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Abstract 

Modern multicore processors, such as Intel’s Core 2 Duo, bring urgency to parallel 

programming research, which, despite several decades of work, has not changed much since the 

advent of mutual exclusion in the 1960s. Software Transactional Memory (STM) is a promising 

alternative that borrows heavily from the database community to propose a transactional approach 

to program state. By optimistically assuming that most computations executed in parallel do not 

conflict and then detecting and terminating those few computations that do, STM provides the 

basis for new programming language abstractions that permit programmers to think linearly while 

the code they write is safely executed in parallel. 

The difficulty with today’s STM libraries, however, is their generally poor performance 

and convoluted programming model. In order to make STMs more popular, accessible, and 

functional, this thesis argues that three things must happen: first, a streamlined programming 

model can hide all complex details of the STM library from the programmer; second, static 

analysis can optimize the client code’s interaction with the underlying STM; third, the STM 

library itself should be decomposed and optimized for use by an optimizing compiler. Together, 

we show that these optimizations achieve an order of magnitude performance improvement. 

As part of this work, we develop four nonblocking transaction synchronization and 

validation algorithms designed for use in STM systems, all of which support a nonblocking 

progress condition called obstruction-freedom, provide always consistent reads, and integrate 

orthogonal contention management. Finally, we propose the first language extensions and 

compiler support for transactional boosting, a methodology for transforming highly concurrent 

linearizable objects into highly concurrent transactional objects. Based on these results, we 

conclude that appropriate language support and high quality compiler optimizations are necessary 

for the success of any STM system. 
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Chapter 1 

Introduction 

1.1 Background 

In 1965, Dr. Gordon Moore famously predicted that the number of transistors 

placed on an integrated circuit would double approximately every 24 months. Such 

exponential growth in transistor counts translates into roughly equivalent improvements 

in clock speed and microprocessor power over the period. Although technically still 

holding true, as transistor counts have continued to increase at the rate predicted by 

Moore’s Law (see Figure 1.1), processor clock speeds have not kept pace for a number of 

reasons, including heat dissipation and difficulty further reducing the 65 nanometer 

technology used in current processor manufacturing. Clock speeds have hovered around 
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two gigahertz since about 2000, forcing chip manufacturers to look to other avenues for 

achieving future gains in hardware processing power. 

 

Figure 1.1: Increasing processor transistor counts1 

 

Instead of deriving increased processing power from scaling clock speed (see 

Figure 1.2), which eventually increases power usage and heat emission to unmanageable 

levels, chip manufacturers have begun to increase overall processing power by adding 

additional CPUs, or “cores” to the microprocessor package. In order to take advantage of 

this new type of computer, however, software must be parallelizable. Unfortunately, 

standard techniques for writing multithreaded code haven’t changed very much since the 

advent of mutual exclusion in the 1960s. Clearly, multicore processors demand language 

                                                 
1 Source: Intel web site. See http://www.intel.com/technology/mooreslaw. 
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abstractions and tools designed to help programmers write software that can take 

advantage of their power safely and efficiently. 

 

Figure 1.2: Processor clock speeds plateau2 

 

Transactional memory is one promising alternative to lock-based 

multiprogramming. This dissertation proposes language support and compiler 

optimizations for Software Transactional Memory (STM) systems in order to make STM 

more accessible and efficient than is possible in the context of a purely library-based 

approach. Currently, STM libraries typically have cumbersome language interfaces that 

                                                 
2 Source: Herb Sutter, Software and the Concurrency Revolution. 
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require programmers to write code in particular ways (e.g., implementing interfaces, 

defining fields as properties, using delegates to start transactions, coding a retry loop, 

etc.). Furthermore, in the form of libraries, STM implementations have little information 

about the client algorithms that use their services. As a result, STM libraries must make 

very conservative assumptions about client code—an aspect which negatively affects 

their performance. 

An STM compiler named Peet, developed as part of this project, attempts to 

address both of the shortcomings described above. In the area of language integration, the 

compiler uses annotations that indicate atomic types, methods, and blocks. Standard 

keywords, such as const, readonly, sealed, and static, provide additional contextual 

information to the compiler, and the using keyword is overloaded to allow for dynamic 

and conditional transactional execution. In order to provide improved performance, the 

compiler performs a dataflow analysis to determine whether an atomic object is accessed 

in “read” or “write” mode and whether a specific atomic field access is guaranteed to 

occur subsequent to a previous use of that object. On the basis of this information, the 

compiler can make more efficient use of the STM library, often inlining the transactional 

machinery directly in the user’s code in the form of several bytecode instructions. 

Peet supports a friendly programming interface, and, to date, offers a performance 

improvement of between four and ten times compared with the same algorithms 

implemented solely with an STM library. This performance improvement helps close the 

gap between STM systems and conventionally synchronized concurrent algorithms. In 

addition, the research on STM compiler optimizations has revealed several new aspects 

of STM systems, including the fact that subsequent reads and writes of atomic fields can 
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be made entirely lock-free, even in the context of an STM model that uses short critical 

sections for initial reads and writes. 

Finally, we also propose novel language extensions to support transactional 

boosting, a powerful new technique for transforming existing linearizable objects into 

transactional objects, thus permitting highly concurrent objects such as those found in the 

java.util.concurrent package to participate in STM transactions. When applied in 

conjunction with compiler support, we show that transactional boosting is both a flexible 

and natural way to escape the standard transactional model, and thus offers a promising 

alternative to existing “expert” approaches, such as open nesting and early release. Based 

on our results, we conclude that appropriate language support and high quality compiler 

optimizations are necessary parts of any STM system. 

 

1.2 Thesis statement 

The difficulty with today’s STM libraries is their generally poor performance and 

convoluted programming model. In order to make STMs more popular, accessible, and 

functional, we argue that three things must happen: first, we streamline the programming 

model so that all complex details of the STM library are hidden from the programmer; 

second, we use static analysis to optimize the client code’s use of the underlying STM; 

third, we decompose and optimize the STM library itself for use by an optimizing 

compiler. Together, we show that these optimizations achieve an order of magnitude 

performance improvement. 

There is currently much debate about whether STMs that support constructive 

theoretic properties such as lock freedom, always consistent reads, and orthogonal 
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contention management can be made to perform as well as STMs that jettison these 

properties in pursuit of lower overheads. Some [2, 23] have argued that STMs should not 

be wait-free or even obstruction-free because of the performance overhead that early non-

blocking STM systems suffered [48]. Other systems [1] permit inconsistent reads in the 

underlying STM, which violate the isolated property of transactions, and then try to 

compensate for that problem in the compiler.  We show that with the right combination of 

language design, compiler support, and library optimization, these important properties 

can be supported efficiently. 

STM systems are often compared with the development of garbage collection 

algorithms and virtual memory systems. In both cases, initially there was a great deal of 

concern that the overhead of such approaches would render them too unwieldy for 

practical use, and so much effort was spent on offering ways to escape the constraints of 

these models where performance was the top priority. In both cases, however, once 

quality hardware support (for virtual memory) or runtime/compiler support (for garbage 

collection) was developed, the need for most programmers to escape the constraints of 

these models dissipated. The problem that this dissertation aims to address, then, is to 

help provide the missing language, compiler, and library support that we believe will be 

essential in making STMs as ubiquitous in mainstream programming languages as 

garbage collection is today. 

 

1.3 Outline of the thesis 

Chapter Two reviews the development of concurrent programming, including 

locks, non-blocking algorithms, and modern STM systems. Chapter Three describes the 
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programming language extensions supported by Peet, and Chapter Four covers the library 

and compiler optimizations that enable the significant performance gains. Chapter Five 

introduces four obstruction-free transaction synchronization and validation algorithms 

designed for object-based STMs. Finally, Chapter Six evaluates the compiler and Chapter 

Seven summarizes the contributions of this thesis. 
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Chapter 2 

Background 

2.1 Concurrency 

Concurrent programming, or programming with multiple threads of execution, 

has remained largely unchanged since time sharing systems first emerged in the late 

1960s. Now, as then, mutual exclusion algorithms (a.k.a. locks) prevent the concurrent 

use of shared data, and thus remain among the fundamental building blocks of concurrent 

programs [83]. 

Synchronization primitives such as critical sections, mutexes, and semaphores 

share a common characteristic: when a desired lock is unavailable, they block. Blocking, 

however, is undesirable, because it means that some threads will waste time waiting for 
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other threads to release their locks. Furthermore, in certain cases, it can also produce 

undesirable side effects, such as deadlock, livelock, and priority inversion [40]. Equally 

challenging, lock-based synchronization requires programmers to choose between 

locking small bits of code (fine-grained locking) or larger sections, such as entire 

methods (coarse-grained locking). While fine-grained locking can lead to improved 

parallelism, it is more difficult to reason about and can therefore lead to subtle race 

conditions; coarse-grained locking, by contrast, is easier to implement and often safer, 

but typically exhibits poor parallelism. 

Section 2.2 describes important properties of nonblocking algorithms, which build 

on the low-level synchronization primitives outlines in section 2.3. Section 2.4 introduces 

hardware transactional memory. Section 2.5 describes the subsequent development of 

software transactional memory, originally designed as a stopgap measure until the arrival 

of hardware support. Finally, section 2.6 explores transactional programming extensions 

available in existing programming languages. 

 

2.2 Nonblocking algorithms 

For the reasons outlined above, in the last decade a great deal of research has 

focused on a class of concurrent algorithms called nonblocking algorithms [42]. These 

types of algorithms permit multiple threads to read and write shared data concurrently 

without corrupting it. Indeed, nonblocking algorithms permit concurrent access to shared 

data without using any form of locking or mutual exclusion, and are thus considered an 

essential component for the development of scalable software systems. Such algorithms 

are generally categorized as either wait-free, guaranteeing that all threads can complete a 
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given operation in a finite number of steps, or lock-free, meaning that some thread can 

complete an operation in a finite number of steps. An algorithm can be lock-free without 

being wait-free. 

Algorithms that do not employ locks are not subject to problems such as deadlock 

or priority inversion, and therefore, in theory, should be easier to employ. Also, since no 

time is wasted waiting for a lock to become available, non-blocking algorithms can be 

expected to perform better than their lock-based counterparts. However, the challenge for 

non-blocking algorithms is to enable multiple threads of execution to concurrently share 

access to the same data—a problem that, as it turns out, is far more difficult to contend 

with than deadlock and priority inversion. While concurrent read access to shared 

memory is relatively easy to achieve, the problem of how to enable concurrent write 

access to shared memory is much more difficult to solve. Truly concurrent write access to 

shared memory isn’t possible without special hardware support, but its effect can be 

simulated through the use of low-level synchronization primitives that test the value 

stored in a memory location before changing it (see § 2.3). 

Thus, in brief, while nonblocking algorithms are, in principle, far more appealing 

than their more conventional blocking counterparts, in practice they have been somewhat 

disappointing on account of two primary drawbacks. First, their performance often does 

not compare favorably with highly optimized blocking versions of the same algorithms 

[40]. Second, they have proven very difficult to write compared with equivalent lock-

based algorithms [46]; in part, this is why researchers have thus far generally focused on 

relatively simple nonblocking algorithm such as lists, queues, stacks, and trees. (There 

has been some research on automatically converting sequential algorithms into 
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nonblocking concurrent algorithms, but it has seldom produced algorithms that yield 

acceptable performance results [40].) 

 

2.3 Low-level synchronization primitives 

Nonblocking algorithms are difficult to write because they are generally built 

from very low-level atomic primitives provided by hardware, such as compare-and-swap 

(CAS) or load linked/store conditional (LL/SC). Both CAS and LL/SC enable a thread to 

read a value from memory, modify the value, and then later atomically save the new 

value back to its original location, if and only if no other thread modified the value stored 

at that location in the interim. A CAS operation thus requires three inputs: a memory 

address, the value expected to be found at that location, and a new value that should be 

stored at the same address. If the address specified contains the expected value, the CAS 

operation atomically swaps the original value with the new value and returns 

successfully. If not, the value stored remains unchanged and the CAS is considered to 

have failed. Although CAS operates atomically, under no circumstances does it block. 

The Java code below shows the basic semantics of a CAS operation: 

public class register { 

    private Object value;    // the actual value 

 

    public synchronized boolean CAS(Object oldV,  

                                    Object newV) { 

        if(value != oldV) 

            return false; 

        value = newV; 

        return true; 

    } 

} 
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Thus, the CAS operation may be thought of as a very primitive transaction. It 

operates atomically, such that all of its changes become visible to other threads at one 

instant known as the linearization point. Its work is also isolated, in the sense that, should 

it fail, no intermediate changes will ever have been visible to any other threads. 

The CAS operation is, however, subject to the ABA problem, whereby CAS may 

falsely succeed even if the underlying value has changed (see Figure 2.1). This problem 

manifests itself when one thread issues two or more CAS operations that change the 

value stored at a given memory location from A to B, and then eventually back to A 

again. In this case, a second thread might have read the original value A prior to the first 

thread’s mutations and then later attempted to use CAS in order to change A to another 

value C. Thus, as a consequence of the ABA problem, data may easily become corrupted, 

since the guarantee provided by CAS, namely that when CAS succeeds the value hasn’t 

changed since the last read, is broken. (The presence of automatic garbage collection 

eliminates some instances of the ABA problem, but a number of others remain [48].) 

 

 

Figure 2.1: CAS and the ABA problem. 
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In contrast to CAS, LL/SC provides a more straightforward answer to the ABA 

problem, since the store operation is guaranteed not to succeed if any mutations to the 

target memory location have occurred since the last load. 

In addition to CAS and LL/SC, which have been proven to represent 

fundamentally equivalent universal synchronization primitives [43], other slightly more 

powerful nonblocking synchronization primitives include double-compare-and-swap 

(DCAS
1
), which atomically compares and swaps two words [28], and its variants: 

double-compare-single-swap (DCSS) [id.], k-compare-single-swap (KCSS) [60], and 

multi-word compare-and-swap (MCAS) [36]. In sum, however, more powerful versions 

of the CAS and LL/SC primitives generally do not offer a sufficient answer to the 

difficulties inherent in nonblocking algorithm design [19]. 

The enqueue and dequeue algorithms shown below are from the nonblocking 

concurrent queue algorithm given by Michael and Scott in [65]. They are representative 

of the complexity and fragility of nonblocking algorithms built using solely CAS. 

enqueue(Q: pointer to queue t, value: data type) 

E1: node = new node()         # Allocate a new node from the free list 

E2: node–>value = value       # Copy enqueued value into node 

E3: node–>next.ptr = NULL     # Set next pointer of node to NULL 

E4: loop                      # Keep trying until Enqueue is done 

E5:    tail = Q–>Tail         # Read Tail.ptr and Tail.count together 

E6:    next = tail.ptr–>next  # Read next ptr and count fields together 

E7:    if tail == Q–>Tail     # Are tail and next consistent? 

E8:       if next.ptr == NULL # Was Tail pointing to the last node? 

E9:          # Try to link node at the end of the linked list 

E10:         if CAS(&tail.ptr–>next, next, <node, next.count+1>) 

E11:            break         # Enqueue is done. Exit loop 

E12:         endif 

E13:      else                # Tail was not pointing to the last node 

E14:         # Try to swing Tail to the next node  

E15:         CAS(&Q–>Tail, tail, <next.ptr, tail.count+1>) 

E16:      endif 

E17:   endif 

E18: endloop 

                                                 
1
 A hardware implementation of DCAS was provided by the Motorola 68040, although its performance was 

generally quite poor. 
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E19: # Enqueue is done. Try to swing Tail to the inserted node 

E20: CAS(&Q–>Tail, tail, <node, tail.count+1>) 

 

dequeue(Q: pointer to queue t, pvalue: pointer to data type): boolean 

D1: loop                         # Keep trying until Dequeue is done 

D2:    head = Q–>Head            # Read Head 

D3:    tail = Q–>Tail            # Read Tail 

D4:    next = head–>next         # Read Head.ptr–>next 

D5:    if head == Q–>Head        # Are head, tail, and next consistent? 

D6:       # Is queue empty or Tail falling behind? 

D7:       if head.ptr == tail.ptr 

D8:          if next.ptr == NULL # Is queue empty? 

D9:             return FALSE     # Queue is empty, couldn’t dequeue 

D10:         endif 

D11:         # Tail is falling behind. Try to advance it 

D12:         CAS(&Q–>Tail, tail, <next.ptr, tail.count+1>) 

D13:      else                   # No need to deal with Tail 

D14:         # Read value before CAS, otherwise another dequeue might  

D15:         # free the next node 

D16:         *pvalue = next.ptr–>value 

D17:         # Try to swing Head to the next node 

D18:         if CAS(&Q–>Head, head, <next.ptr, head.count+1>) 

D19:            break            # Dequeue is done. Exit loop 

D20:         endif 

D21:      endif 

D22:   endif 

D23: endloop 

D24: free(head.ptr)         # It is safe now to free the old dummy node 

D25: return TRUE            # Queue was not empty, dequeue succeeded 

 

2.4 Hardware transactional memory 

In light of the fact that none of the synchronization primitives described above 

adequately address the difficulties of nonblocking algorithm design, the question arises as 

to whether a higher-level abstraction might be necessary to address their weaknesses and 

to facilitate concurrent programming. Transactional memory [48] represents a significant 

step in this direction. It builds on the abstraction of a transaction to provide hardware 

instructions that atomically modify the value of an arbitrary number of memory locations. 

In transactional memory systems, if the transaction succeeds, all updated values appear to 

change at one time; if it fails, no changes are ever recorded. 
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Most hardware-based transactional memory systems utilize processor caches to 

store tentative changes, as well as the cache coherence protocol to advertise committed 

transactions to all other processors [77]. However, such approaches are limited, to the 

extent that a transaction can only modify as many values as will fit into a processor’s 

cache. (To address this challenge, some researchers have proposed protocols that spill 

over into virtual memory after a processor’s main cache has been filled.) Furthermore, 

because hardware-based transactional memory requires hardware modifications (new 

instructions, a second set of processor caches, as well as extra storage for cache lines 

involved in an active transaction) to implement successfully, it has yet to be supported by 

any commercially available system. 

Within this context, it is instructive to compare transactional memory to 

Oklahoma update [82], an alternative hardware-based memory update operation that 

supports the updating of multiple memory locations atomically in order to simplify the 

development of nonblocking algorithms. Closely modeled on the LL/SC approach, in 

Oklahoma update a thread reserves access to a memory location and can later update that 

location if and only if no other thread has modified its value in the interim. Unlike 

LL/SC, however, which supports the atomic update of only a single memory location, an 

Oklahoma update can encompass a number of memory locations. The primary difference 

between transactional memory and Oklahoma update consists in divergent underlying 

beliefs with respect to the maximum number of independent memory locations that need 

to be controlled atomically. Oklahoma update conjectures that the maximum should be a 

number of three or perhaps four independent memory locations, placing it solidly in the 

camp of nonblocking multiprocessor synchronization primitives that are slightly more 
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powerful than CAS and LL/SC. Transactional memory, by contrast, proposes to support 

transactions of between ten to one hundred independent memory locations, a qualitative 

as well as a quantitative difference. 

 

2.5 Software transactional memory 

First developed as a stopgap measure until the arrival of hardware support, 

software transactional memory (STM) is a programming interface that provides a 

software implementation of the ideas first developed in the context of hardware-based 

transactional memory. The advantage of this approach is that it allows researchers to 

experiment with transactional memory protocols without waiting for these ideas to be 

implemented in hardware. The software approach has proven so compelling, however, 

that is raises the question of whether complete hardware support is necessary or even 

desirable. It is likely that some very low-level hardware support will be desirable to aid in 

the implementation of efficient software transactional memory systems; indeed, we make 

one such proposal in § 4.6. 

The first STM proposal was static [77]: it required the programmer to specify, in 

advance, what data would be accessed as part of the transaction. Later, however, 

Dynamic STM (DSTM) [48] generalized these ideas such that the system does not a 

priori require the user to specify which objects will be accessed from a transaction. 

The insert method shown below is a fragment from a nonblocking singly-linked 

integer list implemented using DSTM. There are several aspects worth noting about this 

code:  
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1. Classes that will be used in transactions need to support cloning through a custom 

TMCloneable interface. 

2. A target object that will be participating in a transaction must be wrapped by a 

proxy class called TMObject. 

3. The body of the code resides in a while loop, which is required in order to retry 

the transaction in case of failure. 

4. An explicit call is necessary to begin the transaction. 

5. Before accessing a transactional object, the programmer must enlist it in the 

transaction by being opened in read or read/write mode. 

6. The transaction must explicitly end with an attempt to commit its work; if commit 

fails for any reason, such as a concurrency violation, the transaction is aborted 

and control flow returns to the while loop in step 3 to retry. 

The insert method itself is essentially not transactional: while transactions begin 

and end by invoking methods of the current thread, only the set of objects specifically 

wrapped by a TMObject proxy, and then opened for reading and/or writing, actively 

participate in the transaction. 

public boolean insert(int v) { 

    // (1) List must implement TMCloneable 

    List newList = new List(v); 

 

    // (2) need to wrap the target object in a TMObject 

    TMObject newNode = new TMObject(newList); 

 

    TMThread thread = (TMThread)Thread.currentThread(); 

 

    // (3) loop to retry the transaction in case it fails 

    while(true) { 

 

        // (4) start the transaction 

        thread.beginTransaction(); 
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        boolean result = true; 

        try { 

 

            // (5) open the objects in read/write mode 

            List prevList = 

                (List)first.open(TMObject.WRITE); 

            List currList = 

                (List)prevList.next.open(TMObject.WRITE); 

 

            while(currList.value < v) { 

                prevList = currList; 

                currList = 

                    (List)currList.next.open( 

                                           TMObject.WRITE); 

            } 

 

            if(currList.value == v) { 

                result = false; 

            } 

            else { 

                result = true; 

                newList.next = prevList.next; 

                prevList.next = newNode; 

            } 

        } 

        catch(Denied d) { } 

 

        // (6) attempt to commit the transaction 

        if(thread.commitTransaction()) 

            return result; 

    } 

    return false; 

} 

 

The example above suggests that DSTM code is far easier to understand than a 

similar nonblocking algorithm based on CAS. However, the programming paradigm 

forced on the programmer by this model is still rather awkward and requires a solid grasp 

of the underlying concurrency issues. DSTM makes an effort to address this shortcoming 

by separating concurrency issues from the main programming model through the use of 

customizable contention managers, which are responsible for setting policy followed 
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when two or more transactions conflict through contention for the same resources (some 

contention managers might abort all transactions in their path, potentially leading to live-

lock, while others might use a more “polite” scheme such as exponential back-off before 

aborting another transaction). 

In contrast to DSTM, SXM [41] offers a newer STM package designed to support 

C# and the .NET Framework with a friendlier programming interface. The advantage of 

this approach is that, by using the .NET reflection package to transparently rewrite 

atomic classes, SXM is able to hide much of the boilerplate code required to manage 

transactions in DSTM. Transactions are started through a delegate that begins the 

transaction and contains a retry loop. The downside of this approach, however, is that all 

transactional methods must have an identical signature, which means that all parameters 

much be passed through an array of objects. In addition, in order to successfully intercept 

the reads and writes on fields of atomic objects, all the fields must be implemented as 

public virtual properties with appropriate get and set methods. Below is the Insert method 

as implemented with SXM: 

                              // array of objects 

public override object Insert(params object[] _v) { 

    // transaction creation is handled by the XStart  

    //    delegate 

    int v = (int)_v[0]; 

 

    // instantiation not done with new –  

    //    special factory creator method 

    Node newNode = (Node)factory.Create(v); 

 

    Neighborhood hood = Find(v); 

    if(hood.currNode != null) 

        return false; 

 

    Node prevNode = hood.prevNode; 

 

    // transparent atomic field access 
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    newNode.Next = prevNode.Next; 

 

    prevNode.Next = newNode; 

    return true; 

} 

 

An additional benefit of the SXM library is that, in addition to an obstruction-free 

non-blocking mode (called OFree), it also offers a model that uses very short critical 

sections during field reads and writes (called TMem)
2
. The TMem approach is somewhat 

less elegant than the obstruction-free mode, but it yields superior performance. In this 

model, rather than cloning objects when they are opened for writing, SXM transparently 

introduces a shadow field for each field of an atomic object. When an object is opened 

for writing, a Backup method is called that copies the value of each “real” field to its 

shadow field. If a transaction is aborted, a corresponding Restore method copies the 

saved values back from the shadow fields to the real fields. One reason that the TMem 

model performs better than the OFree approach is that a heap allocation (for the object 

clone) is not required during the Backup/Restore operations. This means less work for the 

garbage collector. Also, because shadow fields are part of the original object, and are 

allocated as part of the same heap allocation that creates that object, it is far more likely 

that the object’s real and shadow fields will be found in the same cache line during a 

Backup/Restore operation than it is that the object and its clone will be in the same cache 

line. 

 

 

 

                                                 
2
 Note that both the TMem and OFree factories in SXM are implemented directly in bytecode. A newer 

version under development, SXM2, allows factories to be defined in source code rather than bytecode. 
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2.6 Transactions in programming languages 

To address the weaknesses of library-based approaches to STM, there have been 

several attempts to integrate transactions directly into programming languages. An early 

approach developed at MIT in the 1980s was called Argus [59]. It supported distributed 

programming through dynamically created guardians and atomic actions, much like 

transactions. Argus, however, supported distributed transactions with a two-phase 

commit protocol [57] and used the guardian abstraction to model programs that could 

even survive hardware failures. These far-reaching goals resulted in a language that, 

while impressive in its scope, was too inefficient to be applied to systems that did not 

benefit from its expensive machinery. 

More recently, researchers at Cambridge have pursued a lighter-weight approach 

in the design of an atomic keyword for Java [34]. Their work builds on the idea of 

conditional critical regions (CCRs), first proposed for concurrency control by Anthony 

Hoare in 1972 [54]. This atomic keyword supports a boolean guard condition that causes 

calling threads to block until the condition is satisfied. Instead of implementing this guard 

through mutexes, the atomic keyword in Java builds the CCR concept on top of a word-

sized STM system that supports obstruction freedom. Thus, for example, the get method 

shown below is from a class that implements a shared buffer using the atomic keyword 

with a guard condition. Here, the guard condition is used to guarantee that the buffer is 

not empty when attempting a get. When the guard condition is satisfied, the atomic block 

ensures that both the items count is decremented and the last value is returned atomically: 
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public int get() { 

    atomic(items != 0) { 

        items--; 

        return buffer[items]; 

   } 

} 

 

The release of Intel’s C++ STM Compiler Prototype
3
 is one recent area of 

language work in the STM space. Intel’s STM compiler support is integrated with high-

level C++ language extensions. In Intel’s proposed language extension for atomic code, 

atomic blocks are denoted with the __tm_atomic keyword, as shown below:  

__tm_atomic { 

// code block of statement(s) 

} 

 

While reads and writes made from an atomic block appear atomic, isolated, and 

consistent with respect to all other atomic blocks in the program, there is no such 

guarantee for non-atomic regions. Closed nesting, where the effects of nested transactions 

are visible only when the outermost transaction commits, is also supported.  

Intel’s approach is to clone transactional methods marked with the 

__declspec(tm_callable) annotation. Within the cloned transactional version of the 

method, every memory read and write is transformed into a transactional read/write with 

the support of the underlying STM library. Whenever the transactional method is called 

from within an atomic block (__tm_atomic), the transactional version of the method is 

invoked; when called from outside a transaction the original version of the method is 

used. For indirect calls invoked through a function pointer, Intel’s compiler adds a 

runtime check to determine whether the caller is calling from an atomic block and 

                                                 
3
 Intel C++ STM Compiler Prototype Edition 2.0: Language Extensions and Users’ Guide, Document 

#318253-001US, revision 2.0. 
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dynamic dispatch code to invoke either the instrumented version or the original function, 

as appropriate.  

Where atomic blocks call methods not marked as tm_callable, such legacy code is 

serialized and is irrevocable (i.e., its execution cannot be undone). Such irrevocable 

operations are guaranteed to commit. However, in order to switch to irrevocable mode 

from the regular transactional mode, the current speculative transaction must be aborted 

and then the entire transaction re-executed in the irrevocable mode. 

Methods known to the programmer to be safe for transactional as well as non-

transactional use may be marked as __declspec(tm_pure). Transactional function clones 

are not created for tm_pure methods. However, such methods should not access, even for 

read, any static or non-transaction local memory; otherwise its behavior is undefined.  

One interesting aspect of Intel’s language approach is the class-level tm_callable 

annotation. When applied to a C++ class, this annotation makes all member functions, 

both virtual and non-virtual, assume the tm_callable attribute. While on the one hand this 

is simply syntactic sugar that saves the programmer from marking each method 

individually, it is also a first step towards using abstract data types as the basic atomic 

building blocks of a program. The class-level tm_callable attribute is even inherited by 

derived classes in Intel’s model.  

Intel’s language proposal also includes an explicit abort operation via the 

__tm_abort statement, which causes a control flow change: execution continues with the 

next lexical statement following the innermost transaction’s scope. This is similar to the 

Retry operation proposed by some STM systems, although it does not automatically retry 

the current transaction. 
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Chapter 3 

Approach 

3.1 Language support 

The Peet compiler introduces special support for transactional programming in 

order to help alleviate the difficulties of programming with an STM library described in 

Chapter 2. By supporting atomic types directly in the language and transparently 

rewriting field accesses for those objects, the compiler hides most of the transformations 

required to convert a sequential algorithm to one that uses STM. This chapter describes 

the programming language interface supported by Peet and shows how the code 

generation pass handles the various language elements. Chapter Four discusses the STM-
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specific optimizations supported by the compiler, as well as modifications to the SXM 

library necessary to support Peet’s functionality. 

Technically, Peet is implemented as a post-compilation pass that rewrites binary 

code
1
, and it therefore does not have the opportunity to process new keywords in the 

source code. Instead of first-class keywords, Peet uses annotations to describe atomic 

types and methods and then inserts calls to an optimized version of the SXM library in 

order to implement the transactional memory semantics. Annotations are an attractive 

way to prototype language features because they are easily extensible, familiar to 

programmers, and do not require introducing new syntactic structures. Another advantage 

of this approach is that it allows Peet to support bytecode generated by Java, C# or Visual 

Basic (i.e., any front-end compiler that produces standard bytecodes is supported). 

Section 3.2 gives the correctness properties of our transaction model. Section 3.3 

introduces the atomic attribute, which is used to annotate atomic types and methods; 

atomic blocks are covered in Section 3.4. A comprehensive definition of atomic types, 

methods, and blocks is provided by Section 3.5 and Section 3.6 covers the limitations and 

restrictions on atomic code in C# and Java. Retry semantics and the conditional execution 

of atomic blocks are described in Section 3.7, and our proposed language extensions for 

transactional boosting are detailed in Section 3.8. 

 

3.2 The transaction model 

The concurrency model supported by the compiler and underlying STM is known 

as linearizability [44], where each committing transaction appears to take effect 

                                                 
1
 Peet is implemented as a binary rewriter executed subsequently to the compiler. The Phoenix compiler 

framework developed by Microsoft Research is used for rewriting .NET programs; the JikesBT library is 

used to rewrite Java programs. 
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atomically at the linearization point. Every transaction is atomic, isolated and consistent 

[86]. For a formal definition of what a memory transaction should be, see Guerraoui and 

Kapalka [30] who extend linearizability, as defined by Herlihy and Wing [43, 44], to the 

transactional memory sphere. Guerraoui and Kapalka define a safety property known as 

opacity that captures the intuition that (1) all operations performed by all committing 

transactions appear to take effect at a single, indivisible point (the linearization point); (2) 

no operation performed by any aborting transaction is ever visible to other transactions 

(including live ones); (3) the system preserves real-time order; and (4) every transaction 

always observes a consistent state. Our STM model ensures opacity. 

The progress condition of obstruction freedom [44] guarantees that some thread 

will make progress. However, we make no guarantees about fairness or liveness [58]; 

these concerns are the responsibility of the contention management policy [76]. Finally, 

our STM model does not support interactions between transactional and non-transactional 

threads; such conflicts are detected by all code (including dynamically loaded code) 

processed by the compiler, and exceptions are thrown. This model is generally referred to 

in the literature as weak atomicity [6], although our model is safe in the sense that 

interactions between transactional and non-transactional threads are detected. Finally, 

nested transactions are not supported (see § 3.8 for a proposed alternative). 

 

3.3 The atomic attribute 

The basic annotation is the Atomic attribute, which can be used on both types and 

methods. When applied to types, the Atomic attribute indicates that the fields of that type 
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should be accessed from within a transaction. The code fragment below shows an atomic 

Node class from the List benchmark: 

[Atomic] 

public class Node { // List element 

    public int value; // key for list element 

    public Node next; // reference to next list element 

} 

 

The fields of atomic classes may be public, internal, protected, private, static, 

const, or readonly. The only restriction is that the field types must either be value types, 

or, in the case of reference types, the reference types must themselves be marked as 

atomic. Certain special pre-existing objects that are known to be safe for transactional use 

but are not marked with the Atomic attribute are permitted when the field reference is 

tagged with the TxSafe attribute, which informs Peet that the field is in fact safe for 

transactional use
2
. This is a type of programmer override of the restrictions of 

transactional programming, but should be used only where the programmer is certain the 

object is thread-safe. 

Warning messages are issued where non-atomic data types are accessed from 

transactional methods. Error messages are also issued where atomic data types are 

accessed from non-transactional methods. Unfortunately, however, because Peet is a 

post-compiler, it may not see dynamically loaded code in time to catch such errors; they 

are caught at runtime and exceptions are thrown. 

The code fragment below shows a portion of the SkipList class. The Random 

type, defined by the .NET Framework, is not atomic. However, because the programmer 

                                                 
2
 The TxSafe attribute can be applied to classes, methods, or fields that are considered safe for use is 

transactions. TxSafe methods are permitted to access atomic fields without an active transaction, which 

may be unsafe. 
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knows that it is safe for use in a transaction (i.e., it is thread-safe), the TxSafe attribute is 

used to indicate this fact. The IntSetBenchmark base class is also an atomic class; 

inheritance of atomic types is covered in § 3.6.3. 

[Atomic] public class SkipList : IntSetBenchmark { 

    private const int MaxLevel = 32; // Maximum level  

 

 

    // Probability factor 

    private const double Probability = 0.5; 

 

    // The skip list header 

    private readonly Node header; 

 

    // Random number generator 

    [TxSafe] // safe for transactional use 

    private Random random = new Random();  

 

Methods and properties
3
 can also be annotated with the Atomic attribute to 

indicate that the entire method runs in a transaction. Atomic methods, by default, do not 

require or create a transaction. If a transaction exists on the current thread when the 

method is called, the atomic method’s work will become part of that transaction. If, on 

the other hand, no transaction exists, the method will run unsynchronized. This design 

choice was made to make the behavior of unmarked methods as close to that in standard 

Java or C#. This approach works well because, in most cases, a class is marked as atomic 

and then a few entry points are marked as beginning a transaction; all other methods in 

the type implicitly join the active transaction. 

All methods belonging to an atomic type are assumed to support transactions. 

Atomic methods are not cloned; the instrumented version can run correctly with or 

                                                 
3
 In C#, properties are represented by a pair of get and set methods. For example, an integer property named 

counter would be represented internally by the methods int get_counter() and 

set_counter(int newVal). Java does not explicitly support properties. 
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without a transaction. While this reduces code bloat (cloning methods effectively doubles 

code size), it also means that even threads that run without a transaction incur some of the 

overhead of the STM model. Where an atomic method is run without a transaction, 

concurrent access to atomic data types is illegal. Such access is detected at runtime and 

exceptions are thrown. There is no built-in ability to recover from this illegal state. 

Methods can also be marked with an attribute indicating that they begin a 

transaction. Such methods define the scope of a dynamic transaction, which does not 

attempt to commit until the method returns. Closed nesting is not well supported—nested 

transactions are flattened. To ensure that a method is always run in the context of a 

transaction, the programmer can provide a parameter to the Atomic attribute indicating 

the desired semantics. The available options are Uses (this is the default behavior when 

no parameter is specified), Requires, Starts. The Requires option indicates that the 

method must always run in a transaction. If no transaction exists on the current thread, 

the method will automatically begin a new transaction before executing the user’s code. 

However, if a transaction already exists, the ―Requires‖ method will simply use it. In 

contrast, the Starts option indicates that the method will always begin a new transaction.  

The Contains method shown below always runs in a new transaction: 

[Atomic(XKind.Starts)] 

public override bool Contains(int v) { 

    Neighborhood hood = Find(v); 

    return hood.currNode != null; 

} 

 

3.4 Atomic blocks 

In addition to the method-based approach to transaction creation represented by 

the [Atomic(XKind.Starts)] annotation, Peet also supports the using(new XAction()) { } 
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block. This approach allows for dynamic control of transaction creation at the call site, so 

that one method can be called from different places, sometimes with, and other times 

without, a transaction. Critically, local variables used inside the atomic "using" block are 

saved and restored on abort, so that the block is semantically idempotent. Without this 

safeguard, the effect of transaction aborts and automatic restarts might be visible through 

mutations of local variables that were not members of atomic objects. 

using(new XAction()) { 

    // code here runs in a transaction 

} 

 

Both Visual Basic and C# support a ―using‖ construct. Unfortunately, J#, .NET’s 

version of Java, does not. To overcome this limitation, however, Peet recognizes a special 

try-finally block preceded by an instantiation of the XAction class as being equivalent to 

a ―using‖ block, as shown in the code fragment below: 

// the J# version of a using(new XAction()) { } block 

new XAction(); 

try { 

    // code here runs in a transaction 

} 

finally { 

    XAction.TxFinally(); 

} 

 

The XAction() constructor used to syntactically mark the start of an atomic block 

is a no-op. The XAction.TxFinally method, however, is used to clean up the current 

transaction, as shown below. Where the transaction’s txJoinCounter is non-zero, this 

indicates that the atomic method or block simply joined an already existing transaction 

and thus the end of the method or block does not indicate the end of the dynamic 

transaction. 
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Tx-Finally() 

1 if currentTx = NIL 
2  then return 
3 if currentTx.txJoinCounter ≠ 0 
4  then currentTx.txJoinCounter-- 
5   return 

6 currentTx  currentTx.parent 

 

3.5 Definition of atomic types, methods and blocks 

This section defines the semantics of the atomic annotation as applied to types, 

methods and blocks, in terms of their transformation into standard C#.
4
 

3.5.1 Atomic types 

An atomic type is a standard Java or C# type whose data can be accessed from 

within a transaction. Each method that begins a transaction in an atomic type defines the 

scope of a dynamic transaction; this includes constructors, static methods, and static 

initializers. At runtime, the data belonging to an atomic object is accessed through the 

underlying STM interface described in Chapter 4. The model verifies that code accessing 

atomic objects is executed in the context of a transaction.
5
 

In its blocking mode, each atomic object implicitly implements the IRecoverable 

interface, defined below, and its two methods: Backup and Restore. These methods copy 

the value of the ―real‖ fields to the ―shadow‖ fields and back. Backup, which is invoked 

on the first attempt to write to an atomic object in the current transaction, copies the real 

fields to the shadow fields. The first attempt to write an atomic object is detected through 

the object’s ownership field. If the writing transaction is not already the owner that 

indicates this is the first write by the transaction. Restore, which is invoked when the 

                                                 
4
 Once represented by a C# transformation, the standard semantics of that language are assumed. 

5
 Warnings or error messages (depending on the compiler settings) are issued where atomic types are 

accessed outside of a transaction, or where non-atomic types are accessed inside a transaction. 
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previous writer to the object is found to have aborted, copies the last known good values 

from the shadow fields back to the real fields. The IRecoverable interface is defined as 

follows: 

    // Objects that can be backed-up and restored 

    // The main interface for blocking atomic objects 

    public interface IRecoverable { 

        // Create a backup copy 

        void Backup(); 

 

        // Restore backup copy 

        void Restore(); 

    } 

 

For each field in an atomic type, our model defines a shadow field (named 

fieldname$shadow) that is used to store the backup value during the execution of a 

transaction. In addition, atomic types implicitly implement the Backup and Restore 

methods of the IRecoverable interface to copy the pre- and post-transactional values from 

the actual fields to the copies (on transaction start) and back (on transaction abort). Const, 

readonly, and TxSafe fields are considered idempotent and therefore do not require 

shadow fields. 

Every atomic object also defines a reference to the appropriate SynchState object, 

which maintains the information about the transaction(s) currently reading and/or writing 

the atomic object’s data. In the blocking model, this state is maintained by the 

TMemSynchState class; obstruction-free atomic objects use the OFreeSynchState type. 

All atomic objects define the appropriate SynchState object, instantiating the SynchState 

in the atomic object’s constructor(s). Note that the SynchState field must be public, 

because it is accessed by algorithms inlined in the user’s code. 
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The code fragment below shows pseudocode for the Node type described in § 3.3 

in terms of its C# transformation: 

                             // implements IRecoverable 

[Atomic] public class Node : IRecoverable {  

    public int value; 

    public Node next; 

 

    // SynchState reference added by the compiler 

    public TMemSynchState synch; 

 

    // default constructor added, if necessary 

    public Node() { 

        // code to instantiate the SynchState added 

        synch = new TMemSynchState(this); 

    } 

 

    // shadow fields 

    private int value$shadow; 

    private Node next$shadow; 

 

    // copy fields to shadow fields 

    public void Backup() { 

        value$shadow = value; 

        next$shadow = next; 

    } 

 

 

    // copy shadow fields to fields 

    public void Restore() { 

        value = value$shadow; 

        next = next$shadow; 

    } 

} 

 

In the obstruction free model, every atomic object implicitly implements the 

ICloneable interface (or its analog in Java, the Cloneable interface) and its Clone method: 

    // The main interface for nonblocking atomic objects 

    public interface ICloneable { 

 

        // Create a new copy of the object 

        object Clone(); 

    } 
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The Clone method creates a shallow copy of the atomic object by creating a new 

instance of the object and then copying the fields of the current object to the new object. 

For value type fields, a bit-by-bit copy of the field is performed. If a field is a reference 

type, the reference is copied but the referred object is not; therefore, the original object 

and its clone refer to the same object. In C#, the object.MemberwiseClone method is a 

shortcut that automatically performs these tasks, as shown below, whereas in Java the 

actual code must be generated: 

                             // implements ICloneable 

[Atomic] public class Node : ICloneable {  

    public int value; 

    public Node next; 

 

    // SynchState reference added by the compiler 

    public OFreeSynchState synch; 

 

    // default constructor added, if necessary 

    public Node() { 

        // code to instantiate the SynchState added 

        //    represents the transaction-state of the obj 

        synch = new OFreeSynchState(this); 

    } 

 

    // clone the object 

    public object Clone() { 

        return this.MemberwiseClone(); 

    } 

} 

 

3.5.2 Atomic methods 

For atomic methods that may begin new transactions, the semantics of our model 

defines the transactional machinery required to start a new transaction, commit or abort 

it, retry aborted transactions, and trap stray exceptions from user code. Pseudocode for 

this transformation is shown below: 
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[RetType] retval; 

while(true) { // keep trying until the tx commits 

    XState me = XAction.TxStart(txKind); 

    try { 

 

        /* User's  

                  Code  

                       Here */ 

 

        retval = [stack]; 

        if(me.Commit())   // try to commit 

            goto ReturnLabel; // success – return now 

    } 

    catch(AbortedExcecption) { // handle abort requests 

        XAction.TxHandleAbort(me); 

    } 

    catch(Excecption e) { // trap user exceptions 

        me.Abort();       // abort the transaction 

        throw e;          // rethrow the errror 

    } 

    finally { 

        XAction.TxFinally(me); 

    } 

} 

ReturnLabel: 

return retval; 

 

The pseudocode generated by the compiler and shown above relies on several 

static helper functions: TxStart, TxHandleAbort, and TxFinally. The TxStart method is 

defined below: 

Tx-Start(txKind) 

1 switch txKind 
2  case STARTS 

3   currentTx  new XState(currentTx) 
4   return currentTx 
5  case REQUIRES 

6   if currentTx = NIL   must be a root 

7    then currentTx  new XState(NIL) 
8     return currentTx 

    we aren’t starting a new tx, so just increment the counter 

    ensures that we don’t commit on the way out 
9   currentTx.txJoinCounter++ 
10   return currentTx 
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The TxHandleAbort static helper method is defined below; see § 3.4 for the 

TxFinally algorithm. 

Tx-Handle-Abort(me) 

1 if me ≠ NIL  me.txJoinCounter ≠ 0 

2  then throw Aborted-Exception 

 

In contrast to the delegate-based approach used by the SXM library (and 

described in § 2.4), one advantage of transactions started using the atomic attribute as 

shown above is that the method parameters do not need to be passed as an array of 

objects; likewise, the return value, if any, can also be typed correctly. 

3.5.3 Atomic blocks 

Atomic blocks by definition require an ambient transaction, meaning that a 

transaction will be created by the block, if one doesn’t already exist. Where a transaction 

exists when the atomic block starts, the block will join that existing transaction (the 

XAction.TxStart static helper method defined above shows how this is done). Atomic 

methods called from within an atomic block will simply join the work of that block’s 

transaction. Non-atomic methods not marked with the TxSafe attribute cannot be called 

from an atomic block; error messages are issued by the compiler. 

Atomic blocks are similar to atomic methods, with two significant differences: 

first, no new return value is generated when the transaction ends; control flow simply 

passes to the end of the atomic block; second, and more interestingly, all local variables 

accessed within the atomic block must be backed up on transaction start and restored, if 

the transaction aborts. Because local variables are stored on the stack, not in fields of the 

atomic object, they are not captured by the environment of the atomic object. In order to 

maintain the correct transactional properties for atomic blocks, our model defines an 
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additional shadow variable for each local used in an atomic block. Atomic blocks may 

only access local variables (protected explicitly by the atomic block) or fields of atomic 

objects (protected by the transactional model); access to fields of non-atomic objects not 

marked with the TxSafe attribute is not permitted. The code fragment below shows the 

use of an atomic block and a local variable: 

        public override bool Insert(int key) { 

            using(new XAction()) { 

                key++; 

                NestedInsert(key); 

            } 

        } 

 

Atomic blocks are defined in terms of their equivalent C# transformation below: 

public override bool Insert(int key) { 
 

    // backup all locals used in the atomic block 

    int key$shadow = key; 

 

    START_LABEL: // retry loop 

 

    XState me = XAction.TxStart(); // start the tx 

 

    using(new XAction()) { 

        // try { - provided by the using block 

 

            /* USER CODE HERE */ 

            key++; 

            NestedInsert(key); 

 

            if(!me.Commit())   // try to commit 

                goto START_LABEL; 

        // } - end try 

        catch(AbortedExcecption) { // abort requests 

 

            // restore locals used in the atomic block 

           key = key$shadow; 

 

            XAction.TxHandleAbort(me); 

        } 

        catch(Excecption e) { // trap user exceptions 
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            // restore locals used in the atomic block 

            key = key$shadow; 

 

            me.Abort();       // abort the transaction 

            throw e;          // rethrow the errror 

        } 

        // finally { - provided by the using block 

            // change Dispose call to TxFinally call 

            XAction.TxFinally(me); 

        // } - end finally 

    } 

} 

 

Thus mutations to local variables in an atomic block are captured and restored 

according to the fate of the ambient transaction. Mutations to the fields of other atomic 

objects are also safe, as such objects participate in the transaction by definition. 

Mutations to other, non-atomic and non-local, data are detected and the compiler issues 

warnings. Similarly, calls to non-atomic methods (e.g., I/O routines) are not considered 

safe; further warnings are issued. 

 

3.6 Limitations and restrictions 

This section describes the limitations and restrictions on atomic types, methods, 

and blocks, with a focus on how they interact with other standard language features, such 

as static and virtual methods, reflection, unsafe code, inheritance, nested types, and 

anonymous methods. 

3.6.1 Static and virtual methods 

Static methods and fields are fully supported. Virtual methods are supported in 

atomic types, although the compiler does not perform interprocedural optimizations for 
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such methods
6
 (see § 4.2 for details on the interprocedural optimizations supported for 

non-virtual atomic methods). This limitation on the compiler’s interprocedural 

optimizations also applies to calls made through interfaces or delegates, where the 

ultimate runtime type of the target object cannot be safely determined statically. 

Dynamically loaded types are supported and treated no differently than statically loaded 

types.
7
 Because our model is static in the sense that the compiler must process 

atomically-annotated code prior to execution, using reflection to dynamically add new 

fields or methods to an atomic object is not supported. Finally, nested transactions are not 

supported (see § 3.8 for a proposed alternative). 

3.6.2 Unsafe code and pointer aliasing 

Atomic methods may not contain unsafe code in C#
8
. By consequence, this 

restriction disallows a programmer from accessing direct pointers to fields of atomic 

objects. Pointer aliasing would be backdoor through which the transactional model could 

be bypassed and therefore is not permitted. The atomic attribute of a type or method can 

be detected using standard reflection techniques; atomic blocks, however, are not visible 

through reflection as they are not defined via attributes. 

3.6.3 Inheritance of atomic types 

Atomic types may be subclassed; both the base class and the derived type must be 

marked as atomic (the compiler will issue error messages if this requirement is violated; 

the only exceptions are implicit derivation from the object base type and the immutable 

                                                 
6
 Virtual methods are marked explicitly with the virtual keyword in C#. In Visual Basic, virtual methods 

are defined with the Overridable keyword. In Java, where all methods are presumed to be virtual, the 

compiler currently does not support interprocedural optimization. 
7
 The programmer is obviously responsible for ensuring that any atomic types loaded dynamically have 

been processed by the STM compiler. 
8
 Atomic methods containing code marked as ―unsafe‖ in C# are detected and the compiler issues an error 

message. 
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string type). When an inheritance relationship is established among two atomic classes, 

the compiler automatically chains the backup and restore methods in the derived type to 

those in the base type so that when the derived type is backed-up or restored, the methods 

of both classes are called, ensuring that all fields of the aggregate atomic object are 

protected; this includes private as well as static fields. 

3.6.4 Nested types and anonymous methods 

Atomic types may be nested in atomic or non-atomic outer classes. Practically 

speaking, however, it will usually make sense for both the inner and outer classes to be 

marked as atomic, particularly in Java, where fields of the outer class can be accessed 

directly from the ―this‖ reference in methods of the inner class.
9
 Anonymous methods in 

C# cannot be marked as atomic, although atomic blocks can be used to access atomic 

objects. In Java, anonymous inner classes are likewise not supported for accessing 

transactional objects. Finally, atomic types support generics and can be used as generic 

types, although this generally only makes sense where the instantiated generic type is also 

marked as atomic. 

3.6.5 Exceptions 

There is some debate in the literature about how to handle exceptions thrown 

from within transactions. Harris [33] describes some of the possible approaches for 

determining the correct state after an exception is thrown. While a number of possibilities 

exist, the most standard technique is to trap the exceptions that escape a transaction, abort 

the transaction, and then re-throw the error. The problem here is that it is possible that the 

exception object may contain references to transactional data whose state is rolled back 

                                                 
9
 In Java, the inner class has a hidden field this$0, which holds a reference to the outer object. This hidden 

reference is used for all outer class field access from the inner type. 
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by the abort operation. Value (i.e., not reference) data stored in the exception object, on 

the other hand, will remain unaffected by an abort operation. This means that the state 

seen by the creator of the object may or may not be the same as that seen by its recipient. 

One solution favored by transactional purists is to mark the exception types themselves at 

atomic, ensuring that their state is rolled back when the transaction aborts. But this 

approach has the disadvantage of making it impossible for a transaction to communicate 

in any meaningful way with the recipient of an exception. Because there is no broad 

consensus in this area, our model allows the programmer to decide which approach is 

preferable. By default, exception objects that are not marked as atomic will be thrown in 

the usual fashion, with all data from within aborting transaction unmodified. Otherwise 

the programmer can mark exception objects as atomic – the throw mechanism will still 

work but any state created within the transaction will be rolled-back by the abort 

operation. 

 

3.7 Retry and conditional execution of atomic blocks 

The SXM library supports a retry operation that waits until the current transaction 

has been aborted before re-attempting execution of the transaction. This is useful when 

the value read in one transaction depends on another transaction to modify that value for 

its success. The canonical example is that of a shared buffer, where one transaction is 

reading a value from the buffer while another is writing a value to it. The code below 

shows the Put method, which retries whenever the buffer’s size reaches its maximum 

capacity. The retry operation then waits for another transaction to read and remove a 

value from the buffer (thereby invalidating and aborting this transaction), before retrying. 



 42 

// Put a value into the buffer. Retry if full. 

[Atomic(XKind.Starts)] 

public void Put(int v) { 

    // check for the condition 

    if(buffer.size + 1 == buffer.capacity) 

        XAction.Retry(); // retry... 

 

    buffer.data[++buffer.size] = v; 

} 

 

Peet offers an alternate way of expressing this behavior. Instead of coding an 

explicit check for a condition and then executing the retry function, the condition can be 

more elegantly expressed as a parameter of the using(new XAction(booleanCondition)) { 

} block. This overloaded version of the XAction constructor causes the compiler to 

generate code rather similar to that shown above. The programmer, however, can express 

that behavior as shown here: 

// Put a value into the buffer when not full 

[Atomic(XKind.Uses)] 

public void Put(int v) { 

                      // condition 

    using(new XAction(buffer.size + 1 != buffer.capacity)) 

        buffer.data[++buffer.size] = v; 

} 

 

In this case Peet overloads the meaning of the using block. Normally, the value 

passed to the XAction constructor would only be evaluated once. Peet, however, 

generates code that causes the entire expression to be reevaluated every time the 

transaction is executed. The body of the using block is executed only when the Boolean 

condition evaluates to true. 
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3.8 Transactional boosting 

Transactional boosting [45] is a technique that transforms highly-concurrent 

linearizable objects into transactional objects.  Each method call is associated with an 

abstract lock, and locks for non-commuting calls conflict. Each method call must also 

have an inverse, which is logged and applied to the object when a transaction aborts. As 

discussed elsewhere, transactional boosting can enhance both the concurrency and 

performance of shared objects. Finally, transactional boosting is a safe alternative to open 

nested transactions [69]. 

Consider, for example, a shared set providing methods to add and remove integer 

items. Calls with distinct arguments commute (say, add(4) and remove(5)). When add(4) 

is called, the inverse remove(4) call is logged, in case the add operation must later be 

undone. Operating at this level of abstraction has advantages over more traditional STM 

models of word-based or object-based conflict detection and resolution. For example, 

consider a standard STM implementation of a sorted integer list containing the elements 

{1, 3, 5}. While there is no reason that operations to add(2) and add(4) cannot execute 

concurrently, these operations will in fact conflict in standard STM systems, since one 

transaction will always write to a node read by the other. 

By exploiting the programmer’s understanding of an object’s semantic properties, 

transactional boosting makes it possible introduce concurrency where traditional STMs 

do not. The initial proposal for transactional boosting, however, required that the 

programmer write special wrapper classes for existing linearizable objects in order to 

build the undo logs. We eliminate the need for explicit wrappers by introducing language 

and compiler support for specifying method inverses and abstract locks. Rather than 
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writing code to express the locking and undo logging, our approach uses annotations to 

specify the behavior of transactional boosting via a contract technique. 

We support transactional boosting through three new annotations: TxBoosting, 

Inverse and AbstractLock. The TxBoosting attribute is applied to a class instead of the 

Atomic attribute; it signifies to the compiler that the type is safe for transactional use, but 

that its data does not need to be protected in the traditional manner because the object is 

already linearizable. The Inverse attribute is applied to a method in order to identify its 

logical inverse, which must have the same signature as the marked method. The Inverse 

annotation also accepts a parameter specifying under what circumstances the inverse call 

should be logged for undo purposes. While custom handlers can be specified, generally a 

boolean return value is sufficient to indicate that the method has successfully altered the 

abstract state of the object, thus requiring that the inverse operation be logged. In the 

example below, the ReturnsTrue flag indicates the corresponding method inverse, 

Remove, should only be logged when the Insert method executes successfully (i.e., if the 

Insert method fails, the Remove method is not logged, as there is no change in the 

object’s state that must be undone): 

[TxBoosting] 

public class RBTree { 

    [Atomic(XKind.Starts)] 

    [Inverse(InverseKind.Method, "Remove",  

        InverseCondition.ReturnsTrue)] 

    public bool Insert([AbstractLock] int key) { 

        // ... 

    } 

 

    [Atomic(XKind.Starts)] 

    [Inverse(InverseKind.Method, "Insert",  

        InverseCondition.ReturnsTrue)] 

    public bool Remove([AbstractLock] int key) { 

        // ... 

    } 
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} 

 

Exceptions thrown from boosted methods operate in the same way as exceptions 

thrown from regular atomic methods. The exception is trapped by an outer exception 

handler inserted by the compiler and the current transaction is aborted. In the case of a 

boosted method, the abort procedure requires executing the log of inverse operations and 

the release of any abstract locks. If a boosted method threw an exception prior to 

completing its action, the inverse method is expected to detect and undo any partial 

updates. 

The optional AbstractLock attribute identifies the parameter that defines the 

abstract lock that must be acquired by this method. Without the AbstractLock annotation, 

transactional boosting automatically acquires an exclusive lock, resulting in the 

serialization of all Insert calls. With the addition of the AbstractLock attribute, however, 

the abstract lock acquired only blocks on the Insert operations for this particular value. 

Note that such key-based locking may block commuting calls (e.g., two calls to Insert(3) 

where 3 is in the set), but it provides sufficient concurrency for practical purposes. 

Abstract locks are automatically released when the transaction commits or, where it 

aborts, after the undo log has been executed. For cases where the Inverse and 

AbstractLock attributes are not sufficiently flexible to capture the desired concurrency 

semantics of a transactionally boosted object (see, e.g., the HeapRW example [45]), the 

model permits programmers to invoke helper methods that perform the customized 

inverse operation. This compiler and language support for transactional boosting achieves 

the same striking performance improvements as the prior hand-crafted support reported 

by Koskinen and Herlihy in [45]. For example, Figure 3.1 shows the performance 
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provided by the compiler for transactionally boosted skip lists using standard and key-

based two-phase locks: 

 

Figure 3.1: Throughput for a transactionally-boosted skip list using standard and key-

based two-phase locks 
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Chapter 4 

Optimizations 

4.1 Properties 

Software transactional memory systems can be categorized along several axes. 

First, STMs can be classified as word-based
1
, synchronizing on uninterpreted regions of 

memory, or object-based, synchronizing on language-level objects. Second, they can 

either use short locks or support a nonblocking progress condition such as obstruction 

freedom. Finally, they may or may not support fully consistent reads and orthogonal 

contention management. Much recent research has focused on word-based systems [1, 

15, 16, 17, 25, 74], which are well-suited for “unmanaged” languages such as C or C++. 

                                                 
1
 In practice, such systems usually use cache lines as their most basic unit of synchronization. 
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If, however, we turn our attention to “managed” languages such as Java or C#, 

object-based STM systems have a number of attractive features. Because memory 

accesses are routed through method calls, it is feasible to provide strong atomicity [5, 6, 

52, 66, 80], ensuring that transactional and non-transactional code are properly 

synchronized, thus avoiding a class of difficult-to-detect synchronization errors. 

Moreover, object-based designs support transactional boosting [45], a safe alternative to 

open nested transactions that can be used to enhance concurrency for “hot-spot” shared 

objects. Finally, object-based STMs offer better opportunities for optimization because 

the semantics of object-oriented languages naturally provide the context for each field, 

allowing for a higher level understanding of memory access patterns. 

Peet does not support concurrent access to atomic data structures among 

transactional and non-transactional threads. While any access to an atomic object from a 

non-transactional method is disallowed by the compiler, it is possible for dynamically 

loaded code to avoid these static checks. Because Peet is a post-compiler it cannot 

guarantee that it will see all dynamically loaded code at compile time. However, were 

Peet’s STM technology integrated with the main C# compiler, this problem would be 

obviated.  

At runtime, if a (transactional) method running without a transaction concurrently 

accesses an atomic object being used by one or more transactional threads, such conflict 

is detected. The STM library checks for actively writing transactions, even where a 

reader or writer is currently running outside of the transactional context. In such cases, a 

PanicException is thrown at the non-transactional thread, as shown by the fragment from 

the atomic read and write algorithms below. While not an ideal solution, this model 
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leaves open the possibility that the conflicting transactional writer could be aborted, 

which would allow the non-transactional thread to proceed.  

    // Atomic reads and atomic writes 

    if(me == null) // not in a transaction, update in place 

        if(oldWriter == null) 

            return oldLocator.newObject; 

        else 

            switch((XStates)oldWriter.state) { 

                case XStates.COMMITTED: 

                    return oldLocator.newObject; 

                case XStates.ABORTED: 

                    return oldLocator.oldObject; 

                case XStates.ACTIVE: 

                    throw new PanicException( 

                        "Tx/not-tx conflict"); 

            } 

 

The most straightforward way to provide an object-based STM is as a library [41, 

47, 48, 62]. However, it has been our experience, and the experience of others [14], that it 

is difficult to implement object-based STM libraries that are both efficient and provide a 

simple programming interface, because a simplified interface usually requires a high 

level of abstraction that does not permit non-local optimizations. As a programming 

model, transactions have a pervasive influence on both data and control flow. For 

example, the DSTM library [48], the first library of this kind, required programmers to 

express data and control structures in an idiosyncratic way, explicitly opening and closing 

shared atomic objects, and hand-coding retry loops. One important advantage of the 

DSTM2 [47] and SXM [41] libraries, which build on DSTM, was that they offered a 

more natural programming interface than their predecessor, automatically generating 

transactional “wrappers” around fields of shared atomic objects, and automatically 

retrying failed transactions. Nevertheless, while transactional wrappers led to a simpler, 

less error-prone programming style, overheads could be high, since libraries did not know 
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how they were used by clients, and there was little or no opportunity for non-local 

optimization. Dalessandro et al. report similar dissatisfactions with the RSTM2 [14] 

library. 

It is the premise of this chapter that compiler support is the key to achieving both 

a simple programming interface and adequate performance in object-based STM systems. 

Fortunately, we show that relatively straightforward measures can be very effective. 

Underlying these measures is an STM model that uses annotations to describe atomic 

types and methods. Annotations are an attractive way to prototype language features 

because they are easily extensible, familiar to programmers, and do not require 

introducing new syntactic structures. We describe an STM compiler that performs a 

dataflow analysis to determine whether an atomic object is accessed in read or write 

mode and whether a specific atomic field access is guaranteed to occur subsequent to a 

previous use of that object. Based on this information, the compiler makes more efficient 

use of the STM library, inlining much of the transactional machinery directly in the user's 

code in the form of bytecode instructions. The compiler supports a natural and largely 

transparent programming interface, and, to date, offers a performance improvement of 

between four and ten times compared with the same algorithms implemented solely with 

an STM library. This performance improvement helps close the gap between STM 

systems and conventionally synchronized concurrent algorithms. 

This chapter makes the following contributions: 

 This is the first application of whole object dataflow analysis to track the state of 

open transactional objects. 
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 Subsequent reads and writes can be made entirely lock-free, even in the context of a 

blocking STM that relies on short-lived locks for initial reads and writes. 

 Based on this application, compiler optimization can yield non-blocking, obstruction-

free STMs that perform at least as well as comparable blocking systems. 

Section 4.2 describes the static whole object analysis performed by the compiler 

in order to make the most efficient use of the underlying STM library. Sections 4.3 and 

4.4 detail the optimizations unique to the blocking and obstruction-free models, 

respectively. Library optimizations that support the retry operation and conditional 

atomic blocks outlined in § 3.7 are the focus of section 4.5. Section 4.6 proposes a novel 

variant of the Compare-and-Swap hardware primitive specifically designed to support 

STM libraries. Finally, section 4.7 describes important optimizations in the handling of 

atomic arrays. 

 

4.2 Whole object analysis 

Today’s STM systems can be broadly divided into two categories depending on 

the underlying progress condition they support (i.e., a non-blocking progress condition 

such as obstruction-freedom, or a blocking model that uses short-lived locks). The 

compiler and the underlying STM library support both approaches. Conventional wisdom 

holds that although non-blocking algorithms have nicer theoretic properties (e.g., no 

deadlock or priority inversion), they are nearly always significantly outperformed by 

functionally equivalent blocking algorithms. We find that with good compiler and library 

optimizations this no longer holds true—our obstruction-free mode outperforms the 

blocking mode in nearly all cases. 
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We have approached optimizations at two levels: traditional flow-based compiler 

optimization directed towards generating more efficient code and direct optimizations in 

the underlying STM library. Both have turned out to be extremely valuable in achieving 

our overall performance results. The compiler supports a whole object view of dataflow 

analysis that builds on our object-based language interface for STM. In the underlying 

STM library, we made a number of improvements to the transactional synchronization 

and validation algorithms that maintain the transactional state of each atomic object. 

As noted by Harris et al. in [38], library-based STM systems blindly redirect all 

heap access through the STM interface, without first checking whether the object is 

thread-local or has been opened previously. Thus, dataflow analysis can help determine 

whether an atomic object must be accessed transactionally, or is guaranteed to be thread-

local. Second, it can determine when a field is accessed for a first or second (i.e., 

subsequent) time, guaranteeing that the object is already open for reading or writing. This 

is possible primarily because the compiler is built on top of an object-based STM, not a 

word-based one as in [34]. 

4.2.1 Partial redundancy elimination 

The compiler can exploit our observation that field reads performed on atomic 

objects that the transaction has previously read or written can proceed without any locks 

to significantly reduce the overhead of STM. First the compiler must be able to detect 

those atomic field accesses guaranteed to occur subsequently to a prior access by the 

same transaction. To accomplish this, the compiler uses a dataflow analysis known as 

Partial Redundancy Elimination (PRE) [56, 86], a form of Common Subexpression 
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Elimination (CSE). We offer no formal proofs of correctness for PRE here, instead 

deferring to the arguments made in the literature [11, 86]. 

An expression is called partially redundant when the value computed by the 

expression is already available on some but not all paths through the control graph to that 

expression; an expression is fully redundant when the value computed by the expression 

is available on all paths through the control graph to that expression (this is the traditional 

CSE analysis). PRE can eliminate partially redundant expressions by inserting a 

computation for the partially redundant expression on the paths that do not already 

compute it, thereby making the partially redundant expression fully redundant. In our 

application of PRE in the context of a compiler for software transactional memory, the 

“computation” consists of opening an atomic object for read or write access so that it is 

guaranteed to be open at some future point in the transaction. 

We employ a PRE dataflow analysis algorithm based on the Static Single 

Assignment
2
 (SSA) format [11, 86], an intermediate representation in which every 

variable is assigned exactly once. Existing variables in the original IR are split into 

versions; each version of a variable is indicated by the original name with a subscript, so 

that every definition gets its own version. In SSA form, use-def chains are explicit and 

each contains a single element. A function converted into SSA format has the property 

that every use of a variable is reached by at most one definition of that variable. 

Moreover, each definition of a variable dominates all uses of that variable. To accomplish 

                                                 
2
 In functional languages, such as Scheme, ML and Haskell, continuation passing style (CPS) is generally 

used where one might expect to find SSA in a compiler for an imperative programming language such as C. 

SSA and CPS are formally equivalent, so optimizations and transformations formulated in terms of one can 

be applied to the other. 
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this, the SSA feature adds pseudo operations that merge different definitions into new and 

unique definitions. 

SSA models dependencies as a graph, where they are represented as edges 

between the intermediate representation’s operand objects. Converting ordinary code into 

SSA form requires replacing the target of each assignment with a new variable, and 

replacing each use of a variable with the “version” of the variable reaching that point. For 

example, here is a simple control graph, and that same graph converted to SSA format: 

 

In SSA format, each use of a variable is given a subscript; each possible 

assignment of a variable is given a new, unique, subscript. Notice, however, that in the 

last basic block it is not possible to statically determine the correct version of the y 

variable, since each possible path to that block gives a different version of y. At such 

points, where different versions of the same variable meet, a Φ (Phi) function is added to 
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generate a new version of that variable that joins two or more incoming versions, as 

shown below: 

 

The correct placement of Φ functions is determined using dominance frontiers. A 

node is said to strictly dominate another node in the control flow graph, iff it is 

impossible to reach the second node without passing through the first. This means that 

whenever we ever reach the second node, we know that any code in the first has already 

run. Furthermore, a node is said to be the dominance frontier of another node, iff the first 

node does not strictly dominate the second, but does dominate one of its immediate 

predecessors. From the perspective of the first node, these are the nodes at which other 

control paths that don't go through that node make their earliest appearance. 

Thus, dominance frontiers capture the precise places at which we need Φ 

functions: if a node defines a certain variable, then that definition and that definition 
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alone (or redefinitions) will reach all other nodes dominated by that node. Only when we 

leave these nodes and enter a new dominance frontier do we need to account for other 

execution paths that may supply different definitions of the same variable. For proofs that 

the algorithm identifying dominance frontiers is correct, we defer to Chow et al. [11]. 

In the sample control graph show above, a traditional CSE optimizer would not be 

able to make any assumptions about y3 that weren’t also true of y1 and y2. PRE 

optimizers, however, can insert computations along any paths where they are missing. In 

the context of STM, this requires adding an appropriate atomic open operation along the 

missing paths so that the compiler can be sure that the result of the Φ function is also 

“open.” This approach enables the compiler to determine those reads and writes that are 

guaranteed to be executed subsequent to a full open. In such cases, the subsequent reads 

and writes can be of the fast-path style and are fully inlined in the user’s code. This 

improves performance significantly, as only a lightweight “open” is performed and no 

method invocation is required. 

Note that this is quite different from the peephole optimizers described by Harris 

et al. in [38] and Adl-Tabatabai et al. [1], which seem to rely primarily on the compiler’s 

existing CSE optimizer to reduce the overhead of STM. The STM described by Saha et 

al. in [74] is cache line-based rather than object-based, which means it can’t assume that 

all fields of an object are accessible after one field of that object has been accessed. The 

log-based system of Harris et al. in [38] does not appear to support a non-blocking 

implementation. 

Furthermore, our dataflow graph also incorporates references to atomic object 

stored in fields of other atomic objects. In other words, where a reference to an open 
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atomic object is stored in a field of another atomic object, the dataflow graph tracks its 

open state. This is possible because atomic objects are fully isolated (our model supports 

always consistent reads), and therefore fields of atomic objects written by one transaction 

will never be visible to another concurrently executing transaction, even after the first 

transaction commits. It is thus safe for the dataflow analysis to build a flow graph this 

includes such references. Note that although this information could be used for the 

interprocedural optimizations, currently only the “open” status of the actual method 

arguments is considered. 

4.2.2 Reaching definitions analysis 

Every basic block in the control flow graph consists of a set of instructions 

executed sequentially. Each instruction dominates all instructions that follow it in the 

basic block and post-dominates all instructions that precede it in the basic block. In short, 

a basic block represents a single-entry, single-exit region of the control flow graph. The 

control flow graph must terminate a basic block wherever there is the potential for an 

instruction to thrown an exception (sometimes referred to in the literature as a Potential 

Exception-throwing Instruction, or PEI [9]), which would prevent any instructions that 

might come after it from post-dominating that instruction. Thus, each basic block begins 

with either a label instruction or the successor of an instruction that might cause an 

exception, and ends with either a branch (including a call) instruction or an instruction 

that can cause an exception. Figure 4.1 shows the control flow graph for a simple 

method; the red dashed edges leading to basic block #6 show exceptional control flow. 
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Figure 4.1: Sample control flow graph for a simple function 

 

As shown in Figure 4.1, as well as the sample function below, every instruction 

that might raise an exception (or otherwise transfer control in an unusual way) indicates 

this potential with a source label operand that targets the exception handling structure that 

will ultimately receive control. So, for instance, the call to method Foo() will have an 

exception handler edge that targets the catch filter associated with the [...] construct. 

Likewise, the call to Bar() will have an exception handler edge that targets the special 

label Unwind, which indicates that control leaves this function in an unusual fashion (see 

Figure 4.1 above for the Unwind block). 
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int example() { 

    int x = 3; 

 

    try { 

       x = Foo(); 

    } 

    catch([...]) { 

       Bar(x); 

    } 

 

    return x; 

} 

 

The flow graph builder treats these edges just like any other. So both Foo() and 

Bar() end basic blocks. If the exception-raising instruction has definitions, then the 

compiler accounts for the fact that the definitions may not happen until it is determined 

that control will continue normally. So, for instance, in the example above, the definition 

x = 3 is live at the return point since the assignment to x in the try may or may not 

happen, depending on whether Foo() throws an exception. Such definitions are known as 

dangling definitions and the SSA package is aware of them. So the use of x in Bar(x) is 

known to be 3. If it can be proven or asserted that a call does not cause unusual control 

flow, the label can be removed and the call will no longer end a basic block. 

Our forward intraprocedural dataflow analysis is known as a reaching definitions 

analysis, which computes a set of definitions (assignments) of variables that may reach an 

instruction. This information is used to construct use-def chains. The algorithm consists 

of three phases: (1) Summarization, which summarizes the Gen and Kill sets (for 

reaching definitions) for each basic block; (2) Fixed-point, which uses these summaries 

to compute a fixed-point solution for each basic block entry; and (3) Local propagation, 

which propagates the fixed-point solution to instructions within a basic block. Reaching 

definition information holding at the exit of a basic block is propagated from the basic 
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block to all its successors. The definitions below show these three standard phases for a 

reaching definitions analysis algorithm. 

Persistent-Variables 

1 for each Block b 
2  InB: set of definitions that reach the entry of B 
3  OutB: set of definitions that reach the exit of B 
4  KillB: set of definitions that are killed in B 
5  GenB: set of definitions in B that are not later killed in B 

 

Summarization(Block b) 

1 for each Instruction i in b 
2  if i contains a definition d 

3   then KillB  KillB ∪ All-Defs(d) 

4     GenB  GenB – Other-Defs(d) ∪ {d} 

 

Fixed-Point(Block b) 

1 InB  ⋃ppredeseccors(b)Outp 

2 OutB  InB - KillB ∪ GenB 

 

Local-Propagation(Block b) 

1 Current  InB 
2 for each Instruction i in b 

3  Currenti  Current 
4  if i contains a definition d 

5   then Current  Current - Other-Defs(d) ∪ {d} 

 

All-Defs(d) contains all definitions of the variable defined a d 

Other-Defs(d)  All-Defs(d) - {d} 

 

Dataflow analysis is able to detect many of the instances where an object is first 

read and later written in the same transaction. In such cases, it is more efficient to open 

the object in write mode initially, and therefore OpenRead calls are automatically 

promoted to OpenWrites. Where the dataflow analysis detects that an atomic object is 

used across basic blocks, the Φ node is inserted at the point where two or more object 
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references merge. If an atomic object will be accessed two or more times subsequent to a 

Φ node, the compiler inserts a preOpen call at the Φ node. Where the object will only be 

read, the OpenRead call is inserted; otherwise the compiler inserts a call to the 

OpenWrite method. This optimization makes it possible for all actual field accesses to be 

inlined as subsequent accesses with the fast-path code. 

For example, the code fragment below from the RBTree benchmark shows a 

three-pronged if statement. Each possible branch reads the atomic node object; two 

branches (the else-if and the final else) also modify the node reference. The compiler 

inserts a Φ function to join the three possible node versions after the if block. In this 

example, nothing can be said about the status of node4 returned by the Φ function. Node1 

is certain to have been opened for reading, but node2 and node3 are not yet opened. 

RBNode node = root;       // node1 

 

if(key == node.value)     // node1(R) 

    break; 

else if(key < node.value) // node1 

    node = node.left;     // node2 = node1 

else 

    node = node.right;    // node3 = node1 

 

// node4 = Φ(node1(R), node2, node3) 

 

If node4 is used subsequently read, the compiler will insert a preOpen operation 

on both the else-if (node2) and else (node3) branches, resulting in a better result at the Φ 

function. Here the PRE analysis makes sure that all branches leading to node4 are already 

open for reading, thus the compiler can statically determine that node4 must also be open 

for read access: 
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RBNode node = root;         // node1 

 

if(key == node.value)       // node1
R
 

    break; 

else if(key < node.value) { // node1 

    node = node.left;       // node2 = node1 

    // preOpenR(node2) 

} 

else { 

    node = node.right;      // node3 = node1 

    // preOpenR(node3) 

} 

 

// node4
R
 = Φ(node1

R
, node2

R
, node3

R
) 

 

Since preOpens are inserted at points where no object access existed in the user’s 

code, the compiler must be careful not to introduce any new exception paths at the 

preOpen locations (see, e.g., the two preOpen operations added in the code fragment 

above). This is important because, if an atomic object reference is null when the preOpen 

call is made, it would be incorrect to have a null reference exception thrown from the 

spot, since the programmer would have no reason to believe that such an exception might 

occur there. As a result, if a target object reference is null at the time the preOpen call is 

made, it will fail silently, as shown below. The exception avoided at a pre-open will be 

trapped on the subsequent read or write. 

if(atomicObj != null) 

    preOpenR/W(atomicObj); 

 

As an example of the type of performance optimization made possible by our 

PRE-based dataflow analysis, we turn to a fragment of the List benchmark’s Insert 

method, first introduced in § 2.5. In the seemingly straightforward code shown below, we 

identify the possible optimizations that might be performed by a particularly insightful 

programmer: 
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[1]    Node newNode = new Node(v); 

[2]    Node prevNode = hood.prevNode; 

[3]    newNode.next = prevNode.next; 

[4]    prevNode.next = newNode; 

 

First, the new Node object instantiated in the first line is an atomic object, but 

never escapes this method. The constructor for the atomic Node object invoked in step 1 

also joins the active transaction, so that the constructor does not represent a possible 

avenue for the new node to escape the scope of the transaction. Even when it is stored in 

the prevNode.next field in line 4, prevNode is also an atomic object, and so the update 

will not be visible to any other transaction until this transaction commits. Therefore, any 

access to the newNode object (e.g., line 3) does not need to use any transactional 

protection. Next, notice that prevNode object is used twice in the algorithm; the first time 

for a field read in line 3 and again for a field write in line 4. Rather than opening the 

object twice, first for read access and immediately after that for write access, it will be 

more efficient to open the object in “write” mode at line 3, and then to perform a 

lightweight write at line 4 as the prevNode object will already record the current 

transaction as a writer. In the obstruction-free model, subsequent writes can simply cache 

the object returned by the prior open (see § 4.4); in the STM model that uses short locks, 

subsequent writes need to be protected from concurrent aborts (see § 4.3). 

What this mental exercise shows is that even straightforward code sequences 

often present excellent optimization opportunities to an insightful programmer (or a well 

designed compiler). The problem is that even clever programmers will find it challenging 

to identify all such possible optimizations in larger code sequences (not to mention the 

optimizations that may be possible in the interprocedural context). If they do, the 

resulting code will be extremely fragile and difficult to maintain, as it will be unclear why 
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references are being held for later use. Imagine that the code sequence above is later 

changed so that no write is performed at line 4—will the programmer also remember to 

change line 3 to open the object in read mode? 

One way to evaluate the compiler optimizations are to compare their performance 

to hand tuned code. As discussed above, finding all possible optimizations is actually 

much more difficult than it may seem initially and the resulting code is usually both 

fragile and difficult to understand. For this evaluation, however, we hand-optimized the 

list benchmark in order to compare it with the compiler optimized version. The results for 

this relatively simple benchmark showed that the compiler optimized version of the List 

benchmark performed at 98% of the hand optimized version. As expected, the code of the 

hand optimized version was very difficult to read. 

Finally, at the top every atomic method, the compiler inserts a startup instruction 

that stores the current transaction in a local variable, as shown below. This simple, but 

significant, optimization avoids later field accesses from needing to retrieve the current 

transaction, which is stored in a static thread-local field. Reading thread-local values is 

known to be expensive, and this optimization reduces such access to once per method 

execution. 

[Atomic(XKind.Uses)] 

Neighborhood Find(int v) { 

    // inserted by the Peet compiler 

    XState me = XAction.Current;  

    ... 

 

4.2.3 Interprocedural optimizations 

Where the methods of an atomic object are non-virtual, our object-based model 

performs a limited interprocedural optimization pass only among the methods of that 
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atomic object. Thus, our interprocedural optimization might be more accurately called an 

intra-type, or whole object, optimization. At method boundaries, the arguments passed to 

and received by a method are evaluated for their “open” status (return values are not 

tracked). In the current implementation, only where all the callers of an atomic method 

pass, as a parameter, an atomic object reference opened for reading and/or writing, that 

status is the starting point for the intraprocedural dataflow analysis in the target method 

of the same class; a more flexible approach might permit various non-overlapping mixes 

of open parameters by generating method proxies that open the remaining parameters and 

pass the result onwards to the target method. 

Because atomic classes may be subclassed, derived classes must be able to 

determine the assumptions made regarding the open status of the parameters of the 

subclass’ methods. The compiler addresses this problem by creating annotations for each 

method parameter it presumes to be open in read and/or write mode. This metadata is 

checked by the compiler when a superclass calls a method in a subclass; if the open status 

of the parameters in the superclass method don’t match those expected by the target 

subclass method, the compiler inserts the necessary open operations immediately prior to 

the call. 

Our object-based model also makes it possible for the compiler to pass the cached 

transaction reference (i.e., “me”) among methods of the atomic object. Here, overloaded 

methods are created that accept an extra argument, the current transaction reference, and 

all call sites are updated to pass the extra parameter to the target method. This requires 

overloading the method and changing its signature in order to avoid breaking any client 
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code that was either not compiled by Peet or that uses dynamic methods such as 

reflection to call it. Finally, all call sites are updated to load and pass the extra parameter. 

// overloaded version generated by the compiler  

// for use by the interprocedural optimizer 

[Atomic(XKind.Uses)] 

Neighborhood Find(int v, XState me) { 

    ... 

 

Then the original unadulterated method, which is now only called by foreign 

code, simply retrieves the current transaction reference from the thread-local value and 

calls the new overridden version of the method that requires the extra parameter. Thus, 

either the original or the overloaded method may be called safely; passing the extra 

parameter to the overloaded method is simply an optimization. 

[Atomic(XKind.Uses)] 

Neighborhood Find(int v) { 

    XState me = XAction.Current; 

    return Find(v, me); // call the overridden version 

} 

 

4.3 Blocking optimizations 

In the STM model that uses short locks, the compiler generates a shadow field for 

each field of an atomic type to store the backup value during the transaction’s execution. 

In addition, the compiler automatically generates code implementing the two methods of 

the IRecoverable interface, Backup and Restore, which copies the value of the “real” 

fields to the “shadow” fields and vice versa. Backup, which is invoked on the first 

attempt to write to an atomic object in the current transaction, copies the real fields to the 

shadow fields. Restore, which is invoked when the previous writer to the object is found 

to have aborted, copies the last known good values from the shadow fields back to the 
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real fields. Const, final (or readonly), and TxSafe-annotated fields are considered 

idempotent, so no shadow fields need to be generated for them. 

In this model, we optimize the OpenRead and OpenWrite methods to acquire a 

lock only when absolutely necessary. Before acquiring the lock, then, all possible 

conditions that can be handled without a lock are dealt with first. For example, in the 

OpenRead algorithm, if the reading transaction also turns out to be the “owner” (the 

current writer) of the object, the read can proceed in a completely non-blocking fashion. 

After the desired field is read, the algorithm simply checks to see whether the current 

transaction has been aborted. This is required because it is possible that the current 

transaction was aborted prior to the field read, in which case another transaction may 

already have modified the field’s value, and returning the value written by another “in 

progress” transaction would violate the isolation property. While some STMs, such as the 

McRT system [74], permit so-called dirty reads in an effort to lower performance 

overheads, our model does not. The principle that all transactions, even zombies, see a 

consistent state is important for the overall safety of STM systems. Without such a 

guarantee, there is no provably safe model for ensuring that transactions do not enter an 

infinite loop or otherwise perform an incorrect operation as a result of seeing an 

intermediate value. The pseudocode below shows the basic operation of the OpenRead 

algorithm. For the complete source code in C#, see the Appendix. 

Open-Read(me, field, txObject) 

1 if me = txObject.writer  am I already the writer? 

2  then value  field  do the read 

3   Check-For-Consistency(me) 
4   return value 

  post-state: I’m not the writer 
5 RetryLabel: 

6 Check-For-Consistency(me) 
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7 lock(txObject) 
8 switch txObject.writer.state 
9  case ACTIVE 
10   unlock(txObject) 

11   Resolve-Conflict(me, txObject.writer) 
12   goto RetryLabel 
13  case ABORTED 

14   Restore(txObject) 

   don’t need to check for COMMITTED, because we’re only reading 

15 value  field    do the read 

16 Replace-Inactive-Readers(me, txObject) 

17 Maintain-Readers-Array(me, txObject) 
18 unlock(txObject) 
19 return value 

 

Check-For-Consistency(me) 
1 if me.state = ABORTED 

2  then throw Aborted-Exception 

 

Replace-Inactive-Readers(me, txObject) 

  replaces first non-active reader with the current reader 

1 for i  0 to txObject.numReaders 

2  currReader  txObject.readers[i] 
3  if currReader.state ≠ ACTIVE or me = currReader 

4   then txObject.readers[i]  me 

 

Maintain-Readers-Array(me, txObject) 

  if necessary, resize the readers buffer 
1 if txObject.numReaders = txObject.readers.Length 

2  then Resize-Array(ref txObject.readers, txObject.readers.Length * 2) 

3 txObject.readers[txObject.numReaders]  me 

 

Assuming that the active transaction was not aborted, we can be certain that the 

value read was correct and can be returned to the user’s code. This is correct even where, 

by the time the value is returned to the user’s code, the transaction has been aborted and 

the field overwritten with a new value. Consistency does not require that we report the 

current value of the field. In fact, quite the opposite: transactions require that the client 
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see only those values that are consistent with some linearizable execution of the active 

transactions (refer to steps 2 and 3 of the OpenRead algorithm shown above). These 

insights into the blocking model makes it possible for the compiler to inline fast-path 

versions of the read and write algorithms that do not require locks, where it is certain that 

the object has already been opened in read or write mode. 

The only possible exception that might be thrown here is a null reference 

exception, if the atomic object reference itself is null. This behavior is identical to that 

seen without an STM, and is therefore considered correct. Note that there is no danger of 

a lock being held indefinitely, since no lock is acquired by the subsequent read algorithm. 

In the case of subsequent reads, executed after an earlier read or write, the inlined code 

need only determine whether the value read is valid. If the transaction wasn’t aborted 

after the time the value was read, then we can safely return the value to the user’s code 

(note that no CAS operation is required): 

Inlined-Subsequent-Read(me, target) 

1 stack  target.field 

2 Check-For-Consistency(me) 

 

The .NET memory model does not support sequential consistency, generally 

defined as requiring that “the results of any execution is the same as if the operations of 

all the processors were executed in some sequential order, and the operations of each 

individual processor appear in this sequence in the order specified by its program.”
3
 In 

fact, the official ECMA-335 specification
4
 for .NET guarantees only the following basic 

semantics: 

                                                 
3
 Leslie Lamport, “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess 

Programs”, IEEE Trans. Comput. C-28,9 (Sept. 1979), 690-691. 
4
 http://www.ecma-international.org/publications/standards/Ecma-335.htm 

http://www.ecma-international.org/publications/standards/Ecma-335.htm
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1. Read or writes for a given location cannot pass a write for the same location. 
2. Reads cannot move before acquisition of a lock. 
3. Writes cannot move after release of a lock. 
4. Other reads/writes may be reordered, except before or after a volatile 

read/write. 
 

However, all commercial implementations of .NET provide further guarantees, 

although still not sequential consistency. In addition to the ECMA-335 rules described 

above, .NET 2.0 and above provide that: 

 

5. Reads and writes cannot be introduced. 
6. Reads can only be removed where they are adjacent to another read for the 

same location from the same thread; writes can only be removed where they are 
adjacent to another write for the same location from the same thread. Rule 8 
can be used to make reads and writes adjacent before applying this rule. 

7. Writes cannot move past other writes from the same thread. 
8. Reads can move earlier in time, but never past a write to same location from the 

same thread. 
 

This is still weaker than traditional x86 behavior (with the possible exception of 

IA-64), which also provides that: 

 

9. Writes can only move later. 
10. Writes cannot move past a read for the same location from the same thread. 
11. Reads can only move later to stay after a write, to keep from breaking rule 10, as 

that write moves later. 
 

There are three levels at which such optimizations can occur: the compiler, the 

execution environment, and the processor. Because Peet is a backend compiler, it doesn’t 

have to be concerned about the C# compiler affecting its optimizations. Furthermore, 
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were STM support integrated into the execution environment, we also would not need to 

worry about the runtime. 

Turning now to the STM optimizations of the Peet compiler, only one 

optimization suffers from the possibility of a data race, where one thread reads a memory 

location while another thread may be modifying it: the inlined subsequent read algorithm 

in the blocking STM model. The lock-free subsequent read algorithm requires that the 

two read operations for disjoint memory locations (shown below in steps 1 and 2) be 

executed in the order in which they are encountered by the thread and that the 

transaction’s state field is current (rather than a cached value). Reversing the order of the 

two steps (perhaps by caching the value of the transaction’s state) would break the 

algorithm. Since Peet is a backend compiler executed after the C# compiler, we need not 

worry about interference from compiler optimizations. However, though not currently 

implemented in the commercial .NET runtime, the ECMA specification leaves open the 

possibility that the execution environment itself might perform such optimizations. Thus 

the runtime could theoretically cache the value of the transaction’s state field.  

1 stack  target.field 
2 if me.state = ABORTED 

3  then throw Aborted-Exception 

 

Note that we don’t have to worry about a processor cache storing old copies of the 

transaction’s state, since it is always updated with a CAS operation, which provides 

strong ordering guarantees. In particular, no reads or writes can move in either direction 

past a CAS operation. This, in part, is what makes CAS operations so expensive: not only 

does the executing processor need to ensure that no other processor is trying to execute a 

CAS on the same location at the same time, but, in order to provide the ordering 
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guarantees, the processor needs to ensure that caches are synchronized so that reads and 

writes don’t seem to move past the CAS operation.  

Given the semantics of transactional memory, another thread that wants to 

write to an atomic object being read or written by another transaction will first need to 

execute a CAS operation to abort the first transaction, as shown below. If successful, the 

CAS instruction operates as a cross-thread memory barrier, effectively synchronizing the 

view of all threads for this location. 

 

Cas(conflictingTx.state, Aborted, Active) 
 

One solution to the problem of read operation reordering is to introduce a memory 

barrier (Thread.MemoryBarrier() in .NET) after the first read in step 1, as shown below. 

The memory barrier will synchronize memory such that the processor executing the 

current thread cannot reorder instructions in such a way that memory accesses prior to the 

barrier execute after accesses following the barrier. 

 

1 stack  target.field 

2 MemoryBarrier 
3 if me.state = ABORTED 

4  then throw Aborted-Exception 

 

While the memory barrier ensures that the order of the two read instructions is not 

swapped, it still doesn’t solve the problem of the runtime potentially caching an old copy 

of the transaction’s state. The only way to definitively solve the problem is to introduce a 

volatile read for the transaction’s state, as shown below. Volatile reads have “acquire 

semantics” meaning that the read is guaranteed to occur prior to any references to 
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memory that occur after the read instruction in the bytecode sequence. However, that 

doesn’t obviate the need for a memory barrier, since a load with acquire semantics only 

creates a downward fence, so although normal loads and stores cannot be moved above 

the volatile read, they can still be moved below it.  

 

1 stack  target.field 

2 MemoryBarrier 

3 if VolatileRead(me.state) = ABORTED 

4  then throw Aborted-Exception 

 

Through the use of the memory barrier and the volatile read operation, Peet need 

make no assumptions about the memory model beyond ECMA-compliance. For 

performance reasons and because Peet is a post-compiler that doesn’t need to worry 

about interference from C# optimizations, on the x86 architecture these barriers can be 

omitted through the use of a compiler flag. All the other optimizations of the Peet 

compiler are data race-free: in the blocking STM model subsequent writes acquire 

counting “locks” with the CAS operation; in the nonblocking model, all readers share 

access to an object, but writers get their own private copy.  

Formally, we use rely-guarantee reasoning of the form proposed by Herlihy and 

Hoare in [84, 85] to prove that our optimizations are linearizable, safe, and that they 

correctly implement the high-level abstraction. In rely-guarantee (R-G) reasoning, each 

thread is assigned a rely condition that characterizes the interference that thread can 

tolerate from other threads. In return, the thread is assigned a guarantee condition that 

characterizes how that thread can interfere with the others. Proving the safety of the 

program requires proving that (1) if each thread’s rely condition is satisfied, then the 
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thread satisfies its guarantee condition, and (2) each thread’s guarantee condition implies 

the others’ rely conditions. 

Classically, a single atomic action is specified by a pair of predicates (p, q), where 

p is the pre-condition assumed to hold when the action starts, and q is the post-condition 

established if and when the action terminates. We write C |= (p, R, G, q) for the judgment 

saying that the program C meets the R-G specification (p, R, G, q). Atomic actions are 

denoted by enclosing a program in diamond brackets C. The corresponding proof rule 

is: 

{p} C {q} 

─────────────────── 

C |= (p, Preserve(p), q  ID, q) 

This rule says that the pre-condition and the post-condition remain sequential; a 

thread guarantees that it either does q or nothing at all, and all other threads must 

preserve the precondition. The implementation of atomicity ensures that such interference 

cannot take place within the diamond brackets, so the proof of correctness of the atomic 

region is unaffected by interference. 

Definitions: We now give the definitions of the subsequent read invariant and the 

associated rely and guarantee conditions; then we will prove the algorithm obeys their 

specifications. The subsequent read invariant is defined as follows: 

SubReadInv ≡ Transaction tx. tx.state ≠ ACTIVE  ABORT(tx) 

The pre-condition is:   p ≡ SubReadInv  

 (me  target.Locator.readers  me = target.Locator.writer) 
 

Note that the pre-condition does not require that target ≠ NIL; this is only a requirement 

of the post-condition. Obviously, if target = NIL, a null reference exception will be 

thrown in statement 1 of the the inlined subsequent read algorithm. Although somewhat 

counterintuitive, the target object may be null on a subsequent read because preOpen 

operations silently ignore null atomic object references; see § 4.2.2 for details. 
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The rely condition is:   R ≡ Preserve(SubReadInv) 

The guarantee condition is:  G ≡ Preserve(SubReadInv) 

The post-condition is:   q ≡ SubReadInv  target ≠ NIL  

  (me  target.Locator.readers  me = target.Locator.writer)  stack  target.field 
 

Proof: We assume that the atomic object has already been read and/or written 

previously (at the initial read, a lock is required to update the transactional object’s state 

atomically—see the pseudocode for the OpenRead algorithm above and the Appendix for 

the complete C# definition). The rely and guarantee properties are enforced by an 

explicit consistency check that preserves the SubReadInv. Once the consistency check 

succeeds, the algorithm has executed safely with the rely condition maintained 

throughout. This, in turn, satisfies the post-condition. 

{ me  target.Locator.readers  me = target.Locator.writer } 

Inlined-Subsequent-Read(me, target) 

1 stack  target.field 

{ target ≠ NIL  (me  target.Locator.readers  me = target.Locator.writer)  stack  target.field } 

2 Check-For-Consistency(me) 

{ SubReadInv  target ≠ NIL  (me  target.Locator.readers  me = target.Locator.writer)  

  stack  target.field } 

 

Another way of reasoning about this proof is to assume that the atomic object has 

already been read by this transaction at time tn and that therefore the SynchState data of 

the object reflects that prior read. The inlined read happens at time tn+1 (step 1 above), but 

the value read, which is not guaranteed to be safe, is only stored on the stack and not 

returned to the client algorithm until the transaction is checked for consistency at time 

tn+2 (step 2 above). If the transaction is still consistent (i.e., active) at time tn+2, then it 

follows that the transaction was also active at the earlier time tn+1 when the atomic field 

was read and its value stored on the stack (transactions can only move from the active to 
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the committed or aborted states, never back). Thus the value on the stack is linearizable 

with respect to the running transaction and can be returned to the client algorithm. If, on 

the other hand, the transaction is no longer active at time tn+2, then the value read at time 

tn+1 may or may not be correct, depending on whether the transaction in fact aborted 

before or after the read. Since the correctness of the value is in doubt, the read value is 

popped from the stack, and an AbortedException is thrown. 

Unlike subsequent reads, the algorithm for subsequently writing to a field of an 

atomic object cannot proceed entirely without a CAS operation. In the case where the 

atomic object is already owned by the writing transaction (i.e., a subsequent write), we 

must ensure that the transaction is not aborted prior to the completion of the actual write 

operation. Unfortunately, checking whether the transaction has been aborted before the 

write is not effective, since an abort might occur asynchronously immediately after the 

check but before the write; checking the transaction’s status after the write is too late—

another transaction’s value might have already been overwritten. The OpenWrite 

algorithm thus must always acquire exclusive access before writing, as shown in the 

pseudocode below (the complete algorithm in C# is available in the Appendix). 

Open-Write(me, field, newValue, txObject) 

1 if me = txObject.writer  am I already the writer? 
2  then lock(txObject) 

3   field  newValue  do the write 
4   unlock(txObject) 
5   return 

  post-state: I’m not the writer 
6 RetryLabel: 

7 Check-For-Consistency(me) 
8 lock(txObject) 

9 if Check-For-Read-Conflicts(me, txObject) = TRUE 
10  then goto RetryLabel 

11 txObject.numReaders  0  reset number of readers 
12 switch txObject.writer.state 
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13  case ACTIVE 
14   unlock(txObject) 

15   Resolve-Conflict(me, txObject.writer) 
16   goto RetryLabel 
17  case COMMITTED 

18   Backup(txObject) 
19  case ABORTED 

20   Restore(txObject) 

21 txObject.writer  me   install myself as the writer 

22 field  newValue   do the write 
23 unlock(txObject) 
 

Check-For-Read-Conflicts(me, txObject) 

  am I in conflict with any other readers? 

1 for i  0 to txObject.numReaders 

2  currReader  txObject.readers[i] 
3  if currReader.state = ACTIVE and me ≠ currReader 
4   then unlock(txObject) 

5    Resolve-Conflict(me, currReader) 
6    return TRUE 
7 return FALSE 
 

However, actually acquiring a lock on the object before subsequent writes is not 

required, since the danger here is that the transaction might be aborted before or during 

the write operation (after is fine). To address this problem, inlined subsequent write 

operations must ensure that the transaction cannot be aborted during the update. By 

incrementing a special transaction-wide abortCounter, a fast-path write prevents the 

transaction from being aborted during this critical period. The algorithm is wait-free, but 

two CAS operations are required per write: 

Inlined-Subsequent-Write(me, target, value) 

  make sure target is valid 
1 if target = NIL 

2  then throw NullReferenceException 

  make sure we can’t be aborted now 

3 if Atomic-Increment(me.abortCounter) < 1 

4  then throw Aborted-Exception  we’ve already been aborted! 

5 target.field  value      do the update 

6 Atomic-Decrement(me.abortCounter)   release the lock 
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Definitions: We now give the definitions of the subsequent write invariant and the 

common rely and guarantee conditions; then we will prove the algorithm obeys their 

specifications. The subsequent write invariant is defined as follows: 

SubWriteInv ≡ Transaction tx. tx.state ≠ ACTIVE  ABORT(tx) 

The rely condition is:  R ≡ Preserve(SubWriteInv)  

   Transaction tx. tx.abortCounter < 0  ABORT(tx) 

   tx.abortCounter ≥ 0  ID(tx.abortCounter) 

 

This rule says that we rely on any transaction whose abortCounter value is less than zero 

to abort, and that while a transaction’s abortCounter is greater than or equal to zero the 

before and after values of abortCounter will be the same. 

 

The guarantee condition is: G ≡ Preserve(SubWriteInv)  

   Transaction tx. tx.abortCounter < 0  ABORT(tx) 

   tx.abortCounter ≥ 0  ID(tx.abortCounter) 

   tx.abortCounter > 0  ⌐ABORT(tx) 

 

This rule says that we guarantee that if our abortCounter value is less than zero we will 

abort; that while our abortCounter is greater than or equal to zero the before and after 

values of abortCounter will be the same; and that while our abortCounter is greater than 

zero, the transaction will not abort. 

 

The pre-condition is:  p ≡ SubWriteInv  target ≠ NIL  me = target.Locator.writer  
 

The post-condition is:  q ≡ SubWriteInv  target ≠ NIL   me = target.Locator.writer  

      target.field  newValue 

 

Proof: The final post-condition is the post-condition defined for the algorithm as a 

whole, and except where the consistency check in step 1 fails, the algorithm satisfies the 

rely condition defined above. Below is the inlined subsequent write algorithm annotated 

with atomicity assumptions: 

Inlined-Subsequent-Write(me, target, newValue) 

{ target ≠ NIL  me = target.Locator.writer } 
1 if target = NIL 

2  then throw NullReferenceException 

{ target ≠ NIL  me = target.Locator.writer } 

3 if Atomic-Increment(me.abortCounter) < 1 
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{ target ≠ NIL  me.abortCounter  = IntMinVal + 1  violation of SubWriteInv } 

4  then throw Aborted-Exception 

{ SubWriteInv  target ≠ NIL  me = target.Locator.writer  me.abortCounter  > 0 } 

5 target.field  newValue 

{ SubWriteInv  target ≠ NIL  me = target.Locator.writer  me.abortCounter  > 0  

  target.field  newValue } 

6 Atomic-Decrement(me.abortCounter)  

{ SubWriteInv  target ≠ NIL  me = target.Locator.writer   target.field  newValue  

  ID(me.abortCounter) } 

 

The algorithm for subsequent writes specifically checks for a null reference so 

that this exception cannot be thrown after the abortCounter is incremented (an exception 

thrown at this point would cause the corresponding decrement to be skipped, leading to 

deadlock). Since subsequent writes occur after an initial write, one might assume that a 

null reference exception would be thrown at that earlier point. However, because pre-

open operations (described in § 4.2) silently ignore null references, it is possible that a 

null reference will be deferred until a subsequent read or write operation. Note that the 

algorithm for inlined subsequent writes does not violate, but also does not explicitly 

enforce, the guarantee condition requiring that while this transaction’s abortCounter is 

greater than zero, the transaction will not abort. This part of the guarantee condition is 

satisfied by the Abort method, which is where the actual waiting, if any, occurs. Abort 

must check whether a transaction’s abortCounter is zero before aborting it. While it is not 

the Abort method blocks in a while loop, satisfying the guarantee condition, as shown 

here: 

Abort(me) 

1 while Cas(me.abortLock, IntMinVal, 0) > 0 

   loop until lock is released (i.e., while me.abortCounter > 0) 
2 end-while 

{ me.abortCounter  < 0  Abort(me) } 
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Because an abort “lock” (in the form of a CAS’ed integer counter) is acquired by 

the subsequent write algorithm, the abort algorithm is plainly atomic with respect to abort 

requests (i.e., they can happen before or after, just not during). Therefore, the argument 

for its correctness will focus on the safety of this algorithm with respect to that lock. 

Since only three instructions, a local load, an object reference load, and a field store, are 

executed while the lock is held, these instructions are scrutinized for possible exceptions 

that might be thrown, thereby preventing the release of the lock. First, we consider the 

possibility of an overflow exception at the local load instruction; however, this is not a 

concern because such an exception would be generated earlier, when the value is first 

stored in the temporary local. Second, we consider the possibility of a null reference 

exception at the field store instruction; by guaranteeing that subsequent writes occur after 

a full write operation, the compiler ensures that the atomic object itself is valid, and 

therefore that no exception can be thrown from within the locked region. This concludes 

our arguments for the correctness of the inlined subsequent read and subsequent write 

code sequences in the blocking transactional memory model. 

Figure 4.2 compares the performance of several standard benchmark algorithms 

as implemented with a library-based STM and as optimized by the compiler
5
. Note in 

particular that the HashTable benchmark uses large arrays and thus benefits greatly from 

the hybrid array implementation described in § 4.7. The STM-only results give the 

performance for the un-optimized SXM library [41]; Library Opts shows the 

improvements of our optimized transactional synchronization algorithms; the Compiler 

bar shows the results of inlining and automating the generation of STM code; Const + 

                                                 
5
 These results were obtained from 30 second runs using 1 thread, 30% modifiers, and the aggressive contention manager on a 4-way 

machine. 
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Local is the result of the dataflow analysis that eliminates STM accesses for those objects 

that are provably local; RWPromo includes the optimization that promotes read accesses 

to write mode open operations for atomic objects that are both read and written; the 

Subsequent optimization exploits our understanding of the difference between the first 

and subsequent accesses of an atomic object (see § 4.2); finally, the PRE optimization 

shows the results of our full interprocedural PRE analysis. Note that the bars are 

cumulative (i.e., each more advanced optimization includes all the prior ones). 

 

Figure 4.2: Blocking mode results 

 

4.4 Obstruction-free optimizations 

The compiler optimizations implemented for the obstruction-free mode are 

slightly different from those that apply to the blocking STM. In the obstruction-free 

model, in place of shadow fields and the Backup/Restore methods of the IRecoverable 
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interface, the compiler implements the ICloneable interface’s Clone method to create a 

new, speculative, copy of the object. Interestingly, the obstruction-free STM cannot 

support static fields, since they cannot be cloned
6
 in an object-based STM. Instead, the 

compiler manages static fields of an atomic object as in the blocking mode, where their 

values are copied to static shadow fields via the backup/restore methods of the 

IRecoverable interface. 

In its obstruction-free mode, the compiler generates local variables to cache the 

“open” version of atomic objects. In contrast to the blocking mode, subsequent reads do 

not need to check whether the transaction has been aborted, and subsequent writes need 

not temporarily delay aborts during the write. This means that subsequent reads and 

writes are completely inlined and have no transactional overhead whatsoever. These 

optimizations are possible because the obstruction-free STM creates clones of atomic 

objects, such that a subsequent read or write may see or update an inactive copy of the 

object, but linearizability is not compromised. 

Technically, each obstruction free atomic object contains a reference to an 

OFreeLocator record, shown below. If there is no writing transaction (identified by 

OFreeLocator.writer), the OFreeLocator.newObject field always points to the current 

version of the atomic object for read sharing. Thus, so long as there is no writing 

transaction, readers share access to the current copy of the atomic object. If a transaction 

wants to open the object for writing, it must first create a new OFreeLocator object, abort 

any readers and/or writers in the old locator, clone the atomic object, store the cloned 

object reference in OFreeLocator.newObject, and save the previous version of the object 

in OFreeLocator.oldObject. Finally the old OFreeLocator reference itself is replaced by 

                                                 
6
 The whole point of static fields is that only one copy exists per class. Thus cloning an object has no effect. 
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the new locator in a single, atomic CAS operation. If the CAS operation is successful, the 

new version of the atomic object becomes the speculative copy used by the current 

transaction until it commits or aborts. 

    class OFreeLocator { 

        XState writer = null; 

        XState reader = null; 

        OFreeLocator next = null; // linked list of readers 

        ICloneable oldObject = null; 

        ICloneable newObject = theAtomicObject; 

    } 

 

The argument for the safety and linearizability of this approach is as follows. 

Each obstruction-free atomic object is immutable. Every new transaction that intends to 

write to an atomic object first creates a private copy solely for its use. Only if the 

transaction successfully commits, does that copy become visible to subsequently started 

transactions. Critically, any client code that may hold a cached reference to an earlier 

version of the atomic object may safely continue to use that version of the object. Once 

another writing transaction takes ownership of the atomic object via the OFreeLocator 

data, any still active transactions that previously opened the object are doomed to abort. 

Nevertheless, because they hold valid references to an earlier version of the atomic object 

(which have now been disconnected from the OFreeLocator), they may safely 

(linearizably) continue reading or writing that version of the object until they abort. We 

rely on the garbage collector to destroy doomed copies of atomic objects once the 

transaction aborts. First (i.e., not subsequent) accesses include a check to verify that the 

transaction is still healthy, aborting if it is not. This concludes the argument for the 

correctness of our approach to subsequent reads and subsequent writes in the obstruction-

free transactional memory model. 
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Figure 4.3 shows the performance results of the compiler using the obstruction-

free STM mode. Overall, the graphs show that the obstruction-free STM performs 

slightly better than the blocking mode using short-lived locks. 

 

Figure 4.3: Obstruction-free results 

 

For comparison with longer running transactions, we also tested these 

optimizations with the three STAMP benchmarks [66], genome, kmeans, and vacation. 

Figure 4.4 shows the performance results for each benchmark at increasing levels of 

optimization. All the timing results were normalized to 1.0 for the optimized SXM 

library. 
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Figure 4.4: STAMP benchmark performance 

 

The performance results reported in the thesis (see, e.g., Figures 4.2 through 4.4) 

were obtained from averaged thirty second runs using one thread, 30% write operations, 

and the aggressive contention manager on a four-way hyper-threaded machine. Because 

most of the overhead in transactional memory consists of base line overhead imposed 

whether the client is running one thread or many threads, we are primarily interested in 

showing the lowered overhead of a single transaction. 

Tests of one to eight threads executing concurrently (see, e.g., Figure 5.8) are not 

impressive for several reasons: first, the simple data structure benchmarks offer little 

opportunity for write concurrency (some, like the integer list, offer none whatsoever); 

second, our primary test machine is a four-way SMP machine, which, while ideal for 

stress testing concurrent code, is not a multicore processor, and therefore exhibits 

relatively high overheads due in part to cache synchronization. 

Far more promising results are obtained on an Intel Core 2 Duo processor (see 
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1.6 times the throughput. As would be expected, the same benchmarks run using course-

grained locking performed slightly worse with two threads than with one. Assuming the 

same rate of improvement will be found on four-core and eight-core processors, the 

crossover point at which STM will perform about as fast as course-grained mutual 

exclusion will be a four-core processor. An even more intriguing result, however, is the 

fact that the STM mode that uses short locks does not show even close to the 

performance improvement as that shown by the nonblocking STM mode from one to two 

threads; a further argument in favor of nonblocking models. 

 

 
1 thread 2 threads 

4 threads 
(predicted) 

8 threads 
(predicted) 

ListSTM (nonblocking) 1,276,000 2,028,000 3,223,000 5,123,000 

ListMutex 3,755,000 3,752,000 3,749,000 3,746,000 

ListSTM (blocking) 948,000 956,000 964,000 972,000 

RBTreeSTM (nonblocking) 1,079,000 1,778,000 2,930,000 4,828,000 

RBTreeMutex 3,036,000 3,011,000 2,986,000 2,961,000 

RBTreeSTM (blocking) 771,000 787,000 803,000 820,000 
 

4.5 Retry semantics 

The retry semantics offered by the SXM library have also been optimized for use 

by the Peet compiler. The BlockWhileActive method, shown in pseudocode below, 

implements the Retry functionality. Basically, the BlockWhileActive method sleeps until 

the current transaction is aborted, notifying it that another transaction has modified 

something in its read/write set. Importantly, the BlockWhileActive algorithm sets a 

waiting flag that notifies contention managers that this transaction is waiting to be 

aborted. This prevents polite contention managers from needlessly waiting for this 

transaction to make progress. 
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Block-While-Active(me) 

1  suspend calleer until aborted by another transaction—implements ―retry‖ 

2 me.waiting  TRUE  notify contention manager that we are waiting 

3 Thread-Sleep(0)  yield 
4 if me.state ≠ ABORTED 

5  then me.signal  new Event() 
6   while me.state ≠ ABORTED 

7    Wait-Signal(me.signal) 

8 me.waiting  FALSE 

The optimized version of BlockWhileActive first tries to yield its quantum by 

calling Thread.Sleep(0). In the case of short transactions, this is sufficient to allow 

another transaction to abort this transaction and make progress. However, in the case 

where one time slice is not sufficient, a signal is created. This allows the 

BlockWhileActive method to suspend the current thread until it is awaken by an abort. 

As part of the Abort() method, the signaling event is set, if it is non-null (indicating that 

another transaction is waiting on the event): 

Abort(me) 

1  … 
2 if me.signal ≠ NIL 

3  then Set-Signal(me.signal) 

 

The code generated for atomic using blocks (i.e., using(new XAction()) { }) is 

conceptually very similar to that of atomic methods. However, because an abort causes 

the entire method to be re-executed, thereby discarding and reevaluating all local 

variables, the generated code must save the value of all local variables that might be used 

in the atomic block before the transaction begins, and then restore their value in the event 

of an abort. Luckily, because local variables are private to the thread, there is no danger 

of concurrent access during the backup or restore procedure. However, any non-local and 
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non-atomic objects that are accessed from within an atomic block cannot be handled 

safely, and thus they are not permitted in atomic using blocks.
7
 

As described in § 3.4, atomic blocks can be executed based on a boolean 

condition. Peet automatically moves the evaluation of the condition inside the 

transaction’s scope. If the condition evaluates to false, the BlockWhileActive() method is 

called to wait until the transaction is aborted. 

 

4.6 The CASe primtive 

The complexity involved with implementing a wait-free subsequent write in the 

blocking STM mode led us to identify a potential use for short hardware transactions. 

While much previous work has focused on the feasibility of efficiently implementing 

various types of multi-compare and swap (MCAS) operations [56], we observe that a 

very slight modification to the existing CAS primitive would greatly simplify the 

implementation of subsequent write operations in object-based STM systems: simply 

atomically comparing one location (the transaction’s status) and swapping another (the 

target field) would obviate the need for our approach to delaying aborts during write 

operations. We call this new primitive Compare and Swap elsewhere (CASe). Its only 

real added complexity, from a hardware perspective, is the fact that the compare location 

and the swap location might fall in different cache lines, necessitating that both lines be 

locked. 

This is the inlined subsequent write code sequence presently used by the 

compiler: 

                                                 
7
 Local variables are not a problem in atomic methods (in contrast to atomic blocks), because C# requires 

that they be explicitly initialized prior to first use. Thus, after an abort and restart, the locals will be 

reinitialized. 
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Inlined-Subsequent-Write(me, target, value) 

  make sure target is valid 
1 if target = NIL 

2  then throw NullReferenceException 

  make sure we can’t be aborted now 

3 if Atomic-Increment(me.abortCounter) < 1 

4  then throw Aborted-Exception  we’ve already been aborted! 

5 target.field  value      do the update 

6 Atomic-Decrement(me.abortCounter)   release the lock 

 

With the proposed CASe primitive, the algorithm for subsequent writes shown 

above can be rewritten as shown here: 

Inlined-Subsequent-Write(me, target, value) 

1 if ⌐CASe(me.state,   compare A 

    ACTIVE,   with this 

    target.field,  swap B 

    value)    with this 

2  then throw Aborted-Exception 

 

4.7 Array algorithms 

One aspect of the runtime system that turned out to be a significant performance 

bottleneck for some benchmarks was the array implementation provided by the STM 

library. In the initial release of SXM [41], the basic array support was not typed (all array 

elements were of type object), and the backup and restore operations performed complete 

copies of the array, as shown below: 

public class OriginalAtomicArray :  

    IEnumerable, IRecoverable { 

    object[] data;   // new data 

    object[] shadow; // backup data 

 

    public void Restore() { 

        Array.Copy(shadow, 0, data, 0, data.Length); 

    } 

 

    public void Backup() { 

        Array.Copy(data, 0, shadow, 0, data.Length); 
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    } 

    ... 

 

To optimize the performance of array-based data structures, we investigated 

several alternate array implementations. First, we parameterized the atomic array type 

using generics so that casts are not needed when reading or writing array elements. 

Second, in addition to the basic copying array described above, we developed a number 

of experimental array algorithms that are more efficient in terms of space or time. 

One possible approach is to keep a log of array changes rather than simply 

duplicating the entire array with a backup version. This approach has much in common 

with the transactional boosting technique described in § 3.8, as it basically involves 

keeping a log of read and write operations to the array and then undoing all the write 

operations in the event the transaction aborts. Not surprisingly, the log array is typically 

more space efficient than a copying array. It defines a list of ArrayElement structures that 

store the value and index number of an array entry: 

internal struct ArrayElement<T> { 

    public readonly int index; 

    public readonly T value; 

 

    public ArrayElement(int index, T value) { 

        this.index = index; 

        this.value = value; 

    } 

} 

 

The log array stores the backup log in a list of array elements. To limit the 

maximum size of the backup log to the size of the array, a bit array is used to determine 

whether the client has accessed this array element previously, as shown below: 
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private readonly T[] data;  

private readonly List<ArrayElement<T>> arrayLog; 

private readonly BitArray containsArray;  

 

Each array write operation first checks the bit array to see whether the user has 

modified the specified element previously. If the index’s bit is not set, the array element 

must be added to backup list; if the index’s bit is set, the array element has already been 

backed-up previously. The main indexer algorithm is shown below: 

// principal indexer  

public T this[int index] { 

   get { 

      // reads go forward 

      return data[index];  

   } 

 

   set { 

      // check the bit array 

      if(!containsArray[index]) {  

         // log the old value 

         arrayLog.Add( 

             new ArrayElement<T>(index, data[index])); 

         // mark the bit array 

         containsArray[index] = true; 

      } 

 

      // do the update 

      data[index] = value; 

   } 

} 

 

For the log array, the backup operation simply clears the bit array and empties the 

backup log. The actual backup of array elements occurs lazily, on the first use of a 

specific index. The restore operation, however, called when a transaction aborts, must 

iterate the entire backup log, restoring the original values of all the modified elements. 

The backup and restore algorithms for the log array are shown below: 
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public void Backup() { 

    // empty the log 

    arrayLog.Clear(); 

 

    // clear the bit array 

    containsArray.SetAll(false); 

} 

 

public void Restore() { 

    // restore based on tx's log 

    foreach(ArrayElement<T> le in arrayLog) { 

        data[le.index] = le.value; 

    } 

} 

The log array is more efficient than the copying array when accessing larger 

arrays, since the entire array is not copied on each backup operation (a far more common 

operation than a restore). However, when working with small arrays consisting of several 

elements, copying the array is can be more efficient compared with the overhead of 

creating the backup log in a piecemeal fashion as part of every update. The hybrid array 

combines the strengths of both approaches. For arrays consisting of ten elements or 

fewer, the hybrid array simply creates a copy of the entire array on each backup/restore. 

Larger arrays are handled in the manner of the log array. This array algorithm provides 

the best overall performance, although it does require a runtime check to determine 

whether it is in copying or logging mode. 

Figure 4.5 compares the performance the copying, logging, and hybrid 

approaches in the context of the SkipList and HashTable benchmarks. Because the 

HashTable benchmark uses large arrays, the logging array algorithm works best overall, 

but the hybrid approach is a close second. In the case of the SkipList benchmark, which 

uses relatively small arrays, the copying algorithm outperforms logging by a wide 

margin, but, again, the hybrid approach is nearly as fast. 
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Figure 4.5: Performance comparison of atomic array algorithms 
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Chapter 5 

Algorithms 

5.1 Properties 

This chapter introduces four obstruction-free transaction synchronization and 

validation algorithms designed for object-based STMs. Recent work in the area of STM 

[17, 23] has consistently suggested that lock-based STM systems offer better 

performance than those that support a nonblocking progress condition such as 

obstruction-freedom. This contention relies on the assumption that deadlock prevention is 

the only reason to build nonblocking algorithms. Our research challenges this conclusion. 

We show that, while it is true that obstruction-free STMs have more elegant theoretic 
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properties than locking systems, obstruction-free STMs can in fact equal or surpass the 

performance of systems using short locks. 

We focus on three important properties of STM systems: a nonblocking progress 

condition, consistent reads, and support for contention management. Until now, no STM 

system has been able to achieve all three attributes efficiently. We argue that all three 

properties are important, if STM systems are to achieve widespread acceptance. In 

response to this challenge, we propose four transaction synchronization algorithms that 

satisfy these three properties simultaneously and efficiently. The table in Figure 5.1 

compares several well-known transactional memory systems in terms of their support for 

these properties and shows that none support all three. 

 

Algorithm Non-Blocking? Consistent Reads? Contention Manager? 

ASTM [63]    

Bulk [13]    

LogTM [67]    

McRT [74]    

RSTM [62]    

TCC [32]    

TL2 [16]    

Figure 5.1: Comparison of several TM algorithms 

 

Furthermore, in contrast to many modern STM implementations that permit 

inconsistent reads and therefore violate the isolated property of transactional systems, 
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possibly leading to exceptions and infinite loops in client algorithms, our obstruction-free 

algorithms always return a consistent state that is linearizable. In systems that permit 

inconsistent reads, such problems are often dealt with through redundant checks inserted 

by compilers to detect and recover from these conditions [1], but, to our knowledge, no 

proof has been developed to show that these checks are sound in all cases. 

In the algorithms we present, it is possible for a transaction as a whole to conflict 

with another already committed transaction, and thus have to be aborted, but at no point 

will a transaction have seen an inconsistent value written by an intervening transaction. 

We argue that such consistency is a critical property, if transactional memory systems are 

to be widely adopted. 

Finally, the algorithms we present all support the use of orthogonal contention 

managers. Recent work on transaction synchronization algorithms [16], particularly in 

proposed hybrid software/hardware systems [78], does not mix well with flexible 

contention management policies. By contrast, we find that this is a valuable property 

even in locking STM systems, which are susceptible to livelock as well as deadlock and 

priority inversion. In addition, contention management has been shown to have a 

dramatic effect on the performance of transactional memory systems [76]. 

Our work builds upon several key attributes that define STM implementations. 

The algorithms rely on an object-based system that associates synchronization and 

recovery metadata with language-level objects, and thus is well suited to managed 

languages such as Java or C# [41, 48]. This distinguishes it from word-based STMs, 

which synchronize on uninterpreted regions of memory, and are better-suited for 

unmanaged languages, such as C or C++ [74]. An important advantage of object-based 
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STMs is their ability to enforce strong atomicity [5, 6, 80], ensuring that transactional and 

non-transactional accesses synchronize properly. Object-based STM systems are also 

particularly well-suited to obstruction-free implementations [46], as a single compare-

and-swap (CAS) operation can atomically update an object’s transactional state. 

Section 5.2 presents the VisibleReaders algorithm, which is an optimization of the 

Locator-based obstruction-free synchronization algorithm originally introduced in the 

DSTM [48] and SXM [41] systems to accomplish efficient reader visibility. Section 5.3 

describes the WarningWord algorithm, which outlines the basic building blocks of an 

obstruction-free reader-writer “lock.” Section 5.4 expands the model outlined in § 5.3 and 

analyzes the behavior of an obstruction-free transaction synchronization algorithm based 

on a Bloom filter. Section 5.5 presents an alternative way of developing the model 

outlined in § 5.3 by introducing the WriterBins algorithm, which allows for an adjustable 

number of concurrent writers. Finally, Section 5.6 compares the four algorithms and 

describes the performance results. The complete a C# implementation for each algorithm 

presented is included in the Appendix. 

 

5.2 The VisibleReaders algorithm 

The VisibleReaders algorithm is based on the original obstruction-free approach 

described by the DSTM paper [48]. This algorithm employs a Locator object that 

contains references to the speculative and committed version of the object, as well as the 

current writer and a linked list of readers. While the DSTM model has been rightly 

criticized as inefficient [62] due to the extra level of indirection represented by the 

Locator, our work shows that its overhead can be effectively ameliorated by compiler 
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support that traverses the Locator object only on the initial read or write. Subsequent 

reads or writes of that object by the same transaction can use a cached reference directly 

to their private (in the case of writes), or shared (in the case of reads) copy of the object, 

effectively bypassing the Locator. 

Figure 5.2 shows that, if an atomic object is opened for write access, the 

speculative “commit” version will be returned directly to the client algorithm, which can 

continue to use that copy of the object until it attempts to commit. If aborted by a 

competing transaction, the speculative copy becomes detached from the Locator and the 

writing transaction will not be permitted to commit. Thus, the extra level of indirection in 

the Locator object is an overhead that need only be traversed on the initial read or write. 

 

 

Figure 5.2: The transactional metadata model 

 

In Figure 5.2, the nextLocator field points to a singly linked list of Locator 

objects; each represents a single reader transaction. This approach, which makes reader 

transactions visible to writers, works well with a contention management scheme, since a 
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writer that wants to take ownership of an atomic object knows which transactions are 

currently reading the object. The contention manager can then decide whether to wait for 

those reader transactions to complete or to abort them and allow the writer to go forward 

immediately. 

The challenge posed by visible readers, however, is that the list of reader 

transactions must be updated and pruned in a nonblocking fashion. Adding new elements 

to the list is straightforward: a new locator is allocated, populated, and then swapped into 

the list’s head position using a CAS operation. However, pruning completed (i.e., 

committed or aborted) readers from the list without locking is slightly more challenging. 

In the original DSTM algorithm the reader list was not pruned, leading to very inefficient 

scanning. 

Our solution checks at each iteration whether the next entry represents a 

completed reader transaction. If so, the algorithm continues scanning forward until it 

detects either the end of the list (represented by a null value), or an active transaction. 

After each iteration, the starting pointer is updated with either a null value (indicating that 

the end of the list was reached) or a reference to the next transaction. This has the effect 

of pruning all the non-active transactions from the list. 

Iterate-Reader-List(me, curentLocator) 

1 while curentLocator ≠ NIL   iterate the list of readers 
2  if currentLocator.reader = me 

3   then return   already a reader 

4  currentLocator  curentLocator.next  Prune-Reader-List(curentLocator.next) 

 

Prune-Reader-List(nextLocator) 

  scan ahead and prune inactive transactions 

1 while nextLocator ≠ NIL  nextLoactor.reader.state ≠ ACTIVE 

2  nextLocator  nextLoactor.next 
3 return nextLocator 



 

 

100 

 

Figure 5.3: Two transactions concurrently prune the reader list safely without locks 

 

The argument for the correctness of this optimization is that it preserves the 

following invariant: all active readers remain in the list; only inactive ones are pruned. As 

a result, concurrently running transactions may see and prune different inactive readers, 

but this has no effect on the invariant stated above. This is in contrast with the original 

DSTM and SXM approaches, which kept non-active (i.e., committed and aborted) 

transactions in the list. Because already completed (reader) transactions do not affect the 

linearizability of any other transactions, this optimization is safe. Furthermore, the 

pruning algorithm remains lock-free (i.e., it is safe to run concurrently and does not 

require a CAS operation to remove the dead readers). Threads concurrently pruning 

transactions from the same reader list do not interfere with one another. If a competing 

thread prunes some parts of the reader list at the same time that another thread is pruning 

other parts, the different transactions may observe a different set of readers depending on 

when those readers complete, but all threads will always see all other active readers 

(since only dead readers are discarded); see Figure 5.3. Nevertheless, the performance 

penalty of maintaining a nonblocking list of active readers, even where  completed 

readers are pruned from the list, remains a significant impediment and thus limits the 

performance of this obstruction-free transaction synchronization algorithm. 
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Definitions: We now give the definitions of the locator list invariant and the 

associated rely and guarantee conditions; then we will prove the algorithm obeys their 

specifications. The locator list invariant is defined as follows: 

LocatorListInv ≡ Locator(Head)  Locator(Tail) 

 Locator n. n.nextLocator = NIL  n.nextLoctor.reader ≠ NIL 

The pre-condition is:  p ≡ LocatorListInv 

The rely condition is:  R ≡ Locator n. Preserve(LocatorListInv)  

 n.nextLocator.reader.state = ACTIVE  ID(n.nextLocator)  

 n.reader = self  ID(n) 

The guarantee condition is: G ≡ Locator n. Preserve(LocatorListInv)  

 n.nextLoctor.reader ≠ NIL  n.nextLocator.reader.state = ACTIVE 

 n.reader = self  ID(n) 

The post-condition is:  q ≡ Locator n. Preserve(LocatorListInv)  

 n.nextLoctor.reader ≠ NIL  n.nextLocator.reader.state = ACTIVE 

 n.reader = self  ID(n) 

Proof: This is the reader list iterator algorithm annotated with pre- and post-conditions: 

 

Iterate-Reader-List(me, curentLocator) 
{ LocatorListInv } 
1 while curentLocator ≠ NIL 

{ LocatorListInv  currentLocator ≠ NIL } 
2  if currentLocator.reader = me 

{ LocatorListInv  currentLocator ≠ NIL  currentLocator.reader = self } 
3   then return 

 

This exit branch satisfies the guarantee condition specifying that where the reader is the 

current transaction, the algorithm maintains the locator list invariant and does not modify 

the current locator, and in turn, satisifies the identical post-condition. 

 

{ LocatorListInv  currentLocator ≠ NIL  currentLocator.reader ≠ self } 

4  currentLocator  curentLocator.next  Prune-Reader-List(curentLocator.next) 

{ LocatorListInv  (currentLocator = NIL  currentLocator.reader.state = ACTIVE) } 

 

This assignment modifies the structure of the list by eliding inactive readers. As the post-

condition shows, however, the locator list invariant and the guarantee condition hold 

true. 
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When the algorithm returns because the while loop condition is false, the final post state 

can be stated as: 
 

{ LocatorListInv  currentLocator = NIL  Locator(Tail).reader.state = ACTIVE} 

 

As shown above with pre- and post-conditions, at each step of the loop, the guarantee 

condition holds true. Thus, at each iteration of the loop, the current locator is active, 

proving, by induction, that the final locator is active when the loop terminates. 

 

The prune reader list algorithm is invoked by the list iterator. Here is the pruning 

algorithm shown annotated with pre- and post-conditions: 

 

Prune-Reader-List(nextLocator) 

{ LocatorListInv  nextLocator ≠ NIL } 

1 while nextLocator ≠ NIL  nextLoactor.reader.state ≠ ACTIVE 

{ LocatorListInv  nextLocator ≠ NIL  nextLocator.reader.state ≠ ACTIVE } 

2  nextLocator  nextLoactor.next 
{ LocatorListInv } 

 

This assignment modifies only a local stack variable and so has no affect on the truth of 

the locator list invariant. 
 

{ LocatorListInv  (nextLocator = NIL  nextLocator.reader.state = ACTIVE) } 
3 return nextLocator 

 

5.3 The WarningWord algorithm 

By dropping dead readers from the nonblocking readers list, the performance of 

the VisibleReaders algorithm described above greatly improves. However, as pointed out 

in [38], the overhead of maintaining a list of readers remains considerable. By contrast, 

better performance can be achieved by not maintaining such a record of readers, but, 

instead, relying on other mechanisms to detect and resolve read-write conflicts. This is 

the basis for the WarningWord algorithm, which relies on a single global 32-bit value we 

call the WarningWord. Each bit in the WarningWord corresponds to one transactional 

thread. Although by definition this limits the system to a maximum of 32 concurrent 
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threads, the approach could be easily expanded to use 64-bit or even larger values to 

support more threads. 

In the WarningWord algorithm, write operations “warn” all other threads, and 

read operations check to see whether they have been warned. As a result, transactions 

become serialized as soon as there is an active writer present in the system. In effect, the 

WarningWord algorithm operates as a system-wide reader-writer “lock.” Although 

potential concurrency is sacrificed for lower read/write overhead, this approach 

significantly outperforms the more conventional visible reader techniques. These results 

reinforce the argument advanced in [17], which suggests that the key to lowering overall 

STM overhead is to lower the cost of a single transaction. 

In the WarningWord algorithm, and the BloomFilter and WriterBins algorithms 

described in §§ 5.4 and 5.5, the Locator object contains only the object’s current writer 

and references to the new and old copies of the object. There is no longer any reader 

information stored, and thus no need for a linked list of Locator objects. 

class Locator { // no reader info 

   XState writer; 

   ICloneable oldObject, newObject; 

} 

 

On transaction start, the WarningWord algorithm acquires the thread ID that will 

uniquely represent this transaction’s warning bit. Then it clears the thread’s bit in the 

global WarningWord value using a CAS operation. This ensures that the new transaction 

starts with a clean slate, even where the last transaction run by this thread may have 

aborted due to a warning. 
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Initialize-Tx(me) 

1 me.threadId  GetThreadId 

2 do   clear the warning bit for this thread 

3  oldValue  GlobalWarningWord 

4  newValue  oldValue  me.threadId 

5 until Cas(GlobalWarningWord, newValue, oldValue) 

 

Writers warn other threads that they are the exclusive writer by setting the 

warning bits for all other threads: 

Warn-Other-Threads(me) 
1 do 

2  oldValue  GlobalWarningWord 

3  newValue  oldValue  ~(1 << me.threadId) 

4 until Cas(GlobalWarningWord, newValue, oldValue) 

 

Both transactional reads and writes check whether their thread has been “warned,” 

in which case they must abort: 

Check-Warning-Word(me) 

1 if GlobalWarningWord  (1 << me.threadId) ≠ 0 

2  then throw Aborted-Exception 

 

The argument for the correctness of the WarningWord algorithm proceeds as 

follows. First each transactional thread is given a unique number that remains constant 

for the life of the process; this means that the set of all possible threads that may initiate 

transactions must be known in advance. Read sharing is permitted—initial reads simply 

check that their thread’s “warning” bit is clear. Transactional writer threads atomically 

set all other threads’ warning bit before acquiring any atomic object via the locator. Thus, 

following the same logic advanced in § 4.3, if the warning bit is clear at a time 

subsequent to the time a value was read, that value is linearizable. Since obstruction-free 

transactional objects are immutable (see § 4.4), a safe value, once read, remains safe for 
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later use, even if a writing transaction replaces the current version of the object in the 

locator. By way of contradiction, after a writer warns all other threads and acquires 

ownership of the atomic object, all later threads that check their warning bit are aborted. 

Definitions: We now give the definitions of the warning word invariant and the 

associated rely and guarantee conditions; then we will prove the algorithm obeys their 

specifications. The warning word invariant is defined as follows: 

WarningWordInv ≡ transaction tx. tx.threadId  GetThreadId  

 GlobalWarningWord  (1 << tx.threadId) ≠ 0  ABORT(tx) 
 

The rely condition is:  R ≡ WarningWordInv 

 transaction tx. tx.Write(obj)  obj.Locator.writer  tx  

  AllBitsSet(GlobalWarningWord), except bit number tx.threadId) 

 

The guarantee condition is: G ≡ WarningWordInv 

 me.Write(obj)  obj.Locator.writer  me  

  AllBitsSet(GlobalWarningWord), except bit number me.threadId) 
 

The pre-condition is:  p ≡ WarningWordInv  Locator.writer = self 

The post-condition is:  q ≡ WarningWordInv  Locator.writer = self  

 AllBitsSet(GlobalWarningWord), except bit number me.threadId 

The Warn-Other-Threads algorithm is executed immediately after a thread takes 

ownership of an atomic object for writing. Thus, the precondition is the starting point: 

 

Warn-Other-Threads(me) 

{ WarningWordInv  Locator.writer = self } 
1 do 

2  oldValue  GlobalWarningWord 

3  newValue  oldValue  ~(1 << me.threadId) 

4 until Cas(GlobalWarningWord, newValue, oldValue) 

{ WarningWordInv  Locator.writer = self  

 AllBitsSet(GlobalWarningWord), except bit number me.threadId 

The post-condition is satisfied by the CAS operation that sets all bits, except for that of 

the writing thread. The CheckWarningWord algorithm does not modify any values, and 

thus serves only to prevent reads and writes from proceeding on threads that have been 

warned, serving to satisfy the WarningWordInv. 
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However, several drawbacks remain: in addition to the obvious lack of write 

concurrency in the WarningWord model, a second challenge is the limited support for 

contention management in this algorithm. The contention manager can only be invoked 

when a reader or a writer encounters a direct conflict with another active writer. 

However, because readers are invisible, when a writer conflicts with an active reader 

there is no way for the writer to learn of the conflict. The conflicting readers will discover 

that they’ve been warned and then have to abort. But a contention management policy 

cannot be imposed to ensure that readers get a fair chance to complete. 

Theoretically, the WarningWord algorithm is susceptible to livelock between 

reader and writer threads: if a writer does not complete within a reasonable period of 

time, it can only be aborted by another directly conflicting reader or writer; readers of 

other objects cannot abort the writer because they have no way of identifying it. In 

practice, however, the opposite is true. Because readers abort when they encounter an 

active writer, the WarningWord algorithm gives writers precedence over readers and thus 

exhibits excellent concurrency with short-lived transactions. 

Another important feature is that the WarningWord approach can be applied to a 

blocking STM model as well, although we found that it worked best in the obstruction-

free STM, probably because the blocking mode requires two added CAS operations per 

(initial) read and write (to acquire and release the lock). 

 

5.4 The BloomFilter algorithm 

Bloom filters [4] have become increasingly popular in STM systems as way of 

quickly checking whether an address is represented in a change log [17]. Bulk [13] uses a 
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related technique to represent a thread’s access information. This is often an efficient way 

of solving the read-after-write problem in redo STMs. Bloom filters, of course, can return 

false positives, so the fact that a value appears in the Bloom filter does not necessarily 

mean that it actually exists in the change log. However, by quickly checking the Bloom 

filter, the STM can determine whether it is even necessary to consult the log. 

One common problem with Bloom filters, however, is how to clean the filter 

when a transaction commits or aborts. Because multiple addresses may map to the same 

entry in the filter (i.e., multiple transactions may add the same objects to the filter), it can 

be dangerous to remove an entry. One common solution is to use a counting Bloom filter 

[24] in which each time a value is added to filter an associated counter is incremented; 

consequently, entries are removed only when their counter is decremented to zero. 

Rather than implementing a counting Bloom filter, however, we observe that 

although multiple objects may hash to the same spot in the filter, the interesting conflicts 

in STM systems are those that occur between transactions. In other words, the question 

we ask is not how many times an object hashing to a specific entry has been added to the 

filter (this can be answered by a counting Bloom filter), but, rather, whether competing 

transactions have added an object mapping to this entry in the filter. 

Based on this insight, we use a Bloom filter arranged as an array of 32-bit 

values—each bit representing one of thirty-two possible thread IDs. In this way, a thread 

that adds an object to the filter can tell whether a different transaction has already added 

it previously. Our current filter size is 256KB, or 65,536 entries of 32-bits each. A larger 

filter would make false positives less likely, but we have not found this to be a problem. 
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A global WarningWord value is used by writers to warn reader threads of a likely 

conflict. In this sense, it is similar to the WarningWord algorithm described in § 5.3, with 

one major difference: rather than any writing transaction warning all other threads, a 

writer now checks to see whether an active reader is registered at the filter entry for the 

target object. If so, the WarningWord is set to warn just the conflicting thread rather than 

all other threads. 

Each new transaction obtains a thread ID and then a reference to that thread’s read 

list: 

Initialize-Tx(me) 

1 me.threadId  GetThreadId 

  per-tx read list for cleanup 

2 me.txReadList  GlobalReadLists[me.threadId] 

 

Read operations add the atomic object’s hash to the transaction’s read list and set 

the appropriate entry in the Bloom filter: 

Add-Read-Object(me, hash) 

  add the object hash to the tx’s read list 
1 me.txReadList.Add(hash) 

  then add it to the Bloom filter 

2 BloomFilter-Add(hash, me.threadId) 

 

Before returning the atomic object opened for read access, the algorithm checks to 

see whether a writer thread has “warned” this transaction of a possible conflict. If so, the 

transaction must be aborted and the Bloom filter cleansed of all entries added by this 

transaction. 

Read-Object-Validate(me) 

1 if Check-Warning-Word(me.threadId) = TRUE 

2  then Filter-Cleanup(me) 

3   throw Aborted-Exception 
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Similarly, transactional writes check the Bloom filter for possible reader conflicts 

and then “warn” any threads that may conflict: 

Write-Object-Validate(me, hash) 

1 conflict  BloomFilter[hash]  ~(1 << me.threadId) 
2 if conflict ≠ 0 

3  then Set-Warning-Word(conflict) 

4 if Check-Warning-Word(me.threadId) = TRUE 

5  then Filter-Cleanup(me) 

6   throw Aborted-Exception 

 

Our algorithm makes filter cleanup straightforward. Because each thread 

maintains a list of read objects, when a transaction commits or aborts that list can be 

iterated to remove those objects from the filter. Only the thread ID associated with the 

completing transaction is actually removed; other threads that read objects mapping to the 

same filter entry remain unaffected. 

Filter-Cleanup(me) 

1 for i  0 to me.txReadList.Count 
2  do 

3   oldValue  BloomFilter[me.txReadList[i]] 

4   newValue  oldValue  me.threadId 

5  until Cas(BloomFilter[me.txReadList[i]], newValue, oldValue) 

  clear the warning for this transaction 

6 Clear-Warning-Word(me.threadId) 

7 me.txReadList.Clear()  empty the read list for this transaction 

 

The argument for the correctness of the BloomFilter algorithm proceeds as 

follows. Traditional Bloom filters are bitmaps of entries that map from larger sets via one 

or more hash functions. Our approach uses a two-dimensional Bloom filter, where each 

entry in the filter is represented not by a single bit, but, rather, by a warning word. This 

permits writer concurrency at the resolution of the Bloom filter’s size. Where a likely 

conflict is detected, the thread owning that entry in the filter is aborted by setting its 
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warning bit in the global warning word. Once at the level of the global warning word, the 

arguments for correctness advanced in § 5.3 apply. As shown in [4], Bloom filters can 

return false positives but not false negatives. In the context of transactional memory, false 

positives might occasionally abort a transaction unnecessarily, but transactional 

linearizability is never violated. 

Definitions: We now give the definitions of the bloom filter invariant and the 

associated rely and guarantee conditions; then we will prove the algorithm obeys their 

specifications. The bloom filter invariant is defined as follows: 

BloomFilterInv ≡ threadId  GetThreadId  

 threadId id. txReadList  GlobalReadLists[id] 

The rely condition is:  R ≡ BloomFilterInv 

 transaction tx. tx.Write(txObj)   

 BloomFilter[hash]  ~(1 << tx.threadId) ≠ 0   

 Set-Warning-Word(BloomFilter[hash]  ~(1 << tx.threadId)) 

 transaction tx. tx.Read(txObj)  hash  tx.txReadList  

  BloomFilter(hash, tx.threadId) 

  Check-Warning-Word(tx.threadId) = TRUE  ABORT(tx) 
 

This rule specifies that any transaction that writes an object where a conflicting reader is 

registered in the Bloom filter must set the warning word for that other thread; any 

transaction that reads an object must register its (hash, threadId) tuple in the Bloom filter. 
 

The guarantee condition is: G ≡ BloomFilterInv 

 me.Write(txObj)  BloomFilter[hash]  ~(1 << tx.threadId) ≠ 0   

 Set-Warning-Word(BloomFilter[hash]  ~(1 << me.threadId)) 

 me.Read(txObj)  hash  me.txReadList  

  BloomFilter(hash, me.threadId) 

  Check-Warning-Word(me.threadId) = TRUE  ABORT(me) 
 

This rule specifies that the transaction that writes an object where a conflicting reader is 

registered in the Bloom filter must set the warning word for that other thread; the 

transaction that reads an object must register its (hash, threadId) tuple in the Bloom filter. 
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For the Add-Read-Object and Read-Object-Validate algorithms, 

which are executed sequentially, the pre- and post-conditions are defined as follows (the 

rely-guarantee conditions are the same as those given above): 

The pre-condition is:  p ≡ BloomFilterInv  

 me.txReadList  GlobalReadLists[me.threadId] 

The post-condition is:  q ≡ BloomFilterInv  

 me.txReadList  GlobalReadLists[me.threadId]  

 Check-Warning-Word(me.threadId) ≠ TRUE   

hash  me.txReadList  BloomFilter(hash, me.threadId) 

Proof: The read algorithms are executed only after the initialize step. Thus, the 

precondition is the starting point: 

 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId] } 
1 me.txReadList.Add(hash) 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId]   

hash  me.txReadList } 

2 BloomFilter-Add(hash, me.threadId) 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId]   

hash  me.txReadList  BloomFilter(hash, me.threadId } 

3 if Check-Warning-Word(me.threadId) = TRUE 

4  then Filter-Cleanup(me) 

5   throw Aborted-Exception 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId]   

Check-Warning-Word(me.threadId) ≠ TRUE  hash  me.txReadList  

BloomFilter(hash, me.threadId } 

 

This final post-condition also satisfies the reader portion of the guarantee property 

for the algorithm and does not violate the rely property on which other threads depend. 

For the Write-Object-Validate algorithm, the pre- and post-conditions are 

defined as follows (the rely-guarantee conditions are the same as those given above): 

The pre-condition is:  p ≡ BloomFilterInv  

 me.txReadList  GlobalReadLists[me.threadId] 
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The post-condition is:  q ≡ BloomFilterInv  

 me.txReadList  GlobalReadLists[me.threadId]  

 BloomFilter[hash]  ~(1 << me.threadId) ≠ 0  

 Set-Warning-Word(BloomFilter[hash]  ~(1 << me.threadId)) 

Check-Warning-Word(me.threadId) ≠ TRUE 
 

Proof: The read algorithms are executed only after the initialize step. Thus, the 

precondition is the starting point: 

 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId] } 

1 conflict  BloomFilter[hash]  ~(1 << me.threadId) 
2 if conflict ≠ 0 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId] 

  conflict ≠ 0 } 

3  then Set-Warning-Word(conflict) 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId] 

  conflict ≠ 0  Set-Warning-Word(conflict) } 

4 if Check-Warning-Word(me.threadId) 

5  then Filter-Cleanup(me) 

6   throw Aborted-Exception 

{ BloomFilterInv  me.txReadList  GlobalReadLists[me.threadId] 

  conflict ≠ 0  Set-Warning-Word(conflict)  

  Check-Warning-Word(me.threadId) ≠ TRUE } 

 

This final post-condition also satisfies the reader portion of the guarantee property for the 

algorithm and at no point does it violate the rely property on which other threads are 

entitled to depend. (Note that conflict  BloomFilter[hash]  ~(1 << me.threadId) from 

step 1). 

Like the WarningWord algorithm, the BloomFilter algorithm provides somewhat 

limited support for contention management in cases of read-write conflicts. Because 

transactions are still notified of likely reader conflicts by way of a thread-specific 

warning bit, the contention manager cannot be used to resolve these conflicts. But, since 

the BloomFilter identifies reader conflicts only where they most likely actually exist, the 

likelihood of spurious aborts and hence the chance of livelock is greatly reduced. 
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5.5 The WriterBins algorithm 

The obstruction-free algorithms described in the preceding sections are 

transaction synchronization algorithms in the sense that they don’t permit a 

nonlinearizable operation to occur. Conflicts are handled as they occur by aborting the 

current transaction or calling a contention manager to resolve the conflict. As a result, 

commit operations are extremely simple: just a single CAS switches the transaction’s 

state from active to committed. 

By contrast, the WriterBins algorithm loosens this restriction in order to permit 

some nonlinearizable transactions to proceed. These transactions are then caught by the 

validation algorithm prior to commit, and aborted. It is important to emphasize, however, 

that the WriterBins algorithm does not allow inconsistent reads. That is, at no point can 

the same copy of the atomic object be read and written by different transactions. Unlike 

the WarningWord algorithm described in § 5.3, which permitted only one system-wide 

writer, the WriterBins algorithm is configurable. It can permit anywhere from 1 to n 

concurrent writers. In our tests, we have worked with a maximum of 32 concurrent 

writers in order to make the comparisons among the algorithms more meaningful (see § 

5.6). 

The WriterBins algorithm’s data structures are arranged as follows. First, a global 

array of 32 integers is created to store the version number of each bin. Second, a global 

array of 32 transactions is created to store the transaction that is the current owner of each 

bin. Having an array of the actual transactions rather than simply a bitmap enables two 

transactions that conflict over a bin to invoke the contention manager to help resolve their 

differences. 
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XState GlobalWriterBins[32]; 

int GlobalBinVerCounters[32]; 

 

In addition to these two global arrays, each transaction maintains three pieces of 

private data: a 32-bit map of readers, writers, and a copy of the bin version numbers that 

were current when the transaction started. 

// 1 bit per bin 

int txReadBins, txWriteBins; 

 

// local cache of version counters 

int txBinVerCounters[32]; 

 

Transactional read operations first check whether the bin that the target object 

maps to has been read previously. If not, the transaction’s read bins value (txReadBins) is 

updated. Then the read operation checks the transaction’s local bin version number 

against the global one. This check is not required, as transactions are validated at commit-

time, but is effective in aborting doomed transactions early. 

Read-Object(me, bin) 

1 if (me.txReadBins  1 << bin) = 0     have we read this bin? 

2  then me.txReadBins  me.txReadBins  1 << bin  no, set the bin bit 

3   early check for conflicts 

4  if GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] 

5   then thrown Aborted-Exception 

 

The transactional write operation checks txWriteBins to determine whether the 

writing transaction has previously written an object mapping to this bin. If not, the 

algorithm will acquire ownership of the global bin, if necessary with the assistance of the 

contention manager. 

  



 

 

115 

Write-Object(me, bin) 

1 if (me.txWriteBins  1 << bin) = 0    have we written this bin? 

2  then do      no 

3   oldTx  GlobalWriterBins[bin] 

    check bin version numbers 

4   if GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] 

5    then thrown Aborted-Exception 
6   if oldTx.state = ACTIVE 

7    then Resolve-Conflict(me, oldTx)  conflict – call ConMan 
8     continue 

9  until Cas(GlobalWriterBins[bin], me, oldTx) 

10  me.txWriteBins  me.txWriteBins  1 << bin   set the written bin bit 

 

The most interesting part of the WriterBins algorithm, however, is the commit-

time validation. This is performed in two phases, both accomplished without any CAS 

operations. The first pass iterates through the bins and increments both the local and 

global version counters for all bins written by this transaction. The second pass compares 

the local and global version counters for all read and written bins. If all bin counters 

match during the second pass, the transaction can commit; otherwise it must abort. 

Validate-Tx(me) 

  first pass – increment version numbers for written bins 

1 for bin  0 to 32 

2  if (1 << bin  me.txWriteBins) ≠ 0  did the tx write this bin? 

3   then GlobalBinVerCounters[bin]++ 

4    me.txBinVerCounters[bin]++ 

  second pass – check all touched bin version numbers 

5 txRWBins  me.txReadBins  me.txWriteBins 

6 for bin  0 to 32 

7  if (1 << bin  me.txRWBins) ≠ 0  did the tx read/write this bin? 

8   then if GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] 

9    then Abort-Tx(me) 
10     return FALSE 
11 return TRUE 

 

The argument for the correctness of the WriterBins algorithm proceeds as follows. 

First, multiple writers can now run in tandem, so long as they don’t conflict over 
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individual atomic objects (managed by a locator object—see § 5.2). Nonlinearizable 

conflicts among transactions are detected by the commit-time validation algorithm shown 

above. At time t1, when the transaction begins, the then current version number for each 

bin is recorded in a private transaction-specific array. At commit-time, say time t1+n, the 

algorithm makes two passes over the bins. First, for each bin written by the committing 

transaction, the validation algorithm increments both the local and global bin version 

numbers. Second, at time t1+n+1, the algorithm compares the local and global bin version 

numbers for all bins either read or written by the transaction. If all checked bin numbers 

match, we argue that no competing transaction could have written to any of the bins that 

the validating transaction read or wrote between time t1 and t1+n. Since, at the subsequent 

time t1+n+1 the bin numbers still matched, and bin numbers are only incremented, never 

decremented, they must have matched at the earlier time as well, and thus the transaction 

is safe to try to commit.
1
 

Once this second check completes successfully, the transaction has been validated 

and can attempt to commit by flipping its state from Active to Committed via a CAS 

operation, at time t1+n+2. Of course, it is always possible that a competing transaction has 

stolen one of this transaction’s objects between time t1+n+1 and t1+n+2, and, in the process, 

aborted us. If so, the CAS operation will fail and all the current transaction’s mutations 

are discarded. The unnecessarily incremented bin version numbers, however, are not 

rolled back; at worst, this causes the rare spurious abort. 

                                                 
1
 Rollover will happen when the bin counters reach their maximum value. For this to be a problem, 

however, precisely 2
32

 transactions would have to write to that specific bin (and either no others or else all 

others read and/or written by the current transaction) and attempt to commit between times t1 and t1+n+1. 

Since we assume that transactions are relatively short-lived, we do not believe this to be a problem in 

practice. The overhead of an empty transaction is currently approximately 1µs, so a single transaction 

would have to run for more than one hour (4295 seconds) in order for this to be even a slight possibility. 

Increasing the bin version numbers to 64 bits would make this a practical impossibility. 
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Definitions: We now give the definitions of the writer bins invariant and the 

associated rely and guarantee conditions; then we will prove the algorithm obeys their 

specifications. The writer bin invariant is defined as follows: 

WriterBinInv ≡ bin, transaction b, tx. (1 << b  (tx.txReadBins  tx.txWriteBins)) ≠ 0   

GlobalBinVerCounters[b] ≠ tx.txBinVerCounters[b]   

 Abort(tx) 

 

This rule says that for any given transaction that reads or writes atomic objects, the 

transaction’s bin counters for the read/written bins must match the global bin 

counters, or else the transaction must abort. 

 

The rely condition is:  R ≡ WriterBinInv  

 bin, transaction b, tx. tx.Read(b)  tx.txReadBins  tx.txReadBins  1 << b  

 bin, transaction b, tx. tx.Write(b)  GlobalWriterBins[b]  tx  

  tx.txWriteBins  tx.txWriteBins  1 << b 

 transaction tx. tx.Commit()  bin b. (1 << b  tx.txWriteBins) ≠ 0   

 (GlobalBinVerCounters[b]++  tx.txBinVerCounters[b]++) 
 

This condition says that any transaction that wants to read or write an object belonging to 

a specific bin must set the appropriate bit in its txReadBins or txWriteBins map, 

respectively; that any bin written by a transaction must also be “owned” by 

assigning the owning transaction in the GlobalWriterBins[b] array; and 

that any transaction attempting to commit will increment 

GlobalBinVerCounters[b] and its local counters for each bin that was 

written. 
 

The guarantee condition is: G ≡ WriterBinInv 

 bin b. Read(b)  self.txReadBins  self.txReadBins  1 << b  

 bin b. Write(b)  (GlobalWriterBins[b] = self  

  self.txWriteBins  self.txWriteBins  1 << b) 

 Commit()  bin b. (1 << b  self.txWriteBins) ≠ 0   

 (GlobalBinVerCounters[b]++  self.txBinVerCounters[b]++)  
 

This condition guarantees that current the transaction will set the appropriate bit in its 

txReadBins or txWriteBins map, respectively, for each bin read or written; that 

the GlobalWriterBins[b] array will be set to the current transaction for all 

bins written; and that, when attempting to commit, the  transaction will increment 

GlobalBinVerCounters[b] and its local counters for each bin that was 

written. 
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For the Read-Object algorithm, the pre- and post-conditions are defined as 

follows (the rely-guarantee conditions are the same as those given above): 

The pre-condition is:  p ≡ none 

The post-condition is:  q ≡ WriterBinInv  me.txReadBins  me.txReadBins  1 << bin 

Proof: The read algorithm is shown below annotated with pre- and post-conditions. The 

final post-condition satisfies the WriterBinInv by ensuring that transacion where the local bin 
counters don’t match the global ones are aborted. 

 

1 if (me.txReadBins  1 << bin) = 0 

{ (me.txReadBins  1 << bin) = 0) } 

2  then me.txReadBins  me.txReadBins  1 << bin 

{ me.txReadBins  me.txReadBins  1 << bin } 

3  if GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] 

{ me.txReadBins  me.txReadBins  1 << bin  

 GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin]} 

4   then thrown Aborted-Exception 

{ WriterBinInv  me.txReadBins  me.txReadBins  1 << bin } 

 

For the Write-Object algorithm, the pre- and post-conditions are defined as 

follows (the rely-guarantee conditions are the same as those given above): 

The pre-condition is:  p ≡ none 

The post-condition is:  q ≡ WriterBinInv  GlobalWriterBins[bin]  me  

      me.txWriteBins  me.txWriteBins  1 << bin 
 

Proof: The write algorithm is shown below annotated with pre- and post-conditions; 

there is no pre-condition and the post-condition matches that given above. 

 

1 if (me.txWriteBins  1 << bin) = 0 

{ (me.txWriteBins  1 << bin) = 0) } 
2  then do 

3   oldTx  GlobalWriterBins[bin] 

4   if GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] 

{ (me.txWriteBins  1 << bin) = 0)  

 GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] } 

5    then thrown Aborted-Exception 

{ WriterBinInv  (me.txWriteBins  1 << bin) = 0) } 
6   if oldTx.state = ACTIVE 
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{ WriterBinInv  (me.txWriteBins  1 << bin) = 0)  

 GlobalWriterBins[bin].state = ACTIVE } 

7    then Resolve-Conflict(me, oldTx) 

8     continue 

{ WriterBinInv  (me.txWriteBins  1 << bin) = 0)  

 GlobalWriterBins[bin].state ≠ ACTIVE } 

9  until Cas(GlobalWriterBins[bin], me, oldTx) 

{ WriterBinInv  (me.txWriteBins  1 << bin) = 0)  

 GlobalWriterBins[bin]  me } 

10  me.txWriteBins  me.txWriteBins  1 << bin 

{ WriterBinInv  GlobalWriterBins[bin]   me  

 me.txWriteBins  me.txWriteBins  1 << bin } 

 

For the Validate-Tx algorithm, the pre- and post-conditions are defined as 

follows (the rely-guarantee conditions are the same as those given above): 

The pre-condition is:  p ≡ none 

The post-condition is:  q ≡ WriterBinInv  

 bin b. (1 << b  me.txWriteBins) ≠ 0   

 (me. GlobalBinVerCounters[b]++  me.txBinVerCounters[b]++)  

 bin b. (1 << b  me.txRWBins) ≠ 0   

 GlobalBinVerCounters[b] = me.txBinVerCounters[b] 

 

Proof: The transaction validation algorithm is shown below annotated with pre- and 

post-conditions; there is no pre-condition and the post-condition matches that given 

above. 

 

1 for bin  0 to 32 

{ bin  0:32 } 

2  if (1 << bin  me.txWriteBins) ≠ 0 

{ bin  0:32  (1 << bin  me.txWriteBins) ≠ 0 } 

3   then GlobalBinVerCounters[bin]++ 

4    me.txBinVerCounters[bin]++ 

{ bin  0:32  

 bin b. (1 << b  me.txWriteBins) ≠ 0   

 (me. GlobalBinVerCounters[b]++  me.txBinVerCounters[b]++) } 

5 txRWBins  me.txReadBins  me.txWriteBins 

6 for bin  0 to 32 

7  if (1 << bin  me.txRWBins) ≠ 0 
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{ bin  0:32  (1 << bin  me.txRWBins) ≠ 0  

 bin b. (1 << b  me.txWriteBins) ≠ 0   

 (me. GlobalBinVerCounters[b]++  me.txBinVerCounters[b]++) } 

8   then if GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] 

{ bin  0:32  (1 << bin  me.txRWBins) ≠ 0  

 bin b. (1 << b  me.txWriteBins) ≠ 0   

 (me. GlobalBinVerCounters[b]++  me.txBinVerCounters[b]++)  

 GlobalBinVerCounters[bin] ≠ me.txBinVerCounters[bin] } 

9    then Abort-Tx(me) 
{ WriterBinInv } 
10     return FALSE 
11 return TRUE 

{ WriterBinInv   

bin b. (1 << b  me.txWriteBins) ≠ 0   

 (me. GlobalBinVerCounters[b]++  me.txBinVerCounters[b]++)  

 bin b. (1 << b  me.txRWBins) ≠ 0   

 GlobalBinVerCounters[b] = me.txBinVerCounters[b] } 

 

Figure 5.4 shows the type of nonlinearizable transactions detected and aborted by 

the WriterBins validation algorithm. In this example, either tx1 or tx2 may commit, but 

not both. If tx1 commits first, it will increment the version number of the bins for obj2. 

This, in turn, will cause the validation algorithm to fail for tx2, since its version numbers 

will no longer match the global ones. Because the WriterBins validation algorithm is 

lock-free, it is possible that tx1 and tx2 will attempt to commit simultaneously. In such 

cases, tx1 and tx2 will both increment their local version numbers and the global version 

numbers concurrently. As a result, the local and global version numbers validated in the 

second pass might not match for either transaction. In such rare cases, both transactions 

will abort. This also explains why a CAS operation is not required to increment the 

GlobalBinVerCounters value in the WriterBins validation algorithm. While the effect of 

some increments on the global counters might be lost due to the non-atomic ++ operation, 
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these are caught in the second pass when the global version numbers do not match the 

safely incremented transaction’s local version numbers. 

In contrast to all the other algorithms presented in this chapter, such conflict is 

only possible in the WriterBins algorithm, where readers are invisible and writers are 

nonexclusive. In the VisibleReaders algorithm, the write operations detect the previously 

registered readers and invoke the contention manager to resolve the conflict. In the 

WarningWord algorithm the second writer is warned by the first writer to abort. In the 

BloomFilter algorithm, reads are noted in the filter and the first writer would warn the 

prior readers. 

 

 

Figure 5.4: Nonlinearizable transactions 

 

In transaction validation algorithms like WriterBins, how much validation to do 

during transactional reads and writes is an open question. Obviously, the less validation 

done incrementally during the execution of a transaction, the faster read and write 
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operations will execute. The downside, of course, is that some percentage of those 

transactions will need to be aborted when they attempt to commit. Our approach currently 

takes the middle ground by checking bin version number only on the initial read of a bin, 

but the tradeoffs involved require further research. 

 

5.6 Comparisons 

Figure 5.5 compares the four algorithms by their space requirements, the number 

of CAS operations required on first read, first write, and at commit, and whether 

validation is required at commit time. 

 

 Visible 

Readers 

Warning 

Word 

Bloom 

Filter 

Writer 

Bins 

Space 20 bytes / 

reader 

32 bits 256KB 256 bytes 

# of CAS for 1
st
 read 1 0 1 0 

# of CAS for 1
st
 write 1 2 2 2 

# of CAS on commit 1 2 num of reads + 2 1 

Validation required? No No No Yes 

Figure 5.5: Comparison of the algorithms 

 

The table shown in Figure 5.6 summarizes the level of contention management 

support provided by each of the four algorithms presented. 
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 Contention management 

VisibleReaders Conflicting transaction resolved by the contention manager. 

WarningWord Writers proceed causing all readers to abort. Writer-to-writer conflicts 

are resolved by the contention manager. 

BloomFilter Writers proceed causing only highly probable conflicting readers to 

abort. Writer-to-writer conflicts are resolved by the contention manager. 

WriterBins Some nonlinearizable transactions allowed to proceed to commit-time 

validation. Whoever commits first wins. Reader/writer-to-writer 

conflicts are resolved by the contention manager.  

Figure 5.6: Support for contention management 

 

The graphs shown in Figures 5.7 and 5.8 compare the performance of our 

transaction synchronization algorithms when executing several standard benchmarks. The 

results in Figure 5.7 show the results of five standard algorithms running with low 

contention (2 threads with 30% write operations). The results are also compared against 

an STM mode using short locks. Figure 5.8 compares the performance of the List 

benchmark at increasing levels of concurrency with all four obstruction-free algorithms 

and the blocking model. These tests were all run on a 4-way machine. 

Figure 5.8 shows the performance of the List benchmark under increasing levels 

of contention. We picked this specific benchmark because there is no transactional 

concurrency that can be exploited in a sorted list: a single writer will by necessity conflict 

with all other transactions as it will have read all list entries up to the point of the entry it 

intends to add. Thus, this figure shows that though performance degrades as contention 
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increases, the WriterBins algorithm performs at least as well as the STM mode that uses 

short lived locks. 

Overall, Figures 5.7 and 5.8 show that the obstruction-free WarningWord 

algorithm performs slightly better than the blocking mode using short-lived locks. This is 

due to its extremely low overhead, and the fact that the blocking STM mode requires an 

additional CAS operation to acquire the lock. Despite the fact that the WarningWord 

algorithm performs best, and is more scalable than we expected, it nevertheless still 

suffers from considerable drawbacks because of its lack of any write concurrency. By 

contrast, the WriterBins algorithm comes closest to the goal of an innovative way of 

solving the invisible readers problem in a highly efficient way without sacrificing write 

concurrency or consistency. The WriterBins algorithm comes in second in terms of 

performance, but, on a system with more cores, the additional write concurrency enabled 

by the WriterBins algorithm may make it significantly more competitive. 

All the algorithms presented in this chapter support three key properties: they 

include a nonblocking progress condition, allow for consistent reads, and support 

contention management. Together, they show that obstruction-free transactional memory 

systems can equal or surpass the performance of those that use short locks. 
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Figure 5.7: Performance comparison with low contention 

 

 

Figure 5.8: List benchmark at increasing levels of contention 
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Chapter 6 

Evaluation 

This thesis claims two fundamental results with respect to an optimizing compiler 

designed to support STM. First, we argue that STM systems can be made easier for 

programmers to use via an attribute-based language interface. Second, we claim that with 

a good mix of library and compiler optimizations, the performance of object-based, 

obstruction-free STMs with always consistent reads, do not perform worse than other 

types of STMs that do not support these properties. Both claims are difficult to prove. 

Ease-of-use in a programming model is notoriously amorphous and consequently difficult 

to measure. And, while performance can be more easily quantified, most current STMs 

are closed worlds that are difficult to compare with one another. For example, comparing 
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the STAMP [61] benchmarks originally written in C to run on the TL2 STM system to a 

C# port of those benchmarks running on our framework is not an apples-to-apples 

comparison. With these caveats in mind, this chapter evaluates our framework in the area 

of programmability; most of the performance results of this thesis are reported in relation 

to the specific benchmarks described in Chapter 4. 

We are not the first to point out the challenges of library-based STM 

programming. In [14], Michael Scott et al. describe their frustration with a C++ STM 

library that relies on smart pointers for trapper transactional memory accesses. All 

library-based solutions to parallel programming suffer to some extent from this mismatch 

with languages fundamentally designed for single-threaded programming. Java was the 

first mainstream programming language to introduce synchronization directly in the 

programming language; even in Java, however, threads are library-based objects. While 

our approach to transactional memory does not obviate the need for explicit thread 

management, it does completely relieve the programmer of responsibility for any data 

protection beyond the declarative (i.e., marking objects as atomic). 

As a starting point, below is the Insert method of the List benchmark as written 

for the Peet compiler. Note that other than the atomic annotation indicating that this 

method begins a new transaction, there is nothing else that the programmer must do to 

use the STM. 

    // Add a value to the set 

    [Atomic(XKind.Starts)] 

    public override bool Insert(int v) { 

        Neighborhood hood = Find(v); 

        if(hood.currNode != null) 

            return false; 

 

        Node newNode = new Node(v); 

        Node prevNode = hood.prevNode; 
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        newNode.next = prevNode.next; 

        prevNode.next = newNode; 

        return true; 

    } 

 

Compare the code above to that the programmer would right using the SXM 

library alone: 

    // method takes an array of objects and  

    //    returns an object 

    public override object Insert(params object[] _v) { 

        // transaction creation is handled by the XStart  

        //    delegate 

        int v = (int)_v[0];     // unpack the parameters 

 

        // instantiation not done with new –  

        //    special factory creator method 

        Node newNode = (Node)factory.Create(v); 

 

        Neighborhood hood = Find(v); 

        if(hood.currNode != null) 

            return false; 

 

        Node prevNode = hood.prevNode; 

 

        // use field wrappers 

        //    ('Next' instead of 'next') 

        newNode.Next = prevNode.Next; 

 

        prevNode.Next = newNode; 

        return true; 

    } 

 

While this is not very different, certainly the convenience of controlling method 

signatures and not having to unpack parameters from a variable length array of objects is 

a significant ease-of-use feature. Furthermore, in order to wrap this method is a 

transaction, the programmer must, use the XStart delegate as shown here: 

    // initialize the transaction object 

    insertXStart = new XStart(this.Insert); 
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    // run the tx 

    bool retval = (bool)XAction.Run(insertXStart,  

                                    value); 

 

Starting and ending (committing or aborting) the transaction, and retrying the 

transaction in case of an abort, is a separate procedure that library manages, or the 

programmer can customize: 

    // run a method in a transaction 

    //    start - XStart Delegate to run 

    //    args  - array of arguments to pass to delegate 

    //    returns result returned by delegate (may be null) 

        public static object Run(XStart start,  

                         params object[] args) { 

            object result = null; 

 

            while(true) { 

                // start the new transaction 

                TxStart(XKind.Requires); 

                try { 

                    // invoke the user's delegate 

                    result = start(args); 

                    if(current.Commit()) 

                        return result; 

                } 

                catch(AbortedException) { 

                    // aborted by synch conflict, retry 

                    TxHandleAbort(current); 

                } 

                catch(Exception e) { 

                    me.Abort();  // abort the transaction 

                    throw e;     // rethrow the errror 

                } 

                finally { 

                    TxFinally(current); 

                } 

            } 

        } 

 

In the Peet model, all of these basic transactional chores are handled 

automatically by the compiler, and customized for the types and method signature of the 
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user’s code. Furthermore, when compared with earlier model like DSTM, the 

programmability of the Peet model because even more apparent. For comparison, below 

is the insert method written for the DSTM library (this algorithm is described in detail in 

§ 2.5). 

public boolean insert(int v) { 

    // (1) List must implement TMCloneable 

    List newList = new List(v); 

 

    // (2) need to wrap the target object in a TMObject 

    TMObject newNode = new TMObject(newList); 

 

    TMThread thread = (TMThread)Thread.currentThread(); 

 

    // (3) loop to retry the transaction in case it fails 

    while(true) { 

 

        // (4) start the transaction 

        thread.beginTransaction(); 

 

        boolean result = true; 

        try { 

 

            // (5) open the objects in read/write mode 

            List prevList = 

                (List)first.open(TMObject.WRITE); 

            List currList = 

                (List)prevList.next.open(TMObject.WRITE); 

 

            while(currList.value < v) { 

                prevList = currList; 

                currList = 

                    (List)currList.next.open( 

                                           TMObject.WRITE); 

            } 

 

            if(currList.value == v) { 

                result = false; 

            } 

            else { 

                result = true; 

                newList.next = prevList.next; 

                prevList.next = newNode; 

            } 
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        } 

        catch(Denied d) { } 

 

        // (6) attempt to commit the transaction 

        if(thread.commitTransaction()) 

            return result; 

    } 

    return false; 

} 

 

It is important to realize that both the first generation DSTM model and the 

second generation SXM/DSTM2 models each has certain strength and weaknesses. The 

weakness of the original DSTM model is its challenging programming model which 

exposes much of the underlying transactional machinery to the programmer. The 

advantage of this approach, however, is that it makes clever optimizations possible. For 

example, the programmer can open a transactional object for reading or writing, and then 

hold onto that reference for later use in the method. So long as the programmer is certain 

that later accesses in the code first pass through an “open” operation, this subsequent use 

is safe in the obstruction-free model. In the STM model that uses short-locks, however, 

this approach is safe only for reads, and even then only where the programmer 

subsequently checks that the transaction is still active before using read the value. Finally 

the DSTM model supports techniques like early release, which allows read objects to be 

dropped from the transaction’s read set, where the programmer is certain that object will 

not be used again in the same transaction. 

These are powerful tools in the expert programmer’s arsenal, but certainly do not 

change the general perception that concurrent programming is challenging and tends to 

yield fragile code that is difficult to maintain. By contrast, the SXM and DSTM2 models 

significantly simplify programming with transactional memory. At the same time, 
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however, this simplified programming model excludes nearly any possible optimizations 

by the programmer. All accesses to atomic objects are routed through the full 

transactional memory machinery, whether it is necessary or not. This happens because 

SXM requires that all fields of atomic objects be implemented as property procedures 

with getter and setter methods. For example, a simple integer field of atomic object in 

SXM must be implemented by the programmer as shown here: 

            protected int value; 

 

            public virtual int Value { 

                get { 

                    return this.value; 

                } 

                set { 

                    this.value = value; 

                } 

            } 

 

The Peet model, by contrast, further improves on the programmability of the 

SXM and DSTM2 models. Indeed, it offers what can be thought of as the third generation 

of transactional programming models. At the same time, the compiler model 

automatically optimizes the use of the STM library, generating code that is in most cases 

more efficient than that written by programmers, while guaranteeing that those 

optimizations are correct (i.e., safe). Although number of lines of code is a crude measure 

of programmability, all other things being equal, a more concise expression of an 

equivalent algorithm is generally considered superior. By that measure, our STM 

programming model is also superior to its predecessors. The RBTree algorithm as 

implemented in DSTM was 776 lines of code; in SXM it was 705 lines of code; in Peet, 

the RBTree algorithm is just 538 lines of code, more than 30% shorter than the DSTM 

version. 
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Chapter 7 

Conclusions 

This thesis presents language support and compiler optimizations designed 

specifically for an object-based STM library. We show that compiler support is extremely 

beneficial in terms of improving performance and programmability. By introducing 

atomic types, methods, and blocks as annotation-based language features, the compiler 

supports a natural and nearly transparent language interface, thus easing the burden an 

STM library places on the programmer. By applying object-based dataflow optimizations 

and improving the underlying STM library, the compiler achieves significant 

performance gains over a purely library-based approach. Our work reveals that in STM 

models that use short locks, only the initial access to an atomic object requires the 
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acquisition of a lock; subsequent accesses can be made wait-free. We also show that, 

contrary to recent thinking [23], obstruction-free STM systems do not perform worse 

than those that employ short locks. Finally, we introduce the first compiler support for 

transactional boosting, a methodology for transforming highly concurrent linearizable 

objects into highly-concurrent transactional objects. Based on these results, we conclude 

that appropriate language support and high quality compiler optimizations are necessary 

for the success of any STM system. 

 

7.1 Future work and open questions 

STM is an area of active research. The very semantics of STM are still being 

defined and the correct programming language model has only recently begun to be 

considered. It is clear, however, that STM systems will require some degree of 

programmer involvement, and thus some language constructs will be necessary. High 

performance STM systems will require the cooperation of compilers, execution 

environments and possibly even hardware, either via basic instruction-level support or 

perhaps awareness and optimization of STM execution patterns. This thesis proposes 

simple object-based language constructs for STM and static compiler optimizations that 

build on the language proposal. Further optimization is almost certainly possible at the 

runtime level, which has dynamic information about the actual execution of the program. 

Besides these very general areas of work, some specific area of STM semantics, 

including exceptions and nesting, are still somewhat open despite the existence of several 

proposals. While it is ultimately unlikely that transactional memory will replace all uses 

of mutual exclusion, it seems probable that it can more efficiently and safely replace 



 135 

most. Getting to that point will likely require addressing these and other, yet to be asked, 

questions. Just as virtual memory and garbage collection took many years of research to 

get to the point of widespread commercial use, transactional memory will likely have to 

go through a similar process of development and refinement. The result will undoubtedly 

make concurrent programming easier, safer, and faster. 
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Appendix 

Selected Algorithms 

This appendix contains C# implementations of the synchronization algorithms for 

the STM model that uses short locks, as well as the four obstruction-free algorithms 

described in Chapter 5. 
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The lock-based synchronization algorithm described in § 4.3 

    // synchronization state for transactional objects 

    public struct TMemSynchState { 

        // default size of the readers array 

        private const int DEFAULT_NUM_START_READERS = 8; 

 

        // this is the state maintaned for each atomic object 

        private XState writer;          // the writer, if any 

        private XState[] readers;       // resizable array of readers 

        private int numReaders;         // curr # of readers 

        private int lockState;          // a reader-writer lock 

        private readonly IRecoverable atomicObj; // ref to the object 

 

        enum lockStates { 

            WriteExclusive = 1, 

            Free = 0 

        } 

 

        #region constructors 

        public TMemSynchState(IRecoverable atomicObject) { 

            readers = new XState[DEFAULT_NUM_START_READERS]; 

            atomicObj = atomicObject; 

            writer = XAction.ClosedTx; 

            lockState = (int)lockStates.Free; 

            numReaders = 0; 

        } 

 

        // overload that allows you to set the initial # of readers 

        public TMemSynchState(IRecoverable atomicObject,  

                              int numStartReaders) { 

            readers = new XState[numStartReaders]; 

            atomicObj = atomicObject; 

            writer = XAction.ClosedTx; 

            lockState = (int)lockStates.Free; 

            numReaders = 0; 

        } 

        #endregion 

        #region debug functions 

        // display for debugging 

        public override string ToString() { 

            return string.Format( 

             "SynchState{0}[writer: {1}, readCount: {2}, object: {3}]", 

                this.GetHashCode(), writer, numReaders,  

                atomicObj.GetHashCode()); 

        } 

        #endregion 

 

        // never used by the compiler... (could be called manually) 

        public void EarlyRelease(XState me) { 

            for(int i = 0; i < numReaders; i++) 

                if(readers[i] == me) 

                Interlocked.CompareExchange(ref readers[i], null, me);  

            // try to remove myself as a reader 

            // no harm done if it didn't work... 

        } 
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        // for atomic fields 

        #region OpenReadIntegrated 

        public T OpenReadIntegrated<T>(XState me, ref T field) { 

            if(me == null) { // for non-tx reads 

                if(writer.State == XStates.ABORTED) { 

                    atomicObj.Restore();  

                     // restore object if last writer aborted 

                    writer = XAction.ClosedTx; 

                } 

                return field; 

            } 

 

            T value; 

            if(me.root == writer.root) { // do i already own it? 

                value = field; // do the read 

                if((XStates)me.state == XStates.ABORTED)  

                    // check to make sure the read was "good" 

                    throw XAction.AbortedException; 

                return value; 

            } // post-state: i'm not the writer 

 

        Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            if(Interlocked.CompareExchange(ref lockState,  

              (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

                 (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free; 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = XAction.ClosedTx; // always clean-up the writer 

 

            value = field; // do the read 

 

            // replaces first non-active reader with the current reader 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state != XStates.ACTIVE ||  

                          myRoot == currReader.root) { 

                    readers[i] = me; // install myself as a reader 

                    lockState = (int)lockStates.Free; 

                    return value; 

                } 

            } 
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            // if necessary, resize the readers buffer 

            if(numReaders == readers.Length) 

                Array.Resize(ref readers, readers.Length << 1); 

 

            readers[numReaders++] = me; 

            lockState = (int)lockStates.Free; // release the lock 

            return value; 

        } 

        #endregion 

        #region OpenWriteIntegrated 

        public void OpenWriteIntegrated<T>(XState me, ref T field,  

                                           T newValue) { 

            if(me == null) { // for non-tx writes 

                if(writer.State == XStates.ABORTED) { 

                    atomicObj.Restore();  

                        // restore object if last writer aborted 

                    writer = XAction.ClosedTx; 

                } 

                field = newValue; 

                return; 

            } 

 

            if(me.root == writer.root) { // am i the writer? 

                if(Interlocked.Increment(ref me.abortLock) < 1) { 

                    // inc tx-wide abortLock 

                    // oh-oh, i've already been aborted 

                    throw XAction.AbortedException; 

                } 

                field = newValue; // do the write 

                Interlocked.Decrement(ref me.abortLock); 

                      // release the pro-life lock 

                return; 

            } // post-state: i'm not the writer 

 

        Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 

 

            // am i in conflict with any other readers? 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state == XStates.ACTIVE &&  

                   myRoot != currReader.root) { 

                    lockState = (int)lockStates.Free;  

                        // release the lock 

                    XAction.Manager.ResolveConflict(me, currReader); 

                    goto Loop; 
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                } 

            } 

            numReaders = 0; // reset number of readers 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free;  

                        // release the lock 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.COMMITTED: 

                    atomicObj.Backup(); 

                    break; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = me;         // install myself as the writer 

            field = newValue;    // do the write 

            lockState = (int)lockStates.Free; // release the lock 

        } 

        #endregion 

        #region OpenWriteForReadIntegrated 

        public T OpenWriteForReadIntegrated<T>(XState me, ref T field) 

{ 

            if(me == null) { // for non-tx reads 

                if((XStates)writer.state == XStates.ABORTED) {  

                    // restore object if last writer aborted 

                    atomicObj.Restore(); 

                    writer = XAction.ClosedTx; 

                } 

                return field; 

            } 

 

            T value; 

            if(me.root == writer.root) { // am i the writer? 

                value = field; // do the read 

                if((XStates)me.state == XStates.ABORTED) 

                    throw XAction.AbortedException; 

                return value; 

            } // post-state: i'm not the writer 

 

    Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the write lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 

 

            // am i in conflict with any other readers? 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 
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                XState currReader = readers[i]; 

                if((XStates)currReader.state == XStates.ACTIVE &&  

                   myRoot != currReader.root) { 

                    lockState = (int)lockStates.Free; 

                    XAction.Manager.ResolveConflict(me, currReader); 

                    goto Loop; 

                } 

            } 

            numReaders = 0; // reset number of readers 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free; 

                       // release the lock 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.COMMITTED: 

                    atomicObj.Backup(); 

                    break; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = me;           // install myself as the writer 

            value = field;         // do the read 

            lockState = (int)lockStates.Free; // release the lock 

            return value; 

        } 

        #endregion 

 

        // for atomic object pre-opens 

        #region PreOpenReadIntegrated 

        public void PreOpenReadIntegrated(XState me) { 

            if(me == null) { // for non-tx reads 

                if((XStates)writer.state == XStates.ABORTED) {  

                      // restore object if last writer aborted 

                    atomicObj.Restore(); 

                    writer = XAction.ClosedTx; 

                } 

                return; 

            } 

 

            if(me.root == writer.root) // do i already own the object? 

                return; 

        // post-state: i'm not the writer 

 

    Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 
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            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free; 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = XAction.ClosedTx; // always clean-up the writer 

 

            // replaces first non-active reader with the current reader 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state != XStates.ACTIVE ||  

                     myRoot == currReader.root) { 

                    readers[i] = me; // install myself as a reader 

                    lockState = (int)lockStates.Free; 

                    return; 

                } 

            } 

 

            // if necessary, resize the readers buffer 

            if(numReaders == readers.Length) 

                Array.Resize(ref readers, readers.Length << 1); 

 

            readers[numReaders++] = me;  // install myself as a reader 

            lockState = (int)lockStates.Free; // release the write lock 

        } 

        #endregion 

        #region PreOpenWriteIntegrated 

        public void PreOpenWriteIntegrated(XState me) { 

            if(me == null) { // for non-tx writes 

                if((XStates)writer.state == XStates.ABORTED) {  

                         // restore object if last writer aborted 

                    atomicObj.Restore(); 

                    writer = XAction.ClosedTx; 

                } 

                return; 

            } 

 

            if(me.root == writer.root) // am i the writer? 

                return; 

 

        Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 
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            // am i in conflict with any other readers? 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state == XStates.ACTIVE &&  

                       myRoot != currReader.root) { 

                    lockState = (int)lockStates.Free; 

                    XAction.Manager.ResolveConflict(me, currReader); 

                    goto Loop; 

                } 

            } 

            numReaders = 0; // reset readCount - no active readers 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free;  

                        // release the lock 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.COMMITTED: 

                    atomicObj.Backup(); 

                    break; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = me; // install myself as the writer 

            lockState = (int)lockStates.Free; // release the lock 

        } 

        #endregion 

 

        // for atomic arrays 

        #region OpenReadArrayIntegrated 

        public T OpenReadArrayIntegrated<T>(XState me, int index) { 

            IAtomicArray<T> castedAtomicArray =  

                 (IAtomicArray<T>)atomicObj; 

            if(me == null) { // not in a transaction 

                if((XStates)writer.state == XStates.ABORTED) {  

                          // but maybe the last writer aborted 

                    atomicObj.Restore(); 

                    writer = XAction.ClosedTx; 

                } 

                return castedAtomicArray[index]; 

            } 

 

            T value; 

            if(me.root == writer.root) {  

                       // do i already own the object? 

                value = castedAtomicArray[index]; 

                if((XStates)me.state == XStates.ABORTED)  

                   // check to make sure that "value" has a good value 

                    throw XAction.AbortedException; 

                return value; 

            } // post-state: we're not related to the writer 

 

        Loop: 



 157 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free; 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = XAction.ClosedTx; // always clean-up the writer 

 

            try { 

                value = castedAtomicArray[index]; // do the read 

            } 

            catch(Exception e) { 

                lockState = (int)lockStates.Free; // release the lock 

                throw e; 

            } 

 

            // replaces first non-active reader with the current reader 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state != XStates.ACTIVE ||  

                          myRoot == currReader.root) { 

                    readers[i] = me; // install myself as a reader 

                    lockState = (int)lockStates.Free; 

                    return value; 

                } 

            } 

 

            // if necessary, resize the readers buffer 

            if(numReaders == readers.Length) 

                Array.Resize(ref readers, readers.Length << 1); 

 

            readers[numReaders++] = me;  // install myself as a reader 

            lockState = (int)lockStates.Free; // release the write lock 

            return value; 

        } 

        #endregion 

        #region OpenReadArrayIntegrated // for GetEnumerator() 

        // used by the array GetEnumerator calls 

        public void OpenReadArrayIntegrated(XState me) { 

            if(me == null) { // not in a transaction 

                if((XStates)writer.state == XStates.ABORTED) {  

                   // but maybe the last writer aborted 
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                    atomicObj.Restore(); 

                    writer = XAction.ClosedTx; 

                } 

                return; 

            } 

 

            if(me.root == writer.root) // do i already own the object? 

                return; 

        // post-state: we're not related to the writer 

 

    Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free; 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = XAction.ClosedTx; // always clean-up the writer 

 

            // replaces first non-active reader with the current reader 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state != XStates.ACTIVE ||  

                   myRoot == currReader.root) { 

                    readers[i] = me; // install myself as a reader 

                    lockState = (int)lockStates.Free; 

                    return; 

                } 

            } 

 

            // if necessary, resize the readers buffer 

            if(numReaders == readers.Length) 

                Array.Resize(ref readers, readers.Length << 1); 

 

            readers[numReaders++] = me; // install myself as a reader 

            lockState = (int)lockStates.Free; 

        } 

        #endregion 

        #region OpenWriteArrayIntegrated 

        public void OpenWriteArrayIntegrated<T>(XState me, int index,  

                                                T newValue) { 

            IAtomicArray<T> castedAtomicArray =  
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                   (IAtomicArray<T>)atomicObj; 

            if(me == null) { // not in a transaction 

                if((XStates)writer.state == XStates.ABORTED) {  

                        // but maybe the last writer aborted 

                    atomicObj.Restore(); 

                    writer = XAction.ClosedTx; 

                } 

                castedAtomicArray[index] = newValue; 

                return; 

            } 

 

            if(me.root == writer.root) {  

                         // do i already own the object? 

                if(Interlocked.Increment(ref me.abortLock) < 1) {  

                    // inc tx-wide abortLock 

                    // oh-oh, i've already been aborted 

                    throw XAction.AbortedException; 

                } 

                try { 

                    castedAtomicArray[index] = newValue;  

                    // do the write - can't be aborted during this time 

                } 

                finally { 

                    Interlocked.Decrement(ref me.abortLock);       

                    // release the pro-life lock 

                } 

                return; 

            } // post-state: i'm not related to the writer 

 

    Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 

 

            // am i in conflict with any other readers? 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state == XStates.ACTIVE &&  

                       myRoot != currReader.root) { 

                    lockState = (int)lockStates.Free; 

                           // release the lock 

                    XAction.Manager.ResolveConflict(me, currReader); 

                    goto Loop; 

                } 

            } 

            numReaders = 0; // reset numReaders - no active readers 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 
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                    lockState = (int)lockStates.Free;  

                            // release the lock 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.COMMITTED: 

                    atomicObj.Backup(); 

                    break; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = me; // install myself as the writer 

 

            try { 

                castedAtomicArray[index] = newValue; 

            } 

            finally { 

                lockState = (int)lockStates.Free; 

            } 

        } 

        #endregion 

        #region OpenWriteForReadArrayIntegrated // unused 

        public T OpenWriteForReadArrayIntegrated<T>(XState me,  

                               int index) { 

            IAtomicArray<T> castedAtomicArray =  

                     (IAtomicArray<T>)atomicObj; 

            if(me == null) { // not in a transaction 

                if((XStates)writer.state == XStates.ABORTED) {  

                        // but maybe the last writer aborted 

                    atomicObj.Restore(); 

                    writer = XAction.ClosedTx; 

                } 

                return castedAtomicArray[index]; 

            } 

 

            T value; 

            if(me.root == writer.root) { 

                // don't need try-finally here because there is no lock  

                // to release if an exception is thrown 

                value = castedAtomicArray[index]; // do the read 

                if((XStates)me.state == XStates.ABORTED)  

                    // check to make sure that "value" has a good value 

                    throw XAction.AbortedException; 

                return value; 

            } // post-state: i'm not related to the writer 

 

    Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // try to get the lock  

            if(Interlocked.CompareExchange(ref lockState,  

               (int)lockStates.WriteExclusive, (int)lockStates.Free) !=  

               (int)lockStates.Free) { 

                Thread.Sleep(0); // necessary to avoid livelock 

                goto Loop; 

            } 
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            // am i in conflict with any other readers? 

            XState myRoot = me.root; 

            for(int i = 0; i < numReaders; i++) { 

                XState currReader = readers[i]; 

                if((XStates)currReader.state == XStates.ACTIVE &&  

                     myRoot != currReader.root) { 

                    lockState = (int)lockStates.Free; 

                           // release the write lock 

                    XAction.Manager.ResolveConflict(me, currReader); 

                    goto Loop; 

                } 

            } 

            numReaders = 0; // reset numReaders - no active readers 

 

            switch((XStates)writer.state) { 

                case XStates.ACTIVE: 

                    lockState = (int)lockStates.Free;  

                           // release the lock 

                    XAction.Manager.ResolveConflict(me, writer); 

                    goto Loop; 

                case XStates.COMMITTED: 

                    atomicObj.Backup(); 

                    break; 

                case XStates.ABORTED: 

                    atomicObj.Restore(); 

                    break; 

            } 

            writer = me; // install myself as the writer 

 

            try { 

                value = castedAtomicArray[index]; // do the read 

            } 

            finally { 

                lockState = (int)lockStates.Free; 

            } 

            return value; 

        } 

        #endregion 

    } 
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The VisibleReaders algorithm described in § 5.2 

    // A transactional object encapsulates an ICloneable object 

    public struct OFreeSynchState { 

        private OFreeLocator rootLocator; 

 

        public OFreeSynchState(ICloneable obj) { 

            rootLocator = new OFreeLocator(); 

            rootLocator.newObject = obj; 

            rootLocator.writer = XAction.ClosedTx; 

            rootLocator.reader = XAction.ClosedTx; 

        } 

 

        // open object with intention to read 

        // returns the shared version of object 

        public ICloneable OpenRead(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

 

            if(me == null) // not in a transaction, update in place 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    case XStates.ACTIVE: 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            // are we the writer? 

            if(me.root == oldLocator.writer.root) 

                return oldLocator.newObject; 

 

            // check whether we're already a reader 

            OFreeLocator currentLocator = oldLocator; 

            do { 

                if(currentLocator.reader.root == me.root) 

                    return oldLocator.newObject; 

 

                // prune dead transactions from the list 

                OFreeLocator nextLocator = currentLocator.next; 

                while(nextLocator != null &&  

                   (XStates)nextLocator.reader.state != XStates.ACTIVE) 

                    nextLocator = nextLocator.next; 

 

                currentLocator.next = currentLocator = nextLocator; 

            } while(currentLocator != null); 

 

            OFreeLocator newLocator = new OFreeLocator();  

                 // allocate successor 

            newLocator.writer = XAction.ClosedTx; 

            newLocator.reader = me; 

 

            do { 

                if((XStates)me.state == XStates.ABORTED) 

                    throw XAction.AbortedException; 
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                // me.state == XStates.ACTIVE (probably) 

 

                // check writer status 

                ICloneable currentVersion = null; 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.ACTIVE: 

                        XAction.Manager.ResolveConflict(me,  

                            oldLocator.writer); // abort or wait? 

                        continue; // try again 

                    case XStates.COMMITTED: 

                        currentVersion = oldLocator.newObject; 

                        break; 

                    case XStates.ABORTED: 

                        currentVersion = oldLocator.oldObject; 

                        break; 

                } 

 

                newLocator.newObject = currentVersion; 

                newLocator.next = oldLocator; 

 

                if(Interlocked.CompareExchange(ref rootLocator,  

                      newLocator, oldLocator) == oldLocator) 

                    return currentVersion; 

 

                oldLocator = rootLocator; 

            } while(true); 

        } 

 

        // open object with intention to modify  

        // returns the private version of object 

        public ICloneable OpenWrite(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

 

            // not in a transaction, update in place 

            if(me == null) 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    case XStates.ACTIVE: 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            if(me.root == oldLocator.writer.root) 

                return oldLocator.newObject; 

 

            // allocate successor 

            OFreeLocator newLocator = new OFreeLocator(); 

            newLocator.writer = me; 

            newLocator.reader = XAction.ClosedTx; 

            ICloneable oldVersion = null, newVersion; 

 

        Loop: 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 
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            // me.state == XStates.ACTIVE (probably) 

 

            // check for read conflicts 

            XState myRoot = me.root; 

            for(OFreeLocator currentLocator = oldLocator;  

                    currentLocator != null;  

                    currentLocator = currentLocator.next) 

                if((XStates)currentLocator.reader.state ==  

                     XStates.ACTIVE &&  

                     myRoot != currentLocator.reader.root) { 

                    XAction.Manager.ResolveConflict(me,  

                                             currentLocator.reader); 

                    goto Loop; 

                } 

 

            // check writer status 

            switch((XStates)oldLocator.writer.state) { 

                case XStates.ACTIVE: 

                    XAction.Manager.ResolveConflict(me,  

                            oldLocator.writer); // abort or wait? 

                    goto Loop; // try again 

                case XStates.COMMITTED: 

                    oldVersion = newLocator.oldObject =  

                            oldLocator.newObject; 

                    break; 

                case XStates.ABORTED: 

                    oldVersion = newLocator.oldObject =  

                            oldLocator.oldObject; 

                    break; 

            } 

 

            // no conflict 

            newVersion = newLocator.newObject =  

                               (ICloneable)oldVersion.Clone(); 

 

            // try to install 

            if(Interlocked.CompareExchange(ref rootLocator, newLocator,  

                                           oldLocator) == oldLocator) 

                return newVersion; 

 

            // conflict - try again... 

            oldLocator = rootLocator; 

            goto Loop; 

        } 

 

        // wrapper routines for array that mimic TMemSynchState 

        public T OpenReadArrayIntegrated<T>(XState me, int index) { 

            return ((IAtomicArray<T>)OpenRead(me))[index]; 

        } 

 

        public T OpenWriteForReadArrayIntegrated<T>(XState me,  

                                                    int index) { 

            return ((IAtomicArray<T>)OpenWrite(me))[index]; 

        } 

 

        public void OpenWriteArrayIntegrated<T>(XState me, int index,  

                                                T newValue) { 
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            ((IAtomicArray<T>)OpenWrite(me))[index] = newValue; 

        } 

    } 

 

    // keeps track of old and new object versions 

    // along with latest accessing transaction(s) 

    internal sealed class OFreeLocator { 

        internal XState writer;  

                // transaction that wrote this version, or null 

        internal XState reader;            

                // transaction that read this version, or null 

        internal OFreeLocator next;       // previous reader, if any 

        internal ICloneable oldObject;    // object version on abort 

        internal ICloneable newObject;    // object version on commit 

 

        // display for debugging 

        public override string ToString() { 

            return String.Format("Locator[writer: {0}, reader: {1}]", 

                writer == null ? "null" : writer.ToString(), 

                reader == null ? "null" : reader.ToString()); 

        } 

    } 
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The WarningWord algorithm described in § 5.3 

    // OFreeSynchState that uses a warning word instead  

    // of a linked list of readers 

    public struct OFreeSynchState { 

        private OFreeLocator rootLocator; 

 

        public OFreeSynchState(ICloneable obj) { 

            rootLocator = new OFreeLocator(); 

            rootLocator.newObject = obj; 

            rootLocator.writer = XAction.ClosedTx; 

        } 

 

        // open object with intention to read 

        //  returns the shared version of object 

        public ICloneable OpenRead(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

 

            if(me == null) // not in a transaction, update in place 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    default: //XStates.ACTIVE: 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            if(me.root == oldLocator.writer.root)  

                       // yes, am i the writer? 

                return oldLocator.newObject; 

 

            ICloneable oldVersion = null; 

 

        TryAgain: 

 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            switch((XStates)oldLocator.writer.state) { 

                case XStates.COMMITTED: 

                    oldVersion = oldLocator.newObject; 

                    break; 

                case XStates.ABORTED: 

                    oldVersion = oldLocator.oldObject; 

                    break; 

                default: //XStates.ACTIVE: 

                    XAction.Manager.ResolveConflict(me,  

                         oldLocator.writer); // abort or wait? 

                    oldLocator = rootLocator; 

                    goto TryAgain; 

            } 

 

            // have we been warned? 

            if((XAction.WarningWord & (1 << me.threadId)) != 0) 

                throw XAction.AbortedException; 
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            return oldVersion; 

        } 

 

        // open object with intention to modify 

        // returns the private version of object 

        public ICloneable OpenWrite(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

 

            // not in a transaction, update in place 

            if(me == null) 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    default: //XStates.ACTIVE: 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            // check whether we're already the writer 

            if(me.root == oldLocator.writer.root) 

                return oldLocator.newObject; 

 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // allocate successor 

            OFreeLocator newLocator = new OFreeLocator(); 

            newLocator.writer = me; 

            ICloneable newVersion; 

 

            do { 

                // me.state == XStates.ACTIVE (probably) 

                ICloneable oldVersion = null; 

 

                // check writer status 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        oldVersion = oldLocator.newObject; 

                        break; 

                    case XStates.ABORTED: 

                        oldVersion = oldLocator.oldObject; 

                        break; 

                    default: //XStates.ACTIVE: 

                        XAction.Manager.ResolveConflict(me,  

                             oldLocator.writer); // abort or wait? 

                        continue; // try again 

                } 

 

                // no conflict 

                newLocator.oldObject = oldVersion; 

                newVersion = (ICloneable)oldVersion.Clone(); 

                newLocator.newObject = newVersion; 

 

                // try to install 

                if(Interlocked.CompareExchange(ref rootLocator,  
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                        newLocator, oldLocator) == oldLocator) 

                    break; 

 

                // conflict - try again... 

                oldLocator = rootLocator; 

            } while(true); // keep trying 

 

            // set the thread warning bit to warn all other threads 

            int conflict = ~(1 << me.threadId); 

            int oldValue, newValue; 

            do { 

                oldValue = XAction.WarningWord; 

                newValue = oldValue | conflict; 

                if(newValue == oldValue) 

                    break; 

            } while(Interlocked.CompareExchange( 

             ref XAction.WarningWord, newValue, oldValue) != oldValue); 

 

            if((XAction.WarningWord & (1 << me.threadId)) != 0) 

                throw XAction.AbortedException; 

 

            return newVersion; 

        } 

 

        // wrapper routines for array that mimic TMemSynchState 

        public T OpenReadArrayIntegrated<T>(XState me, int index) { 

            return ((IAtomicArray<T>)OpenRead(me))[index]; 

        } 

 

        public T OpenWriteForReadArrayIntegrated<T>(XState me,  

                                                    int index) { 

            return ((IAtomicArray<T>)OpenWrite(me))[index]; 

        } 

 

        public void OpenWriteArrayIntegrated<T>(XState me, int index,  

                                                T newValue) { 

            ((IAtomicArray<T>)OpenWrite(me))[index] = newValue; 

        } 

    } 

 

    // keeps track of old and new object versions 

    // along with latest accessing transaction(s) 

    internal sealed class OFreeLocator { 

        internal XState writer; 

             // transaction that wrote this version, or null 

        internal ICloneable newObject;    // object version on commit 

        internal ICloneable oldObject;    // object version on abort 

 

        // display for debugging 

        public override string ToString() { 

            return String.Format( 

                "Locator[writer: {0}, new: {1}, old: {2}]",  

                writer.ToString(), 

                newObject.GetHashCode(), oldObject.GetHashCode()); 

        } 

    } 
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The BloomFilter algorithm described in § 5.4 

    // OFreeSynchState that uses a Bloom filter 

    public struct OFreeSynchState { 

        private OFreeLocator rootLocator; 

        private readonly int hash; 

 

        // the global bloom filter 

        internal static BloomFitler TheBFilter = new BloomFitler(); 

 

        public OFreeSynchState(ICloneable obj) { 

            rootLocator = new OFreeLocator(); 

            rootLocator.newObject = obj; 

            hash = obj.GetHashCode() & BloomFitler.SIZE - 1; 

            rootLocator.writer = XAction.ClosedTx; 

        } 

 

        // open object with intention to read 

        // returns the shared version of object 

        public ICloneable OpenRead(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

            ICloneable oldVersion = null; 

 

            if(me == null) // not in a transaction, update in place 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    case XStates.ACTIVE: 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            if(me.root == oldLocator.writer.root) 

                     // yes, am i the writer? 

                return oldLocator.newObject; 

 

            // add it to the tx's readlog 

            me.txReadList.Add(hash); 

 

            // add it to the global bloom filter 

            TheBFilter.Add(hash, me.threadId); 

 

            do { 

                if((XStates)me.state == XStates.ABORTED) 

                    throw XAction.AbortedException; 

                // me.state == XStates.ACTIVE (probably) 

 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.ACTIVE: 

                        XAction.Manager.ResolveConflict(me,  

                             oldLocator.writer); // abort or wait? 

                        oldLocator = rootLocator; 

                        continue; // try again 

                    case XStates.COMMITTED: 

                        oldVersion = oldLocator.newObject; 
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                        break; 

                    case XStates.ABORTED: 

                        oldVersion = oldLocator.oldObject; 

                        break; 

                } 

 

                if(oldLocator == rootLocator) 

                    break; 

 

                // conflict - try again... 

                oldLocator = rootLocator; 

            } while(true); 

 

            if(TheBFilter.CheckWarningWord(me.threadId)) { 

                TheBFilter.Remove(me); 

                throw XAction.AbortedException; 

            } 

 

            return oldVersion; 

        } 

 

        // open object with intention to modify 

        // returns the private version of object 

        public ICloneable OpenWrite(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

 

            // not in a transaction, update in place 

            if(me == null) 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    case XStates.ACTIVE: 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            // check whether we're already the writer 

            if(me.root == oldLocator.writer.root) 

                return oldLocator.newObject; 

 

            // allocate successor 

            OFreeLocator newLocator = new OFreeLocator(); 

            newLocator.writer = me; 

            ICloneable newVersion, oldVersion = null; 

 

            do { 

                if((XStates)me.state == XStates.ABORTED) 

                    throw XAction.AbortedException; 

                // me.state == XStates.ACTIVE (probably) 

 

                // check writer status 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.ACTIVE: 

                        XAction.Manager.ResolveConflict(me,  

                             oldLocator.writer); // abort or wait? 

                        oldLocator = rootLocator; 
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                        continue; // try again 

                    case XStates.COMMITTED: 

                        oldVersion = oldLocator.newObject; 

                        break; 

                    case XStates.ABORTED: 

                        oldVersion = oldLocator.oldObject; 

                        break; 

                } 

 

                // no conflict 

                newLocator.oldObject = oldVersion; 

                newVersion = (ICloneable)oldVersion.Clone(); 

                newLocator.newObject = newVersion; 

 

                // try to install 

                if(Interlocked.CompareExchange(ref rootLocator,  

                        newLocator, oldLocator) == oldLocator) 

                    break; 

 

                // conflict - try again... 

                oldLocator = rootLocator; 

            } while(true); 

 

            // bfilter stuff 

            int conflict = TheBFilter.filter[hash] &  

                                          ~(1 << me.threadId); 

            if(conflict != 0) 

                TheBFilter.SetWarningWord(conflict); 

 

            if(TheBFilter.CheckWarningWord(me.threadId)) { 

                TheBFilter.Remove(me); 

                throw XAction.AbortedException; 

            } 

 

            return newVersion; 

        } 

 

        // wrapper routines for arrays that mimic TMemSynchState 

        public T OpenReadArrayIntegrated<T>(XState me, int index) { 

            return ((IAtomicArray<T>)OpenRead(me))[index]; 

        } 

 

        public T OpenWriteForReadArrayIntegrated<T>(XState me,  

                                                    int index) { 

            return ((IAtomicArray<T>)OpenWrite(me))[index]; 

        } 

 

        public void OpenWriteArrayIntegrated<T>(XState me, int index,  

                                                T newValue) { 

            ((IAtomicArray<T>)OpenWrite(me))[index] = newValue; 

        } 

    } 

 

    // keeps track of old and new object versions 

    // along with latest accessing transaction(s) 

    internal sealed class OFreeLocator { 

        internal XState writer; 
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               // transaction that wrote this version, or null 

        internal ICloneable oldObject;    // object version on abort 

        internal ICloneable newObject;    // object version on commit 

 

        // display for debugging 

        public override string ToString() { 

            return String.Format("Locator[writer: {0}, reader: {1}]", 

                writer == null ? "null" : writer.ToString()); 

        } 

    } 

 

    // Bloom filter implementation of read set. 

    internal class BloomFitler { 

        internal const int SIZE = 0x10000; // 65536 

        internal readonly int[] filter = new int[SIZE];  

                                             // 262,144 bytes 

        private int WarningWord = 0; 

 

        // Add an object to the filter. 

        public void Add(int hash, int threadId) { 

            int oldValue, newValue; 

            do { 

                oldValue = filter[hash]; 

                newValue = oldValue | (1 << threadId); 

                if(oldValue == newValue) 

                    break; 

            } while(Interlocked.CompareExchange(ref filter[hash],  

                    newValue, oldValue) != oldValue); 

        } 

 

        // Remove an object from the filter. 

        public void Remove(XState me) { 

            int oldValue, newValue; 

            int size = me.txReadList.Count; 

 

            for(int i = 0; i < size; i++) { 

                int h = me.txReadList[i]; 

                do { 

                    oldValue = filter[h]; 

                    newValue = oldValue & ~(1 << me.threadId); 

                    if(oldValue == newValue) 

                        break; 

                } while(Interlocked.CompareExchange(ref filter[h],  

                        newValue, oldValue) != oldValue); 

            } 

 

            ClearWarningWord(me.threadId); 

 

            // empty the list after removal 

            me.txReadList.Clear(); 

        } 

 

        // check whether reader has been warned of read/write conflict 

        public bool CheckWarningWord(int threadId) { 

            return (WarningWord & (1 << threadId)) != 0; 

        } 
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        // Warn another thread that you are modifying object it 

        // may have placed in filter. 

        public void SetWarningWord(int mask) { 

            int oldValue, newValue; 

            do { 

                oldValue = WarningWord; 

                newValue = oldValue | mask; 

                if(newValue == oldValue) 

                    break; 

            } while(Interlocked.CompareExchange(ref WarningWord,  

                    newValue, oldValue) != oldValue); 

        } 

 

        public void ClearWarningWord(int threadId) { 

            int oldValue, newValue; 

            int mask = ~(1 << threadId); 

            do { 

                oldValue = WarningWord; 

                newValue = oldValue & mask; 

                if(newValue == oldValue) 

                    break; 

            } while(Interlocked.CompareExchange(ref WarningWord,  

                    newValue, oldValue) != oldValue); 

        } 

    } 
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The WriterBins algorithm described in § 5.5 

    // OFreeSynchState that uses WriterBins 

    public struct OFreeSynchState { 

        private OFreeLocator rootLocator; 

        private readonly int bin; 

 

        public OFreeSynchState(ICloneable obj) { 

            rootLocator = new OFreeLocator(); 

            rootLocator.newObject = obj; 

            rootLocator.writer = XAction.ClosedTx;  

                   // initialize the writer to ClosedTx 

            bin = obj.GetHashCode() &  

                  XAction.GlobalNumberOfWriterBins - 1;  

                        // what bin does this object belong to? 

        } 

 

        // open object with intention to read 

        // returns the shared version of object 

        public ICloneable OpenRead(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

 

            if(me == null) // not in a transaction, update in place 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    default: //XStates.ACTIVE 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            if(me.root == oldLocator.writer.root) 

                      // yes, am i the writer? 

                return oldLocator.newObject; 

 

            ICloneable oldVersion; 

 

        TryAgain: 

 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

 

            // check writer status 

            switch((XStates)oldLocator.writer.state) { 

                case XStates.COMMITTED: 

                    oldVersion = oldLocator.newObject; 

                    break; 

                case XStates.ABORTED: 

                    oldVersion = oldLocator.oldObject; 

                    break; 

                default: //XStates.ACTIVE: 

                    XAction.Manager.ResolveConflict(me,  

                           oldLocator.writer); // abort or wait? 

                    oldLocator = rootLocator; 

                    goto TryAgain; 
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            } 

 

            if((me.txReadBins & 1 << bin) == 0) {  

                // is this the first time we're reading this bitCode? 

                // set the bit in txReadFilter 

                // this is required for commit-time validation 

                me.txReadBins |= 1 << bin; 

 

                // check that someone else hasn't committed a new value  

                // here since this tx began. this check isn't required  

                // it's an early conflict detector. without this, more  

                // txs will abort at the commit stage. could also check  

                // this on every read (not just the first read for this  

                // bin), but that seems a little more expensive than  

                // it's worth - tests inconclusive... 

                if(XAction.GlobalBinVerCounters[bin] !=  

                              me.txBinVerCounters[bin]) 

                    throw XAction.AbortedException; 

 

                // This prevents livelock... 

                XState oldBinOccupier = XAction.GlobalWriterBins[bin]; 

                if((XStates)oldBinOccupier.state == XStates.ACTIVE) { 

                    XAction.Manager.ResolveConflict(me,  

                                                    oldBinOccupier); 

                    goto TryAgain; 

                } 

            } 

 

            return oldVersion; 

        } 

 

        // open object with intention to modify 

        // returns the private version of object 

        public ICloneable OpenWrite(XState me) { 

            OFreeLocator oldLocator = rootLocator; 

 

            // not in a transaction, update in place 

            if(me == null) 

                switch((XStates)oldLocator.writer.state) { 

                    case XStates.COMMITTED: 

                        return oldLocator.newObject; 

                    case XStates.ABORTED: 

                        return oldLocator.oldObject; 

                    default: //XStates.ACTIVE: 

                        throw new PanicException("Tx/not-tx conflict"); 

                } 

 

            // check whether we're already the writer 

            if(me.root == oldLocator.writer.root) 

                return oldLocator.newObject; 

 

            // mandatory 

            if((XStates)me.state == XStates.ABORTED) 

                throw XAction.AbortedException; 

            // me.state == XStates.ACTIVE (probably) 

 

            // is this the first time we're writing this bitCode 
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            if((me.txWriteBins & 1 << bin) == 0) { 

                XState oldBinOccupier; 

                do { 

                    oldBinOccupier = XAction.GlobalWriterBins[bin]; 

 

                    // check that someone else hasn't committed a new  

                    // value here since this tx began. mandatory,  

                    // otherwise you might make yourself the writer of  

                    // this binNumber with an inconstitent read/write  

                    // problem 

                    if(XAction.GlobalBinVerCounters[bin] !=  

                                me.txBinVerCounters[bin]) 

                        throw XAction.AbortedException; 

 

                    // if the writer for this spot is active, 

                    // then call the contention manager 

                    if((XStates)oldBinOccupier.state == XStates.ACTIVE) 

{ 

                        XAction.Manager.ResolveConflict(me,  

                                 oldBinOccupier); // abort or wait? 

 

                        // have we been aborted now? 

                        if((XStates)me.state == XStates.ABORTED) 

                            throw XAction.AbortedException; 

 

                        continue; 

                    } 

                } while(Interlocked.CompareExchange( 

                        ref XAction.GlobalWriterBins[bin], me,  

                        oldBinOccupier) != oldBinOccupier); 

 

                // set the txWriteFilter bit to indicate that we  

                // own this entry 

                me.txWriteBins |= 1 << bin; 

            } 

 

            // ASSERT: (XStates)oldLocator.writer.state !=  

            //      XStates.ACTIVE 

 

            OFreeLocator newLocator = new OFreeLocator(); 

                // allocate the new locator 

            newLocator.writer = me; // make me the writer 

            // check previous writer status -- cannot be active; 

            // ConMan will have killed it above... 

            newLocator.oldObject = (XStates)oldLocator.writer.state ==  

                XStates.COMMITTED ? 

                oldLocator.newObject : // COMMITTED 

                oldLocator.oldObject;  // ABORTED 

            newLocator.newObject =  

                   (ICloneable)newLocator.oldObject.Clone();  

                   // create a clone 

 

            // try to install 

            if(Interlocked.CompareExchange(ref rootLocator, newLocator,  

                        oldLocator) != oldLocator) 

                throw XAction.AbortedException; // failed 
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            // no conflict 

            return newLocator.newObject; 

        } 

 

        // wrapper routines for array that mimic TMemSynchState 

        public T OpenReadArrayIntegrated<T>(XState me, int index) { 

            return ((IAtomicArray<T>)OpenRead(me))[index]; 

        } 

 

        public T OpenWriteForReadArrayIntegrated<T>(XState me,  

                                                    int index) { 

            return ((IAtomicArray<T>)OpenWrite(me))[index]; 

        } 

 

        public void OpenWriteArrayIntegrated<T>(XState me, int index,  

                                                T newValue) { 

            ((IAtomicArray<T>)OpenWrite(me))[index] = newValue; 

        } 

    } 

 

    // keeps track of old and new object versions 

    // along with last writing transaction 

    internal sealed class OFreeLocator { 

        internal XState writer; 

                // last transaction that wrote to this object 

        internal ICloneable newObject;    // object version on commit 

        internal ICloneable oldObject;    // object version on abort 

 

        // display for debugging 

        public override string ToString() { 

            return String.Format( 

               "Locator[writer: {0}, new: {1}, old: {2}]",  

                writer.ToString(), newObject.GetHashCode(),  

                oldObject.GetHashCode()); 

        } 

    } 
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