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The complexity of the brain has made the study of neuroanatomy a notoriously

demanding task. Diffusion magnetic resonance imaging probes fiber structures in vivo

by measuring the Brownian motion of water molecules. Tractography generates curves

from the diffusion imaging data that correlate with the neural fiber pathways. The

resulting high-dimensional data sets present a two-fold challenge in both visualization

and data analysis. This dissertation presents several diffusion MRI visualization and

analysis methods for revealing the white matter structures in the brain. I present a

model that describes linear and planar features of the brain anatomy respectively. I

discuss strategies in seeding, model placement, display environments and interaction.

To further explore the structures in the model, I emulate the way neuroscientists

conceptualize neural fibers by grouping closely-related fibers into fiber bundles and

studying the consistency, anatomical meaning and other properties of these fiber

bundles. Apart from qualitative exploration, I also present quantitative methods

such as metrics on tractography models or forward model for the tractography models

and employ these methods to study white matter integrity and increase the accuracy

of the tractography models. I applied these visualization and analysis methods in

biomedical applications such as the studies on multiple sclerosis, brain tumor, and

lemur brain. The work in this dissertation advances both qualitative visualization

and quantitative analysis of the 3D diffusion imaging models.



Revealing White Matter Fiber Structure with Diffusion Imaging

by

Song Zhang

B. S., Nankai University, 1996

Sc. M, Brown University, 2000

Ph.D. Thesis

Providence, Rhode Island

August 2006



This thesis by Song Zhang is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
David H. Laidlaw, Director

Recommended to the Graduate Council

Date
John Hughes, Reader

Date
Pascal Van Hentenryck, Reader

Approved by the Graduate Council

Date
Karen Newman

Dean of the Graduate School

iii



Vita

Education

• Ph.D., Computer Science, Brown University, expected 2006.

Revealing White Matter Fiber Structure with Diffusion Imaging

• M.Sc., Computer Science, Brown University, 2000.

Visualizing Diffusion Tensor MRI Using Streamtubes and Streamsurfaces

• B.Sc., Computer Science, Nankai University, China, 1996.

Experience

• Research Assistant, Brown University Computer Science Department

August 1998 – August 2006

• Teaching Assistant, Brown University Computer Science Department

January – May 2006, Software System Design

• Teaching Assistant, Brown University Computer Science Department

January – May 2005, Software System Design

• Teaching Assistant, Brown University Computer Science Department

January – May 2002, Computer Networks

• Internship, Microsoft (Summer 2001), Automatic Map Label Layout

iv



Honors and Awards

• Burroughs Welcome Fund Fellowship: 2004-2005

• Nankai University Scholarship: 1994-1995

Publications

Book Chapters

• A. Vilanova, Song Zhang, G. Kindlmann, and David H. Laidlaw. An introduc-

tion to visualization of diffusion tensor imaging and its applications.

In Visualization and Image Processing of Tensor Fields. Springer-Verlag, 2005.

• Song Zhang, Gordon Kindlmann, and David H. Laidlaw. Diffusion tensor

MRI visualization. In Visualization Handbook. Academic Press, June 2004.

Refereed Journal Articles

• Robert H. Paul, David H. Laidlaw, David F. Tate, Stephanie Lee, Karin Hoth,

John Gunstad, Song Zhang, Ronald A. Cohen, and Tim Flanigan. Neuropsy-

chological and neuroimaging outcome of HIV-associated progressive

multifocal leukoencephalopathy in the era of ART: a case report. HIV

Medicine, 2006. In press.

• Jack H. Simon, Song Zhang, David H. Laidlaw, David E. Miller, Mark Brown,

John Corboy, and Jeffrey Bennett. Identification of fibers at risk for

degeneration by diffusion tractography in patients at high risk for

MS after a clinically isolated syndrome. Journal of Magnetic Resonance

Imaging, 2005. In press.

v



• Cagatay Demiralp, Cullen Jackson, David Karelitz, Song Zhang, and David H.

Laidlaw. A qualitative and quantitative comparison of cave and fish-

tank virtual reality displays. IEEE Transaction on Visualization and Com-

puter Graphics, 2005. In press.

• Jason A. Kaufman, Eric T. Ahrens, David H. Laidlaw, Song Zhang, and John M.

Allman. Anatomical analysis of an aye-aye brain (daubentonia mada-

gascariensis, primates: Prosimii) combining histology, structural mag-

netic resonance imaging, and diffusion-tensor imaging. Anatomical

Record, 287A(1):1026–1037, November 2005.

• Song Zhang, Mark Bastin, David H. Laidlaw, Saurabh Sinha, Paul A. Armitage,

and Thomas S. Deisboeck. Visualization and analysis of white matter

structural asymmetry in diffusion tensor MR imaging data. Magnetic

Resonance in Medicine, 51(1):140–147, 2004.

• Andreas Wenger, Daniel Keefe, Song Zhang, and David H. Laidlaw. Inter-

active volume rendering of thin thread structures within multival-

ued scientific datasets. IEEE Transactions on Visualization and Computer

Graphics, 10(6):664–672, November/December 2004.

• Song Zhang, Cagatay Demiralp, and David H. Laidlaw. Visualizing diffu-

sion tensor MR images using streamtubes and streamsurfaces. IEEE

Transactions on Visualization and Computer Graphics, 9(4):454–462, October

2003.

Reviewed Conference Papers and Abstracts

• Stephanie Y. Lee, Stephen Correia, David F. Tate, Robert H. Paul, Song Zhang,

Stephen P. Salloway, Paul F. Malloy, and David H. Laidlaw. Quantitative

vi



tract-of-interest metrics for white matter integrity based on diffusion

tensor MRI data. ISMRM, 2006.

• Song Zhang, Stephen Correia, David F. Tate, and David H. Laidlaw. Corre-

lating DTI fiber clusters with white matter anatomy. ISMRM, 2006.

Under Review.

• Stephen Correia, S. Lee, Paul Malloy, N. Mehta, Song Zhang, Steven Salloway,

and David H. Laidlaw. Diffusion-tensor MRI tractography methods

for assessing white matter health and its relationship to cognitive

functioning. In Proceedings of the International Neurophisiological Society,

Boston, February 2006.

• Stephen Correia, Thea Brennan-Krohn, Song Zhang, David H. Laidlaw, Paul

Malloy, and Steven Salloway. Diffusion-tensor imaging and executive

function in subcortical ischemic vascular disease and mild cognitive

impairment. In International Neuropsychological Society Conference, Febru-

ary 2005.

• Stephen Correia, Thea Brennan-Krohn, Erin Schlicting, Song Zhang, David H.

Laidlaw, Paul Malloy, and Steven Salloway. Diffusion-tensor imaging in

vascular cognitive impairment and mild cognitive impairment: rela-

tionship with executive functioning. In Proceedings of the 2nd Congress

of the International Society for Vascular, Cognitive and Behavioural Disorders,

Florence, Italy, June 2005.

• Jack H. Simon, Song Zhang, David H. Laidlaw, D. E. Miller, M. Brown, J. Cor-

boy, D. Singel, and J. Bennett. Strategy for detecting neuronal fibers at

risk for neurodegeneration in earliest MS by streamtube tractography

at 3T. In Proceedings of ISMRM, Miami, FL, May 2005.

vii



• Jack H. Simon, John Corboy, Song Zhang, and David H. Laidlaw. Visualiza-

tion of fibers at risk for neuronal tract degeneration in early MS by

streamtube diffusion tractography. Platform Presentation at the Academy

of Neurology, Miami, FL, April 2005.

• David Tate, J. Gunstad, Robert Paul, Song Zhang, David H. Laidlaw, and

Ronald Cohen. Fractional anisotropy in subcortical white matter re-

gions of interest among cardiovascular patients. In Proceedings of

ISMRM, Miami, FL, May 2005.

• Song Zhang and David H. Laidlaw. DTI fiber clustering and cross-subject

cluster analysis. In Proceedings of ISMRM, Miami, FL, May 2005.

• Daniel Acevedo, Song Zhang, David H. Laidlaw, and Chris Bull. Color rapid

prototyping for diffusion tensor MRI visualization. MICCAI 2004 Short

Papers, September 2004.

• Eric T. Ahrens, J. M. Allman, E. Bush, David H. Laidlaw, and Song Zhang.

Comparative 3d anatomy of the prosimian brain: DTI and histolog-

ical studies. In Proceedings of the Scientific Meeting and Exhibition of the

International Society for Magnetic Resonance in Medicine, 2004.

• Thea Brennan-Krohn, Stephen Correia, Song Zhang, David H. Laidlaw, Paul

Malloy, and Steven Salloway. Diffusion-tensor imaging and executive

function in subcortical vascular disease. In Workshop on aging connec-

tions: Advanced MRI of age-related white matter changes in the brain. ISMRM,

2004.

• Stephen Correia, Thea Brennan-Krohn, Song Zhang, David H. Laidlaw, Paul

Malloy, and Steven Salloway. Diffusion-tensor imaging and executive

function in subcortical ischemic vascular disease and mild cognitive

viii



impairment. In Proceedings of the International Neurophisiological Society,

2004.

• Steve Correia, Song Zhang, David H. Laidlaw, Paul Malloy, and Steven Sal-

loway. Diffusion-tensor imaging: linear, planar, and spherical diffu-

sion in CADASIL. In 9th International Conference on Alzheimer’s Disease

and Related Disorders, 2004.

• David H. Laidlaw, Song Zhang, Mark Bastin, S. Correia, Steven Salloway, and

Paul Malloy. Ramifications of isotropic sampling and acquisition ori-

entation on DTI analyses. In Proceedings of the Scientific Meeting and

Exhibition of the International Society for Magnetic Resonance in Medicine,

2004.

• Vadim Slavin, David H. Laidlaw, Song Zhang, Rovert Pelcovits, George Loriot,

and Anderw Callan-Jones. Visualization of topological defects in nematic

liquid crystals using streamtubes, streamsurfaces and ellipsoids. In

IEEE Visualization 2004 Poster Compendium, October 2004.

• Song Zhang, Jack H. Simon, David H. Laidlaw, Mark Brown, and David M.

Miller. Visualization of the interaction of multiple sclerosis lesions

with adjacent white matter fibers using streamtubes and streamsur-

faces. In IEEE Visualization Poster Compendium, October 2004.

• Song Zhang and David H. Laidlaw. DTI fiber clustering in the whole

brain. In IEEE Visualization 2004 Poster Compendium, October 2004.

• Song Zhang and David H. Laidlaw. A model for some subcortical DTI

planar and linear anisotropy. MICCAI 2004, September 2004.

• Cagatay Demiralp, David H. Laidlaw, Cullen Jackson, Daniel Keefe, and Song

Zhang. Subjective usefulness of CAVE and fish tank VR display sys-

tems for a scientific visualization application. In IEEE Visualization

ix



Poster Compendium, Seattle, WA, 2003.

• Marco DaSilva, Song Zhang, Cagatay Demiralp, and David H. Laidlaw. Vi-

sualizing the differences between diffusion tensor volume images. In

Proceedings ISMRM Workshop in Diffusion MRI: Biophysical Issues, pages 237–

238, March 2002.

• Song Zhang, David H. Laidlaw, Mark Bastin, Saurabh Sinha, and Thomas S.

Deisboeck. Application of DTI visualization and analysis on a data set

from a brain tumor patient. In IEEE Visualization Poster Compendium,

October 2002.

• Marco DaSilva, Song Zhang, Cagatay Demiralp, and David H. Laidlaw. Visu-

alizing diffusion tensor volume differences. In Visualization ’01 Work in

Progress Proceedings, pages 16–17, October 2001.

• Song Zhang and David H. Laidlaw. Elucidating neural structure in diffu-

sion tensor MRI volumes using streamtubes and streamsurfaces. In

Proc. 9th International Society of MR in Medicine, April 2001.

• Song Zhang, Cagatay Demiralp, Daniel Keefe, Marco DaSilva, Benjamin D.

Greenberg, Peter J. Basser, Carlo Pierpaoli, E. A. Chiocca, T. S. Deisboeck,

and David H. Laidlaw. An immersive virtual environment for DT-MRI

volume visualization applications: a case study. In Proceedings of IEEE

Visualization 2001, pages 437–440, October 2001.

• Song Zhang, Cagatay Demiralp, Marco DaSilva, Daniel Keefe, David H. Laid-

law, Benjamin D. Greenberg, Peter J. Basser, Carlo Pierpaoli, E.A. Chiocca,

and T. S. Diesboeck. Toward application of virtual reality to visualiza-

tion of DT-MRI volumes. In Proceedings MICCAI, October 2001.

x



Acknowledgments

I would like to thank my advisor David H. Laidlaw for all these years of support and

guidance. I would like to thank my committee members John F. Hughes and Pascal

Van Hentenryck for many inspiring discussions.

I would like to thank my collaborators. Steve Correia, David Tate, Benjamin D.

Greenberg, Robert Paul, Paul Malloy and Steve Salloway from the Brown Medical

School; Mark Bastin, Saurabh Sinha and Paul A. Armitage from the University of

Edinburgh; Jason A. Kaufman and John M. Allman from Caltech; Jack H. Simon,

John Corboy, David E. Miller and Mark Brown from the University of Colorado —

Denver; Anna Vilanova from Eindhoven University of Technology; Gordon Kindlmann

and Thomas S. Deisboeck from Harvard Medical School; Peter J. Basser and Carlo

Pierpaoli from the National Institutes of Health.

I would like to thank my friends and fellow graduate students at Brown CS

for keeping my spirit up during all these years, particularly Aris Anagnostopoulos,
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Chapter 1

Introduction

1.1 Overview

The complexity of the brain makes the study of neuroanatomy a demanding task.

The building block of this complex structure is the neuron, the functional cellular

unit of the nervous system. The neuron consists of dendrites, a cell body, an axon,

and axon terminals (see Fig. 1.1). Axons form wire-like structures in the brain’s

white matter which transfers information between the dendrites, cell bodies, and

axon terminals. There are about 100 billion neurons in the human brain, and for

some types of neurons the axon can be as long as a meter. Neuroscientists strive to

understand these neurons and their interconnections.

Traditional methods for examining the brain, including post-mortem visual in-

spection and chemical tracer methods are invasive, time-consuming, and limited in

application. To address these problems, a new method for studying neuroanatomy

was pioneered in the 1980’s. Known as diffusion magnetic resonance imaging (MRI),

this technique measures the average diffusion of water molecules during a specified

time interval over a small region called a voxel. In a glass of water, water molecules

change course only by colliding with other water molecules engaging in the same con-

stant, seemingly random motion known as Brownian motion. In the brain’s white

1
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Figure 1.1: A depiction of the neuron taken from (Enchanted Learning, 2006).

matter, water-molecule diffusion is hindered by various components of the tissue such

as the cell membrane, the axon sheath and the collagen. Different compositions of

materials lead to different diffusion patterns inside (intracellular) and outside (extra-

cellular) the neurons. It is generally believed that the diffusion measured by diffusion

MRI contains a mixture of intercellular and extracellular diffusion and the exchange

between the two. Chapter 2 gives some background information in diffusion imaging.

Although the exact mechanism of the water diffusion in the white matter is still un-

known, experiments show that in coherently oriented fiber structures, the preferred

direction of diffusion measured by diffusion MRI coincides with the fiber orientation.

Armed with this powerful new technique, we can hope to model the diffusion process

in white matter and infer neural fiber structures using diffusion MRI data.

The thesis of this dissertation is that the diffusion imaging data can reveal white-

matter structures with visualization and data analysis techniques. This dissertation

presents our work in developing the diffusion-imaging visualization and analysis tech-

niques. I present comparison between different visualization schemes, validation of

the diffusion imaging methods and applications of the visualization and analysis tech-

niques in defense of the thesis. It is important to point out that diffusion-imaging
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visualization is an inherently interdisciplinary area, and many parts of this disserta-

tion are results of collaborations.

We first introduce the components of our models, known as streamtubes and

streamsurfaces, that encode diffusion information through their shapes, colors, sizes

and spatial placements. We then design several display and interaction schemes that

enable users to view these complex geometric models in a clear and informative way.

To further assist users in identifying anatomically related fiber bundle structures, we

develop fiber-clustering techniques. Apart from qualitative visual exploration, we also

perform quantitative studies on the streamtubes model: we design a number of metrics

on the streamtubes model and test them on both normal and diseased brains. We

also implement a forward model that optimizes our streamtubes model by simulating

the diffusion MRI signals from that model. Finally we enumerate several applications

of our techniques to biology and medicine.

In Chapter 3, we propose a set of 3D models, built from the components we call

streamtubes and streamsurfaces, that convey the connectivity, coherency and other

information about the white matter structures from diffusion imaging. Streamtubes

extend the tractography models, which consist of curves from the diffusion imaging

data that correlate with neural fiber pathways. The trajectories of the streamtubes

follow the fastest direction of diffusion, while the color along the streamtubes represent

the coherency of the neural fibers. Streamsurfaces follow planar diffusion, which arises

from crossing fibers or material boundaries. The seeding scheme is designed to cover

the whole data volume while avoiding artificial clusters.

In Chapter 4, we design and experiment with different display environments for

the purpose of brain visualization. We employ two virtual-reality display systems,

the CAVE and the fishtank VR system, and compare the benefits of the two. We also

develop a thread-and-halo technique suitable for interactive volume rendering volume

rendering to render the fiber structures together with a number of other components

for exploring the brain models. Finally, we explore color rapid prototyping plaster
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models as visualization tools for the brain models.

In Chapter 5, we present a method for automatically grouping white matter

into coherent anatomical structures, using a proximity-based algorithm for sampling,

culling, and clustering diffusion tensor imaging integral curves. We then demon-

strate the accuracy of the method in forming bundles of curves that are anatomically

consistent when guided and evaluated by an expert rater. We then develop an au-

tomated labeling algorithm that models the expert rater’s decisions and we evaluate

the results.

In Chapter 6, we present two quantitative methods to evaluate the streamtubes

model. We first try to assess white matter integrity by calculating a number of metrics

on the DTI integral curves. Then we try to increase the accuracy of the streamtubes

model by building a forward model from the streamtubes to diffusion MRI signals

and applying this forward model to optimization of the streamtubes model.

A model and visualization scheme for diffusion MRI can only be tested through

a variety of applications in neuroanatomy, medicine and biology. Indeed, without

applications to guide the development of computational and visualization tools, these

tools are far less likely to be useful. In Chapter 7, we present several applications

that apply the qualitative and quantitative modeling and visualization techniques

discussed through the previous chapters. In turn, these practical applications validate

and provide heuristics to our modeling approach.

1.2 Contributions

The contributions of this dissertation include

• Streamtubes and streamsurfaces (Zhang et al., 2003) are the first models to

incorporate more than just major eigenvector field information in tractography

methods.
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• A clustering algorithm for streamtubes (Zhang and Laidlaw, 2004) and a match-

ing algorithm for comparing fiber bundles across subjects (Zhang and Laidlaw,

2005).

• A forward model for diffusion MRI and a optimization scheme for tractography

models (Zhang and Laidlaw, 2006).

• Application of a barycentric mapping for anisotropy histogram in detecting

white matter changes in the presence of the brain tumor (Zhang et al., 2004).

• Comparison between CAVE and Fishtank VR system for brain visualization (Demi-

ralp et al., 2006).

• Application of diffusion MRI methods in studying white matter diseases (Simon

et al., 2005; Zhang et al., 2001a) and lemur brain (Ahrens et al., 2004).



Chapter 2

An Introduction to Diffusion

Imaging

This chapter introduces some background knowledge about diffusion, diffusion imag-

ing and diffusion tensor imaging which the following chapters use extensively.

Water molecules in human tissue constantly collide randomly with one another

and with other molecules, a phenomenon called Brownian motion; one consequence of

this is that water that starts in one area spreads to nearby areas over time, a process

called diffusion. Magnetic resonance imaging can be programmed to generate signals

relating to this diffusion process. These signals can then be used to fit a model to

describe the water diffusion in the brain. Since this water diffusion is restricted by

the tissue structures, the diffusion model can then be employed in visualizing and

analyzing brain anatomy. This chapter briefly reviews some background knowledge

in diffusion imaging. For a more detailed introduction, see (Buxton, 2002; Tuch,

2002).

In pure water, the seemingly random Brownian motion results in a dynamically

expanding Gaussian distribution of water molecules released from one point (Einstein,

1905). In human tissues, however, cell membranes and large protein molecules limit

the motion of water molecules. The geometrical and physical properties of the tissue

6
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determine the rate and direction of diffusion. We can thus infer the microstructure

of human tissue by measuring the diffusion of the water molecules, just as we feel out

the shape of a mug by measuring the deformation of our finger tips.

The discovery of the nuclear magnetic resonance (NMR) effect (Purcell et al.,

1946; Bloc, 1946) in 1946 was the beginning of work that has led to the current

form of diffusion magnetic resonance imaging (MRI). Two important landmarks were

the discovery of the spin echo (Hahn, 1950), whose signal is perturbed by the water

molecule diffusion, and MR imaging (Lauterbur, 1973), which determines exactly

where the NMR signal originates within the sample. Diffusion imaging was the first

imaging modality that could measure the diffusion of water in human tissues in vivo.

Although the exact mechanism of the generation of diffusion MRI signals in biological

tissues is not fully understood, it is generally believed that the quantity measured by

diffusion MRI is a mixture of intracellular diffusion, intercellular diffusion, and the

exchange between the two sides of the cell membrane (Stanisz and Henkelman, 2002).

Inferring tissue structure from the diffusion process requires exploring the orienta-

tion dependence of the diffusion. This dependence can be described by the diffusion

propagator P (r, r′, τ), which is the probability of a water molecule traveling from

position r′ to r in diffusion time τ (Callaghan, 1993). In practice, the number of dif-

fusion directions we can measure in a clinical scan is limited by scanning time, making

it impossible to sample complicated diffusion propagator with enough resolution.

A diffusion tensor (Basser et al., 1994) is a simplified diffusion propagator. It

fully describes the diffusion propagator for free diffusion in a uniform anisotropic

medium (Gaussian diffusion). For example, a diffusion tensor is a good model for

diffusion in uniformly oriented white matter structures such as the corpus callosum,

but is insufficient in areas where different tracts cross or merge. The coefficients

of the diffusion tensor, D, are related to the diffusion-weighted MRI(DWI) signals

by (Bihan, 1991): Ĩ = I0 exp(b : D), where I0 is the 0-weighted diffusion image,

the tensor b characterizes the diffusion-encoding gradient pulses used in the MRI
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sequence, and b : D =
∑3

i=1

∑3
j=i bijDij is the tensor dot product.

A 3D diffusion tensor is a 3 × 3 positive symmetric matrix:

D =











Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz











Diagonalizing D, we get three positive eigenvalues λ1, λ2 and λ3 (in decreasing order)

and their corresponding eigenvectors ~e1, ~e2 and ~e3. Many scalar indices and visu-

alization methods are based on the eigenvalues and eigenvectors of diffusion tensor

imaging (DTI) measurements.

One geometric representation of Gaussian diffusion is a diffusion ellipsoid. These

ellipsoids represent the surface of constant mean-squared displacement of diffusing

water molecules at some time τ after they are released from one point. The shape

of a diffusion ellipsoid is inherently related to the eigenvalues and eigenvectors of the

diffusion tensor: the three principal radii are proportional to the eigenvalues and the

axes of the ellipsoid aligned with the three orthogonal eigenvectors of the diffusion

tensor. The disparity of diffusion along different directions, or diffusion anisotropy, is

often defined on the three eigenvalues of the diffusion tensor (Pierpaoli and Basser,

1996; Westin et al., 1997a).

DTI measurements have been validated within acceptable error on the fibrous

muscle tissue of the heart (Scollan et al., 1998; Hsu et al., 1998). However, in a

voxel containing nonuniformly oriented neural fibers DTI measures an average signal

from all the fibers within the voxel, which usually results in an apparent reduction

of anisotropy and increase in uncertainty (Jones, 2003). To resolve the uncertainty

in these areas, q-space spectral imaging (Assaf and Cohen, 2000) and other high

angular resolution diffusion imaging methods (Tuch et al., 2002; Frank, 2002) have

been explored.

Image acquisition for diffusion MRI is a very active research area. Progress is

frequently reported on resolution improvement and reductions in imaging time, noise,
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and distortion.



Chapter 3

Streamtubes and Streamsurfaces

Model

In this chapter, we propose a set of 3D models that convey the connectivity, coherency

and other information about the white matter structures from the diffusion imaging.

We distinguish between coherent fibrous structures and incoherent mesh-like planar

structures and represent values in the two areas using streamtubes and streamsur-

faces, respectively. Streamtubes represent structures with primarily linear diffusion,

typically fiber tracts; streamtube direction correlates with tract orientation. The

cross-sectional shape and color of each streamtube represent additional information

from the diffusion tensor at each point. Streamsurfaces represent structures in which

diffusion is primarily planar.

Our algorithm chooses a quantitatively representative subset of the streamtubes

and streamsurfaces for display. We describe the set of metrics used for the culling

process, which reduces visual clutter and improves interactivity. We also generate

anatomical landmarks to identify the locations of such structures as the eyes, skull

surface, and ventricles. The final models are complex surface geometries that can be

imported into many interactive graphics software environments.

The work in this chapter is published in (Zhang et al., 2003).

10
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3.1 Related Work

Researchers have designed visualization methods that represent an entire data set

in a 2D slice of a 3D diffusion tensor field. Several attempts to visualize 3D DT-

MRI data have also been made recently. Pierpaoli et al. use arrays of ellipsoids to

represent a two-dimensional diffusion tensor field (Pierpaoli and Basser, 1996). Since

the diffusion tensor matrix is symmetric and has positive eigenvalues, an ellipsoid is its

natural geometric representation. Each axis of the ellipsoid represents one eigenvector

and its corresponding eigenvalue. Laidlaw et al. normalize the size of the ellipsoid to

give a more continuous appearance and, in a second method, borrow concepts from oil

painting to display diffusion tensor images (Laidlaw et al., 1998). Two-dimensional

brush strokes built up in several layers represent different features of the diffusion

tensors.

The two-dimensional methods in (Pierpaoli and Basser, 1996) and (Laidlaw et al.,

1998) visualize a diffusion tensor field by completely visualizing the tensors of discrete

sample points. When applied to a 3D data set, such methods have two limitations:

• Visualizing every sample point in the 3D data set produces so many ellipsoids

or brushstrokes that internal structures are difficult to see.

• The continuity inherent in biological tissues is not properly represented in the

final image. For example, neural fibers in the brain are difficult to locate within

an array of ellipsoids.

Several methods for 3D diffusion tensor field visualization have been developed to

address these problems, each making different choices of the subset of the tensor

information to represent and how to represent it.

Dickinson, in his design of visualization software for tensor-field datasets, tracks

tensor field lines that are everywhere parallel to an eigenvector of a 3D tensor field (Dick-

inson, 1989). Delmarcelle et al. built on this in proposing hyperstreamlines, visual
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a b c

Figure 3.1: (a) shows the hyperstreamlines from (Delmarcelle and Hesselink, 1993).
(b) shows the streamlines tracked in the diffusion tensor field from (Xue et al., 1999).
(c) shows the volume rendering technique from (Kindlmann et al., 1999) which assigns
color and opacity with barycentric transfer function.

icons for representing tensor information along its trajectory (Delmarcelle and Hes-

selink, 1993) (see Fig. 3.1(a)). The idea behind this method, which is analogous to

using ellipsoids to represent one diffusion tensor, is to visualize all the information

but only at some locations. The trajectory of the hyperstreamline is generated by the

vector field defined by the major eigenvector of the tensor. The cross-sectional shape

and color along the trajectory encode information about the other two eigenvectors

and the magnitude of the major eigenvector. The hyperstreamline method has been

applied to both stress tensor fields and momentum flux density tensor fields, but not

to diffusion tensor fields.

Xue et al. track streamlines in the major eigenvector field of the diffusion tensor

field to visualize DT-MRI data sets (Xue et al., 1999) (see Fig. 3.1(b)). For DT-MRI

data sets, the major eigenvector of the tensor matrix is in the direction of fastest diffu-

sion. Xue et al. use a fiber-tracking method dubbed FACT (Mori et al., 1999) to track

the linear features in biological tissues following the major eigenvector of each diffu-

sion tensor. There are other methods for tracking linear features in diffusion tensor
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data sets: Weinstein et al. stabilize the tracking in regions with nonlinear preferen-

tial diffusion using their tensorlines method (Weinstein et al., 1999), and Basser et al.

use numerical methods to solve a Frenet equation describing the evolution of a fiber

tract (Basser et al., 2000). These methods are, however, constrained to visualizing

only one vector field, and neither paper discusses the sampling and placement of the

tracts in the image.

Kindlmann et al. take a volume-rendering approach to the problem (Kindlmann

et al., 1999): their method displays only some of the information but displays that

information densely within a volume. A hue-ball and a barycentric map assign color

and opacity to each point based on the diffusion measurements (see Fig. 3.1(c)). The

result shows the data set at high resolution. However, the composition into a single

pixel of many data points along a ray makes it difficult to discern any given point,

and the paths of fibrous structures are hard to see.

Our goal is to visualize connectivity and tissue microstructure in MR diffusion ten-

sor images of biological tissue. The streamtubes we use here build on hyperstreamlines

but attempt to overcome their limitations in this context:

• The cross-section of a hyperstreamline can grow quite large, limiting the density

of hyperstreamlines in a scene and thus the level of detail we can visualize.

• The images in hyperstreamline papers generally contain only a few hyperstream-

lines. To visualize microstructures in biological tissues, we need more hyper-

streamlines in the scene.

• While a hyperstreamline is an intuitive visual representation for linear structures

in biological tissue, it is not very effective for representing planar diffusion.
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Figure 3.2: Visualization of a human brain using our method. Geometric models
include the red streamtubes, the green streamsurfaces, the blue ventricle surface, and
the wireframed skull surface. Large neural structures such as the corpus callosum
and the corona radiata are represented by the red streamtubes in this view.

3.2 Streamtubes and Streamsurfaces

We distinguish between regions of linear and planar anisotropy and employ stream-

tubes and streamsurfaces respectively to visualize these two types of regions (Zhang

and Laidlaw, 2001). Section 3.2.1 describes classifying different kinds of anisotropies.

In section 3.2.2 we discuss issues related to streamtubes, including their definition,

the extension of the trajectories they follow, how to sample the seed points for an ini-

tial trajectory set so that all the data are covered, and how to select a representative

set from the whole trajectory set. Section 3.2.3 explains the strategies for generating

streamsurfaces in regions of planar anisotropy. We also generate geometric represen-

tations of anatomical landmarks to provide context, as discussed in section 3.2.4.
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3.2.1 Anisotropy Classification

We classify diffusion anisotropy into linear diffusion anisotropy, planar diffusion anisotropy

and diffusion isotropy with Westin’s metrics. Westin et al. (Westin et al., 1997a) define

three characteristic qualities of a diffusion tensor value based on the three eigenvalues,

λ1 ≥ λ2 ≥ λ3:

cl =
λ1 − λ2

λ1 + λ2 + λ3

,

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
,

cs =
3λ3

λ1 + λ2 + λ3
,

where cl represents linear anisotropy, cp represents planar anisotropy, and cs represents

isotropy. Note that these values are complementary, cl + cp + cs = 1.

A diffusion tensor with one eigenvalue much larger than the other two has large

cl, corresponding to linear anisotropy; white-matter tracts tend to produce tensors

with linear anisotropy (Cormans et al., 1994). A diffusion tensor with two large

and one small eigenvalues has large cp, corresponding to planar anisotropy; sheet-like

structures and crossings of fiber tracts in biological tissues are likely to yield planar

anisotropy. Diffusion tensors whose three eigenvalues are roughly the same imply an

underlying structure with no preferred diffusion direction; these tensors are isotropic

and have a large cs. Gray matter in the brain tends to produce isotropic diffusion

tensors (Basser et al., 1994).

There are other anisotropy metrics, such as relative anisotropy (RA) or frac-

tional anisotropy (FA) (Pierpaoli and Basser, 1996), that measure the variance of the

eigenvalues and provide a directionless scale value. Such metrics measure differences

among anisotropies but do not distinguish between linear and planar anisotropies and

isotropies. Westin’s metrics, on the other hand, measure these kinds of anisotropies

separately.
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Figure 3.3: Barycentric map for the definition of anisotropy regions. Here, linear
anisotropy regions are defined as cl > 0.3 (Vertically hatched area); planar anisotropy
regions are defined as cp > 0.3 (horizontally hatched area). The small crosshatched
triangle has both linear anisotropy and planar anisotropy by this definition.

We define linear anisotropy regions and planar anisotropy regions by setting

thresholds on cl and cp. We can use a barycentric map (Kindlmann and Wein-

stein, 1999) to look at the defined anisotropy regions (see Figure 3.3). Note that

this definition allows diffusion tensors to have both linear and planar anisotropy, so

that streamtubes and streamsurfaces can be generated in the same region. From our

observations, those regions are usually where linear structures transition to planar

ones, often where neural fibers fan out or approach intersecting tracts.

3.2.2 Streamtubes for Linear Anisotropy

We chose streamtubes as the geometric primitive to represent linear anisotropy be-

cause it can naturally represent the underlying linear structures, can carry additional

information provided by the diffusion tensors, and has the potential to reduce visual

clutter.

The visual mapping of the streamtube is similar to that of the hyperstreamline.

The trajectory sweeps along the major eigenvector field, and the cross-sectional shape
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Figure 3.4: Streamtubes representing regions of linear anisotropy in a human brain.
The long U-shaped tubes pass through the corpus callosum.

is an ellipse representing the ratio of the other two eigenvectors. The radius corre-

sponding to the medium eigenvector is set to a constant to keep the streamtube

slim, while the ratio between the medium and the minor eigenvectors is preserved.

The color of the streamtube shows the linear anisotropy value: greater anisotropy is

redder.

The shape of a streamtube is determined primarily by its trajectory. In other

words, the major eigenvector field is the primary information visualized by stream-

tubes. We first fill the regions of linear anisotropy with a dense set of streamtubes

and then select a representative subset from them. The four steps that generate a

representative set of streamtubes are: (1) picking the seed points for a dense set of

trajectories covering the regions of linear anisotropy, (2) calculating trajectories in

the major eigenvector field, (3) selecting a sparser representative set of trajectories

from the dense set, and (4) visualizing additional information such as the direction

of the medium and minor eigenvectors. Figure 3.4 shows the streamtubes generated

from a human brain data set.
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Seed Points

Streamtube seed points are chosen so that streamtubes pass through all regions of

high linear anisotropy. Recall that we reduce the number of trajectories later, so it

is acceptable to generate many trajectories initially.

The seed points are not restricted to the sample points of the volume image. At

any point within the data volume, we use tricubic B-spline functions to interpolate

the tensor field (Basser et al., 2000), so there is no limit on how many seed points we

use or where we put them. We generate a seed point from every sample point and

jitter it within a voxel (Dippé and Wold, 1985).

Trajectories

Each streamline begins from a seed point and follows the major eigenvector field both

forward and backward. We find the integral curve passing through the seed point us-

ing a second-order Runge-Kutta integration method (Press et al., 1992; Basser et al.,

2000). (We also experimented with fourth-order Runge-Kutta, with the results being

very similar to those generated by the second-order method.) Because streamtubes

represent regions of high linear anisotropy, their trajectories are restricted to these

regions. Also, the streamtubes are clipped to the data volume and to regions with

sufficiently high signal-to-noise ratios.

Culling

Our sampling method starts with 1.2 million seed points and produces more than

150, 000 trajectories on a 256 × 256 × 144 human brain data set. Visualizing all

the streamtubes is not only expensive but also undesirable, as including too many

streamtubes in the scene would block the inner structures. A selection algorithm culls

most of the trajectories and keeps only a representative set. We use three metrics

for the culling process: the length of a trajectory, the average linear anisotropy along

a trajectory, and the similarity between a trajectory and the group of trajectories
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Trajectory A

Trajectory B

Parts of the trajectories that 
contribute to tD

Tt

Figure 3.5: In order to emphasize important differences between a pair of trajectories,
we average the distance between them only over the region where they are at least Tt

apart; smaller differences are assumed to be insignificant.

already selected. Trajectories are kept or discarded according to their metrics. For

example, a trajectory that is too similar to a selected trajectory is discarded.

We define the similarity between two trajectories using a distance measure:

Dt =

∫ s1

s0

max(dist(s) − Tt, 0)ds
∫ s1

s0

max( dist(s)−Tt

| dist(s)−Tt|
, 0)ds

(3.1)

where s parameterizes the arc length of the shorter trajectory, s0 and s1 are the

starting and end points of s, and dist(s) is the shortest distance from location s on the

shorter trajectory to the longer trajectory. Tt ensures that we label two trajectories

as different if they differ significantly over any portion of the arc length. For example,

if Tt = 0, the pair of trajectories shown in Figure 3.5 would have a small Dt value,

because they run close together over much of their length, making the denominator

large. Setting Tt as in Figure 3.5 makes Dt larger because it reduces the denominator.

Note that other features such as the curvature of the trajectories can also be used

to measure similarity. Since DTI data are averaged over the size of the voxel, the

trajectories tracked are usually smooth. Thus the distance between the trajectories

makes a decent measurement of the similarity.

For each of the three criteria, we set a threshold to limit the streamtubes we

draw. Table 3.1 shows the thresholds for this culling process for Figures 3.2, 3.4, 3.9

and 3.10.
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Table 3.1: Parameters used to select streamtubes for Figures 3.2, 3.4, 3.9 and 3.10.

Streamtube length > 18.0 mm
Average linear anisotropy > 0.30
Tt used in Dt for streamtubes 0.89 mm
Distance between lines, Dt > 4.5 mm

Our effort in integral curve seeding and culling can be interpreted as Poisson

Disk sampling in the high dimensional space of the integral curves. The Poisson Disk

distribution can be defined as the limit of a uniform sampling process with a minimum-

distance rejection criterion (Cook, 1986). Successive points are independently drawn

from the uniform distribution. If a point is at least distance R from all points in

the set of accepted points, it is added to that set. Otherwise, it is rejected. The

choice of R controls the minimum allowable distance between points and, indirectly,

the density of the Poisson Disk pattern.

Shape and Color

The trajectory visually represents the major eigenvector field of the diffusion tensor

field. Once we have generated a representative set of streamtube trajectories, we map

additional information to them and construct the streamtubes. The cross-section of a

streamtube at a given point is an ellipse representing the other two eigenvectors and

eigenvalues, as shown in Figure 3.6. We set the radius along the medium eigenvector to

a constant, but preserve the aspect ratio of the second and third eigenvalues. Adjacent

cross-sections are connected to form the streamtube. The color of the streamtube is

based on the linear anisotropy value, with saturated red for the maximum and white

for the minimum.
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Figure 3.6: Generating a streamtube from a trajectory and cross-section. The second
and third eigenvalues of the diffusion tensor, λ2 and λ3, define the relative shape of
the cross-section. Its orientation is defined by the corresponding eigenvectors.

3.2.3 Streamsurfaces for Planar Anisotropy

Diffusion tensors with planar anisotropy could result from a surface structure, a

boundary between different materials, or a crossing of multiple linear features. Visu-

alizing regions of planar anisotropy may help to illustrate these kinds of structures.

The streamsurface is the approximation of the surface that extends along both

the major eigenvector and medium eigenvector. At any point on a streamsurface,

the major and medium eigenvectors lie in the tangent plane to the surface. Given a

starting point in the volume, we expand a streamsurface by following these two vector

fields. We first generate many streamsurfaces and then select a subset of them for

display. Colors are mapped to the surfaces to represent the planar anisotropy, cs, at

each point.

Seed Points

We choose the seed points to generate streamsurfaces similarly to those for stream-

tubes: we generate seed points by jittering every sample point in the data set.
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Figure 3.7: Streamsurfaces extend along major and medium eigenvectors in regions
of planar anisotropy. Part of the surfaces matches the area where two tracts of neural
fibers cross each other.

Streamsurface Integrability

Unlike streamtubes in a C∞ vector field, streamsurfaces in two C∞ vector fields do

not always exist. In this section we give the necessary and sufficient condition for the

existence of the streamsurface.

We use the notations and theorems from (Bishop and Crittenden, 1964). [X, Y ]

is the Lie bracket of vector fields X and Y .

A p-dimensional distribution on a manifold M(p ≤ dim(M)) is a func-

tion θ defined on M which assigns to each m ∈ M a p-dimensional linear

subspace θ(m) of Mm. A p-dimensional distribution θ on M is of class C∞

if there are C∞ vector fields X1, . . . , Xp defined in a neighborhood U of m

and such that for every n ∈ U , X1(n), . . . , Xp(n) span θ(n). An integral

manifold N of θ is a submanifold of M such that di(Nn) = θ(i(n)) for

every n ∈ N . We say that a vector field X belongs to the distribution θ

and write X ∈ θ, if for every m in the domain of X, X(m) ∈ θ(m). A

distribution θ is involutive if for all C∞ vector fields X, Y which belong to
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θ, we have [X, Y ] ∈ θ. A distribution θ is integrable if for every m ∈ M

there is an integral manifold of θ containing m.

— Geometry of Manifolds (Bishop and Crittenden, 1964)

If we define e1, e2 as the first and second eigenvector fields of the diffusion tensor

field, a streamsurface as we defined earlier is integrated on a 2D distribution in Eu-

clidean space R
3 that assigns to each m ∈ R

3 the 2D linear subspace spanned by e1

and e2.

Theorem 3.2.1 Given C∞ orthogonal vector fields e1 and e2 on R
3, the 2D distri-

bution η on R
3 that assigns to each m ∈ R

3 the 2D linear subspace spanned by e1(m)

and e2(m) is completely integrable if and only if [e1, e2] ∈ η.

Proof From Frobenius’ Theorem, we know that a C∞ distribution is completely

integrable if and only if it is involutive. Thus we only need to prove that if [e1, e2] ∈ η,

then for all C∞ vector fields U, V which belong to η, [U, V ] ∈ η.

Since e1(m) and e2(m) are orthogonal for all m ∈ R
3, we can write

U(m) = a(m)e1(m) + b(m)e2(m)

V (m) = c(m)e1(m) + d(m)e2(m)

Thus,

[U, V ] = [a · e1 + b · e2, c · e1 + d · e2]

= [a · e1, c · e1] + [a · e1, d · e2] + [b · e2, c · e1] + [b · e2, d · e2]

= [a · e1, d · e2] − [c · e1, b · e2]

= a · d[e1, e2] + a(e1{d})e2 − d(e2{a})e1 − c · b[e1, e2] − c(e1{b})e2 + b(e2{c})e1

∈ η

Conversely, if η is completely integrable, then for all U, V ∈ η, [U, V ] ∈ η. Let

U = e1, V = e2, we have [e1, e2] ∈ η.
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Surface Generation

We design the surface generation algorithm to try to follow the planar structure

suggested by the planar anisotropy. We define T (v) as the diffusion tensor at point v

and P (v) as the plane that contains the major and medium eigenvectors of T (v) as

well as v. P (v) is tangent to the streamsurface.

1. Starting from a seed point, v, we set the initial directions radially along six

evenly distributed directions within P (v), and extend curved edges to follow

the shape of the surface (see step 3). We then generate a triangle for every pair

of the neighboring edges (two edges are neighbors if their projections on P (u)

are neighbors).

2. For every new vertex u extended from step 1, we project to P (u) the existing

triangles that are attached to u, and then extend curved edges (see step 3) from

the initial directions on P (u) that are not covered by the existing triangles.

Then we generate a triangle for every pair of neighboring edges. This step is

repeated for every newly generated vertex until the terminating conditions in

step 4 are met.

3. We extend the edges from a vertex u by integrating in the 2D vector field V ,

which is defined on the plane P1 that is both perpendicular to P (u) and contains

the initial direction of extension in P (u). V is defined at every point x in P1 as

the the linear combination of the normalized major and medium eigenvector of

T (x) that lies within P1. We ensure the consistency of the integration directions

by swapping V (x) if the dot product of V (x) and the initial direction is negative.

We use second order Runge-Kutta for the integration.

4. The extension stops when it goes outside the data boundary, hits a low planar

anisotropy region, or enters a region of low signal-to-noise ratio.

Figure 3.8 illustrates the order of the first few extensions starting from a seed point.
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4
3

Seed

2

Figure 3.8: Expanding a streamsurface. Begin at point labeled Seed, add the red
edges; repeat the expansion at points 2, 3, 4, etc., as many times as possible.

To verify the algorithm for generating the streamsurfaces, one can construct a

phantom diffusion tensor field with known geometry. For example, if we design the

eigenvectors and eigenvalues as

e1(x, y, z) = (1, 0, 0)

e2(x, y, z) = (0, cos(x), sin(x))

e3(x, y, z) = (0,−cos(x), sin(x))

λ1(x, y, z) = 1

λ2(x, y, z) = 0.8

λ3(x, y, z) = 0.1,

and construct the diffusion tensor field from these values, then for −10 < x, y, z < 10,

the streamsurface should rotate along the X axis.
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Table 3.2: Parameters used to select streamsurfaces selection for Figures 3.2, 3.7, 3.9,
and 3.10.

Surface size > 7.00 mm2

Average planar anisotropy > 0.30
Ts used in Ds for streamsurfaces 1.34 mm
Distance between surfaces, Ds > 8.9 mm

Culling

As in streamtube selection, we use the following three criteria in surface selection:

the area of the surface, the average planar anisotropy of the surface, and the distance

between this surface and other selected surfaces. We eliminate a surface if it is too

small, too low in average planar anisotropy, or too close to other selected surfaces.

The distance between two surfaces is defined as

Ds =

∫∫

Ω
max(dist(ω) − Ts, 0)dω

∫∫

Ω
max( dist(ω)−Ts

|dist(ω)−Ts |
, 0)dω

(3.2)

Like the definition of distance between curves, this metric gives the average above-

threshold distance between two surfaces.

Table 3.2 shows the thresholds for culling streamsurfaces for Figures 3.2, 3.7, 3.9,

and 3.10.

3.2.4 Anatomical Landmarks

Feedback from preliminary results showed that biologists can explore images more

effectively if they can see some familiar anatomical structures. Thus, we generate

isosurfaces of a few anatomy features from T2-weighted images using AVS (Upson

et al., 1989).

Water has a higher T2-weighted intensity than white and gray matter; white and

gray matter, in turn, have higher T2-weighted intensities than air. We generate an

approximate boundary between fluid and other tissue that echoes the shape of the
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ventricles by generating isosurfaces at a certain level between the intensity of water

and that of other tissue. While these shapes are not precise, their presence makes

the images much easier to interpret. Surfaces of other anatomical structures, such as

blood vessels or tumors, could also be generated for certain applications.

3.2.5 Results and Discussion

We applied our method to a human brain data set with 256 × 256 × 40 voxels and a

resolution of 0.89 mm×0.89 mm×3.2 mm. Each slice of the data was acquired at a

resolution of 128 × 128 and zero-filled. Figures 3.9 and 3.10 shows a visualization of

the human brain on a desktop display (the indications of skull and eyes help orient the

image). Through the semi-transparent skull surface, we can see the ventricle (colored

blue) in the middle, and the streamtubes both around it and throughout the space.

The image shows that the streamtubes correlate well with major neural structures.

The corpus callosum, depicted by the streamtubes running across the top of the

ventricle, contains almost all the neurons that cross the brain from one hemisphere

to the other. The internal capsule, clearly shown from the side view in Figure 3.10,

is the second most obvious white matter structure visible on a myelin stain and is

the major fiber tract that carries information between the cortex and the brainstem.

The cerebral peduncles are the continuation of the internal capsule as it runs down

into the midbrain.

All our users were eager for more detail in the visualization, saying that more

anatomical detail and streamtubes in the regions of interest would enhance their

understanding. To this end, Figure 3.11 shows the visualization of the same human

brain data set used in Figure 3.9 with the average linear anisotropy threshold set

to 0.20: the number of streamtubes increases from 472 in Figure 3.9 to 4, 538 in

Figure 3.11. Setting more seed points will also increase the number of streamtubes.

However, the level of detail we can visualize is fundamentally limited by the voxel

size of the data set. Setting many seed points within one voxel will yield redundant
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streamtubes that will be discarded by the culling algorithm.
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Figure 3.9: Front view of the human brain data set visualization. The culling param-
eters are shown in Tables 3.1 and 3.2.
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Figure 3.10: Side view of the human brain data set visualization. The culling param-
eters are the same as those used in Figure 3.9.
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Figure 3.11: Human brain data set visualization with average linear anisotropy thresh-
old set to 0.20 instead of 0.30. The number of streamtubes increases from 472 to 4,538.



Chapter 4

Visualization Schemes

The streamtubes, streamsurfaces and anatomical landmarks are complex 3D shapes

that are difficult to grasp in a still picture. In this Chapter, I present three different

display and interaction schemes for exploring these complicated brain models.

In Section 4.1, I will discuss the use of two virtual environment systems: the

CAVE and the fishtank VR system. These environments employ stereo and head-

tracking for the display of our surface models for the streamtubes, streamsurfaces

and the ventricles, and each includes its own interaction scheme. A qualitative study

shows that the stereo vision helps users understand the model, and the users prefer

the small but crisp display from the fishtank VR.

In Section 4.2, we describe a thread and halo technique suitable for interactive

volume rendering of thin linear structures, together with a number of components for

exploring the brain models and data. Volume rendering has the defining property of

mapping from the tensor field attributes to a rendered image, without introducing

geometry. However, combining the volume scene with fiber tracts together creates a

more informative image.

In Section 4.3, we present work toward creating color rapid prototyping plaster

models as visualization tools for the brain models. The physical representations of

these virtual models allows the users to review the data with a very robust, natural

32
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Figure 4.1: A model of the CAVE viewed from behind the back wall. The user stands
inside the three rear-projected walls and sees a virtual world on the head-tracked
stereo displays.

and fast haptic interface: their hands.

4.1 Virtual Reality

Our CAVE, shown in Figure 4.1, is a virtual reality environment in the shape of a

cube with rear-projected front and side walls and a front-projected floor. Each of the

four displays has a resolution of 1024×768. The user wears LCD shutter glasses with

an attached tracker and uses the wand, a mouse-like input device that is also tracked,

to interact with the virtual world.

Compared to still pictures and desktop display, an immersive virtual environment

such as the CAVE (Cruz-Neira et al., 1993) offers the advantages of a head-tracked

stereo display, a large display surface, and interactivity. We take advantage of these

features by showing our visualization in the CAVE.

We put geometric models including streamtubes, streamsurfaces, and anatomical

landmarks at approximately the center of the CAVE, and orient them so that the front

of the brain always faces the opening of the CAVE. We then display a 2D section that

carries a slice of the T2-weighted MRI data, the position and orientation of which can

be chosen interactively. We can also use the 2D section to carry any other data set
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Figure 4.2: The virtual reality applications run in the CAVE (left) and fishtank VR
display (right).

that is registered with the 3D models. The user clicks a wand button to change the

orientation of the slice among axial, coronal and sagittal, and uses two other buttons

to move it back and forth. We also draw a yellow line akin to a laser pointer from

the wand to where the wand is pointing (since physically pointing out an object is

ineffective in the CAVE).

For the environment, we texture-map the virtual walls and the floor in the same

positions as the projection walls and floor, and set up a table beneath the geometric

models.

Figure 4.2 left shows two users interacting with the brain visualization in the

CAVE.

We also set up a fishtank VR display consisting of a 22′′(20′′ viewable) Mitsubishi

Diamond Pro 2070-SB desktop monitor. Users wear a pair of LCD shutter glasses

that support active stereo viewing; the glasses have a tracker attached to relay their

position and orientation to the computer. We used a Polhemus 3Space Fastrak. The

fishtank VR display is set to the same resolution as the CAVE walls: 1024 × 768

pixels.

Figure 4.2 right shows two users studying the brain model on the fishtank VR

display.
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We did a subjective usefulness study comparing the two virtual reality systems (Demi-

ralp et al., 2003). We had five domain-expert users. They were asked to use the brain

application both in CAVE and Fish Tank VR platforms. While using the application,

they were asked to compare the advantages of each platform for their purposes. They

did so by talking to us while using the application. Most often we questioned their

arguments by bringing counter-arguments, which helped to expose the reasoning be-

hind the users’ observations. The users were then asked to give an overall preference

for one of the two VR platforms.

All five users used the application in both platforms. Three of the users started

with the fish tank version of the application and the other two with the CAVE version.

Results are shown in Table 4.1. Overall, one user preferred CAVE and four of

them preferred Fish Tank VR.

We also conducted quantitative comparison of CAVE and Fish Tank VR. The

results are published in (Demiralp et al., 2006).

4.2 Streamtubes Visualization with Volume Ren-

dering

In (Wenger et al., 2004), we describes a thread and halo technique suitable for interac-

tive volume rendering of thin linear structures together with a number of components

that make it useful for visualization of multivalued 3D scientific data. That work is

excerpted here. Two scientific applications drive our volume-rendering work: under-

standing brain anatomy and pathology, and understanding blood flow in coronary

arteries. These driving applications have provided the problems, and, as Brooks sug-

gests, the extent to which our application facilitates the solution of these problems

helps to evaluate and guide our algorithm and tool development (Brooks, 1996).

Creating comprehensive and accurate visualizations for exploring 3D multivalued

data is challenging. The first challenge is to create visualizations in which the data
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Table 4.1: Advantages reported for the CAVE and fishtank VR.
User

1 2 3 4 5
Advantages reported for the CAVE:
Has bigger models, one can see more. X X X X

Has larger field of view. X

More suitable for gestural expression and
natural interaction.

X

Possible to walk around. X

Advantages reported for the fishtank VR:
Has sharper and crisper images. X X X X

Displays the data more compactly, spa-
tial relationships between the structures
are easier to see.

X

Feels more comfortable, non-
claustrophobic and sitting is better
than standing.

X X X

Works better for collaboration, especially
with two people.

X

Pointing to objects on the screen is easier. X X

More time efficient to use; doctors prefer
to work-and-go.

X

Would work better for telemedicine-like
collaboration.

X

More intuitive for surgery planning be-
cause doctors are used to working with
brain models at full scale or smaller.

X

Overall preferred display:
The CAVE. X

The fishtank VR. X X X X
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Figure 4.3: Interactive renderings of a human brain dataset. The renderings
(top) show collections of threads consistent with major white-matter structures:
IC=internal capsule, CR=corona radiata, CB=cingulum bundle, CC=corpus callo-
sum, diagrammed on the bottom. Components of the tensor-valued data control
thread direction, color, and density as described in the text. Direct volume rendering
simultaneously shows the ventricles (labeled V) in blue for anatomical context.
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nearer to the viewer does not excessively obscure data farther away. The second

challenge is to represent many values and their interrelationships at each spatial

location.

Interactive volume rendering with user controlled transfer functions can provide a

promising approach for overcoming much of the obscuration problem. By using trans-

parency effectively, transfer functions can be designed that show important features

in a dataset throughout a volume. Interactive control allows a scientist to weight the

relative importance (usually tied to an opacity level) of data values or features while

exploring the dataset.

In our work, we rely heavily on volume rendering techniques. In fact, we use a

multi-layer volume rendering approach, similar to (Hauser et al., 2001) to enable us

to fully represent multivalued datasets. We also make heavy use of transfer functions

and provide interactive controls that are tailored to our application domains.

The key contribution of our work is a clear volumetric vector-field representation

that can be rendered interactively. Datasets that can benefit from this representa-

tion are common in fluid flow research and medical imaging. Our thread and halo

representation, shown in Figure 4.3, together with direct volume rendering, provides

clear visual indications of complex linear forms, depth relationships among multiple

densely packed threads, and changing data values along the length of the thread. In

this paper, we demonstrate that our threads and halos technique can be incorpo-

rated into a multi-layer volume rendering scheme and displayed at interactive frame

rates on modern consumer graphics cards. We also describe the benefits of such an

implementation for our scientific collaborators.

In the next section we discuss related work. We then describe our layered volume

rendering framework, threads and halos, and our interactive controls. Results for our

two driving applications are then presented and discussed along with some conclusions

from this work.
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Figure 4.4: Left: a direct-volume-rendered layer showing regions with different dif-
fusion anisotropy. Right: a thread layer showing both the anisotropy and diffusion
direction. The two layers are combined in the center image which shows significantly
more information and requires little additional visual bandwidth.

Figure 4.5: Three thread volumes showing brain connectivity information (the front
of the head points right). Shown without halos on the left, with halos in the center,
and after slightly shifting the halos away from the viewer to brighten the threads on
the right.

4.2.1 Related Work

Below we survey relevant work in vector field visualization, and hardware-accelerated

volume rendering.

Visualization of Vector Fields

Of the extensive work on creating effective vector field visualizations, the following two

papers are most closely related to our work. Interrante and Grosch (Interrante and

Grosch, 1997) visualized 3D flow with volume line integral convolution (LIC). As they
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demonstrated with offline rendering, their visibility-impeding halos improve depth

perception and help make complex 3D structures easier to analyze. Our technique

builds on this work to produce a similar effect interactively.

Zöckler et al. (Zöckler et al., 1996) introduced illuminated field lines to visualize

3D vector fields. Our illuminated thread representation is similar, but our volumetric

rendering approach renders at a rate independent of the tube or line complexity and

combines with our other volumetric layers to create visualizations that convey more

information.

Li et al. (Li et al., 2003) presented a volumetric texture based method to visualize

3D vector fields. They scan convert properties of the streamlines into a volumetric

texture and then use these properties to look up color and opacity information in an

appearance texture. Our approach differs in that our threads, while individually less

visually complex, are much thinner and more densely packed; we also represent data

more complicated than vector fields.

Hardware-Accelerated Volume Rendering

Cabral et al. (Cabral et al., 1994) introduced a 3D texture approach for volume

rendering using view-aligned slices that exploit trilinear interpolation. In addition,

we make significant use of hardware texture compression to reduce texture memory

consumption.

There are also several volume-rendering implementations that make use of dedi-

cated hardware (Wu et al., 2003) or distributed hardware (Parker et al., 1999), that

are capable of visualizing multi-valued volumetric datasets.

Our multi-layer volume rendering is closely related to the two-level volume ren-

dering presented by Hauser et al. (Hauser et al., 2001). In this scheme, the two levels

are an object level and a global level. Different rendering styles, such as direct volume

rendering, maximum intensity projection, or value integration, are used for each level.
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Our system is based on the same concept of rendering multiple volumes of informa-

tion into the same visualization space. However, we use separate volumetric datasets

for our layers of information, rather than classifying a single volume of data as either

focus or context. In some cases our halos and threads could be conceptualized as

together forming a focus level for the visualization with any additional direct volume

rendered layers forming the context level.

Kniss et al. (Kniss et al., 2002a) use interactive transfer functions operating on

directional derivative values to select boundaries in scalar-valued datasets. We use

this technique to visualize our scalar-valued datasets, although with less sophisticated

interactive manipulation widgets. In (Kniss et al., 2002b), multi-dimensional transfer

functions and dual-domain interaction are applied to multivariate meteorological data.

They found, as we did, that multi-dimensional transfer functions provide a powerful

tool to explore multivariate datasets.

Lum and Ma (Lum and Ma, 2002) implemented a hardware-accelerated parallel

nonphotorealistic volume renderer that uses multi-pass rendering on consumer-level

graphics cards. Their system emphasizes edges or depth ordering using artistically

motivated techniques. Like Lum and Ma, we utilize multiple rendering passes to

enhance visual cues, but our rendering is targeted to exploratory visualization of

multi-valued data, which has significant implications for the interface, implementa-

tion, and results.

Stompel el al. (Stompel et al., 2002) use nonphotorealistic (NPR) volume ren-

dering to more effectively visualize multivariate volumetric data. They use stroke

rendering to display a vector field simultaneously with a scalar field and produce

several NPR effects, including silhouettes. Their silhouettes help to emphasize depth

discontinuities just like our halos but will not work for features as small as our threads

because a reliable gradient cannot be calculated.
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Hair, Fur, and Thread Rendering

Several hair and fur rendering algorithms inspired our work. Kajiya and Kay (Kajiya

and Kay, 1989) introduced texels to render realistic-looking fur. Kajiya and Kay also

developed a Phong-like lighting model for fur; our approach is similar but targets free-

floating threads. Instead of providing parameters for lighting, we store derived values

from the multivalued datasets along with tangent and density values throughout the

volume.

Lengyel (Lengyel, 2000) uses a volumetric texture approach to render short threads

in real time. Unlike his short threads, our data-defined threads remain individually

distinguishable. Like Lengyel, we use Banks’ (Banks, 1994) hair-lighting model but

with a different implementation appropriate for volume rendering.

4.2.2 A Layered Volume-Rendering Framework

Our visualization framework has four steps. We begin with primary multivalued

volumetric data.

Calculate Derived Datasets

Since the primary data is often difficult to interpret directly, our first step is to

calculate derived volumes of data with more intuitive interpretations. For example,

DTI datasets are second-order tensor fields. It is often useful to decompose these into

several scalar and vector fields to reduce the problem of rendering a tensor field into

one of rendering several simpler fields.

Define Visual Abstractions

In the abstraction step, we group the data volumes into layers of visual representations

that are filtered into and stored in separate volumes. The simplest abstraction is a

straight mapping of a scalar value, such as speed, to a volume. Threads are another



43

abstraction that are good at illustrating vector fields. Any conversion of the derived

data to a clearer visual representation fits into this step of the framework.

Map Data with Interactive Transfer Functions

The mapping step defines transfer functions that assign color and opacity to the

volume layers and shader programs that control lighting parameters.

Visualize and Explore

In the final step of the framework, we render the multiple volumes together in the

same visualization space and use interaction widgets to control the appearance of

each layer.

4.2.3 Threads and Halos

Figure 4.6: Black arrows illustrate the path of virtual viewing rays through a cross
section of a volumetric thread and halo. When the rays, coming from the viewer’s
perspective, pass through part of the dark halo volume before reaching the red thread,
the resulting color is a darker red than when the halo volume is shifted away from
the viewer (the bottom case).
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We represent continuous directional information using threads. We densely pop-

ulate the volume with threads so as to represent as much of the underlying data as

possible. To clarify individual threads, we add a “halo,” modeled after those pre-

sented by Interrante and Grosch (Interrante and Grosch, 1997). Compare the images

in Figure 4.5 to see the depth clarifying effect of using halos with the threads.

The threads and halos are each stored in a volume texture that is precomputed.

There is exactly one halo in the halo volume for each thread in the thread volume.

Each halo follows the same path as its thread but has a slightly larger radius. Fig-

ure 4.6 demonstrates how the halos extend beyond the sides of the threads when

rendered to obscure any geometry behind them.

Unfortunately, the halo also slightly obscures the thread from a frontal view. This

has the effect of darkening the thread rather than completely hiding it since the halo

is semi-transparent and there is only a small amount of it in front of the thread. This

is seen in the darker, middle image in Figure 4.5. We compensate for the darkening

effect to produce images like the one on the right of the figure by shifting the entire

halo volume so that there is less of the halo showing between the thread and the

viewer.

As illustrated in Figure 4.6, the virtual viewing rays that pass through only the

halo on the silhouette of each thread will produce a black color. If a portion of the

halo exists in front of the thread with respect to the viewer, as in the top of the figure,

then the viewing ray passing through this area will produce a color partly saturated

with red and partly with black, resulting in dark red. If the halo is offset away from

the viewer at a distance of one voxel, then the viewing rays pass through far less, or

none in the case of the middle ray, of the halo volume before reaching the red color

of the thread. The result is a brighter red color for the thread.

The threads and halos are filtered into volumes using a cubic B-spline filter that

has a support of four voxels for the thread (see Figure 4.7) and six voxels for the

halos (see Figure 4.8). Since the threads and halos are represented in volumes, the
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Figure 4.7: Filtering a thread into a volume (2D view). For each voxel within a radius
of two voxels from a thread, we use the shortest distance to the thread as the input
to the filter (at right). The grid on the left and the horizontal axis on the right both
show single-voxel spacing.

Figure 4.8: Filtering a halo into a volume (2D view); red depicts the thread and black
the halo around it. The red curve is the filter for the thread and the black curve is
the filter with which the halo is generated. The grid on the left and the horizontal
axis on the right both show single-voxel spacing.

rendering time is independent of the number of threads displayed. However, the

diameter of the threads is limited by the resolution of the volume.

Lighting for the threads is calculated using a restricted version of the lighting

model in (Banks, 1994), which defines intensity I as

I = kdIt

(

√

1 − (T · L)2
)p

+ ks

(

√

1 − (T · H)2
)n

(4.1)

Here It is the combined output color from the transfer functions, T the tangent, L

the light vector, H the vector halfway between the light vector and the view vector,

n the specular exponent, p the excess-brightness diffuse exponent, and kd and ks the

diffuse and specular contributions respectively. Our restricted lighting model assumes

directional lighting and a constant halfway vector for the entire volume.

We have implemented several thread lighting models, including those of Kajiya

and Kay (Kajiya and Kay, 1989), and Banks (Banks, 1994) with excess brightness
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Figure 4.9: A sequence of renderings of a thread density volume with increasing length
threshold from left to right. The rightmost image shows only long threads.

exponents of p = 2 and p = 4. Kajiya and Kay’s lighting model is similar to a Banks

model with p = 1. Banks actually uses a value of around 4.8. With a small exponent,

the threads become brighter and the lighting is less dramatic. We found p = 2 to be

a good value for our applications and also a speedy one, since it does not require a

square-root calculation.

4.2.4 Layering Volumes

Our volume-renderer implementation uses a single stack of view-aligned texture-

mapped slices, rendered back to front and blended with weights 1 − α and α. Each

slice is rendered multiple times, once for each volume layer. Layers of each slice are

also blended with the weights 1 − α and α. We render our direct volume rendered

layers first, the halos second, and the threads third. For our applications, this is

equivalent to rendering the layers in the order of the scale of their largest structures.

The direct-volume rendered layers tend to reveal large structures and surfaces that

are easy to make out underneath the more finely detailed thread and halo layers.

Our intuition is that in most cases this represents an acceptable heuristic to use when

determining layer ordering.

For direct volume rendered layers, a Phong lighting model (Eq. (4.2)) is used. As

in the thread lighting model described above, It is the combined output color from

the transfer functions, N is the normal, L the light vector, H the halfway vector, ka
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Figure 4.10: The interactive exploration tool. Clockwise from upper left are a 2D
barycentric widget, a 1D widget, a 2D Cartesian widget, and a 2D Cartesian culling
widget.

the ambient contribution, kd the diffuse contribution, ks the specular contribution,

and n the specular exponent:

I = kaIt + kdIt(N · L) + ks(N · H)n (4.2)

Visualizing multiple layers of volumetric data requires an extensive amount of

texture memory. We utilize the OpenGL extension ARB texture compression, which

provides a 4:1 compression ratio. Thus, a 2563 eight bit per channel RGBA texture

can be reduced from 64MB to 16MB. With this scheme, we can fit the multiple volume

textures required in memory on commodity graphics cards.

4.2.5 Exploratory Culling and Transfer Function Manipula-

tion

Interactive editing of transfer functions has become commonplace in volume rendering

applications. We describe several application specific transfer function modes in the

following section.

Exploratory culling applies a transfer function to an entire thread and halo based

on attributes of the linear structure it represents. This is the approach that Wei et al.
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take in (Wei et al., 2001) to cull discrete particle tracks based on the track’s energy.

Doleisch et al. (Doleisch et al., 2003) introduce a more general framework in which

degree-of-interest functions are defined to perform similar tasks. In our approach the

entire thread and its halo are classified according to a metric (e.g. thread length)

which is mapped to a 0. . . 255 domain. Every voxel in the data volume belongs to

one class of threads. The cost of classifying the threads and halos for this example is

an additional byte per voxel and a 1D transfer function that takes up 256 additional

bytes of texture memory.

In our brain visualizations, both long and short threads are important and provide

different types of insight into the data. We use this culling feature to interactively

select a subset of threads to display based on their average diffusion rate or their

length, as seen in Figure 4.9. This approach is a significant advance over the state

of the art in this application area. Similar culling in Zhang et al.’s (Zhang et al.,

2003) approach required an entire preprocessing step taking between several minutes

to several hours.

We provide several on-screen widgets, shown in Figure 4.10, to control transfer

functions in the form of 1D, 2D, and 2D barycentric controls. Colors are manipulated

within the hue, saturation, value, and transparency (HSVα) color space. For the 1D

and 2D transfer function widgets, color and opacity can be controlled interactively

along each axis. In the multidimensional cases, the colors of the axes are averaged,

while the opacities are combined multiplicatively. In our informal trials, these com-

bination methods seemed most intuitive. The 2D barycentric manipulation widget,

shown in the top left of Figure 4.10, is ideal for the brain visualization application

since the space maps naturally to the anisotropy metrics defined in (Westin et al.,

1997b).
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4.2.6 Results and Discussion

The data are acquired using magnetic resonance imaging (MRI) and are of two types:

second-order tensor-valued water-diffusion-rate images and scalar-valued anatomical

images. At each point in a volume, the tensor-valued data capture the rate at which

water is diffusing through tissues. That rate is different in different areas – in regions

of pure fluid, it is fast; in tissues like bone, it is slow. The rate of diffusion can also be

directionally dependent, particularly in fibrous tissues like axon tracts and muscles,

diffusing more quickly along the fibers than across them. The scalar-valued data are

typical T2-weighted MR images.

Within the second-order tensor field measuring the water diffusion rate, each value

D is a symmetric tensor with real, positive eigenvalues. From D we derive several

other measures. First, three scalar anisotropy measures introduced by Westin (Westin

et al., 1997b), cl, cp, and cs, describe how close to a line, a plane, or a sphere the

corresponding ellipsoid shape is for a given measurement. Second, the trace of D,

Tr(D), is equivalent to the sum of the eigenvalues of D and gives a scalar measure of

the overall diffusion rate. Third, the gradient of the trace, ∇Tr(D) and its magnitude,

|∇Tr(D)|, describe how the diffusion rate is changing and in what direction; we use

these quantities in lighting calculations for the direct volume rendered layer i.e. in

Figure 4.4.

The fourth category of derived data is a set of threads and halos through the tensor

field that represent the directions of diffusion. These are calculated and distributed

within the volume as described by Zhang et al. (Zhang et al., 2000)(Zhang et al.,

2001a)(Zhang et al., 2003). They follow the direction of fastest diffusion in linear

regions. In planar regions, they stay within the plane formed by the major and

medium eigenvectors, following whichever is more consistent with the path to that

point. They are not present in isotropic regions.

From the T2-weighted image scalar field we derive the gradient of the value and

the gradient magnitude, which help define how fast the value is changing and in which
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Figure 4.11: A data-flow diagram of the rendering setup for Figure 4.10.

directions. We use these quantities in lighting calculations. We also derive the second

directional derivative to help define boundaries between homogeneous regions.

Figure 4.11 shows the mapping from the scalar- and tensor-valued volumes onto a

direct volume rendered layer, a thread layer, and a halo layer as seen in Figure 4.10.

The first layer directly renders the T2-weighted image. The hyper-intense ventricle

regions were selected by interactively editing two transfer functions that are combined

multiplicatively to yield α values for the layer. Color is specified only through the

transfer function controlling the T2 image value and the gradient magnitude.

The second layer renders halos for the threads, and the third layer renders the
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threads. The visible portions for these layers are interactively selected via three

criteria. First, a transfer function maps the anisotropy metrics to an α value. For

this rendering, areas of all types of anisotropy are shown. Second, each thread and

halo can be selected via exploratory culling based on the thread’s length and on the

average diffusion rate along it. In this rendering all threads are shown. Third, the

thread density is provided directly by the precalculated thread volume. Likewise, halo

density is provided directly by the halo volume. Each of the results for this dataset

is rendered with 2563 volume textures.

Our neuroscientist collaborators gained several insights into their data through

these visualizations. Figure 4.3 shows detail of a diffusion dataset from a normal

volunteer. A number of large white-matter structures are clearly visible, including

the corpus callosum, internal capsule, corona radiata, and cingulum bundle.

Figure 4.4 shows a dataset from a patient with a brain tumor. Direct volume

rendering captures the tumor as an opaque mass and threads show the diffusion

direction and variation in anisotropy around it. Note the cradle of threads surrounding

the tumor. Using this exploratory visualization has enabled our collaborators to

discover a relationship between the different types of anisotropy around tumors. In

particular, there is a notable increase in planar anisotropy (shown as green) in the

area around the tumor (Zhang et al., 2004).

4.3 Rapid Prototyping

While surgeons and neurologists can use virtual reality applications to visualize dif-

ferent aspects of the brain data, the physical representations of those virtual models

allows them to review the data with a very robust, natural, and fast haptic inter-

face: their own hands. In this section we describe work toward creating color rapid

prototyping (RP) plaster models as visualization tools for diffusion-tensor (DT) MRI

analysis. Our initial results are encouraging, and end users are excited about the
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a) b) c)

Figure 4.12: (a,b) A plaster model showing areas of linear and planar water self-
diffusion obtained from DT-MR images. (c) Detail of support structures (dark gray
surfaces around tubes) for the streamtubes; these surfaces are created using the second
and third eigenvectors of the tensors that produce the tubes.

possibilities of this technique. For example, using these models in conjunction with

digital models on the computer screen or VR environment provides a static frame of

reference that helps keep users oriented during their analysis tasks.

RP has been used in visualization largely for building molecular models to test

assembly possibilities (Bailey et al., 1998). Nadeau et al. (Nadeau and Bailey, 2000)

created models of the human brain surface with the same RP techniques we use. Our

approach, however, enables us to build inner brain structures.

We examine the streamtubes, streamsurfaces and ventricles models generated from

a DTI dataset using tractography (Zhang et al., 2003). The images on the three

orthogonal planes show slices of T2-weighted images collected with DTI.

To create our color models we use Z-Corp’s Z406 printer. The digital model, in

VRML format, is subdivided into horizontal layers by the printer software. These

layers are then manufactured by putting down a thin layer of plaster powder and

dropping colored binder at the boundaries of the model at that level. Once all the

layers are built, the powder outside the boundaries of the model is vacuumed out and

loose powder is removed using a fine blower. Finally, the piece is bathed in hot wax

to strengthen it and enhance its colors.

The structures in the DTI models require very careful treatment. Because the

long thin streamtubes often fail to support themselves during powder removal, we
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inserted some supporting surfaces that interconnect neighboring streamtubes with-

out occluding interesting features. These supports are created from the second and

third eigenvectors of the diffusion tensor that creates the streamtubes, so they are

perpendicular by definition (see Figure 4.12(c)). We arrived at this methodology af-

ter several tests, including building thicker tubes and increasing their number so they

supported one another. Using information already present in the DTI data, we have

been able to create models with better structural stability.

These early stages of development have highlighted some important issues. For

example, our visualizations involve organic, free-form shapes, whereas current RP

technology is designed for models with more regular shapes, such as mechanical parts

and molecular models. Also, the printing and cleaning process can take as much as

12 hours for complicated brain models measuring up to 8′′×8′′×10′′. However, our

initial experiments suggest that this technology has the great advantage of exploiting

users’ familiarity with physical models: they recognize the utility of holding them in

their hands when studying them. Providing scientists with these models enhances

the use and analysis of their digital counterparts. To quote one of the doctors who

experimented with these models: “These physical models complement displays in

digital format by providing a hard-copy frame of reference that can be touched and

manipulated with optimum hand-eye coordination and immediate results.” We believe

this type of physical model can be very useful in preoperative planning when used as

a quick reference for structure identification.

4.4 Conclusions

The streamtubes, streamsurfaces and the anatomical landmarks are complex 3D

shapes that are difficult to grasp in a still picture. In this Chapter, I present three

different display and interaction schemes for exploring these complicated brain mod-

els.
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For surface models, virtual reality systems help conveying the 3D information.

Fish tank VR system is considered by most users to be superior to the CAVE.

Volume rendering can support multiple components for visualization of multi-

valued 3D scientific data. Combining the volume rendering of the scalar data sets

with the thread and halo technique for interactive volume rendering of thin linear

structures provides a comprehensive visualization of the models and the data.

The physical models complement displays in digital format by providing a hard-

copy frame of reference that can be touched and manipulated with optimum hand-eye

coordination and immediate results.



Chapter 5

Fiber Bundle Model

When using diffusion tensor models of the brain, it is often helpful to be able to

group white matter into anatomically relevant fiber bundles to study individual brain

structures. Traditionally, this task is accomplished by manually selecting DTI fiber

tracts. Such a process requires a large time investment and a good deal of expert

knowledge. This chapter presents an automatic proximity-based algorithm for sam-

pling, culling, clustering diffusion tensor imaging integral curves into anatomically

relevant bundles. I will demonstrate the accuracy of the method to form bundles

of curves that are anatomically consistent when guided and evaluated by an expert

rater. I will then discuss an automated labeling algorithm that models the expert

rater’s decisions on labeling anatomical structures and evaluate the results of this

algorithm. The method potentially provides an efficient and reliable alternative to

manual selection of DTI fiber tracts. The method may advance the ability of neuro-

scientists to test hypotheses about the functional correlates of specific white matter

pathways.

55
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5.1 Introduction

Diffusion tensor imaging (DTI) provides 3D information about cerebral white matter

anatomy based on the Brownian motion of water molecules in tissue. The diffusion

data for each image voxel is summarized as a tensor which is then decomposed to its

three eigenvectors and eigenvalues which represent, respectively, the principle axes

of diffusion and the rate of diffusion along them. The principle diffusion direction

is known to correlate with neural fiber pathways in coherent white matter (Scollan

et al., 1998). The eigenvectors and eigenvalues can then be used to produce in vivo

3D models that correspond closely to known cerebral white matter fiber structure

– a technique called tractography (Basser et al., 2000) (or fiber tracking (Mori and

van Zijl, 2002)). Tractography models can then be interactively segmented to isolate

white matter tracts of interest (TOIs) on the basis of anatomical knowledge (Akers

et al., 2004). Scalar metrics such as average anisotropy or length (Lee et al., 2006) can

then be obtained that provide information about the structural integrity of the TOI.

These quantitative tractography methods potentially allow neuroscientists to develop

and test hypotheses about the functional correlates of specific white matter tracts

in health and disease. However, the process of segmenting TOIs is not trivial and

an optimal method for doing so has not been established. One approach is to place

within the entire tractography model, 3D voxels-of-interest (VOIs) at various points

along the presumed path of the desired TOI and then have the computer program

display only the fibers that connect intersect the VOIs. This approach has certain

advantages in the hands of an experienced and anatomically knowledgeable operator.

Examples include the abilities to resolve quickly anatomical ambiguity as might oc-

cur in areas where two different white matter tracts are in close spatial alignment,

and to make expert decisions about the veracity of anatomically implausible fibers

that are sometimes generated in error by the tractography generation algorithm. The

VOI approach also has a number of limitations. For example, it assumes consider-

able operator knowledge of white matter anatomy, it is prone to rater error from
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misidentification of tracts or improper decisions about whether to include anatomi-

cally ambiguous fibers in a specific tract, and it is susceptible to experimenter bias.

Automated clustering may provide a means of overcoming some of these limita-

tions.

Clustering methods are used extensively in pattern recognition, machine learning,

computer vision, data mining, and in many other related fields. In a rather informal

sense, the goal of clustering is to partition a given set of data into homogeneous groups.

A number of approaches have been attempted to cluster DTI integral curves and the

results differ across methods depending on the similarity measure (i.e., a measure of

the variable used to partition the groups), the specifics of the clustering algorithm, and

the parameters employed by the method. Moreover, the results may be affected by

image artifacts that interact with the clustering method. I argue that the accuracy of

results of a clustering algorithm will be improved if the choices made in generating the

integral curves and selecting clustering algorithms are anatomically motivated. We

assume that in cerebral white matter, there exists a natural, anatomically-determined

proximity threshold T, whereby any neural fiber A in a white matter fiber bundle has

at least one neighboring neural fiber B in the same bundle and the proximity between

A and B is less than T, while the proximity between any two fibers in different fiber

bundles is larger than T. In reality, noise, motion, and other imaging artifacts can

often perturb the proximity between these integral curves. Without an accurate

model for these artifacts and with no “gold standard” for determining the accuracy

of tractographic representations of white matter anatomy, it can be difficult to find an

optimal value for T. To address this problem, we designed a system for interactively

selecting the proximity threshold for clustering.

In section 5.2, we review prior work in this area. In section 5.3, we describe the

data acquisition and preparation methods. In section 5.4, we describe our sampling

method, constraints and culling methods for generating a set of DTI integral curves.

In section 5.5, we use a clustering algorithm and a proximity threshold to group these
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integral curves into anatomically-related bundles. To validate our clustering method,

in section 5.6 we interactively select proximity thresholds to achieve visually optimal

clustering in models from 4 data sets, assigning confidence ratings for each of 12 target

white matter fiber bundles of varying calibers and type (i.e., commissural, association,

projection) in each data set. These interactively selected proximity thresholds and

confidence ratings were used to guide the development of a fiber-bundle template for

automated clustering and labeling a subset of the 12 selected fiber bundles on two

additional subjects.

Preliminary results demonstrate that when our proximity-based clustering algo-

rithm was guided (i.e., interactively thresholded to obtain optimal clustering) and

evaluated by an expert rater, it produced fiber bundles that were qualitatively con-

sistent with known white matter anatomy. However, bundles with smaller caliber or

with low directional coherence are identified with lower confidence. We then used the

results of the expert rater study to build a fiber bundle template and to develop an

automated program for labeling the bundles that models the rater’s manual thresh-

olding. When we applied the template and automatic labeling program to two new

subjects (i.e., not used in developing the expert rater study), the algorithm automat-

ically and rapidly produced labeled fiber bundles that are consistent with the target

anatomy. These results demonstrate that it is possible to perform automated cluster-

ing and labeling of DTI integral curves into bundles that are qualitatively consistent

with white matter anatomy and that successfully model expert rater’s decisions. We

believe this work can be used to perform fast, unbiased, and accurate identification

of neural fiber bundles and has a wide range of potential applications in white matter

disease and abnormality studies.
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5.2 Related Work

A number of methods have been developed for classifying clustering and labeling

these DTI integral curves. Ding et al. defined a similarity measure between integral

curves on their corresponding segments and grouped together similar integral curves

with seeding points proximal to the original integral curve seeding point (Ding et al.,

2003); Corouge et al. (Corouge et al., 2004) proposed an algorithm that propagates a

cluster to neighboring fibers using three distance measures derived from paired points

on the streamlines. The distance measures were the minimal distance between two

paired points on the two curves, the mean proximity between all paired points, and

the Hausdorff distance. Brun et al. used a spectral clustering method to cluster

the integral curves (Brun et al., 2004). O’Donnell et al. extended this approach

to a set of integral curves in data from a sample of brains (ODonnell and Westin,

2005). Maddah et al. used hand-selected ROIs in white matter to construct a bundle

template in which curves from a new subject can be registered (Maddah et al., 2005).

Moberts et al. evaluated different fiber clustering methods by constructing a “gold

standard” and used a Rand index and its derivatives for comparing the results of

different similarity measures and clustering algorithms to this gold standard (Moberts

et al., 2005).

The current study extends this previous work by implementing a method that gen-

erates DTI integral curves that incorporate anatomically motivated constraints (see

section 5.4 below) and then choosing a clustering algorithm based on our anatomical

assumptions about the proximity of neural fibers within and between bundles. We

then developed a template-driven, automated labeling method that reliably models

an expert rater’s decisions.
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5.3 Data Acquisition and Preparation

The Siemens MDDW protocol was used to collect three co-registered sagittal double

spin-echo, echo-planar diffusion-weighted volumes of the entire brain in 5 healthy

adults (2 males, 3 females; mean (± standard deviation) age = 56.8 ± 10.23). All

subjects provided written informed consent to participate in a DTI research project

approved by the Institutional Review Board at Butler Hospital in Providence, RI.

The volumes were spatially offset in the slice direction by 0.0mm, 1.7mm and

3.4mm. Parameters for each acquisition were as follows: 5mm thick slices, 0.1mm

inter-slice spacing, 30 slices per acquisition, matrix = 128 × 128, FOV = 21.7cm ×

21.7cm, TR = 7200, TE = 156, no partial echoes, NEX = 3. Diffusion encoding

gradients (b = 0, 1000s/mm2) were applied in 12 non-collinear directions. Total time

for the three acquisitions was slightly less than 15 minutes. A vacuum pillow was

used to limit subject motion. The three acquisitions were interleaved to achieve

true 1.7mm3 resolution images and then up-sampled (equivalent to zero-filling) to

0.85mm3 isotropic voxels for analysis.

Diffusion tensors were calculated with a non-linear sequential quadratic program-

ming (SQP) method (Ahrens et al., 1998).

5.4 Generating DTI Integral Curves

As discussed in Chapter 3, the integral curves that comprise our tractography models

were generated by solving the following equation:

p(t) =

∫ t

0

~v(p(s))ds (5.1)

where p(t) is the generated streamline and ~v corresponds to the vector field generated

from the major eigenvector ~e1 of the diffusion tensor D. p(0) is set to the initial point

of the integral curve, often called the seed point.

We then apply three dimensional coloring and rendering of the resultant curves
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and superimpose them on background anatomical images to provide context. The

curves directly represent the diffusion information, not the underlying anatomy and

therefore, the correspondence between the curves and the true underlying white mat-

ter is imperfect. Mismatches are most likely to occur in regions where the princi-

pal direction of diffusion is ambiguous. Examples include voxels with high planar

anisotropy, (which is thought to be an indicator of reduced directional coherence in

the true fiber structure), and voxels contaminated by imaging artifact such as the

partial volume effect, which may occur at the boundaries between white matter and

grey matter, cerebrospinal fluid, or lesions. Curves passing through such ambiguous

regions may end up following an anatomically incorrect path. Such curves could mis-

takenly merge with other nearby fiber bundles, in which case they might be missed

on visual inspection, or the error may be more dramatic producing an anatomically

implausible curve. We call an integral curve that does not represent the shape and

location of a neural fiber a “spurious curve”.

To limit the number of the spurious curves and maximize the anatomical cor-

rectness of our integral curves, we set thresholds on the minimum linear anisotropy

value on each point of the curve, on the minimum average linear anisotropy of the

entire curve, on the minimum value of signal-to-noise ratio (derived from the non-

diffusion-weighted image, b = 0) and on the minimum length of the integral curve.

We also set a constraint that an integral curve should project into the gray matter.

We accomplish this by segmenting the brain into white matter, gray matter and CSF

compartments using the FAST (Zhang et al., 2001b) segmentation tool. The seg-

mentation is performed using the non-diffusion-weighted image as well as scalar maps

of the trace of the diffusion tensor and fractional anisotropy. We then discard the

integral curves whose ending points do not project into the gray matter.

The measure of the spatial proximity between these integral curves is of funda-

mental importance in both integral curve sampling and clustering and is described

here.
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We first distinguish between a proximity measure and a metric (also called a

distance). A metric d(x, y) must be nonnegative d(x, y) > 0, reflexive d(x, x) = 0,

symmetric d(x, y) = d(y, x) and it must obey the triangle inequality d(x, y)+d(y, z) ≥

d(x, z). A proximity measure is required to satisfy all of the above conditions except

for the triangle inequality. It would be incorrect to call a proximity measure that

does not satisfy the triangle inequality a distance. However, a proximity measure

does represent the similarity between two data elements and thus can be used in

clustering methods.

There are a number of proximity measures between two curves, which can be

roughly categorized as the Euclidean distance between two selected points on each

curve, such as the closest point measure and the Hausdorff distance (Corouge et al.,

2004), the Fréchet distance (Alt and Godau, 1995); or the mean Euclidean distance

along the run lengths of the curves. Examples of the latter could be the mean distance

of closest distances defined by (Corouge et al., 2004), the mean thresholded closest

distances defined by (Zhang et al., 2003); or the distance between two Euclidean

space embeddings of the curves, such as the one used in (Brun et al., 2004). Of all

these proximity measures, only Hausdorff distance, Fréchet distance and the distance

between two Euclidean space curve embeddings are metrics.

The integral curves in the cerebral white matter can be quite long. An ideal

proximity measure should consider the matching on the whole run lengths of the

two curves. Measuring proximity by the distance between two selected points on two

curves ignores all but these two points on those two curves (see Fig. 5.1(a)). Therefore

it is not surprising that the mean of closest distances is found to give better clustering

results than closest points and Hausdorff distance (Moberts et al., 2005). The mean

of the closest distances measure is defined between curves A and B as:

dMC(A, B) =
dm(A, B) + dm(B, A)

2
,

where dm(A, B) = meana∈A min
b∈B

‖ a − b ‖, (5.2)

dm itself is not a proximity measure since it is not symmetric. We can also define
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the shorter mean distance of closest distances dSC(A, B) = min(dm(A, B), dm(B, A))

and longer mean distance of closest distances dLC(A, B) = max(dm(A, B), dm(B, A))

based on dm.

When two curves are on the boundary of two branching fiber bundles, they might

run very closely together for a long course and then diverge abruptly for a relatively

short distance. Although two such fibers should be grouped into different clusters,

the mean closest distances will be low due to their long overlapping course and they

may end up being considered to be part of the same cluster. We address the problem

by using a threshold for the mean distance of closest distances (see Fig. 5.1(b)).

dMt(A, B, t) =
dt(A, B, t) + dt(B, A, t)

2
,

where dt(A, B, t) = meana∈A,minb∈B‖a−b‖>t min
b∈B

‖ a − b ‖, (5.3)

Similarly, we can define the shorter mean distance of thresholded closest distances

as dSt(A, B, t) = min(dt(A, B, t), dt(B, A, t)), and the longer mean distance of thresh-

olded closest distances as dLt(A, B, t) = max(dt(A, B, t), dt(B, A, t)).

We also use a proximity measure in our integral curve sampling scheme. One

widely used sampling scheme for generating integral curves in the whole brain is to

sample on a regular grid in the data volume. This sampling scheme biases the results

such that long, thin bundles contain more curves in a unit cross-sectional area, while

shorter fat bundles tend to fewer curves because they have fewer seed points. This

is is not desirable because there is no physical evidence to support this relationship

between the fiber density and the shape of a bundle. To avoid this bias, we sample

curves using a combination of jittered dense regular grid seeding and culling. We

first generate seed points on a dense regular grid in the data volume and then jitter

their locations. This produces a dense set of seed points that ensures that there

is no place in the image volume that is under-sampled, thereby avoiding the bias

mentioned above. During the integral curve generation, we cull the shorter member

of any two pairs of curves that are too close to each other using dSt as the proximity

measure. We choose dSt because we assume that a short curve staying close to a long
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threshold t
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a b

Figure 5.1: (a) shows the shortcoming of defining the proximity between two curves
as the distance between two selected points. The Hausdorff and Fréchet distances of
A and B are close to those of B and C, even if B is considered more similar to A
than C in certain contexts. (b) shows the motivation behind the mean thresholded
closest distances. A and B are considered different if they branch for a portion of
their lengths. Without the threshold, the mean closest distances between A and B is
low if they stay close for a large part of their lengths.
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a b

Figure 5.2: Integral curve models generated from a 128×128×90 data set with a voxel
size of 1.7mm×1.7mm×1.7mm. (a) Shows 438, 042 integral curves generated from a
jittered regular grid of 256×256×180, with minimum length set to 13mm; minimum
linear anisotropy set to 0.15 and minimum average linear anisotropy set to 0.1. (b)
Shows the model generated from the same data set and the same jittered regular grid
sampling, and with the added culling and gray matter projection constraints. The
culling threshold on dSt is set to 1.0mm with t = 0.5mm. The model in (b) has 6, 113
integral curves. Color is mapped to the linear anisotropy value. Redder means higher
linear anisotropy.

curve in its entire length is likely the result of partial volume effect (e.g., encountered

a tissue boundary) that prohibits the curve from running its full length, and thus

should be considered “close” to its longer neighbor and culled from the model. In the

resulting set of integral curves, no two curves are closer than the threshold on dSt.

This minimum-distance spacing is a property of the Poisson-disk distribution.

Fig. 5.2 shows the integral curves generated on a 128 × 128 × 90 data set with

a voxel size of 1.7mm × 1.7mm × 1.7mm. Fig. 5.2(a) shows 438, 042 integral curves

generated from a jittered regular grid of 256×256×180, with minimum length set to

13mm; minimum linear anisotropy set to 0.15 and minimum average linear anisotropy



66

set to 0.1. Fig. 5.2(b) shows the model generated from the same data set with culling

and gray matter projection constraints. The culling threshold on dSt is set to 1.0mm

with t = 0.5mm. This model has 6, 113 integral curves.

5.5 Single Linkage Algorithm

For clustering the integral curves, we chose dLt as the proximity measure, used ag-

glomerative hierarchical clustering methods (Duda et al., 2000) and defined the min-

imum proximity value (i.e., closest) between any two curves from two clusters as the

distance between these clusters. This algorithm is also called the single-linkage algo-

rithm (Duda et al., 2000) because any two points with a single path of links between

them are clustered together.

The rationale for using the single linkage algorithm to achieve optimal clustering

is rooted in our anatomical assumption that in cerebral white matter, there exist

an implicit physical proximity measure between neural fibers within a cluster and

between clusters. Successful modelling of these implicit physical proximity measures

should provide a means for parsing individual curves into bundles that accurately

reflect the true state of the underlying white matter. Moreover, the method should

be as accurate or potentially superior to other optimization-based clustering methods

such as K-means and spectral clustering in that the single linkage algorithm ensures

that the physically-based proximity threshold is always satisfied. Optimization-based

clustering often involves trade-offs among clusters so that although the goal func-

tion is optimized, the proximity between a specific pair of clusters may not satisfy

a physically based threshold. Our method circumvents this trade-off. However, in

reality, noise, motion and partial volume effects limit our ability to meet our anatom-

ical assumptions. Therefore, our method incorporates an automatic adjustment of

the proximity threshold to maximize the accuracy of the clusters in the face of these

artifacts (see section 5.6.3).
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We apply the single linkage algorithm to our curves using a proximity measure

dLt. The algorithm follows the three general broad steps:

1. Given a set of n singleton clusters.

2. Merge the two nearest clusters

3. Repeat step 2 until the specified number of clusters are generated.

We choose dLt as the proximity measure between two integral curves. We use

the longer one of the mean closest distances to make sure any difference between

two curves are captured. Note that in section 5.4, we use dSt to get rid of the short

curves that are likely to result from the partial volume effect. Here, we assume all

those short, spurious curves have already been removed from the tractography in the

model and therefore choose dLt for clustering.

If the maximum distance between any two curves from two clusters is used to

measure the proximity between clusters, the algorithm is called the farthest-neighbor

clustering algorithm, or “maximum algorithm”. The farthest-neighbor algorithm dis-

courages the growth of elongated clusters. In white matter, some fiber bundles spread

out over a thin wide strip, such as the corpus callosum or tapetum and the farthest

algorithm might fail to cluster such bundles. The single-linkage algorithm facilitates

clustering of such bundles.

The number of clusters rendered in the model is inversely related to the proximity

threshold. That is, the greater the distance selected for identifying a single cluster,

the fewer the number of clusters. When the nearest-neighbor threshold is set to

a high distance (i.e., low proximity) there will be fewer but larger clusters; when

the threshold is set to a low distance (i.e., high proximity) the number of clusters

increases.

Fig. 5.3 shows a clustering result of the model in Fig. 5.2(b) using single linkage

algorithm and dLt proximity measure with proximity threshold set to 3.5mm.
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Figure 5.3: The clustering result of the model in 5.2(b) using single linkage algorithm
and dLt as proximity measure with a threshold of 3.5mm. The top left corner of
the interactive interface contains three sliders for adjusting the proximity threshold,
minimum mean fractional anisotropy values and minimum number of curves in a
cluster.
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f g h i j

Figure 5.4: Snapshots of exploring the clustering models shown in Fig. 5.3. a,b,c,d
and e show the clustering results with proximity threshold set to 1.5mm, 2.5mm,
3.5mm, 4.5mm and 5.5mm respectively. f,g,h,i and j show the same model/threshold
with minimum cluster size threshold set to 10.

5.6 Exploration, Evaluation and Automatic Label-

ing

5.6.1 Interactive Exploration of Clustering Models

We built an interactive interface for exploring the clustering results and searching for

an optimal representation of white matter fiber bundles.

The interface is shown in Fig. 5.3. The model in the picture is generated with

methods described in section 5.4. Single linkage clustering is precomputed on the

model with the proximity threshold set from 0mm to 10mm in 0.1mm intervals.

In the top left corner, three sliders are used to change the values of the proximity

threshold, minimum mean linear anisotropy along an integral curve and the cluster

size threshold. The interactive system runs at about 10 frames-per-second with a

30MB VRML model on a desktop PC with a 2Ghz AMD CPU and 1GB memory.
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Figure 5.5: The interactive interface can be used to quickly evaluate a new clustering
algorithm or proximity measure. a,b,c,d show the same model used in Fig. 5.4 with
the same single linkage algorithm, but different proximity measure (dSt instead of
dLt. a, b, c, d and e show the clustering results with the proximity threshold set
to 0.5mm, 1.4mm, 1.5mm, 2.1mm and 2.5mm respectively. The abrupt change of
cluster structures around proximity threshold 1.5mm suggests that the dSt is more
prone to this kind of jump than dLt.

Fig. 5.4 shows snapshots of clustering results of the model shown in Fig. 5.3 with

different proximity thresholds and cluster size thresholds.

This system is convenient for qualitatively evaluating new clustering algorithms or

proximity measures. This capability is shown again in Fig. 5.5, where dSt instead of

dLt is chosen as the proximity measure. The four pictures show the resulting clusters

with proximity threshold set to 0.5mm, 1.4mm, 1.5mm, 1.9mm. It is clear that

using dST as the similarity measure results in an abrupt change in cluster structures

around the proximity threshold of 1.5. This is because dST deems short and long

curves similar provided that the short curve is close to a portion of the long curve,

usually resulting in big clusters with curves of different lengths.

5.6.2 Evaluation

To evaluate our clustering method, we interactively selected a proximity threshold to

achieve visually optimal clustering in models from 3 subjects S1, S2, S3 and S4. Sub-

ject S2 and S4 are the same individual scanned on different occasions. An expert rater

determined the threshold that produced a set of color-labeled bundles that maximally
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Figure 5.6: Four of the fiber bundles in the template. (a) left cingulum bundle, (b)
right cingulum bundle, (c) left uncinate, (d) forceps minor. Blue surface represents
the ventricles and a slice of T2 image is shown as context. Colors are randomly
generated for each bundle of each subject.

facilitated identification of 12 pre-specified target white-matter tracts of varying cal-

ibers and type (i.e., commissural, association, projection) in both hemispheres (where

applicable) in each subject. After finding an optimal threshold, the rater used a 4-

point ordinal Likert-type scale to assign confidence ratings for identifying each of the

12 target white matter tracts in each hemisphere in the thresholded bundled mod-

els. Points on the scale were u=unlikely located or not located, p=possibly located,

l=likely located, v=very likely located.

The results are shown in Table 5.1. Each row represents one of the target white-

matter tracts. Each rating pair within a row shows the ratings for that feature in

both hemispheres of the brain. A comparison across the subjects shows that long,

thick, coherent white matter tracts like the uncinate fasciculus, cingulum bundles,

and superior and middle cerebellar peduncles are identified with high confidence in

the bundled model. In contrast, shorter, thinner white matter tracts like the anterior

commissure are almost completely missing from these optimally thresholded models.

The difficulty in identifying these smaller structures in the clustered models may

be due to the combined effects of their small caliber and the limited resolution of

the images. Other tracts were identified with intermediate confidence. For example,

some tracts, like the frontal forceps, are rated with reasonably good confidence in
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most subjects but are missing or rated somewhat lower in one subject, suggesting

possibly an error in the model due to image artifacts. Some tracts, such as the

superior longitudinal fasciculus, inferior longitudinal fasciculus, arcuate fasciculus

and inferior cerebellar peduncle, received inconsistent ratings. It is important to note

that some clusters observed by the rater but not included among our 12 target ones,

were thought to be possibly spurious or at least anatomically questionable.

WMF S1 S2 S3 S4
fminor v v l v
fmajor v v v v

slf l,v l,v l,v p,p
ilf l,p l,v p,l l,l
af l,v u,v p,v p,p
uf v,v v,v v,v v,v
ac p u l u
cb v,v v,v v,v v,v
scp u,u p,p l,l p,p
mcp l,l v,v v,v v,v
icp p,p u,u u,p p,p
cst v,v v,v v,v v,v

Table 5.1: Confidence ratings for the 12 white matter features in the clustering mod-
els of four data sets, S1-S4 . WMF – white matter fiber tract; ff – frontal forceps;
slf – superior longitudinal fasciculus; ilf – inferior longitudinal fasciculus; af – arcuate
fasciculus; uf – uncinate fasciculus; ac – anterior commissure; cb – cingulum bundle;
scp – superior cerebellar peduncle; mcp – middle cerebellar peduncle; icp – inferior
cerebellar peduncle; cst – cortico–spinal tract; v indicating very likely located, l in-
dicating likely located, p indicating possibly located, and u indicating unlocated. A
rating pair shows the ratings for the same tract in each cerebral hemisphere.

These results demonstrate that the proximity-based clustering method is capable

of bundling and labeling fibers that in the view of an expert rater, have high corre-

spondence with known white matter anatomy, at least for large distinct tracts. The

method produces less consistent results for some smaller tracts that may be either

inherently more difficult to cluster accurately and consistently and, because of their

size or location, may be more vulnerable to image artifacts. Despite these limitations,
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the results show that our method has promise as a means for interactive clustering

of DTI integral curves into anatomically-relevant clusters. Improvement in image

quality, motion reduction, and in the algorithm itself may provide better results in

the future.

5.6.3 Automatic Fiber Bundle Labeling

One potentially very useful goal is to implement a method that performs automated

clustering and labeling. We explored this potential by constructing a bundle template

based on the interactive results presented in the previous section, and then attempting

to match integral curve bundles from a new subject to this template.

We built a fiber bundle template by matching the clustering results on 4 data sets

(S1, S2, S3, and S4) using the expert-defined optimal proximity threshold. First, we

registered the non-diffusion-weighted image from every data set to one particular data

set chosen at random using FLIRT (Jenkinson and Smith, 2001). The registration

was constrained to translation, rotation and scaling operations only. We then used

the transformation matrices to register all the cluster models. For each integral curve

cluster, the centroids of the starting points Cs, middle points Cm, and end points Ce

were calculated. Integral curve clusters from the two subjects were then aligned and

grouped according to the sum of the distances between these centroids

dM(A, B) =‖ Cs(A) − Cs(B) ‖ + ‖ Cm(A) − Cm(B) ‖ + ‖ Ce(A) − Ce(B) ‖ (5.4)

To be matched together, clusters are required to be mutually closest in the feature

space as well as nearer than 40mm.

These matched clusters are then used to construct a color-labeled fiber bundle

template by picking six fiber bundle structures that are matched well across all four

data sets.

A cluster A from a new subject can be matched to one of the fiber bundles B in
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the template by a matching score of

M(A, B) = min
i∈S

dM(A, Bi)

|A|
, (5.5)

where |A| is the number of curves in A. S is the set of subjects we used for building

the template. Bi is the cluster in subject i that is labeled as B. M is designed to

favor big clusters in A that are close to B. M is set to a large number if there is a

non-match.

The algorithm then searches for a proximity threshold on the new subject that

minimizes the sum of the matching scores for all the clusters from the new subject

that are matched to one of the fiber bundles in the template. The matching scores

for two new subjects S5 and S6 are shown in Fig. 5.7. The search is easy since the

range of clustering proximity thresholds for a good match is rather narrow.

We then match the automatically-thresholded clustering result to the fiber bundle

template. Fig. 5.8 shows the matched bundles for S5 and S6. We rate these bundles

as very likely or likely to be labeled correctly.

5.7 Discussion and Conclusion

White matter abnormalities caused by acquired or inherited disease or from congen-

ital conditions can impact specific white matter pathways differentially. Automatic

classification and labeling of white matter fiber bundles in DTI tractography models

potentially provides an efficient method for rapidly and reliably identifying specific

bundles across individual subjects. Once clustered, white matter bundles can be mea-

sured using any number of scalar metrics that lend themselves to statistical analysis.

Automated clustering therefore provides neuroscientists with an important tool for

generating and testing hypotheses about the functional correlates of specific white

matter tracts in both normal and abnormal brains.

The results of this proof-of-concept study demonstrate that anatomically-motivated

methods for integral curve generation and clustering provide can reliably identify large
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(b) S6

Figure 5.7: The sum of matching scores for all the fiber bundles in the template. (a)
shows the result of S4. Proximity threshold is 3.6mm for the optimal match, while the
expert-selected threshold is 3.9mm. (b) shows the result of S5. Proximity threshold
is 3.2mm for the optimal match, while the expert-selected threshold is 3.5mm.

(a) S5 sagittal (b) S5 coronal (c) S6 sagittal (d) S6 coronal

Figure 5.8: The matched bundles for subject 4 and 5. Color is fixed on each label.
Blue surface represents the ventricles. Note the correspondence between the same
bundles across the two subjects.
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fibers bundles that bear close qualitative correspondence with known white matter

anatomy across subjects. The results for these large tracts are good both when the

algorithm is guided with interactive input from an expert rater and when it is imple-

mented automatically.

At this point, however, our method works best for large, distinct white matter

tracts such as the cingulum bundles and uncinate fasciculus; and works less well,

and in some cases quite poorly, for smaller or less anatomically distinct tracts such

as the inferior longitudinal fasciculus or the anterior commissure. We believe that

the method will likely produce more consistent results for a wide set of target tracts

with further refinements and with improvements in image acquisition, post-processing

(e.g., motion correction), and tractography algorithms. Improvement can be made

in building a high resolution, verified fiber-bundle template, reducing noise, motion

and other artifacts in image collection, and incorporating more anatomical knowledge

into integral-curve generation, clustering and labeling.



Chapter 6

Quantitative Study of the

Streamtubes Model

In terms of revealing information from high-dimensional data sets, qualitative and

quantitative methods are often complementary and both important. So far we have

mostly discussed qualitative methods. For example, Chapter 4 presents several visu-

alization schemes for qualitative data exploration. Chapter 5 expedites this explo-

ration by automatically identifying major fiber bundle structures. On the other hand,

quantitative methods are needed for fast and unbiased assessment of the models and

the data for both developing reliable biomarkers and improving the accuracy of the

models.

In this chapter, we first design a number of metrics on streamtubes for assessing

white matter integrity. Then we build a forward model from the streamtubes model

to diffusion MRI signals and use this model to optimize the streamtubes model.

77
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6.1 Quantitative Tract-of-Interest Metrics for White

Matter Integrity

In (Lee et al., 2005), we proposed several quantitative tract-of-interest metrics for

assessing white matter integrity. That work is excerpted here.

The majority of studies using DTI to assess white matter microstructure in clinical

samples have been based on two-dimensional grayscale maps of scalar values such as

mean diffusivity (MD), a measure of the magnitude of diffusion in each image voxel,

and fractional anisotropy (FA), a measure of the extent to which that diffusion is

directionally restricted. Generally, these basic scalar measures are derived from the

eigenvalues of the multi-valued tensor data and do not incorporate eigenvector infor-

mation. The scalar values in each image voxel are then mapped to two-dimensional

grayscale images. An exception is the use of eigenvector information to produce two-

dimensional FA maps in which fiber orientation is mapped to color (e.g., (Pajevic

and Pierpaoli, 1999); (Wakana et al., 2004)). However, our work is based on linear

anisotropy (cl), a scalar parameter related to FA and proposed by (Westin et al.,

1997b).

Tractography methods complement scalar methods by providing detailed infor-

mation about the orientation and curvature of white matter pathways as they course

through the brain. These methods utilize both the tensor eigenvalues and the eigen-

vectors to calculate trajectories in the direction of fastest diffusion. The trajectories

are then portrayed graphically using curved lines (Xue et al., 1999) or glyphs such as

hyperstreamlines, which were initially proposed by (Delmarcelle and Hesselink, 1993)

as a means of visualizing other types of second-order tensor fields and then subse-

quently applied to DT-MRI data by (Zhang et al., 2003). To date, tractography has

gained widest acceptance in neuroscience studies exploring white matter connectiv-

ity, effects of pathologies on connectivity, and improvement of data acquisition and

visualization methods (e.g., (Huang et al., 2005; Wakana et al., 2004)).
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Only a few preliminary methodological studies have explored the utility of combin-

ing tractography with quantitative scalar measures (i.e., “quantitative tractography”)

for clinical research where group comparisons are important. For example, Ciccarelli

et al. (Ciccarelli et al., 2003a)), studied the reproducibility of tract-“normalized”

volume (NV) and FA in three white matter pathways traced by the fast marching

tractography (FMT) algorithm (Parker et al., 2002a; Parker et al., 2002b). The re-

sults (Ciccarelli et al., 2003a) showed variability in measures of tract volume and

fractional anisotropy across different fiber bundles suggesting that fiber organization

has an impact on the reproducibility of tractography algorithms. (Ciccarelli et al.,

2003b) also examined the extent of intersubject variability in the anterior corpus callo-

sum, optic radiations, and pyramidal tracts. They found that the tractography maps

corresponded well to known anatomy and that there was greater intersubject vari-

ability at the terminal ends of tracts adjacent to cerebral cortex, but lower variability

in the core of tracts and no right-left differences in variability. (Ding et al., 2003)

also demonstrated good reproducibility of tractography-based metrics such as curva-

ture, torsion, parallel diffusivity, and perpendicular diffusivity along bundle length.

(Huang et al., 2005) have also used quantitative methods for parcellating projections

from the corpus callosum to cortical regions. Each of these studies demonstrated the

utility of using quantitative tractography.

The present study proposes several new quantitative tractography metrics for

quantifying cerebral white matter integrity in whole brain white matter and in spe-

cific white matter tracts of interest (TOIs). Some preliminary results are published

in (Lee et al., 2006). In this section, we define the new metrics and demonstrate their

stability across multiple streamtube models derived from a single dataset for one

healthy control. Then, as an initial and preliminary validity test, we compare these

metrics between a small cohort of patients with known vascular white matter injury

(i.e., vascular cognitive impairment, VCI) and a demographically matched cohort of

healthy controls. VCI provides a good model for assessing the clinical and research
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utility of quantitative DTI since ischemic white matter injury is associated with a

characteristic pattern of increased diffusivity and decreased anisotropy (Jones et al.,

1999). These diffusion changes are thought to reflect axonal loss (Beaulieu, 2002)

with possible contributions from demyelination (Bihan et al., 2001), gliosis (Larsson

et al., 2004), or other pathological processes.

6.1.1 Tract of Interest (TOI) Selection

We implemented a method for interactive TOI selection similar to the volume of in-

terest (VOI) approach of (Akers et al., 2004), which allows users to define box-shaped

VOIs and Boolean expressions to select streamtubes of interest. Our approach is sim-

ilar to a more recent method published by Mori and colleagues (Jiang et al., 2006).

For each subject, we quantified the streamtube data for the whole brain and three

TOIs: interhemispheric streamtubes passing through the corpus callosum, and the

left and right cingulum bundles. TOI selection was performed by an experienced

rater (SYL) trained and supervised by two faculty with good knowledge of white

matter anatomy (SC and DT). Interhemispheric fibers were defined as all stream-

tubes passing through the corpus callosum. Fibers that extended inferiorly through

a plane defined by the inferior boundary of the splenium and rostrum in mid-sagittal

view were removed from this TOI. This conservative approach may have removed

anatomically correct streamtubes from the TOI (e.g., the tapetum) but was designed

to ensure that anatomically implausible streamtubes were not included in the anal-

ysis. The left and right cingulum bundles were identified visually in the models and

were segmented by the intersection of voxels placed in the posterior third and ante-

rior third of each bundle using a pre-specified algorithm for voxel placement. Given

the potential errors that can occur in DTI fiber tracking (Jiang et al., 2006; Mori

and van Zijl, 2002), we adopted a conservative approach to identifying and culling

anatomically questionable fibers (e.g., those that seemed possibly spurious based on

trajectory). The final TOI results were inspected by two faculty for appropriateness.
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6.1.2 Proposed Metrics

We developed the following several new quantitative tractography metrics: 1) total

length (TL), 2) total weighted length (TWL), 3) normalized total length (NTL), 4)

normalized total weighted length (NTWL), 5) number of streamtubes (NS), and 6)

normalized number of streamtubes (NNS). We also developed a seventh metric by

dividing TL by NS to yield average TL (ATL). These metrics should provide indirect

markers of the structural integrity of white matter TOIs. The metrics are defined

conceptually and mathematically as follows:

Total length of a TOI was defined as:

TL =
∑

∀s∈S

Ls (6.1)

where LS is the length in millimeters of a single streamtube s contained within the

set of streamtubes S in the given TOI. This metric should provide a coarse marker of

the overall microstructural integrity of a TOI. Total weighted length (TWL), weights

TL by the average linear anisotropy of the streamtubes comprising the TOI. Weighting

by the average linear anisotropy provides different information about the integrity of

the tract. For example, TWL might be sensitive to differences in tract integrity

across groups (i.e., differences in the average linear anisotropy of the tract) that are

insufficient to impact TL, but nonetheless reflect a disease state. TWL is defined as

follows:

TWL =
∑

∀s∈S

Cs × Ls (6.2)

where Cs is the average linear anisotropy within streamtube s. We would expect

TWL to be inversely correlated with TOI injury.

NS quantifies the number of streamtubes in a TOI:

NS = ‖S‖ (6.3)
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NS may provide useful information about white matter health not captured by the

length metrics and may be sensitive to white matter changes, particularly in shorter,

denser tracts. NS might provide a compliment to the length metrics. For example,

lower TL could occur because of broken fibers due to local minima in linear anisotropy

or to loss of fibers. In the former situation, lower TL might be accompanied by higher

NS, whereas in the latter situation, both TL and NS might be decreased.

The value of TL, TWL, and NS, however, are likely influenced by brain size,

and thus may require further correction. Therefore, we normalized these metrics

by approximate intracranial volume. We chose to normalize by intracranial volume

instead of brain volume because it likely provides a better index of brain size prior to

the impact of age and pathology.

We approximated total intracranial volume by first defining a box enclosing the

brain. The box boundaries were determined in sagittal and coronal views of the T2

(i.e., b=0) volume and were placed at the most superior, inferior, anterior, posterior,

lateral points of the cranial vault. The inferior boundary was the foramen magnum.

We then measured the volume of a mathematically generated three-dimensional ellip-

soid circumscribed within the box. To account for extra-cranial tissue captured by the

ellipsoid, we multiplied the ellipsoid volume for each individual by a correction factor

based on normative intracranial volume estimates reported in four previous studies .

The correction factor was the ratio of a mean intracranial volume estimate calculated

across these four studies to the mean brain box volume in our healthy controls and

VCI subjects combined. Given the small sample size, we did not derive gender-specific

intracranial volume correction factors. Application of this correction factor brought

our intracranial volume estimates in line with previously reported intracranial volume

estimates derived with more exacting methods.

We normalized TL, TWL, and NS by dividing our length metrics by the ratio of

each participant’s approximate intracranial volume to the average intracranial vol-

ume of all participants. That is, we computed normalized total length (NTL) and
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normalized total weighted length (NTWL) as follows:

NTL =
TL

V/V
(6.4)

NTWL =
TWL

V/V
(6.5)

NNS =
NS

V/V
(6.6)

where V is approximate intracranial volume, and V is the mean approximate intracra-

nial volume for the healthy controls and VCI subjects combined.

Note that with our seeding and culling scheme, the streamtubes fill the white mat-

ter volume and keep certain distance from each other. Thus the total length of the

streamtubes and its weighted derivatives can be regarded as being roughly propor-

tional to the volume of the white matter, prompting us to use V/V for normalization.

Lastly, our seventh metric, ATL is a non-normalized measure of the average length

of streamtubes.

ATL =
TL

NS
(6.7)

ATL may provide slightly different information from TL. For example, ATL could

help discriminate between individuals with similar TL values but different white mat-

ter integrity. For example, an individual with good white matter integrity reflected in

long streamtubes vs. one with poor white matter integrity reflected by many shorter

streamtubes. We additionally calculated average values for our other length metrics

by dividing each by NS, however they were omitted from analyses partly to reduce

the number of variables and because they were highly correlated (r > .72) with the

metric in the numerator.
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6.1.3 Reproducibility Study

Two important factors potentially affect the reliability or our metrics: 1) the degree to

which our streamtube generation algorithm yields consistent results; and 2) the degree

to which our DTI acquisition parameters yield consistent results across repeated scans

where the head position is not identical.

Data Acquisition

We examined the consistency of our metrics across data collected from a single healthy

45-year-old, right-handed control subject scanned on three different occasions — the

second and third data sets were collected on the same day with removal from the

scanner between acquisitions; the first data set was collected approximately 4 weeks

earlier. Data from this control subject was not included in other data analysis in this

report.

We used percent differences to evaluate the consistency of our streamtube model

in datasets of a single healthy control subject collected at three separate time points.

Between the three pairs of datasets (i.e., Time 1 vs. Time 2. and so on) the percent

difference between our metrics was ≤ 0.51% for NS, ≤ 1.59% for TL, and ≤ 2.6%

for TWL.

Streamtube Generation

Streamtubes are generated using algorithms that place randomly jittered seed points

at regular intervals within the imaging grid. This jittering method reduces the likeli-

hood of the output model being overly influenced by the grid. The cost for this small

random jitter is that each run of the algorithm on a single dataset produces a slightly

different streamtube models, even if the input data and parameters are held constant.

These subtle inconsistencies should roughly mirror differences in streamtube models

across multiple image acquisitions of the same subject using strict seed point place-

ment. However, these subtle inconsistencies could also translate into additional error
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Table 6.1: Results of the reproducibility study (mean ± SD) and coefficient of variance
(COV; means and SD are rounded)

Seed NS TL(mm) TWL(mm)
1.7mm3 7895 ± 11 108978± 844 26874 ± 256

COV = .1% COV = .8% COV = 1.0%
0.85mm3 11856 ± 28 138752± 823 33639 ± 245

COV = .2% COV = .8% COV = .9%
0.64mm3 13406 ± 40 151180± 703 36381 ± 157

COV = .3% COV = .8% COV = .4%

variance in our metrics which, if too great, could mask true group differences (i.e.,

increased risk of Type 2 error).

To address this concern, we assessed the consistency of our metrics in multiple

streamtube models derived from one dataset of a single healthy control subject. Seven

streamtube models were produced for each of three different seeding parameters that

varied by coarseness (i.e., 1.7mm3, 0.85mm3, and 0.64mm3) for a total of 21 models.

Other streamtube parameters were held constant as described previously. We then

assessed the percent difference in our metrics across the eight whole brain models

produced at each seeding parameter. This method allowed us to determine the impact

of both random jitter and different seeding parameters on the consistency of our

metrics.

In the whole brain models, coefficients of variance did not exceed 1.0% for either

NS, TL, or TWL across seven models of a single brain produced at the three seeding

densities of 1.7mm3, 0.85mm3 , and 0.64mm3 seeding (see Table 6.1).

6.1.4 Whole Brain Metrics

We used MANCOVA (controlled for age) to test for significant differences in our

metrics between the VCI and healthy control groups in whole brain models. We

expected that patients with VCI would have lower values on all our metrics than



86

Table 6.2: Group comparison, whole brain corrected for age

Metric Healthy Controls VCI F(1,15) p
Whole brain (n=18 for the HC group; n=15 for the VCI group)
NS 12647 ± 2076 11385 ± 2571 5.42 .027
NNS 12720 ± 2286 11425 ± 2611 5.38 .027
TL(mm) 396453 ± 84619 327379 ± 97501 7.70 .009
ATL(mm) 31 ± 3 28 ± 3 7.70 .007
TWL(mm) 103883 ± 24499 80186 ± 26256 8.04 .008
NTL(mm) 399021 ± 91869 328055 ± 94979 10.20 .003
NTWL(mm) 104475 ± 25946 80482 ± 26256 10.43 .003
Interhemispheric fibers (n=17 for the HC group; n=14 for the VCI group)
NS 804 ± 151 650 ± 210 9.23 .005
NNS 801 ± 137 650 ± 214 10.21 .003
TL(mm) 44900 ± 12150 32485 ± 15533 12.50 .001
ATL(mm) 55 ± 6 48 ± 9 14.76 .001
TWL(mm) 15284 ± 4204 10353 ± 5502 14.75 .001
NTL(mm) 44835 ± 11922 32546 ± 15612 13.27 .001
NTWL(mm) 15256 ± 4099 10406 ± 5567 15.36 .001

healthy controls. Our decision to use MANCOVA for this analysis reflected our

desire to control for age. Given the results of our Shapiro-Wilks test, we repeated

the analyses using non-parametric Mann-Whitney U tests to evaluate the extent to

which violations of normality may have influenced our results.

Figure 6.1 shows the 3-dimensional views of whole brain streamtube models for

one healthy control (a) and one VCI patient (b).

In the healthy control group, correlations between age and each of the metrics

were negative and significant with all r ≥ −0.57 and all p ≤ 0.1, except between age

and ATL (r = −0.17; p = .51). In the VCI group, age was not significantly correlated

with any of the metrics. Nonetheless, we controlled for age in our main whole brain

analysis as discussed above.

A MANCOVA was conducted to evaluate group differences for the seven metrics

with age as a covariate. The overall model showed a non-significant trend for age (F
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Figure 6.1: The 3D views of whole brain streamtube models for one healthy control
(a) and one VCI patient (b).

Figure 6.2: The IHF selection in one healthy control (a) and one VCI patient (b).
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= 2.24; p = .07) and a significant effect of group (F = 2.93; p = .02). After control-

ling for age, the VCI group had significantly lower values on all seven quantitative

tractography metrics compared to the healthy controls (Table 6.2). Effect sizes across

the seven metrics were small (η2
p = .15 to .23); observed power ranged from .62 to

.89.

A Pearson bivariate correlation matrix revealed strong and statistically significant

intercorrelations among all seven metrics with r values ranging .523 for ATL vs. NNS

to .99 for TWL vs. NTWL (all p < .001).

6.1.5 Interhemispheric Fibers

Figure 6.2 shows the IHF selection in one healthy control (a) and one VCI patient

(b).

The overall MANCOVA model revealed a non-significant trend for age (F = 2.00;

p = .10); and a significant effect of group (F = 2.92; p = .03). After controlling for

age, the VCI group had significantly lower values on all seven quantitative tractogra-

phy metrics compared to the healthy controls with the exception (Table 6.2). Effect

sizes across the seven metrics were small to moderate (η2
p = .25 to .35); observed

power ranged from .83 to .97. The group differences for six of the seven metrics

were also significant when tested using the non-parametric Mann-Whitney U test (all

p < .05). The sole exception was for NNS for which there was a non-significant trend

(p = .07). Overall the results of the non-parametric analysis suggest that the viola-

tions of normality for these variables were not sufficient to invalidate the parametric

MANCOVA procedure.

6.1.6 Conclusion

This proof-of-concept study demonstrates that metrics can be derived from DTI trac-

tography data that provide clinically-relevant information about the microstructural

integrity of cerebral white matter. The validity or our seven metrics is evidenced
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by their significantly different values in patients with known vascular white matter

injury vs. controls and their correlations with age, and cognitive test performance.

Our metrics can be obtained for specific TOIs in individual datasets for group or indi-

vidual comparisons. Currently, TOIs must be interactively selected which could lead

to operator error and selection of incorrect fibers. However, a potential advantage of

our approach is that since the models are defined in a 3D environment, TOI selection

can occur without sophisticated image registration. Our quantitative tractography

metrics are potentially a powerful alternative to the non-tractography scalar-based

approaches to DTI analysis commonly used in current clinical studies. Our methods

provide researchers with new tools for assessing the health of specific white matter

pathways and its relation to cognition, behavior, and motor function.

6.2 Inverse Modeling

The scientific study of any physical system can be roughly divided into three steps:

1. Model design: define a model that describe the system and represent it by a

list of parameters.

2. Forward modeling: discover the physical laws which given the model parameters

will predict the values of the measurements on some observable parameters.

3. Inverse modeling: infer the model parameters with the measurements on some

observable parameters.

These three steps are closely related. Progress in one of them often leads to

advances in the other two.

In diffusion MRI, a great number of models have been proposed and studied. We

can roughly separate them into local models and global models. Local models inde-

pendently explain the measurements in a single location, namely a voxel in diffusion
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MRI. Diffusion tensor, multi-tensor (Tuch, 2002), and PASMRI (Jansons and Alexan-

der, 2003) are examples of local models. They can all be regarded as approximators

of the diffusion propagator at a point location. Global models represent the diffusion

MRI on the whole brain and incorporate the correlations between the measurements

in different locations. The most salient feature of this correlation is the connectivity

by the neural fibers across different regions of the gray matter. Streamline-based

models such as the streamtubes model introduced in Chapter 3 are integrated in the

first eigenvector field of the diffusion tensor field. Other methods used for generat-

ing global models include the level set method (Parker, 2000) and the importance

sampling method (Brun et al., 2002).

Currently, the emphasis on the global models has been the inference of the con-

nectivity, and rightly so, since it is probably the single most important feature of the

white matter structure. But by focusing only on the fiber orientations, these global

models tend to simplify or ignore other physical laws governing the imaging process

such as the partial volume effect. As a result, inconsistency and spurious structures

can appear. In this chapter, we place emphasis on both the forward modeling and

inverse modeling steps to ensure the consistency between the model and the data.

We can formulate the inverse problem of global DWI modeling with Bayes’ The-

orem:

P (ω|D,H) =
P (D|ω,H)P (ω|H)

P (D|H)
(6.8)

where D = {Iq} is the collection of volumetric DWI images, Iq is the DWI image

encoded by b-vector q, H is the model assumption, and ω is the parameters of the

model.

In section 6.2.1, we list our models and assumptions in detail. In section 6.2.2, we

present a forward model that calculates P (D|ω,H). In section 6.2.3, we implement

two optimization algorithms to improve the accuracy of the inverse modeling.
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6.2.1 Model

As discussed in Chapter 2, in the human brain white matter, gray matter and cerebral-

spinal fluid are isotropic materials that pose different constraints on the diffusion of

water and thus produce different diffusion MR signals. Gray matter and CSF are

isotropic materials. White matter, on the other hand, is anisotropic and produces

different diffusion MR signals with different orientations and magnetic gradient di-

rections. Therefore the diffusion MR signal in a voxel depends on both the fraction

of the volume for each material and the geometric construction of the white matter

in the voxel. If the white matter structure is coherent within the voxel, then we only

need one compartment to model the white matter, otherwise we divided the white

matter into individually coherent compartments. Our model of the diffusion imaging

data thus has two components: the geometry of the white matter and the partial

volume model.

The geometry of the white matter includes a collection of fibers

G = {F0, . . . , FK}

which are 3D curves.

Note that we do not model the apparent junction structures because to our knowl-

edge there is no such structure in the anatomy. We intend to simulate merging,

kissing, and crossing structures with the fiber model.

The partial volume model for each pixel denotes the percentage of the volume in

the voxel occupied by each compartment:

Vp(i) = {vGM(i), vCSF (i), vF1
(i), . . . , vFm

(i)}

m is the number of fibers intersecting the voxel. i is the voxel index. The partial

volume of the white matter vWM is the sum of all vFj
:

vWM(i) =

m
∑

j=1

vFj
(i)
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All the partial volumes in the voxel add up to 1:

vGM (i) + vCSF (i) +

m
∑

j=1

vFj
(i) = 1

Together, the model is represented by

W = (K, F1, . . . , FK , {vGM(i), vCSF (i), vF1
(i), . . . , vFK

(i)}; i = 1, . . . , M)

where K is the number of fibers, M is the total number of voxels.

Our model assumptions (H) in equation 6.8 include:

1. Brain consists of gray matter, white matter and cerebral-spinal fluid (CSF).

2. Gray matter and CSF result in constant DWI signals along each gradient di-

rection.

3. White matter consists of a group of cylindrical neural fibers that run from gray

matter to gray matter without breaking or merging into other neural fibers

along their paths.

4. Within each voxel, gray matter, CSF and each neural fiber are well separated

into independent compartments. There is no interaction among different com-

partments. And within each compartment, there is free Gaussian diffusion.

Assumptions 1 and 3 are based on our anatomy knowledge. Assumptions 2 says

that CSF and gray matter are uniform throughout the whole brain which is a simpli-

fication in the case of the gray matter. Assumption 4 is a rather arbitrary assumption

that simplifies our calculation of the forward modeling given our current ignorance

about the effect of mixing materials on the MR signal.

6.2.2 Forward Modeling

The forward modeling problem in diffusion imaging modeling can be stated as: given

the model Vp, G, how do we get the diffusion MR signal for each voxel in the data vol-

ume? We begin by the equation that relates DWI signal to the tensor model (Basser
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et al., 1994):

I = I0e
−b:D

I0 is the intensity with no encoding (for a given material type typically a constant

within a dataset), b is the diffusion encoding tensor, D is the tensor model for the

diffusion.

Integrating it over the whole voxel, we get:

Iv =

∫

x∈v

Ixdx =

∫

x∈v

I0xe
−b:Dxdx (6.9)

With assumptions listed in the last section, we can rewrite equation 6.9 as:

Iv = I0csfe
−b:Dcsf vcsf + I0gme−b:Dgmvgm +

K
∑

i=1

I0wme−b:DivFi
(6.10)

where i indexes over the fibers in the voxel. Di is calculated from Fi by rotating a

constant linear tensor sampled from coherent white matter to the direction of Fi.

We assume the data measurements are normally distributed around the true value

with the same variance. And we assume that the data measurements are independent

in different locations. In order to get the maximum likelihood of the data, we need

to minimize the quantity:

χ2 =
m
∑

q=1

n
∑

v=1

(

Iv,q − Îv,q

σ

)2

(6.11)

called χ2 (Press et al., 1992), where q denotes the set of magnetic gradient directions,

I and Î are the scanned and simulated signals, and σ is the variance of the distribution

of the error between the two signals. We use the noise value in the scanned image for

σ.

We demonstrate our forward modeling on the central part of a mid-coronal section

through a normal human brain. The section includes the corpus callosum (red in

Fig. 6.3(a)), cingulum bundles (green), and ventricle (white). Simulated DWI data
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(a) (b) (c)

(d) (e)

Figure 6.3: This figure shows the results of the forward imaging model on the central
portion of a mid-coronal section through a human brain. The section includes parts of the
cingulum bundles (green in (a)) and the corpus callosum (red in (a)). (a) and (b) show DTIs
generated from the original DWIs and simulated DWIs, with the diagonal tensor elements
mapped to red, green, and blue; (d) and (e) show a section in one of the original DWIs and
the simulated DWIs; (c) shows the fiber model used in this forward modeling.

were created using a combination of the fiber model shown in Fig. 6.3(c) and partial

volume classification calculated with FAST (Zhang et al., 2001b). Because of the

relatively high noise in the original DWIs, it is difficult to visually compare the original

DWI (Fig. 6.3(d)) and the simulated DWI (Fig. 6.3(e)). However, χ2 between the real

and simulated voxels in one DWI averages 1.6 over this section; this is close to the

optimal value of 1.0 and supports that the model is tenable. A tensor-valued image

was fit to the simulated DWIs. The diagonal elements of the original tensor image

and the simulated tensor image are displayed on red, green, and blue in Figs. 6.3(a)

and (b), showing good agreement and further supporting the forward imaging model.

6.2.3 Optimization

To solve the problem with a fully Bayesian approach, we need to set the prior infor-

mation on P (ω|H) based on our knowledge in anatomy, such as that neural fibers

project into the gray matter and have smooth curvatures, then search the parameter

space for the optimum posterior probability P (ω|D,H). The forward modeling step

applies in calculating the likelihood P (D|ω,H). Currently the forward modeling step

takes about 15 minutes to finish for a 128× 128× 90 diffusion MRI data set with 12
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magnetic gradient directions. As a first experiment with optimization, we designed

two optimization schemes. The results in this section are published in (Zhang and

Laidlaw, 2006).

Two Optimization Schemes

For a fixed number of fibers N , we optimize the configuration of the fibers by mini-

mizing the goal function χ2.

We define three kinds of rearrangements:

• Addition: add a fiber with a randomly selected seed point P .

• Removal: remove an randomly selected fiber C from the current configuration.

• Addition and removal: a combination of one addition and one removal.

The χ2 difference ∆χ2 = χ2
2 − χ2

1 is calculated after each step.

The greedy algorithm works as follows:

1. If the number of fibers is less than N , try addition. If ∆χ2 < 0, accept the

addition.

2. If the number of fibers is equal to N , try addition and removal. If ∆χ2 < 0,

accept the addition and removal.

3. repeat 2 until the decrease in χ2 becomes discouraging.

To avoid letting the greedy algorithm get trapped in a local minimum, we also

implemented a simulated annealing algorithm as follows:

1. If the number of fibers is less than N , try addition. If ∆χ2 < 0, accept the

addition. If ∆χ2 >= 0, accept with probability exp(−∆χ2

kT
).
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Figure 6.4: This plot shows the fibers optimization processes for the greedy algorithm
and the simulated annealing. For both algorithms the χ2 value converges to around
77, 600. The greedy algorithm converges faster, and it does not appear to get trapped
in a local minimum.

2. If the number of fibers is equal to N , try addition and removal. If ∆χ2 <

0, accept the addition and removal. If ∆χ2 >= 0, accept with probability

exp(−∆χ2

kT
).

3. repeat 2 until the number of reconfigurations reaches NR or the number of steps

reaches NS. Reduce T by 10% if any of the two conditions are met.

4. repeat until T becomes close to 0.
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a) S = 150, b) S = 250, c) S = 600, d) S = 18, 000,
χ2 = 609, 121 χ2 = 410, 972 χ2 = 191, 847 χ2 = 77, 664

e) N = 150 f) N = 250 g) N = 600 h) N = 600

Figure 6.5: a), b) ,c) and d) show the snapshots of the value χ2
v =

∑m

q=1

(

Iv,q−Îv,q

σ

)2

for each voxel v in the data volume during different stages of the simulated annealing.
S is the number of accepted moves. e), f), g) and h) show the fiber model generated at
these stages. N is the number of fibers. Note that g) and h) both have 600 fibers, but
the optimization of the configuration lowered the χ2 value from g) to h) significantly.

Results and Discussion

We ran the two optimization algorithms on the brain data set. Since we are interested

in the white matter structures, we limit our χ2 calculation to the voxels with more

than 50% white matter. There are 84, 025 such voxels. The seed point for a new fiber

was selected within these voxels. We set the target number of the fibers to 600. The

k in simulated annealing was set to 1. The temperature T was originally set to 1000.

NR was set to 300 and NS was set to 600.

Fig. 6.4 shows the optimization processes for the greedy algorithm and the simu-

lated annealing. For both algorithms the χ2 value converges to around 77, 600. The

greedy algorithm converges faster, and it does not appear to get trapped in a local

minimum.
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Fig. 6.5 shows the snapshots of the value χ2
v =

∑m

q=1

(

Iv,q−Îv,q

σ

)2

for each voxel

v in the data volume during different stages of the simulated annealing. While the

addition of the fibers quickly fills in large high χ2
v area, the repeated addition and

removal steps gradually decrease the overall χ2 value by reconfiguration.

For comparison, we also performed random seed point sampling for generating

600 fibers and calculated χ2 values for these models. The experiment was repeated

five times and χ2 = 197, 840± 9, 166.

Conclusions

We presented a forward-modeling-based sampling of diffusion-tensor imaging (DTI)

fibers. We built a forward model that generates DWIs from the DTI fibers based on

multi-tensor modeling. We employ the sum of the difference between the simulated

DWIs and the acquired DWIs as the goal function and optimize the placement of

the DTI fibers with a greedy algorithm and a simulated annealing approach. The

results show that with the same number of fibers, the optimized set of DTI fibers

fit better to the data than randomly seeded DTI fibers. With the proposed moves

of random addition, random removal and their combination, the greedy algorithm

converges faster and does not seem to get trapped in local minimums.

This work has the potential to improve the accuracy of the white matter fiber

models with an economic number of fibers.

Note that we made several simplifications in our forward model such as the white

matter partial volumes calculation and the constant radius of the fiber bundles. Fu-

ture improvement on the precision of the forward model may help increase the accu-

racy of the optimized model.



Chapter 7

Applications

Diffusion imaging is especially useful in studying fibrous structures such as white

matter and muscle: the anisotropy information it provides reveals the fiber orientation

in the tissue and can be used to map the white-matter anatomy and muscle structure

in vivo (Basser et al., 2000). The diffusion coefficient measures a physical property of

the tissue and the measurements can be compared across different times, locations,

and subjects. Therefore, DTI has frequently been used to identify differences in white

matter due to a variety of conditions. Normal conditions such as age and gender have

been reported to affect anisotropy and diffusivity (Naganawa et al., 2003), and neural

developments such as myelination (Klingberg et al., 1999), physical trauma such as

brain injury(Nakayama et al., 2006), and neurodegenerative diseases such as multiple

sclerosis (Simon et al., 2005) and HIV (Paul et al., 2006) have all been indicated by

DTI studies to affect white-matter composition, location, or integrity.

The variety of DTI applications provides a valuable testbed for visualization meth-

ods. Indeed, without applications to guide the development of computational and

visualization tools, these tools are far less likely to be useful. I introduce some of the

applications of diffusion imaging in this section.

In section 7.1, we present a method to detect at-risk neuronal fibers in the corpus

callosum related to distant focal demyelinating lesions in multiple sclerosis patients

99
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by generating our streamtube models only in the neighborhood of these lesions. In

section 7.2, we reveal the disparity in anisotropy values between the tumor and the

non-tumor sides of the brain by using a quantification of white matter structural

information contained within DTI data along with the qualitative visualization of the

streamtubes and streamsurfaces models. In section 7.3, we evaluate the use of 3D

DTI to follow white matter trajectories in intact fixed brains of several rare primate

species.

7.1 Multiple Sclerosis

Figure 7.1: Fast-spin-echo images through the region of corpus callosum.

The work in this section is published in (Simon et al., 2005).

Multiple sclerosis (MS) is a chronic disease of the central nervous system that pre-

dominantly affects young adults during their most productive years. Pathologically,

MS is characterized by the presence of areas of demyelination and T-cell predomi-

nant perivascular inflammation in the brain white matter. While demyelination is

central to the onset of MS, focal inflammatory MS lesions are also characterized by

axonal injury, including transections (Trapp et al., 1998). As a result, the study of

axonal injury has become an important new area of MS research, and axonal injury

is now considered an important contributor to irreversible injury, disability and pos-

sibly conversion to progressive stages of disease. In advanced stages of MS, there is
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Figure 7.2: Left: Streamtube map culled to fibers intersecting lesions. Right: Stream-
tube map with additional culling to fibers passing through corpus callosum and in-
tersecting lesion.

direct evidence for significant neuronal loss, especially in the corpus callosum (Evan-

gelou et al., 2000). In early MS, there is circumstantial evidence for neuronal tract

injury due to focal, inflammatory demyelinating lesions associated with a clinically

isolated syndrome (CIS) based on neuronal tract (Wallerian) degeneration patterns in

corticospinal tract (Simon et al., 2000) and across the corpus callosum (transcallosal

bands) (Simon et al., 2001). The presence of such axonal injury is supported by an

informative case study where confocal microscopy revealed empty myelin cylinders

Figure 7.3: Left: T2W image showing few focal T2-hyperintensities. Right: Sagittal
fiber map showing in red the location of fibers in the midline corpus callosum that
connect to the focal MS lesions.
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in spinal cord of an MS patient with a distant subacute brainstem lesion (Bjartmar

et al., 2001).

We report an MRI strategy to detect at-risk neuronal fibers in the corpus callosum

related to distant focal demyelinating lesions. This strategy is necessary since a priori

assumptions about the anatomical location of lesions relative to fiber tracts is often

misleading.

We conducted a prospective longitudinal study including 18 CIS patients with an

MRI. These patients have at least 2 characteristic T2-lesions, placing them at high risk

for the development of MS (Group, 2002). MRI acquisition was at 3T and included

3mm thick non-gapped proton density/T2 series and sagittal fast spin echo (FSE) T2-

weighted imaging with 3mm non-gapped slices (see Figure 7.1). A diffusion tensor

imaging sequence is run in the axial plane with sets of diffusion tensor images acquired

by echo-planar technique using a slice thickness of 5.1 mm and each series shifted

from the prior series by 1.7 mm inferiorly, in 25 gradient directions with maximal

b-value of 1000. Lesions are segmented by in-house semi-automated segmentation

routines based on the FSE image data. A mutual information algorithm was used

to determine the optimal 12 DOF affine transformation registering T2 axial with

B0 diffusion data. This transformation was then applied to the segmented T2 data.

A set of streamtubes (Zhang et al., 2003) is generated by seeding from within the

lesions. Each streamtube follows the fastest direction of diffusion until it transcends

the dataset boundary, hits a region of low linear anisotropy, or curves excessively. The

redness on the streamtubes represents linear anisotropy. Cerebrospinal fluid in the

ventricles is represented by a blue surface, and lesions are shown as yellow surfaces.

Case CIS 2 is shown as a representative example. This individual presented unilat-

eral optic neuritis, and had a positive MRI. Structural images suggest lesions poten-

tially related to the corpus callosum. The streamtube tractography suggests lesions

intersecting numerous fiber pathways, and provides (best viewed in 3D-not shown)

the explicit pathways that are potentially affected by the lesion. Further culling to
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fibers that intersect the corpus callosum shows a large potential volume of involve-

ment (see Figure 7.2). Unedited initial runs contain assignment errors, for example

some fibers running anterior-posterior. These can be removed through further culling

using objective template driven criteria or based on expert review of the images in 3D.

The sagittal fiber-at-risk map shows that the distribution of the at-risk fibers does not

correspond to the limited areas of abnormal appearing white matter conventionally

determined by T2-hyperintensity (see figure 7.3).

Our streamtube strategy was devised to allow us to interrogate voxels at-risk

by quantitative MRI techniques. Using our methodology risk is assessed based on

connection via fiber tracts to typical focal MS lesions. Our ultimate goal is to test

the hypothesis that focal inflammation results in Wallerian degeneration that can be

explicitly assayed over time in vivo. Initial attempts to relate focal MS lesions to

corresponding regions in callosum have been unsatisfactory to date, as fiber tracts

from corpus callosum curve in 3D space, and lesions such as those located lateral to the

mid-sagittal corpus callosum previously assumed to lie in transcallosal tracts often do

not intersect the fibers of interest. Using the tractography strategy outlined here, we

can explicitly determine the locations of voxels in corpus callosum that are most likely

to be injured by secondary degeneration, and we can follow these at-risk locations

prospectively in longitudinal MRI studies. In addition, the tractography approach

provides a unique perspective into early MS pathology allowing us to visualize the full

extent of potentially injured fibers from multiple lesions. This strategy is applicable

to any neuronal tract that can be imaged with high quality diffusion tensor and

structural MRI.

7.2 Tumor Analysis

The work in this section is published in (Zhang et al., 2004).
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Figure 7.4: The process of creating 2D barycentric histograms from DTI data. a: For
a given slice, the brain is divided in half with a straight line following the falx cerebri
on the T2-weighted EP image. b: A barycentric histogram is generated for each side
of the brain. In this example, the histogram comes from the tumor-bearing section
shown in a. Note the large number of voxels near the cs = 1 vertex, reflecting the
cystic component of the tumor. c: The difference histogram obtained by subtracting
normalized barycentric histograms calculated from tumor-bearing and contralateral
sections. In this difference histogram, zero maps to medium gray because the differ-
ence is signed. Note that the most striking difference occurs near the cs = 1 vertex.
d: The definition of the diffusion anisotropy regions in the barycentric histogram.
These regions are chosen to capture the differences between regions A and B in part
c.
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(a) (b) (c)

Figure 7.5: Geometric models representing the diffusion metric data obtained from
a 33-year-old female volunteer viewed from the (a) anterior, (b) right lateral, and
(c) posterior directions. Linear diffusion is represented by red streamtubes, planar
diffusion by green streamsurface fragments, and CSF by the blue surface. Note the
symmetry between two sides of the brain in this normal subject.

One particularly interesting clinical application of the DTI visualization tech-

niques is in the study of intracranial tumors and how they affect surrounding brain

structure. Several groups have already studied patterns of white matter tract disrup-

tion adjacent to brain tumors using DTI data. Wieshmann et al. (Wieshmann et al.,

2000) found evidence of displacement of white matter fibers of the corona radiata

in a patient with low-grade glioma when compared with spatially normalized data

collected from 20 healthy volunteers. The data obtained from this particular patient

were consistent with displacement rather than destruction of fibers due to the mass

effect of the tumor. Mori et al. (Mori et al., 2002) found evidence of displacement and

destruction of the superior longitudinal fasciculus and corona radiata in two patients

with anaplastic astrocytoma. Gossl et al. (Gossl et al., 2002) observed distortion

of the pyramidal tract in a patient with a high-grade glioma. Finally, Witwer et

al. (Witwer et al., 2002) found evidence of white matter tract edema, infiltration, dis-

placement, and disruption in 10 tumor patients with a range of brain malignancies.

These studies show that while mapping white matter fiber tract disruption patterns
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(a) (b) (c) (d)

Figure 7.6: Maps of (a) T2-weighted signal intensity, (b)< D > , (c) FA, and (d) color
composite diffusion metric data obtained from a 72-year-old male patient with a right
parietal metastasis of a lung adenocarcinoma. In d, maps of linear (red channel),
planar (green), and spherical (blue) diffusion are overlaid so that the color in each
voxel represents the relative magnitude of the three diffusion metrics. Note the high
< D >, low FA, and spherical (isotropic) diffusion of the tumor/edema volume. Also
note that the tumor/edema volume is surrounded by a large region of planar diffusion.

in neoplasia is technically possible, more work is still required to validate DTI tractog-

raphy methods if they are to become a reliable tool for investigating brain structure

and the pathophysiology of disease. Achieving this goal will require the development

of robust protocols for measuring white matter tract topology, quantifying the nat-

ural biological variation in tract orientation in the normal brain, and applying these

analyses to carefully characterized patient groups.

As a first step toward developing such robust protocols, this work describes a

method that permits the 3D visualization and quantification of the diffusion anisotropy

information contained within DTI data. In this method, regions within the brain are

defined as possessing linear, planar, or spherical (isotropic) diffusion, based on the ge-

ometric properties of D (Westin et al., 1997a). Visualization of these diffusion metrics

is realized by generating streamtube and streamsurface models to represent regions

of linear and planar diffusion (Westin et al., 2002). Quantification of differences in

diffusion anisotropy between regions-of-interest (ROIs) is then achieved by analyzing

2D barycentric histograms created from the complete distribution of diffusion metric

values measured in each region (Kindlmann and Weinstein, 1999; Alexander et al.,
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(a) (b) (c)

Figure 7.7: Geometric models representing the diffusion metric data obtained from
the 72-year-old male patient viewed from the (a) anterior, (b) right lateral, and (c)
posterior directions. Linear diffusion is represented by red streamtubes, planar dif-
fusion by green streamsurface fragments, and CSF by the blue surface. The yellow
surface, which is rendered from the signal abnormality on the T2-weighted EP images,
depicts the shape of the tumor/edema volume. Note that the tumor/edema volume
is partly surrounded by regions of planar diffusion.

2000). Here the feasibility of using this approach in mapping normal brain structure

and characterizing how neoplasia alters this structure is investigated.

7.2.1 Method

All MRI data were obtained using a GE Signa LX 1.5 T (General Electric, Milwaukee,

WI) clinical scanner, equipped with a self-shielding gradient set (23mTm−1 maxi-

mum gradient strength, 120Tm−1s−1 slew rate, and 60 cm inner diameter horizontal

bore) and a manufacturer-supplied birdcage quadrature head coil. The component

diffusion-weighted (DW) images of the DTI data set were acquired using a single-shot,

spin-echo, echo-planar imaging (EPI) sequence in which two symmetric trapezoidal

gradient pulses were inserted around the 180◦ refocusing pulse in the required gradi-

ent channel. Sets of coronal DW-EP images (b = 0 and 1000smm−2) were collected

with diffusion gradients applied sequentially along six non-collinear directions (13).

Six acquisitions consisting of a baseline T2-weighted EP image (G0) and six DW-EP
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images (G1-G6), for a total of 42 images, were collected per slice position. Parame-

ters for the DW-EPI sequence included a repetition time (TR) of 15 s, an echo time

(TE) of 102.5 ms, a field of view (FOV) of 200 200 mm, an acquisition matrix of

128 × 128 (zero-filled to 256 × 256), and 36 contiguous coronal slices of 5-mm thick-

ness. Therefore, each voxel had dimensions of 0.78× 0.78× 5.0mm, with an inherent

voxel resolution of 1.56 × 1.56 × 5.0mm.

Bulk patient motion and eddy current-induced artifacts were then removed from

the component EP images using a 3D computational image alignment technique (Jenk-

inson and Smith, 2001). First, EP images with the same b-matrix were rigidly aligned

to remove patient motion. Second, affine transformations were used to align the DW-

EP images acquired with diffusion gradient directions G2 − G6 to the first gradient

direction G1. Third, all DW-EP images were aligned using affine transformations to

the T2-weighted (G0) acquisition. Then the set of six component EP images for each

gradient direction was averaged to give seven high signal-to-noise ratio (SNR) images

for each slice. Finally, from this MRI data D was calculated in each voxel from the

signal intensities in the component EP images (Basser et al., 1994).

The three diffusion metrics can also be employed to quantify diffusion anisotropy

in different brain regions using a barycentric space histogram approach (11,12). In this

method a 2D triangular barycentric space containing all possible diffusion anisotropy

values is defined, with cl, cp, and cs being the barycentric coordinates. Asymmetries in

the distribution of diffusion anisotropy values between the right and left hemispheres

can then be characterized by analyzing the barycentric histograms obtained from each

side of the brain. Using data from the tumor patient, Fig. 7.4 illustrates how this

process was implemented. First, for a given slice the brain was divided in half with

a straight line following the first cerebri on the T2-weighted EP image coregistered

with the DTI data (Fig. 7.4(a)). A barycentric histogram was then generated for

each side of the brain using the T2-weighted EP image to identify voxels that were

located within the cerebrum (Fig. 7.4(b)). To eliminate the effect of size differences
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between the two ROIs, the histograms were normalized so that the sum of all values

within them was unity. The histograms were then subtracted to show how the two

sides of the brain differ in diffusion anisotropy (Fig. 7.4(c)). Regions of linear, planar,

and spherical diffusion within the 2D barycentric space were then defined . In order

to capture the differences between regions A and B in the difference histogram close

to the cs = 1 apex (Fig. 7.4(c)), the isotropic region was defined as cs > 0.77.

The remaining space was split along the cl = cp line. Thus, linear diffusion was

defined as cs < 0.77 and cl > cp, while planar diffusion was defined as cs < 0.77 and

cl < cp (Fig. 7.4(d)). The number of voxels that fell within each of these regions

was determined for a given number of slices for both sides of the brain to provide

a 3D analysis. In the case of the four healthy volunteers, the slices chosen covered

the entire cerebrum. However, for the tumor patient the analysis was performed

not only for all slices covering the cerebrum, but also on just those slices in which

signal hyperintensity was visible on the coregistered T2-weighted EP images (i.e., the

tumor/edema volume). To quantify the degree of asymmetry in the number of cl(ncl),

cp(ncp), and cs(ncs) voxels in each ROI between the right and left sides of the brain,

an asymmetry index ε of the form

ε(ncl, ncp, ncs) = 100
right(ncl, ncp, ncs) − left(ncl, ncp, ncs)

right(ncl, ncp, ncs) + left(ncl, ncp, ncs)
(7.1)

was evaluated (17). Finally, the percentage of voxels for each ROI characterized

as possessing linear, planar, or spherical diffusion was determined.

7.2.2 Results

Figure 7.5 displays a set of geometric models representing the diffusion metric data

obtained from volunteer 4, a 33-year-old female, viewed from the (a) anterior, (b)

right lateral, and (c) posterior directions. In this figures the red streamtubes repre-

sent structures characterized by linear diffusion, the green streamsurface fragments

represent structures characterized by planar diffusion, and the blue surface represents
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Table 7.1: Comparison of Diffusion Metric Data Obtained From Right and Left Hemi-
spheres for Four Normal Healthy Volunteers

Volunteer 1 (male/43)
Number(×1000) Right Left ε(%)
Linear 459.84 459.45 0.04
Planar 956.96 956.41 0.03
Spherical 3,352.18 3,308.82 0.65
Percentage Right Left
Linear 9.6 9.7
Planar 20.1 20.2
Spherical 70.3 70.0

Volunteer 2 (male/43)
Number(×1000) Right Left ε(%)
Linear 623.60 597.47 2.14
Planar 1,221.74 1,262.98 -1.66
Spherical 3.507.74 3.355.15 2.22
Percentage Right Left
Linear 11.7 11.5
Planar 22.8 24.2
Spherical 65.5 64.3

Volunteer 3 (female/26)
Number(×1000) Right Left ε(%)
Linear 407.85 390.49 2.17
Planar 952.51 997.77 -2.32
Spherical 3,148.14 3,056.85 1.47
Percentage Right Left
Linear 9.0 8.8
Planar 21.1 22.4
Spherical 69.8 68.8

Volunteer 4 (female/33)
Number(×1000) Right Left ε(%)
Linear 526.12 551.75 -2.38
Planar 1,003.63 1,045.22 -2.03
Spherical 3,371.16 3,378.21 -0.10
Percentage Right Left
Linear 10.7 11.1
Planar 20.5 21.0
Spherical 68.8 67.9

Mean ± SD
ε(%)

Linear 0.49 ± 2.16
Planar −1.50± 1.05
Spherical 1.06 ± 1.01
Percentage Right Left
Linear 10.3 ± 1.2 10.3 ± 1.3
Planar 21.1 ± 1.2 22.0 ± 1.8
Spherical 68.6 ± 2.2 67.8 ± 2.5
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Table 7.2: Comparison of Diffusion Metric Data Obtained From Right and Left Hemi-
spheres in a 33-Year-Old Female Volunteer Scanned on Three Separate Occasions

First exam
Number(×1000) Right Left ε(%)
Linear 526.12 551.75 -2.38
Planar 1,003.63 1,045.22 -2.03
Spherical 3,371.16 3,378.21 -0.10
Percentage Right Left
Linear 10.7 11.1
Planar 20.5 21.0
Spherical 68.8 67.9

Second exam
Number(×1000) Right Left ε(%)
Linear 513.92 521.88 -0.77
Planar 970.85 1,007.61 -1.86
Spherical 3,106.81 3,187.83 -1.29
Percentage Right Left
Linear 11.2 11.1
Planar 21.1 21.4
Spherical 67.7 67.6

Third exam
Number(×1000) Right Left ε(%)
Linear 534.78 555.55 -1.91
Planar 1,033.60 1,082.56 -2.31
Spherical 3,388.47 3,266.30 1.84
Percentage Right Left
Linear 10.8 11.3
Planar 20.9 22.1
Spherical 68.4 66.6

Mean ± SD
ε(%)

Linear −1.68± 0.83
Planar −2.07± 0.23
Spherical 0.15 ± 1.58
Percentage Right Left
Linear 10.9 ± 0.3 11.2 ± 0.1
Planar 20.8 ± 0.3 21.5 ± 0.5
Spherical 68.3 ± 0.6 67.4 ± 0.7
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Table 7.3: Comparison of Diffusion Metric Data Obtained From Different Sized
Regions-of-Interest Covering Tumor/Edema (Ipsilateral) and Contralateral Volumes
in a 72-Year-Old Male Patient With a Right Parietal Metastasis of a Lung Adeno-
carcinoma

Hemisphere
Number(×1000) Ipsilateral Contralateral ε(%)
Linear 392.04 463.48 -8.35
Planar 1,164.38 1,084.59 3.55
Spherical 3,129.50 3,112.84 0.27
Percentage
Linear 8.4 9.9
Planar 24.8 23.3
Spherical 66.8 66.8

Slices covering tumor/edema volume
Number(×1000) Ipsilateral Contralateral ε(%)
Linear 255.85 332.64 -13.05
Planar 722.63 633.67 6.56
Spherical 1,513.74 1,429.83 2.85
Percentage
Linear 10.3 13.9
Planar 29.0 26.4
Spherical 60.7 59.7

structures that are hyperintense on the coregistered T2-weighted EP images, namely

cerebrospinal fluid (CSF) in the ventricles. (Note that the colors in these figures

should not be confused with the standard color scheme used to represent the direc-

tion of the principal eigenvector of D in two dimensions.) The red streamtubes follow

a number of major white matter fiber tracts (e.g., the corpus callosum, internal cap-

sule, corona radiata, and optic radiations), while there are a number of small green

streamsurfaces interspersed among them.

The results from the analysis of the 2D barycentric histograms obtained from the

right and left hemispheres in the four normal volunteers are presented in Table 7.1.

For all subjects the spherical diffusion class, which predominantly reflects gray matter

and CSF, contains the greatest number of voxels (approximately 70% of all the voxels

in the brain), while the linear diffusion class contains the fewest voxels (approximately

10% of all voxels). The planar diffusion class contains approximately 20% of all vox-

els. In these four volunteers there is very little asymmetry between the number of
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linear, planar, and spherical diffusion voxels found in each hemisphere, with ε varying

between 2.38% and 2.22%. Furthermore, the average value of ε for the three diffusion

classes is in the range of 1.5%. Table 7.2 displays the results of the analysis of the

diffusion metric data obtained from volunteer 4 on three separate occasions. The val-

ues of ε for linear and especially planar diffusion voxels are reasonably reproducible,

with being 2.38%, 0.77%, and 1.91% for linear diffusion, and 2.03%, 1.86%, 2.31%

for planar diffusion. Furthermore, the values for the percentage of voxels assigned

to each diffusion class are very similar in the three examinations. Figure 7.6 shows

maps of (a) T2-weighted signal intensity, (b) < D > , (c) FA, and (d) color composite

diffusion metric data for a coronal section through the tumor/edema volume in the

72-year-old male patient. Figure 7.7 presents a set of geometric models representing

the diffusion metric data obtained from this patient viewed from the (a) anterior, (b)

right lateral, and (c) posterior directions. In both these figures the growing metas-

tasis, which probably originated at the gray/white matter junction of the brain, is

clearly seen to affect the surrounding white matter fibers, thus altering the measured

diffusion anisotropy. Figure 7.6(c) shows the total loss of white matter ber structure

within the tumor/edema volume, while Figure 7.6(d) shows that the tumor/edema

volume is surrounded by an extensive region of planar diffusion. This shell-like pat-

tern in planar diffusion (green surface) surrounding the tumor/edema volume (yellow

surface) is also evident in Figure 7.7. The results obtained from the analysis of the

2D barycentric histograms calculated for different-sized ROIs covering the ipsilateral

and contralateral regions in this patient are shown in Table 7.3. The rst set of three

columns shows data obtained from an ROI covering both hemispheres, which is the

ROI used in the volunteer studies above. The second set of three columns shows data

obtained from an ROI formed from just those slices that cover the tumor/edema vol-

ume on the coregistered T2-weighted EP images. For both ROIs there is a significant

asymmetry between the number of linear and planar diffusion voxels identified in the

ipsilateral and contralateral regions, and this asymmetry becomes more pronounced
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as the ROI becomes smaller. As suggested by Fig. 7.6(d) and 7.7, this asymmetry

arises due to a reduction in the number of linear diffusion voxels and an increase in the

number of planar diffusion voxels in the ipsilateral compared with the contralateral

side of the brain. Thus, while the largest values of ε seen in the volunteer data sets

is 2.38%, the effect of the tumor is to increase this right/left asymmetry to 8.35% for

linear and 3.55% for planar diffusion. This asymmetry is even greater for the ROI

formed from those slices that cover the tumor/edema volume, with ε being 13.05%

for linear diffusion and 6.56% for planar diffusion.

7.3 The Aye-aye Brain

The work in this section is published in (Kaufman et al., 2005).

We have evaluated the use of 3D DTI to follow white matter trajectories in intact

fixed brains of several rare primate species. This work is a close collaboration among

researchers at the Pittsburgh NMR Center, Brown University and Caltech. These

data show that 3D DTI at microscopic resolution in fixed samples is highly feasible,

but computationally challenging due to the massive datasets involved. After the DTI

datasets have been acquired in the intact specimen, it is processed for histology and

the sections are stained for myelin. The histology slices are then aligned with the

corresponding DTI ’slices’ in order to provide feedback about the fidelity of DTI-

based models of fiber tracts.

Figure 7.8 shows three orthogonal slices taken from a 3D DTI dataset in the intact

fixed brain of a mouse lemur (Microcebus murinus) which is one of the world’s smallest

primates (< 90 grams total body weight). The total brain size is only slightly bigger

(∼25%) than a mouse brain. Data was acquired at 70 um isotropic resolution and the

3D DTI was computed from a total of 28 diffusion-weighted volumes. The data was

rendered in such a way that the diagonal elements of the effective diffusion tensor are

displayed as a single composite image, where each color channel (red, green, blue) is
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Figure 7.8: 3D DTI in the intact fixed brain of the mouse lemur. Shown on the left are
hemi-segments of para-sagittal, coronal, and horizontal slices taken from the 3D volume. A
composite RGB image was formed from the diagonal tensor elements, where red=rostral-
caudal, green=dorsal-ventral, and blue=lateral. A dominant color in a region indicates
the directionality of a track. Diffusion weighted volumes (28) were acquired using a 3D
PGSE sequence. The diffusion gradients were applied along 7 different directions, and four
values of b-matrix were used along each direction (maximum b∼2000 mm2/s). The data
were acquired with 512x256x256 points and a ∼70 um isotropic resolution. On the right a
streamtube representation of the dataset. For anatomical context, a T2-weighted grayscale
para-sagittal slice from the 3D volume is shown in the yellow plane.

assigned to a diagonal tensor element. Regions showing predominantly a single color

represent fiber tracts with a high degree of coherence. Voxels containing splayed

or crossed tracts cannot be resolved using DTI and is one of the limitations of the

technique; in this case voxels may appear gray or faintly-colored. Gray matter also

appears gray due to the diffusion isotropy in this tissue. Figure 7.8(right) shows a

streamtubes visualization of the major fiber tracts.

Figure 7.9 shows a direct comparison among anatomical MRI, DTI, and histology

in the same image plane. The data in Figure 7.9 was acquired in the brain of a larger

(∼1 kg) prosimian, the Aye-Aye lemur.

In the proposed animal work we focused on large coherent tracks that are readily

identifiable in DTI data sets; the same tracks will be identified in “best-fit” histology

slices. The DTI-apparent tracts can then be viewed histologically with high magni-

fication microscopy to describe the fiber trajectory. A DTI slice from the Aye-Aye
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Figure 7.9: Comparison of different imaging modalities in the brain of the Aye-Aye lemur.
3D DTI data were acquired in a fixed, intact, brain at ∼100 um resolution. Shown is
the caudal portion of a single para-sagittal slice from the 3D dataset. The panels from
left-to-right represent the T2-weighted anatomical image, an RGB composite image of the
diagonal elements of the diffusion tensor (see above), and the corresponding fiber-stained
histology section. Note that the anatomical image and histology essentially provide scalar
information about the location of the fiber tracts, whereas the DTI provides fiber location
as well as directionality of the fibers. Scale bar=1cm.

is shown in Figure 7.10(left), where two major fiber pathways, the cingulum bun-

dle and the splenium of the corpus callosum, are indicated. The histology section

that best corresponds to this DTI slice is identified (Figure 7.10(center)), and the

regions of interest are imaged at different magnifications using optical microscopy.

From the optical micrographs, the tracts of interest can be qualitatively described

(i.e. cingulum bundle fibers along image plane, and fibers in the splenium of the

corpus callosum perpendicular to the image plane). With this qualitative descrip-

tion at hand, the representation accuracy of DTI-based fiber analyses can readily be

evaluated. Figure 7.10(right) shows one such DTI rendering of the cingulum bundle

and the splenium of the corpus callosum using a normalized diffusion ellipsoid repre-

sentation (Ahrens et al., 1998; Laidlaw et al., 1998). Note that the prolate ellipsoid

orientation closely matches the qualitative description of the fiber tracts obtained

from the optical micrographs of the cingulum bundle and the splenium of the corpus

callosum. Thus, DTI in animal models, in conjunction with fiber-stained histology

in the same brains, helps to validate fiber bundle models. Direct correlation between

fibers tracts observed in histology and tracts generated by DTI models will be an
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integral part of our initial validation studies. We have recently devised a powerful

analysis approach for making quantitative comparisons between histology and DTI.

As a pilot study, we have prepared a complete histological series from the same hemi-

sphere of the Aye-Aye brain that was used for DTI (See Figs. 7.9 and 7.10). Using

the Gallyas silver stain for myelinated fibers (Gallyas, 1979), it is possible to trace

individual axons at high magnification and fiber bundles at low magnification. These

tracings can then be analyzed using directional statistics to quantify fiber orientation

and coherence. We applied a polar histogram or ”rose diagram” analysis, previously

described by Wu et al. (Wu et al., 2004), to measure the mean fiber orientation and

spread over numerous microscopic regions of interest. The polar histograms can then

be compared to DTI. Additional details concerning these methods are provided in

Section D.

Fig. 7.11 show results from the posterior portion of the cingulum bundle. This is

the same region that is rendered using diffusion ellipsoids in Fig. 7.10. The mean fiber

orientation progresses from a rostral-caudal orientation at the top of this region, to

a superior-inferior arrangement below (Fig. 7.11A). These results are in good agree-

ment with fiber orientations computed from DTI, where Fig. 7.11B shows a gradual

progression from red voxels to green voxels in an RGB-pseudocolor image.

7.4 Conclusions

In this chapter, I presented three applications of DTI visualization and analysis tech-

niques.

In section 7.1, we utilize streamtube diffusion tractography to identify neuronal

fibers that intersect focal lesion and pass through a region of interest, in this case

corpus callosum, where distal (to focal lesion) interrogation can be accomplished. A

new class of tissue is defined called fibers-at-risk (FAR) through connectivity, which

is distinct from the abnormal appearing white matter and comprises an impressive



118

Figure 7.10: Left: DTI slice from the Aye-Aye data set showing targeted fiber tracts for
histological comparisons. DTI slice is a RGB composite image of the diagonal elements
of the diffusion tensor (see above). Center: ‘Best-match’ histology slice to the DTI image
shown on the left. Micrographs at several magnifications are shown; the highest magnifica-
tion (right panel) shows the boundary between the cingulum bundle and the splenium of
the corpus callosum. Histology was performed on the same brain as the MRI by embed-
ding in celloidin, serially sectioning at 40 um using a sliding microtome, and staining with
the Gallyas technique. Right: Diffusion ellipsoid rendering showing the relative diffusion
anisotropy on a voxel-by-voxel basis. The observed orientation of the diffusion ellipsoids is
agrees qualitative with the histology.

fraction of NAWM in the early stages of disease.

In section 7.2, we combine the qualitative visualization of the brain with quantifi-

cation of differences in diffusion anisotropy between different regions of interest. we

found that in a patient with a metastatic brain lesion there was marked asymmetry

in both linear and planar diffusion between comparable ipsilateral and contralateral

regions, with a significant reduction in the number of linear diffusion voxels and an

increase in the number of planar diffusion voxels in the tumor-bearing hemisphere.

These results demonstrate the potential of our approach to characterize brain struc-

ture in both healthy and diseased subjects.

In section 7.3, analysis of DTI data in the anterior cingulum bundle of an aye-

aye brain demonstrates a strong correlation between fiber spread as measured from

histological sections and fiber spread as measured from DTI.

These applications provide guidance, feedback and validation for the development

of computational and visualization tools.
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Figure 7.11: Fiber tracings from a sequence of sites in the cingulum bundle in the Aye-Aye
brain. (A) depicts polar histograms centered on each sample site depicting fiber orientation
and spread; the histograms encodes the mean polar angle (θ) of the fiber orientation and the
standard deviation (SD). Data from (A) were extracted directly from microscopic images
of the histology slice shown in (B). (C) shows the corresponding DTI slice of the cingu-
lum bundle rendered in an RGB format (red=anterior-posterior, green=superior-inferior,
blue=medial-lateral).



Chapter 8

Summary and Conclusion

This dissertation presents several diffusion MRI visualization and modeling methods

designed to reveal the white matter structures in the brain. The thesis of this dis-

sertation is that the diffusion imaging data can reveal white matter structures with

visualization and data analysis techniques.

We used a model composed of streamtubes and streamsurfaces to visualize lin-

ear and planar structures respectively. The shape and color of the streamtubes and

streamsurfaces represent implied fiber connectivity and diffusion anisotropy. To max-

imize the information we can show while avoiding visual clutter, we define a proximity

function between the models; we also design seeding and culling strategies that keep

a minimum distance between any two models.

To effectively explore the complicated models and data, we develop three different

display and interaction schemes.

We place the surface models for the streamtubes, streamsurfaces and the ventricles

into the CAVE and fishtank VR system and design interaction schemes respectively.

A qualitative study shows that stereo helps understanding, and the users preferred

the small but crisp display from the fishtank VR.

We also develop a thread-and-halo technique suitable for interactive volume ren-

dering of thin linear structures together with a number of components for exploring

120
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the brain models and data. Volume rendering has the defining property of mapping

form the tensor field attributes to a rendered image, without introducing geome-

try. However, combining the volume scene with fiber tracts together creates a more

informative image.

We present work toward creating color rapid-prototyping plaster models as visu-

alization tools for the brain models. The physical representations of these virtual

models allow the users to review the data with a very robust, natural and fast haptic

interface: their hands.

Along with clear visual representation, we extract structures from our model to fa-

cilitate anatomical studies. We present a proximity-based algorithm sampling, culling,

clustering diffusion tensor imaging (DTI) integral curves into anatomically relevant

bundles. We then demonstrate the accuracy of the method to form bundles of curves

that are anatomically consistent when guided and evaluated by an expert rater. We

then developed an automated labeling algorithm that models the expert rater’s deci-

sions and evaluated the results.

The results of this proof-of-concept study demonstrate that anatomically-motivated

methods for integral curve generation and clustering provide can reliably identify large

fibers bundles that bear close qualitative correspondence with known white matter

anatomy across subjects. The results for these large tracts are good both when the

algorithm is guided with interactive input from an expert rater and when it is imple-

mented automatically.

Apart from qualitative data exploration, quantitative methods are also important

in revealing information from high-dimensional data sets.

We present new quantitative tractography-based metrics for assessing group dif-

ferences in cerebral white matter health. We also report on initial validation of the

new metrics in elderly healthy controls and in non-demented patients with vascular

cognitive impairment. The study demonstrates that metrics can be derived from DTI
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tractography data that provide clinically-relevant information about the microstruc-

tural integrity of cerebral white matter. The validity or our seven metrics is evidenced

by their significantly different values in patients with known vascular white matter

injury vs. controls and their correlations with age, and cognitive test performance.

Our metrics can be obtained for specific TOIs in individual datasets for group-wise

or individual comparisons.

The lack of quantitative evaluation on existing global tractography models has

limited the medical and clinical applications of the diffusion MRI. To build a quanti-

tative model that is consistent with the data, we pose an inverse problem for modeling

diffusion MRI on the whole brain. This includes strategies for defining a parametric

model of the brain, calculating synthetic images from that model and optimizing the

parameters. We build a forward model that generates DWIs from the DTI integral

curves based on multi-tensor modeling. We employ the sum of the difference between

the simulated DWIs and the acquired DWIs as the goal function and optimize the

placement of the DTI integral curves with a greedy algorithm and a simulated anneal-

ing approach. The results show that with the same number of curves, the optimized

set of DTI integral curves fit better to the data than randomly seeded integral curves.

With the proposed moves of random addition, random removal and their combina-

tion, the greedy algorithm converges faster and does not seem to get trapped in local

minimums.

We work on applications that utilize both qualitative exploration and quantitative

evaluation of the diffusion MRI data. With imaging on multiple sclerosis patients,

we were able to identify fiber at risk by seeding the streamtubes in the lesion area.

Tracing these streamtubes to midbrain reveals the fibers in corpus callosum affected

by the MS lesion. For tumor patients, we observe the disparity in tumor versus

non-tumor side of the brain with the increased presence of streamsurfaces around

the tumor edema. Then we quantify this difference with a barycentric map for the

diffusion anisotropy.
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Diffusion MRI acquisition, visualization, analysis, and application have spurred

numerous multidisciplinary efforts. The problem of modeling and visualization is

especially intriguing because diffusion MRI data sets are large, three-dimensional

and multivariate. The methods prototyped in this dissertation will facilitate more

applications of diffusion MRI and help people realize its great potential for revealing

the brain white matter structures.
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