Integrating Dataflow Evaluation into a Practical
Higher-Order Call-by-Value Language

by
Gregory Harold Cooper
B. S., University of Rhode Island, 2000
Sc. M., Brown University, 2002

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the
Department of Computer Science at Brown University

Providence, Rhode Island
May 2008

(© Copyright 2008 by Gregory Harold Cooper

This dissertation by Gregory Harold Cooper is accepted iprigsent form by
the Department of Computer Science as satisfying the didsertrequirement
for the degree of Doctor of Philosophy.

Date
Shriram Krishnamurthi, Director
Recommended to the Graduate Council

Date

Steven P. Reiss, Reader
Date

John Peterson, Reader

(Western State College of Colorado)
Approved by the Graduate Council

Date

Sheila Bonde
Dean of the Graduate School

Vita

Gregory Harold Cooper was born on New Year’s Day of 1978 in B@aunty, Rhode

Island. He has enjoyed mathematics and logic since he casmeer and was addicted
to computer programming by age 7. He was valedictorian ofcthss of 1996 at North

Kingstown High School and a National Merit Scholar and Barry®béldwater Scholar at
the University of Rhode Island. He also received an honorat#ation in the National

Science Foundation Graduate Research Fellowship conguetit2001 and 2002.

Acknowledgements

This dissertation would not have been possible without #p bf many people. Thanks
are in order first to my advisor, Shriram Krishnamurthi, aedders, Steve Reiss and John
Peterson. I'd also like to thank those who collaborated aioua parts of the work: Kim
Burchett, Dan Ignatoff, Guillaume Marceau, and Jono Spim.addition, a number of
people provided useful feedback and participated in hefghicussions, including Ezra
Cooper, Antony Courtney, Matthias Felleisen, Paul Hudak,ridxilsson, Manuel Ser-
rano, Mike Sperber, Phil Wadler, and many others whom I'ne $we forgotten. Finally, |
am indebted to Melissa Chase, Manos Renieris, and Dave Tuakéeir enduring support
and encouragement.

Contents

List of Tables

List of Figures

1 Introduction

11
1.2
1.3
1.4
15
1.6

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9

2.10 Event Streams

Motivation
Callbacks: an Imperative of Imperatives

Dataflow Evaluation: an Alternative to Callbacks

A Brief Introductionto FrTime
Declarative Reactive Programming with Signals
Design Principles and Challenges

Core Evaluation Model
Discrete Modeling of Continuous Phenomena
Push-Driven Recomputation
Defining the Dataflow Extension
Primitive Operators and ConstantValues
Updating Signal Values

SchedulingofUpdates
2.6.1 Subtleties of Memory Management
Time-Varying Control Flow
Remembering PastValues
Recursion

Vi

2.11 Support forePL-based Interactive Programming 34

Semantics 37
Optimization by Lowering 49
4.1 DippingandLowering e 54
4.2 The Lowering Algorithm, 75
4.3 Lambda Abstractions Lo 95
4.4 Conditionals 61
4.5 HigherOrderFunctions, 61
4.6 Inter-Module Optimization 62
47 MaCrosS e e e 64
4.8 PathologicalCases 64
4.9 Evaluation 65
49.1 Performance 65
49.2 Usability 67
4.10 Future Directions e 63
Implicitly Reactive Data Structures 70
5.1 An Application of Structured Data: Animation. 73
5.2 Reactivity with Raw Constructors 75
5.2.1 Choosing the Granularity of Lifting 76
5.2.2 Deeplifting 77
5.3 Reactivity with Lifted Constructors 79
5.3.1 Consequences of Lifted Constructors 79.
5.4 Improvementsto DeeplLifting, 83
5.4.1 Defining theApplyOperator 86
5.5 The Efficiencyof Traversal 88
5.6 Performance Evaluation. 91
Integration with Object-Oriented Toolkits 94
6.1 AdaptingMrEdtoFrTime 95
6.1.1 Application-Mutable Properties 96

Vil

6.1.2 Toolkit-Mutable Properties 99

6.1.3 Application- and Toolkit-Mutable Properties 101
6.1.4 Immutable Properties 310
6.2 Automating the Transformation. 103
6.2.1 Parameterized Class Extensions 103.
6.2.2 A Second Dimension of Abstraction 105
6.2.3 Language Independence of the Concepts 106 .
6.3 A Spreadsheet Application 107
6.4 Catalog of Adapted User Interface Widgets110
Programming Environment Reuse 112
7.1 Background
7.1.1 Domain-Specific Embedded Languages 114.
7.1.2 Examples
7.1.3 Control-Oriented Tools 511
7.2 TheTool-Reuse Problem 6 11
7.3 Solution Techniques. 119
7.3.1 Higher-OrderSignals 012
7.3.2 Implementation
7.3.3 Effective Evaluation Contexts 123
7.3.4 Generalizing the Solution Strategy 123
7.3.5 Transformation of the Semantic Data Structure 125
7.4 ImplementationStatus 125
Extended Application: Scriptable Debugging 127
8.1 AMotivating Example Lo 82
8.2 Desiderata
8.3 Language DesignConcerns i e 32 1
8.4 Debugging the Motivating Example 133
8.5 Reflectionsonthe Example 371
8.6 Design

8.7 Implementation 913

8.7.1 Java, 140

8.7.2 Scheme 142
8.7.3 Performance 144
8.8 Controlling Program Execution 145
8.9 Additional Examples L 461
8.9.1 Minimum SpanningTrees 146
8.9.2 A Statistical Profiler o o 714
9 Related Work 157
10 Conclusions and Future Work 171
10.1 Flapjax o e e 171
10.2 Fre++ . . . o e 172
Bibliography 174

List of Tables

4.1 Experimental benchmark results for lowering optimaat 65
5.1 Micro-benchmark results for lifting, raising, and ieorental projection . . 93
5.2 Performance of animation programs using data structamd graphics . . . 93

List of Figures

1.1 Asimple timer application in PLT Scheme 2
1.2 Ascreenshot of agraphicaltimer 3
1.3 Atimer with graphicaldisplay 4
1.4 Implementation of the timerinFrTime 8
1.5 The FrTime timer with graphicaldisplay 9
2.1 Grammar for purely functional subset of core PLT Scheme. 14
2.2 Grammar for FrTime (extends grammar in Figure 2.1) 14
2.3 FrTime evaluator (excerpts for primitive procedures) 18
2.4 Dataflow graph for (+ngodulo second8) (-21)) 19
2.5 FrTime updater (excerpts for primitive procedures) 20
2.6 A snapshot evaluator for the essence of FrTime 20
2.7 FrTime evaluator (excerpts fifrexpressions and-abstractions) 24
2.8 Dataflow graphs for a conditional expression. 25
2.9 The part of the updater that handles switching 27
2.10 Dataflow graphs for a conditional expression. 28
2.11 FrTime evaluator (excerpts for time-varying procegyr 29
2.12 An update engine for the essence of FrTime (excergirfer statements). 30
2.13 Theimplementation afelay-by 31
2.14 FrTime evaluator (excerpts for recursive bindings)..... 32
2.15 An evaluator for the essence of FrTime 35
2.16 Anupdate engine for the essence of FrTime 36
3.1 Grammars for values, expressions, evaluation contamtssignal types . . 38
3.2 Semantic domains and operationso 38

Xi

3.3
3.4
3.5

4.1
4.2

4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6

6.1

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4

Evaluationrules 93
Snapshotrules 39
Updaterules e 40
Definition of distance function. 52

Left: Unoptimized dataflow graph for the distance fumeti Right: opti-

mized equivalent. Various stages of optimization are showletween.
Inter-procedural optimization can improve the result efiather. Each

box is a heap-allocated signal object. B2
Definition of the distance function with upper and lonardrs made explicit. 54

Allowed containment relationships forcode. b5
Unoptimized FrTimecode. 55
Optimized FrTimecode. it 6 5
Complete description of the lowering transformation 63
A deep projectionprocedure e AT
Deeplifting 78
Use of lifted constructors 80
Creation of additional behaviors by lifted accessors 81
Loss of intensional equality from lifted constructors 82
Interleaving projection with traversal 84
Screenshot of the FrTime spreadsheet application 107
Structure ofadeepembedding 114
Embedding FrTime 114
An error trace from a Java FRP implementation117
Output from original profiler on FrTime program 125
Output from adapted profiler on FrTime program 125
Implementation of Dijkstra’s Algorithm 149
Sample InputandOutput491
Control Flow of Program and Script 150
Monitoring the Priority Queue 151

8.5 EventStreams s 151

8.6 The Monitoring Primitive 151
8.7 TheRedundantModel, 152
8.8 MzTake Grammar 152
8.9 MzTake Architecture for DebuggingJdava153
8.10 A Typical Start-Stop Policy 154
8.11 A Different Start-Stop Policy 154
8.12 Spanning trees computed correctly (left), withoueding cycles (mid-

dle), and without sorting edges (right)155
8.13 RecordingiSTEdges 155
8.14 A Statistical Profiler. e 156

Xiii

Chapter 1
Introduction

This dissertation explores the design of linguistic supfmrreactive programs. Byeac-
tive, | mean programs like word processors, Web browsers, amigoroning environments—
programs whose “inputs” are unbounded sequencesveits(e.g., key strokes, mouse
clicks, network messages, etc.) that arrive from a variétyoorces at times beyond the
program’s control. In contrast tateansformationaprogram, which runs uninterrupted and
controls when it reads its input and produces its outputaatiee program must respond
immediately to each event by updating its internal state emdting a representation of
it. In essence, a reactive program must be designed to aosnvironment to control its
execution.

1.1 Motivation

Reactive programs constitute the majority of software systdeployed in the world, so it
is important for programmers to be able to build such systeasgy and reliably. Unfortu-
nately, the programming languages and paradigms in cuccgninon use were developed
for writing transformational programs, and they make rneagbrograms awkward to ex-
press.

As a concrete example, consider the implementation of alsingactive program that
counts the elapsed time (in seconds) up to some user-dextririne, rendering it as a
textual string. At any point, the user can clicRasebutton to start the count over again.

(defineframe
(new frame%llabel "Timer”] [height80] [width 300]))
(sendframe show#t)

(defineduration60)
(defineelapsed))

(defineelapsed-display
(new messageY%parent framé[label "0 s”] [min-width60]))

(defineclock
(newtimer%/interval 1000]
[notify-callback
(A(te)
(setlelapsedmin (add1 elapsepduration))
(sendelapsed-display set-labdormat™a s” elapsed))]))

(defineduration-control
(newslider%][parent framé[label "Duration (s)”]
[min-valuel0] [max-valuel20] [init-value 60]
[callback()\ (s ©
(set!duration(sendslider get-valug
(set! elapsedmin elapsed duration
(sendelapsed-display set-labélormat

a s” elapsed))]))

(definereset-button
(new button%[parent framé[label "Reset”]
[callback
(A(be
(set! elapsed))
(sendelapsed-display set-lab&d s™))]))

Figure 1.1: A simple timer application in PLT Scheme

Figure 1.1 shows how someone might implement such a program in the Scf&Esh
programming language, following a conventional progranmgrstyle. The first definition
creates a top-level window, calledrame%? In DrScheme’s object systemnaw expres-
sion constructs an object of a given type with a set of namgdnaents, in this case the

The code is executable under the Pretty Big language lewbkin300 series of DrScheme revisions.
2By convention, class names in DrScheme end with a % sign estipgobject-orientation.

Bﬂ@ Timer
Elapsed time: ==

3s

Duration (s): =

[Reset)

Figure 1.2: A screenshot of a graphical timer

label, width, andheight After displaying the frame, the program defines a variabledid
theelapsedime (initially zero) and createsraessageontrol in which to display it.

The remaining code makes the program reactive:ctbek advances the elapsed time
every second, thduration-controllets the user adjust the duration, and taset-button
starts the elapsed time over at 0. Since the program is veaevents from these three
sources can arrive in any order and at any time. In order & teavhichever event occurs
next, the program definasallback procedures and registers them with the user interface
toolkit. The toolkit's event-handling loop calls the appriate callback whenever the asso-
ciated event occurs.

1.2 Callbacks: an Imperative of Imperatives

The code in Figure 1.1 illustrates an interesting pattelthoagh most of the program is
functional, all of the callback procedures perform desivecside effects (either directly,
via setl, or by invoking a mutator method in an object). This is no calence, and the
explanation derives from the fact that callbacks are desida let the event loopall back
into the application. If callbacks were functional, all yreould do is compute values and
return them to the event loop, in which case they could nosipbsaffect the state of
the application. Hence, in order for the program to progreskbacks must perform side
effects

While side effects are necessary in some cases, they geneasét undesirable conse-
guences. For example, becausedlapsed-displais updated via side effects, its definition

(defineframe
(new frame%llabel "Timer”] [height80] [width 300]))
(sendframe show#t)

(defineduration60)
(defineelapsed))

(defineelapsed-display
(new gauge%dparent framé[label "Elapsed: "] [range60]))

(defineclock
(newtimer%/interval 1000]
[notify-callback
(A(te)
(set! elapsedmin (add1 elapsepduration))
| (sendgauge set-value elapsp}))

(defineduration-control
(newslider%|[parent framé[label "Duration (s)”]
[min-valuel0] [max-valuel20] [init-value 60]
[callback()\ (s ©
(set!duration(sendslider get-valug
(set! elapsedmin elapsed duration
(sendgauge set-value elapsed

(sendgauge set-range duratiop)]))

(definereset-button
(new button%][parent framé[label "Reset”]
[callback
(A(be
(set! elapsed))
|(sendgauge set-value))]))

Figure 1.3: A timer with graphical display

does not provide a complete specification of its behavieryty it would in a purely func-
tional program. Conversely, ttetocks callback refers t@lapsed-displagven though the
latter has no bearing on the time.

In general, callbacks result in a programming style in whiehdefinition of an object
does not fully express that object’s behaviors in terms bépbbjects’ values. Instead,

each object is responsible for tracking changes in its stateupdating other objects that
depend on it. This is precisely the opposite of how functiggragrams work, and this
structural inversion makes programs more difficult to ustlerd. For example, to reason
about the temporal behavior efapsed-displaya programmer (or tool) needs to find all the
code thathangeghe object. The problem amplifies when this code refers terothlues
(e.g.,elapsed that are also mutated from various parts of the program.

Structural inversion also makes programs more difficult tdenand modify. For ex-
ample, suppose that the programmer wants to change thayispihe elapsed time from
the textual message to a graphical progress bagaoge Figure 1.3 shows the code that
might result. There are three places in the code that uptetéisplay, and all of them
must be changed. Moreover, in order for the gauge to displayraction of elapsed time
correctly, itsrange must be kept consistent with thiration There is no analog to this
logic in the original version of the program, so the prograanmight easily overlook the
need to make this change. In a functional program, this ayrsvould likely manifest
as a missing procedure argument, which would be an error. eMervin the imperative
version, there is simply the absence of a side-effect, wisiohuch more difficult to detect
automatically..

1.3 Dataflow Evaluation: an Alternative to Callbacks

This dissertation explores an alternative to callbacks ahaws programmers to develop
reactive programs in a functional style. The key idea is todagaflow evaluatiofi20, 98],
a programming model in which a program’s values may change time, but instead of
using explicit mutation, they recompute automatically whigeir inputs change.
Languages based on the idea of dataflow evaluation (scdadkaflow languages) have
existed for decades and have been applied in various spedalomains, most notably
real-time, safety-critical embedded systems. Histogcaluch languages have been de-
signed to support formal reasoning about safety propeatielsresource requirements. To
that end, these languages have traditionally been regicmitting such features as re-
cursive datatypes, dynamic recursion, and higher-ordeations. Such limitations are nec-
essary to provide the guarantees required by real-timemgstout they are not appropriate
for writing modern general-purpose applications, whichstrhe able to perform complex

operations over dynamic data structures.

Within the past decade, researchers have developed a naildel functional reactive
programming ErRP) [39, 74, 102, 104], which embeds dataflow evaluation witfeneral-
purpose functional languages. Functional reactive pragrag has proven expressive
enough to support a variety of applications, such as animg89], graphical user inter-
faces [30, 85], robotics [78], and vision [79].

The work described in this dissertation follows in thep vein but departs from prior
work in several important ways. Specifically, my thesisesahata practical notion of
dataflow evaluation can be embedded within a general-purp@s higher-order call-
by-value language, integrating seamlessly with all of thenpn-imperative) features in
the original language The thesis is supported by a working implementation of sarch
embedding: the language FrTime [17, 26, 52], which buildshe dialect of Scheme [55]
used in the DrScheme [42] programming environment.

1.4 A Brief Introduction to FrTime

The essence of FrTime is to extend Scheme with a notion of-wangng values called
signals For example, the language provides a signal calsmbnds, whose value at every
point in time is equal to the result of Scheme’s built-in prdarecurrent-secondsBecause
its value is defined at every point in timggconds is said to becontinuousand is called
a behavior If a program applies a primitive function to a behavior, thsult is a new
behavior, whose value at every point in time is computed Iphyapg the function to the
argument’s current valueFor example, the value oéyeneconds) is a behavior whose
value alternates betweéme andfalse changing once every second.

The generalization of Scheme’s primitives to operate oedralwiors is calledifting.
Lifting allows a program to use existing purely function@h®me code in the context of
reactive values, a property known tansparent reactivity For example, the following
Scheme procedure consumes a time in seconds and formais ittasan-readable string
like "10:25:43":

(define (format-time }

SOperationally, the language only re-evaluates the agplic@ach time the argument value changes.

(letx ([date(seconds-date 9]
[hours(date-hour daty
[minuteg(date-minute dabg
[seconds (date-second dajp

y~ ~

(format™a:"a:"a” hours minuteseconds))

In Scheme, one might apply it tarrent-seconds producing a value that reflects the time
at which the program calle@rrent-seconds One can also use this definitioarbatimin
FrTime and apply it tseconds, creating a simple clock.

In addition to applying primitive functions to them, progra can delay behaviors by
any (non-negative) amount of time, and they can compute iitegrals over numeric
behaviors. There is also a procedure catliedngeghat lets a program see the sequence of
discrete changes that a behavior experiences over tima. pfbduces a different kind of
signal, called arvent streamEvent streams are a natural abstraction for modeling many
inputs to a reactive program, such as the sequence of keysr aypes or the clicks of a
button in a graphical interface.

Primitive procedures cannot be applied to event streani;ime provides a collec-
tion of event-processing operators that are analogousitalatd list-processing functions.
For example, if an application is only interested in key lstcorresponding to digits, it
can usdilter-e to select them:

(definefigures
(filter-e (A (X) (member X(#\0 #\1 #\2 ... #\9))) key-strokep

To convert these characters to actual numbers, it camageeto transform each event:

(definedigits
(map-e(X (ch) (— (char—integer ch) 48)) digits-typed)

It can then useollect-eto accumulate the sequence of digits into a decimal integer:

(definenumber
(collect-e digits0 (A (digit num) (+ digit (x 10 num))))
Finally, it can usehold, the dual ofchangesto convertnumberto a behavior by “holding”

onto the value of its most recent event (using O until the éirgt occurs).

(hold numbel0)

(defineframe
(new ft-frame%l[label "Timer”] [width 200] [height80] [showntrue]))

(defineduration-control
(new ft-slider%/(label "Duration”] [min-valuel0] [max-valuel20])

(definereset-button
(new ft-button%[label "Reset”])

(defineduration (sendslider get-value-p
(definelast-click-time
(hold (map-e secon@snapshot-gsendreset-button get-valueyseconds))
(value-nowseconds)))

(defineelapsedmin duration(— seconds last-click-timg))
(defineelapsed-display

(new ft-message%label (format™a s” elapseql
[parent framé [min-width60]))

9~

Figure 1.4: Implementation of the timer in FrTime

As the user enters the characters 2, 1, 3, 6, this behavies takthe values 2, 21, 213, and
2136.

One other important event-processing operatomeyge-e which combines several
event streams into a single one. For example, if the abovgrgmo took its input from
a pad of graphical buttons instead of the keyboard, it wowdg® all of the event streams
and applycollect-eto the result.

On the surface, signals bear some similarity to constrecisd in other languages. Be-
haviors change over time, like mutable data structuresereturn values of impure pro-
cedures, and event streams resemble the infinite lazydists ¢alled streams) common to
Haskell and other functional languages. The key differeadleat FrTime tracks dataflow
relationships between signals and automatically recoegthem to maintain programmer-
specified invariants.

(defineframe
(new ft-frame%l[label "Timer”] [width 200] [height80] [showntrue]))

(defineduration-control
(new ft-slider%/(label "Duration”] [min-valuel0] [max-valuel20])

(definereset-button
(new ft-button%[label "Reset”])

(defineduration (sendslider get-value-p
(definelast-click-time
(hold (map-e secon@snapshot-gsendreset-button get-valueyseconds))
(value-nowseconds)))

(defineelapsedmin duration(— seconds last-click-timg))
(defineelapsed-display

(new ft-gauge%qlabel "Elapsed time:"] [range duratiof
[parent framé[value elapsel))

Figure 1.5: The FrTime timer with graphical display

1.5 Declarative Reactive Programming with Signals

FrTime’s signal abstractions offer a way to rewrite reacfwograms without callbacks or
side effects. Figure 1.4 shows the code for a FrTime impleatiem of the interval timer
discussed above. In it, there are no callbacks or destausitie effects, and every definition
provides a complete description of the object’s behavi@r dvne. The clicks of the reset
button, instead of triggering an imperative callback, picean event stream. The program
usessnapshot-do pair each click with the time at which it occurred, thenjpots out
just the occurrence times witinap-e It useshold to lock on to the last click time, then
subtracts this value from the current time to compute thpseld time. The elapsed time
then automatically updates as time passes or the user thieksutton.

Other aspects of the user interface are also defined in tefrsigrals. Theduration-
control slider exposes its value as a behavior, from which the progtafines the timer’s
duration. Likewise, the program specifies the message’senbas a string behavior that
depends on the elapsed time. The language automaticalbg ledleof the program’s state
consistent as changes occur.

10

Figure 1.5 shows a variation of this program in which the séaptime is displayed
graphically instead of textually. Unlike in the callbaci&ded version, where making this
change involved modifying code throughout the program,rifirke the changes are con-
fined to the definition oélapsed-display

1.6 Design Principles and Challenges

A fundamental goal in FrTime is to reuse as much of Scheme ssilge, including not
only its evaluation mechanism but also its libraries, esmwnent, and tools. These latter
artifacts are responsible for much of the cost of developifgnguage, and without them
a language can have little practical value. Thus their redfggs an important strategic
advantage. In addition to conserving development ressuiech reuse also makes the
extended language more accessible to programmers familiarthe original language,
thereby encouraging adoption.

To achieve such reuse, the techniques | have developedseé ba lightweight, context-
free transformations of the language’s core constructs ey operty of these transfor-
mations is that they result in a conservative extension®fahguage, so in the absence of
signals, the evaluator defers to the base language’s sesanhis means that pure Scheme
programs are also FrTime programs, having the same measingsgheme, and they may
be incorporated into FrTime programs without modification.

The challenge that arises from this approach is to make ttedlola extension inter-
act seamlessly with the many features available in a riclegpurpose language like
Scheme. Some of the tricky features include:

e higher-order functions,

e control-flow constructs,

e structured data,

e automatic memory management,

e legacy libraries (containing both functional and impemtode),

e an interactive read-eval-print loop, and

11

¢ tools for understanding program behavior.

Making the dataflow mechanism interact with all of theselfe= places considerable con-
straints on the language’s design, and the main contribationy work has been to design
a strategy that can accommodate all of them.

An underlying theme in FrTime’s evaluation model is the use2oomputation, under
a standard call-by-value regime, as the mechanism for kgegtate consistent. While
behaviors are conceptually values that change over oveicmus time, in practice they
are mutable structures whose contents are recomputedpionss to discrete changes.

The main problem this model creates is to find the approptetel of granularity
at which to recompute things. For example, any part of a gureictional (side-effect
free) expression can be evaluated repeatedly withouttaftethe program’s semantics.
Thus, a simple but nae strategy would be to re-evaluate the whole program eauh t
anything changed. However, doing so would be incorrectesperators likaelelay-by
need to remember state over time. The basic model for Frisntigerefore one in which
expressions are recomputed at the finest grain—primitisegature applications and core
syntactic forms likeif. This strategy, which is described in detail in Chapter 2,enev
computes more than is necessary to bring the system to sstemisstate.

The basic evaluation model is also presented in Chapter 3msapart formal seman-
tics. One layer is an extension of the call-by-valsealculus; it specifies the reduction
of FrTime programs to plain values and signals. A slight rficdiion of this layer defines
how the value of a signal recomputes in response to a chamgeemaining layer specifies
how the dataflow evaluator schedules updates to guarantsestancy.

FrTime’s dataflow update mechanism itself incurs significarerhead, so achieving
optimal performance requires more than simply minimizing humber of atomic oper-
ations. Working in a call-by-value host language, it is gaitg¢ much more efficient to
recompute a complex expression in a large, monolithic lmghalue step, than to break
it down to atomic steps and evaluate each one separately. t&haplescribes a static
analysis for identifying maximal fragments of purely fuiectal code, which can then be
executed in a single call-by-value step. This refinemert@#&valuation strategy results in
considerable performance improvements.

12

While recomputation is key to the mechanism for keeping anamog internal state up-
to-date, FrTime also uses it to keep its internal state symihed with the outside world,
through things like graphics libraries and user interfamakits. In these cases, the re-
executed code is not purely functional (rather, its chigppse is to perform side-effects),
so considerable care is needed to ensure that the effee¢sttesaworld in a consistent state.
Chapter 6 addresses this problem from one angle: when thmaekibraries are object-
oriented class hierarchies whose objects encapsulateallats/like numbers, booleans,
and strings. The canonical example is a user interface itp@lkh simple widgets like
messages, check boxes, scroll bars, and gauges.

For more complicated applications, programs need a ricksorament of data struc-
tures, such as lists, trees, and vectors. Keeping the worldistent with such data is a
non-trivial task, since changes can occur at any time orephathin the data and can even
change the structure of the data. Chapter 5 describes seémfegtracking changes within
structured data and communicating them to the world in ahldlyi consistent manner.

Another important aspect of a language is having a progragmanvironment that re-
spects the language’s abstractions and provides toolss® magram development and
understanding. A benefit of FrTime’s evaluation model id thaaturally supports incre-
mental program development in an interactive read-eval-fmop REPL

The DrScheme environment also provides a collection ofstdleht are sensitive to
control flow, including an error tracer and an execution peofi Because FrTime is an
embedding in Scheme, the tools report information abouexieeution of the FrTime eval-
uator as it processes a program. This information is at tlo@gvievel of detail for a user to
understand the behavior of the original program. The taml$put thus violates FrTime’s
linguistic abstractions and only indirectly reflects theyoral program'’s behavior. To ad-
dress this problem, Chapter 7 describes a straightforwatthigue for manipulating the
Scheme tools so that they provide meaningful informatiooualB-rTime programs. The
technique, which is justified by the formal semantics pre=gm Chapter 3, applies to any
host language with a suitable control-flow introspectiorthamnism.

To demonstrate the utility of FrTime, Chapter 8 presentsahguliage’s use in the novel
and non-trivial context of scripting a debugger. Chapterd@oles a discussion of related
work, and Chapter 10 concludes and proposes possible dinsdor future work.

Chapter 2
Core Evaluation Model

This chapter describes in detail the approach for embeddigflow in a call-by-value
languagé.

The following presentation refers to a purely functionddset of Scheme, whose gram-
mar is shown in Figure 2.1. The set of values includes bagsisteats (e.g., numbers and
booleans), primitive operators, linked lists, and usdirgel procedures)tabstractions).
Programs are fully expression-based, consisting of ptaeedpplications, conditionals,
and recursive binding constructs.

The conceptual goal of FrTime is to extend this call-by-eatore language with a
notion of behaviors or continuous time-varying values. The remaining sestionthis
chapter describe how FrTime treats behaviors in each oétieesis. The only exception is
data structures, which involve enough complexity to wartiag@ir own chapter (Chapter 5).
Section 2.10 explains how a notion of behaviors can also bd tismodel discrete event
streams.

Figure 2.2 shows the grammar for the extended language. 8heonstructs include
simply

e a set of primitive behaviors (e.geconds),
e the undefined valuel(), and

e thepr ev operator, which delays a behavior by a single time step.

1This chapter expands on previously published material [26]

13

14

x € (var) == (variable names)
p € (prim) := (primitive operators)
u,v € (v) == true|false|empty|(cons (v)(v)) | (prim) |

(A((var)”) (e)) [0]1]2]...
e€e) u= (v)|(var)|((e){e)”) | (rec{var)(e)) | (if (e){e)(e))

Figure 2.1: Grammar for purely functional subset of core Bcheme

u,v € (fv) == true|false|enpty|(cons (fv)(fv)) | (prim)
(A((var)™) (fe)) | 0] 1| 2]...]| (primitive behaviors) L
e € (fe) == (fv)]| (var)| ((fe) (fe)") | (rec (var) (fe)) | (i f (fe) (fe) (fe)) |
(prev (fe))

Figure 2.2: Grammar for FrTime (extends grammar in Figuig 2.

This grammar defines a new language that allows a behavigygeaa in any context in
which Scheme would permit a (constant) value. Since Screcoa'structs are only defined
to operate on constant values, they must be extended in raesrk meaningfully with
behaviors. The rest of this chapter discusses what it meanset behaviors with each of
these constructs and how FrTime defines the extended sesanti

Before going into the details of the evaluation model, | wiBaliss some high-level
concerns.

2.1 Discrete Modeling of Continuous Phenomena

Behaviors are intended to model phenomena that vary ovemcmnts time. However,
their implementation on digital hardware requires a digcepproximation. In FrTime,
each behavior maintains an approximation of its currentealvhich updates in discrete

15

steps.

In most cases, the accuracy of the approximation dependsednetquency with which
the updates occur; smaller sampling intervals result inllempmps between steps and
therefore smoother curves that more closely follow theiooous ideal. Signals that have
this property (e.g., the results of all stateless transébions and some stateful ones like
integral) are said to beonvergentsince they converge on their ideal values as the sampling
interval tends toward zero.

It is possible, however, to define behaviors that do not ageve For example, the
following expression counts the number of changes in a firagigd timer callednillisec-
onds:

(collect-b(changesnilliseconds) 0 (A (_ n) (add1 1))

The value of this expression grows without bound, and at avgngtimet, its value is
proportional tot times the rate at whicmilliseconds changes. On a slow machine, it
might update only 20 times per second, while on a faster magchi could update 100
times per second or more. As the sampling rate increasesathe of this expression
grows more rapidly. This behavior is therefore saiditeerge

The existence of approximation errors and divergent bensiare unfortunate but nec-
essary consequences of the use of a discrete model. Howleses,are also benefits of
using a discrete notion of time. Most importantly, like thregence of a clock in a digi-
tal circuit, discrete time supports synchronous executidiowing the language to avoid
glitch- and hazard-like conditions and to support extacf consistent snapshots of a
program'’s state.

2.2 Push-Driven Recomputation

A typical evaluator performs a pre-order traversal of anregpion’s abstract syntax tree,
recursively reducing subexpressions to values until riegcthe root. In FrTime, evalua-
tion results in a graph of signals that exhibit differentued over time, and the dataflow
evaluator needs to recompute these values as new inputsibec@ilable.

A natural way to compute values over time is to re-apply tl@dard top-down tree-
traversal whenever any of the input values change. Unfatély thispull-based approach

16

has several drawbacks. For one thing, many subexpressialgs may not change often
(because the values they depend on change rarely), so thatevavill perform many un-
necessary recomputations. One key technique in avoidiagrtfficiency is to maintain a
cache with each subexpression’s most recent value, andexdynpute it when something
upstream has changed.

Another problem is that several subexpressions may sharsaime values. A pull-
based evaluator will naturally recompute these once fon sabexpression that depends
on them, which is problematic for non-idempotent updateg. (state accumulators). To
deal with such nodes correctly, the evaluator needs to enisat it doesn’t update any node
more than once in a given time step, for example by keepingestiamp at each node and
comparing it to the current time before recomputing.

FrTime avoids these complications by instead using a bettpppush-based recom-
putation strategy. Its evaluator maintains a graph thatucap the flow of data between
behaviors. Each node represents a behavior and cachesti@afidr’s most recent value.
When a node’s value changes, it ensures that each node thet tefit is scheduled for
recomputation. By traversing the graph in topological grttes update scheduler guaran-
tees that each node updates at most once, and only when sagnethwhich it depends
changes. When a value changes, everything that dependssored¢amputed within that
time step. Thus values are always kept fresh, even if thegp@reeeded. This prevents the
time leakghat can arise in demand-driven implementations, whererdef computations
accumulate until their results are needed.

2.3 Defining the Dataflow Extension

| now present the essence of this evaluation model througixecutable interpreter. The
interpreter consists of several distinct pieces:

e anevaluator shown in Figure 2.15, which consumes FrTime expressiodsren
duces them to values. Values may include both constantsigmals. The evaluator
connects the signals into a graph that captures their dandencies. The evaluator
is a variation on a standard meta-interpreter for Schenth,edger substitutions.

e a snapshot evaluatgorshown in Figure 2.6, which consumes an expression and a

17

store, and returns the instantaneous value of the expregsien the mappings in
the store.

e anupdater shown in Figure 2.16, which iteratively updates a progsastate once it
has been evaluated.

A program’s state consists of the following:
1. the current timé,
2. the store, represented as an association list of signdltheir current values,
3. the set of dependencies, and
4. the set of signals in need of recomputation

This interpreter is presented for purposes of illustratibhe real FrTime implementation
uses DrScheme’s integrated macro and module system [&tg&éd of an interpreter) to
extend the definitions of Scheme’s core syntax and primiperators and achieve the
same semantics. Thus it reuses Scheme’s evaluation megh&aman even greater extent
than the interpreter.

2.4 Primitive Operators and Constant Values

To explain how FrTime interprets programs, | will step thghuhe evaluation of expres-
sions that exercise various features. To begin, considat dppens if a user enters

(+ (— 2 1) (moduloseconds 3))

at theREPL. The expression is first evaluated by tnealuateprocedure, the necessary
fragments of which are shown in Figure 2.3.

At the top level, this expression is a function applicatisa,it matches thef (. arg9
clause in the evaluator, which begins by recursively evalgaall of the subexpressions
(i.e., the function expression and each of the arguments).

The function position contains the identifier, which matches the last clause in the
evaluator. The evaluator returns a structure containirggetfields: the expression’s value,

2The time does not actually influence evaluation; it is onlgsent as a debugging aid.

18

;) <expr> — (make-resulkval> <new deps- <new signals-)
(define (evaluate expr
(match expr
;; — code for most expression types elided —
[(f . arg9) ; procedure applications:
(match-let« ([($ result vs deps siggevaluate-list(cons f arg3)]
[fv (first v9] [argvs(rest vg])
(cond
;; — code for time-varying procedures elided —
[(prim? fv) ; application of primitive procedures:
(if (ormap signal? vp
(let ([new-sig(new-signal v§)
(make-result
new-sig(union depgmap(X (d) (list d new-sig) (filter signal? argv$))
(union (list new-sig sig9))
(make-resul{apply (eval f) args) deps sigp]))]
;; values:
[- (make-result expempty empty)]))

Figure 2.3: FrTime evaluator (excerpts for primitive procees)

the new data dependencies, and the new signals. In this ttaes&lentifier evaluates to
itself, introducing no new data dependencies or signalfhestast two fields are empty.

The first argument ta- is the function application{ 2 1). The next step is to recur-
sively evaluate each of its subexpressions. In this casef dfle arguments are already
values. The function is a primitive, and none of the argusan¢ signals, so it defers to
Scheme to perform the raw function application, yielding ¥aluel.

The second argument tp is the function applicationnjoduloseconds 3). All of the
arguments are values, lggconds is a signal, so the result is a new signal.

Signals are represented as structures of gige For example, the result ofrfodulo
seconds 3) is:

#(struct:sig0 (moduloseconds 3))

TheO is its identification number, andnoduloseconds 3) is the expression that computes
its value.

Because the new signal refers to (and dependsetynds, the evaluator extends the
dataflow graph with an edge frogeconds to this new signal. Note that the evaluator does
not compute signals’ current values; that is done in a sépapalatestep, described later.

19

seconds

Figure 2.4: Dataflow graph for (#n{odulo second3) (- 2 1))

Having evaluatedrioduloseconds 3) to produce the signal
#(struct:sig0 (moduloseconds 3))

the evaluator is ready to proceed with the evaluation ofapdevel expression, which has
by now been reduced ta-(1 #(struct:sig0 (moduloseconds 3))). One of the arguments
is a signal, so the overall result is again a new signal, itms &s follows:

#(struct:sigl (+ 1 #(struct:sig0 (moduloseconds 3))))

| will subsequently abbreviate signals as jégstruct:sig n...) when the expression is
either unimportant or already shown.
Figure 2.4 shows the graph for the expression discusseeabov

2.5 Updating Signal Values

The evaluator constructs a dataflow graph for an expresbignt does not compute the
current values of any signals. This is done in a separatebgtépeupdater Signals values
are kept in astore which initially maps all signals to the undefined value,

The implementation of the updater’s basic functionalitghewn in Figure 2.5. It con-
sumes a time, a store, a set of dependencids(f9, and a set o$talesignals.

Initially, the stale set contains all of the signals constied during evaluation of the
expression. The updater selects one of them for update#(sayct:sig0 ...). It then

20

;; update:<number> <store>
(define (update t store deps stale
(if (empty? stalp
;; — empty case elided —
(letx ([ready-for-updatdset- stalgtransitive-deps stale dep$
[sigO(first ready-for-updaty)
(match sig0
[($ sig - expn)
(let (Jval (snapshot expr sto)yp
(values t(store-update sig0 val stoyeleps
(set-(if (eq?(store-lookup sig0 stojeral)
stale
(union stale(immediate-depfist sig0) deps))
(list sig0)))]

:» — other cases elided —

)

Figure 2.5: FrTime updater (excerpts for primitive procedy

(define (snapshot expr stoje
(match expr
[‘(if ,c ,el,e? (if (snapshot c stode
(snapshot el stoje
(snapshot e2 sto)j
[($ sig -) (snapsho(store-lookup expr stojestore)]
[($ switch_ _) (snapsho(store-lookup expr stojestore)]
[($ prev_) (snapsho(store-lookup expr stojestore)]
['((X ,vars,body) . vals)
(snapshoffoldl (A (var arg body (subst var arg body vars arg9)]
[CA.-)expd
[(p.valy)
(apply(eval p (map(X (v) (snapshot v stoi valg))]

[xX))

Figure 2.6: A snapshot evaluator for the essence of FrTime

computes its value by snapshoevaluation of its expressionnoduloseconds 3).
Snapshot evaluation, defined in Figure 2.6, computes theeruvalue of a signal-

containing expression, given a store containing the ctinr@lnes of the signals to which

it refers. Suppose that the current store msgrsonds to 0, so the expression’s snapshot

21

value isO. The store is updated to majgstruct:sig0 ...) to 0. This differs from the
previous value ofl, so the updater adds all #fstruct:sig0 . ..)’s dependents to the set of
stale signals. In our example, the only depende#{ssruct:sigl ...), which is already in
the stale set, so this has no effect. However, in subsegeeations, this mechanism keeps
all of the signals consistent with each other as they change.
The updater next processéstruct:sigl . ..) in a store that mapgstruct:sig0 ...) to
0. Its update proceeds similarly to that of the previous diggecept that its expression is
(+ 1 #(struct:sig0 ...)), so its snapshot evaluation yields the valuélhis signal has no
dependents, so the set of stale signals becomes empty,eanddhte cycle is complete.
The updater next allows time to advance to the next step, riy@eats the process de-
scribed above. (In order to avoid monopolizing theu in the actual implementation,
FrTime waits for a given amount of real time before procegdin

2.6 Scheduling of Updates

Consider the expression
(< seconds (+ 1 seconds))

This evaluates to a behavior that should always have theevala, sincen is less than
n + 1. However, wherseconds changes, it makes two signals stale: the one associated
with (< seconds (+ 1 seconds)) and the one associated with (L seconds). If the
former is updated first, then the comparator will seerteevalue ofseconds and theold
value of ¢+ 1 seconds) (which is the same aseconds!), resulting in afalsecomparison.
Once the { 1 seconds) signal updates, thes(seconds (+ 1 seconds)) signal becomes
stale again, and when it updates the second time, it yielletipected value dafue.
This situation, in which a behavior momentarily exhibitsianoorrect value, is called a
glitch. Glitches are unacceptable because they hurt performéaycea(ising redundant
computation) and, more importantly, because they procumaiect values.

To eliminate glitches, the language must guarantee thanesrer it updates a signal,
everything on which that signal depends is up-to-date. rReTensures this by updating
signals in an order that respects the topology of the datajl@aph. The relevant line of
code in the updater is the one that bindady-for-updateo (set- stale(transitive-deps

22

stale depy. This computes the set of signals that depend trangtiielt not reflexively)
on any stale signal and removes them from consideration. sigmals in the remaining
set are guaranteed not to interfere, so the updater canelangf them to process next.
In fact, they could all be updated safely in parallel, butdkquential updater here simply
picks the first signal in the list.

In practice, computing sets of transitive dependents anditferences like this would
be too expensive. In the real implementation, each sigrebhaextra field that stores its
heightin the dataflow graph, which is greater than that of anythingvhich it depends.
The updater uses a priority queue to process signals inasicrg order of height, adding
to each step a number of operations only logarithmic in threlver of enqueued signals.

2.6.1 Subtleties of Memory Management

In the dataflow graph, there is a reference from each beheveach other behavior whose
definition refers to it. These dataflow references, whicmpfvom referent to referrer, are
in the opposite direction from the references that occuimadly in the program. If imple-
mented névely, these references would make reachability in FrTinogmams a symmetric
relation, preventing garbage collection of any part of taetlow graph. To avoid this prob-
lem, the real implementation use&akreferences for the dataflow graph, which are not
counted by the garbage collector.

Using weak references in the dataflow graph eliminates omes®f memory leakage.
However, it is still possible for a dead signal to surviveection; for example, if it is being
updated when the garbage collector runs, then it will termplgrappear live and therefore
not be collected. In addition, its references to other dgynall keep them alive as well,
and so on.

While there is no way to eliminate such transient livenesshftioe system completely,
it is important to reduce it as much as possible. For a simg@ewple of why this is crucial,
consider the following program:

(collect-b(changeseconds) empty
(A (Clst)
(append(take4 Ist)
(list (— milliseconds (current-millisecondy))))

23

This program produces a steady stream of new behaviors @nsepond) that count the
number of milliseconds since their birth. The last five suehdviors are retained in a list,
and any older ones are garbage. Since all of these beha@épend directly omillisec-
onds, as soon amiilliseconds updates, they are all placed on the update queue. Assuming
these are the majority of the signals in the system, on aeeshgut half of them will be

on the update queue when the collector runs, so if the updatigequses strong references,
half of the (dead) signals will survive. Therefore, the eotpd number of signals remaining
after a collection grows continually over time, eventualhoking the system. To prevent
such scenarios from arising in practice, the update quest ago use weak references.

2.7 Time-Varying Control Flow

The previous sections have explored examples in which hetsaare provided as argu-
ments to primitive procedures. However, this is not the evdy in which a program might
reasonably use behaviors. For example, consider the fioldpprocedure definition:

(A ()
(if (zero? ¥
(addlseconds)

(/' 6x))

Suppose that a program applies this function to the conétalt$ evaluation begins sim-
ilarly to that of a primitive procedure application, excépat the function expression is
a \-abstraction, which evaluates to itself as shown in Figure 2Vhile interpreting the
application fv matches (A vars body, so the evaluator performs#substitution, yielding
the following expression:

(if (zero?0)
(add1lseconds)
(/60)

This expression matches thé& € t €) clause in Figure 2.7. It reducezefo?0) to true and
selects the first branch for evaluation. This is exactly hawditional expression would
be evaluated under a standard call-by-value semanticsfathéhat the branch evaluates

24

;) <expr> — (make-resulkval> <new deps- <all signals> <stale signals)
(define (evaluate expr
(match expr
;. — other cases elided —
[Cif ct € ; conditional expressions:
(match-let([($ result cv deps all-sigs stale-sig&valuate §])
(cond|(signal? cy
(letx ([swc(make-switch(if ,[1 .t ,€) cv)]
[fwd (make-signal swg)
(make-result fwdqunion deps((,cv,swq (,swc,fwd)))
(union‘(,swc,fwd) all-sigs) (union‘(,swq stale-sig$))]
[cv (evaluate])]
[else(evaluate §))]
[(.) (make-result expempty empty empty)]
[(f . arg9) ; procedure applications:
(match-let« ([($ result vs deps sigs stgléevaluate-lis{cons f arg})]
[fv (first v9] [argvs(rest v3])
(match fv
[C A vars body ; application of lambda abstractions:
(match-let([($ result v deps1 all-sigs1 stale-sigs1
(evaluate(foldl (A (var arg body (subst arg var body
body vars argvg])
(make-result {union deps dep3Xunion sigs all-sigs)L
(union stale stale-sig3))]
;; — other cases elided —

)

Figure 2.7: FrTime evaluator (excerpts fbexpressions ang-abstractions)

to a signal is irrelevant, since once the branch is selethedzonditional aspect of the
evaluation is complete.

The interesting case is when the value of the condition ishaier. Since the condi-
tion’s value might change, the evaluator cannot simplyctedae branch or the other for
evaluation. Rather, it must dynamically take the value ofolbver branch is selected by
the current value of the condition.

A naive strategy for such dynamic switching would be to evallmeti branches and
simply choose between their values according to the camditiowever, this strategy fails
in general. For example, in the function above, the secoawldbrwould raise division-by-
zeroerror if evaluated while the condition wetreie. The evaluator could work around this

(modulo , 4)

42
seconds

(@)

2
(modulo , 4)

42
seconds

(c)

25

2
(modulo , 4)

42
seconds

(b)

2
(modulo , 4)

42
seconds

(d)

Figure 2.8: Dataflow graphs for a conditional expression

problem by catching and ignoring errors within the inactivanch, but it would still have

problems in other situations, such as when the conditi@aséd to terminate recursion.

To avoid these potential problems, FrTime implements dardils by dynamically re-

evaluating the branches as their values are needed. Eaethtncondition acquires a new

value, FrTime evaluates the appropriate branch and ugdgetentially time-varying) value

until the condition changes again.

For example, consider the application of the above proeetlurfmodulo seconds

4). Evaluation initially proceeds according to the rulesserged above. The argument
reduces ta#(struct:sig2 (moduloseconds 4)), which is substituted into the body of the

abstraction to yield the following:

(if (zero?#(struct:sig2 ...))
(addlseconds)

26

(/ 6 #(struct:sig2 ...)))

The condition reduces to the sigr{ktruct:sig3 ...). Because this is a signal, the evalu-
ator’s (signal? cy test succeeds, and it creates two new signassvichand aforwarder,
abbreviatedwcandfwd respectively in the code. These are the two signals showaldh b
in Figure 2.7 (a).

A switch is a special kind of signal with the following struce:

#(struct:switch4 (if [
(add1seconds)
(/ 6 #(struct:sig2 ...)))
#(struct:sig3))

The first field is an identification number, as in an ordinagnai. However, while an
ordinary signal would contain a single expression, a svgtelpression is split into a
contextand atrigger. For conditionals the trigger is the condition, and the eghis the
conditional expression with a holelf in place of the condition.

The essential idea is that the trigger’s values populatedmext’'s hole, and the re-
sulting expression is re-evaluated each time the triggangés in order to produce a new,
potentially time-varying, value. The forwarder is dynaaiig connected to the most recent
result and just copies the result’s current value as it ceang forwarder is an ordinary
signal whose defining expression is simply another signal:

#(struct:sigb #(struct:sig4 ...))

Recall that the evaluation step does not compute signalgesabnd without knowing the
trigger’s current value, the evaluator cannot determimestivitch’s current branch. This
step is therefore deferred until the update step.

During the update step, the signals created by the evalaatoassigned values. The
ordinary signals (e.g., the ones numbered 2 and 3) updatesasilokd above. Suppose that
signal 2’s value is 2, so signal 3'sfalse The graph now looks like the one shown in Fig-
ure 2.7 (b). When the updater processessthigch(signal 4), it matches thi(struct:switch
...) case shown in Figure 2.9. The most important step isdrctde that reads:

(evaluate(subst(store-lookup trigger stope] ctxt))

27

(define (update t store deps stale
(if (empty? stalp
;; — empty branch elided —
(letx ([ready-for-updatdset- stalgtransitive-deps stale dep$
[sig (first ready-for-updaty)
(match sig
;; — other cases elided —
[($ switch_ ctxt triggen) ; updating a switch:
(match-letx
([fwd (first (filter (X (sig]) (and (sig? sigd (eq?(sig-expr sig) sig0))
(map first storg))]
[old (set-(transitive-depglist sig0) depg
(cons fwd(transitive-depglist fwd) dep3))]
[depsi(filter (A (dep (not (member(second depold))) depg]
[($ result v new-deps new-sigs
(evaluate(subst(store-lookup trigger stope] ctxt))])
(values t(append(map(X (s) (list s L)) new-sig}
(filter (A (m) (not (membeifirst m) old)))
(store-update sig0 v stoyp
(union(map(A (s) (list sig0 9) new-sig}
depsl new-depd (signal? vy (list (list v fwd)) empty))
(set-(union (list fwd) new-sigs stale(cons sig0 oli)))])))

Figure 2.9: The part of the updater that handles switching

This substitutes the trigger’s current valuétse—for the hole in the context and evaluates
the result. Since this is the first time updating this swittlere is no previous subgraph.
Evaluation creates a new sign#(struct:sig6 (/ 6 #(struct:sig2 ...))). It also updates the
store to map the switch’s value to this new signal and addgargiency from this signal
to the forwarder, and between the new signal and the swittte gfaph then looks like
the one shown in Figure 2.7 (c). As the update cycle procesgisal 6 acquires the value
3, and the forwarder (signal 5) copies it. The graph is thablset and its state is as in
Figure 2.7 (d).

In the next update cyclesecondsncrements, and the change propagates through the
rest of the graph. Because the trigger does not change, thehsdaes not update, and the
graph’s structure remains the same. Its state is shown ur&R@7 (e).

In the third update cycle, shown in Figure 2.7 (f), the triggkanges and causes the
switch to update. The old signal, which would erroneousiddi by zero if left to update,

28

0
(modulo , 4)

44
seconds

(f)

0
(modulo , 4)

44

0
(modulo , 4)
seconds

(9) (h)

seconds

Figure 2.10: Dataflow graphs for a conditional expression

is removed from the graph, and the evaluation of the switekygession yields a new graph
fragment, which is spliced into the rest of the graph. Thaltésdepicted in Figure 2.7 (g).

The new signal updates, and its value propagates to the ffdewaas shown in Figure 2.7
(h).

The dashed arcs from the switch to its current branch areattfioc the timely removal
of old signals. These ensure that, when the trigger chaadjex,the obsolete signals will
be destroyed before having a chance to update. They are dvdalwdashes because they
represent control, rather than data, dependencies.

The switching mechanism also plays a crucial role in the eam@ntation of time-
varying procedures. In that case, the trigger is the praeedignal, and the context is
the procedure application with a hole in the function positi Each time the procedure

29

;) <expr> — (make-resulkval> <new deps- <all signals> <stale signals)
(define (evaluate expr
(match expr
;. — other cases elided —
[(f . args)
(match-let« ([($ result vs deps siggevaluate-list(cons f arg$)]
[fv (first v9] [argvs(rest v3])
(match fv
;7 — other cases elided —
;; signal in function position:
[($ signal_)
(let« ([swc(new-switch(consd argvs fv)]
[fwd (new-signal swj)
(make-result fwdqunion deps((,fv ,swq (,swc,fwd))) (union sigs(, swc,fwd))))]
D)

Figure 2.11: FrTime evaluator (excerpts for time-varyimggedures)

changes, its current value is substituted into the hole tla@desulting expression is eval-
uated to produce a new fragment of dataflow graph. The siityilaetween conditionals
and time-varying procedures is clear from the amount of cbdeed between Figures 2.7
and 2.11.

In the actual implementation, there is no interpreter, so/dlues that represent behav-
iors must be directly applicable as procedures. In FrTitis, is made possible by PLT
Scheme’s support for the use of data structures as proced@iher languages provide
different features that can achieve the same purpose. kan@e, in a language like C++,
behaviors can be instances of a class with a function-callaipr. In JavaScript, behaviors
can inherit from the clasBunct i on. As a fallback, in any dynamically typed functional
language, behaviors can simply be represented as prosedure

2.8 Remembering Past Values

The constructs presented so far only allow processing adbets’ values within a single
instant. In practical applications, however, we need thktybo remember the past. For
example, to record the sequence of characters that havetygsssh into a text box, the
language needs a way to accumulate state.

30

(define (update t store deps stale
(if (empty? stalp
(let« ([prevs(map first(filter prev? storg)])
(values(add1l) (foldl (A (prev new-storg
(store-update preystore-lookup(prev-signal prey store
new-storg)
store prevy
deps(immediate-deps prevs dgps
;; — hon-empty branch elided —

))

Figure 2.12: An update engine for the essence of FrTime (pkéar pr ev statements)

FrTime provides this capability by means opeevoperator, which consumes a signal
and returns a new signal whose value is initially undefineyl §nd subsequently equal
to the value its argument had in the previous time step. AsrEi@.12 shows, albrev
signals are updated while the system is in a stable stateWien the set of stale signals
is empty). Theprevsignals therefore effectively update between two timesstefen all
signals are consistent for the previous step, and none wf tlaee changed in the next step.
This property is what allows them to copy values soundly fimme time step to the next.
Moreover, this peculiar update protocol means tirav signals need not depend on their
arguments, and therefore need not update in response tgehamtheir arguments. Since
prevs may refer to each other, it is crucial that all of their ugdadccur atomically. This is
why thestore-lookug in Figure 2.12 all use the original store.

While there are several operators that accumulate histoey, ¢an all be expressed in
terms ofprev. For example, to keep track of the value a signal hdnine steps ago, one
can simply composg uses ofprev. Similarly, to compute a numerical approximation of a
time integral, one can define a signal whose value is injtiedro, then the sum of its own
previous value and the current value of its argument timeslthration of the time step.

Of course, in a real implementation, constructing long yiethrough chains of atomic
delays would be wasteful, as it would require many updateaah time step. Moreover, in
many interactive applications (e.g., games), the programmay want to delay a signal by
a specific amount of real time, which may not correspond tdfixeg number of FrTime’s
update cycles. (The rate at which FrTime processes an upgelgeemay vary according to
the hardware configuration, the number of active signaleersystem, the behavior of the

31

gLconsumery
(dela,y-b)f 190) Values
Alarms

10795523ms 120 @ 10795423ms

10795505ms 120 112 @ 10795405ms
(posn

105 @ 1079538Ims
1079548 ms -x mouse-pos)
10795467 ms 98 @ 10795367ms

10795448ms 92 @ 10795348ms

10795430ms gt 85 @ 10795330ms
=
Wake g «producery decxﬁe“

Figure 2.13: The implementation d&lay-by

garbage collector, and other factors beyond the prograomsal.)

To support real-time interaction, FrTime providesl@ay-byoperator that efficiently
delays a signal by a given amount of real tidtgor at least, by as close an approximation
as it can achieve). Thidelay-byoperator constructs a pair of signals callesbasumeand
aproducer The two signals communicate through a shared queue thataires a sliding
window of the argument’s recent values.

Figure 2.13 illustrates how the consumer and producersezatgto delay a behav-
ior. The consumer (top) depends on the argument (middlei}, .gudates every time the
argument changes, adding an entry to the queue (right) Wehctrrent timef and the
argument’s current value.

Alarms. The dataflow engine provides afarm mechanism, whereby a signal may be
scheduled for update at (or shortly after) a given point a tene. Internally, the engine
maintains an ordered collection of paifsignal wake-timg, and at the beginning of each
update cycle, it enqueues for update all signals whose wales have elapsed. To ensure
that signals are updated as soon as possible after theaseglwake-times, the engine sets
a timeout at the earliest wake-time before asking the rusmtmwait for external events.

The consumer uses this alarm mechanism (left) to schedelprdducer for update at
timet+dt. Thus, when the producer (bottom) updates, at i&asiilliseconds have elapsed
since some change in the argument’s value. The produceedegquhe appropriate value

32

;) <expr> — (make-resulkval> <new deps- <all signals>)
(define (evaluate expr
(match expr
[Crecx €
(match-let« ([sig (make-signall)]
[($ result val deps sigqevaluate(subst sig x B])
(vector-set! si@? val)
(make-result va{union depgif (signal? va) (list (list val sig)) empty))

(cons sig sigp)]
:; — other cases elided —

)

Figure 2.14: FrTime evaluator (excerpts for recursive ings)

and emits it.

2.9 Recursion

An important application of history is in the expression elffgeferential signal networks,
which are necessary for many practical programs. As artnditisn of the power of self-
reference, observe that time itself can be expressed asal sWpose value starts as zero
and is then equal to one greater than its previous value:

(rect (init O (add1(prev 9)))

Here,recis a fixed point operator, and tlat operator uses the value of its first argument
as long as the second argumentLis(Typically, primitive procedures likaddlare lifted
in a L -strict fashion, so they returh if any of their arguments ar¢.)

Figure 2.14 shows how FrTime implements tiee construct. The body is evaluated
with the variable bound to a placeholder signal, whose vstlakts out undefinedL(). Then
the signal’s value is rebound to the result of the evaluatlarthe general case, the result
is a signal, so the placeholder signal depends on the resdtthe result also refers to
the signal. If this chain of reference is not broken bgray, then a cycle in the dataflow
graph results, rendering topological evaluation impdssilm the expression above peev
intervenes, so the graph remains acyclic.

If one were to define an ill-founded behavior, such as

33

(rec x (init true (not X))

then the evaluator would err when it tried to select the nigxted for update. Since every
signal would depend transitively on another signal with pdate pending, it would not be
safe to update any signal. In the actual implementationinf@Tdiscovers the tight cycle
when it rebinds the placeholder and traverses the graphdatephe height assignment.

2.10 Event Streams

The preceding sections have explained how behaviors cttenigh all of the features in
standard (purely functional) Schem&RP, however, also supports the modeling of se-
guences of discrete phenomena, which are calesht streamsBehaviors and events are
in some sense duals, and either one can be used as a basiseiménpthe other, at least
in a model where time is fundamentally discrete. In FrTinehdwviors are primitive, and
event streams are modeled as structured behaviors cathgrigne at which the last event
occurred, and the collection of events that occurred atitinat It is easy to define the stan-
dard event-processing combinators as lifted functions these behaviors. For example:

(define(map-ef &
(make-eventevent-time g(map f (event-occurrencegy)

(define(filter-e p
(make-eventevent-time g(filter p (event-occurrences)))

(define(merge-e e9
(let ([last-time(apply maxmap event-time ¢g)
(make-event
last-time
(apply append
(map event-occurrences
(filter (X (e) (= (event-time elast-timg)
es))))

Stateful event processors (e gccum-hcollect-b can be expressed via recursion amel.

34

2.11 Support for REPL-based Interactive Programming

Another concern for FrTime is supporting a read-evaluaietfpop (REPL) for interactive,
incremental program development. While not technically pathe language itself, this is
an important feature from the standpoint of usability, and that Scheme and other Lisp
dialects have long provided.

FrTime support®REPL interaction by allowing the dataflow computation to run agmc
rently with theREPL The language dedicates one thread of control, calledidta&flow
engine to the update algorithm, while another thread manages tBeH@merEePL, al-
lowing the user to enter expressions at the prompt. The dsreemmunicate through a
message queue; at the beginning of each update cycle, tieeesigpties its queue and
processes the messages. When the user enters an exprefiseoprampt, th&REPL sends
a message to the dataflow engine, which evaluates it andnaspath the root of the re-
sulting graph. Control returns to tiRePL, which issues a new prompt for the user, while
in the background the engine continues processing evedts@iating signals.

This approach differs from the one taken by the Haskelb systems [39, 74]. In
those, a program specifies the structure of a dynamic datafhowputation, but the actual
reactivity is implemented in an interpreter callegctimate The use ofeactimateis an
artifact of a particular implementation strategy, in whahexternal entity was required to
drive reactive computations by pulling values from streaReactimateuns in an infinite
loop, blocking interaction with th&@EPL until the computation is finished. It therefore
creates a closed world, which is problematic for applicsithat need to SUppoOREPL-
style interaction in the middle of their execution.

It may appear that the Haskell systems could achieve sitmglaavior simply by spawn-
ing a new thread to evaluate the callreactimate Control flow would return to theEePL,
apparently allowing the user to extend or modify the progrétawever, this background
process would still not return a value or offer an interfameprobing or extending the run-
ning dataflow computation. The values of signals runninglmareactimatesession, like
the dataflow program itself, reside in the procedure’s sewpkehence cannot escape or be
affected from the outside. In contrast, FrTime’s messageigallows users to submit new
program fragments dynamically, ardaluating an expression returns a live sigmdlich,
because of the engine’s background execution, reflect®pantunning computation.

;) <expr> — (make-resulkval> <new deps- <all signals> <stale signals)
(define (evaluate expr
(match expr
[Crecx €
(match-let« ([sig (make-signall)]
[($ result val deps sigs stgl¢evaluate(subst sig x B])
(set-sig-expr! sig val
(make-result va{union depgif (signal? va) (list (list val sig)) empty))
(cons sig sigp(cons sig stalg)]
[(prev e)
(match-let« ([($ result val deps sigs stadléevaluate §
[new-sig(make-prev vd])
(make-result new-sig defjsons new-sig sigstale)]
[Cifcte
(match-let([($ result cv deps all-sigs stale-sig&valuate §])
(cond|(signal? cy
(letx ([swc(make-switch(if ,[1 .t ,e) cVv)]
[fwd (make-signal sw{)
(make-result fwdqunion deps((,cv,swq (,swc,fwd)))
(union‘(,swc,fwd) all-sigs) (union‘(,swq stale-sig$))]
[cv (evaluate])]
[else(evaluate §))]
[(X\.) (make-result expempty empty empty)]
[(f . arg9)
(match-let« ([($ result vs deps sigs stadléevaluate-list(cons f arg3)]
[fv (first v9] [argvs(rest v3])
(match fv
[C A vars body
(match-let([($ result v deps1 all-sigs1 stale-sigsl
(evaluate(foldl (A (var arg body (subst arg var body
body vars argvg])
(make-result {union deps dep3Xunion sigs all-sigs)L
(union stale stale-sig3))]
[($ signal)
(letx ([swc(new-switch(cons] argvs fv)]
[fwd (new-signal swx)
(make-result fwdunion deps((,fv ,swq (,swc,fwd)))
(union sigs(,swc,fwd)) (union stale'(,swq)))]
[(? prim?)
(if (ormap signal? v
(let ([new-sig(new-signal v§)
(make-result
new-sig(union depgmap(X (d) (list d new-sig) (filter signal? argv}))
(union(list new-sig sig9 (union(list new-sig stalg))
(make-resul{apply (eval f) args) deps sigs stal]))]
[- (make-result expempty empty empty)]))

Figure 2.15: An evaluator for the essence of FrTime

(define (update t store deps stdle
(if (empty? stale
(letx ([prevs(map first(filter prev? storg)])
(values(addl)
(foldl (A (prev new-store
(store-update preystore-lookupprev-signal prey store
new-storg)
store prevy
deps(immediate-deps prevs dgps
(letx ([ready-for-updatdset- stalgtransitive-deps stale dep$
[sig (first ready-for-updaty)
(match sig
[($ sig - expn)
(let ([val (snapshot expr sto)p
(values t(store-update sig val stoye
deps
(set-(if (eq?(store-lookup sig stojeval)
stale
(union stale(immediate-dep§ist sig) depg))
(list sig))))]
[($ switch_ inner-ctxt trigge)
(match-letx ([(fwd9 (filter (A (sigl) (and (sig? sigd
(eq?(sig-expr sig} sig)))
(map first storg)]
[(fwd) (first fwd9)]
[(old) (set-(transitive-dep4glist sig) depg
(cons fwd(transitive-depglist fwd) dep3))]
[(deps] (filter (A (dep (not (member(second depold))) dep3]
[($ result v new-deps new-sigs new-sjale
(evaluate(subst(store-lookup trigger stone
[J inner-ctx)
outer-ctxy])
(values t(append(map(A (s) (list s L)) new-sig$
(filter (A (m) (not (membeifirst m) old)))
(store-update sig v stoyp
(union(map(X (s) (list sig 9) new-sig$
depsl new-depd (signal? v (list (list v fwd)) empty))
(set-(union (list fwd) new-stale stalg(cons sig old)))]))))

Figure 2.16: An update engine for the essence of FrTime

36

Chapter 3
Semantics

This chapter presents a formal semantics of FrTime’s etialuanodel, which highlights
the push-driven update strategy and the embedding in dyal&lue functional host lan-
guage. Figure 3.1 shows the grammars for values, exprassiod evaluation contexts. A
system is parameterized over a set of base constants anitiyariaperators (which oper-
ate on these base constants). Values include the undefihesl(\g, booleans, primitive
procedures\-abstractions, and signals. Expressions include valuesegdure applica-
tions, conditionals, andr ev statements. Evaluation contexts [41] enforce a left-giri
call-by-value order on subexpression evaluation.

Figure 3.2 shows the types of various elements of the seasaialiong with the letters
we use conventionally to represent them. dlienction, a parameter to the language, spec-
ifies how primitive operators evaluat® represents the program, of which one (possibly
trivial) expression is evaluated at each moment in tidedenotes a dependency relation:
the set of values on which various signals depehRdand I name sets of signals, arfd
identifies a store, which maps signals to values.

Figure 3.3 describes how a FrTime program evaluates to peodudataflow graph.
Transitions operate on triples containing a signal/set dependency relatiol, and an
expression./ (the set ofinternal updates) represents the set of signals whose values will
need to be computed once the expression has fully evaluBigthg graph construction,
the I parameter accumulates newly created signals/aadcumulates their dependencies.
Sometimes a single rule creates multiple signals, some afhadepend on the others, so
that/ need not accumulate all of the new signals.

37

38

x € (var) == (variable names)
p € (prim) := (primitive operators)
t € (time) == (moments intime)
€ (loc) == (prev(E)(loc)) |(sig(E)(e)) | (switch(E)(E) (loc))
u,v € (v) == L|true|false] (prim)]| (A((var)*) (e)) | (loc)]| ...
e€(e) == (v)|(var)|((e)(e)") | (rec{var){e)) [(preve)) |(if (e)(e)(e))
Ee(B) == [1]({ (E)(e)) | (prev(E)) | (if (E)(c)e))

Figure 3.1: Grammars for values, expressions, evaluatiategts, and signal types

d = (prim) x (V) X ...— (V) (primitive evaluation)
P . (time) — (e) (program fragments)
X, 1 < (loc) (signal set)
D c (v)yx (loc) x {true,fal se} (tagged dependency relation)
S (V) = (v) (signal value)

Figure 3.2: Semantic domains and operations

The first three rules(3,, andiF) are special cases for evaluation steps that only involve
constants. The underlining of these rule names distingsishem from theififted, or
signal-aware, counterparts. The underlined rules beraw®ald be expected in a standard
call-by-value semantics.

The next three rulesi(3,, andIF) define the behavior of primitive application, ap-
plication of \-abstractions, and conditional expressions (respegjivelthe presence of
signals. Understanding them requires a knowledge of ttierdiit varieties of signals and
what they mean.

It is instructive to view signals from two different perspiges. One view is as abstract
entities that have an associated (constant) value at eachipdme. This view is embod-
ied semantically by the stor&Y, which explicitly maps signals to their values at a given
point during evaluation. This view naturally gives riselte notion ofsnapshot evaluation
(Figure 3.4), in which signals evaluate to their projecsiama given store.

39

{v1,...,u,} N {loc) =0
(I,D,E[(pvy...v,)]) — (I, D, E[6(p,v1,...,0,)])

(I, D,E[(A(x1...2p) €) v1...0,)]) = (I, D, Ele[vy /1] ... [vn/xa]]) 3,

(I,D,E[(if true ejey)]) — (I,D, Eleq]) (1E)
(I,D,E[(if false eje)]) — (I,D,Eles]) —

{vi,...,u,tN{loc) =X # 0 oc=(SigFE(pvy...v,))

()

(I, D,E[(pvy...v,)]) = {U{c},DU (X x{c}), E[o]) ©)
g,=(SwWitchE([|v...v,)0) of=(sigFEoy,))
(I, D, El(0v1...0)]) = (I U{og}, DUA{(0,0), (04,0¢)}, Eloy]) ’
gg=(SWtchE(if []e e)o) or=(sigFEoay) (F)
(I, D, E[(i f 0ere)]) = (I U{oy}, DU{(0,0y),(04,07)}, Eloy])
oy = (SWiteh E((A @) e) [o) o= (sigEa) e
(I, D, E[(rec ze)]) — (IU{ag}, DU {(0g,0/)}, Eloy])
o= (prev E o)
{1, D, E[(prev o))y — (I, D, Elo]) (PREV
Figure 3.3: Evaluation rules
El(pvi...v,)] —s E[0(p,v1,...,0,)] (0s)
E[(A(z1...2p)) v1...0,)] —s Ele[vr/z1] ... [vn/xn]] (Bus)
E[(if true e e))] —5 Eleq]
E[(if false ¢ e) —s Ele] (IFs)
Blo] s B[S(0) @

Figure 3.4: Snapshot rules

Since the underlying model is call-by-value, another s#asiiew of signals is as ex-
pressions that return different values to their contexey dwne. This view is embodied
semantically in the representation of each signal as arbedgestructure containing an
evaluation contex# and the information needed to compute the signal’s currahtev
This view helps to maintain and elucidate the relationslepveen the dataflow and call-
by-value aspects of the language’s evaluation model. Téigeal structures are as follows:

40

Iso=(sigFEe)¢ D(I) e—%v
D(o) ifv# S(0)
0 otherwise

(U-siIG)

(t,S,D,]}\'—>(2€,S[0»—>ULD,([\{U})U{)
o,=(SWitchEyEo)el o= (sigEo,) Y. = D" (o,)\ D*(0y)
(I\X,D\ (loc)x X, Ey[E[S(0)]]) —* (I, D', Ey[v]) YW=I\({\Y)
{t,5,D,1) = (t,Slog — v], D"U{(v,04)} U ({og} x &), (I"\ {og}) U{os})
(Uu-swo)

P(t)=e (0,D,e) —* (I, D', v)
S" = S[(prev E a’) — S(0")]orev £ o) € dom(s)
(t—1,8,D,0) <% (t,5', D', 1UD'({o € dom(S) | S(c) % S'(0)}))

(u-ADV)

Figure 3.5: Update rules

si g These signals are simple time-varying values, defined byra@\ptunctional trans-
formation over other time-varying values. Easihg signal identifies the evaluation
context that created it and the expression whose snapsaliagion produces its
values over time. Mosti g signals are created by theule, which deals with appli-
cation of primitive procedures to signals.

prev Such a signal takes on exactly the values of some other sigonaldelayed by
one instant. By chaining together sevgralevs, one can implement longer delays,
and in generapr ev supports the construction of signals that compute aritrar
complex functions of the system’s history.

swi t ch These signals correspond to places where the value of s@ger signal influ-
ences the program’s control flow. Whenever the trigger chartpe evaluator plugs
its new value into a givemner context, the result of which generally evaluates to the
root of a fragment of dataflow graph. This node becomes assacivith anouter
context, which is the overall context for te&i t ch signal. In essence, tlsaM t ch
allows different fragments of graph to be constructed anittbed into graph for the
whole program.

Theo rule, applied to a primitive procedure applicatignv . . .) in evaluation context
E, creates &i g signal with context and expressiofp v .. .). This new signal depends
on all of the signalsim . . ., so the rule adds all of the corresponding pairs to the deperyd

41

relation. Since a proper value for the new signal is unknoamd(cannot be computed
without a suitable store—see Section 2.7), the rule enshad$he new signal is a member
of the resulting/.

Thef, andiF rules creatswi t ch signals. This is because, in each case, the value of a
signal affects the control flow of a computation that defifesdverall value of the expres-
sion. In the case of the rule, the value of the test expression determines whichdbren
evaluated, while in thg, rule, the function varies over different primitive opeceis and
A-abstractions, which are applied to the (possibly timesvey) arguments. Eacéwi t ch
signal cooperates with another signal that forwards theevaf the current subgraph.

TheRECrule also works by creatingsan t ch signal, albeit in a slightly different way
from the other rules. In this case, the switch is not recorted dependent of the trigger,
S0 no actual switching ever occurs. The rule just uses theelsiwg mechanism to defer
evaluation of the body. This deferral is necessary in ord@réserve the small-step nature
of this layer of the semantics. (Evaluating the body woulguree a full reduction, i.e., a
large step.)

ThePREVrule produces ar ev signal, which contains the signal to be delayed and the
context awaiting the delayed valyar. ev signals have no dependencies and are not added
to the set/, so they always have the undefined valug &t the end of the instant in which
they are created.

Figure 3.4 defines snapshot evaluation. It is essentialiy pall-by-value evaluation of
FrTime expressions, except that signals are no longerderesd values. Instead, they must
be looked up in the given store. It is worth noting that onenglg value may be another
signal, so the lookup process must recur until it reachesdinary (constant) value.

Figure 3.5 shows the set of rules that define the schedulidgtaflow updates. These
rules operate on 4-tuples containing a tilme storeS, a dependency relatioP, and a
set/ of signals with potentially inconsistent values. The maimgmse of these rules is to
define legal orderings of individual signal updates such, théhin a given unit of time,
each signal updates at most once, after which its value rencansistent for the remainder
of the time unit. We will make these notions more precise ertdst of this chapter.

There are only three update rules, each of which focuses aartecydar variety of
signal:

42

U-SIG The rule for updating &i g signal is straightforward. Its expression is snapshot-
evaluated in the current store, and the store is updatedthetisignal’s new value.
If this value has changed, then all of the signal’'s depersdarg added to the set of
potentially inconsistent signals.

U-ADV This is the rule for advancing to the next time step, whictsfisdenever all signals
are up-to-date (the sétof out-of-date signals is empty). The rule first evaluates th
new expression for this timestep, extending the dependesiaiion and computing
an initial set of out-of-date signals. It then seeds theesyswith change by updating
any pr ev signals whose inputs have changed and adding all of thegrabmts to
the new initial/.

u-swc This is the rule for updatingwi t ch signals. It is significantly more complicated
than the others. It can only fire when a switch’s trigger hasged, and it completely
removes any signals previously constructed by this swigtbre constructing a fresh
fragment of dataflow graph. The new fragment is the resulbofmosing the switch’s
inner and outer evaluation contexts, filling the hole witl thgger’s new value, and
evaluating until the outer context contains a value.

A note on memory management. In this idealized model, signals only become superflu-
ous when they are switched out, in which case they are ettplieimoved from the graph
by ruleu-swc. In the actual implementation, the use of additional fezgu(e.g., imper-
ative updates) can cause fragments of the graph to becoraadlvable without notifying
the language. This explains why the implementation requireak references for the data
dependency references, but this notion is unnecessarg sethantics.

Lemma3.1.If (I, D,ey —* (I', D', €'}, then] C I"andD C D'.

Proof. By induction on the length of the reduction sequence, witre Gagalysis on the
reduction rules. The dependency relation and set of intenp@dates are either extended
or passed through unchanged in every transition, a fadyeasified by inspection of the
rules. O

Definition 3.1. We say that an expressierrefers to a signale if o is a subexpression of
e. We writeR[e] for the set of all signals to whichrefers. R is defined recursively by case

43

analysis on the abstract syntax for expressions:

RI(sig Ee)] = {(sigFe)}UR[]
R[(switch Ey Eo)] = R[E[0]]
R[(prev Eo)] = {o}UR[0]
R[A(z...)e)] = f?ﬂeﬂ
Rl(er ... en)] = U Rle
Rl(recwve)] = R[[e]]
R[(if ececer)] = Rle]UR[e] U R[ey]
R[e] = 0 (for all other cases)

We also generaliz& to operate on sets of signals in the natural way:
= U Rlr]
cEX

Lemma 3.2. The value of an expression is independent of the values &igngls to which
it refers.

Proof. Evaluation occurs in the absence of a store. O

Lemma 3.3. The snapshot-evaluation of an expression is completermated by the
values of the signals to which it refers. Formally: for all @sS and .S, if S(o) = S’(0)
forall o € R[e], thene —% ¢’ < e =%, €.

Proof. By induction onn with case analysis on the snapshot evaluation rules. The onl
case that refers to the store at albis O

Definition 3.2 (natural dependencel\ signalo, naturally dependson another signatr,
if and only if for some values of the variables below, where: v} andwv, # v):

(t,Slov = vi1], Do, {o2}) — (t,S[on = v1,02 = va], D, D(02)) and
<t7 S[Ul = UﬂvDO? {02}> - <t7 S[Ul = 0/170_2 = U;LD/?D/(U?»

44

In other words, it is possible to choose different valuessfosuch that the outcome of
updatingo, is different for each.

Theorem 3.1.If o5 naturally depends on;, theno, refers too, (o7 € R[o2]).
Proof. By case analysis on the kind of.

si g The value of(si g E e) is computed by snapshot evaluationcoBy Lemma 3.3, in
order fore to evaluate to two different values under two different eorthe stores
must map some € R[e] to two different values. However, in the definition of
influence, the two stores differ only on the valueref Thus,o; € R[e].

prev The value of(pr ev E oy) is just the value of, in S. Thuso; (and onlyo;) influ-
ences it. Moreover, that, € R[(pr ev E o,)] follows directly from Definition 3.1.

swi t ch The value ofs, = (switch Ey E o1) is computed by (partially) evaluating
e = Ey[E[S(01)]], so changing the value of may yield different results. However,
by Lemma 3.2, this evaluation does not depend on the valuasyasignals to which
e refers. Thus, the largest set of signals on whigtcan naturally depend i }.
By Definition 3.1,R[e] 2 {01}, from which the implication follows.

Related to natural dependence is the notiooarftrol, defined as follows:

Definition 3.3. A signalo; controls another signab, if and only if for any time, there
exist storesS and.S’, dependency relation® and D’, and signals set$ and I’ such that:

(t,S,D, Iy — (t,5' D' I
oo € 1

o ¢ T
€ dom(D)Urng(D)

¢ dom(D')Umg(D')

02

02

45

Intuitively, control refers to the ability for one signalterminate another. This relation-
ship exists so that, when conditions arise in which updatiemnal might cause evaluation
to get stuck, the signal can be removed before it has a changedate. As with natural
dependence, when this relationship holds, it is importaaitthe controlling signal updates
first, a property that should be enforced by the dependeratiae D, as follows:

Definition 3.4 (soundness of dependency relatioA)dependency relatiof is soundwith
respect to a signal set if and only if, for all pairs of distinct signaléo,, 05) € R[X]?
(whereo, # (prev E oy)), if o9 naturally depends on, then(oy,0,) € D. Also, ifo;
controlso,, then(oq, 02) € DT (the transitive closure ab).

Signals in gor ev relationship are specifically excluded because the depegdela-
tion works contrary to normal in the casemfevs. This is to ensure that@ ev signal
always sees the observed signal’s vdle&oreit updates, so that at the end of the time step
it will reflect the stable value from thgrevioustime step.

The call-by-value rules produce sound dependency rekation

Theorem 3.2 (preservation of soundness by evaluatiolf) D is sound with respect to
I D Rle] and(I, D,e) —* (I', D', v), thenD’ is sound with respect t&[v] U I'(D I).

Proof. By induction on the length of the reduction sequence. The base, where is

a value, holds trivially. The induction step involves casalgsis of the reduction rules
(Figure 3.3). Ruleg, 3 , andIF are trivial because they do not affect the dependency
relation. The other rules behave as follows:

0 The rule refers only ter and the elements df, so it cannot affect any other signals.
The new signab will update according to the rule-siG; this performs snapshot
evaluation of the expressianin store S, which is only affected bys’s mappings
for signals inX. Thus,o depends on at most the signals’in The addition of x
{o} to the dependency relation therefore reflects all possitdigtianal dependency
relationships, thereby preserving soundness.

B, The only signals involved in the transition argos,, ando;. Clearly,o; naturally de-
pends orv,. By Theorem 3.1 and Lemma 3.2, may only naturally depend an.

46

os updates according to-siG, so it has no other influences. Thus, the dependen-
cies reflected in the extension of cover all the new influences. Althoughy will
eventually control all of the signals created during its ated(this is the subject of
Theorem 3.3), at the point of its evaluation it controls magh

IF This case is analogous to that@f.

REC This case is again analogous to that of the previous two. Tfeahce is that there
is noo, or rather thatpr ev o) takes the place af. The interposition of ther ev
breaks the strictinfluence of ono,, so it suffices to add only the single dependency.

PREV This case follows directly from the definition of soundnesfich explicitly ex-
cludes pairs of signals in@r ev relationship.

We now show that the update rules (Figure 3.5) preserve s@ssd

Theorem 3.3.1f D is sound with respect tbU dom(D) U rng(D) and
(t,S,D, Iy —* ('S D' I

then D’ is sound with respect t& U dom(D’) U rng(D").

Proof. By induction on the length of the reduction sequence. The base (no reduction

steps) is trivial. The induction step involves case analgsithe update rules (Figure 3.5).
Rule u-sIG does not affect the dependency relation, and the other tsescproceed as
follows:

U-ADV We assume thaP only returns expressions that refer to signalslinso D is
sound with respect t&[¢]. By the induction hypothesid) is sound with respect to
its domain and range. By Theorem 312,is sound with respect t&[v] and its own
domain and range.

u-swc Initially, the set of signals controlled by, is X. As these are defined biy* (o) \
D*(oy), they are all certainly irD* (o). Before constructing the replacement graph
fragment, the rule removes the signalsifrom every element of the semantics. By

a7

Theorem 3.2, the evaluation &§[E[S(0)]] preserves the soundness of the resulting
dependency relation. All of the signals constructed by ¢ieuation are controlled
by o,, and the resulting dependency relation reflects this fact.

O

Definition 3.5 (local consistency)A signalc = (si g F e) is locally consistentin store
S if and only ife —% S(o). Similarly,c = (swi t ch Ey E o4) is locally consistent irt' if
and only if there exisD and I such that(0, 0, Ey[E[01]]) — (I, D, Ey[v]) and S(o) = .
The notion of local consistency for signals of the ferm: (pr ev E ¢') cannot be defined
solely with respect to a stor€. We observe, however, that the rweapv assigns the
desired value at the beginning of each update cycle, and @3 &s this value does not
change within the cycle, it remains consistent.

Theorem 3.4.1f D is sound with respect to all signals in its own domain and rarage]
(t,S,D,0) —* (t+1,5", D', I), then every signat € (dom D’) Urng(D’)) \ I is locally
consistent in5’. In other words, if an update cycle starts with a sound depecylegiation,
then within that cycle, every signal is always either locatipsistent or enqueued ihfor
recomputation.

Proof. By induction on the length of the sequence of update rule$) ease analysis on
the rules.

U-ADV This rule enqueues for update all of the signals that deperahy signal whose
value is changed by application of the rule. By the assumpifoP’s soundness,
these are the only signals that can become locally incamgistThus the rule pre-
serves the conclusion of the theorem.

U-SIG At most one signalf) changes, and if it does then all of its dependents are erglueu
in I for update. ByD’s soundness, no other signals can be made locally incensjst
S0 again the property is preserved.

u-swc Everything that, controls before the rule fires is deleted from the systemofll
the newly constructed signals are enqueued for update antthef the rule (unless
they depend on another new signal, in which case they aremtisistent), as is,
which is the only signal that naturally dependsogn

48

O

Corollary 3.1 (global consistency at quiescenc#) D is sound with respect to itself, and
(t,S,D,0) —* (t + 1,5, D', 0), then every signab € dom(D’) U rng(D’) is locally
consistent in5’. In other words, if an update cycle starts with a sound depecylesiation,
then when there are no signals enqueued for update (the ehdtaf\tcle, a quiescent state),
all signals are locally consistent, making the system dlglmnsistent.

Proof. Let I’ = () in Theorem 3.4, and the result follows directly. O

Corollary 3.2 (full consistency) If D is sound with respect to itself, then for &1l > ¢,
if (¢,S,D,0) —* (t' > t,5, D' 0), then every signat € dom(D’) U rng(D’) is locally
consistent in5’. In other words, if an update cycle starts with a sound depecylexiation,
then all future quiescent states are globally consistent.

Proof. By induction ont’, using Corollary 3.1 to prove the induction step. The base cas
is trivial. O

Chapter 4
Optimization by Lowering

Chapter 2 explained how FrTime induces construction of afldatagraph by redefining
operations through an implidifting transformation. Lifting takes a function that operates
on constant values and produces a new function that perfitrersame operation on time-
varying values. Each time the program applies a lifted fiandio time-varying arguments,
it builds a new node and connects it to the nodes represeingrguments. Core Scheme
syntactic forms are redefined to extend the graph when ugédimie-varying values.

Dynamic dataflow graph construction offers several bendfiis example, it permits in-
cremental development of reactive programs in, for insaacead-eval-print looREPL).
The implicit lifting also allows programmers to write in ety the same syntax as a purely
functional subset of Scheme. Because lifting is consemakvTime programs can reuse
Scheme code without any syntactic changes, a process weatelparent reactivity

Unfortunately, the fine granularity of implicit graph consttion can result in signifi-
cant inefficiency. Every application of a lifted function ynereate a new dataflow node,
whose construction and maintenance consume significantr@siof time and space. As
a result, large legacy libraries imported into FrTime maloeved down by two orders of
magnitude or more. One experiment, for example, involvéehgiting to reuse an image
library from PLT Slideshow [43], but the result was unusadityw.

This chaptet presents an optimization technique designed to elimirateesof the in-
efficiency associated with FrTime’s evaluation model, elstill giving programmers the
same notion of transparent reactivity. The technique wbsksollapsing regions of the

1This chapter expands on previously published joint worR {#ith Kimberley Burchett.

49

50

dataflow graph into individual nodes. This moves computafiom the dataflow model
back to traditional call-by-value, which the runtime systexecutes much more efficiently.
Because this technique undoes the process of lifting, watdallvering Of course, low-
ering must not alter the semantics of the original programsaarifice the advantages of
FrTime’s evaluation strategy. | present a static analysisdetermines when the optimizer
can safely lower an expression. The lowering analysis anidnjplementation yield a sig-
nificant reduction in time and space usage for real programs.

Lifting and Projection

This chapter is concerned only with behaviors. In FrTimeiasther FRP systems), the
programmer processes events through a special set of ofger&ince these have no natural
analogs in the non-dataflow world, they cannot be used teaesfly and do not involve
implicit lifting. They therefore do not suffer from the assated performance problems,
so | do not consider the problem of optimizing them. While tiieais may generalize to
events, | have not explored such an extension.

FrTime extends Scheme by replacing its primitives Witfed versions. The inverse
of lifting is projection which samples a behavior at the current instant, retrge@imaw
Scheme value. FrTime uses the operatdue-nowto perform projection, but in this chap-
ter | consistently refer to it agroject Formally, these two operations have the following

types:

lift, : (t1...t, — u) — (sig(ty) .. .sig(t,) — sig(u))
project : sig(t) —t

In these definitiong, andw are type variables that can stand for any base (non-sigped) t
andsig(t) is either a base typg or a signal of base type That is,t is a subtype of
sig(t). This means that lifted functions are polymorphic with egto the time-variance
of their arguments, so they can consume an arbitrary cortibmaf constants and signals.
Likewise, projecing the current value of a constant simply yields that cartsta

Note that there is a separate functidh, for each possible.. Scheme supports the

51

definition of a single proceduldt that implements the union of these functions forrall
In the rest of the chapter, | shall refer simplylift, leaving the arity implicit.
Lift andprojectare related through the following identity:
(project((liftf)s...))= (f (projecty...)

At any point in time, the current value of the application difted function is equal to
the result of applying the original, unlifted function taetpbrojections of the arguments.

Throughout the rest of the chapter, | will refer to constartd signals as inhabiting
separateéayers Specifically, | will talk about constants as belonging tower layer, and
| will underline the names of lower functions, which can only operate on emtst In
contrast, | will say that signals belong to apperlayer, and | will put ahat over the names
of upper functions, which can operate on signals.

Since lifting generalizes the behavior of raw Scheme fomgj it is always safe to sub-
stitute a lifted function for its lower counterpart. FrTirdees exactly this, so programmers
rarely need to worry about accidentally applying lower fiimrs to signals. (The exception
is when they import raw Scheme libraries, whose procedures be explicitly lifted.) In
the next section, we shall see that this extreme consemvadikes a toll on performance,
which will motivate an exploration of ways to avoid it whengsible.

The Need for Optimization

In otherFRP systems like Yampa [74], programmers can manually choasegrénularity
at which to lift operations. It is in their interest, in terro$ both human and machine
time, to do this as little as possible, which means placirgyliths at the highest level
possible. Regardless of where the programmer decides tliftmtHaskell’s static type
system ensures that behaviors are never passed to unliftediyes, and operations are
never lifted twice.

In contrast, FrTime handles reactivity in a dynamic and inipmanner. All primitives
are lifted, and every application of a lifted function to &marying arguments results in
a new dataflow graph node. For example, Fig. 4.2 (left) showslataflow graph for the
relatively simple function in Fig. 4.1. To evaluate this &tion, six signal objects must be
allocated on the heap and connected together: one for-eaeh sqgr (square), angqrt
(square root) in the expression. Each signal object reguiearly one hundred bytes of

52

(define distance
(A (x1ylx2y2
(sqrt (+ (5q7 (= x1 x2)
Gar (= y1y9)))

Figure 4.1: Definition of distance function.

= (A2 [(Ay)?] ~ | (Ar)? + (Ay)? | | /(A2)2 + (Ay)?

X YN
Aoyl < xh Y32 xT x5 y1y2

x1 x2 yl y2

Figure 4.2: Left: Unoptimized dataflow graph for the disefienction. Right: optimized
equivalent. Various stages of optimization are shown invben. Inter-procedural opti-
mization can improve the result even further. Each box issg¥adlocated signal object.

memory on the heap.

Whenever one of the inputs to thigstance function changes, FrTime has to update
the four signals along the path from that input to the roof. n{ultiple inputs change
simultaneously, then it must update everything along theruaf their paths.) Each update
requires:

1. extracting the node from a priority queue,

2. retrieving the current value of its input signals,

3. invoking a closure to produce an updated value,

4. storing the new value in the signal object, and

5. iterating through a list of dependent signals and enguogukem for update.

Thus every invocation of théistance function introduces a significant cost in three differ-
ent areas: the time required to initiatpnstructhe dataflow graph, the amount of memory

53

required tostorethe dataflow graph, and the time requiregtopagate changeslong the
dataflow graph.

Figure 4.3 shows another definition of thestance function, this time with the upper
and lower layers made explicit. Note that each of the funsticalled byd@e IS ac-
tually a lifted version of the lower function by the same nanhe other words, they are
just lower functions that FrTime has wrapped (like hiothme:+ wrapped the primitiver
function, above). When lifted functions are composed to ferpressions, every interme-
diate value is lifted to the upper layer, only to be immediapgojected back to the lower
layer by the next function in line.

The goal is to reduce the use of the expensive dataflow ewalbgteliminating some
of the intermediate nodes from the dataflow graph. The kegrohsion is that it is unnec-
essary to use the dataflow mechanism for every step of aegatebmputation. That is,
if an expression consists entirely of applications of dffgimitives, then its graph can be
replaced with a single node that projects the inputs onaéonmes the whole computation
under call-by-value, and lifts the result. | call this treorsnationlowering, since it removes
intermediate lifting steps. Lowering is conceptually sanito Wadler's work on listless-
ness [99] and deforestation [100], which transform progrémreliminate intermediate list
and tree structures.

By moving computation from the dataflow model back into a bgHvalue regime,
lowering eliminates the overhead of repeatedly transfgrvalues between the upper and
lower layers. It also allows the use of the call stack to ti@neontrol and data, which is
much more efficient than using the dataflow graph for the samgose.

In the distance example above, lowering can collapse the entire graph irdingle
node, yielding an order of magnitude improvement in botted@ad memory usage. Sec-
tion 4.9 shows experimental results on substantial program

In general, programs use stateful signal-processing tipesa which cannot be com-
bined directly with call-by-value code. The strategy presd here simply stops lowering
when it encounters a stateful operation. Since there is d fi@eabulary of such operations
(e.g.,delay-byintegral), it may be possible to develop specific techniques for dgaliith
them in the optimizer. For example, Nilsson’s work [73] ®ADT-based optimization for
Yampa includes support for combining stateful operations.

54

(define sqrt (lift sqrt))
(define 5gr (lift sqr))
(define I (lift +))
(define = (lift —))
(define distance
(A (x1ylx2y2
(sqrt (+ (5q7 (= x1 x2))
(5q7 (= y1y2)))

Figure 4.3: Definition of the distance function with uppeddower layers made explicit.

4.1 Dipping and Lowering

| now introduce a new syntactic form calldib. Dip is like lift andprojectin that it bridges
the two layers, but it does so in a different way.

Dip operates on two syntactic entities: a list of variables wehadues are assumed to
be signals, and an expression which is assumed to be lower &g expands into an
expression that, at runtime, projects the variables, et@sthe code, and lifts the resulting
value. In this waydip allows an entire subexpression of lower code to be embeadsadki
a section of upper code; wherdds operates on functiongjp operates on expressions.

(dip (x...) & & ((lift (\ (x...) &) x...)

Each time alip expression is evaluated, it adds a single node to the datgfiaph that
depends on all the variables. Note that the list of variaislasco-environment for théip’s
body; it contains all the free variables to which the expmesactually refers.

In order to optimize a whole program, the compiler dips asyr&urbexpressions as
possible. Dipping a subexpression involves extractingatof free variables and replacing
the code with its lower counterpart. To perform this tratistg the optimizer needs to
know thelower counterparof each function it calls.

The lower counterpart of each lifted primitive is simply tréginal (unlifted) primitive.
Initially, primitives are the only functions with known |l@v counterparts, but as the opti-
mizer processes the program, it generally discovers usfaredtl functions that also have
lower counterparts. A compound expression has a lower eqoantt if its top-level oper-
ation is purely combinatorial and all of its subexpressibage lower counterparts. The

55

upper code

(lift
)

(dip (x ...)

lower code
)

Figure 4.4: Allowed containment relationships for code.

upper code

(ite (lower function))
(ife (lower function))
(ife (Jower function))
(ife (Jower function))

Figure 4.5: Unoptimized FrTime code.

optimizer maintains an explicit mapping between functiand their lower counterparts;
entries in this mapping are denoted @Efﬁq fung.

Not all functions have lower counterparts. For example ftimetion dmy, which
time-shifts a signal’s value, needs to remember the higibris changing input signal. It
cannot do anything useful if it is called afresh with each nalue the signal takes. In
general, any function that depends on history has no meamihg lower layer of constant
values. For expressions that involve such functions, itriigcal that the optimizer not
erroneously dip them, as the resulting program would behmagarectly.

In the following sections, | will distinguish between lovirgg, whichreplacesan upper
expression with a corresponding lower expression, andmjppvhich takes values from
the upper layer to the lower layer and back, with some contiputan between. The
following summarizes the three varieties of code that tésuin these transformations:

Lower code consists entirely of pure Scheme expressions. Alluhetions it calls are
lower versions, so it cannot operate on time-varying values

Upper code is standard FrTime. Each primitive operation consgradataflow node that

56

upper code

(dp (xyz ..

lower code

lower code

Figure 4.6: Optimized FrTime code.

recomputes its value whenever its input values change.

Dipped code is observationally equivalent to upper code, but apereery differently.
Instead of producingnanydataflow nodes, each of which perforrmose primitive
operation, dipped code producasedataflow node that evaluates a complex expres-
sion involvingmanyprimitive operations.

Figure 4.4 shows the allowed containment relationshiptiese different varieties of code.
At the top-level, the program consists of upper code (asshatat actually involves sig-
nals). This code can refer to lifted functions and dippedessions, but not to bare lower
code. The lifts and dips wrap lower code with logic that petget from time-varying
values. In contrast, lower code never contains upper codayfform (including lifted
functions or dipped expressions), since it has no need twepsosignals. In essence, the
optimizer exploits the fact that upper and lower countdgaretwin versions of the same
code; the lower version can be viewed as a special entry fl@hallows skipping over the
extra checking and wrapping needed by the more general wppson.

Figures 4.5 and 4.6 illustrate the goal of optimization. ufgg4.5 represents unopti-
mized FrTime code. In it, the upper program refers to a latgelver of small fragments of
lifted? code. In comparison, Figure 4.6 represents code of thelsatriste would like the
optimizer to produce. The fragments of dipped code have beebined into a small num-
ber of larger blocks, reducing the overhead associatedaositistructing and maintaining a
signal for each atomic operation.

2Because the application of a lifted primitive yields the samsult as dipping, everything could just be
expressed in terms afip. However, lifting is an established term within theP community, so | use it for
clarity.

57

4.2 The Lowering Algorithm

The optimization algorithm works by rewriting expressiagasemantically equivalent ex-
pressions that contain fewelips, each of which contains a larger body of code. This
rewriting is an application of equational reasoning andigtified by the definition oélip
and thdift/project identity.

The algorithm works in a bottom-up fashion. It begins witk thaves of the abstract
syntax (variables and constants) and proceeds to theinfpaxpressions, their grandparent
expressions, and so on.

Formally, the algorithm is guided by a set of rewrite rulearite " - e ~ (dip () €’)
to indicate that’ is the dipped version aof, where the environmerit associates function
names with the names of their lower counterparts,&isdhe set of all signals on which the
value ofe may depend. For example, dipping of literalsimply involves wrapping them
in adip expression. Since the value of a literal is always a congsitandipped equivalent
does not depend on anything:

Fc~ (dip () ¢

The optimizer treats identifiers similarly, but since thegymefer to signals, it includes
them in the list of dependencies:

- id ~ (dip (id) id)

For example, in the case of tlestance function, the optimizer arrives at the identifiers
x1andx2 and applies this rule, resulting in the following expressio

(define distance
(A (x1ylx2y2
(sqrt (+ (sgr (= (dip (x2) x2)
(dip (x2) x2))))
(5q7 (— y1y2)))
The optimizer proceeds by combining dipped subexpressitnslarger code frag-

ments. In the case of function applications, it computesithen of the arguments’ depen-
dencies and replaces the lifted function with its lower devpart:

58

o~

f,fiel I'Fe; ~ (dip (77) €))

i

.

o~

'k (fe;...)~ (dip (z;...) (fe,...))

(2

Continuing thedistance example, one application of this rule produces the follgwin
result:

(define distance
(A(x1ylx2y2
(sqrt (+ (sqr (dip (x1 x3 (= x1 x2))
(5q7 (= y1y2))))

Applying this rule once more produces:

(define distance
(A(x1ylx2y2
(sqrt (+ (dip (x1 x9 (sqr (= x1 x2))
(ar (= y1y2))))
Next, the optimizer dips the second argumenttavhich is transformed identically to
the left branch:

(define distance
(A(x1ylx2y2
(sqrt (+ (dip (x1 X2 (sqr (= x1 x2))
(dip (Y1 Y3 (sqr (= y1Yy2))))))

Since dipping does not change the observable semantics ex@ession, it is safe
to stop optimizing at any time. In this case the bottom-updrsal will continue until
it reaches the\, at which point it must stop because of subtleties involveith \ambda
abstractions (explained below).

The final optimized result contains only a singip expression, which means that when
evaluated, it creates only a single dataflow graph nodeadsiéthe six nodes required for
the original function. Figure 4.2 shows the final dataflowpiraalong with some interme-
diate graphs. The final code is as follows:

(define distance
(A (x1ylx2y2

59

(dip (x1 x2yly2
(sqrt (+ (sqr (= x1x2))
(sqr (=y1y32)))

Though the above example does not containlahgxpressions, dipping them is also
straightforward. The newly-introduced bindingl) is excluded from the body’s depen-
dency list ;) because it is guaranteed to be subsumed by the bound vdkgEndency
list (23,).

['F v~ (dip (2) v) ['F e~ (dip (2;) €)
['F (let ((idv)) e) ~ (dip (7, U (2, \ id)) (let ((id V")) €'))

The following subsections describe the details of optingzihe language’s remaining
syntactic forms.

4.3 Lambda Abstractions

Dipping a\ expression is somewhat subtle. For example, suppose tineiogtencounters
the following expression:

(A (¥) (+x3))

So far, it has dipped expressions by wrapping their lowerathterparts in thelip form.
If it does that here, the result is:

(dip O (A (9) (=x3)))

This is clearly unsafe, because if the resulting closureevaplied to a signal, the lowered
+ operator would cause a type error. To prevent such errocgnitonly dip thebody;
instead of the whol@ expression. Then the result is:

(A (¥ (dip (¥) (=x3)))

In general, the rule is as follows:

I'F e~ (dip (%) €)
I (A (¥)) ~ (A (9) (dip (7) ¢))

60

If the optimizer never lowered function bodies, then it wbbke incapable of discov-
ering lower counterparts of user-defined functions. Thisildanake the analysis purely
intraprocedural, greatly reducing the number of oppottesifor optimization and there-
fore the utility of the technique.

The ability to achieve interprocedural optimization tadgantage of the fact thatidp
expression’s body is the original expression’s lower ceypdrt. Therefore, if the optimizer
successfully dips a function, then it knows the functioowér counterpart. | writd' -

e 25 (dip (%) ¢') to indicate not only that’ is the dipped version af, but that in addition
e is a\ expression whose body can be lowered:

I'Fe~ (dip (7) €)
Ik (A (@) ¢) & (dip (7\7) (A () ¢))

References to variables bound by the lambda’s argumentéseamoved from the list
of dependencies, since in a lower context they cannot balsign

When the transformation applies, the optimizer adds a top-levelnitesn for the
lower counterpart of, calledf, and remembers the associati@m:

~

LU (f,f) - e~ (dip (7) ¢)

CUGE - e (dip () ¢)

I'+- (define fe) ~ (begin (definef (dip () ¢))
(define f "))

The above rule expands the scope of the optimization to diecinterprocedural opti-
mization. On the other hand, if a definition doest have a lower counterpart then only the
dipped version is defined:

I'Fe~ (dlp (f) 6/)
rUf.f) ke (dip () ¢)
I+ (deﬁne?e) ~ (deﬁne?(dip (7) €))

If a program contains a sequence of definitions, each defmisi dipped separately:

I'Fe; ~ (dip (77) €])
I'F (begine;...) ~ (dip (z;...) (begine€,...))

61

For concision and clarity, the above judgements do not destne full mechanism for
interprocedural optimization. Adding this would be strafgrward but would increase the
size of the judgements considerably.

4.4 Conditionals

The criterion for dippingf expressions is the same as for all other expression tydes: al
their subexpressions must have lower counterparts. Mergthe consequence is also the
same, namely that the resulting node depends on the unidre dubbexpressions’ depen-
dencies.

Conditional evaluation in FrTime is relatively expensive,dpping conditionals can
improve performance significantly. Moreover, dipping ohddionals is necessary in order
to define lower counterparts for recursive functions, whigdkes it possible to collapse a
potentially long chain of graph fragments into a single node

4.5 Higher Order Functions

Higher order function applications, which evaluate a cteqpassed as an argument, cannot
be dipped using only the strategy defined in this paper. Famgke, consider the type of
map:

map : sig(sig(t) — sig(u)) x sig(list(t)) — sig(list(u))

map’s first argument is a signal, which can be called to producdhaer signal. That is,
the choice of which function to apply can change over timegaasthe result of applying
the function. Dipping only removes the first kind of time degency, not the second. If
(map, map) were a valid upper/lower pair, then the typemip would have to be:

map : (sig(t) — sig(u)) x list(t) — list(u)

62

Clearly this could cause a problem at runtime, since the hetua doesn’t support
functions that may produce signals. In order to avoid thabfam, the optimizer never
associates a lower counterpart with a higher order functieor the built-in higher order
functions such aswap and@, it just omits them from its initial mapping. However, this
still leaves the question of higher order functions writbgrusers.

The only way a user-defined function can be assigned a lowartermart is if its body
can be completely lowered; no higher order function carsathis requirement, since
at some point it must call the procedural argument. Lexicapsg guarantees that the
function’s arguments will have fresh names, so the optimizenot possibly know of a
lower counterpart for the argument closure. Since the fanehakes a call with no known
lower counterpart, the body is not lowerable.

A static dataflow analysis could address this weakness loyifgig closures that have
known lower counterparts. However, the need for such amsiia has not yet arisen, and,
in any case, it is always safe to assume the absence of lowetarparts. It just means that
certain expressions cannot be optimized.

4.6 Inter-Module Optimization

DrScheme’s module framework makes it easy to write the dpémn such a way that it
processes each module individually. An unfortunate comsece of this approach is that
the associations between user-defined functions and tivear lcounterparts is not shared
between modules. Unless the optimizer can recover theseiasens, it will lose many
opportunities for optimization. It will be unable to optinei any expression containing a
call to a function whose entry was forgotten, even if that isaih a deeply nested subex-
pression. For commonly used functions such as those thapuoiate low-level data types,
this effect can cascade throughout much of the program.

In order to recover the lost associations, the FrTime og@muses a consistent nam-
ing convention to identify the lower counterpart of an upperction (Scheme doesn't
understand the underline and overline annotations, so soneeint of name mangling is
necessary in any case). Because of this naming convent®wptimizer can recover the
forgotten associations simply by inspecting a moduletsaisexported identifiers. Thus it
can perform inter-module optimization.

63

¢~ (dip () ¢) (consT)
Fid ~~ (dip (id) id) (VAR)
(f, Z Lk e (dip (7)) €] (APP)
TF(fer..)~ (dip (5..) (fe,.)
['F v~ (dip (z) v) ['Fe~s (dip (27) €)

TF (let ((id 0))) — (dip (&, U (@ \ id) (et ((dv)) &) ED

I'Fe~ (dip (Z) €)
T (3 (@) ¢) = (A (8) (dip @) &) (LAMBDA)

ke w(ip () ’)

(LAMBDA -BODY)

U0 e (8 (1))
Uff) e (dip () ¢)
~ (begin (definef (dip (7) ¢))
(define f €"))

(DEFINE-LOWER)
'+ (deﬁnef

Fl_ e ~ (dip (7) ¢)
ruff) ke (dip () ¢)
'+ (define f) ~~ (define f (dip (7) ¢'))

i)

(DEFINE-NO-LOWER)

Tk e; ~ (dip ()

[+ (begine;...)~ (dip (%...) (begine]...)) (BEGIN)
I't ¢~ (dip (z¢))
[~ (dip (23) ')
I'F f~ (dip (7) f') -
Fl—(ifctf)w (dlp(UxtUxf) (lfc/t/f/))

Figure 4.7: Complete description of the lowering transfdrara

64

The flexibility of this mechanism provides an additionallifity benefit: the program-
mer can define hand-coded lower counterparts for functiea®ptimizer is not sophisti-
cated enough to lower automatically.

4.7 Macros

Since macros must be fully expanded before runtime, thephaa& no time-varying seman-
tics. They are therefore easy to support; the optimizer lsiragpands all macros before
attempting to apply the lowering optimization.

4.8 Pathological Cases

In most cases, lowering reduces execution time and memaouyresnents, but there are
instances in which it can have the opposite effect. The reasthat lowering combines
several small fragments of code, each depending on a fewalsignto a large block that
depends on many signals. For example, consider the foltpgimple expression:

(expensive-operatiofguotientmilliseconds 10000))

Thoughmilliseconds changes frequently, thguotientchanges relatively rarely. If run
under the standard FrTime evaluator, ¢uetientnode will stop propagation when its result
doesn’t change, thus short-circuiting the recomputatibthe expensive-operatiomost
of the time. However, in the “optimized” version, this whaemputation (and perhaps
more) is combined into a single node, which must recomjputiés entiretyeach time
milliseconds changes.

As discussed in Section 4.3, interprocedural optimizatexguires that the optimizer
produce two versions of each lowerable procedure definitiore that is merely dipped,
and one that is actually lowered. Lowering thus has the piadeto double the size of a
program’s code. | have so far chosen not to worry about thisuse the optimized code
is static and, in most cases, accounts for a relatively simgadtion of a program’s overall
dynamic memory usage. However, for large programs, this beampme a concern. In
particular, recent versions of DrScheme employ a justaretcompiler, which generates
native code for each executed procedure body. Since naii¥e cccupies considerably

65

Count Needles S'sheet TexPict
Size (exprs) 7 62 2,663 13,022
Start,;, (sec) 9.5 89.0 9.2 35.2
Start,; (sec)| <0.1 35.3 11.8 28.9
Mem,., (MB) | 204.7 581.4 34.8 170.7
Mem,,; (MB) 0.2 240.5 50.9 1194

Shrinkage (ratio 971 24 0.7 1.4
Run,,;, (sec) 4.8 5.6 193 2734
Run,,; (sec)| <0.1 2.0 20.5 3.5

Speedup (ratio) 16,000 2.8 0.94 78.1

Table 4.1: Experimental benchmark results for loweringrogation

more space than expression data structures, lowering bgsotential to increase a pro-
gram’s memory usage significantly.

4.9 Evaluation

This section presents the impact of optimization on sevéraime benchmarks. It also
contains a discussion of the optimizer’s impact on the Uisabf FrTime.

4.9.1 Performance

Four different benchmarks evaluate the effect of the o@ton on the resource require-
ments of various programs. Other than the Count microbendhmane of these applica-
tions was written with lowering in mind, so the findings shibbk broadly representative.

Table 4.1 summarizes the performance resuzedenotes the program’s size mea-
sured by the number of expressions (“parentheses”).,Jhand,,, subscripts denote the
original and optimized versionsStartis the initial graph construction time, whiRunis
reaction time, i.e., the time for a change to propagate tirékie graph. Times 0.1 are too
small to be measurabl®emdenotes memory footprint beyond that of DrScheme (which
is 72MB). Speeduplenotes the ratio between the unoptimized run-time andgtisnzed
run-time, andShrinkagedenotes the analogous ratio for memory usage.

3Measured on a Dell Latitude D610 with 2Ghz Pentium M proceasd 1GB RAM, running Windows
XP Pro SP2 with SpeedStep disabled. The numbers are the meatheee runs from within DrScheme
version 360, restarting DrScheme each time.

66

The Count microbenchmark consists of a function that takeamber, recursively
decrements it until reaching zero, and then increments bacto the original number,
i.e., an extremely inefficient implementation of the idgnfunction for natural numbers.
The purpose of the benchmark is to quantify the potentiabichpf lowering for code that
involves a large number of very simple operations (in thisecanly addition, subtraction,
comparison, and conditionals). The results are dramatianputs around 600, the unopti-
mized version takes several seconds to start and then takdy five seconds to recompute
whenever the input value changes. In contrast, even fotsnpuahe hundreds of thousands,
the optimized version starts in a fraction of a second anétgsdeven more quickly.

The Needles program (due to Robb Cutler) displags & 60 grid of unit-length vec-
tors. Each vector rotates to point at the mouse cursor, ammibr depends on its distance
from the mouse cursor. The main effect of optimization isdatbapse the portions of the
dataflow graph that calculate each vector’s color and atiggsé consist entirely of numer-
ical operations, which are an easy case for lowering). Sinese constitute a significant
portion of the code, optimization has a significant effedte ©ptimized version runs nearly
three times faster and uses about half as much memory.

The Spreadsheet program implements a standard 2D spread&ioemulas are eval-
uated by calling Scheme’s built-eval procedure in the FrTime namespace. The startup
phase has several calculations for drawing the grid, settie size of scroll-bars, etc.,
which are optimized. Somewhat surprisingly, the “optindizepreadsheet requires more
time and space than the original version. This is indeed teounuitive, if not disappoint-
ing. One reasonable explanation is that, because the sheatdwvas designed from the
beginning to run in FrTime, its dataflow graphs already wdficiently under the default
FrTime evaluator. Also, as explained in Section 4.8, theeekaown scenarios in which
lowering can make programs less efficient. In most casednbfficiency is more than
outweighed by the reduction in dataflow evaluation, but agpidy not in this case.

TexPict is the image-compositing subsystem of Slideshdwgse unacceptable execu-
tion performance (under FrTime) motivated this work. As tenseen from the experi-
mental results, lowering yields a speedup of almost tworgrdé magnitude. The result
is still significantly slower than a raw Scheme analog, bst &nough to make it usable
for many applications. This offers strong evidence in suppbthe hypothesis that large

67

dataflow graphs arising from implicit, fine-grained liftimgn lead to a significant slow-
down. Moreover, it demonstrates that lowering makes tramesy reactivity feasible for
real legacy programs.

The TexPict benchmark is also interesting because it frdtyueses higher order func-
tions. The fact that a first order analysis yields a dramatigrovement even in this case
indicates that the current approach is sufficient for a braade of applications, even those
that use higher order functions extensively.

4.9.2 Usability

In DrScheme, any collection of syntax and value definiticas lse bundled into a module
that comprises a “language”. For example, the FrTime laggima set of lifted primitives,
along with special definitions for certain syntactic forragy(, conditionals). The optimized
language is defined similarly, except that it defines a sym&asformer for a whole FrTime
program. FrTime programmers enable optimization simplhgnging the module lan-
guage declaration fromr t i me tof rt i me- opt . The optimizer will be shipped with the
next standard DrScheme release, so no additional ingballat configuration is necessary.

Even though the FrTime optimizer works by performing a settzsource transfor-
mation, it does not adversely affect the programmer’s f@ghib understand the original
program. In particular, the optimizer preserves sourcatlon information within the
transformed code, so the runtime system reports errorsrinstef the original source
code [36, 44]. Furthermore, if optimization fails for somecson of code (perhaps due
to the use an unsupported feature, or even due to a bug in tmeizgr itself), the opti-
mizer will silently fall back to using the original code, andntinue the optimization at the
next top-level definition.

Users can discover whether or not a particular piece of caaeaptimized by exam-
ining the fully expanded result; unoptimized code is preckbly a literal string explaining
what went wrong during optimization. On the other hand, dbagis optimized will stand
out because the names of upper functions will have beenaeglaith the mangled names
of their lower counterparts.

The overhead of the optimization pass is quadratic in théngedepth of function defi-
nitions and linear in the size of the code base. This makeadtical to apply optimization

68

to large systems, such as the TexPict benchmark presented.aburthermore, an opti-
mized module can be precompiled so that the overhead of stadilysis does not need to
be repeated when the module is used later.

4.10 Future Directions

Achieving acceptable runtime performance in FrTime resplithe development of a novel
optimization technique callebwering This technique works by processing the source
program in a bottom-up fashion, recursively combiningscafilifted primitives into larger
dippedexpressions. This has the effect of shifting significant potation from the dataflow
mechanism back to the underlying (in this case) call-byi@a&valuator. Though the analy-
sis is still unable to handle certain language featuresy aatigher order functions, experi-
mental results indicate that the technique can achievenéisant reduction in a program’s
time and space needs, making transparent reactivity aevegdgiroach for realistic systems.

The notion of lowering applies outside BRpP, for example to any monad [101] where
the lift operator distributes over function composition. Spedificavherever (lift g) o
(lLift f) = lift (g o f), andlift is expensive, it is beneficial to rewrite to reduce the num-
ber ofllifts. Lowering may therefore be useful in general for langualgasuse monads
extensively. For example, the Glasgow Haskell Compiler [g8]mizes code by rewriting
expressions according to such identities.

One limitation of this technique is that if a subexpressi@as ho lower counterpart,
then the enclosing expression cannot be lowered eithes lirhitation could be avoided
by hoisting the problematic subexpression out and stotggsult in a temporary variable;
however, in a call-by-value language like Scheme, suchrsfoam must take care not to
affect evaluation order. Translating to continuationgag style would make evaluation
order easier to deal with, but would make it more difficultdentify dippable subexpres-
sions.

For languages that support runtime code generation, itavoelpossible to explicitly
build the dataflow graph first, and then collapse nodes inltebgavalue subexpressions.
This approach would trivially support inter-proceduratiopzation, and would be able to
collapse arbitrary nodes in the dataflow graph, whether tthay contained unlowerable
subexpressions in the original program text. This appreamiid depend on the ability of

69

the runtime environment to compile dynamically-generatedexpressions into efficient
code.
| anticipate the application of the lowering optimizati@nRlapjax. Since the language

provides transparent reactivity and employs a FrTimedikauation model, | would expect
to see similar results.

Chapter 5
Implicitly Reactive Data Structures

The preceding chapters have discussed the core featurevaldtion model of FrTime.
However, they have avoided one important issue that anyipaatanguage must address,
which is how to support structured data. This is a signifieanission, since writing non-
trivial programs requires the ability to organize stat®istich structures. In this chapter,
| discuss the design problems that arise when attemptingdstuctured data types to a
language like FrTime, along with the solutions | have depeth

Since FrTime is an embedding in Scheme, the goal is to suppersame kinds of
structures that Scheme provides. These include lists,tveetors, and user-defined record
types calledstructs. For example, Scheme provides the following primitivasni@anipu-
lating lists:

cons : anyx list — list constructs a non-empty list with a given first element andolis
remaining elements.

cons? : any— boolean determines whether a given value is a non-empty list.
first: list — any returns the first element of a non-empty list.
rest : list — list returns the rest of a non-empty list.

It also provides a mechanism for defining custom datatypesh as aposnfor storing
positions in 2-space:

(define-struct posn(x y))

70

71

This expression results in the following collection of défons:

make-posn : numberx number — posn constructs gosnfrom two numbers.

posn? : any— boolean determines whether a given value ip@sn

posn-X : posn— number extracts thex-component of gosn

posn-y : posn— number extracts the/-component of gposn

In general, the interface to a Scheme data structure cemditttiree kinds of procedures:

constructors such axonsandmake-posn
discriminators like cons?andposn?
accessorslike first, rest posn-x andposn-y

FrTime needs a way of letting all of these procedures workmmggdully in the presence of
behaviors. The rest of this chapter explores the issue$/edan achieving this goal.

The first observation is that FrTime needs to lift any disanators that it imports. If it
did not, then expressions like

(cons?(build-list (moduloseconds 3) addl))
or

(posn?(if (even?seconds)
(make-posi3 4)

0))

would not work as intended. In the first example, theild-list . . .) expression evaluates to
a behavior whose value is sometimesoas Thus, we should expect the whole expression
to evaluate to a behavior whose value is sometimes However, at the level of Scheme,
behaviors are custom structures that are distinct from #mgrdypes (includingons),
regardless of their current values. Thus, the value of thelevlaxpression would be the
constantfalse which is not very satisfying. The same problem would alsseam the
second expression.

Like discriminators, accessors cannot be imported diyéxctb FrTime, or expressions
like

72

(posn-x(if (even?seconds)
(make-posi3 4)
(make-posrd 12)))

would fail with type errors.

The situation for constructors is more complicated thandiecriminators and acces-
sors. The reason for the complexity is that constructoreeastt in Scheme, are oblivious
to their arguments: they just blindly store them in struetur Thus, unlike other primi-
tives, constructors need not be lifted in order to preverdrsr For example, importing
make-posmuirectly and evaluating

(make-posrfmoduloseconds 100) 50)

yields aposnwhosex-component is a time-varying integer.

On the other hand, there is no obvious harm in lifting the troicor. In that case, the
above expression evaluates to a behavior whose value apeatthn time is aposnwith
anx-component equal to the current valuesetonds.

| call these two approaches respectively the useawef and lifted constructors. The
difference between them is quite subtle, and the rest otctapter will explore the trade-
offs between the two approaches. With raw constructorsaltoge evaluates to a structure
containing a behavior, while with lifted constructors itduees to a behavior containing
a structure. Though these are not the same types, they suppasame sets of opera-
tions, and so they are essentially interchangeable. Fongbea the result of the following
program is the same whethmiake-postis lifted or not?

;; compute the Euclidean distance between two posns
(define (distance p1l pp
(sart (+ (sqr (— (posn-x p} (posn-x p3))
(sqr (— (posn-y p} (posn-y p3))))

(distance(make-posn x1 yImake-posn x2 Y2

Lt may appear that the accessors could simply be lifted likergprimitives, but the situation is a bit more
subtle, as | will discuss later.
2However, the performance characteristics of the two amremmay differ, as Section 5.3.1 discusses.

73

5.1 An Application of Structured Data: Animation

Where the difference between raw and lifted constructord$reacomes apparent is when
data structures are used as the medium for communicatifgtietworld. To see this, it
is useful to consider a concrete application, for exampierary for defining functional
animations. Since animations are time-varying imagesf@aaleapproach is to start with a
library for static images, then generalize it to supportgenaehaviors.

A functional image library allows a program to manipulateages as objects, without
calling imperative drawing procedures. The applicatioagpam builds a data structure
representing an image, and the library implicitly perforthe side-effecting operations
required to display it.

In Scheme, the following imperative drawing proceduressaeslable:

(open-viewport title width height) opens a new window with the given width, height, and
title, returning aviewportobject.

(clear-viewport viewport) clears the contents of a given viewport.

(make-rgb r g b) constructs arrgb color structure with the given red, green, and blue
components (as real numbergini]).

(draw-solid-ellipse viewport top-left width height color) draws a solid ellipse of the given
width, height, and color, such that the upper left cornetbounding box is abp-
left.

(draw-solid-rectangle viewport top-left width height color) is analogous tdraw-solid-
ellipse

To make a functional image library, | define a set of data stines that capture the types
and parameters of the shapes that can be drawn:

(define-structellipse(center width height colg)
(define-structrectangle(top-left width height coloy)

Thus, animage consists of an ellipse, arectangle, or actiolie(i.e., a list) of other images.
The library defines a mechanism for drawing the images repted by these data
structures:

74

(define (show! image title width height
(render! imaggopen-viewport title width heigh

(define (render! scene viewport
(clear-viewport viewpolt; start with a clean canvas
(draw! viewport sceng

(define (draw! scene viewpoyt
(match scene

[($ ellipse($ posn x Yy width height coloy

(draw-solid-ellipse viewport

(make-posri— x (/ width 2)) (— y (/ height2))) width height colo}]

[($ rectangle top-left width height colpr

(draw-solid-rectangle viewport top-left width height colr
[scenegfor-each()\ (sceng (draw! scene viewpo)} scenel))

So, for example,

(show!(list (make-ellipsémake-posri00 200) 40 30 (make-rgh0 0 1))
(make-rectanglémake-posr200 100) 20 15 (make-rgbl 0 0))))

opens a new window and draws a blue ellipse and a red rectamnigjle

The next step is to allow a FrTime program to use a behaviowhaye the correspond-

ing Scheme program would use a constant, and to have theimgsoitogram exhibit the

expected reactivity. For example, one might want to makeeliifgsse move back and forth
on the screen, or the color of the rectangle pulsate. Acegrth FrTime’s principle of
transparent reactivity, one ought to be able to produce ananimation by writing some-

thing like the following:

(define cycle(modulo(quotientmilliseconds 10) 100))

(defineoscillate(/ (+ 1.0 (sin (/ milliseconds 300))) 2.0))

(show!(list (make-ellips€make-posn cycl200) 40 30 (make-rgh0 0 1))
(make-rectanglémake-posr200 100) 20 15 (make-rgb oscillat® 0))))

75

5.2 Reactivity with Raw Constructors

If the constructors are imported raw from Scheme, then ngthis program will result in
an error, not an animation. The reason is as follows. Thenaegtitoshow!is an ordinary
Scheme list containing ordinagflipseandrectanglestructures, each of which contains an
ordinaryposnandrgb structure. In the case of the ellipse, ff@sncontains a behavior, and
in that of the rectangle, thegb contains a behavior. Wheshow! callsrender! to display
the image, it determines that its argument is a list and ntapl bver the elements. In the
recursive call, the first argument is tk#ipse sorender! calls draw-solid-ellipseon the
posnwith a time-varyingx-component. The underlying Scheme implementation reguire
that the fields of th@osnbe ordinary numbers, not behaviors, so it raises a type.error

The preceding example illustrates one key point: the lagguaust not allow behaviors
to flow to raw Scheme code. Any values that do flow to Scheme ook therefore be
projected. One way to do so is to applglue-nowto all such values. For example, we
could rewrite the drawing procedure as follows:

(define (draw! scene viewpoyt
(match scene

[($ ellipse($ posn x Yy width height($ rgb r g b))

(let ([x (value-now ¥ [y (value-now }j
[width (value-now width] [height(value-now heighi
[r (value-now J [g (value-now ¢] [b (value-now B]])

(draw-solid-ellipse

viewport
(make-posri— x (/ width 2)) (— y (/ height2)))
width height(make-rgb r g B))]

;; — other cases adapted similarly —

Now an ellipse with a time-varying center is no problem, sitieedraw! procedure projects
everything to a constant before calling the low-level drayyprocedure. Unfortunately, this
also means that there is no animation, since projectinguhemt value of the behaviors
eliminates their reactivity.

Interestingly, if we were willing to employ a polling-bassttategy here, then this ap-
proach would be viable. In that case, we could just re-exettwgt call taender! at a regular

76

interval, which would repeatedly draw the image in its cotrtate. Unfortunately, polling
would mean, on the one hand, recomputing values even whgrhtwen’t changed, and
on the other, possibly failing to render states if valuesgleafaster than the polling rate.
Therefore, we reject the use of polling, so we need to find a efaypaking push-driven

recomputation work.

5.2.1 Choosing the Granularity of Lifting

Lifting is the obvious technique for adapting Scheme code&at to changes in behaviors.
For example, by lifting the drawing procedures (edygw-solid-ellipsg, we protect them
from behaviors without neutralizing their reactivity. kact, by lifting them, we also ensure
that shapes will be redrawn whenever any of their propectiesiged.

Unfortunately, lifting the individual drawing procedurdses not achieve the desired
effect. Each time a shape’s property changes, that shapavismdgain. However, drawing
is a side-effecting operation, so maintaining a graphiealdering of a shape is not as
simple as redrawing it every time it changes. In generaletfexts of drawing the shape’s
previous state must also be undone. (Otherwise, the resalirail of old shapes.)

The preceding paragraph emphasizes an important point titeouse of lifting to com-
municate the state of a dataflow program to an external sys$@me such communication
necessarily involves side effects, the granularity of tfied procedures must be carefully
chosen so that the side effects from their repeated evaiuatays leave the world in a
consistent and desirable state.

In the case of animation, lifting must encompass at leasethéer! procedurerender!
begins by clearing the canvas, which is an easy way of undalingide effects from the
previous rendering. The other option would be to keep trawkehow of the previous
state of the shape and try to undo only the effects from drgutinHowever, this would
be significantly more complicated than just clearing thevaanespecially in the face of
overlapping shapes, and would offer little advantage.

If we lift at a higher level tharrender) (sayshow), then we stil get a consistent
rendering of the shape each time it changes, but we alsogettbing else that we probably
don’t want—a new window for each image. Hence the result issnanuch an animation
as a filmstrip, which is a less intuitive user interface, motrtention a significant leak of

77

(define (deep-project struct/bhyr
(cond
[(behavior? struct/bhyr
(deep-projec{behavior-value struct/bhyy]
[(cons? struct/bhyr
(cons(deep-projecffirst struct/bhvy)
(deep-projec{rest struct/bhvy)))]

[elsestruct/bhvi))

Figure 5.1: A deep projection procedure

system resources.

Thus, the only reasonable level at which to lift drawing cadiherender! procedure.
However, if we just liftrender!, it won’t actually solve the problem described above. Since
the constructors aren't lifted, the argumenteéader! may contain behaviors without being
a behavior itself.

5.2.2 Deep Lifting

What we need forender!is a mechanism akin to lifting, except that it
1. reacts to changes nested arbitrarily deep within itsraegu, and
2. projects the current values of any behaviors within tigeiaent.

The second of these requirements, computing what Idssp projectionsis straightfor-
ward. Figure 5.1 shows the essence of the implementatiomainly involves walking
and copying each node of the structure, projecting the ouu@&ue of each behavior en-
countered, and recurring on its contents. In FrTime, theadmplementation also uses a
table to prevent infinite loops when projecting cyclic datlang with special logic to avoid
returning copies of substructures that don't contain amalm®rs.

Reacting to changes that occur within a structure is a bit rnongplicated. In particu-
lar, since the program’s dataflow graph can change dynalyita¢re is not necessarily a
fixed set of signals that need to be watched. Figure 5.2 sHmsdart of the implementa-
tion of this operation, which | calleep-lifing. Before callingproc, the update procedure

78

(define (all-nested-behaviors struct/bhvr known-bHvrs
(cond

[(memq struct/bhvr known-bhyrs

known-bhvrg
[(behavior? struct/bhyr
(all-nested-behaviorbehavior-value struct/bhyr

(cons struct/bhvr known-bhyn$
[(cons? struct/bhyr

(let ([bhvrs(all-nested-behaviorfirst struct/bhvj
known-bhvry)
(all-nested-behaviorgest struct/bhvy bhvrg)]

[elseknown-bhvr})

(define (deep-lift prog
(A (struct/bhv)
(rec result
(new-behavior
(A0
(let ([bhvrs(all-nested-behaviors struct/bhempty)])
;; ensure the dataflow graph reflects this behavior’s
;; dependence on each of the nested behaviors

;; If depth has changed, reschedule this behavior
;, for a later update and escape

cn)
(proc (deep-project struct/bhy)) .. .))))

Figure 5.2: Deep lifting

traverses the argument structure completely to find all@bthaviors it currently contains,
then ensures that the dataflow graph reflects dependencedsairthese behaviors. The
implementation otll-nested-behaviors also shown in Figure 5.2.

There is a somewhat subtle point about this stepestilt now depends on something
new, then it may not be safe to continue processing right avayparticular, in some
cases the new behavior may not have been updated yet, sayqatic would result in
an inconsistent result (i.e., a glitch). In such cases itegsessary to abort the current
update operation and reschedule according to the new tgpoldhe dataflow graph. This
rescheduling could occur several times within an updatedgyfawpdating the new behavior

79

results in further changes to the graph’s topology). Witesalts height in the graph stops
increasing, it is safe to proceed by callipgoc on a deep projection of the argument,
struct/bhvt

The deep-liftoperator provides precisely the varied notion of liftingttlhs needed to
turnrender!into an animator.

5.3 Reactivity with Lifted Constructors

The preceding section describes a strategy for using datztstes built with raw construc-
tors. Although this strategy works, it involves quite a dicomplexity, including primarily
the definition of a deep-lifting operator, several aspettstoch are fairly subtle.

In fact, we can avoid all of this complexity simply by liftingpnstructors. Returning
to the animation example, if we lift all of the constructor®.(make-posnmake-rgh
make-ellipseandcong, then we can just liftender!, and it will produce animations. In
particular, becausmake-postis lifted andcycleis a behavior,

(make-posn cycl200)

produces a behavior. Thus, sinoake-ellipsas lifted,
(make-ellips€make-posn cycl200) ...)

produces another behavior. Likewise, becana&e-rghis lifted andoscillateis a behavior,
(make-rgb oscillat® 0)

creates a behavior, and so onfoake-rectanglandlist. Whenever eithecycleor oscillate
changes, the chain of behaviors causes it to propagatealiai to the top-level image list.
Finally, show!creates a window and delegatesd¢ader! to perform the drawing. Because
render! is lifted, any change in the image list causes it to re-ex@atlearing the screen
and rendering a fresh snapshot of the image’s current stétes, by lifting constructors,
we obtain a simple mechanism for transforming a static resrdeto an animator.

5.3.1 Consequences of Lifted Constructors

Figure 5.3 illustrates how lifted constructors cause baitavo spread to any structures
that (transitively) contain them. This propagation of bebes is what makes lifting so

80

“(1 2 31539)”
(exprsstring ;)

(1 2 31539)

(expr>string| (cons | m) |)

"2 31539)
(cons || (cons2 m)

"(31539)
(cons 2 | (cons N empty) |)

empty)

Figure 5.3: Use of lifted constructors

(cons

convenient. However, it also incurs a cost.

Creating a behavior is a relatively heavy-weight operatiomglving allocation of a
structure, a closure, lists of references to other behsyvand various other sorts of book-
keeping information. When a lifted constructor is used to e@ktructure, a change in any
of the structure’s fields results in the re-evaluation of¢bastructor and hence the alloca-
tion of fresh storage for its new state. In most cases, thgram has no need for the old
structure, so it just becomes garbage. If the program usag time-varying structures, or
even just a few that change rapidly, then the effect on gazadjection pressure, and on
performance in general, can be significant.

For comparison, the use of a raw constructor incurs no oeerlvéghatsoever: each
call to a constructor allocates a single data object, exadlit would in Scheme. Raw
constructors do not propagate behaviors, so they elimalhté the costs associated with
creating and updating behaviors.

While constructors are responsible for significant overhaedessors are also problem-
atic. Because a behavior only exposes its current value afadhthat it is time-varying,

31t would be possible to modify the language to support sutiospective capabilities, possibly enabling
better dynamic optimization. However, exploring such aenae is beyond the scope of this paper and, in

81

I
(first)

(first

(rest

)

(31539 2 1)
(rest (cons l\’(2 1)))

31539
(cons | seconds | (2 1))

Figure 5.4: Creation of additional behaviors by lifted asces

an accessor (e.dfirst) cannot distinguish between the following two behaviorfigae
current values are always the same):

(cons(moduloseconds 2) empty)
(if (even?seconds)

(cons0 empty)

(consl empty))

Thus, even in the first casérst cannot magically return the originanoduloseconds
2) behavior; it must create a new behavior whose value is ctedpoy selecting the first
element of its argument’s current value.

Because lifted accessors construct new behaviors, a lifteelsgor cannot traverse a
structure in the traditional sense. Instead of deconstrgitihe time-varying structure itself,
it builds additional behaviors that traverse projectiohshe time-varying structure. In
Figure 5.4, we see a particularly pathological manifestatf this phenomenon: the tail

any case, not necessary to achieve the linguistic goals elelsgre.

82

(31539)

(rest =)

'(31539)
(cons = empty)

31539

B —

seconds

Figure 5.5: Loss of intensional equality from lifted constiors

of the list was originally a constant, but because there’'slabior at the front, code that
traverses it perceives everything as a behavior, even thowgt of the values are actually
constants.

In general, the combination of lifted constructors and asoes results in the conflation
of reactivity from different sources. As mentioned prealyuevery time the value any
field in a structure changes, a new structure is created., Bvenyaccessor applied to the
structure perceives the change in the structure and musngade its result.

While all of these extra behaviors and updates result in sogfé@giency, there are also
semantic consequences of using lifted constructors. Matstoty, with raw constructors,
(posn-x(make-posn x)y actually evaluates ta. However, with lifted constructors, it re-
sults in a new behavior whosmirrent valueis always the same ags. In other words,
raw constructors preserve intensional equality acrosagtoin data structures, but lifted
constructors respect only extensional equality. Figubeilistrates the problem: the be-
haviors connected by thick arrows are extensionally edudlywithout lifted constructors
they would be the same physical value (and therefore irdeally equal).

83

Substituting extensional for intensional equality esséigtmeans replacing a constant
with a behavior whose value never changes. We know that thstaot cannot change,
but all we know about the behavior is that whenever we've bapd to look at it, it's
had the same value. We can’t be sure that it won’t change iméketime step, or that
it if we were able to sample it at a finer interval, we wouldndtioe it changing back
and forth to some other value very rapidly. In many appla@adi such as animations,
extensional equality is sufficient; the program can saniplegs faster (and for longer) than
a human can perceive (and endure), so from the user’s péksptere is no difference.
However, it is important in general because of the tempaxtlne of FrTime values. Time
is conceptually continuous and infinite, while the prograexecution is a discrete, finite
approximation.

This distinction becomes important for programs that malaie collections of behav-
iors. For instance, recall the simple program describedabar rendering collections of
time-varying points. Suppose that we wished to extend thalow a user to manipulate
the points, perhaps by clicking and dragging to create, mane delete points. A natural
representation for the state of such a program is a timenguiigt of time-varyingposrs.

Attempting to model such a program with lifted constructemwkward. Because lifted
constructors bring all reactivity to the top level, the staan only be a time-varying list of
posrs. That is, the reactivity of each point is conflated with thfagach other, and with that
of the list itself. Hence the program can only operate meguily on the state as a whole.
The state must then be a single, monolithic entity, whichracessed by a single set of
top-level event-handling procedures. Ultimately, suclesigh is non-modular, unnatural
to implement, and difficult to maintain.

While raw constructors lead to various complications, treayall be addressed through
deep lifting. In contrast, the drawbacks of lifted constous cannot be remedied through
any means. | therefore conclude that, despite the atteastimaplicity that lifted construc-
tors bring in the common case, raw constructors are ultim#te only viable approach.

5.4 Improvements to Deep Lifting

Deep lifting eliminates the large dataflow graphs thatridtiwould otherwise create to
mirror large data structures in the program. Thus it dralljiceduces the overhead of

84

(define (draw-point/proj p
(let ([p (value-now pos)})
(draw-point drawing-window

(make-posriposn-x p (posn-y P))))

(define (for-each/proj proc Ist
(let ([Ist (value-now Is)])
(when (cons? Is}
(proc (first Ist))
(for-each/proj prodrest Is)))))

(define (render/proj list-of-point}
(clear drawing-windowy
(for-each/proj(X (p)
(draw-point/proj drawing-window })
list-of-pointg)

Figure 5.6: Interleaving projection with traversal

propagating changes through the dataflow graph. It coulchbeacterized as a dynamic,
constructor-specific analog of th@veringoptimization described in Chapter 4.

However, there are still problems with deep lifting. In pautar, it still incurs signif-
icant overhead in the form of allocation. Every time a changeurs anywhere within
a large structure, it constructs a fresh deep snapshot dttheture. In some cases this
can actually be worse than using lifted constructors, whidly force reconstruction along
paths from changed nodes to the root.

One way to avoid so much deep projection is to make extermatfate procedures
project behaviors as they encounter them. For exampleadsif using the version oén-
der from above, which assumes that its arguments are constemtsould write a version
that expects to find behaviors and projects the value of eaelit@ncounters.

Such an implementation is shown in Figure 5.6. The basicigltéwat, before applying
any primitive operation to a value, we wrap it in a callwalue-now If the value is a
constant, thewalue-nowhas no effect, and if it's a behavior, it projects its currealue.
Either way, there is no allocation, and it is safe to proce#H the resulting value.

The one exception is when calling a library procedure thatajes on structured data.

85

For example, ifdraw-pointconsumes g@osncontaining a behavior, a type error will re-
sult. In Figure 5.6render/projconstructs a newosnwith projections of the original’'s
fields. This prevents the type error but brings us back to tiggnal problem of doing extra
allocation each time something changes.

There are a couple of options available for eliminating thst bit of allocation:

1. Find a lower-level drawing procedure that operates om phdegers, and wrap that
instead.

2. Assumingdraw-pointis never called recursively, or from more than thread at & tim
allocate a singlgposnstructure and set its fields imperatively before calldrgw-
point

Once we've written our interface procedures in this style,can write a refined version
of deep lifting, called something likeeep-lift/no-project This would be identical tdeep-
lift, except that instead of callimdpep-projecon the argument before passing ifmc, it
would callproc directly on the argument.

This approach, which we calhcremental projectioncan eliminate most if not all of
the allocation due to deep-projection. The effect is amalsgo what listlessness [99] and
deforestation [100] achieve.

As Figure 5.6 shows, making each operation galle-nowon its argument would be
a tedious task to perform by hand. Fortunately, this taskbeaperformed mechanically.
(Sincevalue-nowis idempotent, one easy but safe approach is simply to wrapiind
every argument to every function call.) Scheme provides armaystem for defining
syntactic abstractions, which we can use to perform sucrasfiormation automatically.

One thing that is still unsatisfying about this solutionhatt it involves traversing the
structure twice: once to detect changes in its topology, amather time to process its
current value. An worthwhile question is whether we can radhgse two traversals into
one. This certainly sounds plausible, but unfortunatel itnore subtle than it seems.
As described above in the context of definideep-lift if the structure’s shape changes,
then it may contain new of behaviors, and it cannot be praecksafely until all of them
have been updated. This means that the signal that prodessstsucture must update its
dependencies to reflect the new set of behaviors. If it novedépon something at its level
or higher, then we must delay evaluation or risk the occuweeasf a glitch.

86

However, if we interleave the two steps of processing, therdiscover the potential
inconsistency after we have already processed some ofrtiese. If we abort and retry
later, then we need to be sure that we won’t put the system im@msistent state by
performing destructive side beffects more than once. Rattly, experience indicates that
FrTime’s external interface procedures (at least for hiesalike graphics and user interface
widgets) are idempotent, so it is safe to abort part way thincautraversal and later restart
from the beginning. The only potential problem with this eg@aeh is performance: in the-
ory, an adversarially chosen program could cause FrTimeropn the traversal a number
of times linear in the size of the structure. Since each tealalso takes linear time, the
time taken to achieve a full, successful traversal couldber quadratic. It's not clear
whether this possibility is a serious cause for concernitlilttes suggest that the language
should take care only to abort the traversal when there ialaisk of inconsistency.

Another way to work around this problem is to treat all exé¢interface behaviors spe-
cially and force their heights to be greater than those ofaadinary signals. For example,
we could simply assign them a heightiafinity. The disadvantage is that, if we needed
to impose ordering constraints among these signals, suchtagy would make that more
difficult. We have not yet determined which is the better é&xaitl

5.4.1 Defining theApply Operator

The preceding discussion assumed that Scheme primitiveraitgponly on flat values, not
structured data, so all primitives can simply be lifted. dhtinately, there is an important
exception to this rule: Schemesgpply operator allows (some suffix of) the arguments to
a function to be packaged up in a list. In order to supporttfathsparency, FrTime needs
to provide a version oapply that works with any list-like value that FrTime might pass
to it (e.qg., lists of behaviors, behaviors whose valuesiatg, land even nestings of these).
Doing so sensibly turns out to be somewhat subtle, althougthrof the machinery we've
developed so far is reusable.

First, consider what happens if we try to use a @ply. Sinceconsis not lifted,
this works correctly for simple lists of behaviors. For exde) there is no problem with
something like:

(apply+ 2 3 (list 5 (moduloseconds 7) 11))

87

Here,apply consumes the list of arguments and calls (lifted)n its elements. However,
raw applyfails on behaviors whose values are lists. For example, in

(apply+ (if (even?seconds) (list 1 2) (list 3 4 5)))

applyis expecting a list but receives a behavior, which resultstype error. If we instead
use a liftedapply, then it will work correctly in the above cases: in the firsseaits argu-
ments appear constant, so it behaves like theajly, and in the second case, it calls the
+ operator afresh each time the argument list changes.

Unfortunately, simple lifting ofapply doesn’t work in general. For example, consider
the following expression:

(apply + (if (even?seconds)
(list (modulomilliseconds 1000) 2)
(list 34 5)))

In this caseapplys argument is a behavior whose current value is sometimes edn-
taining another behavior. This means that the result ofyapgl to the current list of
arguments may result in a behavior. Thus, in order for italtés reflect the correct value,
applyneeds to use switchto react to changes in its argument list and track the chainges
the current result.

However, even with switching there are some problems. Famgke, in

(apply + (consl (if (even?seconds)
(list1 2 3)
(list 4 5))))

the argument list starts with an ordinargnscell, but its tail is a behavior, which causes a
type error inapplyas it traverses the list looking for arguments. In order tokyayoperly,
such nested reactivity needs to be raised to the top-levetdapply switches over it.

This strategy is almost correct, but it can have undesirablesequences when the
applied function is not primitive. For example, consider:

(apply (A (xy 2
(+ (delay-by x ¥ 2))
(list seconds 200 1))

88

If we raise the reactivity oecondgo the top-level, then each tins=condshanges, the
argument list will change, causirapply to call the function again, which wipes out the
state of thedelay-byoperator. To avoid unnecessary switching like this, we evdyt to
raise reactivity that affects traructureof the argument list, not the elements themselves.
To achieve this, we use a modified implementation ofdbep liftingoperation described
earlier in this section, which ignores behaviors in thst field of eachconscell, only
paying attention to behaviors in tinestfield.

Of course, if the structure of the list changes, it still aaithe function to be re-applied
afresh, resulting in a loss of state for operators tieday-byandintegral. Unfortunately,
there is no way to solve this problem without making modifmags to the language.

5.5 The Efficiency of Traversal

Using raw constructors eliminates the ttop-down spreadebfbiors which, by reducing
the total number of behaviors, also reduces amount of teygiwopagation. However, it's
still possible to have top-down propagation, since stmechehaviors can exist even in the
absence of lifted constructors. For example, in

(definey
(if (even?quotientseconds 10))
(consseconds empty)
(cons3 (cons4 empty)))

y becomes bound to a behavior whose value is a list of (sometime-varying) numbers.
This means there can still be some spread of behaviors dbe tese of accessors.

Note that we can now have ordinargnscells that contain behaviors. This means that
if we just lift accessors, therfi(st y) evaluates to a behavior whose value is sometimes
another behavior (whose value is equal to thagexfonds Having behaviors nested inside
each other violates a key invariant of FrTime, so it is prabée to make the accessors more
sophisticated instead. Fortunately, this is easy to do. Wsegut aswitchinside them so
they can merge the two sources of reactivity into one. THiest) returns a behavior
whose value is always just a number.

However, a problem becomes apparent when we evaluate aapndidge the following:

89

(map sqr(if (even?seconds)
(build-list 1000 identity)
(build-list 2000 add1))))

wheremapmight be loosely defined as

(define(map f Is)
(if (cons? Isy
(cons(f (first Ist)) (map f (rest IsD))
empty))

The first subexpression to be evaluatectisns? Is}). Sincelst is a behavior, the result
is a boolean behavior (which will always bree), so thef expression evaluates to a switch
and selects the first branch for evaluation. The branch atedifirst Ist), which results in
another switch, then passes the resuldg which creates yet another behavior. The next
step is to calmaprecursively onfest Is), which is yet another switch. The recursive call
proceeds in a manner analogous to the top-level call. Ingodat, it constructs another
switch for the conditional expression, and the branch cantt aconswhoserestis com-
puted by another recursive call on a behavior, and so on. Btirtieeit has finished, the
program has constructed 3000 switch nodes and 1000 othavibehfor the list elements.
After construction, each of these 4000 nodes must be updated

Whensecondshanges from even to odd, the dataflow graph is extended torano-
date the longer input list. This requires repeating all efwlork described above, including
the creation of another 3000 switches and 1000 other betsads well as updating each
of the 8000 nodes in the overall graph. Wiesmtondshanges from odd to even, the 4000
nodes comprising the latter half of the list need to be dgstidand disconnected from the
graph), and changes propagated through the other 4000.nBdés operations are very
expensive and, over time, result in the creation of largelartsoof garbage.

In fact, there are only two lists, each with a static struet{and static content), and a
single conditional that switches between them. Thus nedirbf the work described above
is unnecessary. If we instead write:

(if (even?seconds)
(map sqr(build-list 1000 identity))
(map sqr(build-list 2000 add1)))

90

the result is the same as above, but it is computed in a veprelift way. In particular,
neither branch refers to any behaviors, so emep call executes like ordinary Scheme
code (very quickly, without creating any behaviors at all).

The inefficiency comes about becausapuses a conditional to test the typelstfand
select the corresponding branch. This is problematic [s=caonditionals are oblivious
to their test expressions, so the knowledge the test egtadciut the input’s current value
is not available in the branch. The branch must therefordéyagmressors tdst, building
additional switches that repeat work already done in the tessentially, the problem is
one of computational leakage [60].

There’s no way we can change the definitionscohs? first, andrest to eliminate
the inefficiency; the problem arises from the fact that we theen at all. The solution
is to combine all of these operations, including conditlenento a single abstraction that
encapsulates the desired pattern without leaking compuatathat abstraction is pattern-
matching. For example, in the case of lists, we would progidetch-list construct, with
which we could rewritanapas follows:

(define(map f Is)
(match-list Ist
(cons(a d) (cons(f a) (map f 9d))
(empty () empty)))

This is vaguely similar to the above definition, but it meammething subtly different.
Now, each timdst changes, the switch discards its entire old branch and &esa new
one according to whethdst is empty or a cons. Since it restarts the branch eachlgme
changes, the branch can be evaluated widndd bound to thecurrent contents ofist,
which in this case are constants. From this point on, evalgiroceeds as in ordinary
Scheme (like the transformed example above). In generialg tisis approach instead of
conditionals and accessors results in the creation of ortetsper switch in the input, as
opposed to several switches for each node encountered beddwst switch in the input.

It is worth noting that one can contrive examples in whichgheantics of these two
approaches differ. These essentially involve progranesthie following:

(let ([Ist (if (even?seconds)
(consl empty)

91

(cons—1 (consO empty)))])
(+ (integral (first Ist)) (length(rest IsD)))

which we might try to rewrite usinghatch-list as follows:

(match-list (if (even?seconds)
(consl empty)
(cons—1 (consO empty)))
(cons(a d) (+ (integral g (length g))
(empty () 0))

The key thing is that the list is never empty, and its first edatmis alwaysseconds
Thus, in the first version, the call totegralis evaluated only once and accumulates state
until it is no longer needed. In the second version, each gtdansecondscauses the
conscase to be re-evaluated afresh, restartingritegyral and losing whatever state it had
accumulated previously.

While this difference in semantics afatch-list is perhaps a bit disturbing, we argue
that the drastic performance increase that it enables rharedutweighs any minor loss in
expressiveness. For purposes of transparency, FrTime needntinue supporting condi-
tionals and accessors anyway, so it just providesrih&ch-list construct as well, offering
more attractive performance properties for those williogewrite list-processing proce-
dures in terms of it.

5.6 Performance Evaluation

This section presents experimental measurements of t@/esperformance of the strate-
gies discussed above for dealing with structured data.

Table 5.1 presents the results of a microbenchmark invglthie construction and up-
date of various constant-length lists, each of whose |lashent is time-varying. The lists
have length 50, 100, and 200. Each measured value is the awfdime in milliseconds
required to perform 1000 FrTime update cycles (an averageten runs, with the standard
deviation following in parenthese$)The baselineinvolves simply incrementing the value

4The experiments were run in DrScheme 3.99.0.13 on a MacBookwRh 2.0GHz Intel Core Duo
processor andds of RAM.

92

of a behavior in each cycle (no list).

Theraw times are for lists built with rawons since raw constructors do not propagate
changes, these are expected to be very close to the bagatiepéndent of list length).
The experimental values agree with this prediction.

The lifted times are for lists built with liftedcons which does propagate changes.
Therefore, these times should increase with list lengthchvis again what the experi-
ments show. Theifted - rawnumbers show the overhead of lifting, which grows nearly
linearly with list length.

The deep-liftedtimes are for lists built with raw constructors whose reatstiis then
deep-lifted to the top-level in a single step. These exhitgtsame allocation overhead as
lifting, but not the propagation overhead, since all of thepgagation occurs in one update.
The Deep-lifted - rawnumbers show the overhead of raising, which also grows wath |
length, albeit considerably more slowly than the liftingedvead (as expected). In general,
raising appears to outperform lifting by 35 to 45%.

Of course, the point of deep-lifting is to provide a more éiit implementation of
lifting that works at the interface between FrTime and thelkoTo get a realistic mea-
surement of the improvement, we also need to account fordbkeaf traversing and pro-
cessing the data structures. Thé&/traverse(Deep-lift/traversg measurements show the
times taken to traverse and compute the sums of the elenmehtslifted (deep-lifted) lists.
Raising is still faster (as expected), but only by 15 to 25%.

Finally, thelncrementaimeasurements show the times taken for incremental prorecti
and processing of raw lists, which avoids the need for rgislinis eliminates the allocation
overhead from the raising strategy (which already eling@adhe allocation overhead from
lifting). This results in an additional 40 to 50% savings ox@sing, making the overall
time more than twice as fast as the lifting-based approach.

Table 5.2 shows the performance of two animation applinatibdNeedlesanimates a
field of vectors that aim at a given time-varying point. Irstekperiment, the grid contains
676 vectors, arranged in a 26 26 grid. The measurements include the times (again in
milliseconds) to start up and to update, using both raw dtedliconstructors. The startup
time for raw constructors is about twice as long as for litedstructors, but updates occur
about 15% faster, and after only about 20 updates the rawonessertakes the lifted one.
One reason that raw constructors only improve performagabbut 15% is that the cost

Type\ Size 50 100 200
avg (dev)| avg (dev) avg (dev)
Raw 52.1 (3.5)] 54.2 (3.2)] 55.2 (5.0)
Lifted 1911 (17.8)| 317.9 (22.5)] 610.1 (20.3)
(Lifted - raw) | 139.0 - | 263.7 - 554.9 -
Raised 110.5 (30.7)] 173.1 (15.6)] 396.9 (25.8)
(Raised - raw) | 58.4 - 118.9 - 341.7 -
Raised vs. lifted| 422% - 45.5% - 34.9% -
Lift/traverse | 403.3 (31.2)| 703.8 (14.6)| 1432.5 (28.7)
Raise/traverse | 307.9 (19.1) 593.4 (30.3)| 1205.7 (16.0)
Raised vs. lifted| 23.7% - 15.7% - 15.8% -
Incremental | 199.1 (13.2)| 338.5 (15.1)] 615.7 (16.9)
Incr. vs. raise 37.9% - 43.0% - 48.9% -
Incr. vs. lift 52.6% - 51.9% - 57.0% -

93

Table 5.1: Micro-benchmark results for lifting, raisingydaincremental projection

Type\ Size Needles Oscillation
avg (dev) avg (dev)
Startup (lifted)| 242.2 6.9 3652.8 107.0
Startup (raw) | 558.4 15.1| 1442.5 52.8
Raw vs. lifted | -1306% - 60.5% -
Update (lifted)| 127.4 42| 59.0 2.4
Update (raw) | 110.6 1.4/ 30.7 1.7
Raw vs. lifted 13.2% - 48.0% -

Table 5.2: Performance of animation programs using datatsitres and graphics

of updating everything else and rendering the vectors dategthat of updating a few
hundredconsbehaviors.

The oscillation example makes more extensive use of lists. It models a tangng
graph as a 200-element list of behaviors, of which any subagtbe active at a given time.
In these tests, the number of active points is relativelylsma in the lifted case the list-
related updates constitute a more significant fractionetithe. The raw version starts up
about 2.5 times more quickly and updates about twice as fast.

Chapter 6

Integration with Object-Oriented
Toolkits

Chapter 2 described, among other things, the usditifreg transformation to adapt exist-
ing purely functional operations so they could work with éhwarying values. However,
to support realistic applications, the language also needsss to libraries for capabilities
like graphics, user interfaces, networking, and so on. &lIsests of libraries interact with
the world and therefore depend on the ability to maintaitesaad perform actions. Unfor-
tunately, the simple notion of lifting presented earliesuanes procedures are free of side
effects, so it can re-apply them anytime without risk of destive effects. This assump-
tion is clearly invalid in the case of such imperative libear The purpose of this chapter
is therefore to develop a variation of lifting that works kétateful entities.

The kinds of libraries in which I'm interested have severaimcharacteristics. First,
they tend to be large and detailed, so it is impractical toritevthem. Second, they are
maintained by third-party developers, so they should begnated with a minimum of
modification to enable easy upgrading. Third, these libsmariespecially focuis—are
often written in object-orientedo0) languages. The integration process must therefore
handle this style, and ideally exploit it. An important debt is thatoo andFrPlanguages
have different ways of handling stateo makes state explicit but encapsulates it, whereas
state inFRPis hidden from the programmer by the temporal abstractiditbe language
Somehow, these two paradigms must be reconciled.

1This chapter expands on previously published joint work {Gigh Daniel Ignatoff.
94

95

This chapter describes considerable progress on thisratieg problem for the spe-
cific case ofculs. The DrScheme environment provides a large and rabustibrary
called MrEd [45], based on the wxWindows framework, whichised to build DrScheme’s
interface itself. The environment is a good representative library that meets the char-
acteristics listed above; furthermore, its integrationfisnmediate practical value. | have
discovered several useful abstractions basedhixins [13] (classes parameterized over
their super-classes) that enable a seamless integrattwanel further found that there are
patterns to these mixins and abstracted over them umangos[57]. As a consequence,
the adapter for MrEd is under 400 lines of code.

This chapter is organized as follows. | first discuss thegiephilosophy that governs
the adaptation of MrEd to a signal-based programming iatexf What follows is the heart
of the chapter: a description of the implementation of thisiiface and of the abstractions
that capture the essence of the adaptation. | also discyseadsheet application built
with the adapted toolkit.

6.1 Adapting MrEd to FrTime

In adapting any existing library to become reactive, themgaial is to reuse the existing
library implementation as much as possible and perform @muim of manual adaptation.
In order to minimize the manual effort, we need to uncovetgoas and abstract over them.
In this case, the problem is how to maintain a consistenonaf state between the object-
oriented and functional reactive models.

The functional reactive world represents state impliditisough time-varying values,
and the dataflow mechanism is responsible for keeping itistamd. In contrast, the object-
oriented world models state with mutable fields, and prognans are responsible for
writing methods that keep them consistent. We presume Hligatdolkit implementors
have done this correctly, so our job is simply to translagé¢éesthanges from the dataflow
program into appropriate method invocations. Howeverge@ul toolkits also mediate
changes coming from the user, they provide a callback mésimaoy which the applica-
tion can monitor state changes. The interface betweesth@nd FrTime must therefore
also translate callbacks into state changes in the dataftadw

Not surprisingly, the nature of the adaptation depends gmilynupon the direction of

96

communication. We classify each widget property accortiinghether the application or
the toolkit changes its state. The most interesting cageraily, is when both of them can
change the state. We now discuss each case separately.

6.1.1 Application-Mutable Properties

MrEd allows the application to change many of a widget’s prtips, including its value,
label, cursor, margins, minimum dimensions, and stretitibab A widget provides an
accessor and mutator method for each of these propertietheatoolkit never changes any
of them itself, so we classify these properties as “appboamutable.”

In a functional reactive setting, we can manipulate timexvey values directly, so it is
natural to model such properties with behaviors. For exampe would use a behavior
to specify a gauge’s value and range and a message’s lakislsdith of interface renders
accessors and mutators unnecessary, since the propentyatidally updates whenever the
behavior changes, and the application can observe it byngadatever behavior it used
for initialization.

To implement a behavior-based interface to such widgetestigs, the first step is to
derive a subclass from the original MrEd widget. For exanyie can define #-gauge%
from the MrEd gauge.

(defineft-gauge%
(classgauge%. . .))

In the new class, we want to provide constructor argumerstisekpect behaviors for all
of the application-mutable properties. In FrTime, behes/extend the universe of values,
and any constant may be taken as a special case of a beh&aabnéver changes); i.e.,
behaviors are supertypes of constants. Thus the apphicatay safely supply constants
for any properties that it wishes not to change. Moreovewdfuse the same property
names as the superclass, then we can constridtpanige%exactly as we would construct
an ordinary gauge. This respects the principle of contramae for function subtyping:
our extension broadens the types of legal constructor aggtsn

In fact, the DrScheme class system allows us to overrideuperslass’s initialization
arguments, oinit-fields. Of course, the superclass still refers to the originati$ieko

97

its behavior remains unchanged, but this lets us extendahstiuctor interface to permit
behaviors. The code to add these initialization argumerdas follows:

(init-field value label range vert-margin horiz-margin mmieth. . .)

Next, we need code to enforce consistency between theseibetidields and the cor-
responding fields in the superclass. The first step is to parBuperclass initialization,
using the current values of the new fields as the initial \@koe the old ones. Although
the old and new versions of the fields have the same names,itheo ambiguity in the
superclass instantiation expression; in each name/valiietbe name refers to a field in
the superclass, and the value expression uses the subdespe.

(super-instantiate () [label (value-now labél [range(value-now rangy . ..)
(sendthis set-valudvalue-now valup

(Since there is no initiavalue field in the superclass, we need to set it separately after
super-class initialization.)

Having set appropriate initial values for the fields, we nee@nsure that they stay
consistent as the behaviors change. That is, we need tdatt@ebanges in state from the
dataflow program to the object-oriented “real world.” Thesaicentral problem in building
an interface between the two models.

The basic idea behind our translation is straightforwaetedt changes in a behavior
and update the state of the corresponding object througlpamopriate method call. We
use the FrTime primitivehangedo detect changes in a behavior and expose them on an
event stream. Then we convert the event stream into a sémastbod invocations. This
second step is somewhat unusual, since the methods haedfsicts, unlike the operations
found in a typical dataflow model. However, in this case wecareerned not withefining
the model but wittcommunicatingts state to the outside world. The effects are therefore
both safe (they do not interfere with the purity of the modeid necessary (there is no
other way to tell the rest of the world about the system’s givamstate).

The invocation of imperative methods is technically trivi@ince FrTime is built atop
Scheme, any procedure that updates a signal is free to exadnitrary Scheme code,
including operations with side effects. Of course, we aadiyg avoid the practice of per-
forming side effects in signal processors, since it couddl o the violation of program
invariants. As mentioned above, it is safe when the effaetsestricted to communication

98

with the outside world (as they are in this case). In pardicuve use the primitivenap-e
passing a procedure that invokes the desired method:

(map-e(X (v) (sendthis set-value)) (changes valug
(map-e(X (v) (sendthis set-label J) (changes labg)

Each call above tanap-ecreates a new event stream, whose occurrences all carry the
void value—the return value of the imperative method call—beta@arcompanied by the
method’s side effects. Because the event values awill they have no meaningful use
within a larger dataflow program.

The above expressions are static initializers in the widigtses, so they are evalu-
ated whenever the application constructs a new instandgegdtatic initializers allows the
adapter to automatically forward updates without the dge having to invoke a method
to initiate this. Because the code constructs signals, whacticipate in the dataflow com-
putation, it therefore has a dynamic effect throughout ifleeoff the widget, unlike typical
static initializers.

Subtleties Involving Side-Effecting Signals

We have resolved the interface for communicating state ggmifrom the dataflow to the
object-oriented model. However, a more serious concehreigiismatch between their no-
tions oftiming. In a typical object-oriented program, method invocatiaressynchronous,
which fixes the ordering of operations within each thread @ftml. However, FrTime
processes updates according to their data dependencies, ddes not necessarily corre-
spond to a sequential evaluation order. This makes it difffon programmers to reason
about when effects occur.

Fortunately, the functional reactive model and interfagedesigned in such a way as
to prevent operations from occurring unpredictably. Kirdhere is at most one signal
associated with any given widget property. If the programwigshes to control a widget
with several different signals, he must define a composgeasithat mediates explicitly
between the individual signals. Thus, there can be no imptiodifications or contention
over who is responsible for keeping it up-to-date.

Secondly, FrTime processes updates in order of data deperdeso if one property’s

99

signal depends on another’s, then it will be upddtedr. If the order of updates were
significant, and if the dependencies in the toolkit were otéié by dependencies in the
application, then this would yield a “safe” order in whichupdate things.

There is, however, a problem with the strategy describedebuat is difficult to di-
agnose and debug. The symptoms are as follows: at first, tyggm seems to work just
fine. Sometimes it may run successfully to completion. Otinees, depending upon what
else is happening, it runs for a while, then suddenly and segynwithout explanation the
gauge’s properties stop updating when the behaviors chaftge point at which it stops
varies from run to run, but there are never any error messages

The problem results from an interaction with the memory ngenaAn ordinaryFRpP
application would use the event source returned byntla@-e but in this case we only
care about side effects, so we neglect to save the resuite Swere are no references to
the updating event source, the garbage collector eventeallaims it, and the gauge stops
reacting to changes in the behavior.

To avoid these problems, we define a new abstraction spdiiffoa side-effecting
event processors. This abstraction, caftadeach-e! works just likemap-¢ except that it
ensures its result will not be collected. It also lends ftseh more efficient implementa-
tion, since it can throw away the results of the procedurks tastead of enqueuing them
on a new event stream.

Thefor-each-elimplementation stores references to the imperative evecegsors in
a hash table, indexed by the objects they update. It is irapbthat this hash table hold its
keys with weak references so that, if there are no otherertes to the widget, both it and
the event processor may be reclaimed.

6.1.2 Toolkit-Mutable Properties

Some widget properties are controlled primarily by the wsethe toolkit rather than the
application. For example, when the user resizes a wind@nalkit adjusts the locations
and dimensions of the widgets inside. Since the applicammot control these properties
directly, the widgets provide accessor methods but no rmgafdditionally, the applica-
tion may want to be notified of changes in a property. For examyghen a drawing canvas
changes size, the application may need to update its camtezstompute parameters for its

100

scrollbars. For such scenarios, accessor methods alomesaficient, and toolkits provide

callback interfaces as described in the previous sectiamwener, we saw that callbacks
lead to an imperative programming style with various plsfado we would like to support

an alternative approach.

For such “toolkit-mutable” properties, we can remove thpetwlency on callbacks by
adding a method that returns the property’s time-varyirigevas a behavior. For example,
instead of allowing registratioan-sizeand on-movecallbacks, the toolkit would provide
methods that return behaviors reflecting the propertiealf@ubsequent points in time.

The implementation of such methods is similar to that forli@ppon-mutable proper-
ties. However, in this case we cannot just override the iegisiet-width get-heightget-x
andget-ymethods and make them return behaviors. Though FrTime simagrammers
to use behaviors just like constants, an application may te@ass a widget to a library
procedure written in raw Scheme. (For example, the widget nezd to invoke methods
in its superclass, which is implemented in Scheme.) If a 8&hexpression invokes an ac-
cessor and receives a behavior, there is nothing FrTime @am prevent a type-mismatch
error. Since behaviors are supertypes of constants, dirggnin this manner would violate
the principle of covariance for procedure return values.

To preserve type safety, we must define the new signal-awathanls so as not to
conflict with the existing ones. We choose the new names bgrajppg-b to the existing
names, suggesting the behavioral nature of the returnsialgain, we derive a subclass of
the widget class we want to wrap. For example, continuing tieft-gauge% we would
add methods calleget-width-b get-height;lmet-x-h andget-y-b

We need to determine how to construct the behaviors returpetdese methods. We
want these behaviors to change with the corresponding Wiglgperties, and we know
that the widget'son-sizeor on-movemethod will be called when the properties change.
So, we are now faced with the converse of the previous prebleanverting a imperative
procedure call into an observable FrTime event.

FrTime provides an interface for achieving this goal, chiteake-event-receiveil his
procedure returns two values: an event soefaed a unary procedusend-event. When-
ever the application executesefid-event v), the valuev occurs ore. In the implementa-
tion, send-event sends a message to the FrTime dataflow engine indicatiny 8taiuld

101

occur one, which leads tar's being enqueued on the streanesfoccurrences. By overrid-
ing the widget’s callbacks and callingake-event-receivewe can create an event source
carrying changes to the widget'’s properties:

(define-valuegwidth-e send-width(make-event-receivgr
(define-valuegheight-e send-heigh{make-event-receivpr
(define/override (on-size w

(superon-size w

(send-width W

(send-height J)
;; similarly for position

Once we have the changes to these properties in the form ahEr@vent sources, we
convert them to behaviors withold:

(define/public (get-width-b (hold width-e(sendthis get-width))
(define/public (get-height-b (hold height-gsendthis get-heighy)

6.1.3 Application- and Toolkit-Mutable Properties

We have discussed how to adapt properties that are mutabééhmyr the toolkit or the
application, but many properties require mutabilitydmththe toolkit and the application.
This need usually arises because there are several wayangelhe same property, or
several views of the same information. For example, a texbredrovides scrollbars so
the user can navigate a long document, but the user can algateawith the keyboard, in
which case the application needs to update the scrollbasdiagly.

All widgets that allow user input also provide a way to setthkie from the applica-
tion. Several other properties may be set by either the itomikhe user:

focus When the user clicks on a widget, it receifesus(meaning that it hears key strokes)
and invokes iton-focuscallback method. This is the common mode of operation,
but the application can also explicitly send focus to a widgeor example, when
a user makes a choice to enter text, the application may adikatly give the text
field focus for the user’s convenience.

102

visibility The application may hide and show widgets at various stafjas mteractive
computation. Sincehowng a widget also shows all of its descendents, the toolkit
provides aron-enablecallback so the application does not need to track ancdatry.
addition, the user can affect visibility by, for examplegsihg a window, which hides
all of its children.

ability Similar to visibility, the application can selectively i@ and disable widgets de-
pending upon their necessity to various kinds of interacti&nabling also works
transitively, so the toolkit invokes then-enablemethod for all children of a newly-
enabled widget.

One might naturally ask, since we have already discusseddadapt application- and
toolkit-mutable properties, why we cannot simply combihe two adaptation strategies
for these hybrid properties. The reason is that the appicapecifies a property’s time-
varying value through a behavior, which defines the valuevatyepoint in the widget’s
lifespan. This leaves no gaps for another entity to spebiéwalue.

Our solution to this problem is to use event sources in autdtt behaviors. Recall that
in the implementation of toolkit-mutable properties, watficonstructed an event source
from callback invocations, then used hold to create a behaun this case, both the ap-
plication and toolkit provide event streams, and insteadaddiing directly, we merge the
streams and hold the result to determine the final value:

(init-field app-focus app-enable app-show
(define-valueg(user-focus send-focuémake-event-receiver
(define/public (has-focus-b}

(hold (merge-e app-focus user-fogu{sendthis has-focus)))
(define/override (on-focus on»

(superon-focus on®

(send-focus on?

This code completely replaces the fragments shown preyidoisproperties that are mu-
table by only the application or the toolkit.

103

6.1.4 Immutable Properties

MrEd does not allow certain properties to change once a widgeeated. For example,
every non-window widget has a parent, and it cannot be mawed dne parent to another.
In theory, we could build a library atop MrEd in which we siratdd the mutability of these
properties. However, this would be a significant change taonty the toolkit’s interface
but also its functionality, and we would have to implemeiiitselves. Since our goal is to
reify the existing toolkit through a cleaner interface, vaé not attempted to extend the
underlying functionality.

6.2 Automating the Transformation

We have so far discussed how to replace the imperative awtetb object-oriented widget
classes with a more elegant and declarative one based ovidwshand events. The prob-
lem is that there is a large number of such widgets and priegednd dealing with all of
them by hand is a time-consuming and tedious task. Thus wettbceduce the manual
effort by automating as much as possible of the transfoonairocess.

The reader may have noticed that the code presented in th@gsesection is highly
repetitive. There are actually two sources of repetitidme Tirst is that we need to perform
many of the same adaptations for all of the MrEd widget clsssiewvhich there are perhaps
adozen. The second is that the code used to adapt each plisgmsgentially the same from
one property to the next. We now discuss how to remedy thesddmns of duplication
individually, by abstracting first over multiple widget skes, then over multiple properties
within each class.

6.2.1 Parameterized Class Extensions

In Sect. 6.1 we adapted a collection of widget propertiesubyrdassing. Since most of
the code in the subclasses is essentially the same acroantmvork, we would like to
be able to reuse the common parts without copying code. kretbrds, we would like a
class extension parameterized over its superclass.

The DrScheme object system allows creationmikins[13, 46], which are precisely
such parameterized subclasses. We write a mixin to enapsille adaptation of each

104

property, then apply the mixins to all classes possessiagitbperties. For example, in-
stead of defining aft-gauge%like we did before, we define a generic class extension to
adapt a particular property, such as the label:

(define (adapt-label a-widggt
(clas
(init-field label)
(super-instantiate () [label (value-now labél)
(for-each-el(changes lab@l(\ (v) (sendthis set-label y) this)))

In the code snippet above, we box the superclass positidreadass definition to highlight
that it is a variable rather than the literal name of a cladss parameterization makes it
possible to abstract over the base widget class and thuply tiye adaptation to multiple
widgets.

We write mixins for other properties in a similar manner.c®ithere are several prop-
erties common to all widget classes, we compose all of théoaisingle mixin:

(define (adapt-common-properties a-widget
(foldl (A (mixin clg (mixin clg) a-widget(list adapt-label adapt-enabling .)))

Although this procedure contains no expliciassdefinitions, it is still a mixin: it applies
a collection of smaller class extensions to the input cld3ss compoundmixin takes a
raw MrEd widget class and applies a mixin for each standawdgoty. The resulting class
provides a consistent FrTime interface for all of these props. For example, we can use
this mixin to adapt several widget classes:

(define pre-gauge%adapt-common-properties gauggo
(define pre-messageY@adapt-common-properties message%o

We call the resulting widget classes “pre-" widgets becdhsg still await the adaptation
of widget-specific properties. Most importantly, each vatlgupports manipulation of
a particular kind of value (e.g., boolean, integer, stribg)either the application or the
toolkit, and the various combinations give rise to diffdrprogrammer interfaces.

105

6.2.2 A Second Dimension of Abstraction

Mixins allow us to avoid copying code across multiple class¢owever, there is also code
duplication across mixins. In Sect. 6.1, we develop pastéonadaptation that depend on
whether the property is mutable by the application, thekibobr both. Once we deter-
mine the proper pattern, instantiating it only requiresitdecation of the field and method
names associated with the pattern. However, in Sect. 6. luplcdted the pattern for each
property.

In most programming languages, we would have no choice laggg code in this situ-
ation. This is because languages don't often provide a nmesimefor abstracting over field
and method names, as these are program syntax, not valuegvetp Scheme provides
amacro systenfb7] with which we can abstract over program syntax. For eamwith
application-mutable properties we only need to know the enafmthe field and mutator
method, and we can generate an appropriate mixin:

(define-syntax adapt-app-mutable-property
(syntax-rules()
[(_ field mutato)
(A (widge)
(classwidget

(init-field field)
(super-instantiate () [field (value-now fieldl])
(for-each-el(changes fielf(\ (v) (sendthis mutator V) this)))]))

With this macro, we can generate mixins for the applicatiutable properties:

(defineadapt-label(adapt-app-mutable-property label set-labég))
(defineadapt-vert-margir(adapt-app-mutable-property vert-margin vert-margiy)

Of course, we write similar macros that handle the other @mg®s of mutability and instan-
tiate them to produce a full set of mixins for all of the prapes found in MrEd’s widget

classes. At this point, we have fully abstracted the prilesigoverning the toolkit’'s adapta-
tion to a functional reactive interface and captured thentisely in a collection of macros.
By instantiating these macros with the appropriate propgrive obtain mixins that adapt

106

the properties for actual widgets. We compose and applgtmesns to the original MrEd
widget classes, yielding new widget classes with inteddiased on behaviors and events.

The ability to compose the generated mixins safely depepds two properties of the
toolkit’s structure. Firstly, most properties have distinames for their fields and methods
and hence are non-interfering by design. Secondly, in cakege two propertiedo share
a common entity (for example, the single callbacksizeaffects the width and height), the
disciplined use of inheritance (i.e., always callsgper) ensures that one adaptation will
not conflict with the other.

To save space and streamline the presentation, we havefgohgiome of the code
snippets in this paper. The full implementation has beeluded with the DrScheme dis-
tribution since release version 301. We provide a cataleglapted widgets in an appendix.
The core contains about 80 lines of macro definitions and iB@8 bf Scheme code. This
is relatively concise, considering that the MrEd toolkinswsts of approximately 10,000
lines of Scheme code, which in turn provides an interface 10@000-line C++ library.
Moreover, our strategy satisfies the criteria set forth éltiroduction: itis a pure interface
extension and does not require modifications to the library.

6.2.3 Language Independence of the Concepts

Some of the ideas presented in this chapter are specific whenge. For example, DrScheme’s
object system supports features like mixins and keywordsttaotor arguments, which
more common languages like C++ and Java do not provide. L#evidrScheme’s macro
system offers a more sophisticated metaprogramming sysgtamis found in most lan-
guages. Because | have made use of these less common featiw@ader might argue that

the ideas are not portable.

However, while the implementation techniques are somewetific to DrScheme, |
argue that the essential concepts apply to a wide arrayldbgalalue languages, much like
the embedding techniques of FrTime in general. For exancplegorizing state transfers
asapplication to toolkitversustoolkit to application(or both) is a necessary first step, and
determining whether state déscreteor continuouss also important for any functional re-
active toolkit adaptation. Once these characterizations®de, the same basic approaches
may be used to translate state changes between the fun@mmhanperative subsystems.

107

806 Spreadsheet
Formula: | (* 3 (get-cell-val 1 1))
0,) (1,) (2,) (3,) 4,) (5,) (6,)

(,0) 1145865676

1) #t 35

12) 105

,3) this

4) is

\3) a

,6) spreadsheet

7

,8)

,9)

,10)
,11)
12)
,13)
14)
,15)
,16)
17)
,18)
(,19)
(,20)
(,21)
(,22)

Figure 6.1: Screenshot of the FrTime spreadsheet applicati

These necessarily include impure event-based mechanesmssend-eventfor-each-e)
for defining the bridge between these subsystems. Onceithemgay for them to commu-
nicate, the patterns underlying the adaptation may beaatistt using whatever techniques
are available within the host language. DrScheme happepsotade powerful features
(mixins and macros) that allow a high level of abstraction.other languages, different
features may be available (e.g., multiple inheritancdjcstaverloading) to support alter-
nate approaches to this problem.

6.3 A Spreadsheet Application

To evaluate the adapted version of MrEd, | have applied ireabstic spreadsheet applica-
tion. The major challenges in building a spreadsheet, in xpgrence, are implementing
a language with its dataflow semantics, and managing anthglisg a large scrollable ar-
ray of cells. Fortunately, FrTime makes the linguistic peob relatively straightforward,

108

since its dataflow evaluator can be reused to implement apatapagation. This leaves
the representation and display of the cell grid.

The core of the spreadsheet user interface is an extensiba bfrEdcanvaswvidget. A
canvas is a region in which the application can listen to keyrmouse events and perform
arbitrary drawing operations. The application renderscelé content into a canvas and
processes mouse events to perform selection. When the Usetsse cell, he can enter a
formula into a text field, and the selected cell receives Hieesof the formula.

The functional reactivity helps greatly, for example, inmaging the scrolling of the
grid content. The canvas includes a pair of scrollbars, Wwimust be configured with
ranges and page sizes. These parameters depend upon ther miroglls that fit within
the physical canvas, which in turn depends upon the sizeeafahvas relative to the size of
the cells. The cell size depends in turn upon the font and imatged when rendering the
text. Since the user can resize the window or change thetfade parameters must be kept
up-to-date dynamically. In raw MrEd, all of this recompigatwould need to be managed
by hand, but with the FrTime adaptation, we simply specify flinctional relationships
between the time-varying values, and the various widggteees update automatically.

For example, the following expression defines the numbehafacters that fit horizon-
tally in the canvas at one time:

(definev-cells-per-page
(quotient(— canvas-height top-margjrcell-heigh))

Both cell-heightandcanvas-heighare time-varying, and-cells-per-pagalways reflects
their current state. The range on the scroll bar is equalddliffierence between the total
number of cells (rows) and the number that can be displayedsamgle page:

(definev-scroll-range
(max0 (— total-rows v-cells-per-pagg)

If the user resizes the window or changes the font, the randbkeoscrollbar updates auto-
matically.

When the user clicks at a particular position in the canvas,atbplication needs to
map the position to a cell so it can highlight it and allow tiseuto edit its formula. The
following code expresses the mapping:

(define (y-pos=row-num y

109

(if (> y top-margin
(+ v-scroll-pos(quotient(— y top-margir) cell-heigh))

-1))

By applying this function to thg component of the mouse position within the canvas, the
application obtains the row number (if any) over which theus®is hovering. It uses this
information to implement a roll-over effect, shading thd ceder the mouse cursor, and
to determine which cell to select when the user clicks thesaou

The following code shows the definition of the text field in wiinithe user enters cell
formulas:

(defineformula
(new ft-text-field%
[label”Formula:”]
[content-g(map-e(A (addr) | (value-now(cell-text(addr->key add})) ‘1)
select-¢)]
|[focus-e select}e))

When the user clicks on a cell, the cell's address appears eveant stream calleselect-e
The occurrence of the selection event affdotsnulain two ways. First, the code in box
1 retrieves the selected cell’s text from the spreadshkmsttéxt becomeformulas new
content. Second, the code in box 2 specifies that selectemt®gend focus tiormula,
allowing the user to edit the text. When the user finishesregldind presses tlenterkey,
formulaemits its content on an output event stream; the applicatiocesses the event and
interprets the associated text (code not shown).

The spreadsheet experiment has proven valuable in seesp#ats. First, by employ-
ing a significant fragment of the MrEd framework, it has helps exercise many of our
adapters and establish that the abstractions do not ativaffect performance. Second,
as a representativeul program, it has helped us identify several subtletiesrafand the
adaptation of state, some of which we have discussed indpsrpFinally, the spreadsheet
is an interesting application in its own right, since thegiaage of the cells is FrTime itself,
enabling the construction of powerful spreadsheet program

110

6.4 Catalog of Adapted User Interface Widgets

ft-frame% These objects implement top-level windows. They suppbdfahe standard
signal-based property interfaces (label, size, posifiocys, visibility, ability, mar-
gins, minimum dimensions, stretchability, and mouse ayth&ard input). As in the
underlyingframe%objects, thdabel property specifies the window’s title.

ft-message% These objects contain strings of text that are mutable byafi@ication
but not editable by the user. They support all of the standmyolal-based property
interfaces. In this case, ti&bel property specifies the content of the message.

ft-menu-item% These objects represent items in a drop-down or pop-up meraddi-
tion to the standard properties, each widget exposes an siveam that fires when-
ever the user chooses the item.

ft-button% These objects represent clickable buttons. In additiohécsstandard proper-
ties, each widget exposes an event stream that fires eackhignoser clicks it.

ft-check-box% These objects represent check-box widgets, whose stajketolgetween
true andfalsewith each click. In addition to the standard properties hdacheck-
box%widget exposes a boolean behavior that reflects its curtatg. sThe applica-
tion may also specify an event stream whose occurrencelsesstdte.

ft-radio-box% These objects allow the user to select an item from a codledf textual
or graphical options. In addition to the standard propsreacHt-radio-box%object
exposes a numeric behavior indicating the current selectio

ft-choice% These objects allow the user to select a subset of items friish @f textual
options. In addition to the standard properties, d&choice%object exposes a list
behavior containing the currently selected elements.

ft-list-box% These objects are similar fo-choice% except that they support an addi-
tional, immutablestyle property that can be used to restrict selections to singleto
sets or to change the default meaning of clicking on an itethe@ise, the applica-
tion’s interface is the same as thatfbthoice%

111

ft-slider% These objects implement slider widgets, which allow the tsselect a num-
ber within a given range by dragging an indicator along akirdn addition to the
standard properties, eattkslider%object allows the application to specify the range
through a time-varying constructor argument cali@dge and it exposes a numeric
behavior reflecting the current value selected by the user.

ft-text-field% These objects implement user-editable text fields. In audib the stan-
dard properties, each widget exposes the content of itdfitdgdtas a behavior, as
well as an event stream carrying the individual edit evehke application can also
specify an event stream whose occurrences replace thediekefintent.

Chapter 7
Programming Environment Reuse

Building a new language is no modest undertaking, so theraligun reducing the man-
ual development effort as much as possible. Importantlgnguage is more than just an
interpreter or compiler. To compete with established systé must also have extensive
libraries and an array of tools that support program undedshg and development. These
comprise the overall programming environment in which siseork. By helping to auto-
mate the tasks of finding bugs and elucidating program behdtiey contribute greatly to
the power of languages as software engineering tools.

Unfortunately, developing and maintaining a high-qualityl suite demands significant
time and effort. Especially for domain-specific languagésere the target market is small
(at least initially), adequate resources may not be availabdevelop all of the needed
infrastructure from scratch.

One way to reduce the cost of developing a new domain-spéaifgriage is tembed
it within an existing general-purpose language. Typicdhys involves implementing the
core functionality as a library within the host language aogporting it with lightweight
syntactic extensions. Since embeddesl programs are essentially host-language pro-
grams, they can reuse any interpreters, compilers, rurgysiems, libraries, and tools that
have been written for the host language.

Embedding has another appeal: if programmers are alreadiidawith the general-
purpose host language and its environment, then they cat gD sL with significantly
greater ease than something completely new and foreigrs “€bgnitive reuse” also in-
creases a language’s utility and popularity.

112

113

Although embedding offers extensive reuse opportunitiesgreatly reduces the man-
ual effort required to implement@sL, there is a subtle but important pitfall that accompa-
nies tool reuse. In particular, if one applies a host-lagguaol to an embedded-language
program, what it shows us is the progranmgplementationin terms of the host-language
constructs that the tool understands. Depending upon tin@leaity of theDsL, this may
not match the abstractions of tbeL or meaningfully reflect the original program’s behav-
ior. It may instead expose implementation details thatesabr even mislead the user.

In this chapter, | address the problem of meaningfully mregisi language’s tools. The
solution strategy depends upon the host language’s prayalsuitable interface for imple-
menting control-oriented tools, i.e., a mechanism for o#ifhg) on a program’s control flow.
By manipulating such a mechanism, | develop the notioaff#ctive evaluation contexts
which underlie the tool-adaptation technique for embeddeduages. | have applied this
technique to several existimgsLs (including most notably FrTime) and tools, and the re-
sults are encouraging. The modifications are straightfaiwand the result is more helpful
and appropriate feedback from the tools.

Since programming tools play an important role in softwargieeering, it is critical
that they be reliable and trustworthy. The manipulatioroof interfaces creates opportuni-
ties for reuse but also introduces possibilities for suétters. While raw tool reuse gives
results that violate thesL'’s abstractions, at least they present, in some sense, adjyrou
truth about the execution of the system. In contrast, a cexnpéw tool that gives correct
answers sometimes but fails in other contexts may lead figeher astray and result in
heightened frustration. To avoid such problems, | develfmpraal model that specifies the
intended behavior of a specific tool-language combination.

7.1 Background

| am concerned with the reuse of control-oriented tools epdesL embeddings. Before |
discuss the problem, or my solution, | explain the conceptesfp embedding, and what |
mean by control-oriented tools.

114

Embedded FrTime
DSL Program Program
[Host Evaluator] [SchemeEvaIuatoD
Y Y
B = ./.\ =
Semantic\ Dataflow \I
® Data Structure ./ Graph ®
Y Y
’ DSL Interpreteﬂ ’ Dataflow Engine ‘

Figure 7.1: Structure of a deep embedding Figure 7.2: Embedding FrTime

7.1.1 Domain-Specific Embedded Languages

Domain-specific language®$Ls) are programming languages designed specifically to
handle the pervasive concerns of specific problem domainsaude they can abstract
away concerns that cannot be encapsulated modularly inea@egpurpose languagesLs

are extremely powerful software-engineering tools.

Developing any new language is a non-trivial task. Thougkstbke scanner and parser
generators have been around for decades, these only halp aiball part of the problem.
Such concerns as type-checking, code-generation, andneistipport constitute a much
more significant part of the task, for which there is less supp

One technique for reducing the burden of language developiméo embedthe new
language within an existing “host” language. Embeddingpsuis reuse of much of the
host language’s infrastructure, including its type systeamtime system, libraries, and
interpreter and/or compiler.

An embedding can be eithshallowor deep[12]. In a shallow embedding, constructs
in theDpsL are implemented directly as host-language abstractiostalbow embedding is
essentially a library; it can add new functionality, but netv features, to the host language.

In contrast, a deep embedding represerss constructs as host-language data struc-
tures, to which an explicit interpreter assigns meaningufé 7.1 shows a diagram of this

115

model. The host language evaluates tise. program, yielding a data structure that en-
codes the program’s meaning; an interpreter processesathesttucture and implements
the semantics.

A deep embedding requires more effort to implement, sinaevilves explicit def-
initions of the embedded language’s constructs. Howevelfers more flexibility and
power to the language implementor; theL’s features are not confined by those of the
host language. Also, since there is an explicit representaf the embedded program, the
implementation can analyze, optimize, or otherwise mdatpuhe embedded program.

7.1.2 Examples

My experience primarily involves the language FrTime, iheus of this dissertation. Since
FrTime’s notion of dataflow lacks direct support from Scheiteeembedding must be (at
least partially) deep. The semantic data structure is ahgodghe program’s dataflow de-
pendencies, and the interpreter is a dataflow engine thvatrt®as this graph and recomputes
signals in response to changes in the environment and agmels (see Figure 7.2).

7.1.3 Control-Oriented Tools

A control-oriented tool is one that observes points in thetiad-flow of an executing pro-
gram. For example, a profiler counts how many times expres®&gecute, and how much
they contribute to the total execution time. Likewise, aroetracer catches errors and
shows the user where they came from (e.g., the immediatessipn that raised the error
and its context of execution).

Building a control-oriented tool requires an interface feiracting information about
the state of a running program. In many language implementgtthe compiler generates
such information and represents it in a proprietary, ekirggal manner. In such cases, the
tools are tightly coupled to the compiler.

Other implementations provide an open, linguistic meckranior reflecting on con-
trol flow. For example, Java compilers provide informatiarciass files so that runtime
systems can track the file, class, method, and line numbeaatf activation record. This
information is available through a public method in Eheceptiorclass, so applications can
use it for their own purposes.

116

PLT Scheme provides an even more general and open staclkciiospenechanism
based on continuation marks [23]. With this mechanism, giliegiion can associate a
mark with the evaluation of an expression. The mark is an arlyitBocheme value and
resides on the runtime stack, in the expression’s actwagoord, until the expression fin-
ishes evaluating. An application can, at any point in itscexien, introspect on its control
flow by requesting the set of marks currently on the stack.

The continuation mark interface exists primarily for tqatet applications. To work
properly, the tools need a way to install whatever infororatihey require in the marks.
PLT Scheme supports this capability by means of a lightwdiglerface to its compiler,
through which tools can syntactically transform,asmotate target programs before they
execute. For example, the error-tracer works by instgllfog each expression, a mark
containing the expression’s source location. The runtigrstesn automatically captures
the continuation marks when an exception arises and stoees in anexceptionobject.

If the application fails to handle the exception, the etracer catches it at the top-level,
extracts the source location information from its contiimramarks, and presents a trace
to the user.

The combination of annotation and continuation marks aléev the implementation
of a wide variety of tools. Some that have been developedidiech profiler, an algebraic
stepper [25], and a scriptable debugger [63]. These toskrirannotations to perform
such tasks as timing execution, checking for and susperadibgeakpoints, and installing
continuation marks that not only identify the source lomasi of active procedures but also
provide access to the names and values of lexical variables.

More importantly, continuation marks offer a clean integféor control-flow introspec-
tion that is backed by a formal model [23]. The use of exphgihtactic transformations
also allows us to capture the notion ofl@bugging compilethat communicates with tools
through this continuation-mark interface. These abstastprove useful when we formal-
ize the interaction between control-oriented tools ang e s embeddings.

7.2 The Tool-Reuse Problem

A deepDsL embedding can reuse much of the host language’s infrasteudirectly. How-
ever, if we try to reuse the host language’s control-origétdels, the feedback they provide

117

Li ft B. eval Met hod: Exception raised when invoking nethod foo
java.lang.reflect.|nvocationTarget Exception
at sun.reflect. Generat edMet hodAccessor 2. i nvoke(Unknown Sour ce)
at sun.reflect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | npl . j ava: 25)
at java.lang.reflect.Method.invoke(Method.java: 324)
at edu.yale.cs.frp. FRPUilities$LiftedB. eval Met hod(FRPUti lities.java: 458)
at edu.yale.cs.frp. FRPUilities$LiftedB. reconputeVal ue(FRPU i lities.|ava: 486)
at edu.yale.cs.frp. FRPUi lities$LiftedB. propertyChange(FRPUIlities.java: 472)
at java. beans. PropertyChangeSupport. firePropertyChange(PropertyChangeSupport.java: 252)
at edu. yal e. cs. frp. Behavi or Adapt er. fi r ePr opert yChange(Behavi or Adapt er . j ava: 65)
at edu. yal e. cs. frp. Behavi or Adapt er . set Val ue(Behavi or Adapt er . j ava: 90)
at edu.yal e.cs.frp. Stepper. event Cccur ed(St epper. j ava: 42)
at edu.yal e.cs.frp. Abstract Event Sour ce. set Event (Abstract Event Source. j ava: 62)
at edu.yal e.cs.frp. AccunkE. event Cccur ed(Accunk. j ava: 57)
at edu.yal e.cs.frp. Abstract Event Sour ce. set Event (Abstract Event Source. j ava: 62)
at edu.yal e.cs. frp. Event Bi nd. event Cccur ed(Event Bi nd. j ava: 42)
at edu.yal e.cs. frp. Abstract Event Sour ce. set Event (Abstract Event Source. j ava: 62)
at edu.yale.cs.frp. FRPUIi lities$Event Cbserver.invoke(FRPUIlities.java: 256)

Figure 7.3: An error trace from a Java FRP implementation

by default will be misleading. This is because theL program itself does not perform
any interesting computation—it only creates a represiemaif itself as a data structure,
which thebsL implementation interprets in order to realize the progsas@mantics. Thus,

control-oriented tools observe and analyze the procesgearfreting the data structure, al-
though this may have no apparent connection to the origisalprogram.

For example, executing a FrTime program constructs a grigétaflow dependencies.
The behavior the user cares about begins afterward, whdarigaage’s dataflow engine
traverses and recomputes values on the graph. Regardldss stfiicture of the FrTime
program, the dataflow engine is an infinite loop with a retdyishallow stack.

If a program is syntactically well-formed, then constroatof its dataflow graph com-
pletes without any problems, but a logical bug may cause @nnererror (e.g., division-
by-zero, index out-of-bounds) to arise later while recotimua signal. Since the dataflow
engine performs this recomputation, it experiences ther,eand any tool that observes
control flow—even a full-featured interactive debugger-Hame the update algorithm.
A typical user will probably be perplexed by the error trasiace it has nothing to do with
his program. A more advanced user might even suspect thratitha bug in the language’s
implementation.

Although, strictly speaking, the error-tracer is tellifgtiruth, the feedback it gives is
problematic for two key reasons:

1. It fails to identify the actual source of the error, whishthe FrTime expression that
constructed the problematic signal. (In fact, since therexig control structure is so
simple, the tool produces essentially the same trace fot enos's.)

118

2. It exposes th@sL’s implementation to the user, which violates a basic pplecof
language design.

The use of deep embedding may also cause other tools to grodigteading results.
For example, consider the output that a profiler gives whenorua FrTime. The user’'s
program executes once (and only once), consuming a shat bliprocessing time to
construct a semantic data structure. After that, the iné¢ep (dataflow engine or slide
renderer) performs the repetitive and intensive companatiecessary to implement the
program’s semantics. A profiler observes and reports thidéwel phenomenon. However,
this is neither surprising nor useful to a programmer logkimunderstand which parts of
his program are responsible for consuming the most ressurce

These tool interactions are inherent to this style of emlmgddnd are not specific to
Scheme. For example, Frapjs a Java implementation of functional reactive prograngmi
which, like FrTime, builds an explicit graph of the prograndfataflow dependencies and
employs an external recomputation algorithm to keep sggmadto-date. Once the graph is
constructed, the update algorithm performs all of the eg#éng computation and is what
any tool will observe. As in FrTime, there is no connectioritte original program (that
constructed the graph), which is ultimately responsibtetie program’s behavior.

Figure 7.3 shows a specific example of the problem, an eaoe tior adivision-by-zero
error in a Frapp [29] program. The trace reveals many details about theeim@htation
instead of indicating the source of the error. We show thisnphasize that the problem
we describe is neither an artifact of our choice of host laggy nor simply the result
of our own carelessness as language implementors. Morabdemonstrates that other
implementors of similar systems have not already solvegtbblem.

Control-oriented tools are not the only ones that can havéeadsg interactions. In
any embeddeasL, the implementation may use a low-level host-language stutec-
ture to implement a high-level domain-specific abstractiém such cases, the host lan-
guage’s data-oriented tools, which are unaware of the engodill present the data in
host-language terms. This breaks tig_'s abstractions in an analogous manner to control-
oriented tools. However, the solution in this case is reddyisimple; the language provides
the tool with a custom display translator that renders the itlean appropriate manner. We
therefore focus on control-oriented tools for the rest ef paper and do not discuss data

119

interactions any further.

Admittedly, control-oriented tools are less importantd@EeLs implemented in statically-
typed languages, since the type checker catches a signiiiaation of the mistakes before
the program has a chance to run. In theory, the type checkgtmgiport a misleading unifi-
cation failure within thepSeL implementation, thereby exhibiting the same problem we've
described about runtime tools. In practice, however, tioissdnot seem to be problem,
most likely because theseL implementation may be type-checked separately from the
user program, allowing the type-checker to divert blamenftbe (internally consistent)
implementation.

7.3 Solution Technigues

Chapter 3 presented a formal model of FrTime. The model segsacanceptually into
two “layers”, a low-level evaluation semantics that reskrslihat of Scheme or thg,-
calculus [84] and a high-level dataflow semantics that aagtErTime’s reactive recompu-
tation strategy.

The low-level layer, shown in Figure 3.3, is a small-steprapenal semantics based
on evaluation contexts [41], the grammar for which appeafSigure 3.1, along with the
syntax for expressions and values.

The high-level evaluation rules (Figure 3.5) define the apen of FrTime’s dataflow
propagation mechanism. They operate on 4-tupleS, D, I,t), whereD and are the
same as in the low-level semanticsjs a store containing the current values of signals,
andt is the current time.

A key element of the semantic model is the evaluation corfieixtthesi gnal struc-
ture. This represents the evaluation context that creatediggnal. For example, suppose a
user were to evaluate the following expression (whesea behavior):

H+4(=3E2(1x))

In its evaluation, the first step would be to apply theile, which would match the original
triple as:
(I,D,(+4(=3(2[(/1x])))

120

and take a small step to the tuple:

(TU{o}, DU{(z,0)},(+4(=3(x2[a])))

where
oc=(sig (+4(=3x2[]) (/1x)

Thus, the new signal captures the evaluation context from the step that cretaitéd 4 (—

3 (x2[]))- This means that, ik takes on the valu@, resulting in a division-by-zero error,
then the dataflow evaluator knows both the specific operatiancaused the error, i.e/, (
1 x), and the context,4 4 (— 3 (x 2 []))), in which it would have occurredhad it been
evaluated in its original context. Thus it has enough infation to report a meaningful
error message.

7.3.1 Higher-Order Signals

An important feature of FrTime is that the update of one digaa result in the creation of
new signals. For example, consider the following expressio

(=3(2(fb(fx) (@)

As b takes on different valuesf &) and @ y) are evaluated alternately, and in general this
evaluation creates new signals. One might naturally therdvaluatef(x) or (g y) by itself,
but this would mean dropping the part of their context thes lbutside thé expression,
i.e., (=3 (x2[]). Any signals created by this evaluation would likewtsmtain only the
local context from inside thi.

However, because every signal captures the context of egtion, it is possible to
preserve the proper contextual information even in casesendnsignal results from another
signal’s update. For example, the signal created foiftegpression is:

(sig (=3(2[]) (ifF[](fx)(ay) b)

As shown in ruleu-swc, whenever the value df changes, the inner context#-{] (f x)
(9 y))—will be applied to the new value to construct a new branthe important thing
is that the evaluation of the resulting expression occutbiwithe outer context,«{ 3 (x

121

2 [1), so any new signals will contain the full context that wid have been present in
a traditional call-by-value evaluation. Evaluation onlpgeeds until the original (inner)
expression has been reduced to a value. Thus the outer tanjtest present to record the
origin of any signals.

7.3.2 Implementation

The next step is to apply this idea of capturing evaluatiomexts to a real implementa-
tion. Of course, realistic programming languages (ineigdscheme) don't have evalua-
tion contexts that programs can capture and manipulate eMersvmany of them provide a
mechanism for inspecting the control stack, which is thelemgntation’s representation
of the evaluation context.

In DrScheme, the stack inspection mechanism is based oroti@rof continuation
marks

To understand why DrScheme’s error-tracer fails in our eddbd implementation, we
must look more closely at its interface for control-oriehteols. We use a formal model
of our implementation language, based on the model of arbedgestepper presented by
Clements et al. [25]. The language is a simple version of Settaat includes a mechanism
for control-flow introspection. This mechanism, based @tfanipulation o€ontinuation
marks is essentially a formal model of the stack-inspection bdpi&s provided by lan-
guages like Java and C#. It allows a programmer to associsewddn each activation
record on the runtime stack, just as the Java runtime agee@aurce location information
with each of its stack frames. Due to space limitations, wé time specification of the
implementation language from the paper.

In the formal model, the analog of a “stack” is an evaluationtext, where each stack
frame corresponds to one application of a production rukéncontext’s grammar. This
gives rise to a linear structure, as in a stack, because eadhgiion (except for the empty
terminal context [']”) contains exactly one sub-context (representing the siaxik frame).

As mentioned in Section 2, DrScheme’s [42] control-sevsitools employ two main
elements: (1) reading and interpreting the continuatiorkemerom the running program,
and (2)annotatingthe program prior to execution with instructions that ilistee neces-
sary marks. Fortunately, we can also model the annotatioregs formally. For example,

122

Clements et al. present an annotator for their algebraipstepnd the one we use for Fr-
Time is a straightforward extension of theirs that handlskghtly richer implementation
language. The key property of the annotator is that it pxesesemantics while supporting
reflection on the program’s control flow. We writ] (EXPR)] to indicate the application
of such debugging annotations to the expressExPR), the result being a semantically
equivalent expression save that, at any point in its eviainiah tool can extract its contin-
uation marks and reconstruct its evaluation context.

Another way to think of this annotator is as a compiler withdebug” flag enabled.
It generates code with extra information that tools likewgders can use to elucidate the
program’s runtime behavior. Although our presentationasdal on annotation and contin-
uation marks, the specific mechanism is not essential; jpettyet al. [82] show how to
use Java’s exceptions and a suitable compiler to obtairatime ®asic functionality.

Now that we have a formal model of the implementation languag carformally ex-
press the deep embedding of FrTime. Specifically, we canemeht FrTime’s primitives
(e.g., make-signal send-event value-now etc.) and dataflow engine as Scheme proce-
dures. A FrTime program, then, is simply a Scheme program evatltex context in
which all of these elements are defined. We writdf ME[(EXPR)] to denote the result of
filling a FrTime context with a program. The result is a Sche&xgression that, when eval-
uated under Scheme’s semantics, implements the behasitththoriginal(ExPR) would
exhibit under the FrTime semantics shown in Figures 3. 1utiino3.5.

This formalism allows us to capture precisely the probletie néve error-reporting
in the FrTime implementation described in the previousisactFor one thing, Scheme’s
error-tracer, by default, annotates the whole progranidiyig A[FRTIME[(EXPR)]]. This
explains why error traces contain references to the imphtatien. What we want instead
is to evaluate RTIME [A[(EXPR)]], so only contextual information from the user’s pro-
gram appears in the traces. However, this is only half of tiedlpm, since the FrTime
semantics demands an error-trace containing more thahimdgemation (it composes ad-
ditional context from the signal whose update threw the ptior). Our original (buggy)
implementation neglects this requirement, with the consaqge that error reports fail to
identify the responsible fragments of the user’s program.

1The implementation is included with the DrScheme distitut

123

7.3.3 Effective Evaluation Contexts

To fix this problem, the implementation needs to be able tbuce@nd store a representa-
tion of its evaluation context. Fortunately, this is exaathat our control-flow reflection
mechanism allows us to do. In particular:

1. We first need a variable to simulate theelement in the low-level semantics—the
additional context associated with the signal being reagegh We call this variable
e-e-G as it holds theeffective evaluation contexits value is initiallyempty, repre-
senting the empty context, since top-level evaluation deé®ccur on behalf of any
particular signal.

2. Within the implementation of theake-signafunction, we capture theurrenteval-
uation context, compose it with the effective evaluationtegt, and store it with the
signal. This corresponds exactly to the behaviomakEe -SIGNAL in the semantics;
it saves the full program context that is responsible forrdseilting signal.

3. Inside the main loop of the dataflow engine, before recamga signal, we set
the effective evaluation context to the context saved froensignal’s creation. This
corresponds to the operation of tteDATE-INT andERRORrules in the high-level
semantics: when they invoke the low-level evaluator on aadig update procedure,
they provide that signal’s additional context/as

4. When the top-level error-handler catches an error andtepto the user, we make it
build a trace by composing the effective and actual evalnaiontexts. This mimics
the behavior of the ruleRROR which detects low-level evaluation errors and reports
them at the higher level with contexts enriched by the resibm signals.

7.3.4 Generalizing the Solution Strategy

We have gone into a lot of detail about a specific applicatiaifective evaluation contexts—
to make an error-tracing tool for Scheme work for a particelabeddedsL. We claim,
however, that the ideas we have developed are not specificTtmé& or the error-tracing
tool. In fact, to apply them to a different degsL embedding, we just need to replace

124

signalwith the new language’s semantic data structurewgpuahtewith its notion of inter-
pretation.

For example, suppose we wish to apply the same solution tdé&etror-tracing in
Slideshow:

1. Just as for FrTime, we need to extend our tool interfack ame-e-cvariable. How-
ever, if we have already made this extension for anotheniageg, we don’t need to
do it again.

2. In the constructor for thpict data structure (Slideshow’s semantic data structure),
we capture and save the current evaluation context.

3. In the slide navigator, around the interpreter that reméachpict, we extract the
context associated with thgct to be drawn and copy it into theee-c

4. \We make the top-level error-handler compose the congénite e-e-cwith the local
context. That way, if an error occurs while rendering a slttde trace will automat-
ically include the code that created the faypigt. This change, like the addition of
thee-e-cvariable, is only necessary if this is the first time we areptidg the tool.

If we wish to reuse a different tool, then we must similarlyesd it with an awareness
of effective evaluation contexts. For example, DrSchermseiiler uses an annotator that
inserts calls to read the CPU time before and after each puoeegbplication, counting the
elapsed time against the actual procedure (in its evaluabatext). This default behavior
is not very useful for deepsL embeddings, since it ends up telling us the obvious—that
the interpreter consumes the majority of the processing.tifio get more meaningful
measurements, we should attribute the time spent in thepneter towardhe context that
created the interpreted dat&ortunately, this information is readily available: in difying
our languages to work meaningfully with the error-tracd,ta@ made the interpreter copy
the context from the interpreted datum’s creation todkecvariable. The profiler only
needs to be aware of the contents of this variable and atustcounting accordingly.

125

% Time Msec Calls Function
31.765| 58405 4933|inner
30.565| 56199 378510| loop

18.572| 34149 373647| << unknown >>
4.582 8425 1576095| /home/aregiv? 08/plt/collects/frtime/frp.ss: 711.17

Figure 7.4: Output from original profiler on FrTime program

% Time
38.445
10.564]

Calls Function
13451187 || /home/grea/v2 08/plt/collects/fitime/demos/piston-b ss: 30.5
5647678| /home/grea/v208/plt/collects/frtime/demos/piston-b.ss: 45.5

Msec
216827
59583

121948
59092

21.623
10.477

5647676||/home/greg/v2 08/plt/collects/frtime/demos/piston-b.ss: 47.5
3080557||/home/greq/w208/plt/collects/frtime/demos/piston-b.ss: 26.5

Figure 7.5: Output from adapted profiler on FrTime program

7.3.5 Transformation of the Semantic Data Structure

Sometimes, a semantic data structure does not feed dirstdla DSL interpreter, but in-
stead first undergoes a number of transformations. For eeathe language may convert
it to a more efficient intermediate representation, aneoitatvith the results of various
static analyses, and apply a number of optimizations tofaredinally running it. So, the
value that finally flows into the rendering engine is sevetadas removed from the orig-
inal program and its corresponding effective evaluatiomtext. Without some additional
book-keeping, the system loses its connection to the @igiaL program.

Effective evaluation contexts can help us with this probéeswell. The idea is to instru-
ment each of the transformation steps so that it copies feet@k context from its input
to its output. This way, the final representation—the one tia interpreter sees—maps
to the same effective evaluation context as the raw datatateifrom which it is derived.
This gives the interpreter access to the effective evalnatontext that it would have if it
interpreted the original data structure directly, withthe intervening transformations.

7.4 Implementation Status

| have implemented the strategy described above for botimierand Slideshow, in con-
junction with DrScheme’s error-tracer and profiler, and tinedifications have improved
the quality of the feedback. In each case, the implememagiquires less than thirty lines
of code. For the languages, the bulk of this involves insemtimg the semantic data struc-
ture to capture and store the evaluation context upon amigin. For the tools, the only

126

extension is to read and take into account the additionatnmdition stored in the effective
evaluation context.

| show the impact of these modifications on the profiler. Fegiid shows the original
profiler output from a FrTime program. In this case, the ®etatistics come from actual
evaluation contexts. The expressionser andloop are the main loops inside the FrTime
dataflow engine. It is neither interesting nor informatikiattthey perform the bulk of the
computation in the system. On the other hand, Figure 7.5 slibe profiler output for
the same program after modifying it to use effective evadmatontexts. Here, the top
contributors are those expressions in the user’s programctimstruct signals for which
recomputation is expensive.

Chapter 8

Extended Application: Scriptable
Debugging

Debugging is a laborious part of the software developmentgss- Indeed, even with the
growing sophistication of visual programming environngerthe underlying debugging
tools remain fairly primitive.

Debugging is a complex activity because there is often a geatlof knowledge about
a program that is not explicitly represented in its execeutiBor instance, imagine a pro-
grammer trying to debug a large data structure that appearte satisfy an invariant. He
might set a breakpoint, examine a value, compare it agaimse ©thers and, not finding
a problem, resume execution, perhaps repeating this aozens of times. This is both
time-consuming and dull; furthermore, a momentary lapsmaotentration may cause him
to miss the bug entirely.

The heart of automated software engineering lies in idgntif such repetitive human
activities during software construction and applying cotagtional power to ameliorate
them. For debuggers, one effective way of eliminating répatis to make thenscript-
able so users can capture common patterns and reuse them irdhe fihe problem then
becomes one of designing effective languages for scriptaimiggers.

1This chapter expands on previously published joint work B8 with Guillaume Marceau, Jonathan
P. Spiro, and Steven P. Reiss. Guillaume deserves credidaoriginal idea of using a functional reactive
language to script a debugger.

127

128

Debugging scripts must easily capture the programmerénireind simplify the bur-
densome aspects of the activity. To do this, they must meetakcriteria. First, they must
match the temporal, event-oriented view that programmavs bf the debugging process.
Second, they must be powerful enough to interact with anditmoa program’s execu-
tion. Third, they should be written in a language that is sigfitly expressive that the act
of scripting does not become onerous. Finally, the scgpkmguage must be practical:
users should, for instance, be able to constpuotjram-specifienethods of analyzing and
comprehending data. For example, users should be abledtegedundant models of the
program’s desired execution that can be compared with tlualbexecution. This calls for
a library of1/0 and other primitives more commonly found in general-puepasiguages
than in typical domain-specific languages.

In this paper, we present the design and implementation oftaractive scriptable de-
bugger called MzTake (pronounced “miz-take”). Predigtablr debugger can pause and
resume execution, and query the values of variables. Mdaeeestingly, developers can
write scripts that automate debugging tasks, even in thestnaitian interactive session.
These scripts are written in a highly expressive languagfe avilataflow evaluation seman-
tics, which is a natural fit for processing the events thauocuring the execution of a
program. In addition, the language has access to a largectol of practical libraries,
and evaluates in an interactive programming environmergcBeme.

8.1 A Motivating Example

Figure 8.1 shows a Java transcription of Dijkstra’s aldponif as presented imtroduction

to Algorithms[27]. Recall that Dijkstra’s algorithm computes the shdrigsth from a
source node to all the other nodes in a graph. It is similaréadith-first search, except
that it enqueues the nodes according to the witthncenecessary to reach them, rather
than by the number afteps The length of the shortest path to a node (so far) is stored
in the weightfield, which is initialized to the floating point infinity. Thalgorithm relies

on the fact that the shortest-path estimate for the nodethatlsmallest weight is provably
optimal. Accordingly, the algorithm removes that node fritv@ pool (viaextractMin), then
uses this optimal path to improve the shortest path estiofadjacent nodes (vieelax).

The algorithm makes use of a priority queue, which we alsdempnted.

129

Figure 8.2 shows a concrete input graph (whgyat location(100, 125), denotes the
source from which we want to compute distances) and the otitatresults from executing
this algorithm on that graph. The output is a set of nodes fuckthe algorithm was able
to compute a shortest path. For each node, the output psedennode’s number, its
coordinates, and its distance from the source along theestqrath.

As we can see, this output is incorrect. The algorithm failpriovide outputs for the
nodes numbered, 5 and6, even though the graph is clearly connected, so these arigea fin
distance froms.

Since the implementation of Dijkstra’s algorithm is a direanscription from the text
(as a visual comparison confirms), bwe implemented the priority queue, we might ini-
tially focus our attention on the latter. Since checkingdterall correctness of the priority
gueue might be costly and difficult, we might first try to vgrd partial correctness cri-
terion. Specifically, if we calextractMinto remove two elements in succession, with no
insertions in-between, the second element should be dtdsedarge as the first.

Unfortunately, most existing debuggers make it difficulaitomate the checking of
such properties, by requiring careful coordination betwbeakpoint handlers. For ex-
ample, ingdb [90] we can attach conditional breakpoint handlers—whighedfectively
callbacks—to breakpoints dnsert and extractMin and so observe values as they enter
and leave the queue. Figure 8.3 illustrates the control fEationship between the target
and the debugging script when we use callbacks to handlésvBtarting at the top left,
the target program runs for a while until it reaches ¢éx&ractMinfunction; control then
shifts to the debugger, which invokes the callback. Thébeak makes a decision to either
pause or resume the target. Eventually, the target corgtiand runs until it reaches the
breakpoint on thextractMinfunction for a second time. If we are monitoring a temporal
property, such as the ordering of elements taken out of aifyrigueue, the decision to
pause or resume the target on the second interruption vkt on data from the first
callback invocation. Observe that, for the program on tfieitds natural to communicate
data between the parts of execution, because it consistseda§ingle thread of control. In
contrast, the “program” on the right is broken up into marsjalnt callback invocations,
so we need to use mutable shared variables or other extérarahels to communicate data
from one invocation to the next.

All this is simply to check for pairs of values. Ideally, we mtdo go much further than

130

simply checking pairs. In fact, we often want to create a neldunt model of the execution,
such as mirroring the queue’s intended behavior, and wrédipates that check the pro-
gram against this model. Upon discovering a discrepancynigéat want to interactively
explore the cause of failure. Moreover, we might find it valeato abstract over these
models and predicates, both to debug similar errors latgrt@iuild more sophisticated
models and predicates as the program grows in complexity.

In principle, this is what scriptable debugging should asplbish well. Unfortunately,
this appears to be difficult for existing scriptable debugg€or example, Coca [35] offers
a rich predicate language for identifying interesting datd points in the execution, but it
does not offer a facility for relating values across diffengoints in time, so the programmer
would still need to monitor this criterion manuallyFo [6] supports computation over
event-streams, but does not support interaction. Dalekif/thteractive and offers the
ability to relate execution across time, but provides lgdiabstractions capabilities, so
we could not use it to build the predicates described in thigep In general, existing
scriptable debuggers appear to be insufficient for our neeelgliscuss them in more detail
in section 9.

This chapter presents a new system that addresses the \wse&rfeund in existing
debuggers. In section 8.2, we describe the goals and obsawvahat have guided our
work. We reflect on lessons learned from this example in@e@&i5. In Section 8.6 and
Section 8.7, we describes the design and the implementatspectively. Section 8.8
discusses strategies to control the execution of a targefram. Section 8.9 provides
additional, illustrative examples of the debugger’s use.

8.2 Desiderata

We believe that users fundamentally view debugging as ademhpctivity with the run-
ning program generating a stream of events (entering anich@xnethods, setting values,
and so on). They use constructs such as breakpoints to mede ¢lvents manifest and to
gain control of execution, at which point they can inspect set values before again relin-
quishing control to the target program. To be maximally usahd minimally intrusive, a
scriptable debugger should view the debugging processagigsers do, but make it easy
to automate tedious activities.

131

Concretely, the scripting language must satisfy severabrtapt design goals.

1. While debuggers offer some set of built-in commangsers often need to define
problem-specific commandi the preceding example, we wanted to check the or-
der of elements extracted from a queue; for other prograressam imagine com-
mands such as “verify that this tree is balanced”. While obsfpa debugger should
not offer commands customized to specific programs, it shpudvide a powerful
enough language for programmers to capture these opesaamily. Doing so of-
ten requires a rich set of primitives that can model soptasgtid data, for instance to
track the invariants of a program’s data.

2. Programs often contain implicit invariants. Validatihgse invariants requires main-
taining auxiliary data structures strictly for the purpo$enonitoring and debugging.
In our example, although Dijkstra’s algorithm depends odaobeing visited in or-
der of weight, there is no data structure in the program tbatptetely captures the
ordered list of nodes (a priority heap satisfies only a weakidering relation). Lack-
ing a good debugging framework, the developer who wants toitaromonotonicity
therefore needs to introduce explicit data structuresthrgsource. These data struc-
tures may change the space- and time-complexity of the anogso they must be
disabled during normal execution. All these demands carafgdi maintenance and
program comprehension. ldeally,debugger should support the representation of
such invariants outside the program’s sour¢t related work, we explain why ap-
proaches like contracts and aspects [5] are insufficient.)

3. Debugging is often a process of generating and falsifigiygpthesesProgrammers
must therefore have a convenient way to generate new hypgstidsle running a
program.Any technique that throws away the entire debugging cofietxveen each
attempt is disruptive to this exploratory process.

4. Since the target program is a source of events and delmggen event-oriented
activity, the scripting language must be designed to act as a recipémrvents
In contrast, traditional programming languages are desigor writing programs
that are “in control’—i.e., they determine the primary floflvexecution, and they

132

provide cumbersome frameworks for processing events. ddsss a challenge for
programming language design.

5. As a pragmatic mattedebuggers should have convenient access to the fafa-
cilities provided by modern consolss they can, for instance, implement problem-
specific interfaces. A custom language that focused soleth® debugging domain
would invariably provide only limited support for such aatiies. In contrast, the
existence of rich programming libraries is important foe thidespread adoption of
a debugging language.

To accomplish these goals, a debugging language must adaceflict central to all
language design: balancing the provision of powerful @osiwns with restrictions that en-
able efficient processing. This has been a dominant thenhe iprtor work (see section 9).
Most prior solutions have tended toward the latter, while gaper begins with a general-
purpose language, so as to explore the space of expressrertmooughly. This results in
some loss of machine-level efficiency, but may greatly camspee for it by saving users’
time. Furthermore, the functional style we adopt creatg®dpnities for many traditional
compiler optimizations.

8.3 Language Design Concerns

FrTime supports the development of a scriptable debuggeiaral ways. Firstly, the rich
libraries of DrScheme are available for FrTime, and are raataally lifted to the time
domain, so they recompute when their arguments updaten8kycthe DrScheme prompt
recognizes behaviors and automatically updates the gigpltneir values as they change
over time. Finally, FrTime upholds a number of guaranteesiah program’s execution,
including the order in which it processes events and theespaguired to do so:

e Ordering of event processing Since FrTime must listen to multiple concurrent
event sources and recompute various signals in responsajgi worry about the
possibility of timing and synchronization issues. For epéamif signala depends
on signalb, we would like to know that FrTime will not recompute using an
out-of-date value fronb. Fortunately, FrTime’s recomputation algorithm is aware

133

of dataflow dependencies between signals and updates tharopological order,
starting from the primitive signals and working towardsitliependents.

e Space consumption FrTime only remembers the current values of behaviors and
the most recent occurrences of events. Thus, if the progrdata structures are
bounded, then the program can run indefinitely without egstiag memory. If the
application needs to maintain histories of particular ¢gtreams, it can use FrTime
primitives like history-eor accum-bfor this purpose. The application writer must
apply these operations explicitly and should thereforevisra of their cost.

8.4 Debugging the Motivating Example

We are now ready to return to our example from section 8.1. Axyplained previously,
our implementation of Dijkstra’s algorithm employs a piigmueue coded by us. In ad-
dition, we noted that our implementation DfjkstraSolveris a direct transcription of the
pseudocode in the book. We hypothesized that the bug migint the implementation of
the priority queue, and that we should therefore monitdsétsavior. Recall that the partial
correctness property we wanted to verify was that consecptirs of elements extracted
from the queue are in non-decreasing order.

Figure 8.4 presents a debugging script that detects wolatof this property. In the
script, the variables is bound to a debugging session ijkstraTest a class that exer-
cises the implementation of Dijkstra’s algorithm. The io&ton ofstart-vminitiates the
execution of the Java Virtual Machineym) on this class, and immediately suspends its
execution pending further instruction.

The expressionj¢lass c PriorityQueugcreates a FrTime proxy for tHeriorityQueue
class in Java. Since Java dynamically loads classes on deth&proxy is a time varying
value: its value isL at first, and stays so until the class is loaded intasthe. The operator
jclasstreats its second argument speciaBBriorityQueueis not a variable reference, but
simply the name of the target class. In Lisp terminolggkassis aspecial form

Next, we install tracing around the methaatid andextractMinof the priority queue.
A tracepointis a FrTime event-stream specifically designed for debuggthe stream
contains a new value every time the Java program’s exectémehes the location marked

134

by the tracepoint. Concretely, the expression

(defineinserts
(trace (queue.adceentry)
(bind (item) item.weighy))

installs a tracepoint at the entry of tadd method ofqueue? The result otrace is an event
stream of values. There is an event on the stream each tinterget program reaches the
add method. To generate the values in the streamtrioee construct evaluates its body;
this body is re-evaluated for each event. In this instanesyse thdind construct to reach
into the stack of the target, find the value of the variatden (in the target), and bind it to
the identifieitem(in the body of thébind). In turn, the body of théind extracts theveight
field from this item. This weight becomes the value of the &ven

The identifierinsertsis therefore bound to a FrTime event-stream consisting ef th
weights of all nodes inserted into the priority queue. Thentdier removess bound cor-
respondingly to the weights of nodes removed from the qugwextractMin

We initially want to perform a lightweight check that deténes whether consecutive
remove (not separated by anserf) are non-decreasing. To do this, we merge the two
event-streamsansertsandremoves Since we are only interested in consecutive, uninter-
rupted removals, the monitor resets upon each insertioa.f@llowing FrTime code uses
the combinator=> to map the values in thiesertsstream to the constamnteset, which
indicates that the monitor should reset:

(merge-e remove#nserts. -=> . 'reset))

The result of this expression is illustrated in Figure 8rbtHis graph, time flows towards
the right, so earlier events appear to the left. Each ciepeasents one event occurrence on
the corresponding stream. The first three lines show tharaseve just discussediserts
removesand the mappethserts The fourth timeline of the figure shows that timerge-e
expression evaluates to an event-stream whose eventstaeearder they are encountered
during the run. The insert events have been mapped to théacons/hile the remove
events are represented by the weight of the node.

The last two timelines in Figure 8.5 depict the next two stie@reated by the script.

2Here and in the rest of this paper, we use the infix notatiopeued by FrTime: X . op. y) is the same
as Op x) in traditional Lisp syntax.

135

The merged stream is passed to the core monitoring primitivein-order, shown in Fig-
ure 8.6. This usehistory-eto extract the two most recent values from the stream and
processes each pair in turn. It filters out those pairs thaiod@xhibit erroneous behavior,
namely when one of the events israset or when both events reflect extracted weights
that are in the right order. The result is a stream consisifgpirs of weights where the
weightier node is extracted first, violating the desiredeordiVe call this streamiolations

The FrTime identifietatest-violationis bound to a behavior that captures the last viola-
tion (using the FrTime combinatbiold). If the priority queue works properly, this behavior
will retain its initial value false(meaning “no violation so far”). If it ever changes, we want
to pause thevm so that we can examine the context of the violation. To dq tissuse the
primitive set-running-e!which consumes a stream of boolean values. Cafletgunning-
e!launches the execution of the target program proper, ant keep on consuming future
events on the given stream: when an event with the Valise occurs theyvm pauses, af-
ter which, when an event with a true value occursiie resumes. Since we anticipate
wanting to observe numerous violations, we define the (sehcinamed) abstractiamy,
which tells thesvm to run until thenextviolation occurs.

At the interactive prompt, we type). Soon afterward, thevm stops, and we query
the value ofatest-violation

> (nv)

shortpaust

> |atest-violation
(+inf.0 55.90169943749474)

This output indicates that the queue has yielded nodes wheigits are out of order. This
confirms our suspicion that the problem somehow involveptlwgity queue.

Continuing Exploration Interactively

To identify the problem precisely, we need to refine our modlehie priority queue. Specif-
ically, we would like to monitor the queue’s complete bldmkx behavior, which might
provide insight into the actual error.

3In Scheme, any value other théaiseis true.

136

With the JvM paused, we enter the code in figure 8.7 to the running FrTinsiae
This code duplicates the priority queue’s implementatisimg a sorted list. While slower,
it provides redundancy by implementing the same data streithrough an entirely differ-
ent technique, which should help identify the true causéeftrrort

We now explain the code in figure 8.7. The identifirodelis bound to a list that,
at every instant, consists of the elements of the queue tedarder. We decompose
its definition to improve readability. The valuesertersis an event-stream of FrTime
procedures that insert the values added to the priority €jugo the FrTime modeH=>
applies a given procedure to each value that occurs in an-setream); similarlyremovers
is bound to a stream of procedures that remove values fromutee. The code

(accum-b(merge-e inserters removers
(convert-queue-to-ligthind (q) q)))

merges the two streams of procedures usmggge-eand usesccum-kto apply the proce-
dures to the initial value of the modelccum-baccumulates the result as it proceeds, result-
ing in an updated model that reflects the application of alljtfocedures in ordeaccum-b
returns a behavior that reflects the model after each tremstmn. We must initialize the
model to the current content of the queue. The user-defiremdureconvert-queue-to-list
(elided here for brevity) convertgs internal representation to a list.

Having installed this code and initialized the model, waurae execution witmv. At
the next violation, we interactively apply operations tongare the queue’s content against
its FrTime model (the list). We find that the queue’s elemangsnot in sorted order while
those in the model are. More revealingly, the queue’s elésreme not the same as those in
the model. A little further study shows that the bug is in osage of the priority queue: we
have failed to account for the fact that the assignmerletst.weighin relax (figure 8.1)
updatesthe weights of nodes already in the queue. Because the queoe sensitive to
these updates, what it returns is no longer the smallestegieim the queue. (Of course,
these steps—of observing the discrepancy between the raadghe phenomenon, then
mapping it to actual understanding—require human inggnuit

On further reading, we trace the error to a subtle detail endiscription of Dijkstra’s
algorithm in Cormen, et al.'s book [27, page 530]. The bookmtxthe use of a binary

4Since the property we are monitoring depends only on thesioggights, not their identities, the model
avoids potential ordering discrepancies between equadighted nodes.

137

heap (which is how we implemented the priority queue) forspgraphs, but subsequently
amends the pseudocode to say that the assignmelgstoveighimust explicitly invoke

a key-decrement operation. Our error, therefore, was ntthenimplementation of the
heap, but in using the (faster) binary heap implementatidimout satisfying its (stronger)
contract.

8.5 Reflections on the Example

While progressing through the example, we encounter sepevpkrties mentioned in the
desiderata that make FrTime a good substrate for debugiviegeview them here, point
by point.

1. The DrScheme environment allows the user to keep and edhseactions across
interactive sessions. For instance, to monitor the pyioiieue, we define procedures
such ashot-in-orderandconvert-queue-to-listSuch abstractions, which manipulate
program data structures in a custom fashion, may be usefiihding and fixing
similar bugs in the future. They can even become part of thgram’s distribution,
assisting other users and developers. In general, delgggiipts can capture some
of theontologyof the domain, which is embedded (but not always explicateth)e
program.

2. We discover the bug by monitoring an invariant not expligepresented in the pro-
gram. Specifically, we keep a sorted list that mirrors thenisi queue, and we
observe that its behavior does not match the expectatiomsjkdtra’s algorithm.
However, the list uses a linear time insertion procedurechvéliminates the perfor-
mance benefit of the (logarithmic time) priority queue. Hodtely, by expressing
this instrumentation as a debugging script, we cleanlyrsépa from the program’s
own code, and hence we incur the performance penalty onlgwkbugging.

3. The interactive console of DrScheme, in which FrTime progs run, enables users
to combine scripting with traditional interactive debuggi In the example, we first
probe the priority queue at a coarse level, which narrowstiope of the bug. We
then extend our script to monitor the queue in greater dethils ability to explore

138

interactively saves the programmer from having to resterprogram and manually
recreate the conditions of the error.

4. The dataflow semantics of FrTime makes it well suited taad recipient of events
and to keep models in a consistent state, even as the scgpivisng. During the
execution of the Dijkstra solver, FrTime automatically pagates information from
the variablesnsertsandremovedo their dependents, theolationsvariable and the
set-running-eldirective. Also, when we add the variabteode] FrTime keeps it
synchronized witlviolationswithout any change to the previous code.

5. The libraries of FrTime are rich enough to communicatd witternal entities. The
programmer also has access to the programming constru€@sSaheme (higher-
order functions, objects, modules, pattern-matching),ettich have rigorously de-
fined semantics, in contrast to the ad-hoc constructs thatlpte many scripting
languages. Further, since FrTime has access to all theiébrm DrScheme [42], it
can generate visual displays and so on, as we will see irosegi9.1.

8.6 Design

The design of MzTake contains four conceptual layers thee aaturally as a consequence
of the goals set forth in the desiderata (Section 8.2).

First, we need abstractions that capture the essentiaidumadity of a debugger. These
are: observing a program’s state, monitoring its contrdthpand controlling its execution.
MzTake captures them as followlsind retrieves values of program variablésce installs
trace points, andet-running-elets the user specify an event stream that starts and stops
the program.

Second, we need a way to navigate the runtime data strucitithe target program.
For a Java debugger, this means providing a mechanism fanenating fields and looking
up their values.

Third, and most importantly, we need to be able to write $sripat serve as passive
agents. Most general-purpose languages are designeddie evréing programs that con-
trol the world, starting with a “main” that controls the ordef execution. In contrast, a
debugging script has no “main”: it cannot anticipate whatres will happen in what order,

139

and must instead faithfully follow the order of the targebgmam’s execution. Therefore
we believe that a semantic distance between the scriptmgubge and the kind of target
language we are addressing is a necessary part of the soli8iace the script’s execution
must be driven by the arrival of values from the program urateservation, a dataflow
language is a natural choice.

Once we have chosen a dataflow evaluation semantics, we omsstler how broad the
language must be. Itis tempting to create a domain-spe@baghing language that offers
only a small number of primitives, such as those we havedioizted here. Unfortunately,
once the script has gained control, it may need to perforntrarpp computational tasks,
access libraries for input/output, and so forth. This canisgrowth of tasks makes it im-
practical to build and constantly extend this domain-dpetanguage, and furthermore it
calls into question the strategy of restricting it in thetfplace. In our work, we therefore
avoid the domain-specific strategy, though we have triedeatify the essential elements
of such a language as a guide to future language designers.

Having chosen a general-purpose strategy, we must stiltifgie¢he right dataflow lan-
guage. Our choice in this paper is informed by one more caim$imposed by debugging:
the need to extend and modify the dataflow computation iotiedy without interrupting
execution. Among dataflow languages, this form of dynamiappears to be unique to
FrTime.

We present the grammar of the MzTake language in Figure &8.gfammar is pre-
sented in layers, to mirror the above discussion. The figgrlaepresented by debug-
expr>, presents the most essential language primitives. Thenddeger, consisting of
<inspect-expr and <loc-expr>, represents primitives for obtaining information about
the target program. The third layer describes the FrTimguage.

8.7 Implementation

The examples we have seen so far describe a debugger forrdmrams. However, the
same principles of scriptable debugging should apply totmmastrol-driven, call-by-value

S0Our work additionally introduces syntacticdifference when the target language is Java, but this can be
papered over by a preprocessor.

140

programming languages, with changes to take into accoergythtactic and semantic pe-
culiarities of each targeted language. To investigate e¢lieability of our ideas, we have
implemented a version of MzTake for Scheme [55] also.

Not surprisingly, both the Java and Scheme versions shargetsign of the debugging
constructdrace, bind, andset-running-e! They differ in the operators they provide for
accessing values in the language: because FrTime’s datel isadoser to Scheme’s than
to Java’s, the Java version of the debugger requijdsteoperator to dereference values,
but the Scheme version does not need the equivalent. Fontiney because Java (mostly)
names every major syntactic entity (such as classes anddstiwhereas Scheme per-
mits most values to be anonymous, the two flavors differ inntag they specify syntactic
locations.

8.7.1 Java

The overall architecture of the Java debugger is shown iarEi§.9.

On the left, we have the target Java program running on tdpeo¥irtual machine. The
Java standard provides a language-independent debuggittgq called the Java Debug
Wire Protocol (DwpP), designed to enable the construction of out-of-processigigers.
We have adapted mwPp client implementation in Ruby [1] to DrScheme by compiling it
machine-readable description afwpP packets. We use this implementation to connect to
the virtual machine overcr/Ip.

On the right of the figure, we have the stack of programminguaiges that we used to
implement the debugger. FrTime is implemented on top of DeSte, the debugging lan-
guage is implemented on top of FrTime, and debugging sangtthemselves implemented
in the debugging language.

The communication between the low-level debugger and thiptgoroceeds in three
stages. The first stage translatesvrpackets to a callback interface, the second dispatches
these callbacks to their respective tracepoints, and treetthnslates them to FrTime event
occurrences.

The second of these stages must handle subtleties intrdecause theowpPdoes not
provide guarantees about the order in which messages.dfavexample, the following is
a legal but troublesome sequence of messages. First, Mz€akis a message requesting a

141

new tracepoinB. While MzTake waits for a reply, the target program reachesxasting
tracepoint,A, generating an event that appears on the port before theavimachine’s
reply to the request to instal¥. MzTake must either queue the tracedawhile awaiting
the acknowledgment @B or dispatch thed trace concurrently; it does the latter.

A trickier situation arises when a trace evenBadippears even before the acknowledg-
ment of installing that tracepoint. This is problematic dese every trace event is tagged
with a label that identifies which tracepoint generated ihisTlabel is generated by the
JDWP and communicated in the tracepoint installation acknogmeent. Therefore, until
MzTake receives this acknowledgement, it cannot correntBrpret trace events labeled
with a new tag. In this case, MzTake is forced to queue theseteyand revisits the queue
upon receipt of an acknowledgment.

We also need to translate the event callbacks into FrTim@&atestreams. Each usage
of trace becomes associated with a callback. When the target redohésced location,
its callback evaluates thteace expression’s body and adds the result to FrTime’s queue of
pending events. It then posts on a semaphore to awaken tiad-elvaluator thread and
waits. The event’s value automatically propagates to gtessions that refer to theace
statement, directly or indirectly, in accordance with En€&is dataflow semantics. When
the FrTime dataflow graph reaches quiescence, the evaluadts on a semaphore, which
releases the callback thread and subsequently resumeavihgrbcess. This provides
synchronization between the debugging script and the dgdaligrogram. If the Java target
program uses multiple threads, MzTake handles each evandtiop-the-world manner, to
ensure that the script observes a consistent view of therqmdg state.

We found that thebwp provides most of the functionality needed to build a schfga
debugger. Beyond implementing the packets and the dispgtels we mentioned above,
we also needed to write two more components. The first waspbodite Java’'s scoping
rules in the implementation dfind: looking upx at a location first finds a local variable,
if any, otherwise the field namedin the enclosing class, then in the super class, and
so on. The second was to cache the resultsoafP queries pertaining to the fields of
classes and the line numbers of methods, and flush the cadreewdr the cached value
might be invalidated; this is necessary to achieve bothkogtartup and acceptable runtime
performance.

There are some other debugging events and inspection dascavailable in MzTake

142

that we mentioned very briefly, or not at all, during the exanIhese include facilities
for traversing the stack, enumerating local variables,samadn. There are also other events
and functionality available through ti®wpthat are not accessible in the debugger, such
as class-loading and unloading events, static initiadizetc. What we have described so
far is a conservative minimal extension of the programmargguage FrTime; it is easy to
continue in the same vein to include support for the remgieirents.

The inspection functions we provide pertain only to the gatsent in the target. We
might like to reflect on the program’s syntactic structurenadl, for example to trace all
assignments to a variable or all conditional statementsveier, thesipwp does not pro-
vide support for such inspection, so we would need to buibeshibur own. In a sense, such
capabilities are orthogonal to our work, since dataflowrsffeo new insight on processing
of static syntax trees.

The quality of thesbwpimplementation varied across virtual machines, and many ve
sions were prone to crashes; we tested against the\Buythe IBM Jvm, and the Black-
downJivwm, ultimately settling on the Sun implementation.

8.7.2 Scheme

The Scheme version employs source annotation. We instriutiherscheme program so
that it mirrors the functionality of a process under the colrdf a debugger. The annotation
mirrors the content of the lexical environment and intragkia procedure that determines
when to invoke the debugger.

For example, suppose the original target program conta@msexpression

(define (id X) X)
(id 10)

The output of the annotator would be (approximately)

143

(defineenvempty)
(define(id x)
(setlenv(cons(list "x" x) eny))
(invoke-debugget 15 eny)
(beginO ;; perform steps in order, then return value of the first exgign
X
(set!env(rest eny)))
(invoke-debugge? 1 env)
(id 10)
When the annotated version executes,ahevariable recreates the lexical environment.
In particular, it tracks theamesof variables in conjunction with their values, enabling
inspection. Thenvoke-debuggeprocedure receives source location information (e.g., the
argument and1 refer to line two, column one). Each invocation of the pragedests
whether a tracepoint has been installed at that locatioraaocordingly generates an event.
There are several important details glossed over by thiglgied notion of annotation.
We discuss each in turn:

thread-safety This annotation uses a mutable global variable for the enuent. The
actual implementation instead uses thread-local store.

tail-calls This annotation modifies the environment at the end of theqatore, thereby de-
stroying tail-call behavior. The actual implementatioessontinuation-mark$24],
which are specifically designed to preserve tail-calls incdations.

communication This annotation appears to invoke a procedure nameuke-debugger
that resides in the program’s namespace. Because FrTimatopmshe DrScheme
virtual machine, the target Scheme program and the Mz Tabegigng environment
share a common heap. Therefore, the annotation actualbduntes a reference to
thevalueof the debugging procedure, instead of referring to it by @am

The procedurénvoke-debuggegenerates a FrTime event upon reaching a tracepoint,
and then waits on a semaphore. From there, the evaluatitre aicript proceeds as in the
Java case, since both implementations share the same FeVatmtion engine. When the
evaluation reaches quiescence, it releases the semaphore.

144

The implementation is available from

http://ww. cs. brown. edu/ resear ch/ pl t/ sof t war e/ nzt ake/

8.7.3 Performance

We analyze the performance of the Dijkstra’s algorithm rtammshown in figures 8.4 and
8.6. This example has a high breakpoint density (approxim&00 events per millisec-
ond), so the time spent monitoring dominates the overallpdation. In general, the im-
pact of monitoring depends heavily on breakpoint densitgl, @ the amount of processing
performed by each breakpoint. All time measurements ara tnBGHzamD Athlon XP
processor running Sunx/m version 1.4 for Linux.

We measure the running time of the the Dijkstra’s algorithmonitor shown in fig-
ures 8.4 and 8.6, when it executes in the Java version of thegder. Excluding thevm
startup time, it takes 3 minutes 42 seconds to monitor onkomiheap operations (either
add or extractMin), which represents 2.217 milliseconds per operation. Vetioa this
time into four parts: First, the virtual machine executesdhll to eitheadd or extractMin
(0.002 milliseconds per operation). Second, Ib&pP transmits the context information,
FrTime decodes it, and FrTime schedules the recomputati@64 milliseconds per oper-
ation). Third, FrTime evaluates the script which monitdrs partial correctness property,
in figure 8.4 (0.851 milliseconds per operation).

According to these measurements, nearly one-third of tbagtgng time is devoted to
JpowPencoding and decoding and to the context-switch. This isistent with the penalty
we might expect for using an out-of-process debugger. The sipent in FrTime can, of
course, be arbitrary, depending on the complexity of theitnong and debugging script.

In the Scheme implementation, the target and the debuggeutxin the same process
(while still preserving certain process-like abstracsipfb]). As a result, whereas the Java
implementation incurred a high context-switch cost, bupapstatement cost, the Scheme
implementation incurs a small cost for each statement, butperating system-level cost
for switching contexts. Per operation, the annotatioroshiices a 0.126 milliseconds over-
head. Thanks to the absence of a cross-process contegtisdigpatching an event costs
0.141 milliseconds per operation (compared with 1.3 nailends in the Java version of
the debugger). The remaining times stay the same.

145

Obviously, MzTake is not yet efficient enough for intensivermtoring. A two mil-
lisecond response time is, however, negligible when usiagdWe interactively.

8.8 Controlling Program Execution

Debuggers not only inspect a program’s values, but somstats® control its execution.
Some of the abstractions we defined in our running example wfathe former kind rfot-
in-order, convert-queue-to-li3t In contrast, we also defined a custom-purpose rule for
deciding when to execute and when to pause, namely the fumuti

Thesestart-stop policiesepresent a general pattern of debugger use. These paigies
differ in subtle but important ways, especially when the sdime has several breakpoints,
each with its own callback. The start-stop policy used bytrsospted debuggers consists
of running the callbacks in order of their creation, untieaf them requests a pause. Once
this happens, the remaining breakpoints on the same linechexecuted at all.

One might wonder if this is the right rule for all applicatgrin particular, preventing
the execution of the subsequent callbacks creates a depgnbetween breakpoints (if
the first breakpoint decides to suspend the execution, thendedoes not get to run at
all). These dependencies are problematic if these brealgomionitor implicit invariants
or implicit data structures, as we did during the examplerii@uour debugging session,
we created a mirror model of the queue so that it would eldeittee problem with the state
of the real queue. In order to be of any debugging help, theaaut the state must remain
synchronized. If the event that detected the state violgti@vented the execution of the
event that updates the model, the program and model woukkdeabe synchronized.
Worse, this would happen exactly when we need to look at theemmamely when we
begin to explore the context of the violation.

By using a combination of first class events @ettrunning-elit is easy to define start-
stop policies which are both custom-purpose and reusaldampement the problematic
start-stop policy just described with the code in figure 8.0the codepreakpointds a
hash table that maps locations to event streams.bfémk function sets or adds a break-
point on a given line. The firsttime it is called on a given loaa, it installs arace handler
at that location, which simply sends the valnge on the event stream each time the tar-
get program reaches that location. On subsequent invosatipaccumulates a cascade

146

of events where each event is subordinate to the event tisairvihat location previously.
When the execution of the target program reaches one of tiatidos, the script invokes
each callback function in the cascade until the first onertitatns false. The conditionf
i ...) ensures that the other callbacks are not called aftedsva

With MzTake, it is straightforward to define a different myli Figure 8.11 shows the
code for a break policy that executes all the breakpointsi@i@cation before pausing the
target program.

8.9 Additional Examples

In this section, we present some additional examples thétdfuillustrate the power of our
language.

8.9.1 Minimum Spanning Trees

Because MzTake has the full power of FrTime, users can takandage of existing li-
braries to help them understand programs. For example, ffien& animation library
allows specification of time-varying images (i.e., imagadngors) that respond to events.
Since MzTake generates events by tracing program execuisens can visualize program
behavior by appropriately connecting these events to theation library.

An intuitive visual representation can be an effective wagaining insight into a pro-
gram’s (mis)behavior. Moreover, many programs lend thévasdo natural visualizations.
For example, we consider the problem of computing the Mimm&panning TreeMST)
for a collection of points in the plane. (This example is lohea the actual experience
of one of the authors, in the context of writing a heuristictdve the traveling-salesman
problem.)

A simple greedy algorithm for the1sT works by processing the edges in order of
increasing length, taking each edge if and only if it doesimmbduce a cycle. Though the
algorithm is straightforward, the programmer might forigatio something important, such
as checking for cycles or first sorting the edges by length.

The programmer could write code to isolate the source of sugbrs, but a simple

147

visualization of the program’s output is much more tellitg Figure 8.12, we show visu-
alizations of three versions of amsT program. On the left, we show the correcs$T, in
the middle, an edge set computed without cycle detectiathparthe right, what happens
if we forget to sort the edges.

In Figure 8.13, we show the debugging script that implemérissvisualization. Its
salient elements are:

tree-start-event occurs each time the program begins computing amew, yielding an
empty edge list

tree-edge-eventoccurs each time the algorithm takes a new edge, adding theadge to
the list

tree builds a model of the tree by accumulating transformatioosifthese event-streams,
starting with an empty tree

display-lines displays the current tree

Though we have not shown the implementation of #sar algorithm, one important
characteristic is that it does not maintain the set of edgeas taken: it only accumulates
the cost of the edges and keeps track of which vertices are reachedte éach other.
In building an explicit model of the tree, our script highiig an important capability of
our debugging system—it can capture information about tlegrnam’s state that is not
available from the program’s own data structures. To imgleiithe same functionality
without a scriptable debugger, the user would need to anmtengdrbgram to make it store
this extra information.

8.9.2 A Statistical Profiler

Because our scripting language can easily monitor a prograx@cution, it should be rel-
atively simple to construct a statistical profiler. Such efiegr uses a timer to periodically
poll the program. Each time the timer discharges, the pro#ieords which procedure was
executing and then re-starts the timer. The summary of &usrd provides an indication
of the distribution of the program’s execution time acrdssprocedures.

148

MzTake provides a global time-varying value callgldere which represents the current
stack trace of the target process. It is a list of symboliatmns starting with the current
line and ending with the location of threainfunction. The value ofvhereis updated any
time the execution of the target is suspended, eithérdme or by set-running-ef

Figure 8.14 usewhereto implement a statistical profiler that records the top ttecls
frames at each poll. First, we instantiate a hash table tostak contexts to their count.
Next, each time thevherebehavior changes, we capture the current context and patter
match on it usingnatch-lambda If the context contains at least a line, a function, and a
caller function, we trim the context down to the function reaamd its caller and increment
the count in the hash table. Then we biticks to a stream that sends an event every
50 milliseconds. Finally, we usget-running-elto suspend the target at each tick. We
want to resume the target soon after a pause, but how soommsewugh? We want
to leave just enough time so that the evaluation engine cityrapdates the hash table
before resuming the target, but no more. Recall fedtrunning-elsynchronizes with the
evaluation of the script, so that it waits until all depencles are fully recomputed before
consuming the next event on its input stream. With that indyie useanerge-do create a
stream containing two nearly-simultaneous eventsfdtsetick is followed by atrue tick
immediately afterwards. The synchronization ensuressiiatunning-ewill not consume
thetrue tick until the data flow consequences of faéseticks are completely computed.

This code only gathers profiling information. The scripta®& eventually report this
information to the user. There are two options: to wait uh#& program terminates (which
the debugger indicates using an event), or to report it dexadly based on clock ticks
or some other condition. (The latter is especially usefukmprofiling a reactive program
that does not terminate.) Both of these are easy to implensamy &rTime’s time-sensitive
constructs.

5\We also have another behavishere/sgfor where with single steppingvhich updates at every step of
the execution. This is useful for scripts that want to pred@s entire trace of the target. Howewshere/ss
is disabled by default, for performance reasons.

class DijkstraSolver {

public HashMap backtrace =new HashMap ();
private PriorityQueue q =new PriorityQueue ();

public DijkstraSolver(DirectedGraph graph,
Node source){
source .weight = 0.0;
gq.addAll(graph.getNodes ());

while (!q.isEmpty ()) {
Node node = (Node)q.extractMin ();
List successors = graph.getSuccsOf(node);
for (lterator succlt = successors.iterator ();

succlt.hasNext();)
relax (node, (Node)succlt.next());
}
System.out. printin ("Resultbacktracen” +
backtrace . keySet());
}

public void relax (Node origin, Node dest)X
double candidateWeight =
origin.weight + origin.distanceTo(dest);
if (candidateWeight< dest.weight) {
dest.weight = candidateWeight;
backtrace.put(dest, origin);

}
}
1

Figure 8.1: Implementation of Dijkstra’s Algorithm

149

1 3 4 5
O—=0O—>0O—0

S
O<OZ \ O6

Resul t backtrace:

[[node 1 : x 150 y 100 wei ght 55],
[node 2 : x 150 y 150 wei ght 55],
[node 3 : x 200 y 100 wei ght 105]]

Figure 8.2: Sample Input and Output

150

Pr Debugger

extractMi breakpoint

condition

extractMi breakpoint

condition

se)

Figure 8.3: Control Flow of Program and Script

(definec (start-vm”DijkstraTest”))
(definequeug(jclass c PriorityQueup

(defineinserts
(trace (queue.adaentry)
(bind (item) item.weighy))
(defineremoves
(trace (queue.extractMimxit)
(bind (resul)) result.weighy))

(defineviolations

(not-in-order(merge-e removeg@nserts. -=> . 'reset))))
(definelatest-violation(hold violationsfalse))
(define(nv)

(set-running-e{violations. -=> . false)))

Figure 8.4: Monitoring the Priority Queue

151

inserts . .
29.5 55.9
removes
15.3 40.6 29.5 751 +inf.0 55.9
(inserts . —=> . 'reset) . .
‘reset ‘reset
(merge-e remove!..) o o . . PR . .
15.3 40.6 ‘'reset 29.5 'reset 75.1 +inf.0 55.9
(history-€ ... 2)
(15.3 40.6) (40.6 'reset) === (‘reset 75.1)(75.1 +inf.0) (+inf.0 55.9)
violations .

(+inf.0 55.9)

Figure 8.5: Event Streams

(define (not-in-order ¢
(filter-e
(match-lambda
[(reset) fals€]
[(_reset) falsg]
[(previous current (> previous curren)
(history-e €2)))

Figure 8.6: The Monitoring Primitive

(defineinserters
(inserts. ==> . insert-in-modé&))

(defineremovers

(removes ==> . remove-from-mod§l

(definemodel

(accum-hb(merge-e inserters removers

(convert-queue-to-ligtind (q) q))))

Figure 8.7: The Redundant Model

152

<debug-expr

<inspect-expr

<loc-expr>

<frtime-expr>

<expr>

(bind (<var> ...) <expr>...)
(trace <expr> <expr>)
(set-running-ekexpr>)

(start-vm<expr>)
(jclass<expr> <name>)

<number> | entry| exit

(map-e<expr> <expr>)
(filter-e <expr> <expr>)
(merge-e<expr> ...)
(accum-b<expr> <expr>)
(changes<expr>)

(hold <expr> <expr>)
(value-now<expr>)
seconds

key-strokes

(A (<var>...)<expr>...)
(<expr>...)

(if <expr> <expr> <expr>)
... ; other Scheme expressions

<debug-expr
<inspect-expr
<frtime-expr>

Figure 8.8: MzTake Grammar

Target

Java VM

JDWP server

tep/ip

153

Script

Script

Script

Debugger

FrTime

JDWP client

DrScheme

Figure 8.9: MzTake Architecture for Debugging Java

(define breakpointdmake-hash-tableequal))

(define (break location callback
(let ([prev-breakpoint
(if (hash-table-contains? breakpoints locatjon
(hash-table-get breakpoints locatipn
(trace locationtrue))])

(hash-table-put! breakpoints location
(prev-breakpoint
L==>
(A (i) (if i (callback false))))))

(define (resume
(set-running-e!
(apply merge-éhash-table-values breakpoii)y

Figure 8.10: A Typical Start-Stop Policy
(definebreakpointsampty)

(define (break location callback
(set! breakpoints
(cons(trace location(callback))
breakpoint}))

(define (resumeg
(set-running-e!
(apply merge-e breakpoiny

Figure 8.11: A Different Start-Stop Policy

154

155

Figure 8.12: Spanning trees computed correctly (left)haut detecting cycles (middle),
and without sorting edges (right)

(definetree-start-event
(trace ((tsp. jdot. ms) . jloc . entry)
(bind () (A (prev) empty))))
(definetree-edge-event
(trace ((tsp. jdot. ms) . jloc . 80)
(bind (e)
(A (prev)
(cons(make-edgée .. jdot . v1)
(e.jdot.v2)
prev)))))

(definetree
(accum-b(merge-e tree-start-event
tree-edge-evejt
empty))
(display-lines treg

Figure 8.13: RecordingisT Edges

(define pings(make-hash-tableequal))

((changes whede
. ==>. (match-lambdd(line function context rest..)
(hash-table-increment! pindg#ist function contexb]

[(void)]))

(defineticks (changegquotientmilliseconds 50)))

(set-running-e{merge-gticks. -=> . false)
(ticks. -=> . true)))

Figure 8.14: A Statistical Profiler

156

Chapter 9

Related Work

Research on dataflow languages began in the early 1970s,emechidis been a large body
of work since then. An early language was Lucid [98], a purst-firder dataflow language
based on synchronous streams.

Lustre [20] is a synchronous dataflow language similar toid.Lu®rograms in Lustre
consist ofnodes which process streams of values that are computed in symgiwith
various user-specified clocks. Variable definitions in keisire purely functional but may
refer to previous values of themselves and other variablegs, its streams are essentially
timed versions of the lazy lists found in many functionaldaages. They also capture the
essence of FrTime’s behaviors and events.

Lustre is designed to support development of reactive systihat satisfy real-time
performance constraints, as well as static verificationabéty properties. To that end,
programs written in Lustre must be compilable to finite awdtam To ensure compilabil-
ity, Lustre deliberately omits features commonly found émgral-purpose languages, such
as object-orientation, higher-order functions, dynarmizursion, and recursive data struc-
tures, all of which FrTime does support. More fundamentaliystre differs from FrTime
because it is a self-contained language, whereas FrTimmeamaedding of dataflow eval-
uation within an existing call-by-value language.

Signal [7] is similar to Lustre, but it is based on relatioather than functions, so its
underlying model is non-deterministic. FrTime adopts tlasit spirit of dataflow pro-
gramming but embeds it within the dynamic and higher-oraertext of an existing call-
by-value functional language.

157

158

Lucid Synchrone [21] implements a Lustre-like notion ofaflw evaluation in a lan-
guage resembling (purely functional) Caml [2]. Its syntaxdsy similar to that of Caml, so
it approaches the notion of transparent reactivity praviokeFrTime. However, it works by
whole-program compilation to sequential Caml code (instdagsing call-by-value evalu-
ation to construct a dataflow graph), so it does not permifréminterleaving of dataflow
and call-by-value evaluation, nor does it support liverémeental development in the style
of FrTime.

Esterel [9] is another synchronous language designed fongreal-time reactive sys-
tems. Like Lustre, Esterel programs compile to finite autianand support reasoning
about safety properties and real-time performance. Horvewdike Lustre, which has a
functional dataflow semantics, Esterel is imperative. Ateked program consists of tasks
that run in lockstep over a number of time steps, emittinggdireg, and waiting for various
signals that are either present or absent in any given tepedEsterel shares with Lustre
many of its differences from FrTime, such as a lack of higbreler procedures, dynamic
recursion, and recursive data structures, all of which rhesacrificed in order to guaran-
tee compilation to finite automate. However, because ofifserative programming style,
Esterel is even more different from FrTime than Lustre.

FairThreads [11] is a framework for synchronous reactiegpamming, similar in style
to Esterel. It allows a programmer to express computationerms of many lightweight,
cooperative threads, each of which gets a chance to run imlegical time step. The
threads can communicate via broadcast signals (as in Bsasrevell as shared data. The
FairThreads model offers the expressive power of fine-ghiconcurrency without the
complexity and nondeterminism that arise from pre-emptiveads. Implementations of
FairThreads exist for C, Java, and Scheme [86].

Functional reactive programminggp) [39, 74, 80, 102, 103, 104] merges the syn-
chronous dataflow model with the expressive power of Has&edtatically-typed, higher-
order functional language. In addition, it adds supportsieitching(dynamically recon-
figuring a program’s dataflow structure) and introduces aeptual separation of signals
into (continuously-valued)ehaviorsand (discretely-occurringgvents FrTime is inspired
and informed by this line of research, borrowing the basitong of behaviors and events.

Several HaskelkRPimplementations are based on lazy stream abstractiortsywiich
it is relatively straightforward to implement a notion oinghronous dataflow computation

159

based on polling. The dataflow abstractions in these systéeensssentially the same as
in FrTime, but FrTime also supports imperative featurehainterfaces with the outside
world, as well as interactive development in thePL Its update model is based on push
instead of pull, so its performance characteristics areesdmt different; in particular,
using push seems to incur significant overhead, but it hasd¥x@ntage of only recomputing
a signal if it depends on something that has changed.

There has been a good deal of work on implementatisref Real-timerrRP[103] and
event-driverFRP [104] are first-order languages that have more in common elébsical
synchronous dataflow languages, where the focus is on bogimdsource consumption.
ParallelFrRPadds a notion of non-determinism and explores compilatforre programs
to parallel code. Elliott discusses several functionallengentation strategies for general-
purposerRPsystems [38], which suffer from various practical problesush as time- and
space-leaks. A newer version, Yampa [74], fixes these prubéd the expense of some ex-
pressive power: while Fran [39] aimed to extend Haskell Witi-class signals, the Yampa
programmer builds a network sfgnal functionghrough a set oérrow combinators [51].

FrTime’s linguistic goal is to integrate signals with then8me language in as seamless
a manner as possible. Importantly, because Scheme is dag@rogrammer has precise
control over when signals begin evaluating, which helpsév@nt time-leaks. In addition,
the use of state in the implementation allows more contret avemory usage, which helps
to avoid space-leaks. A revised implementation of FrareddNewFran resolves many of
the issues from the original Fran, using techniques verylaino those in FrTime. How-
ever, FrTime goes a step further by integrating with an adgve programming environ-
ment that supports incremental program development, wapoogram-analysis tools, and
arich set of libraries.

Lula [89], a stage lighting system written in Scheme, corga stream-based imple-
mentation ofFRP that departs from the Haskell systems in a number of ways.ake®
heavy use of Scheme’s object-oriented features, modeiiifigreht varieties of signals
through a class hierarchy. Like FrTime, it implements a §étiactional reactive adapters
for the MrEd toolkit, although it does not attempt to tramslall of their imperative op-
erations to dataflow abstractions. Also like FrTime, it @kelective advantage of certain
impure features; for example, it uses threads to merge swams without synchronous
polling. However, unlike FrTime, its notion of reactivitg not transparent, and it has not

160

been tightly integrated with the DrScheme environment.

Frapge [29] is a Java library for buildingrp-style dynamic dataflow graphs. Its evalua-
tion model is similar to FrTime’s, in the sense that compatais driven by external events,
not by a central clock. However, the propagation stratedpagged on a “hybrid push-pull”
algorithm, whereas FrTime’s is entirely push-driven. A manportant difference from
FrTime is that Frapp does not extend Java syntactically, so its reactivity israosparent.

FRP has been applied to a number of domains, including anim88) stage light-
ing [89], user interfaces [30, 85], robotics [77, 78], anangater vision [79]. We have
explored animation and user-interface programming witfirke and have also applied it
to scriptable debugging [63]. This dissertation explotesise in more conventional desk-
top applications, including a graphical spreadsheet arekgansion of Findler and Flatt’s
functional presentation system, Slideshow [43].

A technique similar to that employed by FrTime has been usathplement a form
of dataflow for slot-based object systems likeos [33]. The basic idea is to extend slot
accessor and mutator methods with code to implement dataftmates. In particular,
when an accessor is invoked from a signal-defining contexgcords a dependency as
well as returning a value. Likewise, when a mutator is inehkeiterates through its list of
dependents and re-evaluates them. This strategy was ubadddhe one-way constraint
systems in Garnet [70] and Amulet [71] and has more recemi®nhused in the Cells [94]
library. None of these systems appears to support higltaraoeactivity or to address
glitches. Rather, they employ a depth-first update algoriéima avoid infinite loops in
cycles by recomputing any given value at most once in a gipelate.

Dataflow-like features are increasingly finding their watoimainstream languages.
For example, SuperGlue [65] is a linking language based dioms of behaviors and
events. It is used to specify relationships between commgsria event-driven Java pro-
grams. Data dependencies trigger re-evaluation of comp@oele, using a dataflow graph
in much the same way as FrTime does. SuperGlue’s ties totetjented programming
are much stronger than those of FrTime, with direct langusaggort for such features as
objects, traits, and inheritance. While it does not providgaeral notion of higher-order
reactivity, it offers convenient abstractions for the coomspecial case of collections.
These allow a limited form of automatic generation of dynagonnections between ob-
jects.

161

The JavaFX [91] language supports a notiortrajgers that execute when changes
occur to specific variables. It also provides a more dedl@rahechanism fobinding
variables to expressions, the result being something albelaviors; that is, whenever the
value of a referenced variable changes, the whole expressie-evaluated and the result
assigned to the bound variable. While the syntax of JavaFinigas to that of Java, there
are a number of differences, and special keywords are wdjtir introduce the dataflow
behavior, so its notion of reactivity is not quiteinsparentin the sense of FrTime. Also,
JavaFX does not appear to support higher-order reactivity.

Petri nets [81] are, like dataflow, a graph-based model ofpedgation. In a petri net,
there are places, transitions, and arcs. When there arest@eall of a transition’s in-
put places, the transition can fire, consuming the tokensptaing a specified number
of tokens on the output places. Petri nets can model a widgerahcomputational pat-
terns, including the update schedule of a synchronous datgilogram. However, they
only model a program’s control flow and not its the productidrvalues. Moreover, its
conjunctive firing rule cannot easily express FrTime’s fogecal update algorithm.

The Aurora [19] and Borealis [22] systems are designed tocoparkefficient query-
processing on time-varying data streams. Their evaluatiodel and some of their target
applications are similar to those of FrTime. They are alsgdistically similar to Fr-
Time, as they explore the extension of database query lgieguaith dataflow evaluation.
FrTime, however, explores this extension in the context bigler-order call-by-value
language.

LabView [72] is a graphical dataflow language designed focpssing signals from sci-
entific instruments. It supports a limited notion of switadpi in which fragments of a pro-
gram’s dataflow graph may be enabled and disabled accomlitigeé-varying conditions.
Its notion of dataflow is, however, fundamentally first-ardand its designers were not con-
strained by a need to interact seamlessly with an existirgg laaguage. Simulink [92] is
another commercial dataflow language. It is closely integravith theMATLAB program-
ming language and is designed for modeling and simulatialye&mic systems rather than
expressing general software applications.

Click [58] is a system for programming network routers. Thegsammer defines a
set of packet processors and constructs a network from thedividual processors can
be configured to push or pull; the runtime system, essep@atlataflow machine, inserts

162

gueues between processors as necessary and automatbeliipkes the packet processors
for execution. As it can support both push- and pull-baséedualing, it is in some sense
more general than FrTime. However, its notion of dataflowg-forder and its application
domain is significantly narrower than FrTime’s. Moreovékelmany of the languages
with which I'm comparing, the dataflow language is a selfteamed artifact rather than an
embedding into a pre-existing language.

Ptolemy [16] is a framework for implementing and studyingdels of computation that
involve communicating processes. The user defines ruleshiphvprocesses change state
and communicate with each other. He can then observe theitexeof a single model
or even combine several models and observe how they intéraetframework is general
enough to model formalisms like Petri nets, communicatieguential processes, the
calculus, statecharts, and both synchronous and asyrasatataflow networks. While
Ptolemy is certainly more general than FrTime, the systeeifitoes not directly address
the issues involved in integrating reactive programminglei®with more traditional call-
by-value languages. Rather, it largely ignores such prdtiguistic concerns as syntax,
library support, and programming environments.

0z [69, 88] is a multi-paradigm programming model that inlels concurrency, higher-
order functions, logic programming, and a form of dataflo@'s®otion of dataflow is what
is calledmonotonig in this style of dataflow, a variable may initially be unbaoug@as in a
logic program), then acquire a value at some intermediatgestf a computation, at which
point it propagates to other parts of the program that refey triggering new computation.
In constrast, FrTime embodies a more traditional notionadhtlow, in which the values of
variables may change repeatedly over the course of a prégexecution.

The E [68] language is another multi-paradigm programmiyrgjesn, combining con-
currency, distribution, and a capability-based securibdel. E also supports a notion of
first-order behaviors, which may be distributed across iplalhosts, communicating via
an adaptive push/pull mechanism that interacts smoothly thie language’s distributed
garbage collector. By comparison, FrTime supports higheeradataflow and uses a purely
push-based update mechanism, but its behaviors cannastoibutied easily or in a space-
safe manner.

TBAG [40] is a C++ library for expressing animations in a declamstyle. Linguis-
tically, it has much in common with FrTime. For example, iessstatic overloading to

163

define lifted versions of many built-in C++ operators. It trachieves, to a degree, the
same transparent reactivity exhibited by FrTime, thougio#s not carry the extensions
to the level of syntactic forms (e.g., conditionals). TBAGed not provide the concept of
switching that distinguishesrPsystems. However, it does support a more general bidirec-
tional constraints constraint mechanism than the simpiafidsv in FrTime and the other
FRPSystems.

An earlier object-oriented constraint-programming laaggl is ThingLab [10], which
was designed for expressing and running simulations. Liénke, ThingLab maintains
dependencies between objects and automatically progagatiates when values change.
It also supports interactive development and experimiemtatith systems, through both
a REPL and a graphical interface. However, its constraint languagvery general, and
solving a system of constraints requires a relatively caxglearch algorithm, which in
general may not succeed. In contrast, the unidirectionahléy constraints in a dataflow
language can be satisfied, by design, through simple furatevaluation.

Adaptive functional programmingaA€pr) [3] supports incremental recomputation of
function results when their inputs change. As in FrTimeceten occurs in two stages.
First the program runs, constructing a graph of its datamigpacies. The user then changes
input values and tells the system to recompute their depgad@he key difference from
FrTime is thatarp requires transforming the program irdestination-passing styl€ his
prevents the easy import of legacy code and complicatesasiledf porting existing li-
braries. The structure @fFp also leads to a more linear recomputation process, where the
program re-executes from the first point affected by the ghan

Open Laszlo [93] is a language designed for writing intevacapplications that run
in a Web browser. It is similar taTML but has a different syntax and provides additional
high-level features. The programmer specifies the streauad layout of a user interface
in an XML document, which may contain script code written avaScript. In addition
to a standard imperative callback-based approach to oitera the language supports a
feature its creators callata-binding by which the contents and properties of user interface
elements may be bound to mutabieta sourcesWhenever the data change, its consumers
are updated automatically, as in a dataflow language. Howteelanguage does not have
a general notion of signals, or signal functions, that candmposed arbitrarily, and there
is no declarative event-handling mechanism of the sortigeavbyFrPlanguages.

164

Focus[14] is a design methodology for specifying reactive systemhe basic ap-
proach is to model systems as collections of communicatiegus processors whose be-
haviors are constrained by relations over their inputs anguis. A system may be mod-
eled at several levels of detail, each model a refinementeoptivious one, and various
properties of a model may be expressed and proven in a tempgiaframework. Since
FrTime programs can also be viewed as communicating streacegsors, it could serve
as a target language for programs generated fromusspecifications. Alternatively, one
could start from a FrTime program and apply the reasoningnigcaes fromrFocusto
establish properties of it.

Integration with Object-Oriented Toolkits

The Citrus system [56] consists of a language and toolkit feating editors for struc-
tured data. It provides several dataflow-like featuredushog automatic synchronization
of models and views and the ability to define constraints dneg Citrus’s constraints
may refer to arbitrary program values, and they are autaalgtire-evaluated when such
values change, using a graph to track dependencies in a mginmmlar to that of FrTime.
Unlike FrTime, Citrus is designed specifically to simplifggtbonstruction of structured ed-
itors and, as such, does not seem well suited for generabparapplication development.
Moreover, while particular features exhibit dataflow-lzheealuation, it does not integrate
the notion of dataflow with the language as a whole.

The FranTk [85] system adapted the Tk toolkit to a programimirface based on
the notions of behaviors and events in Fran [39]. HowevanFk still had a somewhat
imperative feel, especially with regard to creation of ayslgnal networks, which required
the use of mutation in the application program. Fruit [30plexed the idea of purely
functional user interfaces, implementing a signal-basegiqamming interface atop the
Swing [37] toolkit.

All of this previous work is concerned with the problem of idggng the dataflow inter-
face for the toolkit, and the emphasis is on the experiencth®application programmer.
We consider this to be fairly well understood. However, thebfem of actually imple-
menting such an interface is less well understood. Thougif tiese earlier systems have
included a working implementation, we understand that therelopment has been ad hoc,

165

and the subtle interaction between imperative toolkitsdeaarative dataflow systems has
not been explained in the literature.

Optimization

Deforestation [100] and listlessness [99] are optimizatechniques that eliminate inter-
mediate data structures from functional programs. Theip@se is analogous to that of
lowering, which eliminates intermediate nodes from a datafjraph. Although the me-
chanics of these transformations are quite different froosé of lowering, for stream-
basedrrPimplementations [39, 50], we imagine that deforestatiod lstlessness could
have an effect similar to lowering: namely, the weaving oftiple stream iterators into a
single processing loop. FrTime, however, seems to require special techniques because
of its imperative implementation.

Most otherFrRP implementations [29, 74, 102, 103] do not provide the samel lef
transparency that FrTime offers. They implicitly lift a ¢g@ number of common opera-
tions, but for some this is not possible, and syntactic cant for features like conditional
evaluation and recursive binding have not been extendedrtdlé signals.

Yampa [74] implements a dynamic optimization that achiegsentially the same ef-
fect as lowering. When it evaluates a composition of pureaifunctions, it replaces
them with a single signal function that computes the contjmwsof the original functions.
In FrTime, such a dynamic optimization would be difficult nglement without loss of
sharing. Specifically, without examining the program’stagtic structure, we cannot de-
termine which intermediate signals can escape their coofexeation, in which case they
must exist as separate nodes.

Nilsson [73] explores the use of generalized abstract dguest GADTS) to support
optimizations in Yampa [74]. The idea is to usaDTs to define special cases of signal
processors, such as constants and the identity functichingplement special, optimized
logic for them in the evaluator. In particular, Nilsson’sglamentation performs constant-
propagation and automatically eliminates calls to thetitlefunction, yielding measurable
improvement in various benchmarks. Moreover, 8wdT-based optimizations can be
applied to networks of stateful signal processors, whiahagproach cannot handle.

166

Real-timeFrP (RT-FRP) [103] is an implementation cfrRPthat shares certain similar-
ities with FrTime, such as the explicit connection to an ulyleg host language with a
collection of base primitives. The goal af-FRPis not to produce highly efficient code
so much as to establish provable bounds on the time and spawiead by each round of
execution. The language achieves these bounds througlsareative static analysis, but
it does not perform any optimizing program transformations

Event-drivenFRP (E-FRP) [104] is a modification oRT-FRP designed to support com-
pilation to efficient imperative codee-FRP adds some crucial restrictions ka-FRP that
make such compilation possible. Primarily, it takes awaydhility to perform dynamic
switching, thereby making the program’s data dependerstatc. It also requires that
only one external event can stimulate the system in any gipelate cycle. As iRT-FRP,
the language performs no optimizing program transformatioather, it uses a syntac-
tic restriction to guarantee limits on the program’s reseurequirements. In forbidding
dynamic switchingfg-FRP more closely resembles traditional synchronous dataflow la
guages, such as Lustre [20], Esterel [9], and Signal [7].s€Hanguages have a common
goal of compiling to efficient straightline code, which thaghieve by design. This is in
contrast to FrTime, whose primary goal is to provide expvegsower, often at the expense
of performance.

Languages for Scriptable Debugging

There are two main branches of research that relate to Mzaa#dlevhich have helped
inspire it: first, programmable debugging, and second,armgnonitoring and instrumen-
tation.

Dalek [76] is a scripted debugger built atgdb that generates events corresponding to
points in the program'’s execution. Each event is associaitda callback procedure that
can, in turn, generate other events, thus simulating a datatlyle of evaluation. When the
propagation stabilizes, Dalek resumes program execution.

MzTake has several important features not present in DAl&ky difference that a user
would notice is that we rely on FrTime to automatically coust the graph of dataflow
dependencies, whereas in Dalek, the programmer must aoh#tis manually. Dalek’s
events are not first-class values, so programmers mustwiegdevents to scripts, and

167

therefore cannot easily create reusable debugging opesagiich asot-in-order.

In Dalek, each event handler can suspend or resume the mxeotithe target program,
but these can contradict each other. Dalek applies a fixedadrbitrate these conflicts, in
contrast with the variety of start-stop rules discusseceatisn 8.8. Indeed, using a stream
as the guard expression highlights the power of using FrEs#he base language for the
debugger, since a few lines of FrTime code can reconstrueki3gpolicy in MzTake: the
code shown in figure 8.10 is in fact Dalek’s policy. This desagdresses an important
concern raised in an analysis of Dalek by Crawford, et al..[31]

The Acid debugger [105] provides the ability to respond tealipoint commands and
step commands with small programs written in a debuggingtslanguage very close
to C. Deet [48] provides a scripting language based on Tclfdkgawith a variety of
the graphical facilities. Dispel [54] defines its own ad-Haoguage. Generalized path
expressions [15] specify break conditions as regular sspoas applied to event traces. The
regular expressions are augmented with predicates thathesk for base-value relations.
In these projects, the programmer must respond to eversghrcallbacks, and there is
no notion of a dataflow evaluation mechanism. Each retaiesrnbpection and control
mechanism of command-prompt debuggers.

DUEL [47] extendggdb with an interpreter for a language intended to be a supefset o
C. It provides several constructs, such as list comprehessind generators, for inspecting
large data structures interactively. However, it does woir@ss how to control the target
program or how to respond to events generated during theigaec

The Coca debugger by Duc&g85] offers a conditional breakpoint language based on
Prolog. Coca uses the backtracking evaluation mechanismotdgPto identify potentially
problematic control and data configurations during the ettea, and brings these to the
user’s attention. As such, Prolog predicates serve as hethdnditional breakpoint lan-
guage and the data-matching language. However, since eagilegte application happens
in isolation from the other, there is no way to accumulate d@hof the execution as it hap-
pens through time, such as constructing a trace historyitalibg an explicit representation
of anMsST (as we have done in this paper).

Like Coca, on-the-fly query-based debugging [61, 62] enabsess to interactively
select heap objects. The objects are specified ussgLdike language evaluated using
an efficient on-line algorithm. It does not offer a sophistéd scripting mechanism. Like

168

Coca, this approach does not support relating data betwests rotime.

Parasight [4] allows users to insert C code at tracepoirttions. The C code is com-
piled and inserted into the running target program’s predesa way that has minimal
performance impact. The inserted code must, however, adogdtback-style to respond to
events. While adapting the running program has performaeneflts, it also complicates
the process of using more expressive languages to perfomtoriag and debugging (and
indeed, Parasight does not tackle this issue at all, usiagdme language for both the
target program and the scripts).

Alamo [53], like Parasight, instruments binary objectshwit-process C code. While
the scripts do not take the shape of callbacks, they must atlgrimplement a program-
ming pattern that simulates a coroutine (which is handladraatically in FrTime by the
evaluation mechanism). Theo debugger [6] extends Alamo with a rich pattern-matching
syntax over events in terms of the target language’s gramlaile MzTake offers a rich,
general-purpose language for processing event-stregrofficiently handles the special
case of list comprehension followed by folding.

There are several projects for monitoring program exenytis Dias and Richardson’s
taxonomy describes [32]. Monitors differ from debuggersvisyue of not being interac-
tive, and most do not provide scripting facilities. Instga@ny of these systems have better
explored the trade-offs between expressiveness, comsdsamnd efficiency in the specifi-
cation of interesting events. MzTake simply relies on thevgrdul abstractions of FrTime
to filter events, but at the cost of efficiency.

MzTake supports the notion that debugging code should rematside a program’s
source code, to avoid complicating maintenance and intioduime- and space-complexity
penalties. A debugging script is thus a classic “concerat tharrants separation from
the core program. Aspect-like mechanisms [5] offer one veagxXpress this separation.
However, using them for MzTake would not be straightforwandst implementations of
aspect mechanisms rely on static compilation, which makegpiossible to change the set
of debugging tasks on-the-fly. More importantly, most ofnthi®rce the debugging script
and main program to be in the same language, making it diffiouise more expressive
languages for scripting. These mechanisms are thereftlhegumal to MzTake and are
possible routes for implementing its scripting language.

Smith [87] proposes a declarative language for expressgjogligy constraints between

169

the programmer’s model and the execution trace. This carde as an aspect-like sys-
tem in which the aspects are not restricted to the origirmgletalanguage. Smith’s lan-

guage relies on a compiler to generate an instrumentedarotirat maintains the model

incrementally. Unfortunately, the compiler has not beeplemented and, as the paper
acknowledges, developing an implementation would not sg.ea

Contracts [67] also capture invariants, but they too suftanfthe need for static compi-
lation. In addition, data structures sometimes obey a ggooontract in a specific context
than they do normally. For instance, priority heaps perraitskto change, which means
there is na priori order on a key’s values. However, Dijkstra’s algorithmializes keys to
oo and decreases them monotonically, and failure to do soatelcan error. The topicality
of the contract means it should not be associated with tlgifyrheap in general.

DTrace [18] is a system for dynamically instrumenting alldes of production sys-
tems. It supports a variety of instrumentation providersiclv are capable of creating and
enablingprobesthat fire when specific events occur. A tracing script, wnitbe a cus-
tom domain-specific language called D (a variant of C withuess akin to Awk) defines
a set of probes, as well as consumers that execute and ptbeedata the probes pro-
duce. Consumers are invoked implicitly when the associatedts occur, though unlike
in MzTake, there is no dataflow mechanism with which to buighler-level event-based
abstractions. On the other hand, DTrace supports instriatiem at the machine level, us-
ing binary rewriting techniques to prevent overhead wheaaitg is disabled. Its primary
application seems to be determining the root causes of peafaces problems, even when
the symptoms are several levels removed from these causes.

Tool Reuse

There is a significant body of work concerned with the medt&meneration of tools
like the error-tracer and profiler we have described. Fonmgpte, Dinesh and Tip [34]
show how to deriveanimatorsanderror reportersautomatically from algebraic specifica-
tions of programming language interpreters and type chisckhe tools rely heavily on
the technique of origin-tracking [97] for first-order termwriting systems. The authors
note the discovery of critical restrictions and limitatsoof first-order rewriting, and Van

170

Deursen and Dinesh [96] subsequently developed an ornigakihg algorithm for higher-
order rewriting systems.

The ASF+SDF meta-environment [95] supports automaticigeios of interactive sys-
tems for creating language definitions and generating toolthem. Programmers write
algebraic language definitions in the ASF+SDF languagew8]ch allows the specifica-
tion of conditional term-rewriting rules. The system, whicompiles specifications to C
code, has been used to create several domain-specific FeguEong with a number of
language-processing tools.

The meta-environment also supports a frameworlgéeric debuggin§i75], where a
single debugger supports interaction with a wide varietprogramming languages. The
implementor of each language definesaalaptorthat provides a standard interface to the
language’s control and data abstractions and through whe&heneric debugger interacts
with the language’s runtime. This also allows for so-calfedlti-level debugging28],
where a user can debug a program and its implementationdgegimultaneously.

Compared to these systems, our approach is more specializedrisiderably lighter-
weight. It does not require that the developer write formgébraic specifications, and it
can track dependencies even when control flows into runtupeat libraries. Also, our
approach avoids the need for source code manipulation,raerd#rated by our reuse of
the host language’s generic annotator and tools. This isusgortant for domain-specific
languages, where minimizing development costs is critivs also implicitly reuse the
macro-tracking facility [36, 59] in the PLT Scheme systentiak allows correlation of
expressions in macro-expanded programs with their orligimarce.

Hudak [49] describes a methodology for building embeddedaln-specific languages
in Haskell, citing various forms of reuse as the main moitbrator the technique. Several
functional reactive programming systems [39, 74] have begremented as Haskell em-
beddings. These systems of course have less need for ruttibugging tools, since the
static type checker catches most errors before the program However, if one were to
attempt to use a profiler or error-tracer with a Haskell endibegl it would suffer from the
same problem that | have needed to address in FrTime. Theisdme for other possible
host languages. For example, FradR@9] is a Java implementation eRkp that in many
ways resembles FrTime and suffers from the same sorts eféogke problems that FrTime
experienced prior to the modifications described in thisepap

Chapter 10
Conclusions and Future Work

| have developed a strategy for embedding a notion of datafi@luation within call-by-
value languages. The strategy is based on lightweight sifoextensions and reuse of the
base language’s evaluator. It emphasizes reuse of as mpossible of the base language,
including ideally its libraries and tools. This strategembodied within the new language
FrTime, which builds on PLT MzScheme.

Much of the value of this work derives from the fact that thebexiding strategy applies
to other call-by-value languages. To validate this claiwg ports of its evaluation model

are currently under development:

10.1 Flapjax

FlapjaxX is a language designed to support development of inteeadeb applications. It
extends JavaScript—the most common scripting languagé&/étrbrowsers—with several
features, including dynamic dataflow evaluation in theispfrFrTime. Like FrTime, Flap-
jax is a conservative extension of its host language. Thiammé¢hat it is straightforward
to integrate Flapjax code with existing JavaScript, or wrementally migrate JavaScript
programs to Flapjax.

Since JavaScript lacks a module system, lifting cannot amented with the same
sort of linguistic mechanism as in FrTime. Instead, a ligkiht compiler expands Flap-
jax code into ordinary JavaScript with explicit calls to tiife library procedure. Just as

IFunctionallanguage fompplicationprogramming with AJAX
171

172

in FrTime, the resulting code generates a dataflow graph wkeouted, and a dataflow
engine employs essentially the same algorithm to keep thehgup-to-date. The graph-
construction primitives are also available in the form oluaeplibrary, so users who prefer
not to depend on the compiler can still take advantage of étefldw capabilities.

JavaScript programs interact with Web pages through a ttatzsre called @ocument
object modelor (boM). The boM represents the tree structure of themL page that
the browser renders; if the script modifies theMm, then the browser updates its display.
Most elements of theom support user interaction, at least in the form of low-leveluse
events; form elements like buttons, check boxes, and terg &alds provide higher-level
interfaces. Like most other user-interface toolkits, taea¥cript interface to theowm is
based on callbacks. Thus one of the most important aspeé&tapjax is a signal-based
interface to theoom that models both input and output.

In addition to the dataflow evaluation model, Flapjax pregidacilities for communi-
cating with the Flapjax server, which authenticates usets@ovides access-controlled
sharing of a persistent store for time-varying JavaSciygcis. The interface to the server
is based on signals, so it is easy to make a program’s datpteently persistent.

Although the Flapjax system is still maturing, the resutisar are encouraging. At
least one non-trivial application—aysiwyG Wiki engine—has been developed using it.
Several hundred users have created accounts on the Flagpjeet,swvhile hundreds more
have visited the site to experiment with various demos aad tiee documentation.

10.2 FrC++

FrC++ is a port of FrTime’s dataflow evaluation model to C++. design, like that of
FrTime and Flapjax, is influenced by the particular featofets host language. For exam-
ple, the static overloading mechanism in C++ allows prireitdperators to be extended to
handle new datatypes. FrC++ uses this capability to defitezllifersions of operators like
+ and* that can operate on numeric behaviors. Thus FrC++ suppoots—degree—the
notion of transparent reactivity that FrTime provides. Brer, because the overloading
is resolved statically, the implementation is more efficiban in FrTime, where a runtime
check is performed each time the program applies a liftedadpe However, because the
types of procedures must be explicitly declared, FrC++ casnpport transparent code

173

reuse to the extent FrTime does.

FrC++ makes use of the FC++ [66] library for functional prognaimg in C++, which
uses objects to implement first-class procedures, compligtiestatic type-checking and
parametric polymorphism. Signals are instances of claSgRkal, which is parameterized
over the type of value it carries. The type parameters arekelestatically, so a significant
class of errors is caught before the program runs. The usgpefitsignals complicates
the implementation of the dataflow engine, which needs todteta operate on a single
datatype. To facilitate this, all signals derive from a $ngon-parametric base class that
provides a nullary method callegbdate which returns a boolean value indicating whether
the signal’s value has changed. The dataflow engine refet stgnals through the base
class, which is sufficient for moving signals in and out of gnerity queue and invoking
theupdatemethod.

There are bindings for FC++ to the Gtk user interface too#iatthe language can be
used to write graphical applications. The adaptation fedlessentially the same techniques
as FrTime does for MrEd. Anecdotal evidence indicates tki-Fifar exceeds both FrTime
and Flapjax in terms of execution performance. This is ymssing given the amount of
effort that has been put into the construction of efficient @émpilers. Since FrC++ is
a pure library implementation, employing something like tbwering optimization from
Chapter 4 would seem to require the development of signifioénatstructure. (Fortunately,
the high performance of the host language has thus far matieasendeavor unnecessary.)
Moreover, while there are a variety of tools for C++, they rsseeily exhibit the same sorts
of problems mentioned in Chapter 7.

Bibliography

[1] The Ruby JDWP project. http://rubyforge.org/projects/
r ubyj dwp/ .

[2] The Camllanguagenttp://cam .inria.fr.

[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functadmprogramming.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programminglages
2002.

[4] Z. Aral and I. Gertner. High-level debugging in Paragigin Proceedings of the
ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributetbuging
pages 151-162. ACM Press, 1988.

[5] Aspect oriented programming (article serie€pmmunications of the ACM4(10),
Oct. 2001.

[6] M. Auguston, C. Jeffery, and S. Underwood. A frameworkdatomatic debugging.
In Automated Software Engineeringages 217-222, 2002.

[7] A. Benveniste, P. L. Guernic, and C. Jacquemot. Synchremoagramming with
events and relations: the SIGNAL language and its semar8wisnce of Computer
Programming 16(2):103-149, 1991.

[8] J. A. Bergstra, J. Heering, and P. Klirilgebraic specificationACM Press, 1989.

[9] G. Berry. The Foundations of EsteteMIT Press, 1998.

174

175

[10] A.H. Borning. The programming language aspects of thibga constraint-oriented
simulation laboratoryACM Transactions on Programming Languages and Systems
3(4):353-387, 1981.

[11] F. Boussinot. Fairthreads: mixing cooperative and ieteve threads in c: Research
articles, 2006.

[12] J. P. Bowen and M. J. C. Gordon. A shallow embedding of Z inLHGformation
and Software Technolog$7(5-6):269-276, May—June 1995.

[13] G.Brachaand W. Cook. Mixin-based inheritanceAldM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Apjbicg pages 303—-311,
1990.

[14] M. Broy and K. StglenSpecification and Development of Interactive Systems: FO-
CUS on Streams, Interfaces, and Refinem8ptinger, 2001.

[15] B. Bruegge and P. Hibbard. Generalized path expressidimggh level debugging
mechanism. IfProceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on High-level Debugginmges 34—-44, 1983.

[16] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Pbgte A framework
for simulating and prototyping heterogeneous systerrgernational Journal of
Computer Simulation (special issue on Simulation SoftwareDpment)4:155—
182, April 1994.

[17] K. Burchett, G. H. Cooper, and S. Krishnamurthi. Loweriry static optimiza-
tion for transparent functional reactivity. BCM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program ManipulgtR9H07.

[18] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamiitstrumentation of
production systems. I0SENIX Annual Technial Conferengeges 15-28, 2004.

[19] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. LeeS&dman, M. Stone-
breaker, N. Tatbul, and S. Zdonik. Monitoring streams — a okags of data man-
agement applications. Imternational Conference on Very Large Databagesges
215-226, 2002.

176

[20] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRHBeclarative lan-
guage for programming synchronous systemsA@M SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languagpages 178-188, 1987.

[21] P. Caspi and M. Pouzet. Lucid Synchrone, a functionamsibn of Lustre, 2000.

[22] M. Cherniack, H. Balakrishnan, M. Balazinska, D. CarneyQJdtintemel, Y. Xing,
and S. Zdonik. Scalable distributed stream processingirgh Biennial Conference
on Innovative Data Systems Resea@0b03.

[23] J. Clements and M. Felleisen. A tail-recursive machirié stack inspectionACM
Transactions on Programming Languages and Syst26($):1029-1052, 2004.

[24] J. Clements and M. Felleisen. A tail-recursive machirié wstack inspectionACM
Transactions on Programming Languages and Syst26{(§):1029-1052, 2004.

[25] J. Clements, M. Flatt, and M. Felleisen. Modeling an btgé& stepper. liEuropean
Symposium on Programming001.

[26] G.H. Cooper and S. Krishnamurthi. Embedding dynamiefiilaw in a call-by-value
language. IrEuropean Symposium on Programmi2g06.

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivesintroduction to Algorithms
McGraw-Hill, 1997.

[28] B. Cornelissen. Using TIDE to debug ASF+SDF on multipleels. Master’s thesis,
Centrum voor Wiskunde en Informatica, 2004.

[29] A. Courtney. Frapg: Functional reactive programming in JavaPhactical Aspects
of Declarative Languages$pringer-Verlag, March 2001.

[30] A. Courtney and C. Elliott. Genuinely functional userarfaces. IrHaskell Work-
shop 2001.

[31] R. H. Crawford, R. A. Olsson, W. W. Ho, and C. E. Wee. Semassces in the
design of languages for debugging. Rroceedings of the International Conference
on Computer Languagepages 252-261, 1992.

177

[32] M. de Sousa Dias and D. J. Richardson. Issues on softwangoning. Technical
report, ICS, 2002.

[33] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Objecst®yn: An overview.
In European Conference on Object-Oriented Programmirg?7.

[34] T. B. Dinesh and F. Tip. Animators and error-reportensgenerated programming
environments. Technical Report CS-R9253, Centrum voor Wisk@mdinformat-
ica, 1992.

[35] M. Ducasg&. Coca: an automated debugger for CPmceedings of the 21st Inter-
national Conference on Software Engineeripgges 504-513, 1999.

[36] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstoacin SchemeLisp
and Symbolic Computatiob(4):295-326, Dec. 1993.

[37] R. Eckstein, M. Loy, and D. Woodlava Swing O’'Reilly, 1997.

[38] C. Elliott. Functional implementations of continuoudeled animation. Irin-
ternational Symposium on Programming Languages: Impléatens, Logics, and
Programs Springer-Verlag, 1998.

[39] C. Elliott and P. Hudak. Functional reactive animatiomACM SIGPLAN Interna-
tional Conference on Functional Programmingages 263—-277, 1997.

[40] C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. TBA&Ghigh level framework
for interactive, animate8D graphics applications. lIACM International Conference
on Computer Graphigpages 421-434, 1994.

[41] M. Felleisen and R. Hieb. The revised report on the sytitdloceories of sequential
control and stateTheoretical Computer Scienck02:235-271, 1992.

[42] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishaghi, P. Steckler, and
M. Felleisen. DrScheme: A programming environment for $ofe Journal of
Functional Programmingl12(2):159-182, 2002.

[43] R. B. Findler and M. Flatt. Slideshow: Functional presg¢ions. INACM SIGPLAN
International Conference on Functional Programmi2§04.

178

[44] M. Flatt. Composable and compilable macros. AGM SIGPLAN International
Conference on Functional Programmingages 72—-83. ACM Press, 2002.

[45] M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Fellasd°rogramming languages
as operating systemsr(Revenge of the Son of the Lisp Machine). AGM SIG-
PLAN International Conference on Functional Programmipgges 138-147, 1999.

[46] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classesl amixins. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lages pages
171-183, 1998.

[47] M. Golan and D. R. Hanson. DUEL - a very high-level debuggianguage. In
Proceedings of the USENIX Annual Technical Conferepages 107-118, Winter
1993.

[48] D. R. Hanson and J. L. Kom. A simple and extensible gragdhiebugger. In
Proceedings of the USENIX Annual Technical Conferepages 183-174, 1997.

[49] P. Hudak. Modular domain specific languages and toolsternational Conference
on Software Reus&998.

[50] P. Hudak. The Haskell school of expression: learning functional pamgming
through multimediaCambridge, 2000.

[51] J. Hughes. Generalizing monads to arrov&cience of Computer Programming
37(1-3), May 2000.

[52] D. Ignatoff, G. H. Cooper, and S. Krishnamurthi. Crossstgte lines: Adapt-
ing object-oriented frameworks to functional reactivegaages. IrSymposium on
Functional and Logic Programmin@006.

[53] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightwéit architecture for pro-
gram execution monitoring. ISBIGPLAN Noticesvolume 33, pages 6774, 1998.

[54] M. S. Johnson. Dispel: A run-time debugging languaggmputer Languages
6:79-94, 1981.

179

[55] R. Kelsey, W. Clinger, and J. Rees. Revisedport on the algorithmic language
Scheme ACM SIGPLAN Notices33(9), Oct. 1998.

[56] A. J. Ko and B. A. Myers. Citrus: A language and toolkit famglifying creation
of structured editors for code and data.UIST, 2005.

[57] E. E. Kohlbecker JrSyntactic Extensions in the Programming Language.L&D
thesis, Indiana University, 1986.

[58] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. KaashoEhe click modular
router. ACM Transactions on Computer Systed(3):263—-297, August 2000.

[59] S. Krishnamurthi, M. Felleisen, and B. F. Duba. From madp reusable generative
programming. InGenerative and Component-Based Software Engineeti®@p.

[60] J. L. Lawall and D. P. Friedman. Towards leakage comt&int. Technical Report
346, Indiana University, 1992.

[61] R. Lencevicius. On-the-fly query-based debugging wianeples. InProceedings
of the Fourth International Workshop on Automated Debugg?®00.

[62] R. Lencevicius, U. Kizle, and A. K. Singh. Dynamic query-based debugging of
object-oriented program#&utomated Software Engineerintd(1):39—-74, 2003.

[63] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Réisgataflow language
for scriptable debugging. IfEEE International Symposium on Automated Software
Engineering 2004.

[64] G. Marceau, G. H. Cooper, J. P. Spiro, S. Krishnamurtid, &. P. Reiss. The design
and implementation of a dataflow language for scriptableuggimg. Automated
Software Engineering Journa2006.

[65] S. McDirmid and W. C. Hsieh. Component programming witlieeboriented sig-
nals. InEuropean Conference on Object-Oriented Programmirages 206—229,
2006.

[66] B. McNamara and Y. Smaragdakis. Functional programrmr@++. InACM SIG-
PLAN International Conference on Functional Programmipgges 118-129, 2000.

180

[67] B. Meyer. Eiffel: The LanguagePrentice-Hall, 1992.

[68] M. S. Miller. Robust Composition: Towards a Unified Approach to Access ontro
and Concurrency ControlPhD thesis, The Johns Hopkins University, 2006.

[69] M. Muller, T. Muller, and P. V. Roy. Multi-paradigm programming in Oz. In
D. Smith, O. Ridoux, and P. Van Roy, editok4sions for the Future of Logic Pro-
gramming: Laying the Foundations for a Modern successor roldg, Portland,
Oregon, 7 Dec. 1995. A Workshop in Association with ILPS’95.

[70] B. A. Myers, D. A. Giuse, R. B. Dannenberg, D. S. Kosbie, Bvitg A. Mickish,
B. V. Zanden, and P. Marchal. Garnet: Comprehensive suppagtéphical, highly
interactive user interface€omputey 23(11):71-85, 1990.

[71] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A.lHang, B. D. Kyle,
A. Mickish, A. Klimovitski, and P. Doane. The Amulet envinment: New models
for effective user interface software developmelEEE Transactions on Software
Engineering 23(6):347-365, 1997.

[72] National Instruments, Inc. Labview (software system)t p: / / www. ni . com
| abvi ew.

[73] H. Nilsson. Dynamic optimization for functional reae programming using gen-
eralized abstract data types. ACM SIGPLAN International Conference on Func-
tional Programming 2005.

[74] H. Nilsson, A. Courtney, and J. Peterson. Functionattrea programming, contin-
ued. INACM SIGPLAN Workshop on Haskglges 51-64, 2002.

[75] P. Olivier. A Framework for Debugging Heterogeneous ApplicatioR&D thesis,
Centrum voor Wiskunde en Informatica, 2000.

[76] R. A. Olsson, R. H. Crawford, and W. W. Ho. Dalek: A GNU, imped pro-
grammable debugger. IIRroceedings of the Usenix Technical Conferermages
221-232, 1990.

181

[77] J. Peterson and G. Hager. Monadic roboticsDbmain-Specific Languaggsages

95-108, 1999.

[78] J. Peterson, P. Hudak, and C. Elliott. Lambda in motionnt@usling robots with

Haskell. Lecture Notes in Computer Sciend®51:91-105, 1999.

[79] J. Peterson, P. Hudak, A. Reid, and G. Hager. FVision: éatative language for

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

visual tracking.Lecture Notes in Computer Sciend®90:304-321, 2001.

J. Peterson, V. Trifonov, and A. Serjantov. Paralleldtional reactive programming.
In Practical Aspects of Declarative Languageslume 1753, 2000.

C. A. Petri. Kommunikation mit Automate®hD thesis, University of Bonn, 1962.

G. Pettyjohn, J. Clements, J. Marshall, S. Krishnamupahd M. Felleisen. Contin-
uations from lightweight stack inspection. ACM SIGPLAN International Confer-
ence on Functional Programming005.

S. L. Peyton Jones. Compiling Haskell by transformatereport from the trenches.
In European Symposium on Programmipgges 18-44, 1996.

G. Plotkin. Call-by-name, call-by-value, and the laratw@lculus.Theoretical Com-
puter Sciencgel:125-159, 1975.

M. Sage. FranTk: A declarative GUI language for Haskdih ACM SIGPLAN
International Conference on Functional Programmijipgges 106—117, 2000.

M. Serrano, F. Boussinot, and B. Serpette. Scheme faats. Iri2th International
Lisp ConferencegOctober 2002.

D. R. Smith. A generative approach to aspect-orient@egf@mming. Ininterna-
tional Conference on Generative Programming and Componegingering vol-
ume 3286, pages 39-54, 2004.

G. Smolka. The Oz programming model. In J. van Leeuwelitoe Computer

Science TodagyLecture Notes in Computer Science, vol. 1000, pages 324-343

Springer-Verlag, Berlin, 1995.

182
[89] M. Sperber. Developing a stage lighting system fromaszr. INnACM SIGPLAN
International Conference on Functional Programmijipgges 122—-133, 2001.

[90] R. M. Stallman.GDB Manual (The GNU Source-Level Debuggefyee Software
Foundation, Cambridge, MA, third edition, January 1989.

[91] Sun Microsystems. JavaFXtt p: // www. sun. coni sof t war e/ j avaf x/ .

[92] The MathWorks, Inc. Simulink - simulation and modelskbd design.ht t p: //
www. mat hwor ks. cont product s/ si nul i nk/ .

[93] The Open Laszlo Project. Open laszhd.t p: / / ww. openl aszl o. org/ .

[94] K. Tilton. Cells. http://wwv. tilton-technol ogy. conicell s\ top.
htm .

[95] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A.aleg,)M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. ScheerdérJ. Vinju, E. Visser,
and J. Visser. The ASF+SDF meta-environment: A componasédh language de-
velopment environment. I@ompiler Constructionpages 365—-370, 2001.

[96] A.van Duersen and T. B. Dinesh. Origin tracking for higloeder rewriting systems.
Technical Report CS-R9425, Centrum voor Wiskunde en Informatig94.

[97] A. van Duersen, P. Klint, and F. Tip. Origin tracking.chmical Report CS-R9230,
Centrum voor Wiskunde en Informatica, 1992.

[98] W. W. Wadge and E. A. Ashcroft.ucid, the dataflow programming languag&ca-
demic Press U.K., 1985.

[99] P. Wadler. Listlessness is better than lazinessA@M Symposium on Lisp and
Functional Programmingpages 45-52, 1986.

[100] P. Wadler. Deforestation: Transforming programs limieate trees. Theoretical
Computer Scien¢§3:231-248, 1990.

[101] P. Wadler. The essence of functional programming.AGM SIGPLAN-SIGACT
Symposium on Principles of Programming Languagesgies 1-14, January 1992.

183

[102] Z. Wan and P. Hudak. Functional reactive programmuognffirst principles. In
ACM SIGPLAN Conference on Programming Language Design anteingnta-
tion, pages 242-252, 2000.

[103] Z. Wan, W. Taha, and P. Hudak. Real-time FRPAG®M SIGPLAN International
Conference on Functional Programminuages 146-156, 2001.

[104] Z. Wan, W. Taha, and P. Hudak. Event-driven FRPPHactical Aspects of Declar-
ative Language2002.

[105] P. Winterbottom. Acid, a debugger built from a langeagn Proceedings of the
USENIX Annual Technical Conferengages 211-222, January 1994.

