Integrating Data ow Evaluation into a Practical
Higher-Order Call-by-Value Language

by
Gregory Harold Cooper
B. S., University of Rhode Island, 2000
Sc. M., Brown University, 2002

Submitted in partial ful llment of the requirements
for the degree of Doctor of Philosophy in the
Department of Computer Science at Brown University

Providence, Rhode Island
May 2008

¢ Copyright 2008 by Gregory Harold Cooper

This dissertation by Gregory Harold Cooper is accepted iprigsent form by
the Department of Computer Science as satisfying the didsertrequirement
for the degree of Doctor of Philosophy.

Date
Shriram Krishnamurthi, Director
Recommended to the Graduate Council

Date

Steven P. Reiss, Reader
Date

John Peterson, Reader

(Western State College of Colorado)
Approved by the Graduate Council

Date

Sheila Bonde
Dean of the Graduate School

Vita

Gregory Harold Cooper was born on New Year's Day of 1978 in Bdnunty, Rhode

Island. He has enjoyed mathematics and logic since he caeméer and was addicted
to computer programming by age 7. He was valedictorian ofcthss of 1996 at North

Kingstown High School and a National Merit Scholar and Barry®béldwater Scholar at
the University of Rhode Island. He also received an honorat#ation in the National

Science Foundation Graduate Research Fellowship congoeitit2001 and 2002.

Acknowledgements

This dissertation would not have been possible without #p bf many people. Thanks
are in order rstto my advisor, Shriram Krishnamurthi, am@ders, Steve Reiss and John
Peterson. I'd also like to thank those who collaborated aioua parts of the work: Kim
Burchett, Dan Ignatoff, Guillaume Marceau, and Jono Spim.addition, a number of
people provided useful feedback and participated in hefghcussions, including Ezra
Cooper, Antony Courtney, Matthias Felleisen, Paul Hudak,riexilsson, Manuel Ser-
rano, Mike Sperber, Phil Wadler, and many others whom I'ne$we forgotten. Finally, |
am indebted to Melissa Chase, Manos Renieris, and Dave Tumkielir enduring support
and encouragement.

Contents

Vi

List of Tables X
List of Figures Xi
1 Introduction 1
1.1 Motivation. 1
1.2 Callbacks: an Imperative of Imperatives 3
1.3 Data ow Evaluation: an Alternative to Callbacks 5
1.4 ABriefintroductionto FrTime 6
1.5 Declarative Reactive Programming with Signals 9
1.6 Design Principlesand Challenges 10
2 Core Evaluation Model 13
2.1 Discrete Modeling of Continuous Phenomena 14
2.2 Push-Driven Recomputation 15
2.3 Deningthe Dataow Extension 16
2.4 Primitive Operators and ConstantValues 17
2.5 Updating SignalValues, 19
2.6 SchedulingofUpdates 12
2.6.1 Subtleties of Memory Management 2
2.7 Time-Varying ControlFlow 23
2.8 RememberingPastValues 29
2.9 ReCUrsion e 32
2.10 EventStreams 33

2.11 Support forePL-based Interactive Programming 34

Semantics 37
Optimization by Lowering 49
4.1 DippingandLowering e 54
4.2 The Lowering Algorithm, 75
4.3 LambdaAbstractions Lo 95
4.4 Conditionals 61
4.5 HigherOrderFunctions, 61
4.6 Inter-Module Optimization 62
4.7 MaCros e e e e e 64
4.8 PathologicalCases e 64
4.9 Evaluation 65
49.1 Performance 65
49.2 Usability 67
4.10 Future Directions 63
Implicitly Reactive Data Structures 70
5.1 An Application of Structured Data: Animation. 73
5.2 Reactivity with Raw Constructors 75
5.2.1 Choosing the Granularity of Lifting 76
5.2.2 Deeplifting 77
5.3 Reactivity with Lifted Constructors 79
5.3.1 Consequences of Lifted Constructors 79.
5.4 Improvementsto DeeplLifting, 83
5.4.1 De ningtheApplyOperator 86
5,5 TheEfciencyofTraversal 88
5.6 Performance Evaluation. 91
Integration with Object-Oriented Toolkits 94
6.1 AdaptingMrEdtoFrTime 95
6.1.1 Application-Mutable Properties 96

Vil

6.1.2 Toolkit-Mutable Properties 99

6.1.3 Application- and Toolkit-Mutable Properties 101
6.1.4 Immutable Properties 310
6.2 Automating the Transformation. 103
6.2.1 Parameterized Class Extensions 103.
6.2.2 A Second Dimension of Abstraction 105
6.2.3 Language Independence of the Concepts 106 .
6.3 A Spreadsheet Application 107
6.4 Catalog of Adapted User Interface Widgets 110
Programming Environment Reuse 112
7.1 Background 113
7.1.1 Domain-Specic Embedded Languages 114
7.1.2 Examples 115
7.1.3 Control-Oriented Tools 511
7.2 TheTool-Reuse Problem 6 11
7.3 Solution Techniques. 119
7.3.1 Higher-OrderSignals 012
7.3.2 Implementation 121
7.3.3 Effective Evaluation Contexts 123
7.3.4 Generalizing the Solution Strategy 123
7.3.5 Transformation of the Semantic Data Structure 125
7.4 ImplementationStatus L 125
Extended Application: Scriptable Debugging 127
8.1 AMotivating Example 82
8.2 Desiderata 130
8.3 Language DesignConcerns i e 32 1
8.4 Debugging the Motivating Example 133
8.5 ReectionsontheExample L. 371
8.6 Design 138
8.7 Implementation 913

8.7.1 Javao, 140

8.7.2 Scheme 142
8.7.3 Performance 144
8.8 Controlling Program Execution 145
8.9 Additional Examples L 461
8.9.1 Minimum SpanningTrees 146
8.9.2 A Statistical Proler 14
9 Related Work 157
10 Conclusions and Future Work 171
10.1 Flapjax o e 171
10.2 FrC++ . . . o e e 172
Bibliography 174

List of Tables

4.1 Experimental benchmark results for lowering optimaat 65
5.1 Micro-benchmark results for lifting, raising, and ieorental projection . . 93
5.2 Performance of animation programs using data structamd graphics . . . 93

List of Figures

1.1 Asimple timer application in PLT Scheme 2
1.2 Ascreenshot of agraphicaltimer 3
1.3 Atimer with graphicaldisplay 4
1.4 Implementation of thetimerinFrTime 8
1.5 The FrTime timer with graphicaldisplay 9
2.1 Grammar for purely functional subset of core PLT Scheme. 14
2.2 Grammar for FrTime (extends grammar in Figure 2.1) 14
2.3 FrTime evaluator (excerpts for primitive procedures) 18
2.4 Dataow graph for (+ fnodulo second) (-21)) 19
2.5 FrTime updater (excerpts for primitive procedures) 20
2.6 A snapshot evaluator for the essence of FrTime 20
2.7 FrTime evaluator (excerpts fifrexpressions and-abstractions) 24
2.8 Data ow graphs for a conditional expression. 25
2.9 The part of the updater that handles switching 27
2.10 Data ow graphs for a conditional expression. 28
2.11 FrTime evaluator (excerpts for time-varying procegyr 29
2.12 An update engine for the essence of FrTime (excergiriar statements). 30
2.13 The implementation afelay-by 31
2.14 FrTime evaluator (excerpts for recursive bindings)..... 32
2.15 An evaluator for the essence of FrTime 35
2.16 Anupdate engine for the essence of FrTime 36
3.1 Grammars for values, expressions, evaluation contemtssignal types . . 38
3.2 Semantic domains and operationso 38

Xi

3.3
3.4
3.5

4.1
4.2

4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6

6.1

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4

Evaluationrules 93
Snapshotrules 39
Updaterules e 40
De nition of distance function. 52

Left: Unoptimized data ow graph for the distance fuocti Right: opti-

mized equivalent. Various stages of optimization are showinetween.
Inter-procedural optimization can improve the result efiather. Each

box is a heap-allocated signalobject. B2
De nition of the distance function with upper and lowayérs made explicit. 54

Allowed containment relationships forcode. b5
Unoptimized FrTimecode. 55
Optimized FrTimecode. i 6 5
Complete description of the lowering transformation 63
A deep projectionprocedure e dT
Deeplifting e 78
Use of lifted constructors 80
Creation of additional behaviors by lifted accessors 81
Loss of intensional equality from lifted constructors 82
Interleaving projection with traversal 84
Screenshot of the FrTime spreadsheet application 107
Structure ofadeepembedding 114
Embedding FrTime 114
An error trace from a Java FRP implementation117
Output from original pro ler on FrTime program 125
Output from adapted pro ler on FrTime program125
Implementation of Dijkstra's Algorithm 149
Sample InputandOQutput491
Control Flow of Program and Script 150
Monitoring the Priority Queue 151

8.5 EventStreams 151

8.6 The Monitoring Primitive 151
8.7 TheRedundantModel 152
8.8 MzTake Grammar e 152
8.9 MzTake Architecture for DebuggingJdava153
8.10 A Typical Start-Stop Policy 154
8.11 A Different Start-Stop Policy 154
8.12 Spanning trees computed correctly (left), withoueding cycles (mid-

dle), and without sorting edges (right)155
8.13 RecordingiSTEdges 155
8.14 A Statistical Proler. 156

Xiii

Chapter 1
Introduction

This dissertation explores the design of linguistic suppmrreactive programs. Byeac-
tive, | mean programs like word processors, Web browsers, amigoroning environments—
programs whose “inputs” are unbounded sequencesveits(e.g., key strokes, mouse
clicks, network messages, etc.) that arrive from a variétyoorces at times beyond the
program's control. In contrast toteansformationaprogram, which runs uninterrupted and
controls when it reads its input and produces its outputaatiee program must respond
immediately to each event by updating its internal state emdting a representation of
it. In essence, a reactive program must be designed to aosnvironment to control its
execution.

1.1 Motivation

Reactive programs constitute the majority of software systdeployed in the world, so it
is important for programmers to be able to build such systeasgy and reliably. Unfortu-
nately, the programming languages and paradigms in cuccgninon use were developed
for writing transformational programs, and they make rneagbrograms awkward to ex-
press.

As a concrete example, consider the implementation of alsingactive program that
counts the elapsed time (in seconds) up to some user-dextrtiine, rendering it as a
textual string. At any point, the user can cliciRasebutton to start the count over again.

(de ne frame
(new frame%llabel "Timer”] [height80] [width 300]))
(sendframe show#t)

(de ne duration60)
(de ne elapse)

(de ne elapsed-display
(new messageY%parent framé[label "0 s”] [min-width60]))

(de ne clock
(newtimer%/interval 1000]
[notify-callback
((te)
(set!l elapsedmin (add1 elapsepduration))
(sendelapsed-display set-lablormat™a s” elapsed))]))

(de ne duration-control
(newslider%|[parent framé[label "Duration (s)”]
[min-valuel0] [max-valuel20] [init-value 60]
[callback((s
(set!duration(sendslider get-valug
(set! elapsedmin elapsed duration
(sendelapsed-display set-labéiormat

a s” elapsed))]))
(de ne reset-button
(new button%[parent framé[label "Reset”]
[callback
((be
(set! elapsedd)
(sendelapsed-display set-lab&d s™))]))

Figure 1.1: A simple timer application in PLT Scheme

Figure 1.1 shows how someone might implement such a program in the Scf&Esh
programming language, following a conventional programgrstyle. The rst de nition
creates a top-level window, calledrame%? In DrScheme's object systemnaw expres-
sion constructs an object of a given type with a set of namgdnaents, in this case the

The code is executable under the Pretty Big language lewbkin300 series of DrScheme revisions.
2By convention, class names in DrScheme end with a % sign estipgobject-orientation.

Bﬂ@ Timer
Elapsed time: ==

3s

Duration (s): =

[Reset)

Figure 1.2: A screenshot of a graphical timer

label, width, andheight After displaying the frame, the program de nes a variabl&old
theelapsedime (initially zero) and createsraessageontrol in which to display it.

The remaining code makes the program reactive:ctbek advances the elapsed time
every second, thduration-controllets the user adjust the duration, and taeet-button
starts the elapsed time over at 0. Since the program is veaevents from these three
sources can arrive in any order and at any time. In order @ teavhichever event occurs
next, the program de nesallback procedures and registers them with the user interface
toolkit. The toolkit's event-handling loop calls the appriate callback whenever the asso-
ciated event occurs.

1.2 Callbacks: an Imperative of Imperatives

The code in Figure 1.1 illustrates an interesting pattelthoagh most of the program is
functional, all of the callback procedures perform desivecside effects (either directly,
via setl, or by invoking a mutator method in an object). This is no calence, and the
explanation derives from the fact that callbacks are desida let the event loopall back
into the application. If callbacks were functional, all yheould do is compute values and
return them to the event loop, in which case they could nosipbs affect the state of
the application. Hence, in order for the program to progreakbacks must perform side
effects

While side effects are necessary in some cases, they gereastt undesirable conse-
guences. For example, becausedlapsed-displais updated via side effects, its de nition

(de ne frame
(new frame%llabel "Timer”] [height80] [width 300]))
(sendframe show#t)

(de ne duration60)
(de ne elapse)

(de ne elapsed-display
(new gauge%parent framé[label "Elapsed: "] [range60]))

(de ne clock
(newtimer%/interval 1000]
[notify-callback
((te
(set! elapsedmin (add1 elapsepduration))
| (sendgauge set-value elapsp}))

(de ne duration-control
(newslider%|[parent framé[label "Duration (s)”]
[min-valuel0] [max-valuel20] [init-value 60]
[callback((s
(set!duration(sendslider get-valug
(set! elapsedmin elapsed duration
(sendgauge set-value elapsgd

(sendgauge set-range duratigp)]))

(de ne reset-button
(new button%][parent framé[label "Reset”]
[callback
((be
(set! elapsedd)
|(sendgauge set-value))]))

Figure 1.3: A timer with graphical display

does not provide a complete speci cation of its behaviag,whay it would in a purely func-
tional program. Conversely, ttetocKs callback refers telapsed-displagven though the
latter has no bearing on the time.

In general, callbacks result in a programming style in whiende nition of an object
does not fully express that object's behaviors in terms bepbbjects' values. Instead,

each object is responsible for tracking changes in its stateupdating other objects that
depend on it. This is precisely the opposite of how functiggtagrams work, and this
structural inversion makes programs more dif cult to ureland. For example, to reason
about the temporal behavior efapsed-displaya programmer (or tool) needs to nd all the
code thathangeghe object. The problem ampli es when this code refers te@ptlalues
(e.g.,elapsed that are also mutated from various parts of the program.

Structural inversion also makes programs more dif cult totevand modify. For ex-
ample, suppose that the programmer wants to change thayispihe elapsed time from
the textual message to a graphical progress bagaoge Figure 1.3 shows the code that
might result. There are three places in the code that uptetéisplay, and all of them
must be changed. Moreover, in order for the gauge to displayraction of elapsed time
correctly, itsrange must be kept consistent with thliration There is no analog to this
logic in the original version of the program, so the prograanmight easily overlook the
need to make this change. In a functional program, this ayrsvould likely manifest
as a missing procedure argument, which would be an error. eMeryvin the imperative
version, there is simply the absence of a side-effect, wisiohuch more dif cult to detect
automatically..

1.3 Data ow Evaluation: an Alternative to Callbacks

This dissertation explores an alternative to callbacks ahaws programmers to develop
reactive programs in a functional style. The key idea is todata ow evaluation20, 98],
a programming model in which a program's values may change ttme, but instead of
using explicit mutation, they recompute automatically whigeir inputs change.
Languages based on the idea of data ow evaluation (soetcdl¢a ow languages) have
existed for decades and have been applied in various spedaomains, most notably
real-time, safety-critical embedded systems. Histogcaluch languages have been de-
signed to support formal reasoning about safety propeaitielsresource requirements. To
that end, these languages have traditionally been restsicamitting such features as re-
cursive datatypes, dynamic recursion, and higher-ordeations. Such limitations are nec-
essary to provide the guarantees required by real-timemstout they are not appropriate
for writing modern general-purpose applications, whichstrhe able to perform complex

operations over dynamic data structures.

Within the past decade, researchers have developed a naildel functional reactive
programming ErRP) [39, 74, 102, 104], which embeds data ow evaluation witgeneral-
purpose functional languages. Functional reactive pragreag has proven expressive
enough to support a variety of applications, such as animg89], graphical user inter-
faces [30, 85], robotics [78], and vision [79].

The work described in this dissertation follows in thep vein but departs from prior
work in several important ways. Speci cally, my thesis etathata practical notion of
data ow evaluation can be embedded within a general-purpos, higher-order call-
by-value language, integrating seamlessly with all of thenpn-imperative) features in
the original language The thesis is supported by a working implementation of sarch
embedding: the language FrTime [17, 26, 52], which buildsuhe dialect of Scheme [55]
used in the DrScheme [42] programming environment.

1.4 A Brief Introduction to FrTime

The essence of FrTime is to extend Scheme with a notion of-wiangng values called
signals For example, the language provides a signal calsmbnds, whose value at every
point in time is equal to the result of Scheme's built-in prdarecurrent-secondsBecause
its value is de ned at every point in timsgconds is said to becontinuousand is called
a behavior If a program applies a primitive function to a behavior, tesult is a new
behavior, whose value at every point in time is computed kphyapg the function to the
argument's current valu&For example, the value oéyeneconds) is a behavior whose
value alternates betweéme andfalse changing once every second.

The generalization of Scheme's primitives to operate owraviors is calledifting.
Lifting allows a program to use existing purely functionah®me code in the context of
reactive values, a property known @ansparent reactivity For example, the following
Scheme procedure consumes a time in seconds and formais iiasan-readable string
like "10:25:43":

(de ne (format-time }

SOperationally, the language only re-evaluates the agplic@ach time the argument value changes.

(let ([date(seconds date 9]
[hours(date-hour daty
[minuteg(date-minute dabg
[seconds (date-second dajp

y~ ~ ~

(format™a:"a:"a” hours minuteseconds))

In Scheme, one might apply it torrent-seconds producing a value that re ects the time
at which the program calle@rrent-seconds One can also use this de nitiorerbatimin
FrTime and apply it tseconds, creating a simple clock.

In addition to applying primitive functions to them, progra can delay behaviors by
any (non-negative) amount of time, and they can compute integrals over numeric
behaviors. There is also a procedure catliedngeghat lets a program see the sequence of
discrete changes that a behavior experiences over tima. pfaduces a different kind of
signal, called arevent streamEvent streams are a natural abstraction for modeling many
inputs to a reactive program, such as the sequence of keysr dypes or the clicks of a
button in a graphical interface.

Primitive procedures cannot be applied to event streanmi$;fime provides a collec-
tion of event-processing operators that are analogousitalatd list-processing functions.
For example, if an application is only interested in key st corresponding to digits, it
can uselter-e to select them:

(de ne gures
(lter-e ((X) (member X(#n0 #nl #n2 ... #n9))) key-strokep

To convert these characters to actual numbers, it camageeto transform each event:

(de ne digits
(map-e((ch) ((char integer ch 48)) digits-typed)

It can then useollect-eto accumulate the sequence of digits into a decimal integer:

(de ne number
(collect-e digits0 ((digit num) (+ digit (10 num))))
Finally, it can useéhold, the dual ofchangesto convertnumberto a behavior by “holding”

onto the value of its most recent event (using O until the aisé occurs).

(hold numbel0)

(de ne frame
(new ft-frame%l[label "Timer”] [width 200] [height80] [showntrue]))

(de ne duration-control
(new ft-slider% label "Duration”] [min-valuel0] [max-valuel20])

(de ne reset-button
(new ft-button%[label "Reset”])

(de ne duration (sendslider get-value-p
(de ne last-click-time
(hold (map-e secon@snapshot-gsendreset-button get-valueyseconds))
(value-nowseconds)))

(de ne elapsedmin duration(seconds last-click-timg))

(de ne elapsed-display
(new ft-message%label (format™a s” elapseq
[parent framé [min-width60]))

9~

Figure 1.4: Implementation of the timer in FrTime

As the user enters the characters 2, 1, 3, 6, this behavies takthe values 2, 21, 213, and
2136.

One other important event-processing operatomeyge-e which combines several
event streams into a single one. For example, if the abovgrgmo took its input from
a pad of graphical buttons instead of the keyboard, it wowddg® all of the event streams
and applycollect-eto the result.

On the surface, signals bear some similarity to constrectsd in other languages. Be-
haviors change over time, like mutable data structuresereturn values of impure pro-
cedures, and event streams resemble the in nite lazy kd$® (called streams) common to
Haskell and other functional languages. The key differeadlkat FrTime tracks data ow
relationships between signals and automatically recoegthiem to maintain programmer-
speci ed invariants.

(de ne frame
(new ft-frame%l[label "Timer”] [width 200] [height80] [showntrue]))

(de ne duration-control
(new ft-slider% label "Duration”] [min-valuel0] [max-valuel20])

(de ne reset-button
(new ft-button%[label "Reset”])

(de ne duration (sendslider get-value-p
(de ne last-click-time
(hold (map-e secon@snapshot-gsendreset-button get-valueyseconds))
(value-nowseconds)))

(de ne elapsedmin duration(seconds last-click-timg))
(de ne elapsed-display

(new ft-gauge%qlabel "Elapsed time:"] [range duratiof
[parent framé[value elapsel))

Figure 1.5: The FrTime timer with graphical display

1.5 Declarative Reactive Programming with Signals

FrTime's signal abstractions offer a way to rewrite reaetfivograms without callbacks or
side effects. Figure 1.4 shows the code for a FrTime impleatiem of the interval timer
discussed above. Init, there are no callbacks or destasitle effects, and every de nition
provides a complete description of the object's behaviardwvne. The clicks of the reset
button, instead of triggering an imperative callback, prcean event stream. The program
usessnapshot-do pair each click with the time at which it occurred, thenjpots out
just the occurrence times witinap-e It useshold to lock on to the last click time, then
subtracts this value from the current time to compute thpseld time. The elapsed time
then automatically updates as time passes or the user thieksutton.

Other aspects of the user interface are also de ned in tefragyoals. Theduration-
control slider exposes its value as a behavior, from which the progta nes the timer's
duration. Likewise, the program speci es the message'sartras a string behavior that
depends on the elapsed time. The language automaticaibg ledeof the program'’s state
consistent as changes occur.

10

Figure 1.5 shows a variation of this program in which the staptime is displayed
graphically instead of textually. Unlike in the callbaci&ded version, where making this
change involved modifying code throughout the program,rifirke the changes are con-
ned to the de nition of elapsed-display

1.6 Design Principles and Challenges

A fundamental goal in FrTime is to reuse as much of Scheme ssilge, including not
only its evaluation mechanism but also its libraries, eswnent, and tools. These latter
artifacts are responsible for much of the cost of developifgnguage, and without them
a language can have little practical value. Thus their redfggs an important strategic
advantage. In addition to conserving development ressuiech reuse also makes the
extended language more accessible to programmers familiarthe original language,
thereby encouraging adoption.

To achieve such reuse, the techniques | have developedseé ba lightweight, context-
free transformations of the language's core constructs.eoperty of these transfor-
mations is that they result in a conservative extension®fdhguage, so in the absence of
signals, the evaluator defers to the base language's sesanhis means that pure Scheme
programs are also FrTime programs, having the same measings@heme, and they may
be incorporated into FrTime programs without modi cation.

The challenge that arises from this approach is to make tteeataextension inter-
act seamlessly with the many features available in a riclegpurpose language like
Scheme. Some of the tricky features include:

higher-order functions,

control- ow constructs,

structured data,

automatic memory management,

legacy libraries (containing both functional and impemtode),

an interactive read-eval-print loop, and

11

tools for understanding program behavior.

Making the data ow mechanism interact with all of these teas places considerable con-
straints on the language's design, and the main contribwationy work has been to design
a strategy that can accommodate all of them.

An underlying theme in FrTime's evaluation model is the use2computation, under
a standard call-by-value regime, as the mechanism for kgegtate consistent. While
behaviors are conceptually values that change over oveimcmuis time, in practice they
are mutable structures whose contents are recomputediionss to discrete changes.

The main problem this model creates is to nd the appropriate! of granularity
at which to recompute things. For example, any part of a gureictional (side-effect
free) expression can be evaluated repeatedly withouttaftethe program's semantics.
Thus, a simple but riee strategy would be to re-evaluate the whole program eaoh t
anything changed. However, doing so would be incorrectesperators likelelay-by
need to remember state over time. The basic model for Frisnigerefore one in which
expressions are recomputed at the nest grain—primitiecpdure applications and core
syntactic forms likeif. This strategy, which is described in detail in Chapter 2,enev
computes more than is necessary to bring the system to sstemisstate.

The basic evaluation model is also presented in Chapter 3msapart formal seman-
tics. One layer is an extension of the call-by-valuealculus; it speci es the reduction
of FrTime programs to plain values and signals. A slight ntadion of this layer de nes
how the value of a signal recomputes in response to a chamgaemaining layer speci es
how the data ow evaluator schedules updates to guarantegstency.

FrTime's data ow update mechanism itself incurs signi ¢asverhead, so achieving
optimal performance requires more than simply minimizing humber of atomic oper-
ations. Working in a call-by-value host language, it is gatlg much more ef cient to
recompute a complex expression in a large, monolithic lmghalue step, than to break
it down to atomic steps and evaluate each one separately. t&haplescribes a static
analysis for identifying maximal fragments of purely fuectal code, which can then be
executed in a single call-by-value step. This re nementefévaluation strategy results in
considerable performance improvements.

12

While recomputation is key to the mechanism for keeping anamog internal state up-
to-date, FrTime also uses it to keep its internal state symihed with the outside world,
through things like graphics libraries and user interfamakits. In these cases, the re-
executed code is not purely functional (rather, its chigppse is to perform side-effects),
so considerable care is needed to ensure that the effee¢stteaworld in a consistent state.
Chapter 6 addresses this problem from one angle: when themakifbraries are object-
oriented class hierarchies whose objects encapsulatealaes like numbers, booleans,
and strings. The canonical example is a user interface itp@kh simple widgets like
messages, check boxes, scroll bars, and gauges.

For more complicated applications, programs need a rickssrement of data struc-
tures, such as lists, trees, and vectors. Keeping the worldistent with such data is a
non-trivial task, since changes can occur at any time orephathin the data and can even
change the structure of the data. Chapter 5 describes séfegtracking changes within
structured data and communicating them to the world in ahdlyi consistent manner.

Another important aspect of a language is having a programgmanvironment that re-
spects the language's abstractions and provides toolss® g@gram development and
understanding. A bene t of FrTime's evaluation model isttitanaturally supports incre-
mental program development in an interactive read-eval-fmop REPL.

The DrScheme environment also provides a collection ofstdleht are sensitive to
control ow, including an error tracer and an execution gey. Because FrTime is an
embedding in Scheme, the tools report information abouexieeution of the FrTime eval-
uator as it processes a program. This information is at tlo@gvievel of detail for a user to
understand the behavior of the original program. The tamlgput thus violates FrTime's
linguistic abstractions and only indirectly re ects thaginal program's behavior. To ad-
dress this problem, Chapter 7 describes a straightforwatthigue for manipulating the
Scheme tools so that they provide meaningful informatiooualB-rTime programs. The
technique, which is justi ed by the formal semantics prasdnn Chapter 3, applies to any
host language with a suitable control- ow introspectionananism.

To demonstrate the utility of FrTime, Chapter 8 presentsahguiage's use in the novel
and non-trivial context of scripting a debugger. Chapterdales a discussion of related
work, and Chapter 10 concludes and proposes possible dinsdbr future work.

Chapter 2
Core Evaluation Model

This chapter describes in detail the approach for embedditg ow in a call-by-value
languagé.

The following presentation refers to a purely functionddset of Scheme, whose gram-
mar is shown in Figure 2.1. The set of values includes bagsisteats (e.g., numbers and
booleans), primitive operators, linked lists, and usenel@ procedures (-abstractions).
Programs are fully expression-based, consisting of ptaeedpplications, conditionals,
and recursive binding constructs.

The conceptual goal of FrTime is to extend this call-by-eatore language with a
notion of behaviors or continuous time-varying values. The remaining sestionthis
chapter describe how FrTime treats behaviors in each oétieesis. The only exception is
data structures, which involve enough complexity to wartiaeir own chapter (Chapter 5).
Section 2.10 explains how a notion of behaviors can also bd tismodel discrete event
streams.

Figure 2.2 shows the grammar for the extended language. 8heonstructs include
simply

a set of primitive behaviors (e.geconds),
the unde ned value?), and

theprev operator, which delays a behavior by a single time step.

1This chapter expands on previously published material [26]

13

14

X 2 hvari ::= (variable names)
p 2 hprimi = (primitive operators)
u;v2hvi = true jfalse jempty j(cons hvihvi) jhprimij
((hvari) hei)joOj1j2j:::
e2ha = hvijhvarij (hethe) j(rec hvarihei) j (if hehehe)

Figure 2.1: Grammar for purely functional subset of core Bcheme

u;v 2 hfvi = true jfalse jempty j(cons Hvihfvi) jhprimi
((hvari) Hei) jOj1j2j:::j (primitive behaviors) ?
e2hfei ::= Hvijhvarij (Heihfei) j (rec hvarihfei) j (if Heihfeihfei) j

(prev Hei)

Figure 2.2: Grammar for FrTime (extends grammar in Figui¢ 2.

This grammar de nes a new language that allows a behaviopp@ar in any context in
which Scheme would permit a (constant) value. Since Sclecoa'structs are only de ned
to operate on constant values, they must be extended in raesrk meaningfully with
behaviors. The rest of this chapter discusses what it meanset behaviors with each of
these constructs and how FrTime de nes the extended secsanti

Before going into the details of the evaluation model, | wiBaliss some high-level
concerns.

2.1 Discrete Modeling of Continuous Phenomena

Behaviors are intended to model phenomena that vary ovemcants time. However,
their implementation on digital hardware requires a digcepproximation. In FrTime,
each behavior maintains an approximation of its currentealvhich updates in discrete

15

steps.

In most cases, the accuracy of the approximation dependsednetquency with which
the updates occur; smaller sampling intervals result inllempmps between steps and
therefore smoother curves that more closely follow theioous ideal. Signals that have
this property (e.g., the results of all stateless transébions and some stateful ones like
integral) are said to beonvergentsince they converge on their ideal values as the sampling
interval tends toward zero.

It is possible, however, to de ne behaviors that do not cogege For example, the
following expression counts the number of changes in a rerged timer callednillisec-
onds:

(collect-b(changesnilliseconds) 0 ((- n) (add1 1))

The value of this expression grows without bound, and at avgngtimet, its value is
proportional tot times the rate at whicmilliseconds changes. On a slow machine, it
might update only 20 times per second, while on a faster magchi could update 100
times per second or more. As the sampling rate increasesjatbe of this expression
grows more rapidly. This behavior is therefore saiditeerge

The existence of approximation errors and divergent bensare unfortunate but nec-
essary consequences of the use of a discrete model. Howvleess,are also bene ts of
using a discrete notion of time. Most importantly, like thregence of a clock in a digi-
tal circuit, discrete time supports synchronous executidiowing the language to avoid
glitch- and hazard-like conditions and to support extacof consistent snapshots of a
program'’s state.

2.2 Push-Driven Recomputation

A typical evaluator performs a pre-order traversal of anregpion's abstract syntax tree,
recursively reducing subexpressions to values until regctihe root. In FrTime, evalua-
tion results in a graph of signals that exhibit differentuesd over time, and the data ow
evaluator needs to recompute these values as new inputsibec@ilable.

A natural way to compute values over time is to re-apply tl@dard top-down tree-
traversal whenever any of the input values change. Unfataly thispull-based approach

16

has several drawbacks. For one thing, many subexpressialogs may not change often
(because the values they depend on change rarely), so tl@tevavill perform many un-
necessary recomputations. One key technique in avoidiagrtf ciency is to maintain a
cache with each subexpression's most recent value, and@cynpute it when something
upstream has changed.

Another problem is that several subexpressions may sharsaime values. A pull-
based evaluator will naturally recompute these once fon sabexpression that depends
on them, which is problematic for non-idempotent updateg. (state accumulators). To
deal with such nodes correctly, the evaluator needs to etisat it doesn't update any node
more than once in a given time step, for example by keepingestiamp at each node and
comparing it to the current time before recomputing.

FrTime avoids these complications by instead using a bettpppush-based recom-
putation strategy. Its evaluator maintains a graph thatucap the ow of data between
behaviors. Each node represents a behavior and cachesttafidr's most recent value.
When a node's value changes, it ensures that each node tbet tefit is scheduled for
recomputation. By traversing the graph in topological grtte update scheduler guaran-
tees that each node updates at most once, and only when sagnethwhich it depends
changes. When a value changes, everything that dependssored¢amputed within that
time step. Thus values are always kept fresh, even if thegp@reeeded. This prevents the
time leakghat can arise in demand-driven implementations, wherertif computations
accumulate until their results are needed.

2.3 De ning the Data ow Extension

| now present the essence of this evaluation model througixecutable interpreter. The
interpreter consists of several distinct pieces:

an evaluator shown in Figure 2.15, which consumes FrTime expressiodsren
duces them to values. Values may include both constantsigmals. The evaluator
connects the signals into a graph that captures their dandencies. The evaluator
is a variation on a standard meta-interpreter for Schentb,edger substitutions.

a snapshot evaluatorshown in Figure 2.6, which consumes an expression and a

17

store, and returns the instantaneous value of the expregsien the mappings in
the store.

anupdater shown in Figure 2.16, which iteratively updates a progeastate once it
has been evaluated.

A program'’s state consists of the following:
1. the current timé,
2. the store, represented as an association list of signdltheir current values,
3. the set of dependencies, and
4. the set of signals in need of recomputation

This interpreter is presented for purposes of illustratidhe real FrTime implementation
uses DrScheme's integrated macro and module system [4&tgéd of an interpreter) to
extend the de nitions of Scheme's core syntax and primiterators and achieve the
same semantics. Thus it reuses Scheme's evaluation menh&man even greater extent
than the interpreter.

2.4 Primitive Operators and Constant Values

To explain how FrTime interprets programs, | will step thghuthe evaluation of expres-
sions that exercise various features. To begin, considat dppens if a user enters

(+ (21) (moduloseconds 3))

at theREPL. The expression is rst evaluated by tlesaluateprocedure, the necessary
fragments of which are shown in Figure 2.3.

At the top level, this expression is a function applicatisa,it matches thef (. arg9
clause in the evaluator, which begins by recursively evalgaall of the subexpressions
(i.e., the function expression and each of the arguments).

The function position contains the identi er, which matches the last clause in the
evaluator. The evaluator returns a structure containirggetrelds: the expression's value,

The time does not actually in uence evaluation; it is onlggent as a debugging aid.

18

;;<expr ! (make-resulk val> < new deps < new signals)
(de ne (evaluate expr
(match expr
;; — code for most expression types elided —
[(f . arg9) ; procedure applications:
(match-let ([($ result vs deps siggevaluate-list(cons f arg3)]
[fv (rst vs)] [argvs(rest vg])
(cond
;; — code for time-varying procedures elided —
[(prim? fv) ; application of primitive procedures:
(if (ormap signal? vp
(let ([new-sig(new-signal v{)
(make-result
new-sig(union depgmap((d) (list d new-sig) (Iter signal? argvs)))
(union (list new-sig sig9))
(make-resul{apply (eval f) args) deps sigp]))]
;; values:
[- (make-result expempty empty)]))

Figure 2.3: FrTime evaluator (excerpts for primitive progees)

the new data dependencies, and the new signals. In this tta&s&lenti er evaluates to
itself, introducing no new data dependencies or signalfhetast two elds are empty.

The rst argument tot+ is the function application (2 1). The next step is to recur-
sively evaluate each of its subexpressions. In this casef dle arguments are already
values. The function is a primitive, and none of the arguman¢ signals, so it defers to
Scheme to perform the raw function application, yielding ¥aluel.

The second argument to is the function applicationnjoduloseconds 3). All of the
arguments are values, lggconds is a signal, so the result is a new signal.

Signals are represented as structures of sige For example, the result ofrfodulo
seconds 3) is:

#(struct:sig0 (moduloseconds 3))

TheO is its identi cation number, andhjoduloseconds 3) is the expression that computes
its value.

Because the new signal refers to (and dependset)nds, the evaluator extends the
data ow graph with an edge fromeconds to this new signal. Note that the evaluator does
not compute signals' current values; that is done in a sépapalatestep, described later.

19

seconds

Figure 2.4: Data ow graph for (+riodulo second3) (- 2 1))

Having evaluatedrioduloseconds 3) to produce the signal
#(struct:sig0 (moduloseconds 3))

the evaluator is ready to proceed with the evaluation ofadpdevel expression, which has
by now been reduced te- (1 #(struct:sig0 (moduloseconds 3))). One of the arguments
is a signal, so the overall result is again a new signal, itms &s follows:

#(struct:sigl (+ 1 #(struct:sig0 (moduloseconds 3))))

| will subsequently abbreviate signals as jégstruct:sig n...) when the expression is
either unimportant or already shown.
Figure 2.4 shows the graph for the expression discusseeabov

2.5 Updating Signal Values

The evaluator constructs a data ow graph for an expresdiahjt does not compute the
current values of any signals. This is done in a separatebgtépeupdater Signals values
are kept in astore which initially maps all signals to the unde ned valu,

The implementation of the updater's basic functionalitgh®wn in Figure 2.5. It con-
sumes a time, a store, a set of dependencids(f9, and a set o$talesignals.

Initially, the stale set contains all of the signals constied during evaluation of the
expression. The updater selects one of them for update#(sayct:sig0 ...). It then

20

;; update< numbep < store>
(de ne (update t store deps stagle
(if (empty? stalp
;; — empty case elided —
(let ([ready-for-updatdset- stalgtransitive-deps stale dep$
[sigO(rst ready-for-updatg])
(match sig0
[($ sig - expn)
(let (Jval (snapshot expr sto)yp
(values t(store-update sig0 val stoyeleps
(set-(if (eq?(store-lookup sig0 stojeral)
stale
(union stale(immediate-depfist sig0) deps))
(list sig0)))]

;. — other cases elided —

)

Figure 2.5: FrTime updater (excerpts for primitive procexdy

(de ne (snapshot expr stoje
(match expr
['(if ,c ,el,e? (if (snapshot c stoje
(snapshot el stoje
(snapshot e2 sto)j
[($ sig -) (snapsho(store-lookup expr stojestore)]
[($ switch_ _) (snapsho(store-lookup expr stojestore)]
[($ prev_) (snapsho(store-lookup expr stojestore)]
[((,vars,body) . vals)
(snapshoffoldl ((var arg body (subst var arg body vars arg9)]
[.-)expd
[(p. valy)
(apply(eval p (map((v) (snapshot v stoi val9))]

[xX))

Figure 2.6: A snapshot evaluator for the essence of FrTime

computes its value by snapshoevaluation of its expressionnoduloseconds 3).
Snapshot evaluation, de ned in Figure 2.6, computes theeativalue of a signal-

containing expression, given a store containing the ctinralnes of the signals to which

it refers. Suppose that the current store msgusonds to 0, so the expression's snapshot

21

value isO. The store is updated to majgstruct:sig0 ...) to 0. This differs from the
previous value of , so the updater adds all #fstruct:sig0 ...)'s dependents to the set of
stale signals. In our example, the only depende#{ssruct:sigl ...), which is already in
the stale set, so this has no effect. However, in subsegieeations, this mechanism keeps
all of the signals consistent with each other as they change.
The updater next processéstruct:sigl . ..) in a store that mapgstruct:sig0 ...) to
0. Its update proceeds similarly to that of the previous diggecept that its expression is
(+ 1 #(struct:sigO0 ...)), so its snapshot evaluation yields the valuélhis signal has no
dependents, so the set of stale signals becomes empty,eanddhte cycle is complete.
The updater next allows time to advance to the next step, ri@eats the process de-
scribed above. (In order to avoid monopolizing theu in the actual implementation,
FrTime waits for a given amount of real time before procegdin

2.6 Scheduling of Updates

Consider the expression
(< seconds (+ 1 seconds))

This evaluates to a behavior that should always have theevala, sincen is less than
n + 1. However, wherseconds changes, it makes two signals stale: the one associated
with (< seconds (+ 1 seconds)) and the one associated with (1 seconds). If the
former is updated rst, then the comparator will see tisvvalue ofseconds and theold
value of ¢+ 1 seconds) (which is the same aseconds!), resulting in afalsecomparison.
Once the £ 1 seconds) signal updates, thes(seconds (+ 1 seconds)) signal becomes
stale again, and when it updates the second time, it yielletipected value dafue.
This situation, in which a behavior momentarily exhibitsianorrect value, is called a
glitch. Glitches are unacceptable because they hurt performdaycea(ising redundant
computation) and, more importantly, because they procumaiect values.

To eliminate glitches, the language must guarantee thaneser it updates a signal,
everything on which that signal depends is up-to-date. rReTensures this by updating
signals in an order that respects the topology of the datagosph. The relevant line of
code in the updater is the one that bindady-for-updateo (set- stale(transitive-deps

22

stale depy. This computes the set of signals that depend trangitii®lt not re exively)
on any stale signal and removes them from consideration. sigmls in the remaining
set are guaranteed not to interfere, so the updater canelangf them to process next.
In fact, they could all be updated safely in parallel, butskgquential updater here simply
picks the rst signal in the list.

In practice, computing sets of transitive dependents andiferences like this would
be too expensive. In the real implementation, each sigrebhaextra eld that stores its
heightin the data ow graph, which is greater than that of anythimgvehich it depends.
The updater uses a priority queue to process signals inasicrg order of height, adding
to each step a number of operations only logarithmic in threlver of enqueued signals.

2.6.1 Subtleties of Memory Management

In the data ow graph, there is a reference from each behawieach other behavior whose
de nition refers to it. These data ow references, which ipigirom referent to referrer, are
in the opposite direction from the references that occuimadly in the program. If imple-
mented n&ely, these references would make reachability in FrTimogpgams a symmetric
relation, preventing garbage collection of any part of tadw graph. To avoid this prob-
lem, the real implementation use&akreferences for the data ow graph, which are not
counted by the garbage collector.

Using weak references in the data ow graph eliminates omnecgoof memory leakage.
However, it is still possible for a dead signal to surviveediion; for example, if it is being
updated when the garbage collector runs, then it will teraplgrappear live and therefore
not be collected. In addition, its references to other dgynall keep them alive as well,
and so on.

While there is no way to eliminate such transient livenessiftoe system completely,
it is important to reduce it as much as possible. For a sim@ewle of why this is crucial,
consider the following program:

(collect-b(changeseconds) empty

((lst)
(append(take4 Ist)

(list (milliseconds (current-millisecondy))))

23

This program produces a steady stream of new behaviors @ngepond) that count the
number of milliseconds since their birth. The last ve su@hhbviors are retained in a list,
and any older ones are garbage. Since all of these beha@épend directly omillisec-
onds, as soon amiilliseconds updates, they are all placed on the update queue. Assuming
these are the majority of the signals in the system, on aeemgut half of them will be

on the update queue when the collector runs, so if the updaigequses strong references,
half of the (dead) signals will survive. Therefore, the estpd number of signals remaining
after a collection grows continually over time, eventuahoking the system. To prevent
such scenarios from arising in practice, the update quest atgap use weak references.

2.7 Time-Varying Control Flow

The previous sections have explored examples in which hetsaare provided as argu-
ments to primitive procedures. However, this is not the evdy in which a program might
reasonably use behaviors. For example, consider the flolgpprocedure de nition:

(
(if (zero? ¥
(addlseconds)

(/' 6x))

Suppose that a program applies this function to the conétalts evaluation begins sim-
ilarly to that of a primitive procedure application, excépat the function expression is
a -abstraction, which evaluates to itself as shown in Figure 2Vhile interpreting the
application fv matches (* vars body, so the evaluator performs asubstitution, yielding
the following expression:

(if (zero?0)
(add1lseconds)
(/60)

This expression matches thé& € t €) clause in Figure 2.7. It reducezefo?0) to true and
selects the rst branch for evaluation. This is exactly hoaoaditional expression would
be evaluated under a standard call-by-value semanticsfathéhat the branch evaluates

24

;<expr ! (make-resulk val> < new deps < all signals> < stale signals)
(de ne (evaluate expr
(match expr
;. — other cases elided —
[('if ct € ; conditional expressions:
(match-let([($ result cv deps all-sigs stale-sig&valuate §])
(cond|(signal? cy
(let ([swc(make-switch(if ,[1 ,t ,€) cVv)]
[fwd (make-signal swg)
(make-result fwdqunion deps((,cv,swq (,swc,fwd)))
(union”(,swc,fwd) all-sigs) (union (,swqg stale-sig}))]
[cv (evaluate])]
[else(evaluate §))]
[(.. (make-result expempty empty empty)]
[(f . args) ; procedure applications:
(match-let ([($ result vs deps sigs stgléevaluate-lis{cons f arg})]
[fv (rst vs)] [argvs(rest v3])
(match fv
[vars body ; application of lambda abstractions:
(match-let([($ result v deps1 all-sigs1 stale-sigs1
(evaluate(foldl ((var arg body (subst arg var body
body vars argvg])
(make-result {union deps dep3Xunion sigs all-sigs)L
(union stale stale-sig3))]
;; — other cases elided —

)

Figure 2.7: FrTime evaluator (excerpts fbexpressions and-abstractions)

to a signal is irrelevant, since once the branch is selettedzonditional aspect of the
evaluation is complete.

The interesting case is when the value of the condition ishaWier. Since the condi-
tion's value might change, the evaluator cannot simplycdedae branch or the other for
evaluation. Rather, it must dynamically take the value ofclhbver branch is selected by
the current value of the condition.

A naVve strategy for such dynamic switching would be to evallmtth branches and
simply choose between their values according to the camditdiowever, this strategy fails
in general. For example, in the function above, the secoawldbrwould raise division-by-
zeroerror if evaluated while the condition wetreie. The evaluator could work around this

25

Figure 2.8: Data ow graphs for a conditional expression

problem by catching and ignoring errors within the inactivanch, but it would still have
problems in other situations, such as when the conditi@aséd to terminate recursion.

To avoid these potential problems, FrTime implements dardils by dynamically re-
evaluating the branches as their values are needed. Eaelhtncondition acquires a new
value, FrTime evaluates the appropriate branch and uggetentially time-varying) value
until the condition changes again.

For example, consider the application of the above proeetlurfmodulo seconds
4). Evaluation initially proceeds according to the rulesserged above. The argument
reduces ta#(struct:sig2 (moduloseconds 4)), which is substituted into the body of the
abstraction to yield the following:

(if (zero?#(struct:sig2...))
(add1lseconds)

26

(/ 6 #(struct:sig2 ...)))

The condition reduces to the sigr{ktruct:sig3 ...). Because this is a signal, the evalu-
ator's (signal? cy test succeeds, and it creates two new signassvitchand aforwarder,
abbreviatedwcandfwd respectively in the code. These are the two signals showald b
in Figure 2.7 (a).

A switch is a special kind of signal with the following struce:

#(struct:switch4 (if [
(add1seconds)
(/ 6 #(struct:sig2 ...)))
#(struct:sig3 .. .))

The rst eld is an identi cation number, as in an ordinaryggial. However, while an
ordinary signal would contain a single expression, a svgtelxpression is split into a
contextand atrigger. For conditionals the trigger is the condition, and the eahts the
conditional expression with a holelj in place of the condition.

The essential idea is that the trigger's values populatectimext's hole, and the re-
sulting expression is re-evaluated each time the triggangés in order to produce a new,
potentially time-varying, value. The forwarder is dynaaiig connected to the most recent
result and just copies the result's current value as it ceand\ forwarder is an ordinary
signal whose de ning expression is simply another signal:

#(struct:sigb #(struct:sig4 ...))

Recall that the evaluation step does not compute signalgegaland without knowing the
trigger's current value, the evaluator cannot determiestvitch's current branch. This
step is therefore deferred until the update step.

During the update step, the signals created by the evalaatoassigned values. The
ordinary signals (e.g., the ones numbered 2 and 3) updatesasilokd above. Suppose that
signal 2's value is 2, so signal 3'sfalse The graph now looks like the one shown in Fig-
ure 2.7 (b). When the updater processessthigch(signal 4), it matches the(struct:switch
...) case shown in Figure 2.9. The most important step isdrctde that reads:

(evaluate(subst(store-lookup trigger stope] ctxt))

27

(de ne (update t store deps stagle
(if (empty? stalp
;; — empty branch elided —
(let ([ready-for-updatdset- stalgtransitive-deps stale dep$
[sig (rst ready-for-updatg])
(match sig
;; — other cases elided —
[($ switch_ ctxt triggen) ; updating a switch:
(match-let
([fwd (rst (Iter ((sig]) (and (sig? sigd (eq?(sig-expr sig) sig0))
(map rst storg))]
[old (set-(transitive-depglist sig0) depg
(cons fwd(transitive-depglist fwd) dep3))]
[depsi(Iter ((dep (not(member(second depold))) deps]
[($ result v new-deps new-sigs
(evaluate(subst(store-lookup trigger stope 1 ctxt))])
(values t(append(map((s) (list s?)) new-sig$
(Iter ((M) (not(member rst m) old)))
(store-update sig0 v stoyp
(union(map((s) (list sig0 9) new-sig$
depsl new-depd (signal? vy (list (list v fwd)) empty))
(set-(union (list fwd) new-sigs stale(cons sig0 oli)))])))

Figure 2.9: The part of the updater that handles switching

This substitutes the trigger's current valuéatlse—for the hole in the context and evaluates
the result. Since this is the rst time updating this swittiere is no previous subgraph.
Evaluation creates a new sign#(struct:sig6 (/ 6 #(struct:sig2 ...))). It also updates the
store to map the switch's value to this new signal and addgpera#ency from this signal
to the forwarder, and between the new signal and the swittte gfaph then looks like
the one shown in Figure 2.7 (c). As the update cycle procesgisal 6 acquires the value
3, and the forwarder (signal 5) copies it. The graph is thablset and its state is as in
Figure 2.7 (d).

In the next update cyclesecondsncrements, and the change propagates through the
rest of the graph. Because the trigger does not change, thehsdaes not update, and the
graph's structure remains the same. Its state is shown ur&@.7 (e).

In the third update cycle, shown in Figure 2.7 (f), the triggkanges and causes the
switch to update. The old signal, which would erroneousWddi by zero if left to update,

28

*+&(,-&),

<
*+&(,-&),)/
HS%&! (H HS%&! (H

(9) (h)

Figure 2.10: Data ow graphs for a conditional expression

is removed from the graph, and the evaluation of the switekygession yields a new graph
fragment, which is spliced into the rest of the graph. Thaltésdepicted in Figure 2.7 (g).

The new signal updates, and its value propagates to the ffdewaas shown in Figure 2.7
(h).

The dashed arcs from the switch to its current branch areattfioc the timely removal
of old signals. These ensure that, when the trigger chamadjex,the obsolete signals will
be destroyed before having a chance to update. They are dvdalwdashes because they
represent control, rather than data, dependencies.

The switching mechanism also plays a crucial role in the eamgntation of time-
varying procedures. In that case, the trigger is the praeedignal, and the context is
the procedure application with a hole in the function positi Each time the procedure

29

;<expr ! (make-resulk val> < new deps < all signals> < stale signals)
(de ne (evaluate expr
(match expr
;; — other cases elided —
[(f . arg9)
(match-let ([($ result vs deps siggevaluate-list(cons f arg$)]
[fv (rst vs)] [argvs(rest v3])
(match fv
;7 — other cases elided —
;; signal in function position:
[($ signal_)
(let ([swc(new-switch(consd argvs fv)]
[fwd (new-signal swj)
(make-result fwdunion deps((,fv ,swqg (,swc,fwd))) (union sigs (,swc,fwd))))]
D)

Figure 2.11: FrTime evaluator (excerpts for time-varyimggedures)

changes, its current value is substituted into the hole tla@desulting expression is eval-
uated to produce a new fragment of data ow graph. The siityldretween conditionals
and time-varying procedures is clear from the amount of cbdeed between Figures 2.7
and 2.11.

In the actual implementation, there is no interpreter, sovdlues that represent behav-
iors must be directly applicable as procedures. In FrTiris, is made possible by PLT
Scheme's support for the use of data structures as proced@ther languages provide
different features that can achieve the same purpose. kong@e, in a language like C++,
behaviors can be instances of a class with a function-callaipr. In JavaScript, behaviors
can inherit from the clasBunction . As a fallback, in any dynamically typed functional
language, behaviors can simply be represented as prosedure

2.8 Remembering Past Values

The constructs presented so far only allow processing adbets' values within a single
instant. In practical applications, however, we need thktybo remember the past. For
example, to record the sequence of characters that havetygseth into a text box, the
language needs a way to accumulate state.

30

(de ne (update t store deps stagle
(if (empty? stalp
(let ([prevs(map rst (Iter prev? storg)])
(values(add1l) (foldl ((prev new-storg
(store-update preystore-lookup(prev-signal prey store
new-storg)
store prevy
deps(immediate-deps prevs dgps
;; — hon-empty branch elided —

)

Figure 2.12: An update engine for the essence of FrTime (pkéar prev statements)

FrTime provides this capability by means opeevoperator, which consumes a signal
and returns a new signal whose value is initially unde n@d @nd subsequently equal
to the value its argument had in the previous time step. AsrEi@.12 shows, albrev
signals are updated while the system is in a stable stateWiren the set of stale signals
is empty). Theprevsignals therefore effectively update between two timessteymen all
signals are consistent for the previous step, and none wof tfaee changed in the next step.
This property is what allows them to copy values soundly fimme time step to the next.
Moreover, this peculiar update protocol means thra signals need not depend on their
arguments, and therefore need not update in response tgehamtheir arguments. Since
prevs may refer to each other, it is crucial that all of their ugdadccur atomically. This is
why thestore-lookug in Figure 2.12 all use the original store.

While there are several operators that accumulate histoey, ¢an all be expressed in
terms ofprev. For example, to keep track of the value a signal kdiine steps ago, one
can simply composk uses ofprev. Similarly, to compute a numerical approximation of a
time integral, one can de ne a signal whose value is inigiaktro, then the sum of its own
previous value and the current value of its argument timeslthration of the time step.

Of course, in a real implementation, constructing long yiethrough chains of atomic
delays would be wasteful, as it would require many updateaah time step. Moreover, in
many interactive applications (e.g., games), the programmay want to delay a signal by
a speci c amount of real time, which may not correspond to aeg number of FrTime's
update cycles. (The rate at which FrTime processes an upgetemay vary according to
the hardware con guration, the number of active signaliengystem, the behavior of the

31

gLconsumery
(dela,y-b)f 190) Values
Alarms

10795523ms 120 @ 10795423ms

10795505ms [120 112 @ 10795405ms
(

105 @ 1079538Ims
1079548 1 ms posn-X mouse-pos)
10795467 ms 98 @ 10795367ms

10795448ms 92 @ 10795348ms

10795430ms gt 85 @ 10795330ms
Wake p «producery éecx\)e

Figure 2.13: The implementation d&lay-by

garbage collector, and other factors beyond the prograomtal.)

To support real-time interaction, FrTime providesl@ay-byoperator that ef ciently
delays a signal by a given amount of real tidtgor at least, by as close an approximation
as it can achieve). Thidelay-byoperator constructs a pair of signals callesbasumeand
aproducer The two signals communicate through a shared queue thataires a sliding
window of the argument's recent values.

Figure 2.13 illustrates how the consumer and producersezatg to delay a behav-
ior. The consumer (top) depends on the argument (middlei}, .ggdates every time the
argument changes, adding an entry to the queue (right) Wehctirrent timet and the
argument's current value.

Alarms. The data ow engine provides adarm mechanism, whereby a signal may be
scheduled for update at (or shortly after) a given point a tene. Internally, the engine
maintains an ordered collection of paifsignal wake-timg, and at the beginning of each
update cycle, it enqueues for update all signals whose waies have elapsed. To ensure
that signals are updated as soon as possible after theaseglwake-times, the engine sets
a timeout at the earliest wake-time before asking the rusmtmwait for external events.

The consumer uses this alarm mechanism (left) to schedelprdducer for update at
timet+ dt. Thus, when the producer (bottom) updates, at léasiilliseconds have elapsed
since some change in the argument's value. The produceedeguhe appropriate value

32

;<expr ! (make-resulk val> < new deps < all signals>)
(de ne (evaluate expr
(match expr
[(recx e
(match-let ([sig(make-signaP)]
[($ result val deps sigqevaluate(subst sig x B])
(vector-set! si@ val)
(make-result va{union depgif (signal? va) (list (list val sig)) empty))

(cons sig sigp)]
:; — other cases elided —

)

Figure 2.14: FrTime evaluator (excerpts for recursive ings)

and emits it.

2.9 Recursion

An important application of history is in the expression elffgeferential signal networks,
which are necessary for many practical programs. As artnditisn of the power of self-
reference, observe that time itself can be expressed asal sWpose value starts as zero
and is then equal to one greater than its previous value:

(rect (init O (add1(prev 9)))

Here,recis a xed point operator, and thiait operator uses the value of its rst argument
as long as the second argumen®is(Typically, primitive procedures likaddlare lifted
in a? -strict fashion, so they retur? if any of their arguments are.)

Figure 2.14 shows how FrTime implements tiee construct. The body is evaluated
with the variable bound to a placeholder signal, whose vstiags out unde nedd). Then
the signal's value is rebound to the result of the evaluatiarthe general case, the result
is a signal, so the placeholder signal depends on the resdtthe result also refers to
the signal. If this chain of reference is not broken bgray, then a cycle in the data ow
graph results, rendering topological evaluation impdssilm the expression above peev
intervenes, so the graph remains acyclic.

If one were to de ne an ill-founded behavior, such as

33

(rec x (init true (not X))

then the evaluator would err when it tried to select the nigxted for update. Since every
signal would depend transitively on another signal with pdate pending, it would not be
safe to update any signal. In the actual implementationinfgTdiscovers the tight cycle
when it rebinds the placeholder and traverses the graphdatephe height assignment.

2.10 Event Streams

The preceding sections have explained how behaviors cttenigh all of the features in
standard (purely functional) Schem&RP, however, also supports the modeling of se-
guences of discrete phenomena, which are calesht streamsBehaviors and events are
in some sense duals, and either one can be used as a basiseimé@npthe other, at least
in a model where time is fundamentally discrete. In FrTimehdwviors are primitive, and
event streams are modeled as structured behaviors cathgrigne at which the last event
occurred, and the collection of events that occurred atitm&t It is easy to de ne the stan-
dard event-processing combinators as lifted functions these behaviors. For example:

(de ne (map-ef ¢
(make-eventevent-time g(map f (event-occurrencegy)

(dene (lter-epe)
(make-eventevent-time g(Iter p (event-occurrences))))

(de ne (merge-e e9
(let ([last-time(apply maxmap event-time ¢g)
(make-event
last-time
(apply append
(map event-occurrences
(lter ((e) (= (event-time plast-timg)
es))))

Stateful event processors (e gccum-hcollect-b can be expressed via recursion amel.

34

2.11 Support for REPL-based Interactive Programming

Another concern for FrTime is supporting a read-evaluaietfpop (REPL) for interactive,
incremental program development. While not technically pathe language itself, this is
an important feature from the standpoint of usability, and that Scheme and other Lisp
dialects have long provided.

FrTime support®REPL interaction by allowing the data ow computation to run canc
rently with theREPL The language dedicates one thread of control, calledii@ ow
engine to the update algorithm, while another thread manages tBeH@merePL, al-
lowing the user to enter expressions at the prompt. The dsreemmunicate through a
message queue; at the beginning of each update cycle, tieeezigpties its queue and
processes the messages. When the user enters an exprefiseoprampt, th&REPL sends
a message to the data ow engine, which evaluates it and neisp@ith the root of the re-
sulting graph. Control returns to tleePL, which issues a new prompt for the user, while
in the background the engine continues processing evedts@iating signals.

This approach differs from the one taken by the Haskelb systems [39, 74]. In
those, a program speci es the structure of a dynamic datacomputation, but the actual
reactivity is implemented in an interpreter callegctimate The use ofeactimateis an
artifact of a particular implementation strategy, in whamexternal entity was required to
drive reactive computations by pulling values from streaResactimateguns in an in nite
loop, blocking interaction with th&@EPL until the computation is nished. It therefore
creates a closed world, which is problematic for applicsithat need to SUppOREPL-
style interaction in the middle of their execution.

It may appear that the Haskell systems could achieve sitmglaavior simply by spawn-
ing a new thread to evaluate the callreactimate Control ow would return to theRepPL,
apparently allowing the user to extend or modify the progrétawever, this background
process would still not return a value or offer an interfameprobing or extending the run-
ning data ow computation. The values of signals runningdesareactimatesession, like
the data ow program itself, reside in the procedure's scapé hence cannot escape or be
affected from the outside. In contrast, FrTime's messagriguallows users to submit new
program fragments dynamically, aedaluating an expression returns a live sigmalich,
because of the engine's background execution, re ectsgdatrunning computation.

;<expr ! (make-resulk val> < new deps < all signals> < stale signals)
(de ne (evaluate expr
(match expr
[(recx e
(match-let ([sig(make-signaP)]
[($ result val deps sigs stgl¢evaluate(subst sig x B])
(set-sig-expr! sig val
(make-result va{union depgif (signal? va) (list (list val sig)) empty))
(cons sig sigp(cons sig stalg)]
[(preve)
(match-let ([($ result val deps sigs stdléevaluate §
[new-sig(make-prev va])
(make-result new-sig dejjsons new-sig sigstale)]
[(ifcte
(match-let([($ result cv deps all-sigs stale-sig&valuate §])
(cond|(signal? cy
(let ([swc(make-switch(if ,[J .t ,€) cv)]
[fwd (make-signal sw{)
(make-result fwdqunion deps((,cv,swq (,swc,fwd)))
(union”(,swc,fwd) all-sigs) (union (,swq stale-sig}))]
[cv (evaluate]]
[else(evaluate §))]
[(..) (make-result expempty empty empty)]
[(f . arg9)
(match-let ([($ result vs deps sigs staléevaluate-list(cons f arg3)]
[fv (rst vs)] [argvs(rest v3])
(match fv
[vars body
(match-let([($ result v deps1 all-sigs1 stale-sigsl
(evaluate(foldl ((var arg body (subst arg var body
body vars argvg])
(make-result {union deps dep3Xunion sigs all-sigs)L
(union stale stale-sig3))]
[($ signal)
(let ([swc(new-switch(cons] argvy fv)]
[fwd (new-signal swy)
(make-result fwdqunion deps((,fv ,swg (,swc,fwd)))
(union sigs (,swc,fwd)) (union stale’ (,swQ@)))]
[(? prim?)
(if (ormap signal? v
(let ([new-sig(new-signal v§)
(make-result
new-sig(union depgmap((d) (list d new-sig) (Iter signal? argvs)))
(union(list new-sig sig9 (union(list new-sig stalg))
(make-resul{apply (eval f) args) deps sigs stalg]))]
[- (make-result expempty empty empty)]))

Figure 2.15: An evaluator for the essence of FrTime

(de ne (update t store deps stale
(if (empty? stalp
(let ([prevs(map rst (Iter prev? store)])
(values(addl)
(foldl ((prev new-store
(store-update preystore-lookup(prev-signal prey store
new-storg)
store prevy
deps(immediate-deps prevs dgps
(let ([ready-for-updatdset- stalgtransitive-deps stale dep$
[sig (rst ready-for-update])
(match sig
[($ sig - expn)
(let ([val (snapshot expr sto)p
(values t(store-update sig val stoye
deps
(set-(if (eq?(store-lookup sig stojeval)
stale
(union staleg(immediate-dep§ist sig) depg))
(list sig))))]
[($ switch_ inner-ctxt trigge)
(match-let ([(fwd9 (lter ((sigl) (and (sig? sigd
(eq?(sig-expr sig} sig)))
(map rst store)]
[(fwd) (rst fwds))]
[(old) (set-(transitive-dep4glist sig) depg
(cons fwd(transitive-depglist fwd) dep3))]
[(deps) (lter ((dep (not(member(second depold))) dep3]
[($ result v new-deps new-sigs new-sjale
(evaluate(subst(store-lookup trigger stone
[J inner-ctx)
outer-ctxy])
(values t(append(map((s) (list s?)) new-sig$
(Iter ((M) (not(member(rst m) old)))
(store-update sig v stoyp
(union(map((s) (list sig 9) new-sig$
depsl new-depd (signal? v (list (list v fwd)) empty))
(set-(union (list fwd) new-stale stalg(cons sig old)))]))))

Figure 2.16: An update engine for the essence of FrTime

36

Chapter 3
Semantics

This chapter presents a formal semantics of FrTime's etialuanodel, which highlights
the push-driven update strategy and the embedding in dygal&lue functional host lan-
guage. Figure 3.1 shows the grammars for values, expressiod evaluation contexts. A
system is parameterized over a set of base constants anitiyaiaperators (which oper-
ate on these base constants). Values include the unde nad (&), booleans, primitive
procedures, -abstractions, and signals. Expressions include valuesedure applica-
tions, conditionals, andrev statements. Evaluation contexts [41] enforce a left-gbri
call-by-value order on subexpression evaluation.

Figure 3.2 shows the types of various elements of the secsaialiong with the letters
we use conventionally to represent them. THienction, a parameter to the language, spec-
i es how primitive operators evaluate? represents the program, of which one (possibly
trivial) expression is evaluated at each moment in tiDedenotes a dependency relation:
the set of values on which various signals dependandl name sets of signals, argl
identi es a store, which maps signals to values.

Figure 3.3 describes how a FrTime program evaluates to peodudata ow graph.
Transitions operate on triples containing a signallset dependency relation, and an
expressionl (the set ofinternal updates) represents the set of signals whose values will
need to be computed once the expression has fully evaluBigthg graph construction,
thel parameter accumulates newly created signalsPaadcumulates their dependencies.
Sometimes a single rule creates multiple signals, some afhndepend on the others, so
thatl need not accumulate all of the new signals.

37

38

X 2 hvari ::= (variable names)
p 2 hprimi = (primitive operators)
t 2 htimei ::= (moments intime)
2 hloci = (prev hEihloci) j(sig hEihe) j (switch hEihEihloci)
u;v2hvi = ?j true jfalse jhprimij ((hvari) hei) jhlocij :::
e2he = hvijhvarij (hethe) j(rec hvarihei) j (prev he) j(if heiheihe)
E2hEi == [] j(hvi HEihe) j(prev HhEi) j(if HEihehe)

Figure 3.1: Grammars for values, expressions, evaluatategts, and signal types

hprimi h vi :::1h vi (primitive evaluation)
P Himei ' h e (program fragments)
| h loci (signal set)
D hvi h loci f true ;false g (tagged dependency relation)
S hvilh vi (signal value)

Figure 3.2: Semantic domains and operations

The rstthreerules(, y, andiF) are special cases for evaluation steps that only involve
constants. The underlining of these rule names distingsishem from theififted, or
signal-aware, counterparts. The underlined rules beraweald be expected in a standard
call-by-value semantics.

The next three rules (, andIF) de ne the behavior of primitive application, ap-
plication of -abstractions, and conditional expressions (respegjivelthe presence of
signals. Understanding them requires a knowledge of tlierdiit varieties of signals and
what they mean.

It is instructive to view signals from two different perspiges. One view is as abstract
entities that have an associated (constant) value at eachipdme. This view is embod-
ied semantically by the stor&), which explicitly maps signals to their values at a given
point during evaluation. This view naturally gives riseltie notion ofsnapshot evaluation
(Figure 3.4), in which signals evaluate to their projecsiama given store.

39

fvi;iii;vag\hloc =

0

;D E(((Xeiiixn) @ viiiivp)]ilth ;D5 E [evi=xa] i [Va=Xa]li ()
h;D;E [(if true e &)]i'h I;D;E [el]i

H;D; E [(if false e &)i'h I;D;E [e]i (iF)
fvy;iii;vag\hloci = 6 =(sig E(pw::i:ivh))
D E[(pviziiva)lith T[f gD[(f gpE[])
g=(switch E ([Jvi::iivn)) i =(sig E g ()
NDE[(veswa)lith T[T o@D (5 o)i(¢ 1)GE[¢l ’
g = (switch E (if []eie)) i =(sig E o) (1F)
NiDE[(f ewe)lith 1[f gDIf (5 oi(g)GEL]
o= (switch E(((Q&[)) ¢=(sig E o (Re0
h;D;E [(rec xe)lith I[f gDI[f (g)GE[]
=(prev E 9
N:D;E [(prev OJi'h 1;D;E[] (PREV)
Figure 3.3: Evaluation rules
Ef(pvi:iiva)l ! s E[(psvasiiisvn)] (s)
E[(((X1:::Xn) @ viiiivn)]! s E[e[vi=xq] 111 [Va=Xn]] (vs)
E[(if true e1e)]! s Ele] (IFs)
E[(if false e &)]! sE[e) >
E[]! s E[S()] ('s)

Figure 3.4: Snapshot rules

Since the underlying model is call-by-value, another d#asiiew of signals is as ex-
pressions that return different values to their contexer dvne. This view is embodied
semantically in the representation of each signal as arbedgestructure containing an
evaluation contexE and the information needed to compute the signal's currahtev
This view helps to maintain and elucidate the relationsl@een the data ow and call-
by-value aspects of the language's evaluation model. Téigsal structures are as follows:

40

|3 =(sig Ee)2D"(I) , el gv

{ - (U-sIG)
Sl th S 7LDt g D) T8 S
g=(switch EoE)21 t =(sig Eo g) = D"(4)nD (1)
Hn :DnHod ;EGE[S()i! H&DCEV] 0= 19n(I n)

h;S;D;1i Jh S[g 7! vI;DO[f (v; 1)l (f g9 9:(1°nf 49) [f fgi

(Uu-swo)
P(t)=e h;;D;ei! H;D%vi

S%°= S[(prev E 9 7! §((b](prev E 9 2 dom(S) (U-ADV)

h 1S;D;;i I'h tS°D%I [DY 2 dom(S)jS()6 S)g)i
Figure 3.5: Update rules

sig These signals are simple time-varying values, de ned byralgdunctional trans-
formation over other time-varying values. Eagij signal identi es the evaluation
context that created it and the expression whose snapsaliagion produces its
values over time. Modtig signals are created by theule, which deals with appli-
cation of primitive procedures to signals.

prev Such a signal takes on exactly the values of some other sigotldelayed by
one instant. By chaining together sevgregv s, one can implement longer delays,
and in generaprev supports the construction of signals that compute arlitrar
complex functions of the system’'s history.

switch These signals correspond to places where the value of s@ger signal in u-
ences the program's control ow. Whenever the trigger changee evaluator plugs
its new value into a givemner context, the result of which generally evaluates to the
root of a fragment of data ow graph. This node becomes assediwith anouter
context, which is the overall context for teevitch signal. In essence, thssvitch
allows different fragments of graph to be constructed anitteed into graph for the
whole program.

The rule, applied to a primitive procedure applicatigmv ::) in evaluation context
E, creates @&ig signal with contexE and expressiofp v :::). This new signal depends
on all of the signalsin : : :, so the rule adds all of the corresponding pairs to the degeryd

41

relation. Since a proper value for the new signal is unknoamd(cannot be computed
without a suitable store—see Section 2.7), the rule enshag$he new signal is a member
of the resulting .

The , andiF rules creatswitch signals. This is because, in each case, the value of a
signal affects the control ow of a computation that de négtoverall value of the expres-
sion. In the case of the rule, the value of the test expression determines whichdbren
evaluated, while in the, rule, the function varies over different primitive opeceis and

-abstractions, which are applied to the (possibly timesvay) arguments. Eackwitch
signal cooperates with another signal that forwards theevaf the current subgraph.

TheRECrule also works by creatingsawitch signal, albeit in a slightly different way
from the other rules. In this case, the switch is not recorted dependent of the trigger,
S0 no actual switching ever occurs. The rule just uses thelsiwg mechanism to defer
evaluation of the body. This deferral is necessary in ord@réserve the small-step nature
of this layer of the semantics. (Evaluating the body woulguiee a full reduction, i.e., a
large step.)

ThePREVrule produces arev signal, which contains the signal to be delayed and the
context awaiting the delayed valyarev signals have no dependencies and are not added
to the set , so they always have the unde ned val(®) (@t the end of the instant in which
they are created.

Figure 3.4 de nes snapshot evaluation. Itis essentialle mall-by-value evaluation of
FrTime expressions, except that signals are no longerderesd values. Instead, they must
be looked up in the given store. It is worth noting that onenalg value may be another
signal, so the lookup process must recur until it reachesdinary (constant) value.

Figure 3.5 shows the set of rules that de ne the schedulirdpatd ow updates. These
rules operate on 4-tuples containing a time storeS, a dependency relation, and a
setl of signals with potentially inconsistent values. The maimgmse of these rules is to
de ne legal orderings of individual signal updates such tiathin a given unit of time,
each signal updates at most once, after which its value rencansistent for the remainder
of the time unit. We will make these notions more precise ertest of this chapter.

There are only three update rules, each of which focuses aartecydar variety of
signal:

42

U-SIG The rule for updating aig signal is straightforward. Its expression is snapshot-
evaluated in the current store, and the store is updatedthetisignal’'s new value.
If this value has changed, then all of the signal's depersdarg added to the set of
potentially inconsistent signals.

U-ADV This is the rule for advancing to the next time step, whicts véhenever all signals
are up-to-date (the sétof out-of-date signals is empty). The rule rst evaluates th
new expression for this timestep, extending the dependesiaiion and computing
an initial set of out-of-date signals. It then seeds theesyswith change by updating
anyprev signals whose inputs have changed and adding all of thegrabmts to
the new initiall .

u-swc This is the rule for updatingwitch signals. It is signi cantly more complicated
than the others. It can only re when a switch's trigger haamfped, and it completely
removes any signals previously constructed by this swigtbre constructing a fresh
fragment of data ow graph. The new fragment is the resultarhposing the switch's
inner and outer evaluation contexts, lling the hole witlettnigger's new value, and
evaluating until the outer context contains a value.

A note on memory management. In this idealized model, signals only become super u-
ous when they are switched out, in which case they are ettplieimoved from the graph
by ruleu-swc. In the actual implementation, the use of additional fezgu(e.g., imper-
ative updates) can cause fragments of the graph to becoraadlvable without notifying
the language. This explains why the implementation requireak references for the data
dependency references, but this notion is unnecessarg sethantics.

Lemma3.1.1fH:D;ei! HS%D%eY, thenl 1%andD D°

Proof. By induction on the length of the reduction sequence, witle Gasalysis on the
reduction rules. The dependency relation and set of intenpa@ates are either extended
or passed through unchanged in every transition, a fadieesi ed by inspection of the
rules. O

De nition 3.1. We say that an expressi@refers to a signal if is a subexpression of
e. We writeR[€] for the set of all signals to whichrefers.R is de ned recursively by case

43

analysis on the abstract syntax for expressions:

Rl(sig Ee)] = f(sig Ee)g[R[e]
Rl(switch EoE)] = RIE[]I
Ri(prev E)] = f g[R[]

RIC (x::)e] = Rle]
[n

Rl(e: ::: &)] = Rle]
i=1
Rl(rec ve] = R[e]
RI(if eee)]l = Rle][Rle][Rlel

R[el ; (for all other cases)

We also generalizR to operate on sets of signals in the natural way:

RIT= ' RL1

2

Lemma 3.2. The value of an expression is independent of the values @&igngls to which
it refers.

Proof. Evaluation occurs in the absence of a store. O

Lemma 3.3. The snapshot-evaluation of an expression is completeprmated by the
values of the signals to which it refers. Formally: for allseS andS® if S() = SY)
forall 2 R[e], thene! 2€°, e! %,¢

Proof. By induction onn with case analysis on the snapshot evaluation rules. The onl
case that refers to the store at all is O

De nition 3.2 (natural dependenceA signal , naturally dependson another signal ;
if and only if for some values of the variables below, wheré v{ andv, 6 v5:

H;S[1 7! vi;Dosf 291] h 6S[17! va; 27! vp]; D;D(2)i and
h;S[1 7' VI;Do;f 2gi) h ;S 17V VY 2 70 V3, DS DY)i

44

In other words, it is possible to choose different values fosuch that the outcome of
updating , is different for each.

Theorem 3.1.If , naturally depends on,, then ,refersto 1 (1 2 R[2]).

Proof. By case analysis on the kind of.

sig The value of(sig E e) is computed by snapshot evaluationeoBy Lemma 3.3, in
order fore to evaluate to two different values under two different eorthe stores
must map some 2 R[e] to two different values. However, in the de nition of
in uence, the two stores differ only on the value of. Thus, ; 2 R[e€].

prev The value of(prev E ;) isjustthe value of ; in S. Thus ; (and only ;) in u-
ences it. Moreover, that; 2 R[(prev E)] follows directly from De nition 3.1.

switch The value of , = (switch Eqo E ;) is computed by (partially) evaluating
e= Eo[E[S(1)]], so changing the value of, may yield different results. However,
by Lemma 3.2, this evaluation does not depend on the valugsyasignals to which
erefers. Thus, the largest set of signals on whigltan naturally depend s ;0.
By De nition 3.1, R[e] f 10, from which the implication follows.

Related to natural dependence is the notionasftrol, de ned as follows:

De nition 3.3. A signal ; controls another signal , if and only if for any timet, there
exist storesS and S° dependency relatior® andD? and signals setk and| °such that:

h;S;D;1i) h t,S%D%149

1 2 |

1 2 1°
2 dom(D)[rng(D)
2 dom(®DY[rng(DY

N

N

45

Intuitively, control refers to the ability for one signaltierminate another. This relation-
ship exists so that, when conditions arise in which updatiemnal might cause evaluation
to get stuck, the signal can be removed before it has a changedate. As with natural
dependence, when this relationship holds, it is importaaitthe controlling signal updates

rst, a property that should be enforced by the dependenieyion D, as follows:

De nition 3.4 (soundness of dependency relatioA)dependency relatioD is soundwith
respect to a signal set if and only if, for all pairs of distinct signal¢ 1;) 2 R[] ?
(where , 6 (prev E 1)), if 5 naturally depends ony, then(1; ,) 2 D. Also, if
controls ,, then(1; ,) 2 D* (the transitive closure db).

Signals in gorev relationship are speci cally excluded because the deperydeela-
tion works contrary to normal in the casemiev s. This is to ensure that@ev signal
always sees the observed signal's vdbegoreit updates, so that at the end of the time step
it will re ect the stable value from th@revioustime step.

The call-by-value rules produce sound dependency rekation

Theorem 3.2 (preservation of soundness by evaluatioli)D is sound with respect to
| R[e]andh;D;ei! h%D%vi,thenDis sound with respect B[V][1).

Proof. By induction on the length of the reduction sequence. The base, where is

a value, holds trivially. The induction step involves casalgsis of the reduction rules
(Figure 3.3). Rules,
relation. The other rules behave as follows:

, andIF are trivial because they do not affect the dependency

—V

The rule refers only to and the elements of, so it cannot affect any other signals.
The new signal will update according to the rule-siG; this performs snapshot
evaluation of the expressiamin storeS, which is only affected bys's mappings
for signals in . Thus, depends on at most the signals in The addition of
f gto the dependency relation therefore re ects all possidiiteonal dependency
relationships, thereby preserving soundness.

v The only signals involved in the transition are 4, and ¢. Clearly, ; naturally de-
pends on y. By Theorem 3.1 and Lemma 3.2; may only naturally depend on.

46

¢ updates according to-sSIG, so it has no other in uences. Thus, the dependen-
cies re ected in the extension @ cover all the new in uences. Althoughy will
eventually control all of the signals created during its ated(this is the subject of
Theorem 3.3), at the point of its evaluation it controls magh

IF This case is analogous to that qf.

REC This case is again analogous to that of the previous two. Tfeehce is that there
isno , orrather thafprev) takes the place of. The interposition of th@rev
breaks the strictin uence of; on g, so it suf ces to add only the single dependency.

PREV This case follows directly from the de nition of soundnesghich explicitly ex-
cludes pairs of signals in@rev relationship.

We now show that the update rules (Figure 3.5) preserve s@ssd

Theorem 3.3.1f D is sound with respectto[dom(D) [rng(D) and
h;S:D;l1i] h%s®D%q

thenDis sound with respect til’[dom(D9 [rng(D9.

Proof. By induction on the length of the reduction sequence. The base (no reduction

steps) is trivial. The induction step involves case analgsithe update rules (Figure 3.5).
Rule u-sIG does not affect the dependency relation, and the other tsescproceed as
follows:

U-ADV We assume tha® only returns expressions that refer to signaldDinsoD is
sound with respect tB[€e]. By the induction hypothesif) is sound with respect to
its domain and range. By Theorem 3 is sound with respect t8[v] and its own
domain and range.

u-swc Initially, the set of signals controlled by, is . Asthese aredened bp* (¢) n
D (1), they are all certainly ifd* (4). Before constructing the replacement graph
fragment, the rule removes the signals ifrom every element of the semantics. By

a7

Theorem 3.2, the evaluation BH[E [S()]] preserves the soundness of the resulting
dependency relation. All of the signals constructed by ¢ieduation are controlled
by 4, and the resulting dependency relation re ects this fact.

O

De nition 3.5 (local consistency)A signal = (sig E e) is locally consistentin store
Sifandonlyife! ¢ S(). Similarly, = (switch EyE ;) islocally consistent irs if
and only if there exisD andl such thath;;; ;Eo[E[1Jli'h I;D;E o[v]i andS() = v.
The notion of local consistency for signals of the form (prev E 9 cannot be de ned
solely with respect to a stor8. We observe, however, that the rweapv assigns the
desired value at the beginning of each update cycle, and @3 &s this value does not
change within the cycle, it remains consistent.

Theorem 3.4.1f D is sound with respect to all signals in its own domain and rarmage]
h;S;D; it h+1;S%D%Ii,then every signal 2 (dom(D9Y [rng(D9Y) nl is locally
consistent ir§% In other words, if an update cycle starts with a sound depecygeation,
then within that cycle, every signal is always either locatipsistent or enqueued Infor
recomputation.

Proof. By induction on the length of the sequence of update rule$) vase analysis on
the rules.

U-ADV This rule enqueues for update all of the signals that deperahy signal whose
value is changed by application of the rule. By the assumpifoR's soundness,
these are the only signals that can become locally incamgistThus the rule pre-
serves the conclusion of the theorem.

U-sIG At most one signal () changes, and if it does then all of its dependents are erglueu
in | for update. ByD's soundness, no other signals can be made locally incensjst
S0 again the property is preserved.

u-swc Everything that 4 controls before the rule res is deleted from the system. oAl
the newly constructed signals are enqueued for update aitthef the rule (unless
they depend on another new signal, in which case they afreatisistent), as is¢,
which is the only signal that naturally depends gn

48

O

Corollary 3.1 (global consistency at quiescenc#)D is sound with respect to itself, and
h;S;D; ;i ! ht+1;S%D%;i, then every signal 2 domD9 [rng(D9 is locally
consistent ir8% In other words, if an update cycle starts with a sound depeaygaation,
then when there are no signals enqueued for update (the ehdtaf\tcle, a quiescent state),
all signals are locally consistent, making the system dlglmnsistent.

Proof. Let|1 %= ; in Theorem 3.4, and the result follows directly. O

Corollary 3.2 (full consistency) If D is sound with respect to itself, then for afl t,
if nt;S;D;i! n°>t,S%D%;i, then every signal 2 dom(D9Y [rng(D9Y is locally
consistent ir8% In other words, if an update cycle starts with a sound depeaygasiation,
then all future quiescent states are globally consistent.

Proof. By induction ont® using Corollary 3.1 to prove the induction step. The base cas
is trivial. O

Chapter 4
Optimization by Lowering

Chapter 2 explained how FrTime induces construction of a alatgraph by rede ning
operations through an implidifting transformation. Lifting takes a function that operates
on constant values and produces a new function that perfitersame operation on time-
varying values. Each time the program applies a lifted fimndo time-varying arguments,
it builds a new node and connects it to the nodes represahingrguments. Core Scheme
syntactic forms are rede ned to extend the graph when us#dtime-varying values.

Dynamic data ow graph construction offers several beneRer example, it permits in-
cremental development of reactive programs in, for insaacead-eval-print looREPL).
The implicit lifting also allows programmers to write in etly the same syntax as a purely
functional subset of Scheme. Because lifting is consemakvTime programs can reuse
Scheme code without any syntactic changes, a process weatelparent reactivity

Unfortunately, the ne granularity of implicit graph comsttion can result in signi -
cant inef ciency. Every application of a lifted function ma&reate a new data ow node,
whose construction and maintenance consume signi canuats®f time and space. As
a result, large legacy libraries imported into FrTime malosved down by two orders of
magnitude or more. One experiment, for example, involvéehgiting to reuse an image
library from PLT Slideshow [43], but the result was unusadityw.

This chaptet presents an optimization technique designed to elimirateesof the in-
ef ciency associated with FrTime's evaluation model, vehdtill giving programmers the
same notion of transparent reactivity. The technique wbsksollapsing regions of the

This chapter expands on previously published joint worR {&ith Kimberley Burchett.

49

50

data ow graph into individual nodes. This moves computatitom the data ow model
back to traditional call-by-value, which the runtime systexecutes much more ef ciently.
Because this technique undoes the process of lifting, watdallvering Of course, low-
ering must not alter the semantics of the original programsamri ce the advantages of
FrTime's evaluation strategy. | present a static analyss determines when the optimizer
can safely lower an expression. The lowering analysis anidnplementation yield a sig-
ni cant reduction in time and space usage for real programs.

Lifting and Projection

This chapter is concerned only with behaviors. In FrTimeiasther FRP systems), the
programmer processes events through a special set of oper&ince these have no natural
analogs in the non-data ow world, they cannot be used traresgly and do not involve
implicit lifting. They therefore do not suffer from the assated performance problems,
so | do not consider the problem of optimizing them. While tiieais may generalize to
events, | have not explored such an extension.

FrTime extends Scheme by replacing its primitives Witfed versions. The inverse
of lifting is projection which samples a behavior at the current instant, retrge@imaw
Scheme value. FrTime uses the operatdue-nowto perform projection, but in this chap-
ter | consistently refer to it agroject Formally, these two operations have the following

types:

lift, : (tp:::ty! u)! (sig(ty):::sigtn) ! sigu))
project : sigt)! t

In these de nitionst andu are type variables that can stand for any base (non-siged) t
andsig(t) is either a base typg or a signal of base type That is,t is a subtype of
sig(t). This means that lifted functions are polymorphic with exso the time-variance
of their arguments, so they can consume an arbitrary cortibimaf constants and signals.
Likewise, projecing the current value of a constant simply yields that cartsta

Note that there is a separate functidt, for each possibl&. Scheme supports the

51

de nition of a single proceduréft that implements the union of these functions forrall
In the rest of the chapter, | shall refer simplylifo, leaving the arity implicit.
Lift andprojectare related through the following identity:
(project((liftf)s...)) (f (projecty...)

At any point in time, the current value of the application difted function is equal to
the result of applying the original, unlifted function taetbrojections of the arguments.

Throughout the rest of the chapter, | will refer to constaartd signals as inhabiting
separateéayers Speci cally, | will talk about constants as belonging téoaver layer, and
| will underline the names of lower functions, which can only operate on emtst In
contrast, | will say that signals belong to apperlayer, and | will put éiat over the names
of upper functions, which can operate on signals.

Since lifting generalizes the behavior of raw Scheme fuumdj it is always safe to sub-
stitute a lifted function for its lower counterpart. FrTirdees exactly this, so programmers
rarely need to worry about accidentally applying lower fiimres to signals. (The exception
is when they import raw Scheme libraries, whose procedures be explicitly lifted.) In
the next section, we shall see that this extreme consemvadikes a toll on performance,
which will motivate an exploration of ways to avoid it whengsible.

The Need for Optimization

In otherFRP systems like Yampa [74], programmers can manually chocsegranularity
at which to lift operations. It is in their interest, in terro$ both human and machine
time, to do this as little as possible, which means placirgliths at the highest level
possible. Regardless of where the programmer decides tlifgmtHaskell's static type
system ensures that behaviors are never passed to unliftediyes, and operations are
never lifted twice.

In contrast, FrTime handles reactivity in a dynamic and inipmanner. All primitives
are lifted, and every application of a lifted function to &marying arguments results in
a new data ow graph node. For example, Fig. 4.2 (left) shdvesdata ow graph for the
relatively simple function in Fig. 4.1. To evaluate this @tion, six signal objects must be
allocated on the heap and connected together: one for eagh sqgr (square), andgqrt
(square root) in the expression. Each signal object reguiearly one hundred bytes of

52

(de ne distance
((xlylx2y2
(Srt (¥ (sar (b x1 x2)
(sar (b y1y2)))))

Figure 4.1: De nition of distance function.

) q
Cg (Gl [C0Zagm?] | C 0220, 92
IgU |Q1LJJ - oanen

/W x1 x2 yly2 xI"x2 yly2 xI"x2 yl y2

x1 x2 yl y2

Figure 4.2: Left: Unoptimized data ow graph for the distarfanction. Right: optimized
equivalent. Various stages of optimization are shown iwben. Inter-procedural opti-
mization can improve the result even further. Each box issg¥adlocated signal object.

memory on the heap.

Whenever one of the inputs to thlilstance function changes, FrTime has to update
the four signals along the path from that input to the roof. n{ultiple inputs change
simultaneously, then it must update everything along theruaf their paths.) Each update
requires:

1. extracting the node from a priority queue,

2. retrieving the current value of its input signals,

3. invoking a closure to produce an updated value,

4. storing the new value in the signal object, and

5. iterating through a list of dependent signals and engongukem for update.

Thus every invocation of theistancefunction introduces a signi cant cost in three differ-
ent areas: the time required to initiatpnstructhe data ow graph, the amount of memory

53

required tostorethe data ow graph, and the time requiredgmpagate changealong the
data ow graph.

Figure 4.3 shows another de nition of thlstance function, this time with the upper
and lower layers made explicit. Note that each of the funsticalled byd}\stanceis ac-
tually a lifted version of the lower function by the same nanhe other words, they are
just lower functions that FrTime has wrapped (like hiothme:+ wrapped the primitive-
function, above). When lifted functions are composed to ferpressions, every interme-
diate value is lifted to the upper layer, only to be immediapgojected back to the lower
layer by the next function in line.

The goal is to reduce the use of the expensive data ow evalust eliminating some
of the intermediate nodes from the data ow graph. The keyeolation is that it is unnec-
essary to use the data ow mechanism for every step of a est@lomputation. That is,
if an expression consists entirely of applications of dffgimitives, then its graph can be
replaced with a single node that projects the inputs onaéoqmes the whole computation
under call-by-value, and lifts the result. | call this treorsnationlowering, since it removes
intermediate lifting steps. Lowering is conceptually sanito Wadler's work on listless-
ness [99] and deforestation [100], which transform progréoreliminate intermediate list
and tree structures.

By moving computation from the data ow model back into a dajivalue regime,
lowering eliminates the overhead of repeatedly transfgrvalues between the upper and
lower layers. It also allows the use of the call stack to ti@neontrol and data, which is
much more ef cient than using the data ow graph for the samgopse.

In the distance example above, lowering can collapse the entire graph irgmgle
node, yielding an order of magnitude improvement in botred@nd memory usage. Sec-
tion 4.9 shows experimental results on substantial program

In general, programs use stateful signal-processing tipesa which cannot be com-
bined directly with call-by-value code. The strategy présd here simply stops lowering
when it encounters a stateful operation. Since there is d wabulary of such operations
(e.g.,delay-byintegral), it may be possible to develop speci ¢ techniques for dealith
them in the optimizer. For example, Nilsson's work [73] @aDT-based optimization for
Yampa includes support for combining stateful operations.

54

(de ne $grt (lift sqrt))
(de ne sqr (lift sqr))
(de ne ® (lift +))

(de ne b (lift)
(de ne distance

((x1ylx2y2
(Stirt (® (sqr (P x1 x2))
(sar (P y1y2))))

Figure 4.3: De nition of the distance function with upperclower layers made explicit.

4.1 Dipping and Lowering

| now introduce a new syntactic form calldib. Dip is like lift andprojectin that it bridges
the two layers, but it does so in a different way.

Dip operates on two syntactic entities: a list of variables vehaues are assumed to
be signals, and an expression which is assumed to be lower &g expands into an
expression that, at runtime, projects the variables, et@tithe code, and lifts the resulting
value. In this waydip allows an entire subexpression of lower code to be embeadcadki
a section of upper code; wherdds operates on functiongjp operates on expressions.

(dip (x::2) €) £ ((lift ((x:)e)x::)

Each time alip expression is evaluated, it adds a single node to the datgraph that
depends on all the variables. Note that the list of variaislasco-environment for theip's
body; it contains all the free variables to which the expmsactually refers.

In order to optimize a whole program, the compiler dips as yrg&urbexpressions as
possible. Dipping a subexpression involves extractingatof free variables and replacing
the code with its lower counterpart. To perform this tratistg the optimizer needs to
know thelower counterparof each function it calls.

The lower counterpart of each lifted primitive is simply thréginal (unlifted) primitive.
Initially, primitives are the only functions with known |l@v counterparts, but as the opti-
mizer processes the program, it generally discovers wuseed functions that also have
lower counterparts. A compound expression has a lower egoantt if its top-level oper-
ation is purely combinatorial and all of its subexpressibase lower counterparts. The

55

upper code

(lift
)

(dip (x ...)

lower code
)

Figure 4.4: Allowed containment relationships for code.

upper code

(ite (lower function))
(ife (lower function))
(ife (Jower function))
(ife (lower function))

Figure 4.5: Unoptimized FrTime code.

optimizer maintains an explicit mapping between functiand their lower counterparts;
entries in this mapping are denotedH§inc fund .

Not all functions have lower counterparts. For example ftimetion délay—by, which
time-shifts a signal's value, needs to remember the histbris changing input signal. It
cannot do anything useful if it is called afresh with each nalue the signal takes. In
general, any function that depends on history has no meamihg lower layer of constant
values. For expressions that involve such functions, itriiscal that the optimizer not
erroneously dip them, as the resulting program would behmaarectly.

In the following sections, | will distinguish between lovirgg, whichreplacesan upper
expression with a corresponding lower expression, andmippvhich takes values from
the upper layer to the lower layer and back, with some contiputan between. The
following summarizes the three varieties of code that tdsoin these transformations:

Lower code consists entirely of pure Scheme expressions. Alluhetions it calls are
lower versions, so it cannot operate on time-varying values

Upper code is standard FrTime. Each primitive operation congtradata ow node that

56

upper code

(dp (xyz ..

lower code

lower code

Figure 4.6: Optimized FrTime code.

recomputes its value whenever its input values change.

Dipped code is observationally equivalent to upper code, but dapsreery differently.
Instead of producingnanydata ow nodes, each of which perfornmme primitive
operation, dipped code producesedata ow node that evaluates a complex expres-
sion involvingmanyprimitive operations.

Figure 4.4 shows the allowed containment relationshiptiese different varieties of code.
At the top-level, the program consists of upper code (asdhatat actually involves sig-
nals). This code can refer to lifted functions and dippedesgions, but not to bare lower
code. The lifts and dips wrap lower code with logic that petget from time-varying
values. In contrast, lower code never contains upper coagyfform (including lifted
functions or dipped expressions), since it has no need toeprosignals. In essence, the
optimizer exploits the fact that upper and lower countdgaretwin versions of the same
code; the lower version can be viewed as a special entry flahallows skipping over the
extra checking and wrapping needed by the more general wppson.

Figures 4.5 and 4.6 illustrate the goal of optimization. ufgg4.5 represents unopti-
mized FrTime code. In it, the upper program refers to a latgelver of small fragments of
lifted? code. In comparison, Figure 4.6 represents code of thelsatriste would like the
optimizer to produce. The fragments of dipped code have bebined into a small num-
ber of larger blocks, reducing the overhead associatedasitistructing and maintaining a
signal for each atomic operation.

2Because the application of a lifted primitive yields the samsult as dipping, everything could just be
expressed in terms afip. However, lifting is an established term within theP community, so | use it for
clarity.

57

4.2 The Lowering Algorithm

The optimization algorithm works by rewriting expressiagosemantically equivalent ex-
pressions that contain fewelips, each of which contains a larger body of code. This
rewriting is an application of equational reasoning andigtijed by the de nition of dip
and thdift/project identity.

The algorithm works in a bottom-up fashion. It begins witk thaves of the abstract
syntax (variables and constants) and proceeds to theinfpaxpressions, their grandparent
expressions, and so on.

Formally, the algorithm is guided by a set of rewrite rulegrite ~ e (dip (%) €9
to indicate tha€®is the dipped version of, where the environment associates function
names with the names of their lower counterparts,aisdhe set of all signals on which the
value ofe may depend. For example, dipping of literalsimply involves wrapping them
in adip expression. Since the value of a literal is always a congsitandipped equivalent
does not depend on anything:

"¢ (dip (o9

The optimizer treats identi ers similarly, but since theayrefer to signals, it includes
them in the list of dependencies:

“id (dip (id) id)

For example, in the case of théstancefunction, the optimizer arrives at the identi ers
x1andx2 and applies this rule, resulting in the following expressio

(de ne distance

((xX1ylx2y2
($brt (¥ (sar (P (dip (x2) x2)
(dip (x2) x2))))
(sar (P y1y2))))
The optimizer proceeds by combining dipped subexpressitnslarger code frag-

ments. In the case of function applications, it computesithen of the arguments' depen-
dencies and replaces the lifted function with its lower devpart:

58

W, fi 2 T e (dip (%) €)
“(Peii) (dip () (Fefiin))

Continuing thedistance example, one application of this rule produces the follawvin
result:

(de ne distance

(xX1ylx2y2
(Shrt (P (sqgr (dip (x1 x2 (__ x1 x2))
(sar (P y1y2))))

Applying this rule once more produces:

(de ne distance

((xlylx2y2
($brt (P (dip (x1 x2 (sar (_x1 x2))
(sar (P y1y2)))))
Next, the optimizer dips the second argumen®tavhich is transformed identically to
the left branch:

(de ne distance

((x1ylx2y2
($trt (¢ (dip (x1 x2 (sar (_x1 x2))
(dip (y1y2 (sar (_yl1y2))))))

Since dipping does not change the observable semantics ex@ession, it is safe
to stop optimizing at any time. In this case the bottom-updrsal will continue until
it reaches the, at which point it must stop because of subtleties involveith \ambda
abstractions (explained below).

The nal optimized result contains only a singlgop expression, which means that when
evaluated, it creates only a single data ow graph node atstd the six nodes required for
the original function. Figure 4.2 shows the nal data ow gig along with some interme-
diate graphs. The nal code is as follows:

(de ne distance
((x1ylx2y2

59

(dip (x1 x2yly2
(sart (+ (sar (_x1x2))
(sar (_y1y32))))

Though the above example does not contain lahgxpressions, dipping them is also
straightforward. The newly-introduced bindingl) is excluded from the body's depen-
dency list &) because it is guaranteed to be subsumed by the bound vdkEndency
list ().

“vo (dip (%) V9 Te (dip (%) €)
" (let ((idv)) e (dip (% [(% nid)) (let ((id v9) €9)

The following subsections describe the details of optingzihe language's remaining

syntactic forms.

4.3 Lambda Abstractions

Dipping a expression is somewhat subtle. For example, suppose timeiogtencounters
the following expression:

(() (®x3)

So far, it has dipped expressions by wrapping their lowerathterparts in thelip form.
If it does that here, the result is:

(dip O ((9 (+x3)))

This is clearly unsafe, because if the resulting closureevapplied to a signal, the lowered
+ operator would cause a type error. To prevent such errocgnitonly dip thebody,
instead of the whole expression. Then the result is:

((¥ (dip (¥) (+x3)))

In general, the rule is as follows:

Te (dip (%) €)
T (Me (W (dip (x)€Y)

60

If the optimizer never lowered function bodies, then it wbbke incapable of discov-
ering lower counterparts of user-de ned functions. Thiswdomake the analysis purely
intraprocedural, greatly reducing the number of oppottesifor optimization and there-
fore the utility of the technique.

The ability to achieve interprocedural optimization tadgantage of the fact thatidp
expression’s body is the original expression's lower ceypairt. Therefore, if the optimizer
successfully dips a function, then it knows the functioowér counterpart. | write °
e (dip (%) €9 to indicate not only that”is the dipped version o, but that in addition
eisa expression whose body can be lowered:

e (dip (%) €)
“((We (dip (xn¥) ((v)€))

References to variables bound by the lambda's argumentéseaoved from the list

of dependencies, since in a lower context they cannot balsign
When the transformation applies, the optimizer adds a top-levelnitéon for the
lower counterpart of, calledf , and remembers the associathyfi :

[h®fi* e (dip (%) €)
[h®fi* e (dip ()€Y
* (dene Pe) (begin (de ne ¥(dip (%) €9)
(de ne &%)

The above rule expands the scope of the optimization to diecinterprocedural opti-
mization. On the other hand, if a de nition doeet have a lower counterpart then only the
dipped version is de ned:

e (dip (%) €9
[h®fi* e6 (dip () &
* (dene Be) (dene B(dip (%) €9)

If a program contains a sequence of de nitions, each deonitis dipped separately:

T (dip (%) €)
* (begin g:::) (dip (%:::) (begin €:::))

61

For concision and clarity, the above judgements do not destne full mechanism for
interprocedural optimization. Adding this would be strafgrward but would increase the
size of the judgements considerably.

4.4 Conditionals

The criterion for dippingf expressions is the same as for all other expression tydes: al
their subexpressions must have lower counterparts. Mergthe consequence is also the
same, namely that the resulting node depends on the unidre ubexpressions' depen-

dencies.
T ¢ (dip (%))
Tt (dip (%) t9
“f o (dip ()19

C(ifctf) (dip ([%[%) (if St°F9)

Conditional evaluation in FrTime is relatively expensive,dpping conditionals can
improve performance signi cantly. Moreover, dipping ofrabtionals is necessary in order
to de ne lower counterparts for recursive functions, whiohkes it possible to collapse a
potentially long chain of graph fragments into a single node

4.5 Higher Order Functions

Higher order function applications, which evaluate a cteqpassed as an argument, cannot
be dipped using only the strategy de ned in this paper. Fangple, consider the type of
rdap:

map : sig(sigt) ! sig(u)) sig(list(t)) ! sig(list(u))

map's rstargument is a signal, which can be called to producether signal. That is,
the choice of which function to apply can change over timegaasthe result of applying
the function. Dipping only removes the rst kind of time degncy, not the second. If
hrdap; mapi were a valid upper/lower pair, then the typenedp would have to be:

map: (sig(t) ! sig()) list(t) ! list(u)

62

Clearly this could cause a problem at runtime, since the hatag@ doesn't support
functions that may produce signals. In order to avoid thabfam, the optimizer never
associates a lower counterpart with a higher order functieor the built-in higher order
functions such asiap andzipply, it just omits them from its initial mapping. However, this
still leaves the question of higher order functions writbgrusers.

The only way a user-de ned function can be assigned a lowentsopart is if its body
can be completely lowered; no higher order function carsfathis requirement, since
at some point it must call the procedural argument. Lexicapsg guarantees that the
function's arguments will have fresh names, so the optimeanot possibly know of a
lower counterpart for the argument closure. Since the fanehakes a call with no known
lower counterpart, the body is not lowerable.

A static data ow analysis could address this weakness bytifyeng closures that have
known lower counterparts. However, the need for such ameiia has not yet arisen, and,
in any case, it is always safe to assume the absence of lowstarparts. It just means that
certain expressions cannot be optimized.

4.6 Inter-Module Optimization

DrScheme’'s module framework makes it easy to write the dpémn such a way that it
processes each module individually. An unfortunate comsece of this approach is that
the associations between user-de ned functions and thesed counterparts is not shared
between modules. Unless the optimizer can recover theseiagens, it will lose many
opportunities for optimization. It will be unable to optinei any expression containing a
call to a function whose entry was forgotten, even if that isaih a deeply nested subex-
pression. For commonly used functions such as those thapuoiate low-level data types,
this effect can cascade throughout much of the program.

In order to recover the lost associations, the FrTime oggmuses a consistent nam-
ing convention to identify the lower counterpart of an upparction (Scheme doesn't
understand the underline and overline annotations, so sonoeint of name mangling is
necessary in any case). Because of this naming convent®wptimizer can recover the
forgotten associations simply by inspecting a moduletsdisexported identi ers. Thus it
can perform inter-module optimization.

63

"¢ (dip ()0 (consT)
“id (dip (id) id) (VAR)
r*’:ﬂ 2 ‘_a (dip (%) €) (APP)
®e) (dip (%:::) (Fefiin))
v @p)V e (dip (0 -
“(let ((idv)) e) (dip (%[(% nid)) (let ((id v9) €9)
e (dip (%)€Y
(@ () (dp @) (LAMBDA)
e (dip (%)€Y

: (LAMBDA -BODY)
(M (dip (xnv) ((¥) €9
[h®fi* e (dip (%) &)

[h#fi* e (dip ()&

* (dene Pe) (begin (de ne B(dip (%) €9)

(de ne &%)
“e (dip (% €)
[h#fi" e6 (dip ()&
* (dene Pe) (dene B(dip (%) €9)

S e (dip (%) €)

(DEFINE-LOWER)

(DEFINE-NO-LOWER)

" (begin g:::) (dip (x:::) (begin €:::)) (BEGIN)
Sc (dip (%))
St (dip (%) 19

f (dip (%) f9 -

C(ifctf) (dip (e[%[%) (if Ct°F9)

Figure 4.7: Complete description of the lowering transfarara

64

The exibility of this mechanism provides an additional bddy bene t: the program-
mer can de ne hand-coded lower counterparts for functitvesdptimizer is not sophisti-
cated enough to lower automatically.

4.7 Macros

Since macros must be fully expanded before runtime, thejhaa& no time-varying seman-
tics. They are therefore easy to support; the optimizer girappands all macros before
attempting to apply the lowering optimization.

4.8 Pathological Cases

In most cases, lowering reduces execution time and memaouyreenents, but there are
instances in which it can have the opposite effect. The reasthat lowering combines
several small fragments of code, each depending on a fewalsignto a large block that
depends on many signals. For example, consider the foltpgimple expression:

(expensive-operatiofguotientmilliseconds 10000))

Thoughmilliseconds changes frequently, thguotientchanges relatively rarely. If run
under the standard FrTime evaluator, tludtientnode will stop propagation when its result
doesn't change, thus short-circuiting the recomputatibthe expensive-operatiomost
of the time. However, in the “optimized” version, this whaemputation (and perhaps
more) is combined into a single node, which must recomjputiés entiretyeach time
milliseconds changes.

As discussed in Section 4.3, interprocedural optimizatexnuires that the optimizer
produce two versions of each lowerable procedure de nitione that is merely dipped,
and one that is actually lowered. Lowering thus has the piadeto double the size of a
program's code. | have so far chosen not to worry about thisubige the optimized code
is static and, in most cases, accounts for a relatively simgation of a program's overall
dynamic memory usage. However, for large programs, this beampme a concern. In
particular, recent versions of DrScheme employ a justAretcompiler, which generates
native code for each executed procedure body. Since nati¥e cccupies considerably

65

Count Needles S'sheet TexPict
Size (exprs) 7 62 2,663 13,022
Start,ig (sec) 9.5 89.0 9.2 35.2
Starty: (sec)| <0.1 35.3 11.8 28.9
Memyig (MB) | 204.7 581.4 34.8 170.7
Memy,: (MB) 0.2 240.5 50.9 119.4

Shrinkage (ratio 971 24 0.7 1.4
Runyig (sec) 4.8 5.6 193 2734
Runy: (sec)| <0.1 2.0 20.5 3.5

Speedup (ratio) 16,000 2.8 0.94 78.1

Table 4.1: Experimental benchmark results for loweringrogation

more space than expression data structures, lowering bgsotential to increase a pro-
gram’'s memory usage signi cantly.

4.9 Evaluation

This section presents the impact of optimization on sevéraime benchmarks. It also
contains a discussion of the optimizer's impact on the uglof FrTime.

4.9.1 Performance

Four different benchmarks evaluate the effect of the o@tinon on the resource require-
ments of various programs. Other than the Count microbendhmane of these applica-
tions was written with lowering in mind, so the ndings shduie broadly representative.

Table 4.1 summarizes the performance resulzedenotes the program's size mea-
sured by the number of expressions (“parentheses”).qJhand,,: subscripts denote the
original and optimized versionsStartis the initial graph construction time, whiRunis
reaction time, i.e., the time for a change to propagate titvdlie graph. Times 0.1 are too
small to be measurabl®emdenotes memory footprint beyond that of DrScheme (which
is 72MB). Speeduplenotes the ratio between the unoptimized run-time andgtisnzed
run-time, andShrinkagedenotes the analogous ratio for memory usage.

3Measured on a Dell Latitude D610 with 2Ghz Pentium M proceasd 1GB RAM, running Windows
XP Pro SP2 with SpeedStep disabled. The numbers are the meatheee runs from within DrScheme
version 360, restarting DrScheme each time.

66

The Count microbenchmark consists of a function that takesmber, recursively
decrements it until reaching zero, and then increments bacto the original number,
i.e., an extremely inef cient implementation of the iddptfunction for natural numbers.
The purpose of the benchmark is to quantify the potentiabichpf lowering for code that
involves a large number of very simple operations (in thisecanly addition, subtraction,
comparison, and conditionals). The results are dramatranputs around 600, the unopti-
mized version takes several seconds to start and then takdg rve seconds to recompute
whenever the input value changes. In contrast, even fotsnpuahe hundreds of thousands,
the optimized version starts in a fraction of a second anétgsdeven more quickly.

The Needles program (due to Robb Cutler) displag®a 60 grid of unit-length vec-
tors. Each vector rotates to point at the mouse cursor, ammbibr depends on its distance
from the mouse cursor. The main effect of optimization isdtbapse the portions of the
data ow graph that calculate each vector's color and anifjleqe consist entirely of numer-
ical operations, which are an easy case for lowering). Sinese constitute a signi cant
portion of the code, optimization has a signi cant effecheloptimized version runs nearly
three times faster and uses about half as much memory.

The Spreadsheet program implements a standard 2D spreadsioemulas are eval-
uated by calling Scheme's built-ieval procedure in the FrTime namespace. The startup
phase has several calculations for drawing the grid, settie size of scroll-bars, etc.,
which are optimized. Somewhat surprisingly, the “optindizepreadsheet requires more
time and space than the original version. This is indeed teounuitive, if not disappoint-
ing. One reasonable explanation is that, because the shestdwvas designed from the
beginning to run in FrTime, its data ow graphs already wofkiently under the default
FrTime evaluator. Also, as explained in Section 4.8, theeekaown scenarios in which
lowering can make programs less ef cient. In most casesitt@gciency is more than
outweighed by the reduction in data ow evaluation, but appély not in this case.

TexPict is the image-compositing subsystem of Slideshdwgse unacceptable execu-
tion performance (under FrTime) motivated this work. As tenseen from the experi-
mental results, lowering yields a speedup of almost two rgrdé magnitude. The result
is still signi cantly slower than a raw Scheme analog, bugtfanough to make it usable
for many applications. This offers strong evidence in suppbthe hypothesis that large

67

data ow graphs arising from implicit, ne-grained liftingan lead to a signi cant slow-
down. Moreover, it demonstrates that lowering makes traresy reactivity feasible for
real legacy programs.

The TexPict benchmark is also interesting because it fretyueses higher order func-
tions. The fact that a rst order analysis yields a dramatipiovement even in this case
indicates that the current approach is suf cient for a brsatye of applications, even those
that use higher order functions extensively.

4.9.2 Usability

In DrScheme, any collection of syntax and value de nitioas e bundled into a module
that comprises a “language”. For example, the FrTime laggima set of lifted primitives,
along with special de nitions for certain syntactic fornesd., conditionals). The optimized
language is de ned similarly, except that it de nes a synt@nsformer for a whole FrTime
program. FrTime programmers enable optimization simplhgnging the module lan-
guage declaration frofntime tofrtime-opt . The optimizer will be shipped with the
next standard DrScheme release, so no additional ingballat con guration is necessary.

Even though the FrTime optimizer works by performing a settzsource transfor-
mation, it does not adversely affect the programmer's gbib understand the original
program. In particular, the optimizer preserves sourcatlon information within the
transformed code, so the runtime system reports errorsrinstef the original source
code [36, 44]. Furthermore, if optimization fails for somecson of code (perhaps due
to the use an unsupported feature, or even due to a bug in tmeizgr itself), the opti-
mizer will silently fall back to using the original code, andntinue the optimization at the
next top-level de nition.

Users can discover whether or not a particular piece of caeaptimized by exam-
ining the fully expanded result; unoptimized code is preckbly a literal string explaining
what went wrong during optimization. On the other hand, dbagis optimized will stand
out because the names of upper functions will have beenaeglaith the mangled names
of their lower counterparts.

The overhead of the optimization pass is quadratic in théngedepth of function de -
nitions and linear in the size of the code base. This makeadtical to apply optimization

68

to large systems, such as the TexPict benchmark presented.aburthermore, an opti-
mized module can be precompiled so that the overhead of stadilysis does not need to
be repeated when the module is used later.

4.10 Future Directions

Achieving acceptable runtime performance in FrTime respithe development of a novel
optimization technique callebwering This technique works by processing the source
program in a bottom-up fashion, recursively combiningscafilifted primitives into larger
dippedexpressions. This has the effect of shifting signi cant guitation from the data ow
mechanism back to the underlying (in this case) call-by@a&valuator. Though the analy-
sis is still unable to handle certain language featuresy aatigher order functions, experi-
mental results indicate that the technique can achievenacagt reduction in a program'’s
time and space needs, making transparent reactivity aevegdgiroach for realistic systems.

The notion of lowering applies outside BRpP, for example to any monad [101] where
the lift operator distributes over function composition. Spediyawherever(lift g)

(ift £) lift (g f), andlift is expensive, it is bene cial to rewrite to reduce the num-
ber oflifts. Lowering may therefore be useful in general for langualyasuse monads
extensively. For example, the Glasgow Haskell Compiler [g&]mizes code by rewriting
expressions according to such identities.

One limitation of this technique is that if a subexpressi@s ho lower counterpart,
then the enclosing expression cannot be lowered eithes lifhitation could be avoided
by hoisting the problematic subexpression out and stotggsult in a temporary variable;
however, in a call-by-value language like Scheme, suchrstoam must take care not to
affect evaluation order. Translating to continuationgpag style would make evaluation
order easier to deal with, but would make it more dif cult ttentify dippable subexpres-
sions.

For languages that support runtime code generation, itavoelpossible to explicitly
build the data ow graph rst, and then collapse nodes inttl-bg-value subexpressions.
This approach would trivially support inter-proceduratiopzation, and would be able to
collapse arbitrary nodes in the data ow graph, whether drthey contained unlowerable
subexpressions in the original program text. This appreamiid depend on the ability of

69

the runtime environment to compile dynamically-generatedexpressions into ef cient
code.
| anticipate the application of the lowering optimizati@anRlapjax. Since the language

provides transparent reactivity and employs a FrTimediauation model, | would expect
to see similar results.

Chapter 5
Implicitly Reactive Data Structures

The preceding chapters have discussed the core featurevaldtion model of FrTime.
However, they have avoided one important issue that anyipahtanguage must address,
which is how to support structured data. This is a signi camtission, since writing non-
trivial programs requires the ability to organize stat®istich structures. In this chapter,
| discuss the design problems that arise when attemptingdstuctured data types to a
language like FrTime, along with the solutions | have depeth

Since FrTime is an embedding in Scheme, the goal is to supipersame kinds of
structures that Scheme provides. These include lists,tveetors, and user-de ned record
types calledstructs. For example, Scheme provides the following primitivasn@anipu-
lating lists:

cons:any list! list constructs a non-empty list with a given rst element and dit
remaining elements.

cons? : any! boolean determines whether a given value is a non-empty list.
rst: list ! any returns the rst element of a non-empty list.
rest: list! list returns the rest of a non-empty list.

It also provides a mechanism for de ning custom datatypeshsas aposnfor storing
positions in 2-space:

(de ne-struct posn(x y))

70

71

This expression results in the following collection of déians:

make-posn : number number! posn constructs gosnfrom two numbers.

posn? : any! boolean determines whether a given value ip@sn

posn-x : posn! number extracts thex-component of gosn

posn-y : posn! number extracts thei-component of gosn

In general, the interface to a Scheme data structure cemdititiree kinds of procedures:

constructors such axonsandmake-posn
discriminators like cons?andposn?
accessorslike rst, rest posn-x andposn-y

FrTime needs a way of letting all of these procedures workmmggdully in the presence of
behaviors. The rest of this chapter explores the issue$/edan achieving this goal.

The rst observation is that FrTime needs to lift any disanators that it imports. If it
did not, then expressions like

(cons?(build-list (moduloseconds 3) addl))
or

(posn?(if (even?seconds)
(make-posi3 4)

0))

would not work as intended. In the rst example, thoid-list...) expression evaluates to
a behavior whose value is sometimesoas Thus, we should expect the whole expression
to evaluate to a behavior whose value is sometimes. However, at the level of Scheme,
behaviors are custom structures that are distinct from #mgradypes (includingons),
regardless of their current values. Thus, the value of thelevlaxpression would be the
constantfalse which is not very satisfying. The same problem would alsseam the
second expression.

Like discriminators, accessors cannot be imported diyéxctb FrTime, or expressions
like

72

(posn-x(if (even?seconds)
(make-posi3 4)
(make-posrd 12)))

would fail with type errors.

The situation for constructors is more complicated thandiecriminators and acces-
sors. The reason for the complexity is that constructoreest in Scheme, are oblivious
to their arguments: they just blindly store them in struesur Thus, unlike other primi-
tives, constructors need not be lifted in order to preverdrsr For example, importing
make-posmirectly and evaluating

(make-posrfmoduloseconds 100) 50)

yields aposnwhosex-component is a time-varying integer.

On the other hand, there is no obvious harm in lifting the troicor. In that case, the
above expression evaluates to a behavior whose value apeathn time is aposnwith
anx-component equal to the current valuesetonds.

| call these two approaches respectively the useawef and lifted constructors. The
difference between them is quite subtle, and the rest otctiapter will explore the trade-
offs between the two approaches. With raw constructorsaltioge evaluates to a structure
containing a behavior, while with lifted constructors itduees to a behavior containing
a structure. Though these are not the same types, they suppasame sets of opera-
tions, and so they are essentially interchangeable. Fongbea the result of the following
program is the same whethmiake-postis lifted or not?

;; compute the Euclidean distance between two posns
(de ne (distance p1l pp
(sart(+ (sar((posn-x p}(posn-x p3))
(sqr((posn-y p} (posn-y p3))))

(distance(make-posn x1 yImake-posn x2 Y2

Lt may appear that the accessors could simply be lifted likergprimitives, but the situation is a bit more
subtle, as | will discuss later.
2However, the performance characteristics of the two amremmay differ, as Section 5.3.1 discusses.

73

5.1 An Application of Structured Data: Animation

Where the difference between raw and lifted constructordreacomes apparent is when
data structures are used as the medium for communicatifgtietworld. To see this, it
is useful to consider a concrete application, for examplerary for de ning functional
animations. Since animations are time-varying imagesf@aaleapproach is to start with a
library for static images, then generalize it to supportgenaehaviors.

A functional image library allows a program to manipulateages as objects, without
calling imperative drawing procedures. The applicatioagoam builds a data structure
representing an image, and the library implicitly perforthe side-effecting operations
required to display it.

In Scheme, the following imperative drawing proceduressasglable:

(open-viewport title width height) opens a new window with the given width, height, and
title, returning aviewportobject.

(clear-viewport viewport) clears the contents of a given viewport.

(make-rgb r g b) constructs arrgb color structure with the given red, green, and blue
components (as real numberq@n1]).

(draw-solid-ellipse viewport top-left width height color) draws a solid ellipse of the given
width, height, and color, such that the upper left cornetbounding box is abp-
left.

(draw-solid-rectangle viewport top-left width height color) is analogous tdraw-solid-
ellipse

To make a functional image library, | de ne a set of data dintes that capture the types
and parameters of the shapes that can be drawn:

(de ne-struct ellipse(center width height colg)
(de ne-struct rectangle(top-left width height coloy)

Thus, an image consists of an ellipse, a rectangle, or actiolie(i.e., a list) of other images.
The library de nes a mechanism for drawing the images repressd by these data
structures:

74

(de ne (show! image title width height
(render! imaggopen-viewport title width heigh)

(de ne (render! scene viewport
(clear-viewport viewpolt; start with a clean canvas
(draw! viewport sceng

(de ne (draw! scene viewpoyt
(match scene

[($ ellipse($ posn x Yy width height coloy

(draw-solid-ellipse viewport

(make-posrit x (/ width2)) (v (/ height2))) width height colo}]

[($ rectangle top-left width height colpr

(draw-solid-rectangle viewport top-left width height cofpr
[scenegfor-each((sceng (draw! scene viewpo)} scenef))

So, for example,

(show!(list (make-ellipsémake-posri00 200) 40 30 (make-rgh0 0 1))
(make-rectanglémake-posr200 100) 20 15 (make-rgbl 0 0))))

opens a new window and draws a blue ellipse and a red rectamigle

The next step is to allow a FrTime program to use a behaviowhaye the correspond-

ing Scheme program would use a constant, and to have the&imgsotogram exhibit the

expected reactivity. For example, one might want to makeeliifgsse move back and forth
on the screen, or the color of the rectangle pulsate. Acogrth FrTime's principle of
transparent reactivity, one ought to be able to produce ana@nimation by writing some-

thing like the following:

(de ne cycle(modulo(quotientmilliseconds 10) 100))

(de ne oscillate(/ (+ 1.0 (sin(/ milliseconds 300))) 2.0))

(show!(list (make-ellips€make-posn cycl200) 40 30 (make-rgh0 0 1))
(make-rectanglémake-posr200 100) 20 15 (make-rgb oscillat® 0))))

75

5.2 Reactivity with Raw Constructors

If the constructors are imported raw from Scheme, then nmthis program will result in
an error, not an animation. The reason is as follows. Thenaegtitoshow!is an ordinary
Scheme list containing ordinagflipseandrectanglestructures, each of which contains an
ordinaryposnandrgb structure. In the case of the ellipse, fi@sncontains a behavior, and
in that of the rectangle, thegb contains a behavior. Wheshow! callsrender! to display
the image, it determines that its argument is a list and ntapl bver the elements. In the
recursive call, the rst argument is tradlipse sorender! calls draw-solid-ellipseon the
posnwith a time-varyingx-component. The underlying Scheme implementation reguire
that the elds of theposnbe ordinary numbers, not behaviors, so it raises a type.error

The preceding example illustrates one key point: the lagguaust not allow behaviors
to ow to raw Scheme code. Any values that do ow to Scheme cousest therefore be
projected. One way to do so is to applglue-nowto all such values. For example, we
could rewrite the drawing procedure as follows:

(de ne (draw! scene viewpoyt
(match scene

[($ ellipse($ posn x ¥y width height($ rgb r g b))

(let ([x (value-now ¥ [y (value-now }j
[width (value-now width] [height(value-now heighi
[r (value-now J [g (value-now ¢ [b (value-now B]])

(draw-solid-ellipse

viewport
(make-posrf x (/ width2)) (y (/ height2)))
width height(make-rgb r g B))]

;; — other cases adapted similarly —

Now an ellipse with a time-varying center is no problem, sitieedraw! procedure projects
everything to a constant before calling the low-level drayyprocedure. Unfortunately, this
also means that there is no animation, since projecting uhemt value of the behaviors
eliminates their reactivity.

Interestingly, if we were willing to employ a polling-bassttategy here, then this ap-
proach would be viable. In that case, we could just re-exsttwt call taender! at a regular

76

interval, which would repeatedly draw the image in its cotigate. Unfortunately, polling
would mean, on the one hand, recomputing values even whgrhthen't changed, and
on the other, possibly failing to render states if valuesgeafaster than the polling rate.
Therefore, we reject the use of polling, so we need to nd a whgnaking push-driven

recomputation work.

5.2.1 Choosing the Granularity of Lifting

Lifting is the obvious technique for adapting Scheme code&at to changes in behaviors.
For example, by lifting the drawing procedures (edygw-solid-ellipsg, we protect them
from behaviors without neutralizing their reactivity. lact, by lifting them, we also ensure
that shapes will be redrawn whenever any of their propecti@siged.

Unfortunately, lifting the individual drawing procedurdses not achieve the desired
effect. Each time a shape's property changes, that shapawsdgain. However, drawing
is a side-effecting operation, so maintaining a graphiealdering of a shape is not as
simple as redrawing it every time it changes. In generaletfexts of drawing the shape's
previous state must also be undone. (Otherwise, the resalirail of old shapes.)

The preceding paragraph emphasizes an important point titeouse of lifting to com-
municate the state of a data ow program to an external sys&nte such communication
necessarily involves side effects, the granularity of tfied procedures must be carefully
chosen so that the side effects from their repeated evaiuatvays leave the world in a
consistent and desirable state.

In the case of animation, lifting must encompass at leasethéer! procedurerender!
begins by clearing the canvas, which is an easy way of undalingide effects from the
previous rendering. The other option would be to keep trawkehow of the previous
state of the shape and try to undo only the effects from drgutinHowever, this would
be signi cantly more complicated than just clearing the) especially in the face of
overlapping shapes, and would offer little advantage.

If we lift at a higher level tharrender) (sayshow), then we stil get a consistent
rendering of the shape each time it changes, but we alsogettbing else that we probably
don't want—a new window for each image. Hence the result tssoanuch an animation
as a Imstrip, which is a less intuitive user interface, notmention a signi cant leak of

77

(de ne (deep-project struct/bhyr
(cond
[(behavior? struct/bhyr
(deep-projec{behavior-value struct/bhyy]
[(cons? struct/bhyr
(cons(deep-project rst struct/bhvr))
(deep-projec{rest struct/bhvy)))]

[elsestruct/bhvi))

Figure 5.1: A deep projection procedure

system resources.

Thus, the only reasonable level at which to lift drawing caiiherender! procedure.
However, if we just liftrender!, it won't actually solve the problem described above. Since
the constructors aren't lifted, the argumenteader! may contain behaviors without being
a behavior itself.

5.2.2 Deep Lifting

What we need forender!is a mechanism akin to lifting, except that it
1. reacts to changes nested arbitrarily deep within itsraegu, and
2. projects the current values of any behaviors within tigeiarent.

The second of these requirements, computing what Idssp projectionsis straightfor-
ward. Figure 5.1 shows the essence of the implementatiomainly involves walking
and copying each node of the structure, projecting the oum@&ue of each behavior en-
countered, and recurring on its contents. In FrTime, theadmplementation also uses a
table to prevent in nite loops when projecting cyclic daaégng with special logic to avoid
returning copies of substructures that don't contain arhelb®rs.

Reacting to changes that occur within a structure is a bit roongplicated. In particu-
lar, since the program's data ow graph can change dynatyidalere is not necessarily a
xed set of signals that need to be watched. Figure 5.2 shbefeart of the implementa-
tion of this operation, which | calleep-lifing. Before callingproc, the update procedure

78

(de ne (all-nested-behaviors struct/bhvr known-bhHvrs
(cond
[(memq struct/bhvr known-bhyrs
known-bhvrg
[(behavior? struct/bhyr
(all-nested-behaviorbehavior-value struct/bhyr

(cons struct/bhvr known-bhyn$
[(cons? struct/bhyr

(let ([bhvrs(all-nested-behaviorérst struct/bhvr)

known-bhvry)
(all-nested-behaviorgest struct/bhvy bhvrg)]

[elseknown-bhvr})

(de ne (deep-lift prog
((struct/bhv)
(recresult
(new-behavior
(0
(let ([bhvrs(all-nested-behaviors struct/bhempty)])
;; ensure the data ow graph re ects this behavior's
;; dependence on each of the nested behaviors

;; if depth has changed, reschedule this behavior
;, for a later update and escape

cn)
(proc (deep-project struct/bhy)) .. .))))

Figure 5.2: Deep lifting

traverses the argument structure completely to nd all efltkhaviors it currently contains,
then ensures that the data ow graph re ects dependenciedlaf these behaviors. The
implementation otll-nested-behaviors also shown in Figure 5.2.

There is a somewhat subtle point about this stepestilt now depends on something
new, then it may not be safe to continue processing right awayparticular, in some
cases the new behavior may not have been updated yet, sagqatic would result in
an inconsistent result (i.e., a glitch). In such cases itegsessary to abort the current
update operation and reschedule according to the new tgypoldhe data ow graph. This
rescheduling could occur several times within an updatedyfapdating the new behavior

79

results in further changes to the graph's topology). Wiesmilts height in the graph stops
increasing, it is safe to proceed by callipgoc on a deep projection of the argument,
struct/bhvt

The deep-liftoperator provides precisely the varied notion of liftingttlhs needed to
turnrender!into an animator.

5.3 Reactivity with Lifted Constructors

The preceding section describes a strategy for using datztstes built with raw construc-
tors. Although this strategy works, it involves quite a dicomplexity, including primarily
the de nition of a deep-lifting operator, several aspedta/bich are fairly subtle.

In fact, we can avoid all of this complexity simply by liftingpnstructors. Returning
to the animation example, if we lift all of the constructore.(make-posnmake-rgh
make-ellipseandcong, then we can just liftender!, and it will produce animations. In
particular, becauseake-posiis lifted andcycleis a behavior,

(make-posn cycl200)

produces a behavior. Thus, sinoake-ellipsas lifted,
(make-ellipsémake-posn cycl200) ...)

produces another behavior. Likewise, becana&e-rghis lifted andoscillateis a behavior,
(make-rgb oscillat® 0)

creates a behavior, and so on foake-rectanglandlist. Whenever eithecycleor oscillate
changes, the chain of behaviors causes it to propagatealiai to the top-level image list.
Finally, show!creates a window and delegatese¢ader! to perform the drawing. Because
render! is lifted, any change in the image list causes it to re-ex@atlearing the screen
and rendering a fresh snapshot of the image's current stdmes, by lifting constructors,
we obtain a simple mechanism for transforming a static resrdeto an animator.

5.3.1 Consequences of Lifted Constructors

Figure 5.3 illustrates how lifted constructors cause baiiavo spread to any structures
that (transitively) contain them. This propagation of bgbes is what makes lifting so

80

“(1 2 31539)”
(exprsstring ;)

(1 2 31539)

(expr>string| (cons | m) |)

"2 31539)
(cons || (cons2 m)

"(31539)
(cons 2 | (cons N empty) |)

empty)

Figure 5.3: Use of lifted constructors

(cons

convenient. However, it also incurs a cost.

Creating a behavior is a relatively heavy-weight operatiomplving allocation of a
structure, a closure, lists of references to other behsyvand various other sorts of book-
keeping information. When a lifted constructor is used to e@ktructure, a change in any
of the structure's elds results in the re-evaluation of t@nstructor and hence the alloca-
tion of fresh storage for its new state. In most cases, thgram has no need for the old
structure, so it just becomes garbage. If the program usag time-varying structures, or
even just a few that change rapidly, then the effect on gauadlection pressure, and on
performance in general, can be signi cant.

For comparison, the use of a raw constructor incurs no oeerlvghatsoever: each
call to a constructor allocates a single data object, exadlit would in Scheme. Raw
constructors do not propagate behaviors, so they elimelht# the costs associated with
creating and updating behaviors.

While constructors are responsible for signi cant overhestessors are also problem-
atic. Because a behavior only exposes its current value afadhthat it is time-varying,

31t would be possible to modify the language to support sutiospective capabilities, possibly enabling
better dynamic optimization. However, exploring such aerae is beyond the scope of this paper and, in

81

I
(first)

(first

(rest

)

(31539 2 1)
(rest (cons l\’(2 1)))

31539
(cons | seconds | (2 1))

Figure 5.4: Creation of additional behaviors by lifted asoes

an accessor (e.grst) cannot distinguish between the following two behaviorsigee
current values are always the same):

(cons(moduloseconds 2) empty)
(if (even?seconds)

(cons0 empty)

(consl empty))

Thus, even in the rst caserst cannot magically return the originanoduloseconds
2) behavior; it must create a new behavior whose value is ctedpoy selecting the rst
element of its argument’s current value.

Because lifted accessors construct new behaviors, a lifteelsaor cannot traverse a
structure in the traditional sense. Instead of deconstrgitihe time-varying structure itself,
it builds additional behaviors that traverse projectiofhshe time-varying structure. In
Figure 5.4, we see a particularly pathological manifestatf this phenomenon: the tail

any case, not necessary to achieve the linguistic goals elelsge.

82

(31539)

(rest =)

'(31539)
(cons = empty)

31539

B —

seconds

Figure 5.5: Loss of intensional equality from lifted constiors

of the list was originally a constant, but because there'slabior at the front, code that
traverses it perceives everything as a behavior, even thowgt of the values are actually
constants.

In general, the combination of lifted constructors and asoes results in the con ation
of reactivity from different sources. As mentioned prealyuevery time the value any
eld in a structure changes, a new structure is created. ;Ténvgryaccessor applied to the
structure perceives the change in the structure and musnpade its result.

While all of these extra behaviors and updates result in sagfeciency, there are also
semantic consequences of using lifted constructors. Matstoty, with raw constructors,
(posn-x(make-posn x)y actually evaluates ta. However, with lifted constructors, it re-
sults in a new behavior whosmirrent valueis always the same ass. In other words,
raw constructors preserve intensional equality acrosagtoin data structures, but lifted
constructors respect only extensional equality. Figubeilistrates the problem: the be-
haviors connected by thick arrows are extensionally edudlwithout lifted constructors
they would be the same physical value (and therefore irdea#ly equal).

83

Substituting extensional for intensional equality esséigtmeans replacing a constant
with a behavior whose value never changes. We know that thstaot cannot change,
but all we know about the behavior is that whenever we've apd to look at it, it's
had the same value. We can't be sure that it won't change iméx¢ time step, or that
it if we were able to sample it at a ner interval, we wouldn'dtice it changing back
and forth to some other value very rapidly. In many appl@adi such as animations,
extensional equality is suf cient; the program can sampieds faster (and for longer) than
a human can perceive (and endure), so from the user's pékspétere is no difference.
However, it is important in general because of the tempaatline of FrTime values. Time
is conceptually continuous and in nite, while the programeXecution is a discrete, nite
approximation.

This distinction becomes important for programs that malaie collections of behav-
iors. For instance, recall the simple program describedabar rendering collections of
time-varying points. Suppose that we wished to extend thalow a user to manipulate
the points, perhaps by clicking and dragging to create, mane delete points. A natural
representation for the state of such a program is a timenguiigt of time-varyingposrs.

Attempting to model such a program with lifted constructemwkward. Because lifted
constructors bring all reactivity to the top level, the staan only be a time-varying list of
posrs. That is, the reactivity of each point is con ated with tb&tach other, and with that
of the list itself. Hence the program can only operate megfnily on the state as a whole.
The state must then be a single, monolithic entity, whichracessed by a single set of
top-level event-handling procedures. Ultimately, suclesigh is non-modular, unnatural
to implement, and dif cult to maintain.

While raw constructors lead to various complications, treyall be addressed through
deep lifting. In contrast, the drawbacks of lifted constous cannot be remedied through
any means. | therefore conclude that, despite the atteastimaplicity that lifted construc-
tors bring in the common case, raw constructors are ultim#te only viable approach.

5.4 Improvements to Deep Lifting

Deep lifting eliminates the large data ow graphs that hfiiwould otherwise create to
mirror large data structures in the program. Thus it dralljiceduces the overhead of

84

(de ne (draw-point/proj p
(let ([p (value-now pos)})
(draw-point drawing-window

(make-posriposn-x p (posn-y P))))

(de ne (for-each/proj proc Ist
(let ([Ist (value-now Is)])
(when (cons? Is}
(proc (rstlst))
(for-each/proj prodrest Is)))))

(de ne (render/proj list-of-point}
(clear drawing-windowy
(for-each/proj((p)
(draw-point/proj drawing-window))
list-of-pointg)

Figure 5.6: Interleaving projection with traversal

propagating changes through the data ow graph. It couldhzeacterized as a dynamic,
constructor-speci ¢ analog of tHeweringoptimization described in Chapter 4.

However, there are still problems with deep lifting. In pautar, it still incurs signif-
icant overhead in the form of allocation. Every time a changeurs anywhere within
a large structure, it constructs a fresh deep snapshot dttheture. In some cases this
can actually be worse than using lifted constructors, whidly force reconstruction along
paths from changed nodes to the root.

One way to avoid so much deep projection is to make extermatface procedures
project behaviors as they encounter them. For exampleadsif using the version oén-
der from above, which assumes that its arguments are constemisyuld write a version
that expects to nd behaviors and projects the value of eaehitbtencounters.

Such an implementation is shown in Figure 5.6. The basicigléet, before applying
any primitive operation to a value, we wrap it in a callwalue-now If the value is a
constant, thewalue-nowhas no effect, and if it's a behavior, it projects its currealue.
Either way, there is no allocation, and it is safe to proce#H thie resulting value.

The one exception is when calling a library procedure tharajes on structured data.

85

For example, ifdraw-pointconsumes g@osncontaining a behavior, a type error will re-
sult. In Figure 5.6render/projconstructs a neywosnwith projections of the original's
elds. This prevents the type error but brings us back to thgiwal problem of doing extra
allocation each time something changes.

There are a couple of options available for eliminating thst bit of allocation:

1. Find a lower-level drawing procedure that operates om pfiegers, and wrap that
instead.

2. Assumingdraw-pointis never called recursively, or from more than thread at & tim
allocate a singlgposnstructure and set its elds imperatively before callidgaw-
point.

Once we've written our interface procedures in this style,aan write a re ned version
of deep lifting, called something likeeep-lift/no-project This would be identical tdeep-
lift, except that instead of callimdpep-projecon the argument before passing ifmc, it
would callproc directly on the argument.

This approach, which we calhcremental projectioncan eliminate most if not all of
the allocation due to deep-projection. The effect is amalisgo what listlessness [99] and
deforestation [100] achieve.

As Figure 5.6 shows, making each operation galle-nowon its argument would be
a tedious task to perform by hand. Fortunately, this taskbeaperformed mechanically.
(Sincevalue-nowis idempotent, one easy but safe approach is simply to wrapiind
every argument to every function call.) Scheme provides armaystem for de ning
syntactic abstractions, which we can use to perform sucrafiormation automatically.

One thing that is still unsatisfying about this solutionhatt it involves traversing the
structure twice: once to detect changes in its topology, amather time to process its
current value. An worthwhile question is whether we can redigse two traversals into
one. This certainly sounds plausible, but unfortunatel itnore subtle than it seems.
As described above in the context of de nidgep-lift if the structure's shape changes,
then it may contain new of behaviors, and it cannot be pracksafely until all of them
have been updated. This means that the signal that prodessstsucture must update its
dependencies to re ect the new set of behaviors. If it nonethels on something at its level
or higher, then we must delay evaluation or risk the occuweeast a glitch.

86

However, if we interleave the two steps of processing, therdigcover the potential
inconsistency after we have already processed some ofrtieise. If we abort and retry
later, then we need to be sure that we won't put the system im@msistent state by
performing destructive side beffects more than once. Rattly, experience indicates that
FrTime's external interface procedures (at least for lieslike graphics and user interface
widgets) are idempotent, so it is safe to abort part way thincutraversal and later restart
from the beginning. The only potential problem with this egazh is performance: in the-
ory, an adversarially chosen program could cause FrTimeropn the traversal a number
of times linear in the size of the structure. Since each tealalso takes linear time, the
time taken to achieve a full, successful traversal coulcber quadratic. It's not clear
whether this possibility is a serious cause for concernitlilttes suggest that the language
should take care only to abort the traversal when there ialaisk of inconsistency.

Another way to work around this problem is to treat all exé¢interface behaviors spe-
cially and force their heights to be greater than those ofadinary signals. For example,
we could simply assign them a heightiafnity . The disadvantage is that, if we needed
to impose ordering constraints among these signals, suchtagy would make that more
dif cult. We have not yet determined which is the better eadf.

5.4.1 De ning the Apply Operator

The preceding discussion assumed that Scheme primitiveraigponly on at values, not
structured data, so all primitives can simply be lifted. dhtfinately, there is an important
exception to this rule: Schemeagpply operator allows (some suf x of) the arguments to
a function to be packaged up in a list. In order to supporttfathsparency, FrTime needs
to provide a version oapply that works with any list-like value that FrTime might pass
to it (e.qg., lists of behaviors, behaviors whose valuesiatg, land even nestings of these).
Doing so sensibly turns out to be somewhat subtle, althougthrof the machinery we've
developed so far is reusable.

First, consider what happens if we try to use a @ply. Sinceconsis not lifted,
this works correctly for simple lists of behaviors. For exde) there is no problem with
something like:

(apply+ 2 3 (list 5 (moduloseconds 7) 11))

87

Here,apply consumes the list of arguments and calls (liftedn its elements. However,
raw applyfails on behaviors whose values are lists. For example, in

(apply+ (if (even?seconds) (list 1 2) (list 3 4 5)))

applyis expecting a list but receives a behavior, which resultstype error. If we instead
use a liftedapply, then it will work correctly in the above cases: in the rstseq its argu-
ments appear constant, so it behaves like theajly, and in the second case, it calls the
+ operator afresh each time the argument list changes.

Unfortunately, simple lifting ofapply doesn't work in general. For example, consider
the following expression:

(apply+ (if (even?seconds)
(list (modulomilliseconds 1000) 2)
(list 34 5)))

In this caseapplys argument is a behavior whose current value is sometimes adn-
taining another behavior. This means that the result ofyapgpl+ to the current list of
arguments may result in a behavior. Thus, in order for italtés re ect the correct value,
applyneeds to use switchto react to changes in its argument list and track the chainges
the current result.

However, even with switching there are some problems. Famgke, in

(apply+ (consl (if (even?seconds)
(list1 2 3)
(list 4 5))))

the argument list starts with an ordinargnscell, but its tail is a behavior, which causes a
type error inapplyas it traverses the list looking for arguments. In order tokyayoperly,
such nested reactivity needs to be raised to the top-levetdapply switches over it.

This strategy is almost correct, but it can have undesirablesequences when the
applied function is not primitive. For example, consider:

(apply((xy 2
(+ (delay-by x ¥ 2))
(list seconds 200 1))

88

If we raise the reactivity oecondgo the top-level, then each tins=condshanges, the
argument list will change, causirapply to call the function again, which wipes out the
state of thedelay-byoperator. To avoid unnecessary switching like this, we ovdyt to
raise reactivity that affects tratructureof the argument list, not the elements themselves.
To achieve this, we use a modi ed implementation of tieep liftingoperation described
earlier in this section, which ignores behaviors in ttet eld of each conscell, only
paying attention to behaviors in tiest eld.

Of course, if the structure of the list changes, it still Gaithe function to be re-applied
afresh, resulting in a loss of state for operators tieday-byandintegral. Unfortunately,
there is no way to solve this problem without making modiioat to the language.

5.5 The Ef ciency of Traversal

Using raw constructors eliminates the ttop-down spreadebfliors which, by reducing
the total number of behaviors, also reduces amount of teygwopagation. However, it's
still possible to have top-down propagation, since stmgchehaviors can exist even in the
absence of lifted constructors. For example, in

(deney
(if (even?quotientseconds 10))
(consseconds empty)
(cons3 (cons4 empty)))

y becomes bound to a behavior whose value is a list of (sometime-varying) numbers.
This means there can still be some spread of behaviors dbe tese of accessors.

Note that we can now have ordinargnscells that contain behaviors. This means that
if we just lift accessors, thenrét y) evaluates to a behavior whose value is sometimes
another behavior (whose value is equal to thagexfonds Having behaviors nested inside
each other violates a key invariant of FrTime, so it is praée to make the accessors more
sophisticated instead. Fortunately, this is easy to do. Wegut aswitchinside them so
they can merge the two sources of reactivity into one. Thest ¥) returns a behavior
whose value is always just a number.

However, a problem becomes apparent when we evaluate aapndidge the following:

89

(map sqr(if (even?seconds)
(build-list 1000 identity)
(build-list 2000 add1))))

wheremapmight be loosely de ned as

(de ne (map f Is)
(if (cons? Isy
(cons(f (rstist)) (map f(rest IsD))
empty))

The rst subexpression to be evaluatedésiis? Is}. Sincelst is a behavior, the result
is a boolean behavior (which will always bree), so thef expression evaluates to a switch
and selects the rst branch for evaluation. The branch etaki(rst Ist), which results in
another switch, then passes the resukdg which creates yet another behavior. The next
step is to calmaprecursively on fest Is), which is yet another switch. The recursive call
proceeds in a manner analogous to the top-level call. Ingodat, it constructs another
switch for the conditional expression, and the branch cants aconswhoserestis com-
puted by another recursive call on a behavior, and so on. Birtieeit has nished, the
program has constructed 3000 switch nodes and 1000 othavibehfor the list elements.
After construction, each of these 4000 nodes must be updated

Whensecondshanges from even to odd, the data ow graph is extended toraom-
date the longer input list. This requires repeating all eflork described above, including
the creation of another 3000 switches and 1000 other betsade well as updating each
of the 8000 nodes in the overall graph. Wiesmtondshanges from odd to even, the 4000
nodes comprising the latter half of the list need to be dgstidand disconnected from the
graph), and changes propagated through the other 4000.nBdés operations are very
expensive and, over time, result in the creation of largelartsoof garbage.

In fact, there are only two lists, each with a static struet{and static content), and a
single conditional that switches between them. Thus nedirbf the work described above
is unnecessary. If we instead write:

(if (even?seconds)
(map sqr(build-list 1000 identity))
(map sqr(build-list 2000 add1)))

90

the result is the same as above, but it is computed in a veprelift way. In particular,
neither branch refers to any behaviors, so emep call executes like ordinary Scheme
code (very quickly, without creating any behaviors at all).

The inef ciency comes about becausgpuses a conditional to test the typelstfand
select the corresponding branch. This is problematic [s=caonditionals are oblivious
to their test expressions, so the knowledge the test extadciut the input's current value
is not available in the branch. The branch must therefordyagmqressors tdst, building
additional switches that repeat work already done in the tessentially, the problem is
one of computational leakage [60].

There's no way we can change the de nitions @ins? rst, andrestto eliminate
the inef ciency; the problem arises from the fact that we tisem at all. The solution
is to combine all of these operations, including conditlenento a single abstraction that
encapsulates the desired pattern without leaking compuatathat abstraction is pattern-
matching. For example, in the case of lists, we would progidetch-list construct, with
which we could rewritanapas follows:

(de ne (map f Is)
(match-list Ist
(cons(a d) (cons(f a) (map f 9d))
(empty () empty)))

This is vaguely similar to the above de nition, but it measrething subtly different.
Now, each timdst changes, the switch discards its entire old branch and &eswa new
one according to whethdst is empty or a cons. Since it restarts the branch eachlgtne
changes, the branch can be evaluated widndd bound to thecurrent contents ofist,
which in this case are constants. From this point on, evaluigiroceeds as in ordinary
Scheme (like the transformed example above). In generialg tisis approach instead of
conditionals and accessors results in the creation of otetsper switch in the input, as
opposed to several switches for each node encountered betovst switch in the input.

It is worth noting that one can contrive examples in whichgbeantics of these two
approaches differ. These essentially involve progranesthie following:

(let ([Ist (if (even?seconds)
(consl empty)

91

(cons 1 (consO empty)))])
(+ (integral(rstIst)) (length(rest Isb)))

which we might try to rewrite usingratch-list as follows:

(match-list (if (even?seconds)
(consl empty)
(cons 1 (consO empty)))
(cons(a d) (+ (integral @ (length 9))
(empty () 0))

The key thing is that the list is never empty, and its rst etrhis alwaysseconds
Thus, in the rst version, the call toitegralis evaluated only once and accumulates state
until it is no longer needed. In the second version, each glndaosecondscauses the
conscase to be re-evaluated afresh, restartingritegyral and losing whatever state it had
accumulated previously.

While this difference in semantics afiatch-list is perhaps a bit disturbing, we argue
that the drastic performance increase that it enables rharedutweighs any minor loss in
expressiveness. For purposes of transparency, FrTime needntinue supporting condi-
tionals and accessors anyway, so it just providesrih&ch-list construct as well, offering
more attractive performance properties for those williogewrite list-processing proce-
dures in terms of it.

5.6 Performance Evaluation

This section presents experimental measurements of gu@/esperformance of the strate-
gies discussed above for dealing with structured data.

Table 5.1 presents the results of a microbenchmark invglthie construction and up-
date of various constant-length lists, each of whose |lashent is time-varying. The lists
have length 50, 100, and 200. Each measured value is the awfaime in milliseconds
required to perform 1000 FrTime update cycles (an averageten runs, with the standard
deviation following in parenthese$)The baselineinvolves simply incrementing the value

4The experiments were run in DrScheme 3.99.0.13 on a MacBookwRh 2.0GHz Intel Core Duo
processor andds of RAM.

92

of a behavior in each cycle (no list).

Theraw times are for lists built with rawons since raw constructors do not propagate
changes, these are expected to be very close to the bagatiepéndent of list length).
The experimental values agree with this prediction.

The lifted times are for lists built with liftedcons which does propagate changes.
Therefore, these times should increase with list lengthchvis again what the experi-
ments show. Theifted - rawnumbers show the overhead of lifting, which grows nearly
linearly with list length.

The deep-liftedtimes are for lists built with raw constructors whose reatstiis then
deep-lifted to the top-level in a single step. These exhit@tsame allocation overhead as
lifting, but not the propagation overhead, since all of thepgagation occurs in one update.
The Deep-lifted - rawnumbers show the overhead of raising, which also grows wath |
length, albeit considerably more slowly than the liftingedvead (as expected). In general,
raising appears to outperform lifting by 35 to 45%.

Of course, the point of deep-lifting is to provide a more &kt implementation of
lifting that works at the interface between FrTime and thelekoTo get a realistic mea-
surement of the improvement, we also need to account fordbkeaf traversing and pro-
cessing the data structures. Thé&/traverse(Deep-lift/travers¢ measurements show the
times taken to traverse and compute the sums of the elenmethtslifted (deep-lifted) lists.
Raising is still faster (as expected), but only by 15 to 25%.

Finally, thelncrementaimeasurements show the times taken for incremental profecti
and processing of raw lists, which avoids the need for rgislinis eliminates the allocation
overhead from the raising strategy (which already eling@adhe allocation overhead from
lifting). This results in an additional 40 to 50% savings oxa@sing, making the overall
time more than twice as fast as the lifting-based approach.

Table 5.2 shows the performance of two animation applioatibdNeedlesanimates a
eld of vectors that aim at a given time-varying point. Inghexperiment, the grid contains
676 vectors, arranged in a 26 26 grid. The measurements include the times (again in
milliseconds) to start up and to update, using both raw dtedlliconstructors. The startup
time for raw constructors is about twice as long as for litedstructors, but updates occur
about 15% faster, and after only about 20 updates the rawovessertakes the lifted one.
One reason that raw constructors only improve performagabbut 15% is that the cost

Typen Size 50 100 200
avg (dev)| avg (dev) avg (dev)
Raw 52.1 (3.5)] 54.2 (3.2)] 55.2 (5.0)
Lifted 1911 (17.8)| 317.9 (22.5)] 610.1 (20.3)
(Lifted - raw) | 139.0 - | 263.7 - 554.9 -
Raised 110.5 (30.7)] 173.1 (15.6)] 396.9 (25.8)
(Raised - raw) | 58.4 - 118.9 - 341.7 -
Raised vs. lifted| 422% - 45.5% - 34.9% -
Lift/traverse | 403.3 (31.2)| 703.8 (14.6)| 1432.5 (28.7)
Raise/traverse | 307.9 (19.1) 593.4 (30.3)| 1205.7 (16.0)
Raised vs. lifted| 23.7% - 15.7% - 15.8% -
Incremental | 199.1 (13.2)] 338.5 (15.1)| 615.7 (16.9)
Incr. vs. raise 37.9% - 43.0% - 48.9% -
Incr. vs. lift 52.6% - 51.9% - 57.0% -

93

Table 5.1: Micro-benchmark results for lifting, raisingydaincremental projection

Typen Size Needles Oscillation
avg (dev) avg (dev)
Startup (lifted)| 242.2 6.9 3652.8 107.0
Startup (raw) | 558.4 15.1| 1442.5 52.8
Raw vs. lifted | -1306% - 60.5% -
Update (lifted)| 127.4 42| 59.0 2.4
Update (raw) | 110.6 1.4, 30.7 1.7
Raw vs. lifted 13.2% - 48.0% -

Table 5.2: Performance of animation programs using datatsitres and graphics

of updating everything else and rendering the vectors dategthat of updating a few
hundredconsbehaviors.

The oscillation example makes more extensive use of lists. It models a tangng
graph as a 200-element list of behaviors, of which any subagtbe active at a given time.
In these tests, the number of active points is relativelylsma in the lifted case the list-
related updates constitute a more signi cant fraction eftilme. The raw version starts up
about 2.5 times more quickly and updates about twice as fast.

Chapter 6

Integration with Object-Oriented
Toolkits

Chapter 2 described, among other things, the usditifreg transformation to adapt exist-
ing purely functional operations so they could work with ¢éhwarying values. However,
to support realistic applications, the language also naedsss to libraries for capabilities
like graphics, user interfaces, networking, and so on. &lIsests of libraries interact with
the world and therefore depend on the ability to maintaitesaad perform actions. Unfor-
tunately, the simple notion of lifting presented earliesuanes procedures are free of side
effects, so it can re-apply them anytime without risk of destive effects. This assump-
tion is clearly invalid in the case of such imperative libear The purpose of this chapter
is therefore to develop a variation of lifting that works hétateful entities.

The kinds of libraries in which I'm interested have severalimcharacteristics. First,
they tend to be large and detailed, so it is impractical toritevthem. Second, they are
maintained by third-party developers, so they should begnated with a minimum of
modi cation to enable easy upgrading. Third, these ligar-especially focuis—are
often written in object-orientedo0) languages. The integration process must therefore
handle this style, and ideally exploit it. An important debt is thatoo andFrPlanguages
have different ways of handling stateo makes state explicit but encapsulates it, whereas
state inFRPis hidden from the programmer by the temporal abstractidise language
Somehow, these two paradigms must be reconciled.

1This chapter expands on previously published joint worH {gigh Daniel Ignatoff.
94

95

This chapter describes considerable progress on thisratieg problem for the spe-
ci c case of Guls. The DrScheme environment provides a large and rabustibrary
called MrEd [45], based on the wxWindows framework, whichissd to build DrScheme's
interface itself. The environment is a good representathve library that meets the char-
acteristics listed above; furthermore, its integrationfisnmediate practical value. | have
discovered several useful abstractions basednxins [13] (classes parameterized over
their super-classes) that enable a seamless integrattwanel further found that there are
patterns to these mixins and abstracted over them umsangos[57]. As a consequence,
the adapter for MrEd is under 400 lines of code.

This chapter is organized as follows. | rst discuss the geghilosophy that governs
the adaptation of MrEd to a signal-based programming iatexf What follows is the heart
of the chapter: a description of the implementation of thisiiface and of the abstractions
that capture the essence of the adaptation. | also discyseadsheet application built
with the adapted toolkit.

6.1 Adapting MrEd to FrTime

In adapting any existing library to become reactive, themggal is to reuse the existing
library implementation as much as possible and perform @muim of manual adaptation.
In order to minimize the manual effort, we need to uncovetgoas and abstract over them.
In this case, the problem is how to maintain a consistenonatf state between the object-
oriented and functional reactive models.

The functional reactive world represents state impliditigough time-varying values,
and the data ow mechanism is responsible for keeping it istast. In contrast, the object-
oriented world models state with mutable elds, and progrars are responsible for
writing methods that keep them consistent. We presume keatdolkit implementors
have done this correctly, so our job is simply to translaé¢éesthanges from the data ow
program into appropriate method invocations. Howeverges@ul toolkits also mediate
changes coming from the user, they provide a callback mésimaoy which the applica-
tion can monitor state changes. The interface betweesth@nd FrTime must therefore
also translate callbacks into state changes in the data ovidw

Not surprisingly, the nature of the adaptation depends gmilynupon the direction of

96

communication. We classify each widget property accortiinghether the application or
the toolkit changes its state. The most interesting cageraily, is when both of them can
change the state. We now discuss each case separately.

6.1.1 Application-Mutable Properties

MrEd allows the application to change many of a widget's jgrtips, including its value,
label, cursor, margins, minimum dimensions, and stretitibab A widget provides an
accessor and mutator method for each of these propertietheatoolkit never changes any
of them itself, so we classify these properties as “appboamutable.”

In a functional reactive setting, we can manipulate timexvey values directly, so it is
natural to model such properties with behaviors. For exampe would use a behavior
to specify a gauge's value and range and a message's labisl sdith of interface renders
accessors and mutators unnecessary, since the propentyatidally updates whenever the
behavior changes, and the application can observe it bynmgadatever behavior it used
for initialization.

To implement a behavior-based interface to such widgeteptis, the rst step is to
derive a subclass from the original MrEd widget. For exanyie can de ne dt-gauge%
from the MrEd gauge.

(de ne ft-gauge%
(classgauge%. . .))

In the new class, we want to provide constructor argumertisekpect behaviors for all
of the application-mutable properties. In FrTime, behes/extend the universe of values,
and any constant may be taken as a special case of a beh&aabnéver changes); i.e.,
behaviors are supertypes of constants. Thus the applicatay safely supply constants
for any properties that it wishes not to change. Moreovewdfuse the same property
names as the superclass, then we can constridtpanige%exactly as we would construct
an ordinary gauge. This respects the principle of contramae for function subtyping:
our extension broadens the types of legal constructor aggtsn

In fact, the DrScheme class system allows us to overrideuperslass's initialization
arguments, oinit- eld s. Of course, the superclass still refers to the originatisglso

97

its behavior remains unchanged, but this lets us extendahstiuctor interface to permit
behaviors. The code to add these initialization argumeras follows:

(init- eld value label range vert-margin horiz-margin minidth. . .)

Next, we need code to enforce consistency between theseibetiaelds and the cor-
responding elds in the superclass. The rst step is to perfeuperclass initialization,
using the current values of the new elds as the initial val@er the old ones. Although
the old and new versions of the elds have the same names thero ambiguity in the
superclass instantiation expression; in each name/valugtpe name refers to a eld in
the superclass, and the value expression uses the subdegpe.

(super-instantiate () [label (value-now labél [range(value-now rangy . ..)
(sendthis set-valudvalue-now valup

(Since there is no initiavalue eld in the superclass, we need to set it separately after
super-class initialization.)

Having set appropriate initial values for the elds, we ndedensure that they stay
consistent as the behaviors change. That is, we need tdatt@iebanges in state from the
data ow program to the object-oriented “real world.” Thegsa central problem in building
an interface between the two models.

The basic idea behind our translation is straightforwaetedt changes in a behavior
and update the state of the corresponding object througlparmopriate method call. We
use the FrTime primitivehangedo detect changes in a behavior and expose them on an
event stream. Then we convert the event stream into a sémastbod invocations. This
second step is somewhat unusual, since the methods haedfsicts, unlike the operations
found in a typical data ow model. However, in this case we@sacerned not witkde ning
the model but wittcommunicatingts state to the outside world. The effects are therefore
both safe (they do not interfere with the purity of the modeidl necessary (there is no
other way to tell the rest of the world about the system's gagstate).

The invocation of imperative methods is technically trivi@ince FrTime is built atop
Scheme, any procedure that updates a signal is free to exadoitrary Scheme code,
including operations with side effects. Of course, we aadiyg avoid the practice of per-
forming side effects in signal processors, since it couddl o the violation of program
invariants. As mentioned above, it is safe when the effaeisestricted to communication

98

with the outside world (as they are in this case). In pardicuve use the primitivenap-e
passing a procedure that invokes the desired method:

(map-e((V) (sendthis set-value)) (changes valug
(map-e((V) (sendthis set-label J) (changes labg)

Each call above tanap-ecreates a new event stream, whose occurrences all carry the
void value—the return value of the imperative method call—beta@rcompanied by the
method's side effects. Because the event values ax®all they have no meaningful use
within a larger data ow program.

The above expressions are static initializers in the widigtses, so they are evalu-
ated whenever the application constructs a new instandgegdtatic initializers allows the
adapter to automatically forward updates without the dgwel having to invoke a method
to initiate this. Because the code constructs signals, wtecticipate in the data ow com-
putation, it therefore has a dynamic effect throughout ifleeoff the widget, unlike typical
static initializers.

Subtleties Involving Side-Effecting Signals

We have resolved the interface for communicating state ggmifrom the data ow to the
object-oriented model. However, a more serious concehreigiismatch between their no-
tions oftiming. In a typical object-oriented program, method invocatiaressynchronous,
which xes the ordering of operations within each thread ohiol. However, FrTime
processes updates according to their data dependencies, ddes not necessarily corre-
spond to a sequential evaluation order. This makes it dif tar programmers to reason
about when effects occur.

Fortunately, the functional reactive model and interfagedesigned in such a way as
to prevent operations from occurring unpredictably. Kirdhere is at most one signal
associated with any given widget property. If the programwishes to control a widget
with several different signals, he must de ne a compositmai that mediates explicitly
between the individual signals. Thus, there can be no imptiodi cations or contention
over who is responsible for keeping it up-to-date.

Secondly, FrTime processes updates in order of data depeirdeso if one property's

99

signal depends on another's, then it will be updatsér. If the order of updates were
signi cant, and if the dependencies in the toolkit were reted by dependencies in the
application, then this would yield a “safe” order in whichupdate things.

There is, however, a problem with the strategy describedeabwat is dif cult to di-
agnose and debug. The symptoms are as follows: at rst, thgram seems to work just
ne. Sometimes it may run successfully to completion. Otties, depending upon what
else is happening, it runs for a while, then suddenly and segywithout explanation the
gauge's properties stop updating when the behaviors chaRge point at which it stops
varies from run to run, but there are never any error messages

The problem results from an interaction with the memory nganaAn ordinaryFRpP
application would use the event source returned byntia@-e but in this case we only
care about side effects, so we neglect to save the resuite $iere are no references to
the updating event source, the garbage collector eventallaims it, and the gauge stops
reacting to changes in the behavior.

To avoid these problems, we de ne a new abstraction spelty dar side-effecting
event processors. This abstraction, caftadeach-e! works just likemap-¢ except that it
ensures its result will not be collected. It also lends ftseh more ef cient implementa-
tion, since it can throw away the results of the procedurks tastead of enqueuing them
on a new event stream.

Thefor-each-elimplementation stores references to the imperative evexcegssors in
a hash table, indexed by the objects they update. It is imapbthat this hash table hold its
keys with weak references so that, if there are no otherertes to the widget, both it and
the event processor may be reclaimed.

6.1.2 Toolkit-Mutable Properties

Some widget properties are controlled primarily by the wsethe toolkit rather than the
application. For example, when the user resizes a wind@ualkit adjusts the locations
and dimensions of the widgets inside. Since the applicammot control these properties
directly, the widgets provide accessor methods but no mrgafdditionally, the applica-
tion may want to be noti ed of changes in a property. For exeeynghen a drawing canvas
changes size, the application may need to update its camtezstompute parameters for its

100

scrollbars. For such scenarios, accessor methods alomsafeient, and toolkits provide
callback interfaces as described in the previous sectiawener, we saw that callbacks
lead to an imperative programming style with various plsfado we would like to support
an alternative approach.

For such “toolkit-mutable” properties, we can remove thpedwlency on callbacks by
adding a method that returns the property's time-varyirlgezas a behavior. For example,
instead of allowing registratioan-sizeand on-movecallbacks, the toolkit would provide
methods that return behaviors re ecting the propertiesafbsubsequent points in time.

The implementation of such methods is similar to that forliaggon-mutable proper-
ties. However, in this case we cannot just override the iegsiet-width get-heightget-x
andget-ymethods and make them return behaviors. Though FrTime sipagrammers
to use behaviors just like constants, an application may t@@ass a widget to a library
procedure written in raw Scheme. (For example, the widget neged to invoke methods
in its superclass, which is implemented in Scheme.) If a B&hexpression invokes an ac-
cessor and receives a behavior, there is nothing FrTime @am prevent a type-mismatch
error. Since behaviors are supertypes of constants, dirggnin this manner would violate
the principle of covariance for procedure return values.

To preserve type safety, we must de ne the new signal-awasthods so as not to
con ict with the existing ones. We choose the new names byeagmg-b to the existing
names, suggesting the behavioral nature of the returnsialgain, we derive a subclass of
the widget class we want to wrap. For example, continuing wieft-gauge% we would
add methods calleget-width-b get-height;lget-x-h andget-y-b

We need to determine how to construct the behaviors returpdetdese methods. We
want these behaviors to change with the corresponding Wiglgperties, and we know
that the widget'son-sizeor on-movemethod will be called when the properties change.
So, we are now faced with the converse of the previous prebleanverting a imperative
procedure call into an observable FrTime event.

FrTime provides an interface for achieving this goal, chiteake-event-receiveil his
procedure returns two values: an event soef@ed a unary procedusend-event. When-
ever the application executesefid-event v), the valuev occurs ore. In the implementa-
tion, send-event sends a message to the FrTime data ow engine indicatingvteabuld

101

occur one, which leads ta''s being enqueued on the streamesfoccurrences. By overrid-
ing the widget's callbacks and callingake-event-receivewe can create an event source
carrying changes to the widget's properties:

(de ne-values (width-e send-width(make-event-receivgr
(de ne-values (height-e send-heigh{make-event-receivpr
(de ne/override (on-size w h

(superon-size w

(send-width W

(send-height J)
;» similarly for position

Once we have the changes to these properties in the form ahEr@&vent sources, we
convert them to behaviors witold:

(de ne/public (get-width-bH (hold width-e(sendthis get-width))
(de ne/public (get-height-h (hold height-gsendthis get-heighk)

6.1.3 Application- and Toolkit-Mutable Properties

We have discussed how to adapt properties that are mutabééhsyr the toolkit or the
application, but many properties require mutabilitydmththe toolkit and the application.
This need usually arises because there are several wayangelhe same property, or
several views of the same information. For example, a texbregdrovides scrollbars so
the user can navigate a long document, but the user can algmteawith the keyboard, in
which case the application needs to update the scrollbasdiagly.

All widgets that allow user input also provide a way to setthkie from the applica-
tion. Several other properties may be set by either the itomikhe user:

focus When the user clicks on a widget, it receifesus(meaning that it hears key strokes)
and invokes iton-focuscallback method. This is the common mode of operation,
but the application can also explicitly send focus to a widgeor example, when
a user makes a choice to enter text, the application may adikatly give the text
eld focus for the user's convenience.

102

visibility The application may hide and show widgets at various stafjas mteractive
computation. Sincehowng a widget also shows all of its descendents, the toolkit
provides aron-enablecallback so the application does not need to track ancdatry.
addition, the user can affect visibility by, for examplegsihg a window, which hides
all of its children.

ability Similar to visibility, the application can selectively i@ and disable widgets de-
pending upon their necessity to various kinds of interacti&nabling also works
transitively, so the toolkit invokes then-enablemethod for all children of a newly-
enabled widget.

One might naturally ask, since we have already discusseddadapt application- and
toolkit-mutable properties, why we cannot simply combihe two adaptation strategies
for these hybrid properties. The reason is that the applicapeci es a property's time-
varying value through a behavior, which de nes the valuearyg point in the widget's
lifespan. This leaves no gaps for another entity to spebiéwalue.

Our solution to this problem is to use event sources in autit behaviors. Recall that
in the implementation of toolkit-mutable properties, wet iconstructed an event source
from callback invocations, then used hold to create a behaun this case, both the ap-
plication and toolkit provide event streams, and insteadadding directly, we merge the
streams and hold the result to determine the nal value:

(init- eld app-focus app-enable app-shypw
(de ne-values (user-focus send-focuémake-event-receiver
(de ne/public (has-focus-by

(hold (merge-e app-focus user-fogu{sendthis has-focus)))
(de ne/override (on-focus ony

(superon-focus on®

(send-focus on?

This code completely replaces the fragments shown prelyidoisproperties that are mu-
table by only the application or the toolkit.

103

6.1.4 Immutable Properties

MrEd does not allow certain properties to change once a widgeeated. For example,
every non-window widget has a parent, and it cannot be mawed dne parent to another.
In theory, we could build a library atop MrEd in which we siratdd the mutability of these
properties. However, this would be a signi cant change tbardy the toolkit's interface
but also its functionality, and we would have to implemertitselves. Since our goal is to
reify the existing toolkit through a cleaner interface, vaé not attempted to extend the
underlying functionality.

6.2 Automating the Transformation

We have so far discussed how to replace the imperative attetb object-oriented widget
classes with a more elegant and declarative one based owvidash@nd events. The prob-
lem is that there is a large number of such widgets and priegednd dealing with all of
them by hand is a time-consuming and tedious task. Thus wettbceduce the manual
effort by automating as much as possible of the transfoonairocess.

The reader may have noticed that the code presented in th@sesection is highly
repetitive. There are actually two sources of repetitiome Tst is that we need to perform
many of the same adaptations for all of the MrEd widget classiewvhich there are perhaps
adozen. The second is that the code used to adapt each plis@ms$entially the same from
one property to the next. We now discuss how to remedy thesddmns of duplication
individually, by abstracting rst over multiple widget daes, then over multiple properties
within each class.

6.2.1 Parameterized Class Extensions

In Sect. 6.1 we adapted a collection of widget propertiesuirdassing. Since most of
the code in the subclasses is essentially the same acrosant@vork, we would like to
be able to reuse the common parts without copying code. kretbrds, we would like a
class extension parameterized over its superclass.

The DrScheme object system allows creationmakins[13, 46], which are precisely
such parameterized subclasses. We write a mixin to encpsille adaptation of each

104

property, then apply the mixins to all classes possessiagitbperties. For example, in-
stead of de ning arft-gauge%like we did before, we de ne a generic class extension to
adapt a particular property, such as the label:

(de ne (adapt-label a-widget
(clas
(init- eld label)
(super-instantiate () [label (value-now labél)
(for-each-el(changes lab@l((v) (sendthis set-label y) this)))

In the code snippet above, we box the superclass positidreaiiass de nition to highlight
that it is a variable rather than the literal name of a cladss parameterization makes it
possible to abstract over the base widget class and thugply e adaptation to multiple
widgets.

We write mixins for other properties in a similar manner. cgithere are several prop-
erties common to all widget classes, we compose all of théonaisingle mixin:

(de ne (adapt-common-properties a-widget
(foldl ((mixin clg (mixin clg) a-widget(list adapt-label adapt-enabling .)))

Although this procedure contains no expliciassde nitions, it is still a mixin: it applies

a collection of smaller class extensions to the input cld3ss compoundmixin takes a
raw MrEd widget class and applies a mixin for each standawdgaty. The resulting class
provides a consistent FrTime interface for all of these props. For example, we can use
this mixin to adapt several widget classes:

(de ne pre-gauge%adapt-common-properties gauggo
(de ne pre-message%@adapt-common-properties message%o

We call the resulting widget classes “pre-" widgets becdhsg still await the adaptation
of widget-speci ¢ properties. Most importantly, each wadgsupports manipulation of
a particular kind of value (e.g., boolean, integer, stribg)either the application or the
toolkit, and the various combinations give rise to diffdrprogrammer interfaces.

105

6.2.2 A Second Dimension of Abstraction

Mixins allow us to avoid copying code across multiple class¢owever, there is also code
duplication across mixins. In Sect. 6.1, we develop pastéonadaptation that depend on
whether the property is mutable by the application, thekibobr both. Once we deter-
mine the proper pattern, instantiating it only requiresitdeation of the eld and method
names associated with the pattern. However, in Sect. 6. uplcdted the pattern for each
property.

In most programming languages, we would have no choice ladgg code in this situ-
ation. This is because languages don't often provide a nmesimefor abstracting over eld
and method names, as these are program syntax, not valuegvetp Scheme provides
amacro systenfb7] with which we can abstract over program syntax. For eamwith
application-mutable properties we only need to know the emafthe eld and mutator
method, and we can generate an appropriate mixin:

(de ne-syntax adapt-app-mutable-property
(syntax-rules()
[(- eld mutator)
((widge)
(classwidget

(init- eld eld)
(super-instantiate() [eld (value-now eld])
(for-each-el(changes eld ((v) (sendthis mutator) this)))]))

With this macro, we can generate mixins for the applicatimutable properties:

(de ne adapt-label(adapt-app-mutable-property label set-labég))
(de ne adapt-vert-margir(adapt-app-mutable-property vert-margin vert-margiy)

Of course, we write similar macros that handle the other @mg®s of mutability and instan-
tiate them to produce a full set of mixins for all of the prapes found in MrEd's widget

classes. At this point, we have fully abstracted the prilesigoverning the toolkit's adapta-
tion to a functional reactive interface and captured thentisely in a collection of macros.
By instantiating these macros with the appropriate proggrive obtain mixins that adapt

106

the properties for actual widgets. We compose and applgtmesns to the original MrEd
widget classes, yielding new widget classes with inteddi@sed on behaviors and events.

The ability to compose the generated mixins safely depepds two properties of the
toolkit's structure. Firstly, most properties have distinames for their elds and methods
and hence are non-interfering by design. Secondly, in cakege two propertiedo share
a common entity (for example, the single callbacksizeaffects the width and height), the
disciplined use of inheritance (i.e., always callsgper) ensures that one adaptation will
not con ict with the other.

To save space and streamline the presentation, we have songbme of the code
snippets in this paper. The full implementation has beeluded with the DrScheme dis-
tribution since release version 301. We provide a cataleglapted widgets in an appendix.
The core contains about 80 lines of macro de nitions and 3®€sl of Scheme code. This
is relatively concise, considering that the MrEd toolkinewsts of approximately 10,000
lines of Scheme code, which in turn provides an interface 10@000-line C++ library.
Moreover, our strategy satis es the criteria set forth i@ thtroduction: itis a pure interface
extension and does not require modi cations to the library.

6.2.3 Language Independence of the Concepts

Some of the ideas presented in this chapter are speci c tolikn®e. For example, DrScheme's
object system supports features like mixins and keywordsicaotor arguments, which
more common languages like C++ and Java do not provide. LievidrScheme's macro
system offers a more sophisticated metaprogramming sysgtamis found in most lan-
guages. Because | have made use of these less common featigader might argue that
the ideas are not portable.

However, while the implementation techniques are somewp@ti c to DrScheme, |
argue that the essential concepts apply to a wide arrayldbgalalue languages, much like
the embedding techniques of FrTime in general. For exancplegorizing state transfers
asapplication to toolkitversustoolkit to application(or both) is a necessary rst step, and
determining whether state déscreteor continuouss also important for any functional re-
active toolkit adaptation. Once these characterizatiomgs®de, the same basic approaches
may be used to translate state changes between the funammhanperative subsystems.

107

806 Spreadsheet
Formula: | (* 3 (get-cell-val 1 1))
0,) (1,) (2,) (3,) 4,) (5,) (6,)

(,0) 1145865676

1) #t 35

12) 105

,3) this

4) is

\3) a

,6) spreadsheet

7

,8)

,9)

,10)
,11)
12)
,13)
14)
,15)
,16)
17)
,18)
(,19)
(,20)
(,21)
(,22)

Figure 6.1: Screenshot of the FrTime spreadsheet applicati

These necessarily include impure event-based mechanesmssend-eventfor-each-e)
for de ning the bridge between these subsystems. Once therevay for them to commu-
nicate, the patterns underlying the adaptation may beaadistt using whatever techniques
are available within the host language. DrScheme happepsotade powerful features
(mixins and macros) that allow a high level of abstraction.other languages, different
features may be available (e.g., multiple inheritancdjcstaverloading) to support alter-
nate approaches to this problem.

6.3 A Spreadsheet Application

To evaluate the adapted version of MrEd, | have applied ireadstic spreadsheet applica-
tion. The major challenges in building a spreadsheet, in xperence, are implementing
a language with its data ow semantics, and managing andalispg a large scrollable ar-
ray of cells. Fortunately, FrTime makes the linguistic peob relatively straightforward,

108

since its data ow evaluator can be reused to implement pgdeadpagation. This leaves
the representation and display of the cell grid.

The core of the spreadsheet user interface is an extensiba bfrEdcanvaswvidget. A
canvas is a region in which the application can listen to key/raouse events and perform
arbitrary drawing operations. The application renderscaglé content into a canvas and
processes mouse events to perform selection. When the Usetsse cell, he can enter a
formula into a text eld, and the selected cell receives thkig of the formula.

The functional reactivity helps greatly, for example, inmaging the scrolling of the
grid content. The canvas includes a pair of scrollbars, Wwimust be con gured with
ranges and page sizes. These parameters depend upon thermirodlls that t within
the physical canvas, which in turn depends upon the sizeeafahvas relative to the size of
the cells. The cell size depends in turn upon the font and imatgsed when rendering the
text. Since the user can resize the window or change thetfade parameters must be kept
up-to-date dynamically. In raw MrEd, all of this recompidgatwould need to be managed
by hand, but with the FrTime adaptation, we simply specify thnctional relationships
between the time-varying values, and the various widggtgtees update automatically.

For example, the following expression de nes the numbeihaifracters that t horizon-
tally in the canvas at one time:

(de ne v-cells-per-page
(quotient(canvas-height top-margjrcell-heighy)

Both cell-heightand canvas-heighare time-varying, and-cells-per-pagealways re ects
their current state. The range on the scroll bar is equalddlifierence between the total
number of cells (rows) and the number that can be displayedsamgle page:

(de ne v-scroll-range
(max0 (total-rows v-cells-per-pagg)

If the user resizes the window or changes the font, the randbeoscrollbar updates auto-
matically.

When the user clicks at a particular position in the canvas,agbplication needs to
map the position to a cell so it can highlight it and allow trseuto edit its formula. The
following code expresses the mapping:

(de ne (y-pos>row-numy

109

(if (> y top-margin
(+ v-scroll-pos(quotient(y top-margin) cell-heigh))

1))

By applying this function to thg component of the mouse position within the canvas, the
application obtains the row number (if any) over which theus®is hovering. It uses this
information to implement a roll-over effect, shading thd ceder the mouse cursor, and
to determine which cell to select when the user clicks thesaou

The following code shows the de nition of the text eld in wth the user enters cell
formulas:

(de ne formula
(new ft-text- eld%
[label"Formula:”]
[content-g(map-e((addr) | (value-now(cell-text(addr-> key add})) ‘1)
select-¢)]
|[focus-e select}e))

When the user clicks on a cell, the cell's address appears eneant stream calleselect-e
The occurrence of the selection event affdotsnulain two ways. First, the code in box
1 retrieves the selected cell's text from the spreadshket;téxt becomeformulds new
content. Second, the code in box 2 speci es that selectiemtsvsend focus tformula,
allowing the user to edit the text. When the user nishes adiind presses tlenterkey,
formulaemits its content on an output event stream; the applicatiocesses the event and
interprets the associated text (code not shown).

The spreadsheet experiment has proven valuable in seesp#ats. First, by employ-
ing a signi cant fragment of the MrEd framework, it has halpes exercise many of our
adapters and establish that the abstractions do not ativaffect performance. Second,
as a representativeul program, it has helped us identify several subtletiesrefand the
adaptation of state, some of which we have discussed indipsrpFinally, the spreadsheet
is an interesting application in its own right, since thegaage of the cells is FrTime itself,
enabling the construction of powerful spreadsheet program

110

6.4 Catalog of Adapted User Interface Widgets

ft-frame% These objects implement top-level windows. They suppodfahe standard
signal-based property interfaces (label, size, posifiocys, visibility, ability, mar-
gins, minimum dimensions, stretchability, and mouse ayth&ard input). As in the
underlyingframe%objects, thdabel property speci es the window's title.

ft-message% These objects contain strings of text that are mutable byafi@ication
but not editable by the user. They support all of the standmyolal-based property
interfaces. In this case, tt&bel property speci es the content of the message.

ft-menu-item% These objects represent items in a drop-down or pop-up meraddi-
tion to the standard properties, each widget exposes am gtveam that res when-
ever the user chooses the item.

ft-button% These objects represent clickable buttons. In additiohécstandard proper-
ties, each widget exposes an event stream that res eachiengser clicks it.

ft-check-box% These objects represent check-box widgets, whose stajetolgetween
true andfalsewith each click. In addition to the standard propertieshdacheck-
box%widget exposes a boolean behavior that re ects its curreté s The applica-
tion may also specify an event stream whose occurrencelsesstdte.

ft-radio-box% These objects allow the user to select an item from a codledf textual
or graphical options. In addition to the standard propsreacHt-radio-box%object
exposes a humeric behavior indicating the current selectio

ft-choice% These objects allow the user to select a subset of items friish @f textual
options. In addition to the standard properties, d&choice%object exposes a list
behavior containing the currently selected elements.

ft-list-box% These objects are similar fo-choice% except that they support an addi-
tional, immutablestyle property that can be used to restrict selections to singleto
sets or to change the default meaning of clicking on an itethe@ise, the applica-
tion's interface is the same as thatfbthoice%

111

ft-slider% These objects implement slider widgets, which allow the tsselect a num-
ber within a given range by dragging an indicator along akirdn addition to the
standard properties, eatftkslider%object allows the application to specify the range
through a time-varying constructor argument cali@dge and it exposes a numeric
behavior re ecting the current value selected by the user.

ft-text- eld% These objects implement user-editable text elds. In addito the stan-
dard properties, each widget exposes the content of itsé&kias a behavior, as
well as an event stream carrying the individual edit evehte application can also
specify an event stream whose occurrences replace thediektontent.

Chapter 7
Programming Environment Reuse

Building a new language is no modest undertaking, so theraligun reducing the man-
ual development effort as much as possible. Importantlgnguage is more than just an
interpreter or compiler. To compete with established systé must also have extensive
libraries and an array of tools that support program undedshg and development. These
comprise the overall programming environment in which siseork. By helping to auto-
mate the tasks of nding bugs and elucidating program bedrathey contribute greatly to
the power of languages as software engineering tools.

Unfortunately, developing and maintaining a high-qualiyl suite demands signi cant
time and effort. Especially for domain-speci ¢ languagebere the target market is small
(at least initially), adequate resources may not be availabdevelop all of the needed
infrastructure from scratch.

One way to reduce the cost of developing a new domain-spéanguage is tembed
it within an existing general-purpose language. Typicdlys involves implementing the
core functionality as a library within the host language aogporting it with lightweight
syntactic extensions. Since embeddexl programs are essentially host-language pro-
grams, they can reuse any interpreters, compilers, rurgysiems, libraries, and tools that
have been written for the host language.

Embedding has another appeal: if programmers are alreatidawith the general-
purpose host language and its environment, then they cat #eDsL with signi cantly
greater ease than something completely new and foreigrs “€bgnitive reuse” also in-
creases a language's utility and popularity.

112

113

Although embedding offers extensive reuse opportunitiesgreatly reduces the man-
ual effort required to implement@sL, there is a subtle but important pitfall that accompa-
nies tool reuse. In particular, if one applies a host-lagguaol to an embedded-language
program, what it shows us is the progranmgplementationin terms of the host-language
constructs that the tool understands. Depending upon tin@leaity of theDsL, this may
not match the abstractions of tbeL or meaningfully re ect the original program's behav-
ior. It may instead expose implementation details thatesabr even mislead the user.

In this chapter, | address the problem of meaningfully nregisi language's tools. The
solution strategy depends upon the host language's prayalsuitable interface for imple-
menting control-oriented tools, i.e., a mechanism for otileg on a program’s control ow.
By manipulating such a mechanism, | develop the notioaft#ctive evaluation contexts
which underlie the tool-adaptation technique for embeddeduages. | have applied this
technique to several existimgsLs (including most notably FrTime) and tools, and the re-
sults are encouraging. The modi cations are straightfedyand the result is more helpful
and appropriate feedback from the tools.

Since programming tools play an important role in softwargieeering, it is critical
that they be reliable and trustworthy. The manipulatioroof interfaces creates opportuni-
ties for reuse but also introduces possibilities for suetters. While raw tool reuse gives
results that violate thesL's abstractions, at least they present, in some sense, adjrou
truth about the execution of the system. In contrast, a cexnpéw tool that gives correct
answers sometimes but fails in other contexts may lead @igeher astray and result in
heightened frustration. To avoid such problems, | develfipraal model that speci es the
intended behavior of a speci ¢ tool-language combination.

7.1 Background

| am concerned with the reuse of control-oriented tools epdesL embeddings. Before |
discuss the problem, or my solution, | explain the concepte&fp embedding, and what |
mean by control-oriented tools.

114

Embedded FrTime
DSL Program Program
[Host Evaluator] [SchemeEvaIuatoD
Y Y
B = ./.\ =
Semantic\ Dataflow \I
® Data Structure ./ Graph ®
Y Y
’ DSL Interpreteﬂ ’ Dataflow Engine ‘

Figure 7.1: Structure of a deep embedding Figure 7.2: Embedding FrTime

7.1.1 Domain-Speci c Embedded Languages

Domain-speci ¢ languagesdbELs) are programming languages designed speci cally to
handle the pervasive concerns of speci c problem domainscaBse they can abstract
away concerns that cannot be encapsulated modularly inea@gpurpose languagesLs

are extremely powerful software-engineering tools.

Developing any new language is a non-trivial task. Thougkstbke scanner and parser
generators have been around for decades, these only halp aiihall part of the problem.
Such concerns as type-checking, code-generation, andneistipport constitute a much
more signi cant part of the task, for which there is less supp

One technique for reducing the burden of language developiméo embedthe new
language within an existing “host” language. Embeddingpsuis reuse of much of the
host language's infrastructure, including its type systeamtime system, libraries, and
interpreter and/or compiler.

An embedding can be eithshallowor deep[12]. In a shallow embedding, constructs
in theDpsL are implemented directly as host-language abstractiossafow embedding is
essentially a library; it can add new functionality, but netv features, to the host language.

In contrast, a deep embedding represerss constructs as host-language data struc-
tures, to which an explicit interpreter assigns meaningufé 7.1 shows a diagram of this

115

model. The host language evaluates tise. program, yielding a data structure that en-
codes the program's meaning; an interpreter processesathestiucture and implements
the semantics.

A deep embedding requires more effort to implement, sinaevilves explicit def-
initions of the embedded language's constructs. Howeveaffers more exibility and
power to the language implementor; theL's features are not con ned by those of the
host language. Also, since there is an explicit representaf the embedded program, the
implementation can analyze, optimize, or otherwise mdatpuhe embedded program.

7.1.2 Examples

My experience primarily involves the language FrTime, theus of this dissertation. Since
FrTime's notion of data ow lacks direct support from Schenite embedding must be (at
least partially) deep. The semantic data structure is ahgodghe program's data ow de-
pendencies, and the interpreter is a data ow engine thagtsas this graph and recomputes
signals in response to changes in the environment and agres (see Figure 7.2).

7.1.3 Control-Oriented Tools

A control-oriented tool is one that observes points in thetiad- ow of an executing pro-
gram. For example, a pro ler counts how many times expressaxecute, and how much
they contribute to the total execution time. Likewise, aroetracer catches errors and
shows the user where they came from (e.g., the immediatessipn that raised the error
and its context of execution).

Building a control-oriented tool requires an interface fetracting information about
the state of a running program. In many language implementgtthe compiler generates
such information and represents it in a proprietary, ekirgzal manner. In such cases, the
tools are tightly coupled to the compiler.

Other implementations provide an open, linguistic mecéranior re ecting on con-
trol ow. For example, Java compilers provide informatiandglass les so that runtime
systems can track the le, class, method, and line numberok ectivation record. This
information is available through a public method in Eeceptiorclass, so applications can
use it for their own purposes.

116

PLT Scheme provides an even more general and open staclciiospenechanism
based on continuation marks [23]. With this mechanism, giliegiion can associate a
mark with the evaluation of an expression. The mark is an arlyitBecheme value and
resides on the runtime stack, in the expression's actimatoord, until the expression n-
ishes evaluating. An application can, at any point in itscexien, introspect on its control
ow by requesting the set of marks currently on the stack.

The continuation mark interface exists primarily for tqatet applications. To work
properly, the tools need a way to install whatever infororatihey require in the marks.
PLT Scheme supports this capability by means of a lightwdiglerface to its compiler,
through which tools can syntactically transform,asmotate target programs before they
execute. For example, the error-tracer works by instgllfog each expression, a mark
containing the expression's source location. The runtigstesn automatically captures
the continuation marks when an exception arises and stoees in anexceptionobject.

If the application fails to handle the exception, the etracer catches it at the top-level,
extracts the source location information from its contiimamarks, and presents a trace
to the user.

The combination of annotation and continuation marks aléwev the implementation
of a wide variety of tools. Some that have been developeddech pro ler, an algebraic
stepper [25], and a scriptable debugger [63]. These tosksrirannotations to perform
such tasks as timing execution, checking for and susperadibgeakpoints, and installing
continuation marks that not only identify the source lomasi of active procedures but also
provide access to the names and values of lexical variables.

More importantly, continuation marks offer a clean integfdor control- ow introspec-
tion that is backed by a formal model [23]. The use of exphgihtactic transformations
also allows us to capture the notion ofl@bugging compilethat communicates with tools
through this continuation-mark interface. These abstastprove useful when we formal-
ize the interaction between control-oriented tools angae s embeddings.

7.2 The Tool-Reuse Problem

A deepDsL embedding can reuse much of the host language's infrasteudirectly. How-
ever, if we try to reuse the host language's control-oriétd®ls, the feedback they provide

117

LiftB.evalMethod: Exception raised when invoking method f 00
java.lang.reflect.InvocationTargetException

at sun.reflect.GeneratedMethodAccessor2.invoke(Unkno wn Source)

at sun.reflect.DelegatingMethodAccessorimpl.invoke(D elegatingMethodAccessorimpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:324)

at edu.yale.cs.frp.FRPUTtilities$LiftedB.evalMethod(F RPUrtilities.java:458)

at edu.yale.cs.frp.FRPUTtilities$LiftedB.recomputeVal ue(FRPUtilities.java:486)

at edu.yale.cs.frp.FRPUTtilities$LiftedB.propertyChan ge(FRPUtilities.java:472)

at java.beans.PropertyChangeSupport.firePropertyChan ge(PropertyChangeSupport.java:252)

at edu.yale.cs.frp.BehaviorAdapter.firePropertyChang e(BehaviorAdapter.java:65)

at edu.yale.cs.frp.BehaviorAdapter.setValue(Behavior Adapter.java:90)

at edu.yale.cs.frp.Stepper.eventOccured(Stepper.java 142)

at edu.yale.cs.frp.AbstractEventSource.setEvent(Abst ractEventSource.java:62)

at edu.yale.cs.frp.AccumE.eventOccured(AccumE.java:5 7)

at edu.yale.cs.frp.AbstractEventSource.setEvent(Abst ractEventSource.java:62)

at edu.yale.cs.frp.EventBind.eventOccured(EventBind. java:42)

at edu.yale.cs.frp.AbstractEventSource.setEvent(Abst ractEventSource.java:62)

at edu.yale.cs.frp.FRPUtilities$EventObserver.invoke (FRPUTtilities.java:256)

Figure 7.3: An error trace from a Java FRP implementation

by default will be misleading. This is because theL program itself does not perform
any interesting computation—it only creates a represiemaif itself as a data structure,
which theDsL implementation interprets in order to realize the progsease@mantics. Thus,

control-oriented tools observe and analyze the procesgerfreting the data structure, al-
though this may have no apparent connection to the origisalprogram.

For example, executing a FrTime program constructs a grigéita ow dependencies.
The behavior the user cares about begins afterward, whdarigaage's data ow engine
traverses and recomputes values on the graph. Regardldss stfiicture of the FrTime
program, the data ow engine is an in nite loop with a relaly shallow stack.

If a program is syntactically well-formed, then constroatof its data ow graph com-
pletes without any problems, but a logical bug may cause @annererror (e.g., division-
by-zero, index out-of-bounds) to arise later while recotmgua signal. Since the data ow
engine performs this recomputation, it experiences ther,eand any tool that observes
control ow—even a full-featured interactive debugger—Hlame the update algorithm.
A typical user will probably be perplexed by the error trasiace it has nothing to do with
his program. A more advanced user might even suspect thratitha bug in the language's
implementation.

Although, strictly speaking, the error-tracer is tellirgettruth, the feedback it gives is
problematic for two key reasons:

1. It fails to identify the actual source of the error, whishthe FrTime expression that
constructed the problematic signal. (In fact, since therexgcontrol structure is so
simple, the tool produces essentially the same trace fot enow's.)

118

2. It exposes th@sL's implementation to the user, which violates a basic pplecof
language design.

The use of deep embedding may also cause other tools to graodigteading results.
For example, consider the output that a pro ler gives wheman a FrTime. The user's
program executes once (and only once), consuming a shat bliprocessing time to
construct a semantic data structure. After that, the iné¢ep (data ow engine or slide
renderer) performs the repetitive and intensive companatiecessary to implement the
program'’s semantics. A pro ler observes and reports thiasllievel phenomenon. However,
this is neither surprising nor useful to a programmer logkim understand which parts of
his program are responsible for consuming the most ressurce

These tool interactions are inherent to this style of embmegddnd are not specic to
Scheme. For example, Frapjs a Java implementation of functional reactive prograngmi
which, like FrTime, builds an explicit graph of the prograndfata ow dependencies and
employs an external recomputation algorithm to keep sguadto-date. Once the graph is
constructed, the update algorithm performs all of the eg#éng computation and is what
any tool will observe. As in FrTime, there is no connectiorihie original program (that
constructed the graph), which is ultimately responsibtetie program's behavior.

Figure 7.3 shows a speci c example of the problem, an eremetfor adivision-by-zero
error in a Frapp [29] program. The trace reveals many details about theeim@htation
instead of indicating the source of the error. We show thisnphasize that the problem
we describe is neither an artifact of our choice of host laggy nor simply the result
of our own carelessness as language implementors. Morabdemonstrates that other
implementors of similar systems have not already solvegtbblem.

Control-oriented tools are not the only ones that can havéeadag interactions. In
any embeddeasL, the implementation may use a low-level host-language stutec-
ture to implement a high-level domain-speci ¢ abstractidn such cases, the host lan-
guage's data-oriented tools, which are unaware of the engpwvill present the data in
host-language terms. This breaks s 's abstractions in an analogous manner to control-
oriented tools. However, the solution in this case is reddyisimple; the language provides
the tool with a custom display translator that renders tha mlean appropriate manner. We
therefore focus on control-oriented tools for the rest ef paper and do not discuss data

119

interactions any further.

Admittedly, control-oriented tools are less importantd@EeLs implemented in statically-
typed languages, since the type checker catches a signii@ation of the mistakes before
the program has a chance to run. In theory, the type checkgrtm@iport a misleading uni -
cation failure within thebseL implementation, thereby exhibiting the same problem we've
described about runtime tools. In practice, however, tloissdnot seem to be problem,
most likely because theseL implementation may be type-checked separately from the
user program, allowing the type-checker to divert blamenfitbe (internally consistent)
implementation.

7.3 Solution Technigues

Chapter 3 presented a formal model of FrTime. The model segsac@nceptually into
two “layers”, a low-level evaluation semantics that reststihat of Scheme or the,-
calculus [84] and a high-level data ow semantics that cegglFrTime's reactive recompu-
tation strategy.

The low-level layer, shown in Figure 3.3, is a small-steprapenal semantics based
on evaluation contexts [41], the grammar for which appeafSigure 3.1, along with the
syntax for expressions and values.

The high-level evaluation rules (Figure 3.5) de ne the @ien of FrTime's data ow
propagation mechanism. They operate on 4-tulgS; D; I;t i, whereD and| are the
same as in the low-level semanti&js a store containing the current values of signals,
andt is the current time.

A key element of the semantic model is the evaluation corlfeixtthesignal struc-
ture. This represents the evaluation context that createdignal. For example, suppose a
user were to evaluate the following expression (whessa behavior):

(+4(C 3(201x3))

In its evaluation, the rst step would be to apply theule, which would match the original
triple as:
h;D; (+4(C 3(2[(/1X]))i

120

and take a small step to the tuple:

h[f gDI[f()gE4(3(C2[D)

where

=(sig (+4(3(2[D) (/1X)

Thus, the new signal captures the evaluation context from the step that creatée 4 (

3(2[]))- This means that, ik takes on the valu@, resulting in a division-by-zero error,
then the data ow evaluator knows both the speci c operatioat caused the error, i.e/, (
1 x), and the context,{ 4 (3 (2[]))), in which it would have occurredhad it been
evaluated in its original context. Thus it has enough infation to report a meaningful
error message.

7.3.1 Higher-Order Signals

An important feature of FrTime is that the update of one digaa result in the creation of
new signals. For example, consider the following expressio

(3(2(fb(fx) @y

As b takes on different valuesf &) and @ y) are evaluated alternately, and in general this
evaluation creates new signals. One might naturally therdvaluatef(x) or (g y) by itself,
but this would mean dropping the part of their context thes lbutside thé expression,
i.e., (3(2[]). Any signals created by this evaluation would likewismntain only the
local context from inside thi.

However, because every signal captures the context of étion, it is possible to
preserve the proper contextual information even in casesandsignal results from another
signal's update. For example, the signal created foiftle&pression is:

(sig (3(2[]) (if[1(fx)(gy) b)

As shown in ruleu-swc, whenever the value df changes, the inner context#-{] (f x)
(9 y))—will be applied to the new value to construct a new branthe important thing
is that the evaluation of the resulting expression occutbimithe outer context, (3 (

121

2 [1), so any new signals will contain the full context that wld have been present in
a traditional call-by-value evaluation. Evaluation onlpgeeds until the original (inner)
expression has been reduced to a value. Thus the outer tanjiest present to record the
origin of any signals.

7.3.2 Implementation

The next step is to apply this idea of capturing evaluatiomexts to a real implementa-
tion. Of course, realistic programming languages (inelgdscheme) don't have evalua-
tion contexts that programs can capture and manipulate eMeswvmany of them provide a
mechanism for inspecting the control stack, which is thelemgntation's representation
of the evaluation context.

In DrScheme, the stack inspection mechanism is based oroti@nrof continuation
marks

To understand why DrScheme's error-tracer fails in our esdlee implementation, we
must look more closely at its interface for control-oriehteols. We use a formal model
of our implementation language, based on the model of arbedgestepper presented by
Clements et al. [25]. The language is a simple version of Settaat includes a mechanism
for control- ow introspection. This mechanism, based oa thanipulation o€ontinuation
marks is essentially a formal model of the stack-inspection béjpi@s provided by lan-
guages like Java and C#. It allows a programmer to associsewddn each activation
record on the runtime stack, just as the Java runtime ages@aurce location information
with each of its stack frames. Due to space limitations, wé time speci cation of the
implementation language from the paper.

In the formal model, the analog of a “stack” is an evaluationtext, where each stack
frame corresponds to one application of a production rukéncontext's grammar. This
gives rise to a linear structure, as in a stack, because eadhgiion (except for the empty
terminal context[']”) contains exactly one sub-context (representing the siadk frame).

As mentioned in Section 2, DrScheme's [42] control-sewsitbols employ two main
elements: (1) reading and interpreting the continuatiorkeyérom the running program,
and (2)annotatingthe program prior to execution with instructions that itistee neces-
sary marks. Fortunately, we can also model the annotatioregs formally. For example,

122

Clements et al. present an annotator for their algebraipstepnd the one we use for Fr-
Time is a straightforward extension of theirs that handlskghtly richer implementation
language. The key property of the annotator is that it pxesesemantics while supporting
re ection on the program's control ow. We writ& [rEXPRi] to indicate the application
of such debugging annotations to the expressixpPri, the result being a semantically
equivalent expression save that, at any point in its eviainaa tool can extract its contin-
uation marks and reconstruct its evaluation context.

Another way to think of this annotator is as a compiler withdebug” ag enabled.

It generates code with extra information that tools likewgers can use to elucidate the
program's runtime behavior. Although our presentationasdadl on annotation and contin-
uation marks, the speci c mechanism is not essential; Rettyet al. [82] show how to
use Java's exceptions and a suitable compiler to obtainaime $asic functionality.

Now that we have a formal model of the implementation languag carformally ex-
press the deep embedding of FrTime. Speci cally, we can@mgnt FrTime's primitives
(e.g., make-signal send-event value-now etc.) and data ow engine as Scheme proce-
dures. A FrTime program, then, is simply a Scheme program evatltex context in
which all of these elements are de ned. We writeTRME[REXPRI] to denote the result of

lling a FrTime context with a program. The result is a Scheax@ression that, when eval-
uated under Scheme's semantics, implements the behauwiothth originalhexPri would
exhibit under the FrTime semantics shown in Figures 3. 1utlino3.5.

This formalism allows us to capture precisely the probletinie néve error-reporting
in the FrTime implementation described in the previousisactFor one thing, Scheme's
error-tracer, by default, annotates the whole progranidiyig A[FRTIME[REXPRi]]. This
explains why error traces contain references to the imphtatien. WWhat we want instead
is to evaluate RTIME [A[heEXPRi]], so only contextual information from the user's pro-
gram appears in the traces. However, this is only half of tiedlpm, since the FrTime
semantics demands an error-trace containing more thahitdgemation (it composes ad-
ditional context from the signal whose update threw the ptior). Our original (buggy)
implementation neglects this requirement, with the consaqge that error reports fail to
identify the responsible fragments of the user's program.

1The implementation is included with the DrScheme distitut

123

7.3.3 Effective Evaluation Contexts

To x this problem, the implementation needs to be able toteapand store a representa-
tion of its evaluation context. Fortunately, this is exaathhat our control- ow re ection
mechanism allows us to do. In particular:

1. We rst need a variable to simulate tlke element in the low-level semantics—the
additional context associated with the signal being reagegh We call this variable
e-e-G as it holds theeffective evaluation contexits value is initiallyempty, repre-
senting the empty context, since top-level evaluation deé®ccur on behalf of any
particular signal.

2. Within the implementation of thenake-signafunction, we capture theurrenteval-
uation context, compose it with the effective evaluationtegt, and store it with the
signal. This corresponds exactly to the behaviomakEe -SIGNAL in the semantics;
it saves the full program context that is responsible forrdseilting signal.

3. Inside the main loop of the data ow engine, before recotimgua signal, we set
the effective evaluation context to the context saved froensignal’s creation. This
corresponds to the operation of tteDATE-INT andERRORTrules in the high-level
semantics: when they invoke the low-level evaluator on aadlg update procedure,
they provide that signal's additional contexti&s

4. When the top-level error-handler catches an error andtepto the user, we make it
build a trace by composing the effective and actual evalnatontexts. This mimics
the behavior of the ruleRROR which detects low-level evaluation errors and reports
them at the higher level with contexts enriched by the resibm signals.

7.3.4 Generalizing the Solution Strategy

We have gone into a lot of detail about a speci ¢ applicatibaftective evaluation contexts—
to make an error-tracing tool for Scheme work for a particelabeddedsL. We claim,
however, that the ideas we have developed are not speci cTire or the error-tracing
tool. In fact, to apply them to a different degsL embedding, we just need to replace

124

signalwith the new language's semantic data structuregathtewith its notion of inter-
pretation.

For example, suppose we wish to apply the same solution tdexdrror-tracing in
Slideshow:

1. Just as for FrTime, we need to extend our tool interfack amie-e-cvariable. How-
ever, if we have already made this extension for anotheniageg, we don't need to
do it again.

2. In the constructor for thpict data structure (Slideshow's semantic data structure),
we capture and save the current evaluation context.

3. In the slide navigator, around the interpreter that reméachpict, we extract the
context associated with thgct to be drawn and copy it into theee-c

4. \We make the top-level error-handler compose the conténite e-e-cwith the local
context. That way, if an error occurs while rendering a sltte trace will automat-
ically include the code that created the faytigt. This change, like the addition of
thee-e-cvariable, is only necessary if this is the rst time we are @titeg the tool.

If we wish to reuse a different tool, then we must similarlyesd it with an awareness
of effective evaluation contexts. For example, DrScherpgasler uses an annotator that
inserts calls to read the CPU time before and after each puoeegbplication, counting the
elapsed time against the actual procedure (in its evaluabatext). This default behavior
is not very useful for deepsL embeddings, since it ends up telling us the obvious—that
the interpreter consumes the majority of the processing.timio get more meaningful
measurements, we should attribute the time spent in thepneter towardhe context that
created the interpreted dat&ortunately, this information is readily available: in difying
our languages to work meaningfully with the error-tracd,te@ made the interpreter copy
the context from the interpreted datum's creation toeéhe-cvariable. The pro ler only
needs to be aware of the contents of this variable and adustcounting accordingly.

125

Figure 7.4: Output from original pro ler on FrTime program

% Time
38.445
10.564]

Calls Function
13451187 || /home/grea/v2 08/plt/collects/fitime/demos/piston-b ss: 30.5
5647678| /home/grea/v208/plt/collects/frtime/demos/piston-b.ss: 45.5

Msec
216827
59583

121948
59092

21.623
10.477

5647676||/home/greg/v2 08/plt/collects/frtime/demos/piston-b.ss: 47.5
3080557||/home/greq/w208/plt/collects/frtime/demos/piston-b.ss: 26.5

Figure 7.5: Output from adapted pro ler on FrTime program

7.3.5 Transformation of the Semantic Data Structure

Sometimes, a semantic data structure does not feed dirstdla DSL interpreter, but in-
stead rst undergoes a number of transformations. For eatige language may convert
it to a more ef cient intermediate representation, anretatwith the results of various
static analyses, and apply a number of optimizations tofdreenally running it. So, the
value that nally ows into the rendering engine is severtages removed from the orig-
inal program and its corresponding effective evaluationtext. Without some additional
book-keeping, the system loses its connection to the @igiaL program.

Effective evaluation contexts can help us with this probéeswell. The idea is to instru-
ment each of the transformation steps so that it copies fhet@k context from its input
to its output. This way, the nal representation—the onet tha interpreter sees—maps
to the same effective evaluation context as the raw datatateifrom which it is derived.
This gives the interpreter access to the effective evalnatontext that it would have if it
interpreted the original data structure directly, withthe intervening transformations.

7.4 Implementation Status

| have implemented the strategy described above for botimfeand Slideshow, in con-
junction with DrScheme's error-tracer and pro ler, and timedi cations have improved
the quality of the feedback. In each case, the implememagiquires less than thirty lines
of code. For the languages, the bulk of this involves insemtimg the semantic data struc-
ture to capture and store the evaluation context upon amigin. For the tools, the only

126

extension is to read and take into account the additionatimdition stored in the effective
evaluation context.

| show the impact of these modi cations on the pro ler. Figuf.4 shows the original
pro ler output from a FrTime program. In this case, the tedtatistics come from actual
evaluation contexts. The expressionser andloop are the main loops inside the FrTime
data ow engine. It is neither interesting nor informativet they perform the bulk of the
computation in the system. On the other hand, Figure 7.5 sthibe pro ler output for
the same program after modifying it to use effective evahmatontexts. Here, the top
contributors are those expressions in the user's programctimstruct signals for which
recomputation is expensive.

Chapter 8

Extended Application: Scriptable
Debugging

Debugging is a laborious part of the software developmentgss- Indeed, even with the
growing sophistication of visual programming environnsgrthe underlying debugging
tools remain fairly primitive.

Debugging is a complex activity because there is often a geatlof knowledge about
a program that is not explicitly represented in its execeutiBor instance, imagine a pro-
grammer trying to debug a large data structure that appearte satisfy an invariant. He
might set a breakpoint, examine a value, compare it agaimse ©thers and, not nding
a problem, resume execution, perhaps repeating this aozens of times. This is both
time-consuming and dull; furthermore, a momentary lapsmatentration may cause him
to miss the bug entirely.

The heart of automated software engineering lies in idgntif such repetitive human
activities during software construction and applying cotagtional power to ameliorate
them. For debuggers, one effective way of eliminating répatis to make thenscript-
able so users can capture common patterns and reuse them iriuhe fihe problem then
becomes one of designing effective languages for script@imiggers.

1This chapter expands on previously published joint work B8 with Guillaume Marceau, Jonathan
P. Spiro, and Steven P. Reiss. Guillaume deserves credidaoriginal idea of using a functional reactive
language to script a debugger.

127

128

Debugging scripts must easily capture the programmer&ninand simplify the bur-
densome aspects of the activity. To do this, they must meetakcriteria. First, they must
match the temporal, event-oriented view that programmavs bf the debugging process.
Second, they must be powerful enough to interact with anditmioa program's execu-
tion. Third, they should be written in a language that is signtly expressive that the act
of scripting does not become onerous. Finally, the scgpkmguage must be practical:
users should, for instance, be able to constpuotjram-speci cmethods of analyzing and
comprehending data. For example, users should be abledtegedundant models of the
program's desired execution that can be compared with thuabexecution. This calls for
a library of1/0 and other primitives more commonly found in general-puepasiguages
than in typical domain-speci ¢ languages.

In this paper, we present the design and implementation oftaractive scriptable de-
bugger called MzTake (pronounced “miz-take”). Predigtabur debugger can pause and
resume execution, and query the values of variables. Mdaeeéstingly, developers can
write scripts that automate debugging tasks, even in thestnaitian interactive session.
These scripts are written in a highly expressive languagfe avilata ow evaluation seman-
tics, which is a natural t for processing the events thatuwoduring the execution of a
program. In addition, the language has access to a largectol of practical libraries,
and evaluates in an interactive programming environmergcBeme.

8.1 A Motivating Example

Figure 8.1 shows a Java transcription of Dijkstra's aldomit as presented imtroduction

to Algorithms[27]. Recall that Dijkstra's algorithm computes the shargeath from a
source node to all the other nodes in a graph. It is similaréadith- rst search, except
that it enqueues the nodes according to the witthncenecessary to reach them, rather
than by the number afteps The length of the shortest path to a node (so far) is stored
in the weight eld, which is initialized to the oating point in nity. Thealgorithm relies

on the fact that the shortest-path estimate for the nodethatlsmallest weight is provably
optimal. Accordingly, the algorithm removes that node fritv@ pool (viaextractMin), then
uses this optimal path to improve the shortest path estiofatdjacent nodes (vieelax).

The algorithm makes use of a priority queue, which we alsdempented.

129

Figure 8.2 shows a concrete input graph (wherat locationhl0Q 125, denotes the
source from which we want to compute distances) and the otitatresults from executing
this algorithm on that graph. The output is a set of nodes fuckthe algorithm was able
to compute a shortest path. For each node, the output psegennode’'s number, its
coordinates, and its distance from the source along theediqrath.

As we can see, this output is incorrect. The algorithm failpriovide outputs for the
nodes numbered 5and6, even though the graph is clearly connected, so these anéea n
distance frons.

Since the implementation of Dijkstra's algorithm is a dirg@anscription from the text
(as a visual comparison con rms), bute implemented the priority queue, we might ini-
tially focus our attention on the latter. Since checkingdterall correctness of the priority
gueue might be costly and dif cult, we might rst try to veyifa partial correctness cri-
terion. Speci cally, if we callextractMinto remove two elements in succession, with no
insertions in-between, the second element should be dtdedarge as the rst.

Unfortunately, most existing debuggers make it dif cultdatomate the checking of
such properties, by requiring careful coordination betwbeeakpoint handlers. For ex-
ample, ingdb [90] we can attach conditional breakpoint handlers—whiehedfectively
callbacks—to breakpoints ansert and extractMin and so observe values as they enter
and leave the queue. Figure 8.3 illustrates the control elatronship between the target
and the debugging script when we use callbacks to handlésvBtarting at the top left,
the target program runs for a while until it reaches ¢éx&ractMinfunction; control then
shifts to the debugger, which invokes the callback. Thébeak makes a decision to either
pause or resume the target. Eventually, the target corgtiand runs until it reaches the
breakpoint on thextractMinfunction for a second time. If we are monitoring a temporal
property, such as the ordering of elements taken out of aityriqueue, the decision to
pause or resume the target on the second interruption wkmlk on data from the rst
callback invocation. Observe that, for the program on tfieitds natural to communicate
data between the parts of execution, because it consistseafingle thread of control. In
contrast, the “program” on the right is broken up into marsjalnt callback invocations,
so we need to use mutable shared variables or other extérarahels to communicate data
from one invocation to the next.

All this is simply to check for pairs of values. Ideally, we mtdo go much further than

130

simply checking pairs. In fact, we often want to create a neldunt model of the execution,
such as mirroring the queue's intended behavior, and wridipates that check the pro-
gram against this model. Upon discovering a discrepancynwgét want to interactively
explore the cause of failure. Moreover, we might nd it vadleto abstract over these
models and predicates, both to debug similar errors latgrt@iuild more sophisticated
models and predicates as the program grows in complexity.

In principle, this is what scriptable debugging should acpbish well. Unfortunately,
this appears to be dif cult for existing scriptable debuggyd-or example, Coca [35] offers
a rich predicate language for identifying interesting datd points in the execution, but it
does not offer a facility for relating values across diffengoints in time, so the programmer
would still need to monitor this criterion manuallyFo [6] supports computation over
event-streams, but does not support interaction. Dalekif/thteractive and offers the
ability to relate execution across time, but provides lgdiabstractions capabilities, so
we could not use it to build the predicates described in thisep In general, existing
scriptable debuggers appear to be insuf cient for our npedsliscuss them in more detail
in section 9.

This chapter presents a new system that addresses the \wsa&rfeund in existing
debuggers. In section 8.2, we describe the goals and obsawvahat have guided our
work. We re ect on lessons learned from this example in &c8.5. In Section 8.6 and
Section 8.7, we describes the design and the implementatspectively. Section 8.8
discusses strategies to control the execution of a targejfr@am. Section 8.9 provides
additional, illustrative examples of the debugger's use.

8.2 Desiderata

We believe that users fundamentally view debugging as ademhpctivity with the run-
ning program generating a stream of events (entering anich@xnethods, setting values,
and so on). They use constructs such as breakpoints to mede ¢lvents manifest and to
gain control of execution, at which point they can inspect set values before again relin-
quishing control to the target program. To be maximally usahd minimally intrusive, a
scriptable debugger should view the debugging processagigsers do, but make it easy
to automate tedious activities.

131

Concretely, the scripting language must satisfy severabrapt design goals.

1. While debuggers offer some set of built-in commangsers often need to de ne
problem-speci c commanddn the preceding example, we wanted to check the or-
der of elements extracted from a queue; for other prograres;am imagine com-
mands such as “verify that this tree is balanced”. While obsipa debugger should
not offer commands customized to speci ¢ programs, it stiqgubvide a powerful
enough language for programmers to capture these opesaamsily. Doing so of-
ten requires a rich set of primitives that can model soptastid data, for instance to
track the invariants of a program's data.

2. Programs often contain implicit invariants. Validatihgse invariants requires main-
taining auxiliary data structures strictly for the purpo$enonitoring and debugging.
In our example, although Dijkstra’s algorithm depends ode®obeing visited in or-
der of weight, there is no data structure in the program tbatptetely captures the
ordered list of nodes (a priority heap satis es only a wealeering relation). Lack-
ing a good debugging framework, the developer who wants toitmomonotonicity
therefore needs to introduce explicit data structuresthmgsource. These data struc-
tures may change the space- and time-complexity of the anogso they must be
disabled during normal execution. All these demands caraf@i maintenance and
program comprehension. ldeally,debugger should support the representation of
such invariants outside the program's sour¢én related work, we explain why ap-
proaches like contracts and aspects [5] are insuf cient.)

3. Debugging is often a process of generating and falsifiiygpthesesProgrammers
must therefore have a convenient way to generate new hypgsthdsle running a
program.Any technique that throws away the entire debugging comietxveen each
attempt is disruptive to this exploratory process.

4. Since the target program is a source of events and delggen event-oriented
activity, the scripting language must be designed to act as a recipémrvents
In contrast, traditional programming languages are desigor writing programs
that are “in control’—i.e., they determine the primary ow execution, and they

132

provide cumbersome frameworks for processing events. gdses a challenge for
programming language design.

5. As a pragmatic mattedebuggers should have convenient access to the faka-
cilities provided by modern consolss they can, for instance, implement problem-
speci c interfaces. A custom language that focused solalyhe debugging domain
would invariably provide only limited support for such attiies. In contrast, the
existence of rich programming libraries is important foe thidespread adoption of
a debugging language.

To accomplish these goals, a debugging language must adalces ict central to all
language design: balancing the provision of powerful @osions with restrictions that en-
able ef cient processing. This has been a dominant themaiptior work (see section 9).
Most prior solutions have tended toward the latter, while gaper begins with a general-
purpose language, so as to explore the space of expressrertmooughly. This results in
some loss of machine-level ef ciency, but may greatly comgage for it by saving users'
time. Furthermore, the functional style we adopt creatg®dpnities for many traditional
compiler optimizations.

8.3 Language Design Concerns

FrTime supports the development of a scriptable debuggeiaral ways. Firstly, the rich
libraries of DrScheme are available for FrTime, and are rataally lifted to the time
domain, so they recompute when their arguments update n8kgcthe DrScheme prompt
recognizes behaviors and automatically updates the gigpltneir values as they change
over time. Finally, FrTime upholds a number of guaranteesiah program's execution,
including the order in which it processes events and theespaguired to do so:

Ordering of event processing Since FrTime must listen to multiple concurrent
event sources and recompute various signals in responsajgid worry about the
possibility of timing and synchronization issues. For epéamif signala depends
on signalb, we would like to know that FrTime will not recompute using an
out-of-date value fronb. Fortunately, FrTime's recomputation algorithm is aware

133

of data ow dependencies between signals and updates thenmapological order,
starting from the primitive signals and working towardsitliependents.

Space consumption FrTime only remembers the current values of behaviors and
the most recent occurrences of events. Thus, if the progrdata structures are
bounded, then the program can run inde nitely without exdtang memory. If the
application needs to maintain histories of particular ¢gtreams, it can use FrTime
primitives like history-eor accum-bfor this purpose. The application writer must
apply these operations explicitly and should thereforevimra of their cost.

8.4 Debugging the Motivating Example

We are now ready to return to our example from section 8.1. Axyplained previously,
our implementation of Dijkstra's algorithm employs a piigrqueue coded by us. In ad-
dition, we noted that our implementation DfjkstraSolveris a direct transcription of the
pseudocode in the book. We hypothesized that the bug migint the implementation of
the priority queue, and that we should therefore monitdoéisavior. Recall that the partial
correctness property we wanted to verify was that consecptirs of elements extracted
from the queue are in non-decreasing order.

Figure 8.4 presents a debugging script that detects wolatof this property. In the
script, the variables is bound to a debugging session ijkstraTest a class that exer-
cises the implementation of Dijkstra's algorithm. The ioaton ofstart-vminitiates the
execution of the Java Virtual Machineym) on this class, and immediately suspends its
execution pending further instruction.

The expressionj¢lass c PriorityQueugcreates a FrTime proxy for tHeriorityQueue
class in Java. Since Java dynamically loads classes on deth&proxy is a time varying
value: its value i€ at rst, and stays so until the class is loaded into tki®1. The operator
jclasstreats its second argument specialBriorityQueueis not a variable reference, but
simply the name of the target class. In Lisp terminolggkassis aspecial form

Next, we install tracing around the methaatsd andextractMinof the priority queue.
A tracepointis a FrTime event-stream speci cally designed for debuggithe stream
contains a new value every time the Java program's exectggches the location marked

134

by the tracepoint. Concretely, the expression

(de ne inserts
(trace (queue.adceentry)
(bind (item) item.weighy))

installs a tracepoint at the entry of tadd method ofgqueue? The result otrace is an event
stream of values. There is an event on the stream each tinterget program reaches the
add method. To generate the values in the streamfrioee construct evaluates its body;
this body is re-evaluated for each event. In this instanesyse thdind construct to reach
into the stack of the target, nd the value of the varialdéam (in the target), and bind it to
the identi eritem(in the body of thébind). In turn, the body of théind extracts theveight
eld from this item. This weight becomes the value of the dven

The identi er insertsis therefore bound to a FrTime event-stream consisting ef th
weights of all nodes inserted into the priority queue. Thentder removess bound cor-
respondingly to the weights of nodes removed from the qugextractMin

We initially want to perform a lightweight check that deténes whether consecutive
remove (not separated by anserf) are non-decreasing. To do this, we merge the two
event-streamsansertsandremoves Since we are only interested in consecutive, uninter-
rupted removals, the monitor resets upon each insertioa.f@llowing FrTime code uses
the combinator=> to map the values in thiesertsstream to the constanteset, which
indicates that the monitor should reset:

(merge-e removginserts. -=> . 'reset))

The result of this expression is illustrated in Figure 8rbtHis graph, time ows towards
the right, so earlier events appear to the left. Each ciepeasents one event occurrence on
the corresponding stream. The rst three lines show theasisewe just discussediserts
removesand the mappethserts The fourth timeline of the gure shows that timeerge-e
expression evaluates to an event-stream whose eventstagearder they are encountered
during the run. The insert events have been mapped to théacons/hile the remove
events are represented by the weight of the node.

The last two timelines in Figure 8.5 depict the next two stie@reated by the script.

2Here and in the rest of this paper, we use the in x notatiorpsuied by FrTime: X . op. y) is the same
as Op x) in traditional Lisp syntax.

135

The merged stream is passed to the core monitoring primitivein-order, shown in Fig-
ure 8.6. This usehistory-eto extract the two most recent values from the stream and
processes each pair in turn. It Iters out those pairs thatatoexhibit erroneous behavior,
namely when one of the events israset or when both events re ect extracted weights
that are in the right order. The result is a stream consigiingairs of weights where the
weightier node is extracted rst, violating the desired@rd/Ne call this streamiolations

The FrTime identi erlatest-violationis bound to a behavior that captures the last viola-
tion (using the FrTime combinatdold). If the priority queue works properly, this behavior
will retain its initial value false(meaning “no violation so far”). If it ever changes, we want
to pause thevm so that we can examine the context of the violation. To dq tidsuse the
primitive set-running-e!which consumes a stream of boolean values. Cafletgunning-
e!launches the execution of the target program proper, and keep on consuming future
events on the given stream: when an event with the Valise occurs theyvm pauses, af-
ter which, when an event with a true value occursie resumes. Since we anticipate
wanting to observe numerous violations, we de ne the (ceglginamed) abstractiamy,
which tells thesvm to run until thenextviolation occurs.

At the interactive prompt, we typa). Soon afterward, thevm stops, and we query
the value ofatest-violation

> (V)

shortpaust

> |atest-violation
(+inf.0 55.90169943749474)

This output indicates that the queue has yielded nodes wheigits are out of order. This
con rms our suspicion that the problem somehow involvesgherity queue.

Continuing Exploration Interactively

To identify the problem precisely, we need to re ne our maafeéhe priority queue. Specif-
ically, we would like to monitor the queue's complete blawkx behavior, which might
provide insight into the actual error.

3In Scheme, any value other théaiseis true.

136

With the JvM paused, we enter the code in gure 8.7 to the running FrTinssise.
This code duplicates the priority queue's implementatisimg a sorted list. While slower,
it provides redundancy by implementing the same data streithrough an entirely differ-
ent technique, which should help identify the true causéeftrrort

We now explain the code in gure 8.7. The identi enodelis bound to a list that,
at every instant, consists of the elements of the queue tedarder. We decompose
its de nition to improve readability. The valumsertersis an event-stream of FrTime
procedures that insert the values added to the priority gjugo the FrTime modeH= >
applies a given procedure to each value that occurs in ar-stream); similarlyremovers
is bound to a stream of procedures that remove values fromutee. The code

(accum-b(merge-e inserters removers
(convert-queue-to-listhind (q) q)))

merges the two streams of procedures usnggge-eand usesccum-kto apply the proce-
dures to the initial value of the modelccum-baccumulates the result as it proceeds, result-
ing in an updated model that re ects the application of a#l fitocedures in ordeaccum-b
returns a behavior that re ects the model after each transition. We must initialize the
model to the current content of the queue. The user-de nedgatureconvert-queue-to-list
(elided here for brevity) convertgs internal representation to a list.

Having installed this code and initialized the model, weaurae execution witmv. At
the next violation, we interactively apply operations tongare the queue’s content against
its FrTime model (the list). We nd that the queue's elemeats not in sorted order while
those in the model are. More revealingly, the queue's elésree not the same as those in
the model. A little further study shows that the bug is in osage of the priority queue: we
have failed to account for the fact that the assignmermletst.weighin relax (gure 8.1)
updatesthe weights of nodes already in the queue. Because the queoe sensitive to
these updates, what it returns is no longer the smallestegiein the queue. (Of course,
these steps—of observing the discrepancy between the rmadehe phenomenon, then
mapping it to actual understanding—require human inggnuit

On further reading, we trace the error to a subtle detail endéscription of Dijkstra's
algorithm in Cormen, et al.'s book [27, page 530]. The bookptsx the use of a binary

4Since the property we are monitoring depends only on thesi@dsghts, not their identities, the model
avoids potential ordering discrepancies between equadighted nodes.

137

heap (which is how we implemented the priority queue) forspgraphs, but subsequently
amends the pseudocode to say that the assignmealgstoveighimust explicitly invoke

a key-decrement operation. Our error, therefore, was ntthenimplementation of the
heap, but in using the (faster) binary heap implementatibinout satisfying its (stronger)
contract.

8.5 Re ections on the Example

While progressing through the example, we encounter sepespkrties mentioned in the
desiderata that make FrTime a good substrate for debugivieg.eview them here, point
by point.

1. The DrScheme environment allows the user to keep and sdsteactions across
interactive sessions. For instance, to monitor the pyigieue, we de ne procedures
such ashot-in-orderandconvert-queue-to-listSuch abstractions, which manipulate
program data structures in a custom fashion, may be usefuiding and xing
similar bugs in the future. They can even become part of thgram's distribution,
assisting other users and developers. In general, delggiipts can capture some
of theontologyof the domain, which is embedded (but not always explicateth)e
program.

2. We discover the bug by monitoring an invariant not expliagiepresented in the pro-
gram. Speci cally, we keep a sorted list that mirrors theogty queue, and we
observe that its behavior does not match the expectatiomsjkdtra’'s algorithm.
However, the list uses a linear time insertion procedurechveliminates the perfor-
mance bene t of the (logarithmic time) priority queue. Rorately, by expressing
this instrumentation as a debugging script, we cleanlyrsép# from the program's
own code, and hence we incur the performance penalty onlwkbugging.

3. The interactive console of DrScheme, in which FrTime paogs run, enables users
to combine scripting with traditional interactive debugmi In the example, we rst
probe the priority queue at a coarse level, which narrowstiope of the bug. We
then extend our script to monitor the queue in greater dethils ability to explore

138

interactively saves the programmer from having to reskerprogram and manually
recreate the conditions of the error.

4. The data ow semantics of FrTime makes it well suited toasa recipient of events
and to keep models in a consistent state, even as the scgpivisng. During the
execution of the Dijkstra solver, FrTime automatically pagates information from
the variablesnsertsandremovedo their dependents, theolationsvariable and the
set-running-eldirective. Also, when we add the variabteode] FrTime keeps it
synchronized witlviolationswithout any change to the previous code.

5. The libraries of FrTime are rich enough to communicatd witternal entities. The
programmer also has access to the programming constru€@sSaheme (higher-
order functions, objects, modules, pattern-matching),ettich have rigorously de-
ned semantics, in contrast to the ad-hoc constructs thaufae many scripting
languages. Further, since FrTime has access to all theiébrm DrScheme [42], it
can generate visual displays and so on, as we will see iroseg19.1.

8.6 Design

The design of MzTake contains four conceptual layers the¢ aaturally as a consequence
of the goals set forth in the desiderata (Section 8.2).

First, we need abstractions that capture the essentiaiduadity of a debugger. These
are: observing a program's state, monitoring its contrd¢thpand controlling its execution.
MzTake captures them as followlsind retrieves values of program variablésce installs
trace points, andet-running-elets the user specify an event stream that starts and stops
the program.

Second, we need a way to navigate the runtime data structtite target program.
For a Java debugger, this means providing a mechanism fanenating elds and looking
up their values.

Third, and most importantly, we need to be able to write $sripat serve as passive
agents. Most general-purpose languages are designeddie enéing programs that con-
trol the world, starting with a “main” that controls the ord# execution. In contrast, a
debugging script has no “main”: it cannot anticipate whatres will happen in what order,

139

and must instead faithfully follow the order of the targebgmam'’s execution. Therefore
we believe that a semantic distance between the scriptmguige and the kind of target
language we are addressing is a necessary part of the soli8iace the script's execution
must be driven by the arrival of values from the program uraleervation, a data ow

language is a natural choice.

Once we have chosen a data ow evaluation semantics, we rmaastder how broad the
language must be. Itis tempting to create a domain-spe@hudging language that offers
only a small number of primitives, such as those we havedioited here. Unfortunately,
once the script has gained control, it may need to perforntrarpp computational tasks,
access libraries for input/output, and so forth. This canisgrowth of tasks makes it im-
practical to build and constantly extend this domain-spdanguage, and furthermore it
calls into question the strategy of restricting it in thet dace. In our work, we therefore
avoid the domain-speci c strategy, though we have triedientify the essential elements
of such a language as a guide to future language designers.

Having chosen a general-purpose strategy, we must stiltifgiehe right data ow lan-
guage. Our choice in this paper is informed by one more caim$imposed by debugging:
the need to extend and modify the data ow computation irdigraly without interrupting
execution. Among data ow languages, this form of dynamyi@ppears to be unique to
FrTime.

We present the grammar of the MzTake language in Figure &&.gfammar is pre-
sented in layers, to mirror the above discussion. The rgetarepresented by debug-
expr>, presents the most essential language primitives. Thenddeger, consisting of
<inspect-expe and <loc-expr, represents primitives for obtaining information about
the target program. The third layer describes the FrTimguage.

8.7 Implementation

The examples we have seen so far describe a debugger forrdmrams. However, the
same principles of scriptable debugging should apply totmastrol-driven, call-by-value

50Our work additionally introduces syntacticdifference when the target language is Java, but this can be
papered over by a preprocessor.

140

programming languages, with changes to take into accoergythtactic and semantic pe-
culiarities of each targeted language. To investigate e¢lsability of our ideas, we have
implemented a version of MzTake for Scheme [55] also.

Not surprisingly, both the Java and Scheme versions shargetsign of the debugging
constructdrace, bind, andset-running-e! They differ in the operators they provide for
accessing values in the language: because FrTime's datal msarloser to Scheme's than
to Java's, the Java version of the debugger requineeteoperator to dereference values,
but the Scheme version does not need the equivalent. Fontiney because Java (mostly)
names every major syntactic entity (such as classes anddstiwhereas Scheme per-
mits most values to be anonymous, the two avors differ inweg they specify syntactic
locations.

8.7.1 Java

The overall architecture of the Java debugger is shown iarEi§.9.

On the left, we have the target Java program running on tdpeo¥irtual machine. The
Java standard provides a language-independent debuggittgq called the Java Debug
Wire Protocol (bDwpP), designed to enable the construction of out-of-processigigers.
We have adapted mwPp client implementation in Ruby [1] to DrScheme by compiling it
machine-readable description mfwp packets. We use this implementation to connect to
the virtual machine overcr/Ip.

On the right of the gure, we have the stack of programmingglaeges that we used to
implement the debugger. FrTime is implemented on top of DeSte, the debugging lan-
guage is implemented on top of FrTime, and debugging sangtthemselves implemented
in the debugging language.

The communication between the low-level debugger and thiptqgoroceeds in three
stages. The rst stage translatesvpPpackets to a callback interface, the second dispatches
these callbacks to their respective tracepoints, and treetthnslates them to FrTime event
occurrences.

The second of these stages must handle subtleties intrdecause theowpPdoes not
provide guarantees about the order in which messages.dfavexample, the following is
a legal but troublesome sequence of messages. First, Mz€akis a message requesting a

141

new tracepoinB. While MzTake waits for a reply, the target program reachesxasting
tracepoint,A, generating an event that appears on the port before thealimachine's
reply to the request to install. MzTake must either queue the tracefawhile awaiting
the acknowledgment d@@ or dispatch thé\ trace concurrently; it does the latter.

A trickier situation arises when a trace evenBa@ppears even before the acknowledg-
ment of installing that tracepoint. This is problematic dese every trace event is tagged
with a label that identi es which tracepoint generated ithig label is generated by the
JDWP and communicated in the tracepoint installation acknogeent. Therefore, until
MzTake receives this acknowledgement, it cannot correntBrpret trace events labeled
with a new tag. In this case, MzTake is forced to queue theseteyand revisits the queue
upon receipt of an acknowledgment.

We also need to translate the event callbacks into FrTime&atestreams. Each usage
of trace becomes associated with a callback. When the target redohésced location,
its callback evaluates tthteace expression's body and adds the result to FrTime's queue of
pending events. It then posts on a semaphore to awaken tiad-evaluator thread and
waits. The event's value automatically propagates to glressions that refer to theace
statement, directly or indirectly, in accordance with n€is data ow semantics. When
the FrTime data ow graph reaches quiescence, the evalpatis on a semaphore, which
releases the callback thread and subsequently resumeavihgrbcess. This provides
synchronization between the debugging script and the dgdaligrogram. If the Java target
program uses multiple threads, MzTake handles each everdgtop-the-world manner, to
ensure that the script observes a consistent view of the-qumdg state.

We found that thebwp provides most of the functionality needed to build a scbfga
debugger. Beyond implementing the packets and the disjpgtets we mentioned above,
we also needed to write two more components. The rst was micate Java's scoping
rules in the implementation dfind: looking upx at a location rst nds a local variable,
if any, otherwise the eld named in the enclosing class, then in the super class, and
so on. The second was to cache the resultsbofP queries pertaining to the elds of
classes and the line numbers of methods, and ush the cackaevbr the cached value
might be invalidated; this is necessary to achieve bothkggtartup and acceptable runtime
performance.

There are some other debugging events and inspection dascavailable in MzTake

142

that we mentioned very briey, or not at all, during the exdemprhese include facilities
for traversing the stack, enumerating local variables,ssmdn. There are also other events
and functionality available through t®wp that are not accessible in the debugger, such
as class-loading and unloading events, static initiadizetc. What we have described so
far is a conservative minimal extension of the programmargguage FrTime; it is easy to
continue in the same vein to include support for the remgieients.

The inspection functions we provide pertain only to the gatsent in the target. We
might like to re ect on the program's syntactic structurevesll, for example to trace all
assignments to a variable or all conditional statementsveier, thesiowp does not pro-
vide support for such inspection, so we would need to buiteshibur own. In a sense, such
capabilities are orthogonal to our work, since data ow oéfao new insight on processing
of static syntax trees.

The quality of thesbwprimplementation varied across virtual machines, and many ve
sions were prone to crashes; we tested against the\Buythe IBM Jvm, and the Black-
downJvwm, ultimately settling on the Sun implementation.

8.7.2 Scheme

The Scheme version employs source annotation. We instriuthherscheme program so
that it mirrors the functionality of a process under the colrdf a debugger. The annotation
mirrors the content of the lexical environment and intragkia procedure that determines
when to invoke the debugger.

For example, suppose the original target program conth@msxpression

(de ne (id x) x)
(id 10)

The output of the annotator would be (approximately)

143

(de ne envempty)
(de ne (id x)
(setlenv(cons(list "x" x) eny))
(invoke-debugget 15 eny)
(beginO ;; perform steps in order, then return value of the rst exgsien
X
(set!'env(rest eny)))
(invoke-debugge? 1 env)
(id 10)
When the annotated version executes,ahevariable recreates the lexical environment.
In particular, it tracks thenamesof variables in conjunction with their values, enabling
inspection. Thenvoke-debuggeprocedure receives source location information (e.g., the
argument and1 refer to line two, column one). Each invocation of the pragedests
whether a tracepoint has been installed at that locatioraacordingly generates an event.
There are several important details glossed over by thiglsed notion of annotation.
We discuss each in turn:

thread-safety This annotation uses a mutable global variable for the enurent. The
actual implementation instead uses thread-local store.

tail-calls This annotation modi es the environment at the end of thepdure, thereby de-
stroying tail-call behavior. The actual implementatioessontinuation-mark$24],
which are speci cally designed to preserve tail-calls imatations.

communication This annotation appears to invoke a procedure nameske-debugger
that resides in the program's namespace. Because FrTimeatopshe DrScheme
virtual machine, the target Scheme program and the Mz Tabegigng environment
share a common heap. Therefore, the annotation actualbdintes a reference to
thevalueof the debugging procedure, instead of referring to it by @am

The procedurénvoke-debuggegenerates a FrTime event upon reaching a tracepoint,
and then waits on a semaphore. From there, the evaluatidre @icript proceeds as in the
Java case, since both implementations share the same FeVathmtion engine. When the
evaluation reaches quiescence, it releases the semaphore.

144

The implementation is available from

http://lwww.cs.brown.edu/research/plt/software/mztake/

8.7.3 Performance

We analyze the performance of the Dijkstra's algorithm namshown in gures 8.4 and
8.6. This example has a high breakpoint density (approxm&@00 events per millisec-
ond), so the time spent monitoring dominates the overallpdation. In general, the im-
pact of monitoring depends heavily on breakpoint densitgl, @ the amount of processing
performed by each breakpoint. All time measurements ara tnBGHzamD Athlon XP
processor running Suns/M version 1.4 for Linux.

We measure the running time of the the Dijkstra's algorithmonitor shown in g-
ures 8.4 and 8.6, when it executes in the Java version of thegder. Excluding thevm
startup time, it takes 3 minutes 42 seconds to monitor ongomiheap operations (either
add or extractMir), which represents 2.217 milliseconds per operation. Vetioa this
time into four parts: First, the virtual machine executesdhll to eitheadd or extractMin
(0.002 milliseconds per operation). Second, Ib&pP transmits the context information,
FrTime decodes it, and FrTime schedules the recomputati®64 milliseconds per oper-
ation). Third, FrTime evaluates the script which monitdrs partial correctness property,
in gure 8.4 (0.851 milliseconds per operation).

According to these measurements, nearly one-third of tbaglgng time is devoted to
JowPencoding and decoding and to the context-switch. This isistent with the penalty
we might expect for using an out-of-process debugger. The spent in FrTime can, of
course, be arbitrary, depending on the complexity of theitodng and debugging script.

In the Scheme implementation, the target and the debuggeutxin the same process
(while still preserving certain process-like abstracsipfb]). As a result, whereas the Java
implementation incurred a high context-switch cost, bupasstatement cost, the Scheme
implementation incurs a small cost for each statement, butperating system-level cost
for switching contexts. Per operation, the annotatioroshiices a 0.126 milliseconds over-
head. Thanks to the absence of a cross-process contegtisdigpatching an event costs
0.141 milliseconds per operation (compared with 1.3 natlends in the Java version of
the debugger). The remaining times stay the same.

145

Obviously, MzTake is not yet ef cient enough for intensiveonitoring. A two mil-
lisecond response time is, however, negligible when usiagdWe interactively.

8.8 Controlling Program Execution

Debuggers not only inspect a program’s values, but somsetats® control its execution.
Some of the abstractions we de ned in our running exampleewéthe former kind rfot-
in-order, convert-queue-to-li3t In contrast, we also de ned a custom-purpose rule for
deciding when to execute and when to pause, namely the Gumoti

Thesestart-stop policiesepresent a general pattern of debugger use. These palasies
differ in subtle but important ways, especially when the sdime has several breakpoints,
each with its own callback. The start-stop policy used bytrasospted debuggers consists
of running the callbacks in order of their creation, untieaf them requests a pause. Once
this happens, the remaining breakpoints on the same linechexecuted at all.

One might wonder if this is the right rule for all applicatgrin particular, preventing
the execution of the subsequent callbacks creates a depgntetween breakpoints (if
the rst breakpoint decides to suspend the execution, ticersk does not get to run at
all). These dependencies are problematic if these breatgowionitor implicit invariants
or implicit data structures, as we did during the examplerifi@uour debugging session,
we created a mirror model of the queue so that it would eldeittee problem with the state
of the real queue. In order to be of any debugging help, thearatt the state must remain
synchronized. If the event that detected the state vigigti@vented the execution of the
event that updates the model, the program and model woukkdeabe synchronized.
Worse, this would happen exactly when we need to look at theelhmamely when we
begin to explore the context of the violation.

By using a combination of rst class events aset-running-elit is easy to de ne start-
stop policies which are both custom-purpose and reusaldampement the problematic
start-stop policy just described with the code in gure 8.10 the codepreakpointds a
hash table that maps locations to event streams.bfémk function sets or adds a break-
point on a given line. The rsttime itis called on a given ldicm, it installs arace handler
at that location, which simply sends the valnge on the event stream each time the tar-
get program reaches that location. On subsequent invosatipaccumulates a cascade

146

of events where each event is subordinate to the event tisairvihat location previously.
When the execution of the target program reaches one of tiatidos, the script invokes
each callback function in the cascade until the rst one thairns false. The conditionf
i ...) ensures that the other callbacks are not called aftesva

With MzTake, it is straightforward to de ne a different poji Figure 8.11 shows the
code for a break policy that executes all the breakpointsi@ti@cation before pausing the
target program.

8.9 Additional Examples

In this section, we present some additional examples thdtdfuillustrate the power of our
language.

8.9.1 Minimum Spanning Trees

Because MzTake has the full power of FrTime, users can takandage of existing li-
braries to help them understand programs. For example, ffien& animation library
allows speci cation of time-varying images (i.e., imagehbeiors) that respond to events.
Since MzTake generates events by tracing program execuis@ns can visualize program
behavior by appropriately connecting these events to theation library.

An intuitive visual representation can be an effective whgaining insight into a pro-
gram's (mis)behavior. Moreover, many programs lend thdévesdo natural visualizations.
For example, we consider the problem of computing the Mimm&panning TreeMST)
for a collection of points in the plane. (This example is lohea the actual experience
of one of the authors, in the context of writing a heuristictdve the traveling-salesman
problem.)

A simple greedy algorithm for the1sT works by processing the edges in order of
increasing length, taking each edge if and only if it doesimmbduce a cycle. Though the
algorithm is straightforward, the programmer might forgaetio something important, such
as checking for cycles or rst sorting the edges by length.

The programmer could write code to isolate the source of sugbrs, but a simple

147

visualization of the program'’s output is much more tellihg Figure 8.12, we show visu-
alizations of three versions of amsT program. On the left, we show the correc$T, in
the middle, an edge set computed without cycle detectiathoarthe right, what happens
if we forget to sort the edges.

In Figure 8.13, we show the debugging script that implem#éntsvisualization. Its
salient elements are:

tree-start-event occurs each time the program begins computing amew, yielding an
empty edge list

tree-edge-eventoccurs each time the algorithm takes a new edge, adding theadge to
the list

tree builds a model of the tree by accumulating transformatioosfthese event-streams,
starting with an empty tree

display-lines displays the current tree

Though we have not shown the implementation of Msar algorithm, one important
characteristic is that it does not maintain the set of edgeas taken: it only accumulates
the cost of the edges and keeps track of which vertices are reachedste éach other.
In building an explicit model of the tree, our script highiig an important capability of
our debugging system—it can capture information about tlegram's state that is not
available from the program's own data structures. To im@etithe same functionality
without a scriptable debugger, the user would need to antengrogram to make it store
this extra information.

8.9.2 A Statistical Pro ler

Because our scripting language can easily monitor a prograx@cution, it should be rel-
atively simple to construct a statistical pro ler. Such @ per uses a timer to periodically
poll the program. Each time the timer discharges, the prodeords which procedure was
executing and then re-starts the timer. The summary of gusrd provides an indication
of the distribution of the program'’s execution time acrdss procedures.

148

MzTake provides a global time-varying value calleldere which represents the current
stack trace of the target process. It is a list of symboliatmns starting with the current
line and ending with the location of threainfunction. The value ofvhereis updated any
time the execution of the target is suspended, eithérdme or by set-running-ef

Figure 8.14 usewhereto implement a statistical pro ler that records the top tviack
frames at each poll. First, we instantiate a hash table tostagk contexts to their count.
Next, each time thevherebehavior changes, we capture the current context and patter
match on it usingnatch-lambda If the context contains at least a line, a function, and a
caller function, we trim the context down to the function reaamd its caller and increment
the count in the hash table. Then we biticks to a stream that sends an event every
50 milliseconds. Finally, we usget-running-elto suspend the target at each tick. We
want to resume the target soon after a pause, but how soommmsewugh? We want
to leave just enough time so that the evaluation engine cityrapdates the hash table
before resuming the target, but no more. Recall fedtrunning-elsynchronizes with the
evaluation of the script, so that it waits until all depencies are fully recomputed before
consuming the next event on its input stream. With that indyie useanerge-do create a
stream containing two nearly-simultaneous eventsfdtsetick is followed by atrue tick
immediately afterwards. The synchronization ensuressiatunning-ewill not consume
thetrue tick until the data ow consequences of theseticks are completely computed.

This code only gathers pro ling information. The script dedo eventually report this
information to the user. There are two options: to wait uh# program terminates (which
the debugger indicates using an event), or to report it dexadly based on clock ticks
or some other condition. (The latter is especially usefutmpro ling a reactive program
that does not terminate.) Both of these are easy to implensamy &rTime's time-sensitive
constructs.

5\We also have another behavighere/sgfor where with single steppingvhich updates at every step of
the execution. This is useful for scripts that want to predés entire trace of the target. Howewshere/ss
is disabled by default, for performance reasons.

class DijkstraSolver f

public HashMap backtrace =new HashMap ();
private PriorityQueue q =new PriorityQueue ();

public DijkstraSolver(DirectedGraph graph,
Node source)f
source .weight = 0.0;
gq.addAll(graph.getNodes ());

while (1q.isEmpty ()) f
Node node = (Node)q.extractMin ();
List successors = graph.getSuccsOf(node);
for (lterator succlt = successors.iterator ();
succlt.hasNext();)
relax (node, (Node)succlt.next());
g
System.out. printin ("Resultbacktracenn” +
backtrace . keySet());

g

public void relax (Node origin, Node dest¥
double candidateWeight =
origin.weight + origin.distanceTo(dest);
if (candidateWeight< dest.weight)f
dest.weight = candidateWeight;
backtrace.put(dest, origin);
g
g
g

Figure 8.1: Implementation of Dijkstra's Algorithm

149

1 3 4 5
O—=0O—>0O—0

S
O<OZ \ O6

Result backtrace:

[[node 1 : x 150 y 100 weight 55],

[node 2 : x 150 y 150 weight 55],
[node 3 : x 200 y 100 weight 105]]

Figure 8.2: Sample Input and Output

150

Pr Debugger

extractMi breakpoint

condition

extractMi breakpoint

condition

se)

Figure 8.3: Control Flow of Program and Script

151

(de ne c (start-vm”DijkstraTest"))
(de ne queug(jclass c PriorityQueup

(de ne inserts
(trace (queue.adaentry)
(bind (item) item.weighy))
(de ne removes
(trace (queue.extractMimxit)
(bind (resul)) result.weighy))

(de ne violations

(not-in-order(merge-e removeg@nserts. -=> . 'reset))))
(de ne latest-violation(hold violationsfalse))
(de ne (nv)

(set-running-e{violations. -=> . false)))

Figure 8.4: Monitoring the Priority Queue

inserts . .
29.5 55.9
removes
15.3 40.6 29.5 751 +inf.0 55.9
(inserts . -=> . 'reset) . °
'reset 'reset
(merge-e removes’...) o o . . PR . N
15.3 40.6 ‘'reset 29.5 'reset 75.1 +inf.0 55.9
(history-e... 2)
(15.3 40.6) (40.6 'reset) === (‘reset 75.1)(75.1 +inf.0) (+inf.0 55.9)
violations .

(+inf.0 55.9)

Figure 8.5: Event Streams

(de ne (not-in-order ¢
(Iter-e
(match-lambda
[('reset) fals€]
[(_'reset) falsg]
[(previous current(> previous curren)
(history-e €2)))

Figure 8.6: The Monitoring Primitive

(de ne inserters

(inserts. == > . insert-in-mode))

(de ne removers

(removes == > . remove-from-modgl

(de ne model

(accum-hb(merge-e inserters removers

(convert-queue-to-ligtind (q) q))))

Figure 8.7: The Redundant Model

152

< debug-exps

<inspect-expe

<loc-expp

< frtime-expp

Ly S S S S S S

(bind(<var> ...)<expr ...)
(trace < expr> < expr>)
(set-running-ek expr>)

(start-vm< expr>)
(jclass< expr> < name>)

<numbep j entryj exit

(map-e<expr> < expr>)
(lter-e <expr> < expr>)
(merge-e<expr> ...)
(accum-b< expr> < expr>)
(changes< expr>)

(hold < expr> < expr>)
(value-nows expr>)
seconds

key-strokes

((<var> ...)<expr ...)
(<expr ...)

(if <expr> < expr < expr)
... ; other Scheme expressions

< debug-exps
<inspect-expr
< frtime-expp

Figure 8.8: MzTake Grammar

153

Figure 8.9: MzTake Architecture for Debugging Java

(de ne breakpoint§make-hash-tableequal))

(de ne (break location callback
(let ([prev-breakpoint
(if (hash-table-contains? breakpoints locatjon
(hash-table-get breakpoints locatipn
(trace locationtrue))])

(hash-table-put! breakpoints location
(prev-breakpoint
==

((i) (if i (callbacK false)))))

(de ne (resume
(set-running-e!
(apply merge-éhash-table-values breakpoin)y

Figure 8.10: A Typical Start-Stop Policy
(de ne breakpointsampty)

(de ne (break location callback
(set! breakpoints
(cons(trace location(callback))
breakpoint}))

(de ne (resumg
(set-running-e!
(apply merge-e breakpoiny

Figure 8.11: A Different Start-Stop Policy

154

155

Figure 8.12: Spanning trees computed correctly (left)haut detecting cycles (middle),
and without sorting edges (right)

(de ne tree-start-event
(trace ((tsp. jdot. ms) . jloc . entry)

(bind () ((prev) empty))))
(de ne tree-edge-event

(trace ((tsp. jdot. ms) . jloc . 80)
(bind (e)
((prev)
(cons(make-edgée . jdot . v1)
(e.jdot.v2)
prev)))))

(de ne tree
(accum-b(merge-e tree-start-event
tree-edge-evejt
empty))
(display-lines treg

Figure 8.13: RecordingisT Edges

(de ne pings(make-hash-tableequal))

((changes whepe
.== > . (match-lambd4d(line function context rest..)
(hash-table-increment! pindg#ist function contexb]

[- (void)]))
(de ne ticks(changegquotientmilliseconds 50)))

(set-running-e{merge-gticks. -=> . false)
(ticks. -=> . true)))

Figure 8.14: A Statistical Pro ler

156

Chapter 9

Related Work

Research on data ow languages began in the early 1970s, arelhlas been a large body
of work since then. An early language was Lucid [98], a purst-order data ow language
based on synchronous streams.

Lustre [20] is a synchronous data ow language similar to idudrograms in Lustre
consist ofnodes which process streams of values that are computed in syngiwith
various user-speci ed clocks. Variable de nitions in Lustare purely functional but may
refer to previous values of themselves and other variablegs, its streams are essentially
timed versions of the lazy lists found in many functionaldaages. They also capture the
essence of FrTime's behaviors and events.

Lustre is designed to support development of reactive systihat satisfy real-time
performance constraints, as well as static veri cation afiesy properties. To that end,
programs written in Lustre must be compilable to nite autdm To ensure compilabil-
ity, Lustre deliberately omits features commonly found @mgral-purpose languages, such
as object-orientation, higher-order functions, dynarmizursion, and recursive data struc-
tures, all of which FrTime does support. More fundamentaliystre differs from FrTime
because it is a self-contained language, whereas FrTinmeamaedding of data ow eval-
uation within an existing call-by-value language.

Signal [7] is similar to Lustre, but it is based on relatioather than functions, so its
underlying model is non-deterministic. FrTime adopts tlasit spirit of data ow pro-
gramming but embeds it within the dynamic and higher-oraertext of an existing call-
by-value functional language.

157

158

Lucid Synchrone [21] implements a Lustre-like notion ofalatv evaluation in a lan-
guage resembling (purely functional) Caml [2]. Its syntaxdsy similar to that of Caml, so
it approaches the notion of transparent reactivity praviokeFrTime. However, it works by
whole-program compilation to sequential Caml code (instdadsing call-by-value evalu-
ation to construct a data ow graph), so it does not permitftee interleaving of data ow
and call-by-value evaluation, nor does it support liverémeental development in the style
of FrTime.

Esterel [9] is another synchronous language designed fongreal-time reactive sys-
tems. Like Lustre, Esterel programs compile to nite autéenand support reasoning
about safety properties and real-time performance. Horvewdike Lustre, which has a
functional data ow semantics, Esterel is imperative. AndEsl program consists of tasks
that run in lockstep over a number of time steps, emittinggieg, and waiting for various
signals that are either present or absent in any given tepedEsterel shares with Lustre
many of its differences from FrTime, such as a lack of higbreler procedures, dynamic
recursion, and recursive data structures, all of which rhaestacri ced in order to guaran-
tee compilation to nite automate. However, because ofritpérative programming style,
Esterel is even more different from FrTime than Lustre.

FairThreads [11] is a framework for synchronous reactiogpamming, similar in style
to Esterel. It allows a programmer to express computationerms of many lightweight,
cooperative threads, each of which gets a chance to run imlegical time step. The
threads can communicate via broadcast signals (as in Bsasrevell as shared data. The
FairThreads model offers the expressive power of ne-grdiconcurrency without the
complexity and nondeterminism that arise from pre-emptiveads. Implementations of
FairThreads exist for C, Java, and Scheme [86].

Functional reactive programminggp) [39, 74, 80, 102, 103, 104] merges the syn-
chronous data ow model with the expressive power of Hasle#itatically-typed, higher-
order functional language. In addition, it adds supportsieitching(dynamically recon-

guring a program's data ow structure) and introduces a ceptual separation of signals
into (continuously-valued)ehaviorsand (discretely-occurringgvents FrTime is inspired
and informed by this line of research, borrowing the basitomg of behaviors and events.

Several HaskelkRPimplementations are based on lazy stream abstractiortsywiich
it is relatively straightforward to implement a notion oighronous data ow computation

159

based on polling. The data ow abstractions in these syst@msessentially the same as
in FrTime, but FrTime also supports imperative featurehainterfaces with the outside
world, as well as interactive development in tkePL Its update model is based on push
instead of pull, so its performance characteristics areesdmt different; in particular,
using push seems to incur signi cant overhead, but it haativantage of only recomputing
a signal if it depends on something that has changed.

There has been a good deal of work on implementatisiref Real-timerrRP[103] and
event-driverFRP [104] are rst-order languages that have more in common widissical
synchronous data ow languages, where the focus is on bognaisource consumption.
ParallelFrRPadds a notion of non-determinism and explores compilatforr® programs
to parallel code. Elliott discusses several functionallengentation strategies for general-
purposerRPsystems [38], which suffer from various practical problesush as time- and
space-leaks. A newer version, Yampa [74], xes these problat the expense of some ex-
pressive power: while Fran [39] aimed to extend Haskell witclass signals, the Yampa
programmer builds a network sfgnal functionghrough a set oérrow combinators [51].

FrTime's linguistic goal is to integrate signals with then®me language in as seamless
a manner as possible. Importantly, because Scheme is dag@rogrammer has precise
control over when signals begin evaluating, which helpsév@nt time-leaks. In addition,
the use of state in the implementation allows more contret avemory usage, which helps
to avoid space-leaks. A revised implementation of FraredadNewFran resolves many of
the issues from the original Fran, using techniques verylaino those in FrTime. How-
ever, FrTime goes a step further by integrating with an adgve programming environ-
ment that supports incremental program development, wapoogram-analysis tools, and
arich set of libraries.

Lula [89], a stage lighting system written in Scheme, corga stream-based imple-
mentation ofFRP that departs from the Haskell systems in a number of ways.ake®
heavy use of Scheme's object-oriented features, modeliffigreht varieties of signals
through a class hierarchy. Like FrTime, it implements a §étiactional reactive adapters
for the MrEd toolkit, although it does not attempt to tramslall of their imperative op-
erations to data ow abstractions. Also like FrTime, it takselective advantage of certain
impure features; for example, it uses threads to merge swams without synchronous
polling. However, unlike FrTime, its notion of reactivitg not transparent, and it has not

160

been tightly integrated with the DrScheme environment.

Frapge [29] is a Java library for buildingrp-style dynamic data ow graphs. Its evalua-
tion model is similar to FrTime's, in the sense that compatais driven by external events,
not by a central clock. However, the propagation stratedpaged on a “hybrid push-pull”
algorithm, whereas FrTime's is entirely push-driven. A samportant difference from
FrTime is that Frapp does not extend Java syntactically, so its reactivity israosparent.

FRP has been applied to a number of domains, including anim88j) stage light-
ing [89], user interfaces [30, 85], robotics [77, 78], anangater vision [79]. We have
explored animation and user-interface programming witfirke and have also applied it
to scriptable debugging [63]. This dissertation explotesise in more conventional desk-
top applications, including a graphical spreadsheet arekgansion of Findler and Flatt's
functional presentation system, Slideshow [43].

A technique similar to that employed by FrTime has been usathplement a form
of data ow for slot-based object systems like0s [33]. The basic idea is to extend slot
accessor and mutator methods with code to implement dataipdates. In particular,
when an accessor is invoked from a signal-de ning contexitecords a dependency as
well as returning a value. Likewise, when a mutator is inehkeiterates through its list of
dependents and re-evaluates them. This strategy was ubaddahe one-way constraint
systems in Garnet [70] and Amulet [71] and has more recem®ntused in the Cells [94]
library. None of these systems appears to support higltsraeactivity or to address
glitches. Rather, they employ a depth- rst update algorithinal avoid in nite loops in
cycles by recomputing any given value at most once in a gipelate.

Data ow-like features are increasingly nding their waytormainstream languages.
For example, SuperGlue [65] is a linking language based dioms of behaviors and
events. It is used to specify relationships between commgsria event-driven Java pro-
grams. Data dependencies trigger re-evaluation of comyp@oele, using a data ow graph
in much the same way as FrTime does. SuperGlue's ties to tebwjemnted programming
are much stronger than those of FrTime, with direct langusaggort for such features as
objects, traits, and inheritance. While it does not providgaeral notion of higher-order
reactivity, it offers convenient abstractions for the coomspecial case of collections.
These allow a limited form of automatic generation of dynagovnnections between ob-
jects.

161

The JavaFX [91] language supports a notiortrafgers that execute when changes
occur to speci ¢ variables. It also provides a more declagainechanism fobinding
variables to expressions, the result being something albelaviors; that is, whenever the
value of a referenced variable changes, the whole expressie-evaluated and the result
assigned to the bound variable. While the syntax of JavaFinigas to that of Java, there
are a number of differences, and special keywords are rdjtir introduce the data ow
behavior, so its notion of reactivity is not quiteinsparentin the sense of FrTime. Also,
JavaFX does not appear to support higher-order reactivity.

Petri nets [81] are, like data ow, a graph-based model of potation. In a petri net,
there are places, transitions, and arcs. When there arest@teall of a transition's in-
put places, the transition can re, consuming the tokens @ading a speci ed number
of tokens on the output places. Petri nets can model a widgerahcomputational pat-
terns, including the update schedule of a synchronous dat@rogram. However, they
only model a program’'s control ow and not its the productiohvalues. Moreover, its
conjunctive ring rule cannot easily express FrTime's ttqayical update algorithm.

The Aurora [19] and Borealis [22] systems are designed tocoparief cient query-
processing on time-varying data streams. Their evaluatiodel and some of their target
applications are similar to those of FrTime. They are alsgudistically similar to Fr-
Time, as they explore the extension of database query |lgieguaith data ow evaluation.
FrTime, however, explores this extension in the context bigier-order call-by-value
language.

LabView [72] is a graphical data ow language designed farqassing signals from sci-
enti ¢ instruments. It supports a limited notion of swital, in which fragments of a pro-
gram's data ow graph may be enabled and disabled accordinigne-varying conditions.
Its notion of data ow is, however, fundamentally rst-ordand its designers were not con-
strained by a need to interact seamlessly with an existirsg laaguage. Simulink [92] is
another commercial data ow language. It is closely intéggavith theMATLAB program-
ming language and is designed for modeling and simulatiatyeémic systems rather than
expressing general software applications.

Click [58] is a system for programming network routers. Thegrammer de nes a
set of packet processors and constructs a network from thedividual processors can
be con gured to push or pull; the runtime system, essegtaltlata ow machine, inserts

162

gueues between processors as necessary and automatbeliipkes the packet processors
for execution. As it can support both push- and pull-baséedaling, it is in some sense
more general than FrTime. However, its notion of data owiist-order and its application
domain is signi cantly narrower than FrTime's. Moreovelkkd many of the languages
with which I'm comparing, the data ow language is a self-tained artifact rather than an
embedding into a pre-existing language.

Ptolemy [16] is a framework for implementing and studyingdels of computation that
involve communicating processes. The user de nes rulesHigwprocesses change state
and communicate with each other. He can then observe theitexeof a single model
or even combine several models and observe how they intéraetframework is general
enough to model formalisms like Petri nets, communicatiguential processes, the
calculus, statecharts, and both synchronous and asyrasatata ow networks. While
Ptolemy is certainly more general than FrTime, the systeeifidoes not directly address
the issues involved in integrating reactive programminglei®with more traditional call-
by-value languages. Rather, it largely ignores such prdtitguistic concerns as syntax,
library support, and programming environments.

0z [69, 88] is a multi-paradigm programming model that inlels concurrency, higher-
order functions, logic programming, and a form of data ovz'€notion of data ow is what
is calledmonotonig in this style of data ow, a variable may initially be unbadias in a
logic program), then acquire a value at some intermediatgestf a computation, at which
point it propagates to other parts of the program that refey triggering new computation.
In constrast, FrTime embodies a more traditional notionad&aw, in which the values of
variables may change repeatedly over the course of a prégexecution.

The E [68] language is another multi-paradigm programmiygjesn, combining con-
currency, distribution, and a capability-based securibdel. E also supports a notion of
rst-order behaviors, which may be distributed across mpidthosts, communicating via
an adaptive push/pull mechanism that interacts smoothly thie language's distributed
garbage collector. By comparison, FrTime supports highéercdata ow and uses a purely
push-based update mechanism, but its behaviors cannastoiéutied easily or in a space-
safe manner.

TBAG [40] is a C++ library for expressing animations in a declamstyle. Linguis-
tically, it has much in common with FrTime. For example, iessstatic overloading to

163

de ne lifted versions of many built-in C++ operators. It thashieves, to a degree, the
same transparent reactivity exhibited by FrTime, thougio#s not carry the extensions
to the level of syntactic forms (e.g., conditionals). TBAGed not provide the concept of
switching that distinguishesrPsystems. However, it does support a more general bidirec-
tional constraints constraint mechanism than the simpie aa in FrTime and the other
FRPSystems.

An earlier object-oriented constraint-programming laaggl is ThingLab [10], which
was designed for expressing and running simulations. Liénke, ThingLab maintains
dependencies between objects and automatically progagatiates when values change.
It also supports interactive development and experimiemtatith systems, through both
a REPL and a graphical interface. However, its constraint languagvery general, and
solving a system of constraints requires a relatively caxglearch algorithm, which in
general may not succeed. In contrast, the unidirectionahléy constraints in a data ow
language can be satis ed, by design, through simple funatievaluation.

Adaptive functional programmingA€pP) [3] supports incremental recomputation of
function results when their inputs change. As in FrTimeceten occurs in two stages.
First the program runs, constructing a graph of its dataiggeacies. The user then changes
input values and tells the system to recompute their depgad@he key difference from
FrTime is thatarp requires transforming the program irdestination-passing styl€ his
prevents the easy import of legacy code and complicatesasiiedf porting existing li-
braries. The structure @fFp also leads to a more linear recomputation process, where the
program re-executes from the rst point affected by the demn

Open Laszlo [93] is a language designed for writing intevacapplications that run
in a Web browser. It is similar taTML but has a different syntax and provides additional
high-level features. The programmer speci es the strictand layout of a user interface
in an XML document, which may contain script code written avaScript. In addition
to a standard imperative callback-based approach to oitera the language supports a
feature its creators callata-binding by which the contents and properties of user interface
elements may be bound to mutabieta sourcesWhenever the data change, its consumers
are updated automatically, as in a data ow language. Howélve language does not have
a general notion of signals, or signal functions, that candmposed arbitrarily, and there
is no declarative event-handling mechanism of the sortigeavbyFRrPlanguages.

164

Focus[14] is a design methodology for specifying reactive systemhe basic ap-
proach is to model systems as collections of communicatiegus processors whose be-
haviors are constrained by relations over their inputs anguis. A system may be mod-
eled at several levels of detail, each model a re nement efgevious one, and various
properties of a model may be expressed and proven in a tempgiaframework. Since
FrTime programs can also be viewed as communicating streacegsors, it could serve
as a target language for programs generated fro@musspeci cations. Alternatively, one
could start from a FrTime program and apply the reasoningnigces fromrFocusto
establish properties of it.

Integration with Object-Oriented Toolkits

The Citrus system [56] consists of a language and toolkit feating editors for struc-
tured data. It provides several data ow-like featuresJudag automatic synchronization
of models and views and the ability to de ne constraints oluea. Citrus's constraints
may refer to arbitrary program values, and they are auta@algtire-evaluated when such
values change, using a graph to track dependencies in a msimilkar to that of FrTime.
Unlike FrTime, Citrus is designed speci cally to simplifyagltonstruction of structured ed-
itors and, as such, does not seem well suited for genergbparapplication development.
Moreover, while particular features exhibit data ow-bdsavaluation, it does not integrate
the notion of data ow with the language as a whole.

The FranTk [85] system adapted the Tk toolkit to a programmigrface based on
the notions of behaviors and events in Fran [39]. HowevaanTFk still had a somewhat
imperative feel, especially with regard to creation of ayslgnal networks, which required
the use of mutation in the application program. Fruit [30plexed the idea of purely
functional user interfaces, implementing a signal-basegiqamming interface atop the
Swing [37] toolkit.

All of this previous work is concerned with the problem of idgsng the data ow inter-
face for the toolkit, and the emphasis is on the experiencth®application programmer.
We consider this to be fairly well understood. However, thebpem of actually imple-
menting such an interface is less well understood. Thougif tiese earlier systems have
included a working implementation, we understand that therelopment has been ad hoc,

165

and the subtle interaction between imperative toolkits@exarative data ow systems has
not been explained in the literature.

Optimization

Deforestation [100] and listlessness [99] are optimizatechniques that eliminate inter-
mediate data structures from functional programs. Theip@se is analogous to that of
lowering, which eliminates intermediate nodes from a datagraph. Although the me-
chanics of these transformations are quite different froosé of lowering, for stream-
basedrrPimplementations [39, 50], we imagine that deforestatiod lstlessness could
have an effect similar to lowering: namely, the weaving oftiple stream iterators into a
single processing loop. FrTime, however, seems to require special techniques because
of its imperative implementation.

Most otherFRP implementations [29, 74, 102, 103] do not provide the samel lef
transparency that FrTime offers. They implicitly lift a ¢g@ number of common opera-
tions, but for some this is not possible, and syntactic cantt for features like conditional
evaluation and recursive binding have not been extendedrtdlé signals.

Yampa [74] implements a dynamic optimization that achieegsentially the same ef-
fect as lowering. When it evaluates a composition of pureaifunctions, it replaces
them with a single signal function that computes the contjmwsof the original functions.
In FrTime, such a dynamic optimization would be dif cult tmplement without loss of
sharing. Speci cally, without examining the program'’s $getic structure, we cannot de-
termine which intermediate signals can escape their coofexeation, in which case they
must exist as separate nodes.

Nilsson [73] explores the use of generalized abstract dgest GADTS) to support
optimizations in Yampa [74]. The idea is to usaDTs to de ne special cases of signal
processors, such as constants and the identity functiachingplement special, optimized
logic for them in the evaluator. In particular, Nilsson'splamentation performs constant-
propagation and automatically eliminates calls to thetithefunction, yielding measurable
improvement in various benchmarks. Moreover, 8wDT-based optimizations can be
applied to networks of stateful signal processors, whiahagproach cannot handle.

166

Real-timeFRP (RT-FRP) [103] is an implementation afRPthat shares certain similar-
ities with FrTime, such as the explicit connection to an ulyleg host language with a
collection of base primitives. The goal aff-FRPis not to produce highly ef cient code
so much as to establish provable bounds on the time and spawiead by each round of
execution. The language achieves these bounds througlsareative static analysis, but
it does not perform any optimizing program transformations

Event-drivenFRP (E-FRP) [104] is a modi cation ofRT-FRP designed to support com-
pilation to ef cient imperative codeE-FRP adds some crucial restrictions ka-FRP that
make such compilation possible. Primarily, it takes away dhility to perform dynamic
switching, thereby making the program’'s data dependerstasc. It also requires that
only one external event can stimulate the system in any gipelate cycle. As ilRT-FRP,
the language performs no optimizing program transformatiogather, it uses a syntac-
tic restriction to guarantee limits on the program's reseurequirements. In forbidding
dynamic switchingg-FRP more closely resembles traditional synchronous data aw la
guages, such as Lustre [20], Esterel [9], and Signal [7].s€Hanguages have a common
goal of compiling to ef cient straightline code, which thaghieve by design. This is in
contrast to FrTime, whose primary goal is to provide expvegsower, often at the expense
of performance.

Languages for Scriptable Debugging

There are two main branches of research that relate to Mzaa#levhich have helped
inspire it: rst, programmable debugging, and second, pragmonitoring and instrumen-
tation.

Dalek [76] is a scripted debugger built atggb that generates events corresponding to
points in the program'’s execution. Each event is associaittda callback procedure that
can, in turn, generate other events, thus simulating a datatyle of evaluation. When the
propagation stabilizes, Dalek resumes program execution.

MzTake has several important features not present in DAl&ky difference that a user
would notice is that we rely on FrTime to automatically const the graph of data ow
dependencies, whereas in Dalek, the programmer must aonghis manually. Dalek's
events are not rst-class values, so programmers must Waedevents to scripts, and

167

therefore cannot easily create reusable debugging opesatiich asot-in-order.

In Dalek, each event handler can suspend or resume the mxeotithe target program,
but these can contradict each other. Dalek applies a xegltaiérbitrate these con icts, in
contrast with the variety of start-stop rules discusseceatisn 8.8. Indeed, using a stream
as the guard expression highlights the power of using FrEm#he base language for the
debugger, since a few lines of FrTime code can reconstrueikiB3golicy in MzTake: the
code shown in gure 8.10 is in fact Dalek's policy. This desigddresses an important
concern raised in an analysis of Dalek by Crawford, et al..[31]

The Acid debugger [105] provides the ability to respond teaipoint commands and
step commands with small programs written in a debuggingtslanguage very close
to C. Deet [48] provides a scripting language based on Tclfdkgawith a variety of
the graphical facilities. Dispel [54] de nes its own ad-hlanguage. Generalized path
expressions [15] specify break conditions as regular espoas applied to event traces. The
regular expressions are augmented with predicates thathesk for base-value relations.
In these projects, the programmer must respond to eversghrcallbacks, and there is
no notion of a data ow evaluation mechanism. Each retaimsitispection and control
mechanism of command-prompt debuggers.

DUEL [47] extendggdb with an interpreter for a language intended to be a supefset o
C. It provides several constructs, such as list comprehessind generators, for inspecting
large data structures interactively. However, it does woir@ss how to control the target
program or how to respond to events generated during theigaec

The Coca debugger by Duc&g85] offers a conditional breakpoint language based on
Prolog. Coca uses the backtracking evaluation mechanismotdgPto identify potentially
problematic control and data con gurations during the exen, and brings these to the
user's attention. As such, Prolog predicates serve as hetkdnditional breakpoint lan-
guage and the data-matching language. However, since eagiegte application happens
in isolation from the other, there is no way to accumulate d@hof the execution as it hap-
pens through time, such as constructing a trace historyitalibg an explicit representation
of anMsST (as we have done in this paper).

Like Coca, on-the-y query-based debugging [61, 62] enahissrs to interactively
select heap objects. The objects are speci ed usisgilike language evaluated using
an ef cient on-line algorithm. It does not offer a sophistied scripting mechanism. Like

168

Coca, this approach does not support relating data betwests jotime.

Parasight [4] allows users to insert C code at tracepoirattions. The C code is com-
piled and inserted into the running target program's predasa way that has minimal
performance impact. The inserted code must, however, adogdtback-style to respond to
events. While adapting the running program has performaene ts, it also complicates
the process of using more expressive languages to perfomtariag and debugging (and
indeed, Parasight does not tackle this issue at all, usiagdme language for both the
target program and the scripts).

Alamo [53], like Parasight, instruments binary objectshwit-process C code. While
the scripts do not take the shape of callbacks, they must allgrimplement a program-
ming pattern that simulates a coroutine (which is handleadraatically in FrTime by the
evaluation mechanism). Theo debugger [6] extends Alamo with a rich pattern-matching
syntax over events in terms of the target language's gramwiaile MzTake offers a rich,
general-purpose language for processing event-stregrosef ciently handles the special
case of list comprehension followed by folding.

There are several projects for monitoring program exenyas Dias and Richardson's
taxonomy describes [32]. Monitors differ from debuggersvisyue of not being interac-
tive, and most do not provide scripting facilities. Instga@ny of these systems have better
explored the trade-offs between expressiveness, comrssand ef ciency in the speci -
cation of interesting events. MzTake simply relies on thevgrdul abstractions of FrTime
to Iter events, but at the cost of ef ciency.

MzTake supports the notion that debugging code should rematiside a program's
source code, to avoid complicating maintenance and intioduime- and space-complexity
penalties. A debugging script is thus a classic “concerat tharrants separation from
the core program. Aspect-like mechanisms [5] offer one veagxXpress this separation.
However, using them for MzTake would not be straightforwandst implementations of
aspect mechanisms rely on static compilation, which makegpiossible to change the set
of debugging tasks on-the-y. More importantly, most of tnéorce the debugging script
and main program to be in the same language, making it dif tuluse more expressive
languages for scripting. These mechanisms are thereftliegumal to MzTake and are
possible routes for implementing its scripting language.

Smith [87] proposes a declarative language for expressjogligy constraints between

169

the programmer’'s model and the execution trace. This careée as an aspect-like sys-
tem in which the aspects are not restricted to the origingletalanguage. Smith's lan-
guage relies on a compiler to generate an instrumentedarotirat maintains the model
incrementally. Unfortunately, the compiler has not beeplemented and, as the paper
acknowledges, developing an implementation would not lsg.ea

Contracts [67] also capture invariants, but they too suffanfthe need for static compi-
lation. In addition, data structures sometimes obey a géooontract in a speci ¢ context
than they do normally. For instance, priority heaps perraitskto change, which means
there is na priori order on a key's values. However, Dijkstra's algorithmistizes keys to
1 and decreases them monotonically, and failure to do soateian error. The topicality
of the contract means it should not be associated with tlegifyrheap in general.

DTrace [18] is a system for dynamically instrumenting alldes of production sys-
tems. It supports a variety of instrumentation providersiclv are capable of creating and
enablingprobesthat re when speci c events occur. A tracing script, writtén a cus-
tom domain-speci c language called D (a variant of C withtteas akin to Awk) de nes
a set of probes, as well as consumers that execute and ptbeedata the probes pro-
duce. Consumers are invoked implicitly when the associatedts occur, though unlike
in MzTake, there is no data ow mechanism with which to buildtrer-level event-based
abstractions. On the other hand, DTrace supports instriatiem at the machine level, us-
ing binary rewriting techniques to prevent overhead wheanitg is disabled. Its primary
application seems to be determining the root causes of peafaces problems, even when
the symptoms are several levels removed from these causes.

Tool Reuse

There is a signi cant body of work concerned with the mecbahgeneration of tools
like the error-tracer and pro ler we have described. Formegke, Dinesh and Tip [34]
show how to deriveanimatorsanderror reportersautomatically from algebraic speci ca-
tions of programming language interpreters and type chisckehe tools rely heavily on
the technique of origin-tracking [97] for rst-order ternewriting systems. The authors
note the discovery of critical restrictions and limitatsoof rst-order rewriting, and Van

170

Deursen and Dinesh [96] subsequently developed an ornigakinhg algorithm for higher-
order rewriting systems.

The ASF+SDF meta-environment [95] supports automaticigeios of interactive sys-
tems for creating language de nitions and generating tmigshem. Programmers write
algebraic language de nitions in the ASF+SDF language \\8jich allows the speci ca-
tion of conditional term-rewriting rules. The system, whicompiles speci cations to C
code, has been used to create several domain-speci c lgegualong with a number of
language-processing tools.

The meta-environment also supports a frameworlgéeric debuggini75], where a
single debugger supports interaction with a wide varietproigramming languages. The
implementor of each language de nes aalaptorthat provides a standard interface to the
language's control and data abstractions and through whekyeneric debugger interacts
with the language's runtime. This also allows for so-calledlti-level debugging28],
where a user can debug a program and its implementationdgegimultaneously.

Compared to these systems, our approach is more specializedrsiderably lighter-
weight. It does not require that the developer write formgéhraic speci cations, and it
can track dependencies even when control ows into runtiopgsrt libraries. Also, our
approach avoids the need for source code manipulation,raerd#rated by our reuse of
the host language's generic annotator and tools. This isursgortant for domain-speci ¢
languages, where minimizing development costs is critivsé also implicitly reuse the
macro-tracking facility [36, 59] in the PLT Scheme systentiak allows correlation of
expressions in macro-expanded programs with their orligimarce.

Hudak [49] describes a methodology for building embeddeadaln-speci ¢ languages
in Haskell, citing various forms of reuse as the main moitbrator the technique. Several
functional reactive programming systems [39, 74] have hegremented as Haskell em-
beddings. These systems of course have less need for rusdibugging tools, since the
static type checker catches most errors before the program However, if one were to
attempt to use a pro ler or error-tracer with a Haskell emtiad, it would suffer from the
same problem that | have needed to address in FrTime. Theisdme for other possible
host languages. For example, FradR@9] is a Java implementation eRkp that in many
ways resembles FrTime and suffers from the same sorts eféogk problems that FrTime
experienced prior to the modi cations described in thisgrap

Chapter 10
Conclusions and Future Work

| have developed a strategy for embedding a notion of dataeeatluation within call-by-
value languages. The strategy is based on lightweight syo&xtensions and reuse of the
base language's evaluator. It emphasizes reuse of as mpdssible of the base language,
including ideally its libraries and tools. This strategembodied within the new language
FrTime, which builds on PLT MzScheme.

Much of the value of this work derives from the fact that thebexiding strategy applies
to other call-by-value languages. To validate this claiwg ports of its evaluation model

are currently under development:

10.1 Flapjax

FlapjaxX is a language designed to support development of inteeadiizb applications. It
extends JavaScript—the most common scripting languagé&/étrbrowsers—with several
features, including dynamic data ow evaluation in the gmf FrTime. Like FrTime, Flap-
jax is a conservative extension of its host language. Thiammé¢hat it is straightforward
to integrate Flapjax code with existing JavaScript, or wamentally migrate JavaScript
programs to Flapjax.

Since JavaScript lacks a module system, lifting cannot amented with the same
sort of linguistic mechanism as in FrTime. Instead, a ligkiht compiler expands Flap-
jax code into ordinary JavaScript with explicit calls to tiife library procedure. Just as

IFunctionallanguage fompplicationprogramming with AJAX
171

172

in FrTime, the resulting code generates a data ow graph wéertuted, and a data ow
engine employs essentially the same algorithm to keep thehgup-to-date. The graph-
construction primitives are also available in the form oluaeplibrary, so users who prefer
not to depend on the compiler can still take advantage of &te @l capabilities.

JavaScript programs interact with Web pages through a ttatzsre called @ocument
object modelor (boM). The boM represents the tree structure of themL page that
the browser renders; if the script modi es tb@wMm, then the browser updates its display.
Most elements of theom support user interaction, at least in the form of low-leveluse
events; form elements like buttons, check boxes, and texy exids provide higher-level
interfaces. Like most other user-interface toolkits, taea¥cript interface to theowm is
based on callbacks. Thus one of the most important aspeé&tapjax is a signal-based
interface to theoom that models both input and output.

In addition to the data ow evaluation model, Flapjax prossdfacilities for communi-
cating with the Flapjax server, which authenticates usets@ovides access-controlled
sharing of a persistent store for time-varying JavaScijgcis. The interface to the server
is based on signals, so it is easy to make a program'’s datsp@eently persistent.

Although the Flapjax system is still maturing, the resutisfa are encouraging. At
least one non-trivial application—aysiwyG Wiki engine—has been developed using it.
Several hundred users have created accounts on the Flagpjeet,swvhile hundreds more
have visited the site to experiment with various demos aad tiee documentation.

10.2 FrC++

FrC++ is a port of FrTime's data ow evaluation model to C++. tesign, like that of
FrTime and Flapjax, is in uenced by the particular featunégs host language. For exam-
ple, the static overloading mechanism in C++ allows prireitdperators to be extended to
handle new datatypes. FrC++ uses this capability to de nedif/ersions of operators like
+ and* that can operate on numeric behaviors. Thus FrC++ suppoots—degree—the
notion of transparent reactivity that FrTime provides. Brer, because the overloading
is resolved statically, the implementation is more ef digman in FrTime, where a runtime
check is performed each time the program applies a liftedadpe However, because the
types of procedures must be explicitly declared, FrC++ casnpport transparent code

173

reuse to the extent FrTime does.

FrC++ makes use of the FC++ [66] library for functional prognaimg in C++, which
uses objects to implement rst-class procedures, compldte static type-checking and
parametric polymorphism. Signals are instances of claSgRkal, which is parameterized
over the type of value it carries. The type parameters arekeluestatically, so a signi cant
class of errors is caught before the program runs. The usgpefitsignals complicates
the implementation of the data ow engine, which needs to lile &0 operate on a single
datatype. To facilitate this, all signals derive from a $ngon-parametric base class that
provides a nullary method callegbdate which returns a boolean value indicating whether
the signal's value has changed. The data ow engine refeadl tsignals through the base
class, which is suf cient for moving signals in and out of §eority queue and invoking
theupdatemethod.

There are bindings for FC++ to the Gtk user interface too#iatthe language can be
used to write graphical applications. The adaptation fedlessentially the same techniques
as FrTime does for MrEd. Anecdotal evidence indicates tki-Fifar exceeds both FrTime
and Flapjax in terms of execution performance. This is ymssing given the amount of
effort that has been put into the construction of ef cient Cagmpilers. Since FrC++ is
a pure library implementation, employing something like tbwering optimization from
Chapter 4 would seem to require the development of signi a&rdstructure. (Fortunately,
the high performance of the host language has thus far matteasendeavor unnecessary.)
Moreover, while there are a variety of tools for C++, they resegily exhibit the same sorts
of problems mentioned in Chapter 7.

Bibliography

[1] The Ruby JDWP project. http://rubyforge.org/projects/
rubyjdwp/

[2] The Caml languagehttp://caml.inria.fr

[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functadmprogramming.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programminglages
2002.

[4] Z. Aral and I. Gertner. High-level debugging in Paragigin Proceedings of the
ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributetbuging
pages 151-162. ACM Press, 1988.

[5] Aspect oriented programming (article serie€pmmunications of the ACM4(10),
Oct. 2001.

[6] M. Auguston, C. Jeffery, and S. Underwood. A frameworkdatomatic debugging.
In Automated Software Engineeringages 217-222, 2002.

[7] A. Benveniste, P. L. Guernic, and C. Jacquemot. Synchremoagramming with
events and relations: the SIGNAL language and its semar@iience of Computer
Programming 16(2):103-149, 1991.

[8] J. A. Bergstra, J. Heering, and P. Klirklgebraic speci cation ACM Press, 1989.

[9] G. Berry. The Foundations of EsteteMIT Press, 1998.

174

175

[10] A.H. Borning. The programming language aspects of thibga constraint-oriented
simulation laboratoryACM Transactions on Programming Languages and Systems
3(4):353-387, 1981.

[11] F. Boussinot. Fairthreads: mixing cooperative and ieteve threads in c: Research
articles, 2006.

[12] J. P. Bowen and M. J. C. Gordon. A shallow embedding of Z inLHGformation
and Software Technolog$7(5-6):269-276, May—June 1995.

[13] G. Bracha and W. Cook. Mixin-based inheritanceA®M SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Apjbicg pages 303—-311,
1990.

[14] M. Broy and K. StglenSpeci cation and Development of Interactive Systems: FO-
CUS on Streams, Interfaces, and Re nem&pringer, 2001.

[15] B. Bruegge and P. Hibbard. Generalized path expressidtggh level debugging
mechanism. IfProceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on High-level Debugginmages 34—-44, 1983.

[16] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Pbgte A framework
for simulating and prototyping heterogeneous systerrgernational Journal of
Computer Simulation (special issue on Simulation Software@pment)4:155—
182, April 1994.

[17] K. Burchett, G. H. Cooper, and S. Krishnamurthi. Loweriry static optimiza-
tion for transparent functional reactivity. BCM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program ManipulgtRH07.

[18] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamiitstrumentation of
production systems. I0SENIX Annual Technial Conferengeges 15-28, 2004.

[19] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. LeeS&dman, M. Stone-
breaker, N. Tatbul, and S. Zdonik. Monitoring streams — a okags of data man-
agement applications. Imternational Conference on Very Large Databaggsges
215-226, 2002.

176

[20] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRHEeclarative lan-
guage for programming synchronous systemsA@M SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languagpages 178-188, 1987.

[21] P. Caspi and M. Pouzet. Lucid Synchrone, a functionamsibn of Lustre, 2000.

[22] M. Cherniack, H. Balakrishnan, M. Balazinska, D. CarneyQJdtintemel, Y. Xing,
and S. Zdonik. Scalable distributed stream processingirgh Biennial Conference
on Innovative Data Systems Resea@b03.

[23] J. Clements and M. Felleisen. A tail-recursive machirit wtack inspectionACM
Transactions on Programming Languages and Syst26($):1029-1052, 2004.

[24] J. Clements and M. Felleisen. A tail-recursive machirit wtack inspectionACM
Transactions on Programming Languages and Syst26{(§):1029-1052, 2004.

[25] J. Clements, M. Flatt, and M. Felleisen. Modeling an btgé& stepper. liEuropean
Symposium on Programming001.

[26] G.H. Cooper and S. Krishnamurthi. Embedding dynamie @&t in a call-by-value
language. IrEuropean Symposium on Programmi2g06.

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivesintroduction to Algorithms
McGraw-Hill, 1997.

[28] B. Cornelissen. Using TIDE to debug ASF+SDF on multipleels. Master's thesis,
Centrum voor Wiskunde en Informatica, 2004.

[29] A. Courtney. Frapg: Functional reactive programming in JavaPhactical Aspects
of Declarative Languages$pringer-Verlag, March 2001.

[30] A. Courtney and C. Elliott. Genuinely functional userarfaces. IrHaskell Work-
shop 2001.

[31] R. H. Crawford, R. A. Olsson, W. W. Ho, and C. E. Wee. Semassces in the
design of languages for debugging. Rroceedings of the International Conference
on Computer Languagepages 252-261, 1992.

177

[32] M. de Sousa Dias and D. J. Richardson. Issues on softwangoning. Technical
report, ICS, 2002.

[33] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Objecst®yn: An overview.
In European Conference on Object-Oriented Programmirg?7.

[34] T. B. Dinesh and F. Tip. Animators and error-reportensgenerated programming
environments. Technical Report CS-R9253, Centrum voor Wisk@emdinformat-
ica, 1992.

[35] M. Ducasg&. Coca: an automated debugger for CPmceedings of the 21st Inter-
national Conference on Software Engineeripgges 504-513, 1999.

[36] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstoacin Scheme Lisp
and Symbolic Computatiob(4):295-326, Dec. 1993.

[37] R. Eckstein, M. Loy, and D. Woodlava Swing O'Reilly, 1997.

[38] C. Elliott. Functional implementations of continuoudeled animation. Irin-
ternational Symposium on Programming Languages: Impléatiens, Logics, and
Programs Springer-Verlag, 1998.

[39] C. Elliott and P. Hudak. Functional reactive animatiomACM SIGPLAN Interna-
tional Conference on Functional Programmingages 263—-277, 1997.

[40] C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. TBAGhigh level framework
for interactive, animate8D graphics applications. IACM International Conference
on Computer Graphigpages 421-434, 1994.

[41] M. Felleisen and R. Hieb. The revised report on the sytitdloeories of sequential
control and stateTheoretical Computer Scienck02:235-271, 1992.

[42] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishaghi, P. Steckler, and
M. Felleisen. DrScheme: A programming environment for $ofe Journal of
Functional Programmingl12(2):159-182, 2002.

[43] R. B. Findler and M. Flatt. Slideshow: Functional presgions. INACM SIGPLAN
International Conference on Functional Programmji2§04.

178

[44] M. Flatt. Composable and compilable macros. AGM SIGPLAN International
Conference on Functional Programmingages 72—-83. ACM Press, 2002.

[45] M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Fellasd°rogramming languages
as operating systemsr(Revenge of the Son of the Lisp Machine). AGM SIG-
PLAN International Conference on Functional Programmipgges 138-147, 1999.

[46] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classesl amixins. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lages pages
171-183, 1998.

[47] M. Golan and D. R. Hanson. DUEL - a very high-level debunggianguage. In
Proceedings of the USENIX Annual Technical Conferepages 107-118, Winter
1993.

[48] D. R. Hanson and J. L. Kom. A simple and extensible graghizbugger. In
Proceedings of the USENIX Annual Technical Conferepages 183-174, 1997.

[49] P. Hudak. Modular domain speci c languages and toai$nternational Conference
on Software Reus&998.

[50] P. Hudak. The Haskell school of expression: learning functional pamgming
through multimediaCambridge, 2000.

[51] J. Hughes. Generalizing monads to arrov&cience of Computer Programming
37(1-3), May 2000.

[52] D. Ignatoff, G. H. Cooper, and S. Krishnamurthi. Crossstgte lines: Adapt-
ing object-oriented frameworks to functional reactivegaages. IrSymposium on
Functional and Logic Programmin@006.

[53] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightwéit architecture for pro-
gram execution monitoring. ISBIGPLAN Noticesvolume 33, pages 67—-74, 1998.

[54] M. S. Johnson. Dispel: A run-time debugging languaggomputer Languages
6:79-94, 1981.

179

[55] R. Kelsey, W. Clinger, and J. Rees. Revisedport on the algorithmic language
Scheme ACM SIGPLAN Notices33(9), Oct. 1998.

[56] A. J. Ko and B. A. Myers. Citrus: A language and toolkit famglifying creation
of structured editors for code and data.UIST, 2005.

[57] E. E. Kohlbecker JrSyntactic Extensions in the Programming Language. L&D
thesis, Indiana University, 1986.

[58] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. KaashoEhe click modular
router. ACM Transactions on Computer Systed®(3):263—-297, August 2000.

[59] S. Krishnamurthi, M. Felleisen, and B. F. Duba. From neadp reusable generative
programming. InGenerative and Component-Based Software Engineeti®@p.

[60] J. L. Lawall and D. P. Friedman. Towards leakage comt&int. Technical Report
346, Indiana University, 1992.

[61] R. Lencevicius. On-the-y query-based debugging wikamples. InProceedings
of the Fourth International Workshop on Automated Debugg?®00.

[62] R. Lencevicius, U. Kizle, and A. K. Singh. Dynamic query-based debugging of
object-oriented program#&utomated Software Engineerintf)(1):39—-74, 2003.

[63] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Réisgata ow language
for scriptable debugging. IfEEE International Symposium on Automated Software
Engineering 2004.

[64] G. Marceau, G. H. Cooper, J. P. Spiro, S. Krishnamurtid, &. P. Reiss. The design
and implementation of a data ow language for scriptableutging. Automated
Software Engineering Journa2006.

[65] S. McDirmid and W. C. Hsieh. Component programming witlieaboriented sig-
nals. InEuropean Conference on Object-Oriented Programmiages 206—229,
2006.

[66] B. McNamara and Y. Smaragdakis. Functional programrmr@++. InACM SIG-
PLAN International Conference on Functional Programmipgges 118-129, 2000.

180

[67] B. Meyer. Eiffel: The LanguagePrentice-Hall, 1992.

[68] M. S. Miller. Robust Composition: Towards a Uni ed Approach to Access Contro
and Concurrency ControlPhD thesis, The Johns Hopkins University, 2006.

[69] M. Muller, T. Muller, and P. V. Roy. Multi-paradigm programming in Oz. In
D. Smith, O. Ridoux, and P. Van Roy, editok4sions for the Future of Logic Pro-
gramming: Laying the Foundations for a Modern successor roldg, Portland,
Oregon, 7 Dec. 1995. A Workshop in Association with ILPS'95.

[70] B. A. Myers, D. A. Giuse, R. B. Dannenberg, D. S. Kosbie, Bvitg A. Mickish,
B. V. Zanden, and P. Marchal. Garnet: Comprehensive suppagtéphical, highly
interactive user interface€omputey 23(11):71-85, 1990.

[71] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A.lHang, B. D. Kyle,
A. Mickish, A. Klimovitski, and P. Doane. The Amulet envinmrent: New models
for effective user interface software developmelEEE Transactions on Software
Engineering 23(6):347-365, 1997.

[72] National Instruments, Inc. Labview (software systetnftp://www.ni.com/
labview

[73] H. Nilsson. Dynamic optimization for functional rea@ programming using gen-
eralized abstract data types. ACM SIGPLAN International Conference on Func-
tional Programming 2005.

[74] H. Nilsson, A. Courtney, and J. Peterson. Functionattrea programming, contin-
ued. INACM SIGPLAN Workshop on Haskgllges 51-64, 2002.

[75] P. Olivier. A Framework for Debugging Heterogeneous ApplicatioR&D thesis,
Centrum voor Wiskunde en Informatica, 2000.

[76] R. A. Olsson, R. H. Crawford, and W. W. Ho. Dalek: A GNU, imped pro-
grammable debugger. IRroceedings of the Usenix Technical Conferermages
221-232, 1990.

181

[77] J. Peterson and G. Hager. Monadic roboticsDbmain-Speci ¢ Languagepages

95-108, 1999.

[78] J. Peterson, P. Hudak, and C. Elliott. Lambda in motionnt@uling robots with

Haskell. Lecture Notes in Computer Sciend®51:91-105, 1999.

[79] J. Peterson, P. Hudak, A. Reid, and G. Hager. FVision: éatative language for

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

visual tracking.Lecture Notes in Computer Sciend®90:304-321, 2001.

J. Peterson, V. Trifonov, and A. Serjantov. Paralleldtional reactive programming.
In Practical Aspects of Declarative Languageslume 1753, 2000.

C. A. Petri. Kommunikation mit Automate®hD thesis, University of Bonn, 1962.

G. Pettyjohn, J. Clements, J. Marshall, S. Krishnamupahd M. Felleisen. Contin-
uations from lightweight stack inspection. ACM SIGPLAN International Confer-
ence on Functional Programming005.

S. L. Peyton Jones. Compiling Haskell by transformatereport from the trenches.
In European Symposium on Programmipgges 18-44, 1996.

G. Plotkin. Call-by-name, call-by-value, and the laratw@lculus.Theoretical Com-
puter Sciencgel:125-159, 1975.

M. Sage. FranTk: A declarative GUI language for Haskdlh ACM SIGPLAN
International Conference on Functional Programmjpgges 106—117, 2000.

M. Serrano, F. Boussinot, and B. Serpette. Scheme faatts. Iri2th International
Lisp ConferenceOctober 2002.

D. R. Smith. A generative approach to aspect-orient@eg@mming. Ininterna-
tional Conference on Generative Programming and Componegingering vol-
ume 3286, pages 39-54, 2004.

G. Smolka. The Oz programming model. In J. van Leeuwelitoe Computer

Science TodagyLecture Notes in Computer Science, vol. 1000, pages 324-343

Springer-Verlag, Berlin, 1995.

182
[89] M. Sperber. Developing a stage lighting system fromaszr. INnACM SIGPLAN
International Conference on Functional Programmjipgges 122—-133, 2001.

[90] R. M. Stallman.GDB Manual (The GNU Source-Level Debuggefyee Software
Foundation, Cambridge, MA, third edition, January 1989.

[91] Sun Microsystems. JavaFXitp://www.sun.com/software/javafx/

[92] The MathWorks, Inc. Simulink - simulation and modelskd design.http://
www.mathworks.com/products/simulink/

[93] The Open Laszlo Project. Open laszkdtp://www.openlaszlo.org/

[94] K. Tilton. Cells. http://www.tilton-technology.com/cells n_top.
html .

[95] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A.aleg,JM. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. ScheerdérJ. Vinju, E. Visser,
and J. Visser. The ASF+SDF meta-environment: A componasédh language de-
velopment environment. I@ompiler Constructionpages 365-370, 2001.

[96] A.van Duersen and T. B. Dinesh. Origin tracking for higloeder rewriting systems.
Technical Report CS-R9425, Centrum voor Wiskunde en Inforaatig94.

[97] A. van Duersen, P. Klint, and F. Tip. Origin tracking.chmical Report CS-R9230,
Centrum voor Wiskunde en Informatica, 1992.

[98] W. W. Wadge and E. A. Ashcroft.ucid, the data ow programming languagéca-
demic Press U.K., 1985.

[99] P. Wadler. Listlessness is better than lazinessA@M Symposium on Lisp and
Functional Programmingpages 45-52, 1986.

[100] P. Wadler. Deforestation: Transforming programs limi@ate trees. Theoretical
Computer Scien¢§3:231-248, 1990.

[101] P. Wadler. The essence of functional programming. AGM SIGPLAN-SIGACT
Symposium on Principles of Programming Languagesges 1-14, January 1992.

183

[102] Z. Wan and P. Hudak. Functional reactive programmuognf rst principles. In
ACM SIGPLAN Conference on Programming Language Design anteingnta-
tion, pages 242-252, 2000.

[103] Z. Wan, W. Taha, and P. Hudak. Real-time FRPAG®M SIGPLAN International
Conference on Functional Programmingages 146-156, 2001.

[104] Z. Wan, W. Taha, and P. Hudak. Event-driven FRPPHactical Aspects of Declar-
ative Languages2002.

[105] P. Winterbottom. Acid, a debugger built from a langeagn Proceedings of the
USENIX Annual Technical Conferengages 211-222, January 1994.

