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Applications must embrace parallelism in order to increase performance on today’s ubiquitous mul-

ticore processors. Unfortunately, writing correct parallel applications is notoriously hard, partly

because the dominant parallel programming model uses threads with shared state and locks for

synchronization, a model that is subject to a variety of subtle bugs that can be hard to reproduce.

This dissertation advocates a programming model that enables the safe and incremental addition of

parallelism to an application designed for serial execution. This model is enabled by a system com-

posed of elyze, a static program analyzer, and multivent, a runtime scheduler. Together, elyze

and multivent ensure that an application’s code segments run in parallel only when they may do

so safely, and guide the programmer in making changes to increase those opportunities.

The system has been applied to two real world server applications written in C: thttpd, a web

server, and tor, the onion router. thttpd shows an improvement in performance of up to 15%. An

elaborate (and defective) thread pool mechanism can be removed from tor without compromising

its performance. In both cases, the static and dynamic analyses performed by elyze and multivent

guide the programmer in enabling significant parallelism and increased performance, without the

need for complex reasoning about concurrent behavior.



Safe Parallelism for Servers

by

Kiran Pamnany

B. Com., Bangalore University, 1994

Sc. M., Fordham University, 2004

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2011



c© Copyright 2011 by Kiran Pamnany



This dissertation by Kiran Pamnany is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
John Jannotti, Director

Recommended to the Graduate Council

Date
Shriram Krishnamurthi, Reader

Date
Maurice Herlihy, Reader

Approved by the Graduate Council

Date
Peter M. Weber

Dean of the Graduate School

iii



Vita

Kiran Pamnany was born on March 31, 1974 in Bangalore, India. An undergraduate education in

Business Economics did not prevent him from designing and writing software for a living for over ten

years. He was then bitten by the academic bug and returned to school in 2005 to earn a doctorate

in Computer Science. His post-Ph.D. plans include more time with his family, travel, and a parallel

computing research lab.

iv



Acknowledgments

I have many people to thank for helping make this dissertation possible, beginning with my advisor,

John Jannotti, for his suggestions, insight, perception and critical eye. JJ shaped the engineer into

the scientist. Shriram Krishnamurthi has been a friendly ear and source of invaluable advice for all

the many years I have known him. Maurice Herlihy is an inspiration to everyone who has met him.

Dr. Damian Lyons made my return to academia possible. Vivek Goyal made my career possible.

Akshay Kadam and Rajesh Raman have been lifelong friends and inspiration.

Most of all, I thank my wife Nitya Shivraman. This is just one part of the magic she’s brought

into my life.

v



To Nitya Shivraman.



Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Default Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.2 Incremental Performance Gains . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.3 Existing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 4

2.1 Parallel Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Threads with Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Event-driven Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.5 Message passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Safe Parallelism 10

3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Safety Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Runtime Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Example Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 elyze 15

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Context sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.2 Structure fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.3 Arrays and buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.4 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.5 Function pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.6 Explicit summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.7 Variables of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.8 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 multivent 23

5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Thread Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2 Satisfying Safety Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.3 Thread Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.4 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Evaluation 26

6.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Safe Parallelism for thttpd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.2 elyzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4 Safe Parallelism for tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4.2 elyzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Conclusions and Future Work 34

7.1 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1.1 OS resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1.2 Change impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1.3 Runtime enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 36

viii



List of Tables

3.1 A table showing constraints for the event-driven server in Figure 3.1. g indicates

conflicts on globals. The Query handler updates a global and thus conflicts with

itself. Global conflicts supersede conflicts on session elements indicated by s. The

Read handler accesses a session element that is updated by the Accept handler and

thus the two handlers have a session conflict. . . . . . . . . . . . . . . . . . . . . . . 14

6.1 multivent dynamic analysis results for thttpd show the number of invocations and

the mean, minimum and maximum times for completion of each event handler. . . . 28

ix



List of Figures

2.1 The Cilk implementation of the Fibonacci program where the recursive calls are exe-

cuted in parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A simplified event-driven server processes client requests with a chain of handlers,

each registered by the preceding handler to operate on the request in turn. The

session holds state, and is passed along the chain, with each handler updating it as

needed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A simplified event-driven server processes client requests with a chain of six handlers. 13

4.1 elyze builds the call graph for each event handler. . . . . . . . . . . . . . . . . . . . 16

4.2 elyze applies function summaries at call sites. . . . . . . . . . . . . . . . . . . . . . 16

6.1 Time to fetch 4GB of data from thttpd over different file sizes. . . . . . . . . . . . . 30

6.2 Average time to establish a tor circuit, over number of parallel circuit requests. . . . 33

x



Chapter 1

Introduction

1.1 Motivation

Single core processor performance has reached the limits of current semiconductor technology. Pro-

cessor manufacturers, faced by the “power wall”, have introduced multicore processors which are

increasingly ubiquitous.

As a consequence, parallel programming is no longer the domain of high performance computing

alone; all applications must embrace parallelism to maximize performance.

Servers are an egregious example: the emergence of cloud computing and software as a service

is moving applications onto servers, where they must take advantage of parallelism in order to

concurrently serve large numbers of simultaneous clients.

Unfortunately, parallel programming is notoriously difficult. It is hard to reason correctly about

concurrent behavior. Multiple threads executing and accessing data at the same time may suffer

data “races”, so named because the application’s behavior depends on the result of threads racing to

a shared object. As operating systems schedule threads non-deterministically, the same application

with the same input can show different results on different executions. This makes data races hard

to reproduce, understand, and eliminate.

Parallel applications attempt to eliminate data races by using mutual exclusion constructs such as

locks, but these are subject to a wide variety of problems in and of themselves—deadlock, convoying,

starvation, etc.

The state of concurrency management is reminiscent of the state of memory management prior

to garbage collection. Previously, programmers were expected to avoid memory leaks through a

combination of discipline and careful debugging. With garbage collection, the problem is eliminated.

Similarly, programmers are now expected to explicitly manage the even more subtle problem of

concurrency management. There are a number of tools, both static [10, 12] and dynamic [22, 30, 38],

that help track down concurrency bugs, but ideally we would like to eliminate the source of these

bugs: programmer error.

1
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1.2 Thesis Statement

It is feasible and useful to use program analysis to inform both the programmer and a runtime sched-

uler of parallelism constraints in a server application. These techniques guarantee safe concurrency

and enable incremental performance gains.

1.3 Design Principles

This work is guided by the principles described in this section.

1.3.1 Default Safety

The usual approach to building a concurrent server application is to start by thinking about the

serial version of request handling and then consider how concurrent executions of the serial code

might cause errors. Each potential problem must be recognized and appropriately synchronized

before the server may be executed safely on concurrent requests. This effort represents a substantial

intellectual investment for even moderately complex servers.

The core thesis of this work is that a conservative static analysis can be used to find safe,

exploitable parallelism. This analysis determines constraints on concurrent execution that are used

by a runtime system for scheduling. Together, the analysis and runtime system ensure that two

segments of code that potentially conflict are never run concurrently. As such, code developed for

serial execution may be executed safely in this environment — it is safe by default.

1.3.2 Incremental Performance Gains

A key advantage to default safety is that developers start with a correct application and apply

development effort until they are satisfied with performance. Today, developers start with incorrect

code and must apply development effort until they fix all races. An error leads to an incorrect

program. With default safety, an error simply hides potential parallelism which is a performance

problem, not a correctness issue.

With this approach, segments of code that might interfere with one another will not run con-

currently. Then, to improve performance, the programmer must understand the constraints that

inhibit parallelism, and work to remove them. To facilitate this, the analysis must provide detailed

information on each conflict that it discovers.

Thus, improving performance becomes an iterative process of removing constraints on concurrent

execution, as guided by the system.

1.3.3 Existing Code

It is a guiding principle for this work that it must operate on existing, un-modified server applications.

Thus, no annotations are required, nor any re-engineering. The programmer must be guided by the
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system in making any changes to code.

1.4 Document Structure

The remainder of this document is organized as follows: Chapter 2 examines existing parallel pro-

gramming models and discusses related work. Chapter 3 explores what safe parallelism means and

how it may be accomplished. Chapters 4 and 5 detail the two artifacts that constitute the safe

parallelism system. Chapter 6 contains the evaluation of the system on two server applications and

Chapter 7 considers future work and concludes.



Chapter 2

Background and Related Work

One of the challenges of parallel programming is that a programmer’s error can result in unsafe

parallelism, which manifests in a variety of subtle problems. But it is not inevitable that a program-

mer’s error must cause a correctness issue; this is a consequence of the limitations of the commonly

used parallel programming models.

2.1 Parallel Programming Models

Threads, or processes, are the most common primitive used to express concurrency; this is true for

most of the models discussed in this section. The difference, then, is primarily in the synchronization

abstractions offered.

2.1.1 Threads with Locks

The essential idea behind locking is simple: allow only one thread at a time to manipulate a given

object or set of objects [16]. Unfortunately, the simplicity of the concept conceals some significant

complexities when locks are used in large, real-world software.

Large, widely used server applications such as Apache, PostgreSQL, DB2, and others, all use a

thread or process per request, with locks to protect shared resources. It is reasonably straightforward

to implement request handling logic this way, but attaining correctness while serving concurrent

requests requires painstaking effort.

• Every shared resource must be identified.

• Every access to each such resource must be located.

• The correct lock must be acquired, and released.

• Locking granularity must be correctly decided to receive any gain in performance; this decision

is not easily changed.

4
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• Simple race freedom is insufficient to guarantee correctness; a stronger non-interference prop-

erty, atomicity [13], must be satisfied.

• The incorrect use of locks can introduce bugs such as deadlock, livelock, convoying and priority

inversion.

Furthermore, bugs relating to parallel execution are hard to reproduce and track down because

they may appear intermittently (thread scheduling is non-deterministic across multiple executions).

Considerable research has been done to address these difficulties, finding races in multithreaded

applications, and checking for proper lock use [22, 27, 30, 10, 38]. Locks have been studied for

decades, but lock-based multi-threaded programming remains a challenging discipline.

McKenney et al. [21] provide a more detailed critique of locks, as do others [25, 33].

2.1.2 Transactional Memory

Transactional memory [15] is an alternative way to protect shared data that avoids many of the

problems of lock-based programs. The core idea is simple: execute a group of memory operations as

a single atomic transaction. Transactions are usually executed optimistically. Thus, with multiple

threads running, a number of transactions may execute concurrently. If a transaction conflicts with

another running transaction, only one of them will complete while the other will be rolled back and

restarted. Conflicts are detected and resolved by the transactional runtime system.

This abstraction simplifies the task of developing correct concurrent programs as it allows a

programmer to reason about parallel behavior in a coarse-grained way. The programmer no longer

has to worry about problems such as deadlock, the transactional runtime system can make progress

guarantees, transactions are composable and scale well.

However, here too are some difficult problems.

• The programmer must determine which groups of accesses must be atomic, i.e. identify the

transactions. A mistake may result in a race condition.

• The use of optimistic concurrency creates problems for irreversible operations such as I/O.

Numerous alternatives have been studied [29, 31], but there is currently no satisfactory solution,

especially for server applications.

• There is no commodity hardware support for transactional memory and software implementa-

tions have significant performance overheads even when transactions are contention-free [37].

Transactional memory is an extremely active area of research and a number of these problems

may well be resolved in the future. McKenney et al. [21] contrast transactional memory with locks

and provide a more detailed view of their respective advantages and disadvantages.
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cilk int fib (int n)

if (n < 2) return n;

else

int x, y;

x = spawn fib (n-1);

y = spawn fib (n-2);

sync;

return (x+y);

Figure 2.1: The Cilk implementation of the Fibonacci program where the recursive calls are executed
in parallel.

2.1.3 Futures

A future, or promise, is a construct that acts as a proxy for a result that is not known, because it

has not yet been computed. Futures may be implicit, in which case they are resolved at the point of

use, or explicit, which requires the programmer to resolve them before use. There are other possible

variations, so a specific implementation is best used for exposition.

Figure 2.1 shows a Cilk [2] program to recursively compute Fibonacci numbers in parallel.

The cilk keyword identifies a procedure that may spawn sub-procedures in parallel and synchro-

nize upon their completion. The spawn keyword indicates that the following function call may be

executed in parallel with the caller; this also makes the value returned by the call a future. Futures

are resolved explicitly with the keyword sync.

With Cilk, a programmer expresses potential concurrency and leaves it to the system to determine

how many threads to use, how to balance load, and how threads communicate. The Cilk abstractions

ease parallel programming, but they do not aid a programmer in the difficult and error-prone activity

of identifying shared resources and synchronizing access to them. Cilk only offers locks, with all their

attendant issues.

There is much ongoing research into futures. Navabi et al. [23] use program analysis to safely

execute Java applications that are annotated to use futures. Chan and Abdelrahman [3] create a

thread for every method invocation in a Java program. A combination of compile-time and runtime

analyses detect and enforce dependencies and preserve sequential semantics. Swaine et al. [34] offer

a futures-based approach to incrementally parallelize the runtime systems of high level languages.

2.1.4 Event-driven Programming

In an event-driven program such as thttpd [35], a main loop receives events from the operating

system and invokes handlers that have been registered to process these events. A server registers

a handler for an event, e.g. an incoming client connection. A handler typically performs a short,

non-blocking task, then invokes an asynchronous service and registers another handler to be called

when that service completes. In this manner, a client request is processed by a series of handlers.
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A simplified example is shown in Figure 2.2.

Event-driven servers provide I/O concurrency, as multiple requests may be in flight at once. In

Figure 2.2, the Accept Connection handler would be invoked by the event loop for a new connection.

This handler accepts the connection and registers the Read Request handler for invocation when data

is received on the new connection. However, the event loop might invoke the Accept Connection

handler again on another incoming connection before calling the Read Request handler for the first

connection.

Event-driven servers typically do not provide CPU concurrency as the event loop is serial. It

is implicit in this model that handlers run atomically with respect to one another: a handler is

guaranteed to run to completion without interference from other handlers. While this makes it

easier for developers to reason about program logic, these event-driven servers cannot exploit multi-

processors. Furthermore, an event handler must not block, as this would cause the entire server to

block.

An extension to the event-driven model to exploit multi-processors has been described [39] in

which programmers manually specify colors for handlers to explicitly enable parallelism. Handlers of

a given color run atomically only with respect to other handlers of the same color. This concurrent

execution improves performance, but if the programmer specifies colors incorrectly, unsafe parallelism

may occur. Further, a simple color is insufficiently expressive: if handler X conflicts with handler

Y, and handler Y conflicts with handler Z, all three handlers must be given the same color, even

though handler X may not conflict with handler Z.

Gaud et al. [14] improve the event coloring system’s workstealing algorithm, but do not address

the limitations of the model.

SEDA [36] runs event handlers concurrently, but offers no direct support for programmers to

avoid concurrency related errors.

2.1.5 Message passing

The parallel programming models discussed thus far address threads that share state. When threads

do not share state, they must communicate by passing messages. This type of interaction may be

modeled by process calculi such as CSP [17], the study of which constitutes an area of research in

itself.

This dissertation is concerned with shared state concurrency and does not consider message

passing models further as their issues are quite different.

2.2 Other Related Work

The well known problems of parallel programming and its growing importance have spurred a great

deal of research in this area. Much of this research focuses on improvements to the parallel pro-

gramming models discussed earlier in this chapter, and is described there. This section addresses

other closely related work.
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Event
Loop

Accept
Connection

Read
Request

Query
Database

Write
Response

Log

main()

fd = socket(...);

...

listen(fd, ...);

event reg(..., Accept Connection, fd);

event loop();

Accept Connection(..., fd)

...

sess = alloc session(...);

sess->conn fd = accept(fd, ...);

event reg(..., Read Request, sess);

Read Request(..., sess)

...

read(sess->conn fd, sess->buf, ...);

event reg(..., Query Database, sess);

...

Figure 2.2: A simplified event-driven server processes client requests with a chain of handlers, each
registered by the preceding handler to operate on the request in turn. The session holds state, and
is passed along the chain, with each handler updating it as needed.



9

Autolocker [20] uses program analysis to correctly convert atomic sections into lock based code,

given annotations to associate locks with variables and identify atomic sections. Cherem et al. [4]

only require that atomic sections be specified, and add multi-granularity locks. Emmi et al. [9] focus

on optimizing the set of locks acquired for annotated critical sections.

Flanagan and Qadeer [13] have developed a static analysis to verify atomicity compliance in

annotated Java programs. Flanagan and Freund [11] extended this work to detect and insert missing

synchronization operations in a similarly annotated Java program.

Our work differs from all these in specifically avoiding the need for any annotations. We focus

on servers, a class of applications that has innate, obvious parallelism, written to a programming

model with implicit atomic blocks.



Chapter 3

Safe Parallelism

A core tenet of this work is that parallelism should be safe by default: unsafe parallelism must

be prohibited. In such a system, programmer error will prevent potential concurrency which is a

performance problem, not a correctness problem.

3.1 Approach

This system builds on the event-driven model. A key advantage of this model is that event handlers

run atomically with respect to each other. This allows the programmer to design her application

with serial execution in mind, avoiding the need for error-prone reasoning about concurrency.

Our approach combines a static analysis that generates constraints on the concurrent execution

of event handlers with a runtime system that enforces these constraints to enable safe concurrent

execution.

The system therefore has two components:

1. A static analysis runs on the event-driven server application’s source code and conservatively

determines if event handlers conflict with each other. One or more conflicts between a pair of

event handlers creates a constraint on the concurrent execution of those handlers. The static

analysis produces a set of these safety constraints.

2. A runtime scheduler uses these constraints to safely run event handlers concurrently. It simul-

taneously gathers statistics on wait and run frequencies and durations for each event handler.

An initial run on an unmodified event-driven server may provide marginal performance gains.

Many such servers use global variables extensively; such accesses cause conflicts that result in con-

straints on concurrent execution. The programmer will need to modify the server to remove conflicts

between event handlers, thereby eliminating constraints on their concurrent execution and obtaining

larger performance gains.

10
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To this end, both components of the system provide detailed information to the programmer.

The static analysis specifies the type and location of conflicts between event handlers, while the

runtime scheduler provides information on which constraints actually cause the most slowdown at

runtime. The programmer can focus on removing those conflicts that cause the most damaging

constraints.

3.2 Safety Constraints

This section discusses the constraints that enable safe parallelism, and how they are found and

enforced.

3.2.1 Static Analysis

The analysis must determine when data is shared between handlers in ways that preclude safe

parallelism, i.e. when the set of data written by one handler overlaps with the set of data read or

written by another handler. This analysis is conservative—a handler that might access a data object

must be treated as though it will.

Independence: Different event handlers are invoked at different times for different requests. Each

handler runs to completion on its invocation, thus the per-request state cannot be stored on the

stack. Instead, this state is usually stored in a data structure that is specified by the application

when it registers a handler. This “session” data structure1 is then passed to the handler by the

event management system when the handler is invoked. The application may use just one type of

session or different session types for every event handler.

Thus, the invocation of an event handler, f(s), has two roots from which all potentially unsafe

accesses may take place: the global variables of the program, and the session, s. From these roots

arise two sets of reachable objects, G and S. For precision, reads and writes must be distinguished,

thus the sets of globals and session elements actually read and written by event handler f are GR
f ,

GW
f , SR

f and SW
f respectively.

Let the total set of data objects read and written by event handler f be TR
f and TW

f , where

TR
f = GR

f ∪ SR
f , and TW

f = GW
f ∪ SW

f .

We are interested in the conflicts between event handlers f and g, which is Xf,g, the set of data

objects that are accessed unsafely. This excludes those data objects that are only read by both

handlers, but includes those that are read by one and written by the other, as well as those written

by both.

Xf,g = (TW
f ∩ TW

g ) ∪ ((TR
f ∩ TW

g ) ∪ (TR
g ∩ TW

f )) (3.1)

1This data structure is often called the “context”, a term that has another meaning in program analysis; we are
using “session” instead to avoid confusion.
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The analysis must compute Xf,g for all pairs of event handlers f and g. There are three possible

outcomes:

1. Xf,g = ∅, which implies that there are no conflicts. In this case, the handlers f and g may be

scheduled concurrently without conflict; there is no safety constraint.

2. ∃v ∈ Xf,g : v ∈ G, which implies that at least one of the data objects accessed unsafely

is a global variable. The handlers f and g may not be executed concurrently under any

circumstances; the safety constraint is absolute.

3. ∃v ∈ Xf,g : v ∈ S and ∀v ∈ Xf,g : v /∈ G, which implies that there is a conflict on a session

element, but not on a global variable. This case is more subtle as the safety constraint is

conditional.

Session conflict: Since this analysis runs statically, it cannot take into account the specific sessions

passed to a handler. But when two handlers conflict only on session elements, they could be executed

concurrently, if it were known at invocation time that the specific sessions that would be passed to

them are different.

Sessions in event-driven server applications usually represent client requests. As such, they tend

to be independent of each other for the most part. The ability of the analysis to distinguish between

conflicts on globals and conflicts on session elements is important in uncovering parallelism as,

absent this distinction, session conflicts would prohibit concurrency between event handlers even

when invoked with different sessions.

Output: The safety constraints discovered by the analysis must be made available to the runtime

system. Thus, the analysis must output the constraints in a form that is suitable for compiling into

the application.

Additionally, the analysis must report its results to the programmer in a form that allows her to

perform incremental improvement, i.e. by removing the conflicts that create a safety constraint.

For instance, a conflict may be caused by a rarely taken error handling path that increments

a statistics counter. One solution to this would be to use an atomic operation to perform the

increment; this will be recognized by the analyzer as atomic and therefore thread-safe.

Another general solution is to convert global data into private data whenever possible, using a

single handler to manage all accesses to that data.

3.2.2 Runtime Scheduling

The runtime system is responsible for executing the analyzed server application with maximal con-

currency, subject to the constraints identified by the analysis.

If the analysis specifies that two handlers never conflict, the scheduler is free to schedule those

handlers simultaneously. If the constraint states that the handlers always conflict, the runtime

system must never execute both handlers simultaneously. And finally, if the constraint states that
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Figure 3.1: A simplified event-driven server processes client requests with a chain of six handlers.

the handlers conflict on the session, the runtime system is free to execute them simultaneously if

and only if the invocations have different sessions. To achieve this, the scheduler must dynamically

determine whether a session is in use by a currently executing event handler.

Statistics: The programmer improves the performance of the server application by increasing

available safe parallelism. This is accomplished by removing constraints on the concurrent execution

of event handlers by eliminating conflicts reported by the static analysis.

However, not all constraints are equal. For instance, a maintenance event handler may conflict

with every other event handler, but run only once every 5 minutes. The overall performance gain

from removing conflicts with such an event handler is likely to be so small that the programmer may

choose to ignore this constraint entirely.

Other constraints may not be as obvious in their effect on performance. Thus the scheduler

must provide statistics on the execution of a server to enable the programmer to determine serial

bottlenecks and prioritize constraint removal.

3.3 Example Server

Figure 3.1 shows another view of the event-driven server described in Figure 2.2. The Query handler

conflicts with itself due to the use of a global, as does the Log handler. These conflicts are depicted

in the figure by the vertical grouping of these handlers. All the other handlers conflict with each

other on session elements.

The set of constraints resulting from these conflicts are summarized in Table 3.1.
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Read Query Prep Write Log
Read s s s s s
Query g s s s
Prep s s s
Write s s
Log g

Table 3.1: A table showing constraints for the event-driven server in Figure 3.1. g indicates conflicts
on globals. The Query handler updates a global and thus conflicts with itself. Global conflicts
supersede conflicts on session elements indicated by s. The Read handler accesses a session element
that is updated by the Accept handler and thus the two handlers have a session conflict.



Chapter 4

elyze

elyze is a static analysis tool built on the CIL analysis framework [24]. It runs on event-driven

server code written in C to the libevent interface [28] and finds constraints on the concurrent

execution of the server’s event handlers.

4.1 Approach

The programming languages most often used when developing server applications are C, C++ and

Java. We chose to begin with C, as many of the most popular server applications are written in it.

A key consideration in developing any static analysis is the approach to discovering aliasing.

There are a number of choices of algorithm, each varying in precision and speed [32, 1, 5]. We were

unable to locate an implementation of an alias analysis that was sufficiently well documented so as

to be extensible, and also could satisfy our specific requirements:

• Fast enough to process large code bases (1̃00,000 lines) in reasonable time.

• Precise enough to avoid unnecessarily conservative assumptions.

• Able to distinguish accesses to different structure fields.

We were therefore compelled to implement an alias analysis. We did so atop the CIL analy-

sis framework [24], which enables the traversal of an application’s complete abstract syntax tree,

including all globals, functions, statements, expressions, etc, and further allows the generation of

definitions that will be compiled into the application.

4.2 Overview

elyze begins by identifying the event handlers in the program together with the sessions to be used

for their invocation; it does so by looking for libevent handler registration calls as shown below.

15
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evh_read()evh_listen()

handle_read()gettimeofday()handle_newconnect()

httpd_get_conn() syslog()

read() httpd_send_err()

Figure 4.1: elyze builds the call graph for each event handler.

static void
finish_connection( connecttab *c, struct timeval* tvP ) {
    httpd_write_response( c->hc );
    ...
}

httpd_write_response(hc)
  read: *(*(hc).response), ...
  written: *(hc).responselen
  aliased: -
  returned: -

Figure 4.2: elyze applies function summaries at call sites.

main() {
...

event set( &ev listen4, hs->listen4 fd,

EV READ|EV PERSIST, evh listen, (void*) 0 );

...

}
handle newconnect( struct timeval *tvP, int listen fd ) {
...

event set( c->ev fd, c->hc->conn fd,

EV READ, evh read, (void*) c );

...

}

For each event handler, a call graph is generated as shown in Figure 4.1.

Next, elyze performs a context-sensitive, summary-based analysis on each call graph that begins

at the bottom of the graph and works upwards to the event handler. For each function, the analyzer

generates a summary identifying the data objects read, written, and aliased, as well as the data

objects returned, if any. This summary is applied at each call site, as shown in Figure 4.2.

On reaching the top of the call graphs, elyze has identified the sets of data objects that are

read and written by each event handler. elyze then evaluates Equation 3.1 to determine conflicts

between each pair of event handlers, and outputs its results which are detailed in Section 4.2.8.
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4.2.1 Context sensitivity

elyze follows Steensgard’s algorithm [32] in treating assignments bi-directionally using unification.

This approach trades trades precision for speed, in contrast to Andersen’s algorithm [1], which

handles assignments using subtyping and gains precision at the cost of speed.

Das has shown [5] that handling the most common case of pointer use in C programs, namely

passing the address of an updateable value as an argument to a procedure, leads to a significant

increase in precision of Steensgard’s algorithm, almost to the level of Andersen’s algorithm. Das ac-

complishes this improvement by using subtyping at call sites when assigning the arguments provided

by the caller to the callee’s parameters.

elyze achieves the same benefits in precision by being context sensitive, i.e. distinguishing

between different calls to the same function. We use a bottom-up, summary-based approach to

context sensitivity, similar to Nystrom et al. [7]. Thus, our analyzer produces a function summary

composed of four lists containing those data objects that are read, written, aliased, and returned.

As the analysis moves up the call graph, it applies the summary of a function at each call site in a

calling function. Application refers primarily to three operations:

1. Adding all globals from the callee’s summary into the caller’s summary.

2. Adding all arguments in the callee’s summary, after appropriately translating their names, into

the caller’s summary and creating any required alias relationships.

3. Creating all required alias relationships caused by assignment to the callee’s return value.

In contrast to other approaches to context sensitivity such as function inlining or argument

replication, this method is efficient in both time and space.

4.2.2 Structure fields

It is important for elyze to distinguish accesses to the different fields of a structure, particularly the

session data structure which tends to be a collection of variables that are stored in an aggregate for

convenience. It is often the case that different event handlers access different parts of the session.

static void handle read(connecttab *c, ...)

...

c->active at = tvP->tv sec;

...

static void handle send(connecttab *c, ...)

...

c->active at = tvP->tv sec;

...

static void handle linger(connecttab *c, ...)

...
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r = read(c->hc->conn fd, ...);

...

The code snippets above are from thttpd. Three event handlers are shown; the connecttab

pointer is the session. handle read() and handle send() both update the activity statistic counter

in the session; this causes elyze to report a conflict on that session element for these two handlers.

However, handle linger does not touch the activity statistic counter and does not conflict with the

other two handlers on this data object.

Many previous alias analyses do not distinguish such accesses; this is considered a difficult prob-

lem for C because of type-casting, the ability to take the address of a field, and the widespread use of

a static heap model [26]. Without the ability to distinguish these accesses, all three event handlers

would be deemed to conflict with each other, unnecessarily restricting potential concurrency.

elyze models structure fields as normal variables, while an aggregate variable itself is modeled

both as a normal variable and as a container of other normal variables. We do not attempt to handle

casts from one aggregate type to another but simply act conservatively (assuming all-to-all aliasing).

We deal with recursive types by k-limiting [19]: we artificially limit the depth to which we parse

aggregates (we chose k = 2 based on experiments). An aggregate variable at a depth of 2 is treated

as a normal variable which additionally represents all its fields without regard to their concrete type.

We have experimentally validated this approach to field sensitivity and find that it produces

sufficient precision for our purposes (i.e. handlers are not constrained from concurrent execution

unnecessarily), without the performance impact of more sophisticated methods [6].

4.2.3 Arrays and buffers

In contrast to the treatment of structure fields, elyze treats both buffers and arrays as scalars. Even

with the inclusion of value flow analysis, it is difficult to statically distinguish accesses to different

parts of the same buffer, or to different indices of an array, and thus elyze makes no attempt to do

so.

4.2.4 Recursion

A recursive call creates a cycle in the call graph. Thus, a bottom-up analysis such as elyze will

encounter a call to a function it hasn’t seen before (for which no summary is present). elyze handles

recursion by iterating over recursive call chains to a fixed point [8].

Extensive use of recursion in a large application can cause many iterations over the call graph,

which can result in long analysis times. Caching and re-validating analysis results across runs will

help address this issue.
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4.2.5 Function pointers

Alias analysis must be completed in order for an indirect call through a function pointer to be re-

solved. Thus, in order to completely build the program call graph, alias analysis must be completed.

However, performing alias analysis requires traversal of the program call graph.

elyze handles this cyclic dependency with the well known iterative approach [8, 7], i.e. it

proceeds with the alias analysis, identifying the functions that a function pointer may resolve to and

updating the call graph as needed. On completing analysis of the initial call graph, elyze processes

any expansions of the call graph before re-analyzing those functions from which indirect calls are

made. These steps are repeated until the results stabilize.

4.2.6 Explicit summaries

For soundness, an alias analysis usually must operate on an entire program, otherwise the effects

of external functions are not seen. Instead, our summary-based approach allows for the presence

of external functions, provided a summary for each such function is already available. Since this

summary is simply the set of externally visible effects of the function, it is fast and easy to write by

hand. We have written 125 summaries for various libc functions, and they are three lines each on

average.

There are many advantages to this facility. Reducing the total code that must be analyzed

naturally speeds up the analysis. Another advantage is that summaries can be created even of

functions for which source is unavailable, such as system calls. And further, there are complex

functions (such as malloc()) that are hard to analyze and would require unnecessarily conservative

assumptions for safety.

Standard library implementations of malloc() and free() manage a number of large buffers.

malloc() returns a pointer index into one of these buffers. Even with value flow information, it

would likely be impossible to statically distinguish the different offsets into the various memory

pools. A static analysis would conservatively determine that all calls to malloc() return an alias of

a global and that all the returned pointers are therefore aliases of each other.

If we recognize that from a caller’s standpoint, it is only necessary to know that the implemen-

tation is reentrant and the return value is a “fresh” pointer, we can insert a summary for malloc()

and avoid the problem.

4.2.7 Variables of interest

elyze considers only those statements and expressions that contain a variable of interest. For a

given function, when analysis begins, the only variables of interest are the globals of the program,

and those parameters that may be side-effecting, i.e. those that are or contain pointers. A local

variable becomes interesting when it is aliased with a variable of interest.

static int check referer(httpd conn *hc)

char *cp = "...";
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char **cpp = &cp;

...

cp = hc->hostname;

...

The code snippet above is from thttpd. On entry into the function, the analyzer will only

consider hc (and its elements) interesting (besides the globals, which are always interesting). The

local cp is ignored until it is aliased with an element of the argument, at which point it is marked

interesting. This will cause the function to be re-analyzed, to look for any aliasing of cp prior to

this assignment (the use of &cp).

This approach significantly limits the number of data objects that the analyzer needs to track,

and speeds up the analysis. However, when an aliasing assignment is made between a variable of

interest and a local variable, that local variable must be marked interesting and the function re-

analyzed to explore any aliasing activity involving the local prior to this assignment. We complete

the analysis of the function before redoing it to gather multiple interesting locals in one pass. A chain

of assignments from local to local, and eventually to an interesting variable can cause the function

to be analyzed repeatedly (as many times as there are assignment statements in the function, in the

worst case). In practice, we find that in thttpd, 35% of the functions are analyzed twice, and 1.5%

are analyzed three times; yielding an average of 1.38 iterations per function. Nonetheless, the net

effect of avoiding unnecessary analysis of uninteresting variables is a performance benefit.

4.2.8 Output

When elyze completes analysis of an event-driven application, it outputs its results in two forms:

a compilable format for use by multivent, and human readable conflict information for use by

developers seeking to increase concurrency.

For multivent

For each event handler, elyze generates two access tables. The first table identifies global conflicts

against every other handler, distinguishing between read and write conflicts. The second table

identifies the session elements accessed by the handler, again distinguishing between reads and

writes.

Chapter 5 describes these tables further.

For the programmer

The programmer must be guided in increasing parallelism, i.e. making changes to allow event han-

dlers to run in parallel. To aid in this, elyze outputs constraint information on each event handler

pair. The following is an extract from elyze’s output for Tor showing the three possibilities:

signal cb() and signal cb() always conflict: ...
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signal cb() and rotate cb() always conflict: ...

...

rotate cb() and evdns request timeout cb() do not conflict.

...

nameserver prod cb() and cpuworker cb() conflict on context: ...

...

For each constraint, elyze lists the variables on which conflicts exist (variable names not shown

above due to limited space).

The programmer must first determine which constraints are most damaging to performance; she

is aided in doing so by multivent’s dynamic analyses (described in Section 5). After identifying

a constraint that she would like to remove, i.e. selecting a pair of event handlers that she would

like to run concurrently, the programmer considers each of the conflicts that cause the constraint.

She must identify every conflicting variable access and determine how to remove the conflict. elyze

assists with locating accesses by displaying the summary of every function in the application, as

shown below:

signal cb

---

called from:

control signal act()

read:

...

g:*(current consensus) at routerlist.c:1054

via alias *(consensus).routerstatus list created at ...

via alias *(tmp 0) created at routerlist.c:1038

through call to router pick directory server impl() at ...

through call to router pick directory server() at ...

through call to directory get from dirserver() at ...

through call to authority certs fetch missing() at ...

through call to update certificate downloads() at ...

through call to update networkstatus downloads() at main.c:1337

through call to do hup() at main.c:1581

...

written:

...

g:policy root.hth n entries at policies.c:527

via alias *(head).hth n entries created at policies.c:1288

through call to addr policy free() at policies.c:1275

through call to addr policy list free() at routerlist.c:2349

through call to routerinfo free() at routerlist.c:2678

through call to routerlist remove() at dirserv.c:800

through call to directory remove invalid() at dirserv.c:278

through call to dirserv load fingerprint file() at main.c:1322

through call to do hup() at main.c:1581

...
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aliased:

...

fps called:

returns:

dangerous:

With this information, the programmer can identify all conflicts that prevent a pair of event

handlers from being executed concurrently, and also locate each conflicting access. She can then

determine how to eliminate the conflict. This process is detailed for both thttpd and tor in

Chapter 6.

4.3 Limitations

There are two possible sources of unsoundness in elyze:

1. C supports the use of inline assembly, which may be used to unsafely share data between han-

dlers. We are not aware of any solution to this problem proposed in the literature. Currently,

we issue a warning when we observe any inline assembly.

2. Resources other than memory can cause conflicts: if two handlers write to the same file de-

scriptor, that is a conflict that elyze will not recognize. The conservative solution to this

problem is to prohibit concurrent execution of those handlers that issue system calls using file

descriptors. This is not a viable option, as event handlers in server applications tend to work

extensively with file descriptors.

This can be addressed by treating file descriptors as special pointers which can be aliased

and are indirected via system calls. Thus, a handler using the write() system call on a file

descriptor will be writing to the abstract object “pointed at” by the file descriptor, and will

conflict with another handler using the same file descriptor.



Chapter 5

multivent

multivent is a multi-threaded event management library that provides the runtime scheduling

features required for safe parallelism. Designed to complement elyze, multivent uses multiple

threads to run event handlers concurrently, subject to elyze’s safety constraints.

5.1 Approach

There are a number of possible approaches to the design of the runtime scheduler. A näıve design

would create a number of threads to invoke handlers with each thread selecting a non-conflicting

handler to invoke. This would exhibit very poor performance, as each thread would need to query

and update a shared scoreboard for the handlers being executed.

Another approach is the color scheduler of Zeldovich et al. which avoids the shared scoreboard

by using separate queues for each non-conflicting handler. However, this scheduler is unable to

express the constraints shown in Table 3.1 for the example server described in Section 3.3, where

the Log handler may not be executed concurrently with another handler for the same session, or

with another Log handler.

This limitation could be addressed by introducing a second level, a flavor. A color/flavor sched-

uler would ensure that no two handlers of the same color or of the same flavor execute concurrently.

A more flexible alternative was chosen: a lock based approach, in which a readers-writer lock is

associated with each conflict. An invocation thread about to execute a handler acquires all the locks

required to protect the objects accessed by that handler (in a canonical order, to avoid deadlocks)

before invoking the handler. This approach is detailed further in the rest of this chapter.

5.2 Overview

The manual page for the libevent library [28] describes the event API as providing a mechanism

to execute a callback function when a specific event on a file descriptor occurs, or after a given time

has passed.
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Like other event management libraries, libevent abstracts away the specific OS mechanism

for asynchronous event notification (select(), poll(), kqueue(), etc.) and provides additional

infrastructure for receiving signal and timeout notifications.

An application initializes the library (event init()), sets up one or more events (event set()),

and registers them (event add()) before entering the library’s event loop (event dispatch()) from

which callback functions are invoked.

multivent additionally starts multiple threads to invoke event handlers with a job queue for

each. It also creates a readers-writer lock for each potential conflict, and gathers statistics on event

handler execution.

5.2.1 Thread Behavior

When a server application calls event dispatch() to enter the event loop, libevent uses that

thread to check for timeout expiry, for asynchronous events, and to invoke handlers that are ready

to execute.

multivent uses the dispatch thread to test for ready handlers, but does not invoke them directly.

Instead, it chooses an invocation thread by simple round robin and delivers the event information

to the chosen thread’s job queue.

An invocation thread receives an event in its queue, determines the event handler that must be

invoked, and acquires the necessary locks before invoking the handler.

5.2.2 Satisfying Safety Constraints

In order to satisfy the safety constraints specified by elyze, the library uses readers-writer locks for

each potential conflict.

In order to handle absolute safety constraints, i.e. when two handlers must never be executed

concurrently, a readers-writer lock is created for each pair of handlers. When a handler is to be

invoked, the responsible thread acquires the lock it shares with each other handler for which an

absolute safety constraint is specified. elyze specifies for each such constraint whether the handler

is a reader or a writer, which allows the correct type of lock acquisition to be made.

Session safety constraints are satisfied similarly. A server specifies the session to be used when

setting up an event. For each unique session seen by multivent, a number of readers-writer locks

are created; this number is specified by elyze and is the number of fields parsed from the largest of

the types used for sessions by the server.

This approach removes the need for session identity checks—if two handlers that conflict only

on session elements are invoked concurrently with the same session, both invocation threads will

attempt to acquire the same locks and only one will proceed. If the handlers are invoked with

different sessions, they will run concurrently as the threads will acquire different locks.
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5.2.3 Thread Count

The number of threads that multivent uses for event handler invocation depends on a few criteria:

• The number of cores in the target machine limits the amount of true parallelism available.

• The use of blocking calls in the application’s event handlers ties up threads.

• The size and number of the application’s event handlers also impact the desired number of

threads. Many short event handlers could use more threads than a few long event handlers.

Thus, multivent allows the number of threads that are started to be configured by an environ-

ment variable. The default value is 8, thus on a quad-core machine, multivent starts 32 threads.

Our experience suggests that this is a reasonable default, but a reasonable extension could monitor

progress and dynamically optimize the size of the thread pool.

5.2.4 Dynamic Analysis

multivent performs some dynamic analysis of the server applications that it executes. The library

gathers a number of statistics that are intended to aid the programmer as she works to improve

server performance.

For each event handler, multivent records:

• Number of times invoked.

• Minimum, maximum, and mean time for completion.

• Minimum, maximum and mean wait time, i.e. from event firing until invocation.

• Maximum number of pending invocations.

In addition, multivent records when contention occurs, the data object on which it occurs, and

the minimum, maximum, and mean duration.

Gathering these statistics, especially those related to contention, adds some overhead. Thus,

multivent checks environment variables to determine whether statistics collection is to be enabled.

From these statistics, the programmer can prioritize conflict removal. An event handler that is

invoked frequently and has a high mean time for completion has a higher cost for conflicts that an

event handler that runs occasionally, or completes quickly.

While this data is valuable, understanding the application’s design is also important as can be

seen in the evaluation of the system.



Chapter 6

Evaluation

6.1 Evaluation Criteria

A meaningful evaluation of elyze and multivent must consider a number of different aspects:

• Does the system work with real-world server applications?

• Does analysis complete in reasonable time?

• Does the system aid the programmer in identifying and locating conflicts which must be

removed to improve performance?

• Does the system eliminate parallelism related bugs?

• Does use of the system allow improved server performance?

The remainder of this chapter answers these questions by describing the use of elyze and

multivent on two real-world server applications: the web server thttpd, and the onion router

tor.

All tests were carried out on quad-core machines: Athlon Phenom II X4 955 processors at 3.2

GHz with 4 GB RAM.

6.2 Test Cases

In addition to testing elyze on real servers’ code, we have developed a test framework composed of

a simple event-driven server application, within which we have created about 45 test cases that test

elyze’s ability to recognize some more unusual code constructs such as:

• functions creating aliases between their arguments,

• passing aliases through typecasts,
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• functions returning struct variables by value,

• passing aliases through unions,

• mutual recursion, and

• compound global initializations.

6.3 Safe Parallelism for thttpd

thttpd (tiny/turbo/throttling HTTP server) is described by the author as a simple, small, fast and

secure HTTP/1.1 server. It is a single-threaded, event-driven server application that uses its own

event management framework. The server source code consists of 7496 lines of C code1.

6.3.1 Motivation

thttpd does not perform any CPU-intensive activity and thus may not seem like a suitable server

application to parallelize. However, current UNIX kernels do not offer any standard asynchronous

disk I/O interface, and so thttpd’s single thread must block on synchronous disk I/O calls.

When the server receives a request for a file, it uses mmap() to map the file into memory and

write() to send it out over the network. write() will trigger page faults when a block has been

mapped but not paged in, and these faults block the server’s single thread.

Thus thttpd is ideally suited to serve static data from its memory cache; for this type of workload,

this is one of the fastest web servers available. When the data to be served cannot be entirely cached

in memory, thttpd’s performance degrades as the size of the files it must serve increases.

If multiple threads could concurrently execute the event handler that performs the blocking

write() call, then server freezes could be avoided, together with their impact on performance.

The goal then, was to improve thttpd’s performance on workloads involving large files that are

not in cache. This was to be accomplished by using elyze and multivent to parallelize thttpd,

specifically ensuring that the event handler that triggers page faults could have multiple threads

executing it simultaneously.

6.3.2 elyzing

Before analysis: thttpd uses its own event management code: a module named fdwatch. It also

uses its own timer management code and installs signal handlers using the OS interface.

The first task was to replace these modules with libevent, which proved to be a straightforward

mechanical exercise. There was no performance impact from this change.
1Estimated using David A. Wheeler’s ‘SLOCCount’.
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Handler Runs Mean Minimum Maximum
listen 29 3061.45 0s 25us 0s 79683us
tidle 95 36.0842 0s 18us 0s 82us
toccasional 7 14296.3 0s 62us 0s 43423us
sigalrm 2 6 0s 5us 0s 7us
clear conn 650 38.4877 0s 10us 0s 535us
read 650 4188.12 0s 24us 0s 98246us
send 21273 172969 0s 9us 6s 210315us

Table 6.1: multivent dynamic analysis results for thttpd show the number of invocations and the
mean, minimum and maximum times for completion of each event handler.

Analyzing: elyze completely analyzes thttpd in 2̃.4 seconds. It then informs us that:

...

evh send() and evh send() conflict on context: *(c).conn state ...

...

The function evh send() performs the blocking write() call with which we are concerned. Out

of the box, this event handler only conflicts with itself if the session (context) is the same; this

constraint allows multivent to run multiple evh send()s in parallel so long as the session passed

in to each invocation is different.

As this was precisely the goal, we ran performance tests on this version of thttpd against

the original. For large workloads, we found an approximate 12% speedup. Details of these tests

are in Section 6.3.3. It must be emphasized that this speedup was achieved without any further

code changes: simply running the server through elyze and multivent produced this increase in

performance.

Going further: multivent’s dynamic analysis (shown in Table 6.1) informed us that our new

thttpd could benefit from the parallelization of the evh read() event handler (handler names are

truncated in the following table):

Previously, elyze had told us that:

...

evh read() and evh read() always conflict: ...

...

For the next step, we chose to work on removing the constraint preventing multiple copies of the

evh read() event handler from running concurrently. elyze reported that the constraint preventing

this was caused by 123 conflicts. Examining the summary of this event handler showed that these

conflicts fell into four categories:

1. Writes to static variables in various functions in libhttpd.c, mostly used to record malloc()ed

buffer pointers and their sizes. Each of these was removed, either by statically allocating the

buffers, or by using atomic operations.
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2. Functions to look up the weekday and month in tdate parse.c were performing a one-time

sort of their tables on the first invocation. This was removed after pre-sorting the tables.

3. An internal version of inet ntoa() that used an internal static buffer was adjusted to take a

buffer as an argument.

4. All the remaining conflicts derived from a call to mmc map(), at the end of evh read(). This

was resolved by splitting off this call into its own event handler, evh map(), and triggering

that event handler from evh read().

These changes allowed multiple copies of evh read() to run in parallel, improving the modified

thttpd’s performance on workloads with large files to 15%. Details on these results follow.

6.3.3 Results

We used http load [18] to simulate 200 clients fetching a total of 4GB of data. Each 4GB workload

was composed of files of the same size, ranging from 512KB to 6MB. We averaged the results of

multiple tests on each of the following versions of the server:

1. Unmodified thttpd

2. thttpd with multivent

3. thttpd with parallelized evh read()

The results of these tests, in Figure 6.1, show that as file size increases, the parallelized thttpd

performs better.

6.4 Safe Parallelism for tor

tor is a system intended to enable online anonymity. It is an implementation of onion routing which

works by relaying communications over a network of servers run by volunteers in various locations.

tor is implemented as an event-driven server using libevent in 74,600 lines of C code2.

Users of a tor network run an onion proxy on their machine. The tor software periodically

negotiates a virtual circuit through the tor network, using multi-layer encryption, ensuring perfect

forward secrecy. At the same time, the onion proxy software presents a SOCKS interface to its clients.

SOCKS-aware applications may be pointed at tor, which then multiplexes the traffic through a tor

virtual circuit. Once inside the tor network, the traffic is sent from router to router, ultimately

reaching an exit node at which point the cleartext packet is available and is forwarded on to its

original destination. Viewed from the destination, the traffic appears to originate at the tor exit

node.
2Estimated by David A. Wheeler’s ‘SLOCCount’.
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6.4.1 Motivation

tor uses TLS 1.0 to establish virtual circuits to carry user traffic. The TLS handshake uses asym-

metric key encryption, which is very CPU intensive. As tor is implemented as an event-driven

server, the single thread could get overwhelmed when multiple circuits are being established.

Aware of this, tor’s authors have implemented a pool of ‘CPU workers’ to perform CPU-intensive

tasks in multiple threads. This pool is used for performing the TLS handshake when a new circuit

is established.

This approach has, in fact, improved tor’s performance in setting up circuits as can be seen from

the performance testing described in Section 6.4.3.

Unfortunately, even the expert programmers behind a large, complex server such as tor can fall

victim to the difficulties of multi-threaded programming as can be seen from the following comment

in cpuworker.c:

/** We have a bug that I can’t find. Sometimes, very rarely, cpuworkers get

* stuck in the ’busy’ state, even though the cpuworker process thinks of

* itself as idle. I don’t know why. But here’s a workaround to kill any

* cpuworker that’s been busy for more than CPUWORKER BUSY TIMEOUT.

*/

If tor were parallelized using elyze and multivent, the CPU worker pool would not have been

necessary, so long as the event handler that performed the CPU-intensive task could be executed

concurrently with itself and other event handlers.

Thus the goal with tor was to eliminate the CPU worker pool with its associated bugs, but

maintain the same level of performance in the establishing of circuits.

6.4.2 elyzing

Before analysis: tor’s interface to the CPU worker pool is over a UNIX domain stream socket.

An event handler makes a request to a CPU worker by calling assign onionskin to cpuworker()

which writes the request to one end of the connection. When the CPU worker thread finishes

processing the request, it writes the response back to the connection, which triggers a tor event

handler that calls onionskin answer() to deliver the response.

We eliminated the CPU worker threads and their associated communication channels. The new

implementation of assign onionskin to cpuworker() function delivers the request via session to an

event handler: cpuworker callback() that is immediately triggered. The event handler processes

the request and delivers the response to another event handler: cpuworkdone callback(), which

calls onionskin answer() to complete the request.

We made a few other changes due to some peculiarities in tor’s interaction with libevent; these

had no effect on functionality.

This version of tor, running single-threaded with libevent shows us (in Section 6.4.3) why the

authors introduced the CPU worker thread pool: as the number of parallel circuit requests increase,

performance degrades.
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Analyzing: elyze completes its first iteration over tor’s source code in 70 minutes. However,

tor uses recursion extensively: there are 131 recursive call chains of varying lengths, one of which

is 27 calls deep. Furthermore, tor has over 6000 globals, with up to 3200 being used in each of the

two main event handlers.

Due to these factors, elyze takes a total of 18 hours to completely process tor’s call graph. There

are relatively straightforward engineering solutions to improve this performance, such as caching and

re-validating results from previous runs, which have been left for future work.

elyze reported that cpuworker callback() conflicted with itself. This would prevent the event

handler from being invoked by multiple threads concurrently, which was essential to matching the

original tor’s performance.

The reported conflicts related primarily to statistics updates; these were in note crypto pk op()

in rephist.c. We replaced all these with atomic operations which are recognized as such by elyze;

this successfully eliminated the constraint.

6.4.3 Results

Tests were carried out on a private tor network, composed of five routers. tor’s control protocol was

used to establish control connections to each of these routers. Every test requested each router to

establish multiple three-hop circuits with the other routers; the time taken to establish each circuit

was recorded. We ran tests on the following versions of the server:

1. Unmodified tor

2. tor without CPU worker threads, using libevent

3. tor without CPU worker threads, using multivent

Figure 6.2 shows the results of these tests. We see that as the number of parallel circuit requests

increases, the average time required to establish a circuit increases. The single-threaded version of

tor suffers from the CPU-intensive nature of circuit establishment.

tor with multivent actually out-performs tor with the CPU worker thread pool. We attribute

this primarily to the reduction in thread communication overhead (the original tor uses a UNIX

domain stream socket), and to the removal of the culling mechanism that the tor authors used to

work around their threading bug.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions and Future Work

Parallel programming should be safe by default. Just as garbage collection eliminates an entire class

of bugs relating to memory management, safe parallelism ensures that data races between threads

cannot occur. This allows programmers to focus their efforts on improving performance rather

than on attempting to reproduce and locate subtle bugs, which will result not only in more reliable

applications, but also in increased programmer productivity.

elyze and multivent and their application to real world server applications as presented in

this dissertation demonstrate that safe parallelism is achievable on existing code, that the system

guides the programmer in increasing opportunities for concurrent execution, and that incremental

performance gains result from development effort.

There are many avenues to extend this work.

7.1.1 OS resources

elyze assumes that conflicting objects are blocks of memory. There are, however, other resources

that can cause conflicts, such as files and pipes. Recognizing these resources and manipulations to

them is necessary for elyze to correctly identify all conflicts.

7.1.2 Change impact

During the course of the development of a server application, changes to the code may create

new conflicts between event handlers, or remove existing conflicts. Thus, there may be changes to

the constraints determined by elyze between one analysis and the next. Assessing the impact of

such changes and reporting them to the programmer would improve elyze’s utility as a software

engineering tool.

34
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7.1.3 Runtime enhancements

There are a number of potential enhancements to the runtime scheduler. The current implementation

acquires all required locks prior to event handler invocation. Delaying lock acquisition to just prior

to an access could increase concurrency as some conflicting accesses could occur only down certain

conditional branches; if those branches were not taken, no conflict would exist.

7.1.4 Others

• Support for other languages, such as Java.

• Evaluating the feasibility and utility of safe parallelism for applications other than servers, and

on platforms such as Android.

• Exploring the application of safe parallelism to programs written to different models.
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