
Integrating Dataflow Evaluation into a Practical

Higher-Order Call-by-Value Language

by

Gregory Harold Cooper

B. S., University of Rhode Island, 2000

Sc. M., Brown University, 2002

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in the

Department of Computer Science at Brown University

Providence, Rhode Island

May 2008

c© Copyright 2008 by Gregory Harold Cooper

This dissertation by Gregory Harold Cooper is accepted in itspresent form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Shriram Krishnamurthi, Director

Recommended to the Graduate Council

Date
Steven P. Reiss, Reader

Date
John Peterson, Reader

(Western State College of Colorado)

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

Gregory Harold Cooper was born on New Year’s Day of 1978 in South County, Rhode

Island. He has enjoyed mathematics and logic since he can remember and was addicted

to computer programming by age 7. He was valedictorian of theclass of 1996 at North

Kingstown High School and a National Merit Scholar and Barry M. Goldwater Scholar at

the University of Rhode Island. He also received an honorablemention in the National

Science Foundation Graduate Research Fellowship competition in 2001 and 2002.

iv

Acknowledgements

This dissertation would not have been possible without the help of many people. Thanks

are in order first to my advisor, Shriram Krishnamurthi, and readers, Steve Reiss and John

Peterson. I’d also like to thank those who collaborated on various parts of the work: Kim

Burchett, Dan Ignatoff, Guillaume Marceau, and Jono Spiro. In addition, a number of

people provided useful feedback and participated in helpful discussions, including Ezra

Cooper, Antony Courtney, Matthias Felleisen, Paul Hudak, Henrik Nilsson, Manuel Ser-

rano, Mike Sperber, Phil Wadler, and many others whom I’m sure I’ve forgotten. Finally, I

am indebted to Melissa Chase, Manos Renieris, and Dave Tucker for their enduring support

and encouragement.

v

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Callbacks: an Imperative of Imperatives 3

1.3 Dataflow Evaluation: an Alternative to Callbacks 5

1.4 A Brief Introduction to FrTime .. 6

1.5 Declarative Reactive Programming with Signals 9

1.6 Design Principles and Challenges .. . 10

2 Core Evaluation Model 13

2.1 Discrete Modeling of Continuous Phenomena 14

2.2 Push-Driven Recomputation .15

2.3 Defining the Dataflow Extension .. 16

2.4 Primitive Operators and Constant Values 17

2.5 Updating Signal Values .19

2.6 Scheduling of Updates . 21

2.6.1 Subtleties of Memory Management 22

2.7 Time-Varying Control Flow .23

2.8 Remembering Past Values . 29

2.9 Recursion . 32

2.10 Event Streams . 33

vi

2.11 Support forREPL-based Interactive Programming 34

3 Semantics 37

4 Optimization by Lowering 49

4.1 Dipping and Lowering . 54

4.2 The Lowering Algorithm . 57

4.3 Lambda Abstractions . 59

4.4 Conditionals . 61

4.5 Higher Order Functions .61

4.6 Inter-Module Optimization .. . 62

4.7 Macros . 64

4.8 Pathological Cases . 64

4.9 Evaluation . 65

4.9.1 Performance . 65

4.9.2 Usability . 67

4.10 Future Directions .68

5 Implicitly Reactive Data Structures 70

5.1 An Application of Structured Data: Animation 73

5.2 Reactivity with Raw Constructors .75

5.2.1 Choosing the Granularity of Lifting 76

5.2.2 Deep Lifting . 77

5.3 Reactivity with Lifted Constructors 79

5.3.1 Consequences of Lifted Constructors79

5.4 Improvements to Deep Lifting .. 83

5.4.1 Defining theApplyOperator . 86

5.5 The Efficiency of Traversal .. 88

5.6 Performance Evaluation .. 91

6 Integration with Object-Oriented Toolkits 94

6.1 Adapting MrEd to FrTime . 95

6.1.1 Application-Mutable Properties 96

vii

6.1.2 Toolkit-Mutable Properties .. 99

6.1.3 Application- and Toolkit-Mutable Properties 101

6.1.4 Immutable Properties . 103

6.2 Automating the Transformation 103

6.2.1 Parameterized Class Extensions103

6.2.2 A Second Dimension of Abstraction105

6.2.3 Language Independence of the Concepts106

6.3 A Spreadsheet Application .. 107

6.4 Catalog of Adapted User Interface Widgets 110

7 Programming Environment Reuse 112

7.1 Background . 113

7.1.1 Domain-Specific Embedded Languages114

7.1.2 Examples . 115

7.1.3 Control-Oriented Tools . 115

7.2 The Tool-Reuse Problem . 116

7.3 Solution Techniques .119

7.3.1 Higher-Order Signals . 120

7.3.2 Implementation . 121

7.3.3 Effective Evaluation Contexts .123

7.3.4 Generalizing the Solution Strategy 123

7.3.5 Transformation of the Semantic Data Structure 125

7.4 Implementation Status .125

8 Extended Application: Scriptable Debugging 127

8.1 A Motivating Example . 128

8.2 Desiderata . 130

8.3 Language Design Concerns . 132

8.4 Debugging the Motivating Example 133

8.5 Reflections on the Example . 137

8.6 Design . 138

8.7 Implementation . 139

viii

8.7.1 Java . 140

8.7.2 Scheme . 142

8.7.3 Performance . 144

8.8 Controlling Program Execution .. . 145

8.9 Additional Examples . 146

8.9.1 Minimum Spanning Trees . 146

8.9.2 A Statistical Profiler . 147

9 Related Work 157

10 Conclusions and Future Work 171

10.1 Flapjax . 171

10.2 FrC++ . 172

Bibliography 174

ix

List of Tables

4.1 Experimental benchmark results for lowering optimization 65

5.1 Micro-benchmark results for lifting, raising, and incremental projection . . 93

5.2 Performance of animation programs using data structures and graphics . . . 93

x

List of Figures

1.1 A simple timer application in PLT Scheme 2

1.2 A screenshot of a graphical timer 3

1.3 A timer with graphical display .. . 4

1.4 Implementation of the timer in FrTime 8

1.5 The FrTime timer with graphical display 9

2.1 Grammar for purely functional subset of core PLT Scheme 14

2.2 Grammar for FrTime (extends grammar in Figure 2.1) 14

2.3 FrTime evaluator (excerpts for primitive procedures) 18

2.4 Dataflow graph for (+ (modulo seconds3) (- 2 1)) 19

2.5 FrTime updater (excerpts for primitive procedures) 20

2.6 A snapshot evaluator for the essence of FrTime 20

2.7 FrTime evaluator (excerpts forif expressions andλ-abstractions) 24

2.8 Dataflow graphs for a conditional expression 25

2.9 The part of the updater that handles switching 27

2.10 Dataflow graphs for a conditional expression 28

2.11 FrTime evaluator (excerpts for time-varying procedures) 29

2.12 An update engine for the essence of FrTime (excerpt forprev statements) . 30

2.13 The implementation ofdelay-by . 31

2.14 FrTime evaluator (excerpts for recursive bindings) 32

2.15 An evaluator for the essence of FrTime 35

2.16 An update engine for the essence of FrTime 36

3.1 Grammars for values, expressions, evaluation contexts, and signal types . . 38

3.2 Semantic domains and operations .. . 38

xi

3.3 Evaluation rules . 39

3.4 Snapshot rules . 39

3.5 Update rules . 40

4.1 Definition of distance function. 52

4.2 Left: Unoptimized dataflow graph for the distance function. Right: opti-

mized equivalent. Various stages of optimization are shownin-between.

Inter-procedural optimization can improve the result evenfurther. Each

box is a heap-allocated signal object. 52

4.3 Definition of the distance function with upper and lower layers made explicit. 54

4.4 Allowed containment relationships for code. 55

4.5 Unoptimized FrTime code. .55

4.6 Optimized FrTime code. 56

4.7 Complete description of the lowering transformation 63

5.1 A deep projection procedure .. 77

5.2 Deep lifting . 78

5.3 Use of lifted constructors .. . 80

5.4 Creation of additional behaviors by lifted accessors 81

5.5 Loss of intensional equality from lifted constructors 82

5.6 Interleaving projection with traversal 84

6.1 Screenshot of the FrTime spreadsheet application 107

7.1 Structure of a deep embedding .. 114

7.2 Embedding FrTime . 114

7.3 An error trace from a Java FRP implementation 117

7.4 Output from original profiler on FrTime program 125

7.5 Output from adapted profiler on FrTime program 125

8.1 Implementation of Dijkstra’s Algorithm 149

8.2 Sample Input and Output . 149

8.3 Control Flow of Program and Script .. 150

8.4 Monitoring the Priority Queue .. . 151

xii

8.5 Event Streams . 151

8.6 The Monitoring Primitive .. 151

8.7 The Redundant Model . 152

8.8 MzTake Grammar . 152

8.9 MzTake Architecture for Debugging Java 153

8.10 A Typical Start-Stop Policy 154

8.11 A Different Start-Stop Policy 154

8.12 Spanning trees computed correctly (left), without detecting cycles (mid-

dle), and without sorting edges (right) 155

8.13 RecordingMST Edges . 155

8.14 A Statistical Profiler .. . 156

xiii

Chapter 1

Introduction

This dissertation explores the design of linguistic support for reactive programs. Byreac-

tive, I mean programs like word processors, Web browsers, and programming environments—

programs whose “inputs” are unbounded sequences ofevents(e.g., key strokes, mouse

clicks, network messages, etc.) that arrive from a variety of sources at times beyond the

program’s control. In contrast to atransformationalprogram, which runs uninterrupted and

controls when it reads its input and produces its output, a reactive program must respond

immediately to each event by updating its internal state andemitting a representation of

it. In essence, a reactive program must be designed to allow its environment to control its

execution.

1.1 Motivation

Reactive programs constitute the majority of software systems deployed in the world, so it

is important for programmers to be able to build such systemseasily and reliably. Unfortu-

nately, the programming languages and paradigms in currentcommon use were developed

for writing transformational programs, and they make reactive programs awkward to ex-

press.

As a concrete example, consider the implementation of a simple reactive program that

counts the elapsed time (in seconds) up to some user-controlled time, rendering it as a

textual string. At any point, the user can click aResetbutton to start the count over again.

1

2

(defineframe
(new frame%[label ”Timer”] [height80] [width 300]))

(sendframe show#t)

(defineduration60)
(defineelapsed0)

(defineelapsed-display
(newmessage%[parent frame] [label ”0 s”] [min-width60]))

(defineclock
(new timer%[interval1000]

[notify-callback
(λ (t e)

(set!elapsed(min (add1 elapsed) duration))
(sendelapsed-display set-label(format ”˜a s” elapsed)))]))

(defineduration-control
(newslider%[parent frame] [label ”Duration (s)”]

[min-value10] [max-value120] [init-value60]
[callback(λ (s e)

(set!duration(sendslider get-value))
(set!elapsed(min elapsed duration))
(sendelapsed-display set-label(format ”˜a s” elapsed)))]))

(definereset-button
(newbutton%[parent frame] [label ”Reset”]

[callback
(λ (b e)

(set!elapsed0)
(sendelapsed-display set-label”0 s”))]))

Figure 1.1: A simple timer application in PLT Scheme

Figure 1.11 shows how someone might implement such a program in the Scheme [55]

programming language, following a conventional programming style. The first definition

creates a top-level window, called aframe%.2 In DrScheme’s object system, anewexpres-

sion constructs an object of a given type with a set of named arguments, in this case the

1The code is executable under the Pretty Big language level inthe v300 series of DrScheme revisions.
2By convention, class names in DrScheme end with a % sign, suggestingobject-orientation.

3

Figure 1.2: A screenshot of a graphical timer

label, width, andheight. After displaying the frame, the program defines a variable to hold

theelapsedtime (initially zero) and creates amessagecontrol in which to display it.

The remaining code makes the program reactive: theclock advances the elapsed time

every second, theduration-controllets the user adjust the duration, and thereset-button

starts the elapsed time over at 0. Since the program is reactive, events from these three

sources can arrive in any order and at any time. In order to react to whichever event occurs

next, the program definescallbackprocedures and registers them with the user interface

toolkit. The toolkit’s event-handling loop calls the appropriate callback whenever the asso-

ciated event occurs.

1.2 Callbacks: an Imperative of Imperatives

The code in Figure 1.1 illustrates an interesting pattern: although most of the program is

functional, all of the callback procedures perform destructive side effects (either directly,

via set!, or by invoking a mutator method in an object). This is no coincidence, and the

explanation derives from the fact that callbacks are designed to let the event loopcall back

into the application. If callbacks were functional, all they could do is compute values and

return them to the event loop, in which case they could not possibly affect the state of

the application. Hence, in order for the program to progress, callbacks must perform side

effects.

While side effects are necessary in some cases, they generally have undesirable conse-

quences. For example, because theelapsed-displayis updated via side effects, its definition

4

(defineframe
(new frame%[label ”Timer”] [height80] [width 300]))

(sendframe show#t)

(defineduration60)
(defineelapsed0)

(defineelapsed-display
(newgauge%[parent frame] [label ”Elapsed: ”] [range60]))

(defineclock
(new timer%[interval1000]

[notify-callback
(λ (t e)

(set!elapsed(min (add1 elapsed) duration))
(sendgauge set-value elapsed))]))

(defineduration-control
(newslider%[parent frame] [label ”Duration (s)”]

[min-value10] [max-value120] [init-value60]
[callback(λ (s e)

(set!duration(sendslider get-value))
(set!elapsed(min elapsed duration))
(sendgauge set-value elapsed)

(sendgauge set-range duration)))]))

(definereset-button
(newbutton%[parent frame] [label ”Reset”]

[callback
(λ (b e)

(set!elapsed0)
(sendgauge set-value0))]))

Figure 1.3: A timer with graphical display

does not provide a complete specification of its behavior, the way it would in a purely func-

tional program. Conversely, theclock’s callback refers toelapsed-displayeven though the

latter has no bearing on the time.

In general, callbacks result in a programming style in whichthe definition of an object

does not fully express that object’s behaviors in terms of other objects’ values. Instead,

5

each object is responsible for tracking changes in its stateand updating other objects that

depend on it. This is precisely the opposite of how functional programs work, and this

structural inversion makes programs more difficult to understand. For example, to reason

about the temporal behavior ofelapsed-display, a programmer (or tool) needs to find all the

code thatchangesthe object. The problem amplifies when this code refers to other values

(e.g.,elapsed) that are also mutated from various parts of the program.

Structural inversion also makes programs more difficult to write and modify. For ex-

ample, suppose that the programmer wants to change the display of the elapsed time from

the textual message to a graphical progress bar, orgauge. Figure 1.3 shows the code that

might result. There are three places in the code that update the display, and all of them

must be changed. Moreover, in order for the gauge to display the fraction of elapsed time

correctly, itsrangemust be kept consistent with theduration. There is no analog to this

logic in the original version of the program, so the programmer might easily overlook the

need to make this change. In a functional program, this oversight would likely manifest

as a missing procedure argument, which would be an error. However, in the imperative

version, there is simply the absence of a side-effect, whichis much more difficult to detect

automatically..

1.3 Dataflow Evaluation: an Alternative to Callbacks

This dissertation explores an alternative to callbacks that allows programmers to develop

reactive programs in a functional style. The key idea is to usedataflow evaluation[20, 98],

a programming model in which a program’s values may change over time, but instead of

using explicit mutation, they recompute automatically when their inputs change.

Languages based on the idea of dataflow evaluation (so-called dataflow languages) have

existed for decades and have been applied in various specialized domains, most notably

real-time, safety-critical embedded systems. Historically, such languages have been de-

signed to support formal reasoning about safety propertiesand resource requirements. To

that end, these languages have traditionally been restrictive, omitting such features as re-

cursive datatypes, dynamic recursion, and higher-order functions. Such limitations are nec-

essary to provide the guarantees required by real-time systems, but they are not appropriate

for writing modern general-purpose applications, which must be able to perform complex

6

operations over dynamic data structures.

Within the past decade, researchers have developed a model called functional reactive

programming (FRP) [39, 74, 102, 104], which embeds dataflow evaluation withingeneral-

purpose functional languages. Functional reactive programming has proven expressive

enough to support a variety of applications, such as animation [39], graphical user inter-

faces [30, 85], robotics [78], and vision [79].

The work described in this dissertation follows in theFRP vein but departs from prior

work in several important ways. Specifically, my thesis states thata practical notion of

dataflow evaluation can be embedded within a general-purpose, higher-order call-

by-value language, integrating seamlessly with all of the (non-imperative) features in

the original language. The thesis is supported by a working implementation of suchan

embedding: the language FrTime [17, 26, 52], which builds upon the dialect of Scheme [55]

used in the DrScheme [42] programming environment.

1.4 A Brief Introduction to FrTime

The essence of FrTime is to extend Scheme with a notion of time-varying values called

signals. For example, the language provides a signal calledseconds, whose value at every

point in time is equal to the result of Scheme’s built-in procedurecurrent-seconds. Because

its value is defined at every point in time,seconds is said to becontinuousand is called

a behavior. If a program applies a primitive function to a behavior, theresult is a new

behavior, whose value at every point in time is computed by applying the function to the

argument’s current value.3 For example, the value of (even?seconds) is a behavior whose

value alternates betweentrueandfalse, changing once every second.

The generalization of Scheme’s primitives to operate over behaviors is calledlifting.

Lifting allows a program to use existing purely functional Scheme code in the context of

reactive values, a property known astransparent reactivity. For example, the following

Scheme procedure consumes a time in seconds and formats it asa human-readable string

like ”10:25:43”:

(define(format-time t)

3Operationally, the language only re-evaluates the application each time the argument value changes.

7

(let∗ ([date(seconds→date t)]

[hours(date-hour date)]

[minutes(date-minute date)]

[seconds (date-second date)])

(format ”˜a:˜a:˜a” hours minutesseconds))

In Scheme, one might apply it to (current-seconds), producing a value that reflects the time

at which the program called (current-seconds). One can also use this definitionverbatimin

FrTime and apply it toseconds, creating a simple clock.

In addition to applying primitive functions to them, programs can delay behaviors by

any (non-negative) amount of time, and they can compute timeintegrals over numeric

behaviors. There is also a procedure calledchangesthat lets a program see the sequence of

discrete changes that a behavior experiences over time. This produces a different kind of

signal, called anevent stream. Event streams are a natural abstraction for modeling many

inputs to a reactive program, such as the sequence of keys a user types or the clicks of a

button in a graphical interface.

Primitive procedures cannot be applied to event streams, but FrTime provides a collec-

tion of event-processing operators that are analogous to standard list-processing functions.

For example, if an application is only interested in key strokes corresponding to digits, it

can usefilter-e to select them:

(definefigures

(filter-e (λ (x) (member x’(#\0 #\1 #\2 . . . #\9))) key-strokes))

To convert these characters to actual numbers, it can usemap-eto transform each event:

(definedigits

(map-e(λ (ch) (− (char→integer ch) 48)) digits-typed))

It can then usecollect-eto accumulate the sequence of digits into a decimal integer:

(definenumber

(collect-e digits0 (λ (digit num) (+ digit (∗ 10 num)))))

Finally, it can usehold, the dual ofchanges, to convertnumberto a behavior by “holding”

onto the value of its most recent event (using 0 until the firstone occurs).

(hold number0)

8

(defineframe
(new ft-frame%[label ”Timer”] [width 200] [height80] [showntrue]))

(defineduration-control
(new ft-slider% [label ”Duration”] [min-value10] [max-value120])

(definereset-button
(new ft-button%[label ”Reset”])

(defineduration(sendslider get-value-b))
(define last-click-time

(hold (map-e second(snapshot-e(sendreset-button get-value-e) seconds))
(value-nowseconds)))

(defineelapsed(min duration(− seconds last-click-time)))

(defineelapsed-display
(new ft-message%[label (format ”˜a s” elapsed)]

[parent frame] [min-width60]))

Figure 1.4: Implementation of the timer in FrTime

As the user enters the characters 2, 1, 3, 6, this behavior takes on the values 2, 21, 213, and

2136.

One other important event-processing operator ismerge-e, which combines several

event streams into a single one. For example, if the above program took its input from

a pad of graphical buttons instead of the keyboard, it would merge all of the event streams

and applycollect-eto the result.

On the surface, signals bear some similarity to constructs found in other languages. Be-

haviors change over time, like mutable data structures or the return values of impure pro-

cedures, and event streams resemble the infinite lazy lists (also called streams) common to

Haskell and other functional languages. The key differenceis that FrTime tracks dataflow

relationships between signals and automatically recomputes them to maintain programmer-

specified invariants.

9

(defineframe
(new ft-frame%[label ”Timer”] [width 200] [height80] [showntrue]))

(defineduration-control
(new ft-slider% [label ”Duration”] [min-value10] [max-value120])

(definereset-button
(new ft-button%[label ”Reset”])

(defineduration(sendslider get-value-b))
(define last-click-time

(hold (map-e second(snapshot-e(sendreset-button get-value-e) seconds))
(value-nowseconds)))

(defineelapsed(min duration(− seconds last-click-time)))

(defineelapsed-display
(new ft-gauge%[label ”Elapsed time:”] [range duration]

[parent frame] [value elapsed]))

Figure 1.5: The FrTime timer with graphical display

1.5 Declarative Reactive Programming with Signals

FrTime’s signal abstractions offer a way to rewrite reactive programs without callbacks or

side effects. Figure 1.4 shows the code for a FrTime implementation of the interval timer

discussed above. In it, there are no callbacks or destructive side effects, and every definition

provides a complete description of the object’s behavior over time. The clicks of the reset

button, instead of triggering an imperative callback, produce an event stream. The program

usessnapshot-eto pair each click with the time at which it occurred, then projects out

just the occurrence times withmap-e. It useshold to lock on to the last click time, then

subtracts this value from the current time to compute the elapsed time. The elapsed time

then automatically updates as time passes or the user clicksthe button.

Other aspects of the user interface are also defined in terms of signals. Theduration-

control slider exposes its value as a behavior, from which the program defines the timer’s

duration. Likewise, the program specifies the message’s content as a string behavior that

depends on the elapsed time. The language automatically keeps all of the program’s state

consistent as changes occur.

10

Figure 1.5 shows a variation of this program in which the elapsed time is displayed

graphically instead of textually. Unlike in the callback-based version, where making this

change involved modifying code throughout the program, in FrTime the changes are con-

fined to the definition ofelapsed-display.

1.6 Design Principles and Challenges

A fundamental goal in FrTime is to reuse as much of Scheme as possible, including not

only its evaluation mechanism but also its libraries, environment, and tools. These latter

artifacts are responsible for much of the cost of developinga language, and without them

a language can have little practical value. Thus their reuseoffers an important strategic

advantage. In addition to conserving development resources, such reuse also makes the

extended language more accessible to programmers familiarwith the original language,

thereby encouraging adoption.

To achieve such reuse, the techniques I have developed are based on lightweight, context-

free transformations of the language’s core constructs. A key property of these transfor-

mations is that they result in a conservative extension of the language, so in the absence of

signals, the evaluator defers to the base language’s semantics. This means that pure Scheme

programs are also FrTime programs, having the same meaning as in Scheme, and they may

be incorporated into FrTime programs without modification.

The challenge that arises from this approach is to make the dataflow extension inter-

act seamlessly with the many features available in a rich general-purpose language like

Scheme. Some of the tricky features include:

• higher-order functions,

• control-flow constructs,

• structured data,

• automatic memory management,

• legacy libraries (containing both functional and imperative code),

• an interactive read-eval-print loop, and

11

• tools for understanding program behavior.

Making the dataflow mechanism interact with all of these features places considerable con-

straints on the language’s design, and the main contribution of my work has been to design

a strategy that can accommodate all of them.

An underlying theme in FrTime’s evaluation model is the use of recomputation, under

a standard call-by-value regime, as the mechanism for keeping state consistent. While

behaviors are conceptually values that change over over continuous time, in practice they

are mutable structures whose contents are recomputed in response to discrete changes.

The main problem this model creates is to find the appropriatelevel of granularity

at which to recompute things. For example, any part of a purely functional (side-effect

free) expression can be evaluated repeatedly without affecting the program’s semantics.

Thus, a simple but naı̈ve strategy would be to re-evaluate the whole program each time

anything changed. However, doing so would be incorrect, since operators likedelay-by

need to remember state over time. The basic model for FrTime is therefore one in which

expressions are recomputed at the finest grain—primitive procedure applications and core

syntactic forms likeif . This strategy, which is described in detail in Chapter 2, never

computes more than is necessary to bring the system to a consistent state.

The basic evaluation model is also presented in Chapter 3 as a three-part formal seman-

tics. One layer is an extension of the call-by-valueλ-calculus; it specifies the reduction

of FrTime programs to plain values and signals. A slight modification of this layer defines

how the value of a signal recomputes in response to a change. The remaining layer specifies

how the dataflow evaluator schedules updates to guarantee consistency.

FrTime’s dataflow update mechanism itself incurs significant overhead, so achieving

optimal performance requires more than simply minimizing the number of atomic oper-

ations. Working in a call-by-value host language, it is generally much more efficient to

recompute a complex expression in a large, monolithic call-by-value step, than to break

it down to atomic steps and evaluate each one separately. Chapter 4 describes a static

analysis for identifying maximal fragments of purely functional code, which can then be

executed in a single call-by-value step. This refinement of the evaluation strategy results in

considerable performance improvements.

12

While recomputation is key to the mechanism for keeping a program’s internal state up-

to-date, FrTime also uses it to keep its internal state synchronized with the outside world,

through things like graphics libraries and user interface toolkits. In these cases, the re-

executed code is not purely functional (rather, its chief purpose is to perform side-effects),

so considerable care is needed to ensure that the effects leave the world in a consistent state.

Chapter 6 addresses this problem from one angle: when the external libraries are object-

oriented class hierarchies whose objects encapsulate flat values like numbers, booleans,

and strings. The canonical example is a user interface toolkit, with simple widgets like

messages, check boxes, scroll bars, and gauges.

For more complicated applications, programs need a richer assortment of data struc-

tures, such as lists, trees, and vectors. Keeping the world consistent with such data is a

non-trivial task, since changes can occur at any time or place within the data and can even

change the structure of the data. Chapter 5 describes strategies for tracking changes within

structured data and communicating them to the world in a logically consistent manner.

Another important aspect of a language is having a programming environment that re-

spects the language’s abstractions and provides tools to ease program development and

understanding. A benefit of FrTime’s evaluation model is that it naturally supports incre-

mental program development in an interactive read-eval-print loop REPL.

The DrScheme environment also provides a collection of tools that are sensitive to

control flow, including an error tracer and an execution profiler. Because FrTime is an

embedding in Scheme, the tools report information about theexecution of the FrTime eval-

uator as it processes a program. This information is at the wrong level of detail for a user to

understand the behavior of the original program. The tools’output thus violates FrTime’s

linguistic abstractions and only indirectly reflects the original program’s behavior. To ad-

dress this problem, Chapter 7 describes a straightforward technique for manipulating the

Scheme tools so that they provide meaningful information about FrTime programs. The

technique, which is justified by the formal semantics presented in Chapter 3, applies to any

host language with a suitable control-flow introspection mechanism.

To demonstrate the utility of FrTime, Chapter 8 presents the language’s use in the novel

and non-trivial context of scripting a debugger. Chapter 9 provides a discussion of related

work, and Chapter 10 concludes and proposes possible directions for future work.

Chapter 2

Core Evaluation Model

This chapter describes in detail the approach for embeddingdataflow in a call-by-value

language.1

The following presentation refers to a purely functional subset of Scheme, whose gram-

mar is shown in Figure 2.1. The set of values includes basic constants (e.g., numbers and

booleans), primitive operators, linked lists, and user-defined procedures (λ-abstractions).

Programs are fully expression-based, consisting of procedure applications, conditionals,

and recursive binding constructs.

The conceptual goal of FrTime is to extend this call-by-value core language with a

notion of behaviors, or continuous time-varying values. The remaining sections in this

chapter describe how FrTime treats behaviors in each of these forms. The only exception is

data structures, which involve enough complexity to warrant their own chapter (Chapter 5).

Section 2.10 explains how a notion of behaviors can also be used to model discrete event

streams.

Figure 2.2 shows the grammar for the extended language. The new constructs include

simply

• a set of primitive behaviors (e.g.,seconds),

• the undefined value (⊥), and

• theprev operator, which delays a behavior by a single time step.

1This chapter expands on previously published material [26].

13

14

x ∈ 〈var〉 ::= (variable names)

p ∈ 〈prim〉 ::= (primitive operators)

u, v ∈ 〈v〉 ::= true | false | empty | (cons 〈v〉 〈v〉) | 〈prim〉 |

(λ(〈var〉∗) 〈e〉) | 0 | 1 | 2 | . . .

e ∈ 〈e〉 ::= 〈v〉 | 〈var〉 | (〈e〉 〈e〉∗) | (rec 〈var〉 〈e〉) | (if 〈e〉 〈e〉 〈e〉)

Figure 2.1: Grammar for purely functional subset of core PLTScheme

u, v ∈ 〈fv〉 ::= true | false | empty | (cons 〈fv〉 〈fv〉) | 〈prim〉

(λ(〈var〉∗) 〈fe〉) | 0 | 1 | 2 | . . . | (primitive behaviors)| ⊥

e ∈ 〈fe〉 ::= 〈fv〉 | 〈var〉 | (〈fe〉 〈fe〉∗) | (rec 〈var〉 〈fe〉) | (if 〈fe〉 〈fe〉 〈fe〉) |

(prev 〈fe〉)

Figure 2.2: Grammar for FrTime (extends grammar in Figure 2.1)

This grammar defines a new language that allows a behavior to appear in any context in

which Scheme would permit a (constant) value. Since Scheme’s constructs are only defined

to operate on constant values, they must be extended in orderto work meaningfully with

behaviors. The rest of this chapter discusses what it means to use behaviors with each of

these constructs and how FrTime defines the extended semantics.

Before going into the details of the evaluation model, I will discuss some high-level

concerns.

2.1 Discrete Modeling of Continuous Phenomena

Behaviors are intended to model phenomena that vary over continuous time. However,

their implementation on digital hardware requires a discrete approximation. In FrTime,

each behavior maintains an approximation of its current value, which updates in discrete

15

steps.

In most cases, the accuracy of the approximation depends on the frequency with which

the updates occur; smaller sampling intervals result in smaller jumps between steps and

therefore smoother curves that more closely follow the continuous ideal. Signals that have

this property (e.g., the results of all stateless transformations and some stateful ones like

integral) are said to beconvergent, since they converge on their ideal values as the sampling

interval tends toward zero.

It is possible, however, to define behaviors that do not converge. For example, the

following expression counts the number of changes in a fine-grained timer calledmillisec-

onds:

(collect-b(changesmilliseconds) 0 (λ (n) (add1 n)))

The value of this expression grows without bound, and at any given time t, its value is

proportional tot times the rate at whichmilliseconds changes. On a slow machine, it

might update only 20 times per second, while on a faster machine, it could update 100

times per second or more. As the sampling rate increases, thevalue of this expression

grows more rapidly. This behavior is therefore said todiverge.

The existence of approximation errors and divergent behaviors are unfortunate but nec-

essary consequences of the use of a discrete model. However,there are also benefits of

using a discrete notion of time. Most importantly, like the presence of a clock in a digi-

tal circuit, discrete time supports synchronous execution, allowing the language to avoid

glitch- and hazard-like conditions and to support extraction of consistent snapshots of a

program’s state.

2.2 Push-Driven Recomputation

A typical evaluator performs a pre-order traversal of an expression’s abstract syntax tree,

recursively reducing subexpressions to values until reaching the root. In FrTime, evalua-

tion results in a graph of signals that exhibit different values over time, and the dataflow

evaluator needs to recompute these values as new inputs become available.

A natural way to compute values over time is to re-apply the standard top-down tree-

traversal whenever any of the input values change. Unfortunately, thispull-based approach

16

has several drawbacks. For one thing, many subexpressions’values may not change often

(because the values they depend on change rarely), so the evaluator will perform many un-

necessary recomputations. One key technique in avoiding this inefficiency is to maintain a

cache with each subexpression’s most recent value, and onlyrecompute it when something

upstream has changed.

Another problem is that several subexpressions may share the same values. A pull-

based evaluator will naturally recompute these once for each subexpression that depends

on them, which is problematic for non-idempotent updates (e.g., state accumulators). To

deal with such nodes correctly, the evaluator needs to ensure that it doesn’t update any node

more than once in a given time step, for example by keeping a timestamp at each node and

comparing it to the current time before recomputing.

FrTime avoids these complications by instead using a bottom-up, push-based recom-

putation strategy. Its evaluator maintains a graph that captures the flow of data between

behaviors. Each node represents a behavior and caches that behavior’s most recent value.

When a node’s value changes, it ensures that each node that refers to it is scheduled for

recomputation. By traversing the graph in topological order, the update scheduler guaran-

tees that each node updates at most once, and only when something on which it depends

changes. When a value changes, everything that depends on it is recomputed within that

time step. Thus values are always kept fresh, even if they arenot needed. This prevents the

time leaksthat can arise in demand-driven implementations, where deferred computations

accumulate until their results are needed.

2.3 Defining the Dataflow Extension

I now present the essence of this evaluation model through anexecutable interpreter. The

interpreter consists of several distinct pieces:

• an evaluator, shown in Figure 2.15, which consumes FrTime expressions and re-

duces them to values. Values may include both constants and signals. The evaluator

connects the signals into a graph that captures their data dependencies. The evaluator

is a variation on a standard meta-interpreter for Scheme, with eager substitutions.

• a snapshot evaluator, shown in Figure 2.6, which consumes an expression and a

17

store, and returns the instantaneous value of the expression given the mappings in

the store.

• anupdater, shown in Figure 2.16, which iteratively updates a program’s state once it

has been evaluated.

A program’s state consists of the following:

1. the current time,2

2. the store, represented as an association list of signals and their current values,

3. the set of dependencies, and

4. the set of signals in need of recomputation

This interpreter is presented for purposes of illustration. The real FrTime implementation

uses DrScheme’s integrated macro and module system [44] (instead of an interpreter) to

extend the definitions of Scheme’s core syntax and primitiveoperators and achieve the

same semantics. Thus it reuses Scheme’s evaluation mechanism to an even greater extent

than the interpreter.

2.4 Primitive Operators and Constant Values

To explain how FrTime interprets programs, I will step through the evaluation of expres-

sions that exercise various features. To begin, consider what happens if a user enters

(+ (− 2 1) (moduloseconds 3))

at theREPL. The expression is first evaluated by theevaluateprocedure, the necessary

fragments of which are shown in Figure 2.3.

At the top level, this expression is a function application,so it matches the (f . args)

clause in the evaluator, which begins by recursively evaluating all of the subexpressions

(i.e., the function expression and each of the arguments).

The function position contains the identifier+, which matches the last clause in the

evaluator. The evaluator returns a structure containing three fields: the expression’s value,

2The time does not actually influence evaluation; it is only present as a debugging aid.

18

;; <expr> → (make-result<val> <new deps> <new signals>)
(define(evaluate expr)

(match expr
;; — code for most expression types elided —
[(f . args) ; procedure applications:
(match-let∗ ([($ result vs deps sigs) (evaluate-list(cons f args))]

[fv (first vs)] [argvs(rest vs)])
(cond

;; — code for time-varying procedures elided —
[(prim? fv) ; application of primitive procedures:
(if (ormap signal? vs)

(let ([new-sig(new-signal vs)])
(make-result
new-sig(union deps(map(λ (d) (list d new-sig)) (filter signal? argvs)))
(union(list new-sig) sigs)))

(make-result(apply(eval fv) args) deps sigs))]))]
;; values:
[(make-result exprempty empty)]))

Figure 2.3: FrTime evaluator (excerpts for primitive procedures)

the new data dependencies, and the new signals. In this case,the identifier evaluates to

itself, introducing no new data dependencies or signals, sothe last two fields are empty.

The first argument to+ is the function application (− 2 1). The next step is to recur-

sively evaluate each of its subexpressions. In this case allof the arguments are already

values. The function is a primitive, and none of the arguments are signals, so it defers to

Scheme to perform the raw function application, yielding the value1.

The second argument to+ is the function application (moduloseconds 3). All of the

arguments are values, butseconds is a signal, so the result is a new signal.

Signals are represented as structures of typesig. For example, the result of (modulo

seconds 3) is:

#(struct:sig0 (moduloseconds 3))

The0 is its identification number, and (moduloseconds 3) is the expression that computes

its value.

Because the new signal refers to (and depends on)seconds, the evaluator extends the

dataflow graph with an edge fromseconds to this new signal. Note that the evaluator does

not compute signals’ current values; that is done in a separateupdatestep, described later.

19

seconds

10437

(modulo _ 3)

0

(+ _ 1)

1

Figure 2.4: Dataflow graph for (+ (modulo seconds3) (- 2 1))

Having evaluated (moduloseconds 3) to produce the signal

#(struct:sig0 (moduloseconds 3))

the evaluator is ready to proceed with the evaluation of the top-level expression, which has

by now been reduced to (+ 1 #(struct:sig0 (moduloseconds 3))). One of the arguments

is a signal, so the overall result is again a new signal, this time as follows:

#(struct:sig1 (+ 1 #(struct:sig0 (moduloseconds 3))))

I will subsequently abbreviate signals as just#(struct:sig n . . .) when the expression is

either unimportant or already shown.

Figure 2.4 shows the graph for the expression discussed above.

2.5 Updating Signal Values

The evaluator constructs a dataflow graph for an expression,but it does not compute the

current values of any signals. This is done in a separate stepby theupdater. Signals values

are kept in astore, which initially maps all signals to the undefined value,⊥.

The implementation of the updater’s basic functionality isshown in Figure 2.5. It con-

sumes a timet, a store, a set of dependencies (deps), and a set ofstalesignals.

Initially, the stale set contains all of the signals constructed during evaluation of the

expression. The updater selects one of them for update, say#(struct:sig0 . . .). It then

20

;; update:<number> <store>
(define(update t store deps stale)

(if (empty? stale)
;; — empty case elided —
(let∗ ([ready-for-update(set- stale(transitive-deps stale deps))]

[sig0(first ready-for-update)])
(match sig0

[($ sig expr)
(let ([val (snapshot expr store)])

(values t(store-update sig0 val store) deps
(set-(if (eq?(store-lookup sig0 store) val)

stale
(union stale(immediate-deps(list sig0) deps)))

(list sig0))))]
;; — other cases elided —
))))

Figure 2.5: FrTime updater (excerpts for primitive procedures)

(define(snapshot expr store)
(match expr

[‘(if ,c ,e1,e2) (if (snapshot c store)
(snapshot e1 store)
(snapshot e2 store))]

[($ sig) (snapshot(store-lookup expr store) store)]
[($ switch) (snapshot(store-lookup expr store) store)]
[($ prev) (snapshot(store-lookup expr store) store)]
[‘((λ ,vars,body) . vals)
(snapshot(foldl (λ (var arg body) (subst var arg body)) vars args))]
[(’ λ .) expr]
[(p . vals)
(apply(eval p) (map(λ (v) (snapshot v store)) vals))]

[x x]))

Figure 2.6: A snapshot evaluator for the essence of FrTime

computes its value by asnapshotevaluation of its expression, (moduloseconds 3).

Snapshot evaluation, defined in Figure 2.6, computes the current value of a signal-

containing expression, given a store containing the current values of the signals to which

it refers. Suppose that the current store mapsseconds to 0, so the expression’s snapshot

21

value is0. The store is updated to map#(struct:sig 0 . . .) to 0. This differs from the

previous value of⊥, so the updater adds all of#(struct:sig0 . . .)’s dependents to the set of

stale signals. In our example, the only dependent is#(struct:sig1 . . .), which is already in

the stale set, so this has no effect. However, in subsequent iterations, this mechanism keeps

all of the signals consistent with each other as they change.

The updater next processes#(struct:sig1 . . .) in a store that maps#(struct:sig0 . . .) to

0. Its update proceeds similarly to that of the previous signal, except that its expression is

(+ 1 #(struct:sig0 . . .)), so its snapshot evaluation yields the value1. This signal has no

dependents, so the set of stale signals becomes empty, and the update cycle is complete.

The updater next allows time to advance to the next step, thenrepeats the process de-

scribed above. (In order to avoid monopolizing theCPU in the actual implementation,

FrTime waits for a given amount of real time before proceeding.)

2.6 Scheduling of Updates

Consider the expression

(< seconds (+ 1 seconds))

This evaluates to a behavior that should always have the value true, sincen is less than

n + 1. However, whenseconds changes, it makes two signals stale: the one associated

with (< seconds (+ 1 seconds)) and the one associated with (+ 1 seconds). If the

former is updated first, then the comparator will see thenewvalue ofseconds and theold

value of (+ 1 seconds) (which is the same asseconds!), resulting in afalsecomparison.

Once the (+ 1 seconds) signal updates, the (< seconds (+ 1 seconds)) signal becomes

stale again, and when it updates the second time, it yields the expected value oftrue.

This situation, in which a behavior momentarily exhibits anincorrect value, is called a

glitch. Glitches are unacceptable because they hurt performance (by causing redundant

computation) and, more importantly, because they produce incorrect values.

To eliminate glitches, the language must guarantee that, whenever it updates a signal,

everything on which that signal depends is up-to-date. FrTime ensures this by updating

signals in an order that respects the topology of the dataflowgraph. The relevant line of

code in the updater is the one that bindsready-for-updateto (set- stale(transitive-deps

22

stale deps)). This computes the set of signals that depend transitively (but not reflexively)

on any stale signal and removes them from consideration. Thesignals in the remaining

set are guaranteed not to interfere, so the updater can choose any of them to process next.

In fact, they could all be updated safely in parallel, but thesequential updater here simply

picks the first signal in the list.

In practice, computing sets of transitive dependents and set differences like this would

be too expensive. In the real implementation, each signal has an extra field that stores its

height in the dataflow graph, which is greater than that of anything on which it depends.

The updater uses a priority queue to process signals in increasing order of height, adding

to each step a number of operations only logarithmic in the number of enqueued signals.

2.6.1 Subtleties of Memory Management

In the dataflow graph, there is a reference from each behaviorto each other behavior whose

definition refers to it. These dataflow references, which point from referent to referrer, are

in the opposite direction from the references that occur naturally in the program. If imple-

mented näıvely, these references would make reachability in FrTime programs a symmetric

relation, preventing garbage collection of any part of the dataflow graph. To avoid this prob-

lem, the real implementation usesweakreferences for the dataflow graph, which are not

counted by the garbage collector.

Using weak references in the dataflow graph eliminates one source of memory leakage.

However, it is still possible for a dead signal to survive collection; for example, if it is being

updated when the garbage collector runs, then it will temporarily appear live and therefore

not be collected. In addition, its references to other signals will keep them alive as well,

and so on.

While there is no way to eliminate such transient liveness from the system completely,

it is important to reduce it as much as possible. For a simple example of why this is crucial,

consider the following program:

(collect-b(changesseconds) empty

(λ (lst)

(append(take4 lst)

(list (− milliseconds (current-milliseconds))))))

23

This program produces a steady stream of new behaviors (one per second) that count the

number of milliseconds since their birth. The last five such behaviors are retained in a list,

and any older ones are garbage. Since all of these behaviors depend directly onmillisec-

onds, as soon asmilliseconds updates, they are all placed on the update queue. Assuming

these are the majority of the signals in the system, on average about half of them will be

on the update queue when the collector runs, so if the update queue uses strong references,

half of the (dead) signals will survive. Therefore, the expected number of signals remaining

after a collection grows continually over time, eventuallychoking the system. To prevent

such scenarios from arising in practice, the update queue must also use weak references.

2.7 Time-Varying Control Flow

The previous sections have explored examples in which behaviors are provided as argu-

ments to primitive procedures. However, this is not the onlyway in which a program might

reasonably use behaviors. For example, consider the following procedure definition:

(λ (x)

(if (zero? x)

(add1seconds)

(/ 6 x)))

Suppose that a program applies this function to the constant0. Its evaluation begins sim-

ilarly to that of a primitive procedure application, exceptthat the function expression is

a λ-abstraction, which evaluates to itself as shown in Figure 2.7. While interpreting the

application,fv matches (’λ vars body), so the evaluator performs aβ-substitution, yielding

the following expression:

(if (zero?0)

(add1seconds)

(/ 6 0))

This expression matches the (’if c t e) clause in Figure 2.7. It reduces (zero?0) to true and

selects the first branch for evaluation. This is exactly how aconditional expression would

be evaluated under a standard call-by-value semantics. Thefact that the branch evaluates

24

;; <expr> → (make-result<val> <new deps> <all signals> <stale signals>)
(define(evaluate expr)

(match expr
;; — other cases elided —
[(’ if c t e) ; conditional expressions:
(match-let([($ result cv deps all-sigs stale-sigs) (evaluate c)])

(cond [(signal? cv)
(let∗ ([swc(make-switch‘(if , ,t ,e) cv)]

[fwd (make-signal swc)])
(make-result fwd(union deps‘((,cv ,swc) (,swc,fwd)))

(union ‘(,swc,fwd) all-sigs) (union ‘(,swc) stale-sigs)))]
[cv (evaluate t)]
[else(evaluate e)]))]

[(’ λ .) (make-result exprempty empty empty)]
[(f . args) ; procedure applications:
(match-let∗ ([($ result vs deps sigs stale) (evaluate-list(cons f args))]

[fv (first vs)] [argvs(rest vs)])
(match fv

[(’ λ vars body) ; application of lambda abstractions:
(match-let([($ result v deps1 all-sigs1 stale-sigs1)

(evaluate(foldl (λ (var arg body) (subst arg var body))
body vars argvs))])

(make-result v(union deps deps1) (union sigs all-sigs1)
(union stale stale-sigs1)))]

;; — other cases elided —
))]))

Figure 2.7: FrTime evaluator (excerpts forif expressions andλ-abstractions)

to a signal is irrelevant, since once the branch is selected,the conditionalaspect of the

evaluation is complete.

The interesting case is when the value of the condition is a behavior. Since the condi-

tion’s value might change, the evaluator cannot simply select one branch or the other for

evaluation. Rather, it must dynamically take the value of whichever branch is selected by

the current value of the condition.

A näıve strategy for such dynamic switching would be to evaluateboth branches and

simply choose between their values according to the condition. However, this strategy fails

in general. For example, in the function above, the second branch would raise adivision-by-

zeroerror if evaluated while the condition weretrue. The evaluator could work around this

25

42
seconds

(modulo _ 4)

(zero? _)

(if )

_

(a)

42
seconds

(modulo _ 4)

(zero? _)

(if )

_

2
(modulo _ 4)

false
(zero? _)

(b)

42
seconds

(modulo _ 4)

(zero? _)

(if )

(/ 6 _)

_

2
(modulo _ 4)

false
(zero? _)

(c)

42
seconds

(modulo _ 4)

(zero? _)

(if )

(/ 6 _)

_

3
(/ 6 _)

2
(modulo _ 4)

false
(zero? _)

3
_

(d)

Figure 2.8: Dataflow graphs for a conditional expression

problem by catching and ignoring errors within the inactivebranch, but it would still have

problems in other situations, such as when the conditional is used to terminate recursion.

To avoid these potential problems, FrTime implements conditionals by dynamically re-

evaluating the branches as their values are needed. Each time the condition acquires a new

value, FrTime evaluates the appropriate branch and uses its(potentially time-varying) value

until the condition changes again.

For example, consider the application of the above procedure to (moduloseconds

4). Evaluation initially proceeds according to the rules presented above. The argument

reduces to#(struct:sig2 (moduloseconds 4)), which is substituted into the body of theλ

abstraction to yield the following:

(if (zero?#(struct:sig2 . . .))

(add1seconds)

26

(/ 6 #(struct:sig2 . . .)))

The condition reduces to the signal#(struct:sig3 . . .). Because this is a signal, the evalu-

ator’s (signal? cv) test succeeds, and it creates two new signals: aswitchand aforwarder,

abbreviatedswcandfwd respectively in the code. These are the two signals shown in bold

in Figure 2.7 (a).

A switch is a special kind of signal with the following structure:

#(struct:switch4 (if

(add1seconds)

(/ 6 #(struct:sig2 . . .)))

#(struct:sig3 . . .))

The first field is an identification number, as in an ordinary signal. However, while an

ordinary signal would contain a single expression, a switch’s expression is split into a

contextand atrigger. For conditionals the trigger is the condition, and the context is the

conditional expression with a hole () in place of the condition.

The essential idea is that the trigger’s values populate thecontext’s hole, and the re-

sulting expression is re-evaluated each time the trigger changes in order to produce a new,

potentially time-varying, value. The forwarder is dynamically connected to the most recent

result and just copies the result’s current value as it changes. A forwarder is an ordinary

signal whose defining expression is simply another signal:

#(struct:sig5 #(struct:sig4 . . .))

Recall that the evaluation step does not compute signals’ values, and without knowing the

trigger’s current value, the evaluator cannot determine the switch’s current branch. This

step is therefore deferred until the update step.

During the update step, the signals created by the evaluatorare assigned values. The

ordinary signals (e.g., the ones numbered 2 and 3) update as described above. Suppose that

signal 2’s value is 2, so signal 3’s isfalse. The graph now looks like the one shown in Fig-

ure 2.7 (b). When the updater processes theswitch(signal 4), it matches the#(struct:switch

. . .) case shown in Figure 2.9. The most important step is in the code that reads:

(evaluate(subst(store-lookup trigger store) ctxt))

27

(define(update t store deps stale)
(if (empty? stale)

;; — empty branch elided —
(let∗ ([ready-for-update(set- stale(transitive-deps stale deps))]

[sig (first ready-for-update)])
(match sig

;; — other cases elided —
[($ switch ctxt trigger) ; updating a switch:
(match-let∗

([fwd (first (filter (λ (sig1) (and (sig? sig1) (eq?(sig-expr sig1) sig0)))
(map first store)))]

[old (set-(transitive-deps(list sig0) deps)
(cons fwd(transitive-deps(list fwd) deps)))]

[deps1(filter (λ (dep) (not (member(second dep) old))) deps)]
[($ result v new-deps new-sigs)
(evaluate(subst(store-lookup trigger store) ctxt))])

(values t(append(map(λ (s) (list s⊥)) new-sigs)
(filter (λ (m) (not (member(first m) old)))

(store-update sig0 v store)))
(union(map(λ (s) (list sig0 s)) new-sigs)

deps1 new-deps(if (signal? v) (list (list v fwd)) empty))
(set-(union(list fwd) new-sigs stale) (cons sig0 old))))])))

Figure 2.9: The part of the updater that handles switching

This substitutes the trigger’s current value—false—for the hole in the context and evaluates

the result. Since this is the first time updating this switch,there is no previous subgraph.

Evaluation creates a new signal,#(struct:sig6 (/ 6 #(struct:sig2 . . .))). It also updates the

store to map the switch’s value to this new signal and adds a dependency from this signal

to the forwarder, and between the new signal and the switch. The graph then looks like

the one shown in Figure 2.7 (c). As the update cycle proceeds,signal 6 acquires the value

3, and the forwarder (signal 5) copies it. The graph is then stable, and its state is as in

Figure 2.7 (d).

In the next update cycle,secondsincrements, and the change propagates through the

rest of the graph. Because the trigger does not change, the switch does not update, and the

graph’s structure remains the same. Its state is shown in Figure 2.7 (e).

In the third update cycle, shown in Figure 2.7 (f), the trigger changes and causes the

switch to update. The old signal, which would erroneously divide by zero if left to update,

28

42
seconds

(modulo _ 4)

(zero? _)

(if )

(/ 6 _)

_

3
(/ 6 _)

2
(modulo _ 4)

false
(zero? _)

3
_

43
seconds

3
(modulo _ 4)

2
_

2
(/ 6 _)

(e)

42
seconds

(modulo _ 4)

(zero? _)

(if )

(/ 6 _)

_

3
(/ 6 _)

2
(modulo _ 4)

false
(zero? _)

3
_

43
seconds

3
(modulo _ 4)

true
(zero? _)

2
_

2
(/ 6 _)

44
seconds

0
(modulo _ 4)

(f)

42
seconds

(modulo _ 4)

(zero? _)

(if )

_

2
(modulo _ 4)

false
(zero? _)

3
_

43
seconds

3
(modulo _ 4)

true
(zero? _)

(add1 _)

2
_

2
(/ 6 _)

44
seconds

0
(modulo _ 4)

(g)

42
seconds

(modulo _ 4)

(zero? _)

(if )

_

2
(modulo _ 4)

false
(zero? _)

3
_

43
seconds

3
(modulo _ 4)

true
(zero? _)

(add1 _)
45

(add1 _)

2
_

2
(/ 6 _)

44
seconds

0
(modulo _ 4)

45
_

(h)

Figure 2.10: Dataflow graphs for a conditional expression

is removed from the graph, and the evaluation of the switch’sexpression yields a new graph

fragment, which is spliced into the rest of the graph. The result is depicted in Figure 2.7 (g).

The new signal updates, and its value propagates to the forwarder, as shown in Figure 2.7

(h).

The dashed arcs from the switch to its current branch are crucial for the timely removal

of old signals. These ensure that, when the trigger changes,all of the obsolete signals will

be destroyed before having a chance to update. They are drawnwith dashes because they

represent control, rather than data, dependencies.

The switching mechanism also plays a crucial role in the implementation of time-

varying procedures. In that case, the trigger is the procedure signal, and the context is

the procedure application with a hole in the function position. Each time the procedure

29

;; <expr> → (make-result<val> <new deps> <all signals> <stale signals>)
(define(evaluate expr)

(match expr
;; — other cases elided —
[(f . args)
(match-let∗ ([($ result vs deps sigs) (evaluate-list(cons f args))]

[fv (first vs)] [argvs(rest vs)])
(match fv

;; — other cases elided —
;; signal in function position:
[($ signal)
(let∗ ([swc(new-switch(cons argvs) fv)]

[fwd (new-signal swc)])
(make-result fwd(union deps‘((,fv ,swc) (,swc,fwd))) (union sigs‘(,swc,fwd))))]

))]))

Figure 2.11: FrTime evaluator (excerpts for time-varying procedures)

changes, its current value is substituted into the hole, andthe resulting expression is eval-

uated to produce a new fragment of dataflow graph. The similarity between conditionals

and time-varying procedures is clear from the amount of codeshared between Figures 2.7

and 2.11.

In the actual implementation, there is no interpreter, so the values that represent behav-

iors must be directly applicable as procedures. In FrTime, this is made possible by PLT

Scheme’s support for the use of data structures as procedures. Other languages provide

different features that can achieve the same purpose. For example, in a language like C++,

behaviors can be instances of a class with a function-call operator. In JavaScript, behaviors

can inherit from the classFunction. As a fallback, in any dynamically typed functional

language, behaviors can simply be represented as procedures.

2.8 Remembering Past Values

The constructs presented so far only allow processing of behaviors’ values within a single

instant. In practical applications, however, we need the ability to remember the past. For

example, to record the sequence of characters that have beentyped into a text box, the

language needs a way to accumulate state.

30

(define(update t store deps stale)
(if (empty? stale)

(let∗ ([prevs(map first(filter prev? store))])
(values(add1 t) (foldl (λ (prev new-store)

(store-update prev(store-lookup(prev-signal prev) store)
new-store))

store prevs)
deps(immediate-deps prevs deps)))

;; — non-empty branch elided —
)))

Figure 2.12: An update engine for the essence of FrTime (excerpt for prev statements)

FrTime provides this capability by means of aprevoperator, which consumes a signal

and returns a new signal whose value is initially undefined (⊥) and subsequently equal

to the value its argument had in the previous time step. As Figure 2.12 shows, allprev

signals are updated while the system is in a stable state (i.e., when the set of stale signals

is empty). Theprevsignals therefore effectively update between two time steps, when all

signals are consistent for the previous step, and none of them have changed in the next step.

This property is what allows them to copy values soundly fromone time step to the next.

Moreover, this peculiar update protocol means thatprevsignals need not depend on their

arguments, and therefore need not update in response to changes in their arguments. Since

prevs may refer to each other, it is crucial that all of their updates occur atomically. This is

why thestore-lookups in Figure 2.12 all use the original store.

While there are several operators that accumulate history, they can all be expressed in

terms ofprev. For example, to keep track of the value a signal hadk time steps ago, one

can simply composek uses ofprev. Similarly, to compute a numerical approximation of a

time integral, one can define a signal whose value is initially zero, then the sum of its own

previous value and the current value of its argument times the duration of the time step.

Of course, in a real implementation, constructing long delays through chains of atomic

delays would be wasteful, as it would require many updates ineach time step. Moreover, in

many interactive applications (e.g., games), the programmer may want to delay a signal by

a specific amount of real time, which may not correspond to anyfixed number of FrTime’s

update cycles. (The rate at which FrTime processes an updatecycle may vary according to

the hardware configuration, the number of active signals in the system, the behavior of the

31

Figure 2.13: The implementation ofdelay-by

garbage collector, and other factors beyond the program’s control.)

To support real-time interaction, FrTime provides adelay-byoperator that efficiently

delays a signal by a given amount of real timedt (or at least, by as close an approximation

as it can achieve). Thisdelay-byoperator constructs a pair of signals called aconsumerand

a producer. The two signals communicate through a shared queue that maintains a sliding

window of the argument’s recent values.

Figure 2.13 illustrates how the consumer and producers cooperate to delay a behav-

ior. The consumer (top) depends on the argument (middle), soit updates every time the

argument changes, adding an entry to the queue (right) with the current timet and the

argument’s current value.

Alarms. The dataflow engine provides analarm mechanism, whereby a signal may be

scheduled for update at (or shortly after) a given point in real time. Internally, the engine

maintains an ordered collection of pairs,(signal, wake-time), and at the beginning of each

update cycle, it enqueues for update all signals whose wake-times have elapsed. To ensure

that signals are updated as soon as possible after their requested wake-times, the engine sets

a timeout at the earliest wake-time before asking the runtime to wait for external events.

The consumer uses this alarm mechanism (left) to schedule the producer for update at

timet+dt. Thus, when the producer (bottom) updates, at leastdt milliseconds have elapsed

since some change in the argument’s value. The producer dequeues the appropriate value

32

;; <expr> → (make-result<val> <new deps> <all signals>)
(define(evaluate expr)

(match expr
[(’ rec x e)
(match-let∗ ([sig (make-signal⊥)]

[($ result val deps sigs) (evaluate(subst sig x e))])
(vector-set! sig2 val)
(make-result val(union deps(if (signal? val) (list (list val sig)) empty))

(cons sig sigs)))]
;; — other cases elided —
))

Figure 2.14: FrTime evaluator (excerpts for recursive bindings)

and emits it.

2.9 Recursion

An important application of history is in the expression of self-referential signal networks,

which are necessary for many practical programs. As an illustration of the power of self-

reference, observe that time itself can be expressed as a signal whose value starts as zero

and is then equal to one greater than its previous value:

(rec t (init 0 (add1(prev t))))

Here,rec is a fixed point operator, and theinit operator uses the value of its first argument

as long as the second argument is⊥. (Typically, primitive procedures likeadd1are lifted

in a⊥-strict fashion, so they return⊥ if any of their arguments are⊥.)

Figure 2.14 shows how FrTime implements therec construct. The body is evaluated

with the variable bound to a placeholder signal, whose valuestarts out undefined (⊥). Then

the signal’s value is rebound to the result of the evaluation. In the general case, the result

is a signal, so the placeholder signal depends on the result,and the result also refers to

the signal. If this chain of reference is not broken by aprev, then a cycle in the dataflow

graph results, rendering topological evaluation impossible. In the expression above, aprev

intervenes, so the graph remains acyclic.

If one were to define an ill-founded behavior, such as

33

(rec x (init true (not x)))

then the evaluator would err when it tried to select the next signal for update. Since every

signal would depend transitively on another signal with an update pending, it would not be

safe to update any signal. In the actual implementation, FrTime discovers the tight cycle

when it rebinds the placeholder and traverses the graph to update the height assignment.

2.10 Event Streams

The preceding sections have explained how behaviors interact with all of the features in

standard (purely functional) Scheme.FRP, however, also supports the modeling of se-

quences of discrete phenomena, which are calledevent streams. Behaviors and events are

in some sense duals, and either one can be used as a basis to implement the other, at least

in a model where time is fundamentally discrete. In FrTime, behaviors are primitive, and

event streams are modeled as structured behaviors carryingthe time at which the last event

occurred, and the collection of events that occurred at thattime. It is easy to define the stan-

dard event-processing combinators as lifted functions over these behaviors. For example:

(define(map-e f e)

(make-event(event-time e) (map f (event-occurrences e))))

(define(filter-e p e)

(make-event(event-time e) (filter p (event-occurrences p))))

(define(merge-e. es)

(let ([last-time(apply max(map event-time es))])

(make-event

last-time

(apply append

(map event-occurrences

(filter (λ (e) (= (event-time e) last-time))

es))))))

Stateful event processors (e.g.,accum-b, collect-b) can be expressed via recursion andprev.

34

2.11 Support for REPL-based Interactive Programming

Another concern for FrTime is supporting a read-evaluate-print loop (REPL) for interactive,

incremental program development. While not technically part of the language itself, this is

an important feature from the standpoint of usability, and one that Scheme and other Lisp

dialects have long provided.

FrTime supportsREPL interaction by allowing the dataflow computation to run concur-

rently with theREPL. The language dedicates one thread of control, called thedataflow

engine, to the update algorithm, while another thread manages the DrSchemeREPL, al-

lowing the user to enter expressions at the prompt. The threads communicate through a

message queue; at the beginning of each update cycle, the engine empties its queue and

processes the messages. When the user enters an expression atthe prompt, theREPL sends

a message to the dataflow engine, which evaluates it and responds with the root of the re-

sulting graph. Control returns to theREPL, which issues a new prompt for the user, while

in the background the engine continues processing events and updating signals.

This approach differs from the one taken by the HaskellFRP systems [39, 74]. In

those, a program specifies the structure of a dynamic dataflowcomputation, but the actual

reactivity is implemented in an interpreter calledreactimate. The use ofreactimateis an

artifact of a particular implementation strategy, in whichan external entity was required to

drive reactive computations by pulling values from streams. Reactimateruns in an infinite

loop, blocking interaction with theREPL until the computation is finished. It therefore

creates a closed world, which is problematic for applications that need to supportREPL-

style interaction in the middle of their execution.

It may appear that the Haskell systems could achieve similarbehavior simply by spawn-

ing a new thread to evaluate the call toreactimate. Control flow would return to theREPL,

apparently allowing the user to extend or modify the program. However, this background

process would still not return a value or offer an interface for probing or extending the run-

ning dataflow computation. The values of signals running inside areactimatesession, like

the dataflow program itself, reside in the procedure’s scopeand hence cannot escape or be

affected from the outside. In contrast, FrTime’s message queue allows users to submit new

program fragments dynamically, andevaluating an expression returns a live signalwhich,

because of the engine’s background execution, reflects partof a running computation.

35

;; <expr> → (make-result<val> <new deps> <all signals> <stale signals>)
(define(evaluate expr)

(match expr
[(’ rec x e)
(match-let∗ ([sig (make-signal⊥)]

[($ result val deps sigs stale) (evaluate(subst sig x e))])
(set-sig-expr! sig val)
(make-result val(union deps(if (signal? val) (list (list val sig)) empty))

(cons sig sigs) (cons sig stale)))]
[(’ prev e)
(match-let∗ ([($ result val deps sigs stale) (evaluate e)]

[new-sig(make-prev val)])
(make-result new-sig deps(cons new-sig sigs) stale))]

[(’ if c t e)
(match-let([($ result cv deps all-sigs stale-sigs) (evaluate c)])

(cond [(signal? cv)
(let∗ ([swc(make-switch‘(if , ,t ,e) cv)]

[fwd (make-signal swc)])
(make-result fwd(union deps‘((,cv ,swc) (,swc,fwd)))

(union ‘(,swc,fwd) all-sigs) (union ‘(,swc) stale-sigs)))]
[cv (evaluate t)]
[else(evaluate e)]))]

[(’ λ .) (make-result exprempty empty empty)]
[(f . args)
(match-let∗ ([($ result vs deps sigs stale) (evaluate-list(cons f args))]

[fv (first vs)] [argvs(rest vs)])
(match fv

[(’ λ vars body)
(match-let([($ result v deps1 all-sigs1 stale-sigs1)

(evaluate(foldl (λ (var arg body) (subst arg var body))
body vars argvs))])

(make-result v(union deps deps1) (union sigs all-sigs1)
(union stale stale-sigs1)))]

[($ signal)
(let∗ ([swc(new-switch(cons argvs) fv)]

[fwd (new-signal swc)])
(make-result fwd(union deps‘((,fv ,swc) (,swc,fwd)))

(union sigs‘(,swc,fwd)) (union stale‘(,swc))))]
[(? prim?)
(if (ormap signal? vs)

(let ([new-sig(new-signal vs)])
(make-result
new-sig(union deps(map(λ (d) (list d new-sig)) (filter signal? argvs)))
(union(list new-sig) sigs) (union(list new-sig) stale)))

(make-result(apply(eval fv) args) deps sigs stale))]))]
[(make-result exprempty empty empty)]))

Figure 2.15: An evaluator for the essence of FrTime

36

(define(update t store deps stale)
(if (empty? stale)

(let∗ ([prevs(map first(filter prev? store))])
(values(add1 t)

(foldl (λ (prev new-store)
(store-update prev(store-lookup(prev-signal prev) store)

new-store))
store prevs)

deps(immediate-deps prevs deps)))
(let∗ ([ready-for-update(set- stale(transitive-deps stale deps))]

[sig (first ready-for-update)])
(match sig

[($ sig expr)
(let ([val (snapshot expr store)])

(values t(store-update sig val store)
deps
(set-(if (eq?(store-lookup sig store) val)

stale
(union stale(immediate-deps(list sig) deps)))

(list sig))))]
[($ switch inner-ctxt trigger)
(match-let∗ ([(fwds) (filter (λ (sig1) (and (sig? sig1)

(eq?(sig-expr sig1) sig)))
(map first store))]

[(fwd) (first fwds))]
[(old) (set-(transitive-deps(list sig) deps)

(cons fwd(transitive-deps(list fwd) deps)))]
[(deps1) (filter (λ (dep) (not (member(second dep) old))) deps)]
[($ result v new-deps new-sigs new-stale)

(evaluate(subst(store-lookup trigger store)
inner-ctxt)

outer-ctxt)])
(values t(append(map(λ (s) (list s⊥)) new-sigs)

(filter (λ (m) (not (member(first m) old)))
(store-update sig v store)))

(union(map(λ (s) (list sig s)) new-sigs)
deps1 new-deps(if (signal? v) (list (list v fwd)) empty))

(set-(union(list fwd) new-stale stale) (cons sig old))))]))))

Figure 2.16: An update engine for the essence of FrTime

Chapter 3

Semantics

This chapter presents a formal semantics of FrTime’s evaluation model, which highlights

the push-driven update strategy and the embedding in a call-by-value functional host lan-

guage. Figure 3.1 shows the grammars for values, expressions, and evaluation contexts. A

system is parameterized over a set of base constants and primitive operators (which oper-

ate on these base constants). Values include the undefined value (⊥), booleans, primitive

procedures,λ-abstractions, and signals. Expressions include values, procedure applica-

tions, conditionals, andprev statements. Evaluation contexts [41] enforce a left-to-right,

call-by-value order on subexpression evaluation.

Figure 3.2 shows the types of various elements of the semantics, along with the letters

we use conventionally to represent them. Theδ function, a parameter to the language, spec-

ifies how primitive operators evaluate.P represents the program, of which one (possibly

trivial) expression is evaluated at each moment in time.D denotes a dependency relation:

the set of values on which various signals depend.Σ andI name sets of signals, andS

identifies a store, which maps signals to values.

Figure 3.3 describes how a FrTime program evaluates to produce a dataflow graph.

Transitions operate on triples containing a signal setI, a dependency relationD, and an

expression.I (the set ofinternal updates) represents the set of signals whose values will

need to be computed once the expression has fully evaluated.During graph construction,

theI parameter accumulates newly created signals, andD accumulates their dependencies.

Sometimes a single rule creates multiple signals, some of which depend on the others, so

thatI need not accumulate all of the new signals.

37

38

x ∈ 〈var〉 ::= (variable names)

p ∈ 〈prim〉 ::= (primitive operators)

t ∈ 〈time〉 ::= (moments in time)

σ ∈ 〈loc〉 ::= (prev 〈E〉 〈loc〉) | (sig 〈E〉 〈e〉) | (switch 〈E〉 〈E〉 〈loc〉)

u, v ∈ 〈v〉 ::= ⊥ | true | false | 〈prim〉 | (λ(〈var〉∗) 〈e〉) | 〈loc〉 | . . .

e ∈ 〈e〉 ::= 〈v〉 | 〈var〉 | (〈e〉 〈e〉∗) | (rec 〈var〉 〈e〉) | (prev 〈e〉) | (if 〈e〉 〈e〉 〈e〉)

E ∈ 〈E〉 ::= [] | (〈v〉∗ 〈E〉 〈e〉∗) | (prev 〈E〉) | (if 〈E〉 〈e〉 〈e〉)

Figure 3.1: Grammars for values, expressions, evaluation contexts, and signal types

δ : 〈prim〉 × 〈v〉 × . . . → 〈v〉 (primitive evaluation)
P : 〈time〉 → 〈e〉 (program fragments)

Σ, I ⊂ 〈loc〉 (signal set)
D ⊂ 〈v〉 × 〈loc〉 × {true,false} (tagged dependency relation)
S : 〈v〉 → 〈v〉 (signal value)

Figure 3.2: Semantic domains and operations

The first three rules (δ, βv, andIF) are special cases for evaluation steps that only involve

constants. The underlining of these rule names distinguishes them from theirlifted, or

signal-aware, counterparts. The underlined rules behave as would be expected in a standard

call-by-value semantics.

The next three rules (δ, βv, and IF) define the behavior of primitive application, ap-

plication of λ-abstractions, and conditional expressions (respectively) in the presence of

signals. Understanding them requires a knowledge of the different varieties of signals and

what they mean.

It is instructive to view signals from two different perspectives. One view is as abstract

entities that have an associated (constant) value at each point in time. This view is embod-

ied semantically by the store (S), which explicitly maps signals to their values at a given

point during evaluation. This view naturally gives rise to the notion ofsnapshot evaluation

(Figure 3.4), in which signals evaluate to their projections in a given store.

39

{v1, . . . , vn} ∩ 〈loc〉 = ∅

〈I,D,E[(p v1 . . . vn)]〉 → 〈I,D,E[δ(p, v1, . . . , vn)]〉
(δ)

〈I,D,E[((λ (x1 . . . xn) e) v1 . . . vn)]〉 → 〈I,D,E[e[v1/x1] . . . [vn/xn]]〉 (β
v
)

〈I,D,E[(if true e1 e2)]〉 → 〈I,D,E[e1]〉
〈I,D,E[(if false e1 e2)]〉 → 〈I,D,E[e2]〉

(IF)

{v1, . . . , vn} ∩ 〈loc〉 = Σ 6= ∅ σ = (sig E (p v1 . . . vn))

〈I,D,E[(p v1 . . . vn)]〉 → 〈I ∪ {σ}, D ∪ (Σ × {σ}), E[σ]〉
(δ)

σg = (switch E ([] v1 . . . vn) σ) σf = (sig E σg)

〈I,D,E[(σ v1 . . . vn)]〉 → 〈I ∪ {σg}, D ∪ {(σ, σg), (σg, σf)}, E[σf]〉
(βv)

σg = (switch E (if [] e1 e2) σ) σf = (sig E σg)

〈I,D,E[(if σ e1 e2)]〉 → 〈I ∪ {σg}, D ∪ {(σ, σg), (σg, σf)}, E[σf]〉
(IF)

σg = (switch E ((λ (x) e) []) σf) σf = (sig E σg)

〈I,D,E[(rec x e)]〉 → 〈I ∪ {σg}, D ∪ {(σg, σf)}, E[σf]〉
(REC)

σ = (prev E σ′)

〈I,D,E[(prev σ′)]〉 → 〈I,D,E[σ]〉
(PREV)

Figure 3.3: Evaluation rules

E[(p v1 . . . vn)] →S E[δ(p, v1, . . . , vn)] (δS)

E[((λ (x1 . . . xn) e) v1 . . . vn)] →S E[e[v1/x1] . . . [vn/xn]] (βvS)

E[(if true e1 e2)] →S E[e1]
E[(if false e1 e2)] →S E[e2]

(IFS)

E[σ] →S E[S(σ)] (σS)

Figure 3.4: Snapshot rules

Since the underlying model is call-by-value, another sensible view of signals is as ex-

pressions that return different values to their contexts over time. This view is embodied

semantically in the representation of each signal as an algebraic structure containing an

evaluation contextE and the information needed to compute the signal’s current value.

This view helps to maintain and elucidate the relationship between the dataflow and call-

by-value aspects of the language’s evaluation model. Thesesignal structures are as follows:

40

I ∋ σ = (sig E e) /∈ D+(I) e →∗

S v

〈t, S,D, I〉 →֒ 〈t, S[σ 7→ v], D, (I \ {σ}) ∪

{
D(σ) if v 6= S(σ)
∅ otherwise

〉

(U-SIG)

σg = (switch E0 E σ) ∈ I σf = (sig E0 σg) Σ = D+(σg) \ D∗(σf)
〈I \ Σ, D \ 〈loc〉×Σ, E0[E[S(σ)]]〉 →∗ 〈I ′, D′, E0[v]〉 Σ′ = I ′ \ (I \ Σ)

〈t, S,D, I〉 →֒ 〈t, S[σg 7→ v], D′ ∪ {(v, σf)} ∪ ({σg} × Σ′), (I ′ \ {σg}) ∪ {σf}〉
(U-SWC)

P (t) = e 〈∅, D, e〉 →∗ 〈I,D′, v〉
S ′ = S[(prev E σ′) 7→ S(σ′)](prev E σ′) ∈ dom(S)

〈t − 1, S,D, ∅〉
v
→֒ 〈t, S ′, D′, I ∪ D′({σ ∈ dom(S) | S(σ) 6= S ′(σ)})〉

(U-ADV)

Figure 3.5: Update rules

sig These signals are simple time-varying values, defined by a purely functional trans-

formation over other time-varying values. Eachsig signal identifies the evaluation

context that created it and the expression whose snapshot-evaluation produces its

values over time. Mostsig signals are created by theδ rule, which deals with appli-

cation of primitive procedures to signals.

prev Such a signal takes on exactly the values of some other signal, but delayed by

one instant. By chaining together severalprevs, one can implement longer delays,

and in generalprev supports the construction of signals that compute arbitrarily

complex functions of the system’s history.

switch These signals correspond to places where the value of sometrigger signal influ-

ences the program’s control flow. Whenever the trigger changes, the evaluator plugs

its new value into a giveninnercontext, the result of which generally evaluates to the

root of a fragment of dataflow graph. This node becomes associated with anouter

context, which is the overall context for theswitch signal. In essence, theswitch

allows different fragments of graph to be constructed and switched into graph for the

whole program.

Theδ rule, applied to a primitive procedure application(p v . . .) in evaluation context

E, creates asig signal with contextE and expression(p v . . .). This new signal depends

on all of the signals inv . . ., so the rule adds all of the corresponding pairs to the dependency

41

relation. Since a proper value for the new signal is unknown (and cannot be computed

without a suitable store—see Section 2.7), the rule ensuresthat the new signal is a member

of the resultingI.

Theβv andIF rules createswitch signals. This is because, in each case, the value of a

signal affects the control flow of a computation that defines the overall value of the expres-

sion. In the case of theIF rule, the value of the test expression determines which branch is

evaluated, while in theβv rule, the function varies over different primitive operations and

λ-abstractions, which are applied to the (possibly time-varying) arguments. Eachswitch

signal cooperates with another signal that forwards the value of the current subgraph.

TheREC rule also works by creating aswitch signal, albeit in a slightly different way

from the other rules. In this case, the switch is not recordedas a dependent of the trigger,

so no actual switching ever occurs. The rule just uses the switching mechanism to defer

evaluation of the body. This deferral is necessary in order to preserve the small-step nature

of this layer of the semantics. (Evaluating the body would require a full reduction, i.e., a

large step.)

ThePREV rule produces aprev signal, which contains the signal to be delayed and the

context awaiting the delayed value.prev signals have no dependencies and are not added

to the setI, so they always have the undefined value (⊥) at the end of the instant in which

they are created.

Figure 3.4 defines snapshot evaluation. It is essentially pure call-by-value evaluation of

FrTime expressions, except that signals are no longer considered values. Instead, they must

be looked up in the given store. It is worth noting that one signal’s value may be another

signal, so the lookup process must recur until it reaches an ordinary (constant) value.

Figure 3.5 shows the set of rules that define the scheduling ofdataflow updates. These

rules operate on 4-tuples containing a timet, a storeS, a dependency relationD, and a

setI of signals with potentially inconsistent values. The main purpose of these rules is to

define legal orderings of individual signal updates such that, within a given unit of time,

each signal updates at most once, after which its value remains consistent for the remainder

of the time unit. We will make these notions more precise in the rest of this chapter.

There are only three update rules, each of which focuses on a particular variety of

signal:

42

U-SIG The rule for updating asig signal is straightforward. Its expression is snapshot-

evaluated in the current store, and the store is updated withthe signal’s new value.

If this value has changed, then all of the signal’s dependents are added to the set of

potentially inconsistent signals.

U-ADV This is the rule for advancing to the next time step, which fires whenever all signals

are up-to-date (the setI of out-of-date signals is empty). The rule first evaluates the

new expression for this timestep, extending the dependencyrelation and computing

an initial set of out-of-date signals. It then seeds the system with change by updating

anyprev signals whose inputs have changed and adding all of their dependents to

the new initialI.

U-SWC This is the rule for updatingswitch signals. It is significantly more complicated

than the others. It can only fire when a switch’s trigger has changed, and it completely

removes any signals previously constructed by this switch before constructing a fresh

fragment of dataflow graph. The new fragment is the result of composing the switch’s

inner and outer evaluation contexts, filling the hole with the trigger’s new value, and

evaluating until the outer context contains a value.

A note on memory management. In this idealized model, signals only become superflu-

ous when they are switched out, in which case they are explicitly removed from the graph

by rule U-SWC. In the actual implementation, the use of additional features (e.g., imper-

ative updates) can cause fragments of the graph to become unreachable without notifying

the language. This explains why the implementation requires weak references for the data

dependency references, but this notion is unnecessary in the semantics.

Lemma 3.1. If 〈I,D, e〉 →∗ 〈I ′, D′, e′〉, thenI ⊆ I ′ andD ⊆ D′.

Proof. By induction on the length of the reduction sequence, with case analysis on the

reduction rules. The dependency relation and set of internal updates are either extended

or passed through unchanged in every transition, a fact easily verified by inspection of the

rules.

Definition 3.1. We say that an expressione refers to a signalσ if σ is a subexpression of

e. We writeR[[e]] for the set of all signals to whiche refers.R is defined recursively by case

43

analysis on the abstract syntax for expressions:

R[[(sig E e)]] = {(sig E e)} ∪ R[[e]]

R[[(switch E0 E σ)]] = R[[E[σ]]]

R[[(prev E σ)]] = {σ} ∪ R[[σ]]

R[[(λ (x . . .) e)]] = R[[e]]

R[[(e1 . . . en)]] =
n⋃

i=1

R[[ei]]

R[[(rec v e)]] = R[[e]]

R[[(if ec et ef)]] = R[[ec]] ∪ R[[et]] ∪ R[[ef]]

R[[e]] = ∅ (for all other cases)

We also generalizeR to operate on sets of signals in the natural way:

R[[Σ]] =
⋃

σ∈Σ

R[[σ]]

Lemma 3.2.The value of an expression is independent of the values of anysignals to which

it refers.

Proof. Evaluation occurs in the absence of a store.

Lemma 3.3. The snapshot-evaluation of an expression is completely determined by the

values of the signals to which it refers. Formally: for all storesS andS ′, if S(σ) = S ′(σ)

for all σ ∈ R[[e]], thene →n
S e′ ⇔ e →n

S′ e′.

Proof. By induction onn with case analysis on the snapshot evaluation rules. The only

case that refers to the store at all isσS.

Definition 3.2 (natural dependence). A signalσ2 naturally dependson another signalσ1

if and only if for some values of the variables below, wherev1 6= v′

1 andv2 6= v′

2:

〈t, S[σ1 7→ v1], D0, {σ2}〉 →֒ 〈t, S[σ1 7→ v1, σ2 7→ v2], D,D(σ2)〉 and

〈t, S[σ1 7→ v′

1], D0, {σ2}〉 →֒ 〈t, S[σ1 7→ v′

1, σ2 7→ v′

2], D
′, D′(σ2)〉

44

In other words, it is possible to choose different values forσ1 such that the outcome of

updatingσ2 is different for each.

Theorem 3.1. If σ2 naturally depends onσ1, thenσ2 refers toσ1 (σ1 ∈ R[[σ2]]).

Proof. By case analysis on the kind ofσ2.

sig The value of(sig E e) is computed by snapshot evaluation ofe. By Lemma 3.3, in

order fore to evaluate to two different values under two different stores, the stores

must map someσ ∈ R[[e]] to two different values. However, in the definition of

influence, the two stores differ only on the value ofσ1. Thus,σ1 ∈ R[[e]].

prev The value of(prev E σ1) is just the value ofσ1 in S. Thusσ1 (and onlyσ1) influ-

ences it. Moreover, thatσ1 ∈ R[[(prev E σ1)]] follows directly from Definition 3.1.

switch The value ofσ2 = (switch E0 E σ1) is computed by (partially) evaluating

e = E0[E[S(σ1)]], so changing the value ofσ1 may yield different results. However,

by Lemma 3.2, this evaluation does not depend on the values ofany signals to which

e refers. Thus, the largest set of signals on whichσ2 can naturally depend is{σ1}.

By Definition 3.1,R[[e]] ⊇ {σ1}, from which the implication follows.

Related to natural dependence is the notion ofcontrol, defined as follows:

Definition 3.3. A signalσ1 controls another signalσ2 if and only if for any timet, there

exist storesS andS ′, dependency relationsD andD′, and signals setsI andI ′ such that:

〈t, S,D, I〉 →֒ 〈t, S ′, D′, I ′〉

σ1 ∈ I

σ1 /∈ I ′

σ2 ∈ dom(D) ∪ rng(D)

σ2 /∈ dom(D′) ∪ rng(D′)

45

Intuitively, control refers to the ability for one signal toterminate another. This relation-

ship exists so that, when conditions arise in which updatinga signal might cause evaluation

to get stuck, the signal can be removed before it has a chance to update. As with natural

dependence, when this relationship holds, it is important that the controlling signal updates

first, a property that should be enforced by the dependency relationD, as follows:

Definition 3.4 (soundness of dependency relation). A dependency relationD is soundwith

respect to a signal setΣ if and only if, for all pairs of distinct signals(σ1, σ2) ∈ R[[Σ]]2

(whereσ2 6= (prev E σ1)), if σ2 naturally depends onσ1, then(σ1, σ2) ∈ D. Also, ifσ1

controlsσ2, then(σ1, σ2) ∈ D+ (the transitive closure ofD).

Signals in aprev relationship are specifically excluded because the dependency rela-

tion works contrary to normal in the case ofprevs. This is to ensure that aprev signal

always sees the observed signal’s valuebeforeit updates, so that at the end of the time step

it will reflect the stable value from theprevioustime step.

The call-by-value rules produce sound dependency relations.

Theorem 3.2 (preservation of soundness by evaluation). If D is sound with respect to

I ⊇ R[[e]] and〈I,D, e〉 →∗ 〈I ′, D′, v〉, thenD′ is sound with respect toR[[v]] ∪ I ′(⊇ I).

Proof. By induction on the length of the reduction sequence. The basecase, wheree is

a value, holds trivially. The induction step involves case analysis of the reduction rules

(Figure 3.3). Rulesδ, β
v
, and IF are trivial because they do not affect the dependency

relation. The other rules behave as follows:

δ The rule refers only toσ and the elements ofΣ, so it cannot affect any other signals.

The new signalσ will update according to the ruleU-SIG; this performs snapshot

evaluation of the expressione in storeS, which is only affected byS’s mappings

for signals inΣ. Thus,σ depends on at most the signals inΣ. The addition ofΣ ×

{σ} to the dependency relation therefore reflects all possible additional dependency

relationships, thereby preserving soundness.

βv The only signals involved in the transition areσ, σg, andσf . Clearly,σf naturally de-

pends onσg. By Theorem 3.1 and Lemma 3.2,σg may only naturally depend onσ.

46

σf updates according toU-SIG, so it has no other influences. Thus, the dependen-

cies reflected in the extension ofD cover all the new influences. Althoughσg will

eventually control all of the signals created during its update (this is the subject of

Theorem 3.3), at the point of its evaluation it controls nothing.

IF This case is analogous to that ofβv.

REC This case is again analogous to that of the previous two. The difference is that there

is noσ, or rather that(prev σf) takes the place ofσ. The interposition of theprev

breaks the strict influence ofσf onσg, so it suffices to add only the single dependency.

PREV This case follows directly from the definition of soundness,which explicitly ex-

cludes pairs of signals in aprev relationship.

We now show that the update rules (Figure 3.5) preserve soundness.

Theorem 3.3. If D is sound with respect toI ∪ dom(D) ∪ rng(D) and

〈t, S,D, I〉 →֒∗ 〈t′, S ′, D′, I ′〉

thenD′ is sound with respect toI ′ ∪ dom(D′) ∪ rng(D′).

Proof. By induction on the length of the reduction sequence. The basecase (no reduction

steps) is trivial. The induction step involves case analysis on the update rules (Figure 3.5).

Rule U-SIG does not affect the dependency relation, and the other two cases proceed as

follows:

U-ADV We assume thatP only returns expressions that refer to signals inD, so D is

sound with respect toR[[e]]. By the induction hypothesis,D is sound with respect to

its domain and range. By Theorem 3.2,D′ is sound with respect toR[[v]] and its own

domain and range.

U-SWC Initially, the set of signals controlled byσg is Σ. As these are defined byD+(σg) \

D∗(σf), they are all certainly inD+(σg). Before constructing the replacement graph

fragment, the rule removes the signals inΣ from every element of the semantics. By

47

Theorem 3.2, the evaluation ofE0[E[S(σ)]] preserves the soundness of the resulting

dependency relation. All of the signals constructed by thisevaluation are controlled

by σg, and the resulting dependency relation reflects this fact.

Definition 3.5 (local consistency). A signalσ = (sig E e) is locally consistentin store

S if and only ife →∗

S S(σ). Similarly,σ = (switch E0 E σ1) is locally consistent inS if

and only if there existD andI such that〈∅, ∅, E0[E[σ1]]〉 → 〈I,D,E0[v]〉 andS(σ) = v.

The notion of local consistency for signals of the formσ = (prev E σ′) cannot be defined

solely with respect to a storeS. We observe, however, that the ruleU-ADV assigns the

desired value at the beginning of each update cycle, and as long as this value does not

change within the cycle, it remains consistent.

Theorem 3.4. If D is sound with respect to all signals in its own domain and range,and

〈t, S,D, ∅〉 →∗ 〈t + 1, S ′, D′, I〉, then every signalσ ∈ (dom(D′)∪ rng(D′)) \ I is locally

consistent inS ′. In other words, if an update cycle starts with a sound dependency relation,

then within that cycle, every signal is always either locally consistent or enqueued inI for

recomputation.

Proof. By induction on the length of the sequence of update rules, with case analysis on

the rules.

U-ADV This rule enqueues for update all of the signals that depend on any signal whose

value is changed by application of the rule. By the assumptionof D’s soundness,

these are the only signals that can become locally inconsistent. Thus the rule pre-

serves the conclusion of the theorem.

U-SIG At most one signal (σ) changes, and if it does then all of its dependents are enqueued

in I for update. ByD’s soundness, no other signals can be made locally inconsistent,

so again the property is preserved.

U-SWC Everything thatσg controls before the rule fires is deleted from the system. Allof

the newly constructed signals are enqueued for update at theend of the rule (unless

they depend on another new signal, in which case they are still consistent), as isσf ,

which is the only signal that naturally depends onσg.

48

Corollary 3.1 (global consistency at quiescence). If D is sound with respect to itself, and

〈t, S,D, ∅〉 →∗ 〈t + 1, S ′, D′, ∅〉, then every signalσ ∈ dom(D′) ∪ rng(D′) is locally

consistent inS ′. In other words, if an update cycle starts with a sound dependency relation,

then when there are no signals enqueued for update (the end of that cycle, a quiescent state),

all signals are locally consistent, making the system globally consistent.

Proof. Let I ′ = ∅ in Theorem 3.4, and the result follows directly.

Corollary 3.2 (full consistency). If D is sound with respect to itself, then for allt′ ≥ t,

if 〈t, S,D, ∅〉 →∗ 〈t′ > t, S′, D′, ∅〉, then every signalσ ∈ dom(D′) ∪ rng(D′) is locally

consistent inS ′. In other words, if an update cycle starts with a sound dependency relation,

then all future quiescent states are globally consistent.

Proof. By induction ont′, using Corollary 3.1 to prove the induction step. The base case

is trivial.

Chapter 4

Optimization by Lowering

Chapter 2 explained how FrTime induces construction of a dataflow graph by redefining

operations through an implicitlifting transformation. Lifting takes a function that operates

on constant values and produces a new function that performsthe same operation on time-

varying values. Each time the program applies a lifted function to time-varying arguments,

it builds a new node and connects it to the nodes representingthe arguments. Core Scheme

syntactic forms are redefined to extend the graph when used with time-varying values.

Dynamic dataflow graph construction offers several benefits. For example, it permits in-

cremental development of reactive programs in, for instance, a read-eval-print loop (REPL).

The implicit lifting also allows programmers to write in exactly the same syntax as a purely

functional subset of Scheme. Because lifting is conservative, FrTime programs can reuse

Scheme code without any syntactic changes, a process we calltransparent reactivity.

Unfortunately, the fine granularity of implicit graph construction can result in signifi-

cant inefficiency. Every application of a lifted function may create a new dataflow node,

whose construction and maintenance consume significant amounts of time and space. As

a result, large legacy libraries imported into FrTime may beslowed down by two orders of

magnitude or more. One experiment, for example, involved attempting to reuse an image

library from PLT Slideshow [43], but the result was unusablyslow.

This chapter1 presents an optimization technique designed to eliminate some of the in-

efficiency associated with FrTime’s evaluation model, while still giving programmers the

same notion of transparent reactivity. The technique worksby collapsing regions of the

1This chapter expands on previously published joint work [17] with Kimberley Burchett.

49

50

dataflow graph into individual nodes. This moves computation from the dataflow model

back to traditional call-by-value, which the runtime system executes much more efficiently.

Because this technique undoes the process of lifting, we callit lowering. Of course, low-

ering must not alter the semantics of the original program orsacrifice the advantages of

FrTime’s evaluation strategy. I present a static analysis that determines when the optimizer

can safely lower an expression. The lowering analysis and its implementation yield a sig-

nificant reduction in time and space usage for real programs.

Lifting and Projection

This chapter is concerned only with behaviors. In FrTime (asin otherFRP systems), the

programmer processes events through a special set of operators. Since these have no natural

analogs in the non-dataflow world, they cannot be used transparently and do not involve

implicit lifting. They therefore do not suffer from the associated performance problems,

so I do not consider the problem of optimizing them. While the ideas may generalize to

events, I have not explored such an extension.

FrTime extends Scheme by replacing its primitives withlifted versions. The inverse

of lifting is projection, which samples a behavior at the current instant, retrieving a raw

Scheme value. FrTime uses the operatorvalue-nowto perform projection, but in this chap-

ter I consistently refer to it asproject. Formally, these two operations have the following

types:

lift n : (t1 . . . tn → u) → (sig(t1) . . . sig(tn) → sig(u))

project : sig(t) → t

In these definitions,t andu are type variables that can stand for any base (non-signal) type,

and sig(t) is either a base typet, or a signal of base typet. That is, t is a subtype of

sig(t). This means that lifted functions are polymorphic with respect to the time-variance

of their arguments, so they can consume an arbitrary combination of constants and signals.

Likewise,projecting the current value of a constant simply yields that constant.

Note that there is a separate functionlift n for each possiblen. Scheme supports the

51

definition of a single procedurelift that implements the union of these functions for alln.

In the rest of the chapter, I shall refer simply tolift , leaving the arity implicit.

Lift andprojectare related through the following identity:

(project ((lift f) s . . .))≡ (f (project s) . . .)

At any point in time, the current value of the application of alifted function is equal to

the result of applying the original, unlifted function to the projections of the arguments.

Throughout the rest of the chapter, I will refer to constantsand signals as inhabiting

separatelayers. Specifically, I will talk about constants as belonging to alower layer, and

I will underline the names of lower functions, which can only operate on constants. In

contrast, I will say that signals belong to anupperlayer, and I will put âhat over the names

of upper functions, which can operate on signals.

Since lifting generalizes the behavior of raw Scheme functions, it is always safe to sub-

stitute a lifted function for its lower counterpart. FrTimedoes exactly this, so programmers

rarely need to worry about accidentally applying lower functions to signals. (The exception

is when they import raw Scheme libraries, whose procedures must be explicitly lifted.) In

the next section, we shall see that this extreme conservatism takes a toll on performance,

which will motivate an exploration of ways to avoid it when possible.

The Need for Optimization

In otherFRP systems like Yampa [74], programmers can manually choose the granularity

at which to lift operations. It is in their interest, in termsof both human and machine

time, to do this as little as possible, which means placing the lifts at the highest level

possible. Regardless of where the programmer decides to putlifts, Haskell’s static type

system ensures that behaviors are never passed to unlifted primitives, and operations are

never lifted twice.

In contrast, FrTime handles reactivity in a dynamic and implicit manner. All primitives

are lifted, and every application of a lifted function to time-varying arguments results in

a new dataflow graph node. For example, Fig. 4.2 (left) shows the dataflow graph for the

relatively simple function in Fig. 4.1. To evaluate this function, six signal objects must be

allocated on the heap and connected together: one for each−, +, sqr (square), andsqrt

(square root) in the expression. Each signal object requires nearly one hundred bytes of

52

(define ̂distance

(λ (x1 y1 x2 y2)
(ŝqrt (+̂ (ŝqr (−̂ x1 x2))

(ŝqr (−̂ y1 y2))))))

Figure 4.1: Definition of distance function.

sqrt

+

sqr sqr

- -

x1 x2 y1 y2

OO

<<yyyy
bbEEEE

OO OO

GG����

WW////
GG���

WW///

sqrt

+

(∆x)2 (∆y)2

x1 x2 y1 y2

OO

<<yyy
bbEEE

II���
UU+++ II��

UU++

sqrt

(∆x)2 + (∆y)2

x1 x2 y1 y2

OO

<<yyyy
GG���

WW// bbEEE

√
(∆x)2 + (∆y)2

x1

<<yyy
x2

GG��
y1
WW//

y2
ccHH

Figure 4.2: Left: Unoptimized dataflow graph for the distance function. Right: optimized
equivalent. Various stages of optimization are shown in-between. Inter-procedural opti-
mization can improve the result even further. Each box is a heap-allocated signal object.

memory on the heap.

Whenever one of the inputs to thêdistance function changes, FrTime has to update

the four signals along the path from that input to the root. (If multiple inputs change

simultaneously, then it must update everything along the union of their paths.) Each update

requires:

1. extracting the node from a priority queue,

2. retrieving the current value of its input signals,

3. invoking a closure to produce an updated value,

4. storing the new value in the signal object, and

5. iterating through a list of dependent signals and enqueueing them for update.

Thus every invocation of thêdistance function introduces a significant cost in three differ-

ent areas: the time required to initiallyconstructthe dataflow graph, the amount of memory

53

required tostorethe dataflow graph, and the time required topropagate changesalong the

dataflow graph.

Figure 4.3 shows another definition of thêdistance function, this time with the upper

and lower layers made explicit. Note that each of the functions called by ̂distance is ac-

tually a lifted version of the lower function by the same name. In other words, they are

just lower functions that FrTime has wrapped (like howfrtime:+ wrapped the primitive+

function, above). When lifted functions are composed to formexpressions, every interme-

diate value is lifted to the upper layer, only to be immediately projected back to the lower

layer by the next function in line.

The goal is to reduce the use of the expensive dataflow evaluator by eliminating some

of the intermediate nodes from the dataflow graph. The key observation is that it is unnec-

essary to use the dataflow mechanism for every step of a stateless computation. That is,

if an expression consists entirely of applications of lifted primitives, then its graph can be

replaced with a single node that projects the inputs once, performs the whole computation

under call-by-value, and lifts the result. I call this transformationlowering, since it removes

intermediate lifting steps. Lowering is conceptually similar to Wadler’s work on listless-

ness [99] and deforestation [100], which transform programs to eliminate intermediate list

and tree structures.

By moving computation from the dataflow model back into a call-by-value regime,

lowering eliminates the overhead of repeatedly transferring values between the upper and

lower layers. It also allows the use of the call stack to transfer control and data, which is

much more efficient than using the dataflow graph for the same purpose.

In the ̂distance example above, lowering can collapse the entire graph into asingle

node, yielding an order of magnitude improvement in both speed and memory usage. Sec-

tion 4.9 shows experimental results on substantial programs.

In general, programs use stateful signal-processing operations, which cannot be com-

bined directly with call-by-value code. The strategy presented here simply stops lowering

when it encounters a stateful operation. Since there is a fixed vocabulary of such operations

(e.g.,delay-by, integral), it may be possible to develop specific techniques for dealing with

them in the optimizer. For example, Nilsson’s work [73] onGADT-based optimization for

Yampa includes support for combining stateful operations.

54

(define ŝqrt (lift sqrt))
(define ŝqr (lift sqr))
(define+̂ (lift +))
(define−̂ (lift −))
(define ̂distance

(λ (x1 y1 x2 y2)
(ŝqrt (+̂ (ŝqr (−̂ x1 x2)))

(ŝqr (−̂ y1 y2)))))

Figure 4.3: Definition of the distance function with upper and lower layers made explicit.

4.1 Dipping and Lowering

I now introduce a new syntactic form calleddip. Dip is like lift andprojectin that it bridges

the two layers, but it does so in a different way.

Dip operates on two syntactic entities: a list of variables whose values are assumed to

be signals, and an expression which is assumed to be lower code. Dip expands into an

expression that, at runtime, projects the variables, evaluates the code, and lifts the resulting

value. In this waydip allows an entire subexpression of lower code to be embedded inside

a section of upper code; whereaslift operates on functions,dip operates on expressions.

(dip (x. . .) e) def
= ((lift (λ (x. . .) e)) x. . .)

Each time adip expression is evaluated, it adds a single node to the dataflowgraph that

depends on all the variables. Note that the list of variablesis a co-environment for thedip’s

body; it contains all the free variables to which the expression actually refers.

In order to optimize a whole program, the compiler dips as many subexpressions as

possible. Dipping a subexpression involves extracting itsset of free variables and replacing

the code with its lower counterpart. To perform this translation, the optimizer needs to

know thelower counterpartof each function it calls.

The lower counterpart of each lifted primitive is simply theoriginal (unlifted) primitive.

Initially, primitives are the only functions with known lower counterparts, but as the opti-

mizer processes the program, it generally discovers user-defined functions that also have

lower counterparts. A compound expression has a lower counterpart if its top-level oper-

ation is purely combinatorial and all of its subexpressionshave lower counterparts. The

55

upper code

(lift

(dip (x ...)

)

)
lower code

lower function

Figure 4.4: Allowed containment relationships for code.

lower function)(lift

lower function)(lift

lower function)(lift

lower function)(lift

upper code

Figure 4.5: Unoptimized FrTime code.

optimizer maintains an explicit mapping between functionsand their lower counterparts;

entries in this mapping are denoted by〈 ̂func, func〉.

Not all functions have lower counterparts. For example, thefunction ̂delay-by , which

time-shifts a signal’s value, needs to remember the historyof its changing input signal. It

cannot do anything useful if it is called afresh with each newvalue the signal takes. In

general, any function that depends on history has no meaningin the lower layer of constant

values. For expressions that involve such functions, it is critical that the optimizer not

erroneously dip them, as the resulting program would behaveincorrectly.

In the following sections, I will distinguish between lowering, whichreplacesan upper

expression with a corresponding lower expression, and dipping, which takes values from

the upper layer to the lower layer and back, with some computation in between. The

following summarizes the three varieties of code that result from these transformations:

Lower code consists entirely of pure Scheme expressions. All the functions it calls are

lower versions, so it cannot operate on time-varying values.

Upper code is standard FrTime. Each primitive operation constructs a dataflow node that

56

lower code

lower code

lower code

lower code

upper code

)

(dip (x y z ...)

Figure 4.6: Optimized FrTime code.

recomputes its value whenever its input values change.

Dipped code is observationally equivalent to upper code, but operates very differently.

Instead of producingmanydataflow nodes, each of which performsoneprimitive

operation, dipped code producesonedataflow node that evaluates a complex expres-

sion involvingmanyprimitive operations.

Figure 4.4 shows the allowed containment relationships forthese different varieties of code.

At the top-level, the program consists of upper code (assumethat it actually involves sig-

nals). This code can refer to lifted functions and dipped expressions, but not to bare lower

code. The lifts and dips wrap lower code with logic that protects it from time-varying

values. In contrast, lower code never contains upper code ofany form (including lifted

functions or dipped expressions), since it has no need to process signals. In essence, the

optimizer exploits the fact that upper and lower counterparts aretwin versions of the same

code; the lower version can be viewed as a special entry pointthat allows skipping over the

extra checking and wrapping needed by the more general upperversion.

Figures 4.5 and 4.6 illustrate the goal of optimization. Figure 4.5 represents unopti-

mized FrTime code. In it, the upper program refers to a large number of small fragments of

lifted2 code. In comparison, Figure 4.6 represents code of the sort that we would like the

optimizer to produce. The fragments of dipped code have beencombined into a small num-

ber of larger blocks, reducing the overhead associated withconstructing and maintaining a

signal for each atomic operation.

2Because the application of a lifted primitive yields the same result as dipping, everything could just be
expressed in terms ofdip. However, lifting is an established term within theFRP community, so I use it for
clarity.

57

4.2 The Lowering Algorithm

The optimization algorithm works by rewriting expressionsto semantically equivalent ex-

pressions that contain fewerdips, each of which contains a larger body of code. This

rewriting is an application of equational reasoning and is justified by the definition ofdip

and thelift/project identity.

The algorithm works in a bottom-up fashion. It begins with the leaves of the abstract

syntax (variables and constants) and proceeds to their parent expressions, their grandparent

expressions, and so on.

Formally, the algorithm is guided by a set of rewrite rules. Iwrite Γ ⊢ e (dip (~x) e′)

to indicate thate′ is the dipped version ofe, where the environmentΓ associates function

names with the names of their lower counterparts, and~x is the set of all signals on which the

value ofe may depend. For example, dipping of literalsc simply involves wrapping them

in a dip expression. Since the value of a literal is always a constant, its dipped equivalent

does not depend on anything:

⊢ c (dip () c)

The optimizer treats identifiers similarly, but since they may refer to signals, it includes

them in the list of dependencies:

⊢ id (dip (id) id)

For example, in the case of thêdistance function, the optimizer arrives at the identifiers

x1andx2and applies this rule, resulting in the following expression:

(define ̂distance

(λ (x1 y1 x2 y2)

(ŝqrt (+̂ (ŝqr (−̂ (dip (x1) x1)

(dip (x2) x2))))

(ŝqr (−̂ y1 y2)))))

The optimizer proceeds by combining dipped subexpressionsinto larger code frag-

ments. In the case of function applications, it computes theunion of the arguments’ depen-

dencies and replaces the lifted function with its lower counterpart:

58

〈̂f, f〉 ∈ Γ Γ ⊢ ei (dip (~xi) e′i)

Γ ⊢ (̂f ei . . .) (dip (~xi . . .) (f e′i . . .))

Continuing the ̂distance example, one application of this rule produces the following

result:

(define ̂distance

(λ (x1 y1 x2 y2)

(ŝqrt (+̂ (ŝqr (dip (x1 x2) (− x1 x2)))

(ŝqr (−̂ y1 y2))))))

Applying this rule once more produces:

(define ̂distance

(λ (x1 y1 x2 y2)

(ŝqrt (+̂ (dip (x1 x2) (sqr (− x1 x2)))

(ŝqr (−̂ y1 y2))))))

Next, the optimizer dips the second argument to+̂, which is transformed identically to

the left branch:

(define ̂distance

(λ (x1 y1 x2 y2)

(ŝqrt (+̂ (dip (x1 x2) (sqr (− x1 x2)))

(dip (y1 y2) (sqr (− y1 y2)))))))

Since dipping does not change the observable semantics of anexpression, it is safe

to stop optimizing at any time. In this case the bottom-up traversal will continue until

it reaches theλ, at which point it must stop because of subtleties involved with lambda

abstractions (explained below).

The final optimized result contains only a singledip expression, which means that when

evaluated, it creates only a single dataflow graph node instead of the six nodes required for

the original function. Figure 4.2 shows the final dataflow graph, along with some interme-

diate graphs. The final code is as follows:

(define ̂distance

(λ (x1 y1 x2 y2)

59

(dip (x1 x2 y1 y2)

(sqrt (+ (sqr (− x1 x2)))

(sqr (− y1 y2))))))

Though the above example does not contain anylet expressions, dipping them is also

straightforward. The newly-introduced binding (id) is excluded from the body’s depen-

dency list (~xe) because it is guaranteed to be subsumed by the bound value’sdependency

list (~xv).

Γ ⊢ v (dip (~xv) v′) Γ ⊢ e (dip (~xe) e′)

Γ ⊢ (let ((id v)) e) (dip (~xv ∪ (~xe \ id)) (let ((id v′)) e′))

The following subsections describe the details of optimizing the language’s remaining

syntactic forms.

4.3 Lambda Abstractions

Dipping aλ expression is somewhat subtle. For example, suppose the optimizer encounters

the following expression:

(λ (x) (+̂ x 3))

So far, it has dipped expressions by wrapping their lowered counterparts in thedip form.

If it does that here, the result is:

(dip () (λ (x) (+ x 3)))

This is clearly unsafe, because if the resulting closure were applied to a signal, the lowered

+ operator would cause a type error. To prevent such errors, itcan only dip thebody,

instead of the wholeλ expression. Then the result is:

(λ (x) (dip (x) (+ x 3)))

In general, the rule is as follows:

Γ ⊢ e (dip (~x) e′)

Γ ⊢ (λ (~v) e) (λ (~v) (dip (~x) e′))

60

If the optimizer never lowered function bodies, then it would be incapable of discov-

ering lower counterparts of user-defined functions. This would make the analysis purely

intraprocedural, greatly reducing the number of opportunities for optimization and there-

fore the utility of the technique.

The ability to achieve interprocedural optimization takesadvantage of the fact that adip

expression’s body is the original expression’s lower counterpart. Therefore, if the optimizer

successfully dips a function, then it knows the function’s lower counterpart. I writeΓ ⊢

e
λ
 (dip (~x) e′) to indicate not only thate′ is the dipped version ofe, but that in addition

e is aλ expression whose body can be lowered:

Γ ⊢ e (dip (~x) e′)

Γ ⊢ (λ (~v) e)
λ
 (dip (~x \ ~v) (λ (~v) e′))

References to variables bound by the lambda’s argument list are removed from the list

of dependencies, since in a lower context they cannot be signals.

When the λ
 transformation applies, the optimizer adds a top-level definition for the

lower counterpart of̂f , calledf , and remembers the association〈̂f, f〉:

Γ ∪ 〈̂f, f 〉 ⊢ e (dip (~x) e′)

Γ ∪ 〈̂f, f 〉 ⊢ e
λ
 (dip () e′′)

Γ ⊢ (define f̂ e) (begin (define f̂ (dip (~x) e′))

(define f e′′))

The above rule expands the scope of the optimization to include interprocedural opti-

mization. On the other hand, if a definition doesnot have a lower counterpart then only the

dipped version is defined:

Γ ⊢ e (dip (~x) e′)

Γ ∪ 〈̂f, f 〉 ⊢ e 6
λ
 (dip () e′′)

Γ ⊢ (define f̂ e) (define f̂ (dip (~x) e′))

If a program contains a sequence of definitions, each definition is dipped separately:

Γ ⊢ ei (dip (~xi) e′i)

Γ ⊢ (begin ei . . .) (dip (~xi . . .) (begin e′i . . .))

61

For concision and clarity, the above judgements do not describe the full mechanism for

interprocedural optimization. Adding this would be straightforward but would increase the

size of the judgements considerably.

4.4 Conditionals

The criterion for dippingif expressions is the same as for all other expression types: all of

their subexpressions must have lower counterparts. Moreover, the consequence is also the

same, namely that the resulting node depends on the union of the subexpressions’ depen-

dencies.

Γ ⊢ c (dip (~xc) c′)

Γ ⊢ t (dip (~xt) t′)

Γ ⊢ f (dip (~xf) f ′)

Γ ⊢ (if c t f) (dip (~xc ∪ ~xt ∪ ~xf) (if c′ t′ f ′))

Conditional evaluation in FrTime is relatively expensive, so dipping conditionals can

improve performance significantly. Moreover, dipping of conditionals is necessary in order

to define lower counterparts for recursive functions, whichmakes it possible to collapse a

potentially long chain of graph fragments into a single node.

4.5 Higher Order Functions

Higher order function applications, which evaluate a closure passed as an argument, cannot

be dipped using only the strategy defined in this paper. For example, consider the type of

m̂ap:

m̂ap : sig(sig(t) → sig(u)) × sig(list(t)) → sig(list(u))

m̂ap’s first argument is a signal, which can be called to produce another signal. That is,

the choice of which function to apply can change over time, ascan the result of applying

the function. Dipping only removes the first kind of time dependency, not the second. If

〈m̂ap,map〉 were a valid upper/lower pair, then the type ofmap would have to be:

map : (sig(t) → sig(u)) × list(t) → list(u)

62

Clearly this could cause a problem at runtime, since the actual map doesn’t support

functions that may produce signals. In order to avoid this problem, the optimizer never

associates a lower counterpart with a higher order function. For the built-in higher order

functions such aŝmap andâpply , it just omits them from its initial mapping. However, this

still leaves the question of higher order functions writtenby users.

The only way a user-defined function can be assigned a lower counterpart is if its body

can be completely lowered; no higher order function can satisfy this requirement, since

at some point it must call the procedural argument. Lexical scoping guarantees that the

function’s arguments will have fresh names, so the optimizer cannot possibly know of a

lower counterpart for the argument closure. Since the function makes a call with no known

lower counterpart, the body is not lowerable.

A static dataflow analysis could address this weakness by identifying closures that have

known lower counterparts. However, the need for such an extension has not yet arisen, and,

in any case, it is always safe to assume the absence of lower counterparts. It just means that

certain expressions cannot be optimized.

4.6 Inter-Module Optimization

DrScheme’s module framework makes it easy to write the optimizer in such a way that it

processes each module individually. An unfortunate consequence of this approach is that

the associations between user-defined functions and their lower counterparts is not shared

between modules. Unless the optimizer can recover these associations, it will lose many

opportunities for optimization. It will be unable to optimize any expression containing a

call to a function whose entry was forgotten, even if that call is in a deeply nested subex-

pression. For commonly used functions such as those that manipulate low-level data types,

this effect can cascade throughout much of the program.

In order to recover the lost associations, the FrTime optimizer uses a consistent nam-

ing convention to identify the lower counterpart of an upperfunction (Scheme doesn’t

understand the underline and overline annotations, so someamount of name mangling is

necessary in any case). Because of this naming convention, the optimizer can recover the

forgotten associations simply by inspecting a module’s list of exported identifiers. Thus it

can perform inter-module optimization.

63

⊢ c (dip () c) (CONST)

⊢ id (dip (id) id) (VAR)

〈̂f, f〉 ∈ Γ Γ ⊢ ei (dip (~xi) e′i)

Γ ⊢ (̂f ei . . .) (dip (~xi . . .) (f e′i . . .))
(APP)

Γ ⊢ v (dip (~xv) v′) Γ ⊢ e (dip (~xe) e′)

Γ ⊢ (let ((id v)) e) (dip (~xv ∪ (~xe \ id)) (let ((id v′)) e′))
(LET)

Γ ⊢ e (dip (~x) e′)

Γ ⊢ (λ (~v) e) (λ (~v) (dip (~x) e′))
(LAMBDA)

Γ ⊢ e (dip (~x) e′)

Γ ⊢ (λ (~v) e)
λ
 (dip (~x \ ~v) (λ (~v) e′))

(LAMBDA -BODY)

Γ ∪ 〈̂f, f 〉 ⊢ e (dip (~x) e′)

Γ ∪ 〈̂f, f 〉 ⊢ e
λ
 (dip () e′′)

Γ ⊢ (define f̂ e) (begin (define f̂ (dip (~x) e′))
(define f e′′))

(DEFINE-LOWER)

Γ ⊢ e (dip (~x) e′)

Γ ∪ 〈̂f, f 〉 ⊢ e 6
λ
 (dip () e′′)

Γ ⊢ (define f̂ e) (define f̂ (dip (~x) e′))
(DEFINE-NO-LOWER)

Γ ⊢ ei (dip (~xi) e′i)

Γ ⊢ (begin ei . . .) (dip (~xi . . .) (begin e′i . . .))
(BEGIN)

Γ ⊢ c (dip (~xc) c′)
Γ ⊢ t (dip (~xt) t′)
Γ ⊢ f (dip (~xf) f ′)

Γ ⊢ (if c t f) (dip (~xc ∪ ~xt ∪ ~xf) (if c′ t′ f ′))
(IF)

Figure 4.7: Complete description of the lowering transformation

64

The flexibility of this mechanism provides an additional usability benefit: the program-

mer can define hand-coded lower counterparts for functions the optimizer is not sophisti-

cated enough to lower automatically.

4.7 Macros

Since macros must be fully expanded before runtime, they canhave no time-varying seman-

tics. They are therefore easy to support; the optimizer simply expands all macros before

attempting to apply the lowering optimization.

4.8 Pathological Cases

In most cases, lowering reduces execution time and memory requirements, but there are

instances in which it can have the opposite effect. The reason is that lowering combines

several small fragments of code, each depending on a few signals, into a large block that

depends on many signals. For example, consider the following simple expression:

(expensive-operation(quotientmilliseconds 10000))

Thoughmilliseconds changes frequently, thequotientchanges relatively rarely. If run

under the standard FrTime evaluator, thequotientnode will stop propagation when its result

doesn’t change, thus short-circuiting the recomputation of the expensive-operationmost

of the time. However, in the “optimized” version, this wholecomputation (and perhaps

more) is combined into a single node, which must recomputein its entiretyeach time

milliseconds changes.

As discussed in Section 4.3, interprocedural optimizationrequires that the optimizer

produce two versions of each lowerable procedure definition: one that is merely dipped,

and one that is actually lowered. Lowering thus has the potential to double the size of a

program’s code. I have so far chosen not to worry about this because the optimized code

is static and, in most cases, accounts for a relatively smallfraction of a program’s overall

dynamic memory usage. However, for large programs, this maybecome a concern. In

particular, recent versions of DrScheme employ a just-in-time compiler, which generates

native code for each executed procedure body. Since native code occupies considerably

65

Count Needles S’sheet TexPict
Size (exprs) 7 62 2,663 13,022

Startorig (sec) 9.5 89.0 9.2 35.2
Startopt (sec) <0.1 35.3 11.8 28.9

Memorig (MB) 204.7 581.4 34.8 170.7
Memopt (MB) 0.2 240.5 50.9 119.4

Shrinkage (ratio) 971 2.4 0.7 1.4
Runorig (sec) 4.8 5.6 19.3 273.4
Runopt (sec) <0.1 2.0 20.5 3.5

Speedup (ratio) 16,000 2.8 0.94 78.1

Table 4.1: Experimental benchmark results for lowering optimization

more space than expression data structures, lowering has the potential to increase a pro-

gram’s memory usage significantly.

4.9 Evaluation

This section presents the impact of optimization on severalFrTime benchmarks. It also

contains a discussion of the optimizer’s impact on the usability of FrTime.

4.9.1 Performance

Four different benchmarks evaluate the effect of the optimization on the resource require-

ments of various programs. Other than the Count microbenchmark, none of these applica-

tions was written with lowering in mind, so the findings should be broadly representative.

Table 4.1 summarizes the performance results.3 Sizedenotes the program’s size mea-

sured by the number of expressions (“parentheses”). Theorig andopt subscripts denote the

original and optimized versions.Start is the initial graph construction time, whileRun is

reaction time, i.e., the time for a change to propagate through the graph. Times<0.1 are too

small to be measurable.Memdenotes memory footprint beyond that of DrScheme (which

is 72MB).Speedupdenotes the ratio between the unoptimized run-time and the optimized

run-time, andShrinkagedenotes the analogous ratio for memory usage.

3Measured on a Dell Latitude D610 with 2Ghz Pentium M processor and 1GB RAM, running Windows
XP Pro SP2 with SpeedStep disabled. The numbers are the mean over three runs from within DrScheme
version 360, restarting DrScheme each time.

66

The Count microbenchmark consists of a function that takes a number, recursively

decrements it until reaching zero, and then increments backup to the original number,

i.e., an extremely inefficient implementation of the identity function for natural numbers.

The purpose of the benchmark is to quantify the potential impact of lowering for code that

involves a large number of very simple operations (in this case only addition, subtraction,

comparison, and conditionals). The results are dramatic: for inputs around 600, the unopti-

mized version takes several seconds to start and then takes nearly five seconds to recompute

whenever the input value changes. In contrast, even for inputs in the hundreds of thousands,

the optimized version starts in a fraction of a second and updates even more quickly.

The Needles program (due to Robb Cutler) displays a60 × 60 grid of unit-length vec-

tors. Each vector rotates to point at the mouse cursor, and its color depends on its distance

from the mouse cursor. The main effect of optimization is to collapse the portions of the

dataflow graph that calculate each vector’s color and angle (these consist entirely of numer-

ical operations, which are an easy case for lowering). Sincethese constitute a significant

portion of the code, optimization has a significant effect. The optimized version runs nearly

three times faster and uses about half as much memory.

The Spreadsheet program implements a standard 2D spreadsheet. Formulas are eval-

uated by calling Scheme’s built-ineval procedure in the FrTime namespace. The startup

phase has several calculations for drawing the grid, setting the size of scroll-bars, etc.,

which are optimized. Somewhat surprisingly, the “optimized” spreadsheet requires more

time and space than the original version. This is indeed counterintuitive, if not disappoint-

ing. One reasonable explanation is that, because the spreadsheet was designed from the

beginning to run in FrTime, its dataflow graphs already work efficiently under the default

FrTime evaluator. Also, as explained in Section 4.8, there are known scenarios in which

lowering can make programs less efficient. In most cases thisinefficiency is more than

outweighed by the reduction in dataflow evaluation, but apparently not in this case.

TexPict is the image-compositing subsystem of Slideshow, whose unacceptable execu-

tion performance (under FrTime) motivated this work. As canbe seen from the experi-

mental results, lowering yields a speedup of almost two orders of magnitude. The result

is still significantly slower than a raw Scheme analog, but fast enough to make it usable

for many applications. This offers strong evidence in support of the hypothesis that large

67

dataflow graphs arising from implicit, fine-grained liftingcan lead to a significant slow-

down. Moreover, it demonstrates that lowering makes transparent reactivity feasible for

real legacy programs.

The TexPict benchmark is also interesting because it frequently uses higher order func-

tions. The fact that a first order analysis yields a dramatic improvement even in this case

indicates that the current approach is sufficient for a broadrange of applications, even those

that use higher order functions extensively.

4.9.2 Usability

In DrScheme, any collection of syntax and value definitions can be bundled into a module

that comprises a “language”. For example, the FrTime language is a set of lifted primitives,

along with special definitions for certain syntactic forms (e.g., conditionals). The optimized

language is defined similarly, except that it defines a syntaxtransformer for a whole FrTime

program. FrTime programmers enable optimization simply bychanging the module lan-

guage declaration fromfrtime tofrtime-opt. The optimizer will be shipped with the

next standard DrScheme release, so no additional installation or configuration is necessary.

Even though the FrTime optimizer works by performing a source-to-source transfor-

mation, it does not adversely affect the programmer’s ability to understand the original

program. In particular, the optimizer preserves source location information within the

transformed code, so the runtime system reports errors in terms of the original source

code [36, 44]. Furthermore, if optimization fails for some section of code (perhaps due

to the use an unsupported feature, or even due to a bug in the optimizer itself), the opti-

mizer will silently fall back to using the original code, andcontinue the optimization at the

next top-level definition.

Users can discover whether or not a particular piece of code was optimized by exam-

ining the fully expanded result; unoptimized code is preceded by a literal string explaining

what went wrong during optimization. On the other hand, codethat is optimized will stand

out because the names of upper functions will have been replaced with the mangled names

of their lower counterparts.

The overhead of the optimization pass is quadratic in the nesting depth of function defi-

nitions and linear in the size of the code base. This makes it practical to apply optimization

68

to large systems, such as the TexPict benchmark presented above. Furthermore, an opti-

mized module can be precompiled so that the overhead of static analysis does not need to

be repeated when the module is used later.

4.10 Future Directions

Achieving acceptable runtime performance in FrTime required the development of a novel

optimization technique calledlowering. This technique works by processing the source

program in a bottom-up fashion, recursively combining calls of lifted primitives into larger

dippedexpressions. This has the effect of shifting significant computation from the dataflow

mechanism back to the underlying (in this case) call-by-value evaluator. Though the analy-

sis is still unable to handle certain language features, such as higher order functions, experi-

mental results indicate that the technique can achieve a significant reduction in a program’s

time and space needs, making transparent reactivity a viable approach for realistic systems.

The notion of lowering applies outside ofFRP, for example to any monad [101] where

the lift operator distributes over function composition. Specifically, wherever(lift g) ◦

(lift f) ≡ lift (g ◦ f), andlift is expensive, it is beneficial to rewrite to reduce the num-

ber of lifts. Lowering may therefore be useful in general for languagesthat use monads

extensively. For example, the Glasgow Haskell Compiler [83]optimizes code by rewriting

expressions according to such identities.

One limitation of this technique is that if a subexpression has no lower counterpart,

then the enclosing expression cannot be lowered either. This limitation could be avoided

by hoisting the problematic subexpression out and storing its result in a temporary variable;

however, in a call-by-value language like Scheme, such a transform must take care not to

affect evaluation order. Translating to continuation-passing style would make evaluation

order easier to deal with, but would make it more difficult to identify dippable subexpres-

sions.

For languages that support runtime code generation, it would be possible to explicitly

build the dataflow graph first, and then collapse nodes into call-by-value subexpressions.

This approach would trivially support inter-procedural optimization, and would be able to

collapse arbitrary nodes in the dataflow graph, whether or not they contained unlowerable

subexpressions in the original program text. This approachwould depend on the ability of

69

the runtime environment to compile dynamically-generatedsubexpressions into efficient

code.

I anticipate the application of the lowering optimization to Flapjax. Since the language

provides transparent reactivity and employs a FrTime-likeevaluation model, I would expect

to see similar results.

Chapter 5

Implicitly Reactive Data Structures

The preceding chapters have discussed the core features andevaluation model of FrTime.

However, they have avoided one important issue that any practical language must address,

which is how to support structured data. This is a significantomission, since writing non-

trivial programs requires the ability to organize state into such structures. In this chapter,

I discuss the design problems that arise when attempting to add structured data types to a

language like FrTime, along with the solutions I have developed.

Since FrTime is an embedding in Scheme, the goal is to supportthe same kinds of

structures that Scheme provides. These include lists, trees, vectors, and user-defined record

types calledstructs. For example, Scheme provides the following primitives for manipu-

lating lists:

cons : any× list → list constructs a non-empty list with a given first element and list of

remaining elements.

cons? : any→ boolean determines whether a given value is a non-empty list.

first : list → any returns the first element of a non-empty list.

rest : list → list returns the rest of a non-empty list.

It also provides a mechanism for defining custom datatypes, such as aposn for storing

positions in 2-space:

(define-structposn(x y))

70

71

This expression results in the following collection of definitions:

make-posn : number× number → posn constructs aposnfrom two numbers.

posn? : any→ boolean determines whether a given value is aposn.

posn-x : posn→ number extracts thex-component of aposn.

posn-y : posn→ number extracts they-component of aposn.

In general, the interface to a Scheme data structure consists of three kinds of procedures:

constructors such asconsandmake-posn.

discriminators like cons?andposn?.

accessorslike first, rest, posn-x, andposn-y.

FrTime needs a way of letting all of these procedures work meaningfully in the presence of

behaviors. The rest of this chapter explores the issues involved in achieving this goal.

The first observation is that FrTime needs to lift any discriminators that it imports. If it

did not, then expressions like

(cons?(build-list (moduloseconds 3) add1))

or

(posn?(if (even?seconds)

(make-posn3 4)

0))

would not work as intended. In the first example, the (build-list . . .) expression evaluates to

a behavior whose value is sometimes acons. Thus, we should expect the whole expression

to evaluate to a behavior whose value is sometimestrue. However, at the level of Scheme,

behaviors are custom structures that are distinct from any other types (includingconses),

regardless of their current values. Thus, the value of the whole expression would be the

constantfalse, which is not very satisfying. The same problem would also arise in the

second expression.

Like discriminators, accessors cannot be imported directly into FrTime, or expressions

like

72

(posn-x(if (even?seconds)

(make-posn3 4)

(make-posn5 12)))

would fail with type errors.1

The situation for constructors is more complicated than fordiscriminators and acces-

sors. The reason for the complexity is that constructors, atleast in Scheme, are oblivious

to their arguments: they just blindly store them in structures. Thus, unlike other primi-

tives, constructors need not be lifted in order to prevent errors. For example, importing

make-posndirectly and evaluating

(make-posn(moduloseconds 100) 50)

yields aposnwhosex-component is a time-varying integer.

On the other hand, there is no obvious harm in lifting the constructor. In that case, the

above expression evaluates to a behavior whose value at eachpoint in time is aposnwith

anx-component equal to the current value ofseconds.

I call these two approaches respectively the use ofraw and lifted constructors. The

difference between them is quite subtle, and the rest of thischapter will explore the trade-

offs between the two approaches. With raw constructors, theabove evaluates to a structure

containing a behavior, while with lifted constructors it reduces to a behavior containing

a structure. Though these are not the same types, they support the same sets of opera-

tions, and so they are essentially interchangeable. For example, the result of the following

program is the same whethermake-posnis lifted or not.2

;; compute the Euclidean distance between two posns

(define(distance p1 p2)

(sqrt (+ (sqr (− (posn-x p1) (posn-x p2)))

(sqr (− (posn-y p1) (posn-y p2))))))

(distance(make-posn x1 y1) (make-posn x2 y2))

1It may appear that the accessors could simply be lifted like other primitives, but the situation is a bit more
subtle, as I will discuss later.

2However, the performance characteristics of the two approaches may differ, as Section 5.3.1 discusses.

73

5.1 An Application of Structured Data: Animation

Where the difference between raw and lifted constructors really becomes apparent is when

data structures are used as the medium for communicating with the world. To see this, it

is useful to consider a concrete application, for example a library for defining functional

animations. Since animations are time-varying images, a natural approach is to start with a

library for static images, then generalize it to support image behaviors.

A functional image library allows a program to manipulate images as objects, without

calling imperative drawing procedures. The application program builds a data structure

representing an image, and the library implicitly performsthe side-effecting operations

required to display it.

In Scheme, the following imperative drawing procedures areavailable:

(open-viewport title width height) opens a new window with the given width, height, and

title, returning aviewportobject.

(clear-viewport viewport) clears the contents of a given viewport.

(make-rgb r g b) constructs anrgb color structure with the given red, green, and blue

components (as real numbers in[0, 1]).

(draw-solid-ellipse viewport top-left width height color) draws a solid ellipse of the given

width, height, and color, such that the upper left corner of its bounding box is attop-

left.

(draw-solid-rectangle viewport top-left width height color) is analogous todraw-solid-

ellipse.

To make a functional image library, I define a set of data structures that capture the types

and parameters of the shapes that can be drawn:

(define-structellipse(center width height color))

(define-struct rectangle(top-left width height color))

Thus, an image consists of an ellipse, a rectangle, or a collection (i.e., a list) of other images.

The library defines a mechanism for drawing the images represented by these data

structures:

74

(define(show! image title width height)

(render! image(open-viewport title width height)))

(define(render! scene viewport)

(clear-viewport viewport) ; start with a clean canvas

(draw! viewport scene))

(define(draw! scene viewport)

(match scene

[($ ellipse($ posn x y) width height color)

(draw-solid-ellipse viewport

(make-posn(− x (/ width 2)) (− y (/ height2))) width height color)]

[($ rectangle top-left width height color)

(draw-solid-rectangle viewport top-left width height color)]

[scenes(for-each(λ (scene) (draw! scene viewport)) scenes)]))

So, for example,

(show!(list (make-ellipse(make-posn100 200) 40 30 (make-rgb0 0 1))

(make-rectangle(make-posn200 100) 20 15 (make-rgb1 0 0))))

opens a new window and draws a blue ellipse and a red rectanglein it.

The next step is to allow a FrTime program to use a behavior anywhere the correspond-

ing Scheme program would use a constant, and to have the resulting program exhibit the

expected reactivity. For example, one might want to make theellipse move back and forth

on the screen, or the color of the rectangle pulsate. According to FrTime’s principle of

transparent reactivity, one ought to be able to produce suchan animation by writing some-

thing like the following:

(definecycle(modulo(quotientmilliseconds 10) 100))

(defineoscillate(/ (+ 1.0 (sin (/ milliseconds 300))) 2.0))

(show!(list (make-ellipse(make-posn cycle200) 40 30 (make-rgb0 0 1))

(make-rectangle(make-posn200 100) 20 15 (make-rgb oscillate0 0))))

75

5.2 Reactivity with Raw Constructors

If the constructors are imported raw from Scheme, then running this program will result in

an error, not an animation. The reason is as follows. The argument toshow! is an ordinary

Scheme list containing ordinaryellipseandrectanglestructures, each of which contains an

ordinaryposnandrgb structure. In the case of the ellipse, theposncontains a behavior, and

in that of the rectangle, thergb contains a behavior. Whenshow! calls render! to display

the image, it determines that its argument is a list and maps itself over the elements. In the

recursive call, the first argument is theellipse, so render! calls draw-solid-ellipseon the

posnwith a time-varyingx-component. The underlying Scheme implementation requires

that the fields of theposnbe ordinary numbers, not behaviors, so it raises a type error.

The preceding example illustrates one key point: the language must not allow behaviors

to flow to raw Scheme code. Any values that do flow to Scheme codemust therefore be

projected. One way to do so is to applyvalue-nowto all such values. For example, we

could rewrite the drawing procedure as follows:

(define(draw! scene viewport)

(match scene

[($ ellipse($ posn x y) width height($ rgb r g b))

(let ([x (value-now x)] [y (value-now y)]

[width (value-now width)] [height(value-now height)]

[r (value-now r) [g (value-now g)] [b (value-now b)]])

(draw-solid-ellipse

viewport

(make-posn(− x (/ width 2)) (− y (/ height2)))

width height(make-rgb r g b)))]

;; — other cases adapted similarly —

Now an ellipse with a time-varying center is no problem, since thedraw! procedure projects

everything to a constant before calling the low-level drawing procedure. Unfortunately, this

also means that there is no animation, since projecting the current value of the behaviors

eliminates their reactivity.

Interestingly, if we were willing to employ a polling-basedstrategy here, then this ap-

proach would be viable. In that case, we could just re-execute the call torender!at a regular

76

interval, which would repeatedly draw the image in its current state. Unfortunately, polling

would mean, on the one hand, recomputing values even when they haven’t changed, and

on the other, possibly failing to render states if values change faster than the polling rate.

Therefore, we reject the use of polling, so we need to find a wayof making push-driven

recomputation work.

5.2.1 Choosing the Granularity of Lifting

Lifting is the obvious technique for adapting Scheme code toreact to changes in behaviors.

For example, by lifting the drawing procedures (e.g.,draw-solid-ellipse), we protect them

from behaviors without neutralizing their reactivity. In fact, by lifting them, we also ensure

that shapes will be redrawn whenever any of their propertieschanged.

Unfortunately, lifting the individual drawing proceduresdoes not achieve the desired

effect. Each time a shape’s property changes, that shape is drawn again. However, drawing

is a side-effecting operation, so maintaining a graphical rendering of a shape is not as

simple as redrawing it every time it changes. In general, theeffects of drawing the shape’s

previous state must also be undone. (Otherwise, the result is a trail of old shapes.)

The preceding paragraph emphasizes an important point about the use of lifting to com-

municate the state of a dataflow program to an external system. Since such communication

necessarily involves side effects, the granularity of the lifted procedures must be carefully

chosen so that the side effects from their repeated evaluation always leave the world in a

consistent and desirable state.

In the case of animation, lifting must encompass at least therender!procedure:render!

begins by clearing the canvas, which is an easy way of undoingall side effects from the

previous rendering. The other option would be to keep track somehow of the previous

state of the shape and try to undo only the effects from drawing it. However, this would

be significantly more complicated than just clearing the canvas, especially in the face of

overlapping shapes, and would offer little advantage.

If we lift at a higher level thanrender!) (say show!), then we stil get a consistent

rendering of the shape each time it changes, but we also get something else that we probably

don’t want—a new window for each image. Hence the result is not so much an animation

as a filmstrip, which is a less intuitive user interface, not to mention a significant leak of

77

(define(deep-project struct/bhvr)
(cond

[(behavior? struct/bhvr)
(deep-project(behavior-value struct/bhvr))]

[(cons? struct/bhvr)
(cons(deep-project(first struct/bhvr))

(deep-project(rest struct/bhvr)))]
. . .
[elsestruct/bhvr]))

Figure 5.1: A deep projection procedure

system resources.

Thus, the only reasonable level at which to lift drawing codeis therender! procedure.

However, if we just liftrender!, it won’t actually solve the problem described above. Since

the constructors aren’t lifted, the argument torender!may contain behaviors without being

a behavior itself.

5.2.2 Deep Lifting

What we need forrender! is a mechanism akin to lifting, except that it

1. reacts to changes nested arbitrarily deep within its argument, and

2. projects the current values of any behaviors within the argument.

The second of these requirements, computing what I calldeep projections, is straightfor-

ward. Figure 5.1 shows the essence of the implementation. Itmainly involves walking

and copying each node of the structure, projecting the current value of each behavior en-

countered, and recurring on its contents. In FrTime, the actual implementation also uses a

table to prevent infinite loops when projecting cyclic data,along with special logic to avoid

returning copies of substructures that don’t contain any behaviors.

Reacting to changes that occur within a structure is a bit morecomplicated. In particu-

lar, since the program’s dataflow graph can change dynamically, there is not necessarily a

fixed set of signals that need to be watched. Figure 5.2 shows the heart of the implementa-

tion of this operation, which I calldeep-lifting. Before callingproc, the update procedure

78

(define(all-nested-behaviors struct/bhvr known-bhvrs)
(cond

[(memq struct/bhvr known-bhvrs)
known-bhvrs]

[(behavior? struct/bhvr)
(all-nested-behaviors(behavior-value struct/bhvr)

(cons struct/bhvr known-bhvrs))]
[(cons? struct/bhvr)
(let ([bhvrs(all-nested-behaviors(first struct/bhvr)

known-bhvrs)])
(all-nested-behaviors(rest struct/bhvr) bhvrs))]

. . .
[elseknown-bhvrs]))

(define(deep-lift proc)
(λ (struct/bhvr)

(rec result
(new-behavior

(λ ()
(let ([bhvrs(all-nested-behaviors struct/bhvrempty)])

;; ensure the dataflow graph reflects this behavior’s
;; dependence on each of the nested behaviors

;; if depth has changed, reschedule this behavior
;; for a later update and escape
. . .)

(proc (deep-project struct/bhvr))) . . .))))

Figure 5.2: Deep lifting

traverses the argument structure completely to find all of the behaviors it currently contains,

then ensures that the dataflow graph reflects dependencies onall of these behaviors. The

implementation ofall-nested-behaviorsis also shown in Figure 5.2.

There is a somewhat subtle point about this step: ifresult now depends on something

new, then it may not be safe to continue processing right away. In particular, in some

cases the new behavior may not have been updated yet, so calling proc would result in

an inconsistent result (i.e., a glitch). In such cases it is necessary to abort the current

update operation and reschedule according to the new topology of the dataflow graph. This

rescheduling could occur several times within an update cycle (if updating the new behavior

79

results in further changes to the graph’s topology). Whenresult’s height in the graph stops

increasing, it is safe to proceed by callingproc on a deep projection of the argument,

struct/bhvr.

The deep-liftoperator provides precisely the varied notion of lifting that is needed to

turn render! into an animator.

5.3 Reactivity with Lifted Constructors

The preceding section describes a strategy for using data structures built with raw construc-

tors. Although this strategy works, it involves quite a bit of complexity, including primarily

the definition of a deep-lifting operator, several aspects of which are fairly subtle.

In fact, we can avoid all of this complexity simply by liftingconstructors. Returning

to the animation example, if we lift all of the constructors (i.e., make-posn, make-rgb,

make-ellipse, andcons), then we can just liftrender!, and it will produce animations. In

particular, becausemake-posnis lifted andcycleis a behavior,

(make-posn cycle200)

produces a behavior. Thus, sincemake-ellipseis lifted,

(make-ellipse(make-posn cycle200) . . .)

produces another behavior. Likewise, becausemake-rgbis lifted andoscillateis a behavior,

(make-rgb oscillate0 0)

creates a behavior, and so on formake-rectangleandlist. Whenever eithercycleor oscillate

changes, the chain of behaviors causes it to propagate all the way to the top-level image list.

Finally, show!creates a window and delegates torender! to perform the drawing. Because

render! is lifted, any change in the image list causes it to re-execute, clearing the screen

and rendering a fresh snapshot of the image’s current state.Thus, by lifting constructors,

we obtain a simple mechanism for transforming a static renderer into an animator.

5.3.1 Consequences of Lifted Constructors

Figure 5.3 illustrates how lifted constructors cause behaviors to spread to any structures

that (transitively) contain them. This propagation of behaviors is what makes lifting so

80

Figure 5.3: Use of lifted constructors

convenient. However, it also incurs a cost.

Creating a behavior is a relatively heavy-weight operation,involving allocation of a

structure, a closure, lists of references to other behaviors, and various other sorts of book-

keeping information. When a lifted constructor is used to make a structure, a change in any

of the structure’s fields results in the re-evaluation of theconstructor and hence the alloca-

tion of fresh storage for its new state. In most cases, the program has no need for the old

structure, so it just becomes garbage. If the program uses many time-varying structures, or

even just a few that change rapidly, then the effect on garbage-collection pressure, and on

performance in general, can be significant.

For comparison, the use of a raw constructor incurs no overhead whatsoever: each

call to a constructor allocates a single data object, exactly as it would in Scheme. Raw

constructors do not propagate behaviors, so they eliminateall of the costs associated with

creating and updating behaviors.

While constructors are responsible for significant overhead, accessors are also problem-

atic. Because a behavior only exposes its current value and the fact that it is time-varying,3

3It would be possible to modify the language to support such introspective capabilities, possibly enabling
better dynamic optimization. However, exploring such an avenue is beyond the scope of this paper and, in

81

Figure 5.4: Creation of additional behaviors by lifted accessors

an accessor (e.g.,first) cannot distinguish between the following two behaviors (whose

current values are always the same):

(cons(moduloseconds 2) empty)

(if (even?seconds)

(cons0 empty)

(cons1 empty))

Thus, even in the first case,first cannot magically return the original (moduloseconds

2) behavior; it must create a new behavior whose value is computed by selecting the first

element of its argument’s current value.

Because lifted accessors construct new behaviors, a lifted accessor cannot traverse a

structure in the traditional sense. Instead of deconstructing the time-varying structure itself,

it builds additional behaviors that traverse projections of the time-varying structure. In

Figure 5.4, we see a particularly pathological manifestation of this phenomenon: the tail

any case, not necessary to achieve the linguistic goals we seek here.

82

Figure 5.5: Loss of intensional equality from lifted constructors

of the list was originally a constant, but because there’s a behavior at the front, code that

traverses it perceives everything as a behavior, even though most of the values are actually

constants.

In general, the combination of lifted constructors and accessors results in the conflation

of reactivity from different sources. As mentioned previously, every time the value ofany

field in a structure changes, a new structure is created. Then, everyaccessor applied to the

structure perceives the change in the structure and must recompute its result.

While all of these extra behaviors and updates result in some inefficiency, there are also

semantic consequences of using lifted constructors. Most notably, with raw constructors,

(posn-x(make-posn x y)) actually evaluates tox. However, with lifted constructors, it re-

sults in a new behavior whosecurrent valueis always the same asx’s. In other words,

raw constructors preserve intensional equality across storage in data structures, but lifted

constructors respect only extensional equality. Figure 5.5 illustrates the problem: the be-

haviors connected by thick arrows are extensionally equal,but without lifted constructors

they would be the same physical value (and therefore intensionally equal).

83

Substituting extensional for intensional equality essentially means replacing a constant

with a behavior whose value never changes. We know that the constant cannot change,

but all we know about the behavior is that whenever we’ve happened to look at it, it’s

had the same value. We can’t be sure that it won’t change in thenext time step, or that

it if we were able to sample it at a finer interval, we wouldn’t notice it changing back

and forth to some other value very rapidly. In many applications, such as animations,

extensional equality is sufficient; the program can sample things faster (and for longer) than

a human can perceive (and endure), so from the user’s perspective there is no difference.

However, it is important in general because of the temporal nature of FrTime values. Time

is conceptually continuous and infinite, while the program’s execution is a discrete, finite

approximation.

This distinction becomes important for programs that manipulate collections of behav-

iors. For instance, recall the simple program described above for rendering collections of

time-varying points. Suppose that we wished to extend this to allow a user to manipulate

the points, perhaps by clicking and dragging to create, move, and delete points. A natural

representation for the state of such a program is a time-varying list of time-varyingposns.

Attempting to model such a program with lifted constructorsis awkward. Because lifted

constructors bring all reactivity to the top level, the state can only be a time-varying list of

posns. That is, the reactivity of each point is conflated with thatof each other, and with that

of the list itself. Hence the program can only operate meaningfully on the state as a whole.

The state must then be a single, monolithic entity, which is processed by a single set of

top-level event-handling procedures. Ultimately, such a design is non-modular, unnatural

to implement, and difficult to maintain.

While raw constructors lead to various complications, they can all be addressed through

deep lifting. In contrast, the drawbacks of lifted constructors cannot be remedied through

any means. I therefore conclude that, despite the attractive simplicity that lifted construc-

tors bring in the common case, raw constructors are ultimately the only viable approach.

5.4 Improvements to Deep Lifting

Deep lifting eliminates the large dataflow graphs that lifting would otherwise create to

mirror large data structures in the program. Thus it drastically reduces the overhead of

84

(define(draw-point/proj p)
(let ([p (value-now posn)])

(draw-point drawing-window
(make-posn(posn-x p) (posn-y p)))))

(define(for-each/proj proc lst)
(let ([lst (value-now lst)])

(when (cons? lst)
(proc (first lst))
(for-each/proj proc(rest lst)))))

(define(render/proj list-of-points)
(clear drawing-window)
(for-each/proj(λ (p)

(draw-point/proj drawing-window p))
list-of-points))

Figure 5.6: Interleaving projection with traversal

propagating changes through the dataflow graph. It could be characterized as a dynamic,

constructor-specific analog of theloweringoptimization described in Chapter 4.

However, there are still problems with deep lifting. In particular, it still incurs signif-

icant overhead in the form of allocation. Every time a changeoccurs anywhere within

a large structure, it constructs a fresh deep snapshot of thestructure. In some cases this

can actually be worse than using lifted constructors, whichonly force reconstruction along

paths from changed nodes to the root.

One way to avoid so much deep projection is to make external interface procedures

project behaviors as they encounter them. For example, instead of using the version ofren-

der from above, which assumes that its arguments are constants,we could write a version

that expects to find behaviors and projects the value of each one it encounters.

Such an implementation is shown in Figure 5.6. The basic ideais that, before applying

any primitive operation to a value, we wrap it in a call tovalue-now. If the value is a

constant, thenvalue-nowhas no effect, and if it’s a behavior, it projects its currentvalue.

Either way, there is no allocation, and it is safe to proceed with the resulting value.

The one exception is when calling a library procedure that operates on structured data.

85

For example, ifdraw-pointconsumes aposncontaining a behavior, a type error will re-

sult. In Figure 5.6,render/projconstructs a newposnwith projections of the original’s

fields. This prevents the type error but brings us back to the original problem of doing extra

allocation each time something changes.

There are a couple of options available for eliminating thislast bit of allocation:

1. Find a lower-level drawing procedure that operates on plain integers, and wrap that

instead.

2. Assumingdraw-pointis never called recursively, or from more than thread at a time,

allocate a singleposnstructure and set its fields imperatively before callingdraw-

point.

Once we’ve written our interface procedures in this style, we can write a refined version

of deep lifting, called something likedeep-lift/no-project. This would be identical todeep-

lift , except that instead of callingdeep-projecton the argument before passing it toproc, it

would callprocdirectly on the argument.

This approach, which we callincremental projection, can eliminate most if not all of

the allocation due to deep-projection. The effect is analogous to what listlessness [99] and

deforestation [100] achieve.

As Figure 5.6 shows, making each operation callvalue-nowon its argument would be

a tedious task to perform by hand. Fortunately, this task canbe performed mechanically.

(Sincevalue-nowis idempotent, one easy but safe approach is simply to wrap itaround

every argument to every function call.) Scheme provides a macro system for defining

syntactic abstractions, which we can use to perform such a transformation automatically.

One thing that is still unsatisfying about this solution is that it involves traversing the

structure twice: once to detect changes in its topology, andanother time to process its

current value. An worthwhile question is whether we can merge these two traversals into

one. This certainly sounds plausible, but unfortunately itis more subtle than it seems.

As described above in the context of definingdeep-lift, if the structure’s shape changes,

then it may contain new of behaviors, and it cannot be processed safely until all of them

have been updated. This means that the signal that processesthe structure must update its

dependencies to reflect the new set of behaviors. If it now depends on something at its level

or higher, then we must delay evaluation or risk the occurrence of a glitch.

86

However, if we interleave the two steps of processing, then we discover the potential

inconsistency after we have already processed some of the structure. If we abort and retry

later, then we need to be sure that we won’t put the system in aninconsistent state by

performing destructive side beffects more than once. Fortunately, experience indicates that

FrTime’s external interface procedures (at least for libraries like graphics and user interface

widgets) are idempotent, so it is safe to abort part way through a traversal and later restart

from the beginning. The only potential problem with this approach is performance: in the-

ory, an adversarially chosen program could cause FrTime to perform the traversal a number

of times linear in the size of the structure. Since each traversal also takes linear time, the

time taken to achieve a full, successful traversal could become quadratic. It’s not clear

whether this possibility is a serious cause for concern, butit does suggest that the language

should take care only to abort the traversal when there is a real risk of inconsistency.

Another way to work around this problem is to treat all external interface behaviors spe-

cially and force their heights to be greater than those of anyordinary signals. For example,

we could simply assign them a height ofinfinity. The disadvantage is that, if we needed

to impose ordering constraints among these signals, such a strategy would make that more

difficult. We have not yet determined which is the better tradeoff.

5.4.1 Defining theApply Operator

The preceding discussion assumed that Scheme primitives operate only on flat values, not

structured data, so all primitives can simply be lifted. Unfortunately, there is an important

exception to this rule: Scheme’sapply operator allows (some suffix of) the arguments to

a function to be packaged up in a list. In order to support fulltransparency, FrTime needs

to provide a version ofapply that works with any list-like value that FrTime might pass

to it (e.g., lists of behaviors, behaviors whose values are lists, and even nestings of these).

Doing so sensibly turns out to be somewhat subtle, although much of the machinery we’ve

developed so far is reusable.

First, consider what happens if we try to use a rawapply. Sincecons is not lifted,

this works correctly for simple lists of behaviors. For example, there is no problem with

something like:

(apply+ 2 3 (list 5 (moduloseconds 7) 11))

87

Here,applyconsumes the list of arguments and calls (lifted)+ on its elements. However,

rawapplyfails on behaviors whose values are lists. For example, in

(apply+ (if (even?seconds) (list 1 2) (list 3 4 5)))

apply is expecting a list but receives a behavior, which results ina type error. If we instead

use a liftedapply, then it will work correctly in the above cases: in the first case, its argu-

ments appear constant, so it behaves like the rawapply, and in the second case, it calls the

+ operator afresh each time the argument list changes.

Unfortunately, simple lifting ofapplydoesn’t work in general. For example, consider

the following expression:

(apply+ (if (even?seconds)

(list (modulomilliseconds 1000) 2)

(list 3 4 5)))

In this case,apply’s argument is a behavior whose current value is sometimes a list con-

taining another behavior. This means that the result of applying + to the current list of

arguments may result in a behavior. Thus, in order for its result to reflect the correct value,

applyneeds to use aswitchto react to changes in its argument list and track the changesin

the current result.

However, even with switching there are some problems. For example, in

(apply+ (cons1 (if (even?seconds)

(list 1 2 3)

(list 4 5))))

the argument list starts with an ordinaryconscell, but its tail is a behavior, which causes a

type error inapplyas it traverses the list looking for arguments. In order to work properly,

such nested reactivity needs to be raised to the top-level beforeapplyswitches over it.

This strategy is almost correct, but it can have undesirableconsequences when the

applied function is not primitive. For example, consider:

(apply(λ (x y z)

(+ (delay-by x y) z))

(list seconds 200 1))

88

If we raise the reactivity ofsecondsto the top-level, then each timesecondschanges, the

argument list will change, causingapply to call the function again, which wipes out the

state of thedelay-byoperator. To avoid unnecessary switching like this, we onlywant to

raise reactivity that affects thestructureof the argument list, not the elements themselves.

To achieve this, we use a modified implementation of thedeep liftingoperation described

earlier in this section, which ignores behaviors in thefirst field of eachconscell, only

paying attention to behaviors in therestfield.

Of course, if the structure of the list changes, it still causes the function to be re-applied

afresh, resulting in a loss of state for operators likedelay-byand integral. Unfortunately,

there is no way to solve this problem without making modifications to the language.

5.5 The Efficiency of Traversal

Using raw constructors eliminates the ttop-down spread of behaviors which, by reducing

the total number of behaviors, also reduces amount of top-down propagation. However, it’s

still possible to have top-down propagation, since structure behaviors can exist even in the

absence of lifted constructors. For example, in

(definey

(if (even?(quotientseconds 10))

(consseconds empty)

(cons3 (cons4 empty)))

y becomes bound to a behavior whose value is a list of (sometimes time-varying) numbers.

This means there can still be some spread of behaviors due to the use of accessors.

Note that we can now have ordinaryconscells that contain behaviors. This means that

if we just lift accessors, then (first y) evaluates to a behavior whose value is sometimes

another behavior (whose value is equal to that ofseconds). Having behaviors nested inside

each other violates a key invariant of FrTime, so it is preferable to make the accessors more

sophisticated instead. Fortunately, this is easy to do. We just put aswitch inside them so

they can merge the two sources of reactivity into one. Then (first y) returns a behavior

whose value is always just a number.

However, a problem becomes apparent when we evaluate a program like the following:

89

(map sqr(if (even?seconds)

(build-list 1000 identity)

(build-list 2000 add1))))

wheremapmight be loosely defined as

(define(map f lst)

(if (cons? lst)

(cons(f (first lst)) (map f (rest lst)))

empty))

The first subexpression to be evaluated is (cons? lst). Sincelst is a behavior, the result

is a boolean behavior (which will always betrue), so theif expression evaluates to a switch

and selects the first branch for evaluation. The branch evaluates (first lst), which results in

another switch, then passes the result tosqr, which creates yet another behavior. The next

step is to callmaprecursively on (rest lst), which is yet another switch. The recursive call

proceeds in a manner analogous to the top-level call. In particular, it constructs another

switch for the conditional expression, and the branch constructs aconswhoserest is com-

puted by another recursive call on a behavior, and so on. By thetime it has finished, the

program has constructed 3000 switch nodes and 1000 other behaviors for the list elements.

After construction, each of these 4000 nodes must be updated.

Whensecondschanges from even to odd, the dataflow graph is extended to accommo-

date the longer input list. This requires repeating all of the work described above, including

the creation of another 3000 switches and 1000 other behaviors, as well as updating each

of the 8000 nodes in the overall graph. Whensecondschanges from odd to even, the 4000

nodes comprising the latter half of the list need to be destroyed (and disconnected from the

graph), and changes propagated through the other 4000 nodes. Both operations are very

expensive and, over time, result in the creation of large amounts of garbage.

In fact, there are only two lists, each with a static structure (and static content), and a

single conditional that switches between them. Thus nearlyall of the work described above

is unnecessary. If we instead write:

(if (even?seconds)

(map sqr(build-list 1000 identity))

(map sqr(build-list 2000 add1)))

90

the result is the same as above, but it is computed in a very different way. In particular,

neither branch refers to any behaviors, so eachmapcall executes like ordinary Scheme

code (very quickly, without creating any behaviors at all).

The inefficiency comes about becausemapuses a conditional to test the type oflst and

select the corresponding branch. This is problematic because conditionals are oblivious

to their test expressions, so the knowledge the test extracts about the input’s current value

is not available in the branch. The branch must therefore apply accessors tolst, building

additional switches that repeat work already done in the test. Essentially, the problem is

one of computational leakage [60].

There’s no way we can change the definitions ofcons?, first, and rest to eliminate

the inefficiency; the problem arises from the fact that we usethem at all. The solution

is to combine all of these operations, including conditionals, into a single abstraction that

encapsulates the desired pattern without leaking computation. That abstraction is pattern-

matching. For example, in the case of lists, we would providea match-list construct, with

which we could rewritemapas follows:

(define(map f lst)

(match-list lst

(cons(a d) (cons(f a) (map f d)))

(empty () empty)))

This is vaguely similar to the above definition, but it means something subtly different.

Now, each timelst changes, the switch discards its entire old branch and evaluates a new

one according to whetherlst is empty or a cons. Since it restarts the branch each timelst

changes, the branch can be evaluated witha andd bound to thecurrent contents oflst,

which in this case are constants. From this point on, evaluation proceeds as in ordinary

Scheme (like the transformed example above). In general, using this approach instead of

conditionals and accessors results in the creation of one switch per switch in the input, as

opposed to several switches for each node encountered belowthe first switch in the input.

It is worth noting that one can contrive examples in which thesemantics of these two

approaches differ. These essentially involve programs like the following:

(let ([lst (if (even?seconds)

(cons1 empty)

91

(cons−1 (cons0 empty)))])

(+ (integral (first lst)) (length(rest lst))))

which we might try to rewrite usingmatch-list as follows:

(match-list (if (even?seconds)

(cons1 empty)

(cons−1 (cons0 empty)))

(cons(a d) (+ (integral a) (length d)))

(empty () 0))

The key thing is that the list is never empty, and its first element is alwaysseconds.

Thus, in the first version, the call tointegral is evaluated only once and accumulates state

until it is no longer needed. In the second version, each change to secondscauses the

conscase to be re-evaluated afresh, restarting theintegral and losing whatever state it had

accumulated previously.

While this difference in semantics ofmatch-list is perhaps a bit disturbing, we argue

that the drastic performance increase that it enables more than outweighs any minor loss in

expressiveness. For purposes of transparency, FrTime needs to continue supporting condi-

tionals and accessors anyway, so it just provides thematch-list construct as well, offering

more attractive performance properties for those willing to rewrite list-processing proce-

dures in terms of it.

5.6 Performance Evaluation

This section presents experimental measurements of the relative performance of the strate-

gies discussed above for dealing with structured data.

Table 5.1 presents the results of a microbenchmark involving the construction and up-

date of various constant-length lists, each of whose last element is time-varying. The lists

have length 50, 100, and 200. Each measured value is the amount of time in milliseconds

required to perform 1000 FrTime update cycles (an average over ten runs, with the standard

deviation following in parentheses).4 Thebaselineinvolves simply incrementing the value

4The experiments were run in DrScheme 3.99.0.13 on a MacBook Pro with 2.0GHz Intel Core Duo
processor and 1GB of RAM.

92

of a behavior in each cycle (no list).

Theraw times are for lists built with rawcons; since raw constructors do not propagate

changes, these are expected to be very close to the baseline (independent of list length).

The experimental values agree with this prediction.

The lifted times are for lists built with liftedcons, which does propagate changes.

Therefore, these times should increase with list length, which is again what the experi-

ments show. TheLifted - rawnumbers show the overhead of lifting, which grows nearly

linearly with list length.

Thedeep-liftedtimes are for lists built with raw constructors whose reactivity is then

deep-lifted to the top-level in a single step. These exhibitthe same allocation overhead as

lifting, but not the propagation overhead, since all of the propagation occurs in one update.

The Deep-lifted - rawnumbers show the overhead of raising, which also grows with list

length, albeit considerably more slowly than the lifting overhead (as expected). In general,

raising appears to outperform lifting by 35 to 45%.

Of course, the point of deep-lifting is to provide a more efficient implementation of

lifting that works at the interface between FrTime and the world. To get a realistic mea-

surement of the improvement, we also need to account for the cost of traversing and pro-

cessing the data structures. TheLift/traverse(Deep-lift/traverse) measurements show the

times taken to traverse and compute the sums of the elements in the lifted (deep-lifted) lists.

Raising is still faster (as expected), but only by 15 to 25%.

Finally, theIncrementalmeasurements show the times taken for incremental projection

and processing of raw lists, which avoids the need for raising. This eliminates the allocation

overhead from the raising strategy (which already eliminates the allocation overhead from

lifting). This results in an additional 40 to 50% savings over raising, making the overall

time more than twice as fast as the lifting-based approach.

Table 5.2 shows the performance of two animation applications. Needlesanimates a

field of vectors that aim at a given time-varying point. In this experiment, the grid contains

676 vectors, arranged in a 26× 26 grid. The measurements include the times (again in

milliseconds) to start up and to update, using both raw and lifted constructors. The startup

time for raw constructors is about twice as long as for liftedconstructors, but updates occur

about 15% faster, and after only about 20 updates the raw version overtakes the lifted one.

One reason that raw constructors only improve performance by about 15% is that the cost

93

Type\ Size 50 100 200
avg (dev) avg (dev) avg (dev)

Raw 52.1 (3.5) 54.2 (3.2) 55.2 (5.0)
Lifted 191.1 (17.8) 317.9 (22.5) 610.1 (20.3)

(Lifted - raw) 139.0 - 263.7 - 554.9 -
Raised 110.5 (30.7) 173.1 (15.6) 396.9 (25.8)

(Raised - raw) 58.4 - 118.9 - 341.7 -
Raised vs. lifted 42.2% - 45.5% - 34.9% -

Lift/traverse 403.3 (31.2) 703.8 (14.6) 1432.5 (28.7)
Raise/traverse 307.9 (19.1) 593.4 (30.3) 1205.7 (16.0)

Raised vs. lifted 23.7% - 15.7% - 15.8% -
Incremental 199.1 (13.2) 338.5 (15.1) 615.7 (16.9)

Incr. vs. raise 37.9% - 43.0% - 48.9% -
Incr. vs. lift 52.6% - 51.9% - 57.0% -

Table 5.1: Micro-benchmark results for lifting, raising, and incremental projection

Type\ Size Needles Oscillation
avg (dev) avg (dev)

Startup (lifted) 242.2 6.9 3652.8 107.0
Startup (raw) 558.4 15.1 1442.5 52.8
Raw vs. lifted -130.6% - 60.5% -
Update (lifted) 127.4 4.2 59.0 2.4
Update (raw) 110.6 1.4 30.7 1.7
Raw vs. lifted 13.2% - 48.0% -

Table 5.2: Performance of animation programs using data structures and graphics

of updating everything else and rendering the vectors dominates that of updating a few

hundredconsbehaviors.

The oscillation example makes more extensive use of lists. It models a time-varying

graph as a 200-element list of behaviors, of which any subsetmay be active at a given time.

In these tests, the number of active points is relatively small, so in the lifted case the list-

related updates constitute a more significant fraction of the time. The raw version starts up

about 2.5 times more quickly and updates about twice as fast.

Chapter 6

Integration with Object-Oriented

Toolkits

Chapter 2 described, among other things, the use of alifting transformation to adapt exist-

ing purely functional operations so they could work with time-varying values. However,

to support realistic applications, the language also needsaccess to libraries for capabilities

like graphics, user interfaces, networking, and so on. These sorts of libraries interact with

the world and therefore depend on the ability to maintain state and perform actions. Unfor-

tunately, the simple notion of lifting presented earlier assumes procedures are free of side

effects, so it can re-apply them anytime without risk of destructive effects. This assump-

tion is clearly invalid in the case of such imperative libraries. The purpose of this chapter

is therefore to develop a variation of lifting that works with stateful entities.1

The kinds of libraries in which I’m interested have several main characteristics. First,

they tend to be large and detailed, so it is impractical to rewrite them. Second, they are

maintained by third-party developers, so they should be integrated with a minimum of

modification to enable easy upgrading. Third, these libraries—especially forGUIs—are

often written in object-oriented (OO) languages. The integration process must therefore

handle this style, and ideally exploit it. An important subtlety is thatOO andFRP languages

have different ways of handling state:OO makes state explicit but encapsulates it, whereas

state inFRP is hidden from the programmer by the temporal abstractions of the language.

Somehow, these two paradigms must be reconciled.

1This chapter expands on previously published joint work [52] with Daniel Ignatoff.

94

95

This chapter describes considerable progress on this integration problem for the spe-

cific case ofGUIs. The DrScheme environment provides a large and robustGUI library

called MrEd [45], based on the wxWindows framework, which isused to build DrScheme’s

interface itself. The environment is a good representativeof a library that meets the char-

acteristics listed above; furthermore, its integration isof immediate practical value. I have

discovered several useful abstractions based onmixins [13] (classes parameterized over

their super-classes) that enable a seamless integration. Ihave further found that there are

patterns to these mixins and abstracted over them usingmacros[57]. As a consequence,

the adapter for MrEd is under 400 lines of code.

This chapter is organized as follows. I first discuss the design philosophy that governs

the adaptation of MrEd to a signal-based programming interface. What follows is the heart

of the chapter: a description of the implementation of this interface and of the abstractions

that capture the essence of the adaptation. I also discuss a spreadsheet application built

with the adapted toolkit.

6.1 Adapting MrEd to FrTime

In adapting any existing library to become reactive, the main goal is to reuse the existing

library implementation as much as possible and perform a minimum of manual adaptation.

In order to minimize the manual effort, we need to uncover patterns and abstract over them.

In this case, the problem is how to maintain a consistent notion of state between the object-

oriented and functional reactive models.

The functional reactive world represents state implicitlythrough time-varying values,

and the dataflow mechanism is responsible for keeping it consistent. In contrast, the object-

oriented world models state with mutable fields, and programmers are responsible for

writing methods that keep them consistent. We presume that the toolkit implementors

have done this correctly, so our job is simply to translate state changes from the dataflow

program into appropriate method invocations. However, since GUI toolkits also mediate

changes coming from the user, they provide a callback mechanism by which the applica-

tion can monitor state changes. The interface between theGUI and FrTime must therefore

also translate callbacks into state changes in the dataflow world.

Not surprisingly, the nature of the adaptation depends primarily upon the direction of

96

communication. We classify each widget property accordingto whether the application or

the toolkit changes its state. The most interesting case, naturally, is when both of them can

change the state. We now discuss each case separately.

6.1.1 Application-Mutable Properties

MrEd allows the application to change many of a widget’s properties, including its value,

label, cursor, margins, minimum dimensions, and stretchability. A widget provides an

accessor and mutator method for each of these properties, but the toolkit never changes any

of them itself, so we classify these properties as “application-mutable.”

In a functional reactive setting, we can manipulate time-varying values directly, so it is

natural to model such properties with behaviors. For example, we would use a behavior

to specify a gauge’s value and range and a message’s label. This sort of interface renders

accessors and mutators unnecessary, since the property automatically updates whenever the

behavior changes, and the application can observe it by reading whatever behavior it used

for initialization.

To implement a behavior-based interface to such widget properties, the first step is to

derive a subclass from the original MrEd widget. For example, we can define aft-gauge%

from the MrEd gauge.

(defineft-gauge%

(classgauge%. . .))

In the new class, we want to provide constructor arguments that expect behaviors for all

of the application-mutable properties. In FrTime, behaviors extend the universe of values,

and any constant may be taken as a special case of a behavior (that never changes); i.e.,

behaviors are supertypes of constants. Thus the application may safely supply constants

for any properties that it wishes not to change. Moreover, ifwe use the same property

names as the superclass, then we can construct anft-gauge%exactly as we would construct

an ordinary gauge. This respects the principle of contravariance for function subtyping:

our extension broadens the types of legal constructor arguments.

In fact, the DrScheme class system allows us to override the superclass’s initialization

arguments, orinit-fields. Of course, the superclass still refers to the original fields, so

97

its behavior remains unchanged, but this lets us extend the constructor interface to permit

behaviors. The code to add these initialization arguments is as follows:

(init-field value label range vert-margin horiz-margin min-width . . .)

Next, we need code to enforce consistency between these behavioral fields and the cor-

responding fields in the superclass. The first step is to perform superclass initialization,

using the current values of the new fields as the initial values for the old ones. Although

the old and new versions of the fields have the same names, there is no ambiguity in the

superclass instantiation expression; in each name/value pair, the name refers to a field in

the superclass, and the value expression uses the subclass’s scope.

(super-instantiate() [label (value-now label)] [range(value-now range)] . . .)

(sendthis set-value(value-now value))

(Since there is no initialvalue field in the superclass, we need to set it separately after

super-class initialization.)

Having set appropriate initial values for the fields, we needto ensure that they stay

consistent as the behaviors change. That is, we need to translate changes in state from the

dataflow program to the object-oriented “real world.” This is a central problem in building

an interface between the two models.

The basic idea behind our translation is straightforward: detect changes in a behavior

and update the state of the corresponding object through an appropriate method call. We

use the FrTime primitivechangesto detect changes in a behavior and expose them on an

event stream. Then we convert the event stream into a series of method invocations. This

second step is somewhat unusual, since the methods have sideeffects, unlike the operations

found in a typical dataflow model. However, in this case we areconcerned not withdefining

the model but withcommunicatingits state to the outside world. The effects are therefore

both safe (they do not interfere with the purity of the model)and necessary (there is no

other way to tell the rest of the world about the system’s changing state).

The invocation of imperative methods is technically trivial. Since FrTime is built atop

Scheme, any procedure that updates a signal is free to execute arbitrary Scheme code,

including operations with side effects. Of course, we ordinarily avoid the practice of per-

forming side effects in signal processors, since it could lead to the violation of program

invariants. As mentioned above, it is safe when the effects are restricted to communication

98

with the outside world (as they are in this case). In particular, we use the primitivemap-e,

passing a procedure that invokes the desired method:

(map-e(λ (v) (sendthis set-value v)) (changes value))

(map-e(λ (v) (sendthis set-label v)) (changes label))

. . .

Each call above tomap-ecreates a new event stream, whose occurrences all carry the

void value—the return value of the imperative method call—but are accompanied by the

method’s side effects. Because the event values are allvoid, they have no meaningful use

within a larger dataflow program.

The above expressions are static initializers in the widgetclasses, so they are evalu-

ated whenever the application constructs a new instance. Using static initializers allows the

adapter to automatically forward updates without the developer having to invoke a method

to initiate this. Because the code constructs signals, whichparticipate in the dataflow com-

putation, it therefore has a dynamic effect throughout the life of the widget, unlike typical

static initializers.

Subtleties Involving Side-Effecting Signals

We have resolved the interface for communicating state changes from the dataflow to the

object-oriented model. However, a more serious concern is the mismatch between their no-

tions oftiming. In a typical object-oriented program, method invocationsare synchronous,

which fixes the ordering of operations within each thread of control. However, FrTime

processes updates according to their data dependencies, which does not necessarily corre-

spond to a sequential evaluation order. This makes it difficult for programmers to reason

about when effects occur.

Fortunately, the functional reactive model and interface are designed in such a way as

to prevent operations from occurring unpredictably. Firstly, there is at most one signal

associated with any given widget property. If the programmer wishes to control a widget

with several different signals, he must define a composite signal that mediates explicitly

between the individual signals. Thus, there can be no implicit modifications or contention

over who is responsible for keeping it up-to-date.

Secondly, FrTime processes updates in order of data dependencies, so if one property’s

99

signal depends on another’s, then it will be updatedlater. If the order of updates were

significant, and if the dependencies in the toolkit were reflected by dependencies in the

application, then this would yield a “safe” order in which toupdate things.

There is, however, a problem with the strategy described above that is difficult to di-

agnose and debug. The symptoms are as follows: at first, the program seems to work just

fine. Sometimes it may run successfully to completion. Othertimes, depending upon what

else is happening, it runs for a while, then suddenly and seemingly without explanation the

gauge’s properties stop updating when the behaviors change. The point at which it stops

varies from run to run, but there are never any error messages.

The problem results from an interaction with the memory manager. An ordinaryFRP

application would use the event source returned by themap-e, but in this case we only

care about side effects, so we neglect to save the result. Since there are no references to

the updating event source, the garbage collector eventually reclaims it, and the gauge stops

reacting to changes in the behavior.

To avoid these problems, we define a new abstraction specifically for side-effecting

event processors. This abstraction, calledfor-each-e!, works just likemap-e, except that it

ensures its result will not be collected. It also lends itself to a more efficient implementa-

tion, since it can throw away the results of the procedure calls instead of enqueuing them

on a new event stream.

The for-each-e!implementation stores references to the imperative event processors in

a hash table, indexed by the objects they update. It is important that this hash table hold its

keys with weak references so that, if there are no other references to the widget, both it and

the event processor may be reclaimed.

6.1.2 Toolkit-Mutable Properties

Some widget properties are controlled primarily by the useror the toolkit rather than the

application. For example, when the user resizes a window, the toolkit adjusts the locations

and dimensions of the widgets inside. Since the applicationcannot control these properties

directly, the widgets provide accessor methods but no mutators. Additionally, the applica-

tion may want to be notified of changes in a property. For example, when a drawing canvas

changes size, the application may need to update its contentor recompute parameters for its

100

scrollbars. For such scenarios, accessor methods alone areinsufficient, and toolkits provide

callback interfaces as described in the previous section. However, we saw that callbacks

lead to an imperative programming style with various pitfalls, so we would like to support

an alternative approach.

For such “toolkit-mutable” properties, we can remove the dependency on callbacks by

adding a method that returns the property’s time-varying value as a behavior. For example,

instead of allowing registrationon-sizeandon-movecallbacks, the toolkit would provide

methods that return behaviors reflecting the properties forall subsequent points in time.

The implementation of such methods is similar to that for application-mutable proper-

ties. However, in this case we cannot just override the existing get-width, get-height, get-x,

andget-ymethods and make them return behaviors. Though FrTime allows programmers

to use behaviors just like constants, an application may need to pass a widget to a library

procedure written in raw Scheme. (For example, the widget may need to invoke methods

in its superclass, which is implemented in Scheme.) If a Scheme expression invokes an ac-

cessor and receives a behavior, there is nothing FrTime can do to prevent a type-mismatch

error. Since behaviors are supertypes of constants, overriding in this manner would violate

the principle of covariance for procedure return values.

To preserve type safety, we must define the new signal-aware methods so as not to

conflict with the existing ones. We choose the new names by appending-b to the existing

names, suggesting the behavioral nature of the return values. Again, we derive a subclass of

the widget class we want to wrap. For example, continuing with theft-gauge%, we would

add methods calledget-width-b get-height-b, get-x-b, andget-y-b.

We need to determine how to construct the behaviors returnedby these methods. We

want these behaviors to change with the corresponding widget properties, and we know

that the widget’son-sizeor on-movemethod will be called when the properties change.

So, we are now faced with the converse of the previous problem—converting a imperative

procedure call into an observable FrTime event.

FrTime provides an interface for achieving this goal, called make-event-receiver. This

procedure returns two values: an event sourceeand a unary proceduresend-evente. When-

ever the application executes (send-evente v), the valuev occurs one. In the implementa-

tion, send-evente sends a message to the FrTime dataflow engine indicating thatv should

101

occur one, which leads tov’s being enqueued on the stream ofe’s occurrences. By overrid-

ing the widget’s callbacks and callingmake-event-receiver, we can create an event source

carrying changes to the widget’s properties:

(define-values(width-e send-width) (make-event-receiver))

(define-values(height-e send-height) (make-event-receiver))

(define/override(on-size w h)

(superon-size w h)

(send-width w)

(send-height h))

;; similarly for position

Once we have the changes to these properties in the form of FrTime event sources, we

convert them to behaviors withhold:

(define/public (get-width-b) (hold width-e(sendthis get-width)))

(define/public (get-height-b) (hold height-e(sendthis get-height)))

. . .

6.1.3 Application- and Toolkit-Mutable Properties

We have discussed how to adapt properties that are mutable byeither the toolkit or the

application, but many properties require mutability byboth the toolkit and the application.

This need usually arises because there are several ways to change the same property, or

several views of the same information. For example, a text editor provides scrollbars so

the user can navigate a long document, but the user can also navigate with the keyboard, in

which case the application needs to update the scrollbars accordingly.

All widgets that allow user input also provide a way to set thevalue from the applica-

tion. Several other properties may be set by either the toolkit or the user:

focus When the user clicks on a widget, it receivesfocus(meaning that it hears key strokes)

and invokes itson-focuscallback method. This is the common mode of operation,

but the application can also explicitly send focus to a widget. For example, when

a user makes a choice to enter text, the application may automatically give the text

field focus for the user’s convenience.

102

visibility The application may hide and show widgets at various stages of an interactive

computation. Sinceshowing a widget also shows all of its descendents, the toolkit

provides anon-enablecallback so the application does not need to track ancestry.In

addition, the user can affect visibility by, for example, closing a window, which hides

all of its children.

ability Similar to visibility, the application can selectively enable and disable widgets de-

pending upon their necessity to various kinds of interaction. Enabling also works

transitively, so the toolkit invokes theon-enablemethod for all children of a newly-

enabled widget.

One might naturally ask, since we have already discussed howto adapt application- and

toolkit-mutable properties, why we cannot simply combine the two adaptation strategies

for these hybrid properties. The reason is that the application specifies a property’s time-

varying value through a behavior, which defines the value at every point in the widget’s

lifespan. This leaves no gaps for another entity to specify the value.

Our solution to this problem is to use event sources in addition to behaviors. Recall that

in the implementation of toolkit-mutable properties, we first constructed an event source

from callback invocations, then used hold to create a behavior. In this case, both the ap-

plication and toolkit provide event streams, and instead ofholding directly, we merge the

streams and hold the result to determine the final value:

(init-field app-focus app-enable app-show)

(define-values(user-focus send-focus) (make-event-receiver))

(define/public (has-focus-b?)

(hold (merge-e app-focus user-focus) (sendthis has-focus?)))

(define/override(on-focus on?)

(superon-focus on?)

(send-focus on?))

. . .

This code completely replaces the fragments shown previously for properties that are mu-

table by only the application or the toolkit.

103

6.1.4 Immutable Properties

MrEd does not allow certain properties to change once a widget is created. For example,

every non-window widget has a parent, and it cannot be moved from one parent to another.

In theory, we could build a library atop MrEd in which we simulated the mutability of these

properties. However, this would be a significant change to not only the toolkit’s interface

but also its functionality, and we would have to implement itourselves. Since our goal is to

reify the existing toolkit through a cleaner interface, we have not attempted to extend the

underlying functionality.

6.2 Automating the Transformation

We have so far discussed how to replace the imperative interface to object-oriented widget

classes with a more elegant and declarative one based on behaviors and events. The prob-

lem is that there is a large number of such widgets and properties, and dealing with all of

them by hand is a time-consuming and tedious task. Thus we look to reduce the manual

effort by automating as much as possible of the transformation process.

The reader may have noticed that the code presented in the previous section is highly

repetitive. There are actually two sources of repetition. The first is that we need to perform

many of the same adaptations for all of the MrEd widget classes, of which there are perhaps

a dozen. The second is that the code used to adapt each property is essentially the same from

one property to the next. We now discuss how to remedy these two forms of duplication

individually, by abstracting first over multiple widget classes, then over multiple properties

within each class.

6.2.1 Parameterized Class Extensions

In Sect. 6.1 we adapted a collection of widget properties by sub-classing. Since most of

the code in the subclasses is essentially the same across theframework, we would like to

be able to reuse the common parts without copying code. In other words, we would like a

class extension parameterized over its superclass.

The DrScheme object system allows creation ofmixins [13, 46], which are precisely

such parameterized subclasses. We write a mixin to encapsulate the adaptation of each

104

property, then apply the mixins to all classes possessing the properties. For example, in-

stead of defining anft-gauge%like we did before, we define a generic class extension to

adapt a particular property, such as the label:

(define(adapt-label a-widget)

(class a-widget

(init-field label)

(super-instantiate() [label (value-now label)])

(for-each-e!(changes label) (λ (v) (sendthis set-label v)) this)))

In the code snippet above, we box the superclass position of the class definition to highlight

that it is a variable rather than the literal name of a class. This parameterization makes it

possible to abstract over the base widget class and thus to apply the adaptation to multiple

widgets.

We write mixins for other properties in a similar manner. Since there are several prop-

erties common to all widget classes, we compose all of them into a single mixin:

(define(adapt-common-properties a-widget)

(foldl (λ (mixin cls) (mixin cls)) a-widget(list adapt-label adapt-enabling. . .)))

Although this procedure contains no explicitclassdefinitions, it is still a mixin: it applies

a collection of smaller class extensions to the input class.This compoundmixin takes a

raw MrEd widget class and applies a mixin for each standard property. The resulting class

provides a consistent FrTime interface for all of these properties. For example, we can use

this mixin to adapt several widget classes:

(definepre-gauge%(adapt-common-properties gauge%))

(definepre-message%(adapt-common-properties message%))

. . .

We call the resulting widget classes “pre-” widgets becausethey still await the adaptation

of widget-specific properties. Most importantly, each widget supports manipulation of

a particular kind of value (e.g., boolean, integer, string)by either the application or the

toolkit, and the various combinations give rise to different programmer interfaces.

105

6.2.2 A Second Dimension of Abstraction

Mixins allow us to avoid copying code across multiple classes. However, there is also code

duplication across mixins. In Sect. 6.1, we develop patterns for adaptation that depend on

whether the property is mutable by the application, the toolkit, or both. Once we deter-

mine the proper pattern, instantiating it only requires identification of the field and method

names associated with the pattern. However, in Sect. 6.1 we duplicated the pattern for each

property.

In most programming languages, we would have no choice but tocopy code in this situ-

ation. This is because languages don’t often provide a mechanism for abstracting over field

and method names, as these are program syntax, not values. However, Scheme provides

a macro system[57] with which we can abstract over program syntax. For example, with

application-mutable properties we only need to know the name of the field and mutator

method, and we can generate an appropriate mixin:

(define-syntax adapt-app-mutable-property

(syntax-rules()

[(field mutator)

(λ (widget)

(classwidget

(init-field field)

(super-instantiate() [field (value-now field)])

(for-each-e!(changes field) (λ (v) (sendthis mutator v)) this)))]))

With this macro, we can generate mixins for the application-mutable properties:

(defineadapt-label(adapt-app-mutable-property label set-label))

(defineadapt-vert-margin(adapt-app-mutable-property vert-margin vert-margin))

. . .

Of course, we write similar macros that handle the other two cases of mutability and instan-

tiate them to produce a full set of mixins for all of the properties found in MrEd’s widget

classes. At this point, we have fully abstracted the principles governing the toolkit’s adapta-

tion to a functional reactive interface and captured them concisely in a collection of macros.

By instantiating these macros with the appropriate properties, we obtain mixins that adapt

106

the properties for actual widgets. We compose and apply these mixins to the original MrEd

widget classes, yielding new widget classes with interfaces based on behaviors and events.

The ability to compose the generated mixins safely depends upon two properties of the

toolkit’s structure. Firstly, most properties have distinct names for their fields and methods

and hence are non-interfering by design. Secondly, in caseswhere two propertiesdo share

a common entity (for example, the single callbackon-sizeaffects the width and height), the

disciplined use of inheritance (i.e., always callingsuper) ensures that one adaptation will

not conflict with the other.

To save space and streamline the presentation, we have simplified some of the code

snippets in this paper. The full implementation has been included with the DrScheme dis-

tribution since release version 301. We provide a catalog ofadapted widgets in an appendix.

The core contains about 80 lines of macro definitions and 300 lines of Scheme code. This

is relatively concise, considering that the MrEd toolkit consists of approximately 10,000

lines of Scheme code, which in turn provides an interface to a100,000-line C++ library.

Moreover, our strategy satisfies the criteria set forth in the Introduction: it is a pure interface

extension and does not require modifications to the library.

6.2.3 Language Independence of the Concepts

Some of the ideas presented in this chapter are specific to DrScheme. For example, DrScheme’s

object system supports features like mixins and keyword constructor arguments, which

more common languages like C++ and Java do not provide. Likewise, DrScheme’s macro

system offers a more sophisticated metaprogramming systemthan is found in most lan-

guages. Because I have made use of these less common features,a reader might argue that

the ideas are not portable.

However, while the implementation techniques are somewhatspecific to DrScheme, I

argue that the essential concepts apply to a wide array of call-by-value languages, much like

the embedding techniques of FrTime in general. For example,categorizing state transfers

asapplication to toolkitversustoolkit to application(or both) is a necessary first step, and

determining whether state isdiscreteor continuousis also important for any functional re-

active toolkit adaptation. Once these characterizations are made, the same basic approaches

may be used to translate state changes between the functional and imperative subsystems.

107

Figure 6.1: Screenshot of the FrTime spreadsheet application

These necessarily include impure event-based mechanisms (e.g.,send-event, for-each-e!)

for defining the bridge between these subsystems. Once thereis a way for them to commu-

nicate, the patterns underlying the adaptation may be abstracted using whatever techniques

are available within the host language. DrScheme happens toprovide powerful features

(mixins and macros) that allow a high level of abstraction. In other languages, different

features may be available (e.g., multiple inheritance, static overloading) to support alter-

nate approaches to this problem.

6.3 A Spreadsheet Application

To evaluate the adapted version of MrEd, I have applied it to arealistic spreadsheet applica-

tion. The major challenges in building a spreadsheet, in my experience, are implementing

a language with its dataflow semantics, and managing and displaying a large scrollable ar-

ray of cells. Fortunately, FrTime makes the linguistic problem relatively straightforward,

108

since its dataflow evaluator can be reused to implement update propagation. This leaves

the representation and display of the cell grid.

The core of the spreadsheet user interface is an extension ofthe MrEdcanvaswidget. A

canvas is a region in which the application can listen to key and mouse events and perform

arbitrary drawing operations. The application renders thecell content into a canvas and

processes mouse events to perform selection. When the user selects a cell, he can enter a

formula into a text field, and the selected cell receives the value of the formula.

The functional reactivity helps greatly, for example, in managing the scrolling of the

grid content. The canvas includes a pair of scrollbars, which must be configured with

ranges and page sizes. These parameters depend upon the number of cells that fit within

the physical canvas, which in turn depends upon the size of the canvas relative to the size of

the cells. The cell size depends in turn upon the font and margins used when rendering the

text. Since the user can resize the window or change the font,these parameters must be kept

up-to-date dynamically. In raw MrEd, all of this recomputation would need to be managed

by hand, but with the FrTime adaptation, we simply specify the functional relationships

between the time-varying values, and the various widget properties update automatically.

For example, the following expression defines the number of characters that fit horizon-

tally in the canvas at one time:

(definev-cells-per-page

(quotient(− canvas-height top-margin) cell-height))

Both cell-heightandcanvas-heightare time-varying, andv-cells-per-pagealways reflects

their current state. The range on the scroll bar is equal to the difference between the total

number of cells (rows) and the number that can be displayed ona single page:

(definev-scroll-range

(max0 (− total-rows v-cells-per-page)))

If the user resizes the window or changes the font, the range on the scrollbar updates auto-

matically.

When the user clicks at a particular position in the canvas, the application needs to

map the position to a cell so it can highlight it and allow the user to edit its formula. The

following code expresses the mapping:

(define(y-pos->row-num y)

109

(if (> y top-margin)

(+ v-scroll-pos(quotient(− y top-margin) cell-height))

−1))

By applying this function to they component of the mouse position within the canvas, the

application obtains the row number (if any) over which the mouse is hovering. It uses this

information to implement a roll-over effect, shading the cell under the mouse cursor, and

to determine which cell to select when the user clicks the mouse.

The following code shows the definition of the text field in which the user enters cell

formulas:

(defineformula

(new ft-text-field%

[label ”Formula:”]

[content-e(map-e(λ (addr) (value-now(cell-text(addr->key addr)))
1
)

select-e))]

[focus-e select-e]
2
))

When the user clicks on a cell, the cell’s address appears on anevent stream calledselect-e.

The occurrence of the selection event affectsformula in two ways. First, the code in box

1 retrieves the selected cell’s text from the spreadsheet; this text becomesformula’s new

content. Second, the code in box 2 specifies that selection events send focus toformula,

allowing the user to edit the text. When the user finishes editing and presses theenterkey,

formulaemits its content on an output event stream; the applicationprocesses the event and

interprets the associated text (code not shown).

The spreadsheet experiment has proven valuable in several respects. First, by employ-

ing a significant fragment of the MrEd framework, it has helped us exercise many of our

adapters and establish that the abstractions do not adversely affect performance. Second,

as a representativeGUI program, it has helped us identify several subtleties ofFRPand the

adaptation of state, some of which we have discussed in this paper. Finally, the spreadsheet

is an interesting application in its own right, since the language of the cells is FrTime itself,

enabling the construction of powerful spreadsheet programs.

110

6.4 Catalog of Adapted User Interface Widgets

ft-frame% These objects implement top-level windows. They support all of the standard

signal-based property interfaces (label, size, position,focus, visibility, ability, mar-

gins, minimum dimensions, stretchability, and mouse and keyboard input). As in the

underlyingframe%objects, thelabelproperty specifies the window’s title.

ft-message% These objects contain strings of text that are mutable by theapplication

but not editable by the user. They support all of the standardsignal-based property

interfaces. In this case, thelabelproperty specifies the content of the message.

ft-menu-item% These objects represent items in a drop-down or pop-up menu.In addi-

tion to the standard properties, each widget exposes an event stream that fires when-

ever the user chooses the item.

ft-button% These objects represent clickable buttons. In addition to the standard proper-

ties, each widget exposes an event stream that fires each timethe user clicks it.

ft-check-box% These objects represent check-box widgets, whose state toggles between

true andfalsewith each click. In addition to the standard properties, each ft-check-

box%widget exposes a boolean behavior that reflects its current state. The applica-

tion may also specify an event stream whose occurrences set the state.

ft-radio-box% These objects allow the user to select an item from a collection of textual

or graphical options. In addition to the standard properties, eachft-radio-box%object

exposes a numeric behavior indicating the current selection.

ft-choice% These objects allow the user to select a subset of items from alist of textual

options. In addition to the standard properties, eachft-choice%object exposes a list

behavior containing the currently selected elements.

ft-list-box% These objects are similar toft-choice%, except that they support an addi-

tional, immutablestyleproperty that can be used to restrict selections to singleton

sets or to change the default meaning of clicking on an item. Otherwise, the applica-

tion’s interface is the same as that offt-choice%.

111

ft-slider% These objects implement slider widgets, which allow the user to select a num-

ber within a given range by dragging an indicator along a track. In addition to the

standard properties, eachft-slider%object allows the application to specify the range

through a time-varying constructor argument calledrange, and it exposes a numeric

behavior reflecting the current value selected by the user.

ft-text-field% These objects implement user-editable text fields. In addition to the stan-

dard properties, each widget exposes the content of its textfield as a behavior, as

well as an event stream carrying the individual edit events.The application can also

specify an event stream whose occurrences replace the text field content.

Chapter 7

Programming Environment Reuse

Building a new language is no modest undertaking, so there is value in reducing the man-

ual development effort as much as possible. Importantly, a language is more than just an

interpreter or compiler. To compete with established systems it must also have extensive

libraries and an array of tools that support program understanding and development. These

comprise the overall programming environment in which users work. By helping to auto-

mate the tasks of finding bugs and elucidating program behavior, they contribute greatly to

the power of languages as software engineering tools.

Unfortunately, developing and maintaining a high-qualitytool suite demands significant

time and effort. Especially for domain-specific languages,where the target market is small

(at least initially), adequate resources may not be available to develop all of the needed

infrastructure from scratch.

One way to reduce the cost of developing a new domain-specificlanguage is toembed

it within an existing general-purpose language. Typically, this involves implementing the

core functionality as a library within the host language andsupporting it with lightweight

syntactic extensions. Since embeddedDSL programs are essentially host-language pro-

grams, they can reuse any interpreters, compilers, runtimesystems, libraries, and tools that

have been written for the host language.

Embedding has another appeal: if programmers are already familiar with the general-

purpose host language and its environment, then they can adopt theDSL with significantly

greater ease than something completely new and foreign. This “cognitive reuse” also in-

creases a language’s utility and popularity.

112

113

Although embedding offers extensive reuse opportunities and greatly reduces the man-

ual effort required to implement aDSL, there is a subtle but important pitfall that accompa-

nies tool reuse. In particular, if one applies a host-language tool to an embedded-language

program, what it shows us is the program’simplementation, in terms of the host-language

constructs that the tool understands. Depending upon the complexity of theDSL, this may

not match the abstractions of theDSL or meaningfully reflect the original program’s behav-

ior. It may instead expose implementation details that confuse or even mislead the user.

In this chapter, I address the problem of meaningfully reusing a language’s tools. The

solution strategy depends upon the host language’s providing a suitable interface for imple-

menting control-oriented tools, i.e., a mechanism for reflecting on a program’s control flow.

By manipulating such a mechanism, I develop the notion ofeffective evaluation contexts,

which underlie the tool-adaptation technique for embeddedlanguages. I have applied this

technique to several existingDSLs (including most notably FrTime) and tools, and the re-

sults are encouraging. The modifications are straightforward, and the result is more helpful

and appropriate feedback from the tools.

Since programming tools play an important role in software engineering, it is critical

that they be reliable and trustworthy. The manipulation of tool interfaces creates opportuni-

ties for reuse but also introduces possibilities for subtleerrors. While raw tool reuse gives

results that violate theDSL’s abstractions, at least they present, in some sense, a ground

truth about the execution of the system. In contrast, a complex new tool that gives correct

answers sometimes but fails in other contexts may lead usersfurther astray and result in

heightened frustration. To avoid such problems, I develop aformal model that specifies the

intended behavior of a specific tool-language combination.

7.1 Background

I am concerned with the reuse of control-oriented tools in deepDSL embeddings. Before I

discuss the problem, or my solution, I explain the concept ofdeep embedding, and what I

mean by control-oriented tools.

114

DSL Program

Semantic
Data Structure

Embedded

DSL Interpreter

Host Evaluator

Figure 7.1: Structure of a deep embedding

Dataflow Engine

Graph
Dataflow

Program
FrTime

EvaluatorScheme

Figure 7.2: Embedding FrTime

7.1.1 Domain-Specific Embedded Languages

Domain-specific languages (DSLs) are programming languages designed specifically to

handle the pervasive concerns of specific problem domains. Because they can abstract

away concerns that cannot be encapsulated modularly in a general-purpose language,DSLs

are extremely powerful software-engineering tools.

Developing any new language is a non-trivial task. Though tools like scanner and parser

generators have been around for decades, these only help with a small part of the problem.

Such concerns as type-checking, code-generation, and runtime support constitute a much

more significant part of the task, for which there is less support.

One technique for reducing the burden of language development is toembedthe new

language within an existing “host” language. Embedding supports reuse of much of the

host language’s infrastructure, including its type system, runtime system, libraries, and

interpreter and/or compiler.

An embedding can be eithershallowor deep[12]. In a shallow embedding, constructs

in theDSL are implemented directly as host-language abstractions. Ashallow embedding is

essentially a library; it can add new functionality, but notnew features, to the host language.

In contrast, a deep embedding representsDSL constructs as host-language data struc-

tures, to which an explicit interpreter assigns meaning. Figure 7.1 shows a diagram of this

115

model. The host language evaluates theDSL program, yielding a data structure that en-

codes the program’s meaning; an interpreter processes the data structure and implements

the semantics.

A deep embedding requires more effort to implement, since itinvolves explicit def-

initions of the embedded language’s constructs. However, it offers more flexibility and

power to the language implementor; theDSL’s features are not confined by those of the

host language. Also, since there is an explicit representation of the embedded program, the

implementation can analyze, optimize, or otherwise manipulate the embedded program.

7.1.2 Examples

My experience primarily involves the language FrTime, the focus of this dissertation. Since

FrTime’s notion of dataflow lacks direct support from Scheme, its embedding must be (at

least partially) deep. The semantic data structure is a graph of the program’s dataflow de-

pendencies, and the interpreter is a dataflow engine that traverses this graph and recomputes

signals in response to changes in the environment and other signals (see Figure 7.2).

7.1.3 Control-Oriented Tools

A control-oriented tool is one that observes points in the control-flow of an executing pro-

gram. For example, a profiler counts how many times expressions execute, and how much

they contribute to the total execution time. Likewise, an error-tracer catches errors and

shows the user where they came from (e.g., the immediate expression that raised the error

and its context of execution).

Building a control-oriented tool requires an interface for extracting information about

the state of a running program. In many language implementations, the compiler generates

such information and represents it in a proprietary, extra-lingual manner. In such cases, the

tools are tightly coupled to the compiler.

Other implementations provide an open, linguistic mechanism for reflecting on con-

trol flow. For example, Java compilers provide information in class files so that runtime

systems can track the file, class, method, and line number of each activation record. This

information is available through a public method in theExceptionclass, so applications can

use it for their own purposes.

116

PLT Scheme provides an even more general and open stack inspection mechanism

based on continuation marks [23]. With this mechanism, an application can associate a

mark with the evaluation of an expression. The mark is an arbitrary Scheme value and

resides on the runtime stack, in the expression’s activation record, until the expression fin-

ishes evaluating. An application can, at any point in its execution, introspect on its control

flow by requesting the set of marks currently on the stack.

The continuation mark interface exists primarily for tools, not applications. To work

properly, the tools need a way to install whatever information they require in the marks.

PLT Scheme supports this capability by means of a lightweight interface to its compiler,

through which tools can syntactically transform, orannotate, target programs before they

execute. For example, the error-tracer works by installing, for each expression, a mark

containing the expression’s source location. The runtime system automatically captures

the continuation marks when an exception arises and stores them in anexceptionobject.

If the application fails to handle the exception, the error-tracer catches it at the top-level,

extracts the source location information from its continuation marks, and presents a trace

to the user.

The combination of annotation and continuation marks allows for the implementation

of a wide variety of tools. Some that have been developed include a profiler, an algebraic

stepper [25], and a scriptable debugger [63]. These tools insert annotations to perform

such tasks as timing execution, checking for and suspendingat breakpoints, and installing

continuation marks that not only identify the source locations of active procedures but also

provide access to the names and values of lexical variables.

More importantly, continuation marks offer a clean interface for control-flow introspec-

tion that is backed by a formal model [23]. The use of explicitsyntactic transformations

also allows us to capture the notion of adebugging compilerthat communicates with tools

through this continuation-mark interface. These abstractions prove useful when we formal-

ize the interaction between control-oriented tools and deep DSLs embeddings.

7.2 The Tool-Reuse Problem

A deepDSL embedding can reuse much of the host language’s infrastructure directly. How-

ever, if we try to reuse the host language’s control-oriented tools, the feedback they provide

117

LiftB.evalMethod: Exception raised when invoking method foo
java.lang.reflect.InvocationTargetException

at sun.reflect.GeneratedMethodAccessor2.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:324)
at edu.yale.cs.frp.FRPUtilities$LiftedB.evalMethod(FRPUtilities.java:458)
at edu.yale.cs.frp.FRPUtilities$LiftedB.recomputeValue(FRPUtilities.java:486)
at edu.yale.cs.frp.FRPUtilities$LiftedB.propertyChange(FRPUtilities.java:472)
at java.beans.PropertyChangeSupport.firePropertyChange(PropertyChangeSupport.java:252)
at edu.yale.cs.frp.BehaviorAdapter.firePropertyChange(BehaviorAdapter.java:65)
at edu.yale.cs.frp.BehaviorAdapter.setValue(BehaviorAdapter.java:90)
at edu.yale.cs.frp.Stepper.eventOccured(Stepper.java:42)
at edu.yale.cs.frp.AbstractEventSource.setEvent(AbstractEventSource.java:62)
at edu.yale.cs.frp.AccumE.eventOccured(AccumE.java:57)
at edu.yale.cs.frp.AbstractEventSource.setEvent(AbstractEventSource.java:62)
at edu.yale.cs.frp.EventBind.eventOccured(EventBind.java:42)
at edu.yale.cs.frp.AbstractEventSource.setEvent(AbstractEventSource.java:62)
at edu.yale.cs.frp.FRPUtilities$EventObserver.invoke(FRPUtilities.java:256)
...

Figure 7.3: An error trace from a Java FRP implementation

by default will be misleading. This is because theDSL program itself does not perform

any interesting computation—it only creates a representation of itself as a data structure,

which theDSL implementation interprets in order to realize the program’s semantics. Thus,

control-oriented tools observe and analyze the process of interpreting the data structure, al-

though this may have no apparent connection to the originalDSL program.

For example, executing a FrTime program constructs a graph of dataflow dependencies.

The behavior the user cares about begins afterward, when thelanguage’s dataflow engine

traverses and recomputes values on the graph. Regardless of the structure of the FrTime

program, the dataflow engine is an infinite loop with a relatively shallow stack.

If a program is syntactically well-formed, then construction of its dataflow graph com-

pletes without any problems, but a logical bug may cause a runtime error (e.g., division-

by-zero, index out-of-bounds) to arise later while recomputing a signal. Since the dataflow

engine performs this recomputation, it experiences the error, and any tool that observes

control flow—even a full-featured interactive debugger—will blame the update algorithm.

A typical user will probably be perplexed by the error trace,since it has nothing to do with

his program. A more advanced user might even suspect that there is a bug in the language’s

implementation.

Although, strictly speaking, the error-tracer is telling the truth, the feedback it gives is

problematic for two key reasons:

1. It fails to identify the actual source of the error, which is the FrTime expression that

constructed the problematic signal. (In fact, since the engine’s control structure is so

simple, the tool produces essentially the same trace for most errors.)

118

2. It exposes theDSL’s implementation to the user, which violates a basic principle of

language design.

The use of deep embedding may also cause other tools to produce misleading results.

For example, consider the output that a profiler gives when run on a FrTime. The user’s

program executes once (and only once), consuming a short burst of processing time to

construct a semantic data structure. After that, the interpreter (dataflow engine or slide

renderer) performs the repetitive and intensive computation necessary to implement the

program’s semantics. A profiler observes and reports this low-level phenomenon. However,

this is neither surprising nor useful to a programmer looking to understand which parts of

his program are responsible for consuming the most resources.

These tool interactions are inherent to this style of embedding and are not specific to

Scheme. For example, Frappé is a Java implementation of functional reactive programming

which, like FrTime, builds an explicit graph of the program’s dataflow dependencies and

employs an external recomputation algorithm to keep signals up-to-date. Once the graph is

constructed, the update algorithm performs all of the interesting computation and is what

any tool will observe. As in FrTime, there is no connection tothe original program (that

constructed the graph), which is ultimately responsible for the program’s behavior.

Figure 7.3 shows a specific example of the problem, an error trace for adivision-by-zero

error in a Frapṕe [29] program. The trace reveals many details about the implementation

instead of indicating the source of the error. We show this toemphasize that the problem

we describe is neither an artifact of our choice of host language, nor simply the result

of our own carelessness as language implementors. Moreover, it demonstrates that other

implementors of similar systems have not already solved theproblem.

Control-oriented tools are not the only ones that can have misleading interactions. In

any embeddedDSL, the implementation may use a low-level host-language datastruc-

ture to implement a high-level domain-specific abstraction. In such cases, the host lan-

guage’s data-oriented tools, which are unaware of the encoding, will present the data in

host-language terms. This breaks theDSL’s abstractions in an analogous manner to control-

oriented tools. However, the solution in this case is relatively simple; the language provides

the tool with a custom display translator that renders the data in an appropriate manner. We

therefore focus on control-oriented tools for the rest of the paper and do not discuss data

119

interactions any further.

Admittedly, control-oriented tools are less important forDSELs implemented in statically-

typed languages, since the type checker catches a significant fraction of the mistakes before

the program has a chance to run. In theory, the type checker might report a misleading unifi-

cation failure within theDSEL implementation, thereby exhibiting the same problem we’ve

described about runtime tools. In practice, however, this does not seem to be problem,

most likely because theDSEL implementation may be type-checked separately from the

user program, allowing the type-checker to divert blame from the (internally consistent)

implementation.

7.3 Solution Techniques

Chapter 3 presented a formal model of FrTime. The model separates conceptually into

two “layers”, a low-level evaluation semantics that resembles that of Scheme or theλv-

calculus [84] and a high-level dataflow semantics that captures FrTime’s reactive recompu-

tation strategy.

The low-level layer, shown in Figure 3.3, is a small-step operational semantics based

on evaluation contexts [41], the grammar for which appears in Figure 3.1, along with the

syntax for expressions and values.

The high-level evaluation rules (Figure 3.5) define the operation of FrTime’s dataflow

propagation mechanism. They operate on 4-tuples〈t, S,D, I, t〉, whereD andI are the

same as in the low-level semantics,S is a store containing the current values of signals,

andt is the current time.

A key element of the semantic model is the evaluation contextE in thesignal struc-

ture. This represents the evaluation context that created the signal. For example, suppose a

user were to evaluate the following expression (wherex is a behavior):

(+ 4 (− 3 (∗ 2 (/ 1 x))))

In its evaluation, the first step would be to apply theδ rule, which would match the original

triple as:

〈I,D, (+ 4 (− 3 (∗ 2 [(/ 1 x)])))〉

120

and take a small step to the tuple:

〈I ∪ {σ}, D ∪ {(x, σ)}, (+ 4 (− 3 (∗ 2 [σ])))〉

where

σ = (sig (+ 4 (− 3 (∗ 2 []))) (/ 1 x))

Thus, the new signalσ captures the evaluation context from the step that created it: (+ 4 (−

3 (∗ 2 []))). This means that, ifx takes on the value0, resulting in a division-by-zero error,

then the dataflow evaluator knows both the specific operationthat caused the error, i.e., (/

1 x), and the context, (+ 4 (− 3 (∗ 2 []))), in which it would have occurredhad it been

evaluated in its original context. Thus it has enough information to report a meaningful

error message.

7.3.1 Higher-Order Signals

An important feature of FrTime is that the update of one signal can result in the creation of

new signals. For example, consider the following expression:

(− 3 (∗ 2 (if b (f x) (g y))))

As b takes on different values, (f x) and (g y) are evaluated alternately, and in general this

evaluation creates new signals. One might naturally think to evaluate (f x) or (g y) by itself,

but this would mean dropping the part of their context that lies outside theif expression,

i.e., (− 3 (∗ 2 [])). Any signals created by this evaluation would likewisecontain only the

local context from inside theif .

However, because every signal captures the context of its creation, it is possible to

preserve the proper contextual information even in cases where a signal results from another

signal’s update. For example, the signal created for theif expression is:

(sig (− 3 (∗ 2 [])) (if [] (f x) (g y)) b)

As shown in ruleU-SWC, whenever the value ofb changes, the inner context—(if [] (f x)

(g y))—will be applied to the new value to construct a new branch.The important thing

is that the evaluation of the resulting expression occurs within the outer context, (− 3 (∗

121

2 [])), so any new signals will contain the full context that would have been present in

a traditional call-by-value evaluation. Evaluation only proceeds until the original (inner)

expression has been reduced to a value. Thus the outer context is just present to record the

origin of any signals.

7.3.2 Implementation

The next step is to apply this idea of capturing evaluation contexts to a real implementa-

tion. Of course, realistic programming languages (including Scheme) don’t have evalua-

tion contexts that programs can capture and manipulate. However, many of them provide a

mechanism for inspecting the control stack, which is the implementation’s representation

of the evaluation context.

In DrScheme, the stack inspection mechanism is based on the notion of continuation

marks.

To understand why DrScheme’s error-tracer fails in our embedded implementation, we

must look more closely at its interface for control-oriented tools. We use a formal model

of our implementation language, based on the model of an algebraic stepper presented by

Clements et al. [25]. The language is a simple version of Scheme that includes a mechanism

for control-flow introspection. This mechanism, based on the manipulation ofcontinuation

marks, is essentially a formal model of the stack-inspection capabilities provided by lan-

guages like Java and C#. It allows a programmer to associate data with each activation

record on the runtime stack, just as the Java runtime associates source location information

with each of its stack frames. Due to space limitations, we omit the specification of the

implementation language from the paper.

In the formal model, the analog of a “stack” is an evaluation context, where each stack

frame corresponds to one application of a production rule inthe context’s grammar. This

gives rise to a linear structure, as in a stack, because each production (except for the empty

terminal context “[]”) contains exactly one sub-context (representing the nextstack frame).

As mentioned in Section 2, DrScheme’s [42] control-sensitive tools employ two main

elements: (1) reading and interpreting the continuation marks from the running program,

and (2)annotatingthe program prior to execution with instructions that install the neces-

sary marks. Fortunately, we can also model the annotation process formally. For example,

122

Clements et al. present an annotator for their algebraic stepper, and the one we use for Fr-

Time is a straightforward extension of theirs that handles aslightly richer implementation

language. The key property of the annotator is that it preserves semantics while supporting

reflection on the program’s control flow. We writeA[[〈EXPR〉]] to indicate the application

of such debugging annotations to the expression〈EXPR〉, the result being a semantically

equivalent expression save that, at any point in its evaluation, a tool can extract its contin-

uation marks and reconstruct its evaluation context.

Another way to think of this annotator is as a compiler with a “debug” flag enabled.

It generates code with extra information that tools like debuggers can use to elucidate the

program’s runtime behavior. Although our presentation is based on annotation and contin-

uation marks, the specific mechanism is not essential; Pettyjohn et al. [82] show how to

use Java’s exceptions and a suitable compiler to obtain the same basic functionality.

Now that we have a formal model of the implementation language, we canformallyex-

press the deep embedding of FrTime. Specifically, we can implement FrTime’s primitives

(e.g.,make-signal, send-event, value-now, etc.) and dataflow engine as Scheme proce-

dures1. A FrTime program, then, is simply a Scheme program evaluated in a context in

which all of these elements are defined. We write FRTIME[〈EXPR〉] to denote the result of

filling a FrTime context with a program. The result is a Schemeexpression that, when eval-

uated under Scheme’s semantics, implements the behavior that the original〈EXPR〉 would

exhibit under the FrTime semantics shown in Figures 3.1 through 3.5.

This formalism allows us to capture precisely the problem with the näıve error-reporting

in the FrTime implementation described in the previous section. For one thing, Scheme’s

error-tracer, by default, annotates the whole program, yielding A[[FRTIME[〈EXPR〉]]]. This

explains why error traces contain references to the implementation. What we want instead

is to evaluate FRTIME [A[[〈EXPR〉]]], so only contextual information from the user’s pro-

gram appears in the traces. However, this is only half of the problem, since the FrTime

semantics demands an error-trace containing more than local information (it composes ad-

ditional context from the signal whose update threw the exception). Our original (buggy)

implementation neglects this requirement, with the consequence that error reports fail to

identify the responsible fragments of the user’s program.

1The implementation is included with the DrScheme distribution.

123

7.3.3 Effective Evaluation Contexts

To fix this problem, the implementation needs to be able to capture and store a representa-

tion of its evaluation context. Fortunately, this is exactly what our control-flow reflection

mechanism allows us to do. In particular:

1. We first need a variable to simulate theE element in the low-level semantics—the

additional context associated with the signal being recomputed. We call this variable

e-e-c, as it holds theeffective evaluation context. Its value is initiallyempty, repre-

senting the empty context, since top-level evaluation doesnot occur on behalf of any

particular signal.

2. Within the implementation of themake-signalfunction, we capture thecurrenteval-

uation context, compose it with the effective evaluation context, and store it with the

signal. This corresponds exactly to the behavior ofMAKE -SIGNAL in the semantics;

it saves the full program context that is responsible for theresulting signal.

3. Inside the main loop of the dataflow engine, before recomputing a signal, we set

the effective evaluation context to the context saved from the signal’s creation. This

corresponds to the operation of theUPDATE-INT andERRORrules in the high-level

semantics: when they invoke the low-level evaluator on a signal’s update procedure,

they provide that signal’s additional context asE.

4. When the top-level error-handler catches an error and reports it to the user, we make it

build a trace by composing the effective and actual evaluation contexts. This mimics

the behavior of the ruleERROR, which detects low-level evaluation errors and reports

them at the higher level with contexts enriched by the responsible signals.

7.3.4 Generalizing the Solution Strategy

We have gone into a lot of detail about a specific application of effective evaluation contexts—

to make an error-tracing tool for Scheme work for a particular embeddedDSL. We claim,

however, that the ideas we have developed are not specific to FrTime or the error-tracing

tool. In fact, to apply them to a different deepDSL embedding, we just need to replace

124

signalwith the new language’s semantic data structure andupdatewith its notion of inter-

pretation.

For example, suppose we wish to apply the same solution to fix the error-tracing in

Slideshow:

1. Just as for FrTime, we need to extend our tool interface with ane-e-cvariable. How-

ever, if we have already made this extension for another language, we don’t need to

do it again.

2. In the constructor for thepict data structure (Slideshow’s semantic data structure),

we capture and save the current evaluation context.

3. In the slide navigator, around the interpreter that renders eachpict, we extract the

context associated with thepict to be drawn and copy it into thee-e-c.

4. We make the top-level error-handler compose the contentsof thee-e-cwith the local

context. That way, if an error occurs while rendering a slide, the trace will automat-

ically include the code that created the faultypict. This change, like the addition of

thee-e-cvariable, is only necessary if this is the first time we are adapting the tool.

If we wish to reuse a different tool, then we must similarly extend it with an awareness

of effective evaluation contexts. For example, DrScheme’sprofiler uses an annotator that

inserts calls to read the CPU time before and after each procedure application, counting the

elapsed time against the actual procedure (in its evaluation context). This default behavior

is not very useful for deepDSL embeddings, since it ends up telling us the obvious—that

the interpreter consumes the majority of the processing time. To get more meaningful

measurements, we should attribute the time spent in the interpreter towardthe context that

created the interpreted data. Fortunately, this information is readily available: in modifying

our languages to work meaningfully with the error-trace tool, we made the interpreter copy

the context from the interpreted datum’s creation to thee-e-cvariable. The profiler only

needs to be aware of the contents of this variable and adjust its accounting accordingly.

125

Figure 7.4: Output from original profiler on FrTime program

Figure 7.5: Output from adapted profiler on FrTime program

7.3.5 Transformation of the Semantic Data Structure

Sometimes, a semantic data structure does not feed directlyinto a DSL interpreter, but in-

stead first undergoes a number of transformations. For example, the language may convert

it to a more efficient intermediate representation, annotate it with the results of various

static analyses, and apply a number of optimizations to it before finally running it. So, the

value that finally flows into the rendering engine is several stages removed from the orig-

inal program and its corresponding effective evaluation context. Without some additional

book-keeping, the system loses its connection to the original DSL program.

Effective evaluation contexts can help us with this problemas well. The idea is to instru-

ment each of the transformation steps so that it copies the effective context from its input

to its output. This way, the final representation—the one that the interpreter sees—maps

to the same effective evaluation context as the raw data structure from which it is derived.

This gives the interpreter access to the effective evaluation context that it would have if it

interpreted the original data structure directly, withoutthe intervening transformations.

7.4 Implementation Status

I have implemented the strategy described above for both FrTime and Slideshow, in con-

junction with DrScheme’s error-tracer and profiler, and themodifications have improved

the quality of the feedback. In each case, the implementation requires less than thirty lines

of code. For the languages, the bulk of this involves instrumenting the semantic data struc-

ture to capture and store the evaluation context upon construction. For the tools, the only

126

extension is to read and take into account the additional information stored in the effective

evaluation context.

I show the impact of these modifications on the profiler. Figure 7.4 shows the original

profiler output from a FrTime program. In this case, the tool’s statistics come from actual

evaluation contexts. The expressionsinner andloop are the main loops inside the FrTime

dataflow engine. It is neither interesting nor informative that they perform the bulk of the

computation in the system. On the other hand, Figure 7.5 shows the profiler output for

the same program after modifying it to use effective evaluation contexts. Here, the top

contributors are those expressions in the user’s program that construct signals for which

recomputation is expensive.

Chapter 8

Extended Application: Scriptable

Debugging

Debugging is a laborious part of the software development process.1 Indeed, even with the

growing sophistication of visual programming environments, the underlying debugging

tools remain fairly primitive.

Debugging is a complex activity because there is often a gooddeal of knowledge about

a program that is not explicitly represented in its execution. For instance, imagine a pro-

grammer trying to debug a large data structure that appears not to satisfy an invariant. He

might set a breakpoint, examine a value, compare it against some others and, not finding

a problem, resume execution, perhaps repeating this process dozens of times. This is both

time-consuming and dull; furthermore, a momentary lapse ofconcentration may cause him

to miss the bug entirely.

The heart of automated software engineering lies in identifying such repetitive human

activities during software construction and applying computational power to ameliorate

them. For debuggers, one effective way of eliminating repetition is to make themscript-

able, so users can capture common patterns and reuse them in the future. The problem then

becomes one of designing effective languages for scriptingdebuggers.

1This chapter expands on previously published joint work [63, 64] with Guillaume Marceau, Jonathan
P. Spiro, and Steven P. Reiss. Guillaume deserves credit forthe original idea of using a functional reactive
language to script a debugger.

127

128

Debugging scripts must easily capture the programmer’s intent and simplify the bur-

densome aspects of the activity. To do this, they must meet several criteria. First, they must

match the temporal, event-oriented view that programmers have of the debugging process.

Second, they must be powerful enough to interact with and monitor a program’s execu-

tion. Third, they should be written in a language that is sufficiently expressive that the act

of scripting does not become onerous. Finally, the scripting language must be practical:

users should, for instance, be able to constructprogram-specificmethods of analyzing and

comprehending data. For example, users should be able to create redundant models of the

program’s desired execution that can be compared with the actual execution. This calls for

a library of I /O and other primitives more commonly found in general-purpose languages

than in typical domain-specific languages.

In this paper, we present the design and implementation of aninteractive scriptable de-

bugger called MzTake (pronounced “miz-take”). Predictably, our debugger can pause and

resume execution, and query the values of variables. More interestingly, developers can

write scripts that automate debugging tasks, even in the midst of an interactive session.

These scripts are written in a highly expressive language with a dataflow evaluation seman-

tics, which is a natural fit for processing the events that occur during the execution of a

program. In addition, the language has access to a large collection of practical libraries,

and evaluates in an interactive programming environment, DrScheme.

8.1 A Motivating Example

Figure 8.1 shows a Java transcription of Dijkstra’s algorithm, as presented inIntroduction

to Algorithms[27]. Recall that Dijkstra’s algorithm computes the shortest path from a

source node to all the other nodes in a graph. It is similar to breadth-first search, except

that it enqueues the nodes according to the totaldistancenecessary to reach them, rather

than by the number ofsteps. The length of the shortest path to a node (so far) is stored

in the weightfield, which is initialized to the floating point infinity. Thealgorithm relies

on the fact that the shortest-path estimate for the node withthe smallest weight is provably

optimal. Accordingly, the algorithm removes that node fromthe pool (viaextractMin), then

uses this optimal path to improve the shortest path estimateof adjacent nodes (viarelax).

The algorithm makes use of a priority queue, which we also implemented.

129

Figure 8.2 shows a concrete input graph (whereS, at location〈100, 125〉, denotes the

source from which we want to compute distances) and the output that results from executing

this algorithm on that graph. The output is a set of nodes for which the algorithm was able

to compute a shortest path. For each node, the output presents the node’s number, its

coordinates, and its distance from the source along the shortest path.

As we can see, this output is incorrect. The algorithm fails to provide outputs for the

nodes numbered4, 5 and6, even though the graph is clearly connected, so these are a finite

distance fromS.

Since the implementation of Dijkstra’s algorithm is a direct transcription from the text

(as a visual comparison confirms), butwe implemented the priority queue, we might ini-

tially focus our attention on the latter. Since checking theoverall correctness of the priority

queue might be costly and difficult, we might first try to verify a partial correctness cri-

terion. Specifically, if we callextractMinto remove two elements in succession, with no

insertions in-between, the second element should be at least as large as the first.

Unfortunately, most existing debuggers make it difficult toautomate the checking of

such properties, by requiring careful coordination between breakpoint handlers. For ex-

ample, ingdb [90] we can attach conditional breakpoint handlers—which are effectively

callbacks—to breakpoints oninsert andextractMin, and so observe values as they enter

and leave the queue. Figure 8.3 illustrates the control flow relationship between the target

and the debugging script when we use callbacks to handle events. Starting at the top left,

the target program runs for a while until it reaches theextractMin function; control then

shifts to the debugger, which invokes the callback. The callback makes a decision to either

pause or resume the target. Eventually, the target continues and runs until it reaches the

breakpoint on theextractMinfunction for a second time. If we are monitoring a temporal

property, such as the ordering of elements taken out of a priority queue, the decision to

pause or resume the target on the second interruption will depend on data from the first

callback invocation. Observe that, for the program on the left, it is natural to communicate

data between the parts of execution, because it consists of one single thread of control. In

contrast, the “program” on the right is broken up into many disjoint callback invocations,

so we need to use mutable shared variables or other external channels to communicate data

from one invocation to the next.

All this is simply to check for pairs of values. Ideally, we want to go much further than

130

simply checking pairs. In fact, we often want to create a redundant model of the execution,

such as mirroring the queue’s intended behavior, and write predicates that check the pro-

gram against this model. Upon discovering a discrepancy, wemight want to interactively

explore the cause of failure. Moreover, we might find it valuable to abstract over these

models and predicates, both to debug similar errors later and to build more sophisticated

models and predicates as the program grows in complexity.

In principle, this is what scriptable debugging should accomplish well. Unfortunately,

this appears to be difficult for existing scriptable debuggers. For example, Coca [35] offers

a rich predicate language for identifying interesting dataand points in the execution, but it

does not offer a facility for relating values across different points in time, so the programmer

would still need to monitor this criterion manually.UFO [6] supports computation over

event-streams, but does not support interaction. Dalek [76] is interactive and offers the

ability to relate execution across time, but provides limited abstractions capabilities, so

we could not use it to build the predicates described in this paper. In general, existing

scriptable debuggers appear to be insufficient for our needs; we discuss them in more detail

in section 9.

This chapter presents a new system that addresses the weaknesses found in existing

debuggers. In section 8.2, we describe the goals and observations that have guided our

work. We reflect on lessons learned from this example in section 8.5. In Section 8.6 and

Section 8.7, we describes the design and the implementation, respectively. Section 8.8

discusses strategies to control the execution of a target program. Section 8.9 provides

additional, illustrative examples of the debugger’s use.

8.2 Desiderata

We believe that users fundamentally view debugging as a temporal activity with the run-

ning program generating a stream of events (entering and exiting methods, setting values,

and so on). They use constructs such as breakpoints to make these events manifest and to

gain control of execution, at which point they can inspect and set values before again relin-

quishing control to the target program. To be maximally useful and minimally intrusive, a

scriptable debugger should view the debugging process justas users do, but make it easy

to automate tedious activities.

131

Concretely, the scripting language must satisfy several important design goals.

1. While debuggers offer some set of built-in commands,users often need to define

problem-specific commands. In the preceding example, we wanted to check the or-

der of elements extracted from a queue; for other programs, we can imagine com-

mands such as “verify that this tree is balanced”. While obviously a debugger should

not offer commands customized to specific programs, it should provide a powerful

enough language for programmers to capture these operations easily. Doing so of-

ten requires a rich set of primitives that can model sophisticated data, for instance to

track the invariants of a program’s data.

2. Programs often contain implicit invariants. Validatingthese invariants requires main-

taining auxiliary data structures strictly for the purposeof monitoring and debugging.

In our example, although Dijkstra’s algorithm depends on nodes being visited in or-

der of weight, there is no data structure in the program that completely captures the

ordered list of nodes (a priority heap satisfies only a weakerordering relation). Lack-

ing a good debugging framework, the developer who wants to monitor monotonicity

therefore needs to introduce explicit data structures intothe source. These data struc-

tures may change the space- and time-complexity of the program, so they must be

disabled during normal execution. All these demands complicate maintenance and

program comprehension. Ideally,a debugger should support the representation of

such invariants outside the program’s source. (In related work, we explain why ap-

proaches like contracts and aspects [5] are insufficient.)

3. Debugging is often a process of generating and falsifyinghypotheses.Programmers

must therefore have a convenient way to generate new hypotheses while running a

program.Any technique that throws away the entire debugging contextbetween each

attempt is disruptive to this exploratory process.

4. Since the target program is a source of events and debugging is an event-oriented

activity, the scripting language must be designed to act as a recipientof events.

In contrast, traditional programming languages are designed for writing programs

that are “in control”—i.e., they determine the primary flow of execution, and they

132

provide cumbersome frameworks for processing events. Thisposes a challenge for

programming language design.

5. As a pragmatic matter,debuggers should have convenient access to the richI /O fa-

cilities provided by modern consolesso they can, for instance, implement problem-

specific interfaces. A custom language that focused solely on the debugging domain

would invariably provide only limited support for such activities. In contrast, the

existence of rich programming libraries is important for the widespread adoption of

a debugging language.

To accomplish these goals, a debugging language must address a conflict central to all

language design: balancing the provision of powerful abstractions with restrictions that en-

able efficient processing. This has been a dominant theme in the prior work (see section 9).

Most prior solutions have tended toward the latter, while this paper begins with a general-

purpose language, so as to explore the space of expression more thoroughly. This results in

some loss of machine-level efficiency, but may greatly compensate for it by saving users’

time. Furthermore, the functional style we adopt creates opportunities for many traditional

compiler optimizations.

8.3 Language Design Concerns

FrTime supports the development of a scriptable debugger inseveral ways. Firstly, the rich

libraries of DrScheme are available for FrTime, and are automatically lifted to the time

domain, so they recompute when their arguments update. Secondly, the DrScheme prompt

recognizes behaviors and automatically updates the display of their values as they change

over time. Finally, FrTime upholds a number of guarantees about a program’s execution,

including the order in which it processes events and the space required to do so:

• Ordering of event processing: Since FrTime must listen to multiple concurrent

event sources and recompute various signals in response, wemight worry about the

possibility of timing and synchronization issues. For example, if signala depends

on signalb, we would like to know that FrTime will not recomputea using an

out-of-date value fromb. Fortunately, FrTime’s recomputation algorithm is aware

133

of dataflow dependencies between signals and updates them ina topological order,

starting from the primitive signals and working towards their dependents.

• Space consumption: FrTime only remembers the current values of behaviors and

the most recent occurrences of events. Thus, if the program’s data structures are

bounded, then the program can run indefinitely without exhausting memory. If the

application needs to maintain histories of particular event streams, it can use FrTime

primitives like history-eor accum-bfor this purpose. The application writer must

apply these operations explicitly and should therefore be aware of their cost.

8.4 Debugging the Motivating Example

We are now ready to return to our example from section 8.1. As we explained previously,

our implementation of Dijkstra’s algorithm employs a priority queue coded by us. In ad-

dition, we noted that our implementation ofDijkstraSolveris a direct transcription of the

pseudocode in the book. We hypothesized that the bug might bein the implementation of

the priority queue, and that we should therefore monitor itsbehavior. Recall that the partial

correctness property we wanted to verify was that consecutive pairs of elements extracted

from the queue are in non-decreasing order.

Figure 8.4 presents a debugging script that detects violations of this property. In the

script, the variablec is bound to a debugging session forDijkstraTest, a class that exer-

cises the implementation of Dijkstra’s algorithm. The invocation ofstart-vminitiates the

execution of the Java Virtual Machine (JVM) on this class, and immediately suspends its

execution pending further instruction.

The expression (jclass c PriorityQueue) creates a FrTime proxy for thePriorityQueue

class in Java. Since Java dynamically loads classes on demand, this proxy is a time varying

value: its value is⊥ at first, and stays so until the class is loaded into theJVM. The operator

jclasstreats its second argument specially:PriorityQueueis not a variable reference, but

simply the name of the target class. In Lisp terminology,jclassis aspecial form.

Next, we install tracing around the methodsadd andextractMinof the priority queue.

A tracepoint is a FrTime event-stream specifically designed for debugging: the stream

contains a new value every time the Java program’s executionreaches the location marked

134

by the tracepoint. Concretely, the expression

(define inserts

(trace (queue.addentry)

(bind (item) item.weight)))

installs a tracepoint at the entry of theaddmethod ofqueue.2 The result oftrace is an event

stream of values. There is an event on the stream each time thetarget program reaches the

add method. To generate the values in the stream, thetrace construct evaluates its body;

this body is re-evaluated for each event. In this instance, we use thebind construct to reach

into the stack of the target, find the value of the variableitem (in the target), and bind it to

the identifieritem(in the body of thebind). In turn, the body of thebindextracts theweight

field from this item. This weight becomes the value of the event.

The identifierinserts is therefore bound to a FrTime event-stream consisting of the

weights of all nodes inserted into the priority queue. The identifier removesis bound cor-

respondingly to the weights of nodes removed from the queue by extractMin.

We initially want to perform a lightweight check that determines whether consecutive

removes (not separated by aninsert) are non-decreasing. To do this, we merge the two

event-streams,insertsandremoves. Since we are only interested in consecutive, uninter-

rupted removals, the monitor resets upon each insertion. The following FrTime code uses

the combinator-=> to map the values in theinsertsstream to the constant ’reset, which

indicates that the monitor should reset:

(merge-e removes(inserts. -=> . ’reset))

The result of this expression is illustrated in Figure 8.5. In this graph, time flows towards

the right, so earlier events appear to the left. Each circle represents one event occurrence on

the corresponding stream. The first three lines show the streams we just discussed:inserts,

removes, and the mappedinserts. The fourth timeline of the figure shows that themerge-e

expression evaluates to an event-stream whose events are inthe order they are encountered

during the run. The insert events have been mapped to the constant, while the remove

events are represented by the weight of the node.

The last two timelines in Figure 8.5 depict the next two streams created by the script.

2Here and in the rest of this paper, we use the infix notation supported by FrTime: (x . op . y) is the same
as (op x y) in traditional Lisp syntax.

135

The merged stream is passed to the core monitoring primitive, not-in-order, shown in Fig-

ure 8.6. This useshistory-e to extract the two most recent values from the stream and

processes each pair in turn. It filters out those pairs that donot exhibit erroneous behavior,

namely when one of the events is a ’reset or when both events reflect extracted weights

that are in the right order. The result is a stream consistingof pairs of weights where the

weightier node is extracted first, violating the desired order. We call this streamviolations.

The FrTime identifierlatest-violationis bound to a behavior that captures the last viola-

tion (using the FrTime combinatorhold). If the priority queue works properly, this behavior

will retain its initial value,false(meaning “no violation so far”). If it ever changes, we want

to pause theJVM so that we can examine the context of the violation. To do this, we use the

primitive set-running-e!, which consumes a stream of boolean values. Callingset-running-

e! launches the execution of the target program proper, and it will keep on consuming future

events on the given stream: when an event with the valuefalseoccurs theJVM pauses, af-

ter which, when an event with a true value occurs theJVM resumes.3 Since we anticipate

wanting to observe numerous violations, we define the (concisely named) abstractionnv,

which tells theJVM to run until thenextviolation occurs.

At the interactive prompt, we type (nv). Soon afterward, theJVM stops, and we query

the value oflatest-violation:

> (nv)

short pause

> latest-violation

(+inf.0 55.90169943749474)

This output indicates that the queue has yielded nodes whoseweights are out of order. This

confirms our suspicion that the problem somehow involves thepriority queue.

Continuing Exploration Interactively

To identify the problem precisely, we need to refine our modelof the priority queue. Specif-

ically, we would like to monitor the queue’s complete black-box behavior, which might

provide insight into the actual error.

3In Scheme, any value other thanfalse is true.

136

With the JVM paused, we enter the code in figure 8.7 to the running FrTime session.

This code duplicates the priority queue’s implementation using a sorted list. While slower,

it provides redundancy by implementing the same data structure through an entirely differ-

ent technique, which should help identify the true cause of the error.4

We now explain the code in figure 8.7. The identifiermodel is bound to a list that,

at every instant, consists of the elements of the queue in sorted order. We decompose

its definition to improve readability. The valueinsertersis an event-stream of FrTime

procedures that insert the values added to the priority queue into the FrTime model (==>

applies a given procedure to each value that occurs in an event-stream); similarly,removers

is bound to a stream of procedures that remove values from thequeue. The code

(accum-b(merge-e inserters removers)

(convert-queue-to-list(bind (q) q)))

merges the two streams of procedures usingmerge-e, and usesaccum-bto apply the proce-

dures to the initial value of the model.accum-baccumulates the result as it proceeds, result-

ing in an updated model that reflects the application of all the procedures in order.accum-b

returns a behavior that reflects the model after each transformation. We must initialize the

model to the current content of the queue. The user-defined procedureconvert-queue-to-list

(elided here for brevity) convertsq’s internal representation to a list.

Having installed this code and initialized the model, we resume execution withnv. At

the next violation, we interactively apply operations to compare the queue’s content against

its FrTime model (the list). We find that the queue’s elementsare not in sorted order while

those in the model are. More revealingly, the queue’s elements are not the same as those in

the model. A little further study shows that the bug is in our usage of the priority queue: we

have failed to account for the fact that the assignment todest.weightin relax (figure 8.1)

updatesthe weights of nodes already in the queue. Because the queue isnot sensitive to

these updates, what it returns is no longer the smallest element in the queue. (Of course,

these steps—of observing the discrepancy between the modeland the phenomenon, then

mapping it to actual understanding—require human ingenuity.)

On further reading, we trace the error to a subtle detail in the description of Dijkstra’s

algorithm in Cormen, et al.’s book [27, page 530]. The book permits the use of a binary

4Since the property we are monitoring depends only on the nodes’ weights, not their identities, the model
avoids potential ordering discrepancies between equally-weighted nodes.

137

heap (which is how we implemented the priority queue) for sparse graphs, but subsequently

amends the pseudocode to say that the assignment todest.weightmust explicitly invoke

a key-decrement operation. Our error, therefore, was not inthe implementation of the

heap, but in using the (faster) binary heap implementation without satisfying its (stronger)

contract.

8.5 Reflections on the Example

While progressing through the example, we encounter severalproperties mentioned in the

desiderata that make FrTime a good substrate for debugging.We review them here, point

by point.

1. The DrScheme environment allows the user to keep and reuseabstractions across

interactive sessions. For instance, to monitor the priority queue, we define procedures

such asnot-in-orderandconvert-queue-to-list. Such abstractions, which manipulate

program data structures in a custom fashion, may be useful infinding and fixing

similar bugs in the future. They can even become part of the program’s distribution,

assisting other users and developers. In general, debugging scripts can capture some

of theontologyof the domain, which is embedded (but not always explicated)in the

program.

2. We discover the bug by monitoring an invariant not explicitly represented in the pro-

gram. Specifically, we keep a sorted list that mirrors the priority queue, and we

observe that its behavior does not match the expectations ofDijkstra’s algorithm.

However, the list uses a linear time insertion procedure, which eliminates the perfor-

mance benefit of the (logarithmic time) priority queue. Fortunately, by expressing

this instrumentation as a debugging script, we cleanly separate it from the program’s

own code, and hence we incur the performance penalty only while debugging.

3. The interactive console of DrScheme, in which FrTime programs run, enables users

to combine scripting with traditional interactive debugging. In the example, we first

probe the priority queue at a coarse level, which narrows thescope of the bug. We

then extend our script to monitor the queue in greater detail. This ability to explore

138

interactively saves the programmer from having to restart the program and manually

recreate the conditions of the error.

4. The dataflow semantics of FrTime makes it well suited to actas a recipient of events

and to keep models in a consistent state, even as the script isgrowing. During the

execution of the Dijkstra solver, FrTime automatically propagates information from

the variablesinsertsandremovesto their dependents, theviolationsvariable and the

set-running-e!directive. Also, when we add the variablemodel, FrTime keeps it

synchronized withviolationswithout any change to the previous code.

5. The libraries of FrTime are rich enough to communicate with external entities. The

programmer also has access to the programming constructs ofDrScheme (higher-

order functions, objects, modules, pattern-matching, etc.), which have rigorously de-

fined semantics, in contrast to the ad-hoc constructs that populate many scripting

languages. Further, since FrTime has access to all the libraries in DrScheme [42], it

can generate visual displays and so on, as we will see in section 8.9.1.

8.6 Design

The design of MzTake contains four conceptual layers that arise naturally as a consequence

of the goals set forth in the desiderata (Section 8.2).

First, we need abstractions that capture the essential functionality of a debugger. These

are: observing a program’s state, monitoring its control path, and controlling its execution.

MzTake captures them as follows:bind retrieves values of program variables,trace installs

trace points, andset-running-e!lets the user specify an event stream that starts and stops

the program.

Second, we need a way to navigate the runtime data structuresof the target program.

For a Java debugger, this means providing a mechanism for enumerating fields and looking

up their values.

Third, and most importantly, we need to be able to write scripts that serve as passive

agents. Most general-purpose languages are designed to enable writing programs that con-

trol the world, starting with a “main” that controls the order of execution. In contrast, a

debugging script has no “main”: it cannot anticipate what events will happen in what order,

139

and must instead faithfully follow the order of the target program’s execution. Therefore

we believe that a semantic distance between the scripting language and the kind of target

language we are addressing is a necessary part of the solution.5 Since the script’s execution

must be driven by the arrival of values from the program underobservation, a dataflow

language is a natural choice.

Once we have chosen a dataflow evaluation semantics, we must consider how broad the

language must be. It is tempting to create a domain-specific debugging language that offers

only a small number of primitives, such as those we have introduced here. Unfortunately,

once the script has gained control, it may need to perform arbitrary computational tasks,

access libraries for input/output, and so forth. This constant growth of tasks makes it im-

practical to build and constantly extend this domain-specific language, and furthermore it

calls into question the strategy of restricting it in the first place. In our work, we therefore

avoid the domain-specific strategy, though we have tried to identify the essential elements

of such a language as a guide to future language designers.

Having chosen a general-purpose strategy, we must still identify the right dataflow lan-

guage. Our choice in this paper is informed by one more constraint imposed by debugging:

the need to extend and modify the dataflow computation interactively without interrupting

execution. Among dataflow languages, this form of dynamicity appears to be unique to

FrTime.

We present the grammar of the MzTake language in Figure 8.8. The grammar is pre-

sented in layers, to mirror the above discussion. The first layer, represented by<debug-

expr>, presents the most essential language primitives. The second layer, consisting of

<inspect-expr> and <loc-expr>, represents primitives for obtaining information about

the target program. The third layer describes the FrTime language.

8.7 Implementation

The examples we have seen so far describe a debugger for Java programs. However, the

same principles of scriptable debugging should apply to most control-driven, call-by-value

5Our work additionally introduces asyntacticdifference when the target language is Java, but this can be
papered over by a preprocessor.

140

programming languages, with changes to take into account the syntactic and semantic pe-

culiarities of each targeted language. To investigate the reusability of our ideas, we have

implemented a version of MzTake for Scheme [55] also.

Not surprisingly, both the Java and Scheme versions share the design of the debugging

constructstrace, bind, andset-running-e!. They differ in the operators they provide for

accessing values in the language: because FrTime’s data model is closer to Scheme’s than

to Java’s, the Java version of the debugger requires ajdot operator to dereference values,

but the Scheme version does not need the equivalent. Furthermore, because Java (mostly)

names every major syntactic entity (such as classes and methods) whereas Scheme per-

mits most values to be anonymous, the two flavors differ in theway they specify syntactic

locations.

8.7.1 Java

The overall architecture of the Java debugger is shown in Figure 8.9.

On the left, we have the target Java program running on top of the virtual machine. The

Java standard provides a language-independent debugging protocol called the Java Debug

Wire Protocol (JDWP), designed to enable the construction of out-of-process debuggers.

We have adapted aJDWPclient implementation in Ruby [1] to DrScheme by compiling its

machine-readable description ofJDWP packets. We use this implementation to connect to

the virtual machine overTCP/IP.

On the right of the figure, we have the stack of programming languages that we used to

implement the debugger. FrTime is implemented on top of DrScheme, the debugging lan-

guage is implemented on top of FrTime, and debugging scriptsare themselves implemented

in the debugging language.

The communication between the low-level debugger and the script proceeds in three

stages. The first stage translatesJDWPpackets to a callback interface, the second dispatches

these callbacks to their respective tracepoints, and the third translates them to FrTime event

occurrences.

The second of these stages must handle subtleties introduced because theJDWPdoes not

provide guarantees about the order in which messages arrive. For example, the following is

a legal but troublesome sequence of messages. First, MzTakesends a message requesting a

141

new tracepointB. While MzTake waits for a reply, the target program reaches anexisting

tracepoint,A, generating an event that appears on the port before the virtual machine’s

reply to the request to installB. MzTake must either queue the trace atA while awaiting

the acknowledgment ofB or dispatch theA trace concurrently; it does the latter.

A trickier situation arises when a trace event atB appears even before the acknowledg-

ment of installing that tracepoint. This is problematic because every trace event is tagged

with a label that identifies which tracepoint generated it. This label is generated by the

JDWP and communicated in the tracepoint installation acknowledgment. Therefore, until

MzTake receives this acknowledgement, it cannot correctlyinterpret trace events labeled

with a new tag. In this case, MzTake is forced to queue these events, and revisits the queue

upon receipt of an acknowledgment.

We also need to translate the event callbacks into FrTime’s event streams. Each usage

of trace becomes associated with a callback. When the target reaches the traced location,

its callback evaluates thetrace expression’s body and adds the result to FrTime’s queue of

pending events. It then posts on a semaphore to awaken the FrTime evaluator thread and

waits. The event’s value automatically propagates to all expressions that refer to thetrace

statement, directly or indirectly, in accordance with FrTime’s dataflow semantics. When

the FrTime dataflow graph reaches quiescence, the evaluatorposts on a semaphore, which

releases the callback thread and subsequently resumes the Java process. This provides

synchronization between the debugging script and the debugged program. If the Java target

program uses multiple threads, MzTake handles each event ina stop-the-world manner, to

ensure that the script observes a consistent view of the program’s state.

We found that theJDWPprovides most of the functionality needed to build a scriptable

debugger. Beyond implementing the packets and the dispatching as we mentioned above,

we also needed to write two more components. The first was to duplicate Java’s scoping

rules in the implementation ofbind: looking upx at a location first finds a local variable,

if any, otherwise the field namedx in the enclosing class, then in the super class, and

so on. The second was to cache the results ofJDWP queries pertaining to the fields of

classes and the line numbers of methods, and flush the cache whenever the cached value

might be invalidated; this is necessary to achieve both quick startup and acceptable runtime

performance.

There are some other debugging events and inspection functions available in MzTake

142

that we mentioned very briefly, or not at all, during the example. These include facilities

for traversing the stack, enumerating local variables, andso on. There are also other events

and functionality available through theJDWP that are not accessible in the debugger, such

as class-loading and unloading events, static initializers, etc. What we have described so

far is a conservative minimal extension of the programming language FrTime; it is easy to

continue in the same vein to include support for the remaining events.

The inspection functions we provide pertain only to the datapresent in the target. We

might like to reflect on the program’s syntactic structure aswell, for example to trace all

assignments to a variable or all conditional statements. However, theJDWP does not pro-

vide support for such inspection, so we would need to build iton our own. In a sense, such

capabilities are orthogonal to our work, since dataflow offers no new insight on processing

of static syntax trees.

The quality of theJDWP implementation varied across virtual machines, and many ver-

sions were prone to crashes; we tested against the SunJVM, the IBM JVM, and the Black-

downJVM, ultimately settling on the Sun implementation.

8.7.2 Scheme

The Scheme version employs source annotation. We instrument the Scheme program so

that it mirrors the functionality of a process under the control of a debugger. The annotation

mirrors the content of the lexical environment and introduces a procedure that determines

when to invoke the debugger.

For example, suppose the original target program contains the expression

(define(id x) x)

(id 10)

The output of the annotator would be (approximately)

143

(defineenvempty)

(define(id x)

(set!env(cons(list ”x” x) env))

(invoke-debugger1 15 env)

(begin0 ;; perform steps in order, then return value of the first expression

x

(set!env(rest env))))

(invoke-debugger2 1 env)

(id 10)

When the annotated version executes, theenvvariable recreates the lexical environment.

In particular, it tracks thenamesof variables in conjunction with their values, enabling

inspection. Theinvoke-debuggerprocedure receives source location information (e.g., the

arguments2 and1 refer to line two, column one). Each invocation of the procedure tests

whether a tracepoint has been installed at that location andaccordingly generates an event.

There are several important details glossed over by this simplified notion of annotation.

We discuss each in turn:

thread-safety This annotation uses a mutable global variable for the environment. The

actual implementation instead uses thread-local store.

tail-calls This annotation modifies the environment at the end of the procedure, thereby de-

stroying tail-call behavior. The actual implementation usescontinuation-marks[24],

which are specifically designed to preserve tail-calls in annotations.

communication This annotation appears to invoke a procedure namedinvoke-debugger

that resides in the program’s namespace. Because FrTime runsatop the DrScheme

virtual machine, the target Scheme program and the MzTake debugging environment

share a common heap. Therefore, the annotation actually introduces a reference to

thevalueof the debugging procedure, instead of referring to it by name.

The procedureinvoke-debuggergenerates a FrTime event upon reaching a tracepoint,

and then waits on a semaphore. From there, the evaluation of the script proceeds as in the

Java case, since both implementations share the same FrTimeevaluation engine. When the

evaluation reaches quiescence, it releases the semaphore.

144

The implementation is available from

http://www.cs.brown.edu/research/plt/software/mztake/

8.7.3 Performance

We analyze the performance of the Dijkstra’s algorithm monitor shown in figures 8.4 and

8.6. This example has a high breakpoint density (approximately 500 events per millisec-

ond), so the time spent monitoring dominates the overall computation. In general, the im-

pact of monitoring depends heavily on breakpoint density, and on the amount of processing

performed by each breakpoint. All time measurements are fora 1.8GHzAMD Athlon XP

processor running Sun’sJVM version 1.4 for Linux.

We measure the running time of the the Dijkstra’s algorithm monitor shown in fig-

ures 8.4 and 8.6, when it executes in the Java version of the debugger. Excluding theJVM

startup time, it takes 3 minutes 42 seconds to monitor one million heap operations (either

add or extractMin), which represents 2.217 milliseconds per operation. We partition this

time into four parts: First, the virtual machine executes the call to eitheraddor extractMin

(0.002 milliseconds per operation). Second, theJDWP transmits the context information,

FrTime decodes it, and FrTime schedules the recomputation (1.364 milliseconds per oper-

ation). Third, FrTime evaluates the script which monitors the partial correctness property,

in figure 8.4 (0.851 milliseconds per operation).

According to these measurements, nearly one-third of the debugging time is devoted to

JDWPencoding and decoding and to the context-switch. This is consistent with the penalty

we might expect for using an out-of-process debugger. The time spent in FrTime can, of

course, be arbitrary, depending on the complexity of the monitoring and debugging script.

In the Scheme implementation, the target and the debugger execute in the same process

(while still preserving certain process-like abstractions [45]). As a result, whereas the Java

implementation incurred a high context-switch cost, but noper-statement cost, the Scheme

implementation incurs a small cost for each statement, but no operating system-level cost

for switching contexts. Per operation, the annotation introduces a 0.126 milliseconds over-

head. Thanks to the absence of a cross-process context-switch, dispatching an event costs

0.141 milliseconds per operation (compared with 1.3 milliseconds in the Java version of

the debugger). The remaining times stay the same.

145

Obviously, MzTake is not yet efficient enough for intensive monitoring. A two mil-

lisecond response time is, however, negligible when using MzTake interactively.

8.8 Controlling Program Execution

Debuggers not only inspect a program’s values, but sometimes also control its execution.

Some of the abstractions we defined in our running example were of the former kind (not-

in-order, convert-queue-to-list). In contrast, we also defined a custom-purpose rule for

deciding when to execute and when to pause, namely the functionnv.

Thesestart-stop policiesrepresent a general pattern of debugger use. These policiescan

differ in subtle but important ways, especially when the same line has several breakpoints,

each with its own callback. The start-stop policy used by most scripted debuggers consists

of running the callbacks in order of their creation, until one of them requests a pause. Once

this happens, the remaining breakpoints on the same line arenot executed at all.

One might wonder if this is the right rule for all applications. In particular, preventing

the execution of the subsequent callbacks creates a dependency between breakpoints (if

the first breakpoint decides to suspend the execution, the second does not get to run at

all). These dependencies are problematic if these breakpoints monitor implicit invariants

or implicit data structures, as we did during the example. During our debugging session,

we created a mirror model of the queue so that it would elucidate the problem with the state

of the real queue. In order to be of any debugging help, the model and the state must remain

synchronized. If the event that detected the state violation prevented the execution of the

event that updates the model, the program and model would cease to be synchronized.

Worse, this would happen exactly when we need to look at the model, namely when we

begin to explore the context of the violation.

By using a combination of first class events andset-running-e!, it is easy to define start-

stop policies which are both custom-purpose and reusable. We implement the problematic

start-stop policy just described with the code in figure 8.10. In the code,breakpointsis a

hash table that maps locations to event streams. Thebreak function sets or adds a break-

point on a given line. The first time it is called on a given location, it installs atrace handler

at that location, which simply sends the valuetrue on the event stream each time the tar-

get program reaches that location. On subsequent invocations, it accumulates a cascade

146

of events where each event is subordinate to the event that was in that location previously.

When the execution of the target program reaches one of the locations, the script invokes

each callback function in the cascade until the first one thatreturns false. The condition (if

i . . .) ensures that the other callbacks are not called afterwards.

With MzTake, it is straightforward to define a different policy. Figure 8.11 shows the

code for a break policy that executes all the breakpoints at one location before pausing the

target program.

8.9 Additional Examples

In this section, we present some additional examples that further illustrate the power of our

language.

8.9.1 Minimum Spanning Trees

Because MzTake has the full power of FrTime, users can take advantage of existing li-

braries to help them understand programs. For example, the FrTime animation library

allows specification of time-varying images (i.e., image behaviors) that respond to events.

Since MzTake generates events by tracing program execution, users can visualize program

behavior by appropriately connecting these events to the animation library.

An intuitive visual representation can be an effective way of gaining insight into a pro-

gram’s (mis)behavior. Moreover, many programs lend themselves to natural visualizations.

For example, we consider the problem of computing the Minimum Spanning Tree (MST)

for a collection of points in the plane. (This example is based on the actual experience

of one of the authors, in the context of writing a heuristic tosolve the traveling-salesman

problem.)

A simple greedy algorithm for theMST works by processing the edges in order of

increasing length, taking each edge if and only if it does notintroduce a cycle. Though the

algorithm is straightforward, the programmer might forgetto do something important, such

as checking for cycles or first sorting the edges by length.

The programmer could write code to isolate the source of sucherrors, but a simple

147

visualization of the program’s output is much more telling.In Figure 8.12, we show visu-

alizations of three versions of anMST program. On the left, we show the correctMST, in

the middle, an edge set computed without cycle detection, and on the right, what happens

if we forget to sort the edges.

In Figure 8.13, we show the debugging script that implementsthis visualization. Its

salient elements are:

tree-start-event occurs each time the program begins computing a newMST, yielding an

empty edge list

tree-edge-eventoccurs each time the algorithm takes a new edge, adding the new edge to

the list

tree builds a model of the tree by accumulating transformations from these event-streams,

starting with an empty tree

display-lines displays the current tree

Though we have not shown the implementation of theMST algorithm, one important

characteristic is that it does not maintain the set of edges it has taken: it only accumulates

the cost of the edges and keeps track of which vertices are reachable from each other.

In building an explicit model of the tree, our script highlights an important capability of

our debugging system—it can capture information about the program’s state that is not

available from the program’s own data structures. To implement the same functionality

without a scriptable debugger, the user would need to amend the program to make it store

this extra information.

8.9.2 A Statistical Profiler

Because our scripting language can easily monitor a program’s execution, it should be rel-

atively simple to construct a statistical profiler. Such a profiler uses a timer to periodically

poll the program. Each time the timer discharges, the profiler records which procedure was

executing and then re-starts the timer. The summary of this record provides an indication

of the distribution of the program’s execution time across the procedures.

148

MzTake provides a global time-varying value calledwhere, which represents the current

stack trace of the target process. It is a list of symbolic locations starting with the current

line and ending with the location of themain function. The value ofwhereis updated any

time the execution of the target is suspended, either bytrace or byset-running-e!.6

Figure 8.14 useswhereto implement a statistical profiler that records the top two stack

frames at each poll. First, we instantiate a hash table to mapstack contexts to their count.

Next, each time thewherebehavior changes, we capture the current context and pattern-

match on it usingmatch-lambda. If the context contains at least a line, a function, and a

caller function, we trim the context down to the function name and its caller and increment

the count in the hash table. Then we bindticks to a stream that sends an event every

50 milliseconds. Finally, we useset-running-e!to suspend the target at each tick. We

want to resume the target soon after a pause, but how soon is soon enough? We want

to leave just enough time so that the evaluation engine correctly updates the hash table

before resuming the target, but no more. Recall thatset-running-e!synchronizes with the

evaluation of the script, so that it waits until all dependencies are fully recomputed before

consuming the next event on its input stream. With that in mind, we usemerge-eto create a

stream containing two nearly-simultaneous events: thefalsetick is followed by atrue tick

immediately afterwards. The synchronization ensures thatset-running-e!will not consume

thetrue tick until the data flow consequences of thefalseticks are completely computed.

This code only gathers profiling information. The script needs to eventually report this

information to the user. There are two options: to wait untilthe program terminates (which

the debugger indicates using an event), or to report it periodically based on clock ticks

or some other condition. (The latter is especially useful when profiling a reactive program

that does not terminate.) Both of these are easy to implement using FrTime’s time-sensitive

constructs.

6We also have another behaviorwhere/ss(for where with single stepping) which updates at every step of
the execution. This is useful for scripts that want to process the entire trace of the target. However,where/ss
is disabled by default, for performance reasons.

149

c l a s s D i j k s t r a S o l v e r {

pub l i c HashMap b a c k t r a c e =new HashMap () ;
p r i v a t e P r i o r i t y Q u e u e q =new P r i o r i t y Q u e u e () ;

pub l i c D i j k s t r a S o l v e r (D i rec tedGraph graph ,
Node s o u r c e) {

s o u r c e . we igh t = 0 . 0 ;
q . addA l l (g raph . getNodes ()) ;

whi le (! q . isEmpty ()) {
Node node = (Node) q . e x t r a c t M i n () ;
L i s t s u c c e s s o r s = graph . ge tSuccsOf (node) ;
f o r (I t e r a t o r s u c c I t = s u c c e s s o r s . i t e r a t o r () ;

s u c c I t . hasNext () ;)
r e l a x (node , (Node) s u c c I t . nex t ()) ;

}
System . ou t . p r i n t l n (” R e s u l tb a c k t r a c e :\ n” +

b a c k t r a c e . keySet ()) ;
}

pub l i c vo id r e l a x (Node o r i g i n , Node d e s t){
double cand i da t eW e i gh t =

o r i g i n . we igh t + o r i g i n . d i s t a n c e T o (d e s t) ;
i f (cand i da t eW e i gh t< d e s t . we igh t) {

d e s t . we igh t = cand i da t eW e i gh t ;
b a c k t r a c e . pu t (des t , o r i g i n) ;

}
}

}

Figure 8.1: Implementation of Dijkstra’s Algorithm

2

41 5

6

3

S

Result backtrace:
[[node 1 : x 150 y 100 weight 55],
[node 2 : x 150 y 150 weight 55],
[node 3 : x 200 y 100 weight 105]]

Figure 8.2: Sample Input and Output

150

Figure 8.3: Control Flow of Program and Script

151

(definec (start-vm”DijkstraTest”))
(definequeue(jclass c PriorityQueue))

(define inserts
(trace (queue.addentry)

(bind (item) item.weight)))
(defineremoves

(trace (queue.extractMinexit)
(bind (result) result.weight)))

(defineviolations
(not-in-order(merge-e removes(inserts. -=> . ’reset))))

(define latest-violation(hold violationsfalse))
(define(nv)

(set-running-e!(violations. -=> . false)))

Figure 8.4: Monitoring the Priority Queue

29.5

29.5

15.3 40.6

15.3 40.6

(15.3 40.6)

(+inf.0 55.9)

55.9

55.9

(+inf.0 55.9)

+inf.0

(75.1 +inf.0)

+inf.075.1

75.1

(’reset 75.1)

55.9

’reset

’reset

29.5

’reset

’reset

(40.6 ’reset) ...

inserts

(inserts . −=> . ’reset)

violations

(history−e ... 2)

removes

(merge−e removes ...)

Figure 8.5: Event Streams

(define(not-in-order e)
(filter-e
(match-lambda

[(’ reset) false]
[(’ reset) false]
[(previous current) (> previous current)])

(history-e e2)))

Figure 8.6: The Monitoring Primitive

152

(define inserters
(inserts. ==> . insert-in-model))

(defineremovers
(removes. ==> . remove-from-model))

(definemodel
(accum-b(merge-e inserters removers)

(convert-queue-to-list(bind (q) q))))

Figure 8.7: The Redundant Model

<debug-expr> ::= (bind (<var> . . .) <expr> . . .)
| (trace <expr> <expr>)
| (set-running-e!<expr>)

<inspect-expr> ::= (start-vm<expr>)
| (jclass<expr> <name>)

<loc-expr> ::= <number> | entry| exit

<frtime-expr> ::= (map-e<expr> <expr>)
| (filter-e<expr> <expr>)
| (merge-e<expr> . . .)
| (accum-b<expr> <expr>)
| (changes<expr>)
| (hold <expr> <expr>)
| (value-now<expr>)
| seconds
| key-strokes
| (λ (<var> . . .) <expr> . . .)
| (<expr> . . .)
| (if <expr> <expr> <expr>)
| ... ; other Scheme expressions

<expr> ::= <debug-expr>
| <inspect-expr>
| <frtime-expr>

Figure 8.8: MzTake Grammar

153

Figure 8.9: MzTake Architecture for Debugging Java

154

(definebreakpoints(make-hash-table’equal))

(define(break location callback)
(let ([prev-breakpoint

(if (hash-table-contains? breakpoints location)
(hash-table-get breakpoints location)
(trace locationtrue))])

(hash-table-put! breakpoints location
(prev-breakpoint
. ==> .
(λ (i) (if i (callback) false))))))

(define(resume)
(set-running-e!

(apply merge-e(hash-table-values breakpoints))))

Figure 8.10: A Typical Start-Stop Policy

(definebreakpointsempty)

(define(break location callback)
(set!breakpoints

(cons(trace location(callback))
breakpoints)))

(define(resume)
(set-running-e!

(apply merge-e breakpoints)))

Figure 8.11: A Different Start-Stop Policy

155

Figure 8.12: Spanning trees computed correctly (left), without detecting cycles (middle),
and without sorting edges (right)

(definetree-start-event
(trace ((tsp . jdot . mst) . jloc . entry)

(bind () (λ (prev) empty))))
(definetree-edge-event

(trace ((tsp . jdot . mst) . jloc . 80)
(bind (e)

(λ (prev)
(cons(make-edge(e . jdot . v1)

(e . jdot . v2))
prev)))))

(definetree
(accum-b(merge-e tree-start-event

tree-edge-event)
empty))

(display-lines tree)

Figure 8.13: RecordingMST Edges

156

(definepings(make-hash-table’equal))

((changes where)
. ==> . (match-lambda[(line function context rest. . .)

(hash-table-increment! pings(list function context))]
[(void)]))

(defineticks(changes(quotientmilliseconds 50)))

(set-running-e!(merge-e(ticks . -=> . false)
(ticks . -=> . true)))

Figure 8.14: A Statistical Profiler

Chapter 9

Related Work

Research on dataflow languages began in the early 1970s, and there has been a large body

of work since then. An early language was Lucid [98], a pure, first-order dataflow language

based on synchronous streams.

Lustre [20] is a synchronous dataflow language similar to Lucid. Programs in Lustre

consist ofnodes, which process streams of values that are computed in synchrony with

various user-specified clocks. Variable definitions in Lustre are purely functional but may

refer to previous values of themselves and other variables.Thus, its streams are essentially

timed versions of the lazy lists found in many functional languages. They also capture the

essence of FrTime’s behaviors and events.

Lustre is designed to support development of reactive systems that satisfy real-time

performance constraints, as well as static verification of safety properties. To that end,

programs written in Lustre must be compilable to finite automata. To ensure compilabil-

ity, Lustre deliberately omits features commonly found in general-purpose languages, such

as object-orientation, higher-order functions, dynamic recursion, and recursive data struc-

tures, all of which FrTime does support. More fundamentally, Lustre differs from FrTime

because it is a self-contained language, whereas FrTime is an embedding of dataflow eval-

uation within an existing call-by-value language.

Signal [7] is similar to Lustre, but it is based on relations rather than functions, so its

underlying model is non-deterministic. FrTime adopts the basic spirit of dataflow pro-

gramming but embeds it within the dynamic and higher-order context of an existing call-

by-value functional language.

157

158

Lucid Synchrone [21] implements a Lustre-like notion of dataflow evaluation in a lan-

guage resembling (purely functional) Caml [2]. Its syntax isvery similar to that of Caml, so

it approaches the notion of transparent reactivity provided by FrTime. However, it works by

whole-program compilation to sequential Caml code (insteadof using call-by-value evalu-

ation to construct a dataflow graph), so it does not permit thefree interleaving of dataflow

and call-by-value evaluation, nor does it support live, incremental development in the style

of FrTime.

Esterel [9] is another synchronous language designed for writing real-time reactive sys-

tems. Like Lustre, Esterel programs compile to finite automata and support reasoning

about safety properties and real-time performance. However, unlike Lustre, which has a

functional dataflow semantics, Esterel is imperative. An Esterel program consists of tasks

that run in lockstep over a number of time steps, emitting, reading, and waiting for various

signals that are either present or absent in any given timestep. Esterel shares with Lustre

many of its differences from FrTime, such as a lack of higher-order procedures, dynamic

recursion, and recursive data structures, all of which mustbe sacrificed in order to guaran-

tee compilation to finite automate. However, because of its imperative programming style,

Esterel is even more different from FrTime than Lustre.

FairThreads [11] is a framework for synchronous reactive programming, similar in style

to Esterel. It allows a programmer to express computations in terms of many lightweight,

cooperative threads, each of which gets a chance to run in each logical time step. The

threads can communicate via broadcast signals (as in Esterel) as well as shared data. The

FairThreads model offers the expressive power of fine-grained concurrency without the

complexity and nondeterminism that arise from pre-emptivethreads. Implementations of

FairThreads exist for C, Java, and Scheme [86].

Functional reactive programming (FRP) [39, 74, 80, 102, 103, 104] merges the syn-

chronous dataflow model with the expressive power of Haskell, a statically-typed, higher-

order functional language. In addition, it adds support forswitching(dynamically recon-

figuring a program’s dataflow structure) and introduces a conceptual separation of signals

into (continuously-valued)behaviorsand (discretely-occurring)events. FrTime is inspired

and informed by this line of research, borrowing the basic notions of behaviors and events.

Several HaskellFRPimplementations are based on lazy stream abstractions, with which

it is relatively straightforward to implement a notion of synchronous dataflow computation

159

based on polling. The dataflow abstractions in these systemsare essentially the same as

in FrTime, but FrTime also supports imperative features in the interfaces with the outside

world, as well as interactive development in theREPL. Its update model is based on push

instead of pull, so its performance characteristics are somewhat different; in particular,

using push seems to incur significant overhead, but it has theadvantage of only recomputing

a signal if it depends on something that has changed.

There has been a good deal of work on implementation ofFRP. Real-timeFRP[103] and

event-drivenFRP [104] are first-order languages that have more in common withclassical

synchronous dataflow languages, where the focus is on bounding resource consumption.

ParallelFRPadds a notion of non-determinism and explores compilation of FRPprograms

to parallel code. Elliott discusses several functional implementation strategies for general-

purposeFRPsystems [38], which suffer from various practical problemssuch as time- and

space-leaks. A newer version, Yampa [74], fixes these problems at the expense of some ex-

pressive power: while Fran [39] aimed to extend Haskell withfirst-class signals, the Yampa

programmer builds a network ofsignal functionsthrough a set ofarrow combinators [51].

FrTime’s linguistic goal is to integrate signals with the Scheme language in as seamless

a manner as possible. Importantly, because Scheme is eager,the programmer has precise

control over when signals begin evaluating, which helps to prevent time-leaks. In addition,

the use of state in the implementation allows more control over memory usage, which helps

to avoid space-leaks. A revised implementation of Fran called NewFran resolves many of

the issues from the original Fran, using techniques very similar to those in FrTime. How-

ever, FrTime goes a step further by integrating with an interactive programming environ-

ment that supports incremental program development, various program-analysis tools, and

a rich set of libraries.

Lula [89], a stage lighting system written in Scheme, contains a stream-based imple-

mentation ofFRP that departs from the Haskell systems in a number of ways. It makes

heavy use of Scheme’s object-oriented features, modeling different varieties of signals

through a class hierarchy. Like FrTime, it implements a set of functional reactive adapters

for the MrEd toolkit, although it does not attempt to translate all of their imperative op-

erations to dataflow abstractions. Also like FrTime, it takes selective advantage of certain

impure features; for example, it uses threads to merge eventstreams without synchronous

polling. However, unlike FrTime, its notion of reactivity is not transparent, and it has not

160

been tightly integrated with the DrScheme environment.

Frapṕe [29] is a Java library for buildingFRP-style dynamic dataflow graphs. Its evalua-

tion model is similar to FrTime’s, in the sense that computation is driven by external events,

not by a central clock. However, the propagation strategy isbased on a “hybrid push-pull”

algorithm, whereas FrTime’s is entirely push-driven. A more important difference from

FrTime is that Frapṕe does not extend Java syntactically, so its reactivity is not transparent.

FRP has been applied to a number of domains, including animation[39], stage light-

ing [89], user interfaces [30, 85], robotics [77, 78], and computer vision [79]. We have

explored animation and user-interface programming with FrTime and have also applied it

to scriptable debugging [63]. This dissertation explores its use in more conventional desk-

top applications, including a graphical spreadsheet and anextension of Findler and Flatt’s

functional presentation system, Slideshow [43].

A technique similar to that employed by FrTime has been used to implement a form

of dataflow for slot-based object systems likeCLOS [33]. The basic idea is to extend slot

accessor and mutator methods with code to implement dataflowupdates. In particular,

when an accessor is invoked from a signal-defining context, it records a dependency as

well as returning a value. Likewise, when a mutator is invoked, it iterates through its list of

dependents and re-evaluates them. This strategy was used tobuild the one-way constraint

systems in Garnet [70] and Amulet [71] and has more recently been used in the Cells [94]

library. None of these systems appears to support higher-order reactivity or to address

glitches. Rather, they employ a depth-first update algorithmand avoid infinite loops in

cycles by recomputing any given value at most once in a given update.

Dataflow-like features are increasingly finding their way into mainstream languages.

For example, SuperGlue [65] is a linking language based on notions of behaviors and

events. It is used to specify relationships between components in event-driven Java pro-

grams. Data dependencies trigger re-evaluation of component code, using a dataflow graph

in much the same way as FrTime does. SuperGlue’s ties to object-oriented programming

are much stronger than those of FrTime, with direct languagesupport for such features as

objects, traits, and inheritance. While it does not provide ageneral notion of higher-order

reactivity, it offers convenient abstractions for the common special case of collections.

These allow a limited form of automatic generation of dynamic connections between ob-

jects.

161

The JavaFX [91] language supports a notion oftriggers that execute when changes

occur to specific variables. It also provides a more declarative mechanism forbinding

variables to expressions, the result being something akin to behaviors; that is, whenever the

value of a referenced variable changes, the whole expression is re-evaluated and the result

assigned to the bound variable. While the syntax of JavaFX is similar to that of Java, there

are a number of differences, and special keywords are required to introduce the dataflow

behavior, so its notion of reactivity is not quitetransparentin the sense of FrTime. Also,

JavaFX does not appear to support higher-order reactivity.

Petri nets [81] are, like dataflow, a graph-based model of computation. In a petri net,

there are places, transitions, and arcs. When there are tokens at all of a transition’s in-

put places, the transition can fire, consuming the tokens andplacing a specified number

of tokens on the output places. Petri nets can model a wide range of computational pat-

terns, including the update schedule of a synchronous dataflow program. However, they

only model a program’s control flow and not its the productionof values. Moreover, its

conjunctive firing rule cannot easily express FrTime’s topological update algorithm.

The Aurora [19] and Borealis [22] systems are designed to perform efficient query-

processing on time-varying data streams. Their evaluationmodel and some of their target

applications are similar to those of FrTime. They are also linguistically similar to Fr-

Time, as they explore the extension of database query languages with dataflow evaluation.

FrTime, however, explores this extension in the context of ahigher-order call-by-value

language.

LabView [72] is a graphical dataflow language designed for processing signals from sci-

entific instruments. It supports a limited notion of switching, in which fragments of a pro-

gram’s dataflow graph may be enabled and disabled according to time-varying conditions.

Its notion of dataflow is, however, fundamentally first-order, and its designers were not con-

strained by a need to interact seamlessly with an existing host language. Simulink [92] is

another commercial dataflow language. It is closely integrated with theMATLAB program-

ming language and is designed for modeling and simulation ofdynamic systems rather than

expressing general software applications.

Click [58] is a system for programming network routers. The programmer defines a

set of packet processors and constructs a network from them.Individual processors can

be configured to push or pull; the runtime system, essentially a dataflow machine, inserts

162

queues between processors as necessary and automatically schedules the packet processors

for execution. As it can support both push- and pull-based scheduling, it is in some sense

more general than FrTime. However, its notion of dataflow is first-order and its application

domain is significantly narrower than FrTime’s. Moreover, like many of the languages

with which I’m comparing, the dataflow language is a self-contained artifact rather than an

embedding into a pre-existing language.

Ptolemy [16] is a framework for implementing and studying models of computation that

involve communicating processes. The user defines rules by which processes change state

and communicate with each other. He can then observe the execution of a single model

or even combine several models and observe how they interact. The framework is general

enough to model formalisms like Petri nets, communicating sequential processes, theπ-

calculus, statecharts, and both synchronous and asynchronous dataflow networks. While

Ptolemy is certainly more general than FrTime, the system itself does not directly address

the issues involved in integrating reactive programming models with more traditional call-

by-value languages. Rather, it largely ignores such practical linguistic concerns as syntax,

library support, and programming environments.

Oz [69, 88] is a multi-paradigm programming model that includes concurrency, higher-

order functions, logic programming, and a form of dataflow. Oz’s notion of dataflow is what

is calledmonotonic; in this style of dataflow, a variable may initially be unbound (as in a

logic program), then acquire a value at some intermediate stage of a computation, at which

point it propagates to other parts of the program that refer to it, triggering new computation.

In constrast, FrTime embodies a more traditional notion of dataflow, in which the values of

variables may change repeatedly over the course of a program’s execution.

The E [68] language is another multi-paradigm programming system, combining con-

currency, distribution, and a capability-based security model. E also supports a notion of

first-order behaviors, which may be distributed across multiple hosts, communicating via

an adaptive push/pull mechanism that interacts smoothly with the language’s distributed

garbage collector. By comparison, FrTime supports higher-order dataflow and uses a purely

push-based update mechanism, but its behaviors cannot be distributed easily or in a space-

safe manner.

TBAG [40] is a C++ library for expressing animations in a declarative style. Linguis-

tically, it has much in common with FrTime. For example, it uses static overloading to

163

define lifted versions of many built-in C++ operators. It thusachieves, to a degree, the

same transparent reactivity exhibited by FrTime, though itdoes not carry the extensions

to the level of syntactic forms (e.g., conditionals). TBAG does not provide the concept of

switching that distinguishesFRPsystems. However, it does support a more general bidirec-

tional constraints constraint mechanism than the simple dataflow in FrTime and the other

FRPsystems.

An earlier object-oriented constraint-programming language is ThingLab [10], which

was designed for expressing and running simulations. Like FrTime, ThingLab maintains

dependencies between objects and automatically propagates updates when values change.

It also supports interactive development and experimentation with systems, through both

a REPL and a graphical interface. However, its constraint language is very general, and

solving a system of constraints requires a relatively complex search algorithm, which in

general may not succeed. In contrast, the unidirectional equality constraints in a dataflow

language can be satisfied, by design, through simple functional evaluation.

Adaptive functional programming (AFP) [3] supports incremental recomputation of

function results when their inputs change. As in FrTime, execution occurs in two stages.

First the program runs, constructing a graph of its data dependencies. The user then changes

input values and tells the system to recompute their dependents. The key difference from

FrTime is thatAFP requires transforming the program intodestination-passing style. This

prevents the easy import of legacy code and complicates the task of porting existing li-

braries. The structure ofAFP also leads to a more linear recomputation process, where the

program re-executes from the first point affected by the changes.

Open Laszlo [93] is a language designed for writing interactive applications that run

in a Web browser. It is similar toHTML but has a different syntax and provides additional

high-level features. The programmer specifies the structure and layout of a user interface

in an XML document, which may contain script code written in JavaScript. In addition

to a standard imperative callback-based approach to interaction, the language supports a

feature its creators calldata-binding, by which the contents and properties of user interface

elements may be bound to mutabledata sources. Whenever the data change, its consumers

are updated automatically, as in a dataflow language. However, the language does not have

a general notion of signals, or signal functions, that can becomposed arbitrarily, and there

is no declarative event-handling mechanism of the sort provided byFRP languages.

164

FOCUS [14] is a design methodology for specifying reactive systems. The basic ap-

proach is to model systems as collections of communicating stream processors whose be-

haviors are constrained by relations over their inputs and outputs. A system may be mod-

eled at several levels of detail, each model a refinement of the previous one, and various

properties of a model may be expressed and proven in a temporal logic framework. Since

FrTime programs can also be viewed as communicating stream processors, it could serve

as a target language for programs generated fromFOCUSspecifications. Alternatively, one

could start from a FrTime program and apply the reasoning techniques fromFOCUS to

establish properties of it.

Integration with Object-Oriented Toolkits

The Citrus system [56] consists of a language and toolkit for creating editors for struc-

tured data. It provides several dataflow-like features, including automatic synchronization

of models and views and the ability to define constraints on values. Citrus’s constraints

may refer to arbitrary program values, and they are automatically re-evaluated when such

values change, using a graph to track dependencies in a manner similar to that of FrTime.

Unlike FrTime, Citrus is designed specifically to simplify the construction of structured ed-

itors and, as such, does not seem well suited for general-purpose application development.

Moreover, while particular features exhibit dataflow-based evaluation, it does not integrate

the notion of dataflow with the language as a whole.

The FranTk [85] system adapted the Tk toolkit to a programmerinterface based on

the notions of behaviors and events in Fran [39]. However, FranTk still had a somewhat

imperative feel, especially with regard to creation of cyclic signal networks, which required

the use of mutation in the application program. Fruit [30] explored the idea of purely

functional user interfaces, implementing a signal-based programming interface atop the

Swing [37] toolkit.

All of this previous work is concerned with the problem of designing the dataflow inter-

face for the toolkit, and the emphasis is on the experience for the application programmer.

We consider this to be fairly well understood. However, the problem of actually imple-

menting such an interface is less well understood. Though all of these earlier systems have

included a working implementation, we understand that their development has been ad hoc,

165

and the subtle interaction between imperative toolkits anddeclarative dataflow systems has

not been explained in the literature.

Optimization

Deforestation [100] and listlessness [99] are optimization techniques that eliminate inter-

mediate data structures from functional programs. Their purpose is analogous to that of

lowering, which eliminates intermediate nodes from a dataflow graph. Although the me-

chanics of these transformations are quite different from those of lowering, for stream-

basedFRP implementations [39, 50], we imagine that deforestation and listlessness could

have an effect similar to lowering: namely, the weaving of multiple stream iterators into a

single processing loop. FrTime, however, seems to require more special techniques because

of its imperative implementation.

Most otherFRP implementations [29, 74, 102, 103] do not provide the same level of

transparency that FrTime offers. They implicitly lift a large number of common opera-

tions, but for some this is not possible, and syntactic constructs for features like conditional

evaluation and recursive binding have not been extended to handle signals.

Yampa [74] implements a dynamic optimization that achievesessentially the same ef-

fect as lowering. When it evaluates a composition of pure signal functions, it replaces

them with a single signal function that computes the composition of the original functions.

In FrTime, such a dynamic optimization would be difficult to implement without loss of

sharing. Specifically, without examining the program’s syntactic structure, we cannot de-

termine which intermediate signals can escape their context of creation, in which case they

must exist as separate nodes.

Nilsson [73] explores the use of generalized abstract data types (GADTs) to support

optimizations in Yampa [74]. The idea is to useGADTs to define special cases of signal

processors, such as constants and the identity function, and implement special, optimized

logic for them in the evaluator. In particular, Nilsson’s implementation performs constant-

propagation and automatically eliminates calls to the identity function, yielding measurable

improvement in various benchmarks. Moreover, theGADT-based optimizations can be

applied to networks of stateful signal processors, which our approach cannot handle.

166

Real-timeFRP (RT-FRP) [103] is an implementation ofFRP that shares certain similar-

ities with FrTime, such as the explicit connection to an underlying host language with a

collection of base primitives. The goal ofRT-FRP is not to produce highly efficient code

so much as to establish provable bounds on the time and space required by each round of

execution. The language achieves these bounds through a conservative static analysis, but

it does not perform any optimizing program transformations.

Event-drivenFRP (E-FRP) [104] is a modification ofRT-FRPdesigned to support com-

pilation to efficient imperative code.E-FRP adds some crucial restrictions toRT-FRP that

make such compilation possible. Primarily, it takes away the ability to perform dynamic

switching, thereby making the program’s data dependenciesstatic. It also requires that

only one external event can stimulate the system in any givenupdate cycle. As inRT-FRP,

the language performs no optimizing program transformations; rather, it uses a syntac-

tic restriction to guarantee limits on the program’s resource requirements. In forbidding

dynamic switching,E-FRP more closely resembles traditional synchronous dataflow lan-

guages, such as Lustre [20], Esterel [9], and Signal [7]. These languages have a common

goal of compiling to efficient straightline code, which theyachieve by design. This is in

contrast to FrTime, whose primary goal is to provide expressive power, often at the expense

of performance.

Languages for Scriptable Debugging

There are two main branches of research that relate to MzTakeand which have helped

inspire it: first, programmable debugging, and second, program monitoring and instrumen-

tation.

Dalek [76] is a scripted debugger built atopgdb that generates events corresponding to

points in the program’s execution. Each event is associatedwith a callback procedure that

can, in turn, generate other events, thus simulating a dataflow style of evaluation. When the

propagation stabilizes, Dalek resumes program execution.

MzTake has several important features not present in Dalek.A key difference that a user

would notice is that we rely on FrTime to automatically construct the graph of dataflow

dependencies, whereas in Dalek, the programmer must construct this manually. Dalek’s

events are not first-class values, so programmers must hard-wire events to scripts, and

167

therefore cannot easily create reusable debugging operations such asnot-in-order.

In Dalek, each event handler can suspend or resume the execution of the target program,

but these can contradict each other. Dalek applies a fixed rule to arbitrate these conflicts, in

contrast with the variety of start-stop rules discussed in section 8.8. Indeed, using a stream

as the guard expression highlights the power of using FrTimeas the base language for the

debugger, since a few lines of FrTime code can reconstruct Dalek’s policy in MzTake: the

code shown in figure 8.10 is in fact Dalek’s policy. This design addresses an important

concern raised in an analysis of Dalek by Crawford, et al. [31].

The Acid debugger [105] provides the ability to respond to breakpoint commands and

step commands with small programs written in a debugging script language very close

to C. Deet [48] provides a scripting language based on Tcl/Tk along with a variety of

the graphical facilities. Dispel [54] defines its own ad-hoclanguage. Generalized path

expressions [15] specify break conditions as regular repressions applied to event traces. The

regular expressions are augmented with predicates that cancheck for base-value relations.

In these projects, the programmer must respond to events through callbacks, and there is

no notion of a dataflow evaluation mechanism. Each retains the inspection and control

mechanism of command-prompt debuggers.

DUEL [47] extendsgdb with an interpreter for a language intended to be a superset of

C. It provides several constructs, such as list comprehensions and generators, for inspecting

large data structures interactively. However, it does not address how to control the target

program or how to respond to events generated during the execution.

The Coca debugger by Ducassé [35] offers a conditional breakpoint language based on

Prolog. Coca uses the backtracking evaluation mechanism of Prolog to identify potentially

problematic control and data configurations during the execution, and brings these to the

user’s attention. As such, Prolog predicates serve as both the conditional breakpoint lan-

guage and the data-matching language. However, since each predicate application happens

in isolation from the other, there is no way to accumulate a model of the execution as it hap-

pens through time, such as constructing a trace history or building an explicit representation

of anMST (as we have done in this paper).

Like Coca, on-the-fly query-based debugging [61, 62] enablesusers to interactively

select heap objects. The objects are specified using aSQL-like language evaluated using

an efficient on-line algorithm. It does not offer a sophisticated scripting mechanism. Like

168

Coca, this approach does not support relating data between points in time.

Parasight [4] allows users to insert C code at tracepoint locations. The C code is com-

piled and inserted into the running target program’s process in a way that has minimal

performance impact. The inserted code must, however, adopta callback-style to respond to

events. While adapting the running program has performance benefits, it also complicates

the process of using more expressive languages to perform monitoring and debugging (and

indeed, Parasight does not tackle this issue at all, using the same language for both the

target program and the scripts).

Alamo [53], like Parasight, instruments binary objects with in-process C code. While

the scripts do not take the shape of callbacks, they must manually implement a program-

ming pattern that simulates a coroutine (which is handled automatically in FrTime by the

evaluation mechanism). TheUFO debugger [6] extends Alamo with a rich pattern-matching

syntax over events in terms of the target language’s grammar. While MzTake offers a rich,

general-purpose language for processing event-streams,UFO efficiently handles the special

case of list comprehension followed by folding.

There are several projects for monitoring program execution, as Dias and Richardson’s

taxonomy describes [32]. Monitors differ from debuggers byvirtue of not being interac-

tive, and most do not provide scripting facilities. Instead, many of these systems have better

explored the trade-offs between expressiveness, conciseness and efficiency in the specifi-

cation of interesting events. MzTake simply relies on the powerful abstractions of FrTime

to filter events, but at the cost of efficiency.

MzTake supports the notion that debugging code should remain outside a program’s

source code, to avoid complicating maintenance and introducing time- and space-complexity

penalties. A debugging script is thus a classic “concern” that warrants separation from

the core program. Aspect-like mechanisms [5] offer one way to express this separation.

However, using them for MzTake would not be straightforward; most implementations of

aspect mechanisms rely on static compilation, which makes it impossible to change the set

of debugging tasks on-the-fly. More importantly, most of them force the debugging script

and main program to be in the same language, making it difficult to use more expressive

languages for scripting. These mechanisms are therefore orthogonal to MzTake and are

possible routes for implementing its scripting language.

Smith [87] proposes a declarative language for expressing equality constraints between

169

the programmer’s model and the execution trace. This can be seen as an aspect-like sys-

tem in which the aspects are not restricted to the original target language. Smith’s lan-

guage relies on a compiler to generate an instrumented program that maintains the model

incrementally. Unfortunately, the compiler has not been implemented and, as the paper

acknowledges, developing an implementation would not be easy.

Contracts [67] also capture invariants, but they too suffer from the need for static compi-

lation. In addition, data structures sometimes obey a stronger contract in a specific context

than they do normally. For instance, priority heaps permit keys to change, which means

there is noa priori order on a key’s values. However, Dijkstra’s algorithm initializes keys to

∞ and decreases them monotonically, and failure to do so indicates an error. The topicality

of the contract means it should not be associated with the priority heap in general.

DTrace [18] is a system for dynamically instrumenting all layers of production sys-

tems. It supports a variety of instrumentation providers, which are capable of creating and

enablingprobesthat fire when specific events occur. A tracing script, written in a cus-

tom domain-specific language called D (a variant of C with features akin to Awk) defines

a set of probes, as well as consumers that execute and processthe data the probes pro-

duce. Consumers are invoked implicitly when the associated events occur, though unlike

in MzTake, there is no dataflow mechanism with which to build higher-level event-based

abstractions. On the other hand, DTrace supports instrumentation at the machine level, us-

ing binary rewriting techniques to prevent overhead when tracing is disabled. Its primary

application seems to be determining the root causes of performances problems, even when

the symptoms are several levels removed from these causes.

Tool Reuse

There is a significant body of work concerned with the mechanical generation of tools

like the error-tracer and profiler we have described. For example, Dinesh and Tip [34]

show how to deriveanimatorsanderror reportersautomatically from algebraic specifica-

tions of programming language interpreters and type checkers. The tools rely heavily on

the technique of origin-tracking [97] for first-order term rewriting systems. The authors

note the discovery of critical restrictions and limitations of first-order rewriting, and Van

170

Deursen and Dinesh [96] subsequently developed an origin-tracking algorithm for higher-

order rewriting systems.

The ASF+SDF meta-environment [95] supports automatic generation of interactive sys-

tems for creating language definitions and generating toolsfor them. Programmers write

algebraic language definitions in the ASF+SDF language [8],which allows the specifica-

tion of conditional term-rewriting rules. The system, which compiles specifications to C

code, has been used to create several domain-specific languages, along with a number of

language-processing tools.

The meta-environment also supports a framework forgeneric debugging[75], where a

single debugger supports interaction with a wide variety ofprogramming languages. The

implementor of each language defines anadaptorthat provides a standard interface to the

language’s control and data abstractions and through whichthe generic debugger interacts

with the language’s runtime. This also allows for so-calledmulti-level debugging[28],

where a user can debug a program and its implementation language simultaneously.

Compared to these systems, our approach is more specialized but considerably lighter-

weight. It does not require that the developer write formal algebraic specifications, and it

can track dependencies even when control flows into runtime support libraries. Also, our

approach avoids the need for source code manipulation, as demonstrated by our reuse of

the host language’s generic annotator and tools. This reuseis important for domain-specific

languages, where minimizing development costs is critical. We also implicitly reuse the

macro-tracking facility [36, 59] in the PLT Scheme system, which allows correlation of

expressions in macro-expanded programs with their original source.

Hudak [49] describes a methodology for building embedded domain-specific languages

in Haskell, citing various forms of reuse as the main motivation for the technique. Several

functional reactive programming systems [39, 74] have beenimplemented as Haskell em-

beddings. These systems of course have less need for runtimedebugging tools, since the

static type checker catches most errors before the program runs. However, if one were to

attempt to use a profiler or error-tracer with a Haskell embedding, it would suffer from the

same problem that I have needed to address in FrTime. The sameis true for other possible

host languages. For example, Frappé [29] is a Java implementation ofFRP that in many

ways resembles FrTime and suffers from the same sorts of tool-reuse problems that FrTime

experienced prior to the modifications described in this paper.

Chapter 10

Conclusions and Future Work

I have developed a strategy for embedding a notion of dataflowevaluation within call-by-

value languages. The strategy is based on lightweight syntactic extensions and reuse of the

base language’s evaluator. It emphasizes reuse of as much aspossible of the base language,

including ideally its libraries and tools. This strategy isembodied within the new language

FrTime, which builds on PLT MzScheme.

Much of the value of this work derives from the fact that the embedding strategy applies

to other call-by-value languages. To validate this claim, two ports of its evaluation model

are currently under development:

10.1 Flapjax

Flapjax1 is a language designed to support development of interactive Web applications. It

extends JavaScript—the most common scripting language forWeb browsers—with several

features, including dynamic dataflow evaluation in the spirit of FrTime. Like FrTime, Flap-

jax is a conservative extension of its host language. This means that it is straightforward

to integrate Flapjax code with existing JavaScript, or to incrementally migrate JavaScript

programs to Flapjax.

Since JavaScript lacks a module system, lifting cannot be implemented with the same

sort of linguistic mechanism as in FrTime. Instead, a lightweight compiler expands Flap-

jax code into ordinary JavaScript with explicit calls to thelift library procedure. Just as

1Functionallanguage forapplicationprogramming with AJAX.

171

172

in FrTime, the resulting code generates a dataflow graph whenexecuted, and a dataflow

engine employs essentially the same algorithm to keep the graph up-to-date. The graph-

construction primitives are also available in the form of a pure library, so users who prefer

not to depend on the compiler can still take advantage of the dataflow capabilities.

JavaScript programs interact with Web pages through a data structure called adocument

object model, or (DOM). The DOM represents the tree structure of theHTML page that

the browser renders; if the script modifies theDOM, then the browser updates its display.

Most elements of theDOM support user interaction, at least in the form of low-level mouse

events; form elements like buttons, check boxes, and text entry fields provide higher-level

interfaces. Like most other user-interface toolkits, the JavaScript interface to theDOM is

based on callbacks. Thus one of the most important aspects ofFlapjax is a signal-based

interface to theDOM that models both input and output.

In addition to the dataflow evaluation model, Flapjax provides facilities for communi-

cating with the Flapjax server, which authenticates users and provides access-controlled

sharing of a persistent store for time-varying JavaScript objects. The interface to the server

is based on signals, so it is easy to make a program’s data transparently persistent.

Although the Flapjax system is still maturing, the results so far are encouraging. At

least one non-trivial application—aWYSIWYG Wiki engine—has been developed using it.

Several hundred users have created accounts on the Flapjax server, while hundreds more

have visited the site to experiment with various demos and read the documentation.

10.2 FrC++

FrC++ is a port of FrTime’s dataflow evaluation model to C++. Itsdesign, like that of

FrTime and Flapjax, is influenced by the particular featuresof its host language. For exam-

ple, the static overloading mechanism in C++ allows primitive operators to be extended to

handle new datatypes. FrC++ uses this capability to define lifted versions of operators like

+ and* that can operate on numeric behaviors. Thus FrC++ supports—to a degree—the

notion of transparent reactivity that FrTime provides. Moreover, because the overloading

is resolved statically, the implementation is more efficient than in FrTime, where a runtime

check is performed each time the program applies a lifted operator. However, because the

types of procedures must be explicitly declared, FrC++ cannot support transparent code

173

reuse to the extent FrTime does.

FrC++ makes use of the FC++ [66] library for functional programming in C++, which

uses objects to implement first-class procedures, completewith static type-checking and

parametric polymorphism. Signals are instances of class FrSignal, which is parameterized

over the type of value it carries. The type parameters are checked statically, so a significant

class of errors is caught before the program runs. The use of typed signals complicates

the implementation of the dataflow engine, which needs to be able to operate on a single

datatype. To facilitate this, all signals derive from a single non-parametric base class that

provides a nullary method calledupdate, which returns a boolean value indicating whether

the signal’s value has changed. The dataflow engine refers toall signals through the base

class, which is sufficient for moving signals in and out of thepriority queue and invoking

theupdatemethod.

There are bindings for FC++ to the Gtk user interface toolkit,so the language can be

used to write graphical applications. The adaptation follows essentially the same techniques

as FrTime does for MrEd. Anecdotal evidence indicates the FrC++ far exceeds both FrTime

and Flapjax in terms of execution performance. This is unsurprising given the amount of

effort that has been put into the construction of efficient C++compilers. Since FrC++ is

a pure library implementation, employing something like the lowering optimization from

Chapter 4 would seem to require the development of significantinfrastructure. (Fortunately,

the high performance of the host language has thus far made such a endeavor unnecessary.)

Moreover, while there are a variety of tools for C++, they necessarily exhibit the same sorts

of problems mentioned in Chapter 7.

Bibliography

[1] The Ruby JDWP project. http://rubyforge.org/projects/

rubyjdwp/.

[2] The Caml language.http://caml.inria.fr.

[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming.

In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

2002.

[4] Z. Aral and I. Gertner. High-level debugging in Parasight. In Proceedings of the

ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging,

pages 151–162. ACM Press, 1988.

[5] Aspect oriented programming (article series).Communications of the ACM, 44(10),

Oct. 2001.

[6] M. Auguston, C. Jeffery, and S. Underwood. A framework forautomatic debugging.

In Automated Software Engineering, pages 217–222, 2002.

[7] A. Benveniste, P. L. Guernic, and C. Jacquemot. Synchronous programming with

events and relations: the SIGNAL language and its semantics. Science of Computer

Programming, 16(2):103–149, 1991.

[8] J. A. Bergstra, J. Heering, and P. Klint.Algebraic specification. ACM Press, 1989.

[9] G. Berry. The Foundations of Esterel. MIT Press, 1998.

174

175

[10] A. H. Borning. The programming language aspects of thinglab, a constraint-oriented

simulation laboratory.ACM Transactions on Programming Languages and Systems,

3(4):353–387, 1981.

[11] F. Boussinot. Fairthreads: mixing cooperative and preemptive threads in c: Research

articles, 2006.

[12] J. P. Bowen and M. J. C. Gordon. A shallow embedding of Z in HOL. Information

and Software Technology, 37(5-6):269–276, May–June 1995.

[13] G. Bracha and W. Cook. Mixin-based inheritance. InACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages & Applications, pages 303–311,

1990.

[14] M. Broy and K. Stølen.Specification and Development of Interactive Systems: FO-

CUS on Streams, Interfaces, and Refinement. Springer, 2001.

[15] B. Bruegge and P. Hibbard. Generalized path expressions:A high level debugging

mechanism. InProceedings of the ACM SIGSOFT/SIGPLAN Software Engineering

Symposium on High-level Debugging, pages 34–44, 1983.

[16] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework

for simulating and prototyping heterogeneous systems.International Journal of

Computer Simulation (special issue on Simulation Software Development), 4:155–

182, April 1994.

[17] K. Burchett, G. H. Cooper, and S. Krishnamurthi. Lowering: A static optimiza-

tion for transparent functional reactivity. InACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program Manipulation, 2007.

[18] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamicinstrumentation of

production systems. InUSENIX Annual Technial Conference, pages 15–28, 2004.

[19] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

breaker, N. Tatbul, and S. Zdonik. Monitoring streams — a newclass of data man-

agement applications. InInternational Conference on Very Large Databases, pages

215–226, 2002.

176

[20] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative lan-

guage for programming synchronous systems. InACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 178–188, 1987.

[21] P. Caspi and M. Pouzet. Lucid Synchrone, a functional extension of Lustre, 2000.

[22] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.Çetintemel, Y. Xing,

and S. Zdonik. Scalable distributed stream processing. InFirst Biennial Conference

on Innovative Data Systems Research, 2003.

[23] J. Clements and M. Felleisen. A tail-recursive machine with stack inspection.ACM

Transactions on Programming Languages and Systems, 26(6):1029–1052, 2004.

[24] J. Clements and M. Felleisen. A tail-recursive machine with stack inspection.ACM

Transactions on Programming Languages and Systems, 26(6):1029–1052, 2004.

[25] J. Clements, M. Flatt, and M. Felleisen. Modeling an algebraic stepper. InEuropean

Symposium on Programming, 2001.

[26] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-by-value

language. InEuropean Symposium on Programming, 2006.

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms.

McGraw-Hill, 1997.

[28] B. Cornelissen. Using TIDE to debug ASF+SDF on multiple levels. Master’s thesis,

Centrum voor Wiskunde en Informatica, 2004.

[29] A. Courtney. Frapṕe: Functional reactive programming in Java. InPractical Aspects

of Declarative Languages. Springer-Verlag, March 2001.

[30] A. Courtney and C. Elliott. Genuinely functional user interfaces. InHaskell Work-

shop, 2001.

[31] R. H. Crawford, R. A. Olsson, W. W. Ho, and C. E. Wee. Semantic issues in the

design of languages for debugging. InProceedings of the International Conference

on Computer Languages, pages 252–261, 1992.

177

[32] M. de Sousa Dias and D. J. Richardson. Issues on software monitoring. Technical

report, ICS, 2002.

[33] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object System: An overview.

In European Conference on Object-Oriented Programming, 1987.

[34] T. B. Dinesh and F. Tip. Animators and error-reporters for generated programming

environments. Technical Report CS-R9253, Centrum voor Wiskunde en Informat-

ica, 1992.

[35] M. Ducasśe. Coca: an automated debugger for C. InProceedings of the 21st Inter-

national Conference on Software Engineering, pages 504–513, 1999.

[36] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction in Scheme.Lisp

and Symbolic Computation, 5(4):295–326, Dec. 1993.

[37] R. Eckstein, M. Loy, and D. Wood.Java Swing. O’Reilly, 1997.

[38] C. Elliott. Functional implementations of continuous modeled animation. InIn-

ternational Symposium on Programming Languages: Implementations, Logics, and

Programs. Springer-Verlag, 1998.

[39] C. Elliott and P. Hudak. Functional reactive animation.In ACM SIGPLAN Interna-

tional Conference on Functional Programming, pages 263–277, 1997.

[40] C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. TBAG:A high level framework

for interactive, animated3D graphics applications. InACM International Conference

on Computer Graphics, pages 421–434, 1994.

[41] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential

control and state.Theoretical Computer Science, 102:235–271, 1992.

[42] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and

M. Felleisen. DrScheme: A programming environment for Scheme. Journal of

Functional Programming, 12(2):159–182, 2002.

[43] R. B. Findler and M. Flatt. Slideshow: Functional presentations. InACM SIGPLAN

International Conference on Functional Programming, 2004.

178

[44] M. Flatt. Composable and compilable macros. InACM SIGPLAN International

Conference on Functional Programming, pages 72–83. ACM Press, 2002.

[45] M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Programming languages

as operating systems (or, Revenge of the Son of the Lisp Machine). InACM SIG-

PLAN International Conference on Functional Programming, pages 138–147, 1999.

[46] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages

171–183, 1998.

[47] M. Golan and D. R. Hanson. DUEL - a very high-level debugging language. In

Proceedings of the USENIX Annual Technical Conference, pages 107–118, Winter

1993.

[48] D. R. Hanson and J. L. Kom. A simple and extensible graphical debugger. In

Proceedings of the USENIX Annual Technical Conference, pages 183–174, 1997.

[49] P. Hudak. Modular domain specific languages and tools. In International Conference

on Software Reuse, 1998.

[50] P. Hudak. The Haskell school of expression: learning functional programming

through multimedia. Cambridge, 2000.

[51] J. Hughes. Generalizing monads to arrows.Science of Computer Programming,

37(1-3), May 2000.

[52] D. Ignatoff, G. H. Cooper, and S. Krishnamurthi. Crossingstate lines: Adapt-

ing object-oriented frameworks to functional reactive languages. InSymposium on

Functional and Logic Programming, 2006.

[53] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightweight architecture for pro-

gram execution monitoring. InSIGPLAN Notices, volume 33, pages 67–74, 1998.

[54] M. S. Johnson. Dispel: A run-time debugging language.Computer Languages,

6:79–94, 1981.

179

[55] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on the algorithmic language

Scheme.ACM SIGPLAN Notices, 33(9), Oct. 1998.

[56] A. J. Ko and B. A. Myers. Citrus: A language and toolkit for simplifying creation

of structured editors for code and data. InUIST, 2005.

[57] E. E. Kohlbecker Jr.Syntactic Extensions in the Programming Language Lisp. PhD

thesis, Indiana University, 1986.

[58] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular

router.ACM Transactions on Computer Systems, 18(3):263–297, August 2000.

[59] S. Krishnamurthi, M. Felleisen, and B. F. Duba. From macros to reusable generative

programming. InGenerative and Component-Based Software Engineering, 1999.

[60] J. L. Lawall and D. P. Friedman. Towards leakage containment. Technical Report

346, Indiana University, 1992.

[61] R. Lencevicius. On-the-fly query-based debugging with examples. InProceedings

of the Fourth International Workshop on Automated Debugging, 2000.

[62] R. Lencevicius, U. Ḧolzle, and A. K. Singh. Dynamic query-based debugging of

object-oriented programs.Automated Software Engineering, 10(1):39–74, 2003.

[63] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Reiss. A dataflow language

for scriptable debugging. InIEEE International Symposium on Automated Software

Engineering, 2004.

[64] G. Marceau, G. H. Cooper, J. P. Spiro, S. Krishnamurthi, and S. P. Reiss. The design

and implementation of a dataflow language for scriptable debugging. Automated

Software Engineering Journal, 2006.

[65] S. McDirmid and W. C. Hsieh. Component programming with object-oriented sig-

nals. InEuropean Conference on Object-Oriented Programming, pages 206–229,

2006.

[66] B. McNamara and Y. Smaragdakis. Functional programmingin C++. InACM SIG-

PLAN International Conference on Functional Programming, pages 118–129, 2000.

180

[67] B. Meyer.Eiffel: The Language. Prentice-Hall, 1992.

[68] M. S. Miller. Robust Composition: Towards a Unified Approach to Access Control

and Concurrency Control. PhD thesis, The Johns Hopkins University, 2006.

[69] M. Müller, T. Müller, and P. V. Roy. Multi-paradigm programming in Oz. In

D. Smith, O. Ridoux, and P. Van Roy, editors,Visions for the Future of Logic Pro-

gramming: Laying the Foundations for a Modern successor of Prolog, Portland,

Oregon, 7 Dec. 1995. A Workshop in Association with ILPS’95.

[70] B. A. Myers, D. A. Giuse, R. B. Dannenberg, D. S. Kosbie, E. Pervin, A. Mickish,

B. V. Zanden, and P. Marchal. Garnet: Comprehensive support for graphical, highly

interactive user interfaces.Computer, 23(11):71–85, 1990.

[71] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A. Faulring, B. D. Kyle,

A. Mickish, A. Klimovitski, and P. Doane. The Amulet environment: New models

for effective user interface software development.IEEE Transactions on Software

Engineering, 23(6):347–365, 1997.

[72] National Instruments, Inc. Labview (software system). http://www.ni.com/

labview.

[73] H. Nilsson. Dynamic optimization for functional reactive programming using gen-

eralized abstract data types. InACM SIGPLAN International Conference on Func-

tional Programming, 2005.

[74] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, contin-

ued. InACM SIGPLAN Workshop on Haskell, pages 51–64, 2002.

[75] P. Olivier. A Framework for Debugging Heterogeneous Applications. PhD thesis,

Centrum voor Wiskunde en Informatica, 2000.

[76] R. A. Olsson, R. H. Crawford, and W. W. Ho. Dalek: A GNU, improved pro-

grammable debugger. InProceedings of the Usenix Technical Conference, pages

221–232, 1990.

181

[77] J. Peterson and G. Hager. Monadic robotics. InDomain-Specific Languages, pages

95–108, 1999.

[78] J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling robots with

Haskell.Lecture Notes in Computer Science, 1551:91–105, 1999.

[79] J. Peterson, P. Hudak, A. Reid, and G. Hager. FVision: A declarative language for

visual tracking.Lecture Notes in Computer Science, 1990:304–321, 2001.

[80] J. Peterson, V. Trifonov, and A. Serjantov. Parallel functional reactive programming.

In Practical Aspects of Declarative Languages, volume 1753, 2000.

[81] C. A. Petri.Kommunikation mit Automaten. PhD thesis, University of Bonn, 1962.

[82] G. Pettyjohn, J. Clements, J. Marshall, S. Krishnamurthi, and M. Felleisen. Contin-

uations from lightweight stack inspection. InACM SIGPLAN International Confer-

ence on Functional Programming, 2005.

[83] S. L. Peyton Jones. Compiling Haskell by transformation: a report from the trenches.

In European Symposium on Programming, pages 18–44, 1996.

[84] G. Plotkin. Call-by-name, call-by-value, and the lambda calculus.Theoretical Com-

puter Science, 1:125–159, 1975.

[85] M. Sage. FranTk: A declarative GUI language for Haskell. In ACM SIGPLAN

International Conference on Functional Programming, pages 106–117, 2000.

[86] M. Serrano, F. Boussinot, and B. Serpette. Scheme fairthreads. In2th International

Lisp Conference, October 2002.

[87] D. R. Smith. A generative approach to aspect-oriented programming. InInterna-

tional Conference on Generative Programming and Component Engineering, vol-

ume 3286, pages 39–54, 2004.

[88] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer

Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343.

Springer-Verlag, Berlin, 1995.

182

[89] M. Sperber. Developing a stage lighting system from scratch. InACM SIGPLAN

International Conference on Functional Programming, pages 122–133, 2001.

[90] R. M. Stallman.GDB Manual (The GNU Source-Level Debugger). Free Software

Foundation, Cambridge, MA, third edition, January 1989.

[91] Sun Microsystems. JavaFX.http://www.sun.com/software/javafx/.

[92] The MathWorks, Inc. Simulink - simulation and model-based design.http://

www.mathworks.com/products/simulink/.

[93] The Open Laszlo Project. Open laszlo.http://www.openlaszlo.org/.

[94] K. Tilton. Cells. http://www.tilton-technology.com/cells\ top.

html.

[95] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,

T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder,J. J. Vinju, E. Visser,

and J. Visser. The ASF+SDF meta-environment: A component-based language de-

velopment environment. InCompiler Construction, pages 365–370, 2001.

[96] A. van Duersen and T. B. Dinesh. Origin tracking for higher-order rewriting systems.

Technical Report CS-R9425, Centrum voor Wiskunde en Informatica, 1994.

[97] A. van Duersen, P. Klint, and F. Tip. Origin tracking. Technical Report CS-R9230,

Centrum voor Wiskunde en Informatica, 1992.

[98] W. W. Wadge and E. A. Ashcroft.Lucid, the dataflow programming language. Aca-

demic Press U.K., 1985.

[99] P. Wadler. Listlessness is better than laziness. InACM Symposium on Lisp and

Functional Programming, pages 45–52, 1986.

[100] P. Wadler. Deforestation: Transforming programs to eliminate trees.Theoretical

Computer Science, 73:231–248, 1990.

[101] P. Wadler. The essence of functional programming. InACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 1–14, January 1992.

183

[102] Z. Wan and P. Hudak. Functional reactive programming from first principles. In

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 242–252, 2000.

[103] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. InACM SIGPLAN International

Conference on Functional Programming, pages 146–156, 2001.

[104] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. InPractical Aspects of Declar-

ative Languages, 2002.

[105] P. Winterbottom. Acid, a debugger built from a language. In Proceedings of the

USENIX Annual Technical Conference, pages 211–222, January 1994.

