
The Length-Lex Representation for

Constraint Programming over Sets

by

Yip, Yue Kwen Justin

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May, 2011

c© Copyright 2011 by Yip, Yue Kwen Justin

This dissertation by Yip, Yue Kwen Justin is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Prof. Pascal Van Hentenryck, Director

Recommended to the Graduate Council

Date
Prof. Claire Mathieu, Reader

Date
Prof. Carmen Gervet, Reader
(German University in Cario)

Approved by the Graduate Council

Date
Prof. Peter M. Weber

Dean of the Graduate School

iii

Acknowledgements

This doctoral degree is to some extent an unintended consequence for someone who is impatient

and earned poor grades in college. For me, the main reason for going to graduate school abroad was

the genuine sibling rivalry among my high-achieving cousins Avan and Fiona, and brother Austin.

I came to Brown as a master’s student four years ago, with the hope of getting a decent job in

the Silicon Valley after graduation. Under Pascal’s excellent guidance, I discovered that conducting

research is fun and stimulating, and that pursuing a doctoral degree is more straightforward than I

had anticipated. I have been granted the luxury of focusing on a single task and have been sheltered

from a lot of external pressures. These years have been the most exciting time of my life to date.

I would like wholeheartedly to thank Pascal, who encouraged me to pursue a doctoral degree and

enlightened me to focus on one goal at a time (which resulted in failing a class). He has given me

much freedom in conducting research, as well as vacations and particularly flexible working hours. I

am also grateful for his reassuring guidance and his comments on my Facebook wall during stressful

moments, and when I was feeling discouraged.

For me, research in optimization is all about competition. I got ample opportunities to compete

with top-notch researchers from all over the world. I wish to thank all my competitors; they are the

ones who keep me awake at night, challenge my intellectual limit, push me to work hard and make

me stronger. I am also thankful to Jimmy Lee, who gave me a C+ in his constraint programming

class, hired me to work in his research group for a year, and recommended me to Brown.

It is grateful to have met a lot of new friends at Brown. The optimization gang: Carleton,

Serdar, Yuri, Kevin, Maire, Pierre, and Gregoire. The badminton players: Ohm, Jonah, Jim, Nell,

Xu, Minh, See, Jude, Ben, Qile, Xi, Kang, and Steve. My running mates: Olya, Aparna, and Micha.

The room-402 crowd: Jesse, Eric, Laura, and Anna. And of course Wenjin, Aggeliki, FengHao, and

iv

DeQing, who shared a lot of great moments with me.

I would like to thank my father Tim and mother Manie for their unconditional support in allowing

me to achieve my goal in life. And finally, I would like to thank Daisy for being with me, especially

during the difficult and stressful times.

Providence, May 2011 Justin Yip

v

Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Outline . 2

1.2 Publications . 4

2 Set Variables 6

2.1 Overview . 6

2.1.1 The Social Golfer Problem . 6

2.1.2 Eliminating Symmetry with Set Variables . 8

2.1.3 Eliminating Symmetry with Symmetry-Breaking Constraints 9

2.1.4 Eliminating Value Symmetry with Dual Modeling 10

2.2 Problems with Domain Representation . 11

2.3 Subset-Bound Domain . 12

2.4 Subset-Bound and Cardinality Domain . 15

2.5 Hybrid Domain . 18

2.6 Reduced Ordered Binary Decision Diagram Domain 19

2.7 Conclusion . 21

3 Length-Lex Domain 23

3.1 Overview . 23

vi

3.2 The Length-Lex Domain . 24

3.3 Conclusion . 29

4 Unary Length-Lex Constraints 31

4.1 Overview . 31

4.2 Partition into Subset-Bound Lattices . 32

4.3 Partition into PF-Intervals . 35

4.4 The Decomposition . 37

4.5 Bound Consistency for Unary Constraints . 40

4.6 Generic Successor Algorithm for Length-Lex Interval 42

4.7 Generic Successor Algorithm for PF-Interval . 44

4.8 Feasibility Routine for e ∈ X for PF-Interval . 47

4.9 Conclusion . 47

5 Binary Length-Lex Constraints 49

5.1 Overview . 49

5.2 Bound Consistency for Binary Constraints . 50

5.3 Generic Successor Algorithm for Length-Lex Interval 52

5.4 Generic Successor Algorithm for PF-Intervals . 54

5.5 Feasibility Routine for X ∩ Y = ∅ for PF-Intervals 55

5.6 Evaluation . 58

5.7 Conclusion . 61

6 Symmetry Breaking with Length-Lex Variables 63

6.1 Overview . 63

6.2 Pushing Length-Lex Ordering into Binary Constraints 64

6.2.1 Overview . 66

6.2.2 Generic Successor Algorithm for Length-Lex Intervals 68

6.2.3 Generic Successor Algorithm for PF-Intervals 71

6.2.4 Feasibility Routine for PF-Intervals for Binary Symmetry-Breaking Disjoint

Constraint . 73

vii

6.2.5 Evaluation . 74

6.3 Global Filter for Symmetry-Breaking AllDisjoint . 76

6.3.1 Evaluation . 78

6.4 Dual Modeling for Length-Lex Set Variables . 80

6.4.1 Overview . 80

6.4.2 Breaking Value Symmetry . 80

6.4.3 Breaking Variable and Value Symmetry . 83

6.4.4 Evaluation . 87

6.5 Conclusion . 90

7 Exponential Length-Lex Propagators 92

7.1 Overview . 92

7.2 Theoretical Results on Intersection Constraints . 94

7.3 Seemingly Contradicting Results Between Theory and Practice 98

7.4 Exponential Filtering for Intersection Constraints . 100

7.5 Evaluation . 102

7.6 Related Work . 104

7.7 Conclusion . 105

8 Global Set Intersection Constraints 107

8.1 Overview . 107

8.2 A Feasibility Checker for The AllDisjoint Constraint 108

8.2.1 The Feasibility Checker . 109

8.2.2 Evaluation . 111

8.3 A Dual Filter for The Global Atmost-k Constraint 112

8.4 Primal/Dual Filters for Symmetry-Breaking Atmost-k 116

8.5 Related Work . 117

8.6 Conclusion . 119

9 Hybrid Domain Representation 120

9.1 Overview . 120

viii

9.2 Connecting Two Representations . 121

9.2.1 Evaluation . 122

9.3 Exponential Propagator for Hybrid Domains . 124

9.3.1 Evaluation . 128

9.4 Hardness Proofs for AllDisjoint Global Constraint 130

9.5 Conclusion . 132

10 Exponential Checkers for Symmetry Breaking 134

10.1 Overview . 134

10.2 Background . 135

10.2.1 The LexLeader Method . 135

10.2.2 The LexLeader Method in Matrix Models . 136

10.2.3 The DoubleLex Method . 136

10.2.4 The RowWiseLexLeader Method . 137

10.3 LexLeader Feasibility Checkers . 139

10.4 Variable Orderings . 140

10.5 Value Symmetries . 141

10.6 Practical Considerations . 143

10.7 Conclusion . 144

11 Experimental Results 145

11.1 Overview . 145

11.2 The Social Golfer Problem . 146

11.2.1 Problem Statement . 146

11.2.2 Earlier Work . 146

11.2.3 Model . 147

11.2.4 Discussion . 148

11.2.5 A Close Look . 149

11.3 The Steiner Triple System . 156

11.3.1 Problem Statement . 156

11.3.2 Earlier Work . 156

ix

11.3.3 Model . 156

11.3.4 Discussion . 158

11.3.5 A Close Look . 158

11.4 The Error Correcting Code (Hamming Distance) . 163

11.4.1 Problem Statement . 163

11.4.2 Earlier Work . 163

11.4.3 Model . 163

11.4.4 Discussion . 167

11.4.5 A Close Look . 168

11.5 The Balanced Incomplete Block Design . 169

11.5.1 Problem Statement . 169

11.5.2 Earlier Work . 170

11.5.3 Model . 171

11.6 Evaluation of the Feasibility Checker . 174

11.6.1 Equidistant Frequency Permutation Array problem (EFPA) 174

11.6.2 Balanced Incomplete Block Design (BIBD) 176

11.6.3 Cover Array problem (CA) . 177

11.6.4 Error Correcting Code (Lee Distance) . 177

12 Conclusion 179

A Models 182

A.1 Social Golfer Model . 182

A.1.1 Classical CSP . 182

A.1.2 Set CSP . 182

A.2 Steiner Triple System Model . 183

B Specialized Propagators 185

B.1 Unary Constraints . 185

B.1.1 Overview . 185

B.1.2 specialized Successor Construction Routine for e ∈ X for PF-Interval . . 187

x

B.1.3 amortized Successor Algorithm for Length-Lex Interval 188

B.2 Binary Constraints . 191

B.2.1 Overview . 191

B.2.2 specialized Successor Algorithm for X ∩ Y = ∅ for PF-intervals 192

B.2.3 amortized Successor Algorithm for Length-Lex Intervals 194

B.2.4 Locate for binary disjoint constraint . 195

C Global Propagators for Subset-Bound Variables 199

C.1 Overview . 199

C.2 The SONET Problem . 200

C.3 The Set Domains . 202

C.4 Non-Empty Intersection Constraint . 203

C.5 All Non-Empty Intersection Constraint . 206

C.6 Subset of Union . 208

C.7 Subset Of Open Union . 209

C.8 Combination of subsetOfOpenUnion and channeling 213

C.9 Experimental Evaluation . 216

C.9.1 The Impact of Branching Heuristics . 221

C.9.2 The Impact of Redundant Constraints . 222

C.10 Conclusion . 222

Bibliography 224

Index 231

xi

List of Tables

5.1 Social Golfer Problem: Subset-Bound Domain vs Length-Lex Domain 60

6.1 Social Golfer Problem: Pushing the Length-Lex Ordering into Binary Constraints . . 75

6.2 Social Golfer Problem: Primal Filter for Global Symmetry-Breaking AllDisjoint Con-

straint . 79

6.3 Social Golfer Problem: Breaking Value Symmetry with Dual Modeling Method. . . . 89

6.4 Social Golfer Problem: Fails-to-Time Ratio of Subset-Bound and Length-Lex. 90

7.1 Social Golfer Problem: The Empirical Data Suggests the Length-Lex is Better. . . . 98

7.2 Social Golfer Problem: Exponential Constraints that Speeds Up Convergence. 103

7.3 Social Golfer Problem: Fails-to-Time Ratio of Exponential Propagator 104

8.1 Social Golfer Problem: AllDisjoint Checker for Length-Lex Domain. 111

9.1 Social Golfer Problem: Hybrid Model. 124

9.2 Social Golfer Problem: Exponential Propagator for LS-domain 129

9.3 Social Golfer Problem: Exponential Checkers and Propagators for Subset-Bound Do-

main . 130

11.1 Social Golfer Problem: Comparing Length-Lex with Earlier Attempts. 153

11.2 Social Golfer Problem: Length-Lex Domain vs Hybrid Length-Lex × Subset-Bound

Domain. 155

11.3 Steiner Triple System: Comparing Length-Lex with Earlier Attempts. 161

11.4 Steiner Triple System: Three Length-Lex Models. 162

xii

11.5 Steiner Triple System: Three LS-Domain Models. 162

11.6 Error Correcting Code (Hamming Distance): Comparing Length-Lex with Earlier

Attempts . 168

11.7 Error Correcting Code (Hamming Distance): Length-Lex Domain, A Close Look I . 169

11.8 Error Correcting Code (Hamming Distance): Length-Lex Domain, A Close Look II . 170

11.9 Error Correcting Code (Hamming Distance): Subset-Bound Domain 171

11.10Balanced Incomplete Block Design Problem: Comparing with Earlier Work 173

11.11Equidistant Frequency Permutation Array Problem : RowWise 174

11.12Equidistant Frequency Permutation Array Problem : Snake 175

11.13Balanced Incomplete Block Design Problem : RowWise 176

11.14Balanced Incomplete Block Design Problem : Snake 176

11.15Cover Array Problem . 177

11.16Error Correcting Code (Lee Distance) . 178

C.1 SONET: Experimental Results on Large Capacitated Instances. 221

C.2 SONET: The Impact of Branching Heuristics . 222

C.3 SONET: The Impact of Redundant Constraints . 223

xiii

List of Figures

2.1 Solution for Social Golfer Problem (3, 3, 3) . 7

2.2 Positions within a Group are Interchangeable . 8

2.3 Groups are Interchangeable . 8

2.4 Weeks are Interchangeable . 8

2.5 Players are Interchangeable . 8

2.6 Social Golfer Model in Set-CSP . 9

2.7 The Dual Perspective of the Social Golfer Problem : Assigning Players to Groups. . 11

2.8 The lattice for X ∈ sb〈{3}, {1, 2, 3, 5}〉 . 12

2.9 The lattice for X ∈ sbc〈{3}, {1, 2, 3, 5}, 2, 3〉 . 16

2.10 ROBDD: X ∈ {{1}, {1, 3}, {2, 3}}. Solid lines correspond to true, dotted lines false.

Left: Original; Right: Reduced Ordered BDD. 20

2.11 Comparison over Different Set Domain Representations. (n is the universe size) . . . 21

3.1 The Length-Lex Ordering for U(4). 25

3.2 C(X) ≡ 2 ∈ X. Left: Original domain ll〈{1, 3}, {1, 2, 4}, 4〉. Right: Domain after

enforcing bound consistency ll〈{2, 3}, {1, 2, 4}, 4〉 . 27

3.3 Length-Lex Domain Versus Subset-Bound Domain. 28

3.4 Comparison over Different Set Domain Representations. (n is the universe size, c is

the cardinality upper bound.) . 29

4.1 Decomposing a Length-Lex Interval into Subset-Bound Lattices 34

4.2 The Elegant PF-interval . 35

4.3 Decomposing Length-Lex Interval into PF-Intervals 37

xiv

4.4 Enforcing Bound Consistency For Unary Constraint 41

4.5 Generic Successor Algorithm for Unary Constraint 43

4.6 Generic Successor Algorithm for Unary Constraint 45

5.1 Enforcing Bound Consistency for Binary Disjoint Constraint. Solid Lines Indicates

Feasible PF-interval Pairs. 50

5.2 Comet Model for Social Golfer Problem using Length-Lex Set Variable 59

5.3 Comet Search Procedure for Social Golfer Problem using Length-Lex Variables . . . 60

5.4 Comet Model and Search Procedure for Social Golfer Problem using Subset-Bound

Set Variable . 61

5.5 Comparison over Different Set Domain Representations. (n is the universe size, c is

the cardinality upper bound.) . 62

6.1 Combined Symmetry-Breaking Propagators vs Its Decomposition. 65

6.2 Combining Propagator : Subset-Bound vs Length-Lex. 66

6.3 Slicing Length-Lex Intervals into 3 Parts . 67

6.4 Original (Top), Slicing (Middle) and Slicing with PF-Decomposition (Bottom) of

Length-Lex Domains. 68

6.5 Generic Successor Algorithm for C�. Solid Lines between PF-intervals Illustrates

Feasible Pair Regarding the Ordering Constraint. 69

6.6 Generic Successor Algorithm for PF-Intervals for C� 71

6.7 How The Most Significant Set Element Determines the Possible Elements. 76

6.8 Reformulating Set-CSPs as a 0/1 Matrix . 82

6.9 Dual Modeling in Sets . 83

6.10 Preserving the length-lex ordering by padding dummy elements 85

6.11 The 0/1 matrix . 86

6.12 Comet Model for Social Golfer Problem using Dual Modeling 88

6.13 Comparison over Different Set Domain Representations. (n is the universe size, c is

the cardinality upper bound.) . 90

7.1 Effect on Propagation Order . 95

xv

7.2 Constraint Propagation for Length-Lex is Exponential 99

7.3 Embrace the Beauty of Exponential Propagator . 101

7.4 Comparison over Different Set Domain Representations. (n is the universe size, c is

the cardinality upper bound.) . 105

8.1 The Explicit Domain List has No Hole. 110

8.2 How Many Set Variables Can Take or Exclude a Value? (n = 7, c = 3, k = 1) 113

8.3 The Redundant Dual Filter for atmost(k,X1, ..., Xm). 114

9.1 A Hybrid Domain Combining the Best of the Two Worlds? 120

9.2 Connecting Two Representations using Channeling Constraints 122

9.3 Comet Model for Social Golfer Problem using Both Domain Representations 123

9.4 Reduction from 3-Triangles . 131

11.1 Comet Model for Social Golfer Problem . 148

11.2 Comet Search for Social Golfer Problem . 149

11.3 Comet Model for Steiner Triple System . 157

11.4 Comet Model for Steiner Triple System in Length-Lex 158

11.5 Comet Model for Error Correcting Code (Decision Problem) 165

11.6 Comet Search Procedure for Error Correcting Code (Decision Problem) 166

11.7 Comet Model for Error Correcting Code (Optimization Problem) 167

11.8 Comet Model for Error Correcting Code (Table Lookup) 167

11.9 Comet Model for Balanced Incomplete Block Design Problem 172

A.1 Social Golfer Model in Classical CSP . 183

A.2 Social Golfer Model in Set-CSP . 183

A.3 Social Golfer Model by Barnier and Brisset [3] . 184

A.4 Steiner Triple System Model in Set-CSP . 184

B.1 Three Schemas for Bound-Consistent Algorithm on Unary Constraints 186

B.2 Binary Constraint . 192

C.1 Overview of Hardness of Complete Filtering Algorithms 200

xvi

C.2 The Initialization for the Sonet Problem. 218

C.3 Comet Model for the Sonet Problem. 219

C.4 Comet Search Procedure for the Sonet Problem. 220

xvii

Chapter 1

Introduction

Constraint programming is a declarative programming paradigm for solving hard combinatorial prob-

lems. From a modeling standpoint, its key idea is to view a combinatorial optimization application

as a combination of a model and a search procedure and to express models and search procedures

at a high level of abstraction. In particular, a constraint-programming model expresses a complex

application in terms of its combinatorial substructures, providing users with a high-level modeling

language and communicating the problem structure to the underlying solver. From a computational

standpoint, the key idea underlying constraint programming is to use combinatorial constraints to

prune the search space by removing values from the variable domains that cannot appear in any

feasible solution and to use feasibility information for branching. Constraint programming over fi-

nite domain variables has been extensively studied since the development of the CHIP system in the

1980s. In recent years, increased attention has been devoted to constraint programming over more

complex combinatorial objects such as sets, graphs, and permutations.

This thesis considers constraint programming over set variables, since sets are natural and funda-

mental combinatorial objects to model a wide range of configuration problems naturally. However,

set variables raise fundamentally novel representation issues, since their domains often contain an

exponential number of sets. How to represent this exponential number of sets and how to use this

representation for pruning the search space effectively is the fundamental open issue in constraint

programming over sets.

1

This thesis focuses the length-lex representation that was shown to offer some theoretical advan-

tages over earlier attempts [29]. Reference [29] introduced the length-lex domain, demonstrated its

potential benefits, and left a number of significant open issues about its theoretical and algorithmic

properties, as well as about experimental behavior of the domain. As a result, this thesis aims at

showing that

length-lex is an effective set domain representation for constraint programming.

This thesis is supported by a number of theoretical, algorithmic, and experimental contributions,

which include a series of generic polynomial-time complete filtering algorithms, primal/dual filters,

advanced modeling techniques, and exponential checkers and propagators for set constraints. These

techniques are highly modular, which makes it possible to apply them on several standard bench-

marks. The theoretical and algorithmic results have been implemented in a prototype which is

shown to be several orders of magnitude faster than earlier techniques on these benchmarks. These

results provide both theoretical and empirical valiadation to the thesis that length-lex is an efficient,

effective, and robust representation for constraint programming over sets.

1.1 Outline

This thesis assumes readers have basic background knowledge in constraint programming. Readers

may refer to Van Hentenryck [67, 68], Marriott and Stuckey [49], Dechter[12], and Apt [1].

Background Chapter 2 presents set variables and their applications. It gives a simple and elegant

model for the social golfer problem, which is used as a running example. Computational issues with

the set domains are also discussed, as well as prior art. Chapter 3 introduces the length-lex set

representation which is at the core of this thesis.

Basic Generic and Efficient Propagators The thesis contributions start in Chapters 4 which

gives a simple and generic method for implementing a bound-consistent propagator for unary con-

straints. It proposes a special class of length-lex interval which enjoys the compactness of a subset-

bound lattice, making inferencing extremely easy. It then demonstrates how to implement a prop-

agator only assuming a feasibility routine for this special class. Chapter 5 generalizes the idea o a

2

binary constraint and, more generally, to fixed-arity constraints.

Symmetry-Breaking Propagators Chapter 6 presents novel symmetry-breaking techniques us-

ing the length-lex variables. It first shows that combining symmetry-breaking constraints with binary

constraint dramatically reduces the search space. It then introduces a global symmetry-breaking

alldisjoint filtering rule which gives a global perspective for propagation. Finally, it demonstrates a

dual modeling framework for breaking value symmetries, demonstrating that this is an ideal vehicle

for symmetry breaking.

Exponential Propagators Chapter 7 discusses the length-lex representation from another per-

spective: the impact of using the length-lex representation on the constraint-propagation algorithm.

It shows that, even for simple unary intersection constraints, the constraint propagation algorithm

may take exponential time to converge to a fixpoint. However, such negative theoretical result can-

not explain the superiority of length-lex over traditional set representation. The chapter argues that

the exponential behavior is indeed a feature of length-lex, which moves some of the exponential be-

havior from the search to the constraint-propagation algorithm, where the constraint semantics can

be exploited. The chapter pushes the result even further by introducing exponential propagators to

speed up the convergence rate of the constraint-propagation algorithm. Variants of the exponential

propagator are also discussed.

Global Set Propagators Chapter 8 introduces a few checker and filters for intersection con-

straints that provides global perspectives. What makes them particular appealing is that they are

independent of the underlying domain representation. The evaluation shows that they effectively

reduce search space regardless of the representation used.

Interplay with Other Set Domains One of the key aspects of constraint programming is its

high modularity. It is important for length-lex be able to work seamlessly with other domain

representations. Chapter 9 addresses this issue and gives a lightweight method for applying multiple

domain representations on the same model. It also introduces exponential propagators working on

the combination of the length-lex and subset-bound domains.

3

Advanced Symmetry Breaking Basic symmetry, e.g., interchangeability between two variables,

can be removed by simply applying the LexLeader method. Eliminating compositional symmetry,

e.g., interchangeability among a set of variables and a set of values, is more difficult, since it requires

an exponential number of ordering constraints. A common way to avoid posting too many constraint

is to use only a subset and leaving some symmetrical solutions and subtrees behind. But this method

leads to thrashing behavior since the solver keeps revisiting symmetric subtrees. Chapter 10 tackles

this issue on matrix models, which are closely related to set models, with exponential and complete

feasibility checkers. The chapter shows that the checkers improve the performance by orders-of-

magnitude when comparing with the traditional doubleLex method.

Evaluation and Conclusion Chapter 11 evaluates the length-lex set representation on several

standard benchmarks and compares with other technique used. Four benchmarks are used for

evaluating length-lex and they indicate that length-lex and its variants are very robust and efficient.

In particular, the length-lex domain now solves many benchmark instances that were unsolvable in

constraint programming before. Chapter 12 concludes this thesis and discusses future perspectives.

Appendix The appendix includes a couple of supporting models and algorithms used in the

implementation. Chapter A gives different models for the social golfer problem. Chapter B presents

the basic idea of very efficient generic bound-consistent algorithms for unary and binary length-lex

constraints, further exploiting the semantics of length-lex and maintaining some incremental data

structure for efficient filtering. Chapter C focuses on effective propagation on subset-bound variables.

It supports the claim that it is important to focus on propagation for solving set models.

1.2 Publications

Part of the work presented in this thesis has been published (or submitted) in the following forms:

1. Pascal Van Hentenryck, Justin Yip, Carmen Gervet, Grgoire Dooms: Bound Consistency for

Binary Length-Lex Set Constraints. AAAI 2008: 375-380

2. Justin Yip, Pascal Van Hentenryck: Length-lex bound consistency for knapsack constraints.

SAC 2009: 1397-1401

4

3. Justin Yip, Pascal Van Hentenryck: Evaluation of Length-Lex Set Variables. CP 2009: 817-832

4. Justin Yip, Pascal Van Hentenryck, Carmen Gervet: Boosting Set Constraint Propagation for

Network Design. CPAIOR 2010: 339-353

5. Justin Yip, Pascal Van Hentenryck: Exponential Propagation for Set Variables. CP 2010:

499-513

6. Justin Yip, Pascal Van Hentenryck: Symmetry Breaking via LexLeader Feasibility Checker.

IJCAI 2011.

7. Justin Yip, Pascal Van Hentenryck: Checking and Filtering Global Set Constraints. CP 2011,

submitted.

5

Chapter 2

Set Variables

2.1 Overview

A set variable takes a set of values which generalizes the classical finite-domain world in which

variable takes exactly one value. Set variables are natural vehicles for modeling problems which

exhibits variable interchangeability. They allow the model to preserve the problem structure, enable

propagators to exploit the semantics to reduce the search space effectively.

A variety of problem classes can be modeled naturally with set variables, including scheduling,

network configuration, coding, combinatorics, and cryptography. These problem classes typically

exhibit numerous symmetries. It is essential for the modeling tool to take symmetry into account

in order to avoid visiting symmetrically equivalent subtrees during search. Set variables is an effec-

tive tool. This chapter illustrates these functionalities on a scheduling problem which exhibits many

complex symmetries. The problem has been extensively studied in the constraint-programming com-

munity. Different aspects of the problem has been widely investigated: The model[3, 44], breaking

symmetries[19, 61, 16, 22, 46, 54], constraint propagation[55, 56, 70], and search strategies[32, 10, 14].

2.1.1 The Social Golfer Problem

The social golfer problem consists in organizing a social event for a group of golfers across several

weeks such that each participant has the maximum chance to socialize. It is defined by a 3-tuple

6

parameter (G,S,W). The task is to organize a golf event for N = G × S golfers. The event lasts

for W weeks. Each weekend, all golfers are distributed into G groups and each group consists of

S people. To maximize the sociability (every golfer should meet the most number of people), it is

required that every pair of golfers play at the same group at most once.

Figure 2.1 illustrates a solution for instance (3, 3, 3). A total of 9 = 3 × 3 golfers are allocated

into 3 groups of 3 people for 3 weekends. Golfers are named from 1 to 9. Each row illustrates the

configuration of a particular week. Every three columns form a group. Every pair of groups share

at most one golfer in common.

Group 1 Group 2 Group 3
Week 1 1 2 3 4 5 6 7 8 9
Week 2 1 4 7 2 5 8 3 6 9
Week 3 1 5 9 2 6 7 3 4 8

Figure 2.1: Solution for Social Golfer Problem (3, 3, 3)

The problem can be modeled as a finite-domain CSP, where each cell in the table corresponds to

one variables whose domain is the set of all golfers. The model is given in Section A.1.1. However,

the model fails to take some very basic symmetry properties into account. And the solver is likely

to revisit symmetrical subtrees during search.

It is important to addresses symmetries directly in the model. The social golfer problem mainly

consists of 4 types of symmetry:

1. Positions within each group are interchangeable. Players 1 and 2 in group 1 of week 1 are

interchangeable. Given any solution, interchanging players within a group produces another

solution. (Figure 2.2)

2. Groups are interchangeable. Groups 1 and 2 can be interchanged and to produce another

solution. (Figure 2.3)

3. Weeks are interchangeable. Weeks 1 and 2 can be interchanged and to produce another

solution. (Figure 2.4)

4. Players are interchangeable. Player 3 is replaced by player 6, 6 by 9, and 9 by 3. The resulting

table is still a solution. (Figure 2.5)

7

Group 1 Group 2 Group 3
Week 1 2 1 3 4 5 6 7 8 9
Week 2 1 4 7 2 5 8 3 6 9
Week 3 1 5 9 2 6 7 3 4 8

Figure 2.2: Positions within a Group are Interchangeable

Group 1 Group 2 Group 3
Week 1 4 5 6 1 2 3 7 8 9
Week 2 1 4 7 2 5 8 3 6 9
Week 3 1 5 9 2 6 7 3 4 8

Figure 2.3: Groups are Interchangeable

Group 1 Group 2 Group 3
Week 1 1 4 7 2 5 8 3 6 9
Week 2 1 2 3 4 5 6 7 8 9
Week 3 1 5 9 2 6 7 3 4 8

Figure 2.4: Weeks are Interchangeable

Group 1 Group 2 Group 3
Week 1 1 2 6 4 5 9 7 8 3
Week 2 1 4 7 2 5 8 6 9 3
Week 3 1 5 3 2 9 7 6 4 8

Figure 2.5: Players are Interchangeable

2.1.2 Eliminating Symmetry with Set Variables

The first symmetry class can be eliminated by the use of set variables. Observe that positions within

a group serve no function in the model. Constraints in the model are only concerned with who is

in which group, but not the position within the group. Hence, a group should be viewed as a set

instead of a collection of positions, and set variables are therefore a very appealing alternative for

modeling such problem.

We give a model for the social golfer problem using set variables in Figure 2.6. We denote the set

of players {1, ..., N} as P, groups {1, ..., G} as G, and weeks {1, ...,W} as W. Xw,g is a set variable

that corresponds to a group and its value is a subset of players (Line 2.1). Every group has a fixed

cardinality of S (Line 2.2). Groups of the same week should be disjoint since any golfer can only

8

join one group in a week (Line 2.3). The constraint “every pair of golfers can play at most once” can

be rephrased as every pair of groups should have at most once golfer in common, since otherwise

the overlapping players meet in both groups (Line 2.4).

The social golfer problem is thus modeled using only 4 sets of compact constraints. The problem

structure is kept in the model, which allows propagators to exploit it. The model eliminates the first

symmetry class, that intra-group positions are interchangeable, with the use of set variables.

Xw,g ⊆ P ∀g ∈ G, w ∈ W (2.1)

|Xw,g| = S ∀g ∈ G, w ∈ W (2.2)

Xw,g ∩Xw,g′ = ∅ ∀g < g′ ∈ G, w ∈ W (2.3)

|Xw,g ∩Xw′,g′ | ≤ 1 ∀g, g′ ∈ G, w < w′ ∈ W (2.4)

Figure 2.6: Social Golfer Model in Set-CSP

2.1.3 Eliminating Symmetry with Symmetry-Breaking Constraints

The second and third symmetry classes can be eliminated by applying the LexLeader method[11].

The main idea is to exclude all but the canonical solution in a symmetry class by posting

symmetry-breaking constraints. The canonical solution is usually the lexicographically smallest

solution in a symmetry class for a predefined ordering. Consider an assignment of the first week,

[{1, 2, 3}, {4, 5, 6}, {7, 8, 9}], there exists another symmetrical assignment by swapping the first two

groups, [{4, 5, 6}, {1, 2, 3}, {7, 8, 9}]. The LexLeader method eliminates the second solution using

lexicographical ordering constraint which ensures that the first group is lexicographically smaller

than the second, and the second smaller than the third. For example, we define the solution illus-

trated in Figure 2.1 as the canonical solution, To eliminate other symmetrical solutions, we post

symmetry-breaking constraints.

For group interchangeability, we post

Xw,g ≺ Xw,g′ ∀g < g′ ∈ G,∀w ∈ W (2.5)

where ≺ is a lexicographic-ordering. The solution in Figure 2.3 is no longer a feasible solution due

9

to Constraints 2.5. Similarly, week interchangeability can be eliminated by posting

Xw,1 ≺ Xw′,1 ∀w < w′ ∈ W. (2.6)

The solution in Figure 2.4 is eliminated.

These symmetry-breaking constraints are independent from other constraints in the model. They

are all basic building blocks, which can be re-used easily at other models. They are posted on

the model like the intersection constraints. We will further discuss the advantage of using these

constraints as well as some associated advanced modeling techniques.

2.1.4 Eliminating Value Symmetry with Dual Modeling

Players are interchangeable in the schedule, a property called value interchangeability. Swapping the

assignment between any pair of players preserves solution. The variableXw,g takes a subset of players

which are interchangeable. These symmetries can be eliminated through dual modeling[17, 44].

In essence, dual modeling takes a completely opposite perspective which interchanges the role of

variables and values. Value interchangeability now becomes variable interchangeability and can

therefore be eliminated by the LexLeader method.

In particular, in the dual modeling method, a set of dual variables is introduced, each associ-

ated with a value. The dual variable Yp takes a subset of week-group tuple, which indicates the

group golfer p plays (Line 2.7). The primal and dual set of variables are connected with chan-

neling constraints (Line 2.8). Interchangeability among players, which now becomes dual variable

interchangeability, is eliminated by lexicographical-ordering constraints (Line 2.9).

Yp ⊆ {(w, g) | g ∈ G, w ∈ W} ∀p ∈ P (2.7)

p ∈ Xw,g ⇔ (w, g) ∈ Yp ∀g ∈ G, w ∈ W, p ∈ P (2.8)

Yp ≺ Yp′ ∀p < p′ ∈ P (2.9)

Figure 2.7 illustrates the value of dual variables associated with players 3, 6, and 9. The second

column violates the symmetry breaking constraints as Y3 6≺ Y6. Hence the solution in Figure 2.5 is

10

removed by the dual-modeling method.

Figure 2.1 Figure 2.5
Y3 {(1, 1), (2, 3), (3, 3)} {(1, 3), (2, 3), (3, 1)}
Y6 {(1, 2), (2, 3), (3, 2)} {(1, 1), (2, 3), (3, 3)}
Y9 {(1, 3), (2, 3), (3, 1)} {(1, 2), (2, 3), (3, 2)}

Figure 2.7: The Dual Perspective of the Social Golfer Problem : Assigning Players to Groups.

2.2 Problems with Domain Representation

Set variables are rich modeling objects which inherently capture the problem semantics in its domain

representation. They eliminiate the needs of decomposing a natural object into arrays of finite-

domain variables. The problem structure is kept in the model, which allows propagators to make

full use of it. Nonetheless, due to the richness of set variables, they suffer a fundamental problem:

the potentially exponential domain size.

A variable domain stores all possible values the variable can take. It provides the most usual

means of communication between propagators. Propagators remove values from domains and they

are invoked one after another. In the finite-domain world, finite-domain variables usually maintain

an explicit list of domain values. However, set variables cannot apply the same technique, since it

usually contains an exponential number of domain values.

Consider the social golfer instance (10, 8, 4). There are 80 golfers in total, each variable Xw,g

has a cardinality of 8, which yields
(

80
8

)
= 28, 987, 537, 150 different sets of golfers. Even compact

bitwise representation will require a few GB of memory for storage per variable domain. Expressing

a set domain explicitly, like in the finite-domain world, is computationally expensive. Since the

inception of set variables in constraint programming, efforts have been made to achieve an effective

and efficient domain approximation or a compact set representation. The remaining of this chapter

gives an overview of different attempts of set domain representations and discusses their strength

and weakness.

11

2.3 Subset-Bound Domain

The Subset-Bound representation is the first attempt of approximating a set domain. Puget first

discussed it in [53], and Gervet formalized it into a generic framework and introduced basic reduction

rules [27, 26, 28]. The subset-bound domain approximates a set domain by maintaining two bounds:

the required set r which stores the elements that belongs to all solutions and the possible set p

which stores the elements that belongs to some solutions. Its domain is the set of sets that satisfy

these two bounds.

Definition 1 (sb-domain). A subset-bound domain (sb-domain) sb〈r, p〉 consists of a required set

r, and a possible set p, and represents the set of sets

sb〈r, p〉 ≡ {s | r ⊆ s ⊆ p}.

Example 1 (sb-domain). The sb-domain sb〈{3}, {1, 2, 3, 5}〉 denotes the set

{{3}, {1, 3}, {2, 3}, {3, 5}, {1, 2, 3}, {1, 3, 5}, {2, 3, 5}, {1, 2, 3, 5}}. Figure 2.8 illustrates the do-

main as a lattice under the ⊂ relation. All 8 sets shown are possible domain values. The required

set r = {3} is at the bottom, and the possible set p = {1, 2, 3, 5} is at the top. All sets in between

are domain values. �

{1,2,3} {1,3,5} {2,3,5}

{1,3} {2,3} {3,5}

{3}

{1,2,3,5}

Thursday, March 3, 2011

Figure 2.8: The lattice for X ∈ sb〈{3}, {1, 2, 3, 5}〉

Propagators communicate via variable domains. Propagators are invoked one after another, each

attempts to remove values from domains. The notion of consistency is introduced to characterize the

strength of propagators. It indicates which values it prunes. Perhaps the most common notion used

in the finite-domain CSP is Arc Consistency (AC), or more generally Generalized Arc Consistency

12

(GAC). Enforcing GAC ensures that every domain value belongs to some solutions. Consistency

notions are also defined over the sb-domain. Since it is an approximation, we cannot remove a

domain value directly from the domain, a weaker form of consistency is enforced: bound consistency.

Informally, sb-bound consistency ensures that all required sets rXi
contains all elements that belongs

to all solutions and all possible sets pXi
contains only elements that belongs to some solutions.

Conceptually, the two bounds can be obtained in the following way: all solutions of a constraint are

enumerated and listed explicitly, If an element belongs to a variable in all solutions, it goes to the

required set of that variable. Similarly, if an element does not belong to any solution, it is removed

from the possible set.

Definition 2 (sb-bound consistency). A set constraint C(X1, ..., Xm) (Xi are set variables using

the sb-domain) is said to be sb-bound consistent if and only if ∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, ..., xm)

∧ rXi =
⋂

∀1≤j≤m,xj∈d(Xj):C(x1,..,xm)

xi

∧ pXi
=

⋃
∀1≤j≤m,xj∈d(Xj):C(x1,..,xm)

xi

where d(Xi) = sb〈rXi , pXi〉 denotes the domain of Xi.

Example 2. Consider two sb-domain variables X ∈ sb〈{1}, {1, 3, 4}〉 , Y ∈ sb〈{}, {1, 2, 3}〉, and a

binary disjoint constraint X ∩ Y = ∅. The element 1 is in the required set of X, meaning that it

belongs to all domain values of X. The disjoint constraint forbids the variable Y from taking values

which contain the element 1. To enforce bound consistency, 1 is removed from the possible value of

Y , yielding Y ∈ sb〈{}, {2, 3}〉. Moreover, elements 3 and 4 in X’s domain belong to some but not

all solution. Hence, none of them belong to the required set. �

0/1 Characteristic Function The subset-bound domain has an equivalent representation using

a vector of finite-domain variables. This allows the subset-bound domain to seamlessly integrate

into finite-domain CP solvers. The key idea is that the subset-bound domain only represents the

information of whether an element belongs to the domain. Therefore we can use a 0/1-variable

for each element to indicate such information. In particular, the two domain values represent the

13

element’s state in the set variable domain: 0 means the element is excluded while 1 means includes

(in the required set). The three states of an element in the subset-bound domain can be represented

using a 0/1-variable. All we need is a n-length vector of 0/1-variable, one variable for each element.

A characteristic function f maps a 0/1-vector to a set.

Definition 3. A subset-bound domain can be defined as a vector of 0/1-variables [Xi],

01sb〈[l1, u1], ..., [ln, un]〉 ≡ {f([v1, ..., vn]) | ∀1 ≤ i ≤ n : li ≤ vi ≤ ui}

where the characteristic function f is defined as f([v1, ..., vn]) ≡ {e | ve = 1}, and Xi ∈ [li, ui].

Example 3. Using Example 1. The domain can be represented in the finite-domain world,

we have 01sb〈[0, 1], [0, 1], [1, 1], [0, 0], [0, 1]〉. Since elements 1,2,5 are possible elements, they

can either be included or excluded from the set. Its corresponding 0/1-variable Xi can take

either value 0 or 1. Similarly, X3 has to take 1 since element 3 is required, X4 has to take

0 since 4 is required. According to the definition, we have a set of characteristic vector

{[0, 0, 1, 0, 0], [1, 0, 1, 0, 0], [0, 1, 1, 0, 0], [0, 0, 1, 0, 1], [1, 1, 1, 0, 0], [1, 0, 1, 0, 1], [0, 1, 1, 0, 1], [1, 1, 1, 0, 1]}.

Each vector corresponds to a set listed in Example 1. �

Bound consistency can be defined in the same way. The lower bound of element le corresponds to

the required set, the element is required when le = 1, since the e-th position of all vectors has to be

1. Likewise, the upper bound ue corresponds to the possible set, the element is excluded from the

possible set (meaning it cannot belong to any solution) when ue = 0, the e-th position of all vectors

has to be 0.

Definition 4 (01sb-bound consistency). A 01set constraint C(X1, ..., Xm) (Xi is a vector of 0/1-

variables [Xi,1, ..., Xi,n]) is said to be bound consistent if and only if ∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, ..., xm)

∧ ∀1 ≤ e ≤ n, li,e =
(∧
∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

e ∈ xi
)

∧ ∀1 ≤ e ≤ n, ui,e =
(∨
∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

e ∈ xi
)

where 01sb〈[li,1, ui,1], ..., [li,n, ui,n]〉 is the 01sb-domain representation of set variable Xi.

14

Set variable can be represented in the finite-domain world. Accordingly, set constraint propagators

can be generated from its high-level declarative specification[64, 63] At this stage, it does not bring

any advantage in achieving stronger propagation, as there is an equivalent 0/1-vector representa-

tion. Despite of that, this leads to an very interesting observation: it takes a vector of finite-domain

variables to represent a set variable. That said, a unary set constraint is a global constraint in the

finite-domain world. The task of achieving complete (bound-consistent) propagators becomes com-

putationally hard, even for unary constraints. We will further discuss this interesting phenomenon

in later chapters.

2.4 Subset-Bound and Cardinality Domain

Cardinality constraints for set variables are very common in modeling. In the social golfer problem,

the cardinality of all variables are bounded to s, the size of a group. However, for the subset-bound

domain, it is hard to take the cardinality information into account. Since swapping two elements

in the possible set has no effect on the cardinality. The cardinality constraint can hardly achieve

any propagation. It is only used when the size of the possible or required set reaches the cardinality

bound, that is the time when the variable is almost bound.

Example 4. Consider X ∈ sb〈{}, {1, ..., 10}〉, and a cardinality constraint |X| = 2. Despite only

55 of the total 210 = 1024 domain values satisfies the cardinality constraint, neither the possible set

nor the required set can be updated in order to achieve a more approximated view of the domain.

Consider all 55 possible domain values, which is the set of the enumeration of all pairs, all elements

belong to some set and no element belongs to all. No propagation takes place. �

The subset-bound domain cannot capture cardinality information well. A terrible consequence is

that other constraints cannot take the cardinality constraint into account during propagation. This

severely weakens the strength of set variable.

Example 5. Suppose we have two subset-bound variables, X ∈ sb〈{1}, {1, 2, 3, 4}〉 and Y ∈

sb〈{}, {2, 3, 4, 5}〉, and three constraints, |X| = 3, |Y | = 3, and X ∩ Y = ∅. If we consider each

of the three constraints separately, they are all bound consistent. However, it is clear that there is

no solution since X and Y are disjoint and, according to the cardinality constraint, they require 6

15

different elements in total. If we were able to take all constraints into account at once, the disjoint

constraint would achieve stronger propagation. �

Azevedo [2] added a cardinality component to the subset-bound representation. It enables the set

domain to take the cardinality information into account during propagation as well as to update the

cardinality bounds. We call it the sbc-domain.

Definition 5 (sbc-domain). A subset-bound+cardinality domain (sbc-domain) sbc〈r, p, č, ĉ〉 consists

of 4 parameters, the required set r, the possible set p, the cardinality lower bound č, and the

cardinality upper bound ĉ. It represents the set of sets

sbc〈r, p, č, ĉ〉 ≡ {s | r ⊆ s ⊆ p ∧ č ≤ |s| ≤ ĉ}

Example 6 (sbc-domain). The sbc-domain sbc〈{3}, {1, 2, 3, 5}, 2, 3〉 represents the set { {1,3}, {2,3},

{3,5}, {1,2,3}, {1,3,5}, {2,3,5} }. Figure 2.9 illustrates the sbc-domain. The sets which doesn’t

satisfy the cardinality (those in gray) constraint are removed from the domain. �

{1,2,3} {1,3,5} {2,3,5}

{1,3} {2,3} {3,5}

{3}

{1,2,3,5}

{1,2,3} {1,3,5} {2,3,5}

{1,3} {2,3} {3,5}

{3}

{1,2,3,5}

! = 2

" = 3

Thursday, March 3, 2011

Figure 2.9: The lattice for X ∈ sbc〈{3}, {1, 2, 3, 5}, 2, 3〉

The bound consistency definition for the sbc-domain builds on the top of the sb-domain, conditions

for the cardinality component are added. They require that each cardinality bound is supported by

some solutions.

Definition 6 (sbc-bound consistency). A set constraint C(X1, ..., Xm) (Xi are set variables using

16

the sbc-domain) is said to be sbc-bound consistent if and only if ∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, ..., xm) (2.10)

∧ rXi
=

⋂
∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi (2.11)

∧ pXi
=

⋃
∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi (2.12)

∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t.
(
|xi| = ˇcXi

∧ C(x1, ..., xm)
)

(2.13)

∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t.
(
|xi| = ˆcXi

∧ C(x1, ..., xm)
)

(2.14)

where d(Xi) = sbc〈rXi
, pXi

, čXi
, ĉXi
〉 is the subset-bound+cardinality domain.

This definition imposes an interesting technical concern which is unseen in finite-domain variables.

The membership information (the required and possible set) and the cardinality restriction not

always work orthogonally. When a bound is updated, we may need to update other bounds to

achieve bound consistency.

Example 7. Consider a sbc-domain variable X ∈ sbc〈{1}, {1, 2, 3, 4}, 1, 3〉. Suppose the element

2 is added to the required set, it yields the domain sbc〈{1, 2}, {1, 2, 3, 4}, 1, 3〉. This is not bound

consistent since the cardinality lower bound č = 1 finds no support: none of the domain values has

size 1, since the required set’s cardinality is 2. The cardinality lower bound needed to be 2 in order

to achieve bound consistency. Now, we have X ∈ sbc〈{1, 2}, {1, 2, 3, 4}, 2, 3〉. �

There has been a lot of work concerning the use of the cardinality component. Sadler and Gervet gave

reduction rules for the pair-wise atmost1 global constraint[55], they showed that applying these rules

effectively reduces the search space. Bessière, Hebrard, Hnich, and Walsh systematically evaluates

the effect of adding the cardinality component to the subset-bound domain in global intersection

constraints[6]. It was shown that many global constraints become intractable when the cardinality

restriction presents. Van Hoeve and Sabharwal gave a bound-consistent propagator for the binary

atmost1 constraint over sbc-variables[70]. In [75], Yip, Van Hentenryck, and Gervet evaluated the

performance of sbc-domain variables on network deployment problems, a highly symmetrical problem

which had been used to evaluate the effectiveness of different symmetry breaking techniques. The

paper showed many global constraints become intractable when the cardinality is taken into account.

17

Domain reduction rules based on cardinality restriction are introduced to boost propagation.

The introduction of the cardinality component is a key milestone in the research on set variables.

It dramatically diverges from the finite-domain variables. It encapsulates the cardinality constraint

in the domain representation, enabling other constraints to take into account the cardinality in-

formation. Bound-consistent propagators are, by definition, required to take such information into

consideration and hence stronger propagation is achieved. Bound updates may trigger domain-

reduction operations on other bounds, which is not a common phenomenon in the finite-domain

world. This further illustrates the essence of the use of set variables: It allows model to keep the

problem structure and enables propagators to exploit its semantics.

2.5 Hybrid Domain

We have discussed a few representations whose primarily goal is to capture membership and car-

dinality information. But, they are unable to directly capture some domain information: ordering

constraints. Ordering constraints are very common constraint for eliminating symmetry, which many

set-CSPs exhibit.

We demonstrated four kinds of symmetry in the social golfer problem: positions within a group

are interchangeable, groups within a week are interchangeable, weeks are interchangeable, and golfers

are also interchangeable. The first symmetry type is eliminated by using set variables, the rest can

be removed by symmetry-breaking constraints. Lines 2.5, 2.6, and 2.9 are ordering constraints that

remove non-canonical solutions. One of the most common ordering constraints is the lexicographical

ordering constraint on the 0/1-characteristic vector of the set variable.

Now, it comes to the question of whether or not the set variable domain representation is good

enough to capture the propagation result of the ordering constraint. It appears that if the domain

cannot capture the ordering information, some propagations may be hindered.

Example 8. Consider a set variable X ∈ sbc〈{}, {1, 2, 3, 4, 5}, 3, 3〉, and two lexicographical ordering

constraints {1, 4, 5} ≤lex X and X ≤lex {2, 3, 4}. Suppose two constraints are not considered at the

same time, the domain of X is bound consistent for both constraints, no propagation is achieved.

However, when two constraints are considered at once, that possible solutions for X is {1, 4, 5} and

{2, 3, 4}, the element 4 belongs to all solutions hence should be included into the required set. �

18

If the domain representation takes the lexicographical information into account, there is a chance of

getting stronger propagation. Sadler and Gervet observed this and proposed to add a lexicographical

component to the subset-bound+cardinality domain[56, 57]. It is called the hybrid domain.

Definition 7 (hybrid domain). A hybrid domain hybrid〈r, p, č, ĉ, l, u〉 adds a lexicographic compo-

nent onto the sbc-domain, it consists of 6 parameters, the required set r, the possible set p, the

cardinality lower bound č, the cardinality upper bound ĉ, the lexicographical lower bound l, and the

lexicographical upper bound u. It represents the set of sets

hybrid〈r, p, č, ĉ, l, u〉 ≡ {s | r ⊆ s ⊆ p ∧ č ≤ |s| ≤ ĉ ∧ l ≤θ s ≤θ}

where θ is a total order. In [57], θ is defined as the lexicographical ordering in which the largest

element is the most significant position.

2.6 Reduced Ordered Binary Decision Diagram Domain

The subset-bound domain, as well as all its variants, aims at obtaining a precise approximation of

the set domain. However, the set domain, by definition, contains an exponential number of values, it

is impossible for these bounds, which are polynomial in size, to achieve a precise domain in general.

Hawkings, Lagoon, and Stuckey presented a dramatically orthogonal approach for modeling the

set domain which allows efficient domain propagation [33, 34]. They proposed to use reduced ordered

binary decision diagram(ROBDD) to compactly represent set domains as well as set constraints.

Under ROBDD, it is possible to attain an exact, and usually compact, domain representation. It

allows the solver to get an exact view on the problem and achieve domain propagation. This is

unprecedented approach in set variables. The key idea of the proposal is that the membership

information of an element (i.e. e ∈ s) can be neatly encapsulated with a binary decision variable. A

boolean formula, which is a conjunction of a set of binary variables, represents a set. A set domain

is, accordingly, disjunction of a set of boolean formula. ROBDD is a data-structure for manipulating

boolean formulas, its size is usually compact since the binary decision diagram is reduced as many

of the decision variables can be combined.

We illustrate the basic idea of ROBDD using the example given in [34]. Suppose we have a set

19

X3

X1

X2

X1

X2 X2

X2

✓

X1

X2 X2

X3 X3 X3 X3

!"

X1

X2 X2

!"

X3

Figure 2.10: ROBDD: X ∈ {{1}, {1, 3}, {2, 3}}. Solid lines correspond to true, dotted lines false.
Left: Original; Right: Reduced Ordered BDD.

variable X ∈ {{1}, {1, 3}, {2, 3}}} and would like to represent it using binary decision diagrams. We

first discuss how to represent a set using a boolean formula and then the domain as a disjunction

of a set of formulas. Similar to the 0/1-vector transformation of the sb-domain, we use a vector of

binary variable to represent a set, i.e. Xe = 1 ⇔ e ∈ X. The set {1, 3} is, therefore, equivalent to

the boolean formula X1 ∧ ¬X2 ∧X3. The set domain is a disjunction of all these formulas. Figure

2.10 (left) illustrates the set domain of X using boolean formulas. Solid lines correspond to Xe = 1,

whilst dotted lines Xe = 0. Paths lead to the 4 box are allowed domain values and those lead to

8 are forbidden. Indeed, a lot of internal nodes of the diagram serves no function. For example,

in the leftmost X3, both of the outgoing arcs point to the 8 box, indicating under that particular

path, no matter what value X3 is, the value is not allowed. The leftmost X3 node can be eliminated

and the dotted outgoing arc of the leftmost X2 node can point directly to 8. The reduced ordered

binary decision diagram data structure provides a mechanism to reduce the size of the diagram by

eliminating excessive and redundant nodes. Figure 2.10 (right) illustrates the ROBDD of the domain

of X. This is the key of ROBDD: with a very compact representation, we know exactly which set is

in the variable domain. Domain propagation is achievable.

In addition, the ROBDD approach not only allows exact domain representation, but also the

flexibility of implementing constraints. ROBDDs also represent constraints. This is from the ob-

servation that most constraints can be transformed to boolean formulas. We get a propagator in

ROBDD simply by specifying the boolean formula of the constraint based on the membership deci-

sion variables. It avoids to laboriously work of implementing constraint-specific propagators. More

20

Subset-Bound ROBDD
(and its variants)

Propagation Loose Very Precise
Space O(n) Potentially Exponential

Efficiency Fast Potentially Slow
Convergence Fast Potentially Slow

Figure 2.11: Comparison over Different Set Domain Representations. (n is the universe size)

generally, primitive ROBDD-based constraints can join together and form a global constraint which

allows stronger propagation.

The same paper proposed several amendments and variants to the ROBDD representation. Some-

times domain propagation may be too costly to find a solution and the diagram size may explode,

the solver may resolve the problem by restricting its propagation strength to set bound reasoning.

On the other hand, inspired by the cardinality and lexicographical components introduced in the

subset-bound domains, it was also shown that these bound can be obtained from and propagated in

the ROBDD domain trivially. Despite of having a potentially exponential storage size, the ROBDD

approach gives very promising results on various standard benchmarks over previous work on the

subset-bound domains as well as its variants.

Another interesting extension of the BDD technique is proposed by Gange, Stuckey, and La-

goon. They incorporate a BDD-based set solver with the learning abilities of SAT solvers[35, 24].

Domain reductions are performed by binary decision diagrams. After the BDD propagation, the

corresponding clauses are generated and sent to the SAT solver for search and conflict analysis. The

hybrid, BDD + SAT, approach gives even more promising results than the ROBDD original paper,

and beats the state-of-the-art set solvers on three standard benchmarks.

2.7 Conclusion

A set variable domain may contain an exponential number of values. It is impossible to represent

a set domain by explicitly enumerating all domain values. Much effort has been made on either

approximating the set domain or making it as compact as possible. We presented the development of

the domain representation of set variables over the past 20 years. The subset-bound representation is

the first attempt and is a smooth and direct transition from the finite-domain world. A few additional

21

components has been proposed to strengthen it. It is available in most modern constraint solvers.

On the other hand, an exact domain representation was proposed using binary decision diagrams.

Moreover, this approach allows global constraints be implemented by specifying its boolean formula,

which greatly simplifies the work as well as guarantees correctness. Despite of the potentially

exponential space it uses, the approach outperforms the subset-bound domain across a various of

benchmarks. Figure 2.11 gives a high level comparison of the two research directions. The subset-

bound domain is fast and cheap but imprecise, whilst the ROBDD domain is heavy but accurate. It

raises a research question of whether there exists something in between: that is not too heavy but

reasonably accurate. We will address the solution in the next section.

22

Chapter 3

Length-Lex Domain

3.1 Overview

In the last chapter, we reviewed several domain representations. The most common domain rep-

resentation is the subset-bound domain, whose primarily goal is to capture the membership con-

straint, i.e., e ∈ X. However, this representation has inherent difficulties in handling cardinality

and lexicographic constraints, which are very common and important in modeling. The length-lex

representation was proposed to tackle this problem in an orthogonal perspective[29]. While the

subset-bound domain stresses on the membership information, the length-lex domain takes a dual

perspective and encodes the cardinality and lexicographical information directly. The advantages of

using the length-lex representation is fourfold:

1. it features a total ordering, which makes it possible to enforce bound consistency;

2. it directly captures cardinality and lexicographical information which are common constraints

for modeling combinatorial problems;

3. it takes linear space;

4. it allows propagators to enforce bound consistency in polynomial time (assuming checking

feasibility in the length-lex domain is tractable).

23

Enforcing bound consistency is essential to efficiently solve a problem. Bounds represent solutions

to the constraint as, when the propagator decides that the bound belongs to no solution, a good

representation should provide a mechanism for removing the bound.

The subset-bound domain has a notion of bound consistency too but in a weak sense. A bound

in the subset-bound domain simply reflects the state of an element. It is weaker than the length-lex

bound which is a domain value. The length-lex representation is proposed to remedy the problem

of the weak bound-consistency definition in subset-bound domain. We will further illustrate the

difference after formally introducing the length-lex domain.

3.2 The Length-Lex Domain

Notations For simplicity, we assume that sets take their values in a universe U(n) of integers

{1, . . . , n} equipped with traditional set operations. n denotes the size of a universe. Elements are

denoted by letters e, f , possibly subscripted and modified as f̌ , | f and f̂ to denote the minimum,

mean and maximum value respectively. Sets are denoted by l, u, s, t, w, x, y, z. A subset s of U(n)

of cardinality c is called c-set and is denoted as {s1, s2, . . . , sc} where (s1 < s2 < . . . < sc). The

notation si..j is a shorthand for {si, si+1, . . . , sj}.

Length-Lex Representation The length-lex ordering �, proposed in [29], totally orders sets

first by cardinality and then lexicographically.

Definition 8 (Length-Lex Ordering). The length-lex ordering is defined by

s � t iff s = ∅ ∨ |s| < |t| ∨ |s| = |t| ∧ (s1 < t1 ∨ s1 = t1 ∧ s \ {s1} � t \ {t1})

Its strict version is defined by s ≺ t iff s � t ∧ s 6= t.

Example 9 (Length-Lex Ordering). Given U(4) = {1, . . . , 4}, we have ∅ ≺ {1} ≺ {2} ≺ {3} ≺

{4} ≺ {1, 2} ≺ {1, 3} ≺ {1, 4} ≺ {2, 3} ≺ {2, 4} ≺ {3, 4} ≺ {1, 2, 3} ≺ {1, 2, 4} ≺ {1, 3, 4} ≺

{2, 3, 4} ≺ {1, 2, 3, 4}. Figure 3.1 depicts the length-lex ordering. �

The length-lex ordering is total. The ordering relation ≺ is defined between any pair of sets. One

way to view this new ordering is that we map every sets to integer. That the empty set {} is mapped

24

{1,2,3,4}

{2,3,4}{1,3,4}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

{}

Wednesday, March 9, 2011

Figure 3.1: The Length-Lex Ordering for U(4).

to 0, the set {1} to 1, and on. It makes defining an interval of sets possible, which is laid down as

the foundation for a domain representation that is capable to achieve bound consistency.

Definition 9 (Length-Lex Domain). The length-lex domain (ll-domain) ll〈l, u, n〉 consists of a lower

bound l, an upper bound u, and a universe size n. It contains all sets (inclusively) in the universe

U(n) between l and u in the length-lex ordering.

ll〈l, u, n〉 ≡ {s ⊆ U(n) | l � s � u}

Sometimes we also call it a length-lex interval.

Example 10 (Length-Lex Domain). The length-lex domain ll〈{1, 3}, {1, 2, 4}, 4〉 represents the set

of sets {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}}. �

Because the length-lex ordering defines a total order on sets, it is possible to enforce bound consis-

tency of set constraints. Informally, bound consistency requires both bounds appear in a solution to

the constraint, which corresponds to the traditional notion of bound consistency on finite-domain

variable.

25

Definition 10 (ll-Bound Consistency). A set constraint C(X1, ..., Xm) (Xi are ll-domain set vari-

ables) is said to be ll-bound consistent if and only if ∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) : C(x1, ..., xi−1, lXi
, xi+1, ..., xm)

∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) : C(x1, ..., xi−1, uXi
, xi+1, ..., xm)

where d(Xi) = ll〈lXi , uXi , nXi〉 denotes the domain of Xi.

Example 11 (ll-Bound Consistent). Consider the unary constraint C(X) ≡ 1 ∈ X, the ll-domain

ll〈{1, 3}, {1, 2, 4}, 4〉 is bound consistent because both the lower bound {1, 3} and upper bound

{1, 2, 4} are solutions to the constraint. �

Example 12 (Not ll-Bound Consistent). Consider the unary constraint C(X) ≡ 2 ∈ X, the ll-

domain ll〈{1, 3}, {1, 2, 4}, 4〉 is not bound consistent. Since the lower bound {1, 3} is not a solution

to the constraint. �

Enforcing Bound Consistency To enforce bound consistency, we find the first successor of the

lower bound (respectively, the first predecessor of the upper bound) which satisfies the constraint.

Figure 3.2 illustrates enforcing bound consistency for a primitive unary constraint C(X) ≡ 2 ∈ X,

the ll-domain in Example 12 is used. The lower bound {1, 3} is not a solution to the constraint C.

To enforce bound consistency, we need to find a new bound that satisfies the constraint. Recall that

every (sound) propagator should not remove any solution, since otherwise we are transforming the

problem. Therefore, the goal here is to find the first successor of the lower bound {1, 3} which is a

solution to the constraint. The easiest way would be to enumerate all successors, one at a time. The

set {1, 4} is checked against the constraint, and it is not a solution. Then the set {2, 3} is checked,

it is a solution. Hence, the lower bound of the domain is updated to {2, 3}. Two sets, which are

not solutions to the constraint, are removed. After enforcing bound consistency, the domain of X

becomes ll〈{2, 3}, {1, 2, 4}, 4〉.

Contrary to the subset-bound domain whose primarily goal is to capture the membership infor-

mation, the length-lex domain takes a dual perspective and focuses on the cardinality and lexico-

graphical information. As a result, not all subset-bound information is preserved in the length-lex

domain representation.

26

{1,2,3,4}

{2,3,4}{1,3,4}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

{}

{1,2,3,4}

{2,3,4}{1,3,4}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

{}

{1,2,3,4}

{2,3,4}{1,3,4}{1,2,4}{1,2,3}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4}

{}

Wednesday, March 9, 2011

Figure 3.2: C(X) ≡ 2 ∈ X. Left: Original domain ll〈{1, 3}, {1, 2, 4}, 4〉. Right: Domain after
enforcing bound consistency ll〈{2, 3}, {1, 2, 4}, 4〉

Example 13 (Length-Lex is an approximation). Consider a length-lex set variableX ∈ ll〈{1, 3}, {1, 2, 4}, 4〉,

and the unary constraint 1 ∈ X. It is bound consistent as both bounds are solution to the con-

straint. Nonetheless, three domains values in the middle of the interval, {2, 3}, {2, 4}, {3, 4}, are not

solutions to the constraint. However, under the definition of length-lex, there is no way to remove

such inconsistent values. �

Another key difference between the length-lex and subset-bound domain is that a bound in

length-lex is itself a solution to the constraint, whilst a bound in the subset-bound domain only

indicates whether an element belongs to some (or all) solution. The length-lex bound, in a loose

sense, is much stronger than the bound in the subset-bound domain. We illustrate how important

it is to have a domain representation whose bounds are solutions.

Example 14 (Why Bound Consistency is Important). Consider a problem consists of a set vari-

able whose domain contains all 3-set in U(6), and two unary intersection constraint C1(X) ≡

|X ∩ {1, 2, 3}| ≤ 1 and C2(X) ≡ |X ∩ {4, 5, 6}| ≤ 1. Clearly, there is no solution since X can

take at most one element from {1, 2, 3}, and one from {4, 5, 6}, however X has to take three el-

ements from {1, .., 6}. We demonstrate the difference in propagation between the length-lex and

subset-bound+cardinality domain in Figure 3.3. For simplicity, and for the rest of this thesis, we

always assume the subset-bound domain has a tight cardinality component. Initially, both domain

representations are identical.

At step 1, C1 is invoked. The lower bound of the ll-domain is not a solution and therefore

removed from the domain. Its first feasible successor is {1, 4, 5}. On the other hand, consider the

subset-bound domain, the set of all feasible domain values for C1 are {1, 4, 5}, {1, 4, 6}, {1, 5, 6},

27

Step Length-Lex Domain Subset-Bound Domain
X ∈ ll〈{1, 2, 3}, {4, 5, 6}, 6〉 X ∈ sbc〈{}, {1, 2, 3, 4, 5, 6}, 3〉

1 C1 ⇓ C1 ⇓

X ∈ ll〈{1,4,5}, {4, 5, 6}, 6〉 X ∈ sbc〈{}, {1, 2, 3, 4, 5, 6}, 3〉

2 C2 ⇓ C2 ⇓

X ∈ ll〈{2,3,4},{2,3,6}, 6〉 X ∈ sbc〈{}, {1, 2, 3, 4, 5, 6}, 3〉

3 C1 ⇓

⊥

C1(X) ≡ |X ∩ {1, 2, 3}| ≤ 1 and C2(X) ≡ |X ∩ {4, 5, 6}| ≤ 1.

Figure 3.3: Length-Lex Domain Versus Subset-Bound Domain.

{2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, and {3, 5, 6}. None of the elements belongs to all solu-

tions nor no solution. Each of them belongs to the possible set and none of them belongs to the

required set. According to the bound consistency definition of the subset-bound domain, none of

the bounds need to be updated. The subset-bound domain is unchanged. Despite the fact that only

9 of the
(

6
3

)
= 20 domain values are solution to the constraint, no propagation can be achieved.

There is no way for the subset-domain to capture a witness to the constraint, which can be used for

inference by other constraints. After step 1 in which the constraint C1 is propagated, the length-lex

domain is updated while the subset-bound domain remain unchanged.

At step 2, a similar constraint C2 is propagated. The length-lex domain is again updated since

both of its bound are not solutions. The subset-bound domain for the same reasons as before is not

pruned.

Indeed, after step 2, all domain values of X starts with the prefix {2, 3} and all of them violates

constraint C1. The domain is emptied and the problem is therefore inconsistent. �

This is the key difference between the length-lex and subset-bound domain. The length-lex repre-

sentation features a total ordering which enables propagators to enforce bound consistency where

bounds are solutions to the constraint. The bounds are witnesses and are captured in the domain

representation. Domains are the primary mean of communication between constraints. By being

28

Subset-Bound Length-Lex ROBDD
(and its variants)

Propagation Loose Strong Very Precise
Space O(n) O(c) Potentially Exponential

Efficiency Fast ? Potentially Slow
Convergence Fast ? Potentially Slow

Figure 3.4: Comparison over Different Set Domain Representations. (n is the universe size, c is the
cardinality upper bound.)

able to capture witnesses as well as to prune some of the infeasible values (contrarily to infeasible

elements), other constraints can take advantage of the reduced domain and achieve strong propaga-

tion. This gives the length-lex domain a huge advantage over the traditional subset-bound domain.

Indeed, this leads to some very interesting behavior in the constraint propagation algorithm too.

We will further discuss it in details in Chapter 7.

3.3 Conclusion

In this chapter, we introduced the length-lex representation introduced by Gervet and Van Henten-

ryck [29]. The newly proposed domain representation offers a few theoretical advantages over earlier

techniques on set variables: it takes linear space, it achieves bound consistency, and it directly cap-

tures cardinality and lexicographical information. We gave an example where the length-lex domain

detects inconsistency during constraint propagation while the subset-bound domain prunes noth-

ing. It shows the importance of capturing a witness in the domain representation, which enables

constraints to communicate effectively. Moreover, the same paper gave linear time propagators for

some primitive unary constraints. The comparison is shown in Figure 3.4.

It is Where Everything Start The thesis is built on the foundation which Gervet and Van

Hentenryck laid in [29]. A new representation is proposed, it is shown to offer some theoretical

advantages, and very primitive operations are defined. The goal of this thesis is to support the

following statement.

To show that length-lex is an effective domain representation

for constraint programming over sets.

29

To support the claim, we attempt to answer all following questions:

1. Are there efficient bound-consistent propagators for other unary and binary constraints?

2. Are there generic ways of implementing bound-consistent propagators for length-lex variables?

3. Since the length-lex domain directly captures lexicographic information, how shall we utilize

it with symmetry-breaking constraints?

4. Are there global constraints that exploit the length-lex domain?

5. Is it possible to integrate the length-lex domain with earlier work in constraint programming?

6. What is the empirical performance of the length-lex representation on standard benchmarks?

30

Chapter 4

Unary Length-Lex Constraints

4.1 Overview

In last chapter, we introduced the length-lex domain representation. Contrarily to the traditional

subset-bound domain, it takes an orthogonal perspective and defines a total ordering which pri-

marily captures the cardinality and lexicographic information. We showed that the newly proposed

representation has several advantages over the traditional one, it enables stronger propagation and

better communication between propagators. Gervet and Van Hentenryck gave specialized bound-

consistent algorithms for a few primitive constraints and some domain reduction rules[29]. A few

questions still remain open: Does there exist an efficient bound-consistent propagator in general? If

so, from a software engineering perspective, is there a generic method to implement it? This chapter

addresses these questions. We focus on unary propagators. Techniques generalizing to higher arity

propagators are introduced in the next chapter.

To enforce bound consistency, the propagator has to make sure that both the lower and upper

bounds of the length-lex domain belongs to a solution. Whenever a bound (say, the lower bound)

is infeasible, violating the bound-consistency requirement, a bound-consistent propagator has to

update the bound and meet the requirement. The propagator cannot remove any solution from the

domain, since otherwise it is transforming the problem and potentially making a consistent problem

inconsistent. It has to find the first successor of the lower bound which is a solution to the constraint,

31

and set this particular successor as the new lower bound. In this way, the propagator is sound and

complete as no solution is removed and the bound is a solution to the constraint.

The Key is to Do It Quick A naive approach is to enumerate every successor of a bound and

verify if it satisfies the constraint. Implementing such naive approach is trivial and generic, since

all we require is to test the constraint. Since set domains usually contain an exponential number

of values, naively enumerating everything is computationally expensive. Indeed, it can be avoided

by taking into account the key observation that consecutive sets in the length-lex ordering usually

share a lot of common properties. By exploiting these properties, a propagator can consider a chunk

of sets at a time.

Briefly, the propagator partitions a length-lex interval into a (polynomial) number of chunks of

sets. It evaluates one chunk at a time and locates the first consistent chunk. It then constructs

the smallest feasible value within the chunk using a binary search. This method dramatically im-

proves the propagator efficiency. In particular, a generic propagator implemented in this way takes

O(αc log n) time, where c is the cardinality of the upper bound, n is the universe size, and O(α) is

the running time for the constraint-specific checker.

We first present a simple partition method based on the subset-bound domain and we argue that

it is possible to use a subset-bound propagator as a black-box to implement a length-lex propaga-

tor. Afterwards, we introduce a generic framework for implementing a bound-consistent length-lex

propagator. We propose a novel special class of length-lex intervals, PF-intervals, which enjoy some

nice closure properties of the subset-bound domain and exploit the strength of length-lex. A generic

efficient propagator is then given which only assumes a feasibility checking routine for a PF-interval.

Of course, more specialized propagator can be implemented under the above framework, which we

will briefly discuss at last.

4.2 Partition into Subset-Bound Lattices

In this section, we illustrate how to partition a length-lex interval into a set of subset-bound lattices

from which we can implement length-lex propagators using their subset-bound counterparts as a

blackbox.

32

A subset-bound+cardinality lattice records essentially the required and possible elements and the

cardinality restriction. Figure 2.9 shows such a lattice. Some length-lex intervals can be transformed

into a subset-bound lattice.

Example 15. A length-lex interval ll〈{1, 3, 4}, {1, 5, 6}, 6, 3〉 represents the set of sets

{{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}}. The interval is equivalent to a subset-bound

lattices sb〈{1}, {1, 3, .., 6}, 3〉. Notice that the required set is essentially the longest common prefix

of all sets. �

Reference [13] points out that a length-lex interval can be partitioned into a linear number of sub-

intervals which has an equivalent subset-bound lattices.

Example 16 (Partitioning Length-Lex Interval into a Set of Subset-Bound Lattices). A length-lex

interval ll〈{1, 2, 6, 7}, {1, 3, 6, 8}, 8〉 can be partitioned into some sub-intervals such that each sub-

interval can be denoted as a subset-bound lattice. The decomposition is illustrated in Figure 4.1

and as follows:

ll〈{1,2, 6, 7}, {1,2, 7, 8}, 8〉 = sbc〈{1, 2}, {1, 2, 6, 7, 8}, 4〉

ll〈{1,3,4, 5}, {1,3,4, 8}, 8〉 = sbc〈{1, 3, 4}, {1, 3, 4, 5, 6, 7, 8}, 4〉

ll〈{1,3,5, 6}, {1,3,5, 8}, 8〉 = sbc〈{1, 3, 5}, {1, 3, 5, 6, 7, 8}, 4〉

ll〈{1,3,6, 7}, {1,3,6, 8}, 8〉 = sbc〈{1, 3, 6}, {1, 3, 6, 7, 8}, 4〉

In the figure, the horizontal line depicts the length-lex interval. Each rectangle corresponds to a

partition, which is also a subset-bound lattice. �

As a consequence, one can implement bound-consistent propagators for length-lex domains by using

subset-bound propagators as a black-box. We give a sketch of this method. For instance, given a

subset-bound propagator for the unary constraint 5 ∈ X which is a boolean feasibility checker, we

can implement a length-lex propagator. We first decompose a length-lex interval into sub-intervals

as demonstrated in Example 16. Then we transform each sub-interval into a subset-bound lattice,

and invoke the subset-bound propagator for each lattice. The subset-bound propagator serves as

a black-box. Consider the first lattice sbc〈{1, 2}, {1, 2, 6, 7, 8}, 3〉, there is no solution since none

33

{1,3,4}

{1,3,4,5,6,7,8}

{1,3,4,5} ...

{1,3,5}

{1,3,5,6,7,8}

{1,3,5,6} ...

{1,3,6}

{1,3,6,7,8}

{1,3,6,7} ...

{1,2,6,7} {1,2,6,8} {1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} {1,3,4,8} {1,3,5,6} {1,3,5,7} {1,3,5,8} {1,3,6,7} {1,3,6,8}

{1,2,6,7} {1,2,6,8} {1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} {1,3,4,8} {1,3,5,6} {1,3,5,7} {1,3,5,8} {1,3,6,7} {1,3,6,8}

{1,2}

{1,2,6,7,8}

{1,2,6,7} ...

{1,3,4}

{1,3,4,5,6,7,8}

{1,3,4,5} ...

{1,3,5}

{1,3,5,6,7,8}

{1,3,5,6} ...

{1,3,6}

{1,3,6,7,8}

{1,3,6,7} ...

Thursday, March 10, 2011

Figure 4.1: Decomposing a Length-Lex Interval into Subset-Bound Lattices

of sets in this lattice satisfy the constraint 5 ∈ X. Then chuck of sets in the length-lex interval

corresponding to the lattice can therefore be removed. Afterwards, we consider the second lattice

sbc〈{1, 3, 4}, {1, 3, 4, 5, 6, 7, 8}, 3〉, and clearly there is a solution. Such set can be “constructed” by

appending elements to the prefix. We enumerate from the smallest free element (elements in the

possible set but not in the required set), add it to the required set and invoke the black-box. If the

black-box indicates there is a solution, we can put it to the required set, otherwise, the element can

be excluded.

This method invokes the subset-bound propagator at most O(cn) times where c is the variable’s

cardinality and n is the size of universe. It demonstrates length-lex propagators can be implemented

generically using subset-bound propagators (which is available in most modern constraint program-

ming solver). Nonetheless, it is by no means an effective algorithm. The number of partitions formed

is not a polynomial to the cardinality.

Theorem 1. There does not exists a subset-bound decomposition X1
sbc, .., X

O(c)
sbc of the length-lex

interval Xll = ll〈l, u, n〉 such that Xll ≡ ∪O(c)
i=1 X

i
sbc where c = |u|.

Proof. Consider Xll = ll〈{1, 2, ..., c}, {n/2, n − c + 2, ..., n − 1, n}, n〉, the interval is equivalent all

c-sets begins with elements in range [1, .., n/2], which is

{
s | 1 ≤ s1 ≤ n/2 ∧ s ⊆ U(n) ∧ |s| = c

}
It implies that some of the subset-bound lattices has be the set of all c-sets with smallest element

belongs to a set. Such semantics is not captured by the sbc-domain.

Despite of the drawback, this method highlights the beauty of decomposition of length-lex interval.

34

{1,3,4,5} {1,3,4,6} {1,3,4,7} {1,3,4,8} {1,3,5,6} {1,3,5,7} {1,3,5,8} {1,3,6,7} {1,3,6,8}

{1,2,6,7} {1,2,6,8} {1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} {1,3,4,8} {1,3,5,6} {1,3,5,7} {1,3,5,8} {1,3,6,7} {1,3,6,8}

{1,3,4}

{1,3,4,5,6,7,8}

{1,3,4,5} ...

{1,3,5}

{1,3,5,6,7,8}

{1,3,5,6} ...

{1,3,6}

{1,3,6,7,8}

{1,3,6,7} ...{1,3,4}

{ 1,3 } + { [4|5|6] } + { ... }
Prefix First rest

Thursday, March 10, 2011

Figure 4.2: The Elegant PF-interval

4.3 Partition into PF-Intervals

This section refines the subset-bound decomposition, making it more efficient by taking advantage

of the length-lex semantics. We propose the PF-interval. It is a special class of length-lex interval

which enjoys some nice closure properties of a subset-bound lattice. The PF-interval offers two

fundamental advantages. First, every length-lex interval can be decomposed into O(c) PF-intervals.

Second, reasoning on PF-intervals is as easy as subset-bound lattice, only a minor modification on

the subset-bound black box is required. The PF-interval is the core component of many efficient

length-lex operations, most bound-consistent propagators presented in this and the next chapter are

based on it.

The key observation is that, in the subset-bound decomposition, consecutive subset-bound lat-

tices look alike. Consider the last three lattices in Example 16, which are also shown in Figure 4.2,

there are many similarities betweens sets in these lattices. Consider the bold elements {1, 3}, it is

the common prefix of all sets. Immediately following the prefix is an element from the set {4, 5, 6},

which is in italics. Afterwards, we fill the remaining empty slots in the set by greater elements drawn

from the universe.

We conceptualize this notion and define the PF-interval. A PF-interval in a special class of

length-lex interval which denotes all c-sets that begin with the same prefix, immediately followed by

one element f of a set F (the F-set), and the rest being filled by elements greater than f .

Definition 11 (PF-Interval). Let P be a set and f̌ , f̂ , n and c be integers. A PF-interval

35

pf〈P, f̌ , f̂ , n, c〉 satisfies

(max(P) < f̌) ∧ (f̌ ≤ f̂) ∧ (n− f̂ + 1 ≥ c− |P |)

and denotes the set of sets

{
P] {f}] s

∣∣∣f̌ ≤ f ≤ f̂ ∧ s ⊆ {f + 1, . . . , n} ∧ |P] {f}] s| = c
}
.

Theorem 2. PF-interval is a special class of length-lex interval. We have,

pf〈P, f̌ , f̂ , n, c〉 ≡ ll〈P] {f̌ , f̌ + 1, ..., f̌ + c′ − 1}, P] {f̂}] {n− c′ + 2, ..., n}, n〉

where c′ = c− |P | is the cardinality after the prefix.

Example 17 (PF-interval). PF-interval pf〈{1, 2}, 4, 5, 8, 5〉 denotes the set of sets
{
{1, 2, 4, 5, 6},

{1, 2, 4, 5, 7}, {1, 2, 4, 5, 8}, {1, 2, 4, 6, 7}, {1, 2, 4, 6, 8}, {1, 2, 4, 7, 8}, {1, 2, 5, 6, 7}, {1, 2, 5, 6, 8}, and

{1, 2, 5, 7, 8}
}

.

Example 18 (PF-interval). In Example 16, the union of last 3 lattices contains all 4-sets that begin

with {1, 3}, immediately followed by 4, 5 or 6, and completed by elements in {4, .., 8}. Therefore, it

can be expressed as a PF-interval pf〈{1, 3}, 4, 6, 8, 4〉. It is also shown in Figure 4.2.

The elegance structure of PF-interval enjoys three properties. First, it is very similar to a subset-

bound lattices, making its inferences almost identical to subset-bound domains. Second, the F-set

is the most significant element after the required prefix, which is the key to capture lexicographical

information. Third, any length-lex interval can be decomposed into a linear number of PF-intervals.

However, not all length-lex intervals are PF-interval.

Example 19 (Counter-Example). Consider the length-lex interval ll〈{1, 3, 5, 7}, {1, 3, 6, 8}, 8〉. It

cannot be captured by a PF-interval. Since it does not contain all sets with a third element in {5, 6},

in particular, {1, 3, 5, 6} is not in the length-lex interval.

We now describe how a length-lex interval can be efficiently partitioned into O(c) number of ordered

PF-intervals.

36

ll<{1,2,5,6},{4,5,7,8},8>

ll<{1,2,5,6},{1,6,7,8},8> ll<{2,3,4,5},{3,6,7,8},8> ll<{4,5,6,7},{4,5,7,8},8>
Head Body Tail

pf<{},2,3,8,4> pf<{4,5},6,7,8,4>Head.Body
ll<{1,3,4,5},{1,6,7,8},8>

Head.Head
ll<{1,2,5,6},{1,2,7,8},8>

pf<{1},3,6,8,4>pf<{1,2},5,7,8,4>

ll<{1,2,5,6},{4,5,7,8},8>

ll<{1,2,5,6},{1,6,7,8},8> ll<{2,3,4,5},{3,6,7,8},8> ll<{4,5,6,7},{4,5,7,8},8>
Head Body Tail

pf<{},2,3,8,4> pf<{4,5},6,7,8,4>Head.Body
ll<{1,3,4,5},{1,6,7,8},8>

Head.Head
ll<{1,2,5,6},{1,2,7,8},8>

pf<{1},3,6,8,4>pf<{1,2},5,7,8,4>

Thursday, March 10, 2011

Figure 4.3: Decomposing Length-Lex Interval into PF-Intervals

4.4 The Decomposition

We present an algorithm that takes a length-lex interval and decomposes it and returns an ordered

list of PF-intervals. We illustrate the basic intuition with an example.

Example 20 (Decomposition Intuition). Suppose we want to partition a length-lex interval

ll〈{1, 2, 5, 6}, {4, 5, 7, 8}, 8〉 into some PF-intervals. Obviously, we cannot use one PF-interval to

represent it. We need to partition it into chunks such that some of which satisfy the PF-interval

definition. Observe that the given interval contains all 4-sets beginning with either element 2 or 3,

as its lower bound beings with element 1 and upper bound element 4. All these sets in the middle

can group together and form a PF-interval, pf〈{}, 2, 3, 8, 4〉. We call it the body.

Now, we have two sub-intervals, the head which is before the body and the tail which is after.

The head and tail are recursively decomposed as illustrated in figure 4.3.

Consider the head interval ll〈{1, 2, 5, 6}, {1, 6, 7, 8}, 8〉. It is not a PF-interval, hence we have to

further decompose it. The interval contains a chunk which contains all 4-sets starting with the prefix

{1} and followed by element 3, 4, 5, or 6. It is a PF-interval pf〈{1}, 3, 6, 8, 4〉, or in other words body

of the head. Now, in the head, all it remains is head of the head interval, ll〈{1, 2, 5, 6}, {1, 2, 7, 8}, 8〉.

Indeed, in this case, it is a PF-interval. We reach the base case of the recursion in which the input

length-lex interval is a PF-interval. Similarly, the tail is also a PF-interval, and the whole process

ends.

After the recursive decomposition process, we partition a length-lex interval into 4 PF-intervals.

�

37

The decomposition algorithm is a recursive process. It takes a length-lex interval ll〈l, u, n〉 as input.

At each stage, it factors out the main body, which is always a PF-interval, and recursively decompose

the head and tail. The head, if exists, is a length-lex interval containing all c-sets that starts with

element l1, while the tail if exists, is also a length-lex interval containing all c-sets that starts with

element u1. The recursive decompositions of the head always produce empty tails, which is critical

for the complexity and size of the decomposition. The head always has an upper bound which is

the largest c-set begins with l1 that yields an empty tail in the next stage.

More formally, the decomposition algorithm takes a length-lex interval ll〈l, u, n〉 and returns a

ordered partition of PF-intervals. Since the decomposition is recursive, the specification needs to

include a prefix set P which is initially empty. The algorithm also receives the integer n to represent

the universe and uses :: to denote the concatenation of two sequences and ε to denote an empty

sequence.

Specification 1. Given universe U(n), Algorithm decompose(l, u, P, n) returns an ordered sequence

[X1
pf , · · · , Xw

pf] of PF-intervals satisfying

⋃
i∈[1,..,w]

Xi
pf = ll〈P ∪ l, P ∪ u, n〉

and ∀i < j ∈ [1, .., w] : ∀s ∈ Xi
pf , t ∈ X

j
pf : s ≺ t.

Algorithm 1 decompose(l, u, P, n)

1: c← |l|
2: H,B, T ← ε, ε, ε
3: h, t← l1, u1

4: if h = t then
5: return decomp(l2..c, u2..c, P ∪ {h}, n)
6: if l 6= {l1, l1 + 1, .., l1 + c− 1} then
7: H ← decomp(l2..c, {n− c+ 2, .., n}, P ∪ {l1}, n)
8: h← h+ 1
9: if u 6= {u1, n− c+ 2, .., n} then

10: T ← decomp({u1 + 1, .., u1 + c− 1}, u2..c, P ∪ {u1}, n)
11: t← t− 1
12: if h ≤ t then
13: B ←

[
pf〈P, h, t, n, c+ |P |〉

]
14: return H :: B :: T

The algorithm is depicted in Algorithm 1. Lines 4–5 factorize the common prefixes. Lines 6–8 create

a head if necessary, i.e., if l is not minimal. Lines 9–11 creates a tail if u is not maximal. Line 12–13

38

create the body if necessary (e.g., ll〈{1, 2, 5, 6}, {2, 5, 7, 8}, 8〉 has no body) and Line 14 returns the

partition. These two recursive calls in Lines 7 and 10 increase the size of the prefix. The first in

Line 7 now has a maximal second argument compatible with the prefix, while the recursive call in

Line 10 has a minimal first argument compatible with its prefix.

Example 21 (The Decomposition). We illustrate the algorithm using Example 20. Given a length-

lex interval ll〈{1, 2, 5, 6}, {4, 5, 7, 8}, 8〉, we want to decompose it into a number of PF-intervals.

The lower bound is not minimal, hence it has to further decompose the head (Line 6–8). Sim-

ilarly, the upper bound is not maximal, the tail has to be further decomposed too (Line 9–11).

The body (ll〈{2, 3, 4, 5}, {4, 6, 7, 8}, 8〉) is always a PF-interval (Line 12–13). A recursive call is

performed on the head H. The algorithm sets the prefix to {1}, obtaining a length-lex interval

ll〈{2, 5, 6}, {6, 7, 8}, 8〉. Observe that {6, 7, 8} is maximal, so subsequent recursive calls do not gen-

erate tails. Once again, we obtain two sub-intervals ll〈{2, 5, 6}, {2, 7, 8}, 8〉 and ll〈{3, 4, 5}, {6, 7, 8}, 8〉

which when added to the current prefix {1} form H ′ and B′ = pf〈{1}, 3, 6, 8, 4〉. Since all sets in

the first interval begin with 2, the algorithm adds it to the prefix and continues recursively again.

Since ll〈{5, 6}, {7, 8}, 8〉 in addition to prefix {1, 2} forms the PF-interval pf〈{1, 2}, 5, 7, 8, 4〉 which

is equal to H ′, there is no head and tail in this call and the algorithm concludes. As a result,

〈{1, 2, 5, 6}, {4, 5, 7, 8}, 8〉 is partitioned into

Head.Head.Body: ll〈{1, 2, 5, 6}, {1, 2, 7, 8}, 8〉 = pf〈{1, 2}, 5, 7, 8, 4〉

Head.Body: ll〈{1, 3, 4, 5}, {1, 6, 7, 8}, 8〉 = pf〈{1}, 3, 6, 8, 4〉

Body: ll〈{2, 3, 4, 5}, {3, 6, 7, 8}, 8〉 = pf〈∅, 2, 3, 8, 4〉

Tail.Body: ll〈{4, 5, 6, 7}, {4, 5, 7, 8}, 8〉 = pf〈{4, 5}, 6, 7, 8, 4〉

�

Theorem 3. Algorithm 1 (decompose) partitions a length-lex interval of c-sets into O(c) PF-

intervals and takes O(c2) time.

Proof. After the first call of Algorithm 1, the head H is subsequently decomposed only into heads

and bodies (no tails) and the tail is subsequently decomposed only in bodies and tails (no heads).

Hence each subsequent call will only make one additional PF-interval and the depth of recursion

39

can be at most c since the prefix length is incremented in each recursive call. Hence the maximum

number of calls and PF-intervals is 2c − 1, which is O(c). For each of those calls, the comparisons

in Lines 4 and 7 take O(c) time and the total time complexity is O(c2).

The decomposition algorithm partitions a length-lex interval into O(c) PF-intervals. This allows

length-lex propagators to consider one PF-interval at a time, leading to efficient filtering algorithm

running in time of a function of c and independent of the universe size. It gives a foundation for

algorithms presented in later sections.

4.5 Bound Consistency for Unary Constraints

This section introduces a generic algorithm for enforcing bound consistency on basic unary con-

straints. The algorithm only assumes a feasibility routine hs, which determines if a PF-interval is

consistent, making the implementation of bound-consistent propagator effortless. Since the struc-

ture of PF-interval is to a great extent similar to a subset-bound lattice, the design of a feasibility

routine only requires a slight modification of a naive subset-bound propagator.

We first give an overview of the implementation of a bound-consistent algorithm. We focus

our attention on the algorithm for finding the new feasible lower bound, the one for upper bound is

essentially equivalent. The algorithm has two phases: first it locates the smallest feasible PF-interval;

then it constructs the smallest feasible value using a binary search.

A bound-consistency algorithm bc〈C〉 on unary constraint C takes a length-lex domain, and

returns a bound-consistent length-lex domain (i.e. both bounds are solution of C) if it is consistent,

or return ⊥ to indicate inconsistency.

Figure 4.4 illustrates the idea. Suppose it is given a length-lex set variable X ∈

ll〈{1, 2, 7, 8}, {4, 6, 7, 8}, 8〉 and a unary constraint 6 ∈ X. It is not bound-consistent since the

lower bound {1, 2, 7, 8} is not a solution to the constraint. We need to update the lower bound and

make it bound consistent. The algorithm removes the first two sets from the domain, which are not

solutions, and set the third feasible set {1, 3, 4, 6} as the new lower bound. The domain of X now

becomes ll〈{1, 3, 4, 6}, {4, 6, 7, 8}, 8〉 and it is consistent.

40

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

6 ! X "

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

pf<{1,2},7,7,8,4> pf<{1},3,6,8,4> pf<{},2,4,8,4>

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

pf<{1,2},7,7,8,4> pf<{1},3,6,8,4> pf<{},2,4,8,4>

5 ! X "

5 ! X

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

pf<{1,2},7,7,8,4> pf<{1},3,6,8,4> pf<{},2,4,8,4>

5 ! X

Wednesday, May 4, 2011

Figure 4.4: Enforcing Bound Consistency For Unary Constraint

Algorithm 2 bc〈C〉(Xll = ll〈l, u, n〉〉)
1: l′ ← succ〈C〉(Xll)
2: u′ ← pred〈C〉(Xll)
3: if l′ 6= ⊥ then
4: return ll〈l′, u′, n〉
5: else
6: return ⊥

Specification 2 (unary bound-consistent propagator). For a unary constraint C and a length-

lex interval Xll = ll〈l, u, n〉, the function bc〈C〉(Xll) returns the a bound-consistent domain X ′ll =

ll〈l′, u′, n〉 such that

{s ∈ Xll : C(s)} = {s ∈ X ′ll : C(s)} ∧ C(l′) ∧ C(u′)

if ∃s ∈ Xll : C(s), otherwise returns ⊥ to indicate inconsistency.

The first criteria is the soundness condition which guarantees that no solution is removed, while the

rest is the bound consistency requirement. Algorithm 2 implements Specification 2. It comprises

two sub-routines, namely succ〈C〉(Xll) and pred〈C〉(Xll), each of them is responsible for finding the

first feasible successor (and predecessor respectively) of the lower (upper) bound that is a solution

to C.

Specification 3 (succ). For a unary constraint C and a length-lex intervalXll, Algorithm succ〈C〉(Xll)

returns the smallest (w.r.t. length-lex ordering) supported set x ∈ Xll in the interval, i.e.

min
�

x ∈ Xll : C(x)

if such set exists, or returns ⊥ otherwise.

and the predecessor algorithm pred is similar:

41

Specification 4 (pred). For a unary constraint C and a length-lex intervalXll, Algorithm pred〈C〉(Xll)

returns the largest (w.r.t. length-lex ordering) supported set x ∈ Xll in the interval, i.e.

max
�

x ∈ Xll : C(x)

if such set exists, and returns ⊥ otherwise.

Example 22 (Enforcing Bound Consistency). Consider a length-lex set variable X ∈

ll〈{1, 2, 3}, {3, 5, 6}, 6〉 and the unary constraintR5(X) ≡ 5 ∈ X. {1, 2, 3} is not a solution and hence

the input domain is not bound consistent. The algorithm bc〈R5〉(Xll) returns a bound-consistent

domain ll〈{1, 2, 5}, {3, 5, 6}, 6〉. �

Example 23 (Detecting failure). Consider a length-lex set variable X ∈ ll〈{2, 3, 4}, {3, 5, 6}, 6〉 and

unary constraint R1(X) ≡ 1 ∈ X. There is no possible successor of {2, 3, 4} of cardinality 3 that

could contain element 1. There is no solution and hence bc〈R1〉(Xll) returns ⊥ that indicates failure.

�

We focus our attention on the succ〈C〉(Xll) since the predecessor algorithm operates in a symmetrical

manner.

4.6 Generic Successor Algorithm for Length-Lex Interval

We are interested in finding the first feasible successor for an arbitrary unary constraint. The generic

successor algorithm returns the smallest solution of the input interval if one exists, otherwise return

⊥ to indicate inconsistency. The algorithm consists of two phases. In the first phase, it decomposes

the given length-lex interval into a set of PF-intervals, and locate the first consistent PF-interval.

Then in the second phase, it constructs the smallest feasible set in that PF-interval. We illustrate

the first phase in this section and the second in the next.

The algorithm is generic and only assumes a feasibility routine hs which takes a length-lex interval

and returns a boolean value indicating if the interval is consistent.

Specification 5 (Feasibility Routine). Given a unary constraint C and a length-lex interval Xll,

42

Algorithm 3 succ〈C〉(Xll = ll〈l, u, n〉)
1: [X1

pf , .., X
w
pf]← decompose(l, u, ∅, n) {locate phase}

2: Xpf ← ∅
3: for X ′pf ← X1

pf to Xw
pf do

4: if hs〈C〉(X ′pf) then
5: Xpf ← X ′pf
6: break
7: if Xpf = ∅ then {construct phase}
8: return ⊥
9: return succ〈C〉(Xpf)

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

5 ! X "

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

pf<{1,2},7,7,8,4> pf<{1},3,6,8,4> pf<{},2,4,8,4>

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

pf<{1,2},7,7,8,4> pf<{1},3,6,8,4> pf<{},2,4,8,4>

5 ! X "

5 ! X

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

pf<{1,2},7,7,8,4> pf<{1},3,6,8,4> pf<{},2,4,8,4>

5 ! X

Friday, March 11, 2011

Figure 4.5: Generic Successor Algorithm for Unary Constraint

the feasibility routine returns whether or not the interval has solutions,

hs〈C〉(Xll) ≡ ∃x ∈ Xll : C(x).

The above feasibility routine can be reduced to one which only decides a PF-interval, instead of a

more general length-lex interval. It is due to the fact that every length-lex interval can be decomposed

into a set of PF-intervals, the feasibility of a length-lex interval is equivalent to the disjunction of

the feasibility of the set of PF-intervals decomposed from it:

hs〈C〉(Xll) ≡
∨

1≤i≤w

hs〈C〉(Xi
pf)

where Xll =
⊎

1≤i≤w hs〈C〉(Xi
pf).

Algorithm 3 (succ) is a generic routine for finding the successor that implements Specification 4.

Figure 4.5 illustrates the idea. It proceeds in two steps: first, it locates the smallest PF-interval that

contains a solution(Lines 1–6); second, it constructs the smallest solution within the PF-interval,

43

if any (Lines 7–9). More specifically, Line 1 calls the decomposition routine and obtains the set of

PF-intervals. Lines 3–6 iterates over the PF-intervals and locate the first feasible one. Once the

PF-interval is located (Lines 4–6), the algorithm invokes a more specialized construction routine,

which will be introduced in the next section (Line 9). If the feasibility routine determines that none

of the PF-intervals contains a solution, the algorithm returns ⊥ (Lines 7–8).

Take the length-lex interval ll〈{1, 2, 7, 8}, {4, 6, 7, 8}, 8〉 shown in Figure 4.5 as an example. Sup-

pose we have the unary constraint 5 ∈ X. The generic successor algorithm decomposes it into three

PF-intervals. They are checked against the feasibility routine one after another. The small one

goes first. The first PF-interval, pf〈{1, 2}, 7, 7, 8, 4〉, is infeasible. All sets within it are skipped.

The algorithm then checks the second PF-interval, pf〈{1}, 3, 6, 8, 4〉. The feasibility routine returns

true, and the algorithm passes this PF-interval to a more specialized algorithm which constructs the

smallest feasible set.

Theorem 4. Suppose hs〈C〉(Xpf) takesO(α) and succ〈C〉(Xpf) takesO(β). Algorithm 3 (succ〈C〉(Xll))

takes O(c2 + cα+ β) time.

Proof. Algorithm decompose takes O(c2). The size of the list of PF-intervals is O(c), hence there are

at most O(c) calls to the feasibility routine. Lines 3–8 takes O(cα). Line 9 takes O(β). Therefore,

the algorithm takes O(c2 + cα+ β) time in total.

4.7 Generic Successor Algorithm for PF-Interval

All it remains is to construct a smallest feasible set within the PF-interval. We give a more fine-

grained generic successor algorithm. Likewise, the algorithm only depends on the feasibility routine

that takes a PF-interval.

Bisecting a PF-Interval into two The goal is to construct a new lower bound. The algorithm

starts with a prefix, appends element to the prefix one at a time, and repeats until a lower bound is

constructed. To check whether an element can be appended to the prefix, we resort to the feasibility

routine. We create a new interval based on the input interval, and fix the F-set to be a singleton

set that only contains the appending element, and invoke the feasibility routine. If the routine

returns a positive signal, it indicates that the sub-PF-interval, which contains all sets begin with the

44

{1,3,4,5} {1,3,4,6} {1,3,4,7} {1,3,4,8} {1,3,5,6} ... {1,3,7,8} {1,4,5,6} ... {1,6,7,8}

pf<{1,3,4},5,8,8,4>

pf<{},2,4,8,4>

pf<{1,3},4,7,8,4>

pf<{1},3,6,8,4>

5 ! X

Friday, March 11, 2011

Figure 4.6: Generic Successor Algorithm for Unary Constraint

current prefix plus the appending element, contains a solution. Since the sub-PF-interval is also a

PF-interval. We perform the same process for the next appending element. The algorithm iterates

until the lower bound is constructed. Since the F-set determines the most significant element that

come right after the prefix, picking the smallest element in the F-set guarantees the lower bound is

constructed.

Figure 4.6 illustrates the idea. Consider the input PF-interval, pf〈{1}, 3, 6, 8, 4〉, and a unary

constraint 5 ∈ X. At each level, we try to append the smallest element in the F-set to the prefix.

If the feasibility routine returns true, indicating there is a solution, then we go down another level.

Otherwise, the next element in the F-set is tried. In this case, there is a solution, hence we consider

a sub-PF-interval, pf〈{1, 3}, 4, 7, 8, 4〉, in which the element 3 become part of the prefix. We know

that the smallest bound begins with {1, 3}. The algorithm attempts to append the element 4 in

the next step, and it succeeds. We go down yet another level, and consider a sub-sub-PF-interval,

pf〈{1, 3, 4}, 5, 8, 8, 4〉. All it remains is to enumerate all element in the F-set to complete the lower

bound. Element 5 is first tried and failed, since in such case the lower bound doesn’t satisfy the

constraint 5 ∈ X. The next element in the F-set is considered. The set {1, 3, 4, 6} is a solution to

the constraint, and new lower bound is found.

The Generic Successor Algorithm Algorithm 4(succ〈C〉(Xpf)) implements Specification 4 over

PF-intervals. The routine takes a PF-interval as input. It first checks if the PF-interval is consistent,

it returns ⊥ when we are sure that there is no solution. The routine constructs the new bound as

follows. First, it assigns the prefix(Line 3). Then, it iterates over the remaining positions to complete

the set (Lines 4–8). At each iteration, we find the minimum F-set element that belongs to a solution

45

Algorithm 4 succ〈C〉(Xpf = pf〈P, f̌, f̂, n, c〉)
1: if not hs〈C〉(Xpf) then
2: return ⊥
3: s1..|P | ← P

4: l, h← f̌ , f̂
5: for i← |P |+ 1 to c do
6: si ← minf{l ≤ f ≤ h|hs〈C〉(pf〈s1..i−1, f, n− (c− i), n, c〉)}
7: l, h← si + 1, n− (c− i) + 1
8: return s

by querying the feasibility routine hs〈C〉. The element is appended to the prefix. The algorithm

constructs a new F-set for the next iteration.

By observing that the F-set is always a range, we can perform a binary search on the F-set

instead of an explicit enumeration, thus reduce the number of feasibility checks in each position

from O(n) to O(log n). Line 6 defines a binary search when the F-set is not singleton.

We trace algorithm 4 using the following example.

Example 24. Let a unary constraint beR6(X) ≡ 6 ∈ X, and a PF-interval Xpf = pf〈{1}, 3, 6, 8, 4〉.

Line 1 first checks if the PF-interval contains a solution calling the feasibility routine. It does since 6 is

in the F-set. We first assign the prefix {1} to s. Then, we need to iterate over the remaining positions

(lines 5–7). The F-set is a range from 3 to 6. The algorithm query the feasibility routine to find the

smallest F-set element that belongs to a solution. We get element 3 since hs〈D〉(pf〈{1}, 3, 3, 8, 4〉)

returns true. We append 3 to s (line 6). We have to prepare for the next position. Observe

that pf〈{1}, 3, 3, 8, 4〉 = pf〈{1, 3}, 4, 7, 8, 4〉, hence, we can update the F-set accordingly for the next

iteration (line 7). In each iteration, one element is appended to the prefix. And finally, the algorithm

returns the smallest supported set {1, 3, 4, 6}. �

Complexity Analysis Suppose the feasibility routine for a PF-interval takes O(α) time. It is

called both in Algorithm 3 and Algorithm 4.

Lemma 1. Algorithm 4 (succ〈C〉(Xpf)) takes O(αc log n).

Proof. Line 1 takes O(c). Lines 3–5 is a for-loop that iterates at most O(c) times. Line 4 is a binary

search on the F − set whose maximum cardinality is n, hence there are at most O(log n) calls to the

feasibility routine that takes O(α). Therefore O(αc log n) in total.

46

Algorithm 5 hs〈Re〉(Xpf = pf〈P, f̌, f̂, n, c〉)
1: if e ∈ P then
2: return true
3: if f̌ ≤ e ≤ f̂ then
4: return true
5: if c > |P |+ 1 and f̌ ≤ e ≤ n then
6: return true
7: return false

By Theorem 4, and setting O(β) = O(αc log n), the generic algorithm enforces bound consistency

on unary constraint in O(αc log n) time.

4.8 Feasibility Routine for e ∈ X for PF-Interval

The generic successor algorithm only assumes a constraint specific feasibility routine for PF-interval

hs〈C〉(Xpf). In this section, we illustrate implementing the feasibility routine for the unary mem-

bership constraint Re(X) ≡ (e ∈ X). We hope to provide insight to the design of feasibility routine

for other constraints.

Algorithm 5 (hs〈Re〉(Xpf)) is the feasibility routine for unary membership constraint that deter-

mines whether a set containing e can be found within a given PF-interval. It considers three main

cases for a satisfiable set to exist: 1) The element e already belongs to the required prefix (Lines

1–2); 2) the element is a possible first-element (Lines 3–4); 3) the interval cardinality is at least 2

more than the prefix size, and the element is in the remaining possible elements (Lines 5–6). If none

of the three cases is possible there is no feasible set.

Theorem 5. hs〈Re〉(Xpf)(Algorithm 5) takes O(c).

Therefore, by setting O(α) = O(c), a bound-consistent algorithm that only assumes a feasibility

routine runs in O(c2 log n) time.

4.9 Conclusion

In this section, we illustrated a generic algorithm for enforcing bound consistency for unary con-

straint. The algorithm only depends on a boolean feasibility routine which takes a PF-interval as

47

input. The main idea for the algorithm is that any length-lex interval can be decomposed into

O(c) of PF-intervals which have a lot of similarities with a subset-bound lattice. Deciding whether

a PF-interval has a solution that is straight forward and hence we can easily locate the smallest

feasible PF-interval using a binary search.

The algorithm runs in O(αc log n) time, where O(α) is the running time for the constraint-

specific feasibility routine. This implies that, in a loose sense, when there is a subset-bound black

box available, we can implement a bound-consistent length-lex propagator by adding a factor of

O(c log n). Of course, the algorithm can be optimized. Specialized algorithms, which take into the

account of the constraint semantics as well as consecutive PF-intervals, can be used in both phases.

The total running-time for many basic unary constraints are, indeed, O(c). Readers may refer to

Chapter B.1 for detailed descriptions.

48

Chapter 5

Binary Length-Lex Constraints

5.1 Overview

In last chapter, we illustrated how to implement an efficient, yet generic, bound-consistent propagator

for unary length-lex constraint. The key idea of the generic propagator is that length-lex intervals

can be decomposed into a linear number of PF-intervals, which captures some nice closure properties

of the subset-bound lattice, making inference easy, and allowing the propagator to consider a chunk

of domain values at a time. The generic algorithm runs in O(αc log n) time where O(α) is the time

required by the feasibility routine for a PF-interval.

In this chapter, we generalize the generic algorithm into a fixed-arity constraint. We restrict our

attention to binary constraints C(X,Y). Algorithms for higher-arity constraints are similar.

Things are Easy When the Other is a PF-Interval We first consider a special case. Suppose

that we want to find a new lower bound for variable X and the domain of Y can be represented with

a single PF-interval. We can view the problem as a unary constraint since one of the parameter for

the feasibility routine is fixed. In general, we decompose Y into a set of PF-intervals, and deal with

each of them one at a time. This adds a factor of O(c) (since it is the number of PF-intervals in the

decomposition) to the unary generic algorithm. The binary generic algorithm runs in O(αc2 log n).

The chapter is organized as follows. We first give an high level idea of the bound-consistent

algorithm. Then we illustrate the generic algorithm for finding the lower bound for length-lex

49

{1,3,4,5} {1,3,4,6} {1,3,4,7} {1,3,4,8} {1,3,5,6} ... {1,3,7,8} {1,4,5,6} ... {1,6,7,8}

{1,2,5} {1,2,6} {1,2,7} {1,3,4} ... {1,6,7} {2,3,4} ... {4,6,7}
X:

pf<{1,2},5,7,7,3> pf<{1},3,6,7,3> pf<{},2,4,7,3>

{1,2,3} ... {1,6,7} {2,3,4} ... {2,4,7}
Y:

pf<{1},2,6,7,3> pf<{2},3,4,7,3>

X # Y = $

Tuesday, March 15, 2011

Figure 5.1: Enforcing Bound Consistency for Binary Disjoint Constraint. Solid Lines Indicates
Feasible PF-interval Pairs.

intervals. Lastly, we present the feasibility routine for binary disjoint constraint. Other intersection

constraints can be obtained in a similar way.

5.2 Bound Consistency for Binary Constraints

We present the generic bound-consistent algorithm for binary constraints. We focus on the successor

algorithms since its predecessor counterpart is symmetrical. The algorithm relies on a feasibility

routine hs〈C〉(Xpf , Ypf) which determines if the given PF-intervals are feasible.

Example 25. We illustrate the high-level idea using Figure 5.1. Given two length-lex intervals

X ∈ ll〈{1, 2, 5}, {4, 6, 7}, 7〉, Y ∈ ll〈{1, 2, 3}, {2, 4, 7}, 7〉, and a binary constraint X∩Y = ∅, we want

to find a new feasible lower bound for X. Both the length-lex intervals X and Y are decomposed into

a set of PF-intervals. First, we locate the smallest feasible PF-interval in X. The task is achieved by

checking against every PF-interval in Y . Consider the first PF-interval, pf〈{1, 2}, 5, 7, 7, 3〉, it is not

feasible since both PF-intervals in Y are not compatible with it. The whole chuck of sets with this

particular PF-interval are discarded. Then we consider the second chunk, pf〈{1}, 3, 6, 7, 3〉, it has

support from the PF-interval, pf〈{2}, 3, 4, 7, 3〉, indicated by the solid line. Now, we have located

the PF-interval, the task remains is to construct the smallest feasible set within the interval. The

construction process is similar to that of unary constraint. �

It is important to mention that in general, a PF-interval may have support from multiple PF-intervals

of the other variable. For example, the third PF-interval in X has support from both PF-intervals

50

Algorithm 6 bc〈C〉(Xll = ll〈lX , uX , nX〉, Yll = ll〈lY , uY , nY 〉)
1: l′X , u

′
X ← succX〈C〉(Xll, Yll), predX〈C〉(Xll, Yll)

2: l′Y , u
′
Y ← succY 〈C〉(Xll, Yll), predY 〈C〉(Xll, Yll)

3: if l′X 6= ⊥ then
4: return ll〈l′X , u′X , nX〉, ll〈l′Y , u′Y , nY 〉
5: else
6: return ⊥

in Y . Different interval gives different bounds, hence, the algorithm has to take this into account

and invoke the construction routine for each PF-interval from the other side.

Formally, the bound-consistent algorithm bc〈C〉 on binary constraint C takes two length-lex do-

mains, and returns two bound-consistent length-lex domain with regard to C or returns ⊥ to indicate

inconsistency.

Specification 6 (binary bound-consistent algorithm). For a binary constraint C and two length-lex

intervals Xll = ll〈lX , uX , nX〉 and Yll = ll〈lY , uY , nY 〉. The function bc〈C〉(Xll, Yll) returns two

bound-consistent domain Xll = ll〈l′X , u′X , nX〉 and Yll = ll〈l′Y , u′Y , nY 〉 such that

{(x, y)|x ∈ Xll, y ∈ Yll : C(x, y)} = {(x, y)|x ∈ X ′ll, y ∈ Y ′ll : C(x, y)}

∧ ∃y ∈ Y ′ll : C(l′X , y) ∧ ∃y ∈ Y ′ll : C(u′X , y)

∧ ∃x ∈ X ′ll : C(x, l′Y) ∧ ∃x ∈ X ′ll : C(x, u′Y)

The first criteria guarantees soundness that no solution is removed, while the others are the definition

of bound consistency. Algorithm 6 (bc〈C〉(Xll, Yll)) implements Specification 6. It invokes four

different routines, each responsible for finding a supported bound. Line 3 is a domain consistency

check, if l′X is ⊥ it indicates no value in Xll finds a support from Yll and therefore it has no solution.

Otherwise when l′X is not ⊥, there exists support from Yll hence the algorithm can return bound-

consistent domains accordingly.

We give the specification for succX〈C〉(Xll, Yll), the routine the returns the smallest set in Xll

that has a support from Yll. The specification for succY , predX and predY are essentially equivalent.

Specification 7. For a binary constraint C and two length-lex interval Xll and Yll. Algorithm

51

succX〈C〉(Xll, Yll) returns the smallest supported set x ∈ Xll, i.e.

min
�

x ∈ Xll : ∃y ∈ Yll, C(x, y)

if such set exists, or returns ⊥ otherwise.

We illustrate the generic algorithm with the binary disjoint constraint (D(X,Y) ≡ X ∩ Y = ∅).

We show that it is possible to enforce bound consistency in O(c3 log n) time.

5.3 Generic Successor Algorithm for Length-Lex Interval

The generic successor algorithm for binary constraint is similar to the one for unary constraint

The succ routine only assumes a feasibility routine that decides if there is any solution among

two intervals. It first partitions the length-lex interval Xll into some PF-intervals, and locates the

smallest PF-interval that contains a solution. Then, it constructs the smallest feasible set in the

PF-interval. To simplify the implementation of the feasibility routine, the algorithm partitions Yll

into PF-intervals, so that the algorithm only requires a feasibility routine that takes two PF-intervals

as input. Therefore, the algorithm has to check against every PF-interval in Yll, which incurs an

extra loop.

Algorithm 7 (succX〈C〉(Xll, Yll)) implements Specification 7 for length-lex intervals. In the locate

phase, it first partitions the length-lex interval Xll, Yll into PF-intervals(Lines 1–2). Then, tries for

each PF-interval in Xll, it determines if it is supported by a PF-interval from Yll partition (Lines

4–8). Once a PF-interval in Xll finds a support from Yll, the new bound can be constructed within

this PF-interval, hence it terminates and proceeds to the construct phase (Lines 7–8). If no support

is founded, it returns ⊥ to indicate inconsistency (Lines 9–10). Otherwise, it invokes another succ

algorithm that is specialized for PF-interval and returns the lower bound (Line 11). Notice that since

Xpf can be supported by multiple PF-intervals from Ypf , and each of them possibly support different

bound, hence the algorithm has to iterates over all of them and return the smallest supported bound.

We illustrate using the binary disjoint constraint D(X,Y) ≡ (X ∩ Y = ∅).

Example 26 (succ〈C〉(Xll, Yll)). Consider the binary disjoint constraint over the length-lex intervals

Xll = ll〈{1, 2, 5}, {4, 6, 7}, 7〉, Yll = ll〈{1, 2, 3}, {2, 4, 7}, 7〉. The decompose algorithm yields the

52

Algorithm 7 succX〈C〉(Xll = ll〈lX , uX , nX〉, Yll = ll〈lY , uY , nY 〉)
1: [X1

pf , .., X
i
pf]← decompose(lX , uX , ∅, nX) {locate phase}

2: [Y 1
pf , .., Y

j
pf]← decompose(lY , lY , ∅, nX)

3: Xpf ← ∅
4: for X ′pf ← X1

pf to Xi
pf do

5: for Y ′pf ← Y 1
pf to Y jpf do

6: if hs〈C〉(X ′pf , Y ′pf) then
7: Xpf ← X ′pf
8: break
9: if Xpf = ∅ then {construct phase}

10: return ⊥
11: return minY ′

pf∈[Y 1
pf ,..,Y

j
pf](succX〈C〉(Xpf , Y

′
pf))

sequences

X1
pf = pf〈{1, 2}, 5, 7, 7, 3〉 (5.1)

X2
pf = pf〈{1}, 3, 6, 7, 3〉 (5.2)

X3
pf = pf〈{}, 2, 4, 7, 3〉 (5.3)

and

Y 1
pf = pf〈{}, 1, 1, 7, 3〉 (5.4)

Y 2
pf = pf〈{2}, 3, 4, 7, 3〉 (5.5)

In Lines 4–8, the algorithm iterates over all possible choices of X sequentially, and locate the smallest

PF-interval that finds a support from Y . The algorithm first considers X1
pf , it is not supported by

any intervals in Yll since it contains elements 1 and 2. Then, it considers X2
pf . The feasibility routine

returns true for Y 2
pf , and it breaks the locate loop and proceed to the construct phase(Lines 6–8).

The algorithm then calls another successor algorithm dedicated for PF-interval, and will return

{1, 3, 4} as the new lower bound. �

Theorem 6. Suppose hs〈C〉(Xll, Yll) takes O(α) and succ〈C〉(Xll, Yll) takes O(β). Algorithm 7

(succ〈C〉(Xll, Yll)) takes O(c2α+ cβ) time.

Proof. By Theorem 3, Lines 1–2 take O(c2) and the number of PF-intervals in the partitions is O(c).

53

There will be at most O(c2) calls to hs〈C〉 in Line 6, hence Lines 4–8 takes O(c2α). Lines 9–10 takes

O(1). Line 11 invokes Algorithm 8 for O(c) times and therefore it takes O(c2α+ cβ).

5.4 Generic Successor Algorithm for PF-Intervals

We discuss the generic algorithm that construct the lower bound in a PF-interval. The algorithm

takes two PF-intervals as input, and greedily picks the smallest feasible element to fill up all its

position, and return the smallest supported set. Algorithm 8 implements Specification 7. Indeed, it

is almost equivalent to the same routine for unary constraints.

Algorithm 8 succ〈C〉(Xpf = pf〈PX , f̌X , f̂X , nX , cX〉, Ypf)

1: if not hs〈C〉(Xpf , Ypf) then
2: return ⊥
3: s1..|PX | ← PX

4: l, h = f̌X , f̂X
5: for i = |PX |+ 1 to cX do
6: si ← minf

{
l ≤ f ≤ h

∣∣hs〈C〉(pf〈s1..i−1, f, f, nX , cX〉, Ypf)
}

7: l← si + 1
8: h← nX − cX + i+ 1
9: return s

Complexity Analysis We first analysis the running time for the successor algorithm for PF-

intervals. Consider that hs〈C〉(Xpf , Ypf) takes time O(α).

Lemma 2. Algorithm 8 (succ〈C〉(Xpf = pf〈PX , f̌X , f̂X , nX , cX〉, Ypf)) takes O(αcX log nX) time.

Proof. Line 3 takes O(cX). The for-loop in lines 5–8 iterates at most from 1 to cX . In each iteration,

the search in line 6 uses a binary search, the maximum range of [l, h] is nX , giving a time complexity

of O(αcx log nX).

For simplicity, we denote c = max(cX , cY) and n = max(nX , nY). Applying Theorem 6, by setting

O(α) = O(c) and O(β) = O(αc log n), enforcing bound consistency on binary disjoint constraint

takes O(αc2 log n) time.

54

Algorithm 9 hs〈D〉(Xpf = pf〈PX , f̌X , f̂X , nX , cX〉, Yf = f〈f̌Y , f̂Y , nY , cY 〉)
Require: nX = nY

1: FX , VX ← {f̌X , ..., f̂X}, {f̌X , ..., nX}
2: FY , VY ← {f̌Y , ..., f̂Y }, {f̌Y , ..., nY }
3: flag ← true
4: if f̌Y ≥ f̌X then
5: flag ← flag ∧ (|PX ∪ VX | ≥ cX + cY)
6: flag ← flag ∧ (|PX ∪ VX | > cX)
7: flag ← flag ∧ (|FX ∪ FY | ≥ 2)
8: flag ← flag ∧ (|VY | = cY ⇒ f̌X < f̌Y)
9: else

10: flag ← flag ∧ (|PX ∪ VX ∪ VY | ≥ cX + cY)
11: flag ← flag ∧ (|VY \ PX | > cY)
12: F ′Y = FY \ PX
13: flag ← flag ∧ (F ′Y 6= ∅)
14: flag ← flag ∧ (|FX ∪ F ′Y | ≥ 2)
15: flag ← flag ∧ (|PX ∪ VX | = cX ⇒ ∃f ∈ F ′Y : f < f̌X)
16: return flag

5.5 Feasibility Routine for X ∩ Y = ∅ for PF-Intervals

The generic algorithm enforces bound consistency and only assumes one simple constraint specific

feasibility routine. Such routine takes two PF-intervals and return a boolean value indicating whether

or not there exists a solution. This section illustrates the feasibility routine for binary disjoint

constraint. It gives the basic idea for other binary fixed intersection cardinality constraints (e.g.

|X ∩ Y | ≤ k). We assume both PF-intervals have the same universe (i.e. nX = nY). We first tackle

a more specialized case, that the prefix of one PF-interval is an empty set. Then we show it easily

generalize to the complete algorithm.

Algorithm 9 implements the feasibility routine for binary disjoint constraint that takes one PF-

interval Xpf and one F-interval Yf (a special case of PF-interval where the prefix is empty, i.e.

f〈f̌ , f̂ , n, c〉 ≡ pf〈∅, f̌ , f̂ , n, c〉).

The basic idea behind the feasibility routine is: it determines whether or not it is possible to

construct a pair of sets (x, y) where x ∈ Xpf and y ∈ Yf such that x and y are disjoint. Recall

sets in a PF-interval are constructed from three different components: 1) the prefix, which is fixed,

2) the element immediately follows the prefix which is drawn from the F-set, and 3) other greater

elements used to fulfill the cardinality restriction. For disjoint constraint, we want to construct two

55

disjoint sets and each of which is constructed in the above way. In particular, y does not take any

element from the prefix of Xpf , x and y take different F-set elements, and x and y each complete

themselves with different elements.

The actual reasoning in Algorithm 9 exploits the property that the possible set of a PF-interval

is always a range that starts from the smallest element in the F-set and ends with the universe size.

Under this property the union of possible sets of Xpf and Yf is always equals to at least one of them.

Lines 4–8 cover the case where Xpf has a larger possible set and Lines 10–15 are the case where the

one of Yf is larger. The algorithm maintains a boolean value flag to indicates the feasibility (line

3).

Within each case the conditions relative to the three components that constitute a set within

a PF-interval are checked: Lines 5,11 reason about the size of the possible set to ensure there are

enough elements to construct both x and y. Lines 6–8, 11–15 reason about the existence of a F-set

element for each set. The size of union of both F-set should be at least 2, and the other variable

should not be too huge and leave no space for the F-set element.

We illustrate the case analysis with the following example:

Example 27 (hs〈D〉(Xpf , Yf)). It is a case analysis.

• Suppose Xpf = pf〈{3}, 4, 4, 8, 3〉, Yf = f〈3, 4, 8, 3〉, there is no solution since Y cannot take

3 as F-set element (part of x’s prefix, leaving only 4 for both sets to share as first element.

Condition line 14 of Algorithm 9 is violated.

• Suppose Xpf = pf〈{2}, 6, 6, 8, 4〉, Yf = f〈6, 8, 8, 1〉, there is no solution since the cardinality

restriction of X is so tight that it needs to take every elements in the possible set (i.e. {6, 7, 8}),

leaving no F-set element for Y . The condition in line 6 is violated.

• Suppose Xpf = pf〈{1}, 3, 4, 8, 4〉, Yf = f〈3, 6, 8, 4〉, there is no solution since X,Y have to

pick 3, 4 different elements from the possible set({3, ..., 8}) respectively, there are not enough

rooms. The condition in line 5 is violated.

• Suppose Xpf = pf〈{2, 4}, 5, 5, 8, 4〉, Yf = f〈4, 6, 8, 2〉, there exists solutions since X can pick

5 as its F-set element, Y can pick 6, and the possible is large enough to fulfill the cardinality

requirement.

56

Algorithm 10 hs〈D〉(Xpf = pf〈PX , f̌X , f̂X , nX , cX〉, Ypf)

Require: nX = nY
1: if PX ∩ PY 6= ∅ then
2: return false
3: else if PY = ∅ then
4: return hs〈D〉(pf〈PX , f̌X , f̂X , nX , cX〉f〈f̌Y , f̂Y , nY , cY 〉)
5: else if PX = ∅ then
6: return hs〈D〉(pf〈PY , f̌Y , f̂Y , nY , cY 〉f〈f̌X , f̂X , nX , cX〉)
7: else if maxPX ≥ maxPY then
8: P ′X ← {e ∈ PX |e > maxPY }
9: return hs〈D〉(pf〈P ′X , f̌X , f̂X , nX , cX − |PX |+ |P ′X |〉, f〈f̌Y , f̂Y , nY , cY − |PY |)

10: else
11: P ′Y ← {e ∈ PY |e > maxPX}
12: return hs〈D〉(pf〈P ′Y , f̌Y , f̂Y , nY , cY − |PY |+ |P ′Y |〉, f〈f̌X , f̂X , nX , cX − |PX |)

�

Algorithm 10 (hs〈D〉(Xpf , Ypf)) implements the feasibility routine for binary disjoint constraint that

takes two PF-intervals. This is the only routine required by the generic algorithm. This routine

essentially factors the prefixes out and reduces to a simpler case which is handled by Algorithm 9

(hs〈D〉(Xpf , Yf)).

The algorithm bases on one key observation: the largest element of two prefixes, if they are both

non-empty, are different, and since the prefix, by definition, precedes all other elements, hence we can

crop the smaller prefix. Lines 1–2 ensure prefixes are disjoint. Lines 3–6 deal with the simple cases,

where at least one of the prefixes is empty. Notice that since the disjoint constraint is symmetrical,

we can invoke the feasibility routine by inverse the argument order. Lines 7–12 are case that applies

the key observation. As two prefixes are disjoint, we can infer that any element smaller than this

maximum element is either in one of the prefixes or can not be taken by the other set. Thus we

can crop both prefixes by all elements smaller than this maximum value and restrict our feasibility

routine call in a way similar to Lines 2 and 4. For instance, suppose we have Xpf = 〈{1, 4}, 6, 7, 8, 3〉,

Ypf = 〈{3}, 4, 6, 8, 3〉, 3 is the smaller maximum element in PY and PX , thus any element smaller

than 3 will have no impact on the truth value of the feasibility routine and can be factorized. We

crop the prefix of Xpf , factorize the prefix of Ypf , revise the cardinalities of the sets considered,

and apply the reasoning to a simpler feasibility routine, Algorithm 9. In this particular example, we

would call Algorithm 9 with the following arguments: Xpf = 〈{4}, 6, 7, 8, 2〉 and Ypf = 〈{}, 4, 6, 8, 2〉.

57

Implementation and Complexity The key factor for an efficient implementation lies in the use

of the property of ranges. FX , VX , FY , VY are logical representations of range, they are not explicit

enumeration of elements. Since most of the operations on these ranges are union (except Lines

12–14, which require extra bookkeeping), we only need to compute the minimum and maximum

values that take O(1) time. Line 12, we do not explicitly construct F ′Y , we just mark the removed

elements. There are at most O(cX) of them, since |PX | ≤ cX . Lines 13–14 can be computed in

O(cX) time.

Lemma 3. Algorithm 9(hs〈D〉(Xpf , Yf)) takes O(cX).

Proof. Lines 1–2 are logical representations since ranges are not explicitly created. Each line takes

O(1). Lines 5,6,10,11 involve the prefix, whose length is at most O(cX). With proper bookkeeping,

each line can be done in O(cX) time. Line 12 creates a range with at most O(cX) ”holes” introduced

by the prefix PX , we can simply mark the “holes” instead of explicitly creating the list. And hence

Lines 13–15 take O(cX) time. The overall time is therefore O(cX).

Theorem 7. Algorithm 10 (hs〈D〉(Xpf , Ypf)) takes O(c) where c = max(cX , cY).

Proof. In the worst case, we need to factorize the prefixes of Xpf and Ypf once, which costs O(c).

And Algorithm 9 will be invoked at most once. Hence the total runtime is O(c).

5.6 Evaluation

Given the generic algorithms presented in this section. We are able to solve the social golfer problem.

The goal is to give a comparison between the subset-bound+cardinality and the length-lex domain.

We will use the same set of instances thru this paper. The reader will see that, the more advanced

modeling technique and propagation component we add to the model, the more efficient it is to solve

the problem. This evaluation is by no mean comprehensive. For a detailed comparison between the

length-lex domain and earlier attempts on several different benchmarks, please refer to Chapter 11.2.

To give a fair comparison, we implemented all our algorithms on the Comet system. Our

experiments are run on a Core2Duo 2.4GHz laptop with 4GB of memory. The symbol × indicates

a timeout of 1800 seconds.

58

1 int g=3;
2 int s=3;
3 int w=3;
4 int p = g*s;
5 range Groups = 1..g;
6 range Weeks = 1..w;
7 range Players = 1..p;
8 Solver<CP> cp();
9 LengthLexVar<CP> llx[Weeks,Groups](cp,p,s);

10

11 solve<cp>{
12 forall (wi in Weeks, gi in Groups, gj in Groups : gi < gj){
13 cp.post(disjoint(llx[wi,gi],llx[wi,gj]));
14 cp.post(llx[wi,gi] <= llx[wi,gj]);
15 }
16

17 forall (wi in Weeks, wj in Weeks, gi in Groups, gj in Groups : wi < wj)
18 cp.post(atmost(llx[wi,gi],llx[wj,gj],1));
19

20 forall (wi in Weeks, wj in Weeks : wi < wj)
21 cp.post(llx[wi,1] <= llx[wj,1]);
22 }

Figure 5.2: Comet Model for Social Golfer Problem using Length-Lex Set Variable

The Length-Lex Model We first give the model using length-lex variables. Figure 5.2 illustrates

the model of Figure 2.6 in the Comet language. Lines 1–8 initialize the model and define the

parameters used in this model. Line 9 declares the length-lex variables llx used in this model. The

initial domain is all the s-set from the universe U(p), which corresponds to all possible groups. The

disjoint constraint which guarantees groups do not overlap in a week is shown in Line 13. Groups

within a week are interchangeable, such symmetry is eliminated by Line 14. Line 18 restricts that

each pair of players are not allowed to play more than once. Line 21 breaks the symmetry between

weeks.

Figure 5.3 is the search procedure for the social golfer problem. Groups of the first week and

the first group of the second week is fixed (Lines 3, 5). Variables are labeled in a week-wise fashion.

Within each week, the variable with the shortest prefix is selected first (ties are broken by smaller

group index first), and the choice consist in inserting the smallest element first and to exclude it on

backtracking. This guarantees the golfers evenly distributed among groups. Lines 6–12 illustrate

this simple and elegant search strategy in the Comet language.

The Subset-Bound Model The model for subset-bound is indeed very similar. Figure 5.4 gives

the model and the search proceduce. In Comet, a subset-bound variable also takes the cardinality

59

1 using{
2 forall (pi in 1..g*s)
3 cp.post(NaiveLLRequires<CP>(llx[1,(pi-1)/s+1],pi));
4 forall (si in 1..s)
5 cp.post(NaiveLLRequires<CP>(llx[2,1],(si-1)*s+1));
6 forall (wi in 2..w)
7 while (or(gi in 1..g)(!llx[wi,gi].bound()))
8 selectMin(gi in 1..g)(llx[wi,gi].getPrefixLength(), gi){
9 int pi = llx[wi,gi].getFirstPossible();

10 try<cp> cp.post(NaiveLLRequires<CP>(llx[wi,gi],pi));
11 | cp.post(NaiveLLExcludes<CP>(llx[wi,gi],pi));
12 }
13 }

Figure 5.3: Comet Search Procedure for Social Golfer Problem using Length-Lex Variables

Domain Subset-Bound Length-Lex
(g,s,w) Time Fails Time Fails
(3,3,3) 0.01 0 0.01 0
(4,3,5) 19.99 289948 17.87 103462
(4,4,6) 96.55 1241016 28.21 40180
(5,3,6) 61.58 605967 64.3 177220
(5,3,7) x x x x
(5,4,5) 7.38 76013 2.16 3979
(5,4,6) x x x x
(5,5,4) 69.93 866005 1.36 311

Table 5.1: Social Golfer Problem: Subset-Bound Domain vs Length-Lex Domain

information into account. That said, it always maintain a bound-consistent state as a sbc-domain.

And for the rest of this thesis, unless otherwise specified, all subset-bound variables use sbc-domain.

The initialization phase is identical to that of the length-lex domain hence skipped. The atmost1

constraint is a bound-consistent propagator for subset-bound variable. Symmetries among groups

and weeks are eliminated by enforcing a lexicographical ordering in the variables’ 0/1-characteristic

vector.

Evaluation Table 5.1 shows the difference in time and size of the search tree. Fastest time and

smallest number of fails are bolded. Apparently, the social golfer we gave in the introduction is

way too easy for us. Length-lex is generally faster than subset-bound, and has dramatically less fail

nodes. For instance (5, 5, 4), it reduces the size of the search tree by more than 50 times. Instances

denoted by x cannot be solved within the time limit of 1800 seconds. This shows that, the length-

lex set variable, even with the most naive and basic model, performs better than the subset-bound

60

9 Solver<CP> cp();
10 var<CP>{set{int}} sbx[Weeks,Groups](cp,Players,s..s);
11 solve<cp>{
12 forall (wi in Weeks, gi in Groups, gj in Groups : gi < gj){
13 cp.post(disjoint(sbx[wi,gi],sbx[wi,gj]));
14 cp.post(lexleq(all(pi in Players)(sbx[wi,gj].getRequired(pi)),
15 all(pi in Players)(sbx[wi,gi].getRequired(pi))));
16 }
17

18 forall (wi in Weeks, wj in Weeks, gi in Groups, gj in Groups : wi < wj)
19 cp.post(atmost1(sbx[wi,gi],sbx[wj,gj]));
20

21 forall (wi in Weeks, wj in Weeks : wi < wj)
22 cp.post(lexleq(all(pi in Players)(sbx[wj,1].getRequired(pi)),
23 all(pi in Players)(sbx[wi,1].getRequired(pi))));
24 }using{
25 forall (pi in 1..g*s) cp.post(requiresValue(sbx[1,(pi-1)/s+1],pi));
26 forall (si in 1..s) cp.post(requiresValue(sbx[2,1],(si-1)*s+1));
27 forall (wi in 2..w)
28 while (or(gi in 1..g)(!sbx[wi,gi].bound()))
29 selectMin(gi in 1..g) (sbx[wi,gi].getRequiredSet().getSize(), gi){
30 selectMin(pi in 1..g*s: !sbx[wi,gi].isExcluded(pi) && !sbx[wi,gi].isRequired(pi))(pi)
31 try<cp> cp.post(requiresValue(sbx[wi,gi],pi));
32 | cp.post(excludesValue(sbx[wi,gi],pi));
33 }
34 }

Figure 5.4: Comet Model and Search Procedure for Social Golfer Problem using Subset-Bound Set
Variable

variable.

5.7 Conclusion

In this section, we presented a generic algorithm for enforcing bound consistency for binary con-

straint. The idea is to partition the other variable to a set of PF-intervals, and to construct a new

bound for each PF-interval. Only a feasibility routine for PF-intervals is assumed. The algorithm

runs in O(αc2 log n) time where O(α) is the running time for the feasibility routine. In particular,

the generic binary disjoint constraint take O(c3 log n) time. Of course, there exists more efficient

algorithm by implementing specialized locate and construct algorithm, in which case the binary

disjoint constraint, as well as other intersection constraints, takes O(c2) time. Please refer to the

appendix for details. Figure ?? illustrates the key difference between domains.

Moreover, we give a preliminary evaluation of the length-lex representation using the social golfer

problem. We show that it dramatically reduces the size of the search tree. And it is generally faster

61

Subset-Bound Length-Lex ROBDD
(and its variants)

Propagation Loose Strong Very Precise
Space O(n) O(c) Potentially Exponential

Efficiency Fast O(poly(c)) Potentially Slow
Convergence Fast ? Potentially Slow

Figure 5.5: Comparison over Different Set Domain Representations. (n is the universe size, c is the
cardinality upper bound.)

than the subset-bound representation.

62

Chapter 6

Symmetry Breaking with Length-Lex

Variables

6.1 Overview

The length-lex domain representation uses a total ordering which allows the domain representation

to directly capture the ordering information. This makes length-lex a perfect vehicle for breaking

symmetries. In last chapter, we break symmetries by posting ordering constraints among variables.

This section pushes the idea even further. We discuss some advanced symmetry-breaking tech-

niques which greatly improve the propagation strength of the length-lex domain. Three techniques

are proposed,

1. a generic algorithm for pushing length-lex ordering propagator into an arbitrary binary con-

straint;

2. domain reduction rules for the global alldisjoint constraints and a chain of length-lex symmetry-

breaking propagators;

3. breaking value symmetry with dual modeling techniques.

We will show that, with all these techniques available, we are able to solve much larger instances of

the social golfer problem.

63

6.2 Pushing Length-Lex Ordering into Binary Constraints

Combining propagators give at least as strong propagation as its decomposition. In the con-

straint programming community, a lot of research has been devoted to combining propagators.

The global all-different constraint is one of the most prominent examples. Enforcing global arc

consistency (GAC) takes polynomial time and is much stronger than the pairwise decomposition

of inequality constraints. Indeed, in general, many global constraints are more effective than their

decomposition[37, 29, 41]. In particular, [37] proposed an algorithm to enforce lexicographic or-

dering and sum constraint for two vectors of variables simultaneously. [41] proposed an generic

algorithm to push the lexicographic order into a global constraint by invoking O(m) calls to the

domain-consistent global constraint propagator, m being the number of variables.

When we consider combining propagators, three questions arise. Is the combined propagator

efficient? Is it easy to implement? Is it effective?

We demonstrate an efficient and generic method of pushing a length-lex ordering constraint into

an arbitrary binary symmetric constraint C. The algorithm only assumes a feasibility routine of C

and adds an O(log n) overhead to the original generic binary bound-consistent algorithm, yielding

a total of O(αc2 log2 n), where O(α) is the running time for the feasibility routine. In addition, we

demonstrate how to implement a feasibility routine for the combined propagator, and we show the

performance gains on the social golfer problem. This is in contrast to other representations, since

some earlier attempts of pushing the symmetry-breaking constraint into other constraint did not

improve propagation much.

We give two examples showing the advantages of pushing symmetry-breaking constraints into

other constraint for length-lex variables. The first example shows we get more pruning than propa-

gating its decomposition. The second example shows that it is hard for the subset-bound represen-

tation to propagate this class of constraints well due it is semantics.

To Combine Or Not To Combine

Example 28. We demonstrate it with a simple example shown in Figure 6.1. We compare the effect

between propagating a binary disjoint constraint and a length-lex ordering constraint separately and

propagating a binary symmetry-breaking disjoint constraint which considers both at the same time.

64

Decomposition: D, � Combined: D�
X ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉 X ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉
Y ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉 Y ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉

D ⇓ D� ⇓

X ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉 X ∈ ll〈{1, 2, 3}, {2, 6, 7}, 7〉
Y ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉 Y ∈ ll〈{2,3,4}, {5, 6, 7}, 7〉

�⇓

X ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉
Y ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉

D(X,Y) ≡ X ∩ Y = ∅, � (X,Y) ≡ X � Y , and D�(X,Y) ≡ D(X,Y)∧ � (X,Y).

Figure 6.1: Combined Symmetry-Breaking Propagators vs Its Decomposition.

We begin with two length-lex variables having the same initial domain. Left is the decomposition,

and right is the combined propagator.

In the decomposition, nothing is pruned for the disjoint constraint since the lower bound of each

domain is supported by the upper bound of the other one. For the order constraint, there is no

propagation as well since the lower bound of Y is not smaller than the lower bound of X nor the

upper bound of X is larger than the upper bound of Y .

However, for the combined propagator D�, two bounds are updated. First consider the upper

bound of X. X cannot take any sets begin with the element 3 since due to the ordering constraint,

Y has to take sets begin at least with 3. Due to the disjoint constraint, X and Y need to take

altogether 6 different elements in the set {3, ..., 7}, which is impossible. It implies that X cannot

begin with any element greater than 2. The upper bound of X is therefore {2, 6, 7}. The lower

bound of Y can be obtained under a similar reasoning. After propagating the combined propagator,

X can only begin with either element 1 or 2, and Y cannot begin with element 1. �

Subset-Bound vs Length-Lex

Example 29. Figure 6.2 gives a comparison between the two approximated representations of set

variables. It demonstrates the key difference between the two approximation approaches. There

is no propagation occurred in the subset-bound domain, while the upper bound of the length-lex

65

Subset-Bound Length-Lex
X ∈ sbc〈{}, {1, ..., 7}, 3〉 X ∈ ll〈{1, 2, 3}, {5, 6, 7}, 7〉
Y ∈ sbc〈{}, {2, ..., 7}, 3〉 Y ∈ ll〈{2, 3, 4}, {5, 6, 7}, 7〉

D� ⇓ D� ⇓

X ∈ sbc〈{}, {1, ..., 7}, 3〉 X ∈ ll〈{1, 2, 3}, {2, 6, 7}, 7〉
Y ∈ sbc〈{}, {2, ..., 7}, 3〉 Y ∈ ll〈{2, 3, 4}, {5, 6, 7}, 7〉

D(X,Y) ≡ X ∩ Y = ∅, � (X,Y) ≡ X � Y , and D�(X,Y) ≡ D(X,Y)∧ � (X,Y).

Figure 6.2: Combining Propagator : Subset-Bound vs Length-Lex.

representation is updated.

From the combined constraint, we know that X only begin with element 1 or 2, but not any

other. There is no way to capture this kind of information using the subset-bound domain, since it

only capture whether or not an element belongs to the solution. On the other hand, the length-lex

representation is able to capture this since the two bound essentially denotes the range for the most

signification element.

Here we don’t claim that the combined propagator is better than the decomposition, nor length-

lex is better than subset-bound. All we want to give is just a little ground on which we see a chance

of exploiting the semantics and strength of length-lex. �

In the following, we show how to implement the combined propagator generically.

6.2.1 Overview

We present a generic bound-consistent algorithm that pushes the length-lex ordering constraint

into a symmetrical arbitrary binary constraints 1, only assuming a feasibility routine for the binary

constraint over two PF-intervals. That said, once we have implemented a generic binary constraint,

we get the combined propagator for free. The generic algorithm bases on the observation that total

ordering is transitive, once we deduce that a set s is less than any set in some interval, the condition

holds for all sets t < s. The algorithm enforces bound consistency in O(αc2 logn) time, which is a

O(log n) overhead to the generic binary constraint.

1The restriction to symmetric constraint is natural, since otherwise the symmetry would already be broken by the
constraint itself.

66

{1,6,7} ... {1,8,9} {2,3,4} ... {4,5,9}

{1,6,7} ... {1,8,9} {2,3,4} ... {4,5,9} {4,6,7} ... {4,7,9}

X:

Y:

X:

Y:

pf<,,,,>

?

X:

Y:

pf<,,,,>

pf<,,,,>

Thursday, March 17, 2011

Figure 6.3: Slicing Length-Lex Intervals into 3 Parts

The algorithm bases on two key observations. First, if the greatest set in Xll is smaller than

the smallest set in Y , the length-lex ordering constraint is entailed and we can simply apply bc〈C〉.

Second, when two PF-intervals are identical (Xpf = Ypf) and C is symmetric, hs〈C〉(Xpf , Ypf) holds

implies hs〈C�〉(Xpf , Ypf) also holds. As a consequence of the first property, the algorithm starts

by slicing the input length-lex intervals into several pieces, which we first illustrate on an example

before defining it formally.

Example 30 (Slicing Two PF-Intervals). Consider the length-lex intervals X ∈

ll〈{1, 6, 7}, {4, 5, 9}, 9〉 and Y ∈ ll〈{2, 3, 4}, {4, 7, 9}, 9〉. The two intervals can be slices into

three sub-intervals, as shown in Figure 6.3. The first sub-interval is ll〈{1, 6, 7}, {1, 8, 9}, 9〉, all

sets in this sub-interval are smaller than any in the domain of Y . Similarly, the third sub-interval

is ll〈{4, 6, 7}, {4, 7, 9}, 9〉, all sets in this sub-interval are greater than any in the domain of X.

Suppose we can find a new bound within either of these sub-intervals, it can be sure that the

ordering constraint is satisfied. �

Now we formally specify the slicing algorithm.

Specification 8 (3Slices). Given two length-lex intervals Xll and Yll = ll〈lY , uY , nY 〉. The function

3Slices(Xll, Yll) slices the domain of X with respect to that of Y and returns the three intervals

X̌ll, Ẋll, and X̂ll such that

X̌ll ≡ {x ∈ Xll|x ≺ lY } and Ẋll ≡ {x ∈ Xll|x ∈ Yll} and X̂ll ≡ {x ∈ Xll|uY ≺ x}.

Figure 6.4 shows the slices. It only remains to take care of the sub-interval in the middle. What

is interesting is that the sub-interval for X and the one for Y are identical. They have the same

67

Xll : ll〈{1, 6, 7}, {4, 5, 8}, 9〉 Yll : ll〈{2, 3, 4}, {4, 7, 9}, 9〉

X̌ll : ll〈{1, 6, 7}, {1, 8, 9}, 9〉 Y̌ll : ∅
Ẋll : ll〈{2, 3, 4}, {4, 5, 9}, 9〉 Ẏll : ll〈{2, 3, 4}, {4, 5, 9}, 9〉
X̂ll : ∅ Ŷll : ll〈{4, 6, 7}, {4, 7, 9}, 9〉

X̌1
pf : pf〈{1}, 6, 8, 9, 3〉 :

Ẋ1
pf : pf〈{}, 2, 3, 9, 3〉 Ẏ 1

pf : pf〈{}, 2, 3, 9, 3〉
Ẋ2
pf : pf〈{4, 5}, 6, 9, 9, 3〉 Ẏ 2

pf : pf〈{4, 5}, 6, 9, 9, 3〉
: Ŷ 1

pf : pf〈{4}, 6, 7, 9, 3〉

Figure 6.4: Original (Top), Slicing (Middle) and Slicing with PF-Decomposition (Bottom) of Length-
Lex Domains.

PF-interval decomposition.

Lemma 4. Given two length-lex intervals Xll and Yll. 3Slices(Xll, Yll) = X̌ll, Ẋll, X̂ll and

3Slices(Yll, Xll) = Y̌ll, Ẏll, Ŷll, we have Ẋll = Ẏll.

Proof. Ẋll ≡ {s ∈ Xll|s ∈ Yll} ≡ {s ∈ Yll|s ∈ Xll} ≡ Ẏll.

We can reuse the generic algorithm for binary constraints. Moreover, as the constraint is symmetric,

the feasibility routine of the combined constraint reduces to the original one. The new bound can

be constructed using a binary search.

Definition 12 (Symmetric Constraint). A binary constraint C over two set variables X and Y is

symmetric if and only if C(X,Y)⇔ C(Y,X).

Lemma 5. If a binary constraint C is symmetric, hs〈C〉(Xll, Xll) = hs〈C�〉(Xll, Xll).

Proof. Suppose C(s, t) holds for s, t ∈ Xll. By symmetry, C(t, s) holds and s � t ∨ t � s also

holds.

6.2.2 Generic Successor Algorithm for Length-Lex Intervals

We present the generic successor algorithm for finding the new feasible lower bound for Y in C�.

The main idea of the algorithm is shown in Figure 6.6. Two sub-intervals, the one overlaps with

Xll and the one doesn’t, are considered. The one, we call it Ẏll, which overlaps with Xll is first

considered, since sets in this interval is smaller.. We need to pay special attention since they are

68

{1,6,7} ... {1,8,9} {2,3,4} ... {4,5,9}

{1,6,7} ... {1,8,9} {2,3,4} ... {4,5,9} {4,6,7} ... {4,7,9}

X:

Y:

X:

Y:

pf<,,,,>

?

X:

Y:

pf<,,,,>

pf<,,,,>

Thursday, March 17, 2011

Figure 6.5: Generic Successor Algorithm for C�. Solid Lines between PF-intervals Illustrates Fea-
sible Pair Regarding the Ordering Constraint.

overlapping. The algorithm first decomposes Ẏll into a list of PF-intervals. They are shown as boxes

in figure 6.6. We consider one PF-interval at a time, checking it against all PF-intervals in X which

is smaller or equals to it. In the figure, for instance, it is determined that the leftmost PF-interval

is infeasible. The algorithm then consider the second one, denoted by the symbol ?. Supports come

from four PF-intervals which are not greater than itself. We apply the same idea used in the generic

binary algorithm, a bound is constructed against each PF-interval on the other side, and the smallest

become the bound.

For the first three starting from the left, it is guaranteed that the ordering constraint is satisfied

by our slicing construction. Checking feasibility and bound construction reduce to the original binary

propagator. Only special care needed to be take for the identical PF-interval. We show that the

checking is reducible to the original one. The remaining problem is the construction, which will be

discussed into details in the next sub-section.

Algorithm 11 finds the new lower bound for Y . It locates the smallest PF-interval and the

construct the bound within it.

Algorithm 11 first slices the length-lex intervals (Lines 1–2) and decomposes the results into

PF-intervals (Lines 3–5). X̂ll and Y̌ll are not considered as they violate the ordering constraint.

Notice that since Ẋll and Ẏll are identical, their PF-interval decomposition are also identical (e.g.

Ẋi
pf ≡ Ẏ ipf). The algorithm locates the smallest PF-interval that contains the new upper bound

(Lines 7–11). The process is similar to bc〈C〉, except that it must pay some attention to the ordering

constraint. The intuition is captured in Figure 6.6.

The loop starts with the smallest PF-interval in Ẏll (Line 6) since we want to locate the smallest

successor. When considering PF-intervals Ẏ ipf , we only consider the PF-intervals in Yll no larger

69

Algorithm 11 succY 〈C�〉(Xll = ll〈lX , uX , n〉, Yll = ll〈lY , uY , n〉)
1: X̌ll, Ẋll, X̂ll ← 3Slices(Xll, Yll) {locate phase}
2: Y̌ll, Ẏll, Ŷll ← 3Slices(Yll, Xll)
3: [X̌1

pf , .., X̌
ǒ
pf]← decomp(X̌ll)

4: [Ẋ1
pf , .., Ẋ

ȯ
pf]← decomp(Ẋll)

5: [Ẏ 1
pf , .., Ẏ

ȯ
pf]← decomp(Ẏll)

6: Ypf ← ∅
7: for i← 1 to ȯ do
8: X ′ ← [X̌1

pf , .., X̌
ô
pf , Ẋ

1, ..., Ẋi−1
pf]

9: if hs〈C�〉(Ẏ ipf , Ẏ ipf) or
∨
Xpf∈X ′ hs〈C〉(Ẋi

pf , Ẏ
i
pf) then

10: Ypf ,X ← Ẏ ipf ,X ′
11: break
12: if Ypf = ∅ then {construct phase}
13: return succY 〈C〉(X̌ll, Ẏll] Ŷll)
14: return min(succY 〈C�〉(Ypf , Ypf),minXpf∈X (succY 〈C〉(Xpf , Ypf)))

than Ẏ ipf . Two cases must be distinguished. First, there is exactly one PF-interval in Yll identical to

Ẋi
pf and the algorithm must call hs〈C�〉 to take into account the ordering constraint (first condition

in line 9 and the vertical line in Figure ?? (Right)). Second, the remain PF-intervals are greater

than Ẏ ipf (line 8) and the algorithm simply calls hs〈C〉 (second condition in Line 9 and the diagonal

linese in Figure ?? (Left)). If the condition in line 9 holds, the current PF-interval Ẏ ipf has support,

the algorithm then breaks the loop and proceeds to construct a bound within the PF-interval (Lines

10–11). The algorithm returns the smallest set that has a support, notice that it has to distinguish

between two cases as in the locate phase(Line 13). If no PF-interval in Ẋll contain a new upper

bound, we will try Ŷll. As all sets in Ŷll are larger than X, we use the simple successor algorithm

succY 〈C〉 (Lines 12–13).

Example 31. We use Figure 6.4. Consider a binary disjoint constraint X ∩ Y = ∅. We want to

push the length-lex ordering constraint (X � Y) into it. Ẏ 1
pf is the first consider interval since it is

the smallest. It is compared against X̌1
pf and Ẋ1

pf (it is unnecessary to compare Ẋ2
pf since it violates

the ordering constraint). The feasibility routine reveals that both PF-intervals in X has a support

for some values in Ẏ 1
pf , it remains to construct the smallest supported value in this PF-interval. As

up to this point the algorithm has no idea which PF-interval in X gives a support for the smallest

successor in Y , the algorithm has to construct all of them and return the smallest one (Line 14). �

70

{1,6,7} ... {1,8,9} {2,3,4} ... {4,5,9}

{1,6,7} ... {1,8,9} {2,3,4} ... {4,5,9} {4,6,7} ... {4,7,9}

X:

Y:

X:

Y:

pf<,,,,>

?

X:

Y:

pf<,,,,>

pf<,,,,>

Thursday, March 17, 2011

Figure 6.6: Generic Successor Algorithm for PF-Intervals for C�

6.2.3 Generic Successor Algorithm for PF-Intervals

It remains to show how to find the successor when two PF-intervals are identical. The key idea

is illustrated in Figure 6.6. A PF-interval is cut into two halves until it becomes a singleton. We

first try to construct a new bound from the left half. It can only be supported by the left half

from X, which is identical. All we need is to recursively calling the algorithm itself with half of

the PF-interval. If we get a bound, we win. In the other case, where the left PF-interval is not a

solution, we construct a new lower bound from the right half. Supports come from either left or

right. The algorithm needs to try both, and return the minimum. For the left one, it reduces to

the original binary algorithm since left is smaller than right. For the right one, a recursive call is

invoked.

Algorithm 12 constructs the lower bound by performing a binary search in the F-setİt partitions

the F-set into two halves (Line 9) and checks if there is a solution in the lower half (Line 11 and the

right vertical line in the figure). Notice that by Lemma 5, we can simply call hs〈C〉. This lower half

needs to be compared only with the lower half X̂pf of Xpf , since the upper half X̌pf violates the

ordering constraint. If there is a solution (Line 10), the algorithm is called recursively within Y̌pf

(Line 11). Otherwise, the algorithm tries the upper half Ŷpf . Now there are two possible choices

(X̌pf and X̂pf) and we do not know which one gives a smaller bound. The algorithm tries both

(Lines 13–14) and returns the smallest (Line 15). Once the F-set becomes a singleton, it is inserted

in the prefix and the algorithm considers the next position (Lines 3–8).

Example 32. Following Example 31. Consider succY 〈C�〉(Ẋ1
pf , Ẏ

1
pf), where Ẋ1

pf = Ẏ 1
pf =

71

Algorithm 12 succY 〈C�〉(Xpf = pf〈P, f̌, f̂, n, c〉, Ypf = pf〈P, f̌, f̂, n, c〉)
Require: Xpf == Ypf

1: if not hs〈C�〉(Xpf , Ypf) then
2: return ⊥
3: if f̌ = f̂ then
4: if |P | = c− 1 then
5: return P] {f̌}
6: else
7: P ′, f̌ ′, f̂ ′ ← P] {f̌}, f̌ + 1, n− c− |P |
8: return predX〈C�〉(pf〈P ′, f̌ ′, f̂ ′, n, c〉, pf〈P ′, f̌ ′, f̂ ′, n, c〉)
9: ḟ ← (f̌ + f̂)/2

10: if hs〈C〉(pf〈P, f̌ , ḟ , n, c〉, pf〈P, f̌ , ḟ , n, c〉) then
11: return succX〈C�〉(pf〈P, f̌ , ḟ , n, c〉, pf〈P, f̌ , ḟ , n, c〉)
12: else
13: s0 = succX〈C〉(pf〈P, f̌ , ḟ , n, c〉, pf〈P, ḟ + 1, f̂ , n, c〉)
14: s1 = succX〈C�〉(pf〈P, ḟ + 1, f̂ , n, c〉, pf〈P, ḟ + 1, f̂ , n, c〉))
15: return min(s0, s1)

pf〈{}, 2, 3, 9, 3〉. The algorithm performs a binary search in the F-set (Lines 9–15), it first checks

whether there is a solution in the lower half pf〈{}, 2, 2, 9, 3. Clearly, there is no solution for the

disjoint constraint as the F-set is a singleton. It implies the new lower bound is in pf〈{}, 3, 3, 9, 3〉.

Its support can come from either pf〈{}, 2, 2, 9, 3〉 or pf〈{}, 3, 3, 9, 3〉, hence we need to get both and

return the minimum (Lines 13–15). �

Complexity Analysis

Lemma 6. Suppose hs〈C〉(Xpf , Ypf) takes O(α). Algorithm 12 (succY 〈C�〉(Xpf , Ypf)) takes

O(αc2 log2 n).

Proof. The running time of Algorithm 12 is affected by the number of unfixed positions (maximum

is c), the number of possible choices r in the F-set (i.e., f̂− f̌+1) and the universe size n. Denote the

computation time of the algorithm by Tn(r, c). Tn(r, c) can be expressed by the following recurrence

relation:

Tn(r, c) =


O(α) + max(Tn(r/2, c), Tn(r/2, c) +O(αc log n)) if r > 1

Tn(n, c− 1) if r = 1 ∧ c > 1

O(1) otherwise

72

Solving the recurrence relation gives Tn(r, c) = O(αc2 log2 n).

Theorem 8. Assume hs〈C〉(Xpf , Ypf) takes time O(α). Then Algorithm 12 (succY 〈C�〉(Xll, Yll))

takes O(αc2 log2 n).

Proof. Locating the first supported Xpf takes O(αc2) time. Once the algorithm locates the Xpf ,

it constructs a predecessor against every possible Ypf . There are at most O(c) possible choices and

O(c) of them require only the simple predecessor algorithm predX〈C〉 that takes O(αc log n) [36] .

At most one of them must be taken care specially by Algorithm 12 and takes O(αc2 log2 n). Hence,

the total run time is O(αc2 log2 n).

6.2.4 Feasibility Routine for PF-Intervals for Binary Symmetry-Breaking

Disjoint Constraint

The above generic algorithm pushes the length-lex ordering constraint into arbitrary binary sym-

metric constraints. Specialized algorithms can of course be designed for specific constraints. For

instance, there exists a specialized algorithm for binary symmetry-breaking disjoint constraint with

O(1) overhead to the binary disjoint constraint. It only based on one key observation: by disjoint-

ness, the smallest element of two sets are distinct, the ordering constraint can be handled only by

considering the smallest elements. We will illustrate it using the feasibility routine. The successor

and predecessor routine are essentially the same.

Example 33. Algorithm 13 implements the feasibility routine for binary symmetry-breaking disjoint

constraint. We illustrate it with following examples:

• Suppose Xpf = pf〈{1, 3}, 5, 6, 8, 3〉, Ypf = pf〈{2}, 4, 5, 8, 3〉. The prefixes of sets of both

intervals are fixed, all sets in Xpf begin with {1, 3} while all sets in Ypf begin with {2}. The

length-lex ordering constraint is entailed. We can simply call the feasibility routine for binary

disjoint constraint. (Line 12)

• Suppose Xpf = pf〈{}, 1, 4, 8, 3〉, Ypf = pf〈{3}, 4, 5, 8, 3〉. The smallest element of any set in

Ypf is 3. By the ordering constraint, the smallest element of any set in Xpf can be at most

3. Moreover, disjointness prohibits sets in Xpf from taking 3. Hence, the smallest element of

73

Algorithm 13 hs〈D�〉(Xpf = pf〈PX , f̌X , f̂X , nX , cX〉, Ypf = pf〈PY , f̌Y , f̂Y , nY , cY 〉)
Require: nX == nY

1: if cX < cX then
2: return hs〈D〉(Xpf , Ypf)
3: else if cX > cY then
4: return false
5: if PX = ∅ ∧ PY = ∅ then
6: f̌Y = max(f̌X , f̌Y)

7: f̂X = min(f̂Y , f̂Y)
8: else if PX = ∅ then
9: f̂X = min(f̂X , PY 0 − 1)

10: else if PY = ∅ then
11: f̌Y = max(f̌Y , PX0 + 1)
12: else if PX0 ≥ PY 0 then
13: return false
14: return (f̌X ≤ f̂X ∧ (f̌Y ≤ f̂Y) ∧ hs〈D〉(pf〈PX , f̌X , f̂X , nX , cX〉, pf〈PY , f̌Y , f̂Y , nY , cY 〉)

any set in Xpf can only be 1 or 2. We modify Xpf to pf〈{}, 1, 2, 8, 3〉 and now the ordering

constraint is entailed. We call the feasibility routine for binary disjoint constraint. (Line 9)

• Suppose Xpf = pf〈{}, 2, 4, 8, 3〉, Ypf = pf〈{}, 1, 5, 8, 3〉. The smallest element of sets in Xpf

must not be greater than those in Ypf , hence f̌Y must be at least 2. We get modify Ypf to

pf〈{}, 2, 5, 8, 3〉, and we can pass it to the binary disjoint feasibility routine. (Lines 5–7)

Theorem 9. Algorithm 13 (hs〈D�〉(Xpf , Ypf)) takes O(max(cX , cY)) time.

Proof. Lines 2, 14 invoke the feasibility routine of the binary disjoint constraint and take

O(max(cX , cY)), the rest of lines takes O(1). Hence, it is O(max(cX , cY)) in total.

It is possible to implement more efficient bound-consistent algorithms for various symmetry-breaking

intersection constraints too. The basic idea is discussed in Chapter B.2.

6.2.5 Evaluation

We evaluate the impact of using the combined propagator. We compare the performance between

three models. The subset-bound model, the original length-lex model, and the length-lex pushing

model, in which the combined propagator is used and the length-lex ordering constraint is pushed

into binary constraints. In particular, consider Lines 13 and 14:

74

Domain Subset-Bound Length-Lex Length-Lex
Pushing 4

(D�, atmost1�)
(g,s,w) Time Fails Time Fails Time Fails
(3,3,3) 0.01 0 0.01 0 0.01 0
(4,3,5) 19.99 289948 17.87 103462 6.52 36334
(4,4,6) 96.55 1241016 28.21 40180 0.01 0
(5,3,6) 61.58 605967 64.3 177220 24.51 67804
(5,3,7) x x x x x x
(5,4,5) 7.38 76013 2.16 3979 1.13 2309
(5,4,6) x x x x x x
(5,5,4) 69.93 866005 1.36 311 0.19 175
(7,7,4) x x x x 94.38 1739

Table 6.1: Social Golfer Problem: Pushing the Length-Lex Ordering into Binary Constraints

13 cp.post(disjoint(llx[wi,gi],llx[wi,gj]));

14 cp.post(llx[wi,gi] <= llx[wi,gj]);

They can be combined into one propagator which achieves stronger propagation:

cp.post(disjointLe(llx[wi,gi],llx[wi,gj]));

Similarly, Line 21 is replaced by:

cp.post(atmostLe(llx[wi,1],llx[wj,1],1));

This illustrates the flexibility of constraint programming. Constraints can be added and removed

from the model without the need to consider its impact on other constraints. We replace three lines

by two and introduce a new model, namely Length-Lex + Pushing.

Figure 6.1 presents the results. We use all instances in last section and a few instances that

was unsolveable before. The model Pushing is the best model. It not only greatly reduces the

number of fails when comparing with the original model, the time spent is reduced dramatically as

well. It detects failure for instance (4, 4, 6), which has no solution, without the need of searching.

Inferences among constraints is sufficient to detect the inconsistency. Pushing symmetry-breaking

constraints into binary constraint yields a significantly stronger propagation over its decomposition.

The combined propagator doesn’t incur overhead in practice as well. Consider the fails-time ratio,

which is roughly the number of node visited per seconds, the ratio of the original model and Pushing

model are roughly the same.

75

{1,2,7,8} {1,3,4,5} {1,3,4,6} {1,3,4,7} ... {1,6,7,8} {2,3,4,5} ... {4,6,7,8}

{1,2,3} ... {1,6,7} {2,3,4} ... {2,6,7} {3,4,5} ... {3,6,7} {4,5,6} ... {4,6,7} {5,6,7}

p = {1,...,7}
p = {2,...,7} p = {3,...,7} p = {4,...,7}

Monday, April 11, 2011

Figure 6.7: How The Most Significant Set Element Determines the Possible Elements.

This shows the great strength of pushing lexicographical-ordering constraint into binary con-

straints. Almost no overhead in computation time is incurred, while the model enjoys a great

improvement in propagation strength. Moreover, the generic pushing algorithm we give in this

section makes implement a combined propagator effortless.

6.3 Global Filter for Symmetry-Breaking AllDisjoint

Previous section showed that pushing symmetry-breaking constraints into other constraints are

effective. This section discusses a primal filter for the combination of a global alldisjoint constraint

and a chain of symmetry-breaking constraints.

Definition 13 (Symmetry-Breaking AllDisjoint). alldisjoint�(X1, ..., Xm) ≡

alldisjoint(X1, ..., Xm) ∧
(∧

i<j Xi � Xj

)
.

Intuition The key observation is that the most significant element of a variable Xi (i.e., the

smallest value in Xi) determines an upper bound of the possible elements that can be taken by

subsequent variables Xj ,∀j > i. Since the global alldisjoint constraint imposes that all variables

take different elements, the total number of elements taken by all variables is known. If an element

in Xi is such that there are not enough elements left for the variables Xi+1, . . . , Xm, then it must

be the case that Xi contains a smaller element.

Figure 6.7 depicts the idea and, in particular, the effect of the symmetry-breaking constraints on

the possible values that variables can take. Consider a domain which contains all sets of cardinality

3 drawn from 1..7 and ordered lexicographically. The rectangles show how the most significant ele-

ment determines the set of possible elements p for a set variables. If the most significant element of

a variable Xi is 2, then its possible set is {2, ..., 7}. Moreover, if there is a lexicographic constraint

76

between Xi and subsequent variables Xj (j > i), then the set of possible elements for these subse-

quent variables is of cardinality at most 6, since their most significant element have to be at least

2.

Example 34. Consider a CSP with 3 length-lex variables X1, X2, X3 of cardinality 3, taking their

elements from a universe U(9) = {1..9}, and a constraint alldisjoint�(X1, X2, X3). Assume that

X1 ∈ ll〈{1, 7, 8}, {1, 7, 9}, 9〉, X2 ∈ ll〈{2, 3, 4}, {7, 8, 9}, 9〉, and X3 ∈ ll〈{3, 4, 5}, {7, 8, 9}, 9〉. The

smallest element of X2 cannot be 6, since this would leave only elements in {6, 7, 8, 9} for filling X2

and X3 which need 6 distinct elements in total. It can be seen that the smallest element of X2 can

at most be 4, i.e., X2 ∈ ll〈{2, 3, 4}, {4, 8, 9}, 9〉.

More propagation is possible when the required elements of earlier variables are considered. X1

is taking elements 1 and 7, making it impossible for either X2 or X3 to take element 7. Suppose X2

takes 4 as its most significant element, X2 and X3 pick elements from the set {4, 5, 6, 8, 9}, whose

size is insufficient to fulfill the cardinality requirement. Hence, X2 cannot start with element 4. �

A Reduction Rule We present the primal filter for the symmetry-breaking alldisjoint. For

simplicity, all set variables are assumed to be of cardinality c.

Rule 1 (Symmetry-Breaking AllDisjoint: Upper Bound).

1 ≤ i ≤ m ∧
∧
i≤j≤m(|Xj | = c) ∧ f = max{e|ave(i) ≥ (m− i+ 1)c}

alldisjoint�(X1, ..., Xm) 7−→ min(Xm−i) ≤ f ∧ alldisjoint�(X1, ..., Xm)

where ave(i) = (n − e + 1) −
∑
j<i |{e′ ∈ req(Xj) | e′ ≥ e}|, and req(Xj) returns a set of required

element in the domain of variable Xj .

The function ave(i) returns an upper-bound on the number of elements Xi,...,Xm can take, assuming

that Xi starts with element e. If the upper-bound is less than the total cardinality requirement (i.e.,

(m − i + 1)c), then the constraint is infeasible. The rule finds the largest element f such that the

condition holds and imposes a constraint on the most significant element of Xi accordingly.

The primal filter is independent of the variable representation: it simply posts a constraint on

the smallest element of variable Xi. If the length-lex representation for set variables is used, this

update is particularly effective, since it directly updates the upper bound of the length-lex interval.

77

Obviously, Rule 1 does not enforce bound consistency.

Lemma 7 (Incompleteness of Rule 1). Enforcing bound consistency on alldisjoint�(X1, ..., Xm) is

strictly stronger than applying Rule 1.

Proof. Consider variables X1, X2, and X3 of cardinality 3 and drawing elements from U(9),

and a global constraint alldisjoint�(X1, X2, X3). Suppose X1 ∈ ll〈{1, 4, 5}, {1, 5, 9}, 9〉, X2 ∈

ll〈{2, 4, 5}, {2, 5, 9}, 9〉, and X3 ∈ ll〈{3, 4, 5}, {3, 5, 9}, 9〉. X1, X2, and X3 has to take an element in

{4, 5}. By pigeonhole principle, there is no solution. However, the propagation rule cannot pruning

anything.

We discussed symmetry-breaking binary disjoint constraint D� earlier. It and Rule 1 offer different

perspective for pruning.

Lemma 8 (Rule 1 and D� are incomparable). Rule 1 and a chain of binary constraints D�(Xi, Xj)

are incomparable.

Proof. We compare the propagation result after Rule 1 on [X1, X2, X3], and a set of binary con-

straints: D�(Xi, Xj) ∀1 ≤ i < j ≤ 3.

X1 X2 X3

Initial ll〈{1, 7, 8}, {1, 7, 9}, 9〉 ll〈{2, 3, 4}, {7, 8, 9}, 9〉 ll〈{3, 4, 5}, {7, 8, 9}, 9〉

Rule 1 ll〈{1, 7, 8}, {1, 7, 9}, 9〉 ll〈{2, 3, 4},{3,8,9}, 9〉 ll〈{3, 4, 5}, {6, 8, 9}, 9〉

D� ll〈{1, 7, 8}, {1, 7, 9}, 9〉 ll〈{2, 3, 4}, {4, 6, 9}, 9〉, ll〈{3, 4, 5},{5,6,9}, 9〉

6.3.1 Evaluation

We evaluate the impact of the reduction rule for symmetry-breaking all-disjoint constraint. The

filtering rule is indeed independent of the underlying domain representation. Hence, the evaluation

considers both subset-bound and length-lex domain. We post the global constraint among the first

group variables in all weeks. All first group variables contain player 1 and there is a atmost(1)�

binary constraint among them. It is possible to introduce an auxiliary variable aux[wi], which

removes the first player, for each first group variable llx[wi,1], and post a symmetry-breaking

all-disjoint constraint alldisjoint� over them. The following constraint is posted.

78

Domain Subset-Bound Subset-Bound Length-Lex Length-Lex
Pushing 4 4

(D�, atmost1�)
Global SymBreak 4 4

(Rule 1)
(g,s,w) Time Fails Time Fails Time Fails Time Fails
(3,3,3) 0.01 0 0.01 0 0.01 0 0.01 0
(4,3,5) 24.77 289948 20.05 192448 6.52 36334 3.88 17842
(4,4,6) 96.55 1241016 0.01 0 0.01 0 0.01 0
(5,3,6) 61.58 605967 55.84 445333 24.51 67804 9.73 24502
(5,3,7) x x 599.06 4121349 x x 132.43 194723
(5,4,5) 7.38 76013 8.56 75593 1.13 2309 0.83 1537
(5,4,6) x x x x x x x x
(5,5,4) 69.93 866005 93.67 866005 0.19 175 0.19 175
(6,3,7) x x 504.01 3072559 x x 53.47 82005
(6,4,5) 0.1 692 0.12 692 0.1 89 0.1 89
(6,5,5) x x x x x x 1537.17 1206172
(7,7,4) x x x x 94.38 1739 93.32 1739

Table 6.2: Social Golfer Problem: Primal Filter for Global Symmetry-Breaking AllDisjoint Con-
straint

cp.post(symbreak_alldisjoint(all(wi in 1..w) aux[wi],p));

Table 6.2 presents the result. We compare its performance with the original model as well as

the subset-bound model. The global symmetry-breaking alldisjoint filter is useful for both subset-

bound and length-lex model. It is able to solve some reachable instances in the original model,

i.e. (5, 3, 7), (6, 3, 7). For example, for (5, 3, 6), the number of fails is cut by more than half in the

length-lex model and 25% in the subset-bound model. The primal filter does not always improve

propagation though, especially when the instance is not too tight, i.e. player 1 doesn’t have to play

with many other players. It doesn’t reduce the number of fails in instances (5, 5, 4), (6, 4, 5), and

(7, 7, 4). However, the time spent to solve those instances are not increased. The filter incurs a

negligible overhead to the system. It is also interesting to point out that in instance (4, 4, 6), the

subset-bound model becomes trivial after adding the global filter. On the other hand, the instance is

already trivial for the length-lex model using binary symmetry-breaking constraints. This suggests

that the technique of pushing ordering constraint into binary constraint enables to solver to gain

some global perspective of the problem.

79

6.4 Dual Modeling for Length-Lex Set Variables

6.4.1 Overview

Most set-CSPs exhibit symmetries; among set variables, values or both. Breaking either symmetry

on its own can be done by ordering the variables in the constraint model (variable symmetries)

or in the dual model (value symmetries). A more complex problem lies in breaking both forms of

symmetries simultaneously while guaranteeing that for a given symmetry class a solution can still

be found. A priori, it is unclear whether enforcing the length-lex ordering on both variables and

values will still leave some solutions in each symmetry class. We show in this section that imposing

a double length-lex ordering on a fully interchangeable set-CSP does not eliminate all solutions in

each symmetry class and thus can be safely applied. Intuitively, a fully interchangeable set-CSP is a

set-CSP in which both the variables and the values are fully interchangeable. This section addresses

the theoretical and practical issue of breaking both forms of symmetries simultaneously for such

CSPs.

In 0/1 matrix formulation, these symmetries are successfully broken by imposing a lexicographic

ordering on both rows and columns. It is guaranteed that some solutions of each symmetry class

remains after this process. Since the length-lex ordering provides a total ordering on its sets, it

also provides an ideal vehicle to break symmetries and we would like to use a similar technique

with length-lex variables. Variable symmetries can be broken by imposing an ordering on the set

variables. Now if the values are also interchangeable, we can consider the dual problem and impose

an ordering on the dual variables. Our approach is conducted in two steps: 1) break forms of value

symmetries using dual modeling and ordering constraints, 2) extend the approach to tackle fully

interchangeable set-CSPs.

6.4.2 Breaking Value Symmetry

To ease the presentation, we use a slightly different notation than the one we used in the thesis.

We revisit the definition of CSPs as in [18], whereby all the constraints are abstracted by a Boolean

function that takes an assignment and returns true if they are satisfied simultaneously. We will use

the notation P for primal set variables and Q for dual set variables.

80

Definition 14 (Set-CSP). A set-CSP is a pair 〈X ,D, C〉, where X is a set of variables, D is the

universe (the set of all possible values) for these variables. An (primal) assignment γ : X → P(D)

maps variables to sets. C : (X → P(D))→ bool is a constraint that specifies which assignments are

solutions (i.e. C(γ) = true).

A common form of value symmetry is value-interchangeability, meaning that the values taken by the

variables do not matter. What actually matter is which variables take the same value. Under our

set-CSP definition, value interchangeability corresponds to modifying the output of an assignment.

To simplify the notation, we define a set mapping function that applies to each set element to return

a set value.

Definition 15 (Mapping Function). Given a function f : U(n)→ U(n), the set mapping function φf

takes a ground set s, applies f to each of its elements and returns the image set: φf (s) ≡ {f(e)|e ∈ s}.

Example 35. Consider the set-CSP with two variables P1, P2 ∈ ll〈{1}, {2}, 2〉 with constraint

P1 6= P2. The possible set values are interchangeable ({1} and {2}). This can be expressed with the

bijective function f(j) = 3 − j. An assignment γ maps the variables to sets, for instance we have

γ(P1) = {1}, γ(P2) = {2}. A symmetric solution can be obtained by applying f(j) to each element

in γ(Pi). φf is defined by: (i.e. φf (γ(P1)) = {2} and φf (γ(P2)) = {1}). �

Example 36. The social golfer problem also exhibits value symmetry. Given any solution, we attain

another solution by permuting players. Figure 2.5 is symmetric to Figure 2.1 by permuting players

3, 6, and 9. �

We now formally define value-interchangeable CSP based on the set-CSP definition above. Its

solution is preserved by permuting any subset of set values.

Definition 16 (Fully Value-Interchangeable Set-CSP). A Set-CSP is fully value-interchangeable if

and only if for a solution γ, any bijection τ : D → D, the assignment γ′ = φτ ◦ γ is also a solution.

We can break value symmetry by enforcing an ordering constraint among variables in the dual model

in which the role of variables and values are interchanged. The idea is similar to the 0/1-matrix

model, where row-interchangeability in a model is equivalent to column-interchangeability in its

transpose. Figure 6.8 illustrates the idea. Notice that the analysis is independent of the domain

representation.

81

P1 = {2,3}

P2 = {2,4}

P3 = {1,3,4}

P4 = {2,3,4}

1

2

3

4

Variables Values
P1 = {2,3}

P2 = {2,4}

P3 = {1,3,4}

P4 = {2,3,4}

Q1 = {3}

Q2 = {1,2,4}

Q3 = {1,3,4}

Q4 = {2,3,4}

Variables Dual Variables

Q1 Q2 Q3 Q4

P1 0 1 1 0

P2 0 1 0 1

P3 1 0 1 1

P4 0 1 1 1

P1 P2 P3 P4

Q1 0 0 1 0

Q2 1 1 0 1

Q3 1 0 1 1

Q4 0 1 1 1
Transpose

Sunday, March 20, 2011

Figure 6.8: Reformulating Set-CSPs as a 0/1 Matrix

First we neglect all the cells notated by P1,, Q4. Consider a CSP which exhibits row symmetry,

we obtain a symmetric solution by swapping assignment of any pairs of rows. The matrix on the

left represents a solution to the CSP in which every cell represents a variable. There are altogether

16 cells. We obtain another matrix, the one on the right, by transposing it. Row symmetry in the

original matrix becomes column symmetry in the transposed matrix.

Suppose P1 is a set variable taking element i if the cell in column Qi is 1. In other words, Qi

represents element in the universe. P1 = {2, 3} in matrix. We are assigning values to variables. Row

symmetry corresponds to variable interchangeability. In the transposed matrix, all the variables

become values. The symmetry class become value interchangeability. We may apply the methods

for breaking variable symmetry to deal with value symmetry. All we need is to interchange the role

of variables and values. A dual set of variables is introduced. Figure 6.9 visualizes this idea.

Formally, given a set-CSP, we can remodel it using a 0/1-matrix model. Suppose there are

m set variables P1, ..., Pm and n values {1, ..., n}. We can construct a m × n matrix (denoted as

Zi,j ∈ {0, 1} for i ∈ {1..m}, j ∈ {1..n}) is constructed. Zi,j = 1 if and only if j ∈ Pi, and Zi,j = 0

if otherwise. Every row [Zi,1, ..., Zi,n] is indeed the characteristic vector of Xi, variable symmetry

corresponds to row symmetry. Similarly, value symmetry corresponds to column symmetry. Every

column [Z1,j , ..., Zm,j] is the characteristic vector of the dual variable. When we take the transpose

of the matrix, row and column symmetry interchanged. Column symmetry can now be tackled as a

row symmetry, equivalently, value symmetry can be tackled as dual variable symmetry.

Given a fully value-interchangeable set-CSP, we can amend the model as following to eliminate

all symmetric solutions caused by value-interchangeability.

82

P1 = {2,3}

P2 = {2,4}

P3 = {1,3,4}

P4 = {2,3,4}

1

2

3

4

Variables Values
P1 = {2,3}

P2 = {2,4}

P3 = {1,3,4}

P4 = {2,3,4}

Q1 = {3}

Q2 = {1,2,4}

Q3 = {1,3,4}

Q4 = {2,3,4}

Variables Dual Variables

Q1 Q2 Q3 Q4

P1 0 1 1 0

P2 0 1 0 1

P3 1 0 1 1

P4 0 1 1 1

P1 P2 P3 P4

Q1 0 0 1 0

Q2 1 1 0 1

Q3 1 0 1 1

Q4 0 1 1 1
Transpose

Sunday, March 20, 2011

Figure 6.9: Dual Modeling in Sets

Definition 17 (Length-Lex Ordered Dual Set-CSP). Let 〈PM , N,C〉 be a CSP where PM =

{P1, ..., Pm} are (primal) set variables and N = {1, ..., n}. Its length-lex ordered dual version is

defined as 〈PM]QN , N]M,C ′〉 where QN = {Q1, ..., Qn} are the dual set variables, M = {1, ...,m}

and

C ′ ≡ C ∧ (Q1 � . . . � Qn) ∧
∧

i∈N,j∈M
(j ∈ Pi ⇔ i ∈ Qj)

Theorem 10. Given a fully value-interchangeable CSP, its length-lex ordered dual version elimi-

nates all but one solutions in each symmetry class.

Proof. Consider the 0/1-matrix model constructed from the set model, ordering constraints among

dual variables is equivalent to enforcing length-lex ordering on 0/1 characteristic vector among

columns. As length-lex is a total order, this leaves only one solution in each symmetric class.

Example 37. Following example 35, in the length-lex ordered dual version,we have the dual set

variables Q1, Q2 ∈ ll〈{}, {1, 2}, 2〉. We add the symmetry breaking constraint Q1 � Q2 and the

channeling constraint
∧
i∈{1,2},j∈{1,2}(j ∈ Pi ⇔ i ∈ Qj). The impact of the symmetry breaking

constraints is the elimination of the solution γ(P1) = {2} and γ(P2) = {1} because γ(Q1) = {2} 6�

γ(Q2) = {1}. �

6.4.3 Breaking Variable and Value Symmetry

We now address the issue with breaking both value and variable symmetries simultaneously. It leads

to a question of in a problem that exhibits both variable and value symmetry, whether or not we

can post both variable and value symmetry breaking constraint on the same model. We begin with

formalizing the idea of set-CSP and fully-interchangeability. These concepts facilitate our proofs.

83

A fully interchangeable set-CSP is that all variables (values) are interchangeable. Permuting the

assignment of variables and values preserve a solution.

Definition 18 (Fully Interchangeable Set-CSP). A set CSP is fully interchangeable if and only

if when γ is a solution, for any bijective σ : V → V and τ : D → D, and a mapping function

φf (s) = {f(e)|e ∈ s}, assignment γ′ = φτ ◦ γ ◦ σ is also a solution.

Given a fully interchangeable set-CSP, we would like to break such interchangeability by posting

length-lex ordering constraint on both primal and dual variable. We formally define this as,

Definition 19 (Double Length-Lex Ordered Primal/Dual Set-CSP). Let 〈PM , N,C〉 be a CSP

where PM = {P1, ..., Pm} are (primal) set variables and N = {1, ..., n}. Its double length-lex

primal/dual version is defined as 〈PM]QN , N]M,C ′〉 where QN = {Q1, ..., Qn} are the dual set

variables, M = {1, ...,m} and

C ′ ≡ C ∧ (P1 � . . . � Pm) ∧ (Q1 � . . . � Qn) ∧
∧

i∈N,j∈M
(j ∈ Pi ⇔ i ∈ Qj)

However, it is unclear about the soundness of such method. It may completely wipe out all solution

of some symmetry class. In the remaining section, we prove that such problem doesn’t exists. We

prove by reducing our set model to 0/1-matrix model.

A similar problem is encountered in the double lex method for matrix model, it tackles row and

column symmetry by enforcing lex-ordering constraints among rows and columns. The lex-ordering

constraints, however, cannot be posted arbitrarily. In particular, if we enforce lex-ordering constraint

among the rows but anti-lex-ordering constraint among the columns, all solutions of some symmetric

class will be wiped out by the symmetry breaking constraints. We illustrate this with the following

example.

Example 38. Suppose we have a two by two matrix of 0/1-variables, Xr,c, with constraints∑
1≤r′≤2Xr′,c = 1,∀1 ≤ c ≤ 2 and

∑
1≤c′≤2Xr,c′ = 1,∀1 ≤ r ≤ 2. Clearly, both rows and

columns are interchangeable. There are two solutions: If we enforce double lex-ordering or dou-

ble anti-lex-ordering constraint on the matrix model, we will get either one of the above solutions.

However, if we enforce lex-ordering on rows and anti-lex-ordering on columns, or vice verse, none of

84

1 0
0 1

0 1
1 0

Original 0/1 of Original Padded 0/1 of Padded
P1 {2, 3} {0, 1, 1, 0} {−4,−3, 2, 3} {1, 1, 0, 0, 0, 0, 1, 1, 0}
P2 {2, 4} {0, 1, 0, 1} {−4,−3, 2, 4} {1, 1, 0, 0, 0, 0, 1, 0, 1}
P3 {1, 3, 4} {1, 0, 1, 1} {−4, 1, 3, 4} {1, 0, 0, 0, 0, 1, 0, 1, 1}
P4 {2, 3, 4} {0, 1, 1, 1} {−4, 2, 3, 4} {1, 0, 0, 0, 0, 0, 1, 1, 1}
Q1 {3} {0, 0, 1, 0} {−4,−3,−2, 3} {1, 1, 1, 0, 0, 0, 0, 1, 0}
Q2 {1, 2, 4} {1, 1, 0, 1} {−4, 1, 2, 4} {1, 0, 0, 0, 0, 1, 1, 0, 1}
Q3 {1, 3, 4} {1, 0, 1, 1} {−4, 1, 3, 4} {1, 0, 0, 0, 0, 1, 0, 1, 1}
Q4 {2, 3, 4} {0, 1, 1, 1} {−4, 2, 3, 4} {1, 0, 0, 0, 0, 0, 1, 1, 1}

Figure 6.10: Preserving the length-lex ordering by padding dummy elements

these solutions satisfies these constraints. In other words, all solutions of the same symmetric class

are wiped out. �

Reference [17] shows that in matrix formulation, there is always some way to break both row and

column symmetry while preserving some solutions in every symmetric class.

Variable and value symmetry for length-lex set variables can be tackled in a similar fashion. We

reduce to the 0/1 matrix model and enforce ordering constraints on both rows and columns. But

instead of enforcing lexicographical ordering constraints, we enforce length-lex ordering. The analysis

of the double-lex method cannot be applied directly our model. The subtlety can be resolved by

transforming the sets, making the length-lex ordering identical to lex-ordering. The key observation

is that, when sets are of the same cardinality, their length-lex order is equivalent to the lexicographic

order. We reduce the length-lex ordering to lexicographic ordering by padding some dummy elements

to the front and make all sets the same size.

Example 39. The upper half of Figure 6.10 illustrates difference between length-lex and lex ordering

for a universe U(4) and four sets P1, P2, P3, P4. The first column shows the sets in length-lex order.

These original sets are not in lex-order ≤lex as P2 >lex P3. The 0/1 characteristic function (second

column) is not in anti-lex-order ≥lex either since P3 <lex P4. By padding dummy elements (third

column), the sets are in both length-lex-order and lex-order and their 0/1 characteristic functions

are in anti-lex order.

The lower half of Figure 6.10 illustrates the dual sets Q1, Q2, Q3, Q4 (i.e. j ∈ Pi ⇔ i ∈ Qj). The

85

−4 −3 −2 −1 0 Q1 Q2 Q3 Q4

−4 1 1 1 1 1 1 1 1 1
−3 1 1 1 1 1 1 0 0 0
−2 1 1 1 1 1 1 0 0 0
−1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 0 0 0 0
P1 1 1 0 0 0 0 1 1 0
P2 1 1 0 0 0 0 1 0 1
P3 1 0 0 0 0 1 0 1 1
P4 1 0 0 0 0 0 1 1 1

Figure 6.11: The 0/1 matrix

original dual sets are not in lex nor anti-lex order. By padding elements, all dual sets are in both

length-lex-order and lex-order (third and forth column). �

The formal definition of padding is as follows.

Definition 20 (Padding). We abuse the notation of a universe to allow negative value element,

such that U ′(n) = {−n, ...,−1, 0, 1, ..., n}. padn : P(U(n))→ P(U ′(n)) maps a set to a n-set padded

by dummy elements. Formally, given s ⊆ U(n) and c = |s|, padn(s) ≡ {−n, ...,−(c+ 1), s1, ..., sc}.

Lemma 9. Suppose s, t ⊆ U(n). s � t⇔ padn(s) ≤lex padn(t).

Proof. Trivial when |s| = |t|. When |s| < |t|, denote s′ = padn(s), t′ = padn(t), observe that

s′1..n−|t| = t′1..n−|t| as they are dummy elements. s′n−|t|+1 is a dummy negative element, whilst

t′n−|t|+1 = t1 > 0, Hence s′ ≤lex t′.

Figure 6.11 illustrates the key idea of the proof. We use Example 39. It is constructed by padding

dummy elements to sets. The lower right part is the original sub-matrix, where the primal sets

{Pi} and dual sets {Qj} are in length-lex order. Rows P1, P2, P3, P4 correspond to the padded sets

on Figure 6.10, so as columns Q1, Q2, Q3, Q4. The upper left corner are dummy cells filled by 1s

to ensure that they always remain in the upper left corner in the anti-lex ordering. Both rows

and columns are in anti-lex ordering, while in the lower left sub-matrix, rows and columns are in

length-lex ordering. Following is the formal proof,

Theorem 11. Given a fully interchangeable CSP, its double length-lex primal/dual version does

not eliminate all solutions in each symmetry class.

86

Proof. Outline of the proof: we show that any solution γ of the CSP 〈PM , N,C〉, there exists a

solution γo in 〈PM]QN , N]M,C ′〉 such that there exists γ and γo are symmetric, formally:

∃σ : PM → PM , τ : N → N, s.t. ∀Pi ∈ PM , τ(γ(σ(Pi))) = γo(Pi)

In other words, we want to show that there exists a symmetrical solution that satisfies the double

length-lex ordering constraint. We apply the double anti-lex analysis for 0/1 matrix.

Consider a solution γ, transform it to γ′ = padργ where ρ = max(n,m). We construct a

0/1 matrix Z−ρ..ρ,−ρ..ρ where j ∈ γ′(Pi) ⇔ Zi,j = 1 and fill the upper left dummy cells with 1

(i.e. ∀i ≤ 0, j ≤ 0, Zi,j = 1). Notice that the lower right sub-matrix Z1..m,1..n correspond to

solution γ. To construct a solution that satisfies double length-lex ordering, we instead enforce

double anti-lex ordering on matrix Z. Lemma 9 implies that double anti-lex on Z guarantees the

solution corresponds the lower right sub-matrix is in double length-lex order. Moreover, enforcing

ordering constraint between a pair of rows (or columns) can be regarded as swapping the rows (or

columns) upon violation. Swapping of rows (or columns), in turn, corresponds to modifying the

variable mapping σ (or value mapping τ). Hence, from a solution γ, we can construct a matrix Z

by choosing the right mapping function σ and τ , such that it is in double anti-lex order, and Z has

a sub-matrix corresponds to a solution γo which is in double length-lex order.

6.4.4 Evaluation

We evaluate the effectiveness of the dual modeling method for breaking value symmetry. Once again,

the social golfer problem is used. We compare the dual modeling method for both subset-bound

and length-lex set variables, and the original length-lex model. Notice that the social golfer problem

presented here does not directly apply the dual set variables, since we can exploit the problem

structure by a bit further since we know that a player, which corresponds to the dual variable, plays

at exactly one group in every week. We apply the model introduced by Barnier and Brisset [3] (see

Figure A.3), the dual variable is a set of vectors, each vector represents the group player p belongs

to in a week. Both models have the same set of solutions. But the dual vector model achieves more

propagation.

Figure 6.12 presents the length-lex model in the Comet language. The initialization and search

87

1 LengthLexVar<CP> llx[Weeks,Groups](cp,p,s);
2 var<CP>{set{int}} sbx[Weeks,Groups](cp,Players,s..s);
3 var<CP>{int} y[Players,Weeks](cp,Groups);
4 var<CP>{set{int}} aux[Weeks](cp,Players,s..s);
5

6 solve<cp>{
7 forall (wi in Weeks, gi in Groups, gj in Groups : gi < gj)
8 cp.post(disjointLe(llx[wi,gi],llx[wi,gj]));
9

10 forall (wi in Weeks, wj in Weeks, gi in Groups, gj in Groups : wi < wj)
11 cp.post(atmost(llx[wi,gi],llx[wj,gj],1));
12

13 forall (wi in Weeks, wj in Weeks : wi < wj)
14 cp.post(atmostLe(llx[wi,1],llx[wj,1],1));
15

16 forall (wi in Weeks)
17 cp.post(removeMin(llx[wi,1],aux[wi]));
18 cp.post(symbreak_alldisjoint(all(wi in 1..w) aux[wi],p));
19

20 forall(wi in Weeks, gi in Groups)
21 cp.post(channel(llx[wi,gi],sbx[wi,gi]));
22

23 forall (wi in DualWeeks)
24 cp.post(dualChannel(all(gi in Groups)sbx[wi,gi], all(pi in Players)y[pi,wi]));
25

26 forall (pi in Players, pj in Players : pi < pj)
27 cp.post(lexleq(all(wi in Weeks)y[pi,wi],all(wi in Weeks)y[pj,wi]));
28 }

Figure 6.12: Comet Model for Social Golfer Problem using Dual Modeling

part are skipped since they are equivalent to previous models. Subset-bound variables sbx are

introduced as auxiliary variables for channeling with the dual variables. In the model, Lines 6–

18 are identical to the previous model. Lines 20–21 are the channeling constraint between the

two representations, to guarantee that the values they are taking agree, i.e. llx[wi,gi] ==

sbx[wi,gi]. Lines 23–24 connect the primal and dual variable, and Lines 26–27 are the symmetry-

breaking constraints that eliminate the interchangeability among players.

Table 6.3 presents the results. Instances used in the previous evaluation as well as some larger

instances. Four models are evaluated: the original primal subset-bound and length-lex model which

uses symmetry-breaking constraint for eliminating variable symmetry, and the dual model for both

representations which add dual constraints for breaking value symmetry. The goal of the evaluation

is two-fold. First, to see how many value symmetry are left and not pruned by the original model.

Second, to see the difference between the subset-bound and length-lex representation.

The dual-length-lex model solves all the instances efficiently while the dual-subset-bound model

solves all but one instances. Breaking value symmetry allows us to solve a much larger instance with

88

Domain Subset-Bound Subset-Bound Length-Lex Length-Lex
Pushing 4 4

(D�, atmost1�)
Global SymBreak 4 4 4 4

(Rule 1)
Dual Model 4 4
(Ref. [3])
(g,s,w) Time Fails Time Fails Time Fails Time Fails
(3,3,3) 0.01 0 0.01 0 0.01 0 0.01 0
(4,3,5) 20.05 192448 0.11 968 3.88 17842 0.04 136
(4,4,6) 0.01 0 0.01 0 0.01 0 0.01 0
(5,3,6) 55.84 445333 4.21 29791 9.73 24502 2.58 5508
(5,3,7) 599.06 4121349 25.63 157285 132.43 194723 13.08 16361
(5,4,5) 8.56 75593 0.24 1594 0.83 1537 0.25 428
(5,4,6) x x 337.35 2013980 x x 198.16 259616
(5,5,4) 93.67 866005 0.33 2320 0.19 175 0.15 175
(6,3,7) 504.01 3072559 0.22 935 53.47 82005 0.19 219
(6,4,5) 0.12 692 0.11 473 0.1 89 0.1 83
(6,5,5) x x 36.49 195986 1537.17 1206172 45.76 34375
(7,7,4) x x x x 93.32 1739 50.96 1739

Table 6.3: Social Golfer Problem: Breaking Value Symmetry with Dual Modeling Method.

dramatically small number of nodes. For example, for instance (5, 3, 6), the size of the search tree

reduces by 5 times when the dual model is added to the original length-lex model. More over, both

dual models solve more instances than the original.

The length-lex dual model is generally faster than the subset-bound model. However, it is

interesting to see that the length-lex model has dramatically less fail nodes than the subset-bound

model. For example, for instance (6, 5, 5), where both motels spend roughly the same time to solve

the problem, the subset-bound model visits 5.7 times more nodes that the length-lex model.

Table 6.4 gives a close look to the data. The length-lex model reduces the size of the search

tree at least by a few times (shown in the first column). The difference between fails count become

more apparent when the problem gets harder. The second and third column gives the approximated

number of search nodes per second of the two models. Clearly, the length-lex model spends a lot

more than in doing inference than the subset-bound. The last column gives the ratio between the

search nodes per second. It suggests that if we are able to speed up the inference process for the

length-lex model, we can beat the subset-bound representation.

89

g,s,w Subset-Bound Fails
Length-Lex Fails

Subset-Bound Fails
Subset-Bound Time

Length-Lex Fails
Length-Lex Time

Subset-Bound Ratio
Length-Lex Ratio

(3,3,3) ∞ 0 0 ∞
(4,3,5) 7.12 9132.08 3578.95 2.55
(4,4,6) ∞ 0 0 ∞
(5,3,6) 5.41 7072.89 2139.03 3.31
(5,3,7) 9.61 6137.47 1251.03 4.91
(5,4,5) 3.72 6614.11 1712 3.86
(5,4,6) 7.76 5969.95 1310.16 4.56
(5,5,4) 13.26 7138.46 1166.67 6.12
(6,3,7) 4.27 4230.77 1164.89 3.63
(6,4,5) 5.7 4300 855.67 5.03
(6,5,5) 5.7 5371.39 751.23 7.15
(7,7,4) x x 34.13 n/a

Table 6.4: Social Golfer Problem: Fails-to-Time Ratio of Subset-Bound and Length-Lex.

Subset-Bound Length-Lex ROBDD
(and its variants)

Propagation Loose Strong Very Precise
Space O(n) O(c) Potentially Exponential

Efficiency Fast O(poly(c)) Potentially Slow
Convergence Fast Slow Potentially Slow

Figure 6.13: Comparison over Different Set Domain Representations. (n is the universe size, c is the
cardinality upper bound.)

6.5 Conclusion

The length-lex domain representation offers a total ordering which makes it a good vehicle for sym-

metry breaking. In this chapter, we presented three different methods for incorporating symmetry-

breaking techniques using the length-lex set variables.

Binary Symmetry-Breaking Propagators The first method gives an generic and efficient al-

gorithm for combining an arbitrary binary constraint and a length-lex ordering constraint. The

algorithm incurs a minimal overhead to the running time of the decomposition. We showed that,

both theoretically and practically, combining these propagators achieves a much stronger propaga-

tion than its decomposition. We can solve larger instances with the use of the combined propagator.

90

Global Primal Symmetry-Breaking Filter The second method introduces a global constraint

for the combination of a global alldisjoint constraint and a chain of length-lex symmetry-breaking

constraints. It pushes the idea of combining binary propagators even further, and gives a more global

perspective for pruning infeasible values. The key idea is that the most significant element, which

is constrained by the symmetry-breaking constraints, determines the size of the possible set. That

said, a large most significant element implies a small possible set. This gives us a huge opportunity

for propagation.

Dual Modeling for Breaking Value Symmetry The third method adopts the double-lex

method used commonly in matrix model for breaking value symmetry. Since a set-CSP can be

trivially transformed into a matrix model, in which variable and value symmetry corresponds to row

and column symmetry. Therefore, we are able to break value symmetries in set-CSPs by introducing

a set of dual variables, which interchanges the role of variables and values. However, a problem arises

since we may not be able to post variable and value symmetry-breaking constraints under the same

model, and there is a chance that all solutions in a symmetry class get wiped out. This is caused by

the fact that different symmetry-breaking constraints try to preserve different canonical solutions.

Nonetheless, we proved the soundness property of our method, that it is safe to post both symmetry-

breaking constraints on variable and values, by an elegant reduction to the 0/1-matrix model.

We empirically evaluate the performance of our proposal, and show that these methods are robust

and advance the state-of-the-art solution to the problem.

91

Chapter 7

Exponential Length-Lex Propagators

7.1 Overview

This chapter proposes something outrageous. Since most CSPs are NP-complete, CP uses filtering

algorithms and constraint propagation to reduce the variable domains and hence the search tree

to explore. The hope is that the reduction in the search space is sufficient to solve problems of

interest in reasonable time. In general, researchers have focused on designing polynomial-time al-

gorithms for filtering, leaving the potentially exponential behavior in the search component. There

are exceptions of course, and we will review some of them later, but researchers overwhelmingly

focus on polynomial-time filtering algorithms, sometimes at the expenses of enforcing arc or bound

consistency. This chapter takes the other road and argues that exponential filtering algorithms and

constraint propagation may be highly beneficial in practice. It is motivated by the fact that rea-

sonable exponential behavior in the filtering algorithm may produce significant reduction of search

space and can therefore be cost-effective. Moreover, such a reasonable exponential behavior has

beneficial effects on constraint propagation allowing further reduction of the search space, an obser-

vation made by Bessiere and Régin in [7] where they solve CSPs on the fly to achieve arc consistency

on a global constraint. In particular, we show that the length-lex propagators takes exponential

time to converge in general. It, nonetheless, reduces the search space by orders of magnitude when

comparing with the classical subset-bound domain. Finally, since the overall approach is exponential

92

in the worst case, it may be preferable to shift some of the exponential behavior from the largely

agnostic search to the filtering component where we can exploit the semantics of the constraints and

locality.

This chapter evaluates the idea of exponential propagation in the context of CSPs over length-lex

set variables. In this representation, filtering algorithms for many elementary constraints typically

take polynomial-time. But the constraint-propagation algorithm may take exponential time to

converge to a fixpoint [58].1 There is thus an abundance of negative theoretical results on richer

set representations. Yet, on a wide variety of standard benchmarks, the richer representations bring

orders of magnitude improvements compared to the subset-bound domain or traditional encodings

in terms of finite-domain variables[34, 73].

In the previous chapter, we examine the fail-time ratio between the subset-bound and length-

lex representation. It appears that length-lex is spending more time on constraint propagation per

node. Indeed, it is caused by the exponential behavior, which will be proved in this section. The

goal of this section is thus to explore whether it is beneficial to boost constraint propagation over set

variables even further. Its main contributions are twofold. First, it proves the W [1]-Hardness and

NP-completeness of unary intersection constraints for length-lex domains, which also generalizes to

subset-bound domains. Second, we propose exponential filtering algorithms for these intersection

constraints and show that they bring another order of magnitude improvement in efficiency compared

to existing approaches.

The rest of this chapter is organized as follows. Section 7.2 discusses intractability issues for set

variables. Section 7.3 contrasts the theoretical results with an experimental evaluation of the various

domains. Section 7.4 proposes an exponential-time propagator for a W [1]-hard unary intersection.

Section 7.5 evaluates the effectiveness and efficiency of the proposed constraint. Section 7.6 discusses

some of the related work.

1The fact that constraint-propagation algorithms may take exponential time to converge is not specific to set vari-
ables. It appears for instance in numerical continuous CSPs (e.g., [47]) and the propagation of cumulative constraints
[50].

93

7.2 Theoretical Results on Intersection Constraints

We now present a number of theoretical results, which shed light on the behavior and complexity of

filtering algorithms and constraint propagation on set domains.

The constraint propagation algorithm iterates over all constraints and invoke one at a time. The

process repeats until a fixpoint in which no constraint is able to further reduce the domain. The

iteration can be in any order. However, the order of invoking constraints has a huge impact on

the efficiency in reaching the fixpoint. We start a pathological example in which a bad order of

constraint propagation make severely dampen the solver.

A Simple but Annoying Example Consider a CSP with one length-lex set variable and 6 unary

intersection constraints shown in Figure 7.1. We focus our attention on the lower bound. On the

left is the pathological case, it is the worst thing we want to see. The propagators are scheduled in

a way that every time only one value, the lower bound itself, is removed from the domain. It takes

a long time to reach the fixpoint since a set domain potentially contains an exponential number of

sets. On the right, is the best case we can ever get, the constraint propagation algorithm reaches

the fixpoint in a single step.

In general, the length-lex domain suffers from the problem of reaching a fixpoint. Since it

contains an exponential number of domain values, and each propagator in worst case removes only

one value from the domain. In worst case it takes exponential number of iterations until it reaches the

fixpoint. The question is whether or not we can find the holy grail, which give us a good sequence

of propagating constraints. However, find the minimum number of steps to reach the fixpoint is

intractable.

The Hardness Proof In the following, we use bcθ〈C〉 to denote a bound-consistenct propagator

and hsθ〈C〉 to denote a feasibility routine for constraint C on a θ-domain. Recall that the feasibility

routine hs returns a boolean value indicating if there is a solution: hsθ〈C〉(X) ≡ ∃s ∈ d(X), C(s).

The feasibility routine is the basic component of a length-lex bound-consistent propagator. In-

deed, Chapters 4 and 5 introduced generic propagators for unary and binary constraint which only

relies on a feasibility routine: once such a routine is available, bounds can be found using a binary

94

Step A Pathological Case The Holy Grail
X ∈ ll〈{1, 2, 3}, •, 7〉 X ∈ ll〈{1, 2, 3}, •, 7〉

1 C1 ⇓ C6 ⇓
X ∈ ll〈{1, 2,4}, •, 7〉 X ∈ ll〈{1,4,5}, •, 7〉

2 C2 ⇓
X ∈ ll〈{1, 2,5}, •, 7〉

3 C3 ⇓
X ∈ ll〈{1, 2,6}, •, 7〉

4 C1 ⇓
X ∈ ll〈{1, 2,7}, •, 7〉

5 C2 ⇓
X ∈ ll〈{1,3,4}, •, 7〉

6 C4 ⇓
X ∈ ll〈{1, 3,5}, •, 7〉

7 C5 ⇓
X ∈ ll〈{1, 3,6}, •, 7〉

8 C6 ⇓
X ∈ ll〈{1,4,5}, •, 7〉

C1(X) ≡ |X ∩ {1, 3, 6}| = 1, C2(X) ≡ |X ∩ {2, 4, 6}| = 1, C3(X) ≡ |X ∩ {2, 5, 7}| = 1,
C4(X) ≡ |X ∩ {3, 4, 7}| = 1, C5(X) ≡ |X ∩ {3, 4, 6}| = 1, and C6(X) ≡ |X ∩ {1, 2, 3}| = 1.

Figure 7.1: Effect on Propagation Order

search. More importantly, only a polynomial number (to the number of elements in the universe)

of feasibility checks is required. Suppose the checker takes O(α) time, a binary generic propaga-

tor makes O(c2 log n) calls to the checker, making a total time complexity of O(αc2 log n). In other

words, if the feasibility checker runs in polynomial time, the bound-consistent propagator also runs in

polynomial time. Moreover, since bound consistency in the length-lex domain determines feasibility,

the propagator is thus at least as hard as the feasibility checker. Checking the feasibility is the core

component of a propagator. Hence we focus our discussion of intractability in feasibility checkers.

The first result we mentioned is well-known but quite interesting and concerns the subset-bound

domain.

Theorem 12. hssbc〈|Xi ∩Xj | ≤ 1,∀i < j〉 is NP-hard. [5]

We consider a special case of this constraint in which all but one variables are bounded. We show

that, even in this simple unary case, enforcing bound consistency on both the sbc-domain and the

ll-domain is fixed-parameter intractable.

Definition 21 (atmost1). atmost1({s1, .., sm}, X) ≡ |X ∩ si| ≤ 1, ∀1 ≤ i ≤ m

95

Theorem 13. hssbc〈atmost1({s1, .., sm}, X)〉 is NP-hard.

Proof. Reduction from k-Independent Set. Instance: Graph G = (V,E) and a positive integer

k ≤ |V |. Question: Does G contains an independent set of size k, i.e. a k-subset V ′ of V such that

no two vertices in V ′ join by an edge in E.

We construct an instance of CSP with one sbc-variable X and one constraint

atmost1({s1, .., sm}, X). Intuitively, X corresponds to a independent set and each set si corre-

sponds to the neighborhood of vertex i and itself. Hence, X can take at most 1 element from each

set corresponds to the restriction that no two vertices in the independent set join by an edge.

Formally, for every i ∈ V , si = {i} ∪ adj(i) (where adj(i) denotes the neighborhood of vertex i),

and X ∈ sbc〈∅, V, k, k〉. The CSP has a solution if and only if G has a independent set of size k. ⇒

Given a k independent set V ′, we can construct a solution by setting X = V ′ since every element

in X actually corresponds to a vertex. When X takes an element i, since the size of intersection is

at most 1, it cannot take any other element from set si (i.e. adj(i)), the definition of independent

set guarantees this. ⇐ Given a consistent assignment of X, it is a independent set since any edge

corresponds to taking two element from the same set which violates the atmost1 constraint.

Reference [4] discusses a class of fixed-parameter tractable propagators which run in polynomial time

when some of the parameters are fixed. The class is called fixed-parameter tractable (FPT) and its

time complexity is bounded by O(f(k)nO(1)) where f(k) is an arbitrary function only depends on the

parameter k. When k is fixed, f(k) becomes a constant leaving the remaining nO(1) a polynomial.

On the other hand, there is a class of propagators which is not FPT, meaning that even when

the parameters are fixed, the feasibility routine still takes exponential time. Unary intersection

constraints fall into this category.

Corollary 1. hssbc〈atmost1({s1, .., sm}, X)〉 is W [1]-hard.

Proof. k-Independent Set is a W [1]-Complete problem.[15]

Corollary 2. hsll〈atmost1({s1, .., sm}, X)〉 is W [1]-hard.

Proof. For any sbc-domain that contains only all k-sets of some universe, there exists an equivalent

ll-domain sbc〈∅, V, k, k〉 ≡ ll〈4k,5k, |V |〉 with 4k = min�{s | s ⊆ V ∧ |s| = k} and 5k = max�{s |

s ⊆ V ∧ |s| = k}.

96

This result has an interesting corollary. Consider the propagation of a set of unary constraints of

the form |X ∩ si| ≤ 1 (1 ≤ i ≤ n). These constraints enjoy a polynomial-time bound-consistency

algorithm in the length-lex domain. By definition of bound consistency, constraint propagation

terminates in a failure or in a state where the bounds of the variable are solutions. Hence, by

Corollary 2, constraint propagation cannot run in time O(f(k)nO(1)) in the worst case.

Corollary 3. The propagation algorithm for a collection of bcll〈|X ∩ si| ≤ 1〉 over X cannot run in

time O(f(k)nO(1)) in the worst case unless FPT = W [1].

Similar results hold for other intersection constraints.

Definition 22 (exact1). exact1({s1, .., sm}, X) ≡ |X ∩ si| = 1, ∀1 ≤ i ≤ m.

Theorem 14. hssbc〈exact1({s1, .., sm}, X)〉 is NP-hard.

Proof. Reduction from 1-in-3 SAT. Instance: Set of n variables and m clauses, where each clauses

consists of exactly three literals and each literal is either a variable or its negation. Question: Does

there exist a truth assignment to variables such that each clause has exactly one true literal?

Given a instance of 1-in-3 SAT, we construct a CSP with a exact1 constraint. A set variable

X associated with a sbc-domain sbc〈∅, {1,−1, .., n,−n}, n, n〉 corresponds to a truth assignment.

i ∈ X means variable i is true and vice versa. There are two types of sets. Set si = {i,−i}

(1 ≤ i ≤ n) ensures a variable can either be true or false. Set tj = {p,−q, r} corresponds to a

clause (xp∨¬xq ∨xr) guarantees that exactly one of its literal is true. Hence, we post the constraint

exact1〈{s1, .., sn, t1, .., tm}, X〉. Clearly, the input instance has feasible assignment if and only if the

CSP has a solution.

Definition 23 (atleast1). atleast1({s1, .., sm}, X) ≡ |X ∩ si| ≥ 1, ∀1 ≤ i ≤ m

Theorem 15. hssbc〈atleast1({s1, .., sm}, X)〉 is NP-hard.

Proof. The hardness proof is essentially equivalent to that of Theorem 14 by changing the input

instance to 3SAT.

97

Subset-Bound Length-Lex
(g,s,w) Time Fails Ratio Time Fails Ratio
(4,3,5) 0.11 968 9132.08 0.04 136 3578.95
(5,3,7) 25.63 157285 6137.47 13.08 16361 1251.03
(5,4,6) 337.35 2013980 5969.95 198.16 259616 1310.16
(5,5,4) 0.33 2320 7138.46 0.15 175 1166.67
(6,5,5) 36.49 195986 5371.39 45.76 34375 751.23
(8,5,6) 92.3 308195 3339.02 65.76 20302 308.74

Table 7.1: Social Golfer Problem: The Empirical Data Suggests the Length-Lex is Better.

7.3 Seemingly Contradicting Results Between Theory and

Practice

As mentioned earlier, the potentially exponential behavior of constraint propagation was pointed out

in [58] for knapsack constraints and similar results exist for continuous constraints and edge-finding

algorithms for cumulative constraints. What is somewhat surprising here is the simplicity of the

constraint involved, which are simple unary intersection constraints. This abundance of negative

theoretical results may lead researchers to conclude that the sbc-domain and, even more so, the ll-

domain are unworthy of any consideration. Experimental results in Table 7.1 however clearly indicate

otherwise.

The length-lex model is significantly faster than the subset-bound model (except instance (6, 5, 5)

where they are competivie). The number of fail nodes for subset-bound is much higher. Consider

the fails-to-time ratio, which is roughly the average number of constraint propagation algorithm

completed per second, the constraint propagation for subset-bound is significantly faster than that

of length-lex. It is mainly due to the fact that length-lex potentially takes exponential time in

reaching the fixpoint in worst case. Comparing the fails-to-time ratio between two model, one may

suggest that length-lex is a terrible representation.

Embrace the Complexity Indeed, we should view the problem from another perspective. The

constraint propagation algorithm for the length-lex domain is tackling a much harder problem than

that of the subset-bound domain. Figure 7.1 essentially illustrates a 3-SAT problem, which is in-

tractable. The length-lex domain solves a NP-hard problem in the constraint propagation algorithm;

98

Search

Constraint
Propagation

Propagators

Exponential

Polynomial

Polynomial

Search

Constraint
Propagation

Propagators

Exponential

Exponential

Polynomial

Finite-Domain CSP Set-CSP using Length-Lex

Monday, March 21, 2011

Figure 7.2: Constraint Propagation for Length-Lex is Exponential

whilst the subset-bound domain achieves no propagation.

This, perhaps, suggests why the length-lex representation visits dramatically smaller search tree

than that of subset-bound, and why length-lex takes dramatically more time in each node as it is

solving a harder problem.

Recall that the constraint propagation algorithm is the core of constraint programming. Propa-

gators capture the problem semantics, and the propagation algorithm enables them to communicate

through domains. This suggests us to put more emphasis on the constraint propagation than al-

lowing the relatively agnostic search, which hardly exploits the problem semantics, to solve the

problem.

Figure 7.2 presents the difference between finite-domain CSP, as well as the subset-bound do-

main, and the length-lex representation. The ultimate goal of using constraint programming is to

solve a NP-hard problem, which is represented as the largest circle. We use propagators to specify

relationship between variables, and the aggregated relationship is the solution to the problem. The

constraint propagation algorithm provides a channel for communication, where inference takes part

and infeasible values are removed from domains. When the constraint propagation algorithm is

stuck and no further domain reduction is possible, the search kicks in, makes a guess and create a

sub-problem, hopefully until a point which the problem is small enough for the propagators to find

a solution.

99

Shifting the Exponential Behavior to Where We can Control. In the classical world,

propagators and the constraint propagation algorithm usually run in polynomial time (of course,

there are exceptions). The agnostic search does most of the dirty work and responsible for the

exponential behavior. For the length-lex variables, despite most of the primitive unary constraints

run in polynomial time, the constraint propagation algorithm potentially takes exponential time.

The propagation algorithm, which is a mean of communication among constraints, exploits more

problem semantics and lead to strong propagation. As we showed empirically, the length-lex domain

visits a dramatically small search tree when comparing with the subset-bound domain.

This suggests that shifting some of the exponential behavior from the agnostic search to the

constraint propagation algorithm is beneficial. It raises a question of whether we should make

another step, which further shifting the exponential part to propagators where the problem semantics

can be well-exploited. We examine this idea in the next section.

7.4 Exponential Filtering for Intersection Constraints

The previous sections reported intriguing theoretical and experimental results. The theory indicated

that constraint propagation of even simple constraints may take exponential time in the worst

case for the length-lex domain, while the experimental results clearly showed that the length-lex

domain leads to the best and most robust performance despite of its high fails-to-time ratio. In this

section, we reconsider the intractable unary intersection constraint. Instead of decomposing them

into simpler unary constraints, we propose simple yet elegant exponential algorithms for enforcing

bound consistency.

The goal is to move the potentially exponential behavior from the rather agnostic constraint

propagation algorithm into the constraint itself in which the constraint semantics can be exploited.

In short, we wants our propagator exponential, as shown in Figure 7.3.

Algorithm 14 implements bcll〈atmost1({s1, ..., sm}, X)〉 and is self-explanatory. The set S main-

tains a logical enumeration of all possible solutions. Both bounds of the length-lex domain are

determined according to the bound consistency definition. Corollary 3 implies that there are no

fixed-parameter tractable algorithm for Algorithm 14 since hsll〈C〉 is a special case for bcll〈C〉.

Theorem 16. Algorithm 14 runs in time O(ncmc) where c = |u|.

100

Search

Constraint
Propagation

Propagators

Exponential

Polynomial

Polynomial

Search

Constraint
Propagation

Propagators

Exponential

Exponential

Polynomial

Finite-Domain CSP Set-CSP using Length-Lex

Search

Constraint
Propagation

Propagators

Exponential

Exponential

Length-Lex with Exponential Propagators

Exponential

Monday, March 21, 2011

Figure 7.3: Embrace the Beauty of Exponential Propagator

Algorithm 14 bcll〈atmost1({s1, .., sm})〉(Xll = ll〈l, u, n〉)
1: l′ ← min�

{
s ∈ Xll |

∧
1≤i≤m |s ∩ si| ≤ 1

}
2: u′ ← max�

{
s ∈ Xll |

∧
1≤i≤m |s ∩ si| ≤ 1

}
3: return ll〈l′, u′, n〉

Proof. Xll contains at most O(nc) sets. Each set takes O(mc) time to verify if it satisfies the

constraint.

Implementation Notes The exponential propagation does not explicitly enumerate all the sets.

It relies on a technique on which most length-lex propagators rely. The inference reduces to a

feasibility routine hs which takes a domain and returns a boolean value that indicates if the domain

has any solution.

The idea is essentially equivalent to the generic algorithm for enforcing bound consistency for

unary constraints. The only difference is that, since the feasibility routine is computationally ex-

pensive, unlike the linear time checking routine we discussed, the goal of the exponential filtering

algorithm is to minimize the number of calls to the exponential feasibility routine. The length-lex

bound can be seen as two arrays of finite domain variables (one for each bound), finding the bound

is essentially equivalent to filling the two arrays. The array corresponds to the lower bound is the

101

least solution (according to the length-lex ordering) among all solutions. The least solution can be

found by labeling the most significant position with the smallest element. The partial assignment is

checked against the feasibility routine. If the routine returns true, meaning there is a solution with

the current assignment, we label the second-most significant position. Otherwise, we try to label

the second-smallest element to the most significant position, and invoke the feasibility routine. Such

process continue until the bound is found. Finding the upper bound is essentially the same, we only

label with the largest element instead of the smallest.

These tricks do not reduce the worst case time complexity since the feasibility routine runs in

exponential time. However, from a practical standpoint, it dramatically improves the propagator’s

performance.

7.5 Evaluation

This section evaluates the performance of the proposed exponential propagators. The goal of it is to

reduce the time spent by the constraint propagation algorithm which repeatedly iterates among all

the binary intersection propagators in the model. We show that most benchmark instances used in

the last section becomes trivial under the new exponential constraints. Results for larger and more

difficult instances are shown.

Consider Figure 6.12, the Comet model for social golfer problem using dual modeling. Lines

9–10 are the atmost1 constraints which guarantee that no two players play more than once. They

are the main culprits of making the constraint propagation runs forever. We propose another model

with exponential propagators are applied to reduce the exponential run time. In particular, we

substitute the binary atmost1 constraint with the following propagator.

9 forall (wi in Weeks, gi in Groups)

10 cp.post(atmost1(llx[wi,gi], all(wj in Weeks, gj in Groups : wj < wi) llx[wj,gj]));

The first argument is the length-lex variable to be propagated. The second argument corresponds

to the array of sets si which defines the constraint (refer to Definition 21). Variables llx[wj,gj]

are not considered in the propagator until it becomes a singleton. When the variable is bound, it’s

value is added to the array of sets. Since the search uses a vanilla week-wise labeling strategy, wj

< wi is sufficient. Binary constraints are removed from the model and the exponential constraint

102

Domain Subset-Bound Length-Lex Length-Lex
Symmetry Breaking 4 4 4

(Chapter 6)
Exponential Propagator 4

(bcll〈atmost1〉)
(g,s,w) Time Fails Time Fails Time Fails
(3,3,3) 0.01 0 0.01 0 0.01 0
(4,3,5) 0.11 968 0.04 136 0.03 140
(5,3,7) 25.63 157285 13.08 16361 4.56 19149
(5,4,6) 337.35 2013980 198.16 259616 61.06 286792
(6,5,5) 36.49 195986 45.76 34375 7.72 36017
(6,5,6) 314.24 1512264 433.62 214075 57.47 221033
(6,6,4) x x x x 592.46 2049826
(7,7,4) x x 50.96 1739 0.78 1739
(8,3,10) 1390.82 3782741 1062.72 572773 119.06 542539
(8,5,6) 92.3 308195 65.76 20302 5.01 20302
(9,5,7) x x x x 222.2 730635
(11,8,3) 53.54 230740 601.58 3264 2.01 3264

Table 7.2: Social Golfer Problem: Exponential Constraints that Speeds Up Convergence.

propagates only when variables are bound, less propagation is achieved. Nevertheless, we show that

the gain in performance outweighs lost in propagation.

Table 7.2 reports the experimental results on the exponential atmost1 propagator. The model

using the exponential propagator is the fastest. Comparing with the original length-lex model, it

dramatically reduces the search time by orders of magnitude despite it visits a slightly larger search

tree. It solves some problems which were too large to be solved within the time limit. In instance

(11, 8, 3), the solving time reduces from almost 10 minutes to 2 seconds, while both models visit the

same search tree. The improvement in time is only caused by the application of the exponential

propagator, which enables the constraint propagation algorithm to reach fixpoint in a relatively

shorter time.

Table 7.3 studies the fails-to-time ratio of each model. The ratio, in a loose sense, represents the

number of nodes visited per second. In other words, the number of constraint propagation algorithm

invoked, which is the inverse of the average time spent by each algorithm. The exponential length-

lex model speeds up the constraint propagation algorithm by a few times. While the previous

table reveals that not many propagations are lost when the binary constraint is substituted by the

unary exponential constraint, the difference in ratio suggests that it is highly beneficial to use the

103

Domain Subset-Bound Length-Lex Length-Lex
Symmetry Breaking 4 4 4

(Chapter 6)
Exponential Propagator 4

(bcll〈atmost1〉)
Fails
Time

Fails
Time

Fails
Time(g,s,w)

(3,3,3) 0 0 0
(4,3,5) 9132.08 3578.95 5000
(5,3,7) 6137.47 1251.03 4196.58
(5,4,6) 5969.95 1310.16 4696.89
(6,5,5) 5371.39 751.23 4664.81
(6,5,6) 4812.4 493.69 3845.92
(6,6,4) x x 3459.86
(7,7,4) x 34.13 2229.49
(8,3,10) 2719.78 538.97 4557.05
(8,5,6) 3339.02 308.74 4051.49
(9,5,7) x x 3288.19
(11,8,3) 4309.59 5.43 1622.27

Table 7.3: Social Golfer Problem: Fails-to-Time Ratio of Exponential Propagator

exponential propagator. It enables the solver to visit a few times more nodes per unit of time.

The exponential propagators proposed in this paper plays the role in accelerating the convergence

of the constraint propagation algorithm. The introduction of exponential propagators for length-

lex variables has no impact on propagation. The absence of binary length-lex constraint, which is

explained earlier, accounts for the slight difference. And the difference is outweighed completely by

the performance gain. The fails-to-time ratio reveals that the performance for the exponential model

is very competitive with the subset-bound model, while length-lex allows a dramatically stronger

propagation.

7.6 Related Work

This section briefly reviews some related work on exponential propagation and propagators. Perhaps

the closest related work is the work on box consistency in the Numerica system [66]. The key

idea of box consistency was to avoid the decomposition of a complex constraints into elementary

ternary constraints. By enforcing box consistency on the original constraint, these systems improve

the pruning, addresses the so-called dependency effect of interval propagation, and tackle the fact

104

Subset-Bound Length-Lex ROBDD
(and its variants)

Propagation Loose Strong Very Precise
Space O(n) O(c) Potentially Exponential

Efficiency Fast O(poly(c)) Potentially Slow
Convergence Fast Fast Potentially Slow

Figure 7.4: Comparison over Different Set Domain Representations. (n is the universe size, c is the
cardinality upper bound.)

that the fixpoint algorithm can take a long time to converge. Box consistency was enforced by a

potentially exponential algorithm. The Newton and Numerica systems also include conditions to

terminate the fixpoint algorithm prematurely when the propagation was not reducing the search

space enough. Lebbah and Lhomme [47] considered the use of extrapolation methods to speed up

the convergence of filtering algorithms for continuous CSPs, also dramatically the efficiency on these

problems. These techniques could potentially be applied to set domains as well, but this paper took

another, simpler, route: Using exponential propagators that have a more global view of the problem

at hand. Also closely related is the work of Bessiere and Régin on solving CSPs on the fly. They

recognize that, on certain applications, the pruning offered by the solver was not strong enough.

They isolated a global constraint (i.e., the sum of n variables taking different values) for which they

did not design a specific propagator. Instead, they use the CP solver recursively and solved CSPs

on the fly to enforce arc consistency. Once again, the result is to move some of the exponential

behavior from the search to the constraint propagation. Note also that several pseudo-polynomial

algorithms have also been proposed in the past, including the well-known filtering algorithm for

knapsack constraints [65].

7.7 Conclusion

Most research in constraint programming focuses on designing polynomial-time filtering algorithms.

This section explored, for set CSPs, the idea of shifting some of the exponential behavior from the

search component to the filtering component, and from the constraint-propagation algorithm to

the propagators. More importantly, it presented exponential-time propagators for intractable unary

intersection constraints and demonstrated that they bring considerable performance improvement by

105

speeding up constraint propagation. They indicate that it may sometimes be beneficial to embrace

complexity in the filtering component and exploit the constraint semantics and locality, instead of

relying on rather agnostic search and constraint propagation algorithms.

106

Chapter 8

Global Set Intersection Constraints

8.1 Overview

Global set constraints have received very little attention primarily because of intractability results on

both bound consistency and feasibility checking. However, they still offer significant opportunities

for improving the performance of set solvers, since the alternative, i.e., not to prune the search space,

seems even worse. Recent work explores two possible approaches to deal with these computational

difficulties. On the one hand, one may relax the requirement for polynomial-time algorithms and

settle for algorithms that may be exponential in the worst case but are reasonable in practice and

prune substantial parts of the search tree. On the other hand, one may take the more conventional

approach and relax completeness of the filtering algorithm.

This chapter explores both approaches for several global intersection constraints. It has three

main contributions, all of which are independent of the underlying representations of the set solver:

1. it introduces a feasibility checker for global alldisjoint constraint for an explicit set domain

representation;

2. it presents a dual filter for the global atmost-k constraint that constrains the cardinalities of

the dual variables;

3. it introduces primal/dual filters for the combination of a global atmost-k constraint and

107

symmetry-breaking constraints.

The dual and primal/dual filters for atmost-k constraint are particularly compelling. They depend

on the solutions of some combinatorial problems which are themselves set-CSPs. In turn, these CSPs

can be solved by constraint programs using the dual filter, which again depends on the solution of

some smaller combinatorial problems which are solved recursively by constraint programming.

Experimental results show that these contributions are orthogonal and may substantially improve

the performance of set solvers on some standard benchmarks, solving instances that could not be

solved in reasonable time before and reducing CPU times by factors that exceeds 1,000.

The rest of the chapter presents the four contributions, reports the experimental results, review

related work, and concludes.

8.2 A Feasibility Checker for The AllDisjoint Constraint

This section presents a feasibility checker for the alldisjoint constraint.

Definition 24 (The AllDisjoint Constraint). alldisjoint(X1, ..., Xm) ≡
∧
i<j Xi ∩Xj = ∅.

If the set domains are given explicitly, checking feasibility is NP-hard. Theorem 20 gives a similar

result for the hybrid ls-domain.

Theorem 17. hs〈alldisjoint〉(X1, ..., Xm) is NP-hard when d(Xi) is specified as an explicit set of

sets.

Proof. A trivial reduction from the SetPacking problem. Instance: a finite set S and a collection

S of subset of S. Question: determine whether some m sets in S are pairwise disjoint. A solution

to the problem is S ′ ⊆ S, where |S ′| = m and sets in S ′ are pairwise disjoint.

We first assume all sets in S are not empty. Since otherwise, we can reduce the parameter m

by the number of empty sets in S. Given a SetPacking instance, we construct a set-CSP such

that it is feasible if and only if there exists m pairwise disjoint sets. In the CSP, there are m set

variables with initial domain S, and a alldisjoint(X1, ..., Xm) constraint. Intuitively, the variables

correspond to the SetPacking solution. The rewriting is obviously polynomial.

108

Algorithm 15 hs〈alldisjoint〉(X1,, Xm)

1: for σ in
{

[v1, ..., vn]
∣∣ve ∈ {1, ...,m} ∪ {⊥}} do

2: [T1, ..., Tm, T⊥]← [D(X1), ..., D(Xm),
{
{1..n}

}
]

3: for e = 1 to n do
4: Tσ(e) ← {t ∈ Tσ(e)|e ∈ t}
5: for i in {1, 2, ..., σ(e)− 1, σ(e) + 1, ...,m} do
6: Ti ← {t ∈ Ti|e 6∈ t}
7: if

∧
1≤i≤m Ti 6= ∅ then

8: return true
9: return false

⇒ Given a solution to the SetPacking problem, we construct a solution to the set-CSP. Let

S ′ = {s1, ..., sm}, we assign Xi = si. Since Xi has a initial domain of S, si is a feasible domain

value. The assignment also satisfies the alldisjoint constraint, since S ′ are pairwise disjoint.

⇐ Given a solution to the set-CSP, we construct a solution to the SetPacking Problem. Con-

sider a solution [X1 = s1, ..., Xm = sm], every pair of si are pairwise disjoint, and si ∈ S. More-

over, as all si are non-empty sets, we have si 6= sj ∀i < j since they are disjoint. Therefore,

S ′ = {s1, ..., sm} is a solution to the SetPacking Problem.

8.2.1 The Feasibility Checker

Algorithm 15 is a feasibility checker for the alldisjoint constraint, assuming that the set variables

take their elements in {1..n}. In the worst case, the checker takes exponential time but experimental

results will demonstrate that it can bring substantial benefits in practice. The checker takes a set of

set variables and returns a boolean value indicating whether there are solutions. Its key idea is to

enumerate all the dual assignment (Line 1) and to test whether they satisfy the domain constraints

(Lines 2–8). Since an element can be assigned to at most one set, a dual assignment assigns a variable

index ve to each element e (or ⊥ if the element is not assigned to any set). To test whether a dual

assignment is feasible, the checker maintains Ti to denote the feasible sets for variable Xi. Initially,

Ti is initialized to D(Xi). The dual assignment is then used to filter the Ti’s. In particular, the

checker considers each element e in turn (Line 3) and removes from Tσ(e) all the sets not containing

e. In other words, Xσ(e) is the variable e is assigned to and the checker prunes the domain of Xσ(e)

to ensure that they all contain e. It then prunes the domains of the other variables (Lines 5–6) to

make sure that they do not contain e. The checker returns true if no domain has become empty at

109

{1,4,5} {1,4,6} {1,4,7} {1,5,6} {1,5,7} {2,3,4} {2,3,5} {2,4,5} {2,4,6} {2,4,7} {2,5,6} {2,5,7} {3,4,5}

1 ! X 2 ! X 3 ! X

4 ! X
...

5 ! X
...

3 ! X
...

4 ! X
...

5 ! X
...

Wednesday, April 13, 2011

Figure 8.1: The Explicit Domain List has No Hole.

the end of the computation (Lines 7–8). If none of the dual permutations is a solution, the checker

returns false (Line 9). Observe that set T⊥ is never pruned, since it contains the set of all elements

initially. Line 4 can never remove its set and lines 5–6 never considers T⊥.

Example 40. Consider the domains D(X1) =
{
{1, 2}, {1, 4}, {2, 4, 6}

}
, D(X2) ={

{1, 2}, {2, 5}, {2, 6}
}

, D(X3) =
{
{1, 5}, {3}, {5}

}
, and σ = [1, 2,⊥, 1, 3, 2]. The dual assignment

assigns element 1 to variable 1. The algorithm removes domain values from T1, . . . , T3, giving

T1 =
{
{1, 2}, {1, 4}

}
, T2 =

{
{2, 5}, {2, 6}

}
, and T3 =

{
{3}, {5}

}
. The same domain-reduction

process is performed for all elements. At the end, T1 =
{
{1, 4}

}
, T2 =

{
{2, 6}

}
, and T3 =

{
{5}
}

.

Hence, the dual assignment is a solution. On the other hand, if the initial value of T3 is
{
{1, 5}, {3}

}
,

it will become empty after processing element 3. In this case, the dual assignment is infeasible. �

Implementation Notes The technical insight behind the checker is that the Ti’s are only a logical

copy of the domain values, the actual explicit list of sets are not copied. We assume the input domains

are lexicographically sorted. The domains are always consecutive throughout the domain reduction

loop in lines 3–6. The checker only remembers the position of the first and last set. Figure 8.1

presents the idea. Suppose the sets on the line is the initial input domain. The checker marks the

set {1, 4, 5} as its starting point and the set {3, 4, 5} as its ending point. When the checker labels

1 ∈ X, all it needs is to removes all the sets in the back, by updating the ending set to {1, 5, 7}. On

the other hand, when the checker labels 1 6∈ X, the starting point is upated to {2, 3, 4}. The same

process repeats for all the elements. The key insight is that the check labels the variables in the

same way it sorts the domain values, making it possible to represent the running-domain by keeping

only the start and end values.

110

Length-Lex
Sym-Break 4 4
(Chapter 6)
Exponential 4 4

(bcll〈atmost1〉)
Checker 4

(hs〈alldisjoint〉)
(g,s,w) Time Fails Time Fails
(5,3,7) 4.56 19149 5.07 12211
(5,4,6) 61.06 286792 39.7 120438
(6,5,5) 7.72 36017 2.44 4877
(6,5,6) 57.47 221033 16.38 27545
(6,6,4) 592.46 2049826 646.62 1890962
(7,3,9) x x 1276.05 2837356
(8,3,10) 119.06 542539 47.01 88817
(9,3,11) 14.45 61924 2.05 2724

Table 8.1: Social Golfer Problem: AllDisjoint Checker for Length-Lex Domain.

8.2.2 Evaluation

The alldisjoint global constraint expresses that all groups of the same week are disjoint. The

atmost1 unary constraint generates an list of domain values for every primal variable, and our

alldisjoint feasibility checker uses such list (but is only applied if the domain size is no greater than

200). Such a alldisjoint constraint is posed for each week and is propagated at the end of every

choice point. In Comet, it is very easy to make sure the checker runs only once every choice point,

all we need is to modify the search component and run the checker after labeling. Following is the

code, Lines 53–55 are code segment in which the checker take place. Each checker corresponds to a

week, and we do not check weeks before 3 since they are not very constrained.

44 }using{
45 forall (pi in 1..g*s) cp.post(requiresValue(sbx[1,(pi-1)/s+1],pi));
46 forall (si in 1..s) cp.post(requiresValue(sbx[2,1],(si-1)*s+1));
47 forall (wi in 2..w)
48 while (or(gi in 1..g)(!sbx[wi,gi].bound()))
49 selectMin(gi in 1..g) (sbx[wi,gi].getRequiredSet().getSize(), gi){
50 selectMin(pi in 1..g*s: !sbx[wi,gi].isExcluded(pi) && !sbx[wi,gi].isRequired(pi))(pi)
51 try<cp> cp.post(requiresValue(sbx[wi,gi],pi));
52 | cp.post(excludesValue(sbx[wi,gi],pi));
53 forall (wj in 4..w)
54 if (!alldisjoint[wj].hs())
55 cp.fail();
56 }
57 }

111

We evaluate the performance of the exponential checker on length-lex domain. (Readers may

refer to later chapters for evaluation on other domains) The checker dramatically reduces the search

tree size. For example, for instance (6, 5, 6), the number of fails is reduced by more than 8 times.

Some previously out of reach instances, such as (7, 3, 9), are now solved. The checker is also very

robust too, it reduces the run time for most instances. For the instances it doesn’t perform well,

e.g. (5, 3, 7) and (6, 6, 4), it only slightly dampens the solver.

8.3 A Dual Filter for The Global Atmost-k Constraint

This section discusses the global atmost-k constraint which guarantees that every pair of set variables

shares at most k elements. It is at least as difficult as the global disjoint constraint since the latter

is a special case where k = 0.

Definition 25 (atmost-k). atmost(k,X1, ..., Xm) ≡
∧
i<j |Xi ∩Xj | ≤ k.

Early versions of the following theorem appeared in [6].

Theorem 18. hs〈atmost(k)〉(X1, ..., Xm), where Xi are subset-bound, length-lex, or set variables

with finite domains, is NP-hard.

We now present a dual filter for the global atmost-k constraint. For simplicity, we assume that all

variables are of the same cardinality c.

Intuition The key idea behind the dual filter is to consider the possible elements for the sets (dual

view) and answer the following two questions:

1. How many set variables can take an element e?

2. How many set variables can exclude element e?

Example 41 (Dual View). Consider the case of 7 set variables of cardinality 3 drawing their elements

from a universe of size 7 and subject to a global atmost-1 constraint. We aim at determining how

many set variables can take an element e ∈ {1..7}? Figure 8.2 illustrates the basic idea. Each row

corresponds to a variable and each column an element. The symbol x on cell (X2, 4) denotes 4 ∈ X2.

112

countAtmost(n-1,c-1,k-1) = 3

1 2 3 4 5 6 7

X1 x x x

X2 x x x

X3 x x x

1 2 3 4 5 6 7

X1 x x x

X2 x x x

X3 x x x

X4 x x x

countAtmost(n-1,c,k) = 4

Monday, April 25, 2011

Figure 8.2: How Many Set Variables Can Take or Exclude a Value? (n = 7, c = 3, k = 1)

The left part of the picture illustrates how to compute the maximum number of set variables

which can take element 1. Since all set variables take element 1, the remaining elements should

be mutually disjoint. There can be at most 3 disjoint set of cardinality 2 taking elements from a

universe of size 6. Hence, element 1 can occur in at most 3 set variables.

The right part of the picture illustrates how to compute the maximum number of set variables

which can exclude element 1. This reduces to a similar atmost-k constraint in which the universe

size is reduced by 1 . The maximum number of sets excluding element 1 is 4 (we will discuss how to

compute this number shortly). In other words, element 1 has to occur in at least 7-4 = 3 variables.

As a consequence, we state a dual constraint requiring that element 1 appears in exactly 3 set

variables. The same reasoning in fact applies to all elements. �

The Dual Filter The basic idea underlying the dual filter is to state a redundant dual model.

The dual model assumes the existence of a function countAtmost(n,c,k) defined as follows.

Definition 26 (countAtmost). Function countAtmost(n,c,k) returns the maximum number of sets

of cardinality c taking their values in {1..n} and sharing at most k values.

The dual filter is depicted in Figure 8.3. Its key idea is to impose a lower and upper bound for the

occurrence of each element e in the universe. Line (8.1) defines the dual variables: Ye represents

the indices of set variables which include element e. Line (8.2) defines the channeling constraints

between the primal and dual variables. Line (8.3) defines the upper bound on the cardinality of Ye as

countAtmost(n−1, c−1, k−1). Indeed, consider the set of variables taking element e, each of them

has at most c−1 free positions, which must be filled by elements drawn from a universe of size n−1.

To satisfy the intersection constraint, each pair can share at most k − 1 other elements since they

113

Ye ⊆ {1, ..., n} ∀1 ≤ e ≤ m (8.1)

e ∈ Xi ⇔ i ∈ Ye ∀1 ≤ i ≤ n, 1 ≤ e ≤ m (8.2)

|Ye| ≤ countAtmost(n− 1, c− 1, k − 1) ∀1 ≤ e ≤ m (8.3)

m− countAtmost(n− 1, c, k) ≤ |Ye| ∀1 ≤ e ≤ m (8.4)∑
1≤e≤m

|Ye| = m c (8.5)

Figure 8.3: The Redundant Dual Filter for atmost(k,X1, ..., Xm).

are already sharing e. Hence, the maximum cardinality is bound by countAtmost(n−1, c−1, k−1).

Line (8.4) defines the lower bound on the cardinality of Ye as m− countAtmost(n− 1, c, k). Indeed,

consider the set of variables not taking element e. These variables must draw elements from a

universe of size n− 1, from which they have to pick c elements and each pair of variables can share

at most k elements. The maximum number of variables not taking element e is therefore bound

by countAtmost(n − 1, c, k) and element e has to occur in at least m − countAtmostm(n − 1, c, k)

variables. Finally, Line (8.5) ensures that the sum of the cardinalities is equal to m × c, i.e., the

number of variables multiplied by their cardinalities.1

Observe that the dual filter is independent of the representation of set variables, which makes

it widely applicable. Salder and Gervet [55] presented a special case of this dual filter but only

considered the atmost-1 constraint and the upper bound. This section generalized the idea to

atmost-k constraint and the lower bound, which complicates significantly the implementation.

Implementation of countAtmost It remains to discuss how to implement function countAtmost.

There are at least three possibilities:

1. when available, it can be a lookup from a combinatorics table [9];

2. it can be a constant-time approximation using extremal set theory [40];

3. it can be implemented as an optimization problem!

1For different cardinalities, we can simply replace c by the minimum cardinality of all variables, since this gives
conservative calls to the countAtmost function.

114

For the second case, let s1, ..., sm be sets of cardinality c and n be their union size. If ∀1 ≤ i < j ≤

m, |si ∩ sj | ≤ k, then

n ≥ c2m

c+ (m− 1)k
.

This inequality can be used to obtain an upper bound on m.

Our implementation views the implementation of countAtmost as an optimization problem which

can be specified as

maximize m s.t.

|Xi ∩Xj | ≤ k ∀1 ≤ i < j ≤ m

|Xi| = c ∀1 ≤ i ≤ m

Xi ⊆ {1, ..., n} ∀1 ≤ i ≤ m

This optimization problem can be solved by a sequence of feasibility problems using various values

for m. As a result, countAtmost itself can be implemented in terms of set-CSPs. Moreover, these

set-CSPs also use a global atmost-k constraint and hence they can use all the filters presented

in this paper. In particular, our implementation posts the dual filter shown in Figure 8.3 which

obviously depends on the values countAtmost(n − 1, c − 1, k − 1) and countAtmost(n − 1, c, k).

These are computed recursively as two additional optimization problems. Since these recursive

calls may involve the same sub-optimization problems, our implementation memoizes the result of

each suboptimization and reuses them whenever appropriate in order to avoid solving the same

suboptimizations repeatedly.

The computation of these subproblems takes negligible time in our benchmarks and only takes

place at the root of the tree. It is however interesting to see how the derivation of the dual filter

requires the solving of set-CSPs which in turn uses the dual filter itself on smaller subproblems.

115

8.4 Primal/Dual Filters for Symmetry-Breaking Atmost-k

Section 6.3 presented a primal filter for the symmetry-breaking alldisjoint. It recognized that the

most significant element determines the size of the possible sets for a variable and the lexicograph-

ically greater variables, enabling to achieve stronger propagation. Section 8.3 on the other hand

presented a dual filter based on a dual model: It exploits the observation that an element cannot ap-

pear in, or be excluded from, too many variables, which imposes some strong cardinality constraint

on dual variables. These ideas can be combined for the implementation of a global atmost-k� con-

straint, which combines a global atmost-k constraint and a chain of symmetry-breaking constraints.

Definition 27 (Symmetry-Breaking Atmost-k). atmost�(k,X1, ..., Xm) ≡ atmost(k,X1, ..., Xm)∧∧
i<j Xi � Xj .

Intuition The primal/dual filter aims at answering the following questions which combines primal

and dual aspects:

1. How many set variables must include the first e elements of the universe?

2. How many set variables must exclude the first e elements of the universe?

In general, variables that are greater lexicographically do not take small elements: These are taken

by the lexicographically smaller variables. For the symmetry-breaking alldisjoint constraint, it was

relatively easy to answer that question since every element can be taken by at most one variable.

For the symmetry-breaking atmost-k constraint, this situation is more complicated but we can reuse

the function countAtmost introduced for the dual filter.

Example 42 (Primal/Dual Exclusion). Consider 5 set variables X1, ..., X5 of cardinality 3 taking

their values from a universe 1..7 and a global atmost≤(1, X1, ..., X5). Since countAtmost(6, 3, 1)

returns 4, it follows that at most 4 variables can start with elements greater than or equals to 2.

Due to the lexicographic constraint, X1 must not start with element 2. �

Example 43 (Primal/Dual Inclusion). Consider 5 variables X1, ..., X5 of cardinality 3 taking their

values from {1..7} and a global atmost�(1, X1, ..., X5). There are at most 3 variables taking element

1 (see Figure 8.2). Hence, X4 must start with element greater than 1 and we can post the constraint

{2, 3, 4} � X4. �

116

Reduction Rules We are now ready to present the two primal/dual reduction rules. The first

rule reasons about the maximum number of variables that can exclude the first e elements and

derives a constraint preventing early variables from starting with large values.

Rule 2 (Symmetry-Breaking Atmost-k: Exclusion).

1 ≤ e ≤ n− c ∧
∧
i≤j≤m |Xj | = c ∧ i = countAtmost(n− e, c, k) ∧ 1 ≤ i ≤ m

atmost�(k,X1, ..., Xm) 7−→ min(Xm−i) ≤ e ∧ atmost�(k,X1, ..., Xm)

When the length-lex representation is used for set variables, the derived constraint can be used to

update the upper bound of the set variables: only the sets starting with an element no greater than

e are left in the domain.

The second rule reasons about the maximum variables that can take the first e elements and

derives a constraint preventing late variables from taking the first e elements.

Rule 3 (Symmetry-Breaking Atmost-k: Inclusion).

1 ≤ e ≤ k ∧
∧
i≤j≤m |Xj | = c ∧ i = countAtmost(n− e, c− e, k − e) ∧ 0 ≤ i < m

atmost�(k,X1, ..., Xm) 7−→ l � Xi+1 ∧ atmost�(k,X1, ..., Xm)

where l = {1, ..., e− 1}] {e+ 1, ..., c+ 1}

When the length-lex representation is used for set variables, the derived constraint can be used to

update the lower bound of the set variables which must become at least l = {1, ..., e − 1}] {e +

1, ..., c+ 1}. Observe that the rule prevents Xi+1 from taking all elements in {1, .., e}. The smallest

set lexicographically not taking all elements in e starts with 〈1, ..., e − 1〉, excludes e, and fills the

remaining free slots with as small elements as possible, i.e., 〈e+ 1, e+ 2, . . . , c+ 1〉.

8.5 Related Work

Many set-CSPs exhibit variable interchangeability : given any solution, it is possible to generate

another by swapping the assignment of two interchangeable variables. Ideally these symmetries

should be eliminated to prevent the solver from visiting symmetric subtrees. Let X1 and X2 be

117

two interchangeable set-variables. If [X1 = {1, 2}, X2 = {1, 3}] is a solution, then the assignment

[X1 = {1, 3}, X2 = {1, 2}] is a symmetric solution. To eliminate such symmetric solutions, the

model can post a static ordering constraint X1 � X2. The choice of the ordering constraint � is

arbitrary. Two common orderings are the lexicographical [22] and length-lex [29] orderings which

coincide when sets have the same length. This paper uses the lexicographical ordering for breaking

symmetries but obviously the underlying domain representation can be subset-bound, length-lex, or

BDD-based.

There is considerable work on symmetry breaking in constraint programming and this section

only reviews directly relevant work. Crawford et. al. [11] introduces a light-weight static method for

eliminating symmetric solutions using predicate constraints. The models over set variables almost

always impose static lexicographic constraints to break variable symmetries.

The complexity of global intersection constraints over sets was investigated in depth in [6]. The

paper showed that even feasibility checking is hard for global set constraints under some established

domain representations. Exponential-time algorithms for set constraints were used by Yip and Van

Hentenryck [74] to enforce bound consistency on unary intersection constraints, showing signifi-

cant improvements in performance. This paper proposes an exponential-time feasibility checker for

alldisjoint.

The idea of pushing symmetry-breaking constraints into other constraints has appeared in various

papers. Hnich, Kiziltan, and Walsh [37] proposed a global constraint that combines symmetry break-

ing with a sum constraint. Katsirelos, Narodytska, and Walsh [41] proposed a generic framework for

global constraint with symmetry-breaking constraints for vectors of variables. Yip and Van Henten-

ryck [73] proposed a generic framework for combining arbitrary binary length-lex propagators with

ordering constraints and studied their benefits experimentally. This paper studies combination of

the alldisjoint and atmost-k global constraints with a chain of symmetry-breaking constraints.

Salder and Gervet [55] proposed a filter for the global atmost-1 constraint, restricting how many

sets can share an element. This paper significantly generalizes this idea to produce both lower

and upper bounds on dual variables of atmost-k constraints. Hawkins, Lagoon, and Stuckey [34]

proposed a BDD-based representation of sets, which represents both domain and global constraints.

Combining propagators is achieved by combining BDDs. This paper implicitly combines atmost-k

and alldisjoint constraints.

118

8.6 Conclusion

This paper studied feasibility checking and filtering for global constraints over set variables. It

proposed an exponential-time feasibility checker for the alldisjoint constraint, by taking a dual

perspective and enumerating all possible dual assignments. The paper also presented dual, and

primal/dual filters for the atmost-k and the symmetry-breaking atmost-k constraints. The dual and

primal/dual filters need to answer various counting problems (e.g., How many set variables must

include/exclude the first e elements of the universe) which are viewed as optimization problems

and solved using the filters recursively on smaller atmost-k constraints. Experimental results on

the standard benchmark problem, the social golfer problem, show that the feasibility checker and

the filters are very effective and significantly improve state-of-the-art results on these problems. In

particular, they are able to solve open instances for set representations and reduce CPU times by a

factor greater than 20 on some instances.

119

Chapter 9

Hybrid Domain Representation

Membership: e ! X

Cardinality: |X| = c

Ordering: X « s

Subset-Bound Domain

Length-Lex Domain

A Hybrid?

Monday, March 21, 2011

Figure 9.1: A Hybrid Domain Combining the Best of the Two Worlds?

9.1 Overview

In the previous chapter, we argue that the reason of why the length-lex domain representation is

more effective in pruning the search space than the subset-bound representation is that it is possible

120

to prune a value, as oppose to an element, from the domain. It enables propagators to achieve a more

fine-grained, hence stronger, inference. More propagation takes place in the constraint propagation,

resulting in a dramatically small search tree. These phenomenon suggests that we should push

even further in the domain representation, taking into account of more information and allowing

propagators to exploit problem semantics, and leading to a more efficient and effective search.

So far in this thesis we have been focused our discussion solely on the length-lex representation,

and we have shown that the representation enjoys, both theoretically and practically, a lot of ad-

vantages over the classical subset-bound domain. The subset-bound domain mainly captures the

membership information by maintaining two sets that represent the state of an element: whether

or not it belongs to the solution. The length-lex domain represents the set domain in a dual per-

spective, it features a total-ordering which primarily captures the cardinality information, making

it an ideal vehicle to capture both cardinality and ordering constraints, and leaving the membership

constraint in a relatively minor position. Figure 9.1 illustrates the characteristic of the two domain

representations.

As we suggested in the last chapter that we may achieve a more efficient and effective search by

allowing more propagation to take place. This chapter presents the idea of an hybrid domain: The

intersection of length-lex and subset-bound domain, to obtain more propagation. We begin with the

simple idea of maintaining two models at the same time and synchronizing them with a channeling

constraint in Section 9.2. Then, we present exponential propagators for the product of two domains

in Section 9.3. Last, we give a hardness proof for the global alldisjoint constraint for the hybrid

domain in Section 9.4.

9.2 Connecting Two Representations

Constraint programming is highly modular. Variables and constraints can be added and removed

from the model independently. Domains are the only interface of communication between con-

straints. Therefore, different implementations of the same constraint and different representations

of the same variable type can be used in the same model. All we need is to make sure is that a

correct interface exists.

In previous sections, we have presented models using the length-lex and subset-bound domains

121

X’r,t % {1,...,32}

X’r,t # X’r,t’ = $
|X’r,t # X’r’,t’| ! 1

|X’r,t| = 4

Subset-Bound Model

Xr,t % {1,...,32}

Xr,t # Xr,t’ = $
|Xr,t # Xr’,t’| ! 1

|Xr,t| = 4

Length-Lex Model

X’r,t = Xr,t

Saturday, May 7, 2011

Figure 9.2: Connecting Two Representations using Channeling Constraints

respectively. To combine the two models, a trivial way is to put them together and connect cor-

responding variables with channeling constraints. Figure 9.2 illustrates the idea. The channeling

constraint make sure both variables take the same value, it channels variables of different represen-

tations. Essentially, it is a equality constraint.

In the case of channeling the length-lex and subset-bound variables, the channeling constraint

is composed of two parts. The first part propagates the length-lex variable and makes sure both

bounds are domain values of the subset-bound variable. This can be trivially implemented as a

unary constraint sbc〈r, p, č, ĉ〉(X) ≡ r ⊆ X ⊆ p ∧ č ≤ |X| ≤ ĉ. The second part propagates the

subset-bound variable in the same way. It deduces the required and possible set from the length-lex

domain, and updates itself correspondingly.

Figure 9.3 presents the Comet model using both domain representations. The first box, Lines

15–26, are the length-lex constraints, the second box, Lines 27-31, are the subset-bound constraints,

and the third box, Lines 32–33, are the channeling constraint connecting both models. Putting two

models together cannot be more trivial.

9.2.1 Evaluation

We evaluate the performance of the three models: the subset-bound model, the length-lex model,

and the hybrid model which uses both. To give a fair comparison, we do not add the exponential

checker, which relies on the unary atmost1 constraint that is not yet introduced for the subset-bound

domain. Table 9.1 presents the results. The hybrid model is clearly at least as strong as either the

122

9 LengthLexVar<CP> llx[Weeks,Groups](cp,p,s);
10 var<CP>{set{int}} sbx[Weeks,Groups](cp,Players,s..s);
11 var<CP>{int} y[Players,Weeks](cp,Groups);
12 var<CP>{set{int}} aux[Weeks](cp,Players,s..s);
13

14 solve<cp>{

15 forall (wi in Weeks, gi in Groups, gj in Groups : gi < gj)
16 cp.post(disjointLe(llx[wi,gi],llx[wi,gj]));
17

18 forall (wi in Weeks, gi in Groups)
19 cp.post(atmost1(llx[wi,gi], all(wj in Weeks, gj in Groups : wj < wi) llx[wj,gj]));
20

21 forall (wi in Weeks, wj in Weeks : wi < wj)
22 cp.post(atmostLe(llx[wi,1],llx[wj,1],1));
23

24 forall (wi in Weeks)
25 cp.post(removeMin(llx[wi,1],aux[wi]));
26 cp.post(symbreak_alldisjoint(all(wi in 1..w) aux[wi],p));

27 forall (wi in Weeks, gi in Groups, gj in Groups : gi < gj)
28 cp.post(disjoint(sbx[wi,gi],sbx[wi,gj]));
29

30 forall (wi in Weeks, wj in Weeks, gi in Groups, gj in Groups : wi < wj)
31 cp.post(atmost1(sbx[wi,gi],sbx[wj,gj]));

32 forall(wi in Weeks, gi in Groups)
33 cp.post(channel(llx[wi,gi],sbx[wi,gi]));

34 forall (wi in DualWeeks)
35 cp.post(dualChannel(all(gi in Groups)sbx[wi,gi], all(pi in Players)y[pi,wi]));
36

37 forall (pi in Players, pj in Players : pi < pj)
38 cp.post(lexleq(all(wi in Weeks)y[pi,wi],all(wi in Weeks)y[pj,wi]));
39 }

Figure 9.3: Comet Model for Social Golfer Problem using Both Domain Representations

subset-bound or the length-lex model. Therefore, it achieves the least number of fails node. The

hybrid domain is also very robust, too. It solves all instances while the other two models cannot.

Sometimes the hybrid domain runs a little bit slower than the pure length-lex model, since more

propagations are taking place. But, overall it is faster. In terms of propagation strength, the impact

of the hybrid domain is huge. For instance (9, 3, 11), it reduces the number of fails by more than

7 times. It is also important to point out that, as the instance size grows larger, the performance

gain becomes more apparent. We conclude that the hybrid domain is a robust model. Readers may

refer to the experiment section for a more comprehensive comparison.

123

Domain Subset-Bound Length-Lex Length-Lex ×
Subset-Bound

Symmetry Breaking 4 4 4
(Chapter 6)

Exponential Propagator 4 4
(bcll〈atmost1〉)

(g,s,w) Time Fails Time Fails Time Fails
(3,3,3) 0.01 0 0.01 0 0.01 0
(4,3,5) 0.11 968 0.03 140 0.03 126
(4,4,6) 0.01 0 0.01 0 0.01 0
(5,3,6) 4.21 29791 1 6276 1.15 4285
(5,3,7) 25.63 157285 4.56 19149 11.25 38454
(5,4,5) 0.24 1594 0.09 448 0.1 288
(5,4,6) 337.35 2013980 61.06 286792 85.81 225524
(5,5,4) 0.33 2320 0.05 175 0.07 151
(6,3,7) 0.22 935 0.05 225 0.08 107
(6,4,5) 0.11 473 0.03 83 0.05 57
(6,5,5) 36.49 195986 7.72 36017 8.49 19509
(6,5,6) 314.24 1512264 57.47 221033 60.09 127943
(6,6,4) x x 592.46 2049826 952.55 1964892
(7,3,9) x x x x x x
(7,7,4) x x 0.78 1739 1.62 1634
(8,3,10) 1390.82 3782741 119.06 542539 101.19 128833
(9,3,11) 37.32 80005 14.449 61924 9.66 8627

Table 9.1: Social Golfer Problem: Hybrid Model.

9.3 Exponential Propagator for Hybrid Domains

Wandering in the No-Man Land of Hardness We have studied the performance gain of

simply using two orthogonal domain representations together. This section studies the synergy

of combining the two. Exponential propagators presented in the previous chapter accelerate the

fixpoint algorithm by taking a collection of unary constraints into account at once. The problem is

intractable. The question is either to let the agnostic constraint propagation algorithm to tackle the

intractability or to design an informed exponential algorithm which exploits the problem semantics

and yields a potentially faster propagation. The evaluation results clearly suggest the latter.

We embrace the complexity and wander in the no-man land of hardness. In this section, we

propose the ls-domain, an intersection of the length-lex and subset-bound domain. And, we intro-

duce exponential algorithms for the ls-domain which not only improves the convergence rate of the

algorithm, but also prunes infeasible elements.

124

The Intersection We first define the ls-domain, the produce of the length-lex and subset-bound

domain. (Similar hybrid domain representations were proposed in [56, 48].)

Definition 28 (ls-domain). A length-lex × subset-bound domain (ls-domain) is the intersection of

the two domains. A ls-domain ls〈l, u, n, r, p〉 consists of two bounds l, u for the length-lex ordering,

a universe size n, a required set r, and a possible set p. It represents the set of sets

ls〈l, u, n, r, p〉 ≡ ll〈l, u, n〉 ∩ sbc〈r, p, |l|, |u|〉

Example 44. The ls-domain ls〈{1, 3, 8}, {1, 5, 8}, 8, {1}, {1, 3, 4, 5, 7, 8}〉 denotes the set{
{1, 3, 8}, {1, 4, 5}, {1, 4, 7}, {1, 4, 8}, {1, 5, 7}, {1, 5, 8}

}
. �

Definition 29 (ls-bound consistency). A set constraint C(X1, ..., Xm) (Xi are set variables using

the ls-domain) is said to be ls-bound consistent if and only if ∀1 ≤ i ≤ m,

lXi
∈ d(Xi) ∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) : C(x1, .., xi−1, lXi

, xi+1, .., xm)

∧ uXi
∈ d(Xi) ∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) : C(x1, .., xi−1, uXi

, xi+1, .., xm)

∧ rXi
=

⋂
∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi ∧ pXi
=

⋃
∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi

where d(Xi) = ls〈lXi , uXi , nXi , rXi , pXi〉

We now show that the ls-domain is strictly stronger than the conjunction of the ll-domain and

sbc-domain.

Lemma 10. Enforcing bound consistency on a ls-domain is strictly stronger than enforcing bound

consistency separately on the decomposition of the ll-domain and sbc-domain.

Proof. Clearly enforcing bound consistency on the ls-domain is at least as strong. Consider a

unary constraint |X ∩ {4, 5, 7}| ≤ 1 and the ls-domain in Example 44. It is bound-consistent

for the decomposition, since the lower and upper bounds satisfy the constraint and the re-

quired and possible sets are bound-consistent. However, for the ls-domain, only three do-

main values, i.e., {1, 3, 8}, {1, 4, 8}, {1, 5, 8}, satisfy the constraint. Element 8 belongs to all

solutions and thus to the required set. Enforcing bound consistency for the ls-domain yields

ls〈{1, 3, 8}, {1, 5, 8}, 8, {1, 8}, {1, 3, 4, 5, 7, 8}〉.

125

Algorithm 16 bcls〈atmost1({s1, .., sm})〉(Xls = ls〈l, u, n, r, p〉)
1: S ←

{
s ∈ Xls |

∧
1≤i≤m |s ∩ si| ≤ 1

}
2: l′, u′ ← min� S,max� S
3: r′, p′ ←

⋂
s∈S s,

⋃
s∈S s

4: return ls〈l′, u′, n, r′, p′〉

The Exponential Propagator In the previous chapter, we proposed an exponential propagator

which improves the efficiency of the constraint propagation algorithm. We showed that it brings

significant improvement in practice. We push the idea even further. Since the feasibility check, on

which the exponential propagators rely, takes potentially exponential time, we would like to squeeze

the most out of it. We introduce a simple exponential algorithms for enforcing bound consistency

on the ls-domain. Our motivation is twofold:

1. An exponential filtering algorithm enables us to move the potentially exponential behavior

from the rather agnostic constraint propagation algorithm into the constraint itself where the

constraint semantics can be exploited.

2. The stronger filtering further increases the pruning of the search and may lead to additional

domain reduction through constraint propagation of other constraints, an observation already

pointed out in [7].

Algorithm 16 implements bcls〈atmost1({s1, .., sm}, X)〉 and is self-explanatory. The set S maintains

a logical enumeration of all possible solutions. All four bounds of the ls-domain are determined ac-

cording to the ls-bound-consistency definition. Corollary 3 implies that there are no fixed-parameter

tractable algorithm for Algorithm 16 since hsll〈C〉 is a special case for bcls〈C〉.

Theorem 19. Algorithm 16 runs in time O(ncmc) where c = |u|.

Proof. Xls contains at most O(nc) sets. Each set takes O(mc) time to verify if it satisfies the

constraint.

Sometimes enumerating all possible solutions is not cost-effective and hence we also consider an

exponential filtering algorithm (Algorithm 14) for the length-lex bounds only. Obviously, lines 1–2

do not compute the set of solutions explicitly but only searches for the smallest and largest solution

in the length-lex ordering. Algorithm 14 has the same worst case time complexity as Algorithm 16,

126

since its feasibility routine is W [1]-hard, but it may be significantly faster in practice. The same

principles can be applied to other unary intersection constraints.

Implementation Notes The exponential propagation does not explicitly enumerate all the sets.

It relies on a technique on which most length-lex propagators rely. The inference reduces to a

feasibility routine hs which takes a domain and returns a boolean value that indicates if the domain

has any solution. We discussed the length-lex component in the previous chapter. We focus on

propagating the subset-bound component.

The subset-bound component has two parts: the possible set and the required set. A bound-

consistent propagator decides whether to remove an element from the possible set, to add an element

from the possible set to the required set, or to do nothing. An element is removed if no solution

contains it; an element is added to the required set if all solutions contain it; otherwise, it remains

in the possible set. These inferences rely on the feasibility routine. To test whether an element e

should be removed from the possible set, it suffices to check if it belongs to no solution. Such task is

achieved by adding e to the required set and invoking the feasibility routine. If the routine returns

false, it implies no solution contains e, and it must be removed from the possible set to achieve

bound consistency.

On the other hand, to test whether an element e belongs to all solutions, we perform a dual check

and see if there is any solution where e is absent. We remove e from the possible set and invoke

the feasibility routine. If the routine returns false, it implies all solutions contain e and hence it is

a required element. We illustrate this with an example.

Example 45. Consider bcsbc〈atmost1({s1, s2, s3})〉(Xsbc), the exponential propagator which only

propagates the subset-bound component, where s1 = {2, 3}, s2 = {2, 4}, s3 = {2, 5}, and Xsbc =

sbc〈{}, {1, 2, 3, 4, 5}, 3, 3〉. The required set is empty and the possible set is {1, 2, 3, 4, 5}. The

propagator scans all the possible elements twice: the first scan determines if they belongs to the

possible set; the second scan determines the required set. In the first scan, the propagator deter-

mines if possible set elements have a support. Consider element 1: The propagator adds this ele-

ment to the required set, get X ′sbc = sbc〈{1}, {1, 2, 3, 4, 5}, 3, 3〉, and invokes the feasibility routine

hssbc(〈atmost1({s1, s2})〉)(X ′sbc), which returns true as {1, 4, 5} is a solution. Element 1 remains

in the possible set. Now consider element 2: The propagator checks feasibility with the domain

127

sbc〈{2}, {1, 2, 3, 4, 5}, 3, 3〉. There is no solution, the routine returns false, meaning that no solution

contains element 2. Hence, element 2 is removed from the possible set. The process continues. At

the end of the scan, all the other elements in the possible set belong to some solution and we have

sbc〈{}, {1, 3, 4, 5}, 3, 3〉.

Indeed, in practice, it is not necessary to invoke hs for every element since results from previous

calls can be reused. In particular, from the feasibility check of element 1, we know that element

3 and 5 also have support and hence don’t need to invoke the computationally expensive check.

Despite such trick doesn’t improve the theoretical worst case complexity, it dramatically improves

the overall performance of the exponential propagator.

The second scan determines if the elements belong to the required set. An element e belongs

to the required set if and only if it belongs to all solutions. If there exists a solution where e is

absent, e is not a required element. Consider element 1, the propagator removes it from the domain

to obtain sbc〈{}, {3, 4, 5}, 3, 3〉. The feasibility routine returns false indicating that all solutions

contain element 1. Hence element 1 belongs to the required set. For element 3, the feasibility

routine returns true since {1, 4, 5} is a solution. Element 3 is not a required element. �

9.3.1 Evaluation

We evaluate the performance of the exponential propagator for the ls-domain. The propagator does

two tasks: it speeds up the constraint propagation algorithm, and remove infeasible values. Line 18

is replaced by

1 atmost1(sbx[wi,gi], llx[wi,gi], all(wj in Weeks, gj in Groups: wj < wi)sbx[wj,gj]);

The first two arguments are the subset-bound and length-lex component of the concerned variable.

The third argument corresponds to the array of sets si which defines the constraint (refer to Definition

21). Variables sbx[wj,gj] are not considered in the propagator until they become bound. Since

the search uses a vanilla week-wise labeling strategy, wj < wi is sufficient. Binary constraints are

removed from the model and, since the exponential constraint propagates only when variables are

bound, less propagation is achieved in the length-lex component. Nevertheless, we show that the

gain in performance outweighs the loss in propagation.

128

Domain Length-Lex Length-Lex × Length-Lex ×
Subset-Bound Subset-Bound

Symmetry Breaking 4 4 4
(Chapter 6)

Checker 4 4 4
(hs〈alldisjoint〉)

Exponential Propagator
(bcll〈atmost1〉) 4 4
(bcls〈atmost1〉) 4

g,s,w Time Fails Time Fails Time Fails
(5,3,7) 5.07 12211 5.92 10181 6.05 9291
(5,4,6) 39.7 120438 56.46 108098 52.7 79902
(6,5,5) 2.44 4877 3.05 4193 3.01 3405
(6,5,6) 16.38 27545 21.49 24637 21.62 19317
(6,6,4) 646.62 1890962 930.65 1807408 1329.27 1763316
(7,3,9) 1276.05 2837356 1526.6 1778873 1097.15 1018831
(8,3,10) 47.01 88817 43.9 44249 40.87 31547
(9,3,11) 2.05 2724 2.89 1585 1.13 330

Table 9.2: Social Golfer Problem: Exponential Propagator for LS-domain

Table 9.2 reports the evaluation results. The first column gives the result of the pure length-

lex model using all symmetry-breaking techniques discussed earlier and the exponential propagator

bcll〈atmost1〉 which only speeds up the convergence rate. The second column gives the result of

the hybrid model: the length-lex and subset-bound models are posted separately and connected

with channeling constraints. The third column gives the result of the hybrid model using the

exponential propagator on the product of two domains, which improves the convergence rate and

prunes infeasible values. Good and robust result worths a thousand of words. Most of the bold

numbers are in the third column. For most instances, the ls-domain is the fastest approach, reducing

both the search time and size of the search tree by orders of magnitude. The ls-domain is clearly

the best.

Applying Exponential Checkers and Propagators on Subset-Bound Domain The ex-

ponential checker hs〈alldisjoint〉 for the global alldisjoint constraint and exponential propagator

bc〈alldisjoint〉 for the unary atmost1 constraint can also be applied on the subset-bound domain.

We also evaluate its performance. Table 9.3 evaluates the performance of each component. The

model which uses checker and propagator gives the best result. It reduces the number of fails by

orders of magnitude, and the run time is also much improved.

129

Domain Subset-Bound
Symmetry Breaking 4 4 4

(Chapter 6)
Checker 4

(hs〈alldisjoint〉)
Exponential Propagator 4 4

(bcsbc〈atmost1〉)
g,s,w Time Fails Time Fails Time Fails

(5,3,7) 25.63 157285 19.97 63285 19.13 40401
(5,4,6) 337.35 2013980 195.72 583786 160.73 346424
(6,5,5) 36.49 195986 5.8 12001 4.3 4529
(6,5,6) 314.24 1512264 51.86 97991 39.13 34773
(6,6,4) x x x x x x
(7,3,9) x x x x x x
(8,3,10) 1390.82 3782741 404.97 492391 273.07 204773
(9,3,11) 37.32 80005 10.17 11601 5.83 3557

Table 9.3: Social Golfer Problem: Exponential Checkers and Propagators for Subset-Bound Domain

9.4 Hardness Proofs for AllDisjoint Global Constraint

The hybrid domain is a rich representation which encapsulate a lot of different information. It offers

stronger propagation even for binary intersection constraints. It is also very effective in practice

too. However, the rich domain makes propagation harder. One of the surprising example is that

the alldisjoint constraint, which used to take polynomial-time for subset-bound domains, becomes

intractable. The all-disjoint constraint ensures that every pair of set variables are mutually disjoint.

Definition 30 (All-Disjoint). alldisjoint(X1, ..., Xm) holds if Xi ∩Xj = ∅,∀1 ≤ i < j ≤ m

This section gives two hardness proofs. The first shows that the all-disjoint constraint is in-

tractable for the hybrid ls-domain. The second shows that it is intractable when the variables have

an explicit list of possible domain values.

Hard for LS-Domain

Theorem 20. hsls〈alldisjoint〉(X1, ..., Xm) is NP-hard.

Proof. Reduction from “Partition into Triangles”. Instance: A graph G = (V,E), with |V | = 3q

for some q. Question: Can the vertices of G be partitioned into q disjoint sets V1, V2, ..., Vq, each

containing exactly 3 vertices, such that each of these Vi is the node set of a triangle in G.

130

1

3

2

4 5

6
7 8

9

X1

X2
X3

X4
X5

Tuesday, March 22, 2011

Figure 9.4: Reduction from 3-Triangles. Dotted lines represent the solution. Each triangle is
represented by a set variable. A set variable takes only two values, the triangle or a set of two
dummy elements.

Intuitively, every variable corresponds to a triangle in the input graph. Elements are drawn from

a universe which consists of all vertices and some dummy elements. A variable takes 3 vertices from

its triangle if and only it is one of the disjoint sets Vi, otherwise it takes the dummies. A partition is

guaranteed by the alldiff relation since any vertex belongs to at most one set variable. There exists

a partition if and only if the alldiff constraint has a solution.

Suppose there a 3q vertices and p triangles in the input graph. We construct an instance of CSP

with p set variables whose element are drawn from a universe of 3q vertices and 2(p − q) dummy

elements. One constraint over all set variables alldiff(X1, ..., Xp) is posted. We denote the universe

as {v1, ..., v3q, d1, ..., d2(p−q)} and abuse the length-lex notation and assume that v1 < v2 < ... <

v3q < d1 < ... < d2(p−q). A set variable Xi (1 ≤ i ≤ p) can either take 3 elements which corresponds

to the vertices (vi1 , vi2 , vi3) in the triangle i, or 2 dummy elements. It has a ls-domain:

ls〈{d1, d2}, {vi1 , vi2 , vi3}, 2p− q, ∅, {vi1 , vi2 , vi3 , d1, ..., d2(p−q)}〉

This domain contains all 2-subsets of {d1, ..., d2(p−q)} and a 3-set {vi1 , vi2 , vi3}.

Now we show the ls-domain contains only the aforementioned sets. It is trivial by the length-lex

bound that it could take only sets of size 2 or 3. For any 2-set, it cannot contain any vertex vj

131

since any 2-set {vj , •} is smaller than {d1, d2} in length-lex order. All domain values of size 2 are,

therefore, subset of {d1, ..., d2(p−q)}. For any 3-set s, the possible set forbids s from taking any vertex

vj other than vi1 , vi2 , or vi3 , and s cannot take any dummy element dk since, say {vi1 , vi2 , dk}, is

greater than the length-lex upper bound {vi1 , vi2 , vi3}.

⇒ Given a partition of triangles, we construct a solution. For every triangle {vi1 , vi2 , vi3} belongs

to a partition, we assign it to the corresponding set variable Xi. Otherwise, when it is not, 2 dummy

elements are assigned to Xi. There are p triangles and q partitions, 2(p−q) dummy elements suffices

to satisfies the alldiff constraint.

⇐ The argument is similar. For a set variable Xi taking {vi1 , vi2 , vi3}, these vertices form a

partition. As there are q of them and they are mutually disjoint, they partition the graph.

9.5 Conclusion

Propagation is the core of constraint programming. CP models capture the problem semantics using

variables and constraints, while solvers attempt to find solution by closely examining them. In order

to enable the solver to solve a problem efficiently and perform inference effectively, variable domains

should capture the inference result. In this thesis, we consider set domains, which is impossible

to maintain domain values with an explicit representation. A few approximations schema have

been proposed, each attempts to capture some pieces of important information. In particular, the

subset-bound domain and the length-lex domain are two of the most prominent representations.

This chapter evaluates the intersection of the two domains. First, we give a lightweight and

effortless method for combining model using the two domains respectively: everything is posted

in the same model and the corresponding variables are connected using a channeling constraint.

We show empirically that the combination gives a robust performance. Second, we introduce the

ls-domain, the intersection of length-lex and subset-bound domain, and present an exponential

propagator which exploits the synergy of the new domain. The hope is to shift the exponential

behavior from the agnostic search to the propagator in which problem semantics can be exploited.

The motivation of the exponential propagator is twofold: it improves the convergence rate of the

constraint propagation algorithm, and it removes a lot of infeasible values. The empirical result is

dramatic. It is clearly the fastest and most robust approach.

132

We also give theoretical result for the product of the two domains. The global alldisjoint con-

straint, which is tractable for the subset-bound domain, is intractable for the product. The newly

proposed ls-domain may capture more domain information than before. As we demonstrated that

exponential propagation may achieve dramatic improvement in performance, the intractability result

suggests that it may also be beneficial to move some of the exponential behavior incurred by the

alldisjoint constraint from the search to the filtering component.

133

Chapter 10

Exponential Checkers for Symme-

try Breaking

10.1 Overview

Matrix models are a class of Constraint Satisfaction Problems that often exhibit significant sym-

metries and effective symmetry-breaking techniques are often critical in solving them in reasonable

time. The LexLeader method is a common and elegant symmetry-breaking approach: It consists

in posting a lex-ordering constraint for each symmetry to ensure that all non-canonical solutions are

removed. Unfortunately, even for simple symmetry classes, the LexLeader method may generate

an exponential number of constraints. A traditional way to overcome this limitation is to use only

a subset of the symmetry-breaking constraints, which is the approach adopted in the DoubleLex

and SnakeLex methods for matrix models. This chapter takes an orthogonal and complementary

approach: instead of enumerating all the symmetry-breaking constraints for a symmetry class, it

introduces the idea of a LexLeader feasibility checker that succeeds if a partial assignment can be

extented into a canonical solution and fails otherwise. The implementation of the feasibility checker

exploits a very interesting result from [42]: There exists an O(n!nm logm) algorithm to decide

whether a solution is canonical in a n ×m matrix model with row and column interchangeability.

The paper shows how to use this algorithm for building LexLeader feasibility checkers. Moreover,

134

the chapter shows how LexLeader feasibility checkers can accommodate value symmetries and var-

ious variable orderings. The experimental results on 5 standard benchmarks show that LexLeader

feasibility checkers may produce huge performance gains and are very robust overall.

This chapter is organized as follows. Section 10.2 describes the background and notations used

in this paper. Section 10.3 introduces the novel idea of LexLeader Feasibility Checkers. Sections

10.4–10.6 present several extensions and improvements to the core idea. Section 10.7 concludes the

chapter.

10.2 Background

A Constraint Satisfaction Problem (CSP) consists of a set of variables taking their values in a domain

and a set of constraints. The problem is to find an assignment of values to variables satisfying all

constraints. This paper focuses on matrix models [17] with n rows and m columns and variables

are usually subscripted with row and column indices Xi,j . The domains are subsets of {1, ..., v}.

A constraint specifies the allowed combinations of values for a subset of variables. An assignment

is a function that maps all variables to values α(Xi,j) = ai,j and a partial assignment is a partial

function which maps a subset of variables to values. An assignment extends a partial assignment if

they agree on the values of variables in the partial assignment.

A symmetry is a permutation of variables or values under which solutions are preserved. A

permutation σ is denoted by, say, (23154), meaning σ(1) = 2, σ(2) = 3, and so on. This paper

mostly focuses on the common symmetry types in matrix models [Xi,j]: A row symmetry σr is a

row permutation [Xσr(i),j], a column symmetry σc is a column permutation [Xi,σc(j)], and a value

symmetry σc is a value permutation [σv(Xi,j)]. Of course, these various symmetries can be applied

together, e.g., [σv(Xσr(i),σc(j))], making symmetry breaking particularly challenging.

10.2.1 The LexLeader Method

The LexLeader method is a very common approach for breaking symmetries [11]: It eliminates

symmetrically-equivalent solutions by keeping only a predefined canonical solution α. The canoni-

cal solution is usually the lexicographically smallest assignment for a predefined variable ordering.

135

Hence, to eliminate a variable symmetry σ, it suffices to post the following constraint:

[X1, ..., Xn] ≤lex [Xσ(1), ..., Xσ(n)].

Example 46. Consider a CSP with two variables X1, X2 ∈ {0, 1} and a constraint X1 6= X2.

There are two solutions: α1(X1) = 0, α1(X2) = 1 and α2(X1) = 1, α2(X2) = 0. There is a variable

symmetry σ = (21). Hence, the LexLeader method posts the lex-ordering constraint [X1, X2] ≤lex

[X2, X1]. The solution α2 violates the ordering constraint and is therefore removed. �

Similarly, to eliminate value symmetry σ, it suffices to post

[X1, ..., Xn] ≤lex [σ(X1), ..., σ(Xn)].

10.2.2 The LexLeader Method in Matrix Models

Many matrix models exhibit both row and column interchangeability, a property called full-

interchangeability [18]. To eliminate symmetries in a fully-interchangeable matrix model with n

rows and m columns, the LexLeader method may define a row-wise variable ordering row([Xij]) ≡

[X1,1, . . . , X1,m, X2,1, . . . , X2,m, . . . , Xn,m] and post the lex-ordering constraint

row([Xi,j]) ≤lex row([Xσr(i),σc(j)])

for each row symmetry σr and column symmetry σc. There are respectively n! and m! different row

and column permutations. Hence breaking all symmetries this way is forbiddingly expensive since

there are n!m! such lex-ordering constraints. In fact, breaking symmetries in fully-interchangeable

matrix models is particularly challenging, since deciding whether a solution to such a model is

canonical is already NP-complete [5].

10.2.3 The DoubleLex Method

The DoubleLex method is a popular method for breaking symmetries in fully-interchangeable

matrix models [17].

Specification 9. The DoubleLex method takes a matrix model and enforces lex-ordering among

136

pairs of rows and columns.

∧
1≤i<i′≤n

[Xi,1, ..., Xi,m] ≤lex [Xi′,1, ..., Xi′,m]

∧
∧

1≤j<j′≤m

[X1,j , ..., Xn,j] ≤lex [X1,j′ , ..., Xn,j′].

The DoubleLex method does not break all symmetries.

Example 47. Consider a 2×3 fully-interchangeable matrix model and the following two assignments

which satisfy the DoubleLex constraints:

112 122

221 211

They are symmetrical under σr = (21) and σc = (321). �

In addition, complete filtering of DoubleLex constraints is computationally difficult.

Theorem 21 ([42]). Enforcing domain consistency on the DoubleLex constraints is NP-hard.

As a result, in practice, as well as in the evaluation section of this paper, the DoubleLex constraints

are posted as a set of lex-ordering constraints among pairs of rows and columns independently.

10.2.4 The RowWiseLexLeader Method

Katsirelos, Narodytska, and Walsh [42] introduced an interesting method for checking if an assign-

ment is a canonical solution to a fully-interchangeable matrix model. The RowWiseLexLeader

method determines whether there exists a symmetrical solution which is smaller than a given as-

signment. If such solution exists, by transitivity, the current assignment cannot be canonical. Let

Sk be the set of all permutations of {1, ..., k}.

Specification 10. The RowWiseLexLeader method takes an assignment α on a matrix model

137

and returns

∃σr ∈ Sr, σc ∈ Sc :

row([α(Xσr(i),σc(j))]) <lex row([α(Xi,j)]).

The method is based on the observation that, if there is only one type of symmetry, the above test

reduces to sorting. As a result, the RowWiseLexLeader method first enumerates all row symme-

tries and, for each of them, sorts the matrix and compares the resulting and original assignments.

Example 48. Consider a 2× 3 fully-interchangeable matrix model and the assignment

122

211

Applying the row symmetry σr = (21) produces

211

122

Now it remains to check if there exists a smaller assignment under column interchangeability. Sorting

the columns produces the assignment

112

221

which is lexicographically smaller than the original assignment. The original assignment is not

canonical. �

Theorem 22 ([42]). For a n ×m fully-interchangeable matrix model, the RowWiseLexLeader

method runs in O(n!nm logm) time.

[42] also showed that the DoubleLex method may leave n! symmetries on some 2n × 2n matrix

models. Moreover, by applying Theorem 22 at the leaves of the search tree, they showed empirically

138

that DoubleLex may leave a large number of symmetries in some benchmarks.

10.3 LexLeader Feasibility Checkers

The key idea behind this paper is to turn Theorem 22 into a practical tool for removing symmetries

during search. We first generalize Theorem 22 to partial assignments. If a partial assignment α of

the first n′ rows is such that another partial assignment of the same rows is lexicographically smaller

than α, then any solution extending α is not canonical and the subtree corresponding to α may be

pruned. Consider Example 48 and assume that the matrix has more than two rows. The partial

assignment [(122),(211)] has exactly two rows filled. Since it is not canonical for the submatrix, any

solution extending it is not canonical either and the algorithm can backtrack at this stage without

trying to extend the assignment.

A LexLeader feasibility checker can directly use the implementation idea behind Theorem 22.

Moreover, since the bottleneck in Theorem 22 is the n! enumeration of the row symmetries, checking

partial assignments early in the search, i.e., partial assignments with a small n′, will be more efficient

and may potentially prune large portions of the search space.

Specification 11 (RowCol Feasibility Checker). RowColFC takes a partial assignment α of the

first n′ rows of a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sc :

rown′([α(Xσr(i),σc(j))]) <lex rown′([α(Xi,j)]).

where rown′ only linearize the first n′ rows. Note that σr only considers the interchangeability

among the first n′ rows.

Theorem 23. RowColFC takes O(n′!n′m logm) time.

Theorem 24. RowColFC removes all but the canonical solution in a n by m fully-interchangeable

matrix model.

Proof. We first prove soundness: Only non-canonical solutions are removed. Then we prove com-

pleteness: All non-canonical solutions are removed.

139

Soundness: The lex-ordering relation is dominated by the prefix. Consider a partial assignment

α of the first n′ rows and a solution αc extending it. If α has a symmetric partial assignment that

is strictly smaller lexicographically than under any symmetries σr ∈ Sn′ and σc ∈ Sc, then αc also

has a symmetric assignment smaller than it. Formally,

∀σr ∈ Sn′ , σc ∈ Sc :

rown′([α(Xσr(i),σc(j))]) <lex rown′([α(Xi,j)])

⇒ row([αc(Xσr(i),σc(j))]) <lex row([αc(Xi,j)]).

RowColFC returns true when α cannot be extended into a canonical solution and no canonical

solutions are removed.

Completeness: When the partial assignment is complete, RowColFC is equivalent to Row-

WiseLexLeader.

For those cases in which the domain size v is much smaller than the number of rows and columns.

In these cases, the running time of the algorithm can be improved with a bucket sort, reducing the

complexity by a factor of logm.

Theorem 25. RowColFC takes O(n′!n′max(m, v)) time.

10.4 Variable Orderings

Canonical solutions depend on a pre-defined variable ordering. This section shows how to generalize

LexLeader feasibility checkers to different variable orderings. In the literature, most models apply

either a row-wise or column-wise canonical ordering. Recently, [30] introduced a very interesting

variable ordering called SnakeLex. This section restricts attention to row-wise SnakeLex ordering

since the column-wise counterpart is essentially equivalent. The SnakeLex ordering orders variables

in a snake fashion. It takes variables from left to right in the first row, from right to left in the

second, from left to right again in the third, and all the way until the last row. Empirical results in

[30, 42] demonstrated that SnakeLex sometimes breaks more symmetries. A LexLeader feasibility

checker can be naturally defined for the SnakeLex ordering.

140

Definition 31 (Snake Linearization). snake([Xij]) ≡ [X1,1, ..., X1,c, X2,c, X2,c−1, ..., X2,1, X3,1, ...]

Specification 12 (RowCol-Snake Feasibility Checker). RowCol SnakeFC takes a partial assign-

ment α of the first n′ rows of a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sm :

snaken′([α(Xσr(i),σc(j))]) <lex snaken′([α(Xi,j]).

It is not difficult to see that RowCol SnakeFC has the same time complexity as RowColFC. For

instance, with the conventions used in this paper, it suffices to negate the even rows and to apply

RowColFC.

10.5 Value Symmetries

This section generalizes LexLeader feasibility checkers to value symmetries, starting with value

interchangeability.

Definition 32 (ValRowCol Feasibility Check). ValRowColFC takes a partial assignment α of

the first n′ rows of a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sc, σv ∈ Sv :

row([α(σv(Xσr(i),σc(j)))]) <lex row([α(Xi,j)]).

The implementation for ValRowColFC adds an extra layer of value permutation to the top of

RowColFC.

Theorem 26. ValRowColFC takes O(v!n′!n′max(m, v)) time.

Example 49. Consider the partial assignment in a matrix model with row, column, and value

interchangeability,

112233

121233

141

To check whether it can be extended into the canonical solution, we enumerate all value permutations

and apply RowColFC. For instance, σv = (231) produces the submatrix

223311

232311

RowColFC returns true and the partial assignment cannot be extended into a canonical solution.

�

This approach is not limited to value interchangeability only; the same principle can be applied to

any kind of value symmetries. The key is simply to enumerate all but one type of symmetry and to

exploit the semantics of the remaining one. We illustrate the approach by presenting a feasibility

checker for a specific value symmetry class.

Definition 33 (Error Correcting Code, Lee Distance (ECCLD)). The problem is to find d codewords

of length-q that drawn from 4 symbols (1, 2, 3, 4) such that the Lee Distance between every-pair of

codeword is exactly c. The Lee Distance between two symbols a, b is min(|a− b|, 4− |a− b|).

The ECCLD problem can be modelled as a matrix model. It has row and column symmetries and an

interesting class of value symmetries. Indeed, the values are not interchangeable but the symmetry

class Σlee contains 8 symmetries:

{(1234), (1432), (2143), (2341), (3214), (3412), (4123), (4321)}

The value symmetries apply to each column independently, since the only constraint is the Lee

distance between corresponding columns in each row.

Example 50. The two ECCLD solutions

1122 1111

2434 2223

are symmetric. The first column is obtained by identity, the second by (1432), the third by (4123),

and the last by (2143). �

142

A LexLeader feasibility checker for the ECCLD problem can be obtained by enumerating all row

and column symmetries and leaving the value symmetry to the sorting step. This is more efficient

than enumerating all value symmetries since there are 8m of them.

Specification 13 (RowColLee Feasibility Checker). RowColLeeFC takes a partial assignment α

of the first n′ rows of a matrix model and returns

∃σr ∈ Sn′ , σc ∈ Sc, σv ∈ Σlee :

rown′([α(σv(Xσr(i),σc(j)))]) <lex rown′([α(Xi,j)]).

Theorem 27. RowColLeeFC runs in O(n!m!nm) time.

Proof. First, we enumerate all possible row and column symmetries: There are n!m! of them. The

resulting matrices only contain value symmetries and the task is to determine if there exists a value

symmetry for each column that would produce a new assignment lexicographically smaller than α.

Let Yij = Xσr(i),σc(j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m be such a matrix. For each column j, we introduce

a variable Zj ∈ {0, ..., 7} to denote its possible value symmetries in Σlee. We perform a row-wise

scan of the matrix and, for every Yij , we check if there exists a value symmetry in Zj yielding a

smaller value than Xij . If such a symmetry is found, α is not canonical solution. Otherwise, we

remove all value symmetries in Zj that would yield a larger value than Xij (the remaining values in

Zj preserves the values of Y1j , . . . , Yij). The whole matrix needs to be scanned only once and the

check in each cell takes O(1) time (we only need to index each symmetry pattern with the value of

Yij). The total runtime is therefore O(n!m!nm).

10.6 Practical Considerations

The earlier section illustrated a key aspect of the approach: one can choose which symmetries

to enumerate to obtain the best performance. For instance, on some problems, it may be more

appropriate to enumerate the value symmetries first, while it may be unpractical to do so in others.

In practice, it may not be cost-effective to break all symmetries systematically. For instance,

one can restrict the feasibility checker to the first k rows of the model, reducing the running time

to O(k!kmax(m, v)). On some problems, this may significantly improve the performance of the

143

approach. Once again, it is useful to note that the earlier LexLeader feasibility checks cost less and

may prune large portions of the search tree. This is a nice property of the approach.

Finally, it is always possible to use several feasibility checkers simultaneously capturing different

combinations of symmetries, provided that they use the same variable ordering. For instance, in a

fully-interchangeable matrix model with value symmetries, one may use one checker for row and value

symmetries, another for column and value symmetries, and a third for row and column symmetries.

Please refer to Chapter 11.6 for the evaluation of feasibility checkers on various standard bench-

marks.

10.7 Conclusion

This chapter proposed the idea of LexLeader feasibility checkers that verify, during search, whether

the current partial assignment can be extended into a canonical solution. The feasibility checkers

are based on a result by [42] on how to check efficiently whether a solution is canonical. This

paper showed how to generalize this result to partial assignments, various variable orderings, and

value symmetries. Several checkers combining different types of symmetries can be used simultane-

ously, instead of tackling all symmetries together which may be prohibitive. Empirical results on 5

standard benchmarks showed that feasibility checkers may bring significant, sometimes spectacular,

performance gains.

144

Chapter 11

Experimental Results

11.1 Overview

In this thesis, we proposed a series of efficient and effective propagators and modeling techniques

for the length-lex set variables. We have shown that, using just a few instances in the social golfer

problem, models using the length-lex set variables yield the smallest number of fail nodes as well as

the shortest solving time comparing with models using the classical subset-bound domain.

This chapter provides a comprehensive comparison between our proposal, the length-lex propaga-

tors, and earlier attempts over standard benchmarks used in the constraint-programming community.

All of them can be found in the CSPlib. The objective is to support the central thesis:

Length-Lex is an Effective Set Domain Representation

for Constraint Programming.

We show that length-lex is a robust, efficient, and effective domain representation. We demonstrate

that it is a accurate approximation of the set domain which allows effective propagation. We claim

that, despite of its accuracy, it is possible to achieve efficient filtering algorithms. We advocate that,

in many problems, as long as strong propagation is achieved, the labeling heuristics have a marginal

impact in performance. To support such claim, in each benchmark problem, we use one vanilla

static labeling routine for all instances, and the overall performance is orders of magnitude faster

145

than most previous techniques.

In particular, we focus on four benchmark problems which can be naturally modeled using set

variables. They are the social golfer problem, the steiner triple system, the weighted error correcting

code problem, and the balanced incomplete block design problem. In each problem, we present a

comprehensive comparison between length-lex, as well as its variants, and earlier attempts. Since

there are too many of them, only the best results for each approach are shown. We solve every

instance solvable by other techniques. Empty cells means non-reported instances, while the symbol

x illustrates a timeout.

From a scientific standpoint, we are also interested in understanding the impact of each compo-

nent in the model and provide statistics for a couple of variants based on the length-lex model.

11.2 The Social Golfer Problem

11.2.1 Problem Statement

The task is to find a w-weekends schedule for p = g × s golfers, each of whom plays golf once

a weekend, and always play in a group of s golfers. To make sure each golfer has the maximum

opportunity of playing with others, every pair of golfers can play at most once. [31]

11.2.2 Earlier Work

This benchmark is derived from a post in sci.op-research in May 1998. It gained a lot of attention in

the constraint programming community thanks to its elegant CP model and complex symmetry class.

Various methods have been proposed to solve the problem. Dotú, Fernández and Van Hentenryck[10,

14], and Harvey and Winterer[32] proposed local search algorithms for finding solutions. Focacci

and Milano[19], Smith[61], and Fahle, Schamberger and Sellmann[16] remove symmetry dynamically

during search.

We focus on those which applies static model. Perhaps the most commonly used model is given

by Barnier and Brisset[3]. They proposed an integer model and a set model. Various proposals on

set representations as well as global constraints are based on these two models. The Cardinal system,

proposed by Azevedo, introduces a cardinality component to the classical subset-bound domain to

146

enhance propagation[2]. A multiple viewpoint model, a similar variant proposed by Law and Lee,

removes interchangeability among golfers in a dual viewpoint[44]. Law and Lee also introduces a

global constraint for breaking a pair of interchangeable values[45]. Frisch, Hnich, Kiziltan, Miguel,

and Walsh introduced a lexicographical constraint for breaking symmetry in matrix models[21, 43].

Hawkins, Lagoon, and Stuckey proposed an exact domain representation using reduced-ordered

binary-decision-diagram[34]. Gange, Lagoon, and Stuckey used the binary-decision-diagram library

as a black box for clause generation, applied learning algorithm and randomized search strategy to

find solutions[23]. Van Hoeve and Sabharwal presented a bound-consistent propagator for binary

atmost1 constraint[70].

11.2.3 Model

We used the social golfer model as an running example to demonstrate the impact of different pro-

posed techniques throughout the thesis. Readers may refer to section A.1 for a detailed description.

We use the model proposed by Barnier and Brisset, figure A.3. Figure 11.2 presents the model in

the Comet language. The model uses both length-lex and subset-bound domain. All techniques

introduces in this thesis are applied:

Technique Chapter Lines

Efficient Length-Lex Propagators 4, 5, B.2 16,17,22,23,35,36

Pushing Symmetry-Breaking into Binary Propagators 6.2 16,17,22,23

Global Symmetry-Breaking AllDisjoint Propagator 6.3 25–26

Dual Modeling for Breaking Value Symmetry 6.4 35–42

Hybrid Domain Representation 9.2 29–36

Exponential Unary Propagators 7, 9.3 19,20

Exponential Feasibility Checker for AllDisjoint Constraint 8.2 13,54–56

We evaluate the pure length-lex domain and the ls-domain, the product of length-lex and subset-

bound domain. The model for pure length-lex domain is omitted to save a few trees in the amazon

forest, it is obtained by removing the disjoint and atmost1 binary constraints and replacing the

exponential atmost1 constraint by atmost1 ll which only propagates the length-lex bounds.

147

1 int g=3;
2 int s=3;
3 int w=3;
4 int p = g*s;
5 range Groups = 1..g;
6 range Weeks = 1..w;
7 range Players = 1..p;
8 LengthLexVar<CP> llx[Weeks,Groups](cp,p,s);
9 var<CP>{set{int}} sbx[Weeks,Groups](cp,Players,s..s);

10 var<CP>{int} y[Players,Weeks](cp,Groups);
11 var<CP>{set{int}} aux[Weeks](cp,Players,s..s);
12

13 AllDisjointChecker alldisjoint[wi in Weeks](cp,llx,sbx,wi);
14

15 solve<cp>{
16 forall (wi in Weeks, gi in Groups, gj in Groups : gi < gj)
17 cp.post(disjointLe(llx[wi,gi],llx[wi,gj]));
18

19 forall (wi in Weeks, gi in Groups)
20 cp.post(atmost1(llx[wi,gi], all(wj in Weeks, gj in Groups : wj < wi) llx[wj,gj]));
21

22 forall (wi in Weeks, wj in Weeks : wi < wj)
23 cp.post(atmostLe(llx[wi,1],llx[wj,1],1));
24

25 forall (wi in Weeks)
26 cp.post(removeMin(llx[wi,1],aux[wi]));
27 cp.post(symbreak_alldisjoint(all(wi in 1..w) aux[wi],p));
28

29 forall (wi in Weeks, gi in Groups, gj in Groups : gi < gj)
30 cp.post(disjoint(sbx[wi,gi],sbx[wi,gj]));
31

32 forall (wi in Weeks, wj in Weeks, gi in Groups, gj in Groups : wi < wj)
33 cp.post(atmost1(sbx[wi,gi],sbx[wj,gj]));
34

35 forall(wi in Weeks, gi in Groups)
36 cp.post(channel(llx[wi,gi],sbx[wi,gi]));
37

38 forall (wi in DualWeeks)
39 cp.post(dualChannel(all(gi in Groups)sbx[wi,gi], all(pi in Players)y[pi,wi]));
40

41 forall (pi in Players, pj in Players : pi < pj)
42 cp.post(lexleq(all(wi in Weeks)y[pi,wi],all(wi in Weeks)y[pj,wi]));
43

44 }

Figure 11.1: Comet Model for Social Golfer Problem

11.2.4 Discussion

Figure 11.1 illustrate the result. Two length-lex models solve all instances and are the fastest.

None of the previous works is comparable with us except those by Stuckey and friends (Hawkins,

Lagoon, and Gange). In the ROBDD model, the split variant, which separates fixed and unfixed

elements in two diagrams, is used. The split domain enforces extremely strong propagation, in many

148

45 using{
46 forall (pi in 1..g*s) cp.post(requiresValue(sbx[1,(pi-1)/s+1],pi));
47 forall (si in 1..s) cp.post(requiresValue(sbx[2,1],(si-1)*s+1));
48 forall (wi in 2..w)
49 while (or(gi in 1..g)(!sbx[wi,gi].bound()))
50 selectMin(gi in 1..g) (sbx[wi,gi].getRequiredSet().getSize(), gi){
51 selectMin(pi in 1..g*s: !sbx[wi,gi].isExcluded(pi) && !sbx[wi,gi].isRequired(pi))(pi)
52 try<cp> cp.post(requiresValue(sbx[wi,gi],pi));
53 | cp.post(excludesValue(sbx[wi,gi],pi));
54 forall (wj in 4..w)
55 if (!alldisjoint[wj].hs())
56 cp.fail();
57 }
58 }

Figure 11.2: Comet Search for Social Golfer Problem

instances, it achieves almost no failure. However, it is not as robust. The diagram size may grow

exponentially large, resulting a huge computational cost. For instance, in (9,4,4), it spends 107

seconds in computation and has no fail nodes. On the other hand, BDD-SAT based on a subset-

bound domain and apply clause learning techniques with widely used in the SAT community. The

performance is good, the average runtime is only 2.7 seconds and it solves all instances.

Length-lex and the ls-domain is clearly the best. Both models, on average, solve an instance in

around 0.3 seconds. The number of fails is dramatically smaller than those using classical subset-

bound domain too. This supports our thesis, that length-lex is an effective and efficient domain

representation for set variables.

11.2.5 A Close Look

We show that the length-lex domain and the ls-domain are clear the state-of-the-art technique.

Instances studied in the previous section are too small and trivial to tell the difference of contribution

between different components. Since the start of the thesis, we have been amending many interesting

model techniques, for example, pushing symmetry-breaking constraints into binary propagators, dual

modeling, which make solving larger instances possible. We conclude that strong propagation is the

key of solving large instances. On this premise, we introduce exponential propagators, which stresses

more on propagation, and are able to proceed even more. Afterwards, we introduced an exponential

feasibility checker for the global alldisjoint constraint, which takes explicit domain representations.

We include all of them in the model for evaluation.

149

The goal of this thesis is to show that length-lex is an effective domain representation for set

variables. We have already shown in previous sections that length-lex is dramatically better than

the pure subset-bound model. Therefore, here we compare the pure length-lex model and the hybrid

ls-domain model. Table 11.2 presents the results. Length-lex is faster than ls-domain in many

instances, especially for the small instance since the additional propagation done by the subset-

bound variables seems redundant. However, length-lex is not as robust as the hybrid ls-domain.

For example, instance (9, 5, 7), ls-domain is more than 5 times faster than length-lex, and visiting

substantially less nodes. The difference between the two approaches becomes more apparent in large

instances, where adding the subset-bound component facilitates propagation.

150

T
h
e
S
oc
ia
l
G
ol
fe
r
P
ro
b
le
m

M
et

h
o
d

S
et

-I
n
t

C
ar

d
in

al
P

a
ir

-A
tm

o
st

-1
R

O
B

D
D

R
O

B
D

D
B

D
D

-S
A

T
L

en
g
th

-L
ex

L
S

-D
o
m

a
in

H
eu

ri
st

ic
M

in
-D

om
M

in
-D

om
M

in
-D

o
m

S
ta

ti
c

M
in

-D
o
m

V
S

ID
S

W
ee

k
w

is
e

W
ee

k
w

is
e

C
P

U
S

u
n

B
la

d
e

10
00

P
4

2.
4G

H
z

X
eo

n
3
.8

G
H

z
P

4
2
.8

G
H

z
P

4
2
.8

G
H

z
C

2
D

3
G

H
z

C
2
D

2
.4

G
H

z
C

2
D

2
.4

G
H

z
T

im
eo

u
t

90
0s

90
0s

6
0
0
s

6
0
0
s

1
8
0
0
s

1
8
0
0
s

(g
,s

,w
)

T
im

e
F

ai
ls

T
im

e
T

im
e

F
a
il

s
T

im
e

F
a
il
s

T
im

e
F

a
il
s

T
im

e
T

im
e

F
a
il

s
T

im
e

F
a
il

s
(4

,2
,4

)
0.

19
26

6
0
.0

1
0
.0

1
1

0
.0

1
1

(4
,2

,5
)

0.
52

88
4

0
.0

2
0
.0

1
1

0
.0

1
1

(4
,2

,6
)

0.
51

72
1

0
.0

2
0
.0

1
1

0
.0

1
1

(4
,2

,7
)

0.
15

97
0
.0

2
0
.0

1
2

0
.0

1
1

(4
,3

,4
)

0.
81

32
22

0
.0

1
0
.0

1
5

0
.0

1
2

(4
,3

,5
)

16
5.

63
3
2
.1

5
1
6
5

2
6

3
8
1
2

0
.4

6
0
.0

3
1
4
0

0
.0

4
1
1
2

(4
,3

,6
)

94
.6

7
2
3

2
1
3
2

1
5
.2

1
5
0
4

0
.0

3
0
.0

1
0

0
.0

1
0

(4
,4

,4
)

8.
11

15
75

9
0
.0

2
0
.0

1
0

0
.0

1
0

(4
,4

,5
)

5.
63

75
10

0
.0

2
0
.0

1
0

0
.0

1
0

(5
,2

,3
)

1.
07

52
1

0
.0

2
0
.0

1
0

0
.0

1
0

(5
,2

,4
)

78
.4

6
95

06
3

0
.0

1
0
.0

1
0

0
.0

1
0

(5
,2

,5
)

19
56

.7
1
25

54
58

8
0
.0

2
0
.0

1
0

0
.0

1
0

(5
,2

,6
)

0
.0

1
0
.0

1
0

0
.0

2
0

(5
,2

,7
)

0
.0

4
0
.0

1
2

0
.0

2
1

(5
,2

,8
)

0
.0

6
0
.0

1
1

0
.0

3
1

(5
,2

,9
)

68
41

.5
9
38

95
06

4
0
.1

2
0
.0

2
1

0
.0

3
0

(5
,3

,3
)

14
0.

06
49

14
52

0
.0

2
0
.0

1
1

0
.0

1
1

(5
,3

,4
)

0
.0

3
0
.0

1
1

0
.0

1
1

(5
,3

,5
)

0
.0

3
0
.0

1
1

0
.0

2
2

(5
,3

,6
)

x
1
.5

8
2

1
3
4

0
.8

1
.0

5
3
1
7
4

1
.1

2
1
2
3

(5
,3

,7
)

x
1
3
.1

5
2
8

6
.3

2
5
.1

1
2
2
1
1

6
.0

4
9
2
9
1

151

M
et

h
o
d

S
et

-I
n
t

C
ar

d
in

al
P

a
ir

-A
tm

o
st

-1
R

O
B

D
D

R
O

B
D

D
B

D
D

-S
A

T
L

en
g
th

-L
ex

L
S

-D
o
m

a
in

(g
,s

,w
)

T
im

e
F

ai
ls

T
im

e
T

im
e

F
a
il

s
T

im
eF

a
il

s
T

im
eF

a
il

s
T

im
e

T
im

e
F

a
il

s
T

im
e

F
a
il

s
(5

,4
,2

)
0.

83
0
.1

0
0
.1

0
0
.0

2
0
.0

1
3

0
.0

1
3

(5
,4

,3
)

98
.2

3
65

87
55

1.
89

0
.3

0
0
.3

0
0
.0

3
0
.0

1
3

0
.0

1
3

(5
,4

,4
)

47
70

.9
43

08
02

58
7

3.
13

0
.6

0
0
.6

0
0
.0

7
0
.0

1
5

0
.0

2
3

(5
,4

,5
)

28
.6

5
2
.3

4
1

1
.7

1
8

0
.9

8
0
.0

7
1
8
0

0
.0

8
1
0
6

(5
,5

,3
)

0.
46

14
18

0
.0

2
0
.0

1
2

0
.0

1
0

(5
,5

,4
)

2.
1

13
00

9
0
.0

5
0
.0

5
1
7
5

0
.0

9
1
5
1

(5
,5

,5
)

0
.0

7
0
.0

6
1
7
5

0
.1

3
1
4
7

(5
,5

,6
)

0
.1

5
0
.0

7
1
7
1

0
.1

1
1
3
9

(5
,5

,7
)

x
0
.4

0
0
.4

0
3
.2

8
0
.0

1
0

0
.0

1
0

(6
,3

,2
)

1.
16

30
0
.0

2
0
.0

1
3

0
.0

1
3

(6
,3

,3
)

0
.0

3
0
.0

1
5

0
.0

1
4

(6
,3

,4
)

0
.0

4
0
.0

1
5

0
.0

2
4

(6
,3

,5
)

0
.0

4
0
.0

2
5

0
.0

3
4

(6
,3

,6
)

1.
2

1
.4

0
1
.3

7
0
.3

9
0
.0

3
7

0
.0

4
4

(6
,4

,2
)

0.
99

45
1.

75
0
.1

0
0
.1

0
0
.0

4
0
.0

1
6

0
.0

1
6

(6
,4

,3
)

4.
62

1
.4

0
0
.9

0
0
.0

6
0
.0

1
6

0
.0

2
6

(6
,5

,2
)

0.
1

60
1
7
.2

1
7
1
6
6
4

0
.1

3
0
.0

1
8

0
.0

1
8

(6
,5

,3
)

2
9
.6

1
9
7
6
0
7

0
.1

5
0
.0

2
8

0
.0

2
8

(6
,5

,4
)

x
3
9
.7

1
9
7
8
3
7

8
0
.7

0
4
0
.1

0
0
.4

5
0
.0

2
1
1

0
.0

4
8

(6
,5

,5
)

7
5
.5

2
3
9
9
6
6

1
5
.2

4
2
.4

4
4
8
7
7

2
.7

9
3
4
0
5

(6
,6

,3
)

41
4.

16
15

21
74

7
0
.0

4
0
.0

2
4

0
.0

3
2

152

M
et

h
o
d

S
et

-I
n
t

C
ar

d
in

al
P

ai
r-

A
tm

o
st

-1
R

O
B

D
D

R
O

B
D

D
B

D
D

-S
A

T
L

en
g
th

-L
ex

L
S

-D
o
m

a
in

(g
,s

,w
)

T
im

e
F

ai
ls

T
im

e
T

im
e

F
a
il

s
T

im
e

F
a
il

s
T

im
e

F
a
il

s
T

im
e

T
im

e
F

a
il

s
T

im
e

F
a
il

s
(7

,2
,2

)
0.

69
21

0
.0

3
0
.0

1
0

0
.0

1
0

(7
,3

,2
)

58
.9

4
42

0
.0

2
0
.0

1
0

0
.0

1
0

(7
,4

,2
)

23
6.

73
63

2.
82

0
.4

0
0
.4

0
0
.0

2
0
.0

1
2

0
.0

1
2

(7
,4

,3
)

6.
37

8
.4

0
1
.7

0
0
.0

7
0
.0

2
2

0
.0

3
2

(7
,4

,4
)

12
.4

6
4
.4

2
7
8
7
7

4
8
1
.6

5
.1

0
0
.0

8
0
.0

3
2

0
.0

5
2

(7
,4

,5
)

17
.1

8
x

x
1
2
.8

0
0
.2

2
0
.0

5
4

0
.0

7
2

(7
,5

,2
)

42
.9

8
84

0
.4

5
0
.0

2
9

0
.0

2
9

(7
,6

,2
)

0.
53

10
5

1
.4

4
0
.0

2
1
8

0
.0

4
1
8

(7
,7

,2
)

0.
7

30
8

0
.0

6
0
.0

3
0

0
.0

4
0

(8
,3

,5
)

1.
01

7
.8

0
3
.9

0
0
.0

9
0
.0

4
3

0
.0

6
3

(8
,4

,4
)

15
7
.7

7
3
8
3
9
3

0
.1

2
0
.0

4
8

0
.0

7
7

(8
,5

,2
)

x
1
.6

0
1
.6

0
0
.5

6
0
.0

2
1
3

0
.0

4
1
3

(9
,4

,4
)

42
.4

5
x

x
1
0
7
.4

0
0
.1

9
0
.0

5
1

0
.0

8
1

(1
0,

3,
6)

1
7
.3

5
7
3
6
4

0
.9

1
0
.0

9
2

0
.1

7
0

(1
0,

3,
9)

5
2
.4

7
8
6
1
3

1
6
.6

6
0
.2

8
1
5

0
.4

3
3

(1
0,

3,
10

)
6
7
.2

7
8
9
7
6

1
1
0
.8

0
.3

6
1
5

0
.5

4
1
3

(1
0,

4,
4)

4
2
2
0
4
3

0
.5

2
0
.0

6
5

0
.1

2
5

(1
0,

4,
5)

4
.5

2
2
0
4
4

0
.7

6
0
.1

5
0
.1

9
5

C
ou

n
t

26
15

1
1

1
7

2
0

6
0

6
0

6
0

A
ve

ra
ge

5
6
3
.9

4
1
.5
×

1
0
6

25
.6

4
4
2
.6

8
1
.6
×

1
0
5

3
7
.8

6
4
6
3
.7

5
1
1
.6

9
2
9
5
.1

5
2
.7

1
0
.1

7
3
5
5
.0

8
0
.2

1
2
6
0
.6

2

T
ab

le
11

.1
:

S
o
ci

a
l

G
o
lf

er
P

ro
b

le
m

:
C

o
m

p
a
ri

n
g

L
en

g
th

-L
ex

w
it

h
E

a
rl

ie
r

A
tt

em
p

ts
.

153

Domain Length-Lex Length-Lex ×
Subset-Bound

Sym-Break 4 4
(Chapter 6)
Exponential

(bcll〈atmost1〉) 4
(bcls〈atmost1〉) 4

(hs〈alldisjoint〉) 4 4

(g,s,w) Time Fails Time Fails
(5,3,7) 5.07 12211 6.05 9291
(5,4,6) 39.7 120438 52.28 79902
(6,5,5) 2.44 4877 3405 3405
(6,5,6) 16.38 27545 21.62 19317
(6,6,4) 646.62 1890962 1329.27 1763316
(7,3,9) 1276.05 2837356 1097.15 1018831
(7,4,6) 0.07 5 0.09 5
(7,5,5) 0.07 17 0.09 11
(7,6,4) 0.06 27 0.09 23
(7,7,4) 0.64 875 1.15 612
(8,3,10) 47.01 88817 40.87 31547
(8,4,7) 0.24 143 0.31 74
(8,5,6) 0.24 114 0.24 29
(8,6,5) 0.21 67 0.27 56
(8,7,4) 0.14 45 0.2 43
(9,3,11) 2.05 2724 1.13 330
(9,4,8) 0.89 427 2.26 707
(9,5,7) 13.63 6237 2.67 172
(9,6,6) 2.48 536 10.07 93
(9,7,5) 34.1 102 4.35 77
(9,8,4) 4.19 79 4.35 77

(10,3,11) 0.46 25 0.65 17
(10,4,9) 1.28 417 1.02 132
(10,5,7) 0.44 37 0.58 23
(10,6,6) 0.41 34 0.69 25
(10,7,5) 0.68 82 0.82 46
(10,8,4) 0.48 408 0.61 401

(Continue next page)

154

Domain Length-Lex Length-Lex ×
Subset-Bound

Sym-Break 4 4
(Chapter 6)
Exponential

(bcll〈atmost1〉) 4
(bcls〈atmost1〉) 4
hs〈alldisjoint〉 4 4

(g,s,w) Time Fails Time Fails
(11,3,13) 0.88 200 1.28 14
(11,4,10) 1.66 477 1.31 50
(11,5,8) 1.08 26 1.81 26
(11,6,7) 3.74 89 5.73 76
(11,7,5) 0.47 95 0.79 92
(11,8,5) 61.04 3291 61.37 3282
(11,9,3) 2.56 809 0.91 809
(11,10,3) 4.25 148 0.61 148
(12,3,14) 1.6 119 2.13 40
(12,4,11) 53.15 15264 18.65 3384
(12,5,9) 7.23 586 5.66 263
(12,6,7) 1.73 431 2.56 41
(12,7,6) 1.95 460 1.83 441
(12,8,4) 0.93 1477 1.54 1474
(12,9,4) 36.66 8967 7.71 8984
(12,10,4) 74.3 9085 8.93 3693
(13,3,16) 2.4 92 3.39 47
(13,4,12) 2.99 117 3.12 19
(13,5,10) 11.09 317 13.89 489
(13,6,8) 6.94 138 3.52 153
(13,7,7) 22.01 3155 28.51 3134
(13,8,6) 174.49 40404 71.68 6670
(13,9,5) 10.43 677 4.14 530

Table 11.2: Social Golfer Problem: Length-Lex Domain vs Hybrid Length-Lex × Subset-Bound
Domain.

155

11.3 The Steiner Triple System

11.3.1 Problem Statement

The problem is also called Steiner Triple System, a common benchmark problem. Given v elements

in the universe. The goal is to find b = v(v − 1)/6 blocks such that each block consists 3 elements

and every pair of blocks share exactly 1 element in common.

11.3.2 Earlier Work

The steiner triple system is a popular benchmark because of its remarkably simplicity. We name

a few. Frisch, Hnich, Kiziltan, Miguel, and Walsh introduced a lexicographical constraint, as well

as a combination of the symmetry-breaking constraint and a sum constraint, for breaking symme-

try in matrix models[21, 43]. Sadler and Gervet introduced hybrid domain representation which

takes cardinality and lexicographical information into account during propagation [56, 57]. The

Cardinal system, proposed by Azevedo, introduces a cardinality component to the classical subset-

bound domain to enhance propagation[2]. Law and Lee proposed a multiple viewpoint model for

breaking symmetries[44]. Law and Lee also introduces a global constraint for breaking a pair of

interchangeable values[45]. Hawkins, Lagoon, and Stuckey proposed an exact domain represen-

tation using reduced-ordered binary-decision-diagram[34]. Gange, Lagoon, and Stuckey used the

binary-decision-diagram library as a black box for clause generation, applied learning algorithm and

randomized search strategy to find solutions[23]. Van Hoeve and Sabharwal presented a bound-

consistent propagator for binary atmost1 constraint[70].

11.3.3 Model

We use two models for comparison with earlier works, the length-lex domain model and the ls-domain

model.

The LS-Domain Model Figure 11.3 illustrates the latter in the Comet language. The value

v in line 1 is the only parameter of this problem. Lines 2–10 are the initialization steps. The

primal variables llx[xi], sbx[xi] denotes the set of blocks in which element xi occurs, the dual

156

1 int v = 7;
2 int k = 3;
3 int r = (v-1)/(k-1);
4 int b = v*r/k;
5 range V = 1..v;
6 range B = 1..b;
7 Solver<CP> cp();
8 LengthLexVar<CP> llx[V](cp,b,r);
9 var<CP>{set{int}} sbx[V](cp,B,r..r);

10 var<CP>{set{int}} sby[B](cp,V,k..k);
11

12 solve<cp> {
13 forall(xi in V : xi > 1){
14 cp.post(exact1_ll(sbx[xi],llx[xi],all(xj in V : xj < xi)sbx[xj]));
15 cp.post(llx[xi-1] <= llx[xi]);
16 }
17

18 forall(xi in V, xj in V : xi < xj)
19 cp.post(exact1(sbx[xi],sbx[xj]));
20

21 forall(xi in V)
22 cp.post(channel(llx[xi],sbx[xi]));
23

24 cp.post(channeling(sbx,sby));
25

26 forall(yi in B, yj in B : yi < yj)
27 cp.post(lexleq(all(ye in V) sby[yj].getRequired(ye),
28 all(ye in V) sby[yi].getRequired(ye)));
29 }using {
30 forall (xi in V)
31 forall (xe in B : !sbx[xi].isRequired(xe) && !sbx[xi].isExcluded(xe))
32 try<cp> cp.requires(sbx[xi],xe);
33 | cp.excludes(sbx[xi],xe);
34 }

Figure 11.3: Comet Model for Steiner Triple System

variables sby[yi] denotes the set of elements taken by block yi.

Line 14 is the exponential length-lex propagator for the exact1 constraint, notice that the

subset-bound component is not propagated as we will show later than propagating only the length-

lex bounds is sufficient. Line 15 breaks the symmetry between elements. Line 19 is the binary

exact1 constraint for the subset-bound domain. Line 22 channeling the primal and dual variables.

Lines 26-28 removes symmetry among blocks. Lines 30–33 is a vanilla labeling method, which labels

primal variables sequentially, it tries to include an element first, and excludes it after failure.

The Length-Lex Model We obtain the length-lex model by removing lines 18–19, the binary

exact1 constraint for subset-bound variables. The subset-bound variables sbx[xi] and sby[yi]

remain in the model for the purpose of breaking value symmetry.

157

12 int propLimit = 12;
13 solve<cp> {
14 forall(xi in V : xi > 1)
15 cp.post(exactLe(llx[xi],llx[xj],1,propLimit));
16

17 forall(xi in V)
18 cp.post(channel(llx[xi],sbx[xi]));
19

20 cp.post(channeling(sbx,sby));
21

22 forall(yi in B, yj in B : yi < yj)
23 cp.post(lexleq(all(ye in V) sby[yj].getRequired(ye),
24 all(ye in V) sby[yi].getRequired(ye)));
25 }

Figure 11.4: Comet Model for Steiner Triple System in Length-Lex

11.3.4 Discussion

We evaluate our proposal and compare with previous proposed techniques for solving steiner triple

system. Figure 11.3 presents the result. Both length-lex based models, Length-Lex and LS-Domain,

solves all the instances in the least amount of time. They are able to solve three more instances

unsolvable by previous approaches. They are both several orders of magnitude faster than previous

formulations. It is interesting to point out that, both models achieves no failure (except the instances

v = 33), simply computing the length-lex bound suffice to solve the problem efficiently. Moreover,

the difference between length-lex and ls-domain is negligible, which suggests that the subset-bound

component plays almost no importance in solving the problem.

11.3.5 A Close Look

The two length-lex based models drastically outperform earlier attempts. To have a better under-

standing of why they are doing better, we closely examine the contribution of each component in

our model. In this section, we isolate different propagators and study their performance.

Binary Length-Lex Constraints Perhaps the simplest model would be the one using binary

length-lex intersection constraints. It is shown in figure 11.4. The initialization and search procedures

are identical to the previous model hence skipped. A binary intersection constraint exactLe is

posted for every pair of length-lex variable in the primal model. It is the only set of basic constraints

158

in the model, the remaining are auxiliary variables for labeling and symmetry breaking. It takes

polynomial time to enforce bound consistency on such binary constraint (Theorem 6). However,

such constraint takes exponential time to converge (Theorem 14). To remedy this problem, for

each binary intersection constraint, we limit the number of propagations per choice point by setting

propLimit = 12. It is passed to the propagator as the last parameter.

We compare three variations. The first is a binary model with propagation limit. The second is

the same but without propagation limit. The three is a model using exponential exact1 constraints.

Since the only function for the exponential constraint is to speed up propagation for the length-lex

bound, no propagation is incurred. The second and third model should have a similar number of

failures.

Table 11.4 presents the result. The binary length-lex model is able to solve up to v = 39.

The second model, the one without propagation limit, takes too much time in bouncing between

different bounds. The largest instance it can solve is v = 21, in which it takes much more time

to find a solution. Despite the second model has no failure, it is outperformed by the first one.

The exponential propagator is introduced to tackle the problem of exponential convergence rate, it

examines all bound variables at once and exploits their semantics. As a result, it enjoys the best of

the two worlds, there are very few failures and all the instances are solved efficiently.

Exponential Propagators Now, we evaluate the impact of the exponential propagator using ls-

domain. We compare three models. First, a basic model in which only binary constraints are used.

Second, a model using exponential constraint which propagates all four bounds of the ls-domain.

Third, a model using exponential constraint which propagates only the two length-lex bounds of the

ls-domain.

Table 11.5 illustrates the result. The subset-bound component is a complement to the length-

lex domain. We are able to achieve stronger propagation using the ls-domain. Comparing it with

the binary length-lex model, it cuts the search tree size by more than half in larger instances, the

time is also reduced. We gain almost nothing in propagation when all four ls-domain bounds are

propagated, since we have shown that only updating the length-lex bound is effectively enough for

solving the steiner triple system. In the second column, the exponential constraint is taking much

more time than the one which only propagates the length-lex bound. And because it is so heavy, it

159

is incapable to solve larger instances.

160

M
et

h
o
d

C
ar

d
in

al
M

at
ri

x
M

at
ri

x
V

a
lP

re
c-

S
et

R
O

B
D

D
B

D
D

B
D

D
L

en
g
th

-L
ex

L
S

-D
o
m

a
in

L
ex

L
ex

S
u

m
D

o
m

a
in

-S
A

T
-S

A
T

H
eu

ri
st

ic
S

ta
ti

c
S

ta
ti

c
S

ta
ti

c
M

in
-D

o
m

S
ta

ti
c

S
ta

ti
c

V
S

ID
S

S
ta

ti
c

S
ta

ti
c

C
P

U
P

4
2
.4

G
H

z
P
3
1
G
H
z

P
3
1
G
H
z

S
u
n
B
la
d
e
1
0
0
0

P
4
2
.8
G
H
z

3
G
H
z

3
G
H
z

C
2
D

2
.4

G
H

z
C

2
D

2
.4

G
H

z
T

im
e-

ou
t

90
0s

36
00

s
36

00
s

7
2
0
0
s

6
0
0
s

6
0
0
s

6
0
0
s

1
8
0
0
s

1
8
0
0
s

v
T

im
e

T
im

e
F

ai
ls

T
im

e
F

a
il

s
T

im
e

F
a
il

T
im

e
F

a
il

s
T

im
e

T
im

e
T

im
e

F
a
il

s
T

im
e

F
a
il

s
7

0.
01

0
2

0
1

0
1
2

0
.1

8
0
.0

1
0
.0

3
0
.0

1
0

0
.0

1
0

9
0.

05
0.

1
33

6
0.

1
2
5
0

0
.0

3
1
5
3

0
.1

9
0
.0

2
0
.0

2
0
.0

1
0

0
.0

1
0

13
0.

61
1
7
3
8
.2

4
3
9
3
5
5
6
7

1
0
9
.2

2
4
7
2
3

0
.0

6
0
.0

2
0
.0

2
0

0
.0

4
0

15
0.

91
1
.3

0
0
.0

7
0
.3

2
0
.0

5
0

0
.0

6
0

19
7.

94
0
.3

7
0
.0

7
0
.1

8
0

0
.2

3
0

21
39

.0
7

0
.8

2
3
9
.1

9
0
.4

1
0

0
.4

2
0

25
7
.1

x
0
.9

8
0

1
.0

2
0

27
1
2
.8

8
2
2
9
.5

9
1
.1

9
0

1
.6

7
0

31
48

.5
2

x
x

5
.3

8
x

2
.8

0
3
.5

3
0

33
4
4
3
.0

7
1
9
.3

7
.3

1
7
.3

7
1

37
3
6
.0

6
0

3
7
.0

5
0

39
3
2
.4

9
0

3
2
.3

8
0

43
5
5
5
.2

6
0

5
3
8
.8

8
0

T
ab

le
11

.3
:

S
te

in
er

T
ri

p
le

S
y
st

em
:

C
o
m

p
a
ri

n
g

L
en

g
th

-L
ex

w
it

h
E

a
rl

ie
r

A
tt

em
p

ts
.

161

Length-Lex Length-Lex Length-Lex
Binary, Limit = 12 Binary, No Limit LL-EXP

v Time Fails Time Fails Time Fails
7 0.01 0 0.01 0 0.01 0
9 0.01 0 0.01 0 0.01 0
13 0.03 0 0.04 0 0.02 0
15 0.06 0 0.1 0 0.05 0
19 0.26 15 1.32 0 0.18 0
21 0.62 69 6.4 0 0.41 0
25 3.33 1698 x x 0.98 0
27 5.36 3037 x x 1.19 0
31 4.01 0 x x 2.8 0
33 32.81 13608 x x 7.3 1
37 1719.04 668019 x x 36.06 0
39 495.01 126603 x x 32.49 0
43 x x x x 555.26 0

Table 11.4: Steiner Triple System: Three Length-Lex Models.

LS-Domain LS-Domain LS-Domain
Binary, Limit=12 LS-EXP LL-EXP

v Time Fails Time Fails Time Fails
7 0.01 0 0.01 0 0.01 0
9 0.01 0 0.02 0 0.01 0
13 0.05 0 0.09 0 0.04 0
15 0.08 0 0.22 0 0.06 0
19 0.32 12 0.84 0 0.23 0
21 0.64 53 1.65 0 0.42 0
25 3.95 1532 13.26 0 1.02 0
27 6.69 2685 33.61 0 1.67 0
31 4.6 0 14.23 0 3.53 0
33 24.37 6014 395.29 0 7.37 1
37 1097.62 282229 x x 37.05 0
39 328.19 56786 x x 32.38 0
43 x x x x 538.88 0

Table 11.5: Steiner Triple System: Three LS-Domain Models.

162

11.4 The Error Correcting Code (Hamming Distance)

11.4.1 Problem Statement

The error correcting code problem is defined in terms of three parameters: (l, d, w). It is an opti-

mization problem that finds the largest number of codewords satisfying the following constraints: a

codeword is a 0/1-vector of length l, the sum of the vector is w, and every pair of codewords have

a Hamming distance of at least d.

11.4.2 Earlier Work

The error correcting code is a challenging problem since it requires an optimality proof which requires

exhausting the whole search tree. Sadler and Gervet introduced hybrid domain representation which

boosters propagation of symmetry-breaking constraints[56]. Hawkins, Lagoon, and Stuckey used the

binary-decision-diagram-based representation[34]. Gange, Lagoon, and Stuckey used the bdd library

for clause generation, and applied learning algorithm in SAT solvers[23]. The last method has proved

to be extremely efficient. Especially since the solver is revisiting many similar subtrees, the learnt

clauses can be used repeatedly.

11.4.3 Model

Overview The problem can be modeled using set variables. Each 0/1-vector is the characteristic

function of a set variable Xi, hence it draws elements from the universe {1, ..., l}. Its cardinality is

w. Between every pair of vectors, the Hamming distance restriction is guaranteed by the atmost-k

intersection constraint, i.e. |Xi ∩ Xj | ≤ w − d/2. The problem is essentially equivalent to the

countAtmost problem (Definition ??). Hence, we reduce an error correcting code instance (l, d, w)

to a countAtmost instance (l, w, w − d/2). The rest of this section focuses on how to solve the

countAtmost problem.

The problem exhibits both variable and value symmetry. Every pair of vectors (variables) are

interchangeable; every pair of elements (values) are also interchangeable. The model has to take

care of it.

163

A few techniques introduced in this thesis will be used. First, the symmetry-breaking binary

constraints. Second, the dual filter for global atmost-k constraint. Third, the primal/dual fil-

ter for global symmetry-breaking atmost-k constraint. Last, the exponential feasibility checker for

symmetry-breaking constraint.

We begin our discussion with the basic model. Then, we will discuss more advanced modeling

techniques. The original problem is an maximization problem, which can be solved as a series of

decision problems. At each decision problem, a constraint is posted to restrict the optimal value.

We start from the infeasible region, by setting the optimal value so high to the extend that it is

trivially no solution. Then we decrease the optimal value by one at a time and solve the adjusted

decision problem, until the problem becomes feasible and the optimal solution is found.

Basic Model: Decision Problem Figure 11.7 gives a complete model to the decision problem.

We first discuss basic model (lines 1–21) and the search component (lines 47–53). The decision

problem is defined in terms of four parameter: the number of elements in the universe n, the number

of set variables m, the cardinality of set variables c, and the maximum intersection size between every

pair of variables k. The 3-d array int[,,] table caches the solution of the optimization problem

countAtmost to avoid recomputing the same problem. The primal length-lex variables llx[M] are

the basic variables. The primal and dual subset-bound variables sbx[M] and sby[N] are auxiliary

variables for breaking value symmetry and the dual filter for the global atmost-k constraint, which

we will discuss later. The universe and cardinality constraint are defined in the variable declaration.

Lines 11-12 define the core restriction: every pair of variables share at most k elements. Since

variables are interchangeable and combing propagators with symmetry-breaking constraints achieves

strong propagation, we post the binary atmostLe constraint which is a symmetry-breaking inter-

section propagator. Lines 14–21 eliminate value symmetry using dual modeling techniques: the

channeling constraint (lines 14–15) connects the primal length-lex variables with primal subset-

bound variables, which are then dual channeled to the dual subset-bound variables, and an ordering

constraint is posted to eliminate value symmetry. Lines 47–52 define the search procedure. Static

labeling is applied. We label the variables in increasing order. Try to include the smallest element

and exclude it during backtrack.

164

1 function bool bool_atmostk(int n, int m, int c, int k, int[,,] table){
2 Solver<CP> cp();
3 range M = 1..m;
4 range N = 1..n;
5 LengthLexVar<CP> llx[M](cp,n,c);
6 var<CP>{set{int}} sbx[M](cp,N,c);
7 var<CP>{set{int}} sby[N](cp,M,0..m);
8 var<CP>{int} aux[M,N](cp,0..1);
9

10 solve<cp>{
11 forall (i in M, j in M : i < j)
12 cp.post(atmostLe(llx[i],llx[j],k));
13

14 forall (i in M)
15 cp.post(channel(llx[i],sbx[i]));
16

17 cp.post(dualChannel(sbx,sby));
18

19 forall (e in N, ee in N : e < ee)
20 cp.post(lexleq(all(i in M)(sby[ee].getRequired(i)),
21 all(i in M)(sby[e].getRequired(i))));

22 forall (e in N){
23 cp.post(sby[e].getCardinalityVariable() <= countAtmost(n-1,c-1,k-1,table,param));
24 cp.post(m - countAtmost(n-1,c,k,table,param) <= sby[e].getCardinalityVariable());
25 }
26 cp.post(sum(e in N)(sby[e].getCardinalityVariable()) == m*c);

27 forall (e in 1..n-c){
28 int i = countAtmost(n-e,c,k,table,param);
29 if (i < 0 || i >= m) continue;
30 UList<CP> ub(c);
31 ub.put(0,e);
32 ub.setLntuple(1,n,c-1);
33 cp.post(ZeroToLL_LessEqC(llx[m-i],ub));
34 }
35

36 forall (e in 1..k){
37 int i = countAtmost(n-e,c-e,k-e,table,param);
38 if (i < 0 || i >= m) continue;
39 UList<CP> lb(c);
40 lb.setFntuple(0,1,c);
41 lb.setFntuple(e-1,e+1,c-e+1);
42 cp.post(ZeroToLL_GreaterEqC(llx[i+1],lb));
43 }

44 forall (i in M, e in N)
45 cp.post(aux[i,e] == 1-sbx[i].getRequired(e));
46 cp.post(RowCol_FeasibilityChecker(m,n,aux,7));

Figure 11.5: Comet Model for Error Correcting Code (Decision Problem)

Basic Model: Optimization Problem Lines 55-59 are the model for the optimization problem.

It wraps the decision problem and starts from the infeasible region where the optimal value m is high.

It decreases m by one at a time. When a solution is found, the corresponding value of m is optimal.

The initial value of m is determined by the same argument we used for the dual filter in atmost-k

165

47 }using{
48 forall (i in M)
49 forall (e in N : !sbx[i].isRequired(e) && !sbx[i].isExcluded(e))
50 try<cp> cp.post(requiresValue(sbx[i],e));
51 | cp.post(excludesValue(sbx[i],e));
52 }
53 return (cp.getSolution() != null);
54 }

Figure 11.6: Comet Search Procedure for Error Correcting Code (Decision Problem)

constraint: an element cannot occur or be absent in too many variables respectively. Hence, the

initial value is the sum of the two bounds (line 56).

Basic Model: Caching Subproblems’ Solution Lines 60–70 are the table-lookup routine. The

whole table is initialized to −1. When the set of parameters is not known, the routine attempts to

find the solution either using a search (line 67), or by simple combinatorial arguments for simple

cases. The results are stores in the table.

The Dual Filter for the Global atmost-k Constraint Chapter 8.3 discusses a dual filter for the

global atmost-k constraint. It takes a dual perspective of the problem and imposes constraints on the

dual variables, which map value to variable. It is from the intuition that an element cannot occur

in too many variables and an element, as well, cannot be absent in too many variables. Cardinality

constraints are imposed on the dual variables. Lines 22-26 shows the filters in our model. For

each element e, constraints are posted to restrict the upper and lower bound of the dual variable

associated with it, i.e. sby[e]. Line 26 is a redundant constraint on the sum of the cardinality of

all dual variables.

The Primal/Dual Filter for the Global Symmetry-Breaking atmost-k Constraint Section

8.4 presents a primal/dual filter which pushes the lexicographical ordering into a global intersection

constraint. Two domain reduction rules are introduced (Rule 2 and 3) and they are posted to the

model before the search starts. Lines 27–43 illustrate the code. Lines 27–34 correspond to Rule 2 and

Lines 36–43 correspond to Rule 3. The data structure UList<CP> is a tuple which supports most

operation in length-lex. Lines 31,32,40,41 initialize the bound according to the domain reduction

rule. Unary ordering constraints are then posted.

166

55 function int opt_atmostk(int n, int c, int k, int[,,] table){
56 int m = countAtmost(n-1,c-1,k-1,table) + countAtmost(n-1,c,k,table);
57 while (!bool_atmostk(n,m,c,k,table) m--;
58 return m;
59 }

Figure 11.7: Comet Model for Error Correcting Code (Optimization Problem)

60 function int countAtmost(int n, int c, int k, int[,,] table){
61 if (table[n,c,k] == -1){
62 if (k == 0)
63 table[n,c,k] = n/c;
64 else if (n < c)
65 table[n,c,k] = 0;
66 else
67 table[n,c,k] = opt_atmostk(n,c,k,table);
68 }
69 return table[n,c,k];
70 }

Figure 11.8: Comet Model for Error Correcting Code (Table Lookup)

The Exponential Feasibility Checker for Breaking Fully-Interchangeability The problem

exhibits fully interchangeability, where both variable and value are interchangeable. Posting sym-

metry breaking constraint among variables and values respectively does not complete eliminate all

symmetric solutions as we discussed in Section 10.2.1. A compete checker, which is able to eliminate

all symmetric solution due to fully interchangeability, is proposed in the same section. The checker

RowCol FeasibilityChecker ensures that the solution is the lexicographically least solution in

its symmetry class. It works on a matrix of variables. We transform our set variable model into

a matrix model using the auxiliary variables aux[M,N] defined in Line 8. Lines 44-46 post the

checker. From practical standpoint, in Line 46, a parameter 7 passed to the checker, it limits the

maximum number of rows to be enumerated.

11.4.4 Discussion

We evaluate our contribution and compare with previous proposed techniques for solving the error

correcting code problem. We use instances from Sadler and Gervet [56], the easy ones are omitted

since they are solved in negligible time. Some larger instances are added. Figure 11.6 presents the

result. Length-Lex is clearly the best result. Most of the instances now become trivial. For instance

(10, 4, 5), it reduces the running time by more than 80 times.

167

Method ROBDD BDD-SAT Length-Lex
Domain

Heuristics Static VSIDS Static
CPU P4 2.8GHz 3GHz C2D 2.4GHz

Time-Out 600s 600s 1800s
(l,d,w) Opt Time Fails Time Fails Time Fails
(8,4,4) 14 1.6 224 0.03 61 0.05 0
(9,4,3) 12 11.3 5615 0.06 300 0.05 1
(9,4,4) 18 x x 1.04 4466 0.15 23
(9,4,5) 18 x x 4.03 21651 0.19 26
(9,4,6) 12 25.4 16554 0.06 256 0.07 3
(10,4,3) 13 x x 2.37 16755 0.11 42
(10,4,4) 30 x x 14.66 34503 0.27 31
(10,6,5) 6 26.7 16635 0.03 145 0.05 14
(10,4,5) 36 x x 104.39 184051 1.23 1127
(10,4,6) 30 x x 48.96 131379 1.29 1163
(10,4,7) 13 x x 1.96 13533 0.15 15
(11,4,3) 17 0.19 211
(11,2,3) 165 4.57 0
(11,6,4) 6 0.07 46
(11,6,5) 11 0.09 14

Table 11.6: Error Correcting Code (Hamming Distance): Comparing Length-Lex with Earlier At-
tempts

11.4.5 A Close Look

There are four main modules in our model: the basic model, the dual filter for the global atmost-k

constraint, the primal/dual filter for the global symmetry-breaking atmost-k constraint, and the

exponential symmetry-breaking feasibility checker. This section studies the contribution of each

module.

Table 11.7 and 11.8 reveal the contribution of each component. It is interesting to compare the

difference between the model where only atmost-k or atmost-k� (but not both) is used. There are

some cases where using the symmetry-breaking global propagator is better (instances (9, 4, 4) and

(11, 4, 3)), and there are some cases where using the global atmost-k propagator is better (instances

(10, 4, 5) and (10, 4, 6)). It suggests that these two components work orthogonally and prune different

part of the search tree. Hence, when both are used together, the improvement is significant. Using

the exponential feasibility checker RowCol Fc improves the search for large instances too.

Indeed, the dual model, primal/dual filter, and the feasibility checker are independent of the

168

Domain Length-Lex
atmost-k 4 4
(Fig. 8.3)
atmost-k� 4 4

(Rules 2 & 3)
RowCol FC

(Spec. 11)
(l,d,w) Opt Time Fails Time Fails Time Fails Time Fails
(8,4,4) 14 0.02 2 0.02 2 0.01 0 0.02 0
(9,4,3) 12 0.03 84 0.02 64 0.02 1 0.02 1
(9,4,4) 18 13.25 46003 3.61 14229 0.1 31 0.09 23
(9,4,5) 18 21.83 66527 0.76 1931 0.49 1003 0.14 208
(9,4,6) 12 0.05 100 0.03 68 0.04 10 0.04 3
(10,4,3) 13 1.96 12399 1 6869 0.05 42 0.05 42
(10,4,4) 30 149.76 227707 3.62 14301 0.15 39 0.13 31
(10,6,5) 6 0.03 58 0.04 46 0.03 16 0.04 14
(10,4,5) 36 x x 7.83 22352 29.11 14211 3.53 6425
(10,4,6) 30 512.88 676025 5.81 10434 26.36 17460 4.57 8067
(10,4,7) 13 2.82 12680 0.58 2384 0.08 32 0.09 25
(11,4,3) 17 40.72 167518 12.48 64772 0.09 211 0.1 211
(11,2,3) 165 4.73 0 4.09 0 4.02 0 4.06 0
(11,6,4) 6 0.04 173 0.04 97 0.04 80 0.04 46
(11,6,5) 11 0.06 86 0.06 58 0.04 17 0.05 14

Table 11.7: Error Correcting Code (Hamming Distance): Length-Lex Domain, A Close Look I

underlying domain representation. It can be used for any kind of domain representation. Despite

some (e.g. length-lex) are better at propagating those constraints. We also evaluate the impact of

our proposal on the subset-bound domain. Table 11.9 gives the result. The basic model, which all

extra filters and checkers are absent, gives the worst result and cannot solve large instances. The

one with both intersection filters works well and fast, but is not the most robust. The model which

applies all techniques is the best one. It is able to solve all instances.

11.5 The Balanced Incomplete Block Design

11.5.1 Problem Statement

Definition An instance of balanced incomplete block designs (BIBD) is defined in terms of 5

parameters (v, b, r, k, λ). The task is to find an arrangement of v distinct objects into b blocks such

that each block contains exactly k distinct objects, each object occurs in exactly r different blocks,

169

Domain Length-Lex
atmost-k 4 4
(Fig. 8.3)
atmost-k� 4 4

(Rules 2 & 3)
RowCol FC 4 4 4 4

(Spec. 11)
(l,d,w) Opt Time Fails Time Fails Time Fails Time Fails
(8,4,4) 14 0.05 2 0.05 2 0.05 0 0.05 0
(9,4,3) 12 0.07 84 0.07 64 0.05 1 0.05 1
(9,4,4) 18 2.12 4173 0.96 1817 0.16 31 0.15 23
(9,4,5) 18 3.16 5045 0.67 721 0.35 273 0.19 26
(9,4,6) 12 0.1 90 0.1 64 0.08 10 0.07 3
(10,4,3) 13 0.78 2199 0.43 1153 0.1 42 0.11 42
(10,4,4) 30 75.63 96329 1.1 1889 0.28 39 0.27 31
(10,6,5) 6 0.05 58 0.06 46 0.05 16 0.05 14
(10,4,5) 36 x x 2.66 3614 6.29 2837 1.23 1127
(10,4,6) 30 35.52 41459 1.95 1996 5.38 2870 1.29 1163
(10,4,7) 13 0.51 774 0.37 456 0.16 22 0.15 15
(11,4,3) 17 6.7 24474 2.82 11776 0.19 211 0.19 211
(11,2,3) 165 4.59 0 4.57 0 4.61 0 4.57 0
(11,6,4) 6 0.07 173 0.08 97 0.07 80 0.07 46
(11,6,5) 11 0.09 86 0.1 58 0.09 17 0.09 14

Table 11.8: Error Correcting Code (Hamming Distance): Length-Lex Domain, A Close Look II

and every pair of objects occur together in exactly λ blocks.

11.5.2 Earlier Work

Meseguer and Torras introduced variable heuristics and domain reduction techniques which eliminate

symmetry [51]. Prestwich gave a SAT encoding for the problem [52]. Flener, Frisch, Hnich, Kiziltan,

Miguel, Pearson, and Walsh applied a 0/1-matrix model, and utilized the lexicographic-ordering con-

straint between pairs of row and column vectors [17]. Hnich, Kiziltan, and Walsh introduced a global

constraint which combines the lexicographic-ordering and sum propagators [37]. It is interesting to

point out that despite there is a trivial transformation from the 0/1-matrix model to set model, to

the best of our knowledge, there was no attempt of using set variable for solving this problem.

170

Domain Subset-Bound
atmost-k 4 4 4

atmost-k� 4 4 4

RowCol FC 4

(l,d,w) Opt Time Fails Time Fails Time Fails Time Fails Time Fails
(8,4,4) 14 0.07 16 0.07 8 0.06 4 0.06 1 0.09 1
(9,4,3) 12 0.51 1997 0.15 351 0.09 53 0.09 49 0.12 49
(9,4,4) 18 x x 223.09 574188 0.48 279 0.45 207 0.48 143
(9,4,5) 18 x x 43.74 100988 13.64 50552 2.54 6749 1.08 1551
(9,4,6) 12 0.83 2614 0.18 345 0.18 385 0.12 66 0.15 20
(10,4,3) 13 812.6 2218607 24.93 65568 0.3 244 0.28 190 0.33 190
(10,4,4) 30 x x 235.6 591496 1.38 1360 1.13 1072 1.21 904
(10,6,5) 6 0.05 131 0.06 67 0.04 38 0.05 22 0.06 22
(10,4,5) 36 x x x x x x x x 339.11 388369
(10,4,6) 30 x x x x x x x x 412.968 469265
(10,4,7) 13 x x 24.3 64158 0.57 1487 0.39 517 0.36 105
(11,4,3) 17 x x 885.1 1952008 0.9 2137 0.85 1661 0.92 1661
(11,2,3) 165 11.71 140 11.67 119 11.6 84 11.47 56 13.26 56
(11,6,4) 6 0.15 698 0.1 170 0.08 249 0.09 97 0.1 77
(11,6,5) 11 0.16 396 0.11 107 0.08 55 0.09 30 0.13 30

Table 11.9: Error Correcting Code (Hamming Distance): Subset-Bound Domain

11.5.3 Model

A length-lex model is used for evaluating our proposal with earlier work. Figure 11.9 gives the

Comet model for the BIBD problem. The model is compact and neat. It mainly uses the length-lex

variable llx for pruning. The subset-bound variables sbx are used for symmetry breaking. The

main constraint is in Lines 11-12: exactLe constraint. It is a binary constraint which ensures the

two variables share exactly l elements. There is a chance that these intersection constraints take

forever to reach the fixpoint, we further introduce a propagation limit: the propagator is allowed to

be invoked at most v times in each choice point.

Table 11.10 evaluates the performance. The length-lex model is generally the fastest and visit

fewest failure nodes.

171

1 int v = 7;
2 int b = 7;
3 int r = 3;
4 int k = 3;
5 int l = 1; // lambda
6 LengthLexVar<CP> llx[1..v](cp,b,r);
7 var<CP>{set{int}} sbx[1..v](cp,1..b,r);
8

9 solve<cp>{
10

11 forall(vi in 1..v, vj in 1..v : vi < vj)
12 cp.post(exactLe(llx[vi],llx[vj],l,v));
13

14 forall (vi in 1..v)
15 cp.post(channel(llx[vi],sbx[vi]));
16

17 forall (bi in 1..b)
18 cp.post(sum(vi in 1..v)(sbx[vi].getRequired(bi) == true) == k);
19

20 forall (vi in 1..v, vj in 1..v : vi < vj)
21 cp.post(lexleq(all(bi in 1..b)sbx[vj].getRequired(bi), all(bi in 1..b)sbx[vi].getRequired(bi)));
22

23 forall (bi in 1..b, bj in 1..b : bi < bj)
24 cp.post(lexleq(all(vi in 1..v)sbx[vi].getRequired(bj), all(vi in 1..v)sbx[vi].getRequired(bi)));
25

26 }using{
27 forall (vi in 1..v)
28 forall (bi in 1..b : !sbx[vi].isRequired(bi) && !sbx[vi].isExcluded(bi))
29 try<cp> cp.post(requiresValue(sbx[vi],bi));
30 | cp.post(excludesValue(sbx[vi],bi));
31 }

Figure 11.9: Comet Model for Balanced Incomplete Block Design Problem

172

Method Max-Variety Matrix Length-Lex
Heuristics Max-Degree Static Static

CPU Ultra60 PIII 1GHz C2D 2.4GHz
Time-Out 3600s 1800s
v,b,r,k,l Time Fails Time Nodes Time Fails

(6,20,10,3,4) 0.03 61 0 43 0.01 0
(6,30,15,3,6) 0.14 95 0.1 68 0.02 1
(6,40,20,3,8) 0.39 128 0.1 108 0.03 8
(6,80,40,3,16) 3.6 245 0.1-1 100-1000 0.15 82
(7,21,9,3,3) 0.05 75 0 42 0.01 0
(7,28,12,3,4) 0.12 86 0.1 64 0.01 0
(7,35,15,3,5) 0.27 109 0.1 88 0.01 0
(7,42,18,3,6) 0.48 139 0.2 115 0.02 0
(7,84,36,3,12) 4.2 254 0.1-1 100-1000 0.05 0
(7,91,39,3,13) 5.4 280 0.1-1 100-1000 0.07 0
(9,24,8,3,2) 2.7 252 0.1 48 0.01 1
(9,72,24,3,6) 2.7 252 0.1-1 100-1000 0.12 70
(9,84,28,3,7) 4.2 257 1 - 10 1000-10000 0.22 130
(9,96,32,3,8) 6.3 296 1 - 10 1000-10000 0.37 224
(9,108,36,3,9) 14 365 1 - 10 1000-10000 0.61 332
(9,120,40,3,10) 14 268 1 - 10 1000-10000 0.98 474
(10,90,27,3,6) 5.3 289 1 - 10 100-1000 0.58 532
(10,120,36,3,8) 13 377 1 - 10 1000-10000 2.44 1710
(11,110,30,3,6) 16 366 1 - 10 100-1000 3.65 3173
(12,88,22,3,4) 5.1 296 1 - 10 100-1000 2.88 3071
(13,52,12,3,2) 2.9 218 0.1-1 100-1000 0.11 29
(13,78,18,3,3) 3.5 282 0.1-1 100-1000 0.32 170
(13,104,24,3,4) 8.7 344 1 - 10 100-1000 0.78 480
(15,21,7,5,2) 5.5 383 10 - 100 100000-1000000 27.1 24038
(15,70,14,3,2) 5.5 383 0.1-1 100-1000 0.16 0
(16,32,12,6,4) 4.7 485 10 - 100 1000000-10000000 2.99 1603
(16,80,15,3,2) 4.7 485 1 - 10 100-1000 0.64 377
(19,57,9,3,1) 8.2 802 1 - 10 100-1000 0.18 7
(22,22,7,7,2) 10 - 100 100000-1000000 81.37 19928

Table 11.10: Balanced Incomplete Block Design Problem: Comparing with Earlier Work

173

DoubleLex RowCol-RowWise ValRowCol-RowWise
(q,l,d,v) #s time #s time #s time
(3,3,2,3) 6 0.01 6 0.01 1 0.01
(4,3,3,3) 16 0.07 8 0.05 2 0.03
(4,4,2,3) 12 0.02 12 0.03 1 0.02
(3,4,6,4) 11215 27.49 1427 13.38 263 3.79
(4,3,5,4) 61267 329.97 8600 117.3 371 8.62
(4,4,5,4) 72309 682.05 9696 252.15 419 15.83
(5,3,3,4) 21 1.56 5 1.04 1 0.19
(3,3,4,5) 71 0.69 18 0.39 4 0.15
(3,4,6,5) 77535 662.7 4978 130.33 864 29.88
(4,3,4,5) 2708 77.52 441 27.42 27 2.98
(4,4,2,5) 12 0.07 12 0.24 1 0.06
(4,4,4,5) 4752 137.03 717 54.55 45 5.29
(4,6,4,5) 7662 253.85 819 96.57 51 8.98
(5,3,4,5) 24619 1731.65 3067 573.38 43 15.59
(6,3,4,5) x x x x 58 69.91

Table 11.11: Equidistant Frequency Permutation Array Problem : RowWise

11.6 Evaluation of the Feasibility Checker

This section evaluates the performance of LexLeader feasibility checkers empirically. The primary

goal is to assess the effectiveness of the approach, i.e., whether the reduction in search space outweighs

the time spent in the feasibility checkers. Five benchmark problems were used, most of which can be

found in the CSPLib. They are concerned with finding either all solutions or the optimal solution.

Unless otherwise specified, variables are labeled in the symmetry-breaking order and values are tried

in increasing order.

11.6.1 Equidistant Frequency Permutation Array problem (EFPA)

The task is to find a set of v codewords drawn from q symbols and each symbol appears for exactly

λ times such that the Hamming distance between every pair of codeword is exactly d. The non-

boolean model in [39] is used. The model is a v×qλ matrix of variables with domain {1, ..., d}. There

are three main classes of symmetry: row interchangeability, column interchangeability, and value

interchangeability. In [42], it was shown that completely breaking row and column interchangeability

significantly reduces the number of solutions found. Our evaluation confirms this and pushes it

further: Completely breaking row, column, and value interchangeability achieves the best runtime

174

SnakeLex RowCol-Snake ValRowCol-Snake
(q,l,d,v) #s time #s time #s time
(3,3,2,3) 6 0.01 6 0.01 1 0.01
(4,3,3,3) 16 0.06 8 0.05 2 0.03
(4,4,2,3) 12 0.02 12 0.03 1 0.02
(3,4,6,4) 10760 24.05 1427 14.79 263 3.93
(4,3,5,4) 58582 221.43 8600 96.88 371 8.11
(4,4,5,4) 66977 422.14 9696 187.46 419 15.68
(5,3,3,4) 20 0.76 5 0.55 1 0.15
(3,3,4,5) 71 0.55 14 0.38 4 0.15
(3,4,6,5) 71186 512.21 4876 128.22 864 27.26
(4,3,4,5) 2754 45.06 447 20.08 27 2.45
(4,4,2,5) 14 0.05 12 0.24 1 0.06
(4,4,4,5) 5354 83.34 822 42.43 45 4.85
(4,6,4,5) 21782 181.09 3017 117.8 51 8.27
(5,3,4,5) 28214 818.31 3523 337.19 43 11.18
(6,3,4,5) x x x x 58 45.36

Table 11.12: Equidistant Frequency Permutation Array Problem : Snake

performance.

The experiments compare several approaches. DoubleLex and SnakeLex post static symmetry-

breaking constraints, while RowCol-RowWise, RowCol-Snake, ValRowCol-RowWise, and

ValRowCol-Snake add a feasibility checker on the top of the static model. RowCol only con-

siders row and column symmetries: all row symmetries are first enumerated and columns are then

sorted as in Theorem 23. ValRowCol considers all symmetries: All value and row symmetries are

enumerated and the columns are sorted (as in Theorem 26). The sorting uses a specific variable

ordering (either RowWise or Snake), producing four feasibility checkers.

Table ?? presents the results. The feasibility checkers ValRowCol break all symmetries, find

the fewest solutions and are the fastest. The improvements are more than 3 orders of magnitude

when compared with the static methods and many times faster than the feasibility checkers breaking

only row and column symmetries. The difference between the two variable orderings RowWise and

Snake is small compared to the overall improvement, with a slight avantage to Snake. Note that

both orderings achieve the same number of non-symmetric solutions since the choice of variable

ordering has no effect on the number of solutions when the symmetry-breaking method is complete.

175

DoubleLex RowCol-RowWise RowCol-RowWise (r=8)
(v,k,l) #s time #s time #s time
(5,2,7) 1 0.01 1 0.05 1 0.05
(5,3,6) 1 0.01 1 0.02 1 0.02
(6,3,4) 21 0.02 4 0.09 4 0.1
(6,3,6) 134 0.14 6 0.18 6 0.21
(7,3,5) 33304 17.95 109 4.49 109 5.03
(7,3,6) 250878 177.29 418 19.08 418 21.54
(7,3,7) 1460332 1315.66 1508 83.29 1508 92.95
(8,4,6) 2058523 1341.93 2310 73.35 2310 82
(10,3,2) 724662 281.83 960 74.83 12563 43.84
(10,5,4) 8031 18.69 21 2.14 68 1.91
(22,7,2) 0 11.12 0 23.21 0 2.86

Table 11.13: Balanced Incomplete Block Design Problem : RowWise

SnakeLex RowCol-Snake RowCol-Snake (r=8)
(v,k,l) #s time #s time #s time
(5,2,7) 1 0.03 1 0.1 1 0.1
(5,3,6) 1 0.01 1 0.02 1 0.02
(6,3,4) 25 0.03 4 0.1 4 0.14
(6,3,6) 146 0.22 6 0.25 6 0.27
(7,3,5) 85242 51.78 109 8.05 109 8.98
(7,3,6) 566230 452.1 418 38.45 418 40.88
(7,3,7) x x 1508 182.92 1508 193.42
(8,4,6) x x 2310 150.29 2310 153.23
(10,3,2) x x 960 341.98 14420 203.8
(10,5,4) 13069 78.33 21 7.61 89 8
(22,7,2) 0 85.1 0 14.23 0 14

Table 11.14: Balanced Incomplete Block Design Problem : Snake

11.6.2 Balanced Incomplete Block Design (BIBD)

The experiments use the boolean fully-interchangeable matrix model from [17] and compare static

methods and the LexLeader feasibility checkers. We label large value first. In some large instances,

the number of rows becomes very large (v = 10 is a matrix with 10 rows and requires 10! = 3, 628, 800

permutations). Hence, the experiments also evaluate the performance of the feasibility checker in

which only the first k rows in the matrix are enumerated, for some specified value of k. Tables 11.13

and 11.14 present the result. The complete feasibility checkers return the fewest solutions and are

generally faster than the static method. Checkers with a row limitation achieves the most robust

results: They are up to 8 times faster on large instances (RowWise on (22,7,2)) and only slightly

176

DoubleLex RowCol-RowWise ValRowCol-RowWise
(t, k, g, b) #s Time #s Time #s Time

(2, 3, 2, 4) 2 0.01 2 0.01 1 0.01
(2, 3, 2, 5) 15 0.01 8 0.01 4 0.01
(2, 3, 3, 9) 12 0.01 6 0.01 3 0.01
(2, 3, 3, 10) 368 0.14 104 0.09 21 0.05
(2, 3, 3, 11) 6824 2.33 1499 1.26 271 0.46
(2, 3, 4, 16) 576 0.33 150 0.25 15 0.32
(2, 3, 4, 17) 43368 23.52 8236 11.93 391 3.13
(2, 3, 5, 25) 161280 134.91 27280 77.71 283 92.91
(2, 4, 2, 5) 10 0.01 5 0.01 3 0.01
(2, 4, 2, 7) 2285 1.06 333 0.32 175 0.19
(2, 4, 3, 9) 36 0.03 5 0.02 2 0.02

Table 11.15: Cover Array Problem

slower on others.

11.6.3 Cover Array problem (CA)

The experiments use the integrated model in [38] which has row, column, and value symmetries.

The traditional comparisons are performed. However, since in earlier benchmarks, the impact of

the variable ordering was negligible among complete checkers, only the RowWise ordering was

considered for this, and subsequent, problems. Table 11.15 gives the results and the complete

method is generally the fastest.

11.6.4 Error Correcting Code (Lee Distance)

This is CSPLib 036, an optimization problem whose the goal is to find the maximum number m

of codeword of length n drawn from 4 symbols such that the Lee distance between every pair of

codewords is exactly c. The decision problem is to find m codewords satisfying the constraints. The

search starts with m = 1 and increases m by 1 each time. Optimality is proven when no solution is

found. The model has both row and column symmetries and value symmetries discussed earlier in

the paper. It is forbiddingly expensive to enumerate all possible value symmetries for each column.

Instead the experiments use a number of feasibility checkers dealing with different combinations of

symmetries. The results show that this approach dramatically reduces the search space.

177

DoubleLex LeeRowCol RowLee LeeRowCol (k=8)
(k=8) (k=5) +RowLee (k=5)

(n, c) Opt Time Fails Time Fails Time Fails Time Fails
(4, 2) 8 1.44 21327 0.37 2882 0.11 253 0.12 240
(4, 4) 8 101.17 1834887 9.38 93085 1.29 4280 0.88 2761
(4, 6) 2 0.05 1211 0.03 337 0.01 77 0.01 77
(5, 2) 10 13.98 159808 1.75 11826 0.27 516 0.26 435
(5, 4) 8 · · 425.09 4615063 13.87 63425 6.05 27492
(5, 6) 6 649.75 13466477 37.58 469869 0.4 2597 0.32 1861
(5, 8) 2 0.08 2152 0.04 509 0.01 115 0.02 115
(6, 2) 12 300.86 3114351 8.49 47859 0.69 1133 0.53 752
(6, 4) 8 · · · · 39.39 246749 12.79 79602
(6, 8) 4 92.8 2187585 8.82 129252 0.05 584 0.07 553
(7, 2) 14 · · 35.73 166890 1.85 2842 1.09 1343
(7, 4) 8 · · · · 73.78 522444 20.17 132809
(8, 2) 16 · · 156.45 599460 5.5 8011 2.64 2701
(8, 4) 8 · · · · 154.18 972759 30.55 183120

Table 11.16: Error Correcting Code (Lee Distance)

More precisely, LeeRowCol enumerates all the value symmetries globally (like in value inter-

changeability), meaning that it ignores that each column can have its own symmetry. RowLee

implements the algorithm from Theorem 27, except that the column symmetries are not enumer-

ated. Both checkers have row limitation as well. Table 11.16 depicts the results. Due to its huge

symmetry size, static symmetry-breaking approaches only solve a few small instances. RowLee

produces significant improvements in performance: On instance (5, 6), it reduces the time from 600

seconds to a fraction of a second. Overall, the combination of LeeRowCol and RowLee pro-

duces the best results as the rightmost column indicates. The performance improvements on this

benchmark are spectacular.

178

Chapter 12

Conclusion

This thesis investigated the length-lex representation for set variables. The length-lex domain was

proposed by Gervet and Van Hentenryck and was shown to offer some fundamental advantages over

other set representations [29]. This thesis aimed at addressing the open issues about the theoretical

and algorithmic properties, as well as about experimental behavior of the new domain. The main

contribution of this thesis was to show that

length-lex is an effective set domain representation for constraint programming.

This statement was supported by a number of theoretical, algorithmic, and experimental contribu-

tions. In particular, the thesis made the following technical contributions.

1. Generic and Efficient Basic Propagators. It presented a generic and simple method

for implementing polynomial-time bound-consistency propagators for unary and binary con-

straints.

2. Global Symmetry-Breaking Constraints. It gave novel symmetry-breaking techniques

which exploit the semantic of the length-lex representation. It demonstrated the strength

of combining symmetry-breaking constraints with other constraints both theoretically and

empirically. It introduced a generic method for pushing symmetry-breaking constraints into

arbitrary binary constraints.

179

3. Dual Modeling for Breaking Value Symmetries. It adapted the well-known dual model-

ing method for breaking value symmetries. It gave a soundness proof showing that it is feasible

to enforce the length-lex ordering among dual variables.

4. Exponential Propagators. It improved the strength of length-lex domains by exploiting

the fact that its constraint-propagation algorithm is more computationally expensive than

that of subset-bound domains. It introduced exponential propagators which exploit constraint

semantics and shift the exponential behavior from the constraint-propagation algorithm to

the filtering algorithm. Experimental results show that models using the exponential propa-

gators improves the performance of the constraint-propagation algorithm by a few orders-of-

magnitudes while maintaining the same propagation strength.

5. Global Intersection Checker and Filters. It studied a number of global intersection set

constraints which had drawn little attention because they are intractable. However, the expo-

nential length-lex propagators suggest that it may be beneficial to shift some of the exponential

behavior from the agnostic search component to filtering algorithms. It further exploited this

idea by introducing a few heavy-weight checkers and filters for these constraint. What makes

them particularly appealing is that they are independent of the underlying domain represen-

tation.

6. Hybrid Domain Representations. It presented a seamless integration method for length-

lex with other domain representations, yielding a hybrid representation which provides a few

orthogonal approximations to the domain. It offered two main contributions to the hybrid

domain: It gave a light-weight method for using both multiple domains simultaneously and

it introduced exponential propagators working on the product of two domains which allows

stronger propagation.

7. Exponential Checkers for Breaking Compositional Symmetries. It addressed the

problem of compositional symmetries, to account for the interplay of different classes of sym-

metry. Under traditional static methods, eliminating compositional symmetries is hard: Ei-

ther an exponential number of ordering constraints are required or an exponential number of

symmetric subtrees are not pruned away. The thesis tackled the problem by introducing an

180

exponential-time complete checker for classes of compositional symmetries.

8. Extensive Evaluation. It evaluated the contributions of each aforementioned components.

It carried out an extensive comparison between the length-lex domain, and its variants, with

earlier techniques on set domains over several standard benchmarks. The results indicated that

the length-lex representation and its variants are very robust and efficient. They bring several

orders-of-magnitudes improvement in performances over earlier techniques. They are able to

solve many benchmark instances that were unsolvable before in constraint programming.

Perspective

The length-lex domain representation offered an orthogonal perspective of approximating the set

domain. It is a rich representation which encapsulates a lot of domain information, making it

a more precise approximation. Despite of the fact that it is computationally more expensive to

propagate the length-lex domain than the classical subset-bound domain, the experimental results

over several benchmarks indicate that the length-lex domain is much more robust and effective.

Moreover, exponential checkers, filters and propagators proposed in this thesis bring significant

performance gains too.

These results suggest that future research should consider effective propagation techniques for rich

modeling objects. Existing techniques are usually based on modeling rich objects using a set of finite-

domain variables, e.g., using 0/1-characteristic vectors for set variables. This thesis illustrated that

the resulting propagation can be rather weak as it loses part of the problem structure. Constraint

programming over rich combinatorial objects is thus promising avenue to remedy this limitation.

For example, a permutation may use a totally-ordered representation which resembles the length-lex

domain, a matrix may be decomposed into several vectors for better propagation, a sequence may

utilize the regular graph for exact representation, and a graph may be represented as a collection of

a few objects. Having accurate domain representations makes effective propagation possible.

181

Appendix A

Models

A.1 Social Golfer Model

A.1.1 Classical CSP

A model for the social golfer problem in classical CSP is given in figure A.1. Two sets of finite-

domain variables are used to express constraints from different perspectives. The primal variables

Xg,i,w is the player who plays in position i of group g at week w (ex. A.1). The dual variables

Yp,w is the group where player p plays in week w (ex. A.2). Ex. A.3 guarantees that in each week,

golfers are allocated to groups of size S. The primal and dual variables are linked via the channeling

constraints (ex. A.4). Ex. A.5 restrict that every two players play at most once.

This is a basic model that doesn’t remove any symmetries.

We acknowledge that it is not necessary to have the primal variables Xg,i,w as we can enforce

a global cardinality constraint gcc on the dual variables Yp,w to make exactly s golfers play in a

group in each week. We use the primal-dual model to make it consistent with the whole document.

A.1.2 Set CSP

Figure A.2 gives a social golfer model in Set-CSP. Xw,g is the primal variable which maps group g

in week w to a set of players, i.e. a subset of P. Yp is the dual variable used for eliminating value

182

Xg,i,w ∈ P ∀g ∈ G, i ∈ S, w ∈ W (A.1)

Yp,w ∈ G ∀g ∈ G, w ∈ sW, p ∈ P (A.2)

gcc([X1,1,w, ..., Xg,s,w], [1, 2, .., G], [S, ..., S]) ∀w ∈ W (A.3)

Xg,i,w = p⇔ Yp,w = g ∀g ∈ G, i ∈ S, w ∈ W, p ∈ P (A.4)

Yp,w = Yp′,w ⇒ Yp,w′ 6= Yp′,w′ ∀p, p′ ∈ P,∀w,w′ ∈ W s.t. p 6= p′, w 6= w′(A.5)

Figure A.1: Social Golfer Model in Classical CSP

Xw,g ⊆ P ∀g ∈ G, w ∈ W (A.6)

|Xw,g| = S ∀g ∈ G, w ∈ W (A.7)

Xw,g ∩Xw,g′ = ∅ ∀g < g′ ∈ G, w ∈ W (A.8)

|Xw,g ∩Xw′,g′ | ≤ 1 ∀g, g′ ∈ G, w < w′ ∈ W (A.9)

Xw,g ≺ Xw,g′ ∀g < g′ ∈ G,∀w ∈ W (A.10)

Xw,1 ≺ Xw′,1 ∀w < w′ ∈ W. (A.11)

Yp ⊆ {(w, g) | g ∈ G, w ∈ W} ∀p ∈ P (A.12)

p ∈ Xw,g ⇔ (w, g) ∈ Yp ∀g ∈ G, w ∈ W, p ∈ P (A.13)

Yp ≺ Yp′ ∀p < p′ ∈ P (A.14)

Figure A.2: Social Golfer Model in Set-CSP

symmetry, an ordering constraint is post between very pair of players.

Figure A.3 is the model proposed by Barnier and Brisset [3]. The matrix of finite-domain variables

Yp,w are used in the dual model for eliminating value symmetry. This model has advantage over

the one which uses dual set variables since a player plays exactly once each week. Using a vector

of variables gives better propagation. Indeed, most of the experiments we conduct in this thesis are

based on this model.

A.2 Steiner Triple System Model

Given V elements. The goal is to find B triples, each of which consists of 3 elements, such that

every pair of elements occurs in exactly one triple. The system is indeed a special case of balanced

incomplete block design by setting B = V (V − 1)/6, R = (V − 1)/2, K = 3, and λ = 1 [9].

We have Xv ⊆ {1, ..., V } represents the set of blocks in which element v occurs in, and Yb ⊆

{1, ..., B} the set of elements occur in block b. Figure A.4 presents the model. The first five

183

Xw,g ⊆ P ∀g ∈ G, w ∈ W (A.15)

|Xw,g| = S ∀g ∈ G, w ∈ W (A.16)

Xw,g ∩Xw,g′ = ∅ ∀g < g′ ∈ G, w ∈ W (A.17)

|Xw,g ∩Xw′,g′ | ≤ 1 ∀g, g′ ∈ G, w < w′ ∈ W (A.18)

Xw,g ≺ Xw,g′ ∀g < g′ ∈ G,∀w ∈ W (A.19)

Xw,1 ≺ Xw′,1 ∀w < w′ ∈ W. (A.20)

Yp,w ∈ G ∀w ∈ W, p ∈ P (A.21)

Yp,w = g ⇔ p ∈ Xw,g ∀w ∈ W, g ∈ G, p ∈ P (A.22)

[Yp,1, ..., Yp,W] ≤lex [Yp′,1, ..., Yp′,W] ∀p < p′ ∈ P (A.23)

Figure A.3: Social Golfer Model by Barnier and Brisset [3]

Xv ⊆ B ∀v ∈ V (A.24)

Yb ⊆ V ∀b ∈ B (A.25)

|Xv| = r ∀v ∈ V (A.26)

|Yb| = 3 ∀b ∈ B (A.27)

|Yb ∩ Yb′ | = 1 ∀b < b′ ∈ B (A.28)

Xv � Xv′ ∀v < v′ ∈ V (A.29)

Yb � Yb′ ∀b < b′ ∈ B (A.30)

Figure A.4: Steiner Triple System Model in Set-CSP

expressions are the basic constraints. The last two are symmetry breaking constraints since both

blocks and elements are interchangeable.

184

Appendix B

Specialized Propagators

B.1 Unary Constraints

B.1.1 Overview

In Chapter 4, we introduced a generic algorithm for enforcing bound-consistency for unary con-

straints. The algorithm only depends on a feasibility routine which takes an interval and returns a

boolean value indicating whether the interval contains a solution. The algorithm performs, essen-

tially, a binary search on it and locates the new bounds. The total runtime for enforcing bound

consistency is O(c2 + cα log n), where n is the number of elements in the universe, c is the upper

bound cardinality, and the feasibility routine takes O(α) time.

Indeed, it is possible to implement a more efficient bound consistency propagation by exploiting

the fact that in the binary search, the parameters for the feasibility routine share are lot of common

structure between successive calls. We can take advantage of this fact and introduce different schema

for implementing bound-consistent propagators.

We first review the idea of enforcing bound consistency.

Example 51 (Enforcing Bound Consistency). Consider the length-lex domain Xll =

ll〈{1, 2, 3}, {3, 5, 6}, 6〉 and the unary constraintR5(X) ≡ 5 ∈ X. {1, 2, 3} is not a solution and hence

the input domain is not bound-consistent. The algorithm bc〈R5〉(Xll) returns a bound-consistent

185

generic specialized amortized
(Chapter 4) (Chapter B.1.2) (Chapter B.1.3)

locate O(cα+ c2) O(cα+ c2) O(γ)
construct O(cα log n) O(β) O(β + c)

Figure B.1: Three Schemas for Bound-Consistent Algorithm on Unary Constraints

domain ll〈{1, 2, 5}, {3, 5, 6}, 6〉.

Example 52 (Detecting failure). Consider the length-lex domain Xll = ll〈{2, 3, 4}, {3, 5, 6}, 6〉 and

unary constraint R1(X) ≡ 1 ∈ X. There is no possible successor of {2, 3, 4} of cardinality 3 that

could contain element 1. There is no solution and hence bc〈R1〉(Xll) returns ⊥ that indicates failure.

We focus our attention on the succ〈C〉(Xll) since the predecessor algorithm operates in a sym-

metrical manner.

The algorithm mainly bases on the decomposition idea illustrated in Chapter 4. There are

two phases, locate and construct. In locate phase, the input length-lex interval is partitioned into

some PF-intervals and the algorithm locates the first PF-intervals that contains a solution. In

construct phase, the algorithm takes the PF-interval found in the previous phase, and constructs

the smallest solution within it. We give three different schemas, namely generic, specialized,

and amortized. Each of them corresponds to different implementation of the locate and construct

phase. In generic, both phases only assume one boolean feasibility routine; in specialized, the

construct phase depends on an additional constraint specific construction routine; while amortized

involves extra book-keeping techniques in the locate phase and yield the best performance.

Figure B.1.1 illustrates the difference between difference schemas. O(α) is the time complexity for

the feasible routine of PF-interval, O(β) is the time for the specialized bound construction algorithm,

and O(γ) is the time for the specialized locate routine. In this chapter, we illustrate these schemas

with the unary membership constraint (Re(X) ≡ e ∈ X). We demonstrate it is possible to implement

a bound-consistent algorithm just by providing a feasibility routine for a PF-interval, and it is also

possible to attain a very efficient O(c) bound-consistent algorithm using an amortization analysis.

In particular, we show that for membership constraint, O(α) = O(β) = O(γ) = O(c).

186

Algorithm 17 succ〈Re〉(Xpf = pf〈P, f̌, f̂, n, c〉)
1: if not hs〈Re〉(Xpf) then
2: return ⊥
3: flag ← false
4: for i← 1 to |P | do
5: si ← Pi
6: flag ← flag ∨ (si = e)
7: f ← f̌
8: i← |P |+ 1
9: while i ≤ c do

10: if i = c and flag = false then
11: sc ← e
12: else
13: si ← f
14: flag ← flag ∨ (si = e)
15: f ← f + 1
16: i← i+ 1
17: return s

B.1.2 specialized Successor Construction Routine for e ∈ X for PF-

Interval

The generic schema applies a generic bound construction routine. In this section, we present

a specialized schema, that replace the generic succ〈C〉(Xpf) algorithm by a constraint specific

construction routine. For example, for unary membership constraint, it reduces the overall time

complexity from O(c2 log n) to O(c2).

Algorithm 17 (succ〈Re〉(Xpf)) demonstrates a specialized construction routine for the unary

constraint Re. The algorithm first checks whether there is a solution (line 1), and return ⊥ if there

is none. Starting from line 3, we know the solution lies in somewhere in the PF-interval. The basic

idea is the pick the smallest element while making sure that the feasibility condition holds. For unary

membership constraint, the algorithm has to make sure that there is room for take the element e, if

it is not taken yet. In Algorithm 17, it keeps a boolean flag that indicates whether the element has

been taken (lines 6, 14). When it reaches the last position, if flag is false indicating the element is

not taken yet, we must put element e to the last position (lines 10–11).

Example 53. Let a unary constraint be R6(X), and a PF-interval Xpf = pf〈{1}, 3, 6, 8, 4〉. After

line 7, the prefix {1} is assigned to s. The algorithm iterates from position 2 to 4. In the first

187

iteration, it assigns the smallest possible element to s (line 13), checks if that element is the required

one (line 14), and moves to the next element. It does the same thing in the second iteration. In the

last iteration, the flag is still false since the required 6 has not be taken yet, it triggers the condition

in line 10 and forces the required element to the last position (line 11). Afterwards, the algorithm

returns s = {1, 3, 4, 6}, the smallest supported value in the input PF-interval.

Theorem 28. Algorithm 17 takes O(c).

Proof. Lines 4–6 loops at most O(c) times. Lines 9–16 loops at most O(c) times. Every instruction

inside the loop takes constant time. Hence it is O(c) in total.

Therefore, under the specialized schema, a specialized routine is used for bound construction.

Applying Theorem 4, by setting O(α) = O(β) = O(c), the overall runtime for bound-consistent

algorithm on unary membership constraint is O(c2).

B.1.3 amortized Successor Algorithm for Length-Lex Interval

The section present the amortized schema, further improves the runtime for bound-consistent

algorithm by introducing a specialized routine for the locate phase. Recall the 2 phase routine

presented in Algorithm 3, the locate phase takes at least O(c2) time since it is the cost for the

decomposition routine.

The key observation is that the PF-intervals obtained from the decomposition are very similar.

Two consecutive PF-intervals usually have similar prefix, the F-set are also closely related. The

feasibility routine can therefore take into account of such common structure between consecutive

intervals, avoid recomputing everything from scratch and amortize the overall run time.

We first take a close look to the decomposition and discuss the nice structure of some special

length-lex interval. Then, we introduce the amortized schema and show how to implement a

amortized locate phase for unary membership constraint.

The Decomposition Revisited

The decomposition algorithm (Algorithm 1) partitions an interval X into a head H, a body B, and

a tail T . However, when the upper bound is maximal, the resulting PF-intervals exhibit a nice

structure.

188

Example 54. Given the length-lex interval ll〈{1, 3, 5, 6},54 = {5, 6, 7, 8}, 8〉 is decomposed into 5

PF-intervals.

pf〈 {1, 3, 5}, 6, 6, 8, 4 〉

pf〈 {1, 3, 5}, 7, 8, 8, 4 〉

pf〈 {1, 3}, 6, 7, 8, 4 〉

pf〈 {1}, 4, 6, 8, 4 〉

pf〈 {}, 2, 5, 8, 4 〉

Formally, a length-lex interval 〈{l1, l2, .., lc},5c, n〉 can be decomposed into at most c + 1 PF-

intervals which falls into two categories: First the lower bound l itself

pf〈l1..c−1, lc, lc, n, c〉

and then remaining PF-intervals

pf〈l1..i−1, li + 1, n− c+ i, n, c〉

if li + 1 ≤ n− c+ i for i ∈ {1, ...c}.

Observe that the prefixes in the second category decreases by one element at a time, which will

allow the algorithm to perform some incremental book-keeping and avoid having to compute the

feasibility routine from scratch, amortizing its cost across the decomposition.

The Location Phase

The location routine combines the decomposition and feasibility routines and does not explicitly

construct a list of PF-intervals. Its goal is similar to lines 1–6 of Algorithm 3 in that it finds the

first PF-interval containing a feasible set. More precisely, it takes ll〈l,5c, n〉 as input, and return

the smallest supported PF-interval or ⊥ if there is no solution.

Specification 14 (locatesucc). Given Xll = ll〈l,5c, n〉,

locatesucc〈C〉(Xll) =


⊥ if 6 ∃s ∈ Xll : C(s)

pf〈l1..c−1, lc, lc, n, c〉 if C(l)

maxi∈1..c{Xi
pf : hs〈C〉(Xi

pf)} otherwise

189

Algorithm 18 succA〈C〉(Xll = ll〈l, u, n〉)
1: Xpf ← locatesucc〈C〉(ll〈l,5|l|, n〉) {locate phase}
2: if Xpf = ⊥ then {construct phase}
3: return ⊥
4: l′ ← succ〈C〉(Xpf)
5: if l′ � u then
6: return ⊥
7: return l′

where Xi
pf = pf〈l1,..,i−1, li+1 + 1, n− c+ i, n, c〉.

Successor Algorithm

We modify the successor routine accordingly. Algorithm 18 (succA〈C〉(Xll)) implements the successor

routine under the amortized schema. Instead of decomposing the input length-lex interval, the

routine invokes locatesucc and get the smallest supported PF-interval (line 1). It calls the specialized

successor algorithm for PF-interval if there is a solution and get a new lower bound (line 4). Since

we are not applied to ll〈l,5c, n〉, it may happen that the result new lower bound l′ is greater than

the original upper bound u, we have to perform an extra check of domain consistency(lines 5–6).

Example 55. Suppose we have constraint R5, and the length-lex interval used in Example 54.

The smallest PF-interval containing a solution is pf〈{1}, 4, 6, 8, 4〉. We construct it using the succ

routine (line 4) and we will get {1, 4, 5, 6}. The new lower bound is still in the original length-lex

interval, hence we are good.

Example 56. Suppose the given length-lex interval is ll〈{1, 3, 5, 6}, {1, 3, 7, 8}, the return value

from locatesucc is also pf〈{1}, 4, 6, 8, 4〉 as the locate routine doesn’t consider the upper bound. We

invoke the succ routine as in the previous example, and we get {1, 4, 5, 6}. However, it exceeds the

original upper and we can infer the domain is inconsistent.

Complexity Analysis

Theorem 29. Algorithm 18 (succA〈C〉(Xll)) takes O(γ + β + c) time, where O(γ) is the time

complexity for locatesucc〈C〉.

Proof. Line 1 takes O(γ), line 4 takes O(β). Each remaining line takes O(c).

190

Algorithm 19 locatesucc〈Re〉(Xll = ll〈l,5|l|, n〉)
1: if e ∈ l then
2: return pf〈l1..c−1, lc, lc, n, c〉
3: for i← |l| downto 1 do
4: if li + 1 ≤ e then
5: return pf〈l1,..,i−1, li+1 + 1, n− c+ i, n, c〉
6: return ⊥

amortized Locate Routine for e ∈ X

It remains to show how the locate routine that amortize the decomposition cost is implemented.

Algorithm 19 (locatesucc〈Re〉) implements Specification 14 for C = Re.

Example 57. We use the length-lex interval in Example 54. The algorithm first check if the lower

bound (i.e. {1, 3, 5, 6}) is a solution. Afterwards, in Lines 3–5, it starts looking from the smallest

to the largest PF-interval. Notice that the difference between every successive PF-interval is one

element in the prefix and the F-set. From line 1, we already infer that the element 4 does not belong

to the lower bound, and hence also won’t belong to any prefix, we don’t have to consider it. Now,

what is important is that we need to infer is from the range that PF-interval can take element from,

if it contains 4, which can be done by a constant time check in line 4.

Theorem 30. Algorithm 19 (locatesucc〈Re〉(Xll)) takes O(c) time.

Proof. Line 1 takes O(c). Lines 3–5 iterates at most O(c) times and each line takes O(1).

Therefore, under the amortized schema, we have O(γ) = O(c). The bound-consistent algorithm

for unary membership constraint Re(X) ≡ (e ∈ X) runs in O(c) time.

B.2 Binary Constraints

B.2.1 Overview

Similar to unary constraint, we give three schemas of bound consistency algorithm. From a generic

one which only depends on a feasibility routine, to a specialized which is most efficient but depends

on some amortization analysis. Figure B.2.1 gives the time complexity of each schema.

191

generic specialized amortized
(Chapter 5) (Chapter B.2.2) (Chapter B.2.3)

locate O(c2α) O(c2α) O(cγ)
construct O(c2α log n) O(cβ) O(cβ)

Figure B.2: Binary Constraint

Algorithm 20 succ〈D〉(Xpf = pf〈PX , f̌X , f̂X , nX , cX〉, Ypf)

1: if not hs〈D〉(Xpf , Ypf) then
2: return ⊥
3: flag = ∃f ∈ {f̌Y , ..., f̂Y } : f 6∈ PX ∧ f < f̌X
4: s1,...,|PX | ← PX
5: cur ← f̌X
6: for i = |PX |+ 1 to cX do
7: while cur ∈ PY do
8: cur ← cur + 1
9: if cur = f̂Y ∧ not flag then

10: cur ← cur + 1
11: si ← cur
12: cur ← cur + 1
13: return s

We will use binary disjoint constraint (D(X,Y) ≡ X ∩ Y = ∅) as example, and we will demon-

strate that it is possible to achieve bound consistency for binary disjoint constraint in O(c2) time.

B.2.2 specialized Successor Algorithm for X ∩ Y = ∅ for PF-intervals

In this section, we give the specialized schema. Likewise in unary constraints, this schema

replaces the generic succ〈C〉(Xpf , Ypf) routine by a constraint specific successor algorithm. In binary

disjoint constraint, with this routine available, we improve the time complexity of our algorithm from

O(c3 log n) to O(c3).

Algorithm 20 implements the successor algorithm for binary disjoint constraint that takes two

PF-intervals. It constructs the smallest set in Xpf that can find a support from Ypf with regard to

binary disjoint constraint.

If the feasibility acknowledges the non-existent of solutions, it simply returns ⊥(lines 1–2). In the

rest of the routine, it essentially greedily appends the smallest possible element while maintaining

the feasible condition. The algorithm first assignment the prefix to s (line 4) and then iterates over

all remaining positions (lines 6–12). There are essentially two conditions need to be considered.

192

First, disjointness forbids X from taking any element from the prefix of Y (lines 7–8). Second, X

cannot take all F-set elements of Y , since any set in Y needs at least one of them, and by disjointness

X and Y cannot share the same element(lines 3,9–10). Variable cur marks the element that we are

about to append. If Ypf contains any F-set element that is unreachable by X, the second condition

mentioned above is satisfied. The binary variable flag is used to mark this condition (lines 3, 9–10).

Once every position is filled, the routine returns the smallest supported set s in Xpf (line 13).

Example 58. Suppose Xpf = pf〈{1}, 2, 6, 7, 3〉, Ypf = pf〈{2}, 3, 4, 7, 3〉. The algorithm first deter-

mines whether or not there is a solution (line 1), and return ⊥ when inconsistency is detected by

the feasibility routine. It then see if the F-set element requirement of Y is automatically satisfied,

in this case, X can potentially takes all F-set element of Y , hence flag is false(line 3). Since all

sets in Xpf starts with the prefix, it assigns the prefix {1} to s(line 4). As a result, we now have

s1 = 1 and it starts filling all remaining positions with the for-loop in lines 6–12. It begins with the

smallest element and assigns 2 to cur. However, element 2 cannot be used as it is in the prefix of

Y , and the algorithm proceeds to the next element (lines 7–8). It hasn’t taken every possible F-set

element from Y yet and therefore can be used. We have s2 ← 3 (line 11). And we now move to the

next position with cur = 4. It is not in the prefix and passes lines 7–8. However, it is the largest

element of F-set of Y and we have to leave one element for Y . We cannot take this element and have

to advance to the next. In this iteration, we have s3 ← 5. All position of s are filled, the algorithm

returns the new lower bound {1, 3, 5}.

Theorem 31. Algorithm 20 takes O(c) time.

Proof. Line 1 takes O(c). Line 3 takes O(c), simply by checking if the holes lying between consecutive

elements in PX that belongs to the first-set of Y . Line 4 takes O(c). The loop in lines 6–12 iterates

O(c) times. Cost for lines 7–8 can be amortized over the whole loop by maintaining an extra counter

to store the most recently checked position in PY , the overall amortized cost is O(c). Every remaining

lines in the for-loop takes O(1) time. Hence, it is O(c) in total.

Hence, under the specialized schema, by Theorem 6 and set O(α) = O(β) = O(c), enforcing

bound consistency on binary disjoint constraint takes O(c3) time.

193

Algorithm 21 succA〈C〉(Xll = ll〈lX , uX , nX〉, Yll = ll〈lY , uY , nY 〉)
Require: nX = nY

1: [Y 1
pf , Y

2
pf , ..., Y

j
pf]← decomp(lY , uY , ∅, nY) {locate phase}

2: Xpf ← minY ′
pf∈[Y 1

pf ,Y
2
pf ,...,Y

j
pf](locatesucc〈C〉(ll〈lX ,5|lX |, nX〉, Y

′
pf))

3: if Xpf = ⊥ then {construct phase}
4: return ⊥
5: l′X ← minY ′

pf∈[Y 1
pf ,Y

2
pf ,...,Y

j
pf](succ〈C〉(Xpf , Y

′
pf))

6: if l′X � uX then
7: return ⊥
8: return l′X

B.2.3 amortized Successor Algorithm for Length-Lex Intervals

This section presents the amortized schema. It improves the runtime for bound-consistent algo-

rithm by amortizing the cost in the locate phase. The main observation is that the PF-intervals

obtained from the decomposition enjoy a nice structure, we can exploit this structure and reduce the

cost between every consecutive call to the feasibility routine. The idea is similar to the one proposed

in the unary constraint section. It depends on a constraint specific locate routine that returns the

first supported PF-interval, and then construct the smallest supported set presented in last section.

Specification 15 (locatesucc). Given Xll = ll〈l,5c, n〉, Ypf

locatesucc〈C〉(Xll) =


⊥ if not hs〈C〉(Xll, Ypf)

pf〈l1..c−1, lc, lc, n, c〉 if hs〈C〉({l}, Ypf)

maxi∈1..c{Xi
pf : hs〈C〉(Xi

pf , Ypf)} otherwise

where Xi
pf = pf〈l1,..,i−1, li+1 + 1, n− c+ i, n, c〉.

Following a generic BC algorithm and a specialized one for the disjoint constraint, we present

an amortized algorithm that first locates the first element to be updated and constructs the new

supported set.

Algorithm 21 implements the generic algorithm that allows us to amortize the cost in locate phase.

It is similar to its unary counterpart. The input length-lex interval Xll is not explicitly decomposed.

Instead, the algorithm invokes a locatesucc routine to find the first supported PF-interval. Since we

decompose Yll into some PF-intervals, we have to compare against each of them. The min function

returns the smallest PF-interval w.r.t to the length-lex ordering. After the PF-interval is located,

194

the algorithm constructs the smallest set(lines 5–8). Since different PF-intervals in Yll gives different

support, we have to construct against each of them (line 5). Moreover, since the locate routine is not

directly applied to the input interval, the bound may exceed the input upper bound. The algorithm

has to perform an extra check for domain consistency(lines 6–7).

Theorem 32. Suppose locatesucc〈C〉(Xll, Ypf) runs in time O(γ) and succ〈C〉(Xpf , Ypf) run in time

O(β). Algorithm 21 (succA〈C〉(Xll, Yll)) takes O(c2 + cγ + cβ) time.

Proof. Line 1 takes O(c2). Line 2 call locatesucc at most O(c) times, hence it is O(cγ). Lines 3–4

takes O(1). Line 5 make O(c) calls to the successor routine, therefore O(cβ). Hence, O(c2 +cγ+cβ)

in total.

Example 59. We use Example 26, we have Xll = ll〈{1, 2, 5}, {4, 6, 7}, 7〉 and the length-lex interval

Yll is decomposed into two PF-intervals Y 1
pf = pf〈∅, 1, 1, 7, 3〉 and Y 2

pf = pf〈{2}, 3, 4, 7, 3〉. Consider

the binary disjoint constraint. In line 2, the algorithm invokes the locatesucc routine for each PF-

intervals in the decomposition of Y . In case Y 1
pf , the locate routine returns pf〈∅, 2, 5, 7, 3〉, whilst in

case Y 2
pf , the locate routine returns pf〈{1}, 3, 6, 7, 3〉. The PF-interval in the latter case is smaller,

hence the new lower bound lies in that interval. That PF-interval is stored and used in the construct

phase.

B.2.4 Locate for binary disjoint constraint

In the amortized schema, the algorithm relies on a constraint specific locatesucc routine. We

present such routine for the binary disjoint constraint. In short, the locate routine composes the

decomposition and feasibility routine, it exploits the property that every consecutive PF-interval

share many common structure. Hence, we only need to pay attention to the difference. Recall that

decomposing a length-lex interval ll〈l,5c, n〉 gives us a systematic list of PF-intervals. We, once

again, state the decomposition here: A length-lex interval 〈{l1, l2, .., lc},5c, n〉 can be decomposed

into at most c+ 1 PF-intervals:

pf〈l1..c−1, lc, lc, n, c〉 (B.1)

pf〈l1..i−1, li + 1, n− c+ i, n, c〉 i ∈ {1..c} (B.2)

195

The first PF-interval is actually special case, it is a singleton which is the lower bound. Every

consecutive pair of PF-intervals in the remaining list enjoys a systematic delta: 1. the prefixes is

differ by one, 2. the lower bound of the first-set is always the maximum of prefix of the next PF-

interval plus one, 3. the upper bound of the first-set is increased by one every time. Therefore, the

locate routine can take advantage of this knowledge. Algorithm 22 implements Specification 15 for

binary disjoint constraint. It flattens the feasibility routine for binary disjoint (Algorithm [?]), and

basically carries out the same function. It first returns the PF-interval corresponding to the lower

bound if it is a solution. Lines 4–28 is the core locate routine. It start by considering the PF-interval

with the shortest prefix, which is also the largest with regard to the length-lex ordering. It performs

a feasibility check. Then, it advances to the next PF-interval with a second shortest prefix, performs

the feasibility check again, repeat until the last PF-interval. What it does is essentially equivalent

to the decompose-then-check-feasibility algorithm under the generic schema. The key difference

is that here we take the change between consecutive PF-intervals into account, and avoid the need

to re-compute everything from scratch in every checks.

We move to the real story. We use Xpf to mark the smallest PF-interval that contains a solution

(lines 5,16,27,28). Similar to the feasibility routine for binary disjoint constraint, we need to separate

into two case, f̌X ≤ f̌Y and f̌X > f̌Y . In the structural decomposition, the first case always happens

before the second. Hence, we can use an index α (in line 5) the boundary between these two cases.

The first case corresponds to lines 6–16, while the second case corresponds to lines 17–27. In the

first case, f̌X is possibly smaller than the maximum element of PY , hence we have to take into

account of it. f̌X is smaller infers that the prefix of X is also smaller, hence we can factor out the

shorter prefix easily. We can see this problem as invoking Algorithm 9 by interchanging the role

of X and Y . Hence, this part is almost equivalent to lines 12–17 in algorithm 9. We take a closer

look at it. Line 7 forms the FX and VX as we did in the feasibility routine, notice that these are

logical representation of ranges for the ease of demonstration and are not explicitly created. c′X

denotes the number of element required excluding the prefix. The variable flag serves the same

function too: after all test, if flag remains true, it indicates the corresponding PF-interval contains

a solution. Lines 9–10 is the only difference, we need to make sure both prefixes does overlap. Once

they overlap, we know there couldn’t be any solution afterwards, since we keep appending more

elements to the prefix in the “locate” routine, and we can return the best index we found so far.

196

Line 11 checks if the remaining sub-universe has enough rooms to fulfill the cardinality requirement.

Lines 12–14 checks if the first-set restriction could be satisfied. If the PF-interval passes all test,

we can mark it as a potential solution (lines 15–16). For the second part (lines 18–27), they are

essentially performing the same function.

Complexity Analysis

Lemma 11. Algorithm 22 (locatesucc〈D〉(Xll, Ypf))takes O(c) time.

Proof. Line 2 invokes the feasibility routine for binary disjoint constraint for two PF-intervals,

which takes O(c). Notice we do not explicitly create FX , F
′
X , VX , FY , F

′
Y , VY , they are just logical

representation of a range (with at most O(c) “holes”), we can perform efficient operations on them

with extra bookkeeping in O(1) time (or a total amortized O(c) at worst). Line 5 takes O(c). α

is bounded by cX , hence loops in lines 6–16 and lines 18–27 iterates at most cX times. Line 9 can

be implemented by keeping an extra index for the last seen position in PY , that takes an overall

amortized O(cY) time. Line 10 can be done in an amortized O(cY) time, thanks to the observation:

minVX is strictly monotonic increasing over the loop, hence after the first iteration (that requires

O(cY) to scan the whole PY), we only require to see how many elements in PY is lost due to the

increase in minVX , elements that are lost won’t go back to again due to monotonicity. Therefor,

this line could be implement in an overall amortized O(cY) time. Using similar arguments, all other

lines (lines 12–14, 21–25) takes an amortized O(c) time too. Therefore, algorithm 22 takes O(c)

time.

Therefore, under the amortized schema, for binary disjoint constraint, we have O(α) = O(β) =

O(γ) and therefore by Theorem 32, the bound-consistent algorithm takes O(c2) time.

197

Algorithm 22 locatesucc〈D〉(Xll = ll〈lX ,5|lX |, nX〉, Ypf = pf〈PY , f̌Y , f̂Y , nY , cY)〉
Require: nX = nY

1: cX = |lX |
2: if hs〈D〉(pf〈lX1,...,cX−1, lXcX , lXcX , nX , cX〉, Ypf) then
3: return pf〈lX1,...,cX−1, lXcX , lXcX , nX , cX〉
4: FY , VY , c

′
Y ← {f̌Y , ..., f̂Y }, {f̌Y , ..., nY }, cY − |PY |

5: Xpf , α← ∅, arg maxi{0, 1 ≤ i ≤ cX |lXi < f̌Y }
6: for i← 1 to α do
7: FX , VX , c

′
X ← {lXi + 1, ..., nX − cX + i}, {lXi + 1, ..., nX}, cX − i+ 1

8: flag = true
9: if i > 1 ∧ lXi−1 ∈ PY then

10: return mini
11: flag ← flag ∧ (|VX | ≥ c′X + c′Y + |{PY ∩ VX}|)
12: F ′X ← FX \ PY
13: flag ← flag ∧ (F ′X 6= ∅)
14: flag ← flag ∧ (|F ′X ∪ FY | ≥ 2)
15: if flag then
16: Xpf ← pf〈lX1,..,i−1, lXi+1 + 1, n− c+ i, n, c〉
17: F ′Y ← FY \ lX1,...,α−1

18: for i← α+ 1 to cX do
19: FX , c

′
X ← {lXi + 1, ..., nX − cX + i}, cX − i+ 1

20: flag = true
21: flag ← flag ∧ (|VY | ≥ c′X + |{PX ∩ VY }|+ c′Y)
22: F ′Y ← F ′Y \ {lXi−1}
23: flag ← flag ∧ (FX 6= ∅)
24: flag ← flag ∧ (F ′Y 6= ∅)
25: flag ← flag ∧ (|FX ∪ F ′Y | ≥ 2)
26: if flag then
27: Xpf ← pf〈lX1,..,i−1, lXi+1 + 1, n− c+ i, n, c〉
28: return Xpf

198

Appendix C

Global Propagators for Subset-Bound

Variables

C.1 Overview

This chapter reconsiders the deployment of synchronous optical networks (SONET), an optimiza-

tion problem originally studied in the operation research community[60]. The SONET problem is

defined in terms of a set of clients and a set of communication demands between pairs of clients who

communicate through optical rings. The task is to allocate clients on (possibly multiple) rings, satis-

fying the bandwidth constraints on the rings and minimizing the equipment cost. This problem has

been tackled previously using mixed integer programming (MIP)[60] and constraint programming

(CP)[62, 57]. Much attention was devoted to variable branching heuristics and breaking ring sym-

metries (since all rings are identical). It was shown that sophisticated symmetry-breaking techniques

dramatically reduce the computational times, both for MIP and CP formulations. The difficulty of

finding good branching heuristics, which do not clash with symmetry breaking, was also mentioned.

This chapter takes another look at the problem and studies the possibility that the thrashing be-

havior experienced in earlier attempts is primarily due to lack of pruning. The key observation is that

existing models mainly consist of binary constraints and lack a global perspective. Instead of focusing

on symmetry breaking and branching heuristics, we study how to strengthen constraint propagation

199

sb-domain sbc-domain
NonEmptyIntersection |X ∩ Y | ≥ 1 Polynomial Polynomial (Thm. 34)
AllNonEmptyIntersection ∀i, |X ∩ Yi| ≥ 1 Polynomial (Thm. 35) NP-hard (Thm. 37)
SubsetOfUnion

⋃
i Yi ⊇ X Polynomial (Thm. 40) ?

SubsetOfOpenUnion
⋃
i∈Y Xi ⊇ s Polynomial (Thm. 44) NP-hard (Thm. 45)

Figure C.1: Overview of Hardness of Complete Filtering Algorithms

by adding redundant global set-constraints. We propose two classes of redundant constraints and we

investigate the complexity of these set constraints and the design of filtering algorithms. Like many

other global constraints for set variables [55, 6], complete filtering algorithms are often intractable

but we propose inference rules that can reduce the search space effectively. The considered set con-

straints, their complexity results, and some of the open questions, are summarized in Figure C.1.

The technical results were evaluated experimentally on the standard SONET benchmarks. They

indicate that the enhanced model, with static symmetry-breaking constraints and a static variable

ordering, is many orders of magnitude faster than existing approaches.

This chapter is organized as follows. Section C.2 gives a formal description of the SONET problem

and its CP model. Section C.3 recalls basic definitions about set domains and fixes the notation used

in the paper. Sections C.4–C.8 constitute the core of the paper and study the various constraints

used in the model. Section C.9 presents the experimental results and Section C.10 concludes the

paper.

C.2 The SONET Problem

Problem Description The SONET problem [60] is a network topology design problem for optical

fiber network, the goal is to find a topology that minimizes the cost such that all clients’ traffic

demands are met. An input instance is a weighted undirected demand graph G = 〈N,E; d〉, where

each node u ∈ N represents a client and weighted edges (u, v) ∈ E correspond to traffic demands of a

pair of clients. Demand d(u, v) is always integral. Two clients can communicate only if both of them

are installed on the same ring, which requires an expensive equipment called an add-drop multiplexer

(ADM). A demand can be split into multiple rings. The input also specifies the maximum number

of rings r, the maximum number of ADMs allowed on the same ring a, and the bandwidth capacity

200

of each ring c. A solution of the SONET problem is an assignment of rings to nodes and of capacity

to demands such that 1) all demands of each client pairs are satisfied; 2) the ring traffic does not

exceed the bandwidth capacity; 3) at most r rings are used; 4) at most a ADMs on each ring; and

5) the total number of ADMs used is minimized.

The Basic CP Model The core CP model [56, 62] include three types of variables: Set variable

Xi represents the set of nodes assigned to ring i, set variable Yu represents the set of rings assigned

to node u, and integer variable Zi,e represents the amount of bandwidth assigned to demand pair e

on ring i. The model is

minimize
∑
i∈R
|Xi| s.t.

|Yu ∩ Yv| ≥ 1 ∀(u, v) ∈ E (C.1)

Zi,(u,v) > 0⇒ i ∈ (Yu ∩ Yv) ∀i ∈ R, (u, v) ∈ E (C.2)∑
i∈R

Zi,e = d(e) ∀e ∈ E (C.3)

u ∈ Xi ⇔ i ∈ Yu ∀i ∈ R, u ∈ N (C.4)

|Xi| ≤ a ∀i ∈ R (C.5)∑
e∈E

Zi,e ≤ c ∀i ∈ R (C.6)

Xi � Xj ∀i, j ∈ R : i < j (C.7)

Constraint (C.1) ensures nodes of every demand pair lie on at least one common ring. Constraint

(C.2) ensures that there is a flow for a demand pair on a particular ring i only if both client are on

that ring. Constraint (C.3) guarantees that every demand is satisfied. Constraint (C.4) channels

between the first two types of variables. Constraint (C.5) makes sure that there are at most a

ADMs on each ring. Constraint (C.6) makes sure that the total traffic flow on each ring does not

exceed the bandwidth capacity. Constraint (C.7) is a symmetry-breaking constraint that removes

symmetric solutions caused by interchangeability of rings. Any total ordering on sets could be used

for imposing the lexicographic constraint.

201

Extended Model Smith [62][Section 5] proposed a few implied constraints to detect infeasible

assignments early in the search. For space reasons, we only show some of them which will be

generalized by our redundant global constraints:

|Xi| 6= 1 ∀i ∈ R (C.8)

|Yu| ≥ d
|δu|
a− 1

e ∀u ∈ N (C.9)

Yu = {i} ⇒ δu ∪ {u} ⊆ Xi ∀u ∈ N, i ∈ R (C.10)

Yu = {i, j} ⇒ δu ∪ {u} ⊆ Xi ∪Xj ∀u ∈ N, i, j ∈ R (C.11)

In those constraints, δu denotes the neighbors of node u.

Our Extended Model We propose two constraints to boost propagation:

⋃
i∈δu

Yi ⊇ Yu ∀u ∈ N (C.12)

⋃
i∈Yu

Xi ⊇ δu ∀u ∈ N (C.13)

The subsetOfUnion constraint (C.12) generalizes (C.8) and forces a node not to lie on rings with no

contribution. The subsetOfOpenUnion constraint (C.13) generalizes (C.9), (C.10), and (C.11) and

ensures that the rings of a node accommodate all its neighbors.

C.3 The Set Domains

Our algorithms consider both the traditional subset-bound domain and subset-bound with cardinal-

ity domain.

Definition 34. A subset-bound domain (sb-domain) sb〈R,P 〉 consists of a required set R and a

possible set P , and represents the set of sets

sb〈R,P 〉 ≡
{
s | R ⊆ s ⊆ P

}
(C.14)

202

Definition 35. A subset-bound + cardinality domain (sbc-domain) sbc〈R,P, č, ĉ〉 consists of a

required set R and a possible set P , a minimum and maximum cardinalities č and ĉ, and represents

the set of sets

sbc〈R,P, č, ĉ〉 ≡
{
s | R ⊆ s ⊆ P ∧ č ≤ |s| ≤ ĉ

}
(C.15)

We now give the definition of bound consistency for these set domains.

Definition 36 (sbc-bound consistency). A set constraint C(X1, ..., Xm) (Xi are set variables using

the sbc-domain) is said to be sbc-bound consistent if and only if ∀1 ≤ i ≤ m,

∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. C(x1, ..., xm) (C.16)

∧ RXi =
⋂

∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi (C.17)

∧ PXi
=

⋃
∀1≤j≤m,xj∈d(Xj):C(x1,...,xm)

xi (C.18)

∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. |xi| = ˇcXi
∧ C(x1, ..., xm) (C.19)

∧ ∃x1 ∈ d(X1), ..., xm ∈ d(Xm) s.t. |xi| = ˆcXi ∧ C(x1, ..., xm) (C.20)

where d(Xi) = sbc〈RXi , PXi , ˇcXi , ˆcXi〉 denotes the domain of Xi.

The definition is similar for the subset-bound domain but it omits the cardinality rules. In the

following, we use bcθ〈C〉 to denote a bound-consistency propagator (or complete filtering algorithm)

for constraint C on a θ-domain. We call free elements the elements in the possible set that are not

in required set and empty spots the maximum number of free elements that the set can include.

Example 60. Consider domain sbc〈{1, 2}, {1, .., 6}, 3, 5〉. {3, 4, 5, 6} are free elements and the do-

main has 3 empty spots since it can take at most 5 elements while 2 of them are already fixed by

required set.

C.4 Non-Empty Intersection Constraint

Reference [62] does not specify how the constraint propagator for the non-empty intersection constraint(|X∩

Y | ≥ 1) is implemented. This section presents a sound and complete propagator for the sbc-domain.

203

First note that the sbc-domain gives stronger propagation than the sb-domain.

Theorem 33. Enforcing bound consistency on the conjunction of constraints

|X ∩ Y | ≥ 1 ∧ čX ≤ |X| ≤ ĉX ∧ čY ≤ |Y | ≤ ĉY

is strictly stronger for the sbc-domain than for the sb-domain.

Proof. Consider X ∈ sb〈{1}, {1..5}〉, Y ∈ sb〈{6}, {2, .., 6}〉, čX = ĉX = čY = ĉY = 2. For the

sbc-domain, after enforcing bound consistency on each constraint, X ∈ sbc〈{1}, {1, .., 4}, 2, 2〉 and

Y ∈ sbc〈{6}, {3, .., 6}, 2, 2〉. X and Y can each take two elements, one of which is fixed, and elements

2 in X and 5 in Y are removed. All 3 constraints are bound-consistent for the sb-domain.

Algorithm 23 presents the filtering algorithm for the sbc-domain which relies on insights from the

length-lex domain [36] and the atmost algorithm studied in [70]. For simplicity, it assumes the

cardinality of both input variables are bounded, but it can easily be generalized to the unbounded

case. It divides all elements in the universe into 9 different regions, according to how they belong in

the domains. The algorithm mostly performs a case analysis of the number of empty spots in both

domains. It essentially detects if the overlap region is too small (that contains only one element),

in which case that element is inserted into the required set of both variables. On the other hand, if

there are too few empty spots left and the variables have no fixed overlapping element, the variables

cannot include elements not in the overlapping area.

Example 61. Let X ∈ sbc〈{1}, {1, 2, 3, 4}, 2, 2〉 and Y ∈ sbc〈{3, 5}, {3, 4, 5, 6}, 3, 3〉. There is a

solution since PXPY = {4} and PXRY = {3} are both non-empty (lines 6–9). The only empty spot

of X has to be used to accommodate the common element since the required element {1} is not in

the common region. As a consequence, it must require either 3 or 4 and element 2 which is not in

the common region can be removed (lines 11–13).

Example 62. Let X = {1, 2} and Y ∈ sbc〈{3}, {2, 3, 4}, 2, 2〉. There is a solution since the overlap-

ping is non-empty. Since there are only one choice in the common region, Ysbc must take element 2

(lines 8–9).

Theorem 34. Algorithm 23 is sound and complete, and takes O(n) time.

204

Algorithm 23 bcsbc〈nonEmptyIntersection〉(Xsbc = sbc〈RX , PX , cX , cX〉, Ysbc)
Require: Xsbc, Ysbc are both bound consistent

1: PXEY , EXPY ← PX \ (RX ∪ PY), PY \ (RY ∪ PX)
2: PXPY , RXRY ← (PX ∩ PY) \ (RX ∪RY), RX ∩RY
3: RXPY , PXRY ← RX ∩ (PY \RY), (PX \RX) ∩RY
4: if |RXRY | > 0 then
5: return true
6: if |PXPY |+ |RXPY |+ |PXRY | = 0 then
7: return ⊥
8: else if |PXPY |+ |RXPY |+ |PXRY | = 1 then
9: insert e into Xsbc, Ysbc (where {e} = PX ∪ PY)

10: else
11: c′X , c

′
Y ← cX − |RX |, cY − |RY |

12: if c′X = 1 ∧RXPY = ∅ then
13: exclude PXEY from Xsbc

14: if c′Y = 1 ∧ PXRY = ∅ then
15: exclude EXPY from Ysbc
16: return true

Proof. Algorithm 23 assumes that both domains are bound-consistent initially. We also assume that

the domains will remain the bound-consistent after any operation.1

The filtering algorithm reasons on the common region in which possible sets of two domains

overlaps. It tries to construct a feasible assignment and determines whether an element should

be included or excluded from the domain by seeking an alternative feasible assignment. Enforcing

bound consistency in each domain guarantees that we are able to construct a set x ∈ Xsbc and

y ∈ Ysbc. To enforce bound consistency, it is then sufficient to make sure that x and y overlaps.

There are 4 cases. First, the required set of both domains overlaps (lines 4–5), in which case any

assignment would satisfy the intersection constraint. Second, the common region is empty (lines

6–7), meaning that there is no hope to construct a feasible assignment and the filtering algorithm

fails. Third, the common region has exactly one element e (lines 8–9): This element must be inserted

in the required of both domains and the filtering succeeds.

The last case occurs when the common region has more than one element and none of them are

required in both sets. We consider inclusion and exclusion conditions separately. Only operations

on Xsbc are discussed, since those on Ysbc are symmetrical.

Inclusion: A free element is included in the required set only if it belongs to all solutions. We

1For example, given Xsbc = sbc〈∅, {1, 2}, 0, 1〉, including element 1 in Xsbc will give Xsbc = sbc〈{1}, {1}, 1, 1〉.
The operation not adds only element 1 to the required set, but the cardinality lower bound and possible set are also
updated accordingly to maintain bound consistency.

205

will show that no such element exists in this case. Consider any feasible assignment in which free

element e is used only by Xsbc: By consistency of the domain, there is another free element e′ in

Xsbc and we can construct another feasible assignment by swapping e′ with e. Consider now the

case in which free element e is used by both Xsbc and Ysbc. If e is not the only common element in

the considered assignment, we can swap e with another free element in Xsbc and the assignment still

satisfies the constraint. Otherwise, when e is the only common element, since the size of common

region is greater than one, we can find another element e′ in the common region. If e′ belongs to

Ysbc in the current assignment, we can swap e and e′. Otherwise, we can swap e and e′ in the current

assignment to Xsbc and swap e′ and a free element of Ysbc. As a result, no free element in Xsbc

appears in all solutiosn, which justify why lines 11–16 have no inclusion operation.

Exclusion: A free element is excluded from the possible set only if it does not belong to any

solution. If there is no empty spot in Xsbc, there is no free element Xsbc and no element can be

removed. If the number of empty spots c′Xsbc
is at least two, one empty spot can be used by the

common element and another can be used by any free element. All free elements then belong to at

least one solution. As a result, it remains to consider the case where there are only one empty spot

for Xsbc. The key idea is that, if the empty spot must be reserved for the common element, then we

can remove all free elements not in the common region (lines 12–13). If RXPY is empty, any required

element in Xsbc cannot be the common element, the empty spot must be reserved for the common

element and any element not in the common region should be removed: these are possible elements

for Xsbc which are not in the possible set of Ysbc. Otherwise when RXPY is non-empty, elements in

this set can served as the common element, the empty spot can be used by any free element, and

hence all the free elements appear in at least one solution and cannot be removed.

C.5 All Non-Empty Intersection Constraint

In SONET, a node u must share rings with all its neighbors. It naturally raises a question whether

or not there exists a global constraint achieving more pruning. We define a new global constraint

allNonEmptyIntersect(X, {Y1, .., Yn}) ≡ (∀1 ≤ i ≤ n, |X ∩ Yi| ≥ 1) (C.21)

206

which allows us to rewrite (C.1) into

allNonEmptyIntersect(Yu, {Yv|v ∈ δu}) ∀u ∈ N. (C.22)

Theorem 35. bcsb〈allNonEmptyIntersect(X, {Y1, .., Yn})〉 is decomposable.

Proof. (sketch) From reference [6], bcsb(∀i < j, |Yi ∩ Yj | ≥ 1) is decomposable. Our constraint is a

special case of it which can be transformed to the general case by amending a dummy element to

the possible set of each Yi.

Unfortunately, the result does not hold for the sbc-domain.

Theorem 36. bcsbc〈allNonEmptyIntersect(X, {Y1, .., Yn})〉 is strictly stronger than enforcing BC

on its decomposition (i.e. ∀1 ≤ i ≤ n, bcsbc〈|X ∩ Yi| ≥ 1〉).

Proof. Consider allNonEmptyIntersect(X, {Y1, Y2, Y3}). X ∈ sbc〈∅, {1..6}, 2, 2〉, Y1 ∈

sbc〈∅, {1, 2}, 1, 1〉, Y2 ∈ sbc〈∅, {3, 4}, 1, 1〉, and Y3 ∈ sbc〈∅, {5, 6}, 1, 1〉. It is bound consistency on

each constraint in the decomposition. However, there is no solution since X can only takes two

elements and the possible sets of Y1, Y2 and Y3 are disjoint.

Theorem 37. bcsbc〈allNonEmptyIntersect(X, {Y1, .., Yn})〉 is NP-hard.

Proof. Reduction from 3-SAT. Instance: Set of n literals and m clauses over the literals such that

each clause contains exactly 3 literals. Question: Is there a satisfying truth assignment for all

clauses?

We construct a set-CSP with three types of variables. The first type corresponds to literals: for

each literal, we construct a set variable Xi with domain sbc〈∅, {i,¬i}, 1, 1〉, values in the possible set

corresponds to true and false. The second type corresponds to clauses: for every clause j (xp∨¬xq∨

xr), we introduce one set variable Yj with domain sbc〈∅, {p,−q, r}, 1, 3〉. The third type contains

just one set variable Z correspond to the assignment, its domain is sbc〈∅, {1,−1, .., n,−n}, n, n〉.

The constraint is in the form,

allNonEmptyIntersect(Z, {X1, .., Xn, Y1, .., Ym})

207

Set variables Xi guarantees that Z is valid assignment (i.e., for every i, it can only pick either i

or −i, but not both). Yj and Z overlap if and only if at least one of the literals is satisfied. The

constraint has a solution if and only if the 3-SAT instance is satisfiable. Therefore, enforcing bound

consistency is NP-hard.

C.6 Subset of Union

This section considers constraint (C.12) which is an instance of

subsetOfUnion(X, {Y1, .., Ym}) ≡
⋃

1≤i≤m

Yi ⊇ X (C.23)

Constraint (C.12) is justified by the following reasoning for a node u and a ring i it belongs to: If i

is not used by any of u’s neighbors, u does not need to use i. As a result, the rings of node u must

be a subset of the rings of its neighbors. We first propose two simple inference rules to perform

deductions on this constraint.

Rule 4 (SubsetOfUnion : Element Not in Union).

i ∈ PX ∧ ∀1 ≤ j ≤ m, i 6∈ PYj

subsetOfUnion(X, {Y1, .., Ym}) 7−→ i 6∈ X ∧ subsetOfUnion(X, {Y1, .., Ym})

Theorem 38. Rule 4 is sound.

Proof. Elements in X have to be supported by some Yi. However, as none of the Yi contain i, this

element belongs to no solution.

Rule 5 (SubsetOfUnion : Element Must Be in Union).

i ∈ RX ∧ i ∈ PYk
∧ |{i ∈ PYj

| 1 ≤ j ≤ m}| = 1

subsetOfUnion(X, {Y1, .., Ym}) 7−→ i ∈ Yk ∧ subsetOfUnion(X, {Y1, .., Ym})

Theorem 39. Rule 5 is sound.

208

Proof. Since i ∈ X in all solutions, at least one of the variables among Y1, .., Ym contains i. Since

Yk is the only variable that contains i, it must contain i in all solutions.

Two above rules are sufficient to enforce bound consistency on the sb-domain.

Theorem 40. bcsb〈subsetOfUnion(X, {Y1, .., Ym})〉 is equivalent to enforcing rule 4 and rule 5

until they reach the fixpoint.

Proof. Consider an element e ∈ PX . It has a support or otherwise it would be removed by rule 4. It

does not belong to all solutions since, given any feasible assignment to the constraint that contains

e, removing e from X still leaves us with a feasible solution. Hence e does not belong to the required

set. An element e ∈ PYi
always has a support since adding e to any feasible assignment would not

make it invalid. An element e ∈ PYi belongs to all solutions if it must be in the union and Yi is the

only variable that contains e (rule 5).

It is an open issue to determine if bound consistency can be enforced in polynomial time on the

sbc-domain.

Theorem 41. bcsbc〈subsetOfUnion(X, {Y1, .., Ym})〉 is strictly stronger than enforcing rule 4 and

rule 5 until they reach the fix-point.

Proof. Consider the domainsX ∈ sbc〈∅, {1, .., 6}, 0, 2〉, Y1 ∈ sbc〈∅, {1, 2}, 1, 1〉, Y2 ∈ sbc〈∅, {3, 4}, 1, 1〉

and Y3 ∈ sbc〈∅, {1, .., 5}, 2, 2〉. Applying the domain reduction rules, the domain of X becomes

sbc〈∅, {1, .., 5}, 2, 2〉. 5 ∈ PY3
has no solution since X has only two empty spots, one for {1, 2} and

the other for {3, 4} as Y1 and Y2 are disjoint. The constraint is thus not bound consistent.

C.7 Subset Of Open Union

The SONET model contains a dual set of variables. Variable Yu represents the set of rings node u

lies on and ring variable Xi represents the set of nodes on ring i. Variable Yu indirectly specifies

the set of nodes that u can communicate with. Such set should be a superset of δu. We propose a

global constraint that enforce this relation:

subsetOfOpenUnion(s, Y, {X1, .., Xm}) ≡
⋃
i∈Y

Xi ⊇ s (C.24)

209

which is used in constraint (C.13) of the model.

Example 63. Suppose node 1 has 5 neighbors (i.e., δ1 = {2, .., 6}), each pair has a demand of one

unit. There are 2 rings, each ring can accommodate atmost 2 ADMs. There is no solution since

2 rings can accommodate atmost 4 neighbors. Using 5 nonEmptyIntersection constraints cannot

detect such failure.

Constraint subsetOfOpenUnion is sometimes called an open constraint [69], since the scope of the

constraint is defined by Y . Complete filtering is polynomial for the sb-domain but intractable for

the sbc-domain.

Rule 6 (SubsetOfOpenUnion : Failure).

⋃
i∈PY

PXi
6⊇ s

subsetOfOpenUnion(s, Y, {X1, .., Xm}) 7−→ ⊥

Theorem 42. Rule 6 is sound.

Proof. The possible set is the largest set which a set variable can take. If some element in s does

not belong to any possible set in the possible scope, there is no solution.

Rule 7 (SubsetOfOpenUnion: Required Elements).

i ∈ PY ∧ e ∈ PXi ∧ e ∈ s ∧ |{e ∈ PXj | j ∈ PY }| = 1

subsetOfOpenUnion(s, Y, {X1, .., Xm})

7−→ i ∈ Y ∧ e ∈ Xi ∧ subsetOfOpenUnion(s, Y, {X1, .., Xm})

Theorem 43. Rule 7 is sound.

Proof. Similar to Theorem 39.

Theorem 44. bcsb〈subsetOfOpenUnion(s, Y, {X1, .., Xm})〉 is equivalent to enforcing rule 6 and

rule 7 until they reach a fixpoint.

Proof. There is no feasible assignment if and only if the union of all possible Xi is not a superset

of s (rule 6). Assume that there is a feasible solution. Consider an element e ∈ PY or e ∈ PXi
: It

210

must have a support since any feasible assignment would remain feasible after adding e to it. An

element e ∈ PXi
which is also in s belongs to all solutions if it belongs to exactly one variable Xi.

In such case, we include e in Xi and i in Y since Xi must be in the scope (rule 7).

Theorem 45. bcsbc〈subsetOfOpenUnion(s, Y, {X1, .., Xm})〉 is NP-hard.

Proof. Reduction from Dominating Set. The problem of dominating set is defined as follows. Input

instance: A graph G = 〈V,E〉 and an integer k ≤ |V |. Question: Does there exist a subset V ′ of V

such that |V ′| ≤ k and every node in V \ V ′ is a neighbor of some nodes in V ′?

Given an instance with a graph G and a constant k, we construct an instance of CSP that s = V ,

Y ∈ 〈∅, V, 0, k〉 and, for every i ∈ V , Xi = δGi ∪{i} (where δGi denotes the neighborhood of node i in

graph G). Intuitively, Y corresponds to a dominating set with size at most k, Xi is a vertex that can

“dominate” at most all elements in its domain (which is also the neighbors in the originally graph).

The constraint is consistent if and only if there exists a dominating set of size not more than k.

⇒ Given a dominating set V ′ in the original graph G, the constraint is consistent since we can

construct a solution by setting Y = V ′, every element in Y actually corresponds to a node in the

dominating set. Since every node in V \ V ′ is the neighbor or at least on node in V ′, every element

in δu also belongs to the domain of some Xi (i ∈ Y).

⇐ Given a consistent assignment of Y and Xi for all i ∈ Y , all elements in δu are covered by

some Xi and hence Y is the dominating set.

Since the constraint is intractable, we present a number of inference rules particularly useful in

practice. The first inference rule reasons about the cardinality of Y . The union of Xi must be a

superset of s. Since Y determines the number of Xi in the union, we can get an upper bound on

the union cardinality by reasoning on the maximal cardinalities of the Xi. If the upper bound is

less than |s|, there is no solution. Otherwise, we obtain a lower bound of cardinality of Y .

Example 64. Suppose X1 = X2 = X3 ∈ sbc〈∅, {1, .., 8}, 0, 3〉, Y ∈ sbc〈∅, {1, 2, 3}, 2, 3〉 and s =

{1, .., 8}. Each of Xi has 3 empty spots. We need at least d8/3e = 3 Xi to accommodate every

element in s. It implies |Y | > 2.

211

Rule 8 (SubsetOfOpenUnion : Lower Bound of |Y |).

maxt∈d(Y):|t|=čY
∑
i∈t(ˆcXi

− |RXi
\ s|) < |s|

subsetOfOpenUnion(s, Y, {X1, .., Xm})

7−→ |Y | > čY ∧ subsetOfOpenUnion(s, Y, {X1, .., Xm})

Theorem 46. Rule 8 is sound.

Proof. Any feasible assignment to the constraint satisfies
⋃
i∈y(xi ∩ s) ⊇ s. Consider the set xi ∩ s.

xi is in d(Xi) = sbc〈RXi
, PXi

, ˇcXi
, ˆcXi
〉. We divide it into two parts: First, the elements in RXi

∩ s

are fixed. Second, xi can choose ˆcXi −|RXi | elements freely from the set PXi \RXi . The cardinality

of the set xi ∩ s is the sum of two parts and can be bounded from above

(ˆcXi
− |RXi

|) + |RXi
∩ s| = ˆcXi

− |RXi
\ s| ≥ |xi ∩ s|

Therefore we obtain the following inequality,

∑
i∈y

(ˆcXi
− |RXi

\ s|) ≥
∑
i∈y
|xi ∩ s| ≥ |

⋃
i∈y

(xi ∩ s)| ≥ |s| (C.25)

Cardinalities of y that do not meet this condition belong to no solution.

A similar reasoning on the cardinalities of Y can remove elements of Y that corresponds to small

Xi.

Example 65. SupposeX1 = X2 ∈ sbc〈∅, {1, .., 6}, 0, 3〉, X3 ∈ sbc〈∅, {1, .., 6}, 0, 2〉, Y ∈ sbc〈∅, {1, 2, 3}, 2, 2〉

and s = {1, .., 6}. We need to choose two sets among X1, X2 and X3. If X3 is chosen, it provides

2 empty spots and we need 4 more spots. However, neither X1 nor X2 is big enough to provide 4

empty spots. It implies that Y cannot take X3.

Rule 9 (SubsetOfOpenUnion : Pruning Elements of Y).

maxt∈d(Y):i∈t
∑
j∈t(ˆcXj − |RXj \ s|) < |s| ∧ i ∈ PY

subsetOfOpenUnion(s, Y, {X1, .., Xm})

7−→ i 6∈ Y ∧ subsetOfOpenUnion(s, Y, {X1, .., Xm})

212

Theorem 47. Rule 9 is sound.

Proof. Expression (C.25) gives a upper bound of empty spots that Xi can provide. If all possible

values of Y containing element i do not provide enough empty spots to accommodate all elements

in s, Xi is too small and i /∈ Y .

C.8 Combination of subsetOfOpenUnion and channeling

This section explores the combination of the subsetOfOpenUnion and channeling constraints. In-

deed, in the SONET model, the Xi and Yu are primal and dual variables channeled using the

constraint: i ∈ Yu ⇔ u ∈ Xi. In other words, when Yu takes element i, one spot in Xi is used to

accommodate u. Exploiting this information enables us to derive stronger inference rules.

The first inference rule assumes that Y is bound and reduces the open constraints to a global

cardinality constraint. It generalizes the last two constraints (C.10) and (C.11) in Smith’s extended

model which apply when 1 ≤ |Yu| ≤ 2.

Definition 37 (Global lower-bounded cardinality constraint). We define a specialized global car-

dinality constraint, where only the lower bound is specified. GCClb({X1, .., Xm}, [l1, .., ln]) ≡ ∀1 ≤

j ≤ n, |{j ∈ Xi|1 ≤ i ≤ m}| ≥ lj

Example 66. Suppose node 1 has 3 neighbors, Y1 = {1, 2}. X1 and X2 must contain {1} and each

element in {2,3,4} has to be taken at least once. It is equivalent to GCClb({X1, X2}, [2, 1, 1, 1]). By

a simple counting argument, there is no solution.

Rule 10 (SubsetOfOpenUnion and Channeling : Global Cardinality).

Yu = y (Yu is bounded)

subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧
i u ∈ Xi ⇔ i ∈ Yu

7−→ GCClb({Xi|i ∈ Yu}, [l1, .., ln]) ∧
∧
i u ∈ Xi ⇔ i ∈ Yu

where lu = |Yu|, li = 1 if i ∈ s and otherwise li = 0

Theorem 48. Rule 10 is sound.

Proof. When Yu is bounded, the scope for the union is fixed. The union constraint requires that

the union of set has to be a superset of s and hence each element of s has to be taken at least once.

213

The channeling constraint requires each variable Xi contains element u and, as Yu defines the scope,

element u has to be taken exactly |Yu| times. It reduces to a GCClb.

Moreover, it is possible to strengthen the earlier cardinality-based inference rules to include the

channeling information.

Example 67. Suppose u = 1, s = {2, .., 7}, X1 ∈ sbc〈{}, {1..8}, 0, 3〉, X2 ∈ sbc〈{1, 8}, {1..8}, 2, 4〉,

X3 ∈ sbc〈{2, 8}, {1..8}, 2, 3〉, and Y1 ∈ sbc〈{}, {1, 2, 3}, 2, 3〉. Y1 determines the scope of the union

constraint. Suppose 1 ∈ Y1, X1 is in the scope and by channeling constraint we have X1 ∈

sbc〈{1}, {1..8}, 1, 3〉. X1 now has at most 2 empty spots for elements in s, as its cardinality up-

per bound is 3 and one spot is used by element 1. On the other hand, suppose 2 ∈ Y1 and hence X2

is in the scope, it provides 2 empty spots too. Lastly, suppose 3 ∈ Y1, X3 is in the scope and can

provide 2 spots for elements in s (which includes element 2 which is already required). Therefore,

each of Xi provides at most 2 empty spots to accommodate elements in s, which implies that there

is no solution if |Y1| = 2, we can post |Y1| > 2.

Rule 11 (SubsetOfOpenUnion and Channeling : Lower Bound of |Y |).

u 6∈ s ∧maxt∈d(Y):|t|=čY
∑
i∈t(ˆcXi

− |RXi
\ s| − (RXi

63 u)) < |s|

subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧
i u ∈ Xi ⇔ i ∈ Yu

7−→ |Y | > čY ∧ subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧
i u ∈ Xi ⇔ i ∈ Yu

Theorem 49. Rule 11 is sound.

Proof. For any feasible assignment to the constraint subsetOfOpenUnion(s, yu, [x1, ..., xm]), and

the channeling constraint, it satisfies the condition,

⋃
i∈yu

(xi ∩ s) ⊇ s ∧
∧
i∈yu

(xi 3 u)

The left part is equivalent to the proof of Theorem 46. The right part is the channeling constraint.

Hence, when u is not in Xi, we need to reserve one spot for it. The condition now becomes,

ˆcXi − |RXi \ s| − (RXi 63 u) ≥ |xi ∩ s|

214

(e 6∈ RXi) is a boolean function that returns 1 when the condition is true and otherwise 0. When u

is not in the required set of Xi, we need to reserve one spot for it. The rest is same as the proof for

Theorem 46.

Rule 12 (SubsetOfOpenUnion and Channeling : Pruning Y).

u 6∈ s ∧maxt∈d(Yu):i∈t
∑
j∈t(ˆcXj − |RXj \ s| − (RXj 63 u)) < |s| ∧ i ∈ PYu

subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧
i u ∈ Xi ⇔ i ∈ Yu

7−→ i 6∈ Yu ∧ subsetOfOpenUnion(s, Yu, {X1, .., Xm}) ∧
∧
i u ∈ Xi ⇔ i ∈ Yu

Theorem 50. Rule 12 is sound.

Proof. The proof is similar to Theorem 49. If every possible assignment of Y that includes element

i cannot satisfy the cardinality requirement, we can safely remove the element from the domain.

Additional Pruning in Special Cases There are some additional inferences available when the

cardinality of Yu is 1.

Example 68. Consider the sonet problem with 5 nodes. Node 1 is adjacent with node 2,3, and 4.

Node 2 is adjacent with node 1,3, and 5. Assume that the cardinality of node 2 is 1 (i.e., |Y2| = 1),

meaning that node 2 is on exactly one ring. This ring contains all the nodes adjacent to node 2 (i.e.,

1,3, and 5). In particular, node 1 is now forced to lie on the same ring as node 5 (which is not one

of its neighbors). Therefore, from the perspective of node 1, node 5 can be consider a “neighbor”

and this information can result in more pruning.

Such reasoning is modeled using the following constraint which includes “new” neighbors:

subsetOfOpenUnion(s′u, Yu, {X1, .., Xm})

where s′u = adj(u) ∪
⋃
v∈adj(u)∧|Yv|=1(adj(v) \ {u}). It is posted on the fly when the cardinality of

neighbor node is bound to 1.

215

C.9 Experimental Evaluation

We now describe the experimental evaluation of our approach. We start by describing earlier results

on MIP and CP models. We then present our search procedure and the computational results.

Finally, we describe the impact of various factors, including the branching heuristics and the proposed

global constraints.

The MIP Formulation The problem was first solved with a MIP solver [60]. The input was

preprocessed before the search and some variables were pre-assigned. Valid inequalities were added

during the search in order to tighten the model representation. Several variable-ordering heuris-

tics, mainly based on the neighborhood and demand of nodes, were devised and tested. Several

symmetry-breaking constraints were evaluated too. Table 1 in [59] indicates minuscule differences

in performance among different symmetry-breaking constraints.

CP Formulations Smith [62] introduced a four-stage search procedure in her CP program: First

decide the objective value, then decide how many rings each node lies on (label the cardinality of

Yu), then decide which rings each node lies on (label the elements of Yu), and finally decide how

much bandwidth is assigned to demand pairs on each ring. A few variable-branching heuristics were

examined, with a dynamic ordering giving the best results. Symmetry-breaking techniques were also

investigated. To avoid clashing with variable ordering, SBDS (symmetry breaking during search)

was used. SBDS was very effective on the SONET problems, although it generated a huge number of

no-good constraints, inducing a significant overhead to the system. Recall also that Smith’s model

included a few simple redundant constraints reasoning on the cardinality of node variables (Yu).

Please refer to Section 5 in [62] for a detailed discussion.

Another CP model was proposed in [57] and it broke symmetries by adding lexicographic con-

straints on set variables. With the additional lexicographic component, the solver obtained a tighter

approximation of the set-variable domains. The lexicographical information was used not only for

breaking symmetries, but also for cardinality reasoning. This method provided a much simpler

mechanism to remove symmetries. However, as mentioned by the authors, different components

of the set domain (the membership component, the cardinality restriction, and the lexicographical

216

bound) did not interact effectively.

The Comet Model Figures C.2, C.3 and C.4 give the model in the Comet language. The decision

variables are equivalent to Smith’s model, rings[ri] is the set of nodes assigned to ring ri,

nodes[ni] is the set of rings assigned to node ni, flows denotes the amount of bandwidth of each

demand allocated to each ring, nodeCards[ni] is an auxiliary variable indicates the cardinality

of node ni, and objective is total number of ADMs used and is the value to minimize. Lines

8–15 preprocess the graph: dem[ni] denotes the total demand of node ni, deg[ni] its degree,

and adj[ni] its neighborhood. The model has three parts. The first part (lines 17–34) captures

the basic constraints used by all earlier CP models. The second part (lines 37–40) contains the

two redundant constraints introduced in this paper. The third part (lines 43–65) is a set of implied

constraints used in Smith’s model.

Our Search Procedure Our CP algorithm Boosting implements all the constraints presented

in this paper and uses a static four-stage search inspired by Smith’s heuristics [62]. Figure C.4

illustrates the search procedure in COMET. Note that the searches adds redundant constraints on

the fly (lines 76–81) as mentioned earlier. The algorithm first branches on the objective value (line

69), starting from the minimum value and increasing the value by one at a time from the infeasible

region (line 68). The first feasible solution is thus optimal. Then the search decides the cardinality of

nodes (lines 71–74). Third, the search decides the value of nodes (lines 83–89). Last, the algorithm

decides the flow assigned to each pair of nodes on a ring (lines 91–95). Proposition 2 in [60] shows

that there is an integral solution as long as all the demands are integral and the algorithm only

needs to branch on integers. In each stage, variables are labeled in the order given by the instance

being solved.

The last paragraph of Section C.8 describes some additional pruning for some special cases. It

exploits the observation that, when the cardinality of a node is 1, all its neighbors must lie on the

same ring. As a result, if a node’s neighbor belongs to only one ring, all neighbors of the node’s

neighbor becomes the node’s neighbor. Lines 76—81 take this into account and post redundant

constraints after the cardinality of nodes is bound.

217

1 Solver<CP> cp();
2 var<CP>{set{int}} rings[Rings](cp, Nodes);
3 var<CP>{set{int}} nodes[Nodes](cp, Rings);
4 var<CP>{int} flows[Rings,Edges](cp, 0..c);
5 var<CP>{int} nodeCards[n in Nodes] = nodes[n].getCardinalityVariable();
6 var<CP>{int} objective(cp,0..r*a);
7

8 int dem[n in Nodes] = sum(ei in Edges: u[ei]==n || v[ei]==n) d[ei];
9 int deg[n in Nodes] = sum(ei in Edges: u[ei]==n || v[ei]==n) 1;

10 int g[ni in Nodes, nj in Nodes] = 0;
11 forall (ei in Edges) {
12 g[u[ei],v[ei]] = 1;
13 g[v[ei],u[ei]] = 1;
14 }
15 set{int} adj[ni in Nodes] = collect(nj in Nodes: g[ni,nj] > 0) nj;

Figure C.2: The Initialization for the Sonet Problem.

Benchmarks and Implementations The benchmarks include all the large capacitated instances

from [60]. Small and medium instances take negligible time and are omitted. Our algorithm was

evaluated on an Intel Core 2 Duo 2.6GHz laptop with 4Gb of memory. The MIP model [60] used

CPLEX on a Sun Ultra 10 Workstation. Smith’s algorithm [62] used ILOG Solver on one 1.7GHz

processor. Hybrid[57] was run using the Eclipse constraint solver on a Pentium 4 2GHz processor,

with a timeout of 3000 seconds.

Comparison of the Approaches Table C.1 reports the CPU time and number of backtracks (bt)

required for each approach to prove the optimality of each instance. Our Boosting algorithm is, on

average, more than 3400 times faster than the MIP and Hybrid approaches and visits several orders

on magnitude fewer nodes. Boosting is more than 14 times faster than the SBDS approach when

the machines are scaled and produces significantly higher speedups on the most difficult instances

(e.g., instance 9). The SBDS method performs fewer backtracks in 9 out of 15 instances, because it

eliminates symmetric subtrees earlier than our static symmetry-breaking constraint. However, even

when the CPU speed is scaled, none of 15 instances are solved by SBDS faster than Boosting. This is

explained by the huge number of symmetry-breaking constraints added during search. The empirical

results confirm the strength of the light-weight and effective propagation algorithms proposed in this

paper. While earlier attempts focused on branching heuristics and sophisticated symmetry-breaking

techniques, the results demonstrate that effective filtering algorithms are key in obtaining strong

performance on this problem. The remaining experimental results give empirical evidence justifying

218

16 solve<cp>{
17 // basic constraints
18 forall(r in Rings)
19 cp.post(rings[r].getCardinalityVariable() <= a);
20 cp.post(channeling(rings,nodes));
21 forall(e in Edges)
22 cp.post(atleast1(nodes[u[e]], nodes[v[e]]));
23 cp.post(sum(r in Rings) rings[r].getCardinalityVariable()==objective);
24 cp.post(sum(n in Nodes) nodeCards[n] == objective);
25 forall(ri in Rings, rj in Rings: ri < rj)
26 cp.post(lexleq(all(n in Nodes) rings[rj].getRequired(n),
27 all(n in Nodes) rings[ri].getRequired(n)));
28 forall(e in Edges)
29 cp.post(sum(ri in Rings) flows[ri,e] == d[e]);
30 forall(r in Rings,e in Edges)
31 cp.post((flows[r,e] > 0) =>
32 (isRequired(rings[r],u[e]) && isRequired(rings[r],v[e])));
33 forall(r in Rings)
34 cp.post(sum(e in Edges) flows[r,e] <= c);
35

36 // redundant constraints
37 forall(ni in Nodes)
38 cp.post(subsetOfUnion(nodes[ni],all(nj in Nodes:g[ni,nj]==1) nodes[nj]));
39 forall(n in Nodes)
40 cp.post(subsetOfOpenUnionWithChanneling(adj[n],nodes[n],n,rings));
41

42 // redundant constraints (From Barbara Smith’s paper)
43 forall(r in Rings)
44 cp.post(rings[r].getCardinalityVariable() != 1);
45 forall(n in Nodes) {
46 cp.post(nodeCards[n] >= ceil((float) deg[n]/(a-1)));
47 cp.post(nodeCards[n] >= ceil((float) dem[n]/c));
48 }
49 forall(ni in Nodes, nj in Nodes : ni < nj) {
50 int c1 = sum(nk in Nodes: g[ni,nk] > 0 || g[nj,nk] > 0) 1;
51 if (g[ni,nj] > 0) {
52 if ((deg[ni] < a && deg[nj] < a) && c1 >= a+1)
53 cp.post(nodeCards[ni] + nodeCards[nj] >= 3);
54 if ((deg[ni] >= a || deg[nj] >= a) && c1 >= 2*a)
55 cp.post(nodeCards[ni] + nodeCards[nj] >= 4);
56 }
57 else {
58 if (deg[ni] < a && deg[nj] < a && c1 >= a-1)
59 forall(nk in Nodes: ni!=nk && nj!=nk && g[ni,nk]>0 && g[nj,nk]>0) {
60 int c2 = sum(nl in Nodes:(g[ni,nl]>0 || g[nj,nl]>0 || g[nk,nl]>0)) 1;
61 if (c2 > 2*a-1)
62 cp.post((nodeCards[ni]==1 && nodeCards[nj]==1) => (nodeCards[nk]>=3));
63 }
64 }
65 }
66 }

Figure C.3: Comet Model for the Sonet Problem.

219

67 using {
68 tryall<cp>(obj in n..r*a){
69 cp.post(objective == obj);
70

71 forall (ni in Nodes: !nodeCards[ni].bound())
72 tryall<cp>(v in nodeCards[ni].getMin()..nodeCards[ni].getMax():
73 nodeCards[ni].memberOf(v))
74 cp.post(nodeCards[ni] == v);
75

76 forall (ni in Nodes) {
77 set{int} s = adj[ni].copy();
78 forall(u in adj[ni]: nodeCards[u].getValue() == 1)
79 forall(v in adj[u]: v != ni) s.insert(v);
80 cp.post(subsetOfOpenUnionWithChanneling(s,nodes[ni],ni,rings));
81 }
82

83 forall (ni in Nodes)
84 forall (ri in Rings: !nodes[ni].isRequired(ri) &&
85 !nodes[ni].isExcluded(ri)) {
86 try<cp>
87 cp.requires(nodes[ni], ri); | cp.excludes(nodes[ni],ri);
88 if (nodes[ni].bound()) break;
89 }
90

91 forall(ri in Rings, ei in Edges: !flows[ri,ei].bound())
92 while (!flows[ri,ei].bound()) {
93 int l = flows[ri,ei].getMin();
94 try<cp> cp.post(flows[ri,ei] == l); | cp.post(flows[ri,ei] > l);
95 }
96 }
97 }

Figure C.4: Comet Search Procedure for the Sonet Problem.

220

MIP Hybrid SBDS Boosting
Sun Ultra 10 P4, 2GHz P(M), 1.7GHz C2D 2.4GHz

Opt Nodes Time bt Time bt Time Fails Time
1 22 5844 209.54 532065 2248.68 990 0.95 755 0.09
2 20 1654 89.23 451 0.65 77 0.01
3 22 4696 151.54 65039 227.71 417 0.62 781 0.12
4 23 50167 1814 476205 1767.82 1419 1.52 2585 0.19
5 22 36487 1358.83 922 0.7 1765 0.18
6 22 9001 343.54 306 0.29 519 0.07
7 22 13966 568.96 270310 1163.94 982 1.15 4395 0.73
8 20 441 23.38 11688 54.73 34 0.09 44 0.01
9 23 25504 701.71 35359 45.13 5117 0.65
10 24 8501 375.48 4620 6.75 5092 0.84
11 22 5015 316.77 352 0.54 238 0.04
12 22 6025 213.4 1038 1.09 2639 0.31
13 21 2052 65.06 255590 1300.91 105 0.14 710 0.11
14 23 61115 2337.29 1487 1.66 1064 0.13
15 23 100629 4324.19 13662 19.59 1981 0.28

avg 22073.13 859.528 4142.93 5.39 1850.80 0.25

Table C.1: SONET: Experimental Results on Large Capacitated Instances.

this observation.

C.9.1 The Impact of Branching Heuristics

We now study the impact of the branching heuristics and evaluate various variable orderings for the

static labeling procedure of Boosting. Various variable orderings were studied in [60, 62]. Most of

them are based on the node demands and degrees. Our experiments considered four different heuris-

tics: minimum-degree-first, maximum-degree-first, minimum-demand-first, and maximum-demand-

first. To avoid a clash between the variable heuristics and the symmetry-breaking constraint, the

lexicographic constraint uses the same static order as the branching heuristic. Table C.2 reports the

average number of backtracks and time to solve all 15 instances, where row Given is the node ordering

from the instance data. The results show that, with the exception of the max-demand heuristic, all

variable orderings produce very similar number of backtracks and runtime performance. Moreover,

the max-demand heuristic is still orders of magnitude faster than earlier attempts. This indicates

that the variable ordering is not particularly significant when stronger filtering algorithms are avail-

able.

221

avg Fails avg Time
Given 1850.80 0.25

Min-Degree 1721.6 0.21
Max-Degree 2368.2 0.30
Min-Demand 1758.27 0.21
Max-Demand 2901.53 0.36

Table C.2: SONET: The Impact of Branching Heuristics

C.9.2 The Impact of Redundant Constraints

We conclude the experimental section by analyzing the impact of each redundant constraint. Our

study simply enumerated and evaluated all combinations. The results are presented in Table C.3,

where 4 indicates that the corresponding constraint was used in the model. For cases where the sbc-

domain propagator nonEmptyIntersection is absent, an sb-domain implementation is used instead.

The table reports the average number of backtracks and the CPU time. Using all three redundant

constraints (first row) gives the smallest search tree. NotEmptyIntersection is the most cost-

effective constraint, models using it takes the least CPU time. The models in which subsetOfUnion

constraint is absent (e.g. third row) achieves the same solving time as the complete model, with some

more backtrackings. It suggests that constraint subsetOfUnion brings the least contribution to the

efficiency. Removing subsetOfOpenUnion dampens the search the most, doubling the number of

backtracks. Thrashing is caused when both binary intersection constraints and subsetOfOpenUnion

are removed (sixth row), the resulting algorithm being almost 10 times slower and visiting 11 times

more nodes than the complete model. The worst performance is the last row, which essentially

corresponds to Smith’s model with a static symmetry-breaking constraint and a static labeling

heuristic. Overall, these results suggest that, on the SONET application, the performance of the

algorithm is strongly correlated to the strength of constraint propagation. The variable heuristics

and the symmetry-breaking technique have marginal impact on the performance.

C.10 Conclusion

This chapter reconsiders the SONET problem. While earlier attempts focused on symmetry break-

ing and the design of effective search strategies, this paper took an orthogonal view and aimed at

222

NonEmptyIntersection SubsetOfUnion SubsetOfOpenUnion
|X ∩ Y | ≥ 1

⋃
i Yi ⊇ X

⋃
i∈Y Xi ⊇ s avg Fails avg Time

4 4 4 1850.80 0.25
4 4 4569.80 0.21
4 4 1896.40 0.25

4 4 2248.93 0.36
4 4926.07 0.21

4 28956.93 1.52
4 2330.00 0.36

35602.00 1.81

Table C.3: SONET: The Impact of Redundant Constraints

boosting constraint propagation by studying a variety of global constraints arising in the SONET

application. From a modeling standpoint, the main contribution was to isolate two classes of re-

dundant constraints that provide a global view to the solver. From a technical standpoint, the

scientific contributions included novel hardness proofs, propagation algorithms, and filtering rules.

The technical contributions were evaluated on a simple and static model that runs a few orders of

magnitude faster than earlier attempts. Experimental results also demonstrated the minor impact

of variable orderings, once advanced constraint propagation is used. More generally, these results

indicate the significant benefits of constraint programming for this application and the value of

developing effective constraint propagation over sets.

223

Bibliography

[1] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press, 2009.

[2] Francisco Azevedo. Cardinal: A finite sets constraint solver. Constraints, 12(1):93–129, 2007.

[3] Nicolas Barnier and Pascal Brisset. Solving the kirkmans schoolgirl problem in a few seconds.

In CP-2002, pages 477–491. Springer-Verlag, 2002.

[4] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, Claude-Guy Quimper,

and Toby Walsh. The parameterized complexity of global constraints. In Fox and Gomes [20],

pages 235–240.

[5] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. The complexity of

global constraints. In Deborah L. McGuinness and George Ferguson, editors, AAAI, pages

112–117, 2004.

[6] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Disjoint, partition

and intersection constraints for set and multiset variables. In Wallace [71], pages 138–152.

[7] Christian Bessière and Jean-Charles Régin. Enforcing arc consistency on global constraints by

solving subproblems on the fly. In Joxan Jaffar, editor, CP, volume 1713 of Lecture Notes in

Computer Science, pages 103–117. Springer, 1999.

[8] David Cohen, editor. Principles and Practice of Constraint Programming - CP 2010 - 16th

International Conference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Pro-

ceedings, volume 6308 of Lecture Notes in Computer Science. Springer, 2010.

224

[9] Charles J. Colbourn, Jeffrey H. Dinitz (Eds.), Jeffrey H. Dinitz, Leo Chouinard Ii, Robert

Jajcay, and S. S. Magliveras. The crc handbook of combinatorial designs, 1995.

[10] Carlos Cotta, Iván Dotú, Antonio J. Fernández, and Pascal Van Hentenryck. Scheduling social

golfers with memetic evolutionary programming. In Francisco Almeida, Maŕıa J. Blesa Aguilera,

Christian Blum, J. Marcos Moreno-Vega, Melqúıades Pérez Pérez, Andrea Roli, and Michael

Sampels, editors, Hybrid Metaheuristics, volume 4030 of Lecture Notes in Computer Science,

pages 150–161. Springer, 2006.

[11] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-

breaking predicates for search problems. In KR, pages 148–159, 1996.

[12] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 1998.

[13] Gregoire Dooms, Luc Mercier, Pascal Van Hentenryck, Willem-Jan van Hoeve, and Laurent

Michel. Length-lex open constraints. Technical Report. Brown University, 2007.

[14] Iván Dotú and Pascal Van Hentenryck. Scheduling social tournaments locally. AI Commun.,

20(3):151–162, 2007.

[15] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness ii:

On completeness for w[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995.

[16] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking. In Walsh [72],

pages 93–107.

[17] P Flener, A Frisch, B Hnich, Z Kiziltan, I Miguel, J Pearson, and T Walsh. Breaking row and

column symmetries in matrix models. In in: Proceedings of the Eight International Conference

on Principles and Practice of Constraint Programming, pages 462–476. Springer-Verlag, 2002.

[18] Pierre Flener, Justin Pearson, Meinolf Sellmann, Pascal Van Hentenryck, and Magnus Ågren.

Dynamic structural symmetry breaking for constraint satisfaction problems. Constraints,

14(4):506–538, 2009.

[19] Filippo Focacci and Michela Milano. Global cut framework for removing symmetries. In Walsh

[72], pages 77–92.

225

[20] Dieter Fox and Carla P. Gomes, editors. Proceedings of the Twenty-Third AAAI Conference on

Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, 2008.

[21] A M Frisch, B Hnich, Z Kiziltan, I Miguel, and T Walsh. Propagation algorithms for lexico-

graphic ordering constraints. Artificial Intelligence, (170):834, 2006.

[22] Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Global constraints

for lexicographic orderings. In Pascal Van Hentenryck, editor, CP, volume 2470 of Lecture Notes

in Computer Science, pages 93–108. Springer, 2002.

[23] G. Gange, V. Lagoon, and P.J. Stuckey. Fast set bounds propagation using a bdd-sat hybrid.

JAIR, 2010.

[24] Graeme Gange, Peter J. Stuckey, and Vitaly Lagoon. Fast set bounds propagation using a

bdd-sat hybrid. J. Artif. Intell. Res. (JAIR), 38:307–338, 2010.

[25] Ian P. Gent, editor. Principles and Practice of Constraint Programming - CP 2009, 15th

International Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009, Proceedings,

volume 5732. Springer, 2009.

[26] Carmen Gervet. Conjunto: Constraint logic programming with finite set domains. In SLP,

pages 339–358, 1994.

[27] Carmen Gervet. Conjunto: Constraint propagation over set constraints with finite set domain

variables. In ICLP, page 733, 1994.

[28] Carmen Gervet. Interval propagation to reason about sets: Definition and implementation of a

practical language. Constraints, 1(3):191–244, 1997.

[29] Carmen Gervet and Pascal Van Hentenryck. Length-lex ordering for set csps. In AAAI. AAAI

Press, 2006.

[30] Andrew Grayland, Ian Miguel, and Colva M. Roney-Dougal. Snake lex: An alternative to

double lex. In Gent [25], pages 391–399.

[31] Warwick Harvey. Social Golfer Problem. csplib prob010. http://www.csplib.org/prob/

prob010/index.html, 2011. [Online; accessed 23-Mar-2011].

226

[32] Warwick Harvey and Thorsten Winterer. Solving the molr and social golfers problems. In

Peter van Beek, editor, CP, volume 3709 of Lecture Notes in Computer Science, pages 286–300.

Springer, 2005.

[33] Peter Hawkins, Vitaly Lagoon, and Peter J. Stuckey. Set bounds and (split) set domain prop-

agation using robdds. In Geoffrey I. Webb and Xinghuo Yu, editors, Australian Conference

on Artificial Intelligence, volume 3339 of Lecture Notes in Computer Science, pages 706–717.

Springer, 2004.

[34] Peter Hawkins, Vitaly Lagoon, and Peter J. Stuckey. Solving set constraint satisfaction problems

using robdds. Journal of Artificial Intelligence Research, 24:109–156, 2005.

[35] Peter Hawkins and Peter J. Stuckey. A hybrid bdd and sat finite domain constraint solver.

In Pascal Van Hentenryck, editor, PADL, volume 3819 of Lecture Notes in Computer Science,

pages 103–117. Springer, 2006.

[36] Pascal Van Hentenryck, Justin Yip, Carmen Gervet, and Grégoire Dooms. Bound consistency

for binary length-lex set constraints. In Fox and Gomes [20], pages 375–380.

[37] Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Combining symmetry breaking with other

constraints: Lexicographic ordering with sums. In AMAI, 2004.

[38] Brahim Hnich, Steven David Prestwich, Evgeny Selensky, and Barbara M. Smith. Constraint

models for the covering test problem. Constraints, 11(2-3):199–219, 2006.

[39] Sophie Huczynska, Paul McKay, Ian Miguel, and Peter Nightingale. Modelling equidistant

frequency permutation arrays: An application of constraints to mathematics. In Gent [25],

pages 50–64.

[40] Stasys Jukna. Extremal combinatorics, 2001.

[41] George Katsirelos, Nina Narodytska, and Toby Walsh. Combining symmetry breaking and

global constraints, 2009.

[42] George Katsirelos, Nina Narodytska, and Toby Walsh. On the complexity and completeness of

static constraints for breaking row and column symmetry. In Cohen [8], pages 305–320.

227

[43] Zeynep Kiziltan. Symmetry breaking ordering constraints. Phd Thesis. Uppsala University,

2004.

[44] Y C Law and J H M Lee. Breaking value symmetries in matrix models using channeling

constraints. In In Proceedings of the 20th Annual ACM Symposium on Applied Computing,

pages 375–380, 2005.

[45] Y. C. Law and J. H. M. Lee. Symmetry breaking constraints for value symmetries in constraint

satisfaction. Constraints, 11:2006, 2006.

[46] Yat Chiu Law and Jimmy Ho-Man Lee. Global constraints for integer and set value precedence.

In Wallace [71], pages 362–376.

[47] Yahia Lebbah and Olivier Lhomme. Accelerating filtering techniques for numeric csps. Artif.

Intell., 139(1):109–132, 2002.

[48] Yuri Malitsky, Meinolf Sellmann, and Willem Jan van Hoeve. Length-lex bounds consistency

for knapsack constraints. In Peter J. Stuckey, editor, CP, volume 5202, pages 266–281. Springer,

2008.

[49] Kim Marriott and Peter Stuckey. Programming with Constraints: An Introduction. MIT Press,

Cambridge, MA, USA, 1998.

[50] Luc Mercier and Pascal Van Hentenryck. Edge finding for cumulative scheduling. INFORMS

Journal on Computing, 20(1):143–153, 2008.

[51] Pedro Meseguer and Carme Torras. Exploiting symmetries within constraint satisfaction search.

Artif. Intell., 129(1-2):133–163, 2001.

[52] Steven Prestwich. Balanced incomplete block design as satisfiability. In In Proceedings of the

12th Irish Conference on Artificial Intelligence and Cognitive Science, 2001.

[53] J-F Puget. Pecos a high level constraint programming language. In Proc. of Spicis, 1992.

[54] Jean-Francois Puget. Symmetry breaking revisited. Constraints, 10(1):23–46, 2005.

[55] Andrew Sadler and Carmen Gervet. Global reasoning on sets. In In Proceedings of Workshop

on Modelling and Problem Formulation (FORMUL01). held alongside CP-01, 2001.

228

[56] Andrew Sadler and Carmen Gervet. Hybrid set domains to strengthen constraint propagation

and reduce symmetries. In Wallace [71], pages 604–618.

[57] Andrew Sadler and Carmen Gervet. Enhancing set constraint solvers with lexicographic bounds.

J. Heuristics, 14(1):23–67, 2008.

[58] Meinolf Sellmann. On decomposing knapsack constraints for length-lex bounds consistency. In

CP’09, pages 762–770, 2009.

[59] Hanif D. Sherali and J. Cole Smith. Improving discrete model representations via symmetry

considerations. Manage. Sci., 47(10):1396–1407, 2001.

[60] Hanif D. Sherali, Jonathan Cole Smith, and Youngho Lee. Enhanced model representations for

an intra-ring synchronous optical network design problem allowing demand splitting. INFORMS

Journal on Computing, 12(4):284–298, 2000.

[61] Barbara M. Smith. Reducing symmetry in a combinatorial design problem. pages 351–359,

2001.

[62] Barbara M. Smith. Symmetry and search in a network design problem. In Roman Barták and

Michela Milano, editors, CPAIOR, volume 3524, pages 336–350. Springer, 2005.

[63] Guido Tack. Constraint Propagation – Models, Techniques, Implementation. Doctoral disser-

tation, Saarland University, 2009.

[64] Guido Tack, Christian Schulte, and Gert Smolka. Generating propagators for finite set con-

straints. In Frédéric Benhamou, editor, CP, volume 4204 of Lecture Notes in Computer Science,

pages 575–589. Springer, 2006.

[65] Michael A. Trick. A dynamic programming approach for consistency and propagation for

knapsack constraints. Annals OR, 118(1-4):73–84, 2003.

[66] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: a Modeling Language for Global

Optimization. The MIT Press, Cambridge, Mass., 1997.

[67] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, Cambridge,

MA, USA, 1989.

229

[68] Pascal Van Hentenryck. The OPL optimization programming language. MIT Press, Cambridge,

MA, USA, 1999.

[69] Willem Jan van Hoeve and Jean-Charles Régin. Open constraints in a closed world. In

J. Christopher Beck and Barbara M. Smith, editors, CPAIOR, volume 3990, pages 244–257.

Springer, 2006.

[70] Willem Jan van Hoeve and Ashish Sabharwal. Filtering atmost1 on pairs of set variables. In

Laurent Perron and Michael A. Trick, editors, CPAIOR, volume 5015, pages 382–386. Springer,

2008.

[71] Mark Wallace, editor. Principles and Practice of Constraint Programming - CP 2004, 10th

International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Pro-

ceedings, volume 3258. Springer, 2004.

[72] Toby Walsh, editor. Principles and Practice of Constraint Programming - CP 2001, 7th Inter-

national Conference, CP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings,

volume 2239 of Lecture Notes in Computer Science. Springer, 2001.

[73] Justin Yip and Pascal Van Hentenryck. Evaluation of length-lex set variables. In Gent [25],

pages 817–832.

[74] Justin Yip and Pascal Van Hentenryck. Exponential propagation for set variables. In Cohen

[8], pages 499–513.

[75] Justin Yip, Pascal Van Hentenryck, and Carmen Gervet. Boosting set constraint propagation

for network design. CPAIOR, 2010.

230

Index

0/1 characteristic vector, 13

alldisjoint constraint, 108, 130

atmost-k constraint, 112

atmost1 constraint, 126

balanced incomplete block design, 171, 176

binary non-empty intersection constraint, 203

binary propagator, 49–62

bound consistency, 23

length-lex domain, 26

subset-bound domain, 13

subset-bound+cardinality domain, 17

canonical solution, 135

channeling constraint, 121

constraint propagation algorithm, 94

cover array problem, 177

domain

representation, 11

doublelex method, 136

dual modeling, 10, 80–89, 112, 116

equidistant frequency permutation array prob-

lem, 174

error correcting code

hamming distance, 169

lee distance, 177

exponential propagator, 92–106, 124, 134–144

global, 109

feasibility checker, 101, 109, 134–144

free element, 34

fully interchangeable, 80–89, 135

generalized arc consistency, 13

generic algorithm

unary constraint, 42

global constraint, 107–119

hybrid domain, 18–19, 120–133

length-lex domain, 23–30

length-lex ordering, 24

lexicographic-ordering constraint, 9

lexleader method, 135

ls-domain, 120–133

matrix model, 80–89, 134–144

partitioning length-lex interval, 33, 37

231

PF-interval, 35

ROBDD domain, 19–21

rowwise-lexleader method, 137

set variable, 6–22

snakelex ordering, 140

social golfer problem, 6–11, 150

SONET problem, 200

steiner triple system, 163

subset-bound domain, 12–15, 202

subset-bound+cardinality domain, 15–18, 203

symmetry, 7

symmetry-breaking constraint, 9

symmetry-breaking propagator, 63–79

binary, 64–76

global, 76–79, 116, 134–144

unary propagator, 31–48

value interchangeability, 7, 10

value symmetry, 7, 80–89, 135, 141

variable interchangeability, 7

variable symmetry, 7, 63–79

232

