
Abstract of “Supporting and Leveraging Prediction Models

for Database Applications”, by Mert Akdere, Ph.D., Brown University, May 2012.

Model-based, data-driven prediction is emerging as an essential ingredient for both user-

facing applications, such as predictive analytics, and system-facing applications such as

autonomic computing. This thesis studies the two complementary research questions of

how to effectively support and leverage predictive models for database applications.

We explore the performance and usability advantages of integrated predictive function-

ality within database systems and argue that next generation database systems should

natively support and manage predictive models, tightly integrating them in the process

of data management and query processing. This is in contrast to the current practice of

implementing such functionality within the application space. We study how various types

of predictive models can be efficiently supported by utilizing and extending database sys-

tem mechanisms. Specifically, we discuss (i) white-box support, in which the knowledge of

model semantics facilitates a tight integration, thus introducing rich optimization opportu-

nities and (ii) black-box support, in which no such knowledge is assumed, thus leading to a

general but less optimizable system.

We derive our results from two detailed case studies. In the first one, we describe

white-box model support of Bayesian Networks to enable continuous predictive queries over

streaming data. In the second, we describe black-box model support and its application on

query performance prediction in database systems. We describe efficient implementations

of both applications in open-source database systems. Our experimental studies provide

quantitative evidence that predictive functionality can be achieved within databases with a

level of performance and accuracy that is competitive with or favorable to that of specialized,

custom solutions.

Supporting and Leveraging Prediction Models

for Database Applications

by

Mert Akdere

B. S., Bilkent University, Turkey, 2005.

Sc. M., Brown University, USA, 2008.

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2012

c© Copyright 2012 by Mert Akdere

This dissertation by Mert Akdere is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Uǧur Çetintemel, Director

Recommended to the Graduate Council

Date
Eli Upfal, Reader

Date
Stanley B. Zdonik, Reader

Approved by the Graduate Council

Date
Peter M. Weber

Dean of the Graduate School

iii

Vita

Mert Akdere was born in İstanbul, Turkey in 1983. He completed his undergraduate studies

in computer engineering at Bilkent University, Turkey in 2005. Then he started the doctoral

program in the Computer Science Department at Brown University, USA in 2005. There he

worked with Uǧur Çetintemel and received his Sc.M. degree in Computer Science in 2008.

iv

Acknowledgements

First and foremost, I want to thank my advisor, Uǧur Çetintemel. I appreciate all his

contributions of time and ideas to my research. He has been a model advisor; especially in

times of difficulty, he has been consistently supportive and insightful.

I would like to thank my thesis committee members Stan Zdonik and Eli Upfal for their

feedback and contributions to my dissertation. I am also grateful to John Jannotti, who

has been involved in many of my studies at Brown. John always impressed me with his

attention to detail and his deep and thorough understanding of systems research.

The Brown Database group is a small but productive community. I would like to

thank its current and past members; Yanif Ahmad, Nathan Backman, Jennie Duggan,

Hideaki Kimura, Alptekin Küpçü, Andrew Pavlo, Alex Rasin, Nesime Tatbul, Bradley Berg,

JeHyok Ryu, Olga Papaemmanouil, Jeong-Hyon Hwang, and Tingjian Ge; for creating a

nice environment for research.

I would also like to thank the following people, colleagues and friends, for their support

and contributions to myself and my work: Çaǧatay Demiralp, Matteo Riondato, Serdar

Kadıoǧlu, Onur Keskin, Is.ın Çakır, Stuart Andrews, James Kelley, Jie Mao, Yong Zhao

and Eric Koskinen.

Finally, I would like to thank my parents, Süheyla and Hüsnü, and my sisters, Yaprak

and Yonca. They have been my greatest strength and support in life.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 6

2 Background 8

2.1 Model-based Prediction . 8

2.2 Error Analysis . 10

2.3 Stream Processing . 11

3 DBMS Support for Predictive Models 12

3.1 Prediction Queries . 12

3.2 Integration of Prediction Models . 14

4 The White-box Approach for Predictive Databases 16

4.1 White-box Support of Prediction Models . 16

4.2 Case Study: Database Representation and

Support for Bayesian Networks . 19

4.2.1 Background on Bayesian Networks 19

4.2.2 Inference with Bayesian Networks 21

vi

4.3 Running Examples . 24

4.3.1 The NIDS Application . 24

4.3.2 The DyMon Application . 25

4.3.3 Common Application Setup . 26

4.4 White-box Support for CPQs using Bayesian Networks 27

4.4.1 CPQ Execution . 27

4.4.2 Plan Selection . 33

4.4.3 Model-Specific Optimizations . 39

4.5 Experimental Evaluation . 41

4.5.1 Setup . 41

4.5.2 Network Intrusion Detection Results 41

4.5.3 Software Performance Monitoring Results 44

4.5.4 White-box Inference vs Off-Database Inference 47

5 The Black-box Approach for Predictive Databases 49

5.1 Black-box Support of Prediction Models . 49

5.2 Prediction Interface . 51

5.3 Model Management and Prediction . 53

5.3.1 Model Registration . 54

5.3.2 Model Representation, Building and Testing 55

5.3.3 Performance Tracking . 57

5.3.4 Automated Model Building . 58

6 Query Performance Prediction 60

6.1 Modeling Query Executions . 61

6.1.1 Plan-level Modeling . 63

6.1.2 Operator-level Modeling . 64

6.1.3 Plan- versus Operator-level Modeling 66

6.1.4 Hybrid Modeling . 69

vii

6.2 Online Model Building . 73

6.3 Experiments . 76

6.3.1 Setup . 76

6.3.2 Prediction with Optimizer Cost Models 78

6.3.3 Predicting for Static Workloads . 79

6.3.4 Predicting for Dynamic Workloads 87

6.3.5 Platform Independence . 88

7 Related Work 91

7.1 Machine Learning and Data Mining . 91

7.1.1 Computational Learning . 91

7.1.2 Learning Packages . 92

7.1.3 Database Support for Models . 92

7.2 Probabilistic Databases and Uncertainty . 93

7.3 Model-based Data Management and Query Processing 93

7.4 Learning on Big Data . 95

7.5 Query Performance Prediction . 96

8 Conclusions 98

8.1 Summary . 98

8.2 Open Challenges . 99

8.2.1 Prediction Query Optimizer . 99

8.2.2 Optimized Model Training . 101

Bibliography 103

viii

List of Tables

4.1 Computation and Storage Costs for Product-Join 34

5.1 List of Prediction Interface Arguments . 51

5.2 Prediction Model SQL Interface . 55

6.1 Features for Plan-Level Models . 63

6.2 Features for Operator-Level Models . 66

ix

List of Figures

4.1 A Bayesian Network illustration . 20

4.2 A Dynamic Bayesian Network illustration 21

4.3 Product-Join Operation . 22

4.4 Marginalization in BNs . 23

4.5 Intrusion Detection Bayesian Network . 25

4.6 DyMon application setup . 26

4.7 Execution Tree for NIDS query . 27

4.8 A Dynamic Bayesian Network example . 30

4.9 Execution tree generation for a point-based prediction query 31

4.10 Execution tree for a range-based prediction query 32

4.11 A two-slice DBN example . 37

4.12 Execution plan for the range-based query on the two-slice DBN 38

4.13 Memory Usage vs. Computation tradeoff in the NIDS query 43

4.14 Query Execution Time vs. #Variables in the NIDS BN 43

4.15 Memory Usage vs. Computation tradeoff in DyMon 45

4.16 Query Execution Time vs Query Range in DyMon 46

4.17 Top-k Query execution times . 47

5.1 Design schema for black-box model support 56

6.1 A Learning Approach to QPP . 62

6.2 Operator-level QPP . 67

x

6.3 Hybrid QPP example . 70

6.4 TPC-H sub-plan analysis . 75

6.5 QPP with optimizer cost estimates . 79

6.6 Plan-level QPP in static workloads . 81

6.7 Operator-level QPP in static workloads . 83

6.8 Estimation Errors in QPP . 84

6.9 Ordering Strategies in Hybrid QPP . 86

6.10 QPP in dynamic workloads . 87

6.11 QPP on a different hardware platform . 89

6.12 Platform Independence: Hybrid QPP . 89

xi

Chapter 1

Introduction

Traditionally data management systems enabled users to efficiently query the past state

of the world as is represented by the database. Many modern applications now rely on

database systems that deliver up-to-date results with very low latency, hence enabling the

user to query the present state of the world. Stream processing systems are designed to

minimize this latency and produce near real-time answers [19, 1, 76]. Thus, we see a

trend towards shrinking the ”reality gap” to zero. But for some applications, even this

is not good enough; there is often a desire to get out in front of the present by querying

the predicted (i.e., forecasted) future state(s) of the database. Security applications are

a good example for this, since they are typically interested in preventing a breach rather

than simply reporting that one has happened. In a similar manner, some applications may

leverage predictions for missing or unknown database values. Such predictive applications

are increasingly deployed in order to identify and exploit opportunities, or avert calamities

in a variety of IT or business monitoring, planning and decision-support scenarios.

Prediction is not new. Predictive modeling has been used with varying degrees of success

for many years [44, 68]. Today, predictive modeling is a large sub-area of science that

brings together many statistical techniques and algorithms from data mining, modeling

and statistics to analyze and extract information from current and historical data. With

the advances in computing power and storage capabilities, models grow more sophisticated

1

2

and data collection becomes more extensive and accurate, and as a result the quality of

the predicted results are continuously improving. Modern weather forecasting is a good

example of this. Twenty years ago, it would not have been possible to predict weather

seven days ahead, nor would it have been possible to predict thunderstorms to the street

level.

As a case in point, consider network intrusion detection. We can observe various char-

acteristics of a network connection (such as the protocol used, duration, number of bytes

sent, etc.) in real time and predict, based on historical traffic patterns accumulated a priori,

whether the connection is likely to be an attack, either because it exhibits a similar pattern

as a previous attack or it deviates from a typical connection pattern. In either case, we

would like to flag suspicious connections as early as possible to trigger quick preventative

action to avoid or mitigate potential damages (e.g., close the port and sandbox the corre-

sponding server thread). As another example, consider the load management algorithms

(e.g., job admission control and balancing) used in a data center for tasks such as achieving

optimal resource utilization, minimizing response times and maximizing throughput. Stan-

dard algorithms typically ”detect and react” to overload and imbalances, whereas predictive

algorithms would facilitate a ”predict and prevent” solution that reacts before the problem

arises.

At present, predictive applications are not well supported by database systems, despite

their growing prevalence and importance. Currently, most predictive applications follow an

off-database approach in which the prediction functionality is provided outside the database

system by specialized prediction software [38], which uses the database system primarily

as a backend data server. Thus, the DBMS acts simply as a backend data source to feed

the predictive application. Some database systems provide basic extensions [80, 54, 73],

that facilitate the execution of predictive models on database tables (in a manner similar

to stored procedures). As some others have also noticed (e.g., [34, 35]), we will argue that

this loose coupling misses significant opportunities.

In this thesis, we demonstrate that there are many advantages to integrating predictive

3

mechanisms into the data management engine. As such, the broad goal of our work is to

push this key predictive capability to the database layer in an attempt to leverage exist-

ing data modeling, query execution and optimization frameworks while providing generic,

highly-efficient predictive functionality. Most of this functionality, which are available in

database systems (already well debugged/optimized), needs to be duplicated to perform

similar optimizations when prediction is done outside the database engine.

This thesis argues that next generation database systems should natively support and

manage predictive models, tightly integrating them in the process of data management and

query processing. We make the case that such a Predictive Database Management Sys-

tem (PDBMS) is the natural progression beyond the current afterthought or specialized

approaches. In this study, we demonstrate techniques and a system architecture, as part

of a PDBMS project called Longview [84], that allows us to efficiently support predictive

functionality within database systems. We present the performance and usability advan-

tages that PDBMSs offer over the traditional off-database prediction approach. We believe

that the tight integration of model and data management, as demonstrated in Longview,

will significantly broaden the applicability and appeal of database systems for new classes

of data-intensive applications that leverage statistical models. We will see later that this

dichotomy between data and model will show up as major components in our system design

and architecture.

By providing predictive capability through declarative queries in the context of a database

system, the programmers no longer need to concern themselves with the implementation

and management of the prediction models or the low-level details of predictive tasks like

model selection and training. The database system performs these tasks behind the scenes.

Much as SQL has made programmers more productive in the context of data processing,

we believe that our approach will have a similar effect for predictive programming tasks.

Also, integrating prediction with other more standard database operations allows the

system to construct specialized structures (e.g., materialized models, data structures to

organize those models) and the optimizer to build plans that make use of those structures.

4

Further, it allows for an execution model in which predictions are generated only as needed.

1.1 Contributions

In this thesis, we describe our work on supporting and leveraging prediction models for

database applications within the context of a predictive database system being developed

as part of the Longview project [84]. In particular, we describe how to provide predictive

functionality in a database through prediction models, and discuss techniques to execute

and optimize “prediction queries” on top of the prediction models by utilizing and extending

the existing functionalities of a database system.

Prediction queries refer to the class of queries which use the existing data in a database

system to build prediction models and estimate unknown data values. Prediction queries

have a broad range of uses. They can support predictive analytics to answer complex ques-

tions involving missing or future values, correlations, and trends, which can be used to

identify opportunities or threats (e.g., forecasting stock-price trends, identifying promising

sponsor candidates, predicting future sales, monitoring intrusions and performance anoma-

lies).

We consider both one-shot and continuous prediction queries as part of this study.

One-shot prediction queries, simply referred to as prediction queries, are ad hoc prediction

queries which are only executed once. On the other hand, continuous prediction queries

are standing queries that are executed multiple times to produce continuous results with

updated “evidence”. Evidence refers to the newly observed data values that affect the

prediction results. In this study, techniques to efficiently support both types of prediction

queries are discussed. For one-shot prediction queries, model building is usually the most

time consuming operation and is therefore the main target of the proposed optimization

techniques. For continuous prediction queries, incremental query optimization techniques

and methods similar to multi-query optimization techniques are employed.

Furthermore, we investigate the use of prediction in the context of both continuous

5

stream-processing engines and standard database systems. While each of these settings

raises interesting questions in their own right, we see the end-game as a system that combines

both computing paradigms in an integrated and seamless way. Briefly, even in a real-time

context, history is needed to do prediction.

An important premise of this work is that prediction models should be treated as first-

class objects; meaning that models need to be managed in much the same way as data.

For example, model instances will be materialized and stored. The period with which this

pre-computation happens would be controlled by the system.

In this thesis, we discuss two fundamental approaches for integrating prediction meth-

ods into databases. The first method is to directly use the available implementations of

prediction methods as black-box components in the database systems. Using the black-box

approach, the database can immediately provide the predictive applications with already

tested and optimized prediction methods without the otherwise required programming ef-

fort. The second approach, called the white-box method, is to implement the prediction

methods within the database engine by extending the existing functionality of the database

system. The white-box approach could require much more effort together with the exper-

tise and the ability to manipulate the code for the database engine. However, in this way

the inference operations are tightly integrated with query execution and additional query

optimization opportunities involving the prediction operations, unavailable in the black-box

approach, are possible.

The vision of this study involves dual uses of predictive query capabilities. The first

use is outward-facing. Prediction queries can be used to answer application-specific ques-

tions in a variety of domains to identify opportunities, challenges, and trends that could

potentially alert the application or the user accordingly (before the fact). For example,

predictive analytics is common in financial services to support trading decisions, and in en-

terprise inventory management to predict future sales trends. As discussed before, currently

database systems provide very little support for such predictive applications. Modeling and

prediction are performed outside the database, which serves primarily as a dumb data store.

6

This approach is not only hard to implement but is also inefficient; as such, the goal of our

study is to push as much of this functionality to the database as possible. In this study,

we demonstrate the applicability and efficiency of our in-database prediction techniques for

outward-facing applications with two case studies: a network intrusion detection system

and a software performance monitoring application.

The second use of prediction is inward-facing : our efforts aim at the use of prediction

queries as an introspective tool to assist various components of existing systems and fa-

cilitate intelligent data/resource management decisions. Today, many systems either use

very simple, mostly static predictive techniques or do not use any prediction at all. This

is primarily due to the difficulty in acquiring the appropriate statistics and efficiently and

confidently predicting over them.

To demonstrate how the predictive functionality provided by a predictive database sys-

tem can be leveraged to build such introspective services in existing systems, we consider

the problem of query performance prediction (QPP) in database systems. Accurate QPP is

central to effective resource management, query optimization and user experience manage-

ment in a database. However, it is also a challenging task as database systems are becoming

increasingly complex, with several database and operating system components interacting

in sophisticated and often unexpected ways. As such, analytical cost models, which are

commonly used by optimizers to compare candidate query execution plan costs, are poor

predictors of execution latency. As a more promising approach to QPP, we demonstrate

and evaluate predictive modeling techniques that accurately learn query execution behavior

from historical data sets.

1.2 Outline

The rest of this thesis is structured as follows. We first provide background information

in Chapter 2. Next, in Chapter 3 we describe prediction queries and introduce the white-

box and black-box approaches to integrating prediction models into the database system.

7

In Chapter 4, we present our white-box model support techniques within the context of a

streaming database system. Our discussion includes case studies to explain our optimization

and execution methods for supporting predictive functionality. In Chapter 5, black-box

model support techniques and the Longview system are described. Then, we demonstrate

the usability and performance of the Longview system using a system-facing predictive

application, Query Performance Prediction, as an in-depth case study in Chapter 6. Related

work is discussed in Chapter 7. Finally, in Chapter 8, we present our final remarks and

ideas for future work.

Chapter 2

Background

2.1 Model-based Prediction

We use the term model to refer to any predictive function such as Linear and Multiple

Regression [68], Support Vector Machines [29], and Bayesian Networks [57]. The main

property of a predictive function is learning: to generalize from the given examples in order

to produce useful outputs for new inputs [74].

Prediction models serve a variety of purposes and have diverse characteristics. For

instance, a prediction model is often designed only for a particular operation such as regres-

sion, clustering or classification. In addition, a model usually supports only a few restricted

types of data (e.g., integers but not real numbers). Finally, with a few exceptions, different

modeling and prediction tools correspond to different assumptions about the underlying

stochastic process, and the prediction goals. The characteristics of the data being modeled

is the most important feature in choosing the correct type of model. The assumptions made

by the model should be in agreement with the data for accurate modeling and prediction.

Hence, prediction models are often useful only for specific scenarios and a single type of

model is not general enough for supporting a wide range of predictive applications.

In the machine learning approach, an input data set, called the training data, is initially

used to tune the parameters of a prediction model. This process is called training (or

8

9

learning). The goal of training is to determine the best model instance that explains the

available data set(s) while generalizing to new inputs. For example, fitting a function to

a time series may yield a specific polynomial instance that can be used to predict future

values.

In general, model training involves selecting (i) a training data set and (ii) the training

features (i.e., attributes or variables), a subset of all attributes in the data set, in addition

to the learning operation. The training data contains both the prediction (i.e., target)

attributes and the explanatory attributes which are the predictive features providing infor-

mation on the target attributes. In practice, the original input data is usually preprocessed

to transform the data into a new space of variables where solving the learning problem is

expected to be easier. Normalizing the magnitude of numerical attributes, filling in missing

data values, and removing outliers are examples of common preprocessing operations.

In some cases, a domain expert can manually specify the training features. In other

cases, this step is trivial as the prediction attribute(s) directly determine the explanatory

feature attribute(s) (e.g., in autoregressive models). Alternatively, training features can

be learned automatically via feature selection; however, given a set of n attributes, trying

the power set is prohibitively expensive if n is not small or training is expensive [68, 49]

thereby requiring heuristic solutions. Most approaches rank the candidate attributes (often

based on their correlation to the prediction attribute using metrics such as information gain

or correlation coefficients [95]) and use this ranking to guide a heuristic search [44, 98] to

identify the most predictive attributes tested over a disjoint test data set. The training

data set can be sampled to speed up the process.

Once a prediction model is trained, it can then be used for predicting the unknown

values of the target attributes given the values of explanatory attributes. The data set used

in this prediction phase is usually called the test data, and only contains the data values

for the explanatory attributes.

10

2.2 Error Analysis

Prediction accuracy is a function of the quality of the estimated models and the training

data. The quality of the model (and the predictions) can be measured by distance and

divergence metrics such as the variation distance or the mean square error between the

predictions and the true values. With assumptions about the stochastic process, one may

able to be bound these measures analytically, using large deviation theory, appropriate

versions of the central limit theorem and martingale convergence bounds. Alternatively,

one can use multiple tests on available data to compute the empirical values for these

measures. However, using empirical values to estimate the model or prediction error adds

another layer of error to the estimate, namely the gap between the empirical statistics

and the true value it estimates. While the empirical statistic is an unbiased estimate, the

variance of the estimate can be large; it depends on the size and variance of the test set.

In general, it is not possible to estimate a priori what model would be most predictive

for a given data set without training and testing it using various model types and feature

sets. The process of selecting a statistical model among a set of candidate models is called

model selection and is one of the fundamental tasks in machine learning and data mining.

The performance of a model on the training data is not a good indicator of its predictive

capabilities due to the well-known problem of over-fitting. The characteristics of the over-

fitting problem is that such statistical models generally describe noise or error in the training

data set instead of the underlying relationships between variables and therefore do not

generalize to new test inputs.

A common practice is to use an independent/separate test data set for evaluating the

performance of a prediction model. Yet in cases where the data is scarce, we would like

to use as much of the data as possible for learning. In such cases, we can use a form of

hypothesis testing: k-Fold Cross Validation (K-CV). K-CV divides the observed data up

into k non-overlapping partitions. One of the partitions is used as validation data while the

other k− 1 partitions are used to train the model and to predict that data in the validation

11

interval. To estimate the error with K-CV, in each iteration we can compute, for instance,

the root mean square error for the pairs (ai, ei) where ai is the actual value and ei is the

predicted value for each of the n/k points in the validation partition. Other methods such

as regularization, pruning, prior-based techniques also exist to overcome the problem of

over-fitting [57]. These techniques usually rely on explicit terms which penalize complex

models (e.g., models with many parameters) or on the use of independent validation data

sets.

2.3 Stream Processing

Stream processing has been developed over the last decade as a response to the need for

low latency query processing over an ordered and potentially infinite collection of tuples

(e.g., [19, 1, 76, 20]). In stream processing, queries continue to execute as tuples arrive.

The operators in a query mirror the standard relational operators with a few differences

to account for the infinite nature of the input streams. The result of evaluating a query is

typically one or more potentially infinite output streams. In order to achieve low latency,

stream processing systems typically record their state in main memory. The most common

form of transient state is the window which is a finite contiguous subset of the tuples

in a stream [10]. Windows move along the stream in response to arriving tuples and a

sophisticated set of rules for window definition.

Chapter 3

DBMS Support for Predictive

Models

3.1 Prediction Queries

In this thesis, we describe our work on providing support for predictive applications in

database systems through the use of declarative prediction queries built on top of database-

integrated prediction models. Declarative queries provide an efficient and easy-to-use in-

terface to predictive applications for using the database-supported predictive functionality.

To this end, we also discuss SQL extensions to easily express predictive operations within

SQL and demonstrate the usability and efficiency of the declarative prediction approach.

We define prediction queries as a new class of queries that performs inference based

on the existing data in a database system to produce estimates of future or missing data

values. The inference operation is performed as part of the query execution process using

the prediction models supported by the database system. In this section, we describe the

types of prediction queries considered in this thesis.

We consider both one-shot and continuous prediction queries:

One-shot prediction queries refer to the set of prediction queries which execute and

produce results only once. They are typically ad-hoc, customized queries which may

12

13

perform any type of inference on any subset of the available data attributes.

Continuous prediction queries (CPQs) [7] are standing queries, which are repeatedly

executed to produce continuous results. A CPQ may produce results whenever new

data (i.e., new evidence) is observed or when its set of parameters (e.g., parame-

ters for selection, predicates or prediction operations) are updated and new results

are required. Alternatively, a CPQ might produce periodic results with given time

intervals.

In general, a predictive application could opt to use one-shot prediction queries, CPQs or

both depending on its requirements. However, CPQs are generally a better fit for streaming

predictive applications whereas in traditional environments we expect the use of one-shot

prediction queries to be more common.

There are also performance considerations when comparing the types of prediction

queries. Observe that, according to our definition, CPQs can also be viewed as indepen-

dently executed multiple one-shot queries. However, this proposed approach to CPQs is

not favorable, as in this case, the database client is required to repeatedly submit one-shot

prediction queries to the database.

On the client side, this might imply polling the database for updated evidence and new

data (or using a database trigger as a notifier), modifying the one-shot query with the newly

received data and resubmitting the modified query to the database. On the database side,

the situation is even more problematic. The main issue is that the database is not aware of

the continuous execution process for the prediction query. Therefore, each time the query

is submitted, the database needs to re-parse, re-plan and re-execute the query from scratch.

This process will also include re-building (i.e., re-training) the prediction models used by

the query thereby causing significant overhead in each query submission.

Most importantly, the database system is prevented from applying additional query

optimization techniques to optimize the continuous execution processes. For instance, ma-

terialization techniques could be used on prediction results across multiple executions of the

14

query to reduce the query execution times. In this thesis, we will describe such database-

style integrated query optimization techniques both for one-shot and continuous prediction

queries.

3.2 Integration of Prediction Models

We study the integration of prediction models as first-class entities in the database system.

In our approach, prediction models are managed in much the same way as data is managed

in the database system. As such, we consider model management as the key underlying

component of our approach. In this thesis work, we demonstrate that model management

can greatly benefit from analogues of many well-established data management techniques.

Below we highlight some of these optimization opportunities that we explore in thesis

for model management:

Profiling and modeling: Computation/storage costs and accuracy characteristics of pre-

diction models can be modeled, and fed to the query optimizer so that efficient execu-

tion plans and accurate model types can be chosen for performing a given predictive

task.

Physical design and specialized data structures: Data can be structured to facilitate

efficient model building and predictive query execution. Well-known data management

and access methodologies such as (multi-dimensional) indices and disk organizations

can be adapted and extended for this purpose.

Pre-computation and materialization: Model building is often prohibitively expensive

for ad hoc or interactive queries. In such cases, models can be pre-built and materi-

alized, similar to the way a DBMS pre-computes indices and materialized views, for

use by the optimizer and executor. Furthermore, this process can be automated in

many cases.

Query optimization: The optimizer can be altered to consider alternative ways of model

15

building, selection, and execution, as well as the inherent cost-accuracy tradeoffs when

selecting an execution plan for a predictive query.

Prediction models can be supported by a database system at varying degrees of inte-

gration. As mentioned before, in this thesis we consider two alternative ways of model

integration: black-box and white-box methods.

In the black-box method, existing implementations of prediction models are directly

linked or embedded into the database as user defined functions (UDFs) or external libraries.

On the other hand, in the white-box approach predictive methods are tightly integrated into

the core of a database system, and usually supported as native database operations.

Depending on the integration method used for a prediction model, the kind and ef-

fectiveness of the data management style optimizations that we can utilize for improving

its execution performance vary. In general, with the white-box approach we are able to

adapt more of the existing functionality in a database system for efficient prediction due to

the low-level integration into the database engine and the transparent functionality of the

prediction operations. As such, optimization opportunities for black-box methods are lim-

ited. Hence, we mostly consider providing efficient higher-level predictive functionality and

modeling capabilities within the context of the black-box approach. We demonstrate the

usability and extensibility of our black-box techniques in Chapter 6 using a system-facing

application, Query Performance Prediction, as our case study.

Chapter 4

The White-box Approach for

Predictive Databases

4.1 White-box Support of Prediction Models

White-box model support refers to the approach of integrated implementation and support

of predictive functionality within the database engine instead of the use of black-box im-

plementations by the database system. In particular, the aim of white-box modeling is to

implement the functionality of prediction models using the available query execution oper-

ators and other (possibly extended) components of a database system. Therefore, in this

approach prediction models are natively supported by the database query processing mech-

anism rather than model-specific black-box implementations. The white-box approach also

includes other available forms of database support to prediction models (e.g., state man-

agement for prediction models or implementation of the underlying mathematical entities)

based on information about their inner workings.

As with the white-box approach the operations of prediction models are part of the

database query processing mechanism, it follows that the query optimizer is able to opti-

mize the execution of prediction models. Hence, we are able to benefit from the well-tested

16

17

and complex optimization rules and transformations of the query optimizer in running pre-

diction queries. In addition, with the use of white-box prediction models, the database

query optimizer could also be extended with new optimization rules and algorithms to ob-

tain additional performance gains by aggressively optimizing the query plans for prediction

model operations. Additional optimizations of the prediction operations are essential, espe-

cially for the support of near real-time predictive applications. Moreover, in complex queries

having prediction queries as their sub-queries, the optimization and execution of the pre-

diction models are intertwined with the rest of the query. This brings up new optimization

opportunities to the query optimizer.

Observe that not all types of prediction models can be directly supported within the

traditional relational-model of database systems. Certain models such as Bayesian Networks

(BNs) [57, 82] and polynomial-based regression models can be naturally represented and

used in the relational model [17, 4], while other model types require the use of custom

implementations either through user defined functions or external hooks. The characteristics

of the operations required by a prediction model determine if it can be directly supported

within a database system. More specifically, the functionality of a prediction model is fully

implementable as a regular database query if its operations are expressible in relational

algebra terms. It is also possible to extend the relational algebra model supported by a

database system to support more complex prediction models [96].

In Section 4.2, we provide background information on Bayesian Networks and describe

how they can be supported by a database system based on the white-box approach. Previous

work showed how BNs can be represented by a functional relational model and predictive

queries be supported using extended relational operators [17, 96]. In Section 4.4, we build

on these results and discuss how to execute and optimize continuous prediction queries

(CPQs) on top of BN-based prediction models, specifically the discrete Bayesian Networks

and their variant Dynamic Bayesian Networks (DBNs) [77], in a streaming database system.

There is a large suite of predictive models, including regression models and classifiers. Yet,

among these (D)BNs constitute an important class that is widely used in practice. Their

18

common use and that they can be naturally represented and used in the relational model

make them a good candidate for native DB support.

BNs are not new; they have been extensively studied in a variety of domains including AI,

machine learning and statistics [57, 82]. As such, our contribution is not to introduce a new

BN technique but to demonstrate how existing BN approaches can be natively supported by

a database system to perform highly-efficient CPQ over streaming data. We describe how

to create a rich plan space for CPQs and perform cost-based optimization in this space. Our

primary contribution is a cost-based prediction query optimization and execution framework

that combines materialization, sharing and model-specific optimization techniques for CPQs

using BN-based prediction models.

In Section 4.3, we describe two streaming database applications that we use to demon-

strate our query execution and optimization methods for the BN-based prediction models.

As mentioned, in the context of the white-box modeling approach, we focused our studies

on the support of BN-based predictive functionality with continuous prediction queries in

a streaming database environment. However, the representation and use of BN-based pre-

diction models is studied within the context of a general relational model and is therefore

applicable to both traditional and streaming scenarios. As such most of the algorithms and

optimization methods presented in this chapter are also applicable (or easily adaptable) to

the traditional disk-based scenarios with small changes to the optimization metrics (e.g,

using disk I/O instead of computation cost). Discussion on the one-shot prediction queries,

their execution and optimization, is provided in Chapter 5, the Black-box Approach for

Predictive Databases.

19

4.2 Case Study: Database Representation and

Support for Bayesian Networks

4.2.1 Background on Bayesian Networks

Bayesian Networks (BNs) [57, 82] are compact representations of joint distributions over

sets of variables. The compactness is achieved by utilizing the conditional independences

among the variables. A BN consists of a directed acyclic graph (DAG) that includes a node

and a conditional probability distribution (CPD) for each variable. The CPD of a variable

encodes its distribution given its parents in the graph. Thus, for a graph G with N nodes

x = {x1, x2, . . . , xN}, the joint distribution is given by

p(x) =
N∏

i=1

p(xi|pa(xi))

where pa(xi) denotes the parents of xi.

Previous work used functional relations to represent the conditional probabilities of a BN

in a relational database [17, 97, 96]. A functional relation R has the schema {A1, A2, . . . , An, f}

where f is called the measure attribute and the functional dependency A1, A2, . . . , An → f

holds. In this case, the measure attribute corresponds to the conditional probability for the

configuration represented by a tuple. An example BN consisting of the binary attributes

X, Y, Z and T is shown in Figure 4.1 together with the functional relations for each CPD.

Dynamic Bayesian Networks (DBNs) [77, 42] are a natural extension of the Bayesian

Networks (BNs) for modeling dynamic systems, i.e., systems which are represented with

variables that evolve with time. Some basic continuous prediction queries that the users

would like to pose in such systems could include point-based and range-based temporal

predictions:

Query 1: The expected CPU usage of process p in the next minute (i.e., forecasting at a

future time point)

20

Figure 4.1: An example Bayesian Network, defined over the binary attributes
X, Y , Z and T , representing the joint distribution P (X, Y, Z, T) = P (X) P (Y |X)
P (Z|X) P (T |Y, Z).

Query 2: The expected CPU usage of process p for the next 10 minutes (i.e., forecasting

at a future time interval).

To answer Query 1, a BN can be constructed such that the value of the attribute CPU

at different time steps is represented using different variables. In this case, the BN does not

consider the temporal causality between the variables and does not utilize the fact that it

is a single variable observed at different time steps.

A similar approach can be taken to answer Query 2. However, in this case we will

need to introduce 10 variables, as we require a separate CPU variable for each time step.

This approach is not practical since both representing the BN and executing inference will

quickly become infeasible with the growing number of variables. Moreover, if we would like

to predict a different range of CPU values, say the next 15 minutes instead of 10 minutes,

we would have to extend the BN structure with additional nodes.

DBNs represent a similar modeling approach except that there are certain restrictions

which help reduce the size and complexity of the network structure and thereby make

inference more efficient. The restrictions involved in a DBN can be briefly stated as follows:

1. Forward linking: No backward links in time.

21

2. Temporal consistency: If there is a link from x[i], the node representing variable x at

time point i, to x[j], then there is a link from x[i + k] to x[j + k] for all k.

3. Identical distributions: Conditional probability distributions for the same attribute

at different time steps are the same.

The DBN shown in Figure 4.2 can be used to answer both queries 1 and 2 (inference

with BNs and DBNs is discussed later in this section). This is a simple DBN in which the

current CPU value depends only on the previous value. The actual representation of the

DBN inside the database consists of two time slices as shown in the figure.

Figure 4.2: An example DBN consisting of two time slices in which the current
CPU value depends only on the previous value.

4.2.2 Inference with Bayesian Networks

The inference problem in BNs is the problem of computing the posterior distribution of a

set of target variables given the values of a set of observed/evidence variables. There are

a variety of exact and inexact (or approximate) inference algorithms for BNs [57]. The

exact algorithms compute the precise values for posterior distributions (i.e., marginals) and

include variable elimination, clique tree propagation, cutset conditioning and other BN

inference methods [57, 15, 67]. Examples of inexact BN inference algorithms are belief

propagation, variational methods and MCMC algorithms [15, 59]. Almost all inference

algorithms try to exploit the BN structure, which encodes the conditional independences,

to efficiently compute the posterior distributions. In our work, we use the most common

exact inference algorithm: variable elimination (VE) [100, 99].

22

The VE algorithm, like many other probabilistic inference algorithms, is based on a set

of operations for manipulating probability distributions. These basic operations on prob-

ability distributions have been incorporated into relational systems by means of extended

relational algebras [96, 17]. These extensions generally contain two main additional opera-

tions: marginalization and product-join, which we describe below using the BN shown

in Figure 4.1.

• The product-join operation (
∗
⊲⊳) is defined on two functional relations s and r as

follows:

s
∗
⊲⊳ r = πs.a∪r.a,s.f∗r.f(s ⊲⊳s.a∩r.a r)

where s.a and r.a represent the non-measure attributes of relations s and r. For

instance, in Figure 4.3 we apply the product-join operation on the variables X, Y and

Z of the BN given in Figure 4.1 to get the joint distribution P (X, Y, Z).

Figure 4.3: Calculating P (X, Y, Z) with the product-join operation.

• The marginalization operation is defined over a joint distribution and is used to

compute marginal distributions by eliminating variables. For instance, let r represent

the distribution encoded by the BN in Figure 4.1 over all variables X, Y , Z and T ,

i.e.,

r = PX
∗
⊲⊳ PY

∗
⊲⊳ PZ

∗
⊲⊳ PT

23

where we refer to the relations of the variables X, Y , Z and T with PX, PY , PZ

and PT respectively.

Then, to compute the marginal distribution over a subset A of all the variables in the

joint distribution, we eliminate all variables not in A by applying:

πA,sum(r.f)(GroupByA(r))

Observe that, the defined product-join operation is both associative and commutative.

In Figure 4.4, we calculate the marginal distribution P (Y, Z) by eliminating the vari-

able X from the joint distribution P (X, Y, Z) (computed in Figure 4.3). Observe that

in this case, we did not need to construct the full joint distribution r as the variable

T does not contribute to the probability of Y and Z. Identifying such redundant

variables has been discussed in literature before [57] and helps reduce the required

computation.

Figure 4.4: Calculating P (Y, Z) using marginalization on P (X, Y, Z).

Now, we can express the variable elimination algorithm simply as a series of product-join

and marginalization operations on the base relations. The problem of efficiently ordering

these operators was recently addressed and the algorithm was integrated into the query

optimizer in the database core [17].

While inference in BNs can be implemented based on the mentioned variable elimination

algorithm, in the case of DBNs we may have to unroll the DBN before we apply the variable

elimination algorithm. Consider query 2 described using the DBN given in Figure 4.2. To

24

predict the next 10 CPU values, we would have to unroll the network by adding new time

slices consisting of the nodes cpu[t + 2], . . . , cpu[t + 10]. Inference can then be executed

similar to the BN case.

4.3 Running Examples

We describe our white-box modeling support techniques for continuous prediction queries

and the corresponding optimization methods via two representative use cases: (i) a network

intrusion detection system (NIDS) adapted from [53] and (ii) a dynamic software perfor-

mance monitoring (DyMon) application [88, 89]. NIDS is primarily used to illustrate the

BN-based prediction techniques, whereas DyMon is used to discuss the temporal CPQs

supported by DBNs.

4.3.1 The NIDS Application

We base our network intrusion detection application on the 1999 KDD Intrusion Detection

Contest [53]. In the NIDS application, the task is to detect intrusions in a computer

network by monitoring the network connections. In particular, in the Intrusion Detection

Contest each network connection is described with a set of 42 variables e.g., ’protocol type’,

’duration’ and ’number of failed logins’. Given these 42 variables for each connection, we

would like to predict their types, represented with the additional variable ’access type’ being

one of ’normal’ or ’attack’. The KDD99 contest also involves identifying the attack type

for bad connections, which we do not consider in this study.

We use the BN given in Figure 4.5 for predicting the access type of each connection. The

given Bayesian Network provides highly accurate prediction results despite using only 6 of

the given 42 variables. It is essential to produce such simple networks with high accuracy

properties for efficient inference. We used a similar method to that described in [35] for

forming the network structure. First, we ranked the given 42 variables according to their

correlation with the access type attribute based on the Linear Correlation Coefficient

25

Figure 4.5: Network Intrusion Detection System BN. Variable A is the
access type and others are the observable variables. The BN corre-
sponds to the factorization: P (A, B, C, D, E, F, G) = P (B)P (C|B)P (A|B, C)
P (G|A, B)P (D|A)P (E|A)P (F |A, B, G).

metric [95]. Then, starting with a minimal subset of the 42 variables, we iteratively increased

the size of the subset, using a best-first search technique, until we could create a network

with high accuracy for identifying the connection type.

The generic prediction query we would like to run on this network is P (access type |

evidence), where evidence is used to represent the values of the observed variables. This is

a continuous prediction query in the sense that every time a new connection information is

received, it produces a prediction.

4.3.2 The DyMon Application

The second application we use for demonstrating our white-box execution and optimization

methods for prediction models is a software performance monitoring system. The Dynamic

Software Performance Monitoring (DyMon) [88, 89] application attaches profiling agents to

local and remote Java processes and monitors runtime performance metrics such as number

of threads, number of I/O calls, and CPU/memory usage.

In this study, we monitor the performance of a Java-based web server, named Jetty [58],

under a load of web requests replayed from the 1998 FIFA web logs [37]. The high-level setup

of our software performance monitoring application is shown in Figure 4.6. The system

is also augmented with additional monitoring software to continually acquire additional

26

performance metrics not monitored by the DyMon agents (e.g., the number of received

HTTP requests and the average time of processing a request). We will discuss both point-

and range- based prediction queries using the DyMon application. We will use the DBN

shown in Figure 4.8 for illustrating our query optimization techniques.

Figure 4.6: The setup for the DyMon application. The web server is under a
load of web requests replayed from the FIFA 1998 web logs. The Continuous
Prediction Query Processing system receives its information both from DyMon
and a custom monitoring software.

4.3.3 Common Application Setup

The execution setup for both of the applications is a single-node streaming database system

where the prediction models and the data are managed, the streaming data is received and

the prediction is performed. Both applications require continuous prediction results with

each received streaming tuple. The received tuples are formed by concatenating the values

of the observed attributes and feed the prediction models with data to produce predictions

on the target attributes. We assume that we are provided with training data beforehand

using which prediction models are to be built. The training data includes values for the

prediction attributes together with the observed attributes (i.e., supervised learning).

27

4.4 White-box Support for CPQs using Bayesian Networks

4.4.1 CPQ Execution

A. Query Execution with Bayesian Networks

We describe our continuous prediction query execution techniques for BN-based pre-

diction models using the network intrusion detection example given in Section 4.3. In

the NIDS connection type prediction query, we would like to compute the probability

P (access type|evidence) for each network connection. The access type variable represents

the type of a network connection with the values ’attack’ and ’normal’. Using the Bayesian

rule, we have:

P (access type|evidence) = P (access type,evidence)
P (evidence)

which is proportional to P (access type, evidence) as P (evidence) is constant. Hence, we

only need to compute P (access type, evidence) and normalize it to produce the query result.

Substituting in the variable names used in the NIDS Bayesian Network given in Figure 4.5

and using lowercase letters for observed variables, our task is to compute P (A, b, c, d, e, f, g).

We use the example query evaluation tree given in Figure 4.7. The query tree contains

product-join (
∗
⊲⊳) and selection (σ) operations which were described in Section 4.2 as part

of the BN-based inference with databases discussion.

Figure 4.7: An example query execution tree for P (A, b, c, d, e, f, g).

Selection constraints are used for propagating the evidence (i.e., observed values) in the

query tree. They are pushed down to the probability distributions. In continuous query

execution, every time a new tuple is received, the σ-constraints are going to be modified

with the new observed values. This approach is similar to parameterized query execution

28

techniques with prepared statements [78].

Materialization Options: Consider the continuous evaluation of the product-join opera-

tion between σb(P (B)), denoted with P (b) and σb,c(P (C|B)), denoted with P (c|b), as new

b and c values are received. We have the following execution options:

• recompute: compute P (b)
∗
⊲⊳ P (c|b) every time b and c values are received.

• materialize P (B)
∗
⊲⊳ P (C|B): precompute P (B)

∗
⊲⊳ P (C|B) and store it in memory

as P (B, C). Then, to compute P (b)
∗
⊲⊳ P (c|b) we need to execute a selection constraint,

σb,c, on P (B, C). Observe that, we no longer need P (B) or P (C|B). Hence, in some

cases materialization may help us reduce both memory usage and computation at the

same time.

• partially materialize P (B)
∗
⊲⊳ P (C|B): precompute P (B)

∗
⊲⊳ P (C|B) and store an

α-factor of it in memory as Pα(B, C). Here, α is a probability value and Pα(B, C) is

the subset of P (B, C) consisting of a minimal number of highest probability tuples

whose cumulative probability is greater than or equal to α. In this case, to compute

P (b)
∗
⊲⊳ P (c|b), we will first check Pα(B, C), and we will only do the product-join if

the answer is not found. Observe that the answer will be found in Pα(B, C) with

probability α.

Hence, in constructing query plans for each product-join operator, we have alternatives

we can use to trade-off computation and memory requirements. Note that when α is 0,

partial materialization is equivalent to recomputation, and when α is 1, it is equivalent to

full materialization. Therefore, different α values enable us explore the space between these

two extreme options.

The base conditional probability distributions, materialized and partially materialized

distributions are all either stored in sorted order of the observed variables or there is an

index defined on the observed variables of the distribution. Hence, selection on the distri-

butions can be implemented as a fast-lookup operation in memory. For instance, P (D|A)

29

could be sorted on D and σd can then be implemented as an in-memory binary search

operation.

CPQ Execution Flow: Consider CPQ execution with the query tree given in Figure 4.7.

The execution starts with the product-join at the top level. If the product-join result

is materialized, then the whole query execution becomes a simple selection on the joint

distribution. However, this is unlikely to be the case even with a moderate number of

variables, since the joint distribution may become quite large easily. For instance, if we

have n variables each with a small domain size of 10, then the joint distribution could have

as many as 10n tuples.

If the product-join at the top level is partially materialized, we first look for our answer,

with a selection operation, in the materialized part of the product-join. Depending on the

answer, we may or may not need to execute the lower levels of the query tree. In the worst-

case scenario, we need to traverse down to all the leaves of the query tree, in which case the

execution is equivalent to full recomputation over all the tree. In the best case, however,

a small fraction of a distribution will have significant probability mass which will enable

our system to materialize a very small but most frequently accessed part of the distribution.

Marginalization: We do not need to eliminate any variables (i.e., perform marginalization)

to compute the probability P (A, b, c, d, e, f, g). Hence, there are no group-by or projection

operations, which are used to implement the marginalization operation in a database as

discussed in §4.2, in the query tree of Figure 4.7. However, we might have to eliminate

variables in many other cases. This issue is more significant for inference in DBNs and is

therefore revisited in the DBN-based Query Execution discussion in the next section.

B. Query Execution with Dynamic Bayesian Networks

We use the DBN shown in Figure 4.8 to illustrate the execution of both point- and range-

based prediction queries. Point-based CPQs return a probability distribution on the values

30

of a given set of attributes at some time point in the future, given information about their

current and past values. On the other hand, range-based CPQs return a set of point-based

prediction results for a given time interval.

At a high level, the execution of both types of queries proceed similar to the execution

of CPQs on BNs in the sense that (i) materialized results are utilized whenever possible to

avoid recomputation, and (ii) selection constraints are used to propagate evidence through-

out the variables. However, with CPQs on DBNs there is more opportunity for sharing

computation and materialized results due to the structure and assumptions of a DBN, es-

pecially for the range-based queries. Below, we discuss query plans and their execution for

both types of DBN-based CPQs.

Point-based CPQs: For the DBN shown in Figure 4.8, we consider point-based prediction

queries of the form P (cpu[t + k]|cpu[t], cpu[t − 1]) for k > 0. When k = 1, query execution

is similar to that with BNs. However, when k > 1, we need to unroll the DBN as shown in

the figure, until it includes the variable cpu[t + k].

Figure 4.8: A three time-slice DBN for the CPU variable is unrolled to include
future time points. Newly added nodes share the same distribution with the
variable cpu[t+1].

An execution tree for the point-based prediction query with k = 3 is obtained through

repeated multiplication of the distributions in sequential order. This process is shown in

Figure 4.9. The projection nodes in the figure correspond to the marginalization operation,

and therefore are preceded by “group by” nodes.

We can construct execution trees for prediction queries defined with arbitrary values of

31

k in a similar way: starting from the query execution tree given for the query where k = 3,

we repeatedly “append” the query tree shown on the right side of the figure for increasing

values of j (j = 4, 5, . . . , k) to the end of the tree.

Figure 4.9: An execution tree for calculating the probability P (cpu[t + 3] |
cpu[t], cpu[t− 1]) is given on the left (C is used to denote CPU). A normalization
operation, not shown in the figure, is to be added to the end of the tree. On the
right is a template query tree for the described iterative operation in generating
plans for arbitrary point-based prediction queries.

Range-based CPQs: According to our definition, range-based queries return a set of

independent point-based prediction results for a set of variables within a given time in-

terval. For the DBN in Figure 4.8, the result of the range query at time t would be

P (cpu[t + k]|cpu[t], cpu[t − 1]), ∀k ∈ {1, . . . , m} where m is the length of the range. The

alternative would be to return a joint distribution instead of the point-based results. That

is, we would return P (cpu[t +1], cpu[t+2], . . . , cpu[t+ m]|cpu[t], cpu[t− 1]). However, as m

increases the size of this distribution would become very large, making its computation and

storage impractical. In addition, the individual probabilities for each configuration of the

distribution would diminish with increasing m. Hence, while our system can compute the

joint distributions for relatively small ranges, we focus on supporting the first definition of

the range query in the rest of this section. Later in this section, we discuss how to efficiently

compute only the top-k most likely events of the joint distribution.

32

Observe that, according to our definition, range-based queries can also be considered as

multiple point-based prediction queries. If we take this naive viewpoint, we can actually

execute multiple point-based queries independently to compute the result of the range-

based query. However, we use execution plans utilizing multi-query execution techniques to

share the computation and storage across these seemingly independent (but in fact causally

dependent) queries.

We first note that the execution tree for the point-based query P (cpu[t + k] | cpu[t],

cpu[t−1]) is actually built on the execution tree of the query P (cpu[t+k−1] | cpu[t], cpu[t−

1]). Hence, the most basic optimization is to share the computation across these queries by

using a combined execution plan as shown in Figure 4.10.

P(C[t]|C[t-1]) P(C[t-1])

*P(C[t+1]|C[t,t-1])

σC[t,t-1] σC[t-1]

*

σC[t,t-1]

P(C[t+2]|C[t+1,t])

*
σC[t]

P(C[t+3]|C[t+2,t+1])

*

∏(C[t+3,t+2])

∏(C[t+1])

∏(C[t+2])

∏(C[t+3])

P(C[t+4]|C[t+3,t+2])

*

. . .

∏(C[t+4])

Materialize
P(C[t+4,t,t-1])

σC[t,t-1]

Materialize
P(C[t+1,t,t-1])

Figure 4.10: An execution tree for the range-based query computing P (cpu[t + k]
| cpu[t], cpu[t − 1]) for a range of k values is given for the first 4 time points (C
is used to denote CPU). The marginalization operations containing only the
observed variables are not shown.

The query execution tree in Figure 4.10 shows the shared computation of the first four

time points of the range-based query. It can be extended in a similar way to include all the

time points in the query range. There are multiple output points in the query tree, one for

each projection node without a parent. Each such node corresponds to a single time point

33

in the range of the query.

Similar to the sharing of computation, any materialized results (except for the material-

ization at the output nodes) can also be shared across the time points. In Figure 4.10, the

second product-join node and the output node for k = 4 have been materialized. Observe

that the schema of the materialized relation for the output node contains the CPU variables

from times t and t − 1, whereas its counterpart in the query tree does not have these vari-

ables. This is because we cannot push the selections down, eliminate the observed variables

and then do the materialization since the parameters of the selection operations are not

fixed. However, during the computation of the range query for the given values of the CPU

attribute at times t and t− 1, the selections can be pushed down and the computation cost

can therefore be reduced.

4.4.2 Plan Selection

A. Cost Modeling for CPQs

We estimate the computation and storage requirements of each execution plan using

simple statistics with a cost model. In our system, the processing on each accessed tuple

is light-weight. As such, we base our computational cost model on the number of memory

accesses incurred during query execution. This is consistent with the cost models used by

main-memory database systems [16]. For storage costs, which we need for estimating the

memory requirements of an execution plan, we assume uniform space requirements for all

tuples.

Consider an intermediate relation X, formed during query execution, consisting of the

observed variables OX and the unobserved (hidden) variables UX . The typical selection

operation used for evaluating the prediction queries is to find the tuples with the given

values oX for the observed variables OX . We assume that there is either an index on the

observed variables or the tuples of X are sorted on the observed variables. Then, the cost of

the selection operation, σoX
, on relation X is the sum of the costs for finding the location

of the tuples satisfying the selection constraint and retrieving the tuples:

34

comp cost(σoX
(X)) = log(|πOX

(X)|) + |X|
|πOX

(X)|

Now consider another relation Y that consists of the observed variables OY and the

unobserved variables UY . The computation and storage costs for the product-join of X and

Y , X
∗
⊲⊳ Y , are given in Table 4.1. We denote the selection factor between X and Y with

σxy, which is calculated based on the attribute independence assumption. Recall that α is

the probability factor used in partial materialization. Finally, θ is the ratio of the relation

that gets materialized with the partial materialization method. θ depends on both α and

the joint distribution represented by the observed variables of the relation, particularly its

entropy. For a fixed value of α, the best case is where the entropy of the distribution is

low, since then most of the probability mass will be concentrated on a few tuples and θ

will be small. As the entropy increases, θ will generally get larger for a fixed α value. The

worst-case scenario is where we have a uniform distribution, since in this case the entropy is

maximized. As a result, α is an upper bound for θ. We will assume this worst-case scenario

in our experiments; if θ can be better estimated, better results can be obtained.

method storage cost computation cost

recompute 0 comp cost(σoX
(X))+

comp cost(σoY
(Y))

materialize |X||Y |σxy comp cost(σoX∪oY
(|X||Y |σxy))

partially θ|X||Y |σxy comp cost(σoX∪oY
(θ|X||Y |σxy))

materialize +(1 − α)((comp cost(σoX
(X))+

comp cost(σoY
(Y))))

Table 4.1: Computation and storage costs for the product-join operation: X
∗
⊲⊳ Y .

The computation and storage costs for the marginalization operation are simpler to

derive than for the product-join operation. The reason is that marginalization works on a

single input and eliminates one or more variables from the input distribution. Hence, divid-

ing by the size of the eliminated variables will give an estimate of the storage cost. Moreover,

the computation cost, which is linear in the input size in the case of recomputation, can be

derived similarly to the product-join case.

35

B. Generating CPQ Execution Plans

Next, we first modify the Selinger-style Dynamic Programming (DP) algorithm given

for query optimization in [17, 23, 24], to find the query execution plan with the minimum

computation cost that satisfies a given memory constraint for the case of BN-based CPQs.

Then, we modify the proposed DP algorithm to generate plans for DBN-based CPQs and

demonstrate additional optimization techniques for range-based queries.

Plan generation for BN-based queries:

The DP algorithm used with BN-based CPQs to find the query execution plans is given in

Algorithm 1. At a high level, the algorithm constructs plans for growing subsets of base

relations in successive iterations. At each iteration, the plans from the lower levels are used

for forming the new plans. As presented, the algorithm considers only linear execution

plans. However, it can be modified in a straightforward manner to consider nonlinear plans

as well. The value of k on line 6 determines the granularity of α values we consider. For

instance, if k is 2 then α ∈ {.5} and if k is 4, then α ∈ {.25, .5, .75}. The notation p ≺ q

is used to denote that plan p dominates plan q by yielding lower computation and storage

costs.

Algorithm 1 Dynamic Programming based plan selection algorithm for BN-based CPQs.

1. S: the set of all base relations
2. for all l ∈ 1 . . . |S| do
3. for all Sj : Sj ⊆ S ∧ |Sj | = l do
4. pSj

.add(materialize(Sj))
5. pSj

.add(materialize(GroupBy(Sj))
6. for all i ∈ 1, . . . , k − 1 do
7. α = i/k
8. pSj

.add(partmaterialize(α, optplans(Sj)))
9. pSj

= {q ∈ pSj
: ∄q′ ∈ pSj

such that q′ 6= q ∧ q′ ≺ q}
10. for all rj , Sj : rj ∈ S \ Sj , Sj ⊆ S ∧ |Sj | = l do
11. Q′ = Sj ∪ rj

12. pQ′ .add(product join(optplans(Sj), rj))
13. pQ′ .add(product join(GroupBy(optplans(Sj)), rj))

The “GroupBy” used in the DP algorithm refers to marginalization. The “optplans(x)”

36

returns all the non-dominated plans generated for computing the argument x. Hence, in

lines 8, 12 and 13, the algorithm creates multiple plans. In addition, in line 8 where

the partial materialization plans are considered, the non-materialized part of Sj may be

computed using any non-dominated plan generated this far for Sj . A separate plan is

created for each such option.

Given a set of base relations S, there are |S|! linear plans for computing their product-

join. In addition, there are k + 1 possible options of materialization for each of the product

joins: partially materialize into one of k − 1 fractions, fully materialize or no materializa-

tion. Hence, there are O(|S|!k|S|) different plans for computing the product-join involving

the materialization options. Finally, after each one of the product-join operations, there

can be a marginalization operation for eliminating variables. Therefore, the total number

of plans together with the group by operations is O(2|S||S|!k|S|). Observe that, to construct

the plans for a set of relations of size l, we only need the plans for the relations of size

l− 1. Hence, in the worst case, we would have approximately twice the number of plans for

relations of size |S| in memory.

Plan generation for DBN-based CPQs:

For the point-based queries on DBNs, the Dynamic Programming algorithm discussed

for the BN case can be used with minor changes. First, the DBN has to be unrolled as

shown in Figure 4.8, until the target time point has been reached. Also, as the distributions

of a variable are identical across time points in a DBN, we only need to store a distribution

once and share it between the relevant variables. Note that this idea can be applied to

more general situations involving operations over identical distributions as well. Consider

a product-join between X[t + k] and Y [t + k]. The result of this operation is the same for

all k values where the variables X and Y are not observed at time t + k. Hence, we only

need to compute it once. Observe that, in this case we save both computation and storage.

For the range-based queries, we need to produce outputs at all the time points in the

given range. Hence, we cannot simply apply the described DP algorithm. In addition, as

37

the range given in the query specification increases, the number of variables in the unrolled

DBN increases as well. In such a case, the DP algorithm will quickly become impractical

as its complexity is exponential in the number of the variables.

Figure 4.11: A two-slice DBN consisting of the variables CPU and REQS. CPU
represents the CPU usage and REQS is the number of requests received by the
web server in the DyMon application.

As discussed before, we use an alternative method that creates a template plan that can

be iteratively applied to produce execution plans for the range queries. Consider the DBN

given in Figure 4.11 which has two variables, CPU and REQS, in each time slice. We build

an execution plan for the range-based query P (cpu[t + k]|cpu[t], reqs[t]),∀k ∈ {1, . . . , m}

for an arbitrary range value m in successive steps starting from the first time step. For all

the initial time slices, which have at least one variable that directly depends on an observed

variable, we call the described DP algorithm to incrementally generate the execution plan

using the plans from the previous time slice. An example execution plan for this range

query is given in Figure 4.12. In this example, the first call to the DP algorithm, for time

step t + 1, creates plans for the portion of the plan until the first project node. The second

call, for time step t + 2, then creates plans for the part of the plan till the second project

node using the results of the previous run. Next, for time t + 3, there is no variable that

is either observed or depends on an observed variable, hence, in this step, we create the

template plan that will be used to create the rest of the plan for this query.

The template plan is created using the DP algorithm as well. However, the computation

and storage costs in the cost model are adjusted according to the number of times each

operation needs to be executed for the rest of the time points in the query range. The

38

P(C[t+1]|C[t],R[t]) P(C[t])

*

σC[t],R[t] σC[t]

∏(C[t+2],R[t+1])

P(R[t])

*∏(C[t+1])

σR[t]
P(C[t+2]|C[t+1],R[t+1]) P(R[t+1]|R[t])

*

*∏(C[t+2])

σR[t]

P(C[t+3]|C[t+2],R[t+2]) P(R[t+2]|R[t+1])

*

*∏(C[t+3])

. . .

Figure 4.12: A query execution plan for the range-based query predicting the
CPU value based on the DBN shown in Figure 4.11. C is used to denote the
CPU variable and R is used for the REQS variable. Finally, the highlighted
area is the instantiation of the template plan for time 3.

part of the plan highlighted with the dashed rectangle in Figure 4.12 is an instantiation of

the template plan for time t + 3. The template plan has the same structure with the plan

shown in the highlighted area, but represents the time values of the variables as adjustable

parameters. Hence, we can similarly create the rest of the query plan by instantiating the

template plan for increasing time values.

Observe that, within the template plan, if an operator depends on the results of a

previous plan, the operator will have to be recomputed for each time point in the query

range. For instance, the top-level product-join and both of the projection operations in the

highlighted area will be computed (or materialized) separately for each time point. In such

cases, the DP algorithm may choose to materialize the result for some of the time points

and compute it for the rest of the time points. On the other hand, if an operation only

depends on the relations introduced in this slice, then it can be computed or materialized

only once and used in all the time points in the query range. For example, the product-

join of P (C[t + 3]|C[t + 2], R[t + 2]) and P (R[t + 2]|R[t + 1]) needs only be computed (or

materialized) once and then can be shared across multiple time points in the query range.

39

4.4.3 Model-Specific Optimizations

Prefiltering low probability events: In many cases, users are only interested in high

probability events. For instance, a user could specify a probability threshold Θ, and then

only ask for the events with probability values greater than Θ. In such cases, we can

speed up the query execution by pushing down the probability constraints and eliminating

low probability events early in query execution. Consider the product-join P (X, Y) =

P (X)
∗
⊲⊳ P (Y |X) and the constraint P (X, Y) ≥ Θ. Here, the constraint can be pushed

down as (P (X) ≥ Θ)
∗
⊲⊳ (P (Y |X) ≥ Θ).

In some cases, it is not easy or it just does not make sense to define such arbitrary

thresholds but the user is still interested in high probability results. Consider the NIDS

application where the task is to find the most likely type for a given network connection. If

the connection is an ’attack’, in many cases its probability value in the joint distribution is

really low, but still higher than the probability of the connection being ’normal’. Hence, one

cannot simply set a general probability threshold to eliminate all the low probability events.

However, we can still find simple event elimination constraints for each of the operators.

Consider the result, P (A, b, c), of the second product-join operation in Figure 4.7, the

product-join with P (A|B, C). For any given values of b and c, there are at most two

possible events: A1 = {A =’normal’ } and A2 = {A = ’attack’ }. For this scenario, the

result of the inference query depends on the ratio:

r = P (A1,b,c)P (g|A1,b)P (d|A1)P (e|A1)P (f |A1,b,g)
P (A2,b,c)P (g|A2,b)P (d|A2)P (e|A2)P (f |A2,b,g)

Observe that for r we have the following bound:

r ≤
P (A1, b, c)

P (A2, b, c)
max

P (G|A1, B)P (D|A1)P (E|A1)P (F |A1, B, G)

P (G|A2, B)P (D|A2)P (E|A2)P (F |A2, B, G)

≤
P (A1, b, c)

P (A2, b, c)
max

P (G|A1, B)

P (G|A2, B)
max

P (D|A1)

P (D|A2)
max

P (E|A1)

P (E|A2)
max

P (F |A1, B, G)

P (F |A2, B, G)

=
P (A1, b, c)

P (A2, b, c)
pmax

A1/A2

40

As a result if P (A2,b,c)
P (A1,b,c) ≥ pmax

A1/A2
then we can eliminate the ’normal’ event with b and c

values (i.e., tuple A1) from P (A, b, c). Likewise, if P (A1,b,c)
P (A2,b,c) ≥ pmax

A2/A1
then we can eliminate

the tuple A2.

We can derive bounds for all the product-join operators in Figure 4.7 using the same

technique and reduce computation without introducing errors in the query results. in calcu-

lating the bounds for all the operators in the query tree. Alternatively, we can multiply the

bound with a constant 1/σ, where σ ∈ [0, 1], to avoid eliminating the A1 tuples with prob-

ability values greater than σP (A2). This method can be used to produce the set of most

likely events in which each event has a probability that is at least σ times the probability

of the most likely event.

Top-k maximum probability events: In probabilistic databases, top-k queries are gen-

erally used to produce the k most likely results of a query [47, 91]. For instance, in the

DyMon application one could specify a top-k query to generate only the top-k predictions

of the number of web requests n time units in the future. A naive way to execute this query

would be to produce the target distribution on the number of requests and then to output

the top-k results. However, top-k queries are most useful when it is intractable to produce

the target distribution. Consider the case when the user is interested in the most likely

sequences of the number of requests in an interval of 10 time units. We mentioned before

that it is impractical to produce the joint distribution of variables even for relatively small

time intervals. Hence, the previous execution strategy is not viable in this case. However,

a much more efficient approach that depends on the distributive properties of the top-k

operator on the product-join operator exists. The top-k operator can be pushed down to

eliminate the redundant events early in execution:

top-k
x,y,z

(P (X, Y)
∗
⊲⊳ P (Y, Z))

= top-k
x,y,z

(top-k
x

(P (X, Y))
∗
⊲⊳ top-k

z
(P (Y, Z))).

Here, the top-k operator works on a list of free variables and an argument distribution.

For instance, top-kx(P (X, Y)) would return the top-k events for each value of Y.

41

4.5 Experimental Evaluation

4.5.1 Setup

Prototype Implementation: We implemented the described algorithms for continuous

prediction queries in Java by modifying H2 [48], an open-source, embedded in-memory

database engine. The database was used for storing the data in memory in an organized

way and also enabled us to run regular SQL queries. In addition, we used the tree-based

indexing functionality provided by the database for creating indices over the base and the

materialized relations. The query optimizer and parts of the query executor were removed

and replaced by our implementation. Our implementation follows the basic data-driven

stream processing model, the queries are evaluated continuously as new inputs arrive.

Experimental Environment: Our experiments were done on standard desktop machines

with AMD Athlon(tm) 64 X2 Dual Core 3800+ processors and 2GB of memory running

Linux 2.6.26.

Experimental Metrics: Our primary performance metric is the average processing time

per tuple. We report average processing latency of a tuple for various algorithms with

different levels of available memory. As end-to-end processing latency of a tuple is our

main metric, in our experiments each tuple was processed and consumed entirely before the

next tuple. Thus, the data sets are replayed at a rate roughly inverse of average processing

latency.

4.5.2 Network Intrusion Detection Results

The NIDS dataset was obtained from the 1999 KDD Intrusion Detection Contest [53]. Our

dataset consisted of 500K tuples, 5K of which were used in testing the system and the rest

for training (to learn the distributions and the network structure).

The resulting network structure used in the experiments consisting of seven variables

is shown in Figure 4.5. While accuracy was not our immediate goal in this study, it is a

useful metric to know, in order to have a sense of the eventual applicability of predictive

42

queries using BNs. Thus we report as a small side note that, for the NIDS experiment, we

had approximately 99% accuracy in correctly identifying the type of connections in the test

data.

Query Execution Time vs. Memory Usage: The average execution time versus mem-

ory usage (i.e. the #tuples stored in memory) results for the DP algorithm using the no

materialization, full and partial materialization options are shown in Figure 4.13. The dis-

cussed tradeoff between materialization (memory usage) and computation time is clearly

observed.

The results for DP with partial materialization option reflect the fact that only a fraction

of the top-level joint distribution (≈ 3%) have most of the probability mass (> 90%). The

reason is that most of the data actually consists of “normal” connections, as expected in all

similar scenarios, and hence exhibit similar connection properties. As a result, if we only

materialize this high probability portion of the distribution together with the base relations,

we obtain a 3.50 ms query execution time with a memory use of 136 tuples. Moreover, if

we materialize more than 312 tuples, then we actually get an execution performance better

than materializing all the joint distribution represented by the BN, which is 870 tuples. The

result is not suprising since selection on the full joint distribution takes longer than selection

on the smaller high probability set even when using an index on the selection attributes.

In our cost model, we made a uniform distribution assumption for estimating the frac-

tion of a distribution to materialize in the case of partial materialization. However, because

the distributions in the NIDS dataset are actually highly skewed, our estimations for the

plan costs and storage sizes are all overestimates. Hence, the DP with the partial ma-

terialization option chooses to materialize the whole distribution when there is sufficient

memory. A better estimate would most likely produce better overall results as well as avoid

the materialization of the joint distribution.

Number of Variables vs. Query Execution Time: In Figure 4.14, we present the

query execution times as we increase the number of variables in the NIDS BN. The No

Materialization option uses just enough memory to store the base relations. 2X and 4X

43

Figure 4.13: Memory Usage (#tuples) vs. Computation tradeoff for the NIDS
scenario. The #tuples∗ column shows the memory use after elimination of the
low probability events for the full materialization case.

Memory options are allowed memory usages up to 2 times and 4 times the size of the base

relations respectively. Finally, the No Limit option is not given a memory constraint and

therefore finds the minimum computation cost plans. When the number of variables is low,

we can reduce the query execution time even with low memory budgets. However, as the

number of variables increases, the size of the joint distributions quickly increases as well.

At the same time, we observe a decrease in the relative performance gains with respect to

the materialized size.

Figure 4.14: The average query execution time vs. the number of variables in
the NIDS BN presented for different levels of available memory.

44

The results in Figure 4.14 are obtained using the DP algorithm with the full material-

ization option. We do not show the results for the partial materialization case, as they are

similar to the results in Figure 4.13. Finally, it should be noted that the linear plan space

is more favorable for the partial materialization option as it can partially materialize all

the distributions and utilize all the available memory. However, with full materialization,

there will be only a single materialized distribution (i.e. the highest level joint distribution

that fits in available memory) for the BN-based CPQs (for DBN-based CPQs there can be

multiple). When nonlinear plans are considered, we expect the full materialization strategy

to perform better.

Eliminating Low Probability Events: We applied the techniques described in §4.4.3

for eliminating the low probability events from the materialized distributions. The results

are shown in Figure 4.13, in the column labeled ’#tuples*’, for the full materialization

option. As the sizes of the materialized distributions increase, generally we can eliminate

more events. For instance, we have 20.92% memory savings (i.e. 182 tuples), from 870 to

688 tuples, when the whole joint distribution is materialized. In the NIDS application, the

access type attribute takes on two separate values, at most one of which we can eliminate

for each configuration of other variables. Hence, greater savings would be possible with a

larger domain size.

4.5.3 Software Performance Monitoring Results

Experiments on the DyMon application were performed using the setup described in §4.3.

We collected 60,000 tuples using the described monitoring facilities from the monitored web

server for training purposes. During the data collection, the web requests obtained from the

FIFA web logs were replayed on the web server. We used the first web logs of the 50th day

of the FIFA Cup. We also scaled down the number of requests per second in the logs by a

factor of two to avoid overloading our web server. Each collected data tuple is a summary

of the performance of the process in a period of length approximately 500ms.

Partial Materialization vs. Full Materialization: For the range-based prediction

45

queries, P (cpu[t + k]|cpu[t], cpu[t − 1]), we compare the average execution times of the

query execution plans obtained using the partial and full materialization options of the DP

algorithm with a query range k = 5. Results are shown in Figure 4.15. For the partial

materialization option, we only show the results for α = 0, .5 and 1. A finer-grained range

of α values produce similar results, albeit more options for materialization.

Figure 4.15: Memory Usage vs. Computation tradeoff for the DyMon scenario
using the DP algorithm with different materialization options.

The distributions obtained in the DyMon application are much less skewed compared

to the NIDS dataset. There is no small subset of the overall joint distribution that has

significantly high probability. Hence, partial materialization plans perform similarly to the

full materialization plans. The benefit of partial materialization in this case is its ability to

offer an increased range of plans using different levels of memory.

Query Range and Memory Budget: In this experiment, we show results using the

DP algorithm on the described range query for different range values and memory budgets.

In Figure 4.16, the average execution time increases linearly with the query range for the

case of DP with no materialization option. When we use 2X or 3X the memory required

by the base relations for materialization of the intermediate relations, we can reduce the

computation time for different range values. Note that the size of memory required by the

base relations is independent of the query range.

46

Figure 4.16: Average query execution times for increasing query ranges and under
different memory budgets.

Finally, if we do not place a limit on the memory available for materialization, we see

that query execution times increase very slowly with increasing query ranges. The memory

use with the ’No Limit’ option is at most 5 times the size of the base relations in all cases.

Top-k Queries: We now consider top-k queries (§4.4.3) using an example query that pre-

dicts the k-most likely CPU sequences in a future time interval based on the 2 most recent

observations. In Figure 4.17, we show the average execution times for varying prediction

ranges and k values. The exponential trendline labeled ’Full Joint’ represents the execution

time of the naive method that calculates the full joint distribution of CPU sequences to

compute the top-k values. The other results reveal the linear behavior of the query execu-

tion times with the discussed optimization for top-k queries. All the results are based on

the DP algorithm without materialization option to focus only on the effects of the top-k

optimization.

For query ranges greater than 5, the joint distribution is larger than the 1.5GB memory

available in our JVM so there are no Full Joint results for those cases. For the query range of

5 time units, the Full Joint method is 20 times slower than the top-k optimization method.

While the size of the joint distribution grows exponentially with the query range, the size

of memory required for the top-k optimization method is a constant factor of k.

47

Figure 4.17: Average execution times for the top-k queries predicting the k most
likely CPU sequences for different range and k values.

4.5.4 White-box Inference vs Off-Database Inference

A key premise of this work is that an in-database approach for inference can offer sub-

stantial benefits over the off-database approaches, which we quantitatively demonstrate in

this section. As a representative off-database system, we use the open-source “Weka” soft-

ware (ver. 3.6.1) [95], which contains a collection of common machine learning algorithms

for data mining. We also developed specialized, isolated Java implementations for specific

queries to serve as a point of comparison.

For the access type prediction query of the NIDS application (§4.5.2), we obtained

4.5 ms execution time (per incoming tuple) with Weka’s BayesNet classifier. Recall from

Figure 4.13 that our system has execution times of 6.52 ms (no materialization) and 2.66

ms (materialization) for the same task. Thus, our system is competitive or better (with

optimization) than Weka software for this relatively simple task. Given that our system

is not mature and relatively under-optimized leads us to believe we can improve upon

these numbers substantially. Our specialized Java implementation of the VE algorithm

achieved 0.11 ms execution time for this task, revealing that both our system and Weka

suffer from various overheads (e.g., function calls, copying of intermediate results) that seem

48

to dominate the cost of inference for this task in which the query is straightforward (e.g.,

no marginalization) and the total size of the base distributions is small.

We now consider the range-based CPU prediction query from the DyMon application

(§4.5.3). As Weka does not support DBNs, there was no straightforward way to use it for

this task. Our initial custom Java implementation performed so poorly that we had to

augment it with index support to get practical numbers. With the indexed Java imple-

mentation, we obtained execution times of 1.50 ms, 2.45 ms, 29.44 ms and 119.46 ms for

query ranges of 1, 2, 3 and 5, respectively. These results demonstrate that indexing, which

comes with the database approach, is crucial due to the size of the base distributions. For

the same task, our system achieved (§4.5.3) 6.01 ms, 15.42 ms, 48.35 ms and 146.99 ms (no

materialization) and 1.15 ms, 1.82 ms, 3.44 ms and 40.884 ms (materialization). In this

case, the advantage of materialization is more than enough to compensate for the overhead

of the database, achieving improvements of 30%-290% over the Java implementation. In

summary, the database approach is not only more general than a specialized “roll-your-

own” implementation but is also the clear performance winner with increasing data size

and query complexity.

Chapter 5

The Black-box Approach for

Predictive Databases

5.1 Black-box Support of Prediction Models

In the black-box approach to database support for predictive functionality, existing im-

plementations of prediction methods, in the form of libraries or standalone applications,

are directly integrated (or linked) to database systems and used as isolated components

implementing prediction. With the plethora of available machine learning libraries and

standalone implementations, the black-box method offers an easy and efficient way of inte-

grating already tested and optimized prediction methods into the database systems.

In this approach, the prediction methods are presented to the user in the form of an

extensible set of SQL functions and stored procedures with well-defined semantics. This

way, predictive methods are easily used within SQL queries. Similarly, training and test

data sets are also specified using SQL. The use of declarative queries for the specification of

predictive operations and the relevant training and test data sets offers an easy and flexible

method of expressing prediction tasks over complex data sets (e.g., computing aggregates

over groups). Moreover, it is also possible to use database views as data providers. For

instance, a database view can be used to perform standard pre-processing tasks such as

49

50

cleaning, normalization and discretization, and cook the raw data into a form that is more

amenable for effective learning.

In our study, we present a prediction interface/API consisting of a set of function tem-

plates for expressing generic prediction operations such as training and testing of prediction

models. Prediction methods are registered into our system by providing implementations of

the prediction interface. In this way, new prediction methods can be easily integrated into

the system and various prediction models can be built and tested for the same prediction

task. As discussed before, it is hard to know in advance which prediction models are the

’best’ for a given scenario, so it is common practice to build and test multiple models. The

use of a common prediction interface simplifies this practice by decoupling the underlying

implementation from the high-level prediction task.

We note that the code executed by a predictive database function is beyond the control

of the database system. Furthermore, the function itself could be an implementation of a

prediction method or it could be a call (or a wrapper) to an external library. As a result, the

database system cannot control or monitor the execution of a black-box prediction method.

Therefore, unlike the white-box approach, in the black-box approach it is not possible to

optimize the internal operations of prediction methods. However, we optimize our system

to minimize the cost of data access and processing performed by black-box models. Our

iterator (and block) based data access functionality and optimization hooks available in the

prediction API are designed to optimize the performance of black-box methods.

Our black-box model support techniques including the prediction model API, model

management functionality and the SQL prediction interface have been implemented in the

Longview prototype built on top of the PostgreSQL [83] database system. In the rest of

this chapter, we describe the functionality and details of our black-box techniques. We

evaluate the performance and usability of the system in Chapter 6 using a database query

performance prediction application as our case study.

51

5.2 Prediction Interface

In this section, we describe our prediction interface/API which consists of basic functions

that each prediction model must implement for integration into our system. The functions

correspond to the basic training and testing operations, which are the high-level generic

tasks supported by all prediction models. For example, using this interface the database

system can build a linear regression model over a training data set or perform prediction

with a support vector machine instance. As such, the prediction interface provides inter-

operability between the various prediction models and the database system. The interface

also decouples the implementation of a prediction model from its functionality.

The main functions included in our prediction interface are the following:

void* build(int ntuples, int nfeats, double **feat list,

int ntattrs, double** target list, char* model params)

double* predict(void* model ptr, int ntuples, double **feat list)

char* serialize(void* model ptr)

void* deserialize(char* model desc)

In Table 5.1 we describe the arguments used by the functions of the prediction interface.

Argument Description

ntuples number of data points.
nfeats number of features (i.e., observed attributes) in the model.
feat list the values of the feature(s).
ntattrs number of target (i.e., prediction) attributes.
target list the target attribute(s) values.
model params model specific training parameters.
model ptr pointer to the model instance.
model desc (serialized) description of a model instance.

Table 5.1: List of Prediction Interface Arguments

The build function is used to train a prediction model based on the given feature and

target values. The feature and target values passed as arguments to the build function

52

(when applicable) are stored using a column-based representation in memory (instead of a

row-based representation). The column-style representation enables Longview to perform:

(i) dynamic management of training data (e.g., non-predictive features as determined by

correlation metrics can easily be discarded and predictive features can be efficiently added)

and (ii) efficient projection/selection operations on the training data (e.g., for use in feature

selection). In addition, prediction models often have specific training parameters that can

significantly affect their operations and accuracy. Therefore, we also provide an argument

for specifying the training parameters for a prediction model. The result of the build

function is a model-specific set of data structures and metadata, which is represented by a

model pointer in the database system.

Using the predict function, a previously built prediction model can be used for prediction

of a target attribute based on the given feature values. In the function prototype, we chose

double as the feature and target types for simplicity; however, in practice we use pointers

with type information to support arbitrary combinations of feature and target types. The

predict function does not require the nfeats and ntattrs arguments, as they are already

accessible as part of the model instance.

We require the black-box implementations to provide serialization and deserialization

functions for their models. This functionality is used by our database system to store and

re-use previously trained prediction models. We observed that serialization functionality is

supported by most of the existing prediction model implementations and is already available

for our use.

The build function of the described prediction interface uses pointers to pass the data to

the prediction models. This approach has the advantage that no extra copying of the data

is required. As such, prediction models that can directly operate on the given pointer-based

data structures will have no data passing overhead. In addition, we can build multiple such

models (e.g., with different parameters) using the same copy of the training data (possibly

in parallel).

53

However, some black-box methods internally copy the given data to special data struc-

tures. In such implementations, using an iterator or block -based data transfer method

could be preferable for minimizing the peak memory usage. Otherwise, two or more copies

of the training data could simultaneously exist in memory, severely limiting the scalability

of the system. Iterator and block -based versions of the build function are shown below.

void* build itr(int nfeats, double* (*next feat)(), int ntattrs,

double* (*next target)(), char* model params)

void* build blk(int nfeats, double** (*next feat)(int, int*), int

ntattrs, double** (*next target)(int,int*), char* model params)

Both functions rely on function pointers for data access in training. The iterator-based

version can be used to access data points one-by-one whereas the block-based function

provides access to n tuples at a time (where n is an argument of the function).

The iterator/block based prediction interface also targets incremental and online black-

box models. Such prediction models can be updated with new data items or built incremen-

tally by iterating over the training data. Using the iterator/block based prediction interface

with online/incremental models significantly reduces the memory requirements and also en-

ables scaling to data sets larger than the available memory. While learning on large data

sets (larger than the size of available memory) is a very important problem, in Longview

we mostly focus on the use and integration of the available black-box methods. We briefly

discuss the large-scale learning problem in the Related Works and Conclusion chapters. In

the rest of this chapter, we describe the details of model representation and management

techniques in the context of database systems.

5.3 Model Management and Prediction

In this section, we describe how we manage prediction model types and perform prediction

using black-box models in Longview. As a design philosophy, whenever possible we build

54

on the existing extension mechanisms (e.g., rules, triggers and views). This way, we try to

generalize our approach and make it easier to use in modern database systems. In addition,

the use of existing mechanisms reduces the implementation complexity by minimizing the

amount of changes required on a target database system (e.g., in our case PostgreSQL).

Finally, we also discuss examples of some of the high-level prediction functionality that we

can build over the described predictive database architecture.

5.3.1 Model Registration

Longview represents models and their metadata using database catalogs (i.e., a set of system

relations). The catalog schema is given in Figure 5.1. When a new prediction model

type (e.g., SVM, linear regression) is integrated into Longview, an entry representing the

model type and containing model metadata information is created in the pred model types

relation and in other relations.

The pred model types relation contains the unique names of the model types along with

tags/user descriptions. The information on the implementation of the prediction interface

for a model type is stored in the ’library’ field. More specifically, the library field, at the

very least, contains the names of the functions that implement the prediction interface for

a model.

When a new model type is added to Longview, our system automatically creates a set

of SQL functions and stored procedures that allows the newly added model to be accessed

within SQL queries. More specifically, as the prediction interface provides a means of

communication between the database system and the model implementations, these SQL

functions enable the user to access the predictive functionality through the database system.

We list the specifications for these automatically generated SQL functions in Table 5.2.

The details of these operations are discussed in Section 5.3.2.

The definitions for the various parameters of a prediction model type (e.g., training

parameters) are stored in the pred model params relation. Each model type can have

a number of parameters for adjusting its operation. In addition, in our system we can

55

Function Arguments Description

build
model id specifies the model instance
training query query computing the feature and target values
model parameters model-specific training parameters

predict
model id
feature list | query feature values for use in prediction

test
model id
training query
accuracy options parameters for the accuracy function

Table 5.2: Prediction Model SQL Interface

also express default values and domain information for the model parameters (using the

pred model params and pred attr types relations). The validity of the input parameter

values can also be enforced with database integrity constraints.

5.3.2 Model Representation, Building and Testing

All instances of prediction models are listed in the pred models relation. This relation

contains a unique auto-generated id for each model, a reference to a model type and a

serialization field. The serialization field is used for storing the type-specific representation

of a prediction model. For instance, for a linear regression model, the serialization field

would contain the coefficients used in the model and for a support vector machine we would

have a list of the support vectors together with a few other parameters. The particular

representation used in the serialization field depends on the model implementation (i.e., the

serialization and deserialization functions provided by the black-box model) and is usually

based on data-interchange formats such as XML and JSON.

The attributes (features and the target attributes) of a prediction model are stored in

the pred model attrs relation. Each attribute is represented with a name and id, a type

(e.g., double) and a role (i.e., feature, target). When creating a prediction model, we first

create an entry in the pred models relation and specify the attributes to be used in the

model. We provide the following create model stored procedure to automate this model

specification process:

56

Figure 5.1: The design schema for the database catalog used for representing and
managing the black-box prediction models.

57

integer create model (model type text, model schema text)

The model type attribute specifies the type of the prediction model and must be one of

the model types listed in pred model types. On the other hand, the model schema attribute

contains a description of the observable and target attributes. Given a model type and

a valid attribute schema, the create model function registers the model definition to the

system and returns the unique model id generated for the newly created model instance.

Once a model definition is created, the training of the model can be performed using

the build function of the SQL prediction interface (see Table 5.2) with the automatically

assigned model id. As mentioned before, the SQL functions listed in Table 5.2 have dynamic

implementations, as wrappers around the prediction interface. As such, Longview calls the

build function of the respective model type to perform the actual training operation. In

addition, a model can be trained multiple times (i.e., updated). After each training pass,

the resulting model is stored in the catalogs by updating the serialization field.

Prediction with a model instance is performed using the test and predict functions listed

in Table 5.2. Observe that, both of these functions first need to deserialize the model by

reading its serialized form from the pred models relation and calling the appropriate dese-

rialization function. The output of the test and predict functions are relations, containing

the prediction results. The output of the test function also includes the true values and

computed accuracy values for each prediction value produced in the testing operation. In

addition, the output relations can be used as data sources in more complex SQL queries.

An interesting use case is the nested prediction queries, where the prediction results of a

sub-query are fed as features to the outer prediction query.

5.3.3 Performance Tracking

Another functionality that we provide to predictive applications in Longview is the tracking

of the training and testing operations performed with prediction models. For each predic-

tion operation, we record an entry in the pred model history relation including the used

58

model, the type of the operation (i.e., build or test) and other given arguments. For test-

ing operations, computed prediction accuracy metrics and the average processing time for

prediction per data point are also stored (in the pred model perf history relation). This

way, applications can monitor the evolution of models, track the used training data sets

and the performance values on test data sets.

Optionally, we also store the individual predictions produced by the model, and the

true values (if provided) in the pred results table. While a costly operation, the ability to

analyze predictions on a per-point basis can in some cases be highly useful; e.g., comparing

prediction results from multiple models.

5.3.4 Automated Model Building

To explain the capabilities and extend the applicability of Longview, in this section we

describe our implementation of an intelligent model building algorithm (based on well-

known machine learning algorithms), that builds simple and accurate prediction models for

given data sets. In order to build an accurate prediction model based on a given data set,

we have to find out (i) which model type is the best for the data at hand and (ii) which set

of features are to be used for accurate prediction of the target attribute(s).

First, we note that in general it is not possible to predict which model type is the ’best

fit’ for a data set without building and testing multiple models. Therefore, any automated

algorithm for building accurate prediction models needs to train and test multiple models.

The second problem is the problem of feature selection; i.e., choosing the set of features to

be used in a prediction model. Most of the feature selection algorithms in the literature,

such as the forward and backward selection algorithms [95], are heuristic algorithms that

search the attribute space using rank-based methods. The rank of a feature is an indicator

of its predictive value for the target attribute.

Our model building algorithm is in the class of forward feature selection algorithms.

However, our algorithm performs both model selection and the feature selection processes

simultaneously. The algorithm starts by building a set of initial models; a model per each

59

combination of a model type and a single feature is trained. Each created model is inserted

into a bounded priority queue based on its estimated accuracy value. The maximum size of

the priority queue is a system parameter and can affect both the run-time of the algorithm

and accuracy of the produced models. At each step of the algorithm, the next best model

from the priority queue is popped, and a new set of models based on the popped model are

built and inserted into the queue. The new models are simple extensions of the old model;

a new feature is added to their feature list. The newly added feature must be ranked lower

than all the features already used by the old model.

Notice that the described algorithm is essentially an accuracy-driven search process that

builds many models (of different configurations) using the same training data. Therefore,

models which provide build functions (see prediction interface in Section 5.2) that directly

operate on the provided training data will have much less overhead. Our column-based

organization of the in-memory training data also enables efficient selective access to the

subsets of features required by a model. In addition, for the model types that are capable

of incremental learning, we also provide hooks (in the form of additional arguments to the

build functions) that they can use to incrementally build new models based on older models

by adding/removing features.

Finally, a second parameter, adjusts the number of speculative executions. When the

speculative execution parameter is set to 0, all the new models with lower accuracy values

compared to their parent models, are immediately discarded. As such, the speculative

execution parameter specifies the number of times a new model with a lower accuracy value

than its parent is allowed to survive the elimination from the priority queue.

Chapter 6

Query Performance Prediction

In this chapter, we study an important and challenging system-facing predictive application:

Query Performance Prediction (QPP). QPP is the problem of predicting the execution

times (or other performance metrics such as disk I/O and memory usage) of database

queries without running them. Modern database systems can greatly benefit from QPP.

For example, resource managers can utilize QPP to perform workload allocation such that

interactive behavior is achieved or specific QoS targets are met. Optimizers can choose

among alternative plans based-on expected execution latency instead of total work incurred.

Accurate QPP is important but also challenging: database systems are becoming in-

creasingly complex, with several database and operating system components interacting in

sophisticated and often unexpected ways. The heterogeneity of the underlying hardware

platforms adds to this complexity by making it more difficult to quantify the CPU and

I/O costs. Analytical cost models predominantly used by the current generation of query

optimizers cannot capture these interactions and complexity; in fact, they are not designed

to do so. While they do a good job of comparing the costs of alternative query plans of a

given query, they are poor predictors of plan execution latency. The use of analytical cost

models for QPP is discussed in detail in our experiments (Section 6.3).

In this chapter, we utilize learning-based modeling and prediction techniques to tackle

QPP for analytical workloads using the Longview system and the black-box model support

60

61

techniques described in Chapter 5. Prior work reported evidence that predictive techniques

can be used effectively for QPP, at least in constrained settings [41, 101, 2, 3]. Our study

substantially improves and generalizes these results in a number of new directions, arguing

that learning-based techniques tailored to database query execution are generally applicable

to and can be highly effective for QPP. In addition, by implementing the QPP application

entirely within Longview we demonstrate the usability and effectiveness of our modeling

framework and show an example of how predictive modeling can be leveraged for building

highly useful functionality in real systems.

One of our key contributions is to show that queries can be modeled at different gran-

ularities, each offering different tradeoffs involving predictive accuracy and generality. If

a representative workload is available for training purposes, we can make highly accurate

predictions using coarse-grained, plan-level models [41]. Such models, however, do not

generalize well, performing poorly for unseen or changing workloads. For these cases, fine-

grained, operator-level modeling performs much better due to its ability to capture the

behavior of arbitrary plans, although they do not perform as well as plan-level models for

fixed workloads. We then propose a hybrid approach that selectively composes plan- and

operator-level models to achieve high accuracy without sacrificing generality.

Finally, while we study the utility of learning-based models for query execution latency

as the performance metric of interest, the proposed techniques are general, and thus can

be used in the prediction of other metrics such as throughput. We should also note that

in this thesis we do not consider QPP in the presence of concurrent execution, which is an

important and challenging problem to address, but is outside the scope of this study.

6.1 Modeling Query Executions

As is usual in most learning approaches, all of our modeling techniques consist of two

main phases: training and testing. The high-level operations involved in these phases are

explained in Figure 6.1. In the training phase, prediction models are derived from a training

62

data set that contains previously executed queries (i.e., training workload) and the observed

performance values (i.e., query execution times). In this phase, queries are represented as

a set of features and corresponding performance values. The goal in training is to create

an accurate and concise operational summary of the mapping between the feature values

and the observed performance data points. The prediction models are then used to predict

the performance of unforeseen queries in the test phase. In more complex QPP methods,

the training and testing phases can be performed continuously for improved accuracy and

adaptivity.

Figure 6.1: Statistical Modeling Approach to Query Performance Prediction.

Our approach to QPP relies on models that use only static, compile-time features,

which allow us to produce predictions before the execution of queries. There are several

static information sources, such as the query text and execution plans, from which query

features can be extracted prior to execution. In this study, we use features that can be

obtained from the information provided by the query optimizer. Many database systems

provide optimizer calls that expose query-plan information and statistical estimates such

as the optimized query-plan structure and operator selectivities (for example, EXPLAIN in

PostgreSQL and EXPLAIN PLAN in Oracle).

In this chapter, we show that it is possible to create accurate models at varying gran-

ularities for query performance prediction. As in [41], one coarse modeling method is to

63

create a single, plan-level prediction model that utilizes query plan features for modeling the

execution times of queries. We discuss this approach in Section 6.1.1. A finer grained ap-

proach would be to model each operator type separately and use them collectively through

selective composition to model entire query plans. We describe this method in Section 6.1.2

and compare the relative advantages and drawbacks of the two approaches in Section 6.1.3.

Next, in Section 6.1.4, we introduce a “hybrid” modeling approach that combines the fine

and coarse grained modeling methods to form a highly accurate and general QPP approach.

6.1.1 Plan-level Modeling

In the plan-level modeling approach, the performance of a query is predicted using a single

prediction model. We use the features presented in Table 6.1 for building plan-level models.

This set of features contains query optimizer estimates such as operator cardinalities and

plan execution costs together with the occurrence count of each operator type in the query

plan.

Feature Name Description

p tot cost Estimated total plan cost
p st cost Estimated plan start cost
p rows Estimated number of output tuples

p width
Estimated average size of an output
tuple (in bytes)

op count Number of query operators in the plan

row count
Estimated total number of tuples input
and output to/from each operator

byte count
Estimated total size (in bytes) of
all tuples input and output

<operator name> cnt
The number of <operator name>
operators in the query

<operator name> rows
The total number of tuples output
from <operator name> operators

Table 6.1: Features for plan-level models. p st cost refers to the cost of query
execution until the first output tuple. <operator name> refers to the query
operators such as Limit, Materialize and Sort.

As mentioned in Section 2, in general we need to address two main challenges when

64

using model-based learning techniques. The first problem, model selection, is the process of

picking the right prediction model for the given task and data set. As discussed before, it is

not possible in general to identify the most accurate prediction model without training and

testing multiple models. In our study, we show results with two types of prediction models

for plan-level modeling: a regression variant of Support Vector Machines (SVMs) [21] and

Kernel Canonical Correlation Analysis (KCCA) [11, 5] (also used in [41] for QPP). Both

model types provided high accuracy in our experiments. We note that all of the approaches

we present here are model-agnostic and can readily work with different model types.

The second problem, feature selection, deals with the issue of choosing the most predic-

tive features for modeling the target variable(s) from the available set of features. Feature

selection does not need to be performed for all types of prediction models. For instance, in

our case we perform feature selection for SVMs but not for KCCA as it performs dimension-

ality reduction as part of its operation. However, for many model types feature selection is

an important problem. In our experiments, we frequently observed that SVM models using

the full set of features given in Table 6.1 performed less accurately than models with smaller

number of features. For building SVM-based models, we use the intelligent model building

algorithm described in Section 5.3.4. This algorithm starts by building models using a small

number of features, and iteratively creates more complex and accurate models by adding

features in order of correlation with the target variable (i.e., query execution time).

Once a plan-level prediction model is built and stored (i.e., materialized), it can be used

to estimate the performance of new incoming queries based on the query-plan feature values

that can be obtained from the query optimizer without executing the query.

6.1.2 Operator-level Modeling

We now introduce a finer-grained approach to QPP: operator-level modeling. Unlike the

plan-level approach, which uses a single prediction model, the operator-level technique relies

on a collection of models that are selectively composed for end-to-end query performance

prediction. In the operator-level modeling approach, two separate prediction models are

65

built for each query operator type:

A start-time model is used for estimating the time spent during the execution of an

operator (and in the sub-query plan rooted at this operator) until it produces its first

output tuple. This model captures the (non-)blocking behavior of individual operators

and their interaction with pipelined query execution.

A run-time model is used for modeling the total execution time of query operators (and

the sub-plans rooted at these operators). Therefore, the run-time estimate of the root

operator of a given query plan is the estimated execution time for the corresponding

query.

To illustrate the semantics and the use of the start-time model, we consider the Ma-

terialize operator, which materializes its input tuples either to disk or memory. Assume

that in a query tree, the Materialize operator is the inner child operator of a Nested Loop

join. Although the materialization operation is performed only once, the join operator may

scan the materialized relation multiple times. In this case, the start-time of the Materialize

operator would correspond to the actual materialization operation, whereas the run-time

would represent the total execution time for the materialization and scan operations. In this

manner, the parent Nested Loop operator can use the start-time and run-time estimates

to form an accurate model of its own execution time. This technique also allows us to

transparently and automatically capture the cumulative effects of blocking operations and

other operational semantics on the execution time.

We used a single, fixed collection of features to create models for each query operator.

The complete list of features is given in Table 6.2. This list includes a generic set of features

that are applicable to almost all query operators. They can also be easily acquired from

most, if not all, existing DBMSs. As in the case of plan-level modeling approach, we use the

intelligent model building algorithm from Section 5.3.4 to build accurate prediction models

with the relevant set of features. We used multiple linear regression (MLR) models for

modeling the query operators. In addition to performing accurately in our experiments,

66

similar to analytic cost models MLR models are intuitive and easily interpretable.

Feature Name Description

np Estimated I/O (in number of pages)
nt Estimated number of output tuples
nt1 Estimated number of input tuples (from left child operator)
nt2 Estimated number of input tuples (from left right operator)
sel Estimated operator selectivity
st1 Start-time of left child operator
rt1 Run-time of left child operator
st2 Start-time of right child operator
rt2 Run-time of right child operator

Table 6.2: Features for the operator-level models. Start time refers to time spent
in query execution until the first output tuple is produced.

The individual operator models are collectively used to estimate the execution latency

of a given query by selectively composing them in a hierarchical manner akin to how opti-

mizers derive query costs from the costs of individual operators. That is, by appropriately

connecting the inputs and outputs of prediction models following the structure of query

plans, it is possible to produce predictors for arbitrary queries.

In Figure 6.2, we illustrate this process for a simple query plan consisting of three

operators. The performance prediction operation works in a bottom-up manner: each

query operator uses its prediction models and feature values to produce its start-time and

run-time estimates. The estimates produced by an operator are then fed to the parent

operator, which uses them for its own performance prediction.

6.1.3 Plan- versus Operator-level Modeling

The premise of the plan-level approach is that queries with similar feature vectors will

have similar query plans and plan statistics, and therefore are likely to exhibit similar

behavior and performance. Such an approach is specifically targeted to static workload

scenarios where the queries in the training and test phases have similar execution plans

(e.g., generated from the same query templates or from the same user program).

67

Figure 6.2: Operator-level query performance prediction: operator models use
operator-level features together with the predictions of child operators for per-
formance prediction.

Furthermore, this approach is based on the correlation of the query execution plans

and statistics with the query execution times. This correlation is used directly in mapping

query-plan based features to execution performance. The high-level modeling approach

used in this case therefore offers the ability to capture the cumulative effects of a set of

hidden lower level factors, such as operator interactions during query processing, on the

query execution times with a single, low complexity model.

The plan-level approach, however, is prone to failure in some common real-world scenar-

ios. A significant problem exists in the case of dynamic query workloads where queries

with unforeseen execution plans are frequently observed. Even worse, there can also be

problems in static query workloads. As the feature values only represent a limited view of

a query plan and its execution, it is possible that different queries can be mapped to very

similar feature values and therefore be inaccurately modeled. While it is unlikely for com-

pletely different queries to be mapped to identical features, similar queries can sometimes

have different execution performance. For instance, increasing the number of time consum-

ing aggregate operations in a query will not significantly change its feature vector, but may

highly increase its execution time. Adding more features (e.g., number of aggregates and

68

constraints) to the model would alleviate such issues, however, each added feature would

also increase the size of the required training data.

By using multiple prediction models collectively in a hierarchical manner, the operator-

level prediction method is able to produce performance predictions for arbitrary queries.

Therefore, it is a more general approach compared to the plan-level method and has the

potential to be more effective for dynamic query workloads where unforeseen query plan

structures are common.

On the downside, the operator-level prediction method may suffer from drawbacks simi-

lar to those that affect analytical cost estimation methods (as both methods rely on low-level

operator-based models). A key problem is that the prediction errors in the lower levels of

a query plan are propagated to the upper levels and may significantly degrade the end

prediction accuracy.

Another potential problem is that the concurrent use of multiple resources such as CPU

and disk may not be correctly reflected in the operator-level (or the analytical) models. For

instance, a query could be simply performing an aggregate computation on the rows of a

table that it sequentially scans from the disk. If the per-tuple processing takes less time

than reading a tuple from the disk, then the query execution time is approximately the

same as the sequential scan time. However, if the processing of a tuple takes longer than

reading it from the disk, then the execution time will be closer to the processing time. As

such, the interactions of the query execution system and the underlying hardware/software

platforms can get quite complex. In such cases, simple operator-level modeling approaches

may fall short of accurately representing this sophisticated behavior. Therefore, in static

query workloads where training and testing queries have similar plan structures we expect

the high-level information available in the plan-level approach to result in more accurate

predictions.

69

6.1.4 Hybrid Modeling

In hybrid query performance prediction, we combine the operator- and plan- level modeling

techniques to obtain an accurate and generally applicable QPP solution. As discussed, this

is a general solution that works for both static and dynamic workloads. We note that as long

as the predictive accuracy is acceptable, operator-level modeling is effective. On the other

hand for queries with low operator-level prediction accuracy, we learn plan-level models for

the inaccurately modeled query sub-plans and compose both types of models to predict

the performance of the entire plan. We argue, and later also experimentally demonstrate

that this hybrid solution indeed combines the relative benefits of the operator-level and

plan-level approaches by not only retaining the generality of the former but also yielding

predictive accuracy values comparable or much better than those of the latter.

Hybrid QPP Example: To illustrate the hybrid method, we consider the performance

prediction of an example TPC-H [93] query (generated from TPC-H template-13), whose

execution plan is given in Figure 6.3. This plan is obtained from a 10GB TPC-H database

installed on PostgreSQL. As we describe in detail in the Experiments section, we build

operator-level models on a training data set consisting of example TPC-H query executions.

When we use the operator-level models for performance prediction in this example query, we

obtain a prediction error (i.e., |true value - estimate| / true value) of 114%. Upon analysis

of the individual prediction errors for each operator in the query plan, we realized that the

sub-plan rooted at the Materialize operator (the highlighted sub-plan in the figure) is the

root cause of the prediction errors in the upper level query operators. The operator-level

model based prediction error for the materialization sub-plan is 97%.

In the hybrid approach, we build a separate plan-level model for the highlighted sub-

plan. The model is trained using the occurrences of this sub-plan in the training data. The

hybrid method uses the plan-level model to directly predict the execution performance of

the materialization sub-plan, while the rest of the prediction operations is unchanged, i.e.,

performed with the operator-level models. The prediction errors obtained with the hybrid

70

Figure 6.3: Hybrid QPP example: plan-level prediction is used for the highlighted
sub-plan together with operator-level prediction for the rest of the operators
to produce the end query performance prediction.

approach are shown with the red values in the figure. The new overall prediction error for

this example query drops down to 14%.

Given a training data set consisting of example query executions, the goal of the hybrid

method is to accurately model the performance of all queries in the data set using operator-

level models together with a minimal number of plan-level models. In this way, we maximize

the applicability of the operator-level models in query performance prediction and maintain

high prediction accuracy with the integration of plan-level models.

The hybrid performance prediction method is described in Algorithm 2. The algorithm

starts by building prediction models for each query operator based on the provided train-

ing data. The accuracy of operator-level prediction is then estimated by application on

the training data (e.g., either through cross-validation or holdout test data). Next, the

algorithm tries to increase the QPP accuracy by building and testing plan-level models.

71

Each plan-level model is used for directly modeling the performance of a specific query

plan (or sub-plan). In a query plan with N operators, there is a maximum of N − 1 sub-

plans (e.g., in a chain of operators) for plan-level modeling. Then a training data set with

M queries can have O(MN) candidate sub-plans for modeling.

In theory, we could build and test plan-level models for each distinct sub-plan (with at

least a minimum number of occurrences in the training data set) and try to find a minimal

subset of these models for which the prediction accuracy is sufficiently high. However,

this would require a large amount of time since (i) we need to build and test models for all

candidate sub-plans, and (ii) the prediction accuracy of each subset of models (in increasing

sizes) needs to be separately estimated with testing.

Instead, we propose heuristics that iteratively build a collection of plan-level models to

maximize the expected predictive accuracy. In each iteration, a new plan-level model is

built, tested and added to the model set, if it improves the overall prediction accuracy (by

more than a threshold value, ǫ). The models are chosen, built and tested according to plan

ordering strategies. We consider the following strategies for the hybrid approach:

Size-based: order the plans by size (in increasing number of operators).

The size-based strategy considers generating models for smaller plans before larger

ones. This strategy is based on the fact that smaller plans occur more frequently

(since by definition all sub-plans of a large plan are at least as frequent) in any

data set, and therefore models for smaller plans are more likely to appear in future

unforeseen queries. In case of a tie involving two plans with the same size, the more

frequent plan is given priority.

Frequency-based: order the plans in decreasing occurrence frequency.

The frequency-based strategy is similar to the size-based strategy except that it di-

rectly uses the occurrence count of a plan from the training data for ranking. In

case the occurrence count is same for two plans, smaller plans are considered first.

An important difference from the size-based strategy is that when a large plan has

72

Algorithm 2 Hybrid Model Building Algorithm

Input: data = example query executions
Input: strategy = plan selection strategy
Input: target accuracy = target prediction accuracy
Output: models = prediction models
Output: accuracy = estimated prediction accuracy

1. models = build operator models(data)
2. [predictions, accuracy] = apply models(data, models)
3. candidate plans = get plan list(strategy, data, predictions)
4. while accuracy ≤ target accuracy and not stop condition() do
5. plan = get next(strategy, candidate plans)
6. plan model = build plan model(data, plan)
7. [predictions, new accuracy] = apply models(data, models ∪ plan model)
8. if new accuracy − ǫ ≤ accuracy then
9. candidate plans.remove(plan)

10. else
11. models = models ∪ plan model
12. candidate plans.update(predictions, plan model)
13. accuracy = new accuracy

a high occurrence frequency, the frequency-based strategy will consider modeling its

sub-plans sequentially before considering other plans.

Error-based: order the plans in decreasing value of occurrence frequency × average pre-

diction error.

The error-based strategy considers plans with respect to their total prediction error

across all queries in the training data. The assumption is that more accurate modeling

of such high error plans will more rapidly reduce the overall prediction error.

In all of the above strategies, the plans for which (i) the average prediction accuracy

with the existing models is already above a threshold, or (ii) the occurrence frequency is

too low are not considered in model generation.

In order to create the list of candidate plans (i.e., candidate plans) for modeling, we

traverse the plans of all queries in the training data in a depth-first manner in function

get plan list. During the traversal, this function builds a hash-based index using keys

based on plan tree structures. In this way, all occurrences of a plan structure are hashed

73

to the same value and metrics required by the heuristic strategies such as the occurrence

frequency and average prediction error can be easily computed.

When a new plan-level model is added to the set of chosen models (i.e., models), the

candidate plan list needs to be updated with the new prediction errors and occurrence

frequencies for all plans. The occurrence frequency of a plan p will change with the addition

of a new model when the plan for the added model contains p as a sub-plan (since such

occurrences of p are consumed by the newly added model).

We can efficiently identify the set of plans for which the prediction errors or the occur-

rence frequencies might change with the addition of a model as follows: In the hash-based

index built by the get plan list function, we also store the identifiers for the corresponding

queries (which own the plans). As such, when a new model is added, the only plans that

need to be updated are the plans that can be applied to one or more of the queries that the

newly added plan is also applicable.

Finally, in cases where the target accuracy is unachievable, a maximum number of

iterations can be used as a stop condition to terminate the algorithm. Other variations

for the stop condition, such as setting a maximum number of iterations without accuracy

improvement, are also possible but not evaluated in this study.

6.2 Online Model Building

In dynamic query workloads where queries with unforeseen plan structures are present,

the plan-level performance prediction method performs poorly due to lack of good training

data. The operator-level and the hybrid prediction methods are designed to be much more

applicable to unforeseen plan structures. In addition, the hybrid method will utilize its

plan-level models as much as possible to provide accuracy levels much higher than those

achievable through pure operator-level modeling.

The prediction accuracy of the hybrid approach in dynamic workload scenarios depends

on the applicability of its plan-level models in future queries. As a case study, we analyze

74

the generated execution plans for the TPC-H query workload on a 10GB TPC-H database

running on PostgreSQL. In Figure 6.4(b), we show the most common sub-plans within the

execution plans of queries generated from the 14 TPC-H templates for which we could use

operator-level prediction techniques in our experiments (See Experiments Section for more

details.). Our key observations for this data set include:

(1) Smaller sub-plans are more common across the TPC-H query plans (see Figure 6.4(a)).

(2) The plans for the queries of each TPC-H template (except template-6) share com-

mon sub-plans with the plans of queries of at least one other TPC-H template (see

Figure 6.4(c)).

These observations suggest that for the TPC-H workload: (i) it is possible to create

plan-level models based on the execution plans for the queries of a TPC-H template and

utilize them in the performance prediction of queries from other TPC-H templates, and (ii)

the size-based plan ordering strategy discussed in Section 6.1.4 will likely achieve higher

applicability compared to the other strategies in the dynamic workload case.

However, the hybrid approach may fail to increase the prediction accuracy for dynamic

workloads in some cases. For example, the prediction errors for some unforeseen query plans

may not originate from the common sub-plans, and as a result, plan-level models from the

training data cannot reduce the error. In other cases, the common sub-plans could actually

be the source of prediction errors, but the plan-ordering strategies may not necessarily

choose to build plan-level models for them. For instance, some applicable plan-level models

may be discarded, because they did not improve the prediction accuracy in training.

To address these issues, in the online modeling technique, we build new plan-level models

for performance prediction at run-time upon the receipt of a query. We initially produce

predictions with the set of existing models, and then update our results after new plan-level

models are built for the received query.

Online model building is performed similarly to offline model building described for the

hybrid method. However, in the online case, the set of candidate plans are generated based

75

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Common Sub−plan Size

F
(x

)

(a) CDF for common sub-plan sizes
(#query operators)

(b) 6 most common sub-plans across queries
of 14 TPC-H Templates

1 3 4 5 6 7 8 9 10 12 13 14 18 19
0

2

4

6

8

10

TPC−H Template

#T
em

pl
at

es
 w

ith
 C

om
m

on
 P

la
ns

(c) #templates the queries of a TPC-H template
shares common sub-plans with

Figure 6.4: Analysis of common sub-plans for the execution plans of queries
generated from 14 TPC-H Templates.

on the set of sub-plans of the execution plan for the newly received query. The online

building of plan-level models guarantee that if the execution plan for a test query has a

common sub-plan (with high prediction error) with the queries in the training data, then a

plan-level model will be built and used for its prediction (if a plan-level model with better

estimated accuracy than the operator-level prediction method exists).

76

6.3 Experiments

6.3.1 Setup

In our experiments we use the TPC-H decision support benchmark [93] (implemented on

top of PostgreSQL) to generate our query workload and Longview for the modeling and

prediction tasks. The details are presented below.

Database Management System. We use an instrumented version of PostgreSQL 8.4.1.

The instrumentation code monitored the described set of features and performance metrics

from query executions; i.e., for each query, the execution plan, the optimizer estimates and

the actual values of features as well as the performance metrics were logged.

Data sets and workload. We created 10GB and 1GB TPC-H databases according to

the specification. The primary key indices as indicated in the TPC-H specification were

created for both databases. We enforced a limit of one hour execution time (per query)

to keep the overall experimentation duration under control. This resulted in 18 of the 22

TPC-H templates being used, as the remaining 4 templates always took longer than 1 hour

to execute in the 10GB case.

There are approximately 55 queries from each template in both databases. With the

1GB database, all queries finish under an hour and the data set contains 1000 queries. On

the other hand, with the 10GB database only 17 of the queries from template-9 finished

within an hour, so we have 17 template-9 queries in the 10GB data set. Thus, the resulting

10GB data set we used contains 960 queries.

Hardware. Unless stated otherwise, all the queries were executed on a single commodity

desktop with 4GB RAM running Linux kernel 2.6.28 and the database buffer pool size

was set to 1GB (25% of the total RAM as the rule of thumb). All queries were executed

sequentially with cold start (i.e., both filesystem and DB buffers were flushed before the

start of each query).

Predictive models. In our experiments, we relied on the prediction functionality of

Longview. All prediction operations were performed using Longview and its integrated

77

prediction models. For plan-level modeling, we used Support Vector Machines (available

from the libsvm library [21]) with the nu-SVR kernel for support-vector based regression

and the Kernel Canonical Correlation Analysis (KCCA) method. We implemented KCCA

using GSL, the GNU Scientific library. On the other hand, for operator-level QPP we

used Multiple Linear Regression based models available from the Shark machine learning

library [56]. All models were integrated to the database as user defined functions or libraries.

Our algorithms were implemented as a combination of C-based user-defined functions in

PostgreSQL and as external applications written in C++ and Python. The feature selection

algorithm, described in Section 5.3.4, was used to build accurate prediction models using a

small number of features.

Metrics and validation. We use the mean relative error as our metric for prediction

error:

Mean Relative Error =
1

N

N∑

i=1

|actuali − estimatei|

actuali

This metric is useful when we would like to minimize the relative prediction error in all

queries regardless of their execution time. Non-relative error metrics such as the mean square

error would be better for minimizing the absolute difference (or its square) in actual and

predicted execution times. Other popular metrics include R2 and predictive risk [41]. These

metrics measure the performance of the estimates with respect to a point estimate (i.e., the

mean). As such, in many cases, they can have deceptively low error values even when

the actual estimates have high error, as these metrics depend on the scale and statistical

characteristics of the entire data set.

Our results, except for the dynamic workload cases, are based on 5-fold cross validation

(Chapter 2). That is, the data is divided into 5 equal-sized parts, 4 of which are used

to build models for prediction on the remaining part. This process is repeated 5 times,

hence all parts are used in testing. The reported prediction accuracy is the average of the

78

individual accuracy values from the testing of each cross-validation part. We used stratified

sampling for dividing the data into 5 parts to ensure that each part contains roughly equal

number of queries from each template.

6.3.2 Prediction with Optimizer Cost Models

We start with results showing predictions on top of analytical cost models used by conven-

tional optimizers are non-starters for QPP. Specifically, we built a linear regression model

to predict the query execution times based on the query optimizer cost estimates. Overall,

the maximum relative error is 1744%, the minimum relative error is 30% and the mean

relative error is 120%1.

To provide more intuition into the reasons, we show the optimizer costs versus the query

execution times for a subset of the queries (a stratified sample) on the 10GB TPC-H data set

in Figure 6.5. Observe that the lower left and lower right data points correspond to queries

with roughly the same execution times, even though their cost estimates have a magnitude

of difference. Similarly, the data points on the lower and upper right corners are assigned

roughly identical plans costs by the optimizer but differ by two orders of magnitude in their

execution times.

In this setup, most queries are I/O intensive. We expect this to be the ideal case for

predicting with analytical cost models. The reason is that optimizer cost models generally

rely on the assumption that I/O is the most time consuming operation. Therefore, for CPU

intensive workloads, we would expect to see even lower accuracy values.

As a concrete example, consider TPC-H template-1, which includes an aggregate over

numeric types. We noticed that evaluating aggregates over numeric types can easily be-

come the bottleneck, because arithmetic operations are performed in software rather than

hardware. As such, introducing additional aggregates to a query can significantly alter the

execution time even though the volume of I/O (and hence the predictions with the cost

1In this case, the predictive risk [41] is about .93, which is close to 1. This result suggests that it performs
much better compared to a point estimate, although the actual relative errors per query as we reported
are high.

79

model) remains approximately constant.

10
6

10
7

10
1

10
2

10
3

10
4

Optimizer Cost Estimate

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Least Squares Fit Line

Figure 6.5: Optimizer Cost vs Query Execution Time (log-log plot)

6.3.3 Predicting for Static Workloads

Results for the plan-level and operator-level prediction methods both for the 10GB and

1GB TPC-H scenarios are given in Figure 6.6 and 6.7. These results were obtained using

estimate-based features for building models in training and for prediction in testing. The

use of actual (observed) values for features is discussed in Section 6.3.3.

Plan-level Modeling

Plan-level prediction is performed on all the 18 TPC-H templates. Overall, using SVMs we

obtained on average 6.75% and 17.43% prediction errors for the 10GB and 1GB databases,

respectively (Figure 6.6(a)-(c)). The prediction errors with KCCA modeling in the same

scenarios were 2.1% and 3.1% (Figure 6.6(d)-(f)). The high accuracy results imply that

plan-level modeling can be very effective for static workloads.

To shed some light on the difference in accuracy between the two model types, here we

briefly describe the characteristics of these two models. With SVM-based regression, the

80

general approach is to map the query features to a high dimensional space (using a non-

linear mapping) and perform linear regression in that space. In KCCA, the query features

and the target values are projected to separate subspaces such that their projections are

maximally correlated. Prediction with KCCA is then performed using a nearest neighbor

strategy. As such the predictions of KCCA use all of the training data, whereas SVM

results are only based on a subset of the points (support vectors). While SVM performs

regression to produce its estimates, KCCA is a nearest neighbor approach. In addition to

the feature selection used in SVMs and the tuning of the meta model parameters that affect

training, we think that the described difference between the model types is also important.

As such, we will see that SVM-based regression modeling will generalize better than KCCA

to dynamic workload scenarios.

With SVM-based modeling, queries from template-9 stand out as the worst predicted

set of queries. We note that template-9 queries take much longer than the queries of the

other templates. As the number of instances of template 9, and therefore of longer running

queries, is relatively few in both data sets, the prediction models may not fit well. To

alleviate this problem, we built a separate SVM model for template-9 for the 10GB case,

which reduced its error down to 7%.

In addition, prediction for the 1GB database is a harder problem, as the respective

ratios of the standard deviation to the average execution time of queries is about 2.63 times

greater in the 1GB database case then the 10GB case.

Operator-level Modeling

We now show operator-level prediction results on 14 of the 18 TPC-H templates2.

For the 10GB case, in 11 of the 14 templates the operator-level prediction method

performed better than 20% error (Figure 6.7(a)). For these 11 templates the average error

is 7.30%. The error, however, goes up to 53.92% when we consider all the 14 templates, a

2The execution plans for the queries of the remaining 4 templates contain PostgreSQL-specific structures,
namely INITPLAN and SUBQUERY, which lead to non-standard (i.e., non tree-based) execution plans
with which our current operator-level models cannot cope at present.

81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22

5

10

15

20

25

30

35

40

45

50
80.1

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Template Error
Avg. Error

(a) SVM-based plan-level modeling, errors by
template (10GB)

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

Query Execution Time (sec)

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

ec
)

True Value
Estimate

(b) SVM-based plan-level prediction (10GB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22

5

10

15

20

25

30

35

40

45

50
75.5 89.7

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Template Error
Avg. Error

(c) SVM-based plan-level modeling, errors by
template (1GB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22

5

10

15

20

25

30

35

40

45

50

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Template Error
Avg. Error

(d) KCCA-based plan-level modeling, errors
by template (10GB)

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

Query Execution Time (sec)

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

ec
)

True Value
Estimate

(e) KCCA-based plan-level prediction
(10GB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22

5

10

15

20

25

30

35

40

45

50

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Template Error
Avg. Error

(f) KCCA-based plan-level modeling, errors
by template (1GB)

Figure 6.6: Static workload experiments with plan-level modeling using SVMs
and KCCA in 1GB and 10GB TPC-H databases. The error values in bar-plots
are capped at 50%. Error values greater than 50% are printed next to the bars.

82

significant degradation.

For the 1GB scenario, we show the results of operator-level prediction for the 14 TPC-H

templates in Figure 6.7(c). In this case, for 8 of the templates the average error is below

25% and the mean error is 16.45%. However, the mean error for all the 14 TPC-H templates

is 59.57% (slightly larger than the 10GB case).

We see that operator-level prediction produces modest errors for many cases, but also

does perform poorly for some. We analyzed the set of templates that belongs to the latter

case, and noticed that they commonly exhibit one or more of the following properties:

• (Estimation errors) the optimizer statistic estimates are significantly inaccurate.

• (I/O-compute overlap) there is significant computation and I/O overlap in the query.

The end-effect of such concurrent behavior on execution time is difficult to capture

due to pipelining.

• (Operator interactions) The operators of the same query heavily interact with each

other (e.g., multiple scans on the same table that use the same cached data).

Next, we discuss the practical impact of statistics estimation errors on model accu-

racy. We then turn to the latter two issues that represent the fundamental limitations of

operator-level modeling; that is, such models learn operator behavior “in isolation” without

representing the context within which they occur.

Impact of Estimation Errors

We tried all the combinations of actual and estimate feature values for training and testing

for (SVM-based) plan-level and operator-level prediction. The results are given in Fig-

ure 6.8(a) for the 10GB scenario. For further detail, we also show the prediction errors

grouped by TPC-H templates in Figure 6.8(b) for the actual/actual case and plan-level

prediction (over the 10GB scenario). These results are to be compared with those in Fig-

ure 6.6(a).

83

1 3 4 5 6 7 8 9 10 12 13 14 18 19

5

10

15

20

25

30

35

40

45

50
380 114 163

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

(a) Operator-level, Errors by Template (10GB)

10
2.4

10
2.6

10
2.8

10
2.4

10
2.5

10
2.6

10
2.7

10
2.8

10
2.9

Query Execution Time (sec)

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(s

ec
)

True Value
Estimate

(b) Operator-level Prediction (10GB)

1 3 4 5 6 7 8 9 10 12 13 14 18 19

5

10

15

20

25

30

35

40

45

50
74 115 59 269 89 100

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

(c) Operator-level, Errors by Template (1GB)

Figure 6.7: Static workload experiments with operator-level prediction methods
using 1GB and 10GB TPC-H databases. The error values in bar-plots are
capped at 50%. Error values beyond the limits of the plots are printed on the
bars.

84

(a) Prediction with Actual Values vs Es-
timates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22

5

10

15

20

25

30

35

40

45

50
54.4

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Template Error
Avg. Error

(b) SVM-based Plan-level Modeling with Actual
Values (10GB)

Figure 6.8: Impact of Estimation Errors on Prediction Accuracy in Static Work-
load Experiments

Unsurprisingly, the best results are obtained in the actual/actual case (i.e., training

and testing with actual feature values), which is not a viable option in practice due to the

unavailability of the actual feature values without running the queries. The next best results

are obtained with the estimate/estimate option (i.e., training and testing with estimated

feature values), the option that we used in the rest of the paper. Finally, the results

obtained with actual/estimate (i.e., training on actual values and testing on estimates) are

much worse than the other two, primarily due to optimizer estimation errors that are not

taken into account during training.

To provide a sense of the magnitude of the estimation errors made by the optimizer,

85

consider template-18, which is one of the templates that exhibit the biggest error in operator-

level prediction with actual/estimate model building. Instances of template-18 include the

following group by clause on table lineitem:

group by l orderkey having sum(l quantity) > 314

There are 15 million distinct l orderkey values in lineitem (out of approximately 60

million tuples). The estimated number of groups satisfying sum(l quantity) > 314 is

399521, whereas the actual number is 84. The PostgreSQL query optimizer computes

this estimate using histograms (with 100 bins) for each column based on the attribute

independence assumption. The results are later fed into a Hash-Semi-Join, whose cost

estimate is correspondingly very much off the mark.

Comparing the actual/actual against the estimate/estimate results, we observe that

optimization estimate errors lead to, perhaps surprisingly, only a modest degradation in

prediction accuracy. This result is due to the ability of the models to also integrate error

corrections during learning. Thus, while better estimations generally mean better results,

it is possible to produce highly accurate predictions even with rather mediocre estimations

(as in the case of PostgreSQL).

Hybrid Prediction Method

We now present comparative results of the three plan ordering strategies (see Section 6.1.4)

discussed for offline hybrid model selection. The results, shown in Figure 6.9, were obtained

with the 14 TPC-H templates used in operator-level modeling and the 10 GB database.

As described earlier, we first create an ordered list of query sub-plans based on the

chosen plan ordering strategy, leaving out sub-plans with average error lower than a given

threshold (.1 in this experiment) for the size-based and frequency-based strategies. Then,

at each iteration (x-axis), we create a (SVM-based) model for the next plan in the ordered

list, add this model to the current model set and then re-evaluate predictive error on the

86

0 5 10 15 20 25 30

5

10

15

20

25

30

35

40

45

50

55

Iteration Number

R
el

at
iv

e
E

rr
or

 (
%

)

error−based
size−based
frequency−based

Figure 6.9: Hybrid Prediction Plan Ordering Strategies

test workload (y-axis). The step behavior is observed when a newly created model decreases

the error.

We observe that the size-based and error-based strategies quickly reduce the error rate.

The size-based strategy takes longer to reach the minimum error level, as in some cases

larger sub-plans should be modeled for reducing the error and it takes time for this strategy

to reach those plans.

The frequency-based strategy initially takes longer to reduce the error. The reason

is that this strategy can easily get stuck in a relatively large sub-plan that has a high

occurrence rate, since it needs to explore all the sub-plans involved in the larger sub-plan

(starting from the smallest sub-plan) until it decreases the error rate. As discussed earlier,

all such sub-plans are by definition at least as frequent, hence need to be explored with this

heuristic. Overall, the error-based strategy provides a well balanced solution, quickly and

dramatically reducing the prediction errors only with a small number of additional models.

We also note that the final accuracy obtained with the hybrid-method approaches to that

of the KCCA-based plan-level model.

87

1 3 4 5 6 7 8 9 10 12 14 19
0

10

20

30

40

50

60

70

80

90

100

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Plan−level (KCCA)
Plan−level (SVM)
Op−level
Error−based
Size−based
Online

Figure 6.10: Dynamic Workload Prediction Results

6.3.4 Predicting for Dynamic Workloads

The results so far have shown that for known, static workloads, plan-level modeling per-

forms well. They have also revealed that hybrid models offer similar accuracy to plan-level

models for static workloads. Next, we present results demonstrating that plan-level mod-

eling has serious limitations for unknown or changing workloads, whereas hybrid modeling

still continues to provide high accuracy. We also report comparative results for online model

building (Section 6.2) that creates custom hybrid models for a given query from the available

training data.

For this experiment, we used the 12 templates shown in Figure 6.10, with 11 of them

used in training and the remaining for testing. That is for each template we build and test

separate prediction models based on the training data of the other templates. The two other

TPC-H templates were excluded because they include specific operators exclusively found

in those templates, and thus cannot be modeled with our current setup. We show results

for KCCA-based plan-level, SVM-based plan-level, operator-level, hybrid (with error-based

and size-based strategies), and online modeling algorithms.

As expected, plan-level models perform poorly across the board and thus do not offer

88

much value in the presence of dynamic workloads. However, SVM-based plan-level modeling

performs significantly better than the KCCA-based approach. We also observe that the

online (hybrid) modeling algorithm performs best in all cases, except for template-7. Further

investigation reveals that the training data lacks a specific sub-plan that is the root cause

of the error on template-7. These results confirm the ability of online modeling to identify

the models that are very likely to help by utilizing the knowledge of a given query plan.

Such models can be eliminated by offline strategies if they do not help improve training

accuracy.

Another interesting observation is that the size-based hybrid strategy performs some-

what better than the error-based strategy in these experiments. This can be explained by

the ability of the former to favor models for smaller sub-plans that are more likely to occur

in unseen queries.

6.3.5 Platform Independence

In this experiment, we apply our QPP techniques on a different hardware platform to

demonstrate its applicability in different environments. We show results from a 10GB

TPC-H experiment executed on a 2.8GHz machine with 8GB RAM running Linux kernel

2.6.31. The database buffer pool size was set to 2GB. We used the same set of queries that

were previously used in the 10GB experiment. Plan-level prediction results (following a

static workload scenario) using SVMs and KCCA are shown in Figure 6.11(a) and 6.11(b)

respectively.

The average prediction errors are slightly lower than the errors obtained in the previous

10GB experiment (see Figure 6.6). On this new hardware platform the TPC-H queries

execute faster than on the previous platform. For instance, template-9 queries finish under

20 minutes instead of an hour. As such the query run times are less divergent. This

is because of the higher disk speed in the new platform, 83MB/sec sustained read rate

(versus the 55MB/sec read rate before) as well as the faster CPU and increased RAM size.

In addition, there is much less variance on the execution times of queries in this setup.

89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22

5

10

15

20

25

30

35

40

45

50
76.8

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Template Error
Avg. Error

(a) SVM-based plan-level modeling, errors by
template (10GB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22

5

10

15

20

25

30

35

40

45

50

TPC−H Template

R
el

at
iv

e
E

rr
or

 (
%

)

Template Error
Avg. Error

(b) KCCA-based plan-level modeling, errors by
template (10GB)

Figure 6.11: QPP on a different hardware platform

We attribute this to the higher disk speed and to the increased RAM size in the new

platform. Since 80% of the database can fit into memory, the number of duplicate reads

from the disk are significantly reduced (due to the filesystem and database caches). The

lower variance of query execution times observed in this data set enables improved accuracy

on the predictions.

0 10 20 30 40 50 60

5

10

15

20

25

30

35

Iteration Number

R
el

at
iv

e
E

rr
or

 (
%

)

error−based
size−based
frequency−based

Figure 6.12: Platform Independence: Hybrid QPP

In Figure 6.12, we show QPP results (based on the static workload scenario) using

90

hybrid modeling with different plan ordering strategies. As before, the error-based strategy

reduces the prediction error faster than the other strategies. While the error and frequency

-based strategies converge to the same prediction error, the size-based method resulted in

a slightly higher error value. This is possible since each plan-ordering strategy considers

plan-level models in different order and the initially chosen models may cause the later

plan-level models to be discarded. Finally, we note that the accuracy obtained with the

hybrid prediction method (using SVM-based plan-level models) is higher than the accuracy

of SVM-based plan-level modeling and close to the accuracy of KCCA-based plan-level

model.

Chapter 7

Related Work

7.1 Machine Learning and Data Mining

7.1.1 Computational Learning

Learning algorithms have been studied for a long time in the statistics and applied math

fields and more recently in machine learning and data mining areas. While statistics re-

search mostly focused on the question of “What conclusions can be inferred from a data

set?”, machine learning and data mining research also focused on the applications and the

computational side (i.e., tractability / intractability) of the question [75].

Research on learning produced a very large set of algorithms based on different assump-

tions and a variety of statistical techniques. The produced methods have been applied to

a large set of applications such as computer vision [39], speech recognition [60], informa-

tion retrieval [69] and bioinformatics [14]. For a summary of popular learning algorithms,

including regression methods, classification techniques, neural networks, kernel-based meth-

ods and graphical models see [57, 15, 74, 51, 82]. [18] provides a good, practical introduction

to time-series forecasting and [44, 68] provide a comprehensive survey of the area.

There is substantial work in the broad area of both database and stream mining of

time-series data (see [50, 95] for a general overview), especially on similarity search and

pattern matching (e.g.,[36, 81, 43, 102, 62]). The data mining field also contains a large

91

92

body of work on relevant sub-problems such as prediction, anomaly detection, forecasting,

event prediction, and feature selection (e.g., [6, 64, 46, 98, 49, 70]).

7.1.2 Learning Packages

There are several open-source and commercial machine learning libraries and applications

(see [38]) that provide a number of features. Weka [95] is an open source data mining library

implemented in Java. It contains a large variety of classification, regression, clustering and

visualization tools for data analysis. R [85] is a highly-extensible and widely used language

and environment for statistical programming. It offers a wide range of integrated statistical

and graphical techniques. RapidMiner [86] is an open-source system for data mining that

can be integrated into applications or used as a standalone application. MATLAB [72]

and Mathematica [90] are scientific computing platforms that both offer statistics solutions

supporting a highly rich set of algorithms and visualization methods.

While most machine learning packages can use the database as a backend data source,

they are not at all integrated with databases. This significantly limits their ease of use,

scalability and efficiency; especially in large scale applications. Furthermore, none of these

products provide continuous prediction capabilities over streaming data. In this thesis,

we argued that the tight integration of models and data in the same system alleviates

these performance and usability issues and could potentially change the way people build

predictive, data-intensive applications.

7.1.3 Database Support for Models

Major commercial databases support predictive modeling tools (e.g., Oracle Data Mining

tools [80], SQL Server Data Mining [73] and DB2 Intelligent Miner [54]). These allow users

to invoke model instances (akin to stored procedures) on database tables using simple SQL

extensions (e.g., the FORECAST clause in the Oracle). Some of these systems, such as the

MSSQL Server, also provide graphical interfaces for their predictive analysis functionality.

In most cases, the provided predictive functionality lacks high-level capabilities (e.g.,

93

feature selection) and easy programmability. The integration of prediction models with the

database does not go beyond the ability to run the models on database tables. Our system

provides a tighter model integration and increased usability.

7.2 Probabilistic Databases and Uncertainty

There is extensive prior work on uncertain data management and probabilistic query pro-

cessing [30, 13, 8]. These studies focus on the representation of uncertain data, generally rely

on the possible worlds semantics, and aim to develop efficient query execution techniques

over the proposed succinct data representations.

One example is the BayesStore [94] system, which is a probabilistic data management

system that considers statistical models, data and inference algorithms as first-class citizens.

Similar to our work, BayesStore also promotes the prediction operations and statistical

models as part of the database operations. However, the problem of handling uncertain

data within the possible worlds framework is an important but orthogonal problem to our

work. In our study, we rely on statistical models to extract information from and perform

inference using the existing data in a database system.

Both continuous and discrete probabilistic models have been used to represent impreci-

sion and uncertainty (e.g., [26, 12]). There is also some existing work on statistical estima-

tion of aggregation queries using random samples, such as in statistical databases [32] and

online aggregation [52].

7.3 Model-based Data Management and

Query Processing

MauveDB [34] is one of the inspirations for our predictive database system. The former

supports model-based views defined using statistical models (e.g., a regression-based view)

instead of standard SQL queries for a variety of purposes including cleaning, interpolation

and prediction. MauveDB pushes the statistical modeling into the database system in order

94

to efficiently process and manage data (especially sensor data). In our system, we push the

envelope significantly further for time-series forecasting models by treating models as first-

class citizens with optimized training and model selection, as well as novel optimization

techniques such materialized models, and staged processing.

Of particular relevance to our work is the Fa system [35] that supports both one-time and

continuous declarative forecasting queries on time-series data sets. Fa discusses the various

stages of model building and selection and introduces efficient execution strategies. Fa also

describes incremental and shared computation techniques for the feature selection process

in model building. In our work, we have not yet studied the optimization opportunities

for feature selection, however such strategies can easily be integrated into our system for

improving the model building times. Fa is a solid step towards basic forecasting query

execution that works well for a small set of pre-defined models and small data sets. Our work

is a substantial super-set; we scale up forecasting through novel cost-based optimization

techniques such as model materialization, staged optimizations and also focus on integrating

models as first class citizens.

Probabilistic inference on BNs is discussed in [57, 15, 82]. Wong et al. [97, 96] discussed

how to implement the probabilistic inference methods within the database engine using an

extended relational model. The product-join operator was also introduced in the same study.

More recent work built on these results and discussed how to support and optimize BN-

based inference queries inside a traditional database engine [17]. Other studies (e.g., [61])

used BNs in conjunction with databases for inference on streaming data. However, these

are off-database approaches, as the probabilistic models are usually handled outside the DB

engine.

In [63, 87], authors work on the problem of efficient processing of Markovian streams

where Markovian streams are defined as the result of probabilistic inference on a temporal

graphical model. For instance, the authors represent the trajectory of a person obtained

through an RFID sensor network as a Markovian stream. More recently [63], a variety of

access methods for Markovian streams are presented. One of the introduced techniques,

95

called the Markov Chain Index, is based on an idea similar to our materialization approach

for BN-based prediction queries, as it provides efficient access to precomputed joint distri-

butions of distant time steps in the stream.

In [33], the BBQ system, a declarative query processing engine for sensor networks, is

described. In BBQ, multivariate Gaussian distributions are used to represent joint proba-

bility distributions on the monitored sensor network variables (e.g., temperature on sensor

node 7). Users can specify model-based queries to compute range and point predictions as

well as average aggregate queries.

7.4 Learning on Big Data

There has been a lot of work on distributed learning techniques within the machine learning

and data mining communities [65]. These studies generally focus on parallelizing individual

algorithms. For instance, in [45], a parallel version of Support Vector Machines (SVMs),

called the Cascade SVM, is described. Cascade SVM, divides the data sets into partitions

and optimizes each partition separately with multiple SVMs. These results are then com-

bined and processed again using a ’cascade’ of SVMs until convergence. However, scaling

select machine learning algorithms, often by using very different methods, is not a general

solution for scalable learning.

Recently, there has been a growing amount of interest in building more general dis-

tributed learning frameworks/solutions that support a variety of algorithms [27, 28, 55].

In [27], authors point out that learning algorithms which follow a Statistical Query Model

are easily parallelizable using a small number of sufficient statistics. Examples of such al-

gorithms include linear and multiple regression, k-means clustering, naive Bayes and PCA.

The Mahout project [9] is an application of this approach in the well-known Map-Reduce [31]

context. The MAD Skills study [28] focuses on similar parallelization methods and their

integration within a parallel database system.

96

7.5 Query Performance Prediction

The query-plan level approach to query performance prediction has recently been stud-

ied [41]. In [41], authors consider plan-level query performance prediction using the TPC-

DS query benchmark [79] and a customer query workload following the static workload

assumption. They report that they can predict individual query execution times within

20% of the actual time for 85% of their test queries. In addition to the query execution

time, estimation of other performance metrics such as disk I/O and message bytes is also

considered. In this thesis, we focused only on the execution time performance metric. While

we can apply our techniques separately for each performance metric, we plan to consider

the extension to joint prediction of multiple metrics in future work.

In previous work, machine learning techniques have been used in the context of the

database query optimizer [71, 92, 101]. In the learning optimizer project (LEO) [71, 92],

model-based techniques have been used to create a self-tuning database query optimizer.

The goal in [71, 92] is to produce better execution cost estimates for use in query optimiza-

tion. The approach taken is to compare the estimates of the query optimizer with the actual

values observed during query execution and repair the inaccurate estimates based on the

obtained information. In [101], a statistical modeling technique called transform regression

is used to create cost models for XML query operators. In addition, new training data can

be efficiently integrated into their existing cost models for adapting to changing workloads.

Recently, there have been successful applications of machine learning techniques in sys-

tem self-management problems. In [40], authors present a statistics-driven modeling frame-

work for data-intensive cloud applications. Kernel Canonical Correlation Analysis (KCCA)

predictive modeling techniques are used to make predictions for the execution performance

of map-reduce jobs. In [25], a statistics-driven workload generation framework is presented

for the purpose of identifying suggestions (e.g., scheduling and configuration) to improve

the energy efficiency of map-reduce systems.

In [2, 3] an experimental modeling approach for capturing interactions in query mixes

97

(i.e., sets of concurrently running queries) is described. Given a query workload, the goal

is to come up with a query execution schedule (in terms of query mixes) that minimizes

the total execution time. The query interactions are modeled using statistical models based

on selectively chosen sample executions of query mixes. In our study, we have not yet

considered performance prediction in concurrent query workloads.

Finally, there has also been work on query progress indicators in database systems [22,

66]. Query progress indicators provide estimations on the completion degrees of running

queries. Such studies assume that the work done by individual query operators are trans-

parent, i.e., externally visible. While these studies are also closely related to query execution

performance, they do not provide predictions for the execution time of queries.

Chapter 8

Conclusions

8.1 Summary

We presented techniques for in-database support of predictive functionality in order to

address the usability and performance problems of the currently used off-database design for

predictive applications. Specifically, we described techniques to integrate prediction models

as first-class entities into database systems and provide declarative predictive functionality

to users. We highlighted model management as the key underlying technology and showed

that model management can greatly benefit from the well-established optimization and

execution methods used for data management in database systems.

We discussed two main strategies for integrating prediction models within database sys-

tems: the white-box and black-box methods. In Chapter 4, we studied white-box support

of Bayesian Networks and Dynamic Bayesian Networks in a streaming database system.

We presented highly efficient and resource-adaptive execution and optimization strategies

for prediction queries over the (Dynamic) Bayesian Network models. The type of pre-

diction queries that were considered include classification queries, point and range -based

queries, and top-k queries. We used two example applications to illustrate our techniques:

Network Intrusion Detection and Software Performance Monitoring. Finally, we have im-

plemented our white-box solutions on top of an open-source database system called H2 [48]

98

99

and demonstrated the efficiency and benefits of our system with extensive experimentation.

In Chapter 5, we described black-box support for prediction models in database systems.

More specifically, we presented a framework for integrating and using existing implementa-

tions of prediction models in database systems. We implemented our techniques for black-

box prediction support in Longview, a prototype predictive database system that we built

on top of PostgreSQL [83]. Then in Chapter 6, using the Longview system we considered

a system-facing predictive application, Query Performance Prediction (QPP), to demon-

strate how predictive functionality can be leveraged to implement introspective services in

existing systems. In the QPP application, we used predictive modeling techniques to learn

query execution behavior at different granularities, ranging from coarse-grained plan-level

models to fine-grained operator-level models. Our experimental results using the TPC-H

benchmark [93] demonstrated that accurate QPP is possible both in static and dynamic

workload scenarios.

Based on our research and experimental results, in this thesis, we argue that next

generation database systems should natively support predictive functionality to improve

performance, usability and extensibility of predictive applications. Our methods for inte-

grating prediction models in database systems, and optimization and execution techniques

for declarative prediction queries form a solid step in this direction. However, there is

still much more to research and develop before predictive database systems can actually

be useful in deployment. In the next, we outline a variety of these open issues for future

investigation.

8.2 Open Challenges

8.2.1 Prediction Query Optimizer

We demonstrated the white and black -box model support techniques in different contexts

(streaming vs. traditional). However, the query optimizer in a predictive database system

should seamlessly integrate the use of both white-box and black-box prediction models

100

in query execution. In this way, the prediction query optimizer can compare a variety

of prediction models with different characteristics based on their accuracy and efficiency,

and choose a specific model for use in prediction. Such an approach paves the way for a

more extensive and automated modeling functionality where users only specify the training

and test data sets and predictive modeling (i.e., model building and testing) is performed

automatically by the system.

In this approach, users are provided with a higher level predictive functionality where

the prediction query optimizer is completely responsible for managing prediction models. To

this end, the described prediction query optimizer would need to compute efficient execution

plans that satisfy the required accuracy levels. Therefore, the planning process for prediction

queries also depends on the cost of prediction and training with a prediction model. As

such we need estimates of computation and storage costs for prediction models. Given these

estimates, an initial attempt at building a prediction query optimizer would be to treat the

prediction part of a query as a sub-query with a set of execution plans and associated costs.

This simple approach would fit well with the current Dynamic Programming based query

plan generators.

Typically, the query optimizer would need to train and test multiple prediction models

as part of its plan generation process. However, depending on the size of the training data

and the prediction model, the training of a model can take significant time. While this may

not be an issue for continuous prediction queries (i.e., plan once, run forever) and offline

processing environments, for interactive and exploratory data analysis environments, the

query optimization time might be too large for user satisfaction. In such cases, we envision

the use of pre-built prediction models. That is, instead of training and testing prediction

models on the fly, the query optimizer would first check the set of available prediction mod-

els for existing accurate and low-cost models. This would require the database system to

build and manage a set of prediction models specifically targeted for the observed query

workload. For this purpose, the database system would need to identify the most com-

mon prediction attributes from the query workload and then find the set of features that

101

are highly predictive of those attributes. This process would also include identifying other

characteristics of the query workload such as typical interval lengths in range queries, lead

times in point-based prediction queries etc.

8.2.2 Optimized Model Training

Depending on the model type and training data set, building a prediction model can be

a time consuming process. With the additional requirement of building multiple models

for testing prediction accuracy and efficiency, the model training process can easily be-

come the bottleneck in execution of prediction queries. To alleviate the model training

problem, previously we discussed the idea of using pre-built prediction models in the plan

generation process. We expect significant reduction in planning time for anticipated query

workloads with the use of pre-built models. However, model building is still a problem for

unpredictable/varying query workloads and the model pre-building phase.

The development of optimization techniques that reduce the I/O requirements of the

automated model building algorithm (Section 5.3) are essential, especially for large data

sets. The use of well-known optimization and data management techniques from database

systems such as (multi-dimensional) indices, (materialized) views and column-based storage

methods are expected to be highly applicable for this purpose.

We can also apply additional optimization strategies to the automated model building

algorithm. Observe that, at each iteration of the algorithm, several new models are built

by adding a feature to the set of features of an existing model. In this case, we can avoid

repeated access to disk by combining the multiple read operations into a single operation and

building the set of new models in parallel. In many cases, this strategy would significantly

reduce the I/O requirements. However, some models create a replica of the training data in

memory before building the model. In those cases, this strategy may not be applicable due

to the elevated memory use. Such in-memory algorithms are also not usable with large-data

sets (larger than memory). We can only use disk-based learning algorithms, online models

102

(i.e., models that can simultaneously be built as data is being read), and incremental models

(i.e., models that are easily updated with new data) with large-data sets.

The described disk access optimization methods are targeted for the I/O intensive cases.

However, the training of some prediction models could be CPU-intensive or the parallel

building of multiple models could create a CPU-intensive scenario. This is one of the

target environments for the use of white-box prediction models as aggressive, model-specific

optimizations can be used for computational efficiency. On the other hand, the use of black-

box prediction methods limits the available options for optimization. However, sampling-

based techniques are still applicable. Sampling can be used to reduce the size of the training

data and help reduce both the required computation and disk usage. It is possible to use

sampling-based prediction models directly in query execution and also as a method of

identifying promising models before prediction models on the entire training data are built.

Until now, all the described optimizations and execution strategies are targeted at im-

proving the performance of modeling and prediction operations on single machines. How-

ever, with the increasing size of data sets and the availability of cost-effective cloud comput-

ing platforms, the use of distributed learning algorithms and parallel execution strategies

is becoming a requirement for the large-scale/big-data applications. We would like to note

that most of our techniques would be applicable in distributed environments and imme-

diately benefit from the parallelization opportunities. However, a distributed environment

brings additional research opportunities in many areas, e.g., data partitioning, the develop-

ment and usage of distributed learning algorithms and parallel modeling on multiple nodes.

We discussed some of the existing efforts in this direction in related works (Chapter 7).

Bibliography

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cher-

niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexander Rasin,

Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the Bo-

realis Stream Processing Engine. In Second Biennial Conference on Innovative Data

Systems Research (CIDR 2005), Asilomar, CA, January 2005.

[2] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. Mod-

eling and exploiting query interactions in database systems. In Proceeding of the

17th ACM conference on Information and knowledge management, CIKM ’08, pages

183–192, New York, NY, USA, 2008. ACM.

[3] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. Qshuf-

fler: Getting the query mix right. In Proceedings of the 2008 IEEE 24th International

Conference on Data Engineering, pages 1415–1417, Washington, DC, USA, 2008.

IEEE Computer Society.

[4] Yanif Ahmad, Olga Papaemmanouil, Ugur Cetintemel, and Jennie Rogers. Simul-

taneous equation systems for query processing on continuous-time data streams. In

Proceedings of the 2008 IEEE 24th International Conference on Data Engineering,

pages 666–675, Washington, DC, USA, 2008. IEEE Computer Society.

[5] S. Akaho. A kernel method for canonical correlation analysis. In In Proceedings of

the International Meeting of the Psychometric Society (IMPS2001). Springer-Verlag,

103

104

2001.

[6] Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul. Plan-based complex event detec-

tion across distributed sources. Proc. VLDB Endow., 1:66–77, August 2008.

[7] Mert Akdere, Uǧur Çetintemel, and Eli Upfal. Database-support for continuous pre-

diction queries over streaming data. Proc. VLDB Endow., 3:1291–1301, September

2010.

[8] Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: Managing incomplete

information with probabilistic world-set decompositions. In International Conference

on Data Engineering, pages 1479–1480, 2007.

[9] Apache. Mahout: Scalable machine-learning and data-mining library. http://

mahout.apache.org.

[10] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous query lan-

guage: semantic foundations and query execution. The VLDB Journal, 15:121–142,

June 2006.

[11] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. J.

Mach. Learn. Res., 3:1–48, 2003.

[12] D. Barbará, H. Garcia-Molina, and D. Porter. The management of probabilistic data.

IEEE Trans. on Knowl. and Data Eng., 4:487–502, October 1992.

[13] Omar Benjelloun, Anish Das Sarma, Alon Halevy, Martin Theobald, and Jennifer

Widom. Databases with uncertainty and lineage. The VLDB Journal, 17:243–264,

March 2008.

[14] Conrad Bessant, Ian Shadforth, and Darren Oakley. Building Bioinformatics Solu-

tions: with Perl, R and MySQL. Oxford University Press, Inc., New York, NY, USA,

2009.

105

[15] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[16] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database architecture opti-

mized for the new bottleneck: Memory access. In Proceedings of the 25th International

Conference on Very Large Data Bases, VLDB ’99, pages 54–65, 1999.

[17] Héctor Corrada Bravo and Raghu Ramakrishnan. Optimizing mpf queries: decision

support and probabilistic inference. In SIGMOD Conference, pages 701–712, 2007.

[18] P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting.

Springer, New York, 1996.

[19] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring

streams: a new class of data management applications. In Proceedings of the 28th

international conference on Very Large Data Bases, VLDB ’02, pages 215–226. VLDB

Endowment, 2002.

[20] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vi-

jayshankar Raman, Frederick Reiss, and Mehul A. Shah. Telegraphcq: Continuous

dataflow processing for an uncertain world. In CIDR, 2003.

[21] Chih-Chung Chang and Chih-Jen Lin. Libsvm : a library for support vector machines.

http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[22] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. Estimating

progress of execution for sql queries. In Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, SIGMOD ’04, pages 803–814, New

York, NY, USA, 2004. ACM.

106

[23] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimization. In

Proceedings of the 20th International Conference on Very Large Data Bases, VLDB

’94, pages 354–366, 1994.

[24] Surajit Chaudhuri and Kyuseok Shim. Optimizing queries with aggregate views. In

Proceedings of the 5th International Conference on Extending Database Technology:

Advances in Database Technology, EDBT ’96, pages 167–182, London, UK, 1996.

Springer-Verlag.

[25] Yanpei Chen, Archana Sulochana Ganapathi, Armando Fox, Randy H. Katz, and

David A. Patterson. Statistical workloads for energy efficient mapreduce. Technical

Report UCB/EECS-2010-6, EECS Department, University of California, Berkeley,

Jan 2010.

[26] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating probabilis-

tic queries over imprecise data. In Proceedings of the 2003 ACM SIGMOD interna-

tional conference on Management of data, SIGMOD ’03, pages 551–562, New York,

NY, USA, 2003. ACM.

[27] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, An-

drew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore. In

Bernhard Schlkopf, John Platt, and Thomas Hoffman, editors, NIPS, pages 281–288.

MIT Press, 2006.

[28] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb Welton.

Mad skills: new analysis practices for big data. Proc. VLDB Endow., 2:1481–1492,

August 2009.

[29] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20:273–

297, September 1995.

107

[30] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. The

VLDB Journal, The International Journal on Very Large Data Bases, 16(4):523–544,

October 2007.

[31] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. In Proceedings of the 6th conference on Symposium on Operating Systems De-

sign & Implementation - Volume 6, pages 10–10, Berkeley, CA, USA, 2004. USENIX

Association.

[32] Dorothy E. Denning. Secure statistical databases with random sample queries. ACM

Trans. Database Syst., 5:291–315, September 1980.

[33] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein, and

Wei Hong. Model-driven data acquisition in sensor networks. In Proceedings of the

Thirtieth international conference on Very large data bases - Volume 30, VLDB ’04,

pages 588–599. VLDB Endowment, 2004.

[34] Amol Deshpande and Samuel Madden. Mauvedb: supporting model-based user views

in database systems. In Proceedings of the 2006 ACM SIGMOD international confer-

ence on Management of data, SIGMOD ’06, pages 73–84, New York, NY, USA, 2006.

ACM.

[35] Songyun Duan and Shivanath Babu. Processing forecasting queries. In Proceedings of

the 33rd international conference on Very large data bases, VLDB ’07, pages 711–722.

VLDB Endowment, 2007.

[36] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence

matching in time-series databases. SIGMOD Rec., 23:419–429, May 1994.

[37] FIFA. Worldcup98 access logs. http://ita.ee.lbl.gov/html/contrib/WorldCup.

html.

108

[38] Forecasting. Principles web site. software programs. http://www.

forecastingprinciples.com/content/view/9/9.

[39] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice

Hall Professional Technical Reference, 2002.

[40] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy H. Katz, and David A.

Patterson. Statistics-driven workload modeling for the cloud. In ICDE Workshops,

pages 87–92, 2010.

[41] Archana Ganapthi, Harumi Kuno, Umeshwar Daval, Janet Wiener, Armando Fox,

Michael Jordan, and David Patterson. Predicting multiple performance metrics for

queries: Better decisions enabled by machine learning. In International Conference

on Data Engineering, 2009.

[42] Zoubin Ghahramani. Learning dynamic bayesian networks. In Adaptive Processing

of Sequences and Data Structures, pages 168–197. Springer-Verlag, 1998.

[43] Dina Q. Goldin and Paris C. Kanellakis. On similarity queries for time-series data:

Constraint specification and implementation. In Proceedings of the First International

Conference on Principles and Practice of Constraint Programming, pages 137–153,

London, UK, 1995. Springer-Verlag.

[44] J. G. De Gooijer and R. J. Hyndman. 25 years of iif time series forecasting: A selective

review. Tinbergen Institute Discussion Papers No. TI 05-068/4., 2005.

[45] Hans Peter Graf, Eric Cosatto, Leon Bottou, Igor Durdanovic, and Vladimir Vap-

nik. Parallel support vector machines: The cascade svm. In In Advances in Neural

Information Processing Systems, pages 521–528. MIT Press, 2005.

[46] Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, and Shu-Ping Chang. Online failure

forecast for fault-tolerant data stream processing. In Proceedings of the 2008 IEEE

109

24th International Conference on Data Engineering, pages 1388–1390, Washington,

DC, USA, 2008. IEEE Computer Society.

[47] Lin Guo, Sihem Amer Yahia, Raghu Ramakrishnan, Jayavel Shanmugasundaram,

Utkarsh Srivastava, and Erik Vee. Efficient top-k processing over query-dependent

functions. Proc. VLDB Endow., 1:1044–1055, August 2008.

[48] H2. Database engine. http://www.h2database.com.

[49] Mark A. Hall and Geoffrey Holmes. Benchmarking attribute selection techniques for

discrete class data mining. IEEE Trans. on Knowl. and Data Eng., 15:1437–1447,

November 2003.

[50] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2005.

[51] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical

learning: data mining, inference and prediction. Springer, 2 edition, 2008.

[52] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. In

Joan Peckham, editor, ACMSIGMOD International Conference on Management of

Data, pages 171–182, Tucson, May 1997. ACM Press.

[53] S. Hettich and S. D. Bay. The uci kdd archive. http://kdd.ics.uci.edu, Irvine, CA:

University of California, Department of Information and Computer Science, 1999.

[54] IBM. Db2 intelligent miner web site. http://www-01.ibm.com/software/data/

iminer/.

[55] IBM. Ibm parallel machine learning toolbox. http://www.alphaworks.ibm.com/

tech/pml.

[56] Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers. Shark. Journal of

Machine Learning Research, 9:993–996, 2008.

110

[57] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs.

Springer Publishing Company, Incorporated, 2nd edition, 2007.

[58] Jetty. open source web server. http://www.mortbay.org/jetty.

[59] M. Jordan. Learning in Graphical Models (Adaptive Computation and Machine Learn-

ing). MIT Press, 1998.

[60] Jean-Claude Junqua and Jean-Paul Haton. Robustness in Automatic Speech Recog-

nition: Fundamentals and Applications. Kluwer Academic Publishers, Norwell, MA,

USA, 1995.

[61] Bhargav Kanagal and Amol Deshpande. Online filtering, smoothing and probabilistic

modeling of streaming data. In Proceedings of the 2008 IEEE 24th International

Conference on Data Engineering, pages 1160–1169, Washington, DC, USA, 2008.

IEEE Computer Society.

[62] Byoung kee Yi, N. D. Sidiropoulos, Theodore Johnson, and H. V. Jagadish. Online

data mining for co-evolving time sequences. In Proceedings of the 16th International

Conference on Data Engineering, pages 13–, Washington, DC, USA, 2000. IEEE Com-

puter Society.

[63] Julie Letchner, Christopher Re, Magdalena Balazinska, and Matthai Philipose. Ac-

cess methods for markovian streams. In Proceedings of the 2009 IEEE International

Conference on Data Engineering, pages 246–257, Washington, DC, USA, 2009. IEEE

Computer Society.

[64] Xiaolei Li and Jiawei Han. Mining approximate top-k subspace anomalies in multi-

dimensional time-series data. In Proceedings of the 33rd international conference on

Very large data bases, VLDB ’07, pages 447–458. VLDB Endowment, 2007.

[65] Kun Liu and Hillow Kargupta. Distributed data mining bibliography. http://www.

cs.umbc.edu/hillol/DDMBIB, 2006.

111

[66] Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, and Michael W. Watzke. Increasing

the accuracy and coverage of sql progress indicators. In Proceedings of the 21st In-

ternational Conference on Data Engineering, ICDE ’05, pages 853–864, Washington,

DC, USA, 2005. IEEE Computer Society.

[67] David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cam-

bridge University Press, New York, NY, USA, 2002.

[68] Spyros G. Makridakis, Steven C. Wheelwright, and Rob J. Hyndman. Forecasting:

Methods and Applications. John Wiley & Sons, Ltd., January 1998.

[69] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[70] Jie Mao, John Jannotti, Mert Akdere, and Ugur Cetintemel. Event-based constraints

for sensornet programming. In Proceedings of the second international conference

on Distributed event-based systems, DEBS ’08, pages 103–113, New York, NY, USA,

2008. ACM.

[71] V. Markl, G. M. Lohman, and V. Raman. Leo: An autonomic query optimizer for

db2. IBM Syst. J., 42:98–106, January 2003.

[72] The Mathworks. Matlab. http://www.mathworks.com.

[73] Microsoft. Sql server 2008. http://www.microsoft.com/sqlserver/2008/en/us/

data-mining.aspx.

[74] T. M. Mitchell. Machine learning. McGraw Hill, New York, 1997.

[75] T. M. Mitchell. The discipline of machine learning. http://www.cs.cmu.edu/~tom/

pubs/MachineLearning.pdf, 2006.

[76] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit

112

Varma. Query processing, approximation, and resource management in a data stream

management system. In CIDR, 2003.

[77] Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.

PhD thesis, UC Berkeley, Computer Science Division, July 2002.

[78] MySQL. Prepared statements. http://dev.mysql.com/tech-resources/

articles/4.1/prepared-statements.html.

[79] Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds. In Proceedings

of the 32nd international conference on Very large data bases, VLDB ’06, pages 1049–

1058. VLDB Endowment, 2006.

[80] Oracle. Data mining web site. http://www.oracle.com/technology/products/bi/

odm/index.html.

[81] Spiros Papadimitriou, Jimeng Sun, and Philip S. Yu. Local correlation tracking in

time series. In Proceedings of the Sixth International Conference on Data Mining,

ICDM ’06, pages 456–465, Washington, DC, USA, 2006. IEEE Computer Society.

[82] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[83] PostgreSQL. Database engine. http://www.postgresql.org/.

[84] Project. Longview: Querying the future now. http://database.cs.brown.edu/

projects/longview/.

[85] R Development Core Team. R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria, 2008.

[86] RapidMiner. Data mining tool. http://rapid-i.com.

113

[87] Christopher Ré, Julie Letchner, Magdalena Balazinksa, and Dan Suciu. Event queries

on correlated probabilistic streams. In Proceedings of the 2008 ACM SIGMOD inter-

national conference on Management of data, SIGMOD ’08, pages 715–728, New York,

NY, USA, 2008. ACM.

[88] Steven P. Reiss. Dynamic detection and visualization of software phases. SIGSOFT

Softw. Eng. Notes, 30:1–6, May 2005.

[89] Steven P. Reiss. Visual representations of executing programs. J. Vis. Lang. Comput.,

18:126–148, April 2007.

[90] Wolfram Research. Mathematica. http://www.wolfram.com.

[91] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen chuan Chang. Top-k query

processing in uncertain databases. In International Conference on Data Engineering,

pages 896–905, 2007.

[92] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. Leo - db2’s

learning optimizer. In VLDB ’01: Proceedings of the 27th International Conference

on Very Large Data Bases, pages 19–28, San Francisco, CA, USA, 2001. Morgan

Kaufmann Publishers Inc.

[93] TPC-H. Database benchmark specification. http://www.tpc.org/tpch/.

[94] Daisy Zhe Wang, Eirinaios Michelakis, Minos N. Garofalakis, and Joseph M. Heller-

stein. Bayesstore: managing large, uncertain data repositories with probabilistic

graphical models. Proceedings of The VLDB Endowment, 1:340–351, 2008.

[95] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan

Kaufmann Publishers, San Francisco, CA, 2nd edition, 2005.

114

[96] S. K. M. Wong, C. J. Butz, and Y. Xiang. A method for implementing a probabilistic

model as a relational database. In In Eleventh Conference on Uncertainty in Artificial

Intelligence, pages 556–564. Morgan Kaufmann Publishers, 1995.

[97] Dan Wu and Michael Wong. Global propagation in bayesian networks vs semijoin

programs in relational databases. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 13(5):539–560, 2005.

[98] Lei Yu and Huan Liu. Feature selection for high-dimensional data: A fast correlation-

based filter solution. In In Intl. Conf. on Data Engineering, pages 856–863, 2003.

[99] Nevin Lianwen Zhang and David Poole. A simple approach to bayesian network

computations. Tenth Canadian Conference on Artificial Intelligence, 171-178, 1994.

[100] Nevin Lianwen Zhang and David Poole. Exploiting causal independence in bayesian

network inference. Journal of Artificial Intelligence Research, 5:301–328, 1996.

[101] Ning Zhang, Peter J. Haas, Vanja Josifovski, Guy M. Lohman, and Chun Zhang.

Statistical learning techniques for costing xml queries. In Proceedings of the 31st

international conference on Very large data bases, VLDB ’05, pages 289–300. VLDB

Endowment, 2005.

[102] Yunyue Zhu and Dennis Shasha. Query by humming: a time series database approach.

Proc of SIGMOD, 2003.

