safeAssign = Λα <: ?. Λβ <:?. func(dict:?,word:Str,value:?).

dict[”w ” + word = value]

let safeLookup = Λα <: ?.func(dict:?,word:Str,default:?).

let lookup = ”w ” + word in

if (dict hasfield lookup) dict[lookup]

else default

This example presents a safe alternative, which prefixes words with ”w ” and then uses a dynamic

check to ensure only words are accessed. Our type system reasons about field tests to give reasonable

static types to dictionaries.

Type System Features These examples elicit a baseline feature set to typecheck:

5A fact the developers of Google Docs know all too well. At the time of this writing, typing proto , JavaScript’s
parent, crashes Google Docs: www.google.com/support/forum/p/Google+Docs/thread?tid=0cd4a00bd4aef9e4.

www.google.com/support/forum/p/Google+Docs/thread?tid=0cd4a00bd4aef9e4

59

L = P | α | L1 ∩ L2 | L1 ∪ L2 | L1L2 | L String patterns
b = Num | Bool Base types
α = · · · Type variables
T = b | T1 → T2 | µα.T | > | ∀α <: S.T
| L | {Lp11 : T1 · · ·Lpnn : Tn, LA : abs} Types

p = ◦ |↓|↑ Field presence
Γ = · | Γ, x : T | Γ, α <: T Environments

Γ ` T

Γ ` T1 · · ·Γ ` Tn ∀i.Li ∩ LA = ∅ and ∀j 6= i.Li ∩ Lj = ∅
Γ ` {Lp11 : T1, · · · , Lpnn : Tn, LA : abs}

(WF-Object)

α ∈ dom(Γ)

Γ ` α
(WF-TVar)

Figure 5.2: Types for λobS

1. Addition and deletion of fields,

2. Prototype-based inheritance with method extraction,

3. Class-like inheritance with bound and unbound method extraction,

4. Invariants on pattern-based field conventions, and

5. Field-presence guards on field access.

5.3 Types for Objects

The preceding examples guide the development of fluid object types in this section. Our full type

language is in fig. 5.2, but we motivate and incrementally develop fluid object types in this section.

In subsequent sections, we detail the associated type system.

5.3.1 Simple Records

Structural record types are a natural starting point, since λobS does not have classes. Recall that

record types are finite maps from field names to field types:

T = · · · | {str1 : T1 · · · strn : Tn}

60

P : {str} P1 ∩ P2 P1 ∪ P2 P P1 ⊆ P2 P1P2 P = ∅

Figure 5.3: Functions and Predicates over String Types

Record types can type trivial programs, but not those in section 5.2.

5.3.2 Field Patterns

Record types are too simple because they statically enumerate all their fields’ names. Interesting

programs use computed field lookups, where the exact field name is not statically known. Consider

the type of c in the following example:

let getCoord = func(pt:{"x" : Num, "y" : Num}, c:?) . pt[c]

The intended type for c is not an arbitrary string (Str), but a string in the set {”x”, ”y”}. We thus

extend our types with precise string types, L-types, that denote sets of strings:

L = P String patterns

T = · · · | L

The exact representation of L-types is not significant; we only require that the functions and predi-

cates in fig. 5.3 be defined.

Type-checking field lookup with L-typed strings is straightforward. If c has type {”x”, ”y”}, then

pt[c] has type Num. In general, if fld has type L and obj has type {str1 : T1 · · · strn : Tn} then at

runtime obj[fld] may lookup any str i ∈ L. Thus, the type of obj[fld] is the join of the matching

fields’ types.

Patterns Replace Field Names L-types allow computed field names, but record types still

specify a finite list of fields. They cannot express the type of the dictionary in Example 5, so we

reuse L-types to generalize field names to patterns:

T = · · · | {L1 : T1 · · ·Ln : Tn}

This is the first of the two key features of fluid object types. We can now describe an object

with an arbitrary collection of fields. For example, in the following type, all fields that begin with

61

an underscore have type Num and all other fields have type Bool.6

{ .* : Num, .* : Bool}

Something odd happened here—this type seems to describe an object with an infinite number

of fields. Since objects are finite dictionaries, we could interpret this type as a specification of

fields’ types if they are present ; if a field is absent then indexing that field gets stuck, but typing

is preserved. We can do better and address this problem with presence annotations in the next

section.

In summary, fluid object types use patterns (L-types) to describe collections of fields in objects.

There are three common classes of L-types:

• The L-type for the set of all strings is the usual Str-type.

• An L-type that represents a singleton set, {str}, is the type of the string literal str . In e1[e2],

if e2 : {str} then the expression is a conventional, known-label field lookup.

• An L-type that represents a possibly-infinite set of strings is useful for typing operations on

computed field names. For example, in object update, e1[e2 = e3], if the type of e2 is the

co-finite set {”parent”}, then the operation does not affect ”parent” and does not affect the

inheritance chain.

5.3.3 Presence Annotations

Conventional structural object types do not expose the position of members on the inheritance

chain; types are “flattened” to include inherited members. However, the ”parent” field of λobS objects

allows programs to distinguish inherited fields. If we flatten object types, all such programs would

be untypable.

Fluid object types allow us to expose the precise structure of the inheritance chain with ease. In

the following type, move is present on the parent:

{"parent" : {"move" : Num→ Num}}
6We often use regular expressions to describe patterns. However, regular expressions are not fundamental; any

decision procedure over strings is adequate.

62

This precision unfortunately makes conventional uses of class hierarchies untypable. Functions

that consume subtypes of a particular class are agnostic to the position of methods on the inheritance

chain; all that matters are methods’ types. However, the type above requires move to be present on

precisely the first parent, and does not admit objects that inherit but do not override move.

To remedy this, we introduce the second feature of fluid object types. We add presence annota-

tions to fields and a pattern for fields that are definitely absent :

p = ↓ | ↑ | ◦

T = · · · | {Lp11 : T1, · · · , Lpnn : Tn, LA : abs}

We interpret presence annotations as follows:

• L↓ : T indicates that all fields str ∈ L are definitely present on the object itself with type T .

These fields are not inherited and are not absent.

• L↑ : T indicates that all fields str ∈ L are either present on the object itself or along the

inheritance chain with type T .

• L◦ : T indicates that all fields str ∈ L may be present on the object itself. If a field str is

present it has type T , but it may be absent.

• The LA : abs annotation indicates that all fields str ∈ LA are definitely absent on the object;

however, they may be present higher up on the inheritance chain. Looking up a definitely

absent field therefore does not fail if the field is inherited.

Notation We use two abbreviations to simplify the syntax of fluid objects.

• We elide writing an empty set of absent fields, ∅ : abs. For example:

{”x”
↓ : Num, ”y”

↓ : Num} = {”x”
↓ : Num, ”y”

↓ : Num, ∅ : abs}

• It is often convenient for the set of absent fields to be the complement of all other fields; we

abbreviate this to ? : abs. For example, ? represents {”x”, ”y”, ”parent”} in the following type:

{”x”
↓ : Num, ”y”

↓ : Num, ”parent”
↓ : P, ? : abs}

63

Flexibility and Guarantees of Presence Annotations The L↓ : T and L↑ : T annotations

ensure that indexing an L-typed field produces a T -typed value; programs cannot get stuck indexing

fields. They also allow other fields with the same name but different types to exist further up the

inheritance chain, but these do not affect the type of object indexing.

The L◦ : T annotation provides weaker guarantees. For example, if obj has the type:

{"x"◦ : Num, "parent"↓ : {"x"↓ : Bool}}

then obj[”x”] may return either field. For full generality, we present a typing rule that determines

that obj[”x”] has type NumtBool. What would be more useful is an operator that narrows the ◦ to

a ↓.

5.3.4 Reflection

Consider typing Example 5 from section 5.2. We might give dict the following type:

{w .*
◦ : Str}

With this type, the expression dict[”w habitat”] is not typable. The type indicates that ”w habitat”

may not exist on the object, so we must also compute the type of dict[”parent”][”w habitat”]. However,

”parent” is not specified.

We must first establish that dict[”w habitat”] is definitely present. In Example 5, the safeLookup

function guards dictionary indexing with a hasfield check:

if (dict hasfield lookup) dict[lookup] else default

The type system can if-split [86] to account for such guards and narrow the types of dict and lookup

in the true branch. We present a simple if-splitting rule in section 5.5; here we describe the types in

the true-branch after narrowing.

In the true-branch, we have established that the value of lookup names a member of dict; we can

thus narrow a possibly absent member (◦) to definitely present (↓). However, we do not know exactly

which member to narrow. In particular, the following narrowing is wrong:

dict : {w .*
↓ : Str}

64

The type above states that all members are definitely present. However, the program only establishes

that a single string is definitely present.

We express this by splitting the pattern w .* into two components, a type variable α that repre-

sents the string bound to lookup and w .*∩α, the remainder of the pattern. Thus in the true-branch,

the type-environment, Γ′, modifies the enclosing type environment, Γ, as follows:

Γ′ = Γ, α <: P,word : α, dict : {α↓ : Str, P ∩ α◦ : Str}

where P = w .*

The patterns used above include type variables and set operators:

L = P | α | L1 ∩ L2 | L1 ∪ L2 | L1L2 | L

The final specification of fluid object types and string pattern types is in fig. 5.2. With these

types, we can type-check the examples from section 5.2.

5.3.5 Type-Checking Examples

With fluid object types introduced, we now revisit the examples from section 5.3.5.

Example 1 The types for Rect and Cuboid are as follows:

Rect :

{
”area”↓ : {”x”↓ : Num, ”y”↓ : Num} → Num

}

Cuboid :


”vol”↓ :

 ”x”↓ : Num, ”y”↓ : Num, ”z”↓ : Num,

”area”↑ : {”x”↓ : Num, ”y”↓ : Num} → Num

→ Num,

”parent”↓ : Rect


We abuse notation slightly for brevity; in Cuboid we use Rect as an abbreviation for the whole type.

The presence annotations on these types are interesting. On Rect’s ”area” method, the argument

omits listing absent fields and only specifies fields the method needs. This allows an object like

shape, which has a ”z” field, to be freely used with ”area”. Cuboid[”vol”] marks area as inherited (↑),

since it is agnostic to its position on the inheritance chain.

65

Example 2 ArrParent requires ”slice”’s argument to have a Num-typed ”len” field and consistently-

typed numeric fields:

∀α <: >.µβ.


”slice”↓ : {Dec◦ : α, ”len”↓ : Num}

→ {Dec◦ : α, ”len”↓ : Num, ”parent”↓ : β}

· · · · · ·


Dec = 0|[1-9][0-9]*

Fields that match Dec may be present; if they are, they must have type Num as indicated by the

regular expression pattern Dec. If ArrParent is instantiated with the type HTMLElement, then ”slice”

can be freely used on the object in Example 2.

Example 3 The types of Rect and Cuboid are the same as in Example 1 in this class encoding, but

note that shape2[”vol”] is closed over its self-argument. We can give shape2 the following type, hiding

class , to prevent external code from observing its internals:

{”x”
↓ : Num, ”y”

↓ : Num, ”z”
↓ : Num, ”vol”

↑ :→ Num}

Example 4 The type of safeGetField is:

∀α <: >.{ .*
◦ : α} → Str→ α→ α

The pattern .* ◦ : α indicates that all non-underscored fields have type α, if they are present.

Example 5 The types in this example are:

ObjectParent : {”serialize” : > → Str}

dict : ∀α <: >.{w .* : α, ”parent”↓ : ObjectParent, ”serialize” : abs}

safeAssign : ∀α <: >.∀β <: {w .*◦ : α}.β → Str→ α→ β

safeLookup : ∀α <: >.{w .*◦ : α} → Str→ α→ α

We assume that serialize can serialize arbitrary values. Notably, dict’s type allows serialize to be called,

but the types of safeAssign and safeLookup ensure that they cannot access serialize and only manipulate

66

Γ ` S <: T

Γ ` Ta <: Sa Γ ` Sr <: Tr

Γ ` Sa → Sr <: Ta → Tr

Γ ` b <: b

Γ ` T <: >

Γ ` S <: T [α/µα.T]

Γ ` S <: µα.T

Γ ` S[α/µα.S] <: T

Γ ` µα.S <: T

Γ ` α <: α

α <: S ∈ Γ Γ ` S <: T

Γ ` α <: T

Γ, α <: U ` S <: T

Γ ` (∀α <: U.S) <: (∀α <: U.T)

L1 ⊆ L2

Γ ` L1 <: L2

(S-Str)

(1)∀i, j.if Li ∩Mj 6= ∅ then pi <: qj and Γ ` Si <: Tj
(2)
⋃1···m
i Mi ⊆

⋃1···n
j Lj ∪ LA (2′)MA ⊆ LA

(3)∀j.if Mj ∩ LA 6= ∅ then qj = ◦ or qj =↑
(4)∀j.if qj =↑ then Γ ` inheritΓ({Lp11 : S1, · · · , Lpnn : Sn, LA : abs},Mj) <: Tj

Γ ` {Lp11 : S1, · · · , Lpnn : Sn, LA : abs} <: {Mq1
1 : T1, · · · ,Mqm

m : Tm,MA : abs}
(S-Ob)

p <: q

(p-Refl) (p-Maybe) (p-Inherit) (p-IMaybe)
p <: p ↓<: ◦ ↓<:↑ ↓<: ◦

Figure 5.4: Algorithmic Subtyping

words in the dictionary.

67

inheritΓ : S × L→ T

inheritΓ({Lp11 : T1 · · ·Lpnn : Tn, LA : abs}, LQ) =
⊔
{Ti | LQ ∩ Li 6= ∅} ∪ TP

TP =


∅ if LQ ⊆

⋃
{Li | pi 6= ◦} and

¬∃Lk."parent" ∈ Lk
{inheritΓ (Tk, LQ ∩ (LA ∪

⋃
{Li|pi = ◦}))} if LQ ⊆

⋃1···n
i Li ∪ LA and

∃Lk."parent" ∈ Lk

Figure 5.5: The inherit Metafunction

5.4 Subtyping

This section presents algorithmic subtyping for λobS . Figure 5.4 is the entire algorithmic subtyping

relation. We present fluid object types along with equirecursive µ-types and bounded quantification

(kernel rule). Some form of recursive type is necessary to type-check objects—we choose equirecursive

µ-types. Bounded quantification is commonly used to encode data structures; we also employ

bounded quantification in our account of reflection. The majority of the algorithmic subtyping

relation is conventional. The two interesting rules are S-Str and S-Ob.

Subtyping string types with S-Str uses pattern inclusion. For example, if patterns are defined as

regular languages, inclusion is decidable. When patterns include variables, these inclusion constraints

can be discharged by existing string solvers [47]. Discharging these patterns may require constraints

on L-bounded type variables in Γ. The appropriate Γ is always unambiguous from context, therefore

we write L1 ⊆ L2 instead of Γ ` L1 ⊆ L2.

Algorithmic subtyping for objects, S-Ob, is a generalization of algorithmic subtyping of records.

Recall that algorithmic subtyping for records combines the declarative width, depth, and permuta-

tion subtyping rules. S-Ob combines generalizations of depth, width, and permutation subtyping,

in addition to a flattening rule for inherited fields. For object types, Γ ` S <: T if and only if they

satisfy the four antecedents of S-Ob:

1. (Permutation and Depth) The types of fields with overlapping names must be subtypes. In

addition, p <: q is a partial order on presence-annotations. Intuitively, p <: q means that T

can “forget” that a field is definitely present.

2. (Width) The field patterns of S must include the field patterns of T . Therefore, T can “hide”

fields of S.

68

3. (Depth) Any field that is absent (abs) in S may be possibly absent (◦) or inherited (↑) in T .

This is depth subtyping for absent fields; T can “forget” that a field is absent and introduce

it with ◦ or ↑ annotations.

4. (Flattening) For an inherited field (↑) to appear on T , subtyping must ensure that the field is

defined, with the appropriate type, somewhere on the inheritance chain of S. The metafunction

inherit calculates this type on S and the pattern of the ↑-annotated field.

Flattening When Γ ` S <: T , the subtype S can describe the exact position of fields in the

inheritance chain, e.g.

S = {”x”
↓ : Num, ”parent”

↓ : {”y”
↓ : Str}, ”y” : abs}

However, T may lose this information and flatten the type to

T = {”x”
↓ : Num, ”y”

↓ : Str}

The purpose of inherit (fig. 5.5) is to ensure that ↑-annotated fields are appropriately flattened in

the supertype, T . For an object type T , inheritΓ(T, LQ) calculates the join of all field on S with

patterns that may intersect LQ, given constraints on L-bounded type variables in Γ. This includes

all of the fields on the inheritance chain of S. Recall that fluid object types allow fields with the same

pattern to have different types at different points in the inheritance chain. Consider the following

type:

T = {”x”
↓ : Num, ”z”

↓ : Num, ”parent”
↓ : {”z

↓ : Bool}}

With this definition of T , inherit(T, ”z”) = Num,7 since indexing a T -typed object with ”z” cannot

produce the Bool-valued field in the parent. However, consider the slightly different type:

T ′ = {”x”
↓ : Num, ”z”

◦ : Num, ”parent”
↓ : {”z

↓ : Bool}}
7An omitted Γ argument to inherit denotes an empty type environment.

69

In T ′, since ”z” may be absent (◦) indexing may produce either ”z” field. Therefore, inherit(T ′, ”z”) =

Num t Bool. Finally, consider the following type:

U = {”z”
◦ : Num}

In U , ”z” may be absent, but U does not specify the type of ”parent”. It is thus unknown if ”parent”

exists, much less if it has a ”z” field and what its type might be. Therefore, inherit(U, ”z”) is

undefined. We can see this by looking at the definition of inherit, specifically in defining TP for U

and ”z”. The first case of TP does not apply, because the annotation on ”z” is ◦, contradicting the

side condition. The second case does not apply either, because there is no ”parent” field on U .

inherit requires a join operator, t, over types. The join operator must satisfy:

(S t T = U)⇒ (S <: U ∧ T <: U)

We elide the full definition; the interesting case is for object types:

{Lpii : Si, · · · , LA : abs} t {Mqj
j : Tj , · · · ,MA : abs}

Which is a pairwise intersections of patterns:


(Li ∩Mj)

pitqj : Si t Tj · · · ,

(Li ∩MA)◦ : Si · · · , (LA ∩Mj)
◦ : Tj · · · ,

LA ∩MA : abs


For computing the join of the presence annotations pi t qj , we use the lattice induced by the p <: q

relation in fig. 5.4.8

Lemma 9 (Decidability of Subtyping) If the functions and predicates on patterns (fig. 5.3) are

decidable, then the subtype relation is finite-state.

Proof: By coinduction on the subtyping judgments.

8The join operator, as presented, may introduce a number of ∅ field patterns. Inspection of the typing rules shows
that empty patterns are inconsequential.

70

ty(num) = Num ty(bool) = Bool

Γ ` e : T

Γ ` e : S Γ ` S <: T

Γ ` e : T

Γ(x) = T

Γ ` x : T

Γ ` c : ty(c)

Γ, x : S ` e : T

Γ ` func (x : S).e : S → T

Γ ` ef : S → T Γ ` ea : S

Γ ` ef(ea) : T

Γ, α <: S ` e : T

Γ ` Λα <: S.e : ∀α <: S.T

Γ ` e : ∀α <: U.T Γ ` S <: U

Γ ` e(S) : T [α/S]

Γ ` e1 : Bool Γ ` e2, e3 : T

Γ ` if (e1) e2 else e3 : T

Figure 5.6: Typing Basics

5.5 Typing

Figure 5.6 presents the basic elements of the typing relation, which includes a conventional account

of functions and bounded quantification. The interesting typing rules are in fig. 5.7 and discussed

below.

T-Str is the typing rule for string literals, which ascribes a string str the singleton L-type {str}.

T-Str+ concatenates two string patterns.

T-Object is the typing rule for object literals. In an object literal, all fields are definitely present

(str↓) and all field names are statically known. Thus, each field name is a singleton L-type. In

addition, since the object has no more fields, the complement of its fields is definitely absent (? : abs).

71

Γ ` str : {str} (T-Str)

Γ ` e1 : L1 Γ ` e2 : L2

Γ ` e1 + e2 : L1L2

(T-Str+)

Γ ` e1 : S1 · · ·Γ ` en : Sn

Γ ` { str1: e1, · · · , strn: en } : {str↓1 : S1, · · · , str↓n : Sn, ? : abs}
(T-Object)

Γ ` eo : T Γ ` ef : L Γ ` ev : S L ⊆
⋃
{L1 · · ·Ln}

T = {Lp11 : T1, · · · , Lpnn : Tn, LA : abs} ∀Li ∩ L 6= ∅.Γ ` S <: Ti

Γ ` eo[ef = ev] : T
(T-Update)

Γ ` eo : T Γ ` ef : L L ⊆
⋃
{L1 · · ·Ln} ∀L ∩ Li 6= ∅.pi = ◦

T = {Lp11 : T1, · · · , Lpnn : Tn, LA : abs}
Γ ` delete eo[ef] : T

(T-Delete)

U = {Lp11 : S1, · · · , Lpnn : Sn, LA : abs} Γ ` eo : U Γ ` ef : LQ
T = inheritΓ(U,LQ)

Γ ` eo[ef] : T
(T-GetField)

Γ(o) = {· · ·L◦ : S · · · } Γ(f) = L Γ ` e3 : T
Γ, α <: L, f : α, o : {· · ·α↓ : S, (L ∩ α)◦ : S · · · } ` e2 : T

Γ ` if (o hasfield f) e2 else e3 : T
(T-HasField-Split)

Figure 5.7: Typing Fluid Objects

Typing Object Operations Field update and field deletion are not affected by inheritance, so

typing these operations does not treat ”parent” specially. Both T-Update and T-Delete allow the field

name to be an arbitrary L-typed expression, and not just a string constant. Therefore, at runtime,

the index expression may reduce to any string, str ∈ L. The necessary restrictions are:

• For T-Update, if a field (Lpii : Ti) overlaps at all with the type of the field name to update (L),

then the type of the value (S), must be a subtype of the type of the field (Ti).

• For T-Delete, if a field overlaps with the type of the field name to delete, then it must be

possibly absent (◦-annotated).

Object types are thus invariant under updates and deletion; we do not account for strong updates in

this dissertation, but they are supported by other type systems for scripting languages (section 5.7).

T-GetField types field lookup and must therefore account for inheritance. To do so, it uses the

inherit metafunction from object subtyping (section 5.4).

Typing Reflection T-HasField-Split is a simple if-splitting rule that accounts for the use of

reflection in the conditional, and refines the types of o and f in the true-branch when the check

succeeds. There are various sophisticated if-splitting techniques for typing complex conditionals and

72

control [16, 87] including flow typing, which is presented in this dissertation (chapter 4). T-HasField-

Split could be adapted to the aforementioned systems. 9

T-HasField-Split introduces a new type variable α in the true branch, bounded by α <: L, as

the type of the string f . Using α, it splits the type of pattern L, marking α as definitely present

(↓) whereas L ∩ α remains possibly absent (◦). Therefore, an o[f] expression in the true branch has

exactly the type S.

5.5.1 Soundness and Mutable State

We prove standard progress and preservation theorems for λobS . The proofs are over an extended

semantics with mutable references, reference types, and store typings. The presentation of fluid

object types in this chapter omits references for clarity, but we account for state in our proofs and

prototype implementation.

Theorem 4 (Preservation) If Σ ` σ, · ` e : T , and σe → σ′e′, then there exists a Σ′, such that

Σ ⊆ Σ′, Σ′ ` σ′, and Σ′; · ` e′ : T .

Theorem 5 (Progress) Σ ` σ and · ` e : T then either e ∈ v or there exist σ′ and e′ such that

σe→ σ′e′.

5.6 Implementation

Our type-checker for JavaScript uses fluid object types to type-check objects. The core language of

the type-checker is λS , which is closely related to λobS , which is presented in this chapter. Therefore,

the implementation is essentially a direct encoding of the material in this chapter.

Pattern Representations We use two representations for string patterns: finite sets of strings

and finite automata. For finite automata, we use the representation and decision procedure of

Hooimeijer and Weimer [48]. Their implementation is fast and based on mechanically proven prin-

ciples. A thin wrapper transparently converts patterns represented as sets to equivalent finite au-

tomata when necessary. The representation of patterns is thus fully abstract to the type-checker.

9This single typing rule is adequate for type-checking, but the proof of preservation requires auxiliary rules in the
style of Typed Scheme [86].

73

Type-Checking Experiments We type-check the λobS examples in this chapter, various other

λobS benchmarks, and 7, 000 lines of JavaScript code. The JavaScript code we type-check consist of

two suites of programs:

• 11 Google Chrome Experiments and Google Gadgets (chapter 7), and

• The ADsafe runtime and various sample ADsafe widgets (chapter 8).

We make two observations about typing objects in JavaScript.

• JavaScript programs heavily manipulate the DOM, which is a massive, object-oriented API

with functions and objects for manipulating HTML, CSS, local storage, the canvas, etc. These

APIs are specified in various IDL files, 10 which are a type-like interface definitions. We process

4, 000 lines of IDL to build a type environment of object types for Web applications.

• In chapter 8, we present a type-based approach for language-based Web sandboxes. Fluid

object types are instrumental for this verification; they are needed to describe the interfaces

of Web sandboxes.

Performance Subtyping patterns (fig. 4.4) and type well-formedness (fig. 5.2) suggest two possible

performance bottlenecks: both require pairwise pattern intersection checks and subtyping requires

pattern inclusion checks, which are reducible to pattern intersection. Finite automata intersection

takes exponential time and it is easy to construct synthetic examples that demonstrate the worst-

case time complexity of subtyping. Fortunately, we have reason to believe that realistic programs

work with a small collection of “interesting” patterns; most patterns are constant strings. The

only interesting pattern in the JavaScript standard library is for array indices. ADsafe and Google

Caja, discussed above, have two and eight patterns respectively. We test our implementation with

patterns from the aforementioned systems. On these patterns, our type-checker is fast; it runs

various benchmarks in approximately one second on an Intel Core i5 processor.

5.7 Related Work

Our work builds on the long history of semantics and types for objects and recent work on semantics

and types for scripting languages.

10www.w3.org/TR/WebIDL

www.w3.org/TR/WebIDL

74

Semantics of Scripting Languages There are various semantics for scripting languages (chap-

ter 2 and [34, 58, 79]) that model each language in detail. This chapter focuses on type-checking

a core calculus of objects and elides many features and details of individual scripting languages.

Our semantics also abstracts the plethora of string-matching operations available in real script-

ing languages into a single pattern matching construct, and makes object-reflection manifest for

type-checking.

Extensible Records The representation of objects in λobS is derived from extensible records,

surveyed by Fisher and Mitchell [28] and Bruce, et al. [13]. Wand presents a type inference algorithm

for objects encoded as records [89]. Unlike these languages, field names in λobS are first-class strings;

λobS includes operators to enumerate over fields and test for the presence of fields, since these are

typical of scripting languages. Our fluid object types account for these features using presence-

annotations and field-name patterns that are related to types for scripting languages, discussed

below.

Types and Contracts for Untyped Languages There are various type systems retrofitted onto

untyped languages. We discuss those that support objects.

Strongtalk [12] is a typed dialect of Smalltalk that uses protocols to describe objects. Field

patterns can describe more ad hoc objects than the protocols of Strongtalk, which are a finite

enumeration of fixed names. Strongtalk protocols may include a brand; they are thus a mix of

nominal and structural types. In contrast, fluid object types are purely structural, though we do

not anticipate any difficulty incorporating brands.

Our work shares features with various JavaScript type systems. In the type system of Anderson,

et al. [5], objects’ fields may be potentially present; it employs strong updates to turn these into

definitely present fields. Recency types [43] support field type-changes during initialization. Zhao’s

type system [95] also allows unrestricted object extension, but omits prototypes. In contrast to

these works, our fluid object types do not support strong updates. We instead allow possible-absent

fields to turn into definitely-present fields via reflection, which they do not support. Strong updates

would be fruitful to type initialization patterns. In these type systems, field names are first-order

labels. Thiemann’s [83] type system for JavaScript allows first-class strings as field names, which

we generalize to field patterns. In addition, we allow inheritance chains to be precisely typed by

75

distinguishing possibly-inherited fields from fields that are immediately present. These are useful

for typing features of scripting languages (section 5.2).

RPython [4] compiles Python programs to efficient byte-code for the CLI and the JVM. Dynam-

ically updating Python objects cannot be compiled. Thus, RPython stages evaluation into an inter-

preted initialization phase, where dynamic features are permitted, and a compiled running phase,

where dynamic features are disallowed. Our types give guarantees without staging restrictions.

DRuby [33] does not account for reflection in general. However, as a special case, An, et al. [3]

build a type-checker for Rails-based Web applications that partially-evaluates dynamic operations,

producing a program that DRuby can verify. In contrast, our types tackle reflection directly.

System D [16] uses dependent refinements to type dynamic dictionaries. Fluid object types can

type-check dictionaries as a special case of objects; we also account for inheritance, recursive objects

and imperative state. System D accounts for richer control-dependent type reasoning than the single

if-splitting rule presented in this chapter. However, chapter 4 accounts for control and and state

based type reasoning using other techniques. The authors of System D suggest integrating a string

decision procedure to reason about dictionary keys. We use DPRLE [48] to support exactly this

style of reasoning.

Heidegger, et al. [42] present dynamically-checked contracts for JavaScript that use regular ex-

pressions to describe objects. Our implementation uses regular expressions for static checking.

Regular Expression Types Regular tree types and regular expressions can describe the structure

of XML documents (e.g., XDuce [49]) and strings (e.g., XPerl [81]). These languages verify XML-

manipulating and string-processing programs. Our type system uses patterns not to describe trees

of objects like XDuce, but to describe objects’ field names. Our string patterns thus allow individual

objects to have semi-determinate shapes. Like XPerl, field names are simply strings, but our strings

are used to index objects, which are not modeled by XPerl.

Chapter 6

Assisted Type Refactoring

In the next chapter, we evaluate our JavaScript type-checker on a body of third-part code. However,

manually type-refactoring programs is labor-intensive. Therefore, this chapter presents a type-

refactoring tool that uses dynamic analysis to infer many annotations1. We employed this tool

produce the results in chapter 7.

6.1 Approximating Types by Runtime Instrumentation

Refactoring a large, untyped program to use types is too costly to do at once. Therefore, there are

various mechanisms that enable typed and untyped code to interoperate in a single program [29,

85, 92]. We adapt Typed Racket’s mechanisms for interoperability [85]. Since JavaScript does not

have modules, we encapsulate typed code in a closure, effectively creating programs with just two

modules.

However, merely enabling typed and untyped code to interoperate does not help programmers

refactor their code for types. To inject type-annotations into untyped code in any programming

language, programmers have to do the following:

• They have to identify the program fragment that they want to make type-safe.

• They have to add type annotations to the fragment, and they have to change code to appease

the type-checker.

1This chapter is based on joint work with Claudiu Saftoiu [76].

76

77

Figure 6.1: JSTrace output on Firefox

• Finally, they have to write type annotations for all the untyped free identifiers in the fragment.

These tasks can be daunting. They are particularly difficult when the programmer doing the type-

refactoring is not the original author. They’re harder still when the program is poorly documented.

Because we evaluate our work on various third-party programs found on the Web, we encountered

these problems ourselves.

Type inference is a possible solution. For Standard ML, inference is particularly convenient

because inference computes principal types. However, principal types aren’t necessary and inference

need not even be sound, so long as we type-check after inference.

We have built a tool that infers (possibly unsound) type annotations by runtime instrumenta-

tion [67]. From the programmer’s perspective, the tool displays a window with currently computed

type annotations. As the program runs and control-paths are exercised, the annotations “grow”.

At any point, the programmer can conclude that the program has been exercised enough and stop

execution. Our tools insert the computed types into the original source. The programmer can then

try to type-check the program. Even when the computed annotations are insufficient, they are

never entirely wrong, since they’re based on values observed at runtime. They help a maintenance

programmer get started on the task of type-refactoring.

The instrumentation builds an abstract heap, mapping labeled functions to abstract values. The

instrumentation records sets of abstract arguments and results of these labeled functions. Constants

are abstracted to their runtime tags, objects are abstracted by abstracting their fields, and functions

78

are abstracted to their labels. We map the abstract heap to a collection of types in a natural way.

Runtime tags map to types, abstract objects map to object types, multiple abstract values in a

single set map to a union type, and function labels l map to the type annotation of the function l.2

In chapter 7, we use this tool to automatically generate type annotations for third-party JavaScript

programs. Many of these programs are undocumented, and the generated type annotations make

type-refactoring much easier.

2We signal an error on cycles, though self-application does not occur in practice.

Chapter 7

Evaluation I: Documentation

This and the next chapter evaluate our JavaScript type-checker on a body of third-party code. In

this chapter,1 we present our experience type-refactoring 15 small programs that were authored by

different programmers. We demonstrate that some of this code is awful and undocumented. Once

typed, the type annotations become a form of provably correct documentation for these programs.

This chapter thus demostrates that our types are an effective way to document JavaScript code.

7.1 Type-Checking Gadgets and Chrome Experiments

We evaluate our work by fully type-refactoring an assortment of Chrome Experiments and Google

Desktop Gadgets.2 These programs are written by several authors and employ many different

programming styles. Many are a number of years old and have little or no documentation. Type-

refactoring these programs demonstrates that our type-checker admits several programming styles.

Note that these are all small programs that one could simply rewrite in a new typed programming

language. When programs grows by a few orders of magnitude, rewriting becomes harder and type-

refactoring becomes more relevant. Due to a lack of resources, we have not tried to type-refactor

larger JavaScript programs.

Figure 7.1 lists these programs and information that we discuss below. In all cases, we first ran

our inference tool (section 6.1) to generate annotations. The columns labeled “Type Annotations”

state the number of annotations correctly inserted by the tool described in chapter 6 (Auto) and the

1This chapter is based on joint work with Claudiu Saftoiu [76].
2www.chromeexperiments.com and desktop.google.com

79

www.chromeexperiments.com
desktop.google.com

80

Refactorings Annotations
Program LOC Fixes Problems Auto Manual
analogclock 112 0 6 13 0
animation 70 0 0 4 1
burncanvas 157 10 8 11 1
catchit 165 7 9 6 3
countdown 129 2 12 4 0
hashapass 257 1 7 13 7
light 151 8 19 3 7
metronome 106 1 4 10 2
morse 275 8 5 12 0
resistor 591 18 2 32 0
rsi 328 0 27 22 0
text2wav 488 3 6 38 3
topten 443 67 0 18 0
watertype 284 13 36 14 3
watchimer 947 18 7 15 2
TOTAL 4503 156 148 194 25

Figure 7.1: Annotation overhead on JavaScript code

number that need to be edited or inserted manually (Manual). As the table shows, our 4, 500-line

codebase requires only 25 manual annotations.

In addition to annotations, a retrofitted type system requires refactorings. Some refactorings

expose weaknesses—a static type system cannot account for all legitimate untyped code (the “Prob-

lems” column). Other refactorings expose bugs and features that the type system willfully eliminates

(the “Fixes” column). Each of these refactorings required approximately one line. Therefore, we

changed 6.7% of the lines of code.

The following are a representative sample of programming patterns we willfully eliminate and

count as Fixes:

• DOM callbacks that do not use their argument are often written without formal arguments. We

signal type errors on arity-mismatches (with the exception of the kinds shown in section 4.1.1).

• We require all identifiers to be statically bound (e.g., 59 of the refactorings in “topten” occur

because the program does not use var to declare variables).

• Some functions, e.g., setTimeout, can take either a string that is eval’d or a function as an

argument. To improve program security, we disallow strings as arguments to setTimeout.

• It is possible to apply arithmetic operators to arbitrary objects. For example, “watchimer”

81

subtracts Dates, since their valueOf method returns a number (UNIX time). We require arith-

metic operators (excluding +) to receive numeric operands. Therefore, we refactor the program

to explicitly call valueOf.

We easily account for some of the patterns above. However, by rejecting them, our type-checker

makes JavaScript behave more like a “normal” programming language. Furthermore, many of these

decisions reflect matters of taste, and can easily be reversed to produce a slightly different type-

checker. Indeed, when we type-check ADsafe in chapter 8, we need to disable these checks and

admit runtime errors (section 8.8).

The refactorings labeled “Problems” expose some trivial implementation omissions that could

be addressed with a little more work, as well as some deeper deficiencies in our type system:

• A pattern seen with callbacks is to declare a variable (e.g., var x = undefined) outside and

initialize it (e.g., x = 10) inside the callback. In such cases, neither typing nor flow-analysis

can deduce that x : Num. We typically refactor the declaration (e.g., var x = -1).

• The getElementById function can return arbitrary HTML elements on the page, so its return

type is HTMLElement, the type of all elements. However, “catchit” uses getElementById to

access a <canvas>, which has drawing methods. In such cases, we insert a downcast (checked

by a contract). A richer type system for the DOM could eliminate these refactorings [84].

• “countdown” initializes an empty object literal, then incrementally adds fields. We do not

support this pattern, since our flow analysis is agnostic to objects. However, this pattern is

addressed by recency types [43].

• There are various syntactic patterns that our type checker does not accommodate. For ex-

ample, we do not account for functions that are lifted arbitrarily, we require arrays literals

instead of supporting new Array(), etc. With a little more elbow-grease, we could add support

for these features in our type system.

As the table shows, most problems occur in just a few programs. These refactorings could be

addressed by enriching the type system. Alternatively, since many of the refactorings are mechanical,

a tool could refactor them, keeping the type system simple. Type system simplicity matters when

types are used as documentation.

Chapter 8

Evaluation II: Security

This chapter1 presents a type-based technique for verifying language-based Web sandboxes. In

particular, we detail our verification of the ADsafe Web sandbox. In the previous chapter, we used

types to document programs. In this chapter types also specify security properties. We use types in

two very distinct ways:

• We annotate and type-check the 2.5 KLOC ADsafe runtime library. In contrast, the previous

chapter type-checks a collection of programs. Our experience supports folklore that library

code is very different from program code. The ADsafe library makes heavier use of type

abstraction and reflection. Type-checking revealed several bugs in the ADsafe library.

• We also use types to generate a safe sub-language of JavaScript, following the recipe in sec-

tion 3.4. Unlike that chapter, the sub-language generated in this chapter is not a toy, but

a generalization of ADsafe’s existing, ad hoc JavaScript sub-language. The generated sub-

language had one discrepancy, which turned out to be a bug in ADsafe’s sub-language.

We briefly mentioned language-based Web sandboxing chapter 3. This chapter begins detailing

what they do and how they work.

1This chapter is based on joint work with Spiridon Aristides Eliopoulos and Joe Gibbs Politz [72].

82

83

 �
reject

adnet.com

paper.com

Static

checks

Wrap

Figure 8.1: Web sandboxing architecture

8.1 Mashups

A mashup is a Web page that displays content and executes JavaScript code from various untrusted

sources. Facebook applications, gadgets on the iGoogle homepage, and various embedded maps

are prominent examples of mashups. Moreover, Web pages that display advertisements from ad

networks are also mashups; ads often employ JavaScript for animations and interactivity. A survey

of popular pages shows that a large percentage of them include scripts from a diverse array of external

sources [94]. Unfortunately, these third-party scripts run with the same privileges as trusted, first-

party code served directly from the originating site. Hence, the trusted site is susceptible to attacks

by maliciously crafted third-party software.

To address this threat, various organizations have developed language-based Web sandboxes.

These sandboxes all have similar high-level goals and designs, which we outline in section 8.2. In

section 8.3, we review the design and implementation of sandboxes and demonstrate the need for

tool-supported verification. Section 8.4 provides a detailed plan for the rest of this chapter.

8.2 Language-based Web Sandboxing

The Web browser environment provides references to objects that implement network access, disk

storage, geolocation, and other capabilities. Legitimate web applications use them for various rea-

sons, but embedded widgets can exploit them because all JavaScript on a page runs in the same

global environment. A Web sandbox thus attenuates or prevents access to these capabilities, allowing

84

pages to safely embed untrusted widgets. ADsafe [18], Caja [66], FBJS [25], and BrowserShield [73]

are language-based sandboxes that employ broadly similar security mechanisms, as explained by

Maffeis, et al. [59]:

• A Web sandbox includes a static code checker that filters out certain widgets that are almost

certainly unsafe. This checker is run before the widget is delivered to the browser.

• A Web sandbox provides runtime wrappers that attenuate access to the DOM and other

capabilities. These wrappers are defined in a trusted runtime library that is linked with the

untrusted widget.

• Static checks are necessarily conservative and can reject benign programs. Web sandboxes

thus specify how potentially-unsafe programs are rewritten to use dynamic safety checks.

This architecture is illustrated in fig. 8.1, where an untrusted widget from adnet.com is embedded

in a page from paper.com. The untrusted widget is filtered by the static checker. If static checking

passes, the widget is rewritten to invoke the runtime library. Both the runtime library and the

checked, rewritten widget must be hosted on a site trusted by paper.com, and are assumed to be

free of tampering.

Reference Monitors A Web sandbox implements a reference monitor between the untrusted

widget and the browser’s capabilities. Anderson’s seminal work on reference monitors identifies

their certification demands [6, p 10-11]:

The proof of [a reference monitor’s] model security requires a verification that the mod-

eled reference validation mechanism is tamper resistant, is always invoked, and cannot

be circumvented.

Therefore, a Web sandbox must come with a precisely stated notion of security, and a proof that its

static checks and runtime library correctly maintain security. The end result should be a quantified

claim of safety over all possible widgets that execute against the runtime library.

8.3 Code-Reviewing Web Sandboxes

Imagine we are confronted with a Web sandbox and asked to ascertain its quality. One technique

we might employ is a code-review. Therefore, we perform an imaginary review of a Web sandbox,

adnet.com
paper.com
paper.com

85

focusing on the details of ADsafe. We then discuss how to (mostly) remove people from the loop.

ADsafe, like all Web sandboxes, consists of two interdependent components:

• a static verifier, called JSLint,2 which filters out widgets not in a safe subset of JavaScript,

and

• a runtime library, adsafe.js, which implements DOM wrappers and other runtime checks.

These conspire to make it safe to embed untrusted widgets, though “safe” is not precisely defined.

We will return to the definition of safety in section 8.4.

Attenuated Capabilities Widgets should not be able to directly reference various capabilities

in the browser environment. Direct DOM references are particularly dangerous because, from an

arbitrary DOM reference, elt, a widget can simply traverse the object graph and obtain references

to all capabilities:

var myWindow = elt.ownerDocument.defaultView;

myWindow.XMLHttpRequest;

myWindow.localStorage;

myWindow.geolocation;

Widgets therefore manipulate wrapped DOM elements instead of direct references. DOM wrappers

form the bulk of the runtime library and include many dynamic checks and patterns that need to

be verified:

• The runtime manipulates DOM references, but returns them to the widget in wrappers. We

must verify that all returned values are in fact wrapped, and that the runtime cannot be

tricked into returning a direct DOM reference.

• The runtime calls DOM methods on behalf of the widget. Many methods, such as appendChild

and removeChild, require direct DOM references as arguments. We must verify that the runtime

cannot be tricked with a maliciously crafted object that mimics the DOM interface and steals

references.

• The runtime attaches DOM callbacks on behalf of the widget. These callbacks are invoked by

the browser with event arguments that include direct DOM references. We must verify that

the runtime appropriately wraps calls to untrusted callbacks in the widget.

2The reader may know that JSLint also performs simple “linting” checks in addition to checks for ADsafe. We
only consider JSLint with ADsafe checks enabled.

86

• The widget has access to a DOM subtree that it is allowed to manipulate. The runtime ensures

that the widget only manipulates elements in this subtree. We must verify that various DOM

traversal methods, such as document.getElementById and Element.parentNode, do not allow the

widget obtain wrappers to elements outside its subtree.

• The runtime wraps many DOM functions that are only conditionally safe. For example,

document.createElement is usually safe, unless it is used to create a <script> tag, which can load

arbitrary code. Similarly, the runtime may allow widgets to set CSS styles, but a CSS URL-

value can also load external code. We must verify that the arguments supplied to these DOM

functions are safe.

ADsafe’s DOM wrappers are called Bunches, which wrap collections of HTML elements. There are

twenty Bunch-manipulating functions that are exposed to the widget—in addition to several private

helper functions—that face all the issues enumerated above and need to be verified. These functions

cannot be verified in isolation, because their correctness is dependent on assumptions about the

kinds of values they receive from widgets. These assumptions are discharged by the static checks in

JSLint and other runtime checks to avoid loopholes and complexities in JavaScript’s semantics.

JavaScript Semantics Web sandboxes also contend with JavaScript features that hinder security:

• Certain JavaScript features are unsafe to use in widgets. For example, a widget can use this

to obtain window, so it is rejected by JSLint:

f = function() { return this; };

var myWindow = f();

We must verify that the subset of JavaScript admitted by the static checker does not violate

the assumptions of the runtime library.

• Many JavaScript operators and functions include implicit type conversions and method calls

that are difficult to reason about. For example, when an operator expects a string but is instead

given an object, it does not signal an error. Instead, it calls the object’s toString method. It

is easy to write a stateful toString method that returns different strings on different calls.

Such an object can then circumvent dynamic safety checks that are not carefully written to

avoid triggering implicit method calls. These implicit calls are avoided by carefully testing

87

ADSAFE : ADSAFE.get(obj,name)

dojox.secure : get(obj,name)

Caja : $v.r($v.ro('obj'),$v.ro('name'))
WebSandbox : c(d.obj,d.name)

FBJS : a12345_obj[$FBJS.idx(name)]

Figure 8.2: Similar Rewritings for obj[name]

the runtime types of untrusted values, using the typeof operator. Such tests are pervasive in

ADsafe. As a further precaution, ADsafe tries to ensure that widgets cannot define toString

and valueOf fields in objects.

Chapter 2 catalogs these and other JavaScript quirks that can confound the most experienced

programmers. Indeed, the bugs we discover (section 8.9) are not deep design errors, but bugs

in code to workaround JavaScript’s semantic quirks.

JavaScript Encapsulation JavaScript objects have no notion of private fields. If object opera-

tions are not restricted, a widget could access built-in prototypes (via the __proto__ field) and modify

the behavior of the container. Web sandboxes statically reject such expressions:

obj.__proto__;

There are various other dangerous fields that are also blacklisted and hence rejected by sandboxes.

However, syntactic checks alone cannot determine whether computed field names are unsafe:

obj["__pro" + "to__"];

Widgets are instead rewritten to use runtime checks that restrict access to these fields. Figure 8.2

shows the rewrites employed by various sandboxes. Some sandboxes insert these and other checks

automatically, giving the illusion of programming in ordinary JavaScript. ADsafe requires widget

authors to insert the dynamic checks themselves, but the principle remains the same.

Web sandboxes use this method to also simulate private fields. For example, ADsafe stores direct

DOM references in the __nodes__ field of Bunches, and blacklists the __nodes__ field.

The Reviewability of Web Sandboxes

We have highlighted a plethora of issues that a Web sandbox must address, with examples from

ADsafe. Although ADsafe’s source follows JavaScript “best practices,” the sheer number of checks

and abstractions make it difficult to review. There are approximately 50 calls to three kinds of

88

runtime assertions, 40 type-tests, 5 regular-expression based checks, and 60 DOM method calls in

the 1, 800 LOC adsafe.js library. Various ADsafe bugs were found in the past and this chapter

presents a few more (section 8.9). Note that ADsafe is a small Web sandbox relative to larger

systems like Caja.

The Caja project asked an external review team to perform a code review [7]. The findings

describe many low-level details that are similar to those we discussed above. In addition, two

higher-level concerns stand out:

• “[Caja is] hard to review. No map states invariants and points to where they are enforced,

which hurts maintainability and security.”

• “Documentation of TCB is necessary for reviewability and confidence.”

These remarks identify an overarching requirement for any review: the need for specifications.

Specifications tell us if the system intends to meet our needs. In addition, they help us determine if

the implementation is correct.

8.4 Verifying a Sandbox: Our Roadmap

Defining Safety Because humans are expensive and error-prone, and because the code review

needs to be repeated every time the program changes, it is best to automate the review process.

However, before we begin automating anything, we need some definition of what security means. We

focus on a definition that is specific to ADsafe, though the properties are similar to the goals of other

web sandboxes. From correspondence with ADsafe’s author, we initially obtained the following list

of intended properties (rewritten slightly to use the terminology of this chapter).

Definition 2 (ADsafety) If the containing page does not augment built-in prototypes, and all em-

bedded widgets pass JSLint, then:

1. widgets cannot load new code at runtime, or cause ADsafe to load new code on their behalf;

2. widgets cannot affect the DOM outside of their designated subtree;

3. widgets cannot obtain direct references to DOM nodes; and

4. multiple widgets on the same page cannot communicate.

89

Note that the first two properties are common to sandboxes in general—allowing arbitrary

JavaScript to load at runtime compromises all sandboxes’ security goals, and all sandboxes pro-

vide mediated access to the DOM by preventing direct access.

We also note that the assumption about built-in prototypes is often violated in practice [27].

Nevertheless, like ADsafe, we make this assumption; mitigating it is outside our scope. Given this

definition, our goal is to produce a (mostly) automated verification that supports these properties.

Verifying Safety We employ the general purpose JavaScript type-system developed for this dis-

sertation to define and verify ADsafety. Type-checking is well-suited for this task for several reasons.

We choose a static type system as our tool of choice for several reasons. First, programmers are fa-

miliar with type systems, and ours is mostly standard (the novelties are detailed in chapters 4 and 5).

This lessens the burden on sandbox developers who need to understand what the verification is say-

ing about their code. Second, our type system is much more efficient than most whole-program

analyses or model checkers, leading to a quick procedure for checking ADsafe’s runtime library (20

seconds). Efficency and understandability allow for incremental use in a tight development loop.

Finally, our type system is accompanied by a soundness proof. This property accomplishes the ac-

tual verification. Thus, the features of comprehensibility, efficiency, and soundness combine to make

type checking an effective tool for verifying some of the properties of web sandboxes.

In order to demonstrate the effectiveness of our type-based verification approach, we use type-

based arguments to prove an ADsafety theorem. We mostly achieve this (section 8.8) after fixing

bugs exposed by our type checker (section 8.9). The rest of this chapter presents a typed account

of untrusted widgets and the ADsafe runtime.

• The ADsafety claim is predicated on widgets passing the JSLint checker. Therefore, we need

to model JSLint’s restrictions. We do this in section 8.5.

• Once we know what we can expect from JSLint, we can verify the actual reference monitoring

code in adsafe.js using type-checking (section 8.7).

• Before we can verify adsafe.js, we need to account for the details of JavaScript source and

model the browser environment in which this code runs. λJS (chapter 2) tackles most of these

details; we discuss its application in section 8.6.

We discuss extensions to verify other Web sandboxes in section 8.10.

90

8.5 Modeling Secure Sublanguages

All web sandboxes’ runtime libraries expect to execute against widgets that have been statically

checked and rewritten, as shown in fig. 8.1. These checks and rewrites enforce that widgets are

written in a sublanguage of JavaScript. This sublanguage ought to be specified explicitly. We

focus here on modeling the checks performed by JSLint, ADsafe’s static checker, which presents an

interesting challenge: there is no formal specification of the language of JavaScript programs that

pass JSLint. Instead, the specification is implicit in the implementation of JSLint itself. In this

section, we develop a specification of JSLint-ed widgets.3

Only a fraction of JSLint’s static checks are related to ADsafe. The rest are lint-like code-

quality checks. JSLint also checks the static HTML of a widget. Verifying this static HTML is

beyond the scope of our work; we do not discuss it further. We instead focus on the security-critical

static JavaScript checks in JSLint.

How is JSLint used? The ADsafe runtime makes several assumptions about the shape of values

it receives from widgets. These assumptions are not documented precisely, but they correspond to

various static checks in JSLint. To model JSLint, we reflect these checks in a type, called Widget,

which we define below. In section 8.5.2 we discuss how this type relates to the behavior of the JSLint

implementation.

8.5.1 A Type for Widgets

We expect that all variables and sub-expressions of widgets are typable as Widget. The ADsafe

runtime can thus assume that widgets only manipulate Widget-typed values.

Primitives JSLint admits JavaScript’s primitive values, with trivial types:

Prim = Num ∪ Str ∪ True ∪ False ∪ Null ∪ Undef

We have separate types for True and False because they are necessary to type-check adsafe.js (sec-

tion 8.7). Prim is an untagged union type, and our type system accounts for common JavaScript

3Because we want a strategy that extends to other sandboxes, we do not try to exploit the fact that JSLint is
written in JavaScript. The Cajoler of Caja is instead written in Java, and the filters and rewriters for other sandboxes
might be written in other languages. The strategy we outline here avoids both getting bogged down in the details of
all these languages as well as over-reliance on JavaScript itself.

91

patterns for discriminating unions. We might initially assume that

Widget = Prim

Objects and Blacklisted Fields JSLint admits object literals but blacklists certain field names

as dangerous. All other fields are allowed to contain widget values. We therefore augment the Widget

type to include objects. We use fluid object types (chapter 5) to describe these objects:

Widget = µα.Prim ∪ Ref




"toString", "valueOf",

__.*__,

"arguments", "caller", "callee", · · ·



◦

: α,

{"toString", "valueOf"} : abs


The type above states that object literals may not have the fields "toString" and "valueOf". A tlint-

typed object may contain any Widget-typed field, except those in the explicitly blacklisted: all fields

that begin and end with two underscores, and a small, fixed collection of fields.

Functions Widgets can create and apply functions, so we must widen our Widget type to admit

them. Functions in JavaScript are objects with an internal code field, which we add to allowed

objects:

. . .Ref

 code : Global ∪ α× α · · · → α,

. . .


The type of the code field indicates that widget-functions may have an arbitrary number of Widget-

typed arguments and return Widget-typed results.4 It also specifies that the type of the implicit

this-argument (written inside brackets) may be either Widget or Global. The type Global is not a

subtype of Widget, which expresses the underlying reason for JSLint’s rejection of all widgets that

contain this (see Claim 1 below). If the this-annotation is omitted, the type of this is >.

Prototypes JSLint does not allow widgets to explicitly manipulate objects’ prototypes. However,

since field lookup in JavaScript implicitly accesses the prototypes, we specify the type of prototypes

4The α · · · syntax is a literal part of the type, and means the function can be applied to any number of additional
α-typed arguments. This is uniform variable-arity polymorphism [80].

92

Widget = µα.Prim ∪ Ref




"toString", "valueOf",
__.*__,
"arguments", "caller", "callee", "eval", "prototype"
"watch", "unwatch", "constructor"


◦

: α,

code : Global ∪ α× α · · · → α,

"__proto__" :
Object ∪ Function ∪ Bunch ∪ Array,
∪RegExp ∪ Str ∪ Num ∪ Bool

"__nodes__" :Array〈HTML〉∪Undef,
"__star__" : Bool ∪ Undef,
{"toString", "valueOf"} : abs


Figure 8.3: The Widget type

in Widget:

. . .Ref

 "__proto__" : Object ∪ Function ∪ . . . ,

. . .


The proto field enumerates several safe prototypes, but notably omits DOM prototypes such as

HTMLElement, since widgets should not obtain direct references to the DOM.

Typing Private Fields Widgets cannot create fields that begin and end with underscores. How-

ever, ADsafe uses some of these fields itself as private fields to build the Bunch abstraction:

. . .Ref


"__nodes__" :Array〈HTML〉∪Undef,

"__star__" : Bool ∪ Undef,

. . .


Notably the type of "__nodes__" Array〈HTML〉 ∪ Undef is not a subtype of Widget, so widgets them-

selves cannot access it.

The full Widget type in fig. 8.3 is a formal specification of the shape of values that adsafe.js

receives from and sends to widgets. This type is central to our verification of adsafe.js and of

JSLint.

8.5.2 Widget and JSLint Correspondence

Though we have offered intuitive arguments for why Widget corresponds to the checks in JSLint, we

would like to gain confidence in its correspondence with the behavior of the actual JSLint program

93

that sites use:

Claim 3 (Linted Widgets Are Typable) If JSLint (with ADsafe checks) accepts a widget e,

then e and all of its variables and sub-expressions can be Widget-typed.

We validate this claim by testing. We use ADsafe’s sample widgets as positive tests—widgets that

should be typable and lintable—and our own suite of negative test cases (widgets that should be

untypable and unlintable).5 Note the direction of the implication: an unlintable widget may still be

typable, since our type checker admits safe widgets that JSLint rejects.6 The type checker could be

used as a replacement for JSLint’s ADsafe checks, but these tests give us confidence that checking

the Widget type corresponds to what JSLint admits in practice.

8.6 Modeling JavaScript and the Browser

Verification of a Web sandbox must account for the idiosyncrasies of JavaScript. It also needs

to model the run-time environment—provided by the browser—in which the sandboxed code will

execute. Here we discuss how we model the language and the browser.

JavaScript Semantics We use λJS (chapter 2), which reduces JavaScript to a core semantics,

which omits many of JavaScript’s complexities. As chapter 2 explains, λJS is accompanied by a

desugaring function that maps all JavaScript programs (idiosyncrasies included) to behaviorally

equivalent λJS programs. The transformation explicates much of JavaScript’s implicit semantics.

Hence, we find it easier to build tools that analyze the much smaller λJS language than to directly

process JavaScript. Section 2.2 argues that the translation to λJS is adequate by testing it against

real world implementations. This testing strategy, and the simplicity of implementation that λJS

enables, give us confidence that our tools correctly account for JavaScript.

Modeling the Browser DOM ADsafety claims that window.eval is not applied. To validate this

claim, the environment does not ascribe a type to eval and related functions such as document.write.

Finally, certain functions, such as setTimeout, behave like eval when given strings as arguments.

ADsafe does need to call these functions, but it is careful to never call them with strings. In our

type environment, we give them restrictive types that disallow string arguments.

5Testing revealed a security vulnerability in JSLint (section 8.9.1).
6Appendix A.1 has examples of the differences.

94

{

setTimeout: (Widget→Widget)×Widget→ Int,
document: {

. . .
},

. . .
}

Figure 8.4: A Fragment of the Type of window

var dom = {

append:

function(bunch)

/*: [Widget ∪ Global]Widget×Widget · · · →Widget */

{ // body of append ... },

combine:

function(array)

/*: [Widget ∪ Global]Widget×Widget · · · →Widget */

{ // body of combine... },

q:

function (text)

/*: [Widget ∪ Global]Widget×Widget · · · →Widget */

{ // body of q... },

// ... more dom ...

};

Figure 8.5: Annotations on the dom object

Figure 8.4 specifies a fragment of the type of window, which carefully specifies the type of unsafe

functions in the environment. The remaining safe DOM does not need to be fully specified. adsafe.js

only uses a small subset of the DOM methods. These methods require types. The browser envi-

ronment is therefore modeled with 500 lines of object types (appendix E). This type environment is

essentially the specification of foreign DOM functions imported into JavaScript.

8.7 Verifying the Reference Monitor

In section 8.5, we discussed modeling the sublanguage of widgets interacting with the sandboxing

runtime. In the case of ADsafe and JSLint, we built up the Widget type as a specification of the

kinds of values that the reference monitor, adsafe.js, can expect at runtime. In this section, we

discuss how we use the Widget type to model the boundary between reference monitor and widget

code, and ensure that the runtime library correctly guards critical behavior.

The Widget type specifies the shape of widget values that the ADsafe runtime manipulates.

Widget is therefore used pervasively in our verification of adsafe.js. For example, consider a

typical Bunch method:

95

Bunch.prototype.append = function(child) {

reject_global(this);

var elts = child.__nodes__;

. . .

return this;

}

The Bunch objects that ADsafe passes to the widget have Bunch.prototype as their proto (see fig. 8.3),

making these methods accessible. Their use in the widget is constrained only by JSLint, so we must

type-check these methods with (only) JSLint’s assumptions in mind.

For example, we might assume that the child argument above should be a Bunch, the implicit

this argument should also be a Bunch, and it therefore returns a Bunch. However, JSLint does not

provide such strong guarantees. Consider this example, which passes JSLint:

var func = someBunch.append;

func(900, true, "junk", -7);

Here, this is bound to window, child is a number, and there are additional arguments. Therefore, we

cannot assume that append has the type [Bunch]Bunch → Bunch. Instead, the most precise type we

can ascribe is:

[Widget ∪ Global]Widget · · · →Widget

That is, this could be Widget-typed or the type of the global object, Global, and the other arguments

may have any subtype of Widget, which includes strings, numbers, and other non-Bunch types. The

runtime check in append’s body (namely, reject_global(this)) is responsible for checking that this is

not the global object before manipulating it. Our type checker recognizes such checks and narrows

the broader type to Widget after appropriate runtime checks are applied. If such checks were missing,

the type of this would remain Widget ∪ Global, and return this would signal a type error because

Widget ∪ Global is not a subtype of the stated return type Widget.

Ascribing types to functions provided by the ADsafe runtime is therefore trivial. We give all the

same type:

[Widget ∪ Global]Widget · · · →Widget

The type checker we extend is not ADsafe-specific, and requires explicit type annotations. However,

since all the annotations are identical, they are trivial to insert. Figure 8.5 shows a small excerpt

96

of such annotations, which the checker reads from comments, so programs can run unaltered in the

browser.

Types for Private Functions ADsafe also has a number of private functions, which are not

exposed to the widget. These functions have types with capabilities the widget does not have

access to, such as HTML. For example, ADsafe specifies a hunter object, which contains functions

that traverse the DOM and accumulate arrays of DOM nodes. These functions all have the type

HTML→ Undef, and add to an array result that has type Array〈HTML〉. ADsafe can freely use these

capabilities inside the library as long as it doesn’t hand them over to the widget. Our annotations

show that it doesn’t, because these types are not compatible with Widget.

Type-Checking ADsafe We type-check ADsafe using the JavaScript type-checker developed for

this dissertation. ADsafe heavily exercises both flow typing (chapter 4) and fluid object types

(chapter 5), the two type-checking innovations that we implement in the type-checker.

The Widget-type, which describes the reference monitor’s interface to widgets, evidently uses fluid

object types. Widget is an untagged union, and within the reference monitor there are a number

of runtime checks to discriminate Widget-typed values. These runtime checks ensure that protected

objects—DOM objects and browser functions in ADsafe’s case—are only manipulated in safe and

well-defined ways. For example, when setTimeout’s first argument is a string, rather than a function,

it exhibits eval-like behavior, which violates ADsafety’s constraints. Thus we instead give it the type

(Widget→Widget)×Widget→ Num

Doing so forces the first argument to be a function and, in particular, not a string. Now consider

its use:

later: function (func, timeout)

/*: Widget×Widget→Widget */ {

if (typeof func === "function") {

setTimeout(func, timeout || 0);

} else { error(); }

}

Because ADSAFE.later is exported to widgets, it can only assume the Widget type for its arguments,

including func. A traditional type checker would thus conclude that func has type Widget everywhere

97

in later. Because Widget includes Str, the invocation of setTimeout would yield a type error—even

though this is precisely what the conditional in later is avoiding!

This is an if-splitting pattern that we type-checking using flow typing (chapter 4) flow analysis.

The analysis informs the type checker that due to the typeof check, uses of func in the then-branch of

the conditional can in fact be refined from the large Widget type of Str ∪ Num ∪ . . . to the function

type that setTimeout requires.

8.7.1 Required Refactorings

Our type system cannot type check the ADsafe runtime as-is; we need to make some simple refac-

torings. The need for these refactorings does not reflect a weakness in ADsafe. Rather, they are

programming patterns that we cannot verify with our type system. To gain confidence that we

didn’t change ADsafe’s behavior, we run ADsafe’s sample widgets against our refactored version of

ADsafe, and they behave as expected. We describe these refactorings below:

Additional reject_name Checks ADsafe uses reject_name to check accesses and updates to object

properties in adsafe.js. If-splitting uses these checks to narrow string set types and type-check

object property references. However, ADsafe does not use reject_name in every case. For example,

it uses a regular expression to parse DOM queries, and uses the result to look up object properties.

Because our type system makes conservative assumptions about regular expressions, it would erro-

neously indicate that a blacklisted field may be accessed. Thus, we add calls to reject_name so the

type system can prove that the accesses and assignments are safe.

Inlined reject_global Checks Most Bunch methods start by asserting reject_global(this), which

ensures that this is Widget-typed in the rest of the method. Our type system cannot account for such

non-local side-effects, but once we inline reject_global, if-splitting is able to refine types appropriately

(for instance, in the Bunch.prototype.append example early in this section).

makeableTagName ADsafe’s whitelist of safe DOM elements is defined as a dictionary:

var makeableTagName =

{ "div": true, "p": true, "b": true, . . . };

98

var reject_name = function (name) {

return

((typeof name !== 'number' || name < 0) &&

(typeof name !== 'string' ||

name.charAt(0) === '_' ||

name.slice(-1) === '_' ||

name.charAt(0) === '-'))
|| banned[name];

});

function F() {} // only used below

ADSAFE.create =

typeof Object.create === 'function'
? Object.create

: function(o) {

F.prototype =

typeof o === 'object' && o

? o : Object.prototype;

return new F();

};

Figure 8.6: The Unverified Portion of ADsafe

This dictionary omits an entry for "script". The document.createElement DOM method creates new

nodes. We ensure that <script> tags are not created by typing it as follows:

document.createElement : ("script")
− → HTML

ADsafe uses its tag whitelist before calling document.createElement:

if (makeableTagName[tagName] === true) {

document.createElement(tagName);

}

Our type checker cannot account for this check. We instead refactor the whitelist (a trick noted

elsewhere [61]):

var makeableTagName =

{ "div": "div", "p": "p", "b": "b", . . . };

The type of these strings are ("div")+, ("p")+,("b")+, etc., so that makeableTagName[tagName] has type

("div", "p", "b", . . .)+. Since this finite set of strings excludes "script", it now matches the argument

type of createElement.

99

8.7.2 Cheating and Unverifiable Code

A complex body of code like the ADsafe runtime cannot be type-checked from scratch in one sitting.

We therefore found it convenient to augment the type system with a cheat construct that ascribes a

given type to an expression without descending into it. We could thus use cheat when we encountered

an uninteresting type error and wanted to make progress. Our goal, of course, was to ultimately

remove every cheat from the program.

We were unable to remove two cheats, leaving eleven unverified source lines in the 1,800 LOC

ADsafe runtime. We can, in fact, ascribe interesting types to these functions, but checking them is

beyond the power of our type system. Figure 8.6 shows these eleven unverified lines, and we discuss

them below.

reject name The reject_name function returns true if its argument is a blacklisted field and false

otherwise. This function is used as a predicate to guard against invalid field accesses, so we ascribe

it an intersection type:

UnsafeField→ True ∩ UnsafeField→ Bool

where UnsafeField is the set of blacklisted field names. Our implemented type-checker does not

support checking functions with intersection types, but we type-check applications of intersection-

typed functions in the usual way.

ADSAFE.create In the ECMAScript 5 standard, Object.create takes an object o as a parameter and

creates a new object whose prototype is o; if o is not an object, the new object’s prototype is

Object.prototype. ADsafe provides this same functionality for current browsers through ADSAFE.create.

This function is never used by ADsafe; it is only intended for widgets. Therefore, its type must be

[Global ∪Widget]Widget · · · →Widget

JSLint ensures that the actual argument is Widget-typed (section 8.5). However, the return type

is problematic. In our Widget type (fig. 8.3), the proto field admits Object but not Widget, which

is necessary to type-check the code. Permitting α (which represents Widget) in the type of proto

results in a type system that we have not been able to show will terminate.

100

ADSAFE._intercept ADsafe allows the hosting Web page to define interceptors, which are functions

that get direct access to the DOM. Verifying interceptors entails verifying that the trusted con-

tainer is safe. We can do so using the same technology we use to verify the ADsafe runtime—our

typechecker!

8.8 ADsafety Redux

Sections 8.5 and 8.7 gave the details of our strategy for modeling JSLint and verifying adsafe.js. In

this section, we combine these results and relate it to the original definition of ADsafety (definition 2).

The use of a type system allows us to make straightforward, type-based arguments of safety for the

components of ADsafe.

The lemmas below formally reason about type-checked widgets. Claim 3 (section 8.5.2) estab-

lishes that linted widgets are in fact typable. Therefore, we do not need to type-check widgets.

Widget programmers can continue to use JSLint and do not need to know about our type checker.

However, given the benefits of uniformity provided by a type checker over ad hoc methods like JSLint

(section 8.9 details one exploit that resulted from such an ad hoc approach), programmers may be

well served to use our type checker instead.

Type Soundness We type-check ADsafe using the JavaScript type-checker built for this disser-

tation. However, we disable all checks for runtime errors. Runtime errors are perfectly acceptable

(they halt execution before something bad happens).

Since we admit runtime errors, our type soundness theorem is slightly peculiar. As usual, type

soundness is composed of two lemmas: progress and preservation. The preservation lemma is con-

ventional, but the progress lemma does not establish the absence of runtime errors. The progress

lemma does however establish that the semantics always signals errors instead of getting stuck.

Untyped progress was established in section 2.2.

Our assumed environment (section 8.6) provides the abstract heap Σ and abstract environment

Γ, which model the initial state of the browser, σ. We can thus make type-based statements about

the combination of widgets and adsafe.js:

Theorem 6 (ADsafety) For all widgets p, if

1. all subexpressions of p are Widget-typable,

101

2. adsafe.js is typable,

3. adsafe.js runs before p, and

4. σp→ σ′p′ (single-step reduction),

then at every step p′, p′ also has the type Widget.

Proof: Follows from the type preservation of flow typing (theorem 3) and fluid object types

(theorem 4). �

This theorem says that for all widgets p whose subexpressions are Widget-typed, if adsafe.js

type-checks and runs in the browser environment, p can take any number of steps and still have the

Widget type. Since types are preserved, two further key lemmas hold during execution:

Corollary 1 (Widgets cannot load new code at runtime) For all widgets e, if all variables

and sub-expressions of e are Widget-typed, then e does not load new code.

By section 8.6, eval-like functions are not ascribed types, hence cannot be referenced by widgets or

by the ADsafe runtime. Furthermore, functions that only eval when given strings, such as setTimeout,

have restricted types that disallow string-typed arguments. Therefore, neither the widget nor the

ADsafe runtime can load new code. �

Corollary 2 (Widgets do not obtain DOM references) For all widgets e, if all variables and

sub-expressions of e are Widget-typed, then e does not obtain direct DOM references.

The type of DOM objects is not subsumed by the Widget type. All functions in the ADsafe runtime

have the type:

[Widget ∪ Global]Widget · · · →Widget

Thus, functions in the ADsafe runtime do not leak DOM references, as long as they are only applied

to Widget-typed values. Since all subexpressions of the widget e are Widget-typed, all values that e

passes to the ADsafe runtime are Widget-typed. By the same argument, e cannot directly manipulate

DOM references either. �

Widgets can only manipulate their DOM subtree We cannot prove this claim with our

tools. JSLint enforces this property by also verifying the static HTML of widgets; it ensures that all

102

element IDs are prefixed with the widget’s ID. The wrapper for document.getElementById ensures that

the widget ID is a prefix of the element ID. Verifying JSLint’s HTML checks is beyond the scope of

this work.

In addition, the wrapper for Element.parentNode checks to see if the current element is the root

of the widget’s DOM subtree. It is not clear if our type checker can express this property without

further extensions.

Widgets cannot communicate This claim is false; section 8.9.3 presents a counterexample.

8.9 Bugs Found in ADsafe

We have implemented the type system presented in this chapter, and applied it to the ADsafe source.

The implementation is about 3,000 LOC, and takes 20 seconds to check adsafe.js (mainly due to

the presence of recursive types). In some cases, type-checking failed due to the weakness of the type

checker; these issues are discussed in section 8.7.1. The other failures, however, represent genuine

errors in ADsafe that were present in the production system. The same applies to instances where

JSLint and our typed model of it failed to conform. All the errors listed below have been reported,

acknowledged by the author, and fixed.

8.9.1 Missing Static Checks

JSLint inadvertently allowed widgets to include underscores in quoted field names. In particular,

the following expression was deemed safe:

fakeBunch = { "__nodes__": [fakeNode] };

A malicious widget could then create an object with an appendChild method, and trick the ADsafe

runtime into invoking it with a direct reference to an HTML element, which is enough to obtain

window and violate ADsafety:

fakeNode = {

appendChild: function(elt) {

myWindow = elt.ownerDocument.defaultView;

}

};

103

ADSAFE.go("AD_", function (dom, lib) {

var myWindow, fakeNode, fakeBunch, realBunch;

fakeNode = {

appendChild: function(elt) {

myWindow = elt.ownerDocument.defaultView;

},

tagName: "div",

value: null

};

fakeBunch = {"__nodes__": [fakeNode]};

realBunch = dom.tag("p");

fakeBunch.value = realBunch.value;

fakeBunch.value(""); // calls phony appendChild

myWindow.alert("hacked");

});

Figure 8.7: Exploiting JSLint

The full exploit is in fig. 8.7.

This bug manifested itself as a discrepancy between our model of JSLint as a type checker and the

real JSLint. Recall from section 8.5 that all expressions in widgets must have type Widget (defined

in fig. 8.3). For { "__nodes__": [fakeNode] } to type as Widget, the "__nodes__" field must have type

Array〈HTML〉∪Undef. However, [fakeNode] has type Widget, which signals the error.

JSLint similarly allowed "__proto__" and other fields to appear in widgets. We did not investigate

whether they can be exploited as above, but setting them causes unanticipated behavior. Fixing

JSLint was simple once our type checker found the error. (An alternative solution would be to use

our type system as a replacement for JSLint.) We note that when the ADsafe option of JSLint was

first announced,7 its author offered:

If [a malicious client] produces no errors when linted with the ADsafe option, then I will

buy you a plate of shrimp.

We have obtained this shrimp bounty (seven plates of shrimp).

8.9.2 Missing Runtime Checks

Many functions in adsafe.js incorrectly assumed that they were applied to primitive strings. For

example, Bunch.prototype.style began with the following check, to ensure that widgets do not pro-

grammatically load external resources via CSS:

7tech.groups.yahoo.com/group/caplet/message/44

tech.groups.yahoo.com/group/caplet/message/44

104

ADSAFE.go("AD_", function (dom, lib) {

var called = false;

var obj = {

"toString": function() {

if (called) {

return "url(evil.xml#exp)";

}

else {

called = true;

return "dummy";

}

}

};

dom.append(dom.tag("div"));

dom.q("div").style("MozBinding", o);

});

<!-- evil.xml -->

<?xml version="1.0"?>

<bindings><binding id="exp">

<implementation><constructor>

document.write("hacked")

</constructor></implementation>

</binding></bindings>

Figure 8.8: Firefox-specific Exploit for ADsafe

Bunch.prototype.style = function(name, value) {

if (/url/i.test(value)) { // regex match?

error();

}

...

};

Thus, the following widget code would signal an error:

someBunch.style("background",

"url(http://evil.com/image.jpg)");

The bug is that if value is an object instead of a string, the regular-expression test method will

inadvertently invoke value.toString().

A malicious widget can construct an object with a stateful toString method that passes the test

when first applied, and subsequently returns a malicious URL. In Firefox, we can use such an object

to load an XBL resource8 that contains arbitrary JavaScript (fig. 8.8).

We ascribe types to JavaScript’s built-ins to prevent implicit type conversions. Therefore, we

require the argument of Regexp.test to have type Str. However, since Bunch.prototype.style can be

invoked by widgets, its type is Widget×Widget→Widget, and thus the type of value is Widget.

8https://developer.mozilla.org/en/XBL

https://developer.mozilla.org/en/XBL

105

This bug was fixed by adding a new string_check function to ADsafe, which is now called in

18 functions. All these functions are not otherwise exploitable, but a missing check would cause

unexpected behavior. The fixed code is typable.

8.9.3 Counterexamples to Non-Interference

Finally, a type error in Bunch.prototype.getStyle helped us generate a counterexample to ADsafe’s

claim of widget noninterference (definition 2, part 4). The getStyle method is available to widgets,

so its type must be Widget→Widget. The following code is the essence of getStyle:

Bunch.prototype.getStyle = function (name) {

var sty;

reject_global(this);

sty = window.getComputedStyle(this.__node__);

return sty[name];

}

The bug above is that name is unchecked, so it may index arbitrary fields, such as __proto__:

someBunch.getStyle("__proto__");

This gives the widget a reference to the prototype of the browser’s CSSStyleDeclaration objects. Thus

the return type of the body is not Widget, yielding a type error.

A widget cannot exploit this bug in isolation. However, it can replace built-in methods of CSS

style objects and interfere with the operation of the hosting page and other widgets that manipulate

styles in JavaScript.

This bug was fixed by adding a reject_name check that is now used in this and other methods.

Despite the fix, ADsafe still cannot enforce non-interference, since widgets can reference and affect

properties of other shared built-ins:

var arr = [];

arr.concat.channel = "shared data";

The author of ADsafe pointed out the above example and retracted the claim of non-interference.

Prior Exploits Before and during our implementation, other exploits were found in ADsafe and

reported [59–61]. We have run our type checker on the exploitable code, and our tools catch the

bugs and report type errors.

106

Fixing Bugs and Tolerating Changes Each of our bug reports resulted in several changes to

the source, which we tracked. In addition to these changes, adsafe.js also underwent non-security

related refactorings during the course of this work. Even though we did not provide our type checker

to its author, we easily continued type-checking the code after these changes. One change involved

adding a number of new Bunch methods to extend the API. Keeping up-to-date was a simple task,

since all the new Bunch methods could be quickly annotated with the Widget type and checked. In

short, our type checker has shown robustness in the face of program edits.

8.10 Beyond ADsafe

We employed flow typing (chapter 4) to type-check idiomatic JavaScript, but we could have instead

employed some other if-splitting technique. However, fluid object types (chapter 5) are instrumental

for describing ADsafe’s interfaces: ADsafe reasons about infinite collections of fields in uniform ways,

which is exactly what fluid object types describe.

Our type-based strategy provides a concrete roadmap for sandbox designers:

1. Formally specify the language of widgets using a type system;

2. use this specification to define the interface between the sandbox and untrusted code; and,

3. check that the body of the sandbox adheres to this interface by type-checking.

In particular, developers of new sandboxes should be aware of this strategy. Rather than trying

to retrofit the type system’s features onto existing static checks, the sandbox designer can work with

the type system to guarantee safety constructively from the start. Tweaks and extensions to the type

system are certainly possible—for example, one may want to design a sandboxing framework that

forbids applying non-function values and looking up fields of null, which the current type system

allows (section 8.8).

ADsafe shares many programming patterns with other Web sandboxes (section 8.3), but doesn’t

cover the full range of their features. We outline some of the extensions that could be used to verify

them here:

Reasoning About Strings Our type system lets programmers reason about finite sets of strings

and use these sets to lookup fields in objects. To verify Caja, we would need to reason about string

107

patterns. For example, Caja uses the field named "foo"+ "_w__" to store a flag that determines if the

field "foo" is writable. We can easily express this and the 8 other patterns used by Caja using fluid

object types:

{.* w ◦ : Bool, .* w
◦ : T}

Abstracting Runtime Tests Our type system accounts for inlined runtime checks, but requires

some refactorings when these checks are abstracted into predicates. Larger sandboxes, like Caja,

have more predicates, so refactoring them all would be infeasible. We could instead use ideas from

occurrence typing [86], which accounts for user-defined predicates.

Modeling the Browser Environment ADsafe wraps a small subset of the DOM API and we

manually check that this subset is appropriately typed in the initial type environment. This approach

does not scale to a sandbox that wraps more of the DOM. If the type environment were instead

derived from the C++ DOM implementation, we would have significantly greater confidence in our

environmental assumptions.

8.11 Related Work

JavaScript Web Sandboxes ADsafe [18], BrowserShield [73], Caja [66], and FBJS [25] are

archetypal Web sandboxes that use static and dynamic checks to safely host untrusted widgets.

However, the semantics of JavaScript and the browser environment conspire to make JavaScript

sandboxing difficult (chapter 2).

Maffeis et al. [59] use their JavaScript semantics to develop a miniature sandboxing system and

prove it correct. Armed with the insight gained by their semantics and proofs, they find bugs in

FBJS and ADsafe (which we also catch). However, they do not mechanically verify the JavaScript

code in these sandboxes. They also formalize capability safety and prove that a Caja-like subset is

capability safe [61]. However, they do not verify the Caja runtime or the actual Caja subset. In

contrast, we verify the source code of the ADsafe runtime and account for ADsafe’s static checks.

Taly, et al. [82] develop a flow analysis to find bugs in the ADsafe runtime (that we also catch).

They simplify the analysis by modeling ECMAScript 5 strict mode, which is not fully implemented

in any current Web browser. In contrast, ADsafe is designed to run on current browsers, and

thus supports older and more permissive versions of JavaScript. We use λJS and associated tools

108

(chapter 2), which which is not limited to strict mode, so we find new bugs in the ADsafe runtime.

In addition, Taly, et al. use a simplified model of JSLint. In contrast, we provide a detailed, type-

theoretic account of JSLint, and also test it. We can thus find security bugs in JSLint as well.

Lightweight Self-Protecting JavaScript [62, 70] is a unique sandbox that does not transform or

validate widgets. It instead solely uses reference monitors to wrap capabilities. These are modeled

as security automata, but the model ignores the semantics of JavaScript. In contrast, this chapter

and the aforementioned works are founded on detailed JavaScript semantics.

Yu, et al. [93] use JavaScript sandboxing techniques to enforce various security policies on un-

trusted code. Their semantic model, CoreScript, simplifies the DOM and scripting language. Core-

Script cannot be used to mechanically verify the JavaScript implementation of a Web sandbox,

which is what we present in this chapter.

Modeling the Web Browser There are formal models of Web browsers that are tailored to

model whole-browser security properties [2, 10]. These do not model JavaScript’s semantics in any

detail and are therefore orthogonal to semantic models of JavaScript (chapter 2 and [58]) that are

used to reason about language-based Web sandboxes. In particular, ADsafe’s stated security goals

are limited to statements about JavaScript and the DOM (section 8.4). Therefore, we do not require

a comprehensive Web-browser model.

Static Analysis of JavaScript GateKeeper [37] uses a combination of program analysis and

runtime checks to apply and verify security policies on JavaScript widgets. GateKeeper’s program

analysis is designed to model more complex properties of untrusted code than we address by modeling

JSLint. However, the soundness of its static analysis is proven relative to only a restricted sub-

language of JavaScript, whereas λJS handles the full language. In addition, they do not demonstrate

the validity of their run-time checks.

Chugh et al. [15] and VEX [8] use program analysis to detect possibly malicious information flows

in JavaScript. Our type system cannot specify information flows, although we do use it to discover

that ADsafe fails to enforce a desirable information flow property. VEX’s authors acknowledge that

it is unsound, and Chugh et al. do not provide a proof of soundness for their flow analysis. Our

type system and analysis are proved sound.

Other static analyses for JavaScript [38, 51, 52] are not specifically designed to encode and check

109

security.

Language-Based Security Schneider et al. [77] survey the design and type-based verification of

language-based security systems. JavaScript Web sandboxes are inlined reference monitors [24].

Cappos, et al. [14] present a layered approach to building language sandboxes that prevents

bugs in higher layers from breaking the abstractions and assurances provided by lower layers. They

use this approach to build a new sandbox for Python, whereas we verify an existing, third-party

JavaScript sandbox. However, our verification techniques could easily be used from the onset to

build a new sandbox that is secure by construction.

IFrames IFrames are widely used for widget isolation. However, JavaScript that runs in an IFrame

can still open windows, communicate with servers, and perform other operations that a Web sandbox

disallows. Furthermore, inter-frame communication is difficult when desired; there are proposals to

enhance IFrames to make communication easier and more secure [50]. Language-based sandboxing

is somewhat orthogonal in scope, is more flexible, and does not require changes to browsers.

Runtime Security Analysis of JavaScript There are various means to secure widgets that

do not employ language-based security. Some systems rely on modified browsers, additional client

software, or proxy servers [20, 21, 53, 54, 57, 64, 93]. Some of these propose alternative Web

programming APIs that are designed to be secure. Language-based sandboxing has the advantage of

working with today’s browsers and deployment methods, but our verification ideas could potentially

apply to the design of some of these systems, too.

Chapter 9

Related Scripting Languages

This dissertation focuses on JavaScript; all the software developed to support this dissertation targets

JavaScript. This chapter1 demonstrates that despite syntactic distinctions, the semantics of Python,

Ruby, and JavaScript have many common elements. We therefore believe that the type-checking

techniques presented in this dissertation (chapters 4 and 5) are more broadly applicable. It is a

mere matter of programming to build a core calculus and tested desugaring functions for Python

and Ruby, in the style of λJS (chapter 2).

9.1 Objects, Dictionaries, and Inheritance

Untyped scripting languages implement objects as simple dictionaries, mapping member names to

values. Inheritance affects member lookup, but does not affect updates and deletion. This semantics

is clear in the following JavaScript program:

var parent = { "z": 9 };

var obj = { "x": 1, "__proto__": parent };

obj.x // returns 1

obj.z // returns 9

obj.z = 50 // creates new field in obj

obj.z // returns 50, shadowing parent.z

parent.z // returns 9; parent.z not set by obj.z = 50

1This chapter is based on joint work with Claudiu Saftoiu [41] and Joe Gibbs Politz [39].

110

111

class Parent; def z; return 9; end; end

obj = Parent.new

class << obj; def x; return 1; end; end

obj.x # returns 1

obj.z # returns 9

class << obj; def z; return 50; end; end

obj.z # return 50

no simple way to invoke shadowed z method

class << obj; remove_method :z; end

obj.z # returns 9

class << obj

define_method("xyz".to_sym) do; return 99; end

end

print obj.xyz # returns 99

Figure 9.1: Changing Object Shapes in Ruby

This program creates two objects, obj and parent, where obj inherits from parent. In Python, we

cannot set up inheritance directly; however, the following program creates an equivalent object

graph:

class parent(object)

z = 9 # class member

def __init__(self): self.x = 1 # instance member

obj = parent()

obj.x # returns 1

obj.z # returns 9

obj.z = 50 # creates new field

obj.z # returns 50, shadowing parent.z

parent.z # returns 9, just like JavaScript

We can delete the parent.z field, returning both programs to their initial state, in JavaScript—

delete obj.z

obj.z // returns 9

—and in Python—

delattr(obj, "z")

obj.z # returns 9

Finally, field names are simply strings and do not need to be statically specified in JavaScript—

112

obj["x " + "yz"] = 99 // creates new field

obj["x y" + "z"] // returns 99

—and in Python—

setattr(obj, "x " + "yz", 99) # creates new field

getattr(obj, "x y" + "z") # returns 99

Figure 9.1 shows that we can translate this sequence to Ruby with only a little more syntactic effort.

Classes Do Not Shape Objects One consequence of exposing the mutable dictionary underlying

objects is that a class determines the members of its instances only during initialization. Members

can be subsequently added and deleted from individual objects. There is substantial evidence that

this occurs in real JavaScript programs [74]. The examples in section 9.5 illustrate that such behavior

also occurs in Python and Ruby.

9.2 Inheritance in Scripting Languages

A more subtle consequence is that inheritance is brittle in scripting languages. Consider the following

Ruby class:

class A

def initialize; @privateFld = 90; end

def myMethod; return @privateFld * @privateFld; end

end

Ostensibly, the interface of class A is only myMethod, and privateFld is part of the implementation.

Consider the following subclass:

class B < A

def initialize; super(); @privateFld = "my string"; end

end

Both A and B use the name privateFld in their implementations. However, since privateFld is simply

a dictionary key, B obliterates assumptions about the implementation of A:

obj = B.new

B.myMethod # error: cannot multiply strings

113

class A(object):

def method(self): return "from class A"

class B(object):

def method(self): return "from class B"

obj = A()

obj.method() # returns "from class A"

isinstance(obj, A) # returns True

obj.__class__ = B

obj.method() # returns "from class B"

isinstance(obj, B) # returns True: class changed!

Figure 9.2: Fluid Class Hierarchies in Python

It is not safe to subclass A without knowing its internals. Indeed, the principal author of Ruby

declares that “it is only safe to extend Ruby classes when you are familiar with (and in control of)

the implementation of the superclass” [32, page 240] (emphasis added).

In Python, member names that begin with two underscores are prefixed with the name of the

enclosing class. For example, a member named __field__ is renamed to __MyClass_field__ within

MyClass. This syntactic trick is supposed to preserve the modularity of classes. However, when used

with modules, if A.MyClass extends B.MyClass, the module name is not used in the prefix. Thus the

problem demonstrated in Ruby also occurs in Python.

9.3 Classes and Prototypes

The previous examples showed how objects’ shapes can be altered in scripting languages. Since

classes are objects themselves, they can be altered as well. Python and JavaScript go further and

expose the inheritance hierarchy as mutable members. Assigning to obj.__super__ in Python and

obj.__proto__ in JavaScript affects the inheritance chain (fig. 9.2).

9.4 Methods?

JavaScript simply does not have methods. The obj.method(...) syntax binds obj to an implicit

argument, this, that is supplied to the function obj.method [23, Section 11.2.3]. However, obj.method

is not associated with either obj or its prototype. We can extract the underlying function and call

it:

114

var f = obj.method; f()

Since f() does not use method call syntax, it is treated as a function call; this is not bound to obj,

but to a default “global object”.

Unlike JavaScript, Python and Ruby make it harder to extract methods. However, their methods

are still unlike methods in other object-oriented languages. For example, consider Python methods,

which have an explicit self argument:

class A(object):

def __init__(self): self.myField = 900

def method(self): return self.myField

These methods can be extracted from objects and treated as functions that are partially applied to

the appropriate self argument:

obj = A() # construct

f1 = obj.method # extract

f1() # apply, returns 900

Re-extracting a method returns the same reference:

f2 = obj.method # the same function?

f1 == f2 # returns True--same function

Extracting method from a different instance results in a distinct reference, which is closed over that

instance as the self argument:

obj2 = A()

obj.method == obj2.method # returns False

However, we can still obtain the underlying function, called an unbound method in Python, which

expects an explicit instance for the self argument:

f_orig = obj.method.im_func # im_func is built-in

f_orig() # Error: expected 1 argument

f_orig(obj2) # returns 900

obj.method.im_func == obj2.method.im_func # True

Ruby methods can similarly be extracted and applied.

115

Checks For JS Gadgets Python stdlib Ruby stdlib Django Rails
undefined/null a 3,298 1,686 538 868 712
instanceof b 17 613 1,730 647 764
typeof c 474 381 4
field-presence d 504 171 348 719
Total Checks 3,789 3,184 2,439 1,867 2,195
LOC 617,766 313,938 190,002 91,999 294,807

aNone in Python, and nil in Ruby
bisinstance in Python, and .is_a? and .instance_of? in Ruby
ctype in Python
dhasattr in Python, and .respond_to? in Ruby

Figure 9.3: Tag Checks and Related Checks

Structural
Ruby o.respond_to?(p) o.methods

Python hasattr(o, p) dir(o)

JavaScript o.hasOwnProperty(p) for (x in o)

Nominal
Ruby o.is_a?(c)

Python isinstance(o, c)

JavaScript o instanceof c

Figure 9.4: Reflection APIs

9.5 Reflection and Pattern Matching

Reflection is not unique to scripting languages; the JVM and the .NET CLI have powerful reflection

APIs. However, to use their reflection APIs, programmers must use many explicit downcasts.2

Reflection is significantly easier to use in untyped scripting languages and thus more prevalent.

Figure 9.4 classifies several common object-related reflective operators found in scripting lan-

guages. Programs can reflect on both an object’s class (nominal) and its members (structural),

since an object’s class does not fully determine its members. In contrast, Java only supports nominal

reflection. Object.getClass does allow Java programs to reflect on the structure of classes. However,

because classes fully determine objects’ members, Java does not have operations to examine the

structure of individual instances.

Figure 9.3 offers a conservative estimate of the prevalence of type tests and related checks across a

broad corpus JavaScript, Python, and Ruby code, by counting occurrences of type testing operators.

We believe these numbers undercount, since they do not account for heap-sensitive reasoning and

other type testing patterns. For example, we do not try to estimate how often JavaScript programs

2C# 4 adds a dynamic type that elaborates to use the reflection API [9].

116

var banned = { "caller": true, "arguments": true, ... };

function reject_name(name) {

return ((typeof name !== 'number' || name < 0)

&& (typeof name !== 'string'
|| name.charAt(0) === '_'
|| name.slice(-1) === '_'
|| name.charAt(0) === '-'))

|| banned[name];

}

Figure 9.5: Banned Check from ADsafe

test for the presence of a field, because this operation is syntactically indistinguishable from field

lookup.

Sandboxes Reflection in scripting languages is particularly powerful when combined with pattern

matching on member names. For example, JavaScript sandboxes like ADsafe and Caja use a combi-

nation of static and dynamic checks to ensure that untrusted programs do not access banned fields

that may contain dangerous capabilities. To enforce this dynamically, all field-lookup expressions

(obj[name]) in untrusted code are rewritten to check whether name is banned. Figure 9.5 is ADsafe’s

check; it uses a collection of ad hoc tests and also ensures that name is not the name of any field in

the banned object, which is effectively used as a set of names.

Django The Python Django ORM dynamically builds classes based on database information. In

the following snippet, it adds a field attr_name, that represents a database column, to a class new_class,

which it is constructing on-the-fly:3

attr_name = '%s_ptr' % base._meta.module_name

field = OneToOneField(base, name=attr_name,

auto_created=True, parent_link=True)

new_class.add_to_class(attr_name, field)

The computed string, attr_name, is not arbitrary; it concatenates "_ptr" onto base._meta.module_name.

Ruby on Rails When setting up a user-defined model, ActiveRecord iterates over the fields of an

object and only processes members that match certain patterns:4

attributes.each do |k, v|

3https://github.com/django/django/blob/master/django/db/models/base.py#L157
4https://github.com/rails/rails/blob/master/activerecord/lib/active_record/base.rb#L1717

https://github.com/django/django/blob/master/django/db/models/base.py#L157
https://github.com/rails/rails/blob/master/activerecord/lib/active_record/base.rb#L1717

117

JavaScript Python Ruby
Loops X X X
Exceptions X X X
Generators X X
Labelled Statements X
Switch fall-through X
Continuations X

Figure 9.6: Control Features of Scripting Languages

if k.include?("(")

multi_parameter_attributes << [k, v]

elsif respond_to?("#{k}=")

send("#{k}=", v)

else

raise(UnknownAttributeError,

"unknown attribute: #{k}")

end

end

The first pattern, k.include?("("), checks the shape of the field name k, and the second pattern checks

if the object has a member called "#"+ k + "=".

Java Beans Even in Java, programmers employ reflective patterns. Java Beans provide a flexible

component-based mechanism for composing applications. The Java Beans API uses reflective reason-

ing on canonical naming patterns to construct classes on-the-fly. For example, java.beans.Introspector

“applies the naming conventions to determine what properties the bean has, the events to which it

can listen, and those which it can send.”5 Properties of Beans are not necessarily known at runtime,

so the API exposes a PropertyDescriptor class that provides methods including getPropertyType and

getReadMethod, which return reflective descriptions of the types of properties of Beans, and require

runtime reasoning about casts to use.

9.6 Control Operators

JavaScript, Python, and Ruby have a diverse set of control operators (fig. 9.6). These are all easily

modeled in a Felleisen-Hieb style semantics [26]. For the purpose of analysis, it is easier to pick a

5http://download.oracle.com/javase/tutorial/javabeans/introspection/index.html

http://download.oracle.com/javase/tutorial/javabeans/introspection/index.html

118

uniform representation for all operators, such as continuation-passing style, as we do to type-check

JavaScript (section 4.5).

9.7 A Scripting Language Object Calculus

The preceding section presents examples that illustrate the characteristic features of objects in script-

ing languages. We distill these features into λSc, a core calculus of functional objects, imperative

state, higher-order functions, and reflection. The combination of mutable references and functional

objects is sufficient to encode the imperative objects of scripting languages. λSc is not, however,

intended to be a scripting language itself. It is designed to be a desugaring target for a full scripting

language. Its syntax and semantics are in fig. 9.7 and introduced incrementally below.

Objects as Dictionaries λSc faithfully models the objects-as-dictionaries design of scripting

languages.

• In a field lookup, e1[e2], the field name is not a static string, but an arbitrary expression e2,

and it is a runtime error if e2 does not evaluate to a string.

• Expressions of the form e1[e2 = e3], are used to both update the value of existing fields (E-

Update) and, if the field does not exist, to create new fields (E-Create). This is the behavior

of all scripting languages; fields do not need to be declared and different instances of the same

class or prototype can have different sets of fields.

• Fields can be deleted with delete e1[e2] (E-Delete). If the specified field does not exist, λSc

silently continues evaluation. This models JavaScript’s semantics, whereas other languages

signal exceptions; it is routine to adapt the semantics to signal exceptions instead.

• When a field is not found, λSc looks for the field in the parent object, which is the value of

the parent field (E-Inherit). In JavaScript implementations this field is called ” proto ”, and in

Python it is called ” super ”. In Ruby, the name is not visible to programmers (section 9.3).

Given the lack of syntactic restrictions on object lookup, we can easily write a program that looks

up a field that is not defined anywhere on the inheritance chain. In such cases, λSc signals an error

(E-NotFound). This is a model of Python and Ruby, but not JavaScript. Unusually, JavaScript

119

l = · · · Locations
P = · · · String patterns
σ = ·|(l, v)σ Stores
c = num | str | bool | null Constants
v = c | l | func(x) { e } | { str:v· · · } Values
e = x | v | e(e) | { str: e · · · } | e[e] | e[e = e] | delete e[e] Expressions
| e := e | ref e | deref e | if (e1) e2 else e3 | fieldin e init vacc do vf

| e1 hasfield e2 | e matches P | err

E = • | E(e) | v(E) | { str: v · · · str:E, str:e · · · } | E[e] | v[E] Evaluation Contexts
| E[e = e] | v[E = e] | v[v = E] | delete E[e] | delete v[E] | E := e

| v := E | ref E | deref E | fieldin E init vacc do vf | if (E) e2 else e3

| E hasfield e | v hasfield E | E matches P

e ↪→ e

βv (func(x) { e })(v) ↪→ e[x/v]
E-GetField { · · · str: v · · · }[str] ↪→v
E-Inherit { str : v · · · ”parent”: l }[strx] ↪→ deref l, if strx /∈ (str · · ·)
E-NotFound { str : v · · · ”parent”: null }[strx] ↪→ err, if strx /∈ (str · · ·)
E-Update { str1: v1 · · · stri: vi · · · strn: vn } [stri = v]

↪→ { str1: v1 · · · stri: v · · · strn: vn }

E-Create { str1: v1 · · · } [strx = vx] ↪→ { strx: vx, str1: v1 · · · }, when strx 6∈ (str1 · · ·)
E-Delete delete { str1: v1 · · · strx: vx · · · strn: vn } [strx] ↪→ { str1: v1 · · · strn: vn }

E-Delete-Err delete { str1: v1 · · · } [strx] ↪→ { str1: v1 · · · }, if strx 6∈ (str1 · · ·)
E-FieldIn fieldin { str1:v1, str2 : v2 · · · } init vacc do vf

↪→ fieldin { str2 : v2 · · · } init vf(str1)(vacc) do vf

E-FieldIn-End fieldin { str:v } init vacc do vf ↪→ vf(str)(vacc)

E-IfTrue if (true) e2 else e3 ↪→ e2

E-IfFalse if (false) e2 else e3 ↪→ e3

E-HasField {· · · str:v · · · } hasfield str ↪→ true

E-HasNotField { str:v · · · } hasfield str ↪→ false, when str′ /∈ (str · · ·)
E-Matches str matches P ↪→ true, str ∈ P
E-NoMatch str matches P ↪→ false, str /∈ P

σe→ σe

E-Cxt σE〈e1〉 → σE〈e2〉, when e1 ↪→ e2

E-Ref σE〈ref v〉 → σ, (l, v)E〈l〉, when l 6∈ dom(σ)
E-Deref σE〈deref l〉 → σE〈σ(l)〉
E-SetRef σE〈l := v〉 → σ[l := v]E〈v〉, when l ∈ dom(σ)

wf ` e

wf ` e1 · · ·wf ` en wf ` ep str i all unique str i 6= ”parent”

wf ` { str1:e1 · · · strn:en, ”parent”:ep }

The wf relation is defined recursively over other expressions and lifted to stores in the natural way.

Figure 9.7: Syntax and Semantics of λSc

120

does not signal an error, but returns the default value undefined. To model JavaScript, we can

introduce an undefined value and employ the following reduction instead of E-NotFound:

{ str : v · · · ”parent”: null }[strx] ↪→ undefined

if strx /∈ (str · · ·)

The complexity of desugaring a particular scripting language is affected by the chosen reduction

relation; desugaring JavaScript is simpler with this alternate reduction. Our formal proofs use

E-NotFound, but it is easy to use the JavaScript-like reduction instead.

The fragment of λSc presented thus far is sufficient to desugar the examples that do not use

reflection.

Reflection Nominal reflection in λSc is trivial. An object, obj, inherits from a parent, p, if

obj[”parent”] == p. Structural reflection requires additional operators:

• The o hasfield str expression checks whether an object o has a member str . This expression

is similar to hasOwnProperty in JavaScript, hasfield does not traverse the inheritance chain to

determine if o inherits str . The behavior of Python’s hasattr and Ruby’s respond_to? is

easily recovered by desugaring to a loop.

• The fieldin obj init init do f expression folds the function f over the names of the fields of obj ,

with init as an accumulator. Unlike the for in loop of JavaScript or the dir function of

Python, fieldin does not produce names in the inheritance chain. Actual for in loops can be

desugared to use fieldin.

String Pattern Matching Section 9.5 shows programs that use a variety of operators to pattern

match strings that are then used as field names. To model these programs, we introduce an abstract

string-matching operator, str matches P . In an actual scripting language, these patterns might be

regular expressions. The precise encoding of patterns is irrelevant to our core calculus. We thus

abstract P to be an arbitrary class of string-sets with decidable membership.

Classes and Prototypes The classes and prototypes of scripting languages can be desugared to

the records of λSc. Desugaring JavaScript’s prototype inheritance is natural; section 2.1.2 describe

121

class Point

class ClrPoint

{ dist:
 func(self) { ... } }

{ setColor:
 func(self, color) { ... } }

parent

{ x: 2.3, y: 9.7 }

{ dist: func() {
 self.__class__.dist(self) } }

self

{ x: 2.3, y: 9.7,
 color: "blue" }

{ setColor:
 func(color) {
 self.__class__
 .setColor(self, color) }}

parent

parent

{ dist: func() {
 self.__class__
 .dist(self) } }

parent

__class__

__class__

selfself

class Point(object):
 def dist(self):
 ...

class ClrPoint(Point):
 def setColor(self, color):
 ...

pt = Point(2.3, 9.7)
cpt = ClrPoint(2.3, 9.7, "blue")

cpt instance

pt instance

Figure 9.8: Encoding Python’s Method Binding in λSc

how new, this, and other keywords are easily desugared to their semantics; the same strategy applies

to λSc.

To encode Ruby and Python’s classes, one could add primitive classes to λSc and model them

directly. These primitive classes would need to admit the introspective operations and observations

employed by our examples, such as extracting methods, affecting the inheritance hierarchy, and

modifying classes. Because the objects of λSc naturally admit these observations and effects, we

instead study classes by desugaring them. For example, the Python code in fig. 9.8 can be desugared

to a λSc program that produces the object graph in the same figure.

Each Python object instance is desugared into a collection of λSc objects—an object containing

the instance’s fields (self) and auxiliary objects containing the “bound methods” for each inherited

class. This desugaring admits the observations and operations on Python objects made in section 9.4:

• Since bound methods are closed over self, programs can extract them and correctly use them

as functions.

• A program can distinguish inherited fields from instance fields.

122

• A program can redefine a method on a class and have references to existing bound methods

call the new method.

The desugaring function that produces the object graph in fig. 9.8 is straightforward: constructor

invocation creates the self object, then walks the inheritance chain to create the auxiliary objects

containing bound methods, closed over self. Finally, the programmer-written constructor (__init__

in Python) is applied to self.

9.8 Limitations

λSc models the essential features of objects that are common to Ruby, Python, and JavaScript, but

omits the following features:

• Python’s multiple-inheritance,

• Getters and setters, and

• Object proxies and proxy-like traps in Python and Ruby [19].

These features could be desugared into λSc, but it would be clearer to support them directly. We

also elide other features that are not directly related to objects, such as eval, concurrency, control

operators, and implicit type conversions, as they are not directly related to our goal of studying

objects and reflection.

9.9 Soundness

We mechanize λSc with PLT Redex [26]. We use our mechanized semantics to test [56] λSc for

safety.

Theorem 7 (Progress) If σe is a closed, well-formed configuration, then either:

• e ∈ v,

• e = E〈err〉, or

• σe→ σ′e′, where σ′e′ is a closed, well-formed configuration.

This property requires additional evaluation rules for runtime errors, which we elide for clarity.

Chapter 10

Conclusions and Future Work

This dissertation demonstrates that semantics engineering [26] works in practice. We develop λJS ,

which is a Felleisen-Hieb style core calculus for the essentials of JavaScript—a language without any

formal specification. We engineer a translation from the full language to the core calculus. Finally,

we test that the semantics and translation faithfully model implementations. This process could be

repeated for any other programming language.

We use λJS as the basis of our proofs and our implementations. As of this writing, λJS is used

by research groups at several other institutions, including Microsoft Research, Fujistu Laboratories,

Northeastern University, University of Utah, KAIST, and University of Chile.

This dissertation presents two novel type-checking principles:

• Flow typing combines type-checking and flow analysis to type-check programs that use local

control and state to affect types. We present a principled technique to combine the type-checker

and flow analysis in a simple and modular way.

• Fluid object types are a natural generalization of record types and row type variables. They

give a static account of object systems that support reflection and dynamic field names.

We implement flow typing and fluid object types in a JavaScript type-checker. Using this type-

checker, we demonstrate that:

• Types are an effective way to document JavaScript code,

• Types can verify security properties of JavaScript programs, and

123

124

• Types can be employed to mechanically generate safe sub-languages of JavaScript.

We also give evidence that our techniques are applicable to other scripting languages.

Future Work

There are various immediate avenues of research that could build on this dissertation.

Semantics λJS is approximately a semantics for ECMA-262, 3rd edition, which is presently the

most widely-used version of JavaScript. JavaScript is evolving rapidly and λJS needs to keep up

with new standards and experimental features. The S5 project1 at Brown University grows λJS to

support ECMA-262, 5th edition. S5 is better tested than λJS , using the new standardized test suite

for JavaScript, test262.2 S5 tackles addition features, such as eval, that λJS omits.

The testing strategy we use to demonstrate λJS ’s adequacy can also be used to develop semantics

for other scripting languages. As a rule, scripting languages do not bother with formal semantics.

But, the languages that matter have canonical implementations and extensive test suites. These two

components—an oracle and a set of valid inputs—are all that a good semanticist needs to reverse-

engineer a formal semantics. A more interesting problem might be to automate the semantics

reverse-engineering process.

Types We use our tools to type-check approximately 7, 000 lines of code. What would it take

to increase this number by a few orders of magnitude? Can we it without compromising type

soundness? Do we have to weaken the guarantees our type-checker provides? (e.g., must we admit

Java-like NullPointerExceptions?) We cannot manually annotate and type-refactor millions of

lines of code. We need some form of tool support, but it does not have to be ML-style type

inference. In section 6.1, we discuss a simple tool that uses instrumentation to infer types that

are might be incorrect; such techniques could be pushed further. Future work should be guided by

studying type-checking failures with an existing type-checker, such as ours.

Security We verify ADsafe, which is the simplest of the major Web sandboxes. Verifying a more

sophisticated sandbox such as Google Caja, which is used to isolate untrusted code by Yahoo! and

1http://www.cs.brown.edu/research/plt/dl/S5
2http://test262.ecmascript.org

http://www.cs.brown.edu/research/plt/dl/S5
http://test262.ecmascript.org

125

Google, seems to be the obvious next step. Such a verification would be useful, but it is not clear if

it would produce new research results. Types could instead be used to develop a different kind of

Web sandbox that addresses some limitations of current approaches:

• The runtime checks in Web sandboxes have an overhead that impedes adoption. Google

Caja presently reports 2x or higher slowdowns on various benchmarks.3 A type-checker can

determine that untrusted code does not violate the sandbox’s safety properties, and thus safely

bypass runtime checks. Crucially, statically unverifiable code would continue to use runtime

checks.

Indeed, in chapter 8, the safe sub-language we generate from types is already less restrictive

than ADsafe’s own sub-language. A Web sandbox could allow “safe type annotations” in

untrusted widgets. Note that such a pay-for-performance model is similar to Thorn’s [92].

• We tried and failed to prove a basic non-interference property for ADsafe widgets. The property

turned out to be false; it is violated in several ways by JavaScript’s semantics and no Web

sandbox can establish such a property. Developing and verifying that such a property holds is

also an open problem.

3http://code.google.com/p/google-caja/wiki/Performance

Appendix A

Further Details of ADsafe

Verification

Chapter 8 presents a type-based verification of ADsafe’s original source code. The chapter documents

the few refactorings necessary to satisfy the type-checker (section 8.7.1) and the bugs that we found

(section 8.9). This chapter details the discrepancies between ADsafe’s static checker, JSLint, and

our type-checker, and details the few lines of code that remain unverified.

A.1 Differences Between JSLint and Typed Widgets

In section 8.5.2, we argue that if a widget passes JSLint, then it is also Widget-typable. However,

Widget-typability does not imply that the widget passes JSLint. JSLint is a “code quality tool”

that was retrofitted to perform security checks. Some of these code quality checks are irrelevant for

safety, thus they reject safe code that the Widget-type admits. We give some examples below.

Banned Names The Widget-type states that prototype,arguments, and several other strings cannot

be used as field names. However, it is safe to use them as identifiers:

ADSAFE.lib("Widget_", function() {

var prototype, arguments;

});

However, JSLint rejects this program because it simply scans for “banned names”.

126

127

Unused Identifiers JSLint requires identifiers to be used and hence rejects this program:

ADSAFE.lib("Widget_", function() {

var unusedVariable;

});

However, this program is perfectly safe and Widget-typable.

Pascal-style Declarations JSLint requires all variable declarations to be at the head of a func-

tion, so it rejects this program:

ADSAFE.lib("test_", function () {

var x = 34;

x = x + 1;

var y = 45;

});

However, this program is Widget-typable.

Appendix B

Characteristic Uses of Objects

This appendix translates the λobS examples in section 5.2 to various actual scripting languages.

Example 1

Prototype inheritance:

let Rect = { "area": func(self:?) . self["x"] * self["y"], "parent": null } in

let Cuboid = { "parent": Rect,

"vol": func(self) . self["area"](self) * self["z"] } in

let shape = { "x": 2, "y": 5, "z": 10: "parent": Cuboid } in

let vol = shape["vol"](shape) // vol is 100

JavaScript Here is the equivalent program in JavaScript. Note that the this argument is implicit:

var Rect = { area: function() { return this.x * this.y; },

__proto__: null };

var Cuboid = { __proto__: Rect,

vol: function() { return this.area() * this.z; } };

var shape = { x: 2, y: 5, z: 10, __proto__: Cuboid };

var vol = shape.vol(); // vol is 100

var f = vol;

var vol = f(); // ERROR: this.area is undefined

Lua This program can be written in Lua using metatables, which allow assigning a parent-like

field:

Rect = { area = function(self) return self.x * self.y end }

Cuboid = { vol = function(self) return self.area(self) * self.z end }

128

129

setmetatable(Cuboid, {__index = Rect})

shape = { x=2, y=5, z=10 }

setmetatable(shape, {__index = Cuboid})

vol = shape.vol(shape)

f = shape.vol

vol2 = f() // ERROR: attempt to index local self (a nil value)

Example 2

Extracting methods:

let ArrParent = { "slice": func(self:?,begin:?,end:?). · · · , · · · } in

let arr1 = { "0": 3, "1": 20, "2": 59, "length": 3, "parent": ArrParent }

let nodeList = { "0": htmlElementA, "1": htmlElementB, "2": htmlElementC,

"len": 3, "parent": HTMLNodeListParent } in

let eltArray = ArrParent["slice"](nodeList,0,1)

// returns an array containing htmlElementA and htmlElementB

JavaScript This version of slice is built-in. We use DOM-manipulation functions to fetch array-

like objects.

var ArrParent = Array.prototype;

var arr1 = [3, 20, 59]; // JavaScript desugars to an Array object

// Get all the links on a page:

var nodeList = document.getElementsByTagName("a");

// Using .call on a function allows us to provide the this arg

var eltArray = ArrParent.slice.call(nodeList, 0, 1)

// eltArray contains the first two elements in the list

Lua Lua objects allow trivial method extraction—Lua has similar array behavior to JavaScript as

well, and any number-indexed dictionary can be used by library methods.

arr = {123, 45, 6}

table.sort(arr)

-- arr is now {1 = 6, 2 = 45, 3 = 123}

not_arr = {foo = "bar"}

not_arr[1] = 6

not_arr[2] = 5

not_arr[3] = 4

table.sort(not_arr)

-- not_arr is now {1 = 4, 2 = 5, 3 = 6, foo = "bar"}

Example 3

Bound methods:

130

let Rect = { "area": func(self:?) . self["x"] * self["y"], "parent": null } in

let Cuboid = { "parent": Rect,

"vol": func(self) . self["area"](self) * self["z"] } in

let rec shape2 = {

"x": 2, "y": 5, "z": 10",

"_class_": Cuboid,

"parent": {

"vol": func() . shape2["_class_"]["vol"](shape2)

}

} in

let f = shape2["vol"]

let vol2 = f() // vol2 is still 100, f closes over shape2

Python In Python, we can see this effect with classes:

class Rect(object):

def area(self): return self.x * self.y

class Cuboid(Rect):

def vol(self): return self.area() * self.z

shape2 = Cuboid()

shape2.x = 2; shape2.y = 5; shape2.z = 10

f = shape2.vol

vol2 = f() # vol2 is 100

Ruby In Ruby, we use obj.method(:methname) to access the method, and method.call to invoke

it:

class Rect

def area; self.x * self.y; end

end

class Cuboid < Rect

def vol; self.area() * self.z; end

end

shape2 = Cuboid.new

def shape2.x; 2; end

def shape2.y; 5; end

def shape2.z; 10; end

f = shape2.method(:vol)

vol2 = f.call() # vol2 is 100

Example 4

Ad hoc private fields:

131

let safeGetField = Λα <: ?.func(obj:?,fieldName:?,default:?).

if (fieldName matches "_.*_") default

else if (obj hasfield fieldName) obj[fieldName] else default in

safeGetField(?)({ "_private_": 42, "pub": 23, "parent": null },

"_private_", 0) // returns 0

JavaScript In JavaScript, this check could be performed with a regex. For a real-world example,

see reject name in ADsafe.1

function safeGetField(obj, field, default) {

if(/_(.*)_/.test(field)) return default

else {

if(obj.hasOwnProperty(field)) return obj[field];

else return default;

}

}

Python A similar check works in Python. Note that variations on this pattern are found in

production code inside Django.2

def safeGetField(obj, field, default):

rx = re.compile(r"_(.*)_")

if rx.match(field) is not None: return default

else:

if hasattr(obj, field): return getattr(obj, field)

else: return default

Ruby Note that several variations on this pattern are found in production code inside Ruby on

Rails.3

def safeGetField(obj, field, default)

return default unless /_(.*)_/.match(field).nil?

return default unless obj.respond_to?(field)

return obj.send(field.intern)

end

Example 5

Safe dictionary lookup:

1 https:/github.com/douglascrockford/ADsafe/blob/master/adsafe.js#L254
2 https://github.com/django/django/blob/master/django/db/models/base.py#L157
3https://github.com/rails/rails/blob/master/activerecord/lib/active_record/base.rb#L1725

https:/github.com/douglascrockford/ADsafe/blob/master/adsafe.js#L254
https://github.com/django/django/blob/master/django/db/models/base.py#L157
https://github.com/rails/rails/blob/master/activerecord/lib/active_record/base.rb#L1725

132

let safeAssign = Λα <: ?.func(dict:?,word:Str,value:?).dict["w_" + word = value]

let safeLookup = Λα <: ?.func(dict:?,world:Str,default:?).

let lookup = "w_" + word in

if (dict hasfield lookup) dict[lookup]

else default

JavaScript While JavaScript does not have type abstraction, implementation of the core func-

tionality is trivial:

function safeAssign(dict, word, value) { dict["w_" + word] = value; }

function safeLookup(dict, word, default) {

var lookup = "w_" + word;

if(dict.hasOwnProperty(word)) return dict[lookup];

return default;

}

Such an implementation is necessary in JavaScript when objects are used as dicitonaries, because

of the presence of the proto field in major browsers.

Python Python and Ruby both support dictionary-like objects natively, and don’t need to use

this pattern.

Appendix C

Proofs: Flow Typing

C.1 Full Typing Relation

ty1(typeof) = > → Str

ty2(===) = >×> → Bool

ty2(-) = Num× Num→ Bool

Σ; Γ ` e : S · · · tyn(opn) = S · · · → T

Σ; Γ ` opn(e · · ·) : T

(T-PrimApp)

Σ; Γ ` num : Num (T-Num)

Σ; Γ ` str : Str (T-Str)

Σ; Γ ` bool : Bool (T-Bool)

Σ; Γ ` undefined : Undef (T-Undef)

Σ(l) = T

Σ; Γ ` l : T

(T-Loc)

Γ(x) = T

Σ; Γ ` x : T

(T-Id)

133

134

Σ; Γ′, x : S, · · · ` e : T Γ′ = Γ with labels removed

Σ; Γ ` func(x · · ·) :S · · · → T{ e } : S · · · → T

(T-Abs)

Σ; Γ ` e : S · · · Σ; Γ ` f : S · · · → T

Σ; Γ ` f(e · · ·) : T

(T-App)

Σ; Γ ` e1 : S Σ;x : S,Γ ` e2 : T

Σ; Γ ` let x = e1 in e2 : T

(T-Let)

Σ; Γ ` e : T

Σ; Γ ` ref e : Ref T

(T-Ref)

Σ; Γ ` e : Ref T

Σ; Γ ` deref e : T

(T-Deref)

Σ; Γ ` e1 : Ref S Σ; Γ ` e2 : T T <: S

Σ; Γ ` setref e1 e2 : Ref T

(T-SetRef)

Σ; Γ ` e1 : Bool Σ; Γ ` e2 : T Σ; Γ ` e3 : T

Σ; Γ ` if (e1) { e2 } else { e3 } : T

(T-If)

Σ; Γ, label : T ` e : T

Σ; Γ ` label:T { e } : T

(T-Label)

Γ(label) = T Σ,Γ ` e : T

Σ; Γ ` break label e : ⊥
(T-Break)

Σ; Γ ` e : S S <: T

Σ; Γ ` e : T

(T-Sub)

∀l ∈ dom(Σ).Σ; · ` σ(l) : Σ(l) dom(Σ) = dom(σ)

Σ ` σ
(T-σ)

135

C.2 Type Safety

Lemma 10 (Progress) If Σ, · ` e : T and Σ ` σ then either:

i. e ∈ v, or

ii. There exists σ′, e′, such that σe→ σ′e′, or

iii. There exists an E, such that e = E〈tagerr〉.

Proof: By lemma 12, cases (i.) and (iii.) are immediate, leaving only the the case where

e = E〈ae〉. By lemma 13, there exist S and Γ, such that Σ; Γ ` ae : S. By case-analysis on ae,

applying inversion (lemma 17) and canonical forms (lemma 18) where indicated:

• Case ae = ref v. By E-Ref, σE〈ref e〉 → σ, (l, v)〈l〉 where l /∈ dom(σ).

• Case ae = deref v. By inversion, Σ; Γ ` v : Ref S′. By canonical forms, v = l and l ∈ dom(Σ).

By T-σ, l ∈ dom(σ). By E-Deref, σE〈deref l〉 → σE〈σ(l)〉.

• Case ae = setref v1 v2. By inversion, Σ; Γ ` v1 : Ref S1. By canonical forms, v1 = l, hence

l ∈ dom(σ). By E-SetRef, σE〈setref l v2〉 → σ[l := v2]E〈l〉.

• Case ae = label:T{ E1〈break label v〉 }. By E-Break, σE〈label:T{ E1〈break label v〉 }〉 → σE〈v〉.

• Case ae = label:T { v }. By E-Label-Pop, σE〈label:T { v }〉 → σE〈v〉.

• Case ae = let x = v in e. By E-Let, σE〈let x = v in e〉 → σE〈e[x/v]〉.

• Case ae = vf(v · · ·). By canonical forms, Σ; Γ ` vf : S′ · · · → S. By inversion (lemma 17),

vf = func(x · · ·) { e }. By E-Abs, σE〈func(x · · ·) { e }(v · · ·)〉 → σE〈e′[x/v] · · · 〉.

• Case ae = opn(v · · ·) is similar to the case above.

• Case ae = tagcheck R v. If δ1(typeof, v) ∈ R, then σE〈tagcheck R v〉 → σE〈v〉 by E-TagCheck.

If not, then σE〈tagcheck R v → σE〈tagerr〉 by E-TagCheck-Err.

�

Lemma 11 (Preservation) If Σ1; · ` e1 : T , Σ1 ` σ1, and σ1e1 → σ2e2, then there exists a Σ2,

such that:

136

i. Σ2; · ` e2 : T ,

ii. Σ2 ` σ2, and

iii. Σ1 ⊆ Σ2.

Proof: By case-analysis of the reduction rules, there exists an evaluation context (E), an active

expression (ae), and an expression (e′), such that e1 = E〈ae〉 and e2 = E〈e′〉. Hence,

σ1E〈ae〉 → σ2E〈e′〉

By lemma 13, there exist Γ and S, such that Σ1; Γ ` ae : S and Γ only contains labels. We will

prove that Σ2; Γ ` e′ : S, so that Σ2; Γ ` E〈e′〉 : T .

We proceed by case-analysis on ae, using inversion (lemma 17) where specified:

• let x = v in e. By inversion, Σ1; Γ ` v : U and Σ1;x : U,Γ ` e : S. By E-Let, ae→ e[x/v]. By

substitution (lemma 16), Σ; Γ ` e[x/v] : S.

• (func (x · · ·) { e })(v · · ·). By inversion and canonical forms, Σ1; Γ ` v : U · · · and Σ1;x :

U · · · ` e : S. By E-App, σ(func (x · · ·) { e })(v · · ·)→ σe[x/v] · · · . By substitution (lemma 16),

Σ1; · ` e[x/v] · · · : S.

• label:S′ { v }. By inversion, Σ1; label : S′,Γ ` v : S′ and S′ <: S. By E-Label-Pop,

σlabel:S{ v } → σv. Typing values does not require labels in the environment (lemma 15),

hence Σ1; Γ ` v : S′. The conclusion follows by T-Sub.

• label:S′ { E′〈break label v〉}. By inversion, Σ1; label : S′,Γ ` E′〈break label v〉 : S′ and S′ <: S.

By E-Break, σE′〈break label v〉 → σv. Since the evaluation context, E′ cannot bind identifiers

and values can be typed without labels (lemma 15), Σ1; Γ ` v : S′.

• ref v. By inversion, Σ1; Γ ` v : U and Ref U <: S. By E-Ref, for an l /∈ dom(σ1), σ2 = σ1, (l, v)

and σ1ref v → σ2l. Let Σ2 = l : U,Σ1. By T-Loc, Σ2; · ` l : Ref U , followed by T-Sub with

Ref U <: S.

• deref l. By inversion, Σ1; Γ ` l : Ref U with U <: S. By hypothesis and T-Loc, Σ1(l) = U . By

Σ1 ` σ1, there exists a v such that σ1(l) = v and Σ; Γ ` v : U . By E-Deref, σ1deref l → σ1v.

By T-Sub, Σ1; Γ ` v : S.

137

• setref l v. By inversion, Σ1; Γ ` l : Ref S′, Σ1; Γ ` v : U , U <: S′, and Ref S′ <: S. By

T-Loc, Σ1(l) = S′. By E-SetRef, σ1setref l v → σ1[l/v]l. Since Γ does not bind identifiers and

by lemma 15, Σ1; · ` v : U . By T-Sub, Σ; · ` v : S′. Hence, Σ1 ` σ1[l/v].

• tagcheck R v.

– σ1E〈tagcheck R v〉 → σ1E〈v〉, and δ1(typeof, v) ∈ R. By inversion, Σ1; Γ ` v : U and

S′ = static(R,U) for S′ <: S. By definition of static, S′ <: U . By case-analysis of v:

∗ v = func (x · · ·) :Ta · · · → Tr{ e }, hence Σ1; · ` v : Ta · · · → Tr and Ta · · · → Tr <: U .

By lemma 19, static(R, Ta · · · → Tr) <: static(R,U) <: S. By lemma 20, ”function” ∈

runtime(U). Hence, static(R, , Ta · · · → Tr) = Ta · · · → Tr.

∗ Constants are symmetric to functions.

– σ1E〈tagcheck R v〉 → σ1E〈tagerr〉. Apply T-TagErr and T-Sub.

�

Definition 1 (Active Expressions) An active expression, ae is one of:

ae = let x = v in e

| vf(v · · ·)

| opn(v · · ·)

| label:T { v }

| ref v

| deref v

| setref v1 v2

| label:T{ E〈break v〉 } where label /∈ E

| tagcheck R v

Lemma 12 For all closed expressions e, either:

i. e ∈ v,

ii. there exist e and ae such that e = E〈ae〉, or

iii. e = E〈tagerr〉, for some E.

138

Proof: By definition of e, v, and E. �

Lemma 13 (Closed Active Expressions) For all Σ, T, E, ae, if Σ; · ` E〈ae〉 : T , then there exist

S and Γ, where Γ only contains labels, such that Σ; Γ ` ae : S.

Proof: there exists a subdeduction of the typing derivation, such that Σ; Γ ` ae : S. Suppose

an identifier, x ∈ dom(Γ). Then, ae is in a program context C〈let x = e1 in •〉 or C〈func(x · · ·) { • }〉.

However, this cannot occur since ae is in an evaluation context. �

Lemma 14 For all E, if σ1e1 → σ2e2, then σ1E〈e1〉 → σ2E〈e2〉.

Proof: by case-analysis of the reduction rules, there exist E′, e′1, e
′
2, such that e1 = E′〈e′1〉,

e2 = E′〈e′2〉, and σ1E
′〈e′1〉 → σ2E

′〈e′2〉. By the same reduction rule, σ1E〈E′〈e′1〉〉 → σ2E〈E′〈e′2〉〉.

�

Lemma 15 If Σ; Γ ` v : T then Σ; Γ′ ` v : T , where Γ′ = Γ with labels removed.

Proof: the only interesting case is v = func(x · · ·) { e }, where e is typed in an extension of Γ

with labels removed, i.e., Γ′. �

Lemma 16 (Substitution) If Σ;x : S,Γ ` e : T and Σ; Γ ` v : S, then Σ; Γ ` e[x/v] : T .

Proof: by induction on the typing derivation. �

Lemma 17 (Inversion) If:

• Σ; Γ ` ref e : T , then Ref S <: T and Σ; Γ ` e : S,

• Σ; Γ ` deref e : T , then Σ; Γ ` e : Ref S with S <: T ,

• Σ; Γ ` setref e1 e2 : T , then Σ; Γ ` e1 : Ref S, Σ; Γ ` e2 : U , U <: S, and Ref S <: T ,

• Σ; Γ ` ef(e · · ·) : T , then Σ; Γ ` ef : S · · · → T ′, Σ; Γ ` e : S · · · , and T ′ <: T .

• Σ; Γ ` label:S { e } : T , then S <: T and σ; label : S,Γ ` e : S.

• Σ; Γ ` let x = e1 in e2 : T , then Σ; Γ ` e1 : S and Σ;x : S,Γ ` e2 : T .

• Σ; Γ ` tagcheck R e : T , then Σ; Γ ` e = S and static(R,S) = T ′, where T ′ <: T .

139

Proof: by induction on the typing derivation. In all cases, only T-Sub and one other typing rule

apply. T-Sub requires induction and the other latter is immediate.

• Only T-Ref and T-Sub apply. T-Ref is immediate with Ref S = T . For T-Sub, by inversion,

Σ; Γ ` ref e : T ′ and T ′ <: T . By induction, T ′ = Ref S and Σ; Γ ` e : S.

• Only T-Deref and T-Sub apply. T-Deref is immediate with T <: T . For case T-Sub, by

inversion Σ; Γ ` deref e : S and S <: T . By induction, Σ; Γ ` e : Ref S′ with S′ <: S. By

S-Trans, S′ <: T

• Only T-SetRef and T-Sub apply. T-SetRef is immediate, with Ref S = T . For T-Sub, by

inversion, Σ; Γ ` setref e1 e2 : T ′ and T ′ <: T . By induction, Σ; Γ ` e1 : Ref S, Σ; Γ ` e2 : U ,

U <: S, and Ref S <: T ′. By S-Trans, Ref S <: T .

• Only cases T-App and T-Sub apply. T-App is immediate. For T-Sub, the conclusion follows

by induction and S-Arr.

• Only cases T-Sub and T-Label apply. T-Label follows immediately with S = T and S-Refl.

For T-Sub, Σ; Γ ` label:S { e } : T ′ and T ′ <: T . By induction, Σ; label : S,Γ ` e : S and

S <: T ′. Hence, by S-Trans, S <: T .

• Only T-Let and T-Sub apply. T-Let is immediate. For T-Sub, by induction, Σ; Γ ` e1 : S,

Σ;x : S,Γ ` e2 : T ′, and T ′ <: T . Apply T-Sub.

• Only T-TagCheck and T-Sub apply. T-TagCheck is immediate. For T-Sub, by induction, it

holds for a T ′ <: T .

�

Lemma 18 (Canonical Forms) For Σ; Γ ` v : T :

i. If T = Ref S then v = loc and Σ(loc) <: S.

ii. If T = U · · · → S then v = func(x · · ·) { e }.

Proof: By induction on the typing derivation.

i. Only T-Loc and T-Sub apply. T-Loc is immediate. For T-Sub, Σ; Γ ` v : T ′ with T ′ <: T . By

induction, v = loc, T ′ = Ref S′, and Σ(loc) <: S′.

140

ii. Only T-Abs and T-Sub apply. T-Abs is immediate, and T-Sub follows by induction.

�

Lemma 19 (static commutes with subtyping) If S <: T , then static(R,S) <: static(R, T).

Proof: by induction on S <: T . �

Lemma 20 If Σ; Γ ` v : T , then δ1(typeof, v) ∈ runtime(T).

Proof: by case analysis of v. �

C.3 CPS Transformation

The following four mutually-recursive functions define our CPS transformation: Ck transforms ex-

pressions, Φ transforms values, Kk transforms evaluation contexts, and Pk transforms program

states (expressions with stores). This style of transformation is due to Sabry and Felleisen [75]. Our

presentation has a few minor distinctions:

• The semantics of our source language directly specifies the evaluation of break, which is a very

restricted form of call/cc. Hence, break is an expression transformed by Ck, instead of a value

transformed by Φ.

• We use a global store instead of a syntactic store, hence the need for Pk.

• We use let-expressions to avoid continuation-passing operators.

• We do not employ a fully-compacting transformation. For example, we do not have a special-

case for CkJE〈(func(x · · ·):T { e })(v · · ·)〉K, as it would introduce interprocedural flows in the

source language. (In contrast, see [75, Definition 5].)

141

Ck : e→M

CkJvK = k(ΦJvK)

CkJE〈let (x = v) e〉K = let (x = ΦJvK)CkJE〈e〉K

CkJE〈vf(v · · ·)〉K = ΦJvf K(KkJEK,ΦJvK · · ·)

CkJE〈opn(v · · ·)〉K = let x = opn(ΦJvK · · ·) in KkJEK(x)

CkJE〈if (v) { e2 } else { e3 }〉K = (func (k) { if (ΦJvK) { CkJe2K } else { CkJe3K } })(KkJEK)

CkJE1〈label: { E2〈break label v〉 }K = KkJE1K(ΦJvK), when label /∈ E2

CkJE〈label:{ v }〉K = CkJE〈v〉K

CkJE〈ref v〉K = let x = ref ΦJvK in KkJEK(x)

CkJE〈deref v〉K = let x = deref ΦJvK in KkJEK(x)

CkJE〈setref l v〉K = let x = setref l ΦJvK in KkJEK(l)

CkJE〈tagcheck R v〉K = let x = tagcheck R ΦJvK in KkJEK(x)

Φ : v → V

ΦJxK = x

ΦJfunc(x · · ·):S · · · → T { e }K = func(k,x · · ·):(T → ⊥)× S · · · → ⊥ { CkJeK }

ΦJcK = c

ΦJlK = l

142

Kk : E → V

KkJ•K = k

KkJE〈let (x = •) e〉K = func(x) { CkJE〈e〉K }

KkJE〈•(e · · ·)〉K = func(f) { CkJE〈f(e · · ·)〉K }

KkJE〈vf(v · · · • e · · ·)〉K = func(x) { CkJE〈vf(v · · ·xe · · ·)〉K }

KkJE〈opn(v · · · • e · · ·)〉K = func(x) { CkJE〈opn(v · · ·xe · · ·)〉K }

KkJE〈if (•) { e2 } else { e3 }〉K = func(x) { CkJE〈if (x) { e2 } else { e3 }〉K }

KkJE〈ref •〉K = func(x) { CkJE〈ref x〉K }

KkJE〈deref •〉K = func(x) { CkJE〈deref x〉K }

KkJE〈setref • e〉K = func(x) { CkJE〈x = e〉K }

KkJE〈setref v •〉K = func(x) { CkJE〈v = x〉K }

KkJE〈break label •〉K = func(x) { CkJE〈break label x〉K }

KkJE〈label: { • }〉K = func(x) { CkJE〈label: { x } K }

KkJE〈tagcheck R •〉K = func(x) { CkJE〈tagcheck R x〉K}

Pk : σe→ SM

PlJ(l, v) · · · eK = (l,Φ(v)) · · · CkJeK

Lemma 21 (Soundness of Pk) If σe→R σ
′e′, then PkJσeK�{R,E-Let,β̂} PkJσ

′e′K.

Proof: The proof is by induction on the size of σe and proceeds by case-analysis of the definition

of →. To prove that only R, E-Let, and β̂ are applied, we simply examine the reduction sequences

below. Note that the auxilliary lemma 22 only employs β̂.

• Case E-Let.

S CkJE〈let (x = v) e〉K

= S let (x = ΦJvK) CkJE〈e〉K

→ S CkJE〈e〉K[x/ΦJvK] E-Let

= S CkJE〈e〉[x/v]K lemma 23

which is Ck, applied to the the RHS of E-Let.

143

• Case E-Break.

S CkJE1〈label:T { E2〈break label v〉 }〉K

= S KkJE1K(ΦJvK)

� S CkJE1〈v〉K lemma 22

• Case E-Label-Pop.

S CkJE〈label:T { v }〉K

= S CkJE〈v〉K

• Case E-Ref.

S CkJE〈ref v〉K

= S let x = ref ΦJvK in KkJEK(x)

→ S, (l,ΦJvK) let x = l in KkJEK(x) E-Ref

→ S, (l,ΦJvK) KkJEK(l) E-Let

= S, (l,ΦJvK) KkJEK(Φ(l))

� S, (l,ΦJvK) CkJE〈l〉K lemma 22

• Case E-Deref.

S CkJE〈deref l〉K

= S let x = deref l in KkJEK(x)

→ S let x = S(l) in KkJEK(x) E-Deref and dom(S) = dom(σ)

→ S KkJEK(S(l)) E-Let

� S CkJE〈v〉K lemma 22, where S(l) = Φ(v)

• Case E-SetRef.

S CkJE〈setref l v〉K

= S let x = setref l ΦJvK in KkJEK(l)

→ (l,ΦJvK)S let x = l in KkJEK(l)

→ (l,ΦJvK)S KkJEK(l) since x is unused

� (l,ΦJvK)S CkJE〈l〉K by lemma 22, since φ(l) = l

144

• Case E-TagCheck.

S CkJE〈tagcheck R v〉K

= S let x = tagcheck R ΦJvK in KkJEK(x)

→ S KkJEK(ΦJvK) since typeof(v) = typeof(ΦJvK)

� S CkJE〈v〉K lemma 22

�

Lemma 22 SKkJEK(ΦJvK)�β̂ SCkJE〈v〉K.

Proof: The proof is by case analysis of E. We elide S in the steps below as it remains constant.

• Case E〈ref •〉.

KkJE〈ref •〉K(ΦJvK)

= (func(x) { CkJE〈ref x〉K })(ΦJvK)

→ CkJE〈ref x〉K[x/ΦJvK] β̂

= CkJE〈ref x〉[x/v]K by lemma 23

= CkJE〈ref v〉K

• Case E〈break label •〉.

KkJE〈break label •〉K(ΦJvK)

= (func(x) { CkJE〈break label x〉K })(ΦJvK)

→ CkJE〈break label x〉K[x/ΦJvK] β̂

= CkJE〈break label x〉[x/v]K by lemma 23

= CkJE〈break label v〉K

• Case E〈if (•) { M1 } else { M2 }〉.

KkJE〈if (•) { e2 } else { e3 }〉K(ΦJvK)

= func(x) { CkJE〈if (x) { e2 } else { e3 }〉K }(ΦJvK)

→ CkJE〈if (x) { e2 } else { e3 }〉K[x/ΦJvK] β̂

= CkJE〈if (x) { e2 } else { e3 }〉[x/v]K lemma 23

= CkJE〈if (v) { e2 } else { e3 }〉K

145

• Case E〈•(e · · ·)〉.

KkJE〈•(e · · ·)〉K(ΦJvK)

= func(f) { CkJE〈f(e · · ·)〉K }(ΦJvK)

→ CkJE〈f(e · · ·)〉K[f/ΦJvK] β̂v

= CkJE〈v(e · · ·)〉K lemma 23

Cases E〈vf(v · · · • e · · ·)〉 and E〈opn(v · · · • e · · ·)〉 are similar.

• Case E〈label: { • }〉.

KkJE〈label:{ • }〉K(ΦJvK)

= func(x) { CkJE〈label: { x } 〉K }(ΦJvK)

→ CkJE〈label: { x } 〉K(ΦJvK) β̂v

= CkJE〈label: { v } 〉K lemma 23

• Case E〈deref •〉.

KkJE〈deref •〉K(ΦJvK)

= (func(x) { CkJE〈deref x〉K })(ΦJvK)

→ CkJE〈deref x〉K[x/ΦJvK] β̂v

= CkJE〈deref x〉[x/v]K by lemma 23

= CkJE〈deref v〉K

• Case E〈setref • e〉.

KkJE〈setref • e〉K(ΦJvK)

= (func(x) { CkJE〈setref x e〉K })(ΦJvK)

→ CkJE〈setref x e〉K[x/ΦJvK] β̂v

= CkJE〈setref x e〉[x/v]K by lemma 23

= CkJE〈setref v e〉K

Case E〈setref v •〉 is similar.

146

• Case E〈tagcheck R •〉.

KkJE〈tagcheck R •〉K(ΦJvK)

= (func(x) { CkJE〈tagcheck R x〉K })(ΦJvK)

→ CkJE〈tagcheck R x〉K[x/ΦJvK] β̂v

= CkJE〈tagcheck R x〉[x/v]K by lemma 23

= CkJE〈tagcheck R v〉K

�

Lemma 23 (Substitution Commutes with Ck) CkJeK[x/Φ(v)] = CkJe[x/v]K.

Proof: by induction on the structure of e. For each inductive case of Ck, expand the definitions

of Φ and Kk on the RHS to get a term with Ck applied to subterms of e. The inductive hypotheses

now trivially apply. �

C.4 Additional Rules for Flow Analysis

For soundness of flow analysis, we need to reason about intermediate terms with concrete locations,

l. Hence, we extend abstract heaps to the type:

Ŝ : l̂ + l→ R

Ŝ; Γ̂ . V V̂

Ŝ(l̂) = R runtime(V) = R

Ŝ; Γ̂ . V Deref l̂ R

(V-Deref)

Ŝ; Γ̂ . V Deref l̂

Ŝ; Γ̂ . δ1(typeof, V) LocTypeof l̂

(V-Typeof)

Ŝ; Γ̂ . V1 LocType l̂ V2 ∈ Ŝ(l̂)

Ŝ; Γ̂ . δ2(===, V1, V2) LocType l̂ R

(V-TypeIs)

Ŝ; Γ̂ � SM

147

Ŝ; Γ̂ . V V̂ Ŝ;x : r, Γ̂ � S M

Ŝ; Γ̂ � S let (x = deref V) M

(F-Deref-Unk)

Ŝ; Γ̂ . V V̂ Ŝ;x : {”string”}, Γ̂ � S M

Ŝ; Γ̂ � S let (x = typeof V) M

(F-Typeof-Unk)

Ŝ; Γ̂ . V1 V̂1 Ŝ; Γ̂ . V2 V̂2

Ŝ;x : {”boolean”}, Γ̂ � S M

Ŝ; Γ̂ � S let (x = V1 === V2) M

(F-Eq)

Ŝ; Γ̂ . V1 Ref l̂1 Ŝ; Γ̂ . V2 Ref l̂2

l̂ : R, Ŝ;x : r, del(l̂1, del(l̂2, Γ̂)) � S M

Ŝ; Γ̂ � S let (x = setref V1 V2) M

(F-SetRef-Alias1)

Ŝ; Γ̂ . V1 V̂1 Ŝ; Γ̂ . V2 Ref l̂2

l̂ : R, Ŝ;x : r, del(l̂2, Γ̂) � S M

Ŝ; Γ̂ � S let (x = setref V1 V2) M

(F-SetRef-Alias2)

Ŝ; Γ̂ . V V̂

Ŝ; Γ̂ �M1 Ŝ; Γ̂ �M2

Ŝ; Γ̂ � S if (V) { M1 } else { M2 }

(F-If)

Ŝ; Γ̂ �M1

Ŝ; Γ̂ � S if (true) { M1 } else { M2 }

(F-If-True)

Ŝ; Γ̂ �M2

Ŝ; Γ̂ � S if (false) { M1 } else { M2 }

(F-If-False)

C.5 Flow Analysis

Furthermore, flow analysis is sound:

Lemma 24 (Soundness of Flow Analysis) If Ŝ, · � SM and SM → S′M ′, then either:

• Ŝ′, · � S′M ′, or

148

• M is a β̂v redex, func(x · · ·) : T · · · ⊥ { N }(V · · ·), and for some V , δ1(typeof, V) /∈ runtime(T).

Proof: by case-analysis on M .

• Case S func(x · · ·) : T · · · ⊥ { N }(V · · ·)→ SN [x/V] · · · .

By inversion, ·;x : runtime(T) · · · � N (V-Restart) and there exist R · · · , such that · . V

R · · · . Since V · · · are all closed, δ1(typeof, V) · · · is defined. By case analysis on V , ·; · . V

{δ1(typeof, V)} · · · . There are two cases:

– If {δ1(typeof, V)} v runtime(T) · · · , then by substitution (lemma 25), ·; · � N [x/V · · ·].

– Otherwise, for some V, T , δ1(typeof, V) /∈ runtime(T).

• Case S let x = V in M → SM [x/V].

By F-LetVal, Ŝ; · � S let x = V in M . By hypothesis, Ŝ;x : V̂ � SM and Ŝ; · . V V̂ . By

substitution (lemma 25), Ŝ; · � SM [x/V].

• Case S let x = ref V in M → (l, V)S let x = lin M .

There are two applicable rules.

– By F-Alloc, Ŝ; · . V R and l̂ : R, Ŝ;x : Ref l̂ � SM . By V-Loc, (l, V), Ŝ; · . l Ref l.

Renaming l̂ to l (lemma 26), l : R, Ŝ;x : Ref l � SM . Hence by F-LetVal, l : R; Ŝ; · �

(l, V), S let x = lin M .

– By F-Ref-Alias, Ŝ; · . V Ref l̂ and Ŝ;x : r � SM . By V-Loc, followed by V-Sub,

(l, v), Ŝ; · . l̂ r. Hence by F-LetVal, l : r, Ŝ; · � (l, V), S let x = lin M .

• Case S let x = deref l in M → S let x = S(l) in M .

– By F-Deref, Ŝ; · . l Ref l, Ŝ(l) = R, and Ŝ;x : Deref l R � S M . By V-Deref,

Ŝ; · . S(l) Deref l R. Apply F-LetVal to the RHS.

– By F-Deref-Unk, Ŝ;x : r � SM and Ŝ; · . S(l) V̂ . By V-Sub and F-LetVal, the

conclusion follows.

• Case S let x = typeof V in M → S let x = δ1(typeof, V) in M

– By F-Typeof, · . V Deref l̂ R and Ŝ;x : LocTypeof l̂ � M . By V-Typeof, Ŝ; · .

δ1(typeof, V) LocTypeof l̂. Apply F-LetVal to the RHS.

149

– By F-Typeof-Unk, Ŝ;x : {”string”} � SM and Ŝ; · . V V̂ . By definition of δ1(typeof),

Ŝ; · . δ1(typeof, V) {”string”}. Apply F-LetVal.

• Case S let x = (V1 === V2) in M → S S let x = δ2(===, V1, V2) in M .

– By F-TypeIs-Str, V2 = ”string”, Ŝ; ·.V1 LocTypeof l̂, and Ŝ;x : LocType l̂ {”string”} �M .

By V-TypeIs, Ŝ; · . δ2(===, V1, V2) LocTypeof l̂. Apply F-LetVal to the RHS.

– By F-Eq, Ŝ;x : {”boolean”} � SM , Ŝ; · . V1 V̂1, and Ŝ; · . V2 V̂2. By definition of

δ2(===), Ŝ; · . δ2(===, V1, V2) {”boolean”}. Apply F-LetVal.

• Case S let x = tagcheck R V in M → S let x = V in M .

By F-TagCheck, Ŝ; · . V R. Apply F-LetVal to the RHS.

• Case S let x = setref l V in M .

– By F-SetRef, Ŝ; ·.l Ref l, Ŝ; ·.V R, and Ŝ[l := R], x : Ref l � SM . Apply F-LetVal.

– By F-SetRef-Alias2, Ŝ; ·. l Ref l, Ŝ; ·.V Ref l̂′, and Ŝ;x : r � SM . Apply F-LetVal.

• Case S if (true) { M1 } else { M2 }→ S M1.

By F-If-True, Ŝ; · . V LocType l̂ R, R v Ŝ(l̂), and Ŝ; · �M1.

• Case S if (false) { M1 } else { M2 }→ S M2.

By F-If-False, Ŝ; · . V LocType l̂ R, R v Ŝ(l̂), and Ŝ; · �M2.

Lemma 25 (Substitution) If Ŝ;x : V̂ , Γ̂ � M and Ŝ; Γ̂ . V V̂ ′, with V̂ ′ v V̂ then Ŝ; Γ̂ �

M [x/V ′].

Proof by induction on Ŝ;x : V̂ , Γ̂ �M .

The key to this proof is substituting values W that occur in expressions M . i.e., we must show

that if Ŝ;x : V̂ , Γ̂ . W Ŵ , then Ŝ; Γ̂ . W [x/V ′] Ŵ .

The interesting case is when W = func(y · · ·):T · · · → ⊥ { M }. So, by V-Restart:

·; y : runtime(T) · · · , reset(x : V̂ , Γ̂) �M ′

= ·; reset(x : V̂ ′′), y : runtime(T) · · · , reset(Γ̂) �M ′

By definition of reset, V̂ v V̂ ′′. Since M ′ is smaller than M , the inductive hypothesis applies.

150

Lemma 26 (Renaming Locations) If l̂ : V̂ , Ŝ; Γ̂ � SM and l /∈ dom(S), then l : V̂ , Ŝ; Γ̂[l̂/l] �

SM .

Proof by induction on the size of Γ̂. �

C.6 Combined Soundness Theorems

Theorem 8 (Strengthened Progress) If:

i. Σ; · ` e : T ,

ii. Σ ` σ, and

iii. Ŝ; · � PkJσeK,

then either:

i. e ∈ v, or

ii. There exist σ′ and e′, such that σe→ σ′e′.

Proof: This follows from lemma 6, with the possibility of tagerrs eliminated by inspection of the

acceptability relation—flow analysis does not admit expressions with tagerrs. �

Theorem 9 (Combined Preservation) If:

i. Σ; · ` e : T ,

ii. Σ ` σ,

ii. Ŝ; · � PkJσeK, and

iv. σe→ σ′e′,

then there exist Σ′ and Ŝ′, such that:

i. Σ′; · ` e′ : T ,

ii. Σ′ ` σ′,

iii. Σ ⊆ Σ′, and

151

iv. Ŝ′; · � PkJσ′e′K.

Proof: Conclusions (i.), (ii.), and (iii.) follow immediately from lemma 5. For conclusion (iv.),

apply lemma 7 to hypothesis (iv.) to get a reduction sequence, PkJσeK� PkJσ′e′K. Apply lemma 8

at each step, eliminating case (ii.) of the lemma as follows. By lemma 7, intermediate expressions

are not βv-redexes, so case (ii.) does not apply. Suppose e itself has an active βv-redex:

e = E〈func(x · · ·) : U · · · → S { ef }(v · · ·)〉

Transform e to CPS:

CkJeK = ΦJfunc(x · · ·) : U · · · → S { ef }K(KkJEK,ΦJvK · · ·)

Since e is typable, there exists a Γ such that:

Σ; Γ ` func(x · · ·) : U · · · → S { ef }(v · · ·) : S

Furthermore, by inversion (lemma 17), Σ; Γ ` v : U · · · . For all v, δ1(typeof, v) ∈ runtime(U)

(lemma 20). By inspection of Φ, δ1(typeof, v) = δ1(typeof,ΦJvK), case (ii.) of lemma 8 does not apply.

�

Appendix D

Proofs: Fluid Object Types

D.1 Definitions

Definition 3 (Type Equivalence) We define a relation on types =T .

MA ⊆ LA LA ⊆MA ∀i, j.Li ∩Mj 6= ∅ ⇒ Si =T Tj ∧ pi = qj

∀i.∃(j1, · · · , jk).Li ⊆
⋃
l∈(j1,··· ,jk)Ml ∀j.∃(i1, · · · , ik).Mi ⊆

⋃
l∈(i1,··· ,ik) Ll

{Lp11 : S1, · · · , Lpnn : Sn, LA : abs} =T {Mq1
1 : T1, · · · ,Mqm

m : Tm,MA : abs}
(Equiv-Obj)

The other cases of =T are trivial; to define them we lift Equiv-Obj in the natural way over the

other types. =T describes an equivalence class of types—we use T1 =T T2 and T1 = T2 inter-

changeably in this document, and types represented by the same letter are assumed to be related by

=T .

Definition 4 (Subtyping) The generating function,

ST : P(Γ× T × T + p× p)→ P(Γ× T × T + p× p)

is defined co-inductively by the subtyping judgments. We define subtyping as Γ ` S <: T , iff

(Γ, S, T) ∈ νST and p <: q, iff (p, q) ∈ νST .

152

153

Definition 5 (Transitivity) For R ⊆ P(Γ× T × T + p× p)

TR(R) = {(Γ, x, z) | ∀x, z ∈ T ,∃y ∈ T , (Γ, x, y), (Γ, y, z) ∈ R}

∪ {(x, z) | ∀x, z ∈ p, ∃y ∈ p, (x, y), (y, z) ∈ R}

Definition 6 (Top-down Subexpressions) S is a top-down subexpression of T , written S v T ,

if (S, T) is in µTD, defined as follows:

TD(R) = {(T, T) | T is a finite type }

∪ {(S, {Lp : T, rest · · · }) | (S, T) ∈ R}

∪ {(S, {Lp : T, rest · · · } | (S, {rest}) ∈ R}

∪ {(S, {Lp : T}) | (S, T) ∈ R}

∪ {(S,Ref T) | (S, T) ∈ R}

∪ {(S, µx.T) | (S, T [x/µx.T]) ∈ R}

∪ {(S, T1 → T2) | (S, T1) ∈ R}

∪ {(S, T1 → T2) | (S, T2) ∈ R}

∪ {(S,∀α <: U.T) | (S,U) ∈ R}

∪ {(S,∀α <: U.T) | (S, T) ∈ R}

Definition 7 (Bottom-Up Subexpressions) S is a bottom-up subexpression of T , written S �

T , if (S, T) is in µBU , defined as follows:

BU(R) = {(T, T) | T is a finite type }

∪ {(S, {Lp : T, rest · · · }) | (S, T) ∈ R}

∪ {(S, {Lp : T, rest · · · } | (S, {rest}) ∈ R}

∪ {(S, {Lp : T}) | (S, T) ∈ R}

∪ {(S,Ref T) | (S, T) ∈ R}

∪ {(S, T1 → T2) | (S, T1) ∈ R}

∪ {(S, T1 → T2) | (S, T2) ∈ R}

∪ {(S, ∀α <: U.T) | (S,U) ∈ R}

∪ {(S, ∀α <: U.T) | (S, T) ∈ R}

∪ {(S[x/µx.T], µx.T) | (S, T) ∈ R}

154

Definition 8 (Active Expressions) Active expressions, ae, are defined as follows:

ae = v1(v2)

| ref v

| deref v

| v1 = v2

| v1[v2]

| v1[v2 = v3]

| delete v1[v2]

| if (v1) { e2 } else { e3 }

| v1 hasfield v2

| v1 matches v2

| fieldin { s1 : v1, s2 : v2 · · ·} init vacc do vf

D.2 Auxilliary Lemmas

Lemma 27 For all T, T ↓T ⊆ T
↑
T

Proof This is exactly the same argument as Pierce [71]. �

Lemma 28 The set of top-down subexpressions, T ↓T = {S | (S, T) ∈ µTD}, is finite for all T .

Proof By lemma 27, T ↓T ⊆ T
↑
T for all T , and by lemma 29, T ↑T is finite for all T , so T ↓T is finite for

all T .

Lemma 29 The set of bottom-up subexpressions, T ↑T = {S | (S, T) ∈ µBU} is finite for all T .

Proof The second position in the each right-hand clause in BU is smaller than the left.

Lemma 30 If (S, T [x/U]) ∈ T ↑T [x/U], then either (S,U) ∈ T ↑U or S = S′[x/U] for some (S′, T) ∈ T ↑T .

Proof By case analysis on T .

155

D.3 Subtyping

Lemma 31 If:

S : P(Γ× T × T + p× p)→ P(Γ× T × T + p× p)

is a monotone function, and for all R, TR(S(R)) ⊆ S(TR(R)), then νS is transitive.

Proof: This definition is from Gapayev, et al., and reproduced in Pierce’s text. Its relation to

transitivity is discussed there—we use it as a goal and defer to their explanation to complete the

proof [71, Lemma 21.3.6].

Lemma 32 (Subtyping is Transitive) TR(νST) ⊆ νST

Proof:

For arbitrary R, we consider both field annotations in (p, q), and subtyping judgments (Γ, S, T):

Let (p, q) ∈ TR(ST (R)). By definition of TR, there exists a p′ such that (p, p′), (p′, q) ∈ ST (R).

By case analysis of the p <: p rules, it follows trivially that (p, q) ∈ ST (TR(R)).

Let (Γ, S, T) ∈ TR(ST (R)). By definition of TR, there exists a U such that (Γ, S, U), (Γ, U, T) ∈

ST (R). We will show that (Γ, S, T) ∈ ST (TR(R)), so that by lemma 31, νST is transitive.

By case-analysis on the possible shapes of U (eliding the trivial cases where T = >):

• U = {Lp11 : U1, · · · , Lpnn : Un, LA : abs}.

Since (Γ, S, U), (Γ, U, T) ∈ ST (R), by cases of ST ,

(1) S = {Ko1
1 : S1, · · · ,Kol

l : Sl,KA : abs}, and

(2) T = {Mq1
1 : T1, · · · ,Mqm

m : Tm,MA : abs}.

By hypothesis, (Γ, S, U) ∈ ST (R), which must be by S-Object. By hypothesis of S-Object:

(3) ∀i, j. if Ki ∩ Lj 6= ∅ then (Si, Uj) ∈ R and (oi, pj) ∈ R,

(4)
⋃1···n
i Li ⊆

⋃1···l
h Kh ∪KA,

(4’) LA ⊆ KA,

(5) ∀i. if Li ∩KA 6= ∅ then (pj = ◦ or pj =↑),

(6) ∀i. if pi =↑ then (Γ, inherit(S,Li), Ui) ∈ R.

Similarly,

156

(7) ∀i, j. if Li ∩Mj 6= ∅ then (Ui, Tj) ∈ R and (pi, qj) ∈ R,

(8)
⋃1···m
j Mj ⊆

⋃1···n
i Li ∪ LA,

(8’) MA ⊆ LA,

(9) ∀j. if Mj ∩ LA 6= ∅ then (qj = ◦ or qj =↑),

(10) ∀j. if qj =↑ then (Γ, inherit(U,Mj), Tj) ∈ R.

Our goal is to show that (Γ, S, T) ∈ ST (TR(R)), by constructing a proof of S-Object using

the above hypotheses and the definition of ST and TR. Informally, we need to find support

for the hypotheses of S-Object for S and T among the elements of TR(R). In particular, we

show that:

a.
⋃1···m
j Mj ⊆

⋃1···l
h Kh ∪KA.

Proof: By (4), (4’), (8), (8’), and transitivity of subset inclusion.

b. ∀h, j. if Kh ∩Mj 6= ∅ then (oh, qj) ∈ TR(R) and (Γ, S, T) ∈ TR(R)

Proof: Let x ∈ Kh ∩Mj , thus x ∈ Kh and x ∈Mj . By (8), there are two cases:

i. x ∈ LA — In this case, Mj ∩ LA 6= ∅. Since LA ⊆ KA by (8’), x ∈ KA. But by

the well-formedness of object types, object types’ fields are partitioned, and this is a

contradiction, since x ∈ Kh. This case cannot occur.

ii. x ∈ Li for some i — In this case, we have that x ∈ Li and x ∈ Mj , so by (7),

(Ui, Tj) ∈ R and (pi, qj) ∈ R. We also have that x ∈ Li and x ∈ Kh, so by (3),

(Sh, Ui) ∈ R and (oh, pi) ∈ R. This completes item b., as by definition of TR,

(oh, pi) ∈ R, (pi, qj) ∈ R ⇒ (oh, qj) ∈ TR(R), and (Sh, Ui) ∈ R, (Ui, Tj) ∈ R ⇒

(Sh, Tj) ∈ TR(R).

c. ∀j.Mj ∩KA 6= ∅ ⇒ (qj = ◦ or qj =↑)

Proof: For each non-vacuous case of j, there is some x with x ∈ Mj and x ∈ KA. By

(8), there are two cases:

i. x ∈Mj ∩Li for some i — In this case, Li ∩KA 6= ∅, so by (5) pi = ◦ or pi =↑. Only

p−Refl applies, so item c. is complete.

ii. x ∈Mj ∩ LA — This case follows directly from (9).

157

d. ∀j. if qj =↑ then (Γ, inherit(S,Mj), Tj) ∈ TR(R).

Proof: By (10), ∀j. if qj =↑ then (Γ, inherit(U,Mj), Tj) ∈ R. By assumption, we

have that (Γ, S, U) ∈ R (or, equivalently, Γ ` S <: U). Recall from (1) that S =

{Ko1
1 : S1, · · · ,Kol

l : Sn,KA : abs}. By lemma 38, since Γ ` S <: U,Mj ⊆ Mj ,

it must be that Γ ` inherit(S,Mj) <: inherit(U,Mj) for each j. Now we have that

(Γ, inherit(S,Mj), inherit(U,Mj)) ∈ R and (Γ, inherit(U,Mj), Tj) ∈ R for each j, which

is sufficient to show that (Γ, inherit(S,Mj), Tj) ∈ TR(R) for each j, which completes the

proof.

• U = b Only S-b applies, so S and T must both be b, and are therefore in R.

• Case U = Lu. Only case S-Str applies for S <: U and U <: T . Thus, S = Ls and T = LT ,

with Ls ⊆ Lu ⊆ LT . Thus S <: T follows by transitivity of the subset relation.

• Case U = Ref U ′. Only case S-Ref applies, thus S = Ref S′ and T = Ref T ′, with

(S′, U ′), (U ′, S′), (U ′, T ′), (T ′, U ′) ∈ R

By definition of TR,

(S′, T ′), (T ′, S′) ∈ TR(R)

Thus,

(Ref S′,Ref T ′) ∈ ST (TR(R))

• Case U = α. There are three possibilities, depending on uses of S-VR and S-VTR:

– S = α and T = α, so (Γ, S, T) ∈ TR(R) by S-VR.

– S = β, β 6= α, (β <: α) ∈ Γ, and (α <: T) ∈ Γ. In this case, (Γ, S, T) ∈ TR(R) by

S-VTR.

– S = α and (α <: T) ∈ Γ. In this case, (Γ, S, T) ∈ TR(R) by S-VTR.

• Case U = ∀α <: U1.U2. The only rule that applies is S-Kern, so it must be that:

– S = ∀α <: U1.S2,

– ((Γ, α <: U1), S2, U2) ∈ ST (R),

158

– T = ∀α <: U1.T2,

– ((Γ, α <: U1), U2, T2) ∈ ST (R).

By the definition of TR, ((Γ, α <: U1), S, T) ∈ TR(R).

• U = µα.T This case is addressed in [71, chapter 21].

• U = U1 → U2 See [71, page 288]

�

Lemma 33 (Subtyping is Reflexive) For all T ∈ T , (T, T) ∈ νST , and for all F ∈ F , (F, F) ∈

νST .

Proof: By case analysis on the subtyping rules.

Lemma 34 ST is Invertible

Proof: The corresponding support function is well-defined. By inspection of the subtyping rules,

for a given pair of expressions, only one typing rule applies.

Lemma 35 For all types S and T , S <: T is decidable.

Proof: Since S and T are finite µ-types, the set reachablesST (S, T) is finite [71, Proposition

21.9.11]. Thus, the algorithm gfpST [71, Definition 21.5.5] terminates [71, Theorem 21.5.12]. �

Lemma 36 For all Γ, T, L,M , inheritΓ(T, L) t inheritΓ(T,M) = inheritΓ(T, L tM).

Proof: By induction on the syntactic size of T and by definition of the join operator.

Note that in the definition of inherit, the condition in both cases requires that for some LC ,

LQ v LC . L v LC and M v LC hold if the left-hand side of the equality are defined. However,

L tM ⊆ LC holds only because L tM = L ∪M .

�

Lemma 37 If LQ ⊆MQ ⊆
⋃1···m
j Mj and ∀i, j.Li ∩Mj 6= ∅ ⇒ Γ ` S′i <: T ′j then

Γ `
1···n⊔
i

{S′i | Γ ` LQ ∩ Li 6= ∅} <:

1···m⊔
j

{T ′i | Γ `MQ ∩Mj 6= ∅}

159

Proof: It is sufficient to show that for all S′i on the left-hand side, there exists a T ′j such that

Γ ` S′i <: T ′j .

For any S′i, since Li ∩ LQ 6= ∅, ∃str .str ∈ Li ∩ LQ. Since LQ ⊆
⋃
Mj , intersecting on the

left-hand side we have Li ∩ LQ ⊆
⋃
Mj . Thus str ∈

⋃
{Mj | qj 6=◦}. Therefore, ∃Mj .str ∈ Mj ,

hence Li ∩Mj 6= ∅ and so Γ ` S′i <: T ′j . �

Lemma 38 For all Γ, S, T, LQ,MQ, if:

H1. Γ ` S <: T ,

H2. Γ ` LQ ⊆MQ,

H3. inheritΓ(S,LQ) = S′, and

H4. inheritΓ(T,MQ) = T ′,

then Γ ` S′ <: T ′.

Proof: By double induction on syntactic size of S′ and T ′, followed by case analysis of inherit in

H3 and H4. We thus have four cases. In all cases, by inversion of (H1) and the definition of inherit,

we have:

S = {Lp11 : S′1 · · ·Lpnn : S′n, LA : abs}

T = {Mq1
1 : T ′1 · · ·Mqm

m : T ′m,MA : abs}

We thus have available the hypotheses of S-Object:

I1. ∀i, j.Li ∩Mj 6= ∅ ⇒ pi <: qj ∧ Γ ` S′i <: T ′j ,

I2.
⋃1···m
i Mi ⊆

⋃1···n
j Lj ∪ LA,

I3. MA ⊆ LA,

I4. ∀j.if qj =↑ then qj =↑ ∧Γ ` inherit(S,Mj) <: T ′j , and

I5. ∀j.if Mj ∩ LA 6= ∅ then qj =◦ or qj =↑

160

Case 1. Base case, where ”parent” of both S and T are Null or elided.

By definition of inherit, the goal is:

Γ `
1···n⊔
i

{S′i | Γ ` LQ ∩ Li 6= ∅} <:

1···m⊔
j

{T ′i | Γ `MQ ∩Mj 6= ∅}

The condition on both applications of inherit are LQ ⊆
⋃
{Li | pi 6= ◦} and MQ ⊆

⋃
{Mj | qj 6= ◦}.

Therefore, MQ ⊆
⋃
Mj and lemma 37 applies.

Case 2. Inductive case, where ”parent” of both S and T are references to objects.

H5. ∃Li."parent" ∈ Li ∧ S′i = Ref SP ,

H5’. LQ ⊆
⋃1···n
i Li ∪ LA,

H6. ∃Mi."parent" ∈Mi ∧ T ′i = Ref TP , and

H6’. MQ ⊆
⋃1···m
i Mi ∪MA.

HInd. ∀L′Q,M ′Q, SP , TP .|SP | < |S| ∧ |TP | < |T | ∧ Γ ` L′Q ⊆ M ′Q ∧ Γ ` SP <: TP implies that(
inheritΓ(SP , L

′
Q) = S′P ∧ inheritΓ(TP ,M

′
Q) = T ′P ⇒ Γ ` S′P <: T ′P

)
.

The goal thus reduces to:

Γ `
⊔
{S′i | Γ ` LQ ∩ Li 6= ∅} t inherit(Sp,L) <:

⊔
{T ′i | Γ `MQ ∩Mi 6= ∅} t inherit(Tp,M)

where L = LQ ∩ (LA ∪
⋃
{Li|pi = ◦}) and M = MQ ∩ (MA ∪

⋃
{Mj |qj = ◦})

We define the set of inherited fields of T that are looked up by MQ and are absent on S:

N = {Mj |MQ ∩Mj ∩ LA 6= ∅ ∧ qj =↑}

L+ = L ∩
⋃
N

L− = L ∩
⋃
N

Using lemma 36, we rewrite the goal to:

Γ `
⊔
{S′i | Γ ` LQ ∩ Li 6= ∅} t inherit(Sp,L ∩

⋃
N) t inherit(Sp,L ∩

⋃
N)

<:
⊔
{T ′i | Γ `MQ ∩Mi 6= ∅} t inherit(Tp,M)

We prove the goal by breaking it into the following subcases:

161

a. Γ `
⊔
{S′i | Γ ` LQ ∩ Li 6= ∅} <:

⊔
{T ′j | Γ `MQ ∩Mj 6= ∅}

We cannot apply lemma 37 directly because MQ ⊆
⋃
Mj ∪MA, whereas the hypothesis of the

lemma requires MQ ⊆
⋃
Mj .

However, note that since LA ∩ Li = ∅ (by well-formedness of types), we have LQ ∩ Li 6= ∅ iff

LQ\LA ∩Li. Similarly, MQ ∩Mj 6= ∅ iff MQ\MA ∩MJ . We can therefore rewrite the subgoal

to Γ `
⊔
{S′i | Γ ` LQ\LA ∩ Li 6= ∅} <:

⊔
{T ′j | Γ ` MQ\MA ∩Mj 6= ∅}. Lemma 37 now

applies.

b. Γ ` inherit(Sp,L ∩
⋃
N) <: inherit(Tp,M)

By induction (HInd). The following cases allow us to apply HInd.

– |SP | < |S| and |TP | < |T | are trivial.

– We show that Γ ` SP <: TP . By H5 and H6, "parent" ∈ LP ,MP thus LP ∩MP 6= ∅.

Therefore, Γ ` Ref SP <: Ref TP by I1. By (S-Ref), it follows that Γ ` SP <: TP .

– We show that Γ ` L∩
⋃
N ⊆M. It is sufficient to show that ∀x.Γ ` x ∈ L∩

⋃
N ⇒ Γ `

x ∈M.

By definition of L, x ∈ LQ, thus by (H2), x ∈MQ.

By (H6’), x ∈ MA ∪
⋃j···m
j Mj . If x ∈ MA, we are done. So, consider the case where

∃j.x ∈Mj .

By definition of L, either x ∈ LA or x ∈
⋃
{Li|pi = ◦}. If x ∈ LA, then by I5 qj = ◦. If

x ∈
⋃
{Li|pi = ◦}, since x ∈ Li ∩Mj , pi <: qj , and by p-Refl, qj = ◦.

Therefore, x ∈M since it is in both sets.

c. Γ ` inherit(Sp,L ∩
⋃
N) <:

⊔
{T ′j | Γ `MQ ∩Mj 6= ∅}.

Rewrite the left-hand side by expanding the definition of N , distributing the intersection over

the union, and applying lemma 36:

Γ `
⊔
{inherit(Sp,L ∩Mj) |MQ ∩Mj ∩ LA 6= ∅ ∧ qj =↑} <:

⊔
{T ′j | Γ `MQ ∩Mj 6= ∅}

It is sufficient to show that for all elements of the left-hand side, there exists a supertype on

the right-hand side. For each inherit(Sp,L∩Mj) on the left-hand side, the associated T ′j is on

162

the right-hand side by definition of N . We now show that

Γ ` inherit(Sp,L ∩Mj) <: T ′j

Since Mj ∩ LA 6= ∅ and qj =↑, I4 applies and Γ ` inherit(S,Mj) <: T ′j . By lemma 36

inherit(S,Mj) = inherit(S,L ∩Mj) t inherit(S,L ∩Mj), so Γ ` inherit(S,L ∩Mj) <: Tj by

the definition of joins. Further, by the definition of inherit,

Γ ` inherit(S,L ∩Mj) = inherit(SP ,L ∩Mj ∩ LA
⋃
{Li | pi = ◦}) t . . .

and by the definition of L, L∩Mj ∩LA
⋃
{Li | pi = ◦} is the same as L∩Mj . By the definition

of joins:

Γ ` inheritΓ(SP ,L ∩Mj) <: Tj

which, when applied for each j, completes Case 2.

Case 3. Impossible case, where the ”parent” field is on the right-hand side type, but is elided on the

left-hand side type.

By well-formedness of types, if ∃i.”parent” ∈Mi then qi =↓. But by I2, ”parent” ∈
⋃1···n
j Lj ∪ LA,

which is a contradiction.

Case 4. Inductive case, where the ”parent” field is on the left-hand side type, but is elided or null on

the right-hand side type.

HLP. ∃LP ."parent" ∈ LP ∧ S′i = Ref SP ,

H6. LQ ⊆
⋃1···n
i Li ∪ LA,

HRP. If ∃MP ."parent" ∈MP then T ′P = Null, and

H8. MQ ⊆
⋃1···m
i {Mi | qi 6=◦}.

There are two cases of HRP. First, if ∃MP ."parent" ∈MP holds, then LP ∩MP 6= ∅. Thus by

I1, it must be that Γ ` Ref SP <: Null, which is a contradiction. Therefore, we consider the second

case, where ¬∃MP ."parent" ∈MP . The goal is therefore:

1···n⊔
i

{S′i | Γ ` LQ ∩Li 6= ∅}t inherit(SP , LQ ∩ (LA ∪
⋃
{Li|pi = ◦})) <:

1···m⊔
j

{T ′j | Γ `MQ ∩Mj 6= ∅}

163

The first part of the join is satisfied by lemma 37. For part 2, using lemma 36 rewrite:

Γ ` inherit(SP , LQ ∩ (LA ∪
⋃
{Li|pi = ◦})) <:

1···m⊔
j

{T ′j | Γ `MQ ∩Mj 6= ∅}

to:

Γ ` inherit(SP , LQ ∩ LA) t inherit(SP , LQ ∩
⋃
{Li|pi = ◦}) <:

1···m⊔
j

{T ′j | Γ `MQ ∩Mj 6= ∅}

There are two cases.

• Consider str ∈ LQ ∩ LA. This case follows by the same argument as in item c. of Case 2.

• Consider str ∈ LQ ∩ Li, where pi = ◦. By H2, str ∈ MQ. By H8, there exists an Mj , such

that str ∈Mj and qj 6=◦. By I1, since str ∈ Li,Mj , it must be that pi <: qj . By inspection of

the definition of the p <: q relation, we have a contradiction.

�

Lemma 39 If {L1 : F1 · · ·Ln : Fn} <: {M1 : G1 · · ·Mm : Gm}, then
⋃1···m
j {Mj | Gj = T ↓} ⊆⋃1···n

i {Li | Fi = T ↓}.

Proof: By contradiction.

Assume there exists some string x with x ∈
⋃1···j
j {Mj | Gj = T ↓} and x 6∈

⋃1···n
i {Li | Fi = T ↓}.

By assumption of S-Object,
⋃1···m
j Mj ⊆

⋃1···n
i Li, so it must be that there is some Li that contains

x, but either has type T ◦ or abs. That is, there must be an Mj with x ∈Mj and an Li with x ∈ Li

with Gj = T ↓ and either Fi = abs or Fi = T ′◦. This violates S-Object, which asserts that since

Li ∩Mj 6= ∅, it must be that Fi <: Gj , which cannot happen since possibly absent and definitely

absent fields cannot subtype definitely present fields.

�

D.4 Typing

Lemma 40 (Canonical Forms) If Σ; Γ ` v : T and if T is:

164

Γ ` v : S · · · Γ(f) = L Σ; Γ, α <: L, f : α ` e2 : T
L′ = L ∩ α Γ ` e3 : T

Σ; Γ ` if ({str:v · · · } hasfield f) e2 else e3 : T
(T-IfHasField1)

Γ(o) = {· · ·L◦ : S · · · } Σ; Γ, o : {· · · str↓ : S,L′◦ : S · · · } ` e2 : T

L′ = L ∩ {str} Γ ` e3 : T

Σ; Γ ` if (o hasfield str) e2 else e3 : T
(T-IfHasField2)

Γ ` v : S · · · Σ; Γ ` e3 : T str2 /∈ str · · ·
Σ; Γ ` if ({str:v · · · } hasfield str2) e2 else e3 : T

(T-IfHasFieldFalse)

Σ; Γ ` e3 : T

Σ; Γ ` if (false) e2 else e3 : T
(T-IfFalse)

Figure D.1: Auxiliary Typing Rules for If-Splitting

T-IfHasField
[o/v]

uu

[f/v]

((
T-IfHasField1

��

((

T-HasField2

��

rr
T-IfHasFieldFalse

��
T-IfFalse T-If

Figure D.2: Usage of Auxiliary Typing Rules by Substitution

165

• {Lp11 : S1 · · ·Lpmm : Sm} then v = {str1:v1 · · ·}, Σ; Γ ` v1 · · · vn : U1 · · ·Un, Σ; Γ ` v : {str↓1 :

U1 · · · str↓n : Un, {str1 · · · strn} : abs} and {str↓1 : U1 · · · str↓n : Un, {str1 · · · strn} : abs} <:

{Lpm1 : S1 · · ·Lpmm : Sm},

• Ref S, then v = loc and Σ(loc) <: S,

• S → T , then v = func(x) { e },

• L then v = str and Γ ` str <: L

Proof: By induction on the typing derivation.

Lemma 41 (Inversion) If:

• Σ; Γ ` {str:v · · ·} : T then Σ; Γ ` v : S · · · and Γ ` {str↓ : S · · · } <: T

• Σ; Γ ` ref e : T then Σ; Γ ` e : S and Ref S = T

• Σ; Γ ` l : T then Σ(l) = T

• Σ; Γ ` deref e : T , then Σ; Γ ` e : Ref S with S <: T ,

• Σ; Γ ` e1 = e2 : T , then Σ; Γ ` e1 : Ref S, Σ; Γ ` e2 : U , U <: S, and Ref S <: T ,

• Σ; Γ ` ef(e · · ·) : T , then Σ; Γ ` ef : S · · · → T ′, Σ; Γ ` e : S · · · , and T ′ <: T .

• Σ; Γ ` eo[ef] : T , then Σ; Γ ` eo : {Lp11 : S1 · · · }, Σ; Γ ` ef : L, inherit({Lp11 : S1 · · · }, L) = T ′,

and T ′ <: T .

• Σ; Γ ` eo[ef = ev] : T then Σ; Γ ` eo : {Lp : S · · · , LA : abs}, Σ; Γ ` ef : L′, Σ; Γ ` ev : U ,

∀L.if L ∩ L′ 6= ∅ then U <: S, and Γ ` {Lp : S · · · , LA : abs} <: T .

• Σ; Γ ` delete eo[ef] : T , then Σ; Γ ` eo : {Lp11 : S1 · · · }, Σ; Γ ` ef : L, ∀L ∩ Li 6= ∅.Fi 6= T ↓,

Γ ` {Lp11 : S1 · · · } <: T

• Σ; Γ ` e1 hasfield e2 : Bool, then Σ; Γ ` e1 : {L1 : F1 · · ·Ln : Fn}, Σ; Γ ` e2 : L.

• Σ; Γ ` e matches P : Bool, then Σ; Γ ` e : L.

• Σ; Γ ` if (v1) { e2 } else { e3 } : T , then Σ; Γ ` v1 : Bool, Σ; Γ ` e2 : T , and Σ; Γ ` e3 : T .

166

• Σ; Γ ` fieldin vobj init vacc do vf : T , then Σ; Γ ` vobj : {Lp : S · · · }, Σ; Γ ` vacc : T , and

Σ; Γ ` vf : (Str→ T)→ T

Lemma 42 (Type Substitution) If Σ;α <: S,Γ ` e : T and Γ ` U <: S then Σ; Γ[α/U] `

e[α/U] : T [α/U].

Proof: By induction on the typing derivation. �

Lemma 43 (Substitution) If Σ;x : S,Γ ` e : T and Σ; Γ ` v : S, then Σ; Γ ` e[x/v] : T .

Proof: By induction on the typing derivation. The only interesting case is substituting the identi-

fiers in if (o hasfield f) e2 else e3 when it is typed by T-IfHasField. The resulting expressions require

the auxiliary typing rules in fig. D.1.

• The expression is typed by T-HasField and x = o. The resulting expression is typable by

T-IfHasField1 as follows. By canonical forms, v = {str:v · · ·} and Σ; Γ ` v′ : T ′. By induction,

Σ; Γ, α <: L, f : αe2[x/v] and Σ; Γ ` e3[x/v]. The remaining antecents of T-IfHasField1 are

those of T-HasField.

• The expression is typed by T-HasField and x = f . The resulting expression is typable by

T-IfHasField2 as follows. By canonical forms, v = str , Σ; Γ ` v : str , and Γ ` str <: L.

By type substitution followed by induction, Σ; Γ, o : {· · · str↓ : S,L′◦ : S · · · } ` e2 : T . The

remaining antecedents of T-IfHasField2 are those of T-HasField.

• The expression is typed by T-IfHasField1 and x = f . The resulting expression has the form:

if ({ str: v′ · · · } hasfield str ′) e2 else e3

There are two cases.

– If str ′ ∈ str · · · then by type substitution and induction, Σ; Γ, α <: L, f : α ` e2 :

T [α/str][f/v] = Σ; Γ ` e2[f/v] : T . By induction, Σ; Γ ` e3[f/v] : T . Finally, the

conditional has type Bool. Thus the expression is typable by T-If.

– If str ′ /∈ str · · · then the term is trivally typable by T-IfHasFieldFalse.

• The expression is typed by T-IfHasField2 and x = o. The resulting expression has the form:

if ({ str: v′ · · · } hasfield str ′) e2 else e3

167

There are two cases.

– If str ′ ∈ str · · · then the result is trivially typable by T-If.

– If str ′ /∈ str · · · then the term is trivally typable by T-IfHasFieldFalse.

�

Lemma 44 (Main Preservation) If Σ1; · ` ae : T , Σ1 ` σ1, and σ1E〈ae〉 → σ2E〈e2〉 then there

exists a Σ2, such that:

i. Σ2 ⊇ Σ1,

ii. Σ2 ` σ2, and

iii. Σ2; · ` e2 : T .

Proof: By case-analysis on ae, using inversion (lemma 41) where specified:

• σ1E〈(func (x : S′) { e })(v)〉 → σ1E〈e[x/v]〉.

By inversion, Σ1; · ` v : S, · ` S <: S′, Σ1;x : S ` e : T ′, and · ` T ′ <: T . By substitution

(lemma 43), Σ1; · ` e[x/v] : T .

• σE〈(λα <: S.e)(U)〉 → σE〈e[α/U]〉

By type substitution (lemma 42).

• σE〈ref v〉 → σ, (l, v)E〈l〉 where l /∈ dom(σ). By inversion, Σ1; · ` v : S and Ref S <: T . Let

Σ2 = l : S,Σ1. By T-Loc, Σ2; · ` l : Ref S.

• σE〈deref l〉 → σE〈σ(l)〉

By inversion, Σ; Γ ` l : Ref S and Γ ` S <: T . By inversion, Σ(l) = S. Thus by T-Loc and

T-Sub Σ; Γ ` l : T .

• σE〈setref l v〉 → σ[l := v]E〈l〉 where l ∈ dom(σ).

By inversion (T-SetRef), Σ; Γ ` l : Ref S, Σ; Γ ` v : S, and Ref S = T . By inversion (T-Loc),

Σ(l) = T thus Σ ` σ[l := v]. by T-Loc, Σ; Γ ` l : T .

168

• σE〈{ · · · str: v · · · }[str]〉 → σE〈v〉. By inversion, Σ1; · ` str : L, Σ1; · ` {· · · str1 : v1 · · · } : S,

Σ1; · ` v : T ′, T ′ <: inherit ·(S,L), and inherit ·(S,L) <: T . By inversion, {· · · str↓ : T ′ · · · } <:

S. Thus · ` T ′ <: T .

By lemma 38, inherit ·({· · · str↓ : T ′ · · · }, str) <: inherit ·(S,L), and finally inherit ·({· · · str↓ :

T ′ · · · }, str) = T ′.

• σE〈{ · · · ”parent”: l }[str]〉 → σE〈(deref l)[str]〉, where str /∈ · · · .

By inversion of the LHS, Σ1; · ` str : L, Σ1; · ` {· · · ”parent” : TP } : S, and inherit ·(S,L) <:

T . By lemma 38, inherit ·({· · · ”parent”↓ : TP }, str) <: inherit ·(S,L). By inversion, Σ1; · `

l : Ref SP = TP . Since str /∈ · · · and by definition of inherit , inherit ·({· · · ”parent”↓ :

Ref SP }, str) = inherit ···(SP , str), which is a subtype of T .

Type right-hand side with T-Sub and T-GetField, using Σ1; · ` str : str , inherit ···(SP , str) <:

T , and Σ1; · `(deref l): SP . This holds since Σ1 : · ` l : Ref SP above.

• σE〈{ · · · str : v · · · }[str = v′]〉 → σE〈{ · · · str : v′ · · · }〉

By inversion (T-Update), Σ; Γ ` {· · ·} : {L : S · · · }, Γ ` {L : S · · · } <: T , and Σ; Γ ` v′ : U ′.

By inversion (T-Object), Σ; Γ ` {· · · str:v · · ·} : {· · · str : U · · · } and Γ ` {· · · str : U · · · } <: {L :

S · · · }. Thus by inversion (T-Update), Γ ` U ′ <: U . The resulting expression is typable by

S-Object, thus by S-Sub, Γ ` {· · · str : U ′ · · · } <: {· · · str : U · · · } <: T .

• σE〈{ · · · }[str = v′]〉 → σE〈{ · · · }〉 where str /∈ · · ·

By inversion of T-Update, Σ; Γ ` {· · · str:v · · ·} : S and Γ ` S <: T .

• σE〈delete { · · · str : v · · · }[str]〉 → σE〈{ · · · · · · }〉

Similar to to E-UpdateField case above.

• σE〈delete { · · · }[str]〉 → σE〈delete { · · · }〉 where str /∈ · · ·

Similar to to E-UpdateField case above.

• σE〈fieldin { s:v,rest · · · } init vacc do vf 〉 → σE〈fieldin { str2 : v2 · · · } init vf(str1)(vacc) do vf 〉

By inversion, Σ; Γ ` vacc : T and Σ; Γ ` vf : (Str → T) → T . The double application can by

typed by T-App, and the resulting expression will by typable by T-FieldIn.

169

• σE〈fieldin { s:v} init vacc do vf 〉 → σE〈vf(s)(vacc)〉

Similar to E-FieldIn above.

The remaining cases are conventional and straightforward. (if is standard, and in the rest,

both the left-hand side and the right-hand side have type Bool.)

• σE〈if(true) { e1 } else { e2 }〉 → σE〈e1〉

• σE〈if(false) { e1 } else { e2 }〉 → σE〈e2〉

• σE〈{ · · · str:v · · · } hasfield str〉 → σE〈true〉

• σE〈{ · · · } hasfield str〉 → σE〈false〉 where str /∈ · · ·

• σE〈str matches P 〉 → σE〈true〉

• σE〈str matches P 〉 → σE〈false〉

�

Theorem 10 (Preservation) If Σ1 ` e1 : T , Σ1 ` σ1, and σ1e1 → σ1e2, then there exists a Σ2,

such that:

i. Σ2; · ` e2 : T ,

ii. Σ2 ` σ2, and

iii. Σ1 ⊆ Σ2.

Proof: By case-analysis of the reduction rules, there exists an evaluation context, E, an active

expression, ae, and an expression, e′, such that e1 = E〈ae〉 and e2 = E〈e′〉. There thus exists a

subdeduction Σ1; · ` ae : S of the original typing derivation. Lemma 44 now applies, so we have

Σ2 ⊆ Σ1, Σ2 ` σ2, and Σ2; · ` e′ : S. Replacing the original subdeduction, we have Σ2; · ` E〈e′〉 : T .

�

Theorem 11 (Typed Progress) If Σ ` σ and Σ; · ` e : T then either e ∈ v or there exist σ′ and

e′ such that σe→ σ′e′.

170

Proof: By case-analysis of the reduction rules, either e ∈ v, e = E〈ae〉, or e = E〈err〉. By

inspection of the typing relation, err is untypable. We therefore consider the case where e = E〈ae〉

by case-analysis on the definition of active expressions.

• The cases where ae is of the form v1(v2), ref v, deref v, v1 = v2, and if (v1) { e2 } else { e3 } are

routine.

• Consider ae = v1[v2]. By inversion, Σ; · ` v1 : {Lp11 : T1 · · ·Lpnn : Tn} and Σ; · ` v2 : LQ. By

canonical forms, v1 = {str1 : w1 · · · strm : wm} and {str↓1 : S1 · · · str↓m : Sm, {str1 · · · strm}} <:

{Lp11 : T1 · · ·Lpnn : Tn}. Also by canonical forms, v2 = strQ and strQ <: LQ.

Therefore, we must only demonstrate that the E-NotFound reduction is not applicable in the

case where ”parent” is null. It is sufficient to show that strQ ∈ {str1 · · · strm}, which we do by

the following sequence of inclusions:

By S-Str, strQ ∈ LQ. By definition of inherit , when ”parent” is null, LQ ⊆
⋃
{Li | pi 6=◦}.

Evidently,
⋃
{Li | pi 6=◦} ⊆

⋃
Li. By antecedent (2) of S-Object, we have that

⋃
Li ⊆

{str1 · · · strm}.

• Consider ae = v1[v2 = v3]. By inversion, Σ; · ` v1 : {Lp : S · · · } and Σ; · ` v2 : LQ. By

canonical forms, v1 = {str : w · · · } and v2 = strQ. Thus either E-Create or E-Update apply.

• Consider ae = delete v1[v2]. By inversion, Σ; · ` v1 : {Lp : S · · · } and Σ; · ` v2 : LQ. By

canonical forms, v1 = {str : w · · · } and v2 = strQ. Thus either E-Delete or E-Delete-None

apply.

• Consider ae = v1 hasfield v2. By inversion, Σ; · ` v1 : {Lp : S · · · } and Σ; · ` v2 : LQ. By

canonical forms, v1 = {str : w · · · } and v2 = strQ. Thus either E-HasField or E-HasNotField

apply.

• Consider ae = v matches P . By inversion and canonical forms, v = str . Thus either E-Matches

or E-NoMatch apply.

• Consider ae = fieldin { s1 : v1, s2 : v2 · · ·} init vacc do vf . By inversion, Σ; · ` v1 : {Lp : S · · · }.

By canonical forms, v1 = {str : w · · · }. Thus either E-FieldIn or E-FieldIn-End apply.

Appendix E

The ADsafe Environment

This appendix contains the type environment we use to type-check ADsafe. Widget is the recursively

type of values that untrusted widgets can manipulate. In the concrete syntax below, the field name

* is shorthand for all fields, except those explicitly marked BAD or given a type.

type Widget = trec t .

Undef

+ Null

+ Num

+ Int

+ Str

+ Bool

+ { "prototype" : BAD,

___nodes___ : Array<HTMLElement + Undef> + Undef,

___star___ : Bool + Undef,

__proto__ : BAD,

__parent__ : BAD,

valueOf : _,

hasOwnProperty : _,

toString : _,

arguments : BAD,

"constructor" : BAD,

watch : BAD,

unwatch : BAD,

#proto : Object+Function+Array+Bunch_proto+Str+Num+Bool+RegExp,

* : ’t,

#code : [’t + HTMLWindow] ’t ... -> ’t

}

The WidgetObj type is the object portion of the Widget type. It makes it easier to write some types

below.

171

172

type WidgetObj =

{ "prototype" : BAD,

___nodes___ : Array<HTMLElement + Undef> + Undef,

___star___ : Bool + Undef,

__proto__ : BAD,

__parent__ : BAD,

valueOf : _,

hasOwnProperty : _,

toString : _,

arguments : BAD,

"constructor" : BAD,

watch : BAD,

unwatch : BAD,

#proto : Object+Function+Array+Bunch_proto+Str+Num+Bool+RegExp,

* : ’Widget,

#code : [’Widget + HTMLWindow] ’Widget ... -> ’Widget

}

Selector is the type we ascribe to CSS selectors for ADsafe. CSS selectors have several other fields,

but these are the only ones that ADsafe requires.

type Selector =

{ op: Str + Undef,

name: Str + Undef,

value: Str + Undef,

#proto: Object,

*: Bot,

#code: Bot }

The reject name function is a key check in ADsafe that returns true on strings in banned and false

otherwise.

type not_banned =

$^{"arguments", "caller", "callee", "constructor", "eval", "stack",

"watch", "unwatch", "valueOf", "toString", "hasOwnProperty",

"prototype", "___nodes___", "___star___", "__proto__", "__parent__",

"__defineGetter__", "__defineSetter__"}

type banned =

${"arguments", "caller", "callee", "constructor", "eval", "stack",

"watch", "unwatch", "valueOf", "toString", "hasOwnProperty",

"prototype", "___nodes___", "___star___", "__proto__", "__parent__",

"__defineGetter__", "__defineSetter__"} +

Bool + Null + Undef + ’WidgetObj + Num

reject_name : ((’banned -> True) + (’not_banned -> Bool))

A Pecker is an ADsafe abstraction for selecting elements.

173

type Pecker =

{".": HTMLElement + Undef -> Bool ,

"&": HTMLElement + Undef -> Bool ,

"_": HTMLElement + Undef -> Bool ,

"[": HTMLElement + Undef -> Bool ,

"[=": HTMLElement + Undef -> Bool ,

"[!=": HTMLElement + Undef -> Bool ,

"[^=": HTMLElement + Undef -> Bool ,

"[$=": HTMLElement + Undef -> Bool ,

"[*=": HTMLElement + Undef -> Bool ,

"[~=": HTMLElement + Undef -> Bool ,

"[|=": HTMLElement + Undef -> Bool ,

":blur": HTMLElement + Undef -> Bool ,

":checked": HTMLElement + Undef -> Bool ,

":disabled": HTMLElement + Undef -> Bool ,

":enabled": HTMLElement + Undef -> Bool ,

":even": HTMLElement + Undef -> Bool ,

":focus": HTMLElement + Undef -> Bool ,

":hidden": HTMLElement + Undef -> Bool ,

":odd": HTMLElement + Undef -> Bool ,

":tag": HTMLElement + Undef -> Str ,

":text": HTMLElement + Undef -> Bool ,

":trim": HTMLElement + Undef -> Bool ,

":unchecked": HTMLElement + Undef -> Bool ,

":visible": HTMLElement + Undef -> Bool ,

#proto: Object, *: _, #code: _}

Makeable is ADsafe’s whitelist of safe DOM elements.

type Makeable =

{a : ${"a"},

abbr : ${"abbr"},

acronym : ${"acronym"},

address : ${"address"},

area : ${"area"},

b : ${"b"},

bdo : ${"bdo"},

big : ${"big"},

blockquote: ${"blockquote"},

br : ${"br"},

button : ${"button"},

canvas : ${"canvas"},

caption : ${"caption"},

center : ${"center"},

cite : ${"cite"},

code : ${"code"},

col : ${"col"},

colgroup : ${"colgroup"},

dd : ${"dd"},

del : ${"del"},

dfn : ${"dfn"},

174

dir : ${"dir"},

div : ${"div"},

dl : ${"dl"},

dt : ${"dt"},

em : ${"em"},

fieldset : ${"fieldset"},

font : ${"font"},

form : ${"form"},

h1 : ${"h1"},

h2 : ${"h2"},

h3 : ${"h3"},

h4 : ${"h4"},

h5 : ${"h5"},

h6 : ${"h6"},

hr : ${"hr"},

i : ${"i"},

img : ${"img"},

input : ${"input"},

ins : ${"ins"},

kbd : ${"kbd"},

label : ${"label"},

legend : ${"legend"},

li : ${"li"},

map : ${"map"},

menu : ${"menu"},

object : ${"object"},

ol : ${"ol"},

optgroup : ${"optgroup"},

option : ${"option"},

p : ${"p"},

pre : ${"pre"},

q : ${"q"},

samp : ${"samp"},

select : ${"select"},

small : ${"small"},

span : ${"span"},

strong : ${"strong"},

sub : ${"sub"},

sup : ${"sup"},

table : ${"table"},

tbody : ${"tbody"},

td : ${"td"},

textarea : ${"textarea"},

tfoot : ${"tfoot"},

th : ${"th"},

thead : ${"thead"},

tr : ${"tr"},

tt : ${"tt"},

u : ${"u"},

ul : ${"ul"},

"var" : ${"var"},

175

#proto : Object,

* : Bot,

#code : Bot

}

Appendix F

Desugared Lookup Function

This appendix shows the result of desugaring the following snippet of JavaScript to λJS :

function(obj, field) {

if (field === "XMLHttpRequest") {

return undefined;

}

else {

return obj[field];

}

}

For brevity, we do not show the object that wraps the function, but just the function below. We

use the concrete syntax of λJS that is parsed by PLT Redex.

(lambda (this arguments)

(let

((obj (get-field

(deref (deref arguments))

"0")))

(let

((field (get-field

(deref (deref arguments))

"1")))

(let

()

(label $return

(begin

(begin

(if (=== field "XMLHttpRequest")

(begin

(break $return

(get-field

(deref $global)

"undefined"))

undefined)

(if (=== (typeof field) "string")

(begin

176

177

(break $return

;;; The expression below (desugar ’obj[field])

(get-field

;;; The expression below is (deref (desugar ’obj)). If ’obj is

;;; not an object, it is converted to an object. This is perfectly safe,

;;; since we just need it to have type JS.

(deref (let

(($2

obj))

(if (=== (typeof $2) "undefined")

(throw ($makeException "TypeError" ":toObject received undefined"))

(if (=== $2 null)

(throw ($makeException "TypeError" ":toObject received null"))

(if (=== (typeof $2) "boolean")

(alloc (object ("$proto" $Boolean.prototype)

("$class" "Boolean")

("$value" $2)))

(if (=== (typeof $2) "number")

(alloc (object ("$proto" $Number.prototype)

("$class" "Number")

("$value" $2)))

(if (=== (typeof $2) "string")

(alloc (object ("$proto" $String.prototype)

("$class" "String")

("$value" $2)

("length" (str-length $2))))

$2)))))))

;;; The expression below is (toString (desugar ’field)), where toString

;;; is the metafunction defined in ECMA262-3, Section 9.8.1. Of course,

;;; here we have toString written in JS. In ECMA262-3, toString uses

;;; other metafunctions. Here, they are all inlined.

(let

(($toStr field))

(if (=== (typeof $toStr) "location")

;;; The true branch below is unreachable.

(if (if (=== (typeof (deref $toStr)) "object")

#f

#t)

(throw "Catastrophe - toStr given a ref of a not-obj")

(prim->string

(let

(($x $toStr))

(if (=== (typeof $x) "location")

(if (if (=== (typeof (deref $x)) "object")

#f

#t)

(throw "Catastrophe - toPrim given a ref of a not-obj")

(let

(($vOf (get-field

(deref $x)

"valueOf")))

(if (if (=== (typeof $vOf) "location")

(let

(($isF (deref $vOf)))

(if (=== (typeof $isF) "object")

(=== (typeof (get-field

$isF

"$code")) "lambda")

#f))

#f)

(let

(($vRes

(let

(($3

178

$vOf))

;;; Below, field.valueOf() is called. It may

;;; produce an arbitrary result, so it has type JS

;;; (not type NoXHR)

((get-field

(deref $3)

"$code") $x (alloc (alloc (object ("length" 0.0)

("callee" $3)

("$class" "Object")

("$proto" $Object.prototype)

("$isArgs" #t))))))))

(if (prim? $vRes)

$vRes

(let

(($toStr (get-field

(deref $x)

"toString")))

(if (if (=== (typeof $toStr) "location")

(let

(($isF (deref $toStr)))

(if (=== (typeof $isF) "object")

(=== (typeof (get-field

$isF

"$code")) "lambda")

#f))

#f)

(let

(($tRes

(let

(($4

$toStr))

;;; Below, field.toString() is called.

;;; A function application has type JS, not type NoXHR.

((get-field

(deref $4)

"$code") $x (alloc (alloc (object ("length" 0.0)

("callee" $4)

("$class" "Object")

("$proto" $Object.prototype)

("$isArgs" #t))))))))

(if (prim? $tRes)

$tRes

(throw ($makeException "TypeError" ":apply expects array"))))

(throw ($makeException "TypeError" ":apply expects array"))))))

(let

(($toStr (get-field

(deref $x)

"toString")))

(if (if (=== (typeof $toStr) "location")

(let

(($isF (deref $toStr)))

(if (=== (typeof $isF) "object")

(=== (typeof (get-field

$isF

"$code")) "lambda")

#f))

#f)

(let

(($tRes

(let

(($5

$toStr))

((get-field

(deref $5)

179

"$code") $x (alloc (alloc (object ("length" 0.0)

("callee" $5)

("$class" "Object")

("$proto" $Object.prototype)

("$isArgs" #t))))))))

(if (prim? $tRes)

$tRes

(throw ($makeException "TypeError" ":apply expects array"))))

(throw ($makeException "TypeError" ":apply expects array")))))))

(if (=== (typeof $x) "object")

(throw "Catastrophe - toPrim given plain object")

$x)))))

;;; The expression below is the false branch of the conditional. The

;;; type-test is unnecessary; it’s inserted naively by desugaring.

(if (=== (typeof $toStr) "object")

(throw "Catastrophe - toStr given plain object")

;;; Here, we know that $toStr (i.e. field) has type NoXHR. The operator

;;; prim->string is the identity on strings, and doesn’t convert booleans or numbers to the

;;; string "XMLHttpRequest"!

(prim->string $toStr))))))

undefined)

(begin

(break $return

(get-field

(deref $global)

"undefined"))

undefined)))

undefined)

undefined))))))

Bibliography

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn Song. Towards a

formal foundation of Web security. In IEEE Computer Security Foundations Symposium, 2010.

[3] Jong-hoon David An, Avik Chaudhuri, and Jeffrey S. Foster. Static typing for Ruby on Rails.

In IEEE International Symposium on Automated Software Engineering, 2009.

[4] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. RPython: a

step towards reconciling dynamically and statically typed OO languages. In ACM SIGPLAN

Dynamic Languages Symposium, 2007.

[5] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type inference for

JavaScript. In European Conference on Object-Oriented Programming, 2005.

[6] James P. Anderson. Computer Security Technology Planning Study. Technical Report ESD-

TR-73-51, Deputy for Command and Management Systems, HQ Electronic Systems Division

(AFSC), L. G. Handscom Field, Bedford, Massachusetts 01730, October 1972.

[7] Ihab Awad, Tyler Close, Adrienne Felt, Collin Jackson, Ben Laurie, Felix Lee, Ka-Ping Lee,

David-Sarah Hopwood, Jasvir Nagra, Eric Sachs, Mike Samuel, Mike Stay, and David Wagner.

Caja external security review. Technical report, Google Inc., 2008. http://google-caja.

googlecode.com/files/Caja_External_Security_Review_v2.pdf.

[8] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and Marianne Winslett. VEX: Vetting

browser extensions for security vulnerabilities. In USENIX Security Symposium, 2010.

180

http://google-caja.googlecode.com/files/Caja_External_Security_Review_v2.pdf
http://google-caja.googlecode.com/files/Caja_External_Security_Review_v2.pdf

181

[9] Gavin Bierman, Erik Meijer, and Mads Torgersen. Adding dynamic types to C#. In European

Conference on Object-Oriented Programming, 2010.

[10] Aaron Bohannon and Benjamin C. Pierce. Featherweight Firefox: Formalizing the core of a

Web browser. In USENIX Conference on Web Application Development, 2010.

[11] A.H. Borning. Classes versus prototypes in object-oriented languages. In ACM Fall Joint

Computer Conference, 1986.

[12] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production envi-

ronment. In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages

& Applications, 1993.

[13] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Informa-

tion and Computation, 155(1–2), 1999.

[14] Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel, Ivan Beschastnikh, Cosmin Barsan,

Arvind Krishnamurthy, and Thomas Anderson. Retaining sandbox containment despite bugs in

privileged memory-safe code. In ACM Conference on Computer and Communications Security,

2010.

[15] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged information flow for

JavaScript. In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, 2009.

[16] Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested refinements for dynamic languages.

In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2012.

[17] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intentional polymorphism in type-erasure

semantics. In ACM SIGPLAN International Conference on Functional Programming, 1998.

[18] Douglas Crockford. ADSafe. www.adsafe.org, 2011.

[19] Tom Van Cutsem and Mark S. Miller. Proxies: Design principles for robust object-oriented

intercession APIs. In ACM SIGPLAN Dynamic Languages Symposium, 2010.

[20] Andreas Dewald, Thorsten Holz, and Felix C. Freiling. ADSandbox: Sanboxing JavaScript to

fight malicious websites. In Symposium On Applied Computing, 2010.

www.adsafe.org

182

[21] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in JavaScript-based browser

extensions. In Computer Security Applications Conference, 2009.

[22] ECMAScript language specification, 1999.

[23] ECMAScript language specification, 2009.

[24] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement.

PhD thesis, Cornell University, 2003.

[25] Facebook. FBJS, 2011. http://developers.facebook.com/docs/fbjs/.

[26] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT

Redex. MIT Press, 2009.

[27] Matthew Finifter, Joel Howard Willis Weinberger, and Adam Barth. Preventing capability

leaks in secure javascript subsets. In Network and Distributed System Security Symposium,

2010.

[28] Kathleen Fisher and John C. Mitchell. The development of type systems for object-oriented

languages. Theory and Practice of Object Systems, 1, 1995.

[29] Cormac Flanagan. ValleyScript: It’s like static typing. Technical report, University of Califor-

nia, Santa Cruz, 2007. http://users.soe.ucsc.edu/~cormac/papers/valleyscript.pdf.

[30] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, 1997.

[31] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie Weirich, and Matthias

Felleisen. Catching bugs in the web of program invariants. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, 1996.

[32] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language. O’Reilly Media,

2008.

[33] Michael Furr, Jong-hoon David An, Jeffrey S. Foster, and Michael Hicks. Static type inference

for Ruby. In ACM Symposium on Applied Computing, 2009.

http://developers.facebook.com/docs/fbjs/
http://users.soe.ucsc.edu/~cormac/papers/valleyscript.pdf

183

[34] Michael Furr, Jong-hoon David An An, Jeffrey S. Foster, and Michael Hicks. The Ruby Inter-

mediate Language. In ACM SIGPLAN Dynamic Languages Symposium, 2009.

[35] Google JavaScript style guide. http://google-styleguide.googlecode.com/svn/trunk/

javascriptguide.xml.

[36] James Gosling, Bill Joy, Jr. Guy Lewis Steele, and Gilad Bracha. The Java Language Specifi-

cation. Addison Wesley, 3 edition, 2005.

[37] Salvatore Guarnieri and Benjamin Livshits. GateKeeper: Mostly static enforcement of security

and reliability policies for JavaScript code. In USENIX Security Symposium, 2009.

[38] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Static analysis for Ajax intrusion detec-

tion. In International World Wide Web Conference, 2009.

[39] Arjun Guha, Joe Gibbs Politz, and Shriram Krishnamurthi. Fluid object types. Technical

Report CS-11-04, Brown University, 10 2011.

[40] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In

European Conference on Object-Oriented Programming, 2010.

[41] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local control and state using

flow analysis. In European Symposium on Programming, 2011.

[42] Philip Heidegger, Annette Bieniusa, and Peter Thiemann. Access permission contracts for

scripting languages. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, 2012.

[43] Phillip Heidegger and Peter Thiemann. Recency types for dynamically-typed, object-based

languages: Strong updates for JavaScript. In ACM SIGPLAN International Workshop on

Foundations of Object-Oriented Languages, 2009.

[44] Nevin Heintze. Control-flow analysis and type systems. In International Static Analysis Sym-

posium, 1995.

[45] Fritz Henglein and Jakob Rehof. Safe polymorphic type inference for a dynamically typed lan-

guage: Translating Scheme to ML. In ACM SIGPLAN International Conference on Functional

Programming, 1995.

http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

184

[46] David Herman. ClassicJavaScript. www.ccs.neu.edu/home/dherman/javascript/, 2005.

[47] Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms for string analysis.

In International Conference on Verification, Model Checking, and Abstract Interpretation, 2011.

[48] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints over regular

languages. In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, 2009.

[49] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML.

ACM Transactions on Programming Languages and Systems, 27, 2005.

[50] Collin Jackson and Helen J. Wang. Subspace: Secure cross-domain communication for Web

mashups. In International World Wide Web Conference, 2007.

[51] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In

International Static Analysis Symposium, 2009.

[52] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis with lazy

propagation. In International Static Analysis Symposium, 2010.

[53] Trevor Jim, Nikhil Swamy, and Michael Hicks. BEEP: Browser-enforced embedded policies. In

International World Wide Web Conference, 2007.

[54] Emre Kıcıman and Benjamin Livshits. AjaxScope: A platform for remotely monitoring the

client-side behavior of web 2.0 applications. In Symposium on Operating System Principles,

2007.

[55] Gary A. Kildall. A unified approach to global program optimization. In ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, 1973.

[56] Casey Klein and Robert B. Finder. Randomized testing in PLT Redex. In ACM SIGPLAN

Workshop on Scheme and Functional Programming, 2009.

[57] Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. AdJail: Practical en-

forcement of confidentiality and integrity policies on web advertisements. In USENIX Security

Symposium, 2010.

www.ccs.neu.edu/home/dherman/javascript/

185

[58] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An operational semantics for JavaScript. In

Asian Symposium on Programming Languages and Systems, 2008.

[59] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating JavaScript with filters, rewriting,

and wrappers. In European Symposium on Research in Computer Security, 2009.

[60] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Run-time enforcement of secure JavaScript

subsets. In Web 2.0 Security and Privacy, 2009.

[61] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object capabilities and isolation of untrusted

Web applications. In IEEE Symposium on Security and Privacy, 2010.

[62] Jonas Magazinius, Phu H. Phung, and David Sands. Safe wrappers and sane policies for self

protecting JavaScript. In OWASP AppSec Research, 2010.

[63] Phillipe Meunier, Robert B. Findler, and Matthias Felleisen. Modular set-based analysis from

contracts. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

2006.

[64] Leo Meyerovich and Benjamin Livshits. ConScript: Specifying and enforcing fine-grained se-

curity policies for JavaScript in the browser. In IEEE Symposium on Security and Privacy,

2010.

[65] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem. In European

Conference on Object-Oriented Programming, 1998.

[66] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja: Safe active

content in sanitized JavaScript. Technical report, Google Inc., 2008. http://google-caja.

googlecode.com/files/caja-spec-2008-06-07.pdf.

[67] James George Mitchell. The Design and Construction of Flexible and Efficient Interactive

Programming Systems. PhD thesis, Carnegie-Mellon University, 1970.

[68] Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In Correct System Design.

Springer, 1999.

[69] Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1995.

http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf

186

[70] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight self-protecting JavaScript. In

ACM Symposium on Information, Computer and Communications Security, 2009.

[71] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[72] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shriram Krishnamurthi.

ADsafety: Type-based verification of JavaScript sandboxing. In USENIX Security Symposium,

2011.

[73] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir. Browser-

Shield: Vulnerability-driven filtering of dynamic HTML. In Symposium on Operating Systems

Design and Implementation, 2006.

[74] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic

behavior of JavaScript programs. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2010.

[75] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.

LISP and Symbolic Computation, 6(3), 1993.

[76] Claudiu Saftoiu. JSTrace: Run-time type discovery for JavaScript. Master’s thesis, Brown

University, 2010.

[77] Fred B. Schneider, Greg Morrisett, and Robert Harper. A language-based approach to security.

In Reinhard Wilhelm, editor, Informatics: 10 Years Back, 10 Years Ahead, volume 2000 of

Lecture Notes in Computer Science. Springer-Verlag, 2001.

[78] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie Mellon

University, 1991.

[79] Gideon Joachim Smeding. An executable operational semantics for Python. Master’s thesis,

Utrecht University, 2009.

[80] T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen. Practical variable-arity

polymorphism. In European Symposium on Programming, 2009.

[81] Naoshi Tabuchi, Eijiro Sumii, and Akinori Yonezawa. Regular expression types for strings in a

text processing language. Electronic Notes in Theoretical Computer Science, 75, 2003.

187

[82] Ankur Taly, Úlfar Erlingsson, Mark S. Miller, John C. Mitchell, and Jasvir Nagra. Automated

analysis of security-critical JavaScript APIs. In IEEE Symposium on Security and Privacy,

2011.

[83] Peter Thiemann. Towards a type system for analyzing JavaScript programs. In European

Symposium on Programming, 2005.

[84] Peter Thiemann. A type safe DOM API. In International Workshop on Database Programming

Languages, 2005.

[85] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From scripts to pro-

grams. In ACM SIGPLAN Dynamic Languages Symposium, 2006.

[86] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed Scheme.

In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2008.

[87] Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In ACM

SIGPLAN International Conference on Functional Programming, 2010.

[88] David Ungar and Randall B. Smith. SELF: The power of simplicity. In ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages & Applications, 1987.

[89] Mitchell Wand. Type inference for objects with instance variables and inheritance. In Theoretical

Aspects of Object-Oriented Progaramming. MIT Press, 1994.

[90] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness. Information

and Computation, 115(1), 1994.

[91] Andrew K. Wright and Robert Cartwright. A practical soft type system for Scheme. ACM

Transactions on Programming Languages and Systems, 19(1), 1997.

[92] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek.

Integration of typed and untyped code in Thorn. In ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 2010.

[93] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript instrumentation for

browser security. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, 2007.

188

[94] Chuan Yue and Haining Wang. Characterizing insecure JavaScript practices on the Web. In

International World Wide Web Conference, 2009.

[95] Tian Zhao. Type inference for scripting languages with implicit extension. In ACM SIGPLAN

International Workshop on Foundations of Object-Oriented Languages, 2010.

	List of Figures
	Introduction
	Why JavaScript?
	Overview of Contributions

	Semantics
	LambdaJS: A Tractable Semantics for JavaScript
	Functions, Objects and State
	Prototype-Based Objects
	Prototypes
	Statements and Control Operators
	Static Scope in JavaScript
	Type Conversions and Primitive Operators

	Soundness and Adequacy of LambdaJS
	Conclusion
	Related Work

	Verifying a Simple Web Sandbox
	Isolating Untrusted Code
	Isolating JavaScript
	Types for Securing LambdaJS
	Scaling to JavaScript
	Safety for Addition
	A Safe Sub-Language
	Safety for lookup

	Perspective

	Typing Control and State
	Patterns of Control and State
	Heap-Sensitive Reasoning

	Semantics and Types
	Relating Static Types and Runtime Tags
	Automatically Inserting Safe tagchecks
	Flow Analysis via CPS
	CPS Transformation
	Modular Flow Analysis
	Combining Typing and Flow Analysis

	Related Work

	Typing Objects
	LambdaSOb: A Core Calculus of Lightweight Objects
	Idiomatic LambdaSOb: Type-Checking Challenges
	Types for Objects
	Simple Records
	Field Patterns
	Presence Annotations
	Reflection
	Type-Checking Examples

	Subtyping
	Typing
	Soundness and Mutable State

	Implementation
	Related Work

	Assisted Type Refactoring
	Approximating Types by Runtime Instrumentation

	Evaluation I: Documentation
	Type-Checking Gadgets and Chrome Experiments

	Evaluation II: Security
	Mashups
	Language-based Web Sandboxing
	Code-Reviewing Web Sandboxes
	Verifying a Sandbox: Our Roadmap
	Modeling Secure Sublanguages
	A Type for Widgets
	Widget and JSLint Correspondence

	Modeling JavaScript and the Browser
	Verifying the Reference Monitor
	Required Refactorings
	Cheating and Unverifiable Code

	ADsafety Redux
	Bugs Found in ADsafe
	Missing Static Checks
	Missing Runtime Checks
	Counterexamples to Non-Interference

	Beyond ADsafe
	Related Work

	Related Scripting Languages
	Objects, Dictionaries, and Inheritance
	Inheritance in Scripting Languages
	Classes and Prototypes
	Methods?
	Reflection and Pattern Matching
	Control Operators
	A Scripting Language Object Calculus
	Limitations
	Soundness

	Conclusions and Future Work
	Further Details of ADsafe Verification
	Differences Between JSLint and Typed Widgets

	Characteristic Uses of Objects
	Proofs: Flow Typing
	Full Typing Relation
	Type Safety
	CPS Transformation
	Additional Rules for Flow Analysis
	Flow Analysis
	Combined Soundness Theorems

	Proofs: Fluid Object Types
	Definitions
	Auxilliary Lemmas
	Subtyping
	Typing

	The ADsafe Environment
	Desugared Lookup Function

