
Query Processing on Uncertain Data

By Tingjian Ge

B.E., Tsinghua University, 1994

M.S., University of California, Davis, 1998

M.S., Brown University, 2006

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

in the Computer Science Department at Brown University

Providence, Rhode Island

May, 2009

© Copyright 2009 by Tingjian Ge

This dissertation by Tingjian Ge is accepted in its present form

 by the Computer Science Department as satisfying the dissertation

requirement for the degree of Doctor of Philosophy.

Date_____________ _________________________________
 Stan Zdonik, Advisor

Recommended to the Graduate Council

Date_____________ _________________________________
 Ugur Cetintemel, Reader

Date_____________ _________________________________
 Eli Upfal, Reader

 Approved by the Graduate Council

Date_____________ _________________________________
 Dean of the Graduate School

iii

Vita

Tingjian Ge was born on May 12th, 1972 in the beautiful city of Dalian, China. He received his

Bachelor's degree in Computer Science from Tsinghua University, Beijing in 1994. In 1998, he

received a Sc.M. degree in Computer Science from University of California, at Davis. After

graduation from UC Davis, he worked as a Software Engineer at Informix Software, and then

at IBM for a total of six years. He then joined the graduate program at Brown University,

where he received his Sc.M. in Computer Science at Brown University, in 2006. He completed

his Ph.D. in Computer Science at Brown University in 2009. He published six research papers

as the first-author in recent three years at top-tier database conferences ACM SIGMOD

International Conference on Management of Data, International Conference on Very Large Data Bases

(VLDB) and International Conference on Data Engineering (ICDE).

iv

ACKNOWLEDGMENTS

I owe my deepest gratitude to my advisor Stan Zdonik. My Ph.D. journey would have gone nowhere

without his constant support, encouragements, and advices. Stan has helped me a great deal in

presenting ideas clearly and succinctly. He has always been a great mentor who holds belief in me and

encourages me to try any interesting ideas. Stan’s technical insights benefited my thesis work a lot.

My determination to work in the academia has so much to do with Stan’s generous encouragements

and advices.

I also wish to express sincere appreciation to Ugur Cetintemel. Ugur is simply always helpful. The

very first graduate database class I took at Brown was with Ugur. From enlightening technical

discussions, to inviting outside researchers to give a talk to us, Ugur contributed a lot to the well-being

of my research work, as well as to improving my presentation skills.

My sincere thanks to Eli Upfal. Eli made me a big fan of probability. His book, “Probability and

Computing: Randomized Algorithms and Probabilistic Analysis”, has been in the reference list of

nearly every paper of mine. This has proven to be the most useful mathematical tool in my research.

I have either taken or audited as many as six of Eli’s classes.

I am very grateful to Ihab Ilyas at University of Waterloo. Ihab’s talk at Brown on top-k queries on

uncertain data inspired me to work on this topic and eventually I published a paper at SIGMOD

2009, which is one of the key elements of this thesis. Ihab has also given me some valuable advices

on my research, on my job application, and on my future career.

My gratitude also goes to Sam Madden at MIT. Sam has been helpful since the days I worked on the

C-Store project. Recently, we worked on the SIGMOD paper together and had fruitful discussions

about using his CarTel project dataset to perform the experiments. I learned a lot from Sam, not only

the technical aspects, but also the presentation skills in a paper and in a research statement.

I am so much thankful to all the professors at Brown from whom I took classes. In particular, Anna

Lysyanskaya’s cryptography class and reading group drew so much of my interests that they give me

v

the foundation of my research on database security. So far, three of my papers on security are all

based on the knowledge and techniques that I learned from Anna. I also have a great interest in the

theory of distributed computing. For that reason, I learned a lot from Maurice Herlihy. Two of my

research papers use techniques and theories I learned from Maurice’s classes: skip-lists and the wait-

free property. I am also grateful to Claire Mathieu, Roberto Tamassia, Franco Preparata, Shriram

Krishnamurthi, and professors in the Applied Math department: Donald McClure and Stuart Geman.

They had a great impact on my views and my research toolbox.

I can never overlook the effects of the education that I received from UC Davis during my Master’s

study. It is the main reason and inspiration that prompted me to pursue my Ph.D. study at Brown,

even after six years in the industry. I can’t forget the hours I spent in the library working on the

problem sets from Dan Gusfield’s advanced algorithm class. At that moment, I felt that I started to

understand the meaning of computer science. Phil Rogaway’s Introduction to Computer Science

Theory class also made me appreciate the beauty of this field. Biswan Mukherjee’s Network

Performance Analysis class brought me more confidence in doing research. My work with Ron

Olsson gave me understandings on concurrent computing.

The database group at Brown University has been a nurturing and stimulating environment. I am

grateful to every member of the group.

This thesis would not have been a reality without the support of my family. First and foremost, my

most heartfelt acknowledgment goes to my wife Li Li. Her constant support, endurance and sacrifice

for me to pursue my dream will forever be my source of gratitude. My papers would not have been

as good as they are today without Li’s involvement in hearing my ideas, reading the papers, and

commenting on them. Our upcoming son, Adam Ge, has certainly created a lot of motivations for

me to finish my thesis. A penultimate thank-you must also go to my wonderful parents. For all the

things they give me and their sacrifices without any hesitation or complaints, they deserve far more

credit than I can ever give them.

(Funding for my graduate studies has been provided by a fellowship from Brown University and by

the NSF, under the grants IIS-0086057 and IIS-0325838 given to Stan Zdonik.)

 vi

 vii

TABLE OF CONTENTS

Chapter 1: Introduction..1
1.1 Applications Where a DBMS Needs to Manage Uncertain Data1
1.2 Classification of Uncertain Data..2
1.3 The Possible World Semantics...5
1.4 The Open Problems in Managing Uncertain Data ..6
1.5 Overview of Our Results ..10

Chapter 2: A Monte Carlo Query Processing Framework and S-JOIN.................16
2.1 SERP...16
2.2 A Special Join Algorithm in the SERP Framework and Experiments.....29

Chapter 3: Handling Correlated Uncertain Attributes ...41
3.1 Modeling and Processing Correlated Uncertain Attributes with MRF41
3.2 A-trees...47

Chapter 4: Semantics and Processing of Top-k Queries on Uncertain Data.........72
4.1 Problem Formulation ..72
4.2 Computing Score Distribution of Top-k ...75
4.3 Computing c-Typical-Top-k...86
4.4 Empirical Study...89

Chapter 5: Predictive Queries: Querying Uncertain Data in the Future.................95
5.1 Elements of Our Approach..95
5.2 Selection of Model Set to Build and Maintain ..98
5.3 Query Processing... 102
5.4 Empirical Study.. 105

Chapter 6: Related Work... 110
Chapter 7: Conclusions ... 115
Bibliography... 117

 viii

LIST OF FIGURES

1.1: Two kinds of uncertain data ..3
1.2: Uncertainty in a query result ..4
1.3: The possible world semantics..5

2.1: Accuracy of SERP ...26
2.2: Execution time of SERP and other algorithms..27
2.3: Accuracy of Statistical Mode..27
2.4: Execution time of Statistical Mode...27
2.5: Query results with different methods ..29
2.6: Illustrating the proof of Theorem 2.5 ..34
2.7: Example tracks from two sensors ..38
2.8: Result comparison of correlated and uncorrelated models38
2.9: Performance improvement of S-Join...39
2.10: Maximum parallel rounds...39
2.11: Entropy and variation distance in results ..39

3.1: Example of a k-ary tree with k = 4 ..47
3.2: Recursive partitioning of an array ...48
3.3: Final block shapes and their partitions ..50
3.4: Initial partition of an array into regions ...51
3.5: Probabilistic graphical models of A-trees..52
3.6: Top-down inference of an A-tree...55
3.7: Cluster Distance in an A-tree...56
3.8: Joint distribution at a node...59
3.9: Sensor readings history data...60
3.10: Encoding of joint distribution at a node ...60
3.11: a level-order storage of an A-tree on disk ...61
3.12: Sampling from an A-tree..62
3.13: MRF for query processing ...63
3.14: Minimum covers ..64
3.15: Result accuracy of A-trees..67
3.16: Execution time of A-trees..70
3.17: Optimizations of Aggregation queries using A-tree..71
3.18: A-tree size..71

4.1: The StateExpansion algorithm..76
4.2: The basic dynamic programming algorithm...78
4.3: Lead tuple regions..83

 ix

 x

4.4: The c-Typical-Topk algorithm ..88
4.5: Score distribution and typical tuple vectors on real data....................................91
4.6: k vs. scan depth ..91
4.7: k vs. execution time ...91
4.8: ME portion vs. time ..91
4.9: Number of lines vs. time ..91
4.10: Score and probability correlations ..93
4.11: Increasing variance ..93
4.12: Gaps between ME tuples ...93
4.13: Size of ME groups...93

5.1: I/O conscious skip-lists..95
5.2: Determining a proper history length..98
5.3: Model JOIN... 105
5.4: Effectiveness of skip-lists .. 106
5.5: Execution time comparisons .. 106
5.6: The PMF used ... 107
5.7: Accuracy with different number of PM’s... 107
5.8: Prediction error vs. model distance ... 108
5.9: Execution time improvements with PM’s.. 108
5.10: Monotonicity of skip list level used... 108
5.11: Aggregation query results using PM’s... 108

1

C h a p t e r 1

INTRODUCTION

The need to manage uncertain data arises in many applications. Some examples include data cleaning,

data integration, data extraction, sensor networks, pervasive computing, and scientific data

management. For example, acoustic sensors (e.g., microphones) are often used to detect the presence

of objects. Due to the nature of acoustic sensing, detections produced by microphones are often

ambiguous, with an object possibly being at one of several locations. A common approach for

storing such sensor data is to produce one record for each of the possible object locations, and assign

a confidence (i.e., probability of existence in a table) to each record.

In the remainder of this chapter, we first discuss in more details about recent applications that require

uncertain data management. Following that, we classify the types of uncertain data in database

systems. We then present the possible world semantics that is commonly used in this context.

Finally, for clarity, we give an overview of some open problems in this area and a brief highlight of

our solutions to these problems.

1.1 Applications Where a DBMS Needs to Manage Uncertain Data

Managing large uncertain data repositories becomes an important and timely problem, with the

explosion of the automatically generated data, inferred data, and data-by-the-masses in real systems.

All these data are full of noise, missing values, errors and conflicts. Machine learning research has

been trying to solve this very problem for decades. The explosion of the automatically generated

data, inferred data, and data-by-the-masses in real systems requires a DBMS to efficiently handle large

amount of data that has uncertainty. Here are some examples:

• Sensor networks can generate gigabytes of data every second, while sensor data are known to be

low quality, because of the interference, noise, battery, etc.

• Information extraction systems automatically extract and classify entities, relationships and their

attributes from web pages, where the extractor and classifier generate errors.

 2

• Data Integration systems automatically try to infer schema mapping and record linkage from

different data sources, which may result in mistakes in the integrated data.

• Scientific databases often have data that is imprecise in nature, due to the limitation of the

instruments and the algorithms that derive the data. A simple example is that in astronomical

databases, observed star locations are usually associated with error bars that specify a range of

possible values.

• Lastly, Social Networks generate data by the masses, whose data is prone to be noisy and

conflicting.

We illustrate using an example from an information extraction system. The Purple Sox [61] system at

Yahoo! Research focuses on technologies to extract and manage structured information from the

Web related to a specific community. An example is the DBLife system [27] that aggregates

structured information about the database community from data on the Web. The system extracts

lists of database researchers together with structured, related information such as publications they

have authored, their co-author relationships, talks they have given, their current affiliations, and their

professional services. Although most researchers have a single affiliation, the extracted affiliations are

not unique. This occurs because outdated/erroneous information is often present on the Web, and

even if the extractor is operating on an up-to-date webpage, the difficulty of the extraction problem

forces the extractors to produce many alternative extractions or risk missing valuable data. Thus, each

Name contains several possible affiliations. One can think of Affiliation as being an attribute with

uncertain values; or equivalently, one can think of each row as being a separate uncertain tuple. There

are two constraints on this data: tuples with the same Name but different Affiliation are mutually

exclusive; and tuples with different values of Name are independent. The professional services can be

extracted from conference web pages, and are also imprecise: in this example, each record in the table

is an independent extraction and assumed to be independent.

1.2 Classification of Uncertain Data

In the probabilistic databases literature, there are two types of data uncertainty: (1) tuple uncertainty

and (2) attribute uncertainty.

 3

In tuple uncertainty, a probability number (sometimes called confidence) is associated with each tuple.

An example is shown in Figure 1.1(a). Figure 1.1(a) is from an application in which various sensors

are embedded in the uniforms of soldiers in a battle field. The sensors send out detections of the

medical conditions of the soldier that wears the uniform. The second to last column is a score that

indicates how much medical attention this soldier needs. The higher the score, the more urgent it is

to send medical resources to this soldier. The last column (Conf.) is the probability that the tuple

exists in the table. We may also specify mutual exclusion rules, which indicate that at most one of a

set of tuples can exist in the table. In this way, we can encode a discrete PMF (probability mass

function) by a set of mutually exclusive tuples. In more details, for a PMF {(v1, p1), (v2, p2), …, (vk,

pk)}, v1 to vk are values in a set of mutually exclusive tuples and p1 to pk are their probabilities. The

sum of the probabilities is no more than 1. If the sum is less than 1, then with remaining probability,

none of the mutually exclusive tuples exist in the table. In the example in Figure 1.1(a), the three

highlighted tuples in green (T2, T4, and T7) are mutually exclusive. They are detections of the same

soldier (same Soldier ID) at around the same time, and hence at most one of them can have the

correct score.

Clearly, the tuple uncertainty model can be considered as a generalization of the data model without

uncertainty, in which each tuple has probability one, and there are no mutual exclusion rules.

The second type of uncertainty is called attribute uncertainty. In this case, an attribute is uncertain and

we model each value of the attribute as a probabilistic distribution. In the example of Figure 1.1(b),

(a) (b)
Figure 1.1: Illustrating two kinds of uncertain data: tuple uncertainty (a) and attribute
uncertainty (b). The last column of (a) (Conf., i.e., confidence) indicates the probability that
the tuple exists in the table. The highlighted green tuples are mutually exclusive (i.e., at most
one of them can be true).

Normal (78, 10)72

Normal (62, 15)11

Normal (90, 20)28

SpeedObject ID

Normal (78, 10)72

Normal (62, 15)11

Normal (90, 20)28

SpeedObject ID

distribution

0.3125(11, 19)10:502T7

0.558(9, 25)10:503T6

1.056(12, 7)10:494T5

0.380(10, 19)10:502T4

0.4110(9, 25)10:513T3

0.460(10, 19)10:492T2

0.449(10, 20)10:501T1

Conf.Score for
Medical
Needs

Location
(x, y)

TimeSoldier
ID

Tuple
ID

0.3125(11, 19)10:502T7

0.558(9, 25)10:503T6

1.056(12, 7)10:494T5

0.380(10, 19)10:502T4

0.4110(9, 25)10:513T3

0.460(10, 19)10:492T2

0.449(10, 20)10:501T1

Conf.Score for
Medical
Needs

Location
(x, y)

Tuple
ID

Soldier
ID

Time

Tuple Uncertainty Attribute Uncertainty

 4

the measurements of the Speed attribute can have errors and we model each speed value by a normal

distribution. This is in contrast with the traditional deterministic model in which each value of an

attribute is a fixed scalar value. Attribute uncertainty may also be considered as a generalization of the

data model without uncertainty, in which each value in an attribute is some value with probability one

(i.e., a discrete distribution).

Not only do the two kinds of uncertainty exist in the source data, but they also exist in the query

result. Let us look at an example.

We take a simple table that has attribute uncertainty as shown in Figure 1.1(b). We then issue a query

as in Figure 1.2(a). What would the result be? Each of the three tuples has a non-zero probability to

satisfy the predicate “Speed > 78”. For example, the first tuple’s Speed attribute has a normal

distribution with mean 90 and variance 20, and thus has a high probability (say, 0.95) satisfying the

predicate. The second tuple, on the other hand, has a normal distribution with a low mean (62) and

has a tiny probability (say, 0.001) satisfying the predicate. Thus, we have tuple uncertainty in the

query result (last column in Figure 1.2(a)).

Now about the selected “Speed” attribute in the result set? We know that only if the Speed is above

78 should the tuple be in the result at all. Hence, we can reason that the Speed attribute in the result

should not be in its original form, but rather, a conditional distribution (conditioned on the predicate

being true) based on the original distribution. We illustrate this in Figure 1.2(b), which shows the

example for the first result tuple. We cut off the original distribution Normal (90, 20) at the value 78,

7878 original distributionoriginal distribution

conditional distribution
after normalization

 conditional distribution
after normalization

SELECT ObjectID, FROM table
WHERE > 78

Result?

SELECT ObjectID, FROM table
WHERE > 78

Result?

0.5?72

0.001?11

0.95?28

Object
ID

Speed
Speed

Speed
Speed

Prob.Speed

tuple uncertaintyattribute uncertainty

(a) (b)
Figure 1.2: Illustrating tuple uncertainty and attribute uncertainty in a query result. We issue
the query in (a) to the uncertain table in Fig. 1(b). Each of the three tuples has a non-zero
probability to be in the result – this is tuple uncertainty (last column in (a)). The “Speed” in the
result has attribute uncertainty – a conditional distribution shown in (b).

0.5?72

0.001?11

0.95?28

Prob.SpeedObject
ID

tuple uncertaintyattribute uncertainty

 5

and only take the right side of the curve. Then, we need to normalize it (by multiplying a constant

factor) so that the function still integrates to 1, as a probability density function. We can see that the

Speed attribute in the result is still distributions, and we have attribute uncertainty in the result.

1.3 The Possible World Semantics

T4, T60.06W9 = {T1, T4, T5, T6}

T3, T40.072W8 = {T3, T4, T5}

T3, T40.048W7 = {T1, T3, T4, T5}

T2, T50.024W6 = {T2, T5}

T2, T50.016W5 = {T1, T2, T5}

T2, T60.12W4 = {T2, T5, T6}

T2, T60.08W3 = {T1, T2, T5, T6}

T3, T20.096W2 = {T2, T3, T5}

T3, T20.064W1 = {T1, T2, T3, T5}

Top-2Prob.Possible world

T4, T60.06W9 = {T1, T4, T5, T6}

T3, T40.072W8 = {T3, T4, T5}

T3, T40.048W7 = {T1, T3, T4, T5}

T2, T50.024W6 = {T2, T5}

T2, T50.016W5 = {T1, T2, T5}

T2, T60.12W4 = {T2, T5, T6}

T2, T60.08W3 = {T1, T2, T5, T6}

T3, T20.096W2 = {T2, T3, T5}

T3, T20.064W1 = {T1, T2, T3, T5}

Top-2Prob.Possible world

T7, T50.018W18 = {T5, T7}

T7, T50.012W17 = {T1, T5, T7}

T7, T60.09W16 = {T5, T6, T7}

T7, T60.06W15 = {T1, T5, T6, T7}

T7, T30.072W14 = {T3, T5, T7}

T7, T30.048W13 = {T1, T3, T5, T7}

T4, T50.018W12 = {T4, T5}

T4, T50.012W11 = {T1, T4, T5}

T4, T60.09W10 = {T4, T5, T6}

Top-2Prob.Possible world

T7, T50.018W18 = {T5, T7}

T7, T50.012W17 = {T1, T5, T7}

T7, T60.09W16 = {T5, T6, T7}

T7, T60.06W15 = {T1, T5, T6, T7}

T7, T30.072W14 = {T3, T5, T7}

T7, T30.048W13 = {T1, T3, T5, T7}

T4, T50.018W12 = {T4, T5}

T4, T50.012W11 = {T1, T4, T5}

T4, T60.09W10 = {T4, T5, T6}

Top-2Prob.Possible world

Figure 1.3: Illustrating the possible world semantics. The uncertain table in Figure 1(a) has 18
possible worlds (W1 to W18). Each possible world is deterministic and has a fixed set of
tuples (column 1). Each world also has a probability (column 2) that it is indeed the real world.
The third column shows the results of a top-2 query based on the score attribute in the table.
Overall, for the original uncertain table, the result is T2, T6 with probability 0.2 (i.e., the sum of
the probability of W3 and W4).

For uncertain data management, the possible world semantics are commonly used. An uncertain

relation may have many possible worlds. Each possible world is a deterministic world, and has a

certain probability being the real world. Thus, we can think of an uncertain database as an aggregate

of all the deterministic possible worlds. Query semantics under each deterministic possible world is

well-known. Consequently, the total probability of all the possible worlds that bear some result tuple

is the probability of that result tuple.

We now look at an example. Figure 1.3 lists the eighteen possible worlds of the uncertain table

shown in Figure 1.1(a). We show the set of tuples in each world and the probability of each world in

the first two columns of Figure 1.3. Note that Figure 1.3 respects the mutual exclusion rules of the

uncertain table. For example, no world has more than one tuple from {T2, T4, T7}. Now suppose

we want to answer a query that asks for top-2 tuples based on the score attribute in Figure 1.1(a). We

can easily obtain the result for each possible world, shown in the third column of Figure 1.3. Then

the final step is to “assemble” these results from the possible worlds, by summing on their

probabilities. For example, the combination T2, T6 is and only is in W3 and W4, and therefore, T2,

 6

T6 is in the result of the original uncertain table with probability Pr(W3) + Pr(W4) = 0.2. Repeating

this for each possible result, we arrive at the semantics for the uncertain database.

Note that although this gives an intuitive semantics (or what to expect) of the query results, in general

it is highly inefficient to try to answer a query by enumerating all possible worlds. There are an

exponential number of worlds and it is too costly to evaluate a query this way. Clearly, efficient query

processing algorithms need to be developed.

1.4 The Open Problems in Managing Uncertain Data

Managing uncertain data is an area that has drawn considerably attention lately due to its wide

applications. As we discussed, there are roughly two kinds of uncertainty in the database context:

attribute uncertainty and tuple uncertainty. We start with the attribute uncertainty as commonly seen in

sensor and scientific data management. There are many examples including sensor readings (e.g.,

temperature) and GPS location data [GPS08]. In many cases, the uncertainty increases with time as

the readings become outdated.

1.4.1 Problem 1: Operations on Uncertain Data

In previous work (e.g., [CK03]), in the context of sensor networks, uncertain data is modeled as a

continuous PDF (probability density function). Essentially each data value is a PDF describing its

distribution. Queries produce results that are also uncertain and the resulting PDF is a function of the

input PDF’s. For example, in [CK03], to perform a simple “addition” on two uncertain values’ PDFs,

a convolution of the form ∫ must be performed (resulting in a function on x),

where f1, l1, and u1 are the first value’s PDF, lower bound, and upper bound, respectively, and f2, l2,

and u2 are the same for the second value. For adding more values (e.g., for SUM or AVG), the

convolution is repeated n times, where n is the number of values being aggregated, to get the final

distribution function. Scientific databases are typically huge (frequently terabytes) and the operations

that they must support are complex. It is easy to see that this approach would not scale in our

context: the intermediate PDFs are too costly to compute. Even if one applies numerical methods to

approximate the intermediate PDFs, the expense can still grow arbitrarily [S01].

−

−
−

},min{

},max{ 21
21

21

)()(
lxu

uxl
dyyxfyf

1.4.2 Problem 2: Modeling and Processing Correlated Uncertain Data

We first look at an example of uncertain data. Let’s imagine a temperature sensor whose readings

follow a Gaussian distribution with a known variance of one degree, and these sensor readings are

 7

stored in a database. Imagine this database contains a tuple T1 which indicates that on Sunday the

temperature was 79 degrees. Now someone queries the database for all rows with temperature greater

or equal to 80. Should R1 be included in the result set? In a traditional database, the answer would be

no. However, there is a 16% chance that the temperature represented by T1 was actually over 80

degrees because of the uncertainty in the sensor. Databases for scientific applications need to be able

to handle this uncertainty by propagating it to query results.

The uncertainty problem is further complicated when the uncertainty between different values is

correlated. Imagine that the database described above, when queried for temperatures above 80, will

tell me that the probability that T1 is in the result set is 16%. Now imagine that the database contains

another tuple T2 which indicates that on Monday the temperature was also 79 degrees. Now the

database is queried for two consecutive days in which the temperature was above 80 degrees. Since T1

and T2 both have a probability of .16 of representing a temperature over 80 degrees, the probability

of the result set containing the combination (T1, T2) is 0.16*0.16 = 0.0256, assuming the

measurements are independent. However, the measurements are not independent; they come from

the same sensor. What if the sensor is precise but inaccurate and all measurements have the same

error due to the sensor itself? In that case, the database needs to handle this correlated uncertainty

and report that the combination (T1, T2) should actually be in the result set with probability 0.16

rather than probability 0.0256.

Ignoring correlation of uncertain data in databases for the simplicity of representation and query

processing is often unfounded and renders the results of queries wrong and useless. This is loosely

analogous to previous work on query optimization, in which one has to consider attribute value

correlation for selectivity estimation [PI97]. Compact model representation and efficient query

processing are key ingredients of practical systems that handle uncertain data. These two elements are

needed for correlated uncertain data.

1.4.3 Problem 3: Answering Queries of Uncertain Data in the Future

Answering queries about data in the future (i.e., prediction or forecasting) is a new direction in data

management. Although the existing data may be deterministic, forecasting is over the uncertain future

data. In other words, the result of a forecasting query is uncertain. Time series is the dominating data

type in this domain, although it can be other data types. Scientific, financial, and business applications

rely on time series data [WG93, WS01]. Decision making often requires forecasting over time series

 8

data at different time scales. The following three example areas illustrate (1) short-, (2) medium-, and

(3) long-term forecasting requirements respectively.

1. Scheduling: Forecasts of the level of demand for various products are an essential input to

near-term scheduling of production, transportation, and personnel.

2. Acquiring Resources: Forecasting is needed to determine future resource requirements in order

to plan for acquisition lead times that could span several months.

3. Determining resource requirements: Forecasts of financial, human, and technological requirements

are helpful for determining what resources an organization will need in the long-term.

In these applications, the amount of data is often very large. Consider the time series of trades and

quotes (called ticks). Stock quotes arrive every second. Financial analysts want to predict stock prices

minutes ahead, hours ahead, days ahead, months ahead, or sometimes years ahead. A simple example

of a forecasting query is the following:

SELECT * FROM ticks

WHERE symbol = “IBM” and time = NOW + 1 day

Clearly, excessive granularity of data is unnecessary and inefficient or even impractical for a given

prediction interval. For example, to predict the stock price of some company one year from now, it is

wise to use a history length of a certain number of years (say, 20 years). Too short a history may give a

partial picture of the evolution of the stock data, thus making the prediction result inaccurate

[MW98]. On the other hand, too long a history length may not offer more useful information for the

prediction, and sometimes may even complicate and disturb the model building [YS00], thereby, also

reducing accuracy.

A history length of 20 years with one tick per-second has 20*365*24*3600 = 630,720,000 values! A

typical model selection and building process is expensive, and using this large number of data points is

impractical. In fact, even for predicting 15 days from now (using, say, a 12-month history), the

required history length would still be prohibitively large with over 30 million values.

1.4.4 Problem 4: Top-k Queries on Uncertain Data

The need to manage uncertain data arises in many applications. Some examples include data cleaning,

data integration, sensor networks, pervasive computing, and scientific data management. In the mean

time, top-k (i.e., ranking) queries have proved to be useful. Often, a query returns a large number of

 9

result tuples. Users can choose the top ranked few tuples to look at, according to some scoring

function that indicates their preference.

Consequently, answering top-k queries in uncertain databases has drawn some attention lately. The

complication due to the interaction of scores and probabilities of tuples makes the semantics unclear.

Thus, the very first problem is to define the semantics of top-k queries when the data is uncertain.

Recently, there has been some work on the semantics of top-k queries on uncertain data, starting

from the inspiring work of Soliman, Ilyas, and Chang [SI07]. The proposed semantics roughly fall into

two categories: (1) returning k tuples that can co-exist in a possible world (i.e., that must follow the

generation rules) or (2) returning tuples according to their own marginal distribution in top-k results

(e.g., the probability that a tuple is top-k or at a specific rank in all possible worlds). For example, the

U-Topk [SI07] definition belongs to category (1) while the U-kRanks [SI07] and PT-k [HP08]

definitions belong to (2). We build on this and propose an extension of the category (1) semantics.

In category (1) semantics, U-Topk chooses a k tuple vector based on its probability only. However,

we observe three facts:

• Although a k-tuple vector has the highest probability p being in the top-k, p itself can be

rather small (an obvious upper bound is that all those k tuples must all appear), or it is not

much bigger than the probability of other vectors being top-k.

• The score distribution of the tuples is usually independent of the distribution of probability

values of tuples.

• U-Topk does not take into consideration the distribution of the scores of all possible top-k

tuple vectors.

As a result of the above three facts, the total scores of a U-Topk vector can be rather atypical. We

note that this problem with U-Topk can be worse when k is bigger (i.e., k > 2). In other words, it is

more likely to occur that U-Topk returns a vector with an atypical score for bigger k values. This is

because for a specific k-tuple vector to be U-Topk, all the k uncertain tuples must appear in the first

place, lowering the probability and increasing the likelihood that its score is atypical. More specifically,

due to the “curse of dimensionality”, no top-k vector likely dominates many possible worlds (or has a

significant probability). Now suppose we arbitrarily increase the score of a tuple that is not in the

most probable top-k vector, U-Topk result can be arbitrarily atypical. This dilemma is analogous to

the “typical set” concept in information theory [CT91].

 10

Let us step back and examine what the issue really is. The complete result of a top-k query on

uncertain data, in fact, is a joint distribution on k-tuple vectors. If one were able to return such a joint

distribution as the result, all available information would be there. Unfortunately, it is too expensive to

compute, as well as to describe and return such a joint distribution as the result. All existing

definitions try to provide some of the most important information of such a distribution. Category (1)

and (2) definitions are useful in different situations. Category (1) definitions are needed for scenarios

that seek “compatible” k tuples (e.g., further inference on the whole set of k tuples are performed, as

in our examples). However, as we have observed, by simple selection of the highest probability, U-

Topk may pick a k-tuple vector that is highly atypical in scores.

1.5 Overview of Our Results

1.5.1 Solution 1: A Discrete Approach to Modeling and Query Processing

We propose a simpler, scalable, and discrete treatment. Even after the discretization of input values,

the cost of computing purely accurate result distributions can still be prohibitive. Consequently, it is

imperative to have a good metric that tells us how far the result distribution is from the “ideal”

distribution. We resort to a well-known metric from statistics, namely, variation distance [MU05]. It

measures the “distance” of two discrete distributions. In order to use this metric, we propose a way to

map continuous value intervals to discrete points in the state space. The “ideal” distribution is

defined as the distribution one would get if given unlimited computing resources.

We give an algorithm called SERP (Statistical sampling for Equidepth Result distribution with a

Provable error-bound) that has a provable upper bound on the variation distance between its result

distribution and the “ideal” one. SERP contains a parameter that indicates the granularity of the

discretization that balances efficiency and accuracy. SERP is a framework that can process general

query types, and it is essentially based on Monte Carlo randomized algorithms.

For certain operations, such as those aggregating a large number of values (e.g., summing or averaging

a few million uncertain values), it may be an unnecessary burden for the database system to compute

a full distribution of the result. As the aggregation is performed on many uncertain values, the user is

likely more concerned with a statistical summary of the result, such as the expected value and

variance. Individual possible values or a full distribution is less interesting. Moreover, the database

system may be able to compute “accurate” statistical information much more efficiently than trying to

compute an approximated full distribution. For this reason, we propose the “statistical” mode of a

value, which is comprised of the following components: expected value (E), variance (Var), an upper

 11

bound (UB), the probability (p1) that the value is above this upper bound, a lower bound (LB), and

the probability (p2) that the value is below this lower bound. The user may request the result to be in

this statistical mode only. We have also studied predicate evaluation strategies using inequalities.

1.5.2 Solution 2: A Special Join Algorithm (S-Join) in the SERP Framework

One of the drawbacks of performing query evaluation through sampling is that one query on

deterministic data can turn into one thousand queries on probabilistic data, which could be

prohibitively expensive. JOIN is one of the costliest database operators. In the case where the JOIN

attribute is uncertain, it may be necessary to sample that attribute and, in effect, perform thousands of

JOINs, a daunting task. We develop a specialized JOIN algorithm under the Monte Carlo query

evaluation that mitigates this problem. Our algorithm takes advantage of the structure of the

sampling problem to provide a significant speedup over running a standard JOIN algorithm over and

over. The algorithm is a modified sort-merge-join and we call it the S-Join algorithm.

The intuition behind the S-Join algorithm is that given a series of uncertain values, the order of

samples drawn from their distributions should be similar to the order of their expected values since

the correction parts are typically small compared to the gap between the original parts of any two

values. Thus, once we sort the tuples according to their expected values and draw samples in that

order, the samples themselves should be almost sorted (called pseudo-sorted). Sorting a pseudo-

sorted list is much cheaper than a complete sort. If most of the values to be sorted are already in

sorted order, insertion sort has a linear run-time.

1.5.3 Solution 3: Modeling and Query Processing of Correlated Uncertain Data

The first question we study is what the query semantics should be. Possible world semantics has been

extensively studied in the probabilistic database literature (e.g., [G06, DS04]). However, it is unclear

how one can apply it to the correlated continuous attribute uncertainty model. We present two ways

to specify the query semantics (integral-based and sampling-based).

Compact model representation and efficient query processing are key ingredients of practical systems

that handle uncertain data. To that end, chunking is typically employed in array database systems for

efficient I/O [SS94]. We propose piecewise probabilistic graphical models (e.g., Markov Random

Fields) [J98] with a slightly modified chunking scheme and adopt Markov Chain Monte Carlo

(MCMC) algorithms to perform inference on these graphical models as a general query evaluation

method.

 12

We next observe some interesting properties of the entropy [CT91] of the probability distribution of

result tuples and its relationship to the quality of the result. This relationship provides hints as to

when a result set is relatively stable and Monte Carlo sampling can cease. These properties can also be

exploited to selectively stop query evaluation for certain result tuples and only run more Monte Carlo

rounds for those tuples that require more time. This optimization can be achieved with suitable

lineage information of the result tuples.

1.5.4 Solution 4: A-tree: A New Data Structure to Model Correlated

Multidimensional Array Data

In this work, we argue that by taking advantage of predictable and structured correlations of

multidimensional data, we can provide a more efficient way of modeling and answering queries on

large-scale array data. We propose a new data structure, called the A-tree (Array tree). The A-tree

approach is based on the following interesting observation: data in a multi-dimensional array is usually

correlated along some dimensions and the correlation is largely local. Thus, if we have to sacrifice

precision by allowing approximate models, focusing on local correlation or using clustering is the best

bet. An A-tree uses this fact and can automatically cluster data in a hierarchical manner. Within the

clustering structure, the joint distributions are smaller scale and can be modeled efficiently.

There is a simple mapping from the graph structure of an A-tree (i.e., the storage model of an array)

to its probabilistic graphical model. The graphical model of an A-tree is essentially a Bayesian

Network. Physically, only the leaves of the tree-structured BN exist. The nodes (i.e., random

variables) at upper levels are all derived from the leaves. Thus, the construction of an A-tree is

bottom-up, yet the probabilistic inference (which is needed for processing queries [28, 31]) is top-

down.

Because the graphical model has a natural correspondence with the physical spatial layout of the

multidimensional array, probabilistic inference is very efficient by traversing the A-tree and following

a logarithmic-length path directly to the needed cells of the array. We analyze and experimentally

compare the performance, as well as modeling accuracy, with an alternative graphical model of a

lattice-structure MRF. In this regard, A-tree behaves like a spatial index.

Sparse arrays are common for multidimensional arrays. An A-tree, by its nature, is a compact

representation for sparse arrays. Missing subtrees correspond to empty regions of the array (i.e., cells

 13

of a sparse array that have NULL values). We discuss its layout on disk. In this regard, A-tree is also a

succinct storage structure.

Query processing is an integral part of a representation scheme. We study query processing

techniques for A-trees. Specifically, the A-tree data structure facilitates an interesting optimization for

COUNT, AVG, and SUM queries on arrays of arbitrary sparsity. We also study the problem of

probabilistic inference for general queries.

1.5.5 Solution 5: Using Skip-lists in Answering Queries of Uncertain Future

For the prediction of a specified interval, we choose a subsequence embedded within the original time

series as a “new” time series of a different “time granularity”. In summary,

• We may use different “absolute history lengths” for different forecast intervals f.

• Given a history length h(f), we determine the number of data points n to use for model

building.

We use a skip list data structure [P90] to provide fast data access for different levels of granularity. In

addition to supporting prediction, a skip list also supports searching (i.e., indexing). Each level of the

skip list has a set of models (i.e., prediction functions) associated with it. We can also build models at

the leaf level of a skip list to interpolate missing data values in the past. Note that the searching and

interpolation aspects are straightforward and the focus of this paper is on prediction of various future

intervals using data at different levels of the skip list.

The original skip list data structure is only meant to be in memory. To be scalable for large data sets, it

needs to be stored on disk. We adopt it in our context and discuss its organization on the disk.

Different levels of a skip list have different data densities. For a given query interval f, as we discussed

earlier, we can determine a proper history length h(f) to use and the number of subsequence data

points n to use within h(f) for model building. Thus, n/h(f) gives a data density which we use to select

a level of the skip list that has the closest density.

If characteristics of the workload are known, we can pre-build a set of models for prediction queries

using our skip list technique. If the workload is unknown, we can build the models on the fly. We

must also consider the maintenance costs for updating the pre-built models as new data comes in. It

is worth noting that on-line performance will be improved using our skip-lists when we must either

dynamically build models or frequently maintain (rebuild) the models under update.

 14

We present a randomized algorithm called ChoosePMSet to select a set of models to pre-build subject

to a maintenance cost constraint. This constraint is based on query interval workload information

described as a PMF (Probability Mass Function). A prediction query is hence answered by picking the

“closest” pre-built model (PM) to use. We measure how well the set of PM’s “serves” the workload

by computing the expected model distance of a prediction query. The PM for prediction queries are

analogous to materialized views (MV) for traditional queries. The key difference is that an MV

materializes the data tuples while a PM only “materializes” the parameters of a model (e.g.,

coefficients of a polynomial), which is highly compact.

Using PM’s for query processing is more straightforward for point queries than for more complex

query types. We discuss query processing techniques using PM’s for interesting query types, namely,

range queries, aggregations, and join queries. We avoid materializing future data points for efficiency.

1.5.6 Solution 6: Novel Semantics for Top-k query on Uncertain Data and Efficient

Query Processing Algorithms Based on Dynamic Programming

The complete result of a top-k query on uncertain data, in fact, is a joint distribution on k-tuple

vectors. If one were able to return such a joint distribution, it would represent a complete answer, and

would provide users with a convenient representation of the tradeoff between probability and score

from which they could select the results of interest. Unfortunately, a complete distribution is too

expensive to compute, as well as to describe and return as the result. All existing definitions try to

provide the most important information of such a distribution. Category (1) and (2) definitions are

useful in different situations. Category (1) definitions are needed for scenarios that seek “compatible”

k tuples (i.e., they can co-exist), which is required when, for instance, further inferences on the whole

set of k tuples are performed, as in our examples. However, as we have observed, by simple selection

of the highest probability, U-Topk may pick a k-tuple vector that has a highly atypical score. What we

propose in this work is a simple two-fold solution:

(1) The application program can optionally retrieve the score distribution of top-k vectors at any

granularity of precision (e.g., histograms of any bucket width).

(2) We propose a new definition c-Typical-Topk which returns c typical top-k tuple vectors according

to the score distribution, where c is a parameter specified by queries. Intuitively, the actual top-k’s

score should be close to one of the c vectors’ score.

 15

We then address the computational challenge of obtaining the score distribution of top-k vectors and

selecting c typical vectors. For the score distribution, we first give two simple and naive algorithms

that either explore the state space to reach top-k tuple vectors (StateExpansion algorithm) or iterate

through all k-tuple combinations within a bounded set of tuples (k-Combo algorithm). These two

algorithms establish a baseline for comparisons. We then present our main algorithm which is based

on dynamic programming and is much more efficient than the naive algorithms. The presentation of

the main algorithm starts with the basic framework and is then extended to handle more complex and

realistic scenarios, namely mutually exclusive tuples and score ties for tuples. Score ties are common

when the score is based on an attribute that does not have many distinct values, e.g., year of

publication, number of citations, or even non-numeric attributes [7]. Note that extending the

semantics and algorithms to score ties (i.e., non-injective scoring functions) for uncertain data can be

non-trivial [22] (because a single possible world can now have multiple top-k vectors) and is not dealt

with in previous work. Once we obtain the score distribution of top-k, using ideas similar to [8], we

apply a two-function recursive approach resulting in another efficient dynamic programming

algorithm to select c typical vectors for c-Typical-Topk.

We conducted systematic experiments on a real dataset of road delays in the greater Boston area as

measured by the CarTel project team [10, 14], as well as a synthetic dataset. Through the experiments,

we verify our motivation, study the performance of our algorithms, and observe interesting behaviors

of the results with different characteristics of data.

 16

C h a p t e r 2

A MONTE CARLO QUERY PROCESSING FRAMEWORK (SERP)
AND S-JOIN

In this chapter, we describe in details (Section 2.1) on the algorithm we developed to answer an

arbitrary query on uncertain data. The algorithm is called Statistical sampling for Equidepth Result

distribution with Provable error-bounds, or SERP. SERP is essentially an Monte Carlo randomized

algorithm. We also an alternative “Statistical Mode” for query results. In Section 2.2, we introduce a

special efficient JOIN algorithm (S-JOIN) under the SERP framework.

2.1 SERP

2.1.1 Discrete Treatment of Imprecise Data

Propagating continuous PDFs across complex mathematical operations and large data sets can easily

become intractable. Instead, we take a systematic and rigorous approach to the use of discrete PDFs

for this purpose.

Consider the lifetime of an uncertain value in ASAP. It “flows” through a graph of mathematical or

query operators, the output of one operator box is the input of another, and finally the output of the

whole query graph is the result to the end user. We model an uncertain value as a general discrete

probability density function. We first look at an intuitive and commonly used form of discretization.

We choose a set of points in the value range (frequently they are equally spaced), and assign a

probability value to each point. The probabilities add up to 1. Thus a distribution is modeled by a set

of (vi, pi) pairs, indicating that the probability of the value being vi is pi.

Under this representation, we look into the problem of computing the output distribution of a

primitive mathematical operator. For ease of presentation, we discuss the case of two uncertain input

values and one output (i.e., a binary operator). This can be easily extended to the general case. More

formally, suppose that one input is (v1i, p1i), and the other input is (v2i, p2i), with i={1,…, k}. We

denote the binary operator as ⊗ . We look at the complexity of computing the output distribution

under the independence assumption of inputs (from different tuples), as followed by most work in

 17

this area (e.g., [CK03] and the “x-tuples” in [BS06]). Note that the SERP algorithm that we will

present does not have to use this assumption. Clearly the probability of the result being

 is . In general, each),1(21 kjivv ji ≤≤⊗ ji pp 21 ⋅ ji vv 21 ⊗ can be distinct, hence the cost of describing

and computing the output distribution precisely is O(k2). In the same manner, if we perform the same

binary operation n-1 times for n values (e.g., for SUM or AVG), the complexity of computing the

output distribution precisely is O(kn), a prohibitive exponential cost for a large value n.

A standard way to handle this dilemma is to use some form of approximation and to have a

systematic way of measuring how much precision we lose to gain the needed efficiency. Towards this

end, we first give three simple, intuitive (and rather naive) heuristic algorithms for approximating the

output distribution.

Perhaps the most intuitive and simple algorithm is to uniformly at random pick)(kO pairs of (vi, pi)

from each of the two inputs; iterating on all combinations of these pairs gives an O(k) cost for one

operation. Doing this binary operation n-1 times on n values gives O(kn) cost. We call this algorithm

RAND. Clearly we need a final normalization step to multiply the computed probabilities by a

constant factor so that they add up to 1.

The next heuristic is a greedy algorithm. Observe that as each input has k pairs of (vi, pi), an

exhaustive algorithm would compute the result for all k2 combinations. However, not all

combinations are “equal”. If we only have the resources to compute k combinations, we tend to gain

“more information” about the result distribution by picking the combinations that occur with higher

probability. For a simple example, let two inputs of an addition operator be {(8, 0.8), (4, 0.2)} and

{(10, 0.9), (6, 0.1)} respectively. Out of the four combinations, the one that has result value 8+10=18

and probability 0.8*0.9=0.72 has the highest probability (0.72) of occurrence. Computing it would

give us the most “information” about the result, if we only had the resources to compute one

combination. Thus, in this algorithm we greedily pick k combinations (out of k2) that have the top

probabilities. We can accomplish this without computing the probability of all k2 combinations, by

always maintaining an order of the (vi, pi) pairs sorted on pi in a discrete PDF. Through a “merging”

process which only inspects a subset of “top candidates”, we can obtain the k top combinations

without computing them all. We omit the details due to space constraints. We call this algorithm K-

TOP.

 18

In contrast, the third heuristic algorithm computes all k2 combinations but sorts the result values and

“condenses” them into k pairs of the form (vi, pi) in which vi is the average of the i’th run of k

contiguous values, and pi is the sum of the probabilities of these k values’. This algorithm is very

intuitive, although a bit more costly, with the cost for two values and for n

values. We call this algorithm CONDENSE.

)log(2 kkO)log(2 kknO ⋅

2.1.2 The SERP Algorithm

2.1.2.1 A Different Way of Discretization

We propose to use a different form of discretization. We partition the value range of the continuous

PDF into k intervals, such that for each interval I, it holds that ∫
∈

=
Ix k

dxxf 1)(, where f(x) is the

continuous PDF. In other words, each interval has overall probability 1/k. Thus, a distribution is

“described” by k contiguous intervals and can be succinctly represented as k+1 values indicating the

boundaries of the k intervals: (v0, v1, …, vk), where [vi, vi+1) is the i’th interval. We assume a uniform

distribution within an interval. This is reminiscent of “equidepth” histograms widely used in query

optimizers, and reflects the idea that the exact distribution of “high density areas” is more important

and should be given higher “resolution”. However, note the important difference that each bucket of

an equidepth histogram contains a number of actual column values, whereas an equidepth distribution

specifies the PDF of one scalar entity (random variable). This representation is quite compact, only

needing k+1 values to describe a distribution. In contrast, the discretization scheme earlier requires

both values and the associated probabilities.

2.1.2.2 A Weighted Sampling Method

We next propose a simple method that samples a random variable according to an arbitrary equidepth

discrete PDF, as follows.

(2) Choose the output value s uniformly at random from the interval [vi, vi+1).

Input: A discrete PDF: (v0, v1, …, vk), in equidepth form.
Output: A random point v that is a weighted sample according to the input discrete PDF. kvs ≤≤0

(1) Pick a number i uniformly at random from the set {0, 1, …, k-1}.

Theorem 2.1: The weighted sampling algorithm WS indeed accomplishes the task: it returns a random sample
weighted according to the input discrete PDF. □

2.1.2.3 The SERP Algorithm

 19

We now introduce the SERP algorithm which uses the WS algorithm for statistical sampling to

compute the output distribution of a mathematical operator. We model the operator as “n input

values and one output value” without loss of generality. For example, for SUM or AVG, the inputs

may be n values in n tuples and the output is the result. The algorithm is shown in the text box.

In the algorithm, μ is a parameter that balances accuracy with performance, as we shall investigate in

the theoretical analysis and the empirical study. Note that we model all inputs as uncertain. In reality,

some input values can be certain. It is straightforward to extend the algorithm to the mixed case. Also

note that from one execution on the n samples to the next, to be more efficient, we can share the

query plan (i.e., the query is compiled only once, and executed many times for each loop). Further,

among different executions, sub-results of parts of the query plan that only refer to data without

uncertainty can be shared. Another key optimization is on I/O cost. The database engine can try to

read the data from the disk only once, and incrementally carry out the multiple rounds of

computation in parallel. It is easy to see that SERP is scalable. The cost is no more than a constant

factor of that of the same operation on data without uncertainty, regardless of the number of tuples.

(3) Feed s1, s2, …, sn as deterministic inputs into the operator Op and compute the output value o.
(4) End Repeat loop.
(5) Sort the output values obtained above as)1+(,...,, 21 ≤ ik whereoo μ i ooo .

(6) Get k contiguous value intervals, each containing μ output values. That is, the 1st interval contains

μoo ,...,, 21
, and the 2nd contains

μμ 22 ,..., o+
, and so on. More precisely, let kvvv ,...,, 10 be

the boundaries of the k contiguous intervals, where)1−≤≤

o μ 1, oo +

1(,2/)(1+= +oo iii μμ kiv , and

212 oo −= ,
−− μμ koov .

0v 12= kk

(7) Return the k contiguous intervals above as the result distribution.

Input: n uncertain values as inputs to operator Op, each described as an equidepth discrete PDF.
Output: The result value distribution for operator Op applied to the n inputs as an equidepth discrete PDF
with k intervals.
(1) Repeat the following steps μ⋅k times, where k is the intended number of intervals of the result

distribution and μ is a parameter to be determined later.

(2) For each of the n inputs, apply the WS algorithm to get a sample value. Let’s say we get s1, s2, …, sn.

Note that SERP is similar in spirit to the classical Monte Carlo method [H70]. However, technically,

SERP extends it in a nontrivial way. Through repeated sampling, the classical Monte Carlo method

approximates some value (e.g., computes an integral) that is equal to the expectation of a random

variable. By the law of large numbers, one can show the result converges to the true value. To the

best of our knowledge, SERP is the first one that computes an equidepth result distribution (PDF)

 20

which, as we further prove, has a bounded distance from an “ideal” PDF using the variation distance

metric.

We stress that unlike the algorithms earlier, SERP works even if there is correlation between different

inputs. We just need to carry out the sampling from the joint distribution. For example, if an array

stores a 3-D image or temperatures in a space, it may be partitioned into “distribution chunks” such

that cell values in each chunk exhibit high positive correlation. One can assign one cell in each chunk

as the “leader”, whose distribution represents that of the whole chunk. We know the differences

between each cell and its leader. Thus, we only sample on the leader of each chunk, and derive other

cell values.

2.1.3 A Metric on Judging Results and Provable Error Bounds of SERP

2.1.3.1 A Distance Metric and Its Adoption

We measure the distance between the discrete result PDF computed by some algorithm and an

“ideal” one based on the same input distributions, but given as much computing resource as needed.

We use a well-known distance metric: variation distance.

Definition 2.1 [MU06]: The variation distance between two distributions D1 and D2 (each being a PDF)

on a countable state space S is given by ∑
∈

−=
Sx

xDxDDDVD |)()(|
2
1),(2121

We first give some insights on the variation distance metric, as we will be using it for analysis and

experiments.

Lemma 2.1 [MU06]: Consider two distributions D1 and D2. For a state x in the state space S, if D2(x)

> D1(x), then we say D2 overflows at x (relative to D1) by an amount of D2(x) – D1(x). Likewise, if

D2(x) < D1(x), then we say D2 underflows at x (relative to D1) by an amount of D1(x) – D2(x). We

denote the total amount that D2 overflows (and underflows, respectively) as Pover (and Punder,

respectively). Then, Pover=Punder=VD(D1, D2). □

2.1.3.2 A Provable Error-Bound of SERP

We are now ready to present a novel proof that SERP has a nice bound on the variation distance

between its result distribution and the ideal one, even though we do not know the exact form of the

ideal result distribution, nor do we make any assumption on how to obtain it.

 21

Theorem 2.2: In the SERP algorithm, let k and μ be parameters as described in the algorithm. Then, with

probability at least
⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
μ

δ
⎢
⎢
⎣

⎡
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅− −

−

+

δμ

δ

δ

δδ 21

2

21

2

)21()21(
eek1 , the variation distance between the result distribution and

the ideal one is no more than)5.00(<<δδ .

Proof: Consider any one interval I of the ideal distribution. Define μ⋅k random variables)1(μkiX i ≤≤ :

 1 '
0 'i

if the output from i th repeat loop of SERP falls in I
X

if the output from i th repeat loopof SERP is not in I
⎧

= ⎨
⎩

Because I is an interval of the ideal distribution, from the definition of the equidepth partition, we

have
k

X i
1)1(Pr == , thus 1()iE X

k
= . Next define random variable , indicating the number of

result points that fall in I. From linearity of expectation, we have

∑
=

=
μk

i
iXX

1

μμ= kXE)(=⋅
k
1 . As X is the sum of

independent 0/1 random variables, we can apply Chernoff bounds [MU06] that for any 5.00 << δ ,

we have

μ

δ

δ

δ
μδ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

<+> +21

2

)21(
])21([Pr eX

 μ

δ

δ

δ
μδ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

<−< −

−

21

2

)21(
])21([Pr eX

Then from union bound [MU06],

μ

δ

δμ

δ

δ

δδ
μδμδ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

<−<+> −

−

+ 21

2

21

2

)21()21(
])21()21([Pr eeXorX

Now consider all k intervals and apply union bound again,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅<>−∃
−

−

+

μ

δ

δμ

δ

δ

δδ
δμμ 21

2

21

2

)21()21(
]2||.int[Pr eekXsterval

Hence,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅−≥≤−∀
−

−

+

μ

δ

δμ

δ

δ

δδ
δμμ 21

2

21

2

)21()21(
1]2||,int[Pr eekXerval

 22

Thus, with probability at least
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅−
−

−

+

μ

δ

δμ

δ

δ

δδ 21

2

21

2

)21()21(
1 eek

, all intervals contain sample result points

whose number differs from the expected value by no more than δμ2 . As each such point carries

weight
μk
1 into the probability, and there are either no more than k/2 overflow intervals (holding

more points thanμ) or no more than k/2 underflow intervals, from Lemma 1, we get that the

variation distance is no more than δ
μ

δμ =⋅⋅
2

12 k
k

. □

To get a numerical sense about the bound, we take k=5, 60,2.0 == μδ . Then from Theorem 2.2,

using 300 sample points (rounds), with probability at least 0.91, the variation distance between the

result of the SERP algorithm and the ideal distribution is no more than 0.2. This is a (rather

conservative) theoretical guarantee, and as we shall show, in practice, one can obtain a small variation

distance with significantly fewer rounds. On the other hand, theoretical guarantees are important as

they hold for any dataset while the result of a particular experiment depends on its data.

2.1.4 Statistical Model

As individual data items are already uncertain and imprecise (even their distributions are estimated),

statistical information about the result of an operation is frequently more desirable than its full

distribution. It is well known that scientific databases typically require operations on huge volumes of

data. For example, the full result distribution for SUM or AVG on a few million tuples is unnecessary.

Reporting an expected value and the variance is often sufficient and more useful.

Moreover, it is much more efficient for the database system to merely compute the statistical

information about the result, rather than the full distribution. Often, statistical information can be

computed not only much faster, but also more accurately (i.e., without the approximation needed in

computing the full distribution). For example, if the database system first computes the full

distribution of SUM or AVG which requires approximation and then calculates the expected value

and the variance from the full distribution, it would be less accurate than if the database system ran in

statistical mode and returned the expected value and variance directly.

The structure of the statistical information consists of six parts: {E, Var, UB, p1, LB, p2}. Here, E and

Var are the expected value and the variance, respectively. UB and probability p1 express an upper

bound satisfying , where X is the result random variable. Likewise, LB and p2 indicate a
1]Pr[pUBX ≤>

 23

lower bound such that . To make it meaningful, typically p1 and p2 are small; hence,

with high probability X is between LB and UB. Note that not all six parts are required, as some of

them may be difficult to obtain in some cases. To be more concrete, we look at a few examples.

2]Pr[pLBX ≤<

• SUM and AVG. For clarity we only discuss AVG; SUM is similar. Let the result random variable

be ∑
=

=
n

i
iXn

X
1

1 , where Xi is the random variable for each value and there are n values to be

aggregated. From linearity of expectation, we have ∑
=

=
n

i
iXEn

XE
1

][1][. For variance, we have

∑
=

=
n

i
iXVar

n
XVar

1
2][1][. Thus, solely from the expectation and variance of the base values (Xi’s), we

can calculate the E and Var components of the result. The expectation and variance of the base

values can be easily calculated from the discrete PDF, be it in the form of (vi, pi) pairs or equidepth

intervals. We omit the details due to space constraints. The simple operations on the base value

expectations and variances make the statistical information computation very efficient.

• Arithmetic operators. Specifically, we look at addition, subtraction, multiplication and division.

As SUM uses addition, computing E and Var for the result of addition and subtraction are similar.

For multiplication, due to the independence assumption, we have

][][][YEXEYXE ⋅=⋅

] [][][][][][][22 YVarXEXVarYEYVarXVarYXVar ++⋅=⋅

Thus, we can get the expectation and variance of the product. Division is the reverse of

multiplication, and the formulas can be derived accordingly.

• COUNT. We consider a simple SQL statement “SELECT COUNT(*) FROM A WHERE X >

5.6” as an example, where X is an uncertain attribute. The result count is a random variable and we

wish to compute its statistics. We can reduce this case to SUM on boolean random variables Bi’s (one

per tuple) that bears the value 1 if the predicate is true and 0 otherwise. That is, ∑ . Knowing

X’s distribution, we can get the probability that the predicate is true, and hence the complete

distribution of each Bi (and certainly its expectation and variance). We can obtain the result C’s

expected value and variance in a manner similar to SUM.

=

=
n

i
iBC

1

 24

However, there is an additional interesting technique we can apply here. As C is the sum of

independent 0/1 random variables, we can use Chernoff bounds to obtain good upper and lower

bounds. For the case of the upper bound, we have μ

δ

δ

δ
μδ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

<+>
+1)1(

])1([Pr eC
 where][CE=μ . In

particular, if 000,10=μ and we let 500,10)1(=+= μδUB , then , a really tight bound. We

can use a similar formula for the lower bound.

6
1 1057.4 −×=p

• SUM and AVG of correlated values. In certain applications, one may not be able to assume

independence between the values being summed or averaged. If this is the case, we can use Azuma-

Hoeffding’s inequality [MU06] to establish upper and lower bounds for the result of SUM and AVG.

This involves the concept of “martingales” which allow the underlying random variables to be

dependent. We model successive partial sums (i.e., ∑) as a “Doob martingale”. We omit the

details here due to space constraints. Finally, we get the upper bound
=

=
t

i
it XS

1

)
)(

2exp(]][[Pr
1

2

2

∑=
−

−≤≥− n

i ii ab
SES λλ

where random variable S is the sum of n uncertain values Xi (i=1,…,n) for which each Xi is within [ai,

bi]. This gives an upper bound (UB and p1) for SUM and likewise for AVG. A similar formula exists

for the lower bound (LB and p2).

• Computing bounds from E and Var. Once we obtain the result’s E and Var, without other

knowledge about the distribution, we can obtain an upper and a lower bound by applying

Chebyshev’s inequality [MU06]. The one-sided version of Chebyshev’s inequality is

2][
][]][[Pr
aXVar

XVaraXEX
+

≤+≥ . This gives an upper bound (UB and p1) for a result X. A similar version of

inequality exists for the lower bound.

There may be multiple ways to compute the bounds. For example, from E and Var one can compute

bounds using Chebyshev’s inequality; as introduced earlier, for certain operations we may use Azuma-

Hoeffding’s inequality to obtain bounds. The database system can explore multiple ways and return

the best or most applicable bounds to the user. For any application that requires an answer within

some deadline, like real-time processing, we can use a cost model that estimates the execution time to

compute the full distribution. If the estimated time to return a full distribution with a small variation

distance is too long, then the optimizer can quickly compute and return the result in several different

ways. It can use a smaller value for k (i.e., number of intervals), it can use fewer rounds (i.e., REPEAT

 25

loops in SERP), or it can use statistical mode. Our cost model would be used to make this decision

relative to the known deadline, and, in this way, trades off precision for shorter latency.

2.1.5 Empirical Study

2.1.5.1 Setup and Datasets

In this section we perform a comprehensive empirical study on two real world data sets. We extend

the ASAP array database system with a data model that captures uncertainty and with the algorithms

that we have introduced in this paper. The experiments were conducted on a 1.6GHz AMD Turion

64 machine with 1GB physical memory and a TOSHIBA MK8040GSX disk. We performed the

experiments on two sets of real world data:

1. The positions of ships measured with GPS during one week between March 1st and March 7th of

2006 in the East and West coasts of U.S., obtained by the United States Coast Guard [PA07]. The

position data is recorded once per several seconds, with latitude and longitude.

2. The global temperature records from the year 1850 to 2006 obtained by the Climatic Research Unit

of Univ. of East Anglia in U.K. [T07]. The data records air temperature anomalies on a 5° by 5°

(latitude and longitude) grid-box basis. The anomalies (in °C) are with regard to the mean value

(of that same location) during the normal period between 1961 and 1990.

Both data sets have inherent uncertainty due to many factors [BK06]. Different parts of the data in

the multidimensional arrays can have different levels of uncertainty. For example, temperature

readings in the winter have larger errors than in the summer, and earlier years have larger errors. We

omit the detailed description due to space constraints.

2.1.5.2 Ship Positions Dataset: Result Accuracy

We run SERP and the heuristic algorithms to compute the total angle a particular ship has turned in a

period of 7 days. In this section, for SERP, the number of intervals (k) of the result distribution is 5,

unless specified otherwise. The variation distance (with the ideal one) of SERP with different rounds

and that of the heuristic algorithms is shown in Figure 2.1(a) (in which “20-r” is shorthand for 20-

round SERP and so on). We can see that in this case a 20-round SERP already gives us very good

accuracy with variation distance from the ideal less than 0.1. A 100-round one would further improve

it while we can see that the rate of improvement drops as we do not see much improvement for 200

rounds. This verifies our theoretical proof of Theorem 2.2, and is in fact showing that even as few as

 26

20 rounds gives a good accuracy in practice as the theoretical proof is a safe guarantee. In addition,

the equidepth discretized ideal distribution and the result of the 20, 100, and 200 round SERP are

shown in Figure 2.1(b). This shows pictorially how close the distributions are.

Figure 2.1(a) also shows that heuristic algorithms have big variation distances, with RAND being the

worst. For distributions that are relatively far from the ideal distribution, it would also be helpful to

compare the “coarser-grained” statistics such as simply the expected value and variance. We show

these in Figure 2.1(c, d). We can see that the heuristic algorithms can satisfy the most basic property

of being close in expectation, but are far in variance (note that the ideal distribution has the biggest

variance), indicating the detailed distribution is far off. In retrospect this is reasonable as with heuristic

algorithms the errors can accumulate arbitrarily with each intermediate step; hence they do not scale

well. This is not the case with SERP as we compute the final result distribution directly.

20r 100r 200r rand k-top cond
0

0.2

0.4

0.6

0.8

Algorithms

V
ar

ia
tio

n
di

st
an

ce

50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Total angle turned (in radians)

P
ro

ba
bi

lit
y

 Ideal result
SERP, 20-r
SERP, 100-r
SERP, 200-r

ideal 20-r 100-r 200-r rand k-top cond
0

50

100

Algorithms

E
xp

ec
te

d
va

lu
e

ideal 20-r 100-r 200-r rand k-top cond
0

20

40

60

Algorithms

V
ar

ia
nc

e

(a) (b)

(c) (d)
Fig. 2.1: (a) Variation distances of results of the algorithms from the ideal
one; PDFs (b), expectations (c), and variances (d) of the ideal and the results
of various algorithms.

2.1.5.2 Ship Positions Dataset: Speed

We now look at the CPU cost of our algorithms. We also compare it with the I/O cost of just reading

the position data for a particular ship from disk. Note that for SERP, as discussed earlier, we have the

optimization that we only need to do I/O in one pass, carrying out sampling and computation for

multiple rounds in parallel. The result is shown in Figure 2.2(a). We also measure the CPU cost of

simply doing the operation on the data without any uncertainty (i.e., just the mean values), shown as

the last bar (labeled “none”) in the figure.

 27

The result indicates that the CPU cost of SERP is roughly proportional to the number-of-rounds

parameter. In the case of 20 rounds, which gives a variation distance less than 0.1 as shown earlier, its

CPU time is well below the I/O cost. Some heuristic algorithms run faster, but they are inaccurate as

we have shown. All these algorithms have a much greater CPU cost than computing on the non-

probabilistic data directly. There seems to be an inherent cost of computing a probabilistic

distribution of the result.

We next vary the number-of-result-intervals parameter. We look into the cases of k = 3, 5, 7, 9. For

each k value, we compute the discrete ideal distribution with k intervals. Then we record the

(minimum) running time of SERP such that its variation distance is no more than 0.1 from the ideal

for each k value. The result is shown in Figure 2.2(b). As expected, as k increases, the CPU cost

increases as well leading to more information about the result distribution, thereby trading off

performance for accuracy.

I/O 20-r 100-r 200-r rand k-top cond none
0

200

400

600

Algorithms

Ti
m

e
(m

s)

3 5 7 9
0

50

100

150

k

Ti
m

e
(m

s)

Fig. 2.2: (a) I/O time and CPU times of various
algorithms. (b) CPU time vs. different k values.

(a) (b)

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
-1.5

-1

-0.5

0

0.5

1

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y
(

0 C)

Expectation
Upper or lower bound
Upper or lower bound (Azuma)
E from SERP
Upper or lower bound from SERP

Fig. 2.3: Expectation and bounds of average
temperature anomalies, obtained with different
methods.

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
0

20

40

60

Year

Ti
m

e
(m

s)

SERP time
Statistical mode time

Fig. 2.4: Query running time comparison of SERP vs.
statistical mode only.

2.1.5.2 World Temperature Dataset: Statistical Mode

We turn to the global temperature data set and compute the average temperature anomalies (in °C)

for the days of the year, across the globe, for every fifth year from 1850 to 2005. We use statistical mode.

For each year, we compute {E, Var, UB, p1, LB, p2} of the query without obtaining the full

 28

distribution. We choose p1=p2=0.1 and compute bounds in two ways: using Chebyshev’s inequality and

using Azuma-Hoeffding’s. For comparison, we also run a 20-round SERP to compute the full

distribution and then get E, Var, and UB/LB (using Chebyshev’s inequality) out of that. The result is

in Figure 2.3. Observe that the bounds from Azuma-Hoeffding’s inequality are more conservative

(i.e., looser) than those computed using Chebyshev’s inequality. This is because Azuma-Hoeffding’s

inequality is more general in that it does not assume independence of the data, which is useful when

in fact the values are correlated. We next notice that the expected value and bounds computed using a

full distribution out of a 20-round SERP are really close to the results of the statistical mode. This

mutually verifies the accuracy of both the statistical mode and the 20-round SERP. As expected, older

data has larger variance and thus wider bounds. We also measured the CPU time, shown in Figure

2.4. Clearly the statistical mode is a lot faster than SERP. And this suffices if statistical information

alone is all a user cares about.

2.1.5.3 World Temperature Dataset: Predicate Evaluation Strategies

Finally, we experiment on different predicate evaluation strategies. We issue the query:

SELECT year, AVG(anomaly)

FROM history

WHERE year BETWEEN 1850 AND 2006 AND year MOD 5 = 0

GROUP BY year

HAVING AVG(anomaly) >0.8 0.3 OR AVG(anomaly) <0.8 -0.3

Here, “>0.8” is a predicate in a generalized form, meaning “with probability at least 0.8, the left side is

greater than the right side”. Only tuples for which “>” is true with a probability higher than the

threshold (0.8) are returned. This semantics has been used in other work (e.g., [CS06]). Thus, the

above query selects the years whose average anomaly (averaged on both days in the year and 5°

latitude by 5° longitude grids of the globe) is either above 0.3 (with probability at least 0.8), or below -

0.3 (with probability at least 0.8). There are three ways to evaluate this query:

1. Compute the full distribution of AVG(anomaly) using SERP, and then compute the probability

that it is > 0.3. If this probability is at least 0.8, then it satisfies the predicate. The same is true

with the <-0.3 part.

2. Run in statistical mode, computing E and Var of each year. Then apply Chebyshev’s inequality to

evaluate the predicate.

3. Same as (2), but use Azuma-Hoeffding’s inequality.

 29

Method > 0.3 (0.8 prob.) < -0.3 (0.8 prob.)
Full
Distribution

1990 1995 2000 2005 1850 1855 1860 1870 1875
1885 1890 1895 1905

Chebyshev 1990 1995 2000 2005 1850 1855 1860 1870 1875
1885 1895 1905

Azuma-
Hoeffding

1990 1995 2000 2005 1860 1875
1885 1895 1905

Fig. 2.5: Query results with different methods.

Figure 2.5 shows the result. For the “>0.8 0.3” predicate all three methods return the same set of years.

For the other predicate, the 2nd method has one fewer (1890) in the output than the 1st, while the 3rd

method has three fewer than the 2nd. These years are at the border line of the predicate. This

illustrates the fact that the inequalities are theoretical guarantees and thus in general result in

conservative decisions. The Azuma-Hoeffding inequality does not assume data independence and can

be used in more general cases, resulting in more conservative decisions than Chebyshev’s. Moreover,

the fact that the discrepancy appears for the “<0.8 -0.3” predicate but not the other one is because the

data in older years has larger variance. In sum, the result of using Chebyshev’s inequality is close to

the full distribution, and should be used when possible, since it is much more efficient. Azuma-

Hoeffding’s inequality should be used when one cannot assume data independence.

2.2 A Special Join Algorithm in the SERP Framework and Experiments

2.2.1 Sampling-Based Join (S-Join)

2.2.1.1 The S-Join Algorithm

One of the drawbacks to query processing through Monte Carlo sampling is that it is a very time-

intensive process. If 1000 rounds of sampling are used, then every query must be evaluated 1000

times. Traditionally, the JOIN operation has been one of the larger bottlenecks in query evaluation.

Performing 1000 JOINs every time a JOIN query is posed would be a painful process. To alleviate

this pain, we have developed a JOIN algorithm that is useful when at least one of the JOIN attributes

is uncertain. Our algorithm takes advantage of the structure of the sampling problem to provide a

significant speedup over running a standard JOIN algorithm over and over. The algorithm is a

modified sort-merge-join and we call it the S-Join algorithm.

Returning to the temperature example, what if we are interested in finding two days that have the

same temperature? To realize this query in SQL, a self-join must be performed where the join

attribute is the uncertain temperature attribute:

SELECT temp1.day, temp2.day

FROM temperature as temp1, temperature as temp2

 30

WHERE ABS(temp1.value – temp2.value) < ε AND

 temp1.day != temp2.day

In this query, value of the temperature table is an uncertain attribute. Assuming that the uncertain

attribute is sampled from 1000 times, naively evaluating this relatively simple query will result in

performing 1000 join operations on a table that could be very large.

The intuition behind the S-Join algorithm is that given a series of uncertain values, the order of

samples drawn from their distributions should be similar to the order of their expected values since

the correction parts are typically small compared to the gap between the original parts of any two

values. Thus, once we sort the tuples according to their samples in the first round of a Monte Carlo

processing, we can draw samples in that same order for all other rounds and the samples themselves

should be almost sorted (called pseudo-sorted).

Sorting a pseudo-sorted list is much cheaper than a complete sort. If most of the values to be sorted

are already in sorted order, insertion sort is has linear run-time. While an insertion sort takes time N2

to sort a random series of values, if it can be guaranteed that no value is more than c spots away from

its correct location, for a constant c << N, the time decreases to c·N.

The S-Join algorithm is shown in shown in the text box below. It proceeds as follows. Perform an

external sort on the input tuples according to their first round’s sample values, putting them in that

order. Note that in the rest of the algorithm, we perform multiple sampling rounds in parallel in order

to share the ordering information from round 1 (the external sort) with as many subsequent rounds as

possible. This minimizes the need to re-read the result of the external sort. We assume that further

sampling will not change the position of a tuple in this order by more than k pages. Without loss of

generality, let us take k = 2. Now allocate k+1=3 pages in memory for each side of the join for some

number of rounds R. R is selected so that 2*(k+1)*R pages are able to fit in memory at once. For the

remaining R-1 rounds, read in the first three (i.e., k+1) pages of the externally sorted tuples. As each

tuple is read in, draw samples from the distribution on its join attribute. When a sampled value is

drawn for round r, insert that value into r’s pages using an insertion sort, maintaining sorted order in

each round.

After this sampling process is complete, we can perform a merge-join on the first page of every

round. Because of our assumption that tuples can only deviate by k=2 pages from expected order, the

first of these pages will be in final sorted order while the next two will be pseudo-sorted. This is

 31

because only values sampled from tuples in the first three pages can end up in the first page. Tuples

whose order (determined in the 1st round) puts them in the fourth page cannot be in the first page

when ordered by sample values, so the first page must be in final sorted order after reading and

sampling the first three pages. The second and third pages are pseudo-sorted but are not in final

sorted order because tuples from the fourth and fifth page, which have not yet been sampled, may

need to be interspersed within the second and third page. Now the merge process is performed over

the first page in every round. This merge process frees up a page so that a new page can be read in

and sampled. Another insertion sort is performed with the samples from this new page, and as a

result, another page is now in final sorted order and can be merged in each round. This process

continues until sampling and merging is complete.

Step (10) of the algorithm tries to get a new page into the buffer either in sorted order (for the 1st

round) or pseudo-sorted order (for other rounds). The same order information comes from the

sorted temporary file in step (1). Thus, we can save the I/O cost of reading from the file and once a

page is loaded into the buffer by one round, it is shared by all other rounds. Ideally, we want to read

the order information from the sorted file only once, for all concurrent rounds. However, as we

analyze, in the worst case (although rare) this may not be achievable.

(3) For round 1, load the sorted values for the 3 pages allocated in the buffer for each side of the JOIN from
the sorted file in (1).

(4) For each of the other rounds,
(5) Obtain fresh samples for the 3 pages in buffer (for each side of JOIN) and arrange them in pseudo-sorted

order determined by (1).
(6) Perform an insertion sort on the pseudo-sorted 3 pages (for each side of JOIN). After doing this,

according to our assumption, the first of the 3 pages will be exactly sorted, and the other two pages will
remain pseudo-sorted.

(7) End
(8) For each round, repeat the following until JOIN finishes (all rounds in parallel, e.g., in a lockstep or in round-

robin fashion),
(9) Do the “merge” step of the JOIN on exactly sorted pages.
(10) When a page is consumed (i.e., finishes merging), read the tuple order of a new page either from the

temporary file in (1) (if this has not been loaded into a buffer page of another round) or from a buffer
page of another round (if it is already loaded there). The new page replaces the consumed one.

(11) If this is not round 1, obtain a set of fresh samples for this new page and do insertion sort to adjust the
order. This converts another page (the oldest among the three) from pseudo-sorted to sorted.

(12) End

(1) Do sampling and external sort for the first round (of S- JOIN). The result is a temporary file on disk (for
each side of the JOIN).

(2) For k=2, Allocate 3 pages in buffer for each side of the JOIN for each round (for the number of rounds
that can fit in the buffer space).

 32

Throughout the algorithm we let each round only take 3 (i.e., k+1) pages in buffer and allow as many

parallel rounds as possible. If, in the rare case, a new sample of a tuple brings it out of order by more

than k pages (i.e., our assumption on the pseudo-sorted order does not hold), we can easily find and

rectify it by merging the outlier tuple separately. Note that a database server can also pre-sort on the

expected values and save the external sort step at runtime.

The S-Join algorithm provides a significant speedup over naively performing all joins independently

because only one external sort must be performed. The only subsequent sorts are in-memory

insertion sorts on tuples that are already nearly sorted. Additionally, by performing multiple rounds

together, unnecessary disk accesses are eliminated. If 200 rounds can be performed at once out of a

total of 1000 rounds, the externally sorted tuples need to be read from disk only about 5 times as

opposed to 1000 times. S-Join can be utilized whenever one could use a sort-merge-join with an

uncertain JOIN attribute. Note that if there is lots of overlap between the distributions in a JOIN

column (which is arguably rare since the correction part is typically small), the algorithm would still

work but it would not yield as great an improvement since the insertion sorts will take longer.

2.2.2 Result Entropy and Cession of Sampling

One remaining unanswered question is how many rounds of Monte-Carlo sampling should be carried

out. By observing the entropy of the uncertain distributions in result tuples, we can get a better idea of

when results are stable. Recall that there are two forms of uncertainty that a system seeks to handle.

The first is set-membership uncertainty for output tuples in the result. The second is the marginal

distribution for a field in a result tuple given that the tuple is in the result.

Theorem 2.3: The entropy of the query result can be computed as H(T) + H(V|T), where H(T) is

the entropy of the distribution of the result tuples’ membership and H(V|T) is the conditional

entropy of the distributions of the fields in the result tuples, given that the result tuples are in the

result.

Proof: This follows from the chain rule of entropy [CT91]. 

We next observe some characteristics of the entropy evolution during query execution.

Definition 2.2: A query cut is a set of intermediate tuples that appear at the same time anywhere in

the query flow graph (in which nodes are operators such as JOIN and UNION and edges indicate

 33

data flow). The set of all input tuples is a query cut; all returned results is a cut; so is a set of

intermediate tuples from which the final results can be completely computed.

Theorem 2.4: As query processing progresses, a series of query cuts are formed from input to

output. The entropy of a query cut in the series can only decrease (or stay the same).

Proof: Let X be a random variable representing the query cut at input; let Y and Z be another two

query cuts such that Y is closer to X. Then, from data processing inequality [CT91], we have that I(X,

Y) ≥ I(X, Z) since random variables X, Y, Z form a Markov chain (assuming database operators are

deterministic). Using the property of mutual information that I(X; Y) = H(Y) – H(Y|X), we have

H(Y) – H(Y|X) ≥ H(Z) – H(Z|X). Because H(Y|X) = H(Z|X) = 0 (deterministic database

operators), we have H(Y) ≥ H(Z), finishing the proof. 

In particular, the result entropy must be no more than the entropy of the query inputs.

We may consider a “reverse query engine” and think of a Monte Carlo algorithm as simply sampling

from the result distribution. We use a big number of such samples to estimate the actual distribution.

We next establish that regardless of the detailed result distribution, the quality of the result, or the

number of sampling rounds needed, is closely related to the entropy of the actual result.

Theorem 2.5: Consider two queries Q1 and Q2 with the actual result distributions R1 and R2,

respectively, where H(R1) < H(R2). Suppose an n-round Monte Carlo algorithm obtains an output

distribution S1 for Q1 and another n-round Monte Carlo algorithm obtains an output distribution S2

for Q2. Then we have that the variation distance VD(S1, R1) is no more than VD(S2, R2).

Proof: Before a formal proof, we first give some intuition. We know that the entropy of a random

variable is closely related to its Kolmogorov complexity [CT91]. As sampling progresses in rounds,

one monotonically obtains more evidence or information about the result distribution. Thus, a more

complex distribution requires more rounds. Equivalently, given the same number of rounds (n), we

obtain better result quality for the result distribution that has smaller entropy. We next show the

formal proof.

From Lemma 1, we have
1 | |
2 i i

i i
VD p p o′= − = i∑ ∑

 34

where pi and pi’ are the probability of a “bin” in the actual result distribution and the distribution

output by an n-round Monte Carlo query evaluation algorithm, respectively; oi is the overflow

difference of pi’ at bin i (it has value 0 if no overflow at that bin). Rewrite the expression and

introduce random variables O and P:

() (1)
()

i
i i

i i i

o O E OVD o p E
p P E P

⎡ ⎤= = = ≈⎢ ⎥⎣ ⎦
∑ ∑

where the last equality assumes the independence of overflow amount and the bin’s probability. Now

imagine we do optimal coding (i.e., Huffman codes) and assign binary codes to symbols according to

their probabilities such that the expected code length is minimal. One can think of this procedure as

in a binary tree, shown in Figure 2.6.

Consider a complete binary tree of depth d. At the leaf level, there are 2d “small buckets”. We

uniformly at random throw n balls into the buckets (n corresponds to the n-round Monte Carlo

algorithm). In expectation, each bucket receives n/2d balls. Any number different from the

expectation is either an overflow or an underflow. We map a “bin” in the actual result distribution to

a node in the tree, whose subtree covers a set of buckets. Thus, when a “bin” overflows, it implies

that the set of buckets that it covers receive more balls than the expectation of their total number of

balls. The “location” (in particular, depth) of a bin in the tree corresponds to its optimal binary code

length (thus, higher probability bin has smaller depth). A bin at depth H has probability P = 2-H and

covers buckets. 2d H−

d

H

P=2-H

2d-H buckets

2d buckets

d

H

P=2-H

2d-H buckets

2d buckets

Fig. 2.6: Illustrating the mapping.

Consider two instances of H, h1 and h2 with h1 < h2. They correspond to two bins covering a set s1 of

 buckets and a set s2 of buckets. The size of s1 is times of the size of s2. Treat s2 as a

“unit”. Since a “unit” either overflows or underflows or stays even, the expected overflow of s1,

E(O1) must satisfy

12d h− 22d h− 2 1/2h h

 35

2 1/
1 2() 2 () (2)h hE O E O≤

where E(O2) is a unit’s average overflow (unless all units in O1 overflow, an underflow will offset an

overflow). Rewriting (2) we have, 1

1 2() ()
2 2h 2h

E O E O
− −≤

. As entropy corresponds to optimal code length, we

have
1 2

1

() ()
() ()2

E O E O
E P E P

≤
. Combining this with equation (1), we have proved the theorem. 

Intuitively, Theorem 2.5 tells us that smaller result entropy requires fewer rounds to converge. Based

on Theorem 2.5, we now briefly discuss two optimizations we can have in the stopping of a Monte

Carlo query evaluation.

As discussed earlier, a general stopping condition occurs when the result entropy converges. We can

determine the convergence by the condition |Hi+1 - Hi| ≤ δHi (for some small threshold δ), where Hi

and Hi+1 are the result entropy for round i and i +1 respectively. However, that may cause some

overhead due to computing the entropy frequently. Theorem 2.5 provides a mechanism for leveraging

results from past queries. If query q1 has result entropy that converges to h1 after 200 rounds and we

find query q2’s result entropy h2 > h1, we know q2 will take at least 200 rounds and can stop testing

convergence until then. Thus, one can keep a table of (result entropy, number of rounds to converge)

for past queries. During the current query processing, if we compute its result entropy and find it is

greater than that of some entry in the history table and the current round number is less than the one

in that entry, we can stop computing entropy or testing convergence until we reach that round.

Another possible optimization is to selectively stop computing the value distribution for a subset of

the result tuples (that have smaller entropy) first. Between the set-membership uncertainty for tuples

in the result and the value uncertainty for a field in a result tuple, the first one is a binary decision and

typically takes fewer rounds. For example, after 200 rounds, any output tuple not yet seen has

probability of less than 1/200 of being in the result set because each round is symmetric and

independent (hence has the same probability) in producing the output tuple. Thus, computing value

distributions is typically more costly. After settling the set-membership uncertainty, for value

uncertainty (marginal distributions), the database server can compare the value entropy of different

result tuples. For those with smaller entropy, in fewer rounds of Monte Carlo query evaluation we can

obtain a good quality distribution (convergence). The database server can now “stop” computing

these result tuples and only proceed with more rounds for those tuples that have greater entropy. For

this methodology to work, the database server needs to keep track of the lineage of result tuples and

 36

selectively choose source tuples to run. Clearly both optimizations save computing time and

resources.

2.2.3 Empirical Study

2.2.3.1 Problem and Setup

A common vexing problem in multi-sensor tracking is to devise a mapping between the tracks of one

sensor and the tracks of another sensor, assuming both sensors are tracking the same objects [BB01].

Once a mapping has been verified, tracks from different sensors on the same object can be fused

together to form a single object track. This problem, known as the track-to-track correlation problem,

is well-suited for our study because of the nature of errors in sensor tracks. Track errors are often the

result of bias in the sensor that maintains the track. Thus, it can be expected that errors in tracks that

originate from the same sensor will be correlated in some fashion. The problem requires testing for

equality between uncertain values where the uncertainty may be correlated across multiple values.

This problem is analogous to many other problems in multi-sensor fusion where the mapping

between sensors must be learned. We generate synthetic datasets for the tracks of different sensors

and model correlation of errors for tracks originating from the same sensor with MRF. Each track

itself also has a random error independent of other tracks. We implemented the algorithms presented

in this paper. The experiments were run on a Debian Linux workstation with an AMD Athlon-64 2

Ghz processor, 512 MB memory and a Samsung HD160JJ disk.

2.2.3.2 Correctness

As an example, Figure 2.7 shows the positions in X and Y of six objects, each being tracked by two

sensors. Tracks 1-6 belong to sensor 1 and are illustrated with dots in solid-lined circles. Tracks A-F

belong to sensor 2 and are illustrated with dots in dashed-lined circles. The dots in the center depict

the reported position of each track, the original value in our model. The circles around those dots are

drawn one standard deviation away from the center and serve to demarcate the correction value in

our model. The actual position of a track is the original plus the correction. The errors of the tracks

from the same sensor are correlated due to the common sensor error. Individual tracks also have a

random error.

Let us define T1 as the set of all tracks belonging to sensor 1 and T2 as the set of all tracks belonging

to sensor 2. A mapping M is defined as a set of pairs such that each t1 and t2 appear exactly once.

The probability of a mapping M being valid is the probability that distance (t1, t2) < ε for all pairs (t1,

t2) in M. Under an (erroneous) independence assumption,

 37

1 2Pr() Pr()M t t= ≈∏ .

The query necessary to create this mapping is:

SELECT sensor1.trackID, sensor2.trackID

FROM sensor1, sensor2

WHERE ABS(sensor1.x – sensor2.x) < ε AND

 ABS(sensor1.y – sensor2.y) < ε

In this case, the result of note is not any individual result tuple but a joint distribution on many result

tuples. In the semantics defined in earlier, each result tuple will be accompanied by a k-bit array where

k is the number of rounds of sampling. The value of bit i for tuple t will be 1 if that tuple is a member

of the result set in the i’th round of sampling. Thus we can compute the probability of any mapping

M by doing a bit-wise AND of all the bit arrays of result tuples in M, counting the number of 1s, and

dividing by k.

To the naked eye, it looks obvious that track 1 should be paired with track A, track 2 with track B,

and so on. However, our experiments show that if independence between track errors is assumed, the

probability of this mapping being valid quickly approaches zero as the number of tracks increases.

We drew 10,000 rounds of samples for each track using the correlated model and the uncorrelated

model. The uncorrelated model has the same variance as the marginal distribution of the correlated

model. We tallied up the number of rounds that yielded sampled track states such that distance(t1, t2)

< ε = 5 for all pairs (t1, t2) in our hypothesis M under each model. We then divided that tally by the

number of rounds to yield Pr(M). Figure 2.8 shows the average Pr(M) over 10 distinct trials under

both models as the number of tracks increases. Even though the error circles seem to overlap quite a

bit, the direction of each error is unknown, and the chance that solid-circled tracks have negative

error in X and Y while dashed-circle tracks have positive error in X and Y so that the actual track

positions are the same for all pairs is quite small (approximately 0.1 for each track). Thus, if the

correlation between errors of a given sensor’s tracks is ignored, the probability that all six pairs of

tracks are caused by the same six objects is 0.16. In contrast, if most of the track error is attributed to

correlated sensor error, the effects of adding more tracks on Pr(M) is mitigated. It is clear from the

figure that if correlations in error are ignored, simple queries yield highly erroneous results even when

the number of correlated tuples is fairly small.

 38

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p(
va

lid
 m

ap
pi

ng
)

number of tracks per sensor

Handling correlated error
Assuming error independence

Fig. 2.7: Example tracks from two sensors. Fig. 2.8: Probability of a valid mapping of tracks

under correlated and uncorrelated model.

2.2.3.3 Performance

In order to process queries of the form:

SELECT A.ID, B.ID

FROM A,B

WHERE ABS(A.value – B.value) < ε

as in the previous example, it becomes necessary to process JOINs efficiently over multiple rounds of

sampled data. Imagine hundreds of sensors each tracking thousands of objects. In this case,

efficiently processing the JOIN is of the utmost importance. We implemented our S-Join algorithm

presented and tested it against two standard naïve JOIN algorithms. The first naïve algorithm (1)

performs a sort-merge join on each round of samples independently. It reads in all the data, samples

from the data, and performs an in-memory quick-sort if space allows or an external merge-sort

otherwise. It then does the standard merge on the sorted samples. The second slightly less naïve

algorithm (2) performs one external sort on the original values (expected values). It then reads the

values, samples, resorts with insertion sort, and merges one round at a time. This algorithm should

take the same amount of time to sample and sort as S-Join but must read in the sorted expected

values in each of the n rounds. In contrast, if x rounds can fit in memory with each round occupying

k+1 pages, S-Join only needs to read the data n/x times. They all performed 1000 rounds of sampling

and joined relations of equal size.

Figure 2.9 shows the average runtime of 4 trials for S-Join and the naive merge-join algorithms

presented above on relations of various sizes. The results of the experiments show that S-Join has

roughly linear performance until the cost of doing one external sort outweighs the cost of doing 1000

rounds of linear traversals. In contrast, the naive sort-merge-join algorithm (1) is slower than S-Join

even when the entire sort can be done in memory. The dramatic bump in run-time of (1) occurs

 39

around relation size = 65,000 tuples when the internal sort becomes an external sort. After this point,

the cost of repeated sorts becomes overbearing. Algorithm (2) performs better for smaller datasets

mainly because it requires less overhead than our algorithm which must keep track of multiple rounds

of sampling at once. However, once the entire relation can no longer fit in memory, it must be reread

from disk during every round, and the cost of the disk-reads slows it down considerably.

0 1 2 3 4 5 6

x 105

0

5000

10000

15000

input tuples

ru
nt

im
e

in
 s

ec
on

ds

S-Join
sort-merge-join (1)
sort-merge-join (2)

Fig. 2.9: Runtime comparison of S-Join and two
other algorithms.

Fig. 2.10: Maximum Parallel Rounds vs.
Runtime of S-Join.

Fig. 2.11: Entropy and variation distance over
multiple rounds of samples.

One of the main parameters of the algorithm is the number of sampling rounds to be run at once. If x

rounds can fit in memory, our algorithm must read data n/x times, where n is the total number of

rounds. Thus, it stands to reason that the more rounds handled in parallel, the faster the algorithm

will complete. Figure 2.10 shows how the number of sampling rounds handled concurrently affects

the runtime of the algorithm. Ten tests were run for every five maximum parallel round numbers (5,

10, 15…) and the average runtime over the ten trials is plotted. The runtime initially drops

precipitously because raising the number of parallel rounds from 10 to 20 lowers the number of

database reads from 100 to 50 when sampling 1000 times. However, the difference between 200 and

250 rounds in parallel is only one database read.

 40

2.2.3.4 Stopping Conditions

Theorem 2.5 states that if the entropy of the actual distribution of result tuple t1 is greater than the

entropy of the actual distribution of result tuple t2, tuple t1’s variation distance will be greater than

that of tuple t2 with the same number of rounds. Figure 2.11 illustrates this point using two

randomly-selected result tuples of differing entropy from the previous experiment. The true

distribution, necessary for calculating variation distance, was computed by sampling 1,000,000 times.

For a fixed number of rounds, t1’s variation distance is greater than t2’s. Notice that the entropy

levels off as the number of rounds increases and the smaller the entropy, the faster it levels off (t1

converges at around 1000 rounds while t2 does at around 500 rounds). By observing when the

entropy of a particular tuple starts to level off, the system can decide when no more sampling is

necessary for that tuple.

 41

C h a p t e r 3

HANDLING CORRELATED UNCERTAIN ATTRIBUTES

In this chapter, we discuss in details about using Markov Random Fields (MRF) combined with

chunking of multidimensional arrays to model and process correlated array data (Section 3.1). In

Section 3.2, we present a novel data structure, called A-trees, that essentially turns a multidimensional

array into a tree structure, again to handle correlated data.

3.1 Modeling and Processing Correlated Uncertain Attributes with

MRF

3.1.1 Query Semantics

It is not immediately obvious what the semantics of queries in the presence of correlated uncertainty

should be. Since an attribute value is in general a distribution, a predicate, such as “temperature > 50”,

is true with some probability. Hence, whether a tuple appears in the result now becomes an event that

happens with some probability. It is tempting to generalize the syntax of a predicate and include a

probability threshold, e.g., “temperature >0.8 50”, whose semantics dictates that the predicate is true if

the temperature is greater than 50 with probability at least 0.8. Under this scheme, deterministic

attributes become a special case whose probability is always 0 or 1. Such syntax and semantics have

been proposed and used before (e.g., [DG04]). This generalized predicate syntax makes the

representation of the result cleaner in that either a result tuple is in the result or it is not: there is no

tuple (membership) uncertainty in the result set. However, there is one large problem with this

semantics; it is not composable. When two predicates are correlated, the composed predicate (and

result) may not be what a user intended. For example, the predicate “temperature >0.8 50 AND

temperature <0.8 100” will return “all tuples that have an 80% chance of being greater than 50 and an

80% chance of being less than 100”, not “all tuples that have an 80% chance of being between 50 and

100”, as is probably the desired meaning. The result of a predicate is not composable from two

conjunctive parts if the parts are correlated, as will be the case if they concern the same attribute.

One promising approach has been the “possible world” semantics, where all possible values of a tuple

are enumerated and assigned a probability. This approach has been used in most of the previous work

 42

on probabilistic databases (e.g., [RD07]). While the possible world semantics works very well in the

discrete tuple uncertainty model, it is not clearly defined for the continuous distribution attribute

uncertainty model. We propose to extend and generalize the possible world semantics.

Not only must the semantics incorporate probabilistic membership in the result set, they must also

incorporate uncertainty in result values. As an example, consider the query from the introduction of

all rows with temperatures greater than 80. Tuple T1 has a temperature of 79 with a variance of 1, and

should thus be in the result set with probability 0.16. However, it does not make sense for a row in

the result set to have a mean temperature value of 79. Since the results should only include values

greater than 80, all rows in the result set must have a value range above 80. To rectify this problem,

we must treat the distribution on the temperature attribute of the tuple in the result set as a

conditional probability distribution. The value in the temperature field should be the distribution of

the temperature given that it is above 80 degrees, even though its unconditioned mean was 79. In this

case, the result set should contain the result row RT1, derived from T1, with probability 0.16. The

temperature field in RT1 is the distribution of the temperature of T1 conditioned on being above 80

(The new distribution has a mean of 80.5).

Thus, two uncertain elements must be well-defined in the query semantics: (1) The probability of

membership in the result set and (2) the value distributions of uncertain fields given membership in

the result set.

Integral Based Semantics

The intuition behind these semantics is that the probability density function of an uncertain attribute

X covers some area A. Given a query q, there is a subregion A+ of A in which q(X) produces a tuple t

in the result set and a complimentary region in which t is not produced. We would like to know the

total mass of the probability density function that falls within A+. To find this mass, we integrate over

the region. In our temperature example query, the probably density function of T1 is a normal

distribution with mean 79 and variance 1 where the A+ region is everything greater than 80. Thus

Pr(RT1) is the integral from 80 to positive infinity of that distribution.

When multiple input tuples are correlated, we must integrate over their joint probability density

function. The query q can be thought of as a function that takes in a series of values and returns the

 43

dA

result tuple t when those values satisfy q’s predicate. The integral that calculates the probability of the

result tuple t, Pr(t), is presented below.

1 2
1

1 2
, ,...,

(,...,)

Pr() (, ,...,)
n
n

n
x x x
q x x t

t f X X X

→

= ∫

In this integral, f(X1,X2,…,Xn) is the joint probability density function over correlated attributes X1

through Xn. When the input tuples are correlated, it will often be the case that result tuples are

correlated as well. In this case, the query q maps input values to a set of result tuples t1 through tk.

The probability of that set of tuples being in the result set is given by:

1 2
1 1

1 2 1 2
, ,...,

(,...,) ,...,

Pr(, ,...,) (, ,...,)
n
n k

k n
x x x
q x x t t

t t t f X X X dA

→

= ∫

Now consider the case of uncertain values in result tuples. If a result tuple t has an uncertain attribute

y, then the probability density function over y, f(y), can be calculated using a similar procedure. In this

case, the function q returns a value for y given a set of input tuple values. The function f(y) can be

calculated as follows:

1 2
1

1 2
, ,...,

(,...,)

() (, ,...,)
n
n

n
x x x
q x x y

f y f X X X

→

= ∫ dA

This gives us the marginal distribution of one field (Y) in the result. If a query demands the joint

distribution of k (possibly correlated) fields (Y1, Y2,…, Yk), the joint distribution is:

1 2
1 1

1 2 1 2
, ,...,

(,...,) ,...,

(, ,...,) (, ,...,)
n
n k

k n
x x x
q x x y y

f y y y f X X X dA

→

= ∫

3.1.2 Representation and Query Processing

3.1.2.1 Modeling correlation and processing queries

We propose separating a probabilistic attribute value in a multi-dimensional array into two parts: the

original and the correction. The original is the recorded deterministic value, and the correction is the

probability distribution of a random variable C, such that original + C is the true value. In the

temperature example, the original of tuple T1 is 79 and the correction is a normal distribution with

variance of 1. As we observed earlier, the correction part of different cell tuples of an array can be

correlated. The database system can store the original and the correction parts separately. For

applications that do not care about uncertainty, the database system can simply retrieve the original

part of values, and process queries without uncertainty. This uncertainty representation is beneficial

for the performance of such applications. We observe that for scientific and intelligence applications

of array systems, this seems to be an efficient way of storing the attribute distribution. There is a

 44

x

natural correlation in the correction part of different cells, which is easier to model when separated

out.

Probabilistic graphical models [J98] are a general way to handle correlation. The most often used

graphical models are Markov Random Fields (MRF) and Bayesian Networks (BN). We will focus

exclusively on representation and query processing using MRFs. It is straightforward to extend the

ideas to the BN model. In MRF theory, random variables are represented as nodes in an undirected

graph. Edges indicate dependencies between random variables. In our context, nodes in an MRF are

the uncertain (correction) part of the cell values of an array, and edges reflect the correlation between

the nodes. Nodes in an MRF have the “Markov” property:

 ()Pr(|) Pr(|)i i i NB ix x x x=

where xi is a node in the graph, ix is the set of all nodes except xi, and xNB(i) is the set of all neighbor

nodes of xi. This property illustrates that all nodes are conditionally independent of the rest of the

graph given their neighbors. The Hammersley-Clifford theorem [J98] states that this property is

equivalent to the Gibbs property, which is

Pr() ()c c

c C

X f
∈

=∏

where C is the set of cliques (i.e., complete subgraphs) of the graph and xc is the set of nodes in clique

c. That is to say, the joint distribution of all nodes in the graph can be expressed as a product of

multiple factors, each of which corresponds to a clique and is a function of only random variables

(nodes) within that clique.

Since an array is typically huge, modeling it as a single unit may not be efficient. Meanwhile, for I/O

efficiency, an array is typically partitioned into chunks to store on the disk [SS94]. This scheme is

easily incorporated in the MRF model. We propose to modify the existing array chunking techniques

and produce “overlapping chunks” which correspond to cliques in the MRF. Edges (dependencies)

that previously crossed the border of two neighboring chunks are now included in both chunks and

their MRF models. Thus, when we need to sample cells in the two chunks, the dependencies are

preserved. Here is the algorithm which modifies chunking to achieve piecewise modeling and

sampling.

 45

(5) If n’ is not in c, then include n’ and any edge between n’ and a node in c into c.
(6) End
(7) End
(8) End

(1) Use existing techniques to make the chunking choices (e.g., [SS94]). Thus, a chunk is associated with a subgraph
of the original dependency graph.

(2) For each chunk c,
(3) For each node n in the chunk (the original chunk),
(4) For each neighbor n’ of the node n,

Obtaining a graphical model is an interesting problem by itself. Many probabilistic databases employ

machine learning techniques to learn the model [J98]. In this paper, we ignore this problem and

assume the model is created by some third-party application (or by hand) with domain-specific

knowledge. Once a model is obtained, it can be inserted into the database by populating the

correction attribute of uncertain tuples with references to user-defined functions that describe the

model. Assuming a model has been created for the array, query processing is reduced to inference

problems in a graphical model. To process an arbitrary query, the general exact inference problem in

an MRF is NP-hard. The most often used methods to solve the problem are Markov Chain Monte

Carlo (MCMC) methods, such as Gibbs sampling and the Metropolis-Hastings algorithm [J98]. We

take Gibbs sampling as an example and illustrate how we perform it with the piecewise MRF models.

Recall that the initial chunking of an array produces non-overlapping chunks. Algorithm

CreateChunkModels creates overlapping chunks on top of those. Thus, there is a function C(n) that

maps a node n to a chunk ID according to the initial chunking. We assume the chunk ID does not

change from the initial chunks to the extended chunks in the CreateChunkModels algorithm. Note

that a node n may reside in more than one over-lapping chunk, yet C(n) is unique, which we call the

main chunk of n. The text box below shows the Gibbs sampling algorithm using the piecewise chunk

models. We can observe the following property with the algorithm CreateChunkModels.

Theorem 3.1. Consider a chunk c after the CreateChunkModels algorithm is run. For every node n

such that C(n) = c, all the cliques that include n are in c. No other clique is in c.

Proof. For any clique that is not included in c but covers a node n in c, all its nodes (and edges) not

in c will be added to c in line 5 of the CreateChunkModels algorithm because they are all neighbors of

n. This follows from the fact that a clique is a complete subgraph. �

 46

(1) A global “visitation order” is assigned to all nodes in an array. This is done only once. It can be an arbitrary order,

as long as it is fixed.
(2) Let N be the set of nodes that a query q needs to access, consistent with the global visitation order.
(3) For each node n in N,
(4) Use the MRF model of chunk C(n) to get a new sample. Specifically, sample from the distribution of n

conditioned on the current sample values of its neighbors.
(5) Store the new sample value of n in C(n).
(6) For each neighbor n’ of n,
(7) If C(n’) ≠ C(n), also update the sample value of n in C(n’).
(8) End
(9) End

From Theorem 3.1, we can see that for a node n in a chunk, both its local dependencies and global

dependencies are characterized in its main chunk’s MRF model. The Gibbs sampling algorithm

exactly samples a node from its main chunk. Through sharing cliques (dependency edges), the

sampling procedure preserves the dependencies of nodes across two neighboring chunks. Note that

the cliques in MRF are typically small, due to the common simplifying assumption that correlations

are largely local.

By performing multiple rounds of Gibbs sampling, we evaluate the query on the deterministic input

values using the semantics of conventional databases. Later, we discuss how we collect the results

from the multiple rounds and assemble the result for the original query.

3.1.2.2 What we return as results

Because result tuples will likely be correlated, the results of query evaluation must reflect this

correlation. To achieve this end, each result tuple is augmented with a bit vector which delineates

which sampling rounds yielded that tuple. For example, if N = 5 and tuple RT1 was produced in the

first and fourth round while tuple RT2 was produced in the first and third round, RT1 will be

augmented with the bit string 10010 and RT2 will be augmented with 10100. Now, Pr(RT1) can be

obtained by taking the cardinality of the RT1 bit string and dividing by N. In this case Pr(RT1) = 0.4

and Pr(RT1) = 0.4. Pr(RT1, RT2) can be obtained by performing the logical AND of the two bit

strings and dividing the cardinality of the result by N. In this case, Pr(RT1, RT1) = 0.2 as opposed to

0.16 which would be the result of multiplying the two marginal probabilities together. Performing

query evaluation through Monte Carlo sampling thus provides a powerful framework that can handle

and express correlated uncertainty in tuples.

 47

Many conventional APIs such as ODBC and JDBC require that results are retrievable one tuple at a

time. Notice that by augmenting each result tuple with these bit strings, we can adhere to this

standard and still allow the user to recover the entire joint distribution if necessary. The bit-array is

quite compact and bit-wise operations are very fast on today’s hardware. In this fashion, the user can

generate joint distributions on an arbitrary number of result tuples that are consistent with correlated

errors present in the input tuples as described earlier.

As discussed earlier, besides the result tuple membership distribution, we also describe the

distribution of uncertain fields in a tuple. This can be accomplished with histograms (e.g., [GZ08]).

3.2 A-trees

3.2.1 A-tree Structure and Basics

In this section, we first describe the A-tree structure and how it encodes the joint distribution of array

cells. We then discuss its probabilistic graphical model.

3.2.1.1 Background

A positional tree is a tree in which the children of a node are labeled with distinct positive integers. A

k-ary tree is a positional tree [CLRS] in which for every node, all children with labels greater than k are

missing. Thus, a binary tree is a k-ary tree with k = 2. Figure 3.1 shows a k-ary tree with k = 4. Some

children of a node can be missing, making its degree less than k. Note that an ordered tree in contrast

to a positional tree, is one in which the children of each node are simply ordered (but not labeled with

unique integers). For example, node N in Figure 3.1 is missing its third child. If instead we move the

subtree at its second child to the third position and let it eliminate the second child, then it becomes a

different positional tree (still k-ary), but it would be the same ordered tree.

N

A B C

Fig. 3.1: Example of a k-ary tree with k = 4.

3.2.1.1 Basic A-tree Structure

An A-tree is a k-ary tree with the degree k being 2d, where d is the number of dimensions in which

the uncertain value is correlated. Note that d is typically small (most often 1, 2, or 3). Thus, it is a

binary tree when d = 1 and a 4-ary tree when d = 2, and so on. Figure 2 shows an example partition

 48

for d = 2. Throughout this section, we use d = 2. This can be easily extended to other

dimensionalities. We recursively divide an array in half along each of the d dimensions. In Figure 3.2,

the first partition (thick dotted lines) divides the array space into four (k = 22) subspaces. The whole

array maps to the root of the 4-ary tree in Figure 3.1, and the four subspaces map to its four children

in some fixed order (e.g., 1st child is the north-west subspace, 2nd child is the south-west one, etc.).

Then recursively, we again partition each of the four subspaces into four, which map to the four

children of each node at the level below the root in Figure 3.1. Thus, a recursive partition of the array

space corresponds to a top-down traversal of the k-ary A-tree from one level to the next. Eventually,

at the leaf level, each leaf corresponds to four neighboring cell values of the array. In Figure 3.2, array

cells A, B, C, and D together form a leaf.

A
B C

DA
B C

D

Fig. 3.2: Illustrating recursive partitioning of a two-dimensional array. The
joint distribution of the uncertain attribute is encoded in a 4-ary tree.

For now for simplicity of exposition, in the case of d > 1, we assume that each of the dimensions has

the same size. We also assume this size is 2n (for some integer n). We extend it to more realistic

scenarios later. The black blocks in Figure 3.2 indicate the empty regions (NULL values) of the array

that do not have values in the A-tree and, thus, correspond to the “missing” children in a 4-ary A-tree.

Thus, arrays of arbitrary sparsity can be accommodated. Here is how a joint distribution is encoded

in an A-tree:

• Each leaf in an A-tree stands for the average value (a random variable) of the four neighboring

cells it maps to. For example, in Figure 3.2, one of the leaves is X = (A+B+C+D)/4. Each internal

node stands for the average of its four children (a random variable). Equivalently, each node stands

for the average of all array cells covered by its subtree.

• A leaf stores the joint distribution of the four cells it maps to, relative to (i.e., conditioned on) their

average value (which is the random variable that this leaf stands for). There are two ways to specify

 49

this joint distribution “relative to” the average, which we discuss in Section 3.2.3.1. For example, in

Figure 3.2, one of the leaves contains the joint distribution of A, B, C, and D, conditioned on their

average X.

• Recursively, in a bottom-up manner, an internal node encodes the joint distribution of its four

children, relative to their average.

• In addition to this joint distribution, the root node also holds the distribution of the average value

of the whole array.

Note that the average of children is weighted. For example, in the A-tree of Figure 3.1, node N

contains the joint distribution of its three children (one child node is missing), A, B, and C, relative to

their average value (nA·A+nB·B+nC·C) / (nA+nB+nC), where nA is the number of non-empty cells

(i.e., not NULL) in the subtree rooted at A; similarly for nB and nC.

We describe the implementation details of the encoding of the distributions at each node in Section

3.2.3. The underlying idea of A-trees is that we model the joint distribution of cells in a manageable

way that is relatively compact and automatically structured. The automatic structure is based on the

principle of the locality of data correlation: closer cells are more likely correlated. We organize cells

into hierarchical clusters according to proximity, each of which contains a small number of random

variables so that we can encode their joint distribution compactly. In subsequent sections, we analyze

and experimentally verify the A-tree’s graphical model, modeling accuracy and efficiency for query

processing.

An interesting aspect of the A-tree approach is that if we simply trim the leaves of an A-tree, the

remaining A-tree represents the distribution of an array with a coarser grain. This renders a fast

approximation of the data and may be meaningful for many applications that demand rapid results

(e.g., real-time processing or on-line computation). For the example of image and sound, object or

pattern recognition algorithms can work in the coarser level. This can also be beneficial for queries on

sensor networks and network routing.

Extensions of the Basic A-tree Structure

We now discuss some extensions of the basic A-tree structure.

 50

3.2.1.2 Extensions of the Basic A-tree Structure

3.2.1.2.1 Arbitrary Dimension Sizes

For ease of exposition, previously we assume that each dimension has size 2n (for some integer n).

However, in reality, dimensions may have different sizes and they may not be a power of 2. We can

partition the array in a similar fashion. Recall that the recursive partition of an array divides each

dimension in half every time. We note two cases:

• We do the same even if a dimension is not a power of 2. When we have to divide a dimension of

an odd size 2k + 1. We simply divide it into pieces of size k and k + 1.

• When two dimensions do not have the same size, the “short” dimension must first reach size

either 2 or 3 in the recursive partition procedure. At this point, we stop partitioning the short

dimension but continue dividing the long dimension in halves, until the long dimension also reaches

size 2 or 3. Now we have three combinations of block shape: 2 by 2, 2 by 3, and 3 by 3. As illustrated

in Figure 3.3, the first case is the same as the basic A-tree; a final partition for the second case gives us

a 1 by 2 and a 2 by 2 block; a final partition for the third case gives us 1 by 2, 1 by 3 and 2 by 2 blocks.

Then the final joint distributions are on these blocks.

Note that we are still able to keep track of the dimension ranges that each node of an A-tree covers.

2x2 2x3 3x32x2 2x3 3x3

Fig. 3.3: Three combinations of final block shape and their partitions.

3.2.1.2.2 Basic Uncertainty Blocks of Arbitrary Shapes

We define a basic uncertainty block of an array as a box (e.g., a rectangle for two-dimensional arrays)

in the array inside which cells have the same distribution. In the basic A-tree, each array cell is a basic

uncertainty block. This is the smallest basic block size possible. However, in many applications, this

granularity is not necessary and the basic block size can be much larger. Having a larger basic block

size makes the representation more succinct and query processing more efficient.

For example, astronomers take photo images of objects in the universe. Due to precision limits, pixels

of an image, as cells of a two-dimensional array, exhibit correlated uncertainty in values. A block of

 51

neighboring pixels, due to their proximity, is likely to have the same error distribution. Thus, a basic

uncertainty block can be, say, 50 cells by 50 cells in size. Now each basic block is treated as a “single

cell” in the A-tree, which only records a single distribution of the “random” part of the pixel values.

Each basic block will then store a 50 by 50 block containing the “deterministic” parts of the pixel

values. Combining the deterministic and the random parts together gives a true pixel value.

3.2.1.2.3 Initial Partition of an Array

The best initial partition of an array is application specific and a knowledgeable user can define the

initial partitions. In the astronomers’ photo example, different regions of an image may have different

levels of uncertainty. Some parts of the image (e.g., towards the center) are clearer and have less

uncertainty, while some parts (e.g., towards the borders) are blurrier and have more uncertainty. Thus,

one may want to first partition the array into rectangular regions and assign different basic block sizes

for different regions: regions towards the image center have larger basic uncertainty blocks and the

distributions there have smaller variances, while regions at the borders need finer basic blocks. This is

illustrated in Figure 3.4.

Since correlation among regions may be very weak, an application program can either declare region

summaries (i.e., average values) to be independent or let the system manage the joint distribution of

the regions as the upper levels of the A-tree. When regions are independent, each of them is a

separate A-tree.

A region that
has larger basic
blocks

A region that
has smaller
basic blocks

A region that
has larger basic
blocks

A region that
has smaller
basic blocks

 Fig. 3.4: Illustrating the initial partition of an array into nine regions.

3.2.1.2.4 A-tree’s Probabilistic Graphical Model

A-tree is a unified structure for both the storage model and the probabilistic graphical model. A

probabilistic graphical model (PGM) is a diagrammatic representation of a probability distribution

[B06]. It provides a simple way to visualize the structure of a probabilistic model and gives insights

into its properties, including conditional independence properties. Complex computations, required to

perform inference, can be expressed in terms of graphical manipulations. In a PGM, each node

 52

represents a random variable and edges express probabilistic relationships between these variables.

The graph captures the way in which the joint distribution over all of the random variables can be

decomposed into a product of factors, each depending only on a subset of the variables.

There are two major classes of PGM’s: Bayesian Networks (BN) and Markov Random Fields (MRF).

BN’s edges are directed, while MRF’s edges are undirected. Directed graphs are useful for expressing

causal relationships between random variables, whereas undirected graphs are better suited to

expressing soft constraints between random variables.

 N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2,5

N6,8 N9,12

(a) Storage model

(b) Probabilistic
graphical model

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2 N3 N4 N5

N6 N7 N8
N9 N10 N11 N12

N1

N2,5

N6,8 N9,12

N1

N2,5

N6,8 N9,12

(a) Storage model

(b) Probabilistic
graphical model

Fig. 3.5: An A-tree encodes a unified storage model (a) and probabilistic graphical model (b). There is a natural conversion from (a) to (b).
The root node (N1) stays unchanged. Shrink its children (N2 to N5) into one node, indicated by the dotted ellipse in (a) and N2,5 in (b).
The four edges connecting N1 with N2 … N5 in (a) are shrunk into one directed edge in (b). The similar procedure applies to other nodes
and we get a Bayesian Network in (b).

The PGM of an A-tree is essentially a Bayesian Network, as illustrated in Figure 3.5. There is a natural

mapping from the storage model of an A-tree (Figure 3.5a) to its graphical model (Figure 3.5b). In a

nutshell, we need to shrink the multiple children of an internal node (e.g., N2 to N5 in Figure 3.5a)

into one composite node in the graphical model (denoted as N2,5); corresponding edges are also

merged. This is needed because A-trees encode P(N2,5|N1), but not P(N2|N1), etc. Each edge in

Figure 3.5b corresponds to a joint distribution in a node of the A-tree.

An interesting observation here is that originally only the leaf level exists and represents real random

variables (each leaf maps to some cells of the array). All nodes (random variables) at upper levels of

the Bayesian Network are artifacts of our construction. They are derived random variables.

Interestingly, the construction of an A-tree is bottom-up (Section 3.2.3), yet the inference is top-down

(Section 3.2.4). Note that a node in the graphical model of an A-tree can be composite, denoting

several nodes of the A-tree.

 53

3.2.2 Analysis

We now analyze how accurately an A-tree can model the joint distribution. We do this from three

different perspectives: entropy preservation, distribution function preservation, and the

expressiveness of neighbor correlation.

3.2.2.1 Entropy Preservation

Entropy preservation is a way to measure how faithfully the actual joint distribution is depicted in a

real encoding. To illustrate with a simple example, when the correlation of cells is not modeled at all,

but we only encode the marginal distributions for each cell, then the entropy of the whole array is the

sum of the entropy of each cell, which can be a lot bigger than the entropy of their actual joint

distribution. At the other extreme, when all cells are perfectly correlated, the entropy of their joint

distribution is just the entropy of one cell. Closeness in entropy gives strong evidence that the

distributions are close.

Theorem 3.2: Assuming two nodes (with different parents) in the same level of an A-tree are conditionally

independent given their parent values, the entropy of the joint distribution given by the encoding of an A-tree is equal to

the entropy of the actual joint distribution of the array cells.

Proof: We present the proof for the two dimensional case. It can be generalized to any

dimensionality. Suppose an A-tree has n leaves. Define random variables X1, X2, …, Xn for the

values of the leaves. Then the joint distribution on X1 to Xn is the joint distribution on all array cell

values. This is shown in the base level of the illustrative A-tree in Figure 3.6. In the second level,

denote the summation (i.e., average) of X1 to X4 as X1,4, etc. Thus we have X1,4, X5,8,… at the

second level, X1,16, X17,32,… at the third level, and so on. Finally the root is a single variable X1,n.

We first observe the Markov property of the levels of an A-tree.

Lemma 1: The Markov property exists among levels of an A-tree. Specifically, suppose the A-tree has

h levels. Denote the set of random variables in the first level (X1 to Xn) collectively as L1, the set of

random variables in the second level (X1,4 to Xn-3,n) as L2,…,and finally, the root level X1,n as Lh.

Then, Pr[Li | Li+1,…,Lh] = Pr[Li | Li+1], for 1 ≤ i ≤ h-1.

Lemma 1 is true because by definition Li+2 is completely determined given Li+1 (i.e., by taking

averages), and Li+3 is completely determined given Li+2, and so on until we reach Lh. 

Now we start from:

 54

h

 1 2 1 1 2

1 2 1 1 2

(, ,...,) () (, ,...,)
() (|) (| ,) ... (| ,...,)

n h

h h h h h h

H X X X H L H L L L
H L H L L H L L L H L L L− − −

= =

= + + + +

The second equality follows from the fact that L1 completely determines L2, L3,…, Lh and the third

equality is due to the chain rule of entropy [CT91]. Applying Lemma 1 to this, we have

 Now we consider one of the terms on the right hand side of equation (1):

1 1 2 1 2(|) (, ,..., | , ,...,) (2)i i t tH L L H V V V S S S+ =

where S1, S2,…, St are the random variables for the t nodes at level i + 1, and their corresponding

sets of children at level i are V1, V2,…, Vt , respectively (Figure 3.6). We have

1 2 1 2 1 1 2 2 1 2 1 2 1 2(, | ,) (| ,) (| ,) (; | ,)H V V S S H V S S H V S S I V V S S= + −

where I(V1;V2|S1,S2) is the mutual information of V1 and V2 given S1 and S2 [CT91]. From the

assumption of the theorem, we know that V1 and V2 are independent given S1 and S2. Thus,

I(V1;V2|S1,S2) = 0. By the same token, we can rewrite equation (2) as

1 1 2

1
(|) (| , ,...,) (3)

t

i i j t
j

H L L H V S S S+
=

= ∑

Combining (1) and (3), we have

 1

1 1 2
1 1

(,...,) () (| , ,...,) (4)
i

i

th

n h j t
i j

H X X H L H V S S S
−

= =

= +∑∑

Note that the left hand side of (4) is the entropy of the actual joint distribution of the cells while the

right hand side is the entropy of the distribution given by the encoding of the A-tree (the first term is

the entropy of the distribution of the average of the whole array stored at the root; each term in the

sum is the entropy of a joint distribution encoded at each node of the A-tree and they are

independent). Thus the theorem is proven. 

 55

h

X1X2 X3
Xn……

X1,n

S1 S2

V1 V2

L1

L2

L3

Li

Li+1

Lh-1

Lh

X1X2 X3
Xn……

X1,n

S1 S2

V1 V2

L1

L2

L3

Li

Li+1

Lh-1

Lh

Fig. 3.6: Illustrating the top-down inference of the joint distribution in an A-tree. Each ellipse represents a level of the tree. Each internal
node has 4 children. S1 is a node at level i + 1 and V1 is its set of children at level i.

3.2.2.2 Distribution Function Preservation

Similar reasoning applies to the distribution function itself and we further have:

Theorem 3.3: Assuming two nodes (with different parents) in the same level of an A-tree are conditionally

independent given their parent values, the joint distribution resulting from the encoding of an A-tree is the same as the

actual joint distribution of the cells in the multidimensional array. �

We will not show the proof as it is very similar to that of Theorem 3.2. The basic idea is that we use

the Markov property in Lemma 1 and the fact that

 1 2 1 1 2

1 2 1 1 2

1 2 1 1 2

Pr(, ,...,) Pr() Pr(, ,...,)
Pr() Pr(|) Pr(| ,).....Pr(| ,...,)
Pr() Pr(|) Pr(|).....Pr(|)

n h

h h h h h h

h h h h h

x x x l l l l
l l l l l l l l l
l l l l l l l

− − −

− − −

= =
= ⋅ ⋅
= ⋅ ⋅

Intuitively, the assumption of the theorems roughly says that if two nodes are far away (with different

parents), then they are less correlated and we treat them as conditionally independent given their local

summaries (parents). Clearly, this assumption trades off precision for efficiency. Our analysis and

experiments show that the precision loss is insignificant and A-trees model correlations reasonably

well.

3.2.2.3 Expressiveness of Neighbor Correlation

An A-tree expresses neighboring correlations in the joint distributions at different levels of the tree.

Clearly, the correlation between two cells is easier to encode when this level is lower. In this section,

we demonstrate that, from the perspective of any random query, the average level where cell

correlation is encoded is low. This indicates that an A-tree is not only efficient for inference (Section

 56

3.2.3), but it also has great power in modeling correlations. We further experimentally verify this in

Section 3.2.5.

 0

0 0

0 0 0 0

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

1 1 1

1 1

1

1

CD=0 CD=1 CD=2CD=3

0

0 0

0 0 0 0

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

1 1 1

1 1

1

1

CD=0 CD=1 CD=2CD=3

Fig. 3.7: Illustrating cluster distance in a binary A-tree.

Definition 3.1 (neighboring cells and cluster distance): Two neighboring cells of an array are two cells that are

next to each other in one dimension and have the same dimension values in other dimensions.

Starting from the cell level (leaves) as level 0, the cluster distance (CD) between two neighboring cells is

the level in the A-tree at which a joint distribution between their cluster summaries exists. 

Figure 3.7 shows an example of pairs of neighboring cells with CD 0, 1, 2, and 3, respectively. We can

see that the CD between two cells is determined by the level below their lowest common ancestors.

When CD is 0, the correlation between two cells is directly modeled; when CD gets bigger, their

correlation is embodied in the summaries of bigger clusters they are in. We next quantify the average

as well as the maximum CD in the set of cells that an arbitrary query accesses.

Theorem 3.4: Consider a binary A-tree (d = 1) of height h. Suppose a query references a random part of the array

that has q pairs of neighboring cells (either in a contiguous range or scattered in the array). Then the expected average

CD is 1+(h+1)/2h and the expected maximum CD of the q pairs is . For d =2 (4-ary A-tree), the expected average

CD is the same and the expected maximum CD is where q1 and q2 are the number of neighboring pairs along the

two dimensions and q = max(q1, q2).

Proof: Consider the simpler case of d = 1. We first note the following lemma.

Lemma 3.2.2: We label every left branch of a binary A-tree with 0 and every right branch with 1. We then label

each cell of the array with the concatenation of labels on the path from root to the cell. Then the CD between a cell and

its right neighbor is simply the number of trailing 1’s in its label. �

 57

Lemma 2 is a simple property of a binary tree and is illustrated in Figure 3.7. The first cell from the

left has label 0000, the second has 0001, and so on, which is essentially a counter. Figure 3.7 shows

the cases that CD = 0 to 3. Simply from the labels of the cells marked black we can determine its CD

with its right neighbor.

Now consider the expected average CD. The label of a random cell comes from a random walk from

the root to a leaf. Thus, Pr[zero trailing 1’s] = ½, Pr[one trailing 1’s] = ¼, etc. Let random variable A

denote the average CD of the random q pairs. Then, from the linearity of expectation and Lemma 2,

we have

 1

1
1

1[]
2

h

i
i

E A i
−

+
=

= ∑

With some algebraic manipulation, which we omit, we get

 1[] 1 (1)
2h
hE A +

= +

We next compute the expected maximum CD. Let random variable X denote the maximum CD of q

random pairs. Then we have,

 1

1
1 1 log

1[] Pr[] log log 1 (2)
2 2

ih

h
i i q

qE X X i q q q
∞ −

−
= = +

⎛ ⎞= ≥ = + = + −⎜ ⎟
⎝ ⎠

∑ ∑

The first equality is due to the fact that X is nonnegative (intuitively, for i from 1 upwards,

cumulatively, Pr[X ≥ i] is the probability that we add 1 to the expectation) [MU05]. q(½)i is the

probability that any of the q pairs (hence the maximum) has CD at least i. This is effectively 1 for the

first logq terms, hence the second equality in the equation above.

Next we consider the case of d = 2. Labeling a 4-ary tree is similar. Each edge is now associated with

a 2-bit label, indicating the “left or right” decision for the two dimensions respectively. Thus, four

children of a node have labels 00, 01, 10, and 11. To think about it another way, as a random walk is

performed from the root to a leaf, we are in fact doing a random walk on two binary trees with the

same height, one for each dimension. For a pair of neighboring cells along one dimension of the

original 4-ary tree, they are next to each other in the binary tree of that dimension and are on the same

 58

leaf cell in the binary tree of the other dimension. From (1) we know that the expected average CD

only depends on the height of the trees, but not q1 or q2. Thus, it is the same as in d = 1.

Let random variable Z denote the maximum CD; let random variables X and Y denote the maximum

CD of the q1 pairs along one dimension and that of the q2 pairs along the other dimension,

respectively. Thus, Z = max (X, Y). Similar to the reasoning in (2), we have

1

1 2
1 1 log

1

1 2 1 2
1 log

1 1
1 2

1 2 2

1 1[] Pr[] log 1 1 1
2 2

1 1log ()
2 4

1 1 1 1log ()
2 3 4

i ih

i i q

i ih

i q

h h

E Z Z i q q q

q q q q q

q qq q q
q q

∞ −

= = +

−

= +

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= ≥ = + − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞= + + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

∑

⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

This completes the proof of Theorem 3.4. 

In the same vein, we can obtain the CD’s for larger d values. Theorem 3.4 indicates that the expected

average CD asymptotically approaches 1 from the perspective of any random incoming query. This

shows that A-trees can efficiently express correlations of neighbors. We also experimentally verify its

accuracy in modeling the underlying true distribution in Section 3.2.5.

3.2.3 Implementation Details

We now look at some details of an A-tree, in particular, the representation of the joint distribution in

each node and the layout of an A-tree on disk.

3.2.3.1 Join Distribution at a Node

Previously, we stated that a node encodes the joint distribution of its four children, relative to their

average. We now elaborate on this and describe how to encode the joint distribution.

As discussed earlier, each node stands for the average of all cells in its subtree. Since each cell value is

a random variable, so is each node value. Thus, we are trying to specify a joint distribution of X1, X2,

X3, and X4, relative to a random variable Y (the average of X1 to X4), i.e., the joint distribution of

the children (X1 to X4) given their parent’s value (Y). But since X4 is completely determined given Y,

X1, X2, and X3, we only need to specify the joint distribution of X1, X2, and X3, relative to Y.

The joint distribution relative to Y can be represented either (1) as a joint distribution of multiplicative

factors, or (2) as a joint distribution of additive offsets. In the first method, we have Xi = Y (1 + Fi),

 59

for 1 ≤ i ≤ 3, where Fi is a multiplicative factor. We then simply encode the distributions of F1, F2,

and F3. In the second method, we have Xi = Y + Oi, where Oi is an additive offset, and we just

encode the distributions of O1, O2, and O3. We use an equiwidth histogram for both methods. Thus,

they are similar and we only describe the first method.

Each of the Fi will have a range. There is a parameter k (e.g., k = 8) indicating the number of

equiwidth intervals for each Fi. To represent the full joint distribution of all combinations of intervals,

however, a complete distribution table has k3 entries (three random variables), which is too costly.

Instead, we observe that for any interesting correlation among the children (be it positive or negative),

because the entropy is smaller than if they were independent, most of the k3 entries would have small

probabilities, and only a few entries with the highest probabilities are significant. Thus, we only store

the nτ entries with the highest probabilities, where nτ is a user-specified threshold parameter. Each

entry has a bit number for each Fi. It also has an l-bit number to represent the probability. For

example, when l = 4, a probability number is a multiple of 1/16.

F1 F2 F3 prob

Figure 3.8 shows an example in which there are at most 8 entries (nτ = 8). Each entry has a 3-bit

number (to represent one of the k = 8 intervals) for each of F1, F2, and F3. Each entry also has a 4-

bit probability number (l = 4), thus making the probability value a multiple of 1/16. We can see that

the distribution table is quite compact.

Finally, recall that the root also holds the distribution of the average value of the whole array. This can

either be a simple one-dimensional histogram or a well-known distribution (e.g., Gaussian).

In general, obtaining a joint distribution is highly application specific. There are statistical methods to

do this [B06, J98] and it is outside the scope of this paper. Having said that, we show a simplified

example of a specific application on how one might get the distributions in an A-tree. Recall the

sensor readings example in Section 1. Suppose the data in the array are temperatures at different

3 5 4 5/16

3 bits

8 entries

F1 F2 F3 prob

4 bits

3 5 4 5/16

3 bits

8 entries

4 bits

Fig. 3.8: An example of a joint distribution table at a node.

 60

locations in the space. However, the readings in the array are outdated and we have some uncertainty

about what the current values are. The basic idea is that we “learn from the history”. We look at logs

for readings in the past, and figure out what correlation we can assume.

0.25272

0.25047

0.25045

0.25164

prob.F3F2F1

0.25272

0.25047

0.25045

0.25164

prob.F3F2F1

3073t9
6047t8
0164t7
0164t6
4045t5
10306t4
3253t3
4272t2
15710t1

164t*
dF3F2F1Time

3073t9
6047t8
0164t7
0164t6
4045t5
10306t4
3253t3
4272t2
15710t1

164t*
dF3F2F1Time

-24.412.2-12.28284808381t9

-260137778757778t8

-20.76.9-6.972.574717372t7

-19.66.5-6.576.578757776t6

-25008082788080t5

-6.5-19.66.576.578767577t4

-11.12.8-11.171.873717271t3

-14.314.3-14.37071697169t2

14.3-14.3-28.67072716968t1

-20.76.9-6.972.574717372t*

F3F2F1YX4X3X2X1
Time

-24.412.2-12.28284808381t9

-260137778757778t8

-20.76.9-6.972.574717372t7

-19.66.5-6.576.578757776t6

-25008082788080t5

-6.5-19.66.576.578767577t4

-11.12.8-11.171.873717271t3

-14.314.3-14.37071697169t2

14.3-14.3-28.67072716968t1

-20.76.9-6.972.574717372t*

F3F2F1YX4X3X2X1
Time

 (a) (b)

Fig. 3.9: Sensor readings history data. Fig. 3.10: Normalized data (a) and the final distribution
(b).

We focus on four cells of the array. The highlighted first line in Figure 9 indicates the data in the

array. X1 to X4 are the values of four neighboring cells. Y and Fi’s are computed as described earlier.

The Fi values in Fig. 9 have a scale factor of 10-3. Our log contains readings in the past, at time t1

through t9. Our goal is to learn the correlation (distribution on Fi’s) from the past. We first normalize

the Fi’s into interval numbers (0 to 7), as in Figure 10(a). There are many ways to learn the

distribution. For example, one can compute the L1 distance (Manhattan distance) between data

entries in the past and the entry in the array (first line in Fig. 10a) and find four entries that have the

smallest distance. This is shown in the last column of Fig. 10(a) as those four rows are highlighted. As

a simplified illustration, we can use the Fi values in the four rows above them (i.e., the time instances

after those entries that are closest to the values in the array) as entries in the joint distribution table

and assign probability 0.25 to each (Figure 10b). Likewise, we can do this for nodes in the A-tree at all

levels.

3.2.3.2 Layout on Disk

Typically, scientific data (e.g., astronomical images) is rarely updated. The data is mostly read-only.

Our goal of managing an A-tree on disk is thus to make it as compact as possible and read-optimized.

We propose to linearize an A-tree in level-order: starting from the root level and descending one level

at a time, nodes from left to right at each level are stored on disk in that order. Figure 11 shows an

 61

example in which we store the nodes in the numbered order bypassing the missing children. Note

that as with any positional tree, we must record the information about which children are missing: we

need that to determine cell locations.

 1

2 3 4 5

6 7 8 149 10 11 12 13 15

1

2 3 4 5

6 7 9 10 11 12 13 158 14

Fig. 3.11: Illustrating a level-order storage of an A-tree on disk.

An advantage of storing nodes in level-order is that we only need to store the pointer to its first child

at a node, as opposed to storing one pointer for each child. This is because other children must be

stored immediately after the first child, likely in the same page. This makes the structure more

compact. For example, in Figure 11, node 3 only needs to store the pointer to its first child, node 9;

other children immediately follow node 9.

3.2.4 Query Processing

In this section we discuss techniques of doing query processing on multi-dimensional arrays with

uncertain attributes represented as A-trees. We first look at processing general queries and then

consider optimizations for COUNT, AVG, and SUM queries.

3.2.4.1 Queries in General

Scientific applications are often computationally intensive and tend to use a different set of operators

(e.g., dot products, matrix multiplications). The design of an array database system must take these

operators into consideration [SB07, MS02, BD98, CA98]. The complex nature of the query operators

complicates the task of probabilistic inference with graphical models. Consequently, often the most

viable method of probabilistic inference is through Monte Carlo algorithms [B06, J98]. This requires

random sampling from graphical models. We first describe the sampling algorithm from an A-tree

given an incoming query. We then demonstrate the efficiency of doing inference using A-trees by

comparing with an alternative MRF model.

3.2.4.1.1 Sampling

Sampling from an A-tree is an efficient top-down traversal (logarithmic-length path), shown in Figure

12. It is an application of the ancestral sampling technique [B06] on the Bayesian Network in Figure

5(b). The tree structure allows us to limit the sampling to the path from the root to the target cells Q,

 62

and nothing else. Note that from the recursive partition of the array dimensions during A-tree

construction, it is easy to determine the range of dimension values associated with each node. Step (6)

in the algorithm uses such information to determine if there is an overlap between the coverage of a

node and the set Q.

Let us look at an example. Consider the following astronomy query:

Q1: SELECT AVG(brightness) FROM Space_image

 WHERE DISTANCE(x, y, z, ?, ?, ?) < ?

Q1 asks for the average brightness within a certain distance of some object, whose coordinates are

specified in the three parameters marked by “?”. Space_image is a three dimensional array.

DISTANCE is a built-in function that calculates the distance between two positions. The most

effective known method of probabilistic inference for such a query on a graphical model is based on

Monte Carlo (MC) algorithms [B06]. Our array system optimizer will compute a minimum bounding

box that contains the ball selected by the WHERE clause. The bounding box is a first approximation

of the set of cells Q, as input to the sampling algorithm in Figure 12. The sampling algorithm starts

from the root and traverses down the tree, targeting only the bounding box Q, which is eventually

refined to the actual ball that the WHERE clause selects. Note that our optimizer will obtain all the

samples of a cell needed by MC (say, 100 samples) at the same time because they are independent.

Thus, we only need to traverse down the tree once, thereby saving I/O costs. This is in contrast to

sampling from MRF (next section), in which we cannot use this optimization because sample rounds

are correlated and must occur in sequential order.

Input: An A-tree T, a set of cells Q accessed by a query.
Output: A set of samples S, one value for each cell in Q, from the joint distribution of T.
(1) At the root of T, from the distribution of the average value of the whole array, get a sample

for the root.
(2) Initialize node set N = {root} (one node).
(3) For each node n N∈ ,
(4) Sample from the joint distribution at n, get sample values (v1, v2, v3, v4) for its four

children, based on the sample at node n.
(5) If n is a leaf of T, then vi (1≤ i ≤4) is for a cell c. If c Q∈ , then vi is the final sample

for c.
(6) Else for each child ci (1≤ i ≤4), if the range of dimension values covered by ci

intersects Q, then add ci to N.
(7) End for

Fig. 3.12: An algorithm to get samples for a set of array cells from an A-tree.

3.2.4.1.2 Comparison with an MRF model

 63

One may wonder what would result if we just model a multi-dimensional array with a simple lattice

structure Markov Random Field to capture the neighborhood correlation, as shown in Figure 13(a).

However, the problem here is the high computational cost. How big is the MRF model? Ideally, it

should span the whole array so that all the local correlations between all pairs of neighboring cells are

captured by the model. However, the computation cost of sampling a big MRF is high, as we illustrate

next.

The corresponding inference algorithm for an MRF is Markov Chain Monte Carlo (MCMC) [B06].

Gibbs sampling [B06] is often used with MCMC on an MRF. It has to iterate though all the nodes in

a model to create one sample, even though the query may only need to access a tiny fraction of the

cells of the whole array. Gibbs sampling uses a so-called visitation schedule to update the samples of

each node in the graph to produce one sample from their joint distribution. This is because all nodes

are either directly or indirectly connected, and thus the sample value of each node in the graph is

needed to produce the next round of samples. Therefore, the sampling is rather wasteful for

answering a query.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .
. . .

. . .
. . .
. . .

.

. . .
. . .

.

.

.

.

.

.

. . .
. . .
. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .
. . .
. . .

A

Q

M

A

Q

M

(a) (b)

Fig. 3.13: Illustrating MRF construction for a two dimensional array. (a) indicates a simple grid structure. (b) illustrates a box Q
actually needed for answering a query inside array A. An MRF over an arbitrary region M that contains Q is used.

Now suppose we do not use an MRF model for the whole array A. Instead, we have an MRF model

built over a small region M (of any shape) inside A and M contains Q, the set of cells accessed by the

query. This is illustrated in Figure 13(b). We could use the model over M to give an approximate

answer to the query. However, the area Q accessed by some incoming query can be arbitrary, and it

would be impractical to dynamically build (learn) a model on the fly at execution time or to have a

sufficient number of pre-built models.

Furthermore, our A-tree sampling algorithm based on ancestral sampling over Bayesian Networks is

much more efficient than MCMC sampling, which requires a mixing time before its samples can be

used (i.e., the Markov chain needs to get to a stationary distribution first; a.k.a. “burn in period”)

[B06]. Rigorous justification of inference results would require a theoretical bound on mixing time,

 64

and many interesting practical cases have resisted such theoretical analysis [B06, J98]. A Markov chain

may converge very slowly to its stationary distribution, requiring a long mixing time. Later, we further

experimentally study the impact of the mixing time of MRFs on result accuracy and speed.

Finally, MCMC sampling requires the samples to be correlated (forming a Markov chain) and in a

serial order. As a result, we cannot use the optimization of performing all sampling rounds

concurrently to save I/O costs as we did for A-trees. For example, in answering Q1 (Sec 5.1.1), the

system needs to follow the site visitation schedule and perform sample rounds one by one (each

round obtains one sample for each cell in the bounding box Q).

3.2.4.2 COUNT, AVG, and SUM Queries

For sparse arrays, applications often query the COUNT, AVG, or SUM of “non-empty” cells (i.e.,

with a value in the A-tree) that fall within in a bounding box (i.e., a range in each dimension). It turns

out that we can answer these queries very efficiently using the A-tree data structure.

We add an integer value (cell_count) to each internal node of an A-tree, recording how many non-

empty cells there are in the subtree rooted at the node. The cell_count of all nodes can be easily

obtained in a bottom-up manner during the construction of the A-tree. Next we introduce a

definition.

Definition 3.2 (minimum cover): A minimum cover of a set of cells of an array is a set of nodes in an A-

tree whose subtrees contain exactly the set of cells (no more and no less). Further, there does not exist

another set of nodes that has this property but with fewer nodes in it. 

()

query box Q

A

B

C

D

E

B’

C’

()
query box Q

()
query box Q

A

B

C

D

E

B’

C’

 Fig. 3.14: Illustrating minimum cover and minimum cover with subtraction.

For example, in Figure 3.14, the minimum cover of the query bounding box Q (last seven leaves, or

cells in the array) has three nodes: A, B, and C. Clearly, once we have the minimum cover of cells in a

bounding box, adding up the cell_count in all nodes in the minimum cover gives us the COUNT of

non-empty cells. This means that during query processing we can stop early at the minimum cover

without going further down the tree. Nonetheless, one might wonder if this is the best we can do. In

 65

Figure 3.14, for example, we could also use nodes D and E (cell_count in D minus that in E), which

uses one fewer node. As we increase the tree height, the difference gets bigger. We call such a node

set a minimum cover with subtraction. However, the following theorem shows that it does not really

reduce the access cost.

Theorem 3.5: In an A-tree stored on disk in level-order (as described in Section 3.2.2), using a minimum cover with

subtraction to answer queries does not save I/O costs compared to using the minimum cover.

Proof: Consider each node C in a minimum cover. First we claim that if a minimum cover with

subtraction does not include C, it must include a node (say, E) in the subtree of at least one of C’s

siblings (say, C’). This is because at least one of C’s siblings covers a cell not in the target set of cells,

otherwise C and its siblings all cover cells in the target and their parent node would be in the

minimum cover, but not C. The minimum cover with subtraction must include E in order to subtract

that cell. For example, in Figure 3.14, for node C in the minimum cover, the minimum cover with

subtraction must contain a node (E) in the subtree of node C’ (C’s sibling). The same is true with

node B.

Thus, to access the minimum cover with subtraction, one must access node C’ (since it is the only way

to reach node E in the top-down access of the minimum cover as discussed earlier). In other words,

for each node in the minimum cover, when we use a minimum cover with subtraction instead, we

must either access that node, or one of its siblings. Because all siblings are stored contiguously in

level-order storage, minimum cover with subtraction does not save costs. 

For an A-tree, we can easily find out, for each node, the range in each dimension of the array that it

covers. Thus, the algorithm to compute the minimum cover MC for a set of cells Q is quite simple:

Starting from the root, we check if the node covers only cells in Q. If so, we add this node to MC;

otherwise we recursively check each of its children that has an overlap with Q.

For a COUNT of non-empty cells, we simply add up the cell_count in the nodes of MC and do not

need to do anything extra. For AVG and SUM queries, however, we need to combine with the

sampling technique described earlier. In Monte Carlo query processing, the sampling would be done

together with our top-down procedure above to get an MC. Then we stop early at nodes in MC

without sampling further down the tree. Let the sample value and cell_count at each node in MC be ai

and ci, respectively (1 ≤ i ≤ t, where t is the cardinality of MC). Then the SUM and AVG for this

 66

sampling round are and . Thus, for queries over large-scale datasets, many nodes in MC are at high

levels and our optimization can significantly improve the performance.

3.2.5 Experiments

We perform a systematic empirical study on the following:

• How well does an A-tree model the underlying joint distribution? How does it compare with

MRF?

• How efficient is query processing with A-trees? How does it compare with MRF?

• How much performance improvement do we gain from the optimization on aggregation queries?

• What is the space cost of A-trees?

3.2.5.1 Setup

We perform experiments on the following two datasets:

• A real-world dataset: We use the publicly available Intel Lab dataset. It contains traces from a

sensor network deployment which measures various physical attributes such as temperature,

humidity, voltage of the sensors’ batteries, etc. It uses the Berkeley Motes (sensor nodes) at several

locations within the Intel Research Lab at Berkeley.

• A synthetic dataset: We also generate a dataset that is similar in nature to the Intel Lab dataset but

can be arbitrary in size and sparsity.

 67

We implement the A-tree construction and query processing algorithms presented in the paper. All

the experiments are carried out on a 1.6GHz AMD Turion 64 machine with 1GB physical memory

and a TOSHIBA MK8040GSX disk.

Figure 3.15. Comparing the probability that four sensors within each group have close temperature values
(within one degree of each other) using the real-world dataset (a) and using the synthetic dataset (b).

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sensor group

P
ro

ba
bi

lit
y

of
 te

m
pe

ra
tu

re
 c

lo
se

ne
ss

 w
ith

in
 a

 g
ro

up

 A-tree (first 50 samples)
using independence assumption
MRF (first 50 samples)
MRF (final 50 of 100 samples)
MRF (final 50 of 150 samples)
MRF (final 50 of 200 samples)
statistics of all epochs

 (a) (b)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sensor group

P
ro

ba
bi

lit
y

of
 te

m
pe

ra
tu

re
 c

lo
se

ne
ss

 w
ith

in
 a

 g
ro

up

 A-tree (first 50 samples)
using independence assumption
MRF (first 50 samples)
MRF (final 50 of 100 samples)
MRF (final 50 of 150 samples)
MRF (final 50 of 200 samples)
statistics of all epochs

3.2.5.2 Accuracy of Modeling the Underlying Joint Distribution

The Intel Lab dataset contains sensor readings that span about 65,535 epochs. We use the

temperature readings from that dataset. An epoch is a monotonically increasing sequence number

from each sensor. Two readings from the same epoch number were produced from different sensors

at the same time. Suppose that resources are limited (e.g., sensor power consumption and

communication cost to the server) making it impossible to get readings as frequently as we would like.

Thus, temperature readings at missing time instances must be inferred and are uncertain. In the mean

time, these uncertain temperatures at various sensors are likely to be correlated. We use A-trees to

model the inferred readings at missing time points. This uncertain data forms a three-dimensional

array with the third dimension being time. At each missing time instance, we have a grid of

temperature values, some of which are missing. Using linear interpolation [DM06] from neighboring

cells we can add more temperature values. We build an A-tree for each missing time instance and

hence have an array of A-trees.

The joint distribution at each node of an A-tree is learned from a short period of time (100 epochs)

before the time instance of the A-tree. The distribution (at the root) of the average value of the whole

A-tree is estimated as a normal distribution with the mean being the average at the previous existing

time instance and with a standard deviation of 1 degree. In order to test if the A-trees model

correlations correctly, we first query the existing dataset and find four groups of sensors that have a

 68

relatively high frequency, during all 65,535 epochs, of temperature readings within a range of one

degree. Each group has four sensors. The first group has sensors at locations (60, 2), (60, 3), (61, 2),

(61, 3) in the grid and the second group has sensors at (2, 27), (11, 24), (6, 32), (6, 33), etc. The x and y

coordinates of sensors are in meters relative to the upper right corner of the lab space. We then

arbitrarily pick an A-tree and query the probability that a group of sensors has close temperature

readings (within one degree):

SELECT close_values (temperature, 1)

FROM lab_array

WHERE (x = ? AND y = ?) OR (x = ? AND y = ?)

 OR (x = ? AND y = ?) OR (x = ? AND y = ?)

close_values is a user-defined aggregation function that takes a set of temperature attribute values as

the first parameter, and returns 1 if the set of values are all within a distance range of each other as

specified in the second parameter (1 degree in the above query). The “?” marks in the query are

placeholders for the positions of the four sensors in a group. Thus, using Monte Carlo query

processing, we can compute the expected value of the result, which is the estimated probability that

the group of four sensors have close values.

Figure 3.15(a) shows the result for the four groups of sensors at epoch 800. We retrieve 50 samples

from the A-tree and compute the resulting probability. We execute the query for each sensor group.

To compare with the result from an alternative graphical model of a lattice structured MRF, we build

an MRF for each of the four sensor groups, as illustrated in Figure 3.13. Using Gibbs sampling and

MCMC [B06], we compute the results of the four queries. For comparison, we also use the first 50

samples, as in the A-tree. As discussed earlier, due to the mixing time, the initial samples are not from

the stationary distribution and thus are not of good quality. Therefore, we also experiment with 100,

150, and 200 samples respectively, but only use the final 50 samples to compute the result. We omit

the initial samples in order to pass the mixing time, and always use 50 samples for fairness of

comparisons.

Both A-trees and MRF’s model the correlation in the joint distribution. We compare their results with

that computed under the independence assumption (the second bar). Under the independence

assumption, we assume each sensor reading has a normal distribution with the mean being its value at

the previous existing time instance and its standard deviation being one degree, which is the same as

 69

the root distribution of the A-tree. Finally, we also compare these results with the statistics collected

over all epochs in the dataset (the last bar), which serve as an indication of the underlying actual joint

distribution (for the result of this query).

From Figure 3.15(a), we can clearly see that A-trees model the underlying joint distribution very well

in terms of the accuracy of inference results. On the other hand, the approach based on the

independence assumption produces a very small probability result because it does not model the

correlation among the sensors and thus, the probability that all four independent sensor samples are

close to each other is small. The fact that we arrive at the correct results with A-trees verifies the well-

structured correlation of the data. For the Markov chain sampling from MRF’s, we can see that after

about 100 samples (because of mixing time), it converges to a stationary distribution and the result is

more accurate. Thus, sampling from these MRF’s is not as efficient as sampling from A-trees. We

further compare the query execution time in Section 3.2.5.3. Moreover, the results indicate that the

modeling accuracy of A-trees is close to that of the MRF’s. More importantly, as discussed in earlier

(but not shown in this experiment), there is a serious problem with the MRF approach: it is difficult

to have a small MRF model pre-built suited for every incoming query.

We next repeat this experiment with the synthetic dataset. Again we use four groups of sensors at

different locations. The result is shown in Figure 3.15(b). This dataset again verifies our observations

earlier. In fact, the result of using MRF is even worse with the synthetic dataset due to longer mixing

time.

3.2.5.3 Execution Time

We now examine the execution time for answering the queries in Figure 3.15a. This verifies the

efficiency of answering queries using A-trees compared to MRF’s. The result is shown in Figure 3.16.

As in Figure 3.15(a), we measure the execution time of answering the query by generating 50 samples

from the A-tree. We also measure the execution time by generating 50, 100, 150, and 200 samples

from MRF’s (but only the last 50 samples are used for computing the result). As observed earlier, due

to the mixing time of MCMC, the result of the query is accurate with 150 or 200 samples. Using

MRF’s is significantly slower than using A-trees to provide a result that has about the same accuracy.

The synthetic dataset gives similar results.

 70

1 2 3 4

0

100

200

300

400

500

600

Sensor group

E
xe

cu
tio

n
tim

e
(m

s)

A-tree (50 samples)
MRF (50 samples)
MRF (100 samples)
MRF (150 samples)
MRF (200 samples)

Fig. 3.16: Comparing the execution time of answering
queries using A-trees vs. using different numbers of
samples of MRF’s.

3.2.5.4 Aggregation Queries

In the next experiment, we examine the performance improvement of the optimization using the

minimum cover for COUNT, AVG, and SUM queries presented earlier. To arbitrarily control the

data size, we use the synthetic dataset whose schema is the same as the Intel Lab dataset. We can

programmatically control both the size of the array and the fraction of empty cells in the array. The

array size is 32K by 64K (i.e., 2G cells) with half of them empty. We issue an aggregation query of the

following form:

SELECT AVG(temperature)

FROM synthetic_array

WHERE x BETWEEN ? AND ?

 AND y BETWEEN ? AND ?

By controlling the parameters, we run the query over different numbers of non-empty cells. We

compare the running times with and without the optimization presented earlier. In both cases, we

perform 300 concurrent rounds of Monte Carlo sampling whenever we get to a node of the A-tree.

This avoids going back to the node again and saves I/O costs. Figure 3.17 shows the comparison. We

use a log scale on the y-axis of Figure 3.17 in order to show both lines clearly. The optimization is

about two orders of magnitude faster because it only accesses the A-tree nodes on the path from the

root down to the minimum cover, instead of accessing nodes all the way down to the leaves (as is the

case without the optimization).

 71

20 30 40 50 60 70 80 90 100

10-2

10-1

100

101

102

Number of non-empty cells (in million)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

 Without the optimization on aggregation
With the optimization on aggregation

20 40 60 80 100

0

1000

2000

3000

4000

5000

6000

7000

Number of non-empty cells (in million)

D
at

a
st

ru
ct

ur
e

si
ze

 (M
B

)

Data size if no uncertainty
A-tree size
One distribution per cell

Fig. 3.17: Execution time comparison of an
aggregation query with and without the optimization.

Fig. 3.18: A-tree sizes for different sizes of the
underlying array.

3.2.5.5 Space Consumption

Using the generated synthetic dataset, we examine the space costs of A-trees. Figure 3.18 shows the

details. The x-axis of Figure 3.18 indicates the number of non-empty cells of two-dimensional arrays

with different sizes in which about half of the cells are empty. We compare the sizes of the A-trees

with an obvious lower bound in which the data has no uncertainty at all. This lower bound is simply

the product of a data value size and the number of non-empty cells. Note that in reality even for data

without uncertainty, the storage size should be a little more than this lower bound, since one must

store where the non-empty cells are located in the sparse array. Figure 3.18 shows that the A-tree sizes

are a little more than twice the lower bound. We also compare with a naive approach in which an

array stores one distribution per non-empty cell. This does not model the correlation between cells,

and the sizes of the resulting arrays are significantly bigger than A-trees. Note that a lattice-structure

MRF model for the whole array, which is too costly for query processing, would have a similar size

because we need to store, at each cell, the conditional distribution of the cell on its neighbors for

sampling. We also note that the space consumption for A-trees can be further reduced when the basic

uncertainty blocks are bigger than single cells, as discussed earlier.

 72

C h a p t e r 4

SEMANTICS AND PROCESSING OF TOP-K QUERIES ON
UNCERTAIN DATA

In this chapter, we describe our new semantics and two dynamic programming algorithms to answer

top-k queries on uncertain data.

4.1 Problem Formulation

In this section, we present our data model and formal definitions of the Topk score distribution and

c-Typical-Topk.

4.1.1 Data Model and Scoring Function

We follow the well-known tuple independent/disjoint data model from the probabilistic database

literature [DS07, W05, SI07, HP08]. In this data model, an uncertain database D contains uncertain

tables. An uncertain table T has an extra attribute that indicates the membership probability of a tuple

in T. If a tuple’s membership probability is p (0 < p ≤ 1), it has probability p of appearing in the table

and probability 1 – p that it does not appear. Table T also has a set of mutual exclusion rules. Each

rule specifies a set of tuples which we call an ME group, only one of which can appear in T. If a tuple

has no mutual exclusion constraint, we simply say that it is in its own ME group (of size 1). The sum

of the probabilities of all tuples in an ME group should be no more than 1. The ME groups are

assumed to be independent of each other.

A scoring function s takes a tuple t and return a real number s(t) as its score. In the previous work, the

scoring function s is assumed to be injective (i.e., each tuple maps to exactly one score, and no score

is shared by two tuples), meaning that ties are not allowed. In many cases, it is non-trivial to extend

the algorithms in the previous work to handle non-injective scoring functions; in fact, the result is

undefined when there are ties in tuple scores. In this work, we remove that restriction and allow non-

injective scoring functions.

 73

4.1.2 Score Distribution and c-Typical-Topk

As discussed earlier in Chapter 1, the scores of the k-tuple vector returned by U-Topk can be rather

atypical, severely restricting the usefulness of the U-Topk result. We therefore propose to compute

and provide the distribution of the total scores of top-k tuples. There are two possible usages of such

a distribution:

(1) An application can access the distribution at any granularity of precision (e.g., histograms of any

bucket width).

(2) An application can receive c typical top-k vectors (n.b., c-Typical-Topk, defined below), where c

is a parameter specified by queries.

Intuitively, c-Typical-Topk returns c top-k vectors (for c ≥ 1) such that the actual top-k result (drawn

according to its distribution) is close to at least one of the c vectors. When c = 1, the result has a score

that is the expected score of top-k vectors; on the other hand, a big c value gives c vectors (and their

probabilities) that approach the distribution of all top-k vectors. Put another way, the ith vector has a

score that is approximately i/(c+1) through the probability distribution of all possible scores.

Definition 4.1 (c-Typical-Topk scores). Let the distribution of the total scores of top-k tuples of an uncertain

table T be a PMF (Probability Mass Function) D. We call the set of c scores {s1, s2, …, sc}, where si (1 ≤ i ≤ c)

has non-zero probability in D, the c-Typical-Topk scores if for a score S ~ D (i.e., randomly chosen according to

D),

1 1

1 2 { ,..., } { ,..., }
{ , , ..., } arg min [min | |]

c i c
c is s s s s

s s s E S s
∈

= − �

That is to say, over all choices of the c scores, for a random score S chosen according to D, |S – si| is

minimal in expectation, where si is the closest score to S among the c scores.

Definition 4.2 (c-Typical-Topk tuples). We call the set of k-tuple vectors {v1, v2, …, vc}, where vi (1 ≤ i ≤

c) is a vector of top-k tuples of T in some possible world, the c-Typical-Topk tuples if

()
arg max Pr(), 1

i i
i is v s
v v

=
= ≤ i c≤

where s1, s2, …, sc are c-Typical-Topk scores, s(vi) is the total scores of the tuples in vi, and Pr(vi) is the probability that

vi is a top-k tuple vector of T. �

 74

In other words, vi is the most probable top-k tuple vector that has a total score si (if there is more

than one such vector, vi can be any one of them).

For example, we can find that the 3-Typical-Top-2 scores of the table in our earlier example is {118,

183, 235}, with an expected distance 6.6 for a random top-2 vector. The 3-Typical-Top-2 vectors are

{(T2, T6), (T7, T6), (T7, T3)}. For comparison, the 1-Typical-Top-2 vector is (T3, T2), which has a

slightly smaller probability (0.16) than that of the U-Top-2 vector (T2, T6) with probability (0.2), but

has a much more typical score of 170, as opposed to 118 of the U-Top-2.

4.1.3 Non-injective Scoring Function and Ties

Now we consider the case in which the scoring function s is non-injective and there can be ties

among the scores of the tuples of an uncertain table. Score ties are common when the score is based

on an attribute that does not have many distinct values, e.g., year of publication, number of citations,

or even non-numeric attributes [FK04]. It is also called partial ranking in [FK04], where the authors

studied combining several ranked lists to produce a single ranking. We call the set of all tuples that

have the same score a tie group. When a tuple does not have the same score with any other tuple, it is

in a tie group of size one. A tie group in an uncertain table T contains all uncertain tuples that have

the same score; a tie group in a possible world contains all tuples that appear in that world and have

the same score.

We first discuss what this implies in a single possible world (i.e., without uncertainty). In a possible

world w, as usual, a top-k tuple vector still contains a set of k tuples that have the highest scores.

When there are ties, it is likely that there are multiple such top-k vectors in w, all ending in some

tuples from a tie group. We say that a top-k vector v contains a tie group g if all tuples in g belongs to

v. We say that a top-k vector v partially reaches a tie group g if at least one but not all tuples in g

belong to v. We say that g contributes m tuples to v if exactly m tuples from g belong to v. We state

the following theorem without proof.

Theorem 4.1 In a possible world w, all top-k vectors must contain the same set of tie groups. If there is more than

one top-k vector, they must all partially reach the same tie group g and g contributes the same number of tuples m to all

those vectors. In fact, there are such vectors, where |g| is the number of tuples in g. �

Example 4.1 We can order the tie groups according to their scores in descending order. Let us say that g1 = {T2,

T6}, g2 = {T3, T7, T10}, and g3 = {T5, T9, T12} are the three tie groups in a possible world with the highest

 75

scores. Among the three groups, g1 has the highest score and g3 has the lowest. Suppose we want to ask for the top-7

tuples. Then there are top-7 tuple vectors {g1, g2, T5, T9}, {g1, g2, T5, T12}, and {g1, g2, T9, T12}, all

containing g1 and g2 but partially reaching g3. g3 contributes 2 tuples to each vector. �

It is clear that all top-k tuple vectors of a possible world have the same total score. Thus, in terms of

the score distribution, ties would not have any impact: the probability of some score is still the sum of

the probabilities of all possible worlds whose top-k vectors have that score. For c-Typical-Topk,

among possibly multiple vectors that have some score, we choose one of them with the highest

probability to appear in the uncertain table.

4.2 Computing Score Distribution of Top-k

A key challenge is to compute the distribution of the total scores of top-k tuple vectors. This is

inherently computationally expensive because unlike U-Topk and U-kRanks, this is not really a search

problem (e.g., searching for the highest probability vector), as, in this case, one must account for all

top-k vectors’ scores and probabilities. The goal of such an algorithm is to output the distribution as a

set of (score value, probability) pairs.

4.2.1 Two Simple Algorithms

We first present two algorithms which establish a baseline for comparison with the algorithm

presented in Section 4.2.2 and 4.2.3. For now, we do not consider non-injective scoring functions and

ties in tuples’ scores; these will be discussed in Section 4.2.3. Figure 4.1 shows the first algorithm,

called StateExpansion.

We first initialize the distribution to be an empty set (step 1). S is a set of states and we initialize it to

contain one state – containing the empty tuple vector ε (step 2). We then go through all tuples in

descending order by score, expanding each current state in S in two different ways: either include the

new tuple or do not. When we reach k tuples at a state, we add it into the distribution to be returned

(step 10). When the probability of a state gets too small (below a threshold pτ as an input parameter),

it is dropped. Note that the number of (score, probability) pairs in the output dist could potentially be

very large. Thus, in step (10), we use a coalescing strategy to limit the size of the output. We omit the

details here, which are described in Section 4.2.3. The StateExpansion algorithm has an exponential

cost in the number of tuples considered (subject to the probability threshold).

 76

Input: T: an uncertain tuple set in rank order,
 pτ: a probability threshold – note: a top-k vector with
 probability below pτ need not be considered.
Output: The score distribution of top-k vectors.
(1) dist = Φ
(2) S = {ε}
(3) for each t from T do
(4) if S is empty then break end if
(5) S’ = Φ
(6) for each state s in S do
(7) Append t to s and get a new state s1.
(8) Compute s1’s score and probability based on s.
(9) if s1 has k tuples then
(10) Add its score and probability to dist.
(11) else if s1’s probability is greater than pτ then
(12) S’ = S’ ∪ {s1}.
(13) end if
(14) end if
(15) Append ¬ to s and get a new state s2. t
(16) Compute s2’s probability.
(17) if s2’s probability is greater than pτ then
(18) S’ = S’ ∪ {s2}.
(19) end if
(20) end for
(21) S = S’
(22) end for
(23) return dist

Fig. 4.1: Algorithm StateExpansion.

We next show a more efficient algorithm. In this algorithm, we first determine an upper bound on the

number of uncertain tuples that we have to examine when tuples are in rank order by score. A

reasonable stopping condition is that we do not need to consider tuples that have probability less than

pτ being in top-k.

Theorem 4.2. Given that we do not need to consider any tuple that has probability less than pτ being in top-k, the

stopping condition of the sequential scan of tuples in rank order by score is at a tuple t satisfying

 21 11 ln ln 2 lnk k 1
p p pτ τ τ

μ ≥ + + + +

(i.e., we do not need to consider any tuple from t onwards), where and T(t) is the set of all tuples ranked higher than t,

except those in t’s ME group. Furthermore, such a stopping condition also guarantees that no k-tuple vector with

probability pτ or more being in top-k is omitted.

 77

Proof. We use an existing result from [HP08]. Theorem 8 of [HP08] says that a slightly different

condition 21 1ln ln 2 lnk 1k
p p pτ τ τ

μ ≥ + + + ensures Pr(t is in top-k) < pτ. We note that μ may not be

monotonically increasing with more tuples because we have to exclude tuple t’s ME group, which can

vary from tuple to tuple. However, the sum of the probabilities of t’s ME group is no more than 1.

Thus, adding 1 to the right hand side of the inequality ensures that once the condition is satisfied at

some tuple t, it will always be satisfied for all tuples onwards. We further observe that for any top-k

vector v that contains t, because v is top-k implies t is in top-k, we must have Pr(v is a top-k vector) ≤

Pr(t is in top-k) < pτ. Thus, the stopping condition also guarantees that no k-tuple vector with

probability pτ or more being in top-k is omitted. 

Theorem 4.2 gives us a stopping condition, which also satisfies the requirement in the StateExpansion

algorithm (i.e., no k-tuple vector with probability pτ or more being in top-k is missed). Note that we

always stop at the end of a tie group because tuples in a tie group either all satisfy the stopping

condition or none does. Let the number of uncertain tuples we need to consider be n. We can simply

iterate through all k-combinations of the n tuples using a standard algorithm that generates all k-

combinations in lexigraphical order [R95], but exclude those that violate the mutual exclusion rules.

For each k-combination, we can compute its total score and probability, and eventually we get the

distribution. We call this algorithm k-Combo. Its cost is O(nk).

4.2.2 The Main Algorithm

We now present our main algorithm, which is based on dynamic programming. Our presentation is

done in several steps. In this subsection, we introduce the basic framework of the algorithm. In

Section 4.2.3 and 4.2.4, we extend this algorithm to handle mutually exclusive tuples and score ties,

respectively.

Consider the table in Figure 4.2. The rows correspond to n (determined by Theorem 4.2) uncertain

tuples in rank order by score. The columns are labeled from k to 1. A cell at row Ti column j contains

the score distribution of top-j tuples starting from row Ti. Thus, our goal is to get the distribution in

the cell at the upper left corner of the table (marked with a “?”), i.e., the score distribution of top-k

tuples starting from T1. We first consider the basic case in which tuples are independent (i.e., no

mutual exclusion rules) and there are no ties in score.

 78

?
△ △

△△

?

T1
T2

Ti
Ti+1

Tn

k k-1 j-1j 1

s

p

p p

s s
Tn-k

?
△ △

△△

?

T1
T2

Ti
Ti+1

Tn

k k-1 j-1j 1

s

p

p p

s s
Tn-k

 Fig. 4.2: Illustrating the basic dynamic programming algorithm, explained in the text below.

Our goal, the distribution of top-k starting from T1 (upper left corner cell), can be composed using

the distributions of two cells below it (marked with triangles in Figure 4.2): the distribution of top-k

starting from T2 (when T1 does not exist) and the distribution of top-(k-1) starting from T2 (when

T1 exists). In general, the distribution Di,j at row Ti and column j (top-j starting from Ti) is composed

from the distribution Di+1,j at row Ti+1 and column j (top-j starting from Ti+1) and the distribution

Di+1,j-1 at row Ti+1 and column j-1 (top-(j-1) starting from Ti+1) in the following way:

(1) For each value and probability pair (v, p) in Di+1,j , we transform it to (v, p(1－pi)), where pi is

the probability that Ti exists.

(2) For each value and probability pair (v, p) in Di+1,j-1 , we transform it to (v+si , p·pi), where si is

Ti’s score and pi is the probability that Ti exists.

(3) Merge the value and probability pairs resulting from (1) and (2) by taking their union except for

the following: if two pairs have the same value, they become one pair with that value and with the

new probability being the sum of the two original ones.

The right hand side of Figure 4.2 shows pictorially the merging process. Since all top-k tuples (there

are k of them) must be among the n tuples T1 to Tn, we only need to fill in the distributions in the

table of Figure 4.2 between the two dotted lines. For example, we do not need to get the distribution

of top-(k-1) starting from T1; nor do we need top-2 starting from Tn , etc.

The recursive process described above fills in the table in a bottom-up manner. For the boundary

conditions of the recursion, we add an auxiliary column 0 at the right border of the table. The

 79

distribution at a cell of column 0 has only one (value, probability) pair: (0, 1), i.e., score 0 with

probability 1. For the a boundary cell (at row Tn-i+1 and column i, for i = 1, …, k) immediately

above the bottom dotted line, its distribution also has only one (value, probability) pair:

In the algorithm we also keep track of one tuple vector for each (v, p) pair, which is needed for

obtaining c-Typical-Topk. The vector is one (among possibly many) that has score v and has the

highest probability of being the top vector. The recorded tuple vector is initially empty at column 0

and contains only Tn for the cell at row Tn and column 1. Thereafter, step (1) of the distribution

merging process does not change the tuple vector while step (2) prepends Ti to the vector. In step (3),

when two pairs have the same value and get combined, we keep the vector that has the higher

probability.

4.2.2.1 The Need for Approximation

Thus far, it appears that the cost of this algorithm is O(kn). However, there is one potential problem.

For a cell at row Ti and column j (i.e., the distribution of the total scores of top-j starting from row

Ti), there are possible combinations that make up the top-j scores (1 ≤ i ≤ n, 1 ≤ j ≤ k). In the worst

case, each combination has a distinct total score, resulting in a distribution that has the same number

of discrete values (vertical lines in the PMF) in the cell. Thus, the number of vertical lines of a

distribution is upper bounded by , which is O(nk). Recall that the distribution merging process

described above goes through each vertical line (v, p), increasing the worst case complexity of the

main algorithm to O(nk). Note that in most applications, in reality, scores are not too far apart, and

total scores of different combinations are often very close or even the same. Even if they were all

distinct, it would often be unnecessary to keep all O(nk) lines in the PMF. It is more desirable to have

a slight sacrifice in the accuracy of the distribution in exchange for a gain in efficiency. Imagine that

the range of total scores of top-k is [smin, smax]. The range can be easily determined: smax is the total

score of T1 to Tk and smin is the total score of Tn-k+1 to Tn since they are sorted. Note that the

span smax – smin is relatively insensitive to the problem size n. We divide the span into a constant

number c’ of same-size intervals (e.g., c’ = 200). Each interval size is δ = (smax – smin) / c’. Suppose

for the application we can coalesce vertical lines that are no more than δ away from each other in the

distribution (i.e., differ by no more than δ in total scores). Then the cost to describe the output

distribution is a constant.

We call the distribution at row T1 and column k (i.e., upper left corner) the final distribution and

those at other cells intermediate distributions. We can have a “line coalescing” strategy as follows. At

 80

any intermediate or final distribution, whenever the algorithm results in more than c’ vertical lines, (1)

pick two lines that are closest to each other and coalesce them into one: the score value is their

average and the probability is their sum; (2) repeat the first step until we have c’ vertical lines. As for

the recorded top vector, when we coalesce two lines, we keep the tuple vector that has the higher

probability.

We first observe that in the bottom-up process of computing the dynamic programming table of

Figure 4.2, two lines (v1, p1) and (v2, p2) in an intermediate distribution are always going to change in

a synchronized way: either they both stay at the same scores (step 1 of the distribution merging

process) or the two lines get “shifted” with the same offset by adding the same score (step 2 of the

merging process). In both cases their probabilities are scaled by the same factor. Thus, coalescing two

lines in an intermediate distribution effectively is equivalent to coalescing them in the final distribution

since they would have the same distance in scores, had we not coalesced them in any of the

intermediate distributions.

Secondly, it is not hard to see that the span of any intermediate distribution is no more than that of

the final distribution (smax – smin). This is because intermediate distributions either only consider

top-j (j < k) or they use a subset of the n tuples. Thus, if an intermediate distribution has more than c’

lines, by picking the two lines with minimum distance, we must be coalescing two lines that are no

more than δ apart.

Now given that we have a constant cost of distribution merging, our basic algorithm so far has O(kn)

time complexity. In the next two subsections, we extend our basic algorithm to more complex and

realistic scenarios in which there are mutual exclusion rules and possible score ties among tuples.

Note that we do this line coalescing similarly for the StateExpansion and k-Combo algorithms in

Section 4.2.1 as well. For example, in step (10) of StateExpansion, we make sure dist has no more

than a constant number of score/probability pairs. This, however, does not change the complexity of

those two algorithms.

4.2.3 Handling Mutually Exclusive Rules

The problem gets more complicated when there is correlation among the tuples. We now describe

how to handle mutually exclusive tuples. The original algorithm would not work in the presence of

 81

mutually exclusive tuples because the final distribution would be wrong if more than one tuple in an

ME group simultaneously contributes to a top-k score.

4.2.3.1 Two False Starts

In the bottom-up dynamic programming algorithm, one might first be tempted to do the

bookkeeping of which ME groups have contributed a tuple to a score (and with what probability). In

this case, we do not add additional tuples from those ME groups into the intermediate distributions.

Unfortunately, this is combinatorial and is too costly.

Another approach compresses all tuples in a mutually exclusive set into one tuple. We use the

terminology in [HP08] and call it a rule tuple. A rule tuple has a composite score and a probability of

the sum of the original tuples. At a row of a rule tuple, step (1) of the distribution merging process

stays the same and step (2) changes to adding each score/probability of the original tuples of the rule

separately. For example, if a rule tuple has three original tuples, we do step (2) three times. However,

the problem with this approach is that we have nowhere to place the rule tuple in the dynamic

programming table since it has a composite score. Wherever we place it, we are unable to compute

the probability of a top-k score correctly because we have lost the information of exactly which

original tuples appear (or do not appear) in a strict score order.

4.2.3.2 A Good Start

Although the second strategy above fails, it provides the following inspiration: suppose we require

that the last tuple (i.e., the k-th) of the top-k has to be Tn, then the tuples in the dynamic

programming table can be in any arbitrary order (i.e., they do not have to be ordered by scores as

stated earlier). This is because for any tuple i with a score higher than the last tuple of the top-k, if i is

in the top-k, we simply multiply the current probability by its probability pi ; if i is not in top-k, we

multiply by (1 − pi). The earlier order requirement simply prevents us from multiplying the (1 − pi)

for any tuple i with a score smaller than the last one in top-k. But if the last one in top-k is Tn , we

know for sure all other tuples have a higher score. Now without the order constraint, we can then

modify the original tuples in the following way:

(1) Remove all other tuples (if any) that are in the same ME group as Tn from the table.

 82

(2) Compress all other ME groups into rule tuples and leave them in any order. Remember the

constituent original tuples’ scores and probabilities for a rule tuple. A rule tuple also has a probability

that is the sum of those of the constituent tuples.

The next trick ensures that the dynamic programming algorithm only considers the top-k vectors that

end with Tn. Recall that we added an auxiliary column 0 at the right border of the dynamic

programming table of Figure 4.2. Each cell in column 0 holds a distribution (0, 1) – score 0 with

probability 1. We call a cell in column 0 an exit point because it indicates that we do not need to select

any more tuples as top-k from that tuple and below. In order to only incorporate top-k vectors that

end with Tn, all we need to do is simply “block” those exit points by letting them have a distribution

of (0, 0) instead – score 0 with probability 0. It can be easily verified that such a distribution cannot be

propagated by the distribution merging process. With that change, the dynamic programming

algorithm can proceed as before.

The change on the distribution merging process to the main algorithm is the same as that described in

the second attempt in Section 4.2.3.1.

What we have achieved so far is only the distribution of total scores of top-k vectors that end with

Tn. To get the distribution for all top-k vectors, an easy extension is simply to repeat this for each

tuple from Tk to Tn (i.e., truncate the dynamic programming table at each of those tuples and treat

them as the last tuple of the top-k, respectively) and then we merge all the final distributions together.

For a truncated table, an ME group may be truncated as well. That is, if the table is truncated at Ti (k

≤ i ≤ n), an ME group now only contains tuples in the remaining table (i.e., from T1 to Ti). The

compression step now applies to the reduced ME groups.

4.2.3.3 Refinement

It turns out that we can do better than the simple extension above. We call a tuple a lead tuple if it is

the first one (i.e., with the highest score) in an ME group. If an ME group has only one tuple (i.e., not

mutually exclusive with any other tuple), that tuple is a lead tuple. In a score-sorted sequence T1 to

Tn, a maximal contiguous subsequence of lead tuples Ti, Ti+1, …, Tj is called a lead tuple region. For

a subsequence to be maximal, it must be satisfied that (1) either i = 1 or Ti-1 is not a lead tuple; and

(2) either j = n or Tj+1 is not a lead tuple.

 83

We can see that we do not need to do the dynamic programming procedure for each tuple. Instead,

we only need to do it once for every lead tuple region and once for every non-lead tuple. This is

because when the dynamic programming table ends with a lead tuple region, tuples in it behave

exactly as independent tuples and they will not interfere with any other tuples above. Thus, for a lead

tuple region, we can simply do one dynamic programming to get the score distribution of top-k

vectors that end with any tuple in that lead tuple region. We achieve this by setting the boundary

conditions properly. For the distributions in the cells of the auxiliary column 0, we set it to be (0, 1) at

the rows of a lead tuple region in question and set it to be (0, 0) for other rows. Recall that (0, 0) is to

block an exit point and (0, 1) is to enable it. Everything else, including the rule tuple compression,

stays the same. This is illustrated in Figure 4.3.

?
△ △

△△

?

T1
T2

Ti

k k-1 j-1j 1

Lead tuple
region

0

(0, 1)

(0, 0)

auxiliary
column

block exit
points

enable exit
points

?
△ △

△△

?

T1
T2

Ti

k k-1 j-1j 1

Lead tuple
region

0

(0, 1)

(0, 0)

auxiliary
column

block exit
points

enable exit
points

Fig. 4.3: One dynamic programming for a lead
tuple region.

With this improvement we can see that the time complexity of our algorithm that handles mutually

exclusive tuples is O(kmn), where m is the number of tuples (among T1 to Tn) that are mutually

exclusive with other tuples. In many applications, mutually exclusive tuples are only a small

proportion of the total. The computational cost is proportional to this fraction.

4.2.4 Handling Ties

In many real applications, the scoring function s is non-injective which leads to ties among the tuple

scores [FK04]. We discussed the semantics of top-k vectors and score distributions at the end of

Section 4.1. We now extend the dynamic programming algorithm that we have developed so far to

take care of the case of score ties. We shall prove that the following simple extension of the algorithm

satisfies our requirements:

 84

Recall that before, the sort order was on scores. Now, sort tuples in descending order by (score, probability). When two

tuples have the same score, they are in descending order of probability; when they have the same probability as well, break

ties arbitrarily.

Aside from this adjustment, the algorithm works the same as before. The next theorem shows that

this modification is correct.

Theorem 4.3. With the above extension to the dynamic programming algorithm, we achieve our two goals: (1) we

obtain the correct final score distribution of top-k and (2) among vectors that have the same score, the one that is captured

at the end of the algorithm is the one with the highest probability.

For the proof of Theorem 4.3, we first need the following definition and lemma.

Definition 4.3 (Configuration of top-k). A configuration of top-k is a set of (k − g) uncertain tuples

plus g tuples from a tie group in non-increasing score order, with the ending tie group having the lowest score (the k − g

tuples are not in that tie group).

Note that a configuration has a fixed total score and two configurations may have the same total

score. The probability of a configuration is the probability that such a configuration is the top-k tuple

vector.

Lemma 4.1. Let A be the set of (k − g) uncertain tuples and T be the ending tie group of a configuration. Let B be

the set of tuples that have higher scores than those in T but are not in the configuration. The probability of the

configuration is the probability that (1) tuples in A appear, and (2) those in B do not, and (3) at least g tuples from T

appear.

Proof (Lemma 4.1). Clearly, (1) and (2) must be true for the configuration to be top-k. Except for

the case that fewer than g tuples from T appear, this configuration will be top-k. Thus, we have (3).



Proof (Theorem 4.3). A top-k score distribution is made up of different configurations. Therefore,

to prove goal (1) of Theorem 4.3, we only need to show that our algorithm computes the probability

correctly for each configuration.

 85

For the ending tie group T of a configuration, our algorithm puts the tuples in probability descending

order. In fact, we can see that for any arbitrary order, as long as it is fixed, the dynamic programming

will compute the probability of the configuration correctly. Let the ending tie group T have t tuples in

total: T1, T2, …, Tt in some fixed order. The event (3) in Lemma 1 (i.e., at least g tuples from T

appear) can be decomposed into sub-events as follows. Imagine a t-bit binary string. We choose g

bits and set them to 1; the other bits are all 0. Clearly there are such strings. We use each of them to

construct a sub-event: we truncate the string at the last 1 bit; then starting from the 1st bit until the

last bit (which is 1), if the i’th bit is 1 (or 0), we add “Ti appears” (or “Ti does not appear”,

respectively) into the sub-event. It is easy to see that the dynamic programming procedure computes

the probability of each such sub-event and adds them up to be the probability of the event (3) in

Lemma 1. Thus, the algorithm computes the probability of the configuration correctly and we finish

the proof of goal (1) of Theorem 4.3.

Example 4.2. Consider the scenario that the first seven uncertain tuples are:

(T1, 10, 0.5),

(T2, 8, 0.3), (T3, 8, 0.2), (T4, 8, 0.1),

(T5, 7, 0.5), (T6, 7, 0.4), (T7, 7, 0.2).

That is, T1 has score 10 and probability 0.5, and so on. Consider a top-5 configuration c that includes T1, T2, T4,

and two tuples from the tie group g = {T5, T6, T7}. Then

Pr(c) = Pr(T1)Pr(T2)(1−Pr(T3))Pr(T4)Pr(≥ 2 tuples in g appear)

We can compute that Pr(≥ 2 tuples in g appear) = 0.5·0.4·0.2 + 0.5·0.4·(1−0.2) + 0.5·(1−0.4)·0.2 +

(1−0.5)·0.4·0.2 = 0.3. On the other hand, our dynamic programming algorithm will calculate the probability of this

part of c to be: 0.5·0.4 + 0.5·(1−0.4)·0.2 + (1−0.5)·0.4·0.2 = 0.3 as well. Thus, our algorithm computes the

probability of the configuration c correctly.

We next show that our algorithm achieves goal (2), i.e., the vector recorded is the one with the highest

probability. Note that the algorithm may not compute the probability correctly for all vectors in a top-

k configuration, but it does compute it correctly for the one with the highest probability, due to the

fact that we order the probability in non-increasing order in the ending tie group. In Example 4.2, our

algorithm computes the probability of the vector that ends with T5 and T6 correctly: 0.5·0.4 = 0.2

(for the part in tie group g). On the other hand, for the vector ending with T5 and T7, the algorithm

computes 0.5·(1−0.4)·0.2 = 0.06, but the actual probability should be 0.5·0.2 = 0.1. This is fine

because we only need to return the vector that has the maximum probability.

 86

Note that the extension of our algorithm to handle mutually exclusive tuples as discussed in Section

4.2.3 would not affect the results of our proof above. This is because for a given configuration of top-

k, after removing tuples in set T that are mutually exclusive with any tuple in set A (sets T and A as

defined in Lemma 1), our proof holds in the same way. This concludes the proof of Theorem 4.3. 

It is not hard to see that the same method can be applied to the algorithm StateExpansion in Section

4.2.1 as well to handle score ties: we just need to sort the tuples in (score, probability) descending

order.

4.3 Computing c-Typical-Top-k

Given a distribution of the total scores of top-k vectors as computed in Section 4.2, we now study

how to compute c-Typical-Topk vectors. We first formalize the problem. Let the score distribution

be {(s1, p1), (s2, p2), …, (sn, pn)} and each score si (1 ≤ i ≤ n) is associated with a top-k tuple vector

vi . The vector vi is the one with the highest probability of being top-k, among those having the same

total score. Our goal is to choose from the n vectors and output c of them such that their scores

satisfy the optimality requirement in Definition 4.1. We call si a typical score if its vector is chosen by

the algorithm.

Using ideas similar to [HT91], we can derive an efficient O(cn) time dynamic programming algorithm

to solve this combinatorial optimization problem. We use a two function recursive approach. Let Fa(j)

be the optimal objective value of the subproblem reduced to the set {sj, …, sn}, for j = 1, …, n,

where a is the maximum number of typical scores and let Ga(j) be the respective value for the same

subproblem, provided that sj is a typical score. We have, for j = 1, …, n, and a ≤ c,

1

1

1

() min () () (1)

() min () () (2)

k
a a

b k bj k n b j

k
a a

b b jj k n b j

F j p s s G k

G j p s s F k

≤ ≤
=

−
−

< ≤ +
=

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∑

∑

In equation (1), k iterates over the possible first typical score’s positions, and in (2), k is the first

position that is closest to the second typical score (i.e., sj to sk-1 are closest to the first typical score,

sj). The solution for our original problem is thus given by Fc(1). The boundary conditions are
 1() (), 1, ..., , (1) 0, 1 (3)

n
a

b b j
b j

G j p s s j n F n a
=

= − = + = ≥∑

We define, for j = 1, …, n,

1 1

() , () (4)
j j

b b b
b b

P j p PS j p s
= =

= =∑ ∑

 87

Then we can rewrite (1) and (2) as

1

1

() min (() (1)) () (1) () (5)

() min (1) (1) ((1) (1)) () (6)

a a
kj k n

a a
jj k n

F j P k P j s PS k PS j G k

G j PS k PS j P k P j s F k
≤ ≤

−

< ≤ +

⎡ ⎤= − − − + − +⎣ ⎦

⎡ ⎤= − − − − − − − +⎣ ⎦

With some preprocessing of (4) that takes O(n) time, we can first get all P(j) and PS(j) values. Then

the dynamic programming algorithm based on (5) and (6) will just take O(cn) time.

We show the algorithm in Figure 4.4. We first pre-compute all the P(j) and PS(j) values (lines 1 to 5).

Lines 6 to 13 set the boundary conditions according to Equation (3). Lines 14 to 35 iteratively apply

Equation (5) and (6) in turn to fill in the two dynamic programming tables (i.e., all F and G values).

Note that f and g values (lines 22 and 32) keep track of the k values that minimize the r.h.s. of

Equations (5) and (6). This is needed to trace back and output the c typical top-k tuple vectors (lines

36 to 41).

 88

Output: c tuple vectors that are c-Typical-Topk.
(1) P[0] = PS[0] = 0
(2) for j = 1 to n do
(3) P[j] = P[j-1] + pj
(4) PS[j] = PS[j-1] + pj*sj
(5) endfor
(6) for j = 1 to n do
(7) G[1][j] = 0
(8) for b = j to n do
(9) G[1][j] = G[1][j] + pb*(sb − sj)
(10) endfor endfor
(11) for a = 1 to c do
(12) F[a][n+1] = 0
(13) endfor
(14) a = 1
(15) for j = 1 to n do
(16) F[a][j] = MAX_DOUBLE
(17) f[a][j] = 0
(18) for k = j to n do
(19) tmp = (P[k] – P[j-1])*sk − PS[k] + PS[j-1]+G[a][k]
(20) if tmp < F[a][j] then
(21) F[a][j] = tmp
(22) f[a][j] = k
(23) endfor endfor endif
(24) for a = 2 to c do
(25) for j = 1 to n do
(26) G[a][j] = MAX_DOUBLE
(27) g[a][j] = 0
(28) for k = j+1 to n+1 do
(29) tmp = PS[k-1] − PS[j-1] − (P[k-1] − P[j-1])*sj + F[a-1][k]
(30) if tmp < G[a][j] then
(31) G[a][j] = tmp
(32) g[a][j] = k
(33) endfor endfor endif
(34) Do the for loop between line (15) and (23)
(35) endfor
(36) k = 1
(37) for a = c down to 1 do
(38) i = f[a][k]
(39) output vi
(40) k = g[a][i]
(41) endfor

Fig. 4.4: The algorithm to select c-Typical-Topk.

Input: A top-k score distribution (si , pi , vi), 1 ≤ i ≤ n, where si is a score, pi is
its probability, and vi is a top-k tuple vector that has score si and has the highest
probability; an integer c

 89

4.4 Empirical Study

In this section, we conducted a systematic empirical study addressing the following questions:

• What does the score distribution of top-k tuple vectors look like for real-world data? Furthermore,

where does the U-Topk vector stand in the distribution, and where do c-typical vectors stand in the

distribution?

• What is the performance of our main algorithm that computes the score distribution? How does it

compare with StateExpansion and k-Combo? What are the scan depth (i.e., the number of tuples n

that need to be read by our algorithms) values for various k values as determined by Theorem 4.2?

How does the proportion of mutually exclusive tuples affect performance? By trading off accuracy for

performance, how does the line coalescing strategy presented in Section 4.2.2 improve performance?

• What is the impact on score distribution and typicality of U-Topk as we alter the following system

parameters: (1) the correlation between scores and confidence, (2) the score range (variance), (3) the

score range within ME groups and the size of ME groups?

4.4.1 Setup and Datasets

We performed the study using the following two datasets:

• A real-world dataset collected by the CarTel project team [HB06]. It consists of measurement of

actual traffic delays on roads in the greater Boston area performed by the CarTel vehicular testbed

[LB08], a set of 28 taxis equipped with various sensors and a wireless network.

• A synthetic dataset generated using the R-statistical package [RPRJ]. With the synthetic dataset we

can control the various parameters of the data and study their impact on results.

We implemented all the algorithms presented in this paper and the U-Topk algorithm presented in

[SI07] to study the results. All the experiments were conducted on a 1.6GHz AMD Turion 64

machine with 1GB physical memory and a TOSHIBA MK8040GSX disk.

4.4.2 Results on the Real-world Dataset

In the first experiment, we examine the score distribution of top-k tuple vectors as computed by the

main algorithm presented in the paper using the CarTel data. We execute the following query over

some random areas taken from the whole dataset:

SELECT segment_id,

 speed_limit / (length / delay) AS congestion_score

FROM area

 90

ORDER BY congestion_score DESC

LIMIT k

Each tuple of the relation area is a measurement record of the actual travel delay of a road segment.

In this query, we define where the denominator is the actual travel speed and the numerator is the

speed limit of the road segment. Thus, the congestion score is an indication of the travel speed

degradation at a road segment (up to a constant factor: in the dataset, the speed_limit is in km/hour

while the length is in meters and delay is in seconds). A higher congestion score implies a more

congested road segment. The query selects the top-k most congested road segments in an area (say, a

city). City planners might want to first locate the k most congested roads and their total (or

equivalently, average) scores to give them an idea of how serious the situation is. For example, when

the total scores exceed some threshold, the city planners will spend some funding to fix the traffic

problem on the most congested road segments (e.g., by adjusting traffic light cycles, adding parallel

roads or widening existing ones). Each road segment contains one or more measurement record. In

general, each record is considered uncertain and the delay of a road segment is probabilistic [LB08]. If

a road segment contains multiple measurements, we bin the samples and collect the statistics of the

frequencies of the bins and obtain a discrete distribution, in which each bin is assigned a value that is

the average of the samples within the bin. Bins in a distribution are mutually exclusive so that at most

one of them may be selected in a possible world. Thus, a top-k tuple vector always contains distinct

road segments.

Figure 4.5 shows the distributions of the total congestion scores of top-k roads at three random areas

from the dataset. We use our main algorithm presented in Section 4.2.2 to 4.2.4 to compute the score

distributions and the algorithm in Section 4.3 to compute c-Typical-Topk. We also examine where the

resulting vector from the U-Topk algorithm [SI07] stands in the distribution. We show the U-Topk

result as a solid (red) arrow and the three dotted arrows are 3-Typical-Topk results. The height of an

arrow roughly indicates the probability of the corresponding k-tuple vector. We can see that in all

three subplots, the score of the U-Topk result is rather atypical. In Figure 4.5 (a) and (b) it is higher

than the three typical scores while in Figure 4.5 (c) it is lower. Although being the highest probability

vector, the U-Topk result still has a very small probability, and it may only be slightly bigger than

many other k-tuple vectors. By the definition of c-Typical-Topk, the actual top-k vector (drawn

according to its distribution) is more likely to have a score that is close to one of the c typical vectors.

Informed by the score distribution and typical vectors, the city planners will have a much more

accurate picture of how serious the top-k most congested road segments are.

 91

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Congestion scores of top-5

Pr
ob

ab
ili

ty

U-Topk3-Typical

0 50 100 150 200 250 300 350 400 450

0.03

0

0.005

0.01

0.015

0.02

0.025

Congestion scores of top-5

Pr
ob

ab
ilit

y

3-Typical U-Topk

 (a) (b)

150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Congestion scores of top-10

Pr
ob

ab
ili

ty

U-Topk 3-Typical

 (c)

10 20 30 40 50 60
50

100

150

200

250

k

sc
an

 d
ep

th
 (n

)

10 20 30 40 50 60
10-1

100

101

102

103

k

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Main algorithm
StateExpansion
k-Combo

0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

ME tuple portion

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

100 200 300 400 500
0

1

2

3

4

Maximum number of lines

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Fig. 4.5: Congestion score distribution of top-k
tuple vectors in three random areas and the results
of U-Topk and 3-Typicals.

Fig. 4.6: k vs. scan depth (n). Fig. 4.7: k vs. execution time. Fig. 4.8: ME portion vs. time. Fig. 4.9: # of lines vs. time.

4.4.3 Performance on the Real-world Dataset

In the second experiment, we examine the performance of our algorithms. We run the same query as

shown in Section 4.4.2, but try different system parameters. Since the performance of both our main

algorithm and k-Combo relies on the scan depth n as determined by Theorem 4.2, it is interesting to

study what are the actual values of n for various k’s with the real-world dataset. We set pτ to be 0.001.

Figure 4.6 shows the result that n grows roughly linearly with k as is expected from the theorem.

We next compare the performance of our main algorithm that computes the score distribution with

the two simple algorithms presented in Section 4.2.1, namely StateExpansion and k-Combo. For all

three algorithms, we limit the number of lines in the output distribution to be more than 100. We try

 92

different k values in the query and compare the execution times of the three algorithms, as shown in

Figure 4.7. We can see that both State-Expansion and k-Combo have an exponential growth on the

running time as k increases, with k-Combo being slightly better. On the other hand, our main

algorithm which uses dynamic programming techniques is significantly more efficient.

Next we examine the performance of our main algorithm as we vary the portion of mutually exclusive

tuples by first selecting a subset of road segment records and run our query against it. The result is

shown in Figure 4.8. As expected, the computation cost increases as we increase the portion of tuples

that are mutually exclusive with other tuples, as discussed earlier.

Finally, recall that in Section 4.2.2 we devised a line coalescing strategy in order to trade off accuracy

for performance. The parameter here is the maximum number of lines allowed in the distributions.

We vary this parameter from 50 up to 500 and the result is shown in Figure 4.9. We can see that the

runtime varies linearly as the number of lines grows. The reason is that as the dynamic programming

algorithm progresses bottom-up, very soon line coalescing takes effect, and the amount of

computation thereafter is proportional to the number of lines in the distributions.

4.4.4 Results on the Synthetic Dataset

In this section, we use synthetic datasets because they give us control over various characteristics of

the data. We further examine the impact of different kinds of data on score distribution and on how

typical U-Topk results are. We first study different correlations between score and probability of

tuples. We generate scores and probabilities as bivariate normal distributions with different correlation

coefficients for the cases of independence (ρ = 0), positive correlation (we use ρ = 0.8), and negative

correlation (we use ρ = −0.8). We show the top-10 results for these three cases in Figure 13 (a), (b),

and (c) respectively. We can see that compared to the independence case (Figure a), a positive

correlation between scores and probabilities shifts the score distribution of top-k vectors to the right

(Figure b) while a negative correlation shifts it to the left (Figure c). This is because if leading tuples

(with higher scores) are more likely to exist, they are also more likely to be in top-k, thus making the

total scores of top-k tuples higher. Moreover, we also observe here that in all three cases, the U-Topk

result is atypical.

We next study how the results change when we alter the range (i.e., variance) of scores in the table. In

the previous experiment in Figure 4.10, we use a bivariate normal distribution with the standard

deviation of the scores being 60. With other parameters being the same as in Figure 4.10a (i.e., ρ = 0),

 93

we only increase the standard deviation of the scores σ to be 100. The result is shown in Figure 4.11.

It is clear that the distribution of the total scores of top-k vectors now covers a wider range, with the

span of the significant portion of the distribution increased from around 350 (Figure 4.10a) to around

1000, making the distance between U-Topk score and typical scores farther apart.

800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Scores of top-k vectors

P
ro

ba
bi

lit
y

800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12

Scores of top-k vectors

P
ro

ba
bi

lit
y

800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

Scores of top-k vectors

P
ro

ba
bi

lit
y

U-Topk3-Typical U-Topk3-Typical U-Topk3-Typical

 (a) (b) (c)

Figure 4.10. Score distribution of top-10, U-Topk, and 3-Typical for different score & probability correlations: ρ=0 (a), 0.8

(b), -0.8(c).

800 1000 1200 1400 1600 1800 2000 2200
0

0.02

0.04

0.06

0.08

0.1

0.12

Scores of top-k vectors

P
ro

ba
bi

lit
y

1000 1100 1200 1300 1400 1500 1600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Scores of top-k vectors

P
ro

ba
bi

lit
y

0 200 400 600 800 1000 1200 1400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Scores of top-k vectors

P
ro

ba
bi

lit
y

U-Topk3-Typical U-Topk3-Typical U-Topk 3-Typical

 Figure 4.11. ρ=0, but increase σ to 100. Figure 4.12. Increasing gaps between ME tuples. Figure 4.13. Increasing sizes of ME groups

Finally, we examine the impact on the results as we vary the mutual exclusion (ME) group settings.

With everything else being the same as in Figure 4.10a (ρ=0, σ=60), we only change the score gaps

between two ME tuples. Without changing any scores in the table, we only change the assignment of

the tuples to ME groups: we change the distance between two neighboring tuples in an ME group

from d1 tuples to d2 tuples, where d1 is a random number from 1 to 8 and d2 is a random number

from 1 to 40. The result is shown in Figure 4.12. We observe that there is no noticeable change from

Figure 4.10a. However, when we increase the size of ME groups from s1 to s2 where s1 is a random

number of either 2 or 3, and s2 is a random number from 2 to 10, there are some obvious changes in

the results, as shown in Figure 4.13. First of all, we observe that the score distribution of top-k

vectors covers a much wider range but with smaller values. The bulk of the distribution is at [200,

1350] compared to the original range of [1150, 1550] (Figure 4.10a), almost three times in width. The

 94

reason is that because we can only take at most one tuple from each ME group to include in top-k, a

larger ME group implies that we end up scanning more tuples and lower scored tuples have a higher

chance to be in top-k, which in effect increases the variance of the scores of tuples that contribute to

the distribution. Secondly we observe that because each ME group now contains a lot more tuples

with small probabilities (they must add up to no more than 1), we essentially have an exponential

growth in possible top-k vectors, all have small probabilities. This makes U-Topk (which seeks the

highest probability) more unstable or atypical. Figure 4.13 shows that in this case the U-Topk result

shifts to the lower end of the score distribution.

 95

C h a p t e r 5

PREDICTIVE QUERIES: QUERYING UNCERTAIN DATA IN THE
FUTURE

In this chapter, we describe a skip-list approach to organize and possibly pre-build models for

answering predictive queries that ask for uncertain data in the future.

5.1 Elements of Our Approach

5.1.1 I/O conscious skip-lists

We adopt the skip list data structure in our context, and make it I/O conscious. As stated earlier, time

series databases can be too large to fit in memory. For example, 20 years of per second stock quotes

have about 630M data points and reach gigabytes. Thus, for scalability, we need to consider the

efficiency of query processing when storing a skip list on disk.

The original skip list structure requires a large number of pointers, which is detrimental for I/O

performance. In model building for prediction queries, we use a contiguous sequence of data at some

level of the skip list. A search operation, as described, also accesses a contiguous sequence of data at

each level. Thus, we replicate key values at each level and store them compactly and contiguously in

disk pages, instead of using pointers (one for each level) on only one copy of keys as in the original

skip list. Time series data associated with the keys are stored together on pages. For example, in our

stock example, time is the key and the (time, stock price) pair is stored in the skip list. Clearly, for the

search to proceed, we need to store, for each key value, a pointer to its copy in the level below. Figure

5.1 illustrates this.

… … …

…

level i+1

level i

… …

Fig. 5.1: Illustrating the I/O conscious skip list structure.

 96

We can handle overflow and underflow of pages when there are updates using “open” and “closed”

pages, in the same manner as in [AA05, AK04]. We omit the details due to space limitations. The

basic idea is to maintain an invariant that requires every page to be filled within a percentage range.

Time series data updates are mostly “appends” [MW98], which makes merging and splitting of pages

rare. For append only data sets, we simply keep adding pages at each level, and possibly removing

pages at the other end of a level of skip list when the oldest data is no longer relevant.

Note that unlike a B+ tree, whose fan-out is fixed by the database page size, the parameter p of a skip

list is flexible, which we need for different sample data point densities. Furthermore, key values at

each level of a skip list are chained together, unlike a B+ tree. We use these features of a skip list to

efficiently retrieve samples with some needed probability from a level of the skip list to build

forecasting models.

5.1.2 Prediction models

As we mentioned, searching and interpolation with a skip list are straightforward. For searching, a

skip-list only helps predicates over the history based on its sort key (e.g., time=10). If the desired data

points are missing, we have models for interpolation. Searching is the basic functionality provided by

a skip list; interpolation occurs only at the base level of the skip list and is a well-studied problem. We

refer readers to [N91] for some of this work in databases. Therefore, from now on, we only discuss

prediction using the skip list approach.

As we discussed, for a given prediction interval, we pick a level of the skip list to build a model. We

shall present the method of how to pick a level and how many data points in that level to use later.

Given that, since we always use data up to the most recent for answering prediction queries, we use a

suffix of some level in building a model. Thus, a given level of a skip list can have 0 or more

associated models, each of which is built with a different suffix sequence.

5.1.3 Determining a Proper History Length

In this section, we first study the issue of how to determine a proper history length h(f) to use for a

given forecast interval f. The basic idea is that we use a small number of most recent data points as

the target training set, and “go back in time”, starting from the earliest point in the training set, for an

interval f (denoting that point in time as T-f). We then determine a proper history length h’ going

further back (i.e., from T-f to T-f-h’) from which we can predict the target training set data well. We

 97

determine h’ using statistical tests of hypotheses. Figure 5.2 illustrates this. The algorithm is shown in

the text box below.

For multiple regressions, F = si-12 / si2 has an F distribution with ni-1-ki-1-1 numerator degrees of

freedom and ni-ki-1 denominator degrees of freedom [MS94]. Thus, each iteration of the loop

conducts a statistical test of hypotheses with H0 being “use hi-1” and Ha being “use hi”. If Ha is true,

then F is big. The rejection region is F > Fα. The stopping condition (line 8) is to stop the loop at a

point in the final downward slope of the F distribution. Intuitively, the algorithm iteratively increases

the history length and runs statistical tests of hypotheses, until it determines that any further increase

in history length “is not worth it”.

An implicit assumption here, of course, is that for a given forecast interval f, if we “went back” in

time for a period of f, and could use some duration of history data points relative to that time to

“predict” the “present” time data points (thus the forecast interval is also f), then we can use this data

to predict accurately the “real interval f into the future” (illustrated in Figure 5.2).

(3) Set h0 = c0f. Use standard techniques [14] to build an optimal multiple regression model using data
points in [T-f - h0, T-f] and compute its mean square error s0

2 = SSE0/(n0-k0-1), where SSE0 is the sum of
squared error, n0 is the number of data points used, and k0 is the number of parameters in the model.
Let i = 0.

(4) Do

(5) i = i + 1; hi = c1hi-1.
(6) Use standard techniques to build an optimal multiple regression model using data points in [T-f – hi,

T-f] and compute its mean square error si
2 = SSEi /(ni-ki-1).

(7) F = si-1
2 / si

2.
(8) While F > Fα.

(9) Output hi-1 + f + |T|, where |T| is the time length of T.

Input: A forecast interval f of a query.
Output: A proper history length h(f) to use for answering the query.
(1) Set the most recent ct data points as the target training set T, whose values we use other data points to

“forecast” (to be able to compare the “forecast” values with the actual ones).
(2) Let the smallest time value in T be T0. Let T-f = T0 – f.

 98

QueryNow

Time

Stock

5.1.4 Determining the Number of Data Points

Note that in the above algorithm, we use all available data points within a trial history length to build a

multiple regression model. We have shown that this is often too expensive for building and

maintaining models, and the excessive granularity is actually unnecessary and wasted. Thus, a natural

approach is to sample and use a subset of all the available data points. Studies in the statistics and

forecasting literature are concerned with the minimum number of data point requirement for

forecasting (e.g., see [HK07]), which is just a lower bound and using it may still give bad prediction

results.

Therefore, the basic problem is: given f and h(f) (determined by the above algorithm), how do we

determine the number of random points to use within h(f)? The idea is similar to the previously

presented algorithm to determine the proper history length; thus we omit the details. Roughly, we

iteratively increase the number of random points used in h(f) for building a trial model, and again we

use statistical testing of hypotheses to determine a good choice of the number, within a reasonable

computational cost constraint.

5.2 Selection of Model Set to Build and Maintain

5.2.1 Basic Working Model

We organize the time series in question into a skip list. The skip list has a parameter p, which is the

probability that an element in a lower level is also present in the next higher level. We choose a set of

models to pre-build at various levels of the skip list (i.e., Pre-built Models, or PM’s). Query processing

picks one or more closest PM’s to use, or could even build a model on the fly. The interesting aspects

between PM’s and skip list levels are:

fHistory 1History 2

Training seth1h2

T-f

Fig. 5.2: Illustrating the determination of a proper history length.

 99

• A PM uses a suffix sequence of the data points of some level.

• A level can have 0 or more PM’s.

We also maintain the set of PM’s we have chosen to pre-build when new data comes in or when

updates happen. More specifically, a model is rebuilt whenever both θ (a threshold parameter) new

data points have entered the model and the model is used by some query. Thus, it is a lazy

maintenance strategy. There is a constraint on the total model rebuilding cost as described below. A

model update involves using the same number of the most recent data points at the level of that

model in the skip-list to rebuild the regression model. In addition, after a sufficient number of new

data points enter the model, we choose the history length and the number of data points again.

5.2.2 Quantifying Model Maintenance Cost

We next quantify the maintenance cost of a set of models. We assume a set of models in a skip list

that we have chosen to build and maintain. New tuples arrive at some rate.

Theorem 5.1. We organize time series data into a skip list with parameters p, θ and the lazy maintenance strategy
as described earlier. New tuples come in at a rate of r (tuples/sec), and we consider the expected incoming rate for upper
levels of the skip list. Let the set of models be M. For a model m M∈ , let l(m) be the skip list level at which the model
is located and q(m) be the reference rate (times/sec) of the model by queries. Let CR denote the canonical rebuilding cost
of a model. Then with the tuple incoming rate, the maintenance cost rate of M is

()

1
1max ,
()

R
m M

l m

C

q m r p
θ∈

⋅
⎛ ⎞
⎜ ⎟⋅⎝ ⎠

∑
.

Proof: For a model m located at level l(m) of the skip list, the arrival rate of new tuples for that level is
. The lazy maintenance strategy implies that a model is rebuilt either when every θ new data points

come in, or when the model is used by some query, whichever happens later. Thus, a model is rebuilt
every

()l mr p⋅

()

1max ,
() l mq m r p

θ⎛
⎜ ⎟⋅⎝ ⎠

⎞ seconds. Then it is clear that the overall maintenance cost rate is

()

1
1max ,
()

R
m M

C
∈

⋅ ∑
l mq m r p

θ⎛ ⎞
⎜ ⎟⋅⎝ ⎠

. �

Note that the optimal history length and the number of data points to use for a given prediction

interval length may change as time progresses. We consider this as part of the model rebuilding (i.e.,

an ingredient of CR in Theorem 5.1). A system can choose these parameters again after a certain

number of new data points enter the model.

5.2.3 Choosing a Set of Models to Pre-build

 100

We are only concerned with the set of forecast intervals of a query workload. Thus, we model the

query workload as a discrete PMF w on forecast intervals (1)i
iFf i n
n

= ≤ ≤
, with their associated

probabilities , respectively, where F is the maximal forecast interval. (1)ip i n≤ ≤

The optimization problem is that given a query workload, subject to a constraint on maximal

maintenance cost, we want to find a set of intervals for which we build models so that the expected

model distance for a random query in the workload is minimized. Note that different models use

different levels of the skip list and can have different maintenance cost (Theorem 5.1). This problem

is similar in spirit to the knapsack problem (but with the extra complication that the value of an item is

correlated with what items are being selected). Thus, an efficient optimal algorithm is unknown.

Because randomized algorithms are known for their simplicity and efficiency [MU05], we devise such

an algorithm, to provide a practical solution and to make theoretical analysis easier. In fact, because of

its efficiency, one can repeat the algorithm several times to choose the result with the smallest

expected model distance. Here is the algorithm.

(3) Obtain a random sample of forecast interval f from query workload PMF w, using a standard
method to sample from a discrete distribution.

(4) M = M ∪ {f}.
(5) From f, determine the proper history length h and the number of data points n to use within the

history length using algorithms in Section 4. From h and n, we get the density of the data points.
Thus, a model will be built using the skip list level that has the closest density.

(6) Incrementally compute the maintenance cost rate C of the set M using Theorem 1.
(7) Until C > CM or M contains all intervals.

(8) If (C > CM) then M = M – {f}.
(9) Output M.

Input: a query workload w as a discrete PMF; a constraint on maximal model maintenance cost rate CM.
Output: A set of forecast intervals for which we build models.
(1) Let M = Ф.
(2) Repeat

The algorithm repeatedly samples a new forecast interval f from the workload PMF w using

established weighted sampling methods from a discrete PMF. It continues this process until the

maintenance cost rate of the models exceeds the constraint.

 101

Analogous to the database design problem for materialized views, this kind of pre-built structure

often requires knowledge of the statistics of future requests. The statistics are collected through

profiling at the database server, etc. Although PM’s can be robust against certain changes of the

workload, a rebuild is unavoidable when dramatic changes occur. As an input of ChoosePMSet,

distribution w can reflect how much knowledge of the workload is assumed. Less knowledge implies

a “flatter” distribution while more knowledge renders a more specific distribution.

5.2.4 Analysis of ChoosePMSet algorithm

We next analyze “how well” the workload PMF w is satisfied after running the algorithm ChoosePMSet

to produce a set of models to build and maintain within the cost budget. To be precise, we need the

following definition.

Definition 5.1. Let the output M of ChoosePMSet have m forecast interval points out of a total of n points

(1)i
iFf i n
n

= ≤ ≤
 where i is called the index of a point. Then for an arbitrary query point (1)i

iFf i n
n

= ≤ ≤
 define its

model distance as the index distance between fi and the closest point in M. �

For example, for query point f95, if the closest point in M is f99, then the model distance of f95 is 99 –

95 = 4.

Theorem 5.2. Let m and n be as described in Definition 5.1. Then the expected model distance of a query point in

workload w is 1

1 1
(1)

n n i d
m

i j
i d j i d

p p
− +

= = = −

−∑∑ ∑

Proof. For a query point with index i, define random variable Di as its model distance. Then the

probability that none of the m independent samples falls in a radius d of the query point i is,

Pr[] 1 (1)
m

i d

i j
j i d

D d p
+

= −

⎛ ⎞
≥ = −⎜ ⎟

⎝ ⎠
∑

As Di is a discrete random variable with non-negative values, we have (intuitively, for d from 1 upwards,

cumulatively, Pr[Di ≥ d] is the probability that we add 1 to the expectation [MU05]),
1

1 1
() Pr[] Pr[] (

n

i i i
d d

E D D d D d
∞ −

= =

= ≥ = ≥∑ ∑ 2)

From (1) and (2), we have 1

1
() 1

m
n i d

i j
d j i d

E D p
− +

= = −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑

Define random variable D as a random query point (in w)’s model distance. Thus,

 102

1

1 1 1 1
() () () (1)

n n n n i d
m

i i i i i j
i i i d j i d

E D E p D p E D p p
− +

= = = = = −

= = = −∑ ∑ ∑∑ ∑

where the second equality follows from the linearity of expectation. �

As we shall show in the experiments, we can write a simple program to compute the expected model

distance for a specific instance of the problem.

5.3 Query Processing

In this section, we discuss query processing techniques with a PM set. In general, for a query on

future time series data, we pick the closet pre-built model to use. This is clearly straightforward for

point queries. We discuss interesting query types, namely, range query, aggregations, and joins.

5.3.1 Range Queries and Aggregations

We discuss aggregation queries (in particular, SUM/AVG and MIN/MAX) with a range predicate, as

that would include the treatment of both range queries and aggregations.

5.3.1.1 SUM/AVG with a Range Predicate

Let us start with an example query:

Q1: SELECT AVG(price) FROM ibm_ticks WHERE time ≥ now + 10 days AND time ≤ now + 30 days

A trivial way to evaluate such a query is to “materialize” all future data points in the range of the

predicate, and then compute the aggregate in the brute-force way. However, it turns out that there are

much more efficient ways. For that, we first demonstrate an axiom called the monotonicity assumption.

Monotonicity Assumption. When the forecast interval f increases, we can assume that the optimal history length

h(f) also increases or stays the same, and the data point density of the model used either decreases or stays the same. �

Intuitively, the monotonicity assumption makes sense because to predict a longer interval, one wants

to use a longer history length, with a sparser granularity of the data points. Since the data point density

drops when the skip-list level increases, we have the following corollary.

Corollary 5.1. For a forecast interval f, let m(f) denote the pre-built model we use to answer f, and accordingly, l(m(f))

denotes the skip-list level of the model. Then, when f increases, l(m(f)) either also increases or stays the same. �

 103

As the prediction interval increases, the level (in a skip list) of the model used must either go up or

stay the same (in which case the number of data points used does not drop). Thus, there is a total

order of all the PM’s, consistent with the order of query intervals.

From the corollary, we can see that a range query is answered by a set of contiguous models (in terms of

their skip-list levels), each answering a sub-range of the predicate. We shall verify the validity of the

monotonicity assumption empirically.

Theorem 5.3. The result of a basic SUM query with a range predicate for a future time interval [t0, tk] as in Q1

can be computed as
1 2

0 1 1

1 2
1 1

() () ... ()
k

k

tt t

k
t t t t t t
f t f t f

−= = + = +

+ + +∑ ∑ ∑ t

where
0

() (), 1
id

j
i ij

j
f t c t i

=

= ⋅ ≤ ≤∑ k are a set of contiguous polynomial regression models in the skip list. �

As the sum of powers of integers is a well-studied problem in mathematics [BB43], we can compute

the SUM/AVG with time complexity O(kd), where k is the number of models spanned by the range

predicate, and d is the maximal degree of any of those models. Since typically both k and d are small

constants, we achieve constant time complexity. This is in contrast to the naive method of

materializing every future data points, which requires a linear processing cost.

Example 5.1. Suppose a range predicate like the one in Q1 spans three models and the sum can be represented by the

following:
15 22 30

2 3 2 2

10 16 23
(3 7 10) (0.1 11 9) (8 15 2)

t t t
t t t t t t t

= = =

− + + − + − + + − +∑ ∑ ∑

It is known that

2
1 2

1 1
2 2

3
3

1

(1) (1)(2 1)() , () ,
2 6
(1)()

4

n n

i i

n

i

n n n n ns n i s n i

n ns n i

= =

=

+ +
= = = =

+
= =

∑ ∑

∑

+

Thus, the sum can be rewritten as

2 2 1 1 3 3

2 2 1 1 2 2

1 1

3((15) (9)) 7((15) (9)) 60 0.1((22) (15))
11((22) (15)) ((22) (15)) 63 8((30) (22))
15((30) (22)) 16

s s s s s s
s s s s s s
s s

− − − + − −
+ − − − + + −
− − +

and we obtain the result for sum. �

5.3.1.2 MIN/MAX with a Range Predicate

 104

We now look at the MIN/MAX aggregations in a range of a future time interval. Consider this

example query:

Q2: SELECT MAX(price), MIN(price) FROM ibm_ticks WHERE time ≥ now + 10 days AND time ≤ now

+ 30 days

To answer a MAX aggregation over a future time range, consider the simple case that the time range

is covered by only one model. Let f be the polynomial function of the multi-regression model. For a

continuous function, to get the maximum [S01], we want to find a time value t, such that

2

2

0 (

0 (

d f
dt
d f
dt

=

<

1)

2)

Most functional relationships in nature seem to be smooth (except for random errors) – that is, they

are not subject to irregular reversals in direction. So the degree of the polynomial is generally low

[MS94], most often 1 to 3, rarely greater than 3. In fact, a high degree often indicates over-fitting and

is not a good model. Skip-lists reduce the data points and avoid over-fitting. Thus, in practice,

computing roots for (1) and (2) is easy and there are not many solutions.

However, we actually have a set of discrete time values and a peak value we find from solving (1) and

(2) may not fall in the set. In that case, we call the two closest time values in the set discrete peaks. For

example, suppose a model spans the range [10, 20], but one of the solutions from (1) and (2) is t =

16.3, then t = 16 and t = 17 are the “discrete peaks”. We also note that the time range of the query

can span multiple models. The following theorem determines the result for a MAX or MIN query.

Theorem 5.4. Let M = {f0(·), f1(·),…, fk-1(·)} be the set of k contiguous regression models spanned by the range

predicate of a MAX query. Let the range of the predicate be [t0+1, tk] and each model fi(·) covers the sub-range of

[ti+1, ti+1]. We call t0+1, t1, t1+1, t2, t2+1,…, tk the borders of M. Then for the MAX query, we only need to

examine the discrete peaks (if any) of each of the k models and the borders of M. A MIN query can be answered

analogously by changing the inequality in (2) to “>”.

Proof. Suppose that the MAX value were not a discrete peak or a border of M. Let the time of the

MAX value be t and let it be in model f. It must be true that both t – 1 and t + 1 are also in f, since t is

not a border. Because f is a continuous function and t is not a discrete peak, it must be true that either

f(t – 1) ≥ f(t) or f(t + 1) ≥ f(t). Thus, we could use either t – 1 or t + 1 as the MAX. The same argument

repeats until we reach either a border or a discrete peak. �

 105

5.3.2 Join Queries

We now look at JOIN queries with JOIN predicates on values in a future time range. Consider this

query:

Q3: SELECT ibm.day, ibm.stock, sun.day, sun.stock FROM ibm, sun WHERE ibm.day BETWEEN

(now, now+30days) AND sun.day BETWEEN (now, now+30days) AND ibm.stock > sun.stock

A naive way to answer a JOIN query of a future time range is to generate all future data points in the

range for both relations, and then determine a JOIN strategy using a classical optimizer. However, a

much more efficient way is to do a “model JOIN”.

Now

f11

f12

f21

f22

f23

Fig. 5.3: Illustrating the “model JOIN”.

As shown in Figure 5.3, for each model of one relation in the query range (f11 and f12 of ibm), we

solve an inequality or equality (depending on the JOIN predicate). In this example, we solve f11(t) >

v, i.e., say, 3t2 – 6t + 5 – v > 0. Likewise, we solve f12(t) > v, etc. Thus, for each value in the query

range of the second relation, we use the solution of the inequalities/equalities (i.e., f11(t) > v and

f12(t) > v, etc.) to get the matching tuples in the first relation. Clearly, this is just a linear cost overall,

and is much more efficient than materializing the data points.

5.4 Empirical Study

5.4.1 Setup and Datasets

We implemented the skip list approach, the algorithms and query processing techniques presented in

this paper. The experiments were conducted on a 1.6GHz AMD Turion 64 machine with 1GB

physical memory and a TOSHIBA MK8040GSX disk. The implementation is in Java. We performed

the experiments on two sets of stock price data (from Commodity Systems, Inc.).

• IBM’s stock price history data from January 3rd, 1966 to October 10th, 2007. This per second

tick dataset is over 1 GB.

• McDonald’s stock price history data from January 2nd, 1970 to October 10th, 2007. This

dataset also has almost 1 GB of tick data.

 106

The data is already normalized through the adjusted price. In order to verify the accuracy of

predictions of different length of future time intervals, we go back one year in history and pretend it is

now October 10th, 2006. We use data up to this date to build models and predict stock ticks at

different “future” time intervals relative to October 10th 2006, for up to one year. Then we can use

the actual stock prices from October 10th 2006 to the same day in 2007 to verify the accuracy of

predictions using various methods.

5.4.2 Effectiveness of the Skip-list Approach

In the first experiment, we examine the effectiveness of the skip list approach for answering

prediction queries.

(a) (b)

5m 30m 4h 1d 7d 1mo6mo 1y
0

50

100

150

200

250

300

350

400

450

500

Future time interval

IB
M

 s
to

ck
 p

ric
e

5m 30m 4h 1d 7d 1mo 6mo 1y
0

20

40

60

80

100

120

140

160

Future time interval

M
cD

on
al

ds
 s

to
ck

 p
ric

e

actual value
predicted w ith skip-list
predicted w ithout skip list

actual value
predicted w ith skip-list
predicted w ithout skip-list

Fig. 5.4: Comparison of actual value and prediction
results with and without the skip list approach for
different prediction intervals.

5 min 30 min 4 hrs 1 day 7 days 1 mon 6 mon 1 year
0

0.5

1

1.5

2

2.5
x 10

4

Future time interval

E
xe

cu
tio

n
tim

e
fo

r p
re

di
ct

io
n

(m
ill

is
ec

on
ds

)

prediction with skip list
prediction without skip list

Fig. 5.5: Comparison of query execution time with
and without the skip list approach.

We issue queries of the form “SELECT stock_price FROM IBM_ticks WHERE time = NOW + ?”.

Figure 5.4 shows the prediction accuracy with and without the skip list approach for seven prediction

intervals. The figure shows the results for both datasets. Without using the skip list (the third bar), we

directly build models on the original dataset and apply a limit (500,000) on the maximum number of

data points that can be used, which we will explain next. Figure 5.5 compares the query execution

time with and without the skip list approach.

 107

From Figure 5.4, we can see that as prediction interval increases, the quality of prediction without the

skip list approach drops rapidly. The reason is as follows. We showed that the “proper” history length

increases with the prediction interval. Because a skip-list supports efficient retrieval of samples at

different granularities, model building and, thus, model maintenance as well, only reads the necessary

data as opposed to reading all the raw data within the same history length. Furthermore, accessing a

level in the skip-list is a sequential scan requiring no additional seeks. Figure 5.5 shows that even for a

short prediction interval of 4 hours, the query execution time without the skip list is already a few

times longer since we are building models on the fly. We apply a limit (500,000) on the maximum

number of data points used because (1) when beyond this limit, the model building takes so much

memory and CPU that it runs too slowly on our test machine; and (2) at this limit it is already more

than 300 times slower than using a skip list. Figure 5.5 indicates that when the prediction interval is

one month or longer we already reach this limit. Figure 5.4 also shows when the query interval is one

year, the history length available (subject to the limit on maximum number of data points) without

using skip lists is too short to make a meaningful prediction.

5.4.3 Effectiveness of the PM’s

In the second experiment, we examine the effectiveness of answering prediction queries using a set of

PM’s chosen by the ChoosePMSet algorithm subject to different levels of maintenance cost

constraints. Typically, we assume that through profiling at the database server, for example, we can

collect some statistics on the query workload, a PMF over a set of query intervals. In the experiment,

we pick 27 intervals in the one-year window, ranging from 5 minutes to 1 year. We test with an

arbitrary PMF, shown in Figure 5.6. Again we look at accuracy and speed.

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Future time interval

P
ro

ba
bi

lit
y

2 4 6 8 10 12 14 16 18 20 22 24 26
0

10

20

30

40

50

60

Future time interval

M
cD

on
al

d'
s

st
oc

k
pr

ic
e

actual v alue
predicted on-the-f ly
using 20 models
using 10 models
using 4 models

Fig. 5.6: Probability mass function (PMF) of future
time intervals as the workload.

Fig. 5.7: Prediction accuracy using different
number of PM’s.

 108

fly 20m 10m 4m
0

0.02

0.04

0.06

0.08

0.1

0.12

Computation method

E
xp

ec
te

d
re

la
tiv

e
er

ro
r

20m 10m 4m
0

0.5

1

1.5

2

2.5

Computation method
E

xp
ec

te
d

m
od

el
 d

is
ta

nc
e

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

Future time interval

lo
g

(ru
nt

im
e

in
 m

ill
is

ec
on

ds
)

Build on-the-fly
using PMs

 (a) (b)

Fig. 5.8: Expected prediction error (a) and
expected model distance metric computed using
Theorem 2 (b) of using different number of PM’s.

Fig. 5.9: Query execution time comparison
between building models on-the-fly and using
PM’s.

5m 10m15m 1h 2h 3h 1d 2d 3d 20d 21d 1mo2mo3mo6mo7mo8mo
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Future time interval

S
ki

p
lis

t l
ev

el
 to

 u
se

 1 month 2 months 4 months 6 months 8 months 10 months 1 year
0

50

100

150

Future time interval

A
ve

ra
ge

 IB
M

 s
to

ck
 p

ric
e

actual average value
using 10 models - run 1
using 10 models - run 2
using 10 models - run 3
using 4 models - run 1
using 4 models - run 2
using 4 models - run 3

Fig. 5.10: Monotonicity of skip list level used for
different query intervals.

Fig. 5.11: Comparison of the prediction accuracy
of average stock prices in different future time
intervals under different number of PM’s.

Figure 5.7, 5.8 and 5.9 show the results for the McDonald’s dataset (Due to space constraints, we

omit the figures for the IBM dataset in which we see similar trends). Each group of Figure 5.7 has five

bars. They are the actual value, predicted on-the-fly, using the first 20 models selected by the

ChoosePMSet algorithm, using the first 10 models, and using the first 4 models, respectively. For

clarity, we only show the even number intervals (the other half shows similar information). Using 20

models is about as good as building models on the fly. Using 10 models is in fact also very close to

this “best-we-can-do” result, and using 4 models is sometimes quite inaccurate compared to others.

Figure 5.8(a) summarizes the expected relative error of Figure 5.7 (but all 27 intervals) according to

the workload PMF. The first bar is for building models on-the-fly to answer a query, and the other

three bars are for answering with 20 PM’s, 10 PM’s and 4 PM’s, respectively. We can see that the

error of using 20 PM’s is about the same as building models on the fly. Using 10 PM’s is nearly as

good, but using 4 PM’s has significantly more error. Figure 5.8(b) simply plots the result from our

theoretical analysis in Theorem 5.2 of the expected model distance of an incoming query. The model

distance with 10 PM’s is close to 20 PM’s, while using 4 PM’s has significantly bigger model distance.

This is consistent with the result of Figure 5.8(a) on prediction errors.

 109

Figure 5.9 compares the execution time of answering queries (for different intervals) by building

models on the fly versus using PM’s. Since the running time of using PM’s, regardless of how many of

them, is about the same, we only show one of them. Here we observe that the query processing time

using PM’s is negligible compared to building models on-the-fly. For both bars to be visible, we use

log base 2 for the y axis. From the running time of building models on-the-fly, we can also observe

that there are five groups (intervals 1 to 3, 4 to 11, 12 to 17, 18 to 23, and 24 to 27), within each of

which the on-the-fly running time monotonically goes up (or stays about the same). Each of the five

groups corresponds to the usage of a different level of the skip list, and within each level, as the query

interval goes up, the history length, hence the number of data points used also goes up, which causes

model building time to go up. This partially verifies the monotonicity assumption. We further verify

the skip list level part of the monotonicity assumption later.

5.4.4 Monotonicity Assumption and Query Processing

In the third experiment, we verify the monotonicity assumption we made for query processing, and

examine the prediction accuracy, as well as the stability (variance) of result, of an aggregation query

using 10 PM’s and 4 PM’s.

Figure 5.10 shows that using our statistical testing of hypotheses algorithms for determining a proper

history length and number of data points to use, we determine a skip list level to use which is

monotonically increasing as interval goes up. We can narrow down the exact transition intervals that

make a jump of the skip list level.

We next look at the processing result of an average query “SELECT AVG(stock_price) FROM

IBM_ticks WHERE time BETWEEN NOW AND NOW + ?” using 10 and 4 PM’s. Figure 5.11

shows the result for the IBM dataset. Due to space constraints, we omit the figure for the

McDonald’s dataset, as it leads us to the same conclusions. We have three runs using 10 PM’s and

three runs using 4 PM’s. In each run, we start from ChoosePMSet, which is a randomized algorithm.

Thus the result of query processing is also a random variable. The first bar in each group of Figure

5.11 shows the actual average value, and the next three bars are the results of three runs of using 10

PM’s, and the last three bars are those of using 4PM’s. We can see that using 10 PM’s predicts the

aggregation result pretty well, and the results of the three runs are close to each other, which indicates

that the query processing result from 10 models is quite stable. On the other hand, using 4PM’s, the

result is about the same as 10 PM’s in expectation. The 4 PM case, though, has a much larger

variance, and hence the prediction result can be far off.

 110

C h a p t e r 6

RELATED WORK

6.1 Management of Uncertain Data

There is a broad range of related work on probabilistic databases, but as far as we know, none is built

on top of a DBMS specialized for scientific/intelligence applications, or on a multi-dimensional array

system. Perhaps the closest are those addressing imprecise and uncertain data in sensor networks

[CK03]. In their work, the authors model a value distribution as a continuous PDF. This approach

incurs a high cost and complexity when one has to deal with a huge amount of data (typical in

scientific applications). Frequently one must resort to approximation and this has not been discussed

before. Other work that studies value uncertainty and uses discrete PDF (like us) includes [BG92] and

[BD05]. They both use discrete PDF in the same form as our heuristic algorithms. [BG92] only

studies the result of conventional database operators, but not arbitrary mathematical operators in

scientific applications. And it does not discuss the cost with a large amount of data. [BD05]

specifically studies representing and querying ambiguous data in the OLAP setting where the focus is

aggregation.

Dalvi and Suciu [DS04] studied a different problem of querying probabilistic databases: uncertain

matches and ranking results. [RD07, TW04] are additional work on result ranking. Other work on the

tuple uncertainty model includes [SD07]. In the latter, the authors also integrate uncertainty with data

lineage. In multidimensional arrays of scientific databases, as in sensor networks, due to the different

problem we are solving, we focus on value uncertainty, rather than set and tuple uncertainty.

There is also some existing work on statistical estimation of aggregation queries using random

samples, such as in statistical databases [D80] and online aggregation [HH96]. However, there are

fundamental differences. They only handle “certain” data while this paper deals with operations on

“values” each of which is a probabilistic distribution. SERP does sampling but queries are not limited

to aggregations and our statistical mode does not do sampling.

There has been recent interest in applying Monte Carlo algorithms for managing uncertain data

[RD07] and for information recovery [XY08]. Re et al [RD07] use a Monte Carlo algorithm to obtain

 111

top-k probability result tuples for certain types of queries in the discrete tuple uncertainty model.

Jampani et al [JX08] propose a flexible framework to allow an uncertainty model to be dynamically

parameterized and to represent uncertainty via VG functions, allowing arbitrary correlation. Our

contributions differ significantly from all the above. We use general probabilistic graphical models

inside array databases and combine the modeling, sampling, and query processing with the chunking

mechanism of arrays for efficient I/O. Furthermore, we devise the S-Join algorithm to make the

expensive JOIN operation in this context much more efficient. Finally, using information theory and

statistics, we perform a study on optimizations in determining the cessation of sampling.

6.2 Top-k Queries on Uncertain Data

Re et al. [15] studied top-k queries on uncertain data where the ranking is based on the probability

that a result tuple appears in the result. The semantics of top-k queries on uncertain data with

arbitrary ranking functions was first studied by Soliman et al. [18]. The authors in [18] gave two kinds

of semantics (U-Topk and U-kRanks) and devised optimal algorithms in terms of the number of

accessed tuples and search states. Yi et al. [21] improved the time and space efficiency of the

algorithms that compute U-Topk and U-kRanks results. Hua et al. [9] proposed a new semantics

called probabilistic threshold top-k (PT-k). More recently, Jin et al. [13] studied top-k queries in the

uncertain data stream setting.

As discussed in Chapter 5, we can classify the proposed semantics into two categories, both of which

are useful for their own application scenarios. In this thesis, we extend the work in the first category

and propose new semantics which shifts the emphasis more toward ranking scores. As we have

discussed, our new semantics is useful for many applications that are not sufficiently addressed

before.

Zhang and Chomicki [22] proposed the Global-Topk semantics which falls into the second category.

Interestingly, in the future work section of [22], two of the open problems that the authors listed are:

(1) integrating the strength of preference expressed by score into the semantics framework (i.e.,

existing semantics are not as sensitive to score as to probability) and (2) considering non-injective

scoring functions (ties). Our work happens to address both of these open problems.

6.3 Modeling Correlation in Databases

Probabilistic graphical models have been widely used in statistical machine learning. Recently, this

technique has been used in the database community to model the inherent correlation in data; both

 112

from its sources and during query processing (e.g., JOIN). For example, Sen and Deshpande [SD07]

use a graphical model to describe the dependencies among tuples or attributes and cast the query

processing problem as an inference problem in a constructed graphical model. Wang et al. [WM08]

propose a declarative first-order (or, relational) extension of BN models to capture correlations at

various levels of granularity and have a clean separation of probabilistic models and relational data.

Gupta and Sarawagi [GS06] studied methods of curating imprecise databases using MRF-based

information extraction.

Our contributions differ significantly from all the above. We use general probabilistic graphical

models inside array databases and combine the modeling, sampling, and query processing with the

chunking mechanism of arrays for efficient I/O. Furthermore, using information theory and

statistics, we perform a study on optimizations in determining the cessation of sampling.

Finally, our work on A-trees utilizes the special characteristics of multi-dimensional array data in

scientific applications. As we demonstrate in this work, by taking advantage of the predictable and

structured correlations that is often present in multidimensional data, we can provide a more efficient

way of representing uncertainty in large-scale array data and of answering queries over this data.

6.4 Usage of Models in Query Processing and Prediction Queries

In the context of online and streaming applications, there has been previous work (e.g., [BS03] and

[PV04]) that addresses a similar problem to ours, namely, query processing when there is a large

amount of historical data. Bulut and Singh (in [BS03]) develop a technique using Discrete Wavelet

Transform that summarizes a dynamic stream incrementally at multiple resolutions. Palpanas et al. (in

[PV04]) introduce the notion of general amnesic functions which describe the precision loss for

queries on different periods in the past.

The work in [BS03, PV04] concerns online streaming in which large amounts of historical data must

be discarded, while our work is aimed at stored data. Often, fine-granularity historical data is needed

for queries. Also, in the case of stock ticks or medical databases, there is often a regulatory

requirement to store all the data. These days, large amounts of data are being generated by

measurement infrastructures that continuously monitor a variety of things like military object

positions or environmental properties. In these examples, the data volume is huge. Searching, for

existing values, interpolating missing values, and predicting future values are all important. The skip

 113

lists in our solution can be used for searching and interpolation in addition to prediction, making

them more general than [BS03, PV04].

Furthermore, [BS03, PV04] addresses general queries on the past (point, range and "inner product"

queries) while our work aims specifically at forecasting queries of various types: point, range,

aggregations, and join. For forecasting queries, our skip list approach is simpler and more efficient in

that (1) the database engine does not need to pay any computation overhead associated with

maintaining and transforming data summaries; (2) the approach in [BS03, PV04] has to discard some

recent data points to build a model that uses data points (almost) equidistant in time in order to

ensure that the least square error metric for optimization is fair for all time periods in the chosen

history length.

In fact, forecasting using data of higher sample frequency is a known problem in the literature [AB99].

In particular, the study in [AB99] shows that the improvement of forecasting results using higher

sampling frequency can be quite dramatic. The skip list approach provides a platform to explore data

of different densities.

The skip list data structure was invented in 1990 by Pugh [P90]. Its elegance and simplicity have

drawn a lot of attention. Munro et al. [MP92] proposed a deterministic version to guarantee

logarithmic costs. Aspnes and Shah [AS02] proposed skip graphs, which are a distributed structure

based on skip lists, and provide the functionality of a balanced tree in a distributed system for fault

tolerance. Abraham et al. proposed an improved version, so-called “skip B-trees”, that combines the

advantages of skip graphs with features of B-trees. There is also a project called “skipDB” which is a

database implemented with a skip list instead of a B-tree. It is claimed to be transactional, portable,

fast and small.

Time series is one of the primary special data types required within scientific databases [WG93]. There

has been a lot of work, especially in data mining, on similarity and pattern matching in time series. To

list but a few, work along these lines includes [FR94, PY06]. Time series forecasting has been a major

focus for research in other fields. In particular, valuable tools for forecasting and time series

processing appear in statistics and signal processing. [GH05] is a recent and comprehensive review of

this research over the past 25 years.

 114

In the context of databases, Yi et al. [YS00] developed a fast method to analyze co-evolving time

sequences jointly to allow estimation or forecasting of missing/future values, quantitative data mining,

and outlier detection. Tulone and Madden [TM06] presented a method for approximating the values

of sensors in a wireless sensor network based on time series forecasting. Also in the context of sensor

networks, Deshpande and Madden [DM06] developed view abstraction for the underlying

interpolation and prediction models to support declarative queries. More recently, Duan and Babu

[DB07] developed algorithms that can compose prediction operators into a good plan for a given

query and dataset.

Our work differs from earlier work in important ways. We focus on the data management aspects,

specifically, the scalability issue for predictive query processing when the time series data set is large.

This is crucial for query performance as well as prediction accuracy since typically model building is

expensive. We target the issue of choosing the right subset of data to answer prediction queries on a

given future interval. We also discuss interesting query processing strategies for handling complex

query types, whereas in [DB07], for example, only point queries are supported, but not other query

types such as range query, aggregation, and join. Last but not least, our skip list approach also

simultaneously provides search and interpolation capabilities.

 115

C h a p t e r 7

CONCLUSIONS

Querying processing on uncertain data is a young field. Yes it is a very active research topic because

of the large number of applications in recent database systems. We have done some interesting work

and developed a series of techniques that are instrumental for a workable architecture for query

processing on uncertain data.

We propose a discrete treatment of probabilistic data in a database system for scientific and

intelligence applications. In order to measure the result quality of an algorithm, we present a novel

way to adopt a standard distribution distance metric into our context. We present SERP for

computing the result distribution and prove an upper bound on the variation distance between its

result distribution and the ideal one. We also propose a fast “statistical” mode of reporting results,

which is sufficient and much more efficient for many applications and queries. Using statistical mode

in the query evaluator also enables efficient evaluation of predicates.

A much needed requirement in managing uncertain data is continuous probability distributions that

model correlated attributes. In this thesis work, we advance the understanding of this area. We define

query semantics as an extension of the well-known possible world semantics. We incorporate

piecewise probabilistic graphical model building with array chunking. We admit the difficulty of

performing inference on such a model, and adopt Markov Chain Monte Carlo algorithms for query

processing. Under this framework, we develop an efficient JOIN algorithm, and study entropy

evolution of the result set and its relationship with result quality.

Uncertainty in multidimensional array database systems must be carefully handled before such

systems can efficiently and correctly handle scientific data. Correlations are common in such data and

they are usually structured along dimensions. Based on this observation, we develop a novel data

structure, called A-tree, which is a unified model for storage and modeling of such data. We

demonstrate that compared to alternative approaches, A-tree can not only perform inference much

more efficiently, but it also models the underlying joint distribution accurately. A systematic empirical

study is conducted on both real and synthetic datasets.

 116

For the new and important topic of top-k queries on uncertain data, we observe the need to shift the

emphasis a little more on ranking scores, as opposed to the probabilities for many applications. We

propose to provide the score distribution of top-k vectors and c-Typical-Topk answers to applications

and devise efficient algorithms to cope with the computational challenges. We also extend the work to

score ties. Experimental results verify our motivation and our approaches.

Finally, we have also done some work for the newly arising prediction queries that ask for uncertain

future data. We address the scalability issue on processing prediction queries on large time series data

sets, which are often seen in financial and scientific databases. We propose statistical tests of

hypotheses to determine a proper subset of data points to use for a given query interval. We adopt the

skip list data structure, make it I/O conscious, and use it as samples for our query purpose, in

addition to the search capability that a skip list already provides. We further present an algorithm

ChoosePMSet to choose a set of models to pre-build (PM), subject to some maintenance cost

constraint. We discuss query processing strategies using the PM’s.

 117

BIBLIOGRAPHY

[GZ07a] T. Ge and S. Zdonik. Fast, Secure Encryption for Indexing in a Column-Oriented DBMS. In ICDE, 2007.
[GZ07b] T. Ge and S. Zdonik. Answering Aggregation Queries in a Secure System Model. In VLDB, 2007.
[GZ08a] T. Ge and S. Zdonik. Handling Uncertain Data in Array Database Systems. In ICDE, 2008.
[GZ08b] T. Ge and S. Zdonik. A Skip-list Approach for Efficiently Processing Forecasting Queries. In VLDB, 2008.
[GZ09a] T. Ge and S. Zdonik. Light-weight, Runtime Verification of Query Sources. In ICDE, 2009.
[GZ09b] T. Ge, S. Zdonik, and S. Madden. Top-k Queries on Uncertain Data: On Score Distribution and Typical
Answers. In SIGMOD 2009.
[GG09c] T. Ge, D. Grabiner, and S. Zdonik. A Treatment of Correlated Attribute Uncertainty in Array Database
Systems. In submission.
[GZ09d] T. Ge and S. Zdonik. A-tree: A Structure for Storage and Modeling of Uncertain Multidimensional Arrays.
In submission.
[SB07] M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos, J. Lifter, J.
Rogers, and S. Zdonik. One size fits all? – Part 2: benchmarking results. In CIDR, January, 2007.
[BG92] D. Barbara, H. Garcia-Molina, and D. Porter. The management of probabilistic data. In TKDE, 1992.
[BS06] O. Benjelloun, A. Das Sarma, A. Halevy, J. Widom. ULDBs: Databases with Uncertainty and Lineage. In
VLDB, 2006.
[BK06] P. Brohan, J. Kennedy, I. Haris, S.F.B. Tett and P.D. Jones. Uncertainty estimates in regional and global
observed temperature changes: a new dataset from 1850. In Geophysical Research, 2006.
[BD05] D. Burdick, P. Deshpande, T. Jayram, R. Ramakrishnan, S. Vaithyanathan. OLAP over uncertain and
imprecise data. VLDB’05.
[CK03] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In
SIGMOD, 2003.
[CS06] R. Cheng, S. Singh, and S. Prabhakar. Efficient join processing over uncertain data. In CIKM, 2006.
[DS04] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, 2004.
[D80] D. Denning. Secure statistical databases with random sample queries. In TODS, Volume 5, Issue 3, September
1980.
[DG04] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, W. Hong. Model-driven data acquisition in sensor
networks. In VLDB, 2004.
[D86] L. Devroye. Non-Uniform Random Variate Generation. Chapter 2. New York: Springer-Verlag, 1986.
[FR97] N. Fuhr and T. Rolleke. A probabilistic relational algebra for the integration of information retrieval and
database systems. ACM Transactions on Information Systems, 1997.
[H70] J. Halton. A retrospective and prospective survey of the Monte Carlo method. In SIAM Review, Vol. 12, Jan.
1970.
[HH96] J. Hellerstein, P.Haas, H. Wang. Online aggregation. SIGMOD’96.
[OR86] F. Olken and D. Rotem. Simple random sampling from relational databases. In VLDB, Kyoto, August, 1986.
[RD07] C. Re, N. Dalvi and D. Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. In ICDE, 2007.
[SD07] P. Sen and A. Deshpande. Representing and Querying Correlated Tuples in Probabilistic Databases. In
ICDE, 2007.
[S01] J. Stewart. Calculus: concepts and contexts (2nd ed.). Thomson Learning, Inc. 2001.
[SB07] M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos, J. Lifter, J.
Rogers, and S. Zdonik. One size fits all? – Part 2: benchmarking results. In CIDR, January, 2007.
[TW04] M. Theobald, G. Weikum, R. Schenkel. Top-k Query Evaluation with Probabilistic Guarantees. In VLDB,
2004.

 118

[PA08] http://www.navcen.uscg.gov/mwv/vts/PAWSS.htm.
[T08] http://www.cru.uea.ac.uk/cru/data/temperature/.
[GPS08] http://en.wikipedia.org/wiki/Global_Positioning_System.
[AK91] Abiteboul, S., Kanellakis, P., Grahne, G.: On the Representation and Querying of Sets of Possible Worlds. In
TCS, 78(1), 1991.
[AJ08] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple Relational Processing of Uncertain Data. In
ICDE, 2008.
[BB01] Y. Bar-Shalom, D. William Dale Blair. Multitarget-Multi-sensor Tracking: Applications and Advances, Vol.
III, Artech House, Boston, London, 2001.
[BK06] Brohan, P., J. Kennedy, I. Haris, S.F.B. Tett, P.D. Jones. Uncertainty estimates in regional and global
observed temperature changes: a new dataset from 1850. In Journal of Geophysical Research, 2006.
[CP87] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In VLDB, 1987.
[CS06] R. Cheng, S. Singh, and S. Prabhakar. Efficient join processing over uncertain data. In CIKM, 2006.
[DS05] N. Dalvi and D. Suciu. Query answering using statistics and probabilistic views. In VLDB, 2005.
[DS96] D. Dey and S. Sarkar. A probabilistic relational model and algebra. In ACM Trans. on Database Systems,
1996
[G06] L. Getoor. An Introduction to Probabilistic Graphical Models for Relational Data. IEEE Data Eng. Bull. 29(1):
32-39, 2006.
[G89] G. Grahne. Horn tables - an efficient tool for handling incomplete information in databases. In PODS, 1989.
[HP08] M. Hua, J. Pei, W. Zhang, X. Lin. Ranking Queries on Uncertain Data: A Probabilistic Threshold Approach.
In SIGMOD, 2008.
[IB08] I. Ilyas, G. Beskales, and M. Soliman. A Survey of Top-k Query Processing Techniques in Relational
Database Systems. In ACM Computing Surveys, 2008.
[JX08] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P. Haas. MCDB: A Monte Carlo Approach to
Managing Uncertain Data. In SIGMOD, 2008.
[J98] M. Jordan. Learning in Graphical Models. The MIT press. Nov., 1998.
[LL97] Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.: ProbView: A Flexible Probabilistic Database
System. In ACM TODS 22(3), 1997.
[MS02] A. Marathe and K. Salem. Query Processing Techniques for Arrays. In VLDB Journal 11: 68-91, 2002.
[PI97] V. Poosala and Y. Ioannidis. Selectivity Estimation Without the Attribute Value Independence Assumption.
VLDB, 1997.
[RD07] C. Re, N. Dalvi and D. Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. In ICDE, 2007.
[SS94] S. Sarawagi and M. Stonebraker. Efficient Organization of Large Multidimensional Arrays. In Proceedings
of the 10th International Conference on Data Engineering (ICDE), 1994.
[SM08] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch, J. Neville and R. Cheng. Database Support for
Probabilistic Attributes and Tuples. In ICDE, 2008.
[XY08] J. Xie, J. Yang, Y. Chen, H. Wang, and P. Yu. A Sampling-Based Approach to Information Recovery. In
ICDE, 2008.
[YL08] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient Processing of Top-k Queries on Uncertain Databases. In
ICDE, 2008.
[AA05] Abraham, I., Aspnes, J., and Yuan, J. Skip B-trees. In Proceedings of the 9th International Conference on
Principles of Distributed Systems (OPODIS 2005).
[AB99] T. Andersen, T. Bollerslev, and S. Lange. Forecasting financial market volatility: Sample frequency vis-à-vis
forecast horizon. In Journal of Empirical Finance, Dec 1999, pages 457-477.
[AK04] James Aspnes, Jonathan Kirsch, and Arvind Krishnamurthy. Load Balancing and Locality in Range-
Queriable Data Structures. In Twenty-Third ACM Symposium on Principles of Distributed Computing, pages 115–
124, July 2004.
[AS02] James Aspnes and Gauri Shah. Skip Graphs. In Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 384–393, January 2002.

 119

[B43] Boyer, C. B. Pascal's Formula for the Sums of Powers of the Integers. In Scripta Math. 9, 237-244, 1943.
[BD02] Brockwell, P., and Davis, R. Introduction to Time Series and Forecasting. 2nd Edition. Springer Texts in
Statistics. 2002.
[BS03] Bulut, A. and Singh, A.K. SWAT: Hierarchical Stream Summarization in Large Networks. In ICDE, 2003.
[DH05] J. G. De Gooijer and R. J. Hyndman. 25 Years of IIF Time Series Forecasting: A Selective Review. June
2005. Tinbergen Institute Discussion Papers No. TI 05-068/4.
[DM06] A. Deshpande and S. Madden. MauveDB: Supporting model-based user views in database systems. In
SIGMOD 2006.
[DB07] Duan S., and Babu, S. Processing Forecasting Queries. In VLDB, 2007.
[E06] Eubank, R.L. A Kalman Filter Primer. Chapman & Hall/CRC, 2006.
[FR94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases.
In SIGMOD, 1994.
[GK95] D. Goldin and P. Kanellakis. On similarity queries for time-series data: Constraint specification and
implementation. In CP’95, Sep 1995.
[HK07] Hyndman, R.J., Kostenko, A.V. Minimum Sample Size Requirements for Seasonal Forecasting Models. In
Foresight, Issue 6, Spring 2007.
[MW98] Makridakis, S., Wheelwright S., and Hyndman, R. Forecasting Methods and Applications. Third Edition.
John Wiley & Sons, Inc. 1998.
[MS94] Mendenhall, W., and Sincich, T. Statistics for Engineering and the Sciences. Fourth Edition. Prentice-Hall,
Inc. 1994.
[MC84] Mentzer, J.T., and J.E. Cox Jr. Familiarity, Application and Performance of Sales Forecasting Techniques.
In Journal of Forecasting, 3, 1984, 27-36.
[MP92] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic Skip Lists. In Proceedings of the
third annual ACM-SIAM symposium on Discrete algorithms (SODA’92). Orlando, Florida, United States. pp. 367-
375.
[N91] Leonore Neugebauer. Optimization and Evaluation of Database Queries Including Embedded Interpolation
Procedures. In SIGMOD, 1991.
[PV04] Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., and Truppel, W. Online amnesic approximation of
streaming time series. In ICDE, 2004.
[PS06] Papadimitriou, S., Sun, J., and Yu, P. Local Correlation Tracking in Time Series. In ICDM, 2006.
[PY06] Papadimitriou, S., and Yu, P. Optimal Multi-scale Patterns in Time Series Streams. In SIGMOD, 2006.
[P90] Pugh, W. Skip lists: a probabilistic alternative to balanced trees. In Communications of the ACM, June 1990,
33(6) 668-676.
[S80] Schultz, H. J. The Sums of the k’th Powers of the First n Integers. In Amer. Math. Monthly 87, 478-481, 1980.
[S01] J. Stewart. Calculus: Concepts and Contexts (2nd ed.). Thomson Learning, Inc. 2001.
[TM06] D. Tulone and S. Madden. PAQ: Time series forecasting for approximate query answering in sensor
networks. In EWSN, 2006.
[WS01] Whitney, A., and Shasha, D. Lots o’ Ticks: Real-time High Performance Time Series Queries on Billions of
Trades and Quotes. In SIGMOD, 2001.
[WD96] Winklhofer, H., A. Diamantopoulos, and S.F. Witt. Forecasting Practice: A Review of the Empirical
Literature and an Agenda for Future Research. In International Journal of Forecasting, 12, June 1996, 193-221.
[WG93] Wolniewicz, R., and Graefe, G. Algebraic Optimization of Computations over Scientific Databases. In
VLDB, 1993.
[YS00] B. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris. Online Data Mining for
Co-evolving Time Sequences. In ICDE, 2000.
[ZS03] Zhu, Y., and Shasha, D. Query by Humming: a Time Series Database Approach. In SIGMOD, 2003.
[S08] http://dekorte.com/projects/opensource/SkipDB/.
[EG08] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The Pothole Patrol: Using a
Mobile Sensor Network for Road Surface Monitoring. In MobiSys, 2008.

 120

[HB06] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, E. Shih, H. Balakrishnan, and S. Madden.
CarTel: A Distributed Mobile Sensor Computing System. In SenSys, 2006.
[BW01] Y. Bar-Shalom, D. William Dale Blair. Multitarget-Multi-sensor Tracking: Applications and Advances,
Vol. III, Artech House, Boston, London, 2001.
[BD06] Benjelloun, O., Das Sarma, A., Halevy, A. and Widom, J. ULDBs: Databases with Uncertainty and Lineage.
In VLDB, 2006.
[BK06] Brohan, P., J. Kennedy, I. Haris, S.F.B. Tett, P.D. Jones. Uncertainty estimates in regional and global
observed temperature changes: a new dataset from 1850. In Journal of Geophysical Research, 2006.
[CP87] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In VLDB, 1987.
[CK03] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In
SIGMOD, 2003.
[CS06] R. Cheng, S. Singh, and S. Prabhakar. Efficient join processing over uncertain data. In CIKM, 2006.
[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. A Wiley-Interscience Publication, 1991.
[DS04] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, 2004.
[DS05] N. Dalvi and D. Suciu. Query answering using statistics and probabilistic views. In VLDB, 2005.
[DS96] D. Dey and S. Sarkar. A probabilistic relational model and algebra. In ACM Trans. on Database Systems,
1996
[FR97] N. Fuhr and T. Rolleke. A probabilistic relational algebra for the integration of information retrieval and
database systems. ACM Transactions on Information Systems, 1997.
[G06] L. Getoor. An Introduction to Probabilistic Graphical Models for Relational Data. IEEE Data Eng. Bull. 29(1):
32-39, 2006.
[G07] G. Grahne. Horn tables - an efficient tool for handling incomplete information in databases. In PODS, 1989.
[GS06] R. Gupta and S. Sarawagi. Curating probabilistic databases from information extraction models. In VLDB,
2006.
[HP08] M. Hua, J. Pei, W. Zhang, X. Lin. Ranking Queries on Uncertain Data: A Probabilistic Threshold Approach.
In SIGMOD, 2008.
[IB08] I. Ilyas, G. Beskales, and M. Soliman. A Survey of Top-k Query Processing Techniques in Relational
Database Systems. In ACM Computing Surveys, 2008.
[JX08] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P. Haas. MCDB: A Monte Carlo Approach to
Managing Uncertain Data. In SIGMOD, 2008.
[J98] M. Jordan. Learning in Graphical Models. The MIT press. Nov., 1998.
[LL97] Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.: ProbView: A Flexible Probabilistic Database
System. In ACM TODS 22(3), 1997.
[MS02] A. Marathe and K. Salem. Query Processing Techniques for Arrays. In VLDB Journal 11: 68-91, 2002.
[MU05] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.
[PI97]V. Poosala and Y. Ioannidis. Selectivity Estimation Without the Attribute Value Independence Assumption.
VLDB, 1997.
[RD07] C. Re, N. Dalvi and D. Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. In ICDE, 2007.
[SS94] S. Sarawagi and M. Stonebraker. Efficient Organization of Large Multidimensional Arrays. In Proceedings of
the 10th International Conference on Data Engineering (ICDE), 1994.
[SD07] P. Sen and A. Deshpande. Representing and Querying Correlated Tuples in Probabilistic Databases. In ICDE,
2007.
[SM08] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch, J. Neville and R. Cheng. Database Support for
Probabilistic Attributes and Tuples. In ICDE, 2008.
[B06] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[CP87] R. Cavallo, M. Pittarelli. The theory of probabilistic databases. In VLDB, 1987.

 121

[CG01] K. Chakrabarti, M. Garofalakis, R. Rastogi, K. Shim. Approximate query processing using wavelets. In
VLDB Journal, 2001.
[CA98] C. Chang, A. Acharya, A. Sussman, J. Saltz. T2: a customizable parallel database for multi-dimensional data.
In SIGMOD, 1998.
[CM97] Chang C, Moon B, Acharya A, Shock C, Sussman A, Saltz JH. Titan: a high-performance remote sensing
database. In ICDE, 1997.
[CK03] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In
SIGMOD, 2003.
[CC05] A. Choi, H. Chan, A. Darwiche. On Bayesian Network Approximation by Edge Deletion. In UAI, 2005.
[CLRS] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms (2nd edition). MIT Press and
McGraw-Hill.
[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. A Wiley-Interscience Publication, 1991.
[DS04] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, 2004.
[DK06] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. An information-theoretic approach to detecting
changes in multi-dimensional data streams. In Interface 2006.
[D96] R. Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In UAI, 1996.
[DS06] A. Deshpande and S. Madden. MauveDB: Supporting model-based user views in database systems. In
SIGMOD, 2006.
[DS96] D. Dey and S. Sarkar. A probabilistic relational model and algebra. In ACM Trans. on Database Systems,
1996.
[FG99] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning Probabilistic Relational Models. In IJCAI, 1999.
[FR97] N. Fuhr, T. Rolleke. A probabilistic relational algebra for the inte-gration of information retrieval and
database systems. TOIS, 1997.
[JX08] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, P. Haas. MCDB: A Monte Carlo Approach to Managing
Uncertain Data.SIGMOD‘08.
[J98] M. Jordan. Learning in Graphical Models. The MIT press. 1998.
[LL97] Lakshmanan, L., Leone, N., Ross, R., Subrahmanian, V.. ProbView: A Flexible Probabilistic Database
System. In TODS 22(3), 1997.
[MS02] A. Marathe and K. Salem. Query Processing Techniques for Arrays. In VLDB Journal 11: 68-91, 2002.
[MU05] M. Mitzenmacher, E. Upfal. Probability & Computing: Randomized Algorithms and Probabilistic Analysis.
Cambridge U. Press, 2005.
[O93] F. Olken. Random Sampling from Databases. PhD Thesis, UC Berkeley, 1993.
[RD07] C. Re, N. Dalvi and D. Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. In ICDE, 2007.
[SD07] P. Sen and A. Deshpande. Representing and Querying Correlated Tuples in Probabilistic Databases. In ICDE,
2007.
[SM08] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch, J. Neville, R. Cheng. Database Support for
Probabilistic Attributes and Tuples. In ICDE, 2008.
[WM08] D. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein. BayesStore: Managing Large, Uncertain Data
Repositories with Probabilistic Graphical Models. In VLDB, 2008.
[AJ08] L. Antova, T. Jansen, C. Koch, D. Olteanu. Fast and Simple Relational Processing of Uncertain Data. In
ICDE, 2008.
[B57] R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.
[CK03] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In
SIGMOD, 2003.
[CT91] T. Cover and J. Thomas. Elements of Information Theory. A Wiley-Interscience Publication, 1991.
[DS04] N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic Databases. In VLDB, 2004.
[DS07] N. Dalvi and D. Suciu. Management of Probabilistic Data: Foundations and Challenges. In PODS, 2007.

 122

[FK04] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing and Aggregating Rankings with
Ties. In PODS, 2004.
[HT91] R. Hassin and A. Tamir. Improved complexity bounds for location problems on the real line. In Operations
Research Letters, 1991.
[HP08] M. Hua, J. Pei, W. Zhang, X. Lin. Ranking Queries on Uncertain Data: A Probabilistic Threshold Approach.
In SIGMOD, 2008.
[HB06] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, E. Shih, H. Balakrishnan, and S. Madden.
CarTel: A Distributed Mobile Sensor Computing System. In SenSys, 2006.
[IB08] I. Ilyas, G. Beskales, and M. Soliman. A Survey of Top-k Query Processing Techniques in Relational
Database Systems. In ACM Computing Surveys, Vol. 40, 2008.
[JX08] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and P. Haas. MCDB: A Monte Carlo Approach to
Managing Uncertain Data. In SIGMOD, 2008.
[JY08] C. Jin, K. Yi, L. Chen, J. Yu, X. Lin. Sliding-Window Top-k Queries on Uncertain Streams. In VLDB, 2008.
[LB08] S. Lim, H. Balakrishnan, D. Gifford, S. Madden, D. Rus. Stochastic Motion Planning and Applications to
Traffic. In WAFR, 2008.
[RD07] C. Re, N. Dalvi and D. Suciu. Efficient Top-k Query Evaluation on Probabilistic Data. In ICDE, 2007.
[R95] K. Rosen. Discrete Mathematics and Its Applications. 1995.
[SD07] P. Sen and A. Deshpande. Representing and Querying Correlated Tuples in Probabilistic Databases. In ICDE,
2007.
[SI07]M. Soliman, I. Ilyas, and K. Chang. Top-k Query Processing in Uncertain Databases. In ICDE, 2007.
[TB04] N. Tatbul, M. Buller, R. Hoyt, S. Mullen, S. Zdonik. Confidence-based Data Management for Personal Area
Sensor Networks. In DMSN, 2004.
[W05] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. In CIDR, 2005.
[RPOJ] The R Project for Statistical Computing: www.r-project.org.
[XY08] J. Xie, J. Yang, Y. Chen, H. Wang, and P. Yu. A Sampling-Based Approach to Information Recovery. In
ICDE, 2008.
[YL08] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient Processing of Top-k Queries on Uncertain Databases. In
ICDE, 2008.
[SI07] M. Soliman, I. Ilyas, and K. Chang. Top-k Query Processing in Uncertain Databases. In ICDE, 2007.
[ZC08] X. Zhang and J. Chomicki. On the Semantics and Evaluation of Top-k Queries in Probabilistic Databases. In
DBRank’08 Workshop.

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	Chapter 1
	INTRODUCTION
	1.1 Applications Where a DBMS Needs to Manage Uncertain Data
	1.2 Classification of Uncertain Data
	1.3 The Possible World Semantics
	1.4 The Open Problems in Managing Uncertain Data
	1.4.1 Problem 1: Operations on Uncertain Data
	1.4.2 Problem 2: Modeling and Processing Correlated Uncertain Data
	1.4.3 Problem 3: Answering Queries of Uncertain Data in the Future
	1.4.4 Problem 4: Top-k Queries on Uncertain Data
	1.5 Overview of Our Results
	1.5.1 Solution 1: A Discrete Approach to Modeling and Query Processing
	1.5.2 Solution 2: A Special Join Algorithm (S-Join) in the SERP Framework
	1.5.3 Solution 3: Modeling and Query Processing of Correlated Uncertain Data
	1.5.4 Solution 4: A-tree: A New Data Structure to Model Correlated Multidimensional Array Data
	1.5.5 Solution 5: Using Skip-lists in Answering Queries of Uncertain Future
	1.5.6 Solution 6: Novel Semantics for Top-k query on Uncertain Data and Efficient Query Processing Algorithms Based on Dynamic Programming

	Chapter 2
	A MONTE CARLO QUERY PROCESSING FRAMEWORK (SERP) AND S-JOIN
	2.1 SERP
	2.1.1 Discrete Treatment of Imprecise Data
	2.1.2 The SERP Algorithm
	2.1.3 A Metric on Judging Results and Provable Error Bounds of SERP
	2.1.4 Statistical Model
	2.1.5 Empirical Study
	2.2 A Special Join Algorithm in the SERP Framework and Experiments
	2.2.1 Sampling-Based Join (S-Join)
	2.2.2 Result Entropy and Cession of Sampling
	2.2.3 Empirical Study

	Chapter 3
	HANDLING CORRELATED UNCERTAIN ATTRIBUTES
	3.1 Modeling and Processing Correlated Uncertain Attributes with MRF
	3.1.1 Query Semantics
	3.1.2 Representation and Query Processing
	3.2 A-trees
	3.2.1 A-tree Structure and Basics
	3.2.5 Experiments

	Chapter 4
	SEMANTICS AND PROCESSING OF TOP-K QUERIES ON UNCERTAIN DATA
	4.1 Problem Formulation
	4.1.1 Data Model and Scoring Function
	4.1.2 Score Distribution and c-Typical-Topk
	4.1.3 Non-injective Scoring Function and Ties
	4.2 Computing Score Distribution of Top-k
	4.2.1 Two Simple Algorithms
	4.2.2 The Main Algorithm
	4.2.2.1 The Need for Approximation
	4.2.3 Handling Mutually Exclusive Rules
	4.2.3.1 Two False Starts
	4.2.3.2 A Good Start
	4.2.3.3 Refinement
	4.2.4 Handling Ties
	4.3 Computing c-Typical-Top-k
	4.4 Empirical Study
	4.4.1 Setup and Datasets
	4.4.2 Results on the Real-world Dataset
	4.4.3 Performance on the Real-world Dataset
	4.4.4 Results on the Synthetic Dataset

	Chapter 5
	PREDICTIVE QUERIES: QUERYING UNCERTAIN DATA IN THE FUTURE
	5.1 Elements of Our Approach
	5.1.1 I/O conscious skip-lists
	5.2 Selection of Model Set to Build and Maintain
	5.3 Query Processing
	5.4 Empirical Study

	Chapter 6
	RELATED WORK
	6.1 Management of Uncertain Data
	6.2 Top-k Queries on Uncertain Data
	6.3 Modeling Correlation in Databases
	6.4 Usage of Models in Query Processing and Prediction Queries

	Chapter 7
	CONCLUSIONS

	BIBLIOGRAPHY

