
Abstract of “Efficient Data Authentication” by Nikolaos Triandopoulos, Ph.D., Brown Uni-

versity, May 2007.

We address the problem of authenticating data in untrusted, or adversarial, computing en-

vironments: when the distributor of the data is not the source of the data, and thus is not

trusted by the end-user, how can data received be proven authentic? Data authentication

constitutes a fundamental problem in information security and an interesting new dimension

in data management and data structure design. At the same time, the problem captures the

security needs of many computing applications that exchange and use sensitive information

in hostile distributed environments and its importance increases given the current trend in

modern system design towards decentralized architectures with minimal trust assumptions.

Solutions should not only be provably secure, but efficient and easily implementable.

This dissertation presents an extensive study of data authentication. We examine the

problem for both structured and unstructured data, provide formal definitions, and design

new efficient techniques for authenticating general classes of query problems, such as graph

and geometric search problems, and data streams. We also study the complexity of data

authentication, deriving lower bounds for the important special case of authenticating set

membership queries, and design new optimal constructions. Moreover, we provide a new

general framework for authenticating any query over structured data, which decouples the

answer-validation and answer-generation procedures. Finally, we design totally decentral-

ized authentication structures that provide authentication for data distributed over any

peer-to-peer overlay network.

Efficient Data Authentication

by

Nikolaos Triandopoulos

Diploma, Computer Engineering & Informatics, University of Patras, 1999

Sc. M., Computer Science, Brown University, 2002

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2007

c© Copyright 2007 by Nikolaos Triandopoulos

This dissertation by Nikolaos Triandopoulos is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Roberto Tamassia, Director

Recommended to the Graduate Council

Date
Michael T. Goodrich, Reader
University of California, Irvine

Date
Anna Lysyanskaya, Reader

Date
Eli Upfal, Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

Nikolaos (Nikos) Triandopoulos was born in Athens, Greece, in 1976. Nikos received his

undergraduate diploma in Computer Engineering and Informatics at the University of Pa-

tras, Greece, in 1999 and his Sc.M. in Computer Science at Brown University in 2002. He

completed his Ph.D. in Computer Science at Brown in 2006 and his dissertation studies the

problem of authenticating information in hostile and adversarial computing environments.

His primary research areas are in information security, cryptography, algorithms and data

structures. He has been a recipient of the Paris Kanellakis Fellowship and the Technolog-

ical Innovation Award from Brown University, and the recipient of the I3P Postdoctoral

Research Award from the Institute for Information Infrastructure Protection.

iv

Acknowledgments

I wish to specially thank my advisor Roberto Tamassia for introducing me to the main

topic of this dissertation, spending time and sharing his thoughts while I was working on

the subject and for his support whenever there was need. I am very happy that I have been

interacting with Roberto during all these six years that I spent as a graduate student. His

advice and guidance on research and academics have been a valuable resource for me.

I am also grateful to my committee members, Michael T. Goodrich, Anna Lysyanskaya

and Eli Upfal, for the collaboration we have had together and the help and encouragement

they provided me to achieve my thesis goals. Through my interaction with them, either in

the classroom or while contacting research, I gained knowledge that significantly affected

the results of this dissertation. Their enthusiasm for research has been a motivation for me.

The ideas and parts of the text presented in this thesis were developed in collaboration

with: Roberto Tamassia, Michael T. Goodrich and Anna Lysyanskaya. This research was

supported in part by the National Science Foundation under grants CCR–0311510 and IIS–

0324846, in part by the Defense Advanced Research Projects Agency under grant F30602–

00–2–0509, and also in part by a research gift by IAM Technologies, Inc.

I have been fortunate to live a great learning experience while at Brown CS department

and I thank the faculty for providing an excellent academic environment and, also, the

technical and administrative staff for their help. I thank Philip Klein, David Croston and

Aris Anagnostopoulos for useful technical discussions on topics related to this thesis. Also,

I feel honored to have been one of the Paris Kanellakis fellows and I wish to thank General

and Mrs. Kanellakis for their encouragement towards the completion of this dissertation.

Finally, I would like to specially thank my parents and my sister for their love and

continuous care and support throughout my graduate studies. To my wife Olga, I wish to

express my gratitude for always being next to me and I send my biggest thanks, for it is

hard to achieve goals without love. This thesis is dedicated to my grandfather, to whom I

was unable to say goodbye: Giat� ètsi ma to jème, ki ètsi ma to k�me, pappoÔ.
v

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 The Problem of Data Authentication . 3

1.1.1 Motivation and Applications . 4

1.1.2 Data Authentication Technique . 6

1.2 Overview and Thesis Structure . 8

2 Authentication of Graph and Geometric Search Queries 12

2.1 Introduction . 12

2.1.1 A Model for Authenticated Data Structures 14

2.1.2 Previous and Related Work . 16

2.1.3 Contributions . 18

2.1.4 Chapter Structure . 21

2.2 Hash-Based Data Authentication . 21

2.2.1 Cryptographic Primitives . 22

2.2.2 Hashing Scheme and Authentication Framework 24

2.2.3 Security . 27

2.3 Authenticated Path Properties . 28

2.3.1 Paths and Path Properties . 29

2.3.2 Path Hash Accumulator . 31

2.4 Authenticated Graph Queries . 38

2.4.1 Hierarchy of Paths . 38

2.4.2 Path Properties in a Forest . 39

2.4.3 Path, Connectivity and Type Queries on Forests 47

vi

2.4.4 Path and Connectivity Queries on Graphs 51

2.4.5 Biconnectivity Queries on Graphs 53

2.4.6 Triconnectivity Queries on Graphs 54

2.5 Authenticated Geometric Searching . 55

2.5.1 Fractional Cascading . 56

2.5.2 Authentication Scheme for Fractional Cascading 59

2.5.3 Answer Authentication Information 60

2.5.4 Verification of an Answer . 61

2.5.5 Applications . 63

2.6 Conclusions . 65

3 Authentication of Set-Membership Queries 66

3.1 Introduction, Contributions and Previous Work 66

3.1.1 Hierarchical Data Processing . 68

3.1.2 Data Authentication and Authenticated Data Structures 69

3.1.3 Multicast Key Distribution . 73

3.1.4 Skip-Lists . 74

3.1.5 Chapter Structure . 75

3.2 Hierarchical Data Processing and its Theoretical Limits 75

3.2.1 DAG Scheme . 75

3.2.2 Cost Measures of a DAG Scheme . 76

3.2.3 Hierarchical Data Processing Problems 78

3.2.4 Sibling Cost and Search by Comparisons 80

3.2.5 Optimality of Tree Structures . 83

3.2.6 Lower Bounds for Hierarchical Data Processing 85

3.3 A New DAG Scheme Based on Skip-Lists 87

3.3.1 Skip-Lists and Bridges . 87

3.3.2 Construction of New Directed Tree 88

3.3.3 Cost Measures of Skip-List DAG . 90

3.3.4 Comparison with other DAG Schemes 95

3.4 Data Authentication Through Hashing . 96

3.4.1 Authenticated Data Structures . 96

3.4.2 Cryptographic Hash Functions . 98

3.4.3 Cost of Data Authentication Through Hashing 99

3.5 Multicast Key Distribution Using Key-Graphs 101

vii

3.5.1 Multicast Key Distribution . 101

3.5.2 Communication Complexity for Key-Graphs 102

3.6 A New Skip-List Version . 107

3.7 Conclusions . 109

4 Authentication of Data Streams 111

4.1 Introduction . 111

4.1.1 Model and Contributions . 113

4.1.2 Prior and Related Work . 115

4.1.3 Chapter Structure . 119

4.2 Preliminaries . 119

4.2.1 Notation . 119

4.2.2 Cryptographic Primitives . 120

4.2.3 Error-Correcting Codes . 121

4.3 Network Model and Multicast Authentication Framework 124

4.3.1 The (α, β)-Network Model . 125

4.3.2 Authentication Framework . 127

4.4 Multicast Authentication Scheme AuthECC 130

4.4.1 Key Generation and Authenticator 131

4.4.2 Decoder . 132

4.4.3 Correctness and Security Proofs . 134

4.6.1 Authenticated Reed-Solomon Error-Correcting Code 138

4.7 Analysis . 138

4.7.1 Tuning and Extensions . 141

4.7.2 Comparison with Other Schemes . 143

4.8 Conclusions . 146

5 Authentication of Distributed Data 149

5.1 Introduction . 149

5.1.1 Perspective and Motivation . 151

5.1.2 Previous and Related Work . 153

5.1.3 Authentication Model and Contributions 155

5.1.4 Chapter Structure . 158

5.2 Distributed Merkle Tree . 158

5.2.1 An Efficient Distributed Merkle Tree 161

viii

5.3 Authenticated Distributed Hash Table . 167

5.4 Load-Balanced Distributed Authentication 171

5.4.1 Hashing Scheme . 173

5.4.2 Query and Verification . 175

5.4.3 Updates . 176

5.5 Authentication of General Queries . 178

5.5.1 Previous and Related Work . 180

5.5.2 Preliminaries . 181

5.5.3 Certification Data Structures . 185

5.5.4 Time Super-Efficient Certification Data Structures 189

5.5.5 Authenticated Data Structures . 190

5.5.6 Authentication Reductions and General Authentication Results . . . 193

5.6 Conclusions . 199

6 Conclusions 201

6.1 Summary of Results . 201

6.2 Future Directions . 203

Bibliography 205

⋆ Parts of this dissertation have previously appeared as [59, 82, 142] or have been submit-

ted for publication in conferences or journals.

ix

List of Tables

3.1 Comparison of various DAG schemes in terms of structural metrics 95

4.1 Per-packet communication cost of AuthECC multicast authentication scheme

for various network and coding parameters 141

4.2 Comparison of AuthECC multicast authentication scheme with representative

classes of authentication schemes . 146

4.3 Comparison of AuthECC multicast authentication scheme with two other cor-

rect and secure authentication schemes . 147

5.1 Qualitative comparison between distributed data authentication schemes and

other authentication models . 157

5.2 Comparison of various implementations of a distributed authentication tree 166

5.3 Comparison of the authenticated distributed hash table with other authen-

tication solutions . 170

x

List of Figures

1.1 Abstract form of the data authentication problem 3

2.1 Authentication of property queries over paths 34

2.2 Decomposition of a forest of trees into a hierarchy of paths using the partition

scheme of dynamic trees . 41

2.3 Answering path property queries in a tree by accessing a corresponding multi-

path of logarithmic size in a hierarchy of paths 44

2.4 Authentication of property queries over paths in a forest of trees 45

2.5 Fractional cascading for iterative search in catalogs over a path and an au-

thentication scheme built over the data structure 57

3.1 Recursive construction of multi-way skip-lists 90

3.2 Multi-way skip-list: a new search structure and authentication scheme for

set-membership queries . 90

3.3 The DAG scheme of an improved version of the standard skip-list 95

5.1 Comparison of distributed data authentication over an overlay peer-to-peer

network with the client-server model of authenticated data structures . . . 156

5.2 The distribution of an authentication tree in a peer-to-peer network 161

5.3 The static load-balanced distributed authentication scheme and its dynamiza-

tion technique . 175

xi

Chapter 1

Introduction

This dissertation addresses the problem of authenticating data that is retrieved in untrusted,

or adversarial, computing environments: when the distributor of the data is not the source

of the data, and thus is not trusted by the end-user, how can data received be proven

authentic? This question is the core of several security-related problems underlying any

real-life computing application that involves dissemination of data over a communication or

computing structure that can act unreliably. Clearly, data authentication—ensuring that

received data can be accurately verified to be in its original form—is a fundamental problem

in the area of information security, for information is valuable only when it is trustworthy.

Data authentication captures some primary security needs of today’s computing reality.

Indeed, with the growth of the Internet and distributed and pervasive computing, more

and more data is queried and retrieved according to non-traditional patterns. That is, the

distributor of the data is not necessarily the source of the data and, thus, it cannot be trusted

by the end-user. At the same time, a growing number of computing applications exchange,

share and use sensitive information in a totally distributed computing setting, where no

central authority controls the data traffic and no trust between participating entities has

been established prior to data communication. As data validity is critical for the end-user,

data authenticity is crucial for various target applications. Accordingly, to achieve high

degree of information assurance, we need methods that allow the recipient of information

to verify whether the data received is authentic—that is, it has been retrieved intact as its

source intended—or invalid—that is, it has been erroneously or maliciously altered by some

entity acting as the “man in the middle”. Admittedly, in these scenarios data authentication

becomes the number one security goal because it is essential that information is verified

before it is consumed by higher-level applications. The problem is of increasing importance

1

2

given the current trend in modern system design towards decentralized architectures with

minimal trust assumptions.

Verifying data authenticity in such settings is a challenging task from both theoretical

and practical perspectives: solutions should not only be provably secure with firm foun-

dations, but also efficient and easily implementable. From a technical point of view, the

problem of data authentication lies in the overlap of information security with algorithms

and cryptography, where it is often hard to combine security with efficiency. In particular,

when directly applied to the data authentication problem, traditional message authentica-

tion techniques are inadequate to provide efficient and viable solutions. For instance, since

data can often be structured, dynamically evolving over time, and users query or receive

only subsets of it, data cannot be treated as a whole, merely as a single message. At the

same time, data authentication constitutes a relatively unexplored—yet, very interesting—

new dimension in data management and data structure design, where new methodologies

and new authentication schemes are required for achieving satisfactory solutions.

This dissertation presents an extensive study on the data authentication problem. We

examine the problem for both structured data—that is being retrieved through queries—

and unstructured data—that is being received as a stream. We provide formal problem

definitions that carefully model the notions of security and efficiency in data authentica-

tion, and design new efficient techniques for securely authenticating general classes of query

problems, such as queries on graphs and geometric search problems, and data streams. We

also study the complexity of the problem and the computational and communication costs

that are inherently associated with the authentication of data, deriving lower bounds for

the important special case of authenticating set-membership queries, for which problem we

also design an asymptotically optimal new construction. Moreover, in a general computa-

tional and data querying model, we provide a new framework for authenticating any query

type over structured and dynamic data, proving a general, constructive, possibility result

for data authentication, and we show that the authentication of general queries is reduced

to the authentication of set-membership queries. By decoupling the answer-generation and

answer-validation procedures, this framework provides us with an interesting new method-

ology for designing super-efficient data authentication schemes, where an answer to a query

can be verified in time asymptotically less than the time spent to produce it. Finally, we ad-

dress the problem of distributed data authentication, where we design totally decentralized

authentication schemes that provide authentication for data stored, shared and retrieved

over any distributed peer-to-peer network. These schemes are based on the design of an

efficient distributed authentication tree, the first of this kind.

3

1.1 The Problem of Data Authentication

Informally, the data authentication problem is described as follows. The setting is very

simple, consisting of a basic data querying and communication protocol between three

parties: the source, the distributor and the user (see Figure 1.1). The source creates

data Ds, which becomes available to the distributor, and then the user requests from the

distributor and receives data Dr, which is related to data Ds. Here, the only assumption is

that the source and the distributor are distinct entities and, thus, the user trusts only the

source—otherwise, why participating in the protocol? The core problem that we study is the

authentication of the data that reaches the user, that is, we wish to provide assurance that

received data is authentic, meaning that data Dr is received as if it was directly produced

and sent to the user by the data source.

Distributor UserSource
Ds Dr

verification

Figure 1.1: Data Ds, produced by the source, becomes available through the distributor.
Data Dr, provided by the distributor, reaches the user who wishes to verify its authenticity.

In particular, the problem of data authentication involves the design of techniques and

protocols, in this three-party model for data dissemination, that allow the user to locally

perform a verification test on the received data. This verification procedure enables the user

to either verify that the received data is authentic or identify that it has been erroneously

or maliciously altered by the distributor—in which case, data is rejected as invalid. Accord-

ingly, the main goal is to design a data authentication scheme (or, simply, an authentication

scheme) that augments any existing data communication or data querying protocol between

the three parties, such that data verification is successfully accomplished at the user’s side

and, consequently, data authentication is ensured. To achieve this goal, two requirements

must be met: security and efficiency.

Security is a property that by definition should characterize any solution to the data

authentication problem. That is, data authentication is achieved when the verification pro-

cedure correctly decides on the authenticity of the received data and independently of the

distributor’s behavior. In particular, to achieve high level of security, the data distributor

is modeled as an entity that not only is untrusted by the user but also can act maliciously,

aiming at falsifying the data that reaches the user. Following a cryptographic approach, the

distributor is modeled as an entity that is controlled by an adversary of polynomial-time

4

computational power. In this setting, the security requirement guarantees that, subject to

some general assumptions about the hardness of some computational problems and inde-

pendently of the distributor’s malicious action, data verification at the user’s side is always

reliable and correct: valid data is correctly identified as being authentic and invalid data

is correctly identified as being forged. Data authentication by definition dictates the verifi-

cation procedure to be secure, ensuring, in essence, that completeness and soundness (in a

computational sense) are satisfied: data is verified to be valid if and only if it is authentic.

Efficiency is a property that characterize the feasibility and practicality of any (secure)

technique for data authentication. A data authentication scheme is designed to become an

augmentation or extension of some underlying data querying and communication protocol,

offering an important security service. Albeit an integral component of the whole system,

the authentication scheme should ideally be light-weigh and easy to implement, incurring no

significant computational and communication overhead and, thus, not downgrading perfor-

mance. In particular, the goal here is to authenticate data at the minimum possible compu-

tational and communication costs. And in this case, a satisfying notion of efficiency can be

defined as follows: an authentication scheme is considered to be efficient if it asymptotically

incurs no additional communication cost to the underlying communication protocol and

no additional time or space costs to the three involved parties. Often, trade-offs between

individual cost parameters (time, space, communication) can be allowed—never between

security and efficiency, though.

Finally, we note the following important characteristic of the data authentication prob-

lem. Although the problem is defined in a three-party communication model, we require

that any authentication scheme is oblivious of the user; instead, it should provide data ver-

ification to a large—potentially unbounded—number of users that query and retrieve data

sent by the source through the distributor. We impose no assumption on the users.

1.1.1 Motivation and Applications

The above description corresponds to an abstract form of the data authentication problem

and offers the most general problem formulation. Important categories of the problem are

obtained and a rich set of application areas are covered as we consider concrete computa-

tional settings for the underlying data querying and communication model, as we instantiate

the parties’ individual computational roles, and also, as we introduce a large set of users.

Yet, even in this general form, data authentication captures the fundamental security

problem that arises in the digital world whenever data is received not from its creator, but

5

from an intermediate third party that can act adversarially. In this data dissemination

setting, authentication is indeed essential, since it is the basic requirement for attaining

information assurance and performing trustworthy computation. As we argue below, this is

already a commonly seen setting in today’s computing reality. And we anticipate this to be

an even more frequent practice in the near future. Consider pervasive computing [144], the

next generation computing paradigm where computation is integrated into the environment

with information communication technology being embedded into everyday objects. In a

totally mobile and highly distributed computing environment, we envision that people will

interact with information-processing devices located everywhere at all times; these devices

will be constantly receiving data, who knows where from.

In its abstract form, data authentication involves the verification of data Dr received

from an original data collection Ds through a (potentially adversarial) data distributor (see

Figure 1.1). The only implicit assumption is that received data Dr is related to data Ds

produced by the source, so that Dr = f(Ds) for some function f . We distinguish two

important cases in terms of data format and retrieval. First, data Ds can be structured,

that is, it is an arbitrarily complex data set that is organized in a data structure and it

is retrieved by the user through queries issued to the distributor, who maintains set Ds

through update operations performed by the source. In this case, received data Dr should

be the answer to the query q issued by the user, namely Dr = fq(Ds). Alternatively, data

Ds can be unstructured, that is, it has the flat format of a data stream and is received by

the user in blocks that come through the distributor. In this case, received data Dr should

be the collection of blocks distributed by the data source. Authentication of structured and

unstructured data constitute two important forms of the problem we study.

Using these forms and by considering concrete data dissemination scenarios and specific

computational roles for the three parties, let us now describe how various real-life com-

puting applications, built over popular data retrieval architectures, instantiate the data

authentication problem. First, consider structured data (e.g., a database) that is produced

by a server and then is replicated at remote untrusted and unprotected mirror servers, ge-

ographically distributed over a network. Client applications query the data by contacting

some mirror server. This scenario models data replication and publication in the Internet

and applications include content delivery networks, outsourced databases, data publication

in portals, or any distributed information systems that cache data at proxy sites. Also,

consider unstructured data that reaches users in a form of a stream through a computer

network. Network nodes forward or process the transmitted stream, but they may be com-

promised or mis-configured, so that they can disrupt the transmission of the stream. This

6

scenario models the multicast data transmission setting covering a wide application area

(e.g., information broadcast centers, software updates etc.) and generally any system that

provides stream-based data dissemination (e.g., publish/subscribe systems). Finally, con-

sider data distribution through peer-to-peer overlay networks or wireless mobile networks,

where data (either structured or unstructured) produced by a source is dispersed to the

nodes of a network through which users query and receive data. Since network nodes are

untrusted (e.g., there is no control over the participating peers in a peer-to-peer network,

or queried computing devices may have been compromised) data authentication is essen-

tial. This scenario models the data authentication problems in distributed storage systems

(e.g., applications built on top of distributed hash tables) and other systems where data is

retrieved from remote untrusted machines (e.g., geographic information systems).

1.1.2 Data Authentication Technique

To describe our main authentication technique, we first need to examine whether the data

authentication problem is related to the important, and well-studied by the cryptographic

community, problem of message authentication (see, e.g., [48], Chapter 6). Here, the setting

is as follows: messages are transmitted by a sender to a receiver over an insecure communica-

tion channel that is controlled by an adversary. The goal is to authenticate the transmitted

messages so that the receiver can identify whether a received message is the original message

(sent by the sender) or a modified one (modified by the adversary). Message authentication

schemes allow the receiver to verify whether or not a message received through an insecure

channel is identical to the message that was originally sent by the sender over the channel.

Digital signatures and message authentication codes are two important classes of message

authentication schemes. Their main difference is that public-key cryptography is used by

the former whereas secret-key cryptography is used by the latter; in particular, the verifi-

cation key is public (known to everyone) for digital signatures but secret (known only to

the legitimate receiver(s)) for message authentication codes.

Although they are related, the problem of data authentication and message authenti-

cation are distinct. What distinguishes data authentication from message authentication is

that received data Dr is related to data Ds produced by the source through some function

f , that is, Dr = f(Ds). Instead, message authentication deals with verification of the entire

message that produced by the sender. We see that message authentication instantiates

data authentication when function f is the identity function, or better, that the data au-

thentication problem constitutes a generalization of the message authentication problem.

7

Consequently, data Ds cannot be treated as a whole, merely as a single message. Moreover,

data authentication is not only about data integrity: the verification procedure should not

merely authenticate that data is received intact; it should also authenticate that data is

received reliably, according to the specific querying patterns expressed by function f . Thus,

data authentication typically involves verification of computational correctness as well.

That said, however, we still need to examine whether straightforward reductions from

data authentication to message authentication exist that would potentially suggest the

existence of efficient solutions to the data authentication problem. In general, this is not

the case: directly applying message authentication schemes in data authentication provide

inefficient or no viable solutions. For instance, employing message authentication codes can

be quite problematic, almost impractical, because of the use of secret-keys and the fact that

data authentication schemes should support large sets of users. On the other hand, merely

applying digital signatures (e.g., signing every piece of information) is also problematic and

rather inefficient. For instance, for structured data that is dynamically evolving over time,

signing every data element incurs high computational and communication costs. Similarly,

for unstructured data transmitted in blocks, signing every block also incurs high overhead.

Instead, more careful considerations should be made when using message authentication

schemes and elegant data authentication techniques should be designed. The state-of-the-

art data authentication technique, that can provide both security and efficiency, is what

is known as signature amortization, briefly described as follows. Assuming a public-key

infrastructure and, in particular, that the public-key of the source is known to the user, the

technique amortizes only one digital signature over the entire data set Ds, independently

of the data-retrieval patterns issued by the user. The signature is generated by the source

on a special“message” d = g(Ds), produced by applying some function g over data set Ds,

and becomes available to the distributor. Function g is specially designed for the individual

data authentication problem and incorporates cryptographic (or other) primitives such that

string d satisfies certain security properties. Accordingly, the data Dr that reaches the user

includes the signature on d and additional authentication information that allows the user

to recompute string d. Given the security properties of function g and string d, data

verification is then reduced to the verification of the signature on d.

When signature amortization is used, security and efficiency of any data authentica-

tion scheme are both properties of function g (used to produce the special message d that

is signed). Designing signature amortization such that these properties are achieved is a

challenging task. An important class of data authentication schemes rely on the use of hi-

erarchical collision-resistant cryptographic hashing over data Ds for implementing function

8

g and computing the special message (often called digest) d that is signed. We refer to this

solution concept as hash-based data authentication (or hash-based authentication schemes).

1.2 Overview and Thesis Structure

This dissertation presents an extensive study on data authentication. We formally define

the data authentication problem for both structured data that is being retrieved through

queries and unstructured data that is being received as a stream, capturing the notions of

security and efficiency in data authentication. We use and extend the signature amorti-

zation technique to design new efficient authentication schemes for authenticating general

classes of query problems, such as queries on graphs and geometric search problems, and

data streams. We study the computational and communication costs that are inherently

associated with hash-based data authentication, deriving lower bounds for the important

special case of authenticating set-membership queries and designing an asymptotically opti-

mal new construction. We address the problem of distributed data authentication, designing

totally decentralized efficient authentication schemes that provide authentication for data

stored and retrieved over any distributed peer-to-peer network. Finally, we provide a new

general framework for authenticating any query type over structured data, proving general

possibility and characterization results for efficient (or super-efficient) data authentication.

We next overview our contributions and describe how they are organized in this dissertation.

For authenticating structured data, authenticated data structures [103, 141] provide

a general solution concept modeling the data-querying paradigm in which an untrusted

entity (not the creator of the stored data) maintains a data structure and answers queries

on it. Using signature amortization, they support authenticated queries: answers to queries

contain cryptographic proofs that allow verification of their authenticity. Prior research has

focused on authenticating set-membership queries or search queries on ordered data sets.

However, more complex queries over highly structured data sets do not necessarily fall into

this category. For instance, how can we authenticate aggregation queries over sequences,

connectivity queries on graphs, or point location queries over subdivisions of the plane?

In Chapter 2, we introduce a new hash-based authentication scheme for efficiently au-

thenticating a broad class of queries, namely, any decomposable query over a sequence

of data elements. This class includes queries about any property of subsequences of ele-

ments that are can be answered by applying an associative operator over the elements, e.g.,

aggregation queries, and it also includes searching over ordered sets. The authentication

scheme incurs costs that are logarithmic on the sequence size. Using a divide-and-conquer

9

approach, we show how to employ the above technique for efficiently authenticating queries

about properties of paths in graphs (i.e., given two nodes, report a certain decomposable

property that is related to a corresponding connecting path) and iterated search queries on

multi-catalogs that are organized as a graph (i.e., locate a query element in each catalog

of a set of catalogs), thus, providing authentication for a large set of queries over data of

topological structure. For instance, for graphs of size n, queries about properties of a path

of size k are authenticated at O(log n) or O(log n+k) cost, depending on the property type.

Also, iterated search in m catalogs of total size n is authenticated at cost O(log n + m).

These results allow the design of new, efficient authenticated data structures for a rich class

of path and connectivity queries over graphs (e.g., whether two nodes are connected with

a path of length 4) and complex queries on 2-dimensional geometric objects (e.g., which

region contains a given point). In essence, the authentication of these queries is reduced to

the authentication of path property and iterated search queries on appropriate data sets.

With respect to the efficiency and simplicity of authenticated data structures, it is

important to examine the overhead introduced due to authentication. Moreover, for hash-

based data authentication—the popular solution concept that is based on signatures and

cryptographic hashing according to the “hash and sign” paradigm—it is important to study

how complex the problem is in this case and what are the limitations that inherently exist

in designing efficient authentication schemes. No such study has been carried out before.

In Chapter 3, we study the computational, communication and storage costs that are

inherently associated with the model of authenticated data structures, for the first time

investigating lower bounds on these costs. For the fundamental problem of authenticating

membership queries on a set of size n, we prove that any hash-based authentication scheme

incurs an Ω(log n) authentication cost, answering an open problem posed in [103]. Actu-

ally, this logarithmic lower bound is tight in the following sense: considering parameterized

signature amortization, where k ≥ 1 data digests are signed, we get Ω(log(n/k)) authentica-

tion costs, thus, even O(n1−ǫ) signed digests do not suffice to break the logarithmic bound.

In view of this lower bound, we design a new authentication scheme for set-membership

queries that achieves costs that are very close to the theoretical optimal. Our upper and

lower bounds hold more generally for hierarchical data processing, a new class of problems

that involve certain types of computations on directed acyclic graphs. In particular, they

apply to: (i) data-structure design, where we get a new version of the skip-list data struc-

ture that achieves the best known expected search complexity, namely, searching in a set

of size n results in 1.25 log n comparisons on average, and (ii) the problem of multicast

key distribution for secure group communication, where we get the first exact worst-case

10

logarithmic lower bound on the communication cost of protocols based on key-graphs. For

completeness, we include these additional results in our exposition.

For authenticating unstructured data, we consider stream-based data dissemination and

a new data-authentication model, in which data is transmitted in a flat form as a stream,

over a unreliable, erroneous or adversarial medium, and thus it is delivered with losses or

injections, altered and unordered. In this setting, the problem is formulated by considering

a fully adversarial data distributor who can simultaneously inflict losses, injections and

alterations on the data stream. Prior research has focused on less general forms of the

problem or has imposed strong assumptions on the data communication model.

In Chapter 4, we provide a formal definition of the data-stream authentication problem

in a very general data communication setting and assuming a powerful, fully adversarial,

data distributor that can simultaneously inject, delete, modify or reorder data blocks. In

this model, we design a new authentication technique for providing efficient data-stream

authentication. We enhance signature amortization by using a novel combination of error-

correcting codes with signatures and cryptographic hashing and we design an authentication

scheme that tolerates any number of symbol additions, modifications and deletions, subject

to some minimum assumptions about the reliability of the underlying channel which are ex-

pressed by two constant parameters. In essence, we design an authenticated error-correcting

code and we prove that, in the bounded computational model for communication channels,

list-decoding can be transformed to unambiguous decoding. Applying our technique to

the problem of multicast authentication, we get the first efficient authentication scheme in

this new adversarial model. Our scheme incurs only constant per-packet communication

overhead and allows the detection of whether the data-stream is under attack.

With the growth of distributed computing, it is important to find totally decentralized

solutions for the data authentication problem. New design patterns for system implemen-

tations increasingly make use of distributed data storage and computing resources. For

instance, many systems are built on top of distributed search structures implemented over

peer-to-peer networks, which lack central management or control. Clearly, authenticated

data structures do not perfectly fit in this computing and data querying model, since they are

based on the client-server query model, where data distribution occurs simply by replicating

the entire data structure to remote untrusted servers. Instead, in distributed environments

authentication of data should also be implemented in a totally decentralized fashion and

authentication schemes should be distributed (on a per data item basis) over remote, un-

trusted participating peers of an overlay network. Prior research has examined distributed

data authentication using a naive “sign-everything” approach which, in this data storage

11

and computation setting, can be either inefficient or insecure.

In Chapter 5, we introduce a distributed data authentication model in which both query

answering and cryptographic proofs are distributed over a peer-to-peer network. The model

captures the security needs of many distributed systems or emerging applications built on

them. Over any distributed object-location system (for instance, any distributed hash

table) we realize the first distributed version of a Merkle tree, a fundamental authentication

construction, which yields distributed versions of many security protocols based on it. For

instance, in a network of n nodes, we can authenticate membership in a dynamic set of

m data elements in O(log n log m) time using O(log m) storage (per network node). Based

on this, we design an efficient authenticated distributed hash table. Our authentication

structures do not depend on the implementation of the distributed location system, which

allows them to leverage existing peer-to-peer architectures. Additionally, we present another

implementation of a distributed Merkle tree that by construction achieves load-balance. As

we discuss next, our results on distributed authentication generalize to any data query type.

Finally, for structured data, it is interesting to study whether possibility results exist

for general query types. Prior research has shown possibility results for a specific class of

search problems over static data and in the pointer machine model of computation, where

answer verification is performed in time proportional to the time spent to answer the query.

In Chapter 5, we also introduce a general computational and data querying model for

authentication of structured dynamic data. We provide a formal problem definition and

present a new framework for authenticating any type of query, proving a general, construc-

tive, possibility result. Interestingly, our construction also shows that the authentication of

general queries is reduced to the authentication of set-membership queries. This reduction

is of special importance, given the significant progress research has made studying security

aspects of the set-membership problem. In particular, by combining this reduction with

our distributed Merkle tree implementation, we immediately get that distributed data au-

thentication is feasible for general queries. Moreover, by decoupling the answer-generation

and answer-validation procedures, our new framework provides sufficient conditions for the

design of super-efficient data authentication schemes, where answer verification can be per-

formed in time asymptotically less than the time spent to answer the query.

Attempt has been made so that the chapters are self-contained in terms of the specific

problem they study and the background technical material needed for the results they

present. Also, the rich set of previous and related work of the problems this dissertation

studies is contained in the individual chapters.

Chapter 2

Authentication of Graph and

Geometric Search Queries

2.1 Introduction

Verifying information that at first appears authentic is an often neglected task in data

structure and algorithm usage. Fortunately, there is a growing literature on correctness

checking that aims to rectify this omission. Following early work on program checking and

certification (e.g., [10, 139, 140]), several researchers have developed efficient schemes for

checking the results of various data structures (e.g., [14, 15, 16, 42, 92]), graph algorithms

(e.g., [36, 70]), and geometric algorithms (e.g., [35, 88]). These schemes are directed mainly

at defending the user against an inadvertent error made during implementation. In addition,

these previous approaches have primarily assumed that usage is limited to a single user on

an individual machine.

With the advent of Web services and Internet computing, data structures and algorithms

are no longer being used just by a single user on an individual machine. Indeed, with the

development of content distribution services (e.g., Akamai) spreading content across the

Internet, decentralized large-scale data-management systems or systems designed for dis-

tributed and pervasive computing, the machine responding to a user’s query could be un-

known to both the data-structure author and the user. More generally, in today’s computing

reality, more and more, the source and the distributor of the data are different entities or

machines with distinct identities. Consequently, it is very common that the owner of a data

12

13

set does not control the data structure that is used to answer queries on this set. We must

recognize that, although they benefit efficiency, such scenarios open the possibility that an

agent hosting a data structure or an algorithm could deliberately falsify query responses to

users. Such falsification could cause significant adverse consequences, especially when the

information represented by the response to a query is crucial to the target application (e.g.,

it has security or financial implications). We want to guard against this possibility.

In this chapter we study a new dimension in data structure and algorithm checking—

how can we design sophisticated data structures and algorithms so that their responses can

be verified as accurately as if they were coming from their author, even when the response

is coming from an untrusted host? Examples of the kind of information we want to authen-

ticate include dynamic documents, online catalog entries and the responses to queries in

geographic information systems, financial databases, medical information systems and sci-

entific databases. In particular, we are interested in efficiently verifying information related

to paths and connectivity in computer networks (or other combinatorial graph structures),

even when the network is changing. In addition, we are interested in verifying complex

geometric queries, such as range searching queries, ray shooting queries, and point location

queries, which are used extensively in spatial databases or geographic information systems.

Digital signatures, used in a per-query basis, can be used to verify simple static doc-

uments, but are inefficient for dynamic data structures. Indeed, the main challenge in

providing an integrity and authentication service in the above contexts is that the space

of possible answers is much larger than the data size itself. For example, there are O(n2)

different paths in a tree of n nodes, and many of these paths have O(n) size. Requiring an

authenticator to sign every possible answer-response pair is therefore prohibitive, especially

when the data is changing due to the insertion or deletion of data elements in the set. We

therefore need new techniques for authenticating the answers of complex data structures.

The state-of-art solution for this problem is signature amortization. Ideally, we would

like our authenticator to sign just one single digest of our data structure, that is, a short

secure description of it, such that the answer to any query can be securely and efficiently

verified subject to the verification of this single signature. In our work, collision-resistant

hashing is the cryptographic primitive used to produce the data digest, the latter being

built from the careful combination of cryptographic hashes over subsets of the data set.

Thus, we consider hash-based data authentication. The computation of the data digest and

the hashes of partial data must be performed in accordance with the type of issued queries:

it should be specifically designed such that data authentication can be efficiently supported.

In essence, if we can achieve such a scheme, then the verification of the answer to a query

14

in the database can be reduced to the problem of collecting the appropriate partial hashes

(and partial data) that allow a user to certify the answer, recompute the digest of the entire

structure and, finally, compare this with the digest that is signed by the authenticator.

Even when we follow this approach, however, we are faced with the challenge of how to

subdivide the data in a way that allows efficient assembly of partial cryptographic hashes

and efficient computation of the digest of the entire structure for any possible query. For

simple data structures, such as dictionaries, this subdivision is fairly straightforward (say,

using a linear ordering and a Merkle hash tree [94, 95]; see also [52, 103]), but for complex

data structures, such as graphs, geometric structures, or structures built using the fractional

cascading paradigm, this subdivision method is far from obvious. For instance, for these

problems there is no linear ordering among the data items, upon which one could build a

(single) hash tree.

2.1.1 A Model for Authenticated Data Structures

Our data authentication model involves three parties: a trusted source, an untrusted re-

sponder, and a user. The source holds a structured collection S of objects, where we assume

that a repertoire of query operations are defined over S. If S is fixed over time, we say that

it is static; otherwise, we say that S is dynamic and assume that a repertoire of update

operations is defined that modify S.

For example, S can represent a network whose nodes and edges store data items on which

the following two query operations are defined: a connectivity query on S asks whether two

given nodes of S are in the same connected component and a path query returns a path

(or information related to the path), if any, between two given nodes. We can also define

update operations of S that add and/or remove nodes and edges. As a second example,

S can be a collection of line segments in the plane forming a polygonal chain, where an

intersection query returns all the segments intersected by a given query line. In this case

we can define update operations that insert and/or remove segments.

The responder maintains a copy of collection S together with structure authentication

information, which consists of time-stamped statements about S signed by the source.

If S is dynamic, the responder receives, together with each update on S, some update

authentication information, which consists of signed time-stamped statements about the

update and the current state of S. The user performs queries on S, but instead of contacting

the source directly, it queries the responder. The responder provides the user with an answer

to the query together with answer authentication information, which yields a cryptographic

15

proof of the validity of the answer. The answer authentication information should include a

signed time-stamp—indicating the freshness of the answer—and information derived from

the structure authentication information. The user then verifies the proof relying solely on

the time-stamp, the answer authentication information and the information derived from

statements signed by the source. Accordingly, the user accepts or rejects the answer. In

terms of security, we allow the untrusted responder to be controlled by a polynomial-time

adversary and require that, subject to standard cryptographic assumptions, the responder

cannot cheat the user, i.e., no false answer to some query can be accepted as authentic.

The data structures used by the source and the responder to store collection S, together

with the protocols and algorithms for queries, updates and verifications executed by the

various parties, form what we call an authenticated data structure [52, 86, 103, 141]. In a

practical deployment of an authenticated data structure, there would be various instances

of geographically distributed responders. Such a distribution scheme reduces latency, allows

for load balancing, and reduces the risk of denial-of-service attacks. Scalability is achieved

by simply increasing the number of responders. Indeed, since the responders are not trusted

parties, they do not require physical security, such as brick enclosures, guards, etc.

The design of authenticated data structures should address the following goals:

• Low computational cost: the computations performed internally by each party (source,

responder and user) should be simple and fast; also, the memory space used by the

data structures supporting the computation should be as small as possible;

• Low communication overhead: source-to-responder communication (updates and up-

date authentication information) and responder-to-user communication (answer and

answer authentication information) should be kept as small as possible;

• Security: the authenticity of the data provided by a responder should be verifiable

with a high degree of reliability.

Cost parameters that measure the performance of an authenticated data structure are:

1. space used by the data structures maintained by the source, responder, and user;

2. time spent by the source and responder to perform an update initiated by the source;

3. size of the update authentication information sent by the source after an update

(source-to-responder communication);

4. time spent by the responder to answer a query and compute the answer authentication

information, as the proof of the answer;

16

5. size of the answer authentication information sent by the responder along with the

answer (responder-to-user communication);

6. time spent by the user to verify (accept or reject) the answer to a query.

The complexity of authenticated data structures is addressed in more detail in Sec-

tion 3.4. A formal definition of authenticated data structures is provided in Section 5.5.

2.1.2 Previous and Related Work

Previous work related to authenticated data structures was initially motivated by its appli-

cations to the certificate revocation problem in public key infrastructure (e.g., [1, 17, 46, 69,

72, 96, 103]), where the underlying problem involves the authentication of (non-)membership

in sets. Therefore, this work is mostly concerned with authenticated dictionaries, which are

authenticated structures for data sets on which membership queries are performed.

The hash tree scheme introduced by Merkle [94, 95] can be used to implement a static

authenticated dictionary. A hash tree T for a set S is a (balanced) binary tree that stores

hash values which are recursively computed over the elements of S using a collision-resistant

hash function as follows: the leaves of T store hashes of the elements of S and each internal

node v of T stores value hv, which is the result of hashing over the hash values of v’s

children. The authenticated dictionary for S consists of the hash tree T computed over the

ordered elements of S, plus the signature of the value hr stored at the root r of T . An

element e is proven to belong in S by considering the path in T from the leaf storing e

to the root r and reporting the hashes stored at the nodes in T that have siblings on this

path. With this approach, space is linear, and the query authentication information and

the query and verification time are logarithmic in the size of S. Kocher [72] also advocates a

static hash tree approach for realizing an authenticated dictionary, but simplifies somewhat

the processing done by the user to verify that an item is not in set S, by storing at the

leaves intervals instead of individual elements. Other certificate revocation schemes based

on variations of hash trees are described in [17, 46].

Naor and Nissim [103] use techniques that allow dynamic operations on hash trees

and support element insertion and deletion in logarithmic time, thus implementing a dy-

namic authenticated dictionary. In their scheme, the source and the responder maintain

identically-implemented 2–3 trees (Seidel’s randomized search trees). The update authen-

tication information has O(1) size and the answer authentication information has O(log n)

size. Goodrich and Tamassia [52] present an authenticated dictionary based on other ran-

domized structures, the skip-lists [121]. They introduce the notion of commutative hashing

17

and show how to embed in the nodes of a skip-list a computational DAG (directed acyclic

graph) of cryptographic computations based on commutative hashing. This data structure

matches the asymptotic performance of the Naor-Nissim approach [103], while simplifying

the details of an actual implementation of a dynamic authenticated dictionary. In related

works, Goodrich et al. [58] present the software architecture and implementation of an

authenticated dictionary based on the above approach and Anagnostopoulos et al. [2] intro-

duce the notion of persistent authenticated dictionaries, where the user can issue historical

queries of the type “was element e in set S at time t?”. Work related to the issue of

persistence and historical queries appears in [83, 84].

Goodrich et al. [57] show how to use the RSA one-way accumulator [4, 5] to realize a

dynamic authenticated dictionary for a set of n elements with O(1) query authentication

information size and verification time. Their scheme allows a tradeoff between the query

and update times. For example, one can balance the two time complexities and achieve

O(
√

n) query and update time and O(
√

n) update authentication information. Related work

appears by Camenisch and Lysyanskaya in [18], where a dynamic accumulator is designed

based on the RSA strong assumption. Accumulators have been studied in [4, 5, 18, 105].

A first step towards the design of more general authenticated data structures (beyond

dictionaries) is made by Devanbu et al. [33, 34]. Using an extension of hash trees, they show

how to authenticate operations select, project and join in a relational database. Moreover,

they present an authenticated data structure for a set of multidimensional points that

supports orthogonal range queries. This latter result goes beyond simple authenticated

dictionaries, but it is restricted to hashing in range trees. More recent schemes for authen-

ticating SQL queries in the related model of outsourced database systems (essentially, for

authenticating range queries over indexes of databases published at remote sites) have been

proposed by Li et al. [78], Mykletun et al. [102] and Nuckolls [106]. Also, related work

includes the authentication of XML documents by Devanbu et al. [32] and Bertino et al. [7].

Martel et al. [86] initiated a study of authenticated queries beyond tree structures and

skip-lists. They consider the class of data structures in the pointer machine model, such

that (i) the links of the structure form a directed acyclic graph G of bounded degree with

a single source node, and (ii) queries on the data structure correspond to a traversal of a

subdigraph of G starting at the source. They show that such data structures can be authen-

ticated by means of a hashing structure that digests the entire digraph G into a hash value

at its source. With this scheme, the size of the answer authentication information and the

verification time are proportional to the size of the subdigraph traversed. Thus, this general

method for designing authenticated data structures applies to the pointer machine model

18

for the above class of search problems, essentially authenticating the entire query answering

algorithm. They show how this technique can be applied to the design of static authenti-

cated data structures for pattern matching in tries and for orthogonal range searching in

a multidimensional set of points. They also begin an initial treatment of authenticating

fractional cascading structures, but only for range-tree data structures, where catalogs are

arranged as unions in a tree.

Recently, the study of an additional security property for data querying that is related

to authenticated data structures has been initiated. Assuming a more adversarial for the

user setting, consider the case where the data source can act unreliably. Then, a new

requirement is data consistency, namely, the inability of the source (and, thus, also of the

responder) to provide different, i.e., contradictory, verifiable answers to the same query.

Buldas et al. [17] study this issue for hash trees and show how to enforce data consistency

by augmenting hash trees. Micali et al. [98] introduce zero-knowledge sets, where a prover

commits to a value for a set and membership queries can be verified by a verifier consistently.

Ostrovsky et al. [108] extend consistency proofs to range queries and also give sufficient

conditions for schemes to achieve consistency. The works in [98, 108] additionally provide

privacy-preserving verification but involve computationally more expensive operations.

2.1.3 Contributions

In this chapter, we present general techniques for building authenticated data structures

for a broad class of query problems on graphs and geometric objects.

In particular, we describe an authentication scheme for structured data that represents

a general graph G and a generic type of queries that are related to properties about paths

in G. This, in turn, allows the authentication of a broad class of graph queries, including

the following, where v, w are nodes of graph G:

• areConnected(v, w): Are v and w in the same connected component?

• areBiconnected(v, w): Are v and w in the same biconnected component?

• areTriconnected(v, w): Are v and w in the same triconnected component?

• path(v, w): Return a path from v to w, if any.

• pathLength(v, w): Return the length of the path connecting v to w, if any.

Our scheme also supports efficient update operations that involve insertions of nodes and

edges in G. For graphs of n nodes, our authenticated data structure uses linear space and

19

supports update operations and connectivity queries in O(log n) time and path queries in

O(log n + k) time, where k is the length of the reported path. The update authentication

information has O(1) size. Similarly, the size of the answer authentication information

and the verification time are each O(log n) for connectivity queries and O(log n + k) for

path queries. If the graph is planar, the data structure is fully dynamic and supports

arbitrary series of intermixed insertions and deletions of nodes/edges. For general graphs,

the data structure supports insertions but no deletions. These results have applications to

the authentication of network management systems.

In addition, we address several geometric search problems by showing how to authen-

ticate the full, general version of the powerful fractional cascading technique [23], which

supports efficient searching in multi-catalogs. Our technique provides a general framework

for designing authentication schemes for any data structure built using the fractional cas-

cading technique. In particular, we can efficiently authenticate any query for the iterative

search problem, where we have a collection of k catalogs (i.e., dictionaries) of total size n,

stored at the nodes of a connected graph, and we want to search for an element in each cat-

alog in a connected subgraph of this graph. Fractional cascading yields a data structure of

linear space that supports iterative search in O(log n+ k) time, thus, clearly outperforming

the O(k log n) time that results when performing k separate searches or the O(kn) space

that results when searching in a merged master-dictionary. A number of two-dimensional

geometric searching problems—related to many data management problems—can be solved

with data structures based on fractional cascading [24]. These problems include:

• line intersection queries on a polygon P , to report the edges of P intersected by a

query line;

• ray shooting queries on a polygon P , to report the first edge of P intersected by a

query ray;

• point location on a planar subdivision, to report the region containing a query point;

• orthogonal range search on a set of points in R2, to report the points inside a query

rectangle;

• orthogonal point enclosure on a set of rectangles, to report the rectangles that contain

a query point;

• orthogonal intersection queries on a set of rectangles, to report the rectangles inter-

sected by a query rectangle.

20

Our authenticated fractional cascading data structure can be extended to yield efficient

authenticated data structures for all the above problems. Our authentication schemes have

applications to database management and geographic information systems. No authentica-

tion schemes for the above types of queries had been previously known, with the exception

of orthogonal range search, for which an authenticated data structure is given in [86].

Our authenticated data structures are based on a new hash-based authentication scheme,

the path hash accumulator, designed for efficiently authenticating various properties of struc-

tured data that is represented as paths. The path hash accumulator supports the authen-

tication of any decomposable query over paths and, in particular, the authentication of

queries about sequences of elements (or data of topological structure), where the queries

are related to applying any associative operator over the data elements. This class of queries

includes data aggregation queries and searching over ordered sets. Our authentication prim-

itive can be considered an extension of Merkle’s hash tree [95], supporting authentication

of a rich set of properties of data stored in the tree. By building on the hash path accu-

mulator, we achieve efficiency and modularity: our schemes are simple to implement and

easy to analyze in terms of complexity and security. Overall, by supporting authentication

of the abstract class of property queries over paths in graphs and of the iterative search

problem, our authentication schemes can be used a general-purpose tool in the design of

more complex authenticated data structures.

The efficiency of our authenticated data structures asymptotically matches the efficiency

of the corresponding data structure used to answer the query. However, our hash-based au-

thentication techniques use a “bottom-up” hashing approach, where the answer verification

is authenticated rather than the query answering process. In particular, as opposed to the

“top-down” hashing approach in [86], where the exact traversal of the data structure and

the exact data processing at any visited node is being sequentially authenticated, in our

authentication framework data is being authenticated on a per-answer basis. That is, al-

though the data structure is used to facilitate the way data is hashed, an answer is generally

verified independently of its searching access path. This way we achieve more efficiency,

since only information that is necessary for the verification purpose is being authenticated;

not all the information stored in the data structure.

The security of our schemes is based on standard cryptographic primitives, such as

collision-resistant cryptographic hashing and digital signatures; hence, our schemes are

practical and do not need any new cryptographic assumptions.

21

2.1.4 Chapter Structure

The chapter is organized as follows. In Section 2.2, we define our data authentication model,

state our cryptographic assumptions and present the general authentication framework that

we use. In Section 2.3, we present the path hash accumulator, an authentication scheme

for properties on paths and associative queries on sequences. In Section 2.4, we present

authenticated data structures for various path and connectivity queries on graphs. In

Section 2.5, we present an authentication scheme for the fractional cascading algorithmic

paradigm, which leads to the authentication of various geometric data structures. We

conclude in Section 2.6.

2.2 Hash-Based Data Authentication

In this section, we present the general technique that is used in our authenticated data

structures and discuss the security requirements related to our authentication model.

Let S = {e1, . . . , en} be a data set owned by the source and let Q be the set of all

possible queries (of some type) that a user can issue about S. In an extreme solution,

the source can just digitally sign the answer to every possible query q ∈ Q, that is, pairs

of the form (q, a) denoting that a is the answer to query q. Since Q can be infinitely

large or it can be a dynamic set that frequently changes over time, this solution is almost

always not viable. Thus, directly applying well-known message authentication techniques

for data authentication (e.g., signing query-answer pairs or whatever piece of information

needs authentication) is not suitable per se, but rather, additional machinery is needed.

Alternatively, consider the following solution concept. Let us assume that C(S) is a set

of statements s1, . . . , sc that completely describe data set S with respect to queries in Q,

meaning that the answer a to any query q ∈ Q can be securely certified to be authentic

by providing some minimal (with respect to q) subset A(q, a) ⊂ C(S) of such statements

to the user and by proving that the statements in A(q, a) are valid. If such a set C(S)

exists, then, intuitively, the source can authenticate only this set, for instance by signing

all statements in C(S) and providing these signed statements to the responder, so that they

are appropriately forwarded to the user along with the answer to a query. Of course, for

efficiency, set C(S) should be chosen to have the smallest possible size. For instance, if S

represents an ordered sequence of n elements and Q is the set of all one-dimensional range

queries about S (i.e., “report elements of S in range [x1, x2]”), then C(S) could consist of

statements of the form “ei+1 is the successor of ei in S”.

22

Our approach, which constitutes the state-of-the-art solution for data authentication

and is common in concept in most works on authenticated data structures [103, 141], is

signature amortization. The idea is to compute a digest of data set S, that is, a short,

secure cryptographic description of S, and to have this digest be the only statement signed

by the source1. This signature is forwarded to the responder. On a query, along with

the answer, the user is provided by the responder with this signed digest and with some

auxiliary information (a proof) that is sufficient for the computation of the digest and the

verification of the answer. In this way, one signature is amortized over all queries about S.

But what is being signed? The digest of S should, essentially, securely represent a

corresponding set of statements C(S) that can provide secure answer verification for the

type of queries that are issued. In particular, the digest should be computed such that

it carries certain cryptographic properties and encodes certain structural properties of S,

that allow the authentication of set C(S) (through the secure transmission of trust from the

digest to the elements of C(S), or S), independently of the behavior of the responder, and

the efficient verification of the answer, independently of the specific query.

In this chapter, we consider the case where the digest is computed using collision-

resistant hashing. We call this authentication technique hash-based data authentication. We

note that the use of one-way accumulators (as in [18, 57]) to produce the digest constitutes

an alternative—though, in practice computationally more expensive—approach. We next

describe more formally our approach, starting from the cryptographic primitives in use.

2.2.1 Cryptographic Primitives

In our authentication model the basis of trust is the assumption that the user trusts the

data source. In the public-key cryptographic model this is expressed by means of a digital

signature scheme. That is, the user knows the public key of the source and trusts that

anything signed under the corresponding private key is authentic. For completeness we

present the standard definition of the signature-scheme primitive as in [50]. Schemes that

satisfy the following security requirement are known as signature schemes secure against

adaptive chosen-message attack. A function ν : N → R is negligible if for every positive

polynomial p(·) and for sufficiently large k, ν(k) < 1
p(k) .

Definition 2.2.1 (Signature Scheme). The triplet of probabilistic polynomial-time algo-

rithms (G(·), Sign(·)(·), Verify(·)(·, ·)), where G is the key generation algorithm producing a

1We note that in [86] the data digest is not signed (not authenticated); it is, instead, assumed to be
available to the users, through a registration phase with the source. Since only static data is considered,
this registration phase is performed only once and, thus, is not problematic.

23

pair (PK, SK) of public and secret keys on input a security parameter k, Sign the signature

algorithm, and Verify the verification algorithm, constitute a digital signature scheme for a

family (indexed by the public key PK) of message spaces M(·) if the following two hold:

Correctness If a message m is in the message space for a given public key PK, and SK

is the corresponding secret key, then the output of SignSK(m) will always be accepted

by the verification algorithm VerifyPK . More formally, for all values m and k:

Pr[(PK,SK)← G(1k); σ ← SignSK(m) : m←MPK ∧ ¬VerifyPK(m, σ)] = 0.

Security Even if an adversary has oracle access to the signing algorithm that provides

signatures on messages of the adversary’s choice, the adversary cannot create a valid

signature on a message not explicitly queried. More formally, for all families of prob-

abilistic polynomial-time oracle Turing machines {A(·)
k }, there exists a negligible func-

tion ν(k) such that

Pr[(PK,SK)← G(1k); (Q, m, σ)← A
SignSK(·)
k (1k) :

VerifyPK(m, σ) = 1 ∧ ¬(∃σ′ | (m, σ′) ∈ Q)] = ν(k).

The hash-based data authentication technique makes use of a cryptographic hash func-

tion to produce the digest of the data set. A cryptographic hash function h operates on a

variable-length message M producing a hash value h(M) of short and fixed length. More-

over, a cryptographic hash function h is called collision-resistant, if it is infeasible to find two

different strings x 6= y that hash to the same value, i.e., form a collision h(x) = h(y). For

completeness, we give a standard definition of a family of collision-resistant hash functions.

Definition 2.2.2 (Collision-resistant Hash Function). Let H be a probabilistic algorithm

that, on input 1k, runs in polynomial time and outputs an algorithm h : {0, 1}∗ 7→ {0, 1}k.
Then H defines a family of collision-resistant hash functions if:

Efficiency For all h ∈ H(1k), for all x ∈ {0, 1}∗, it takes polynomial time in k + |x| to
compute h(x).

Collision-resistance For all families of probabilistic polynomial-time Turing machines

{Ak}, there exists a negligible function ν(k) such that

Pr[h← H(1k); (x1, x2)← Ak(h) : x1 6= x2 ∧ h(x1) = h(x2)] = ν(k).

24

2.2.2 Hashing Scheme and Authentication Framework

We now describe the general authentication framework which our authentication schemes

are based on. Using the public-key cryptographic model, given a security parameter, a

signature scheme and a collision-resistant hash function h are available for use to the source

and the user. As a result, there is always available information that allows the user to

validate a signature produced by the source.

Let S = {e1, . . . , en} be a data set owned by the source. To achieve signature amor-

tization, what is signed by the source is a digest d of the data elements of S. In our

authentication schemes, the collision-resistant hash function h is used to produce this di-

gest of S. To achieve this, we assume some well-defined binary representation for any data

element e of S, so that h can operate on e and produce hash value h(e). Also, we assume

that rules have been defined so that h can operate over any finite sequence of elements. That

is, h(ei1 , . . . , eik) represents a hash value computed over elements ei1 , . . . , eik . For instance,

h(ei1 , . . . , eik) can denote that h operates on the concatenation ei1‖ . . . ‖eik of ei1 , . . . , eik , or

on the concatenation h(ei1)‖ . . . ‖h(eik) of their hashes; in both cases, h essentially operates

on a binary string s, where the cost of computing h(s) is proportional to the length of s.

We next describe the notion of hashing scheme, our general approach for computing in a

systematic way a digest d over the data elements of S. In our approach, the computation of

a digest d of S is expressed by means of a single-sink directed acyclic graph (DAG) defined

over S. Nodes of DAG G are associated with the data elements in S and are labeled with

hash values.

Definition 2.2.3 (Hashing Scheme). Let S = {e1, . . . , en} be a data set and let G be a

single-sink directed acyclic graph. A hashing scheme for S using G is a node-labeling in G

created as follows. Sequences of data elements of S are associated with nodes of G and each

node u ∈ G is assigned a label L(u), a hash value, such that:

• if u is a source node of G and eu1 , . . . , eum the are elements of S associated with node

u, where m is some constant integer, then

L(u) = h(eu1 , . . . , eum), otherwise

• if u is a non-source node of G, edges (z1, u), . . . , (zk, u) exist in G and eu1 , . . . , eum are

the elements of S associated with node u, where m and k are some constant integers,

then

L(u) = h(eu1 , . . . , eum , L(z1), . . . , L(zk)).

25

If t is the sink node of G, the digest of S using this hashing scheme is label L(t).

We often use the term hashing scheme we refer to the augmented graph G, including

the association between data elements and graph nodes and the hash values, not only to the

node-labeling of G. Observe that we assume that each node of the DAG G is associated with

a constant number of data elements and that also any node in G has constant in-degree.

Also note that, as the digest d of S is simply a hash value, it has short length. The DAG

G is in general defined in accordance with the data structure used to answer queries about

S, but it does not necessarily coincide with its (linking) structure.

Given a data set S and a signature scheme, signature amortization is implemented using

the following authentication scheme. Let Q be the set of all possible queries q of a certain

type that the user can issue about S. Using a hashing scheme that is specially designed for

the query typeQ, the data source produces a digest d of S and, using a signature scheme, the

source signs d. Once d is signed (and is forwarded to the user by the responder), it is used

as the basis of trust for authenticating any query on S. That is, the answer to any query

q ∈ Q about S is tested against the validity of the signed digest d. This is achieved using

the collision-resistant property of h and the way digest d is computed through the hashing

scheme G. In particular, G is constructed such that it expresses relations and structural

information about S that corresponds to a set of statements C(S) capable of verifying

the answers to queries in Q, and, when the signed digest d is verified to be authentic, it

is the collision-resistance property of h that transmits trust to the data elements of S—

from the authentic d and through the graph G—essentially, authenticating the set C(S).

Information encoded in this set is finally used to check the validity of the answer provided

by the responder. The hashing scheme should be designed such that, depending on the type

Q of queries answered, checking the validity of answers is feasible in a secure, correct and

efficient manner, and independently of the corresponding specific query q.

For dynamic data, new digests are computed and signed by the source, as data evolves

over time. To avoid replay attacks launched by the responder, that is, attempt for veri-

fication of answers subject to old, invalid data digests (that can be easily cached by the

responder), the technique of time-stamping is used, as it was introduced in [103]. A digest is

signed after a time-stamp is appended to it, which is used by the user to check the freshness

of the signature on the digest. A verifiable answer is finally accepted only if it corresponds

to a fresh signature, that is, only if the time-stamp is recent (according to some convention

depending on the higher level application). Accordingly, the source periodically resigns the

current digest, even if no changes have occur in the data set.

26

Overall, our authentication techniques presented in this chapter are based on the fol-

lowing general protocol. In the model of authenticated data structures, the source and

the responder store identical copies2 of the data structure representing S and maintain the

same hashing scheme G on S. The source periodically signs the digest of S together with

a time-stamp and sends the signed time-stamped digest to the responder. When updates

occur on S, they are sent to the responder together with the new signed time-stamped

digest. Note that, in this setting, the update authentication information has O(1) size and

the structure authentication information consists only of the digest.

When the user poses a query, the responder returns to the user the answer along with the

answer authentication information, i.e., it returns (i) the answer to the query, (ii) the signed

time-stamped digest of S and (iii) a proof, consisting of a small collection of labels or data

elements from the hashing scheme G that allows the recomputation of the digest and the

semantic verification of the answer. The user validates the answer by recomputing the digest

(and checking its correctness as it is expressed by the hashing scheme and the corresponding

set C(S)), checking that it is equal to the signed one and verifying the signature on the

digest. Accordingly, the user either verifies the authenticity of the answer and accepts it as

authentic, or otherwise, the user rejects the answer. The total time spent for this process

is called the answer verification time.

Note that, at the user side, the verification algorithm operates on the three inputs: the

answer, the proof and signed digest. The answer and the proof are used to recompute the

digest. In doing this, the user employs the collision-resistant hash function h in combination

with the hashing scheme G. Both h and the structure of G are assumed to be available

to the user as part of the public key (recall that we work on the public-key cryptographic

model). Alternatively, we can think the subgraph of G used by the user to be part of the

proof. The hashing scheme G encodes set C(S)—necessary semantic information about data

set S—and is the means by which the user associates the answer with the proof and the

issued query q and finally verifies the answer.

We note that our authentication framework described above is general and appropriate

for any type of queries Q. In particular, Definition 2.2.3 of hashing schemes imposes no

restriction on the exact structure of the used DAGs. As we will see next, the design

of efficient and secure authenticated data structures is based on the correct and careful

definition of a hashing scheme G in accordance with the type of queries Q.

2When randomized data structures are in consideration, identical copies can be still maintained by having
the source and the responder sharing the same randomness seed.

27

Remark 2.2.1. For static search query problems, a similar technique to ours for computing

the data digest is presented in [86] by Martel et al., where again a DAG is used to facilitate

the hash-based authentication. However, in [86] the DAG in use coincides with the search

DAG of the underlying data structure and a top-down hashing approach is used, such that,

essentially, the traversal of the data structure due to a query rather than the answer to this

query is authenticated. This top-down step-by-step authentication technique generally leads

to less efficient authentication schemes.

2.2.3 Security

Finally, we discuss the security requirement for any authentication scheme and how it is

achieved using the above authentication method. Our authentication techniques follow the

standard “hash and sign” authentication paradigm. Here we present a security definition

appropriate for the model of authenticated data structures.

Starting from the basis that in the model of authenticated data structures the user

trusts the data source but not the responder, it is the responder that can act adversarially.

We first assume that the responder always participates in the three-party protocol, i.e.,

it communicates with the source and the user, as the protocol dictates. Thus, we do not

consider denial-of-service attacks; they do not form an authentication attack but rather a

data communication threat. Actually, although practically nothing prevents the respon-

der from denying to participate in the protocols, e.g., it may refuse to respond to a user’s

query, in principle nothing prevents the user from redirecting the query to another respon-

der. Indeed, a practical deployment of authenticated data structures utilizes responders as

geographically distributed—widely spread in a network—mirror sites of the source, thus,

the user can contact a different responder. Additionally, denial-of-service attacks could be

prevented using some form of penalties applied to non-cooperative responders (e.g., charges

may be applied in an answer is not given).

However, a responder can try to cheat, by not providing the correct answer to a query

but attempting to forge a fake proof for a false answer. We model this scenario by assuming

that the responder is controlled by a polynomial-time adversary A. The adversary performs

a type of attack that is similar to a adaptive chosen-message attack for signature schemes.

That is, A has oracle access to the authentication technique and possesses the signed digest

(using a particular hashing scheme) of any data set S′ of his choice. Then, given a particular

query q ∈ Q for a data set S, the goal of the adversary is to construct a false answer

and a fake proof for this query that passes the verification check performed at the user.

28

Accordingly, the security requirement that the authentication scheme of any authenticated

data structure should satisfy is as follows: given any query by a user, no polynomial-time

responder can reply with a pair of answer and an associated proof, such that both the answer

is not correct and the user (incorrectly) verifies the authenticity of the answer and accepts

it. More formally, the basic security requirement that any authenticated data structure

should satisfy is enforcing the following property.

Definition 2.2.4 (Security Requirement). An authenticated scheme for an authenticated

data structure is secure, if for any query issued by a user, no polynomial-time adversary

A—controlling the responder that answers the query and having oracle access to the authen-

tication scheme—has non-negligible on a security parameter advantage in causing a user to

accept, i.e., to verify as correct, an incorrect answer.

For hash-based data authentication, the above property is achieved by relying on the

security properties of signatures and collision-resistant hashing. This means that, if the

hashing scheme is carefully designed such that it encodes statements about the data set

S (set C(S)) that allow answer verification, then the authentication scheme is secure: in a

standard way, any attack against the scheme is effectively reduced to an attack either on

the signature scheme or on the collision-resistant hash function in use. Like efficiency, the

security of an authentication scheme is characterized by the design of the hashing scheme.

We close our discussion by noting that for search query problems, where the answer to a

query is a subset of the data elements in S, we can further characterize the properties that

the underlying hashing scheme should satisfy. Let a(q) be the answer of a search query q ∈ Q
for a data set S. If a(q) contains elements ea1 , . . . , eal

and answer a′(q) = {ea′
1
, . . . , ea′

k
} is

given by the responder to the user, then the hashing scheme G should be chosen such that

it can be used to check whether a′(q) is correct. And in this case, answer a′(q) is said to be

correct, if it is both sound, i.e., it contains only elements that satisfy the query parameters

of q, and complete, i.e., it contains all elements that satisfy the query parameters of q, that

is, if a′(q) = a(q) (see also [86]). According to this definition, a correct answer is unique.

2.3 Authenticated Path Properties

We now present our first authentication scheme, the path hash accumulator, which is a

general authentication scheme used to provide authentication for various types of queries

on a data set S. Here S is a sequence (e1, e2, . . . , en), i.e., a collection of n elements, where

the notion of predecessor and successor are defined on elements of S and the notion of

29

first and last are defined on S. Our path hash accumulator will serve as an authentication

primitive used in the rest of the chapter (Sections 2.4 and 2.5). We start by introducing

some notation related to paths, the central technical concept in this chapter.

2.3.1 Paths and Path Properties

An abstract notion of a path is used to represent S. We use and extend the notation used

in [25]. A path consists of one or more nodes and is always directed. This is in accordance

with the need for capturing the predecessor-successor relationship. More formally:

Definition 2.3.1 (Path). A path p is an ordered sequence of one or more nodes. The first

and last nodes of a path p are called the head and tail of p, and are denoted as head(p) and

tail(p). A path is considered to have a direction: each node is connected to its successor by

a directed edge.

Paths can be joined to form a concatenation path and we also use the notion of subpath.

Definition 2.3.2 (Subpaths). If p′ and p′′ are paths, the concatenation p = p′‖p′′ is a path

formed by adding a directed edge from tail(p′) to head(p′′). A subpath p̄(v, u) = p̄ of a

path p is the path consisting of the collection of consecutive nodes of p v, w1, . . . , wl, u with

head(p̄) = v, tail(p̄) = u.

The data set S is associated with a path through the notion of node attributes and node

properties that are stored in the nodes of the path.

Definition 2.3.3 (Node Attribute). A node attribute N(v) of node v is a value related

to and stored at v. N(v) can assume arbitrary values and occupies only O(1) storage. A

node property N (v) of node v is a sequence N1(v), . . . , Nr(v) of node attributes, where r is

a constant. For a node v, we require that v (or some id representing v) is included in any

node property N (v) of v as a node attribute of v.

Similarly, path attributes and path properties are defined to extend the notion of node

attribute and node property for a collection of consecutive nodes, i.e., for paths.

Definition 2.3.4 (Path Attribute). A path attribute P (p) of path p is a value that is

related to p and occupies only O(1) storage. A path property P(p) of p is a sequence of

path attributes P1(p), . . . , Ps(p), where s is a constant. For a path p, we require that head(p)

and tail(p) are included in any path property P(p) of p as path attributes of p.

30

The path attributes (and thus the path properties) of a path depend on the node prop-

erties of the path and possibly on the structural properties of the path (e.g., path size, node

ordering etc.). The definition of path attributes and path properties are naturally extended

when subpaths of paths are considered. In this setting and omitting some of the details

(see Remark 2.3.1, end of section), we can view a path property as a mapping P from paths

(and, actually, node properties of their nodes) to sequences of values.

We are interested in path properties that satisfy the concatenation criterion.

Definition 2.3.5 (Concatenation Criterion). Let p be a path and let p′ and p′′ be any

subpaths of p such that p = p′‖p′′. A path property P satisfies the concatenation criterion

if P(p) = F(P(p′),P(p′′)), where F is a function defined on pairs of sequences of values

(path attributes) that can be computed in O(1) time. Function F is called the concatenation

function of P.

In other words, a path property satisfies the concatenation criterion when this path

property evaluated for a path p can be computed in constant time given the corresponding

path properties of any two paths whose path concatenation equals the path in consideration

p. Overall, a path property satisfying the concatenation criterion with its corresponding

concatenation function admits a computational evaluation that is inherently associative.

We wish to be able to locate nodes of a path that are of our interest. This is achieved by

a node selection query by means of a path selection function. Analogously, a path selection

query extends a node selection query using a path advance function.

Definition 2.3.6 (Node- and Path-Selection Queries). Let P be a path property that satisfies

the concatenation criterion. Given a path p and a query argument q:

• a node selection query NODEP maps p into a node v = NODEP(p, q) of p; a node

selection query is always associated with some path selection function: given that

p = p′‖p′′, a path selection function σ(p, q) for NODEP determines in O(1) time

whether v is in p′ or p′′ using q and values P(p′) and P(p′′); and

• a path selection query PATHP maps p into a subpath p̄ = PATHP(p, q) of p; a

path selection query is always associated with some path advance function: given that

p = p′|p′′, a path advance function α(p, q) for PATHP , using values P(p′) and P(p′′),

returns in O(1) time the subpath(s) among p′, p′′ (possibly none) for which the query

argument q holds.

31

Let p be a path, P be any path property that satisfies the concatenation criterion and let

N be any node property. We are interested in authenticating the following query operations

on p:

• property(subpath p̄(v, u)): report the value of path property P for subpath p̄(v, u) of

p (p̄ may be equal to p);

• property(node v): report the value of node property N for node v;

• locate(path p, path selection function σ, argument q): find node v of p returned by

the node selection query expressed by the path selection function σ;

• subpath(path p, path advance function α, argument q): find the subpath of p returned

by the path selection query expressed by the path advance function α.

Remark 2.3.1. A path property is a sequence of path attributes, that is, a sequence of

values that relate to the path. In particular, a path attribute depends on the data stored

at the nodes of the path as node properties, i.e., as sequences of node attributes, as well as

possibly on structural properties of the path (e.g., the size of the path, ordering of nodes etc.).

Accordingly, and given the fact that the definition of path properties is naturally extended

to subpaths of paths, we can view the path property P(p) of a path p as a mapping from

p to a sequence of values related to p (with respect both its structure and its data stored).

Thus, we can treat this path property as a function P(·) or refer to it simply as P. Also,

note that a node property N (u) can be viewed as a corresponding path property P(p̄(u, u))

or vice versa.

2.3.2 Path Hash Accumulator

We now present our first authentication scheme for the above query operations on paths,

discussing the details of the path representation and its associated hashing scheme. Let P
and N be the path property satisfying the concatenation criterion and the node property

of our interest in terms of authentication.

We represent a path p as a balanced binary tree T (p) as follows. A leaf of T (p) represents

a node of p, such that the left-to-right ordering of the leaves of T (p) correspond to path p.

An internal node v of T (p) represents the subpath p(v) of p associated with the leaves in

the subtree of v. When referring to a leaf node, we do not distinguish between the node of

the path and the leaf of the tree. Each leaf u stores the corresponding node property N (u)

and each non leaf node v stores the corresponding path property P(p(v)).

32

Let h be a collision-resistant hash function. The path hash accumulator for a path p

is the hashing scheme for the node and path properties of p using a DAG induced by tree

T (p). Specifically, the hashing scheme is defined as follows. Consider the data set consisting

of: (1) for each leaf node v of T (p), the node property N (v) and (2) for each internal node

u of T (p), the path property P(p(u)), where p(u) is the subpath of p associated with the

leaves in the subtree of u. For what follows, we denote the path property P(p(u)) of the

subpath defined by node u simply as P(u). Let G be the DAG obtained from T (p) by

directing each edge towards the parent node. For a node v of p, let pred(v) and succ(v)

denote the predecessor and the successor of v in p, respectively. In particular, pred(head(p))

and succ(tail(p)) are some special (nil) values. Using G and h, we compute a label L(u)

for each node u of T (p) as follows:

• If u is a source vertex of G, i.e., a leaf of T (p), then

L(u) = h(N (pred(u)),N (u),N (succ(u))); (2.1)

• If u is a non source vertex of G and (z1, u) and (z2, u) are edges of G, then

L(u) = h(P(u), L(z1), L(z2)). (2.2)

The digest of the above data set is the label L(r) of the sink r of G (i.e., r is the root of

T (p)). This digest is called the path hash accumulation of path p.

We are interested in supporting the following two update operations on paths. Operation

concatenate(path p′, path p′′) joins paths p′ and p′′ to the concatenation path p = p′‖p′′ and

operation split(node v) splits the path p that contains v in two subpaths p′ and p′′ such that

p = p′‖p′′ and v = head(p′′). These primitive operations are used in Section 2.4 to support

more complex update operations of data structures built using path hash accumulators3

and they cause the recomputation of the path hash accumulation of the paths involved in

these operations.

We next present and prove our first result about the performance and the authentication

properties of path hash accumulators, where we view these structures as data structures

used in the three-party authentication model described in Section 2.1.1.

Lemma 2.3.1. Let p be a path of length n. There exists an authenticated data structure for

p that is based on the path hash accumulator hashing scheme and supports query operations

3Although the term path hash accumulator is defined as the hashing scheme, i.e., the authentication
structure, we use the same term to refer to the corresponding data structure, i.e., the binary tree; since
the underlying DAG of the hashing scheme coincides with the binary tree, this brings no confusion.

33

property(subpath), property(node), locate and subpath and update operations concatenate and

split with the following performance:

1. query operations on p property(subpath), property(node), locate and subpath take each

O(log n) time;

2. for every query operation the answer authentication information has size O(log n);

3. for every query operation the answer verification time is O(log n);

4. the total space used is O(n);

5. for every update operation the update authentication information has size O(1);

6. if q is a path of length m, update operation concatenate(p, q) takes O(log(max{n, m}))
and update operation split on p takes O(log n) time.

Proof. (1) First consider the query property(p̄(v, u)) on p. Let A(p̄) be the set of allocation

nodes in T (p) of subpath p̄ = p̄(v, u). For a tree node w, w ∈A(p̄) if the leaves of the

subtree defined by w are all nodes of p̄ but the same is not the case for w’s parent, if any.

That is, A(p̄) is the minimal set of tree nodes defining subtrees that exactly cover p̄ and

no other nodes of p, i.e., subtrees whose leaves form a partition of p̄ into subpaths, where

each subpath consists of the leaves that correspond to one of the allocation nodes. So, each

w ∈A(p̄) corresponds to a subpath of path p̄. Since T (p) is a balanced binary tree, there

are O(log n) allocation nodes for subpath p̄ that can be found in O(log n) time by tracing

the leaf-to-root tree paths in T (p) from v and u up to the root r of T (p). Since, the path

property P satisfies the concatenation criterion, we have that the path property P(p̄) can

be computed by using the tree structure and by applying O(log n) times the concatenation

function F of P on the path properties of the subpaths of p̄ stored at the allocation nodes

of p̄. Thus, query property(subpath) can be answered in O(log n) time.

(2) Clearly, the answer given to the user is the property P(p̄). For any node u of T (p),

let (u1, . . . , uk) be the node-to-root path connecting u with the root r, with u1 being u

and uk being a child of r. We define the verification sequence of u to be the sequence

V(u) = (s1, s2, ..., sk), where, for 1 ≤ j ≤ k,

sj = (L(ūj),P(ūj)), (2.3)

and ūj is the sibling node of uj , i.e., sj is the pair of the label of the sibling ūj of node uj

and the path property of the path p(ūj) that corresponds to this sibling node ūj . (Recall,

34

property P(p(ūj))) is denoted simply as P(ūj).) Let z be the least common ancestor of v

and u in T (p). The answer authentication information except from the signed time-stamped

digest consists of three parts (see Figure 2.1):

r

z

v up̄

w3
w2

w5

w1
w4

T (p)

Figure 2.1: The answer authentication information for property(p̄(v, u)) consists of: (1) the
properties of allocation nodes w1, . . . , w5 (grey circle nodes); (2) the labels of the children
of the allocation nodes, if these children exist, or the node properties of their neighboring
nodes in p, otherwise (black square nodes); (3) the labels and properties of sibling nodes
of nodes in the leaf-to-root paths from v and u up to r that are not allocation nodes (grey
square nodes).

1. for each allocation node w ∈ A(p̄), the property P(w), if w is not a leaf, or the property

N (w) otherwise; these properties are given as a sequence (α1, ..., αm), such that the

set of leaf nodes of any allocation nodes with properties αi and αi+1, 1 ≤ i ≤ m− 1,

forms a subpath of p̄;

2. for each allocation node w ∈ A(p̄), the labels of its children, if they exist, or the

properties N (pred(w)) and N (succ(w)) otherwise;

3. and the labels and the corresponding path properties of the siblings of the nodes in

the paths from the left most and right most allocation nodes up to the least common

ancestor z, if these siblings are not allocation nodes themselves and the verification

sequence of z.

Given that T (p) is balanced, thus, for every p̄, the set A(p̄) of allocation nodes of p̄ has

size O(log n), and given that a path property has constant size, the answer authentication

information has size O(log n).

(3) To accept the answer, the user first recomputes P(p̄), by repeatedly applying the

35

concatenation function F on sequence (α1, ..., αm). If P(p̄) is not verified, the answer is re-

jected. Otherwise, the verification process is completed by the computation and verification

of the signed path hash accumulation. Observe that the user has all the necessary informa-

tion needed for this procedure. The computation of the digest corresponds to tracing two

leaf-to-root paths in T (p) and at each node of the paths computing a hash label and possi-

bly applying the concatenation function F . The answer authentication information can be

given in such a way so that this sequence of computations is well-defined for the user; e.g.,

O(log n) bits can be used to denote the left-right relation of siblings in T (p). Clearly, since

computing the path hash accumulation corresponds to tracing two paths of length O(log n),

where at each node a constant amount of work is performed or, equivalently, to processing

the answer authentication information which has size O(log n), the answer verification time

is O(log n).

(1) − (3) (Other query operations) Considering the other three query operations of the

path hash accumulator, we note the following. For a property(v) query, we proceed as above

and the property(p̄(v, u)) case: observe that property(v) corresponds to property(p̄(v, v)). For

a locate(p,σ,q) query, we locate the target node v by performing a top-down search in T (p)

starting from the root: at a node u with children w1 and w2, the path selection function

σ is used to select either the path that corresponds to w1 or the path that corresponds to

w2. Then, the answer is the located node v and the proof is the proof that corresponds

to a property(p̄(v, v)) query. For a subpath(p,α,q) query, a similar top-down tree search is

performed using the path advance function α to first compute the target subpath p̄(v, u);

the proof is constructed by considering the corresponding allocation nodes. That is, the

proof is the proof that corresponds to a property(p̄(v, u)) query. Thus, all these queries

can be answered in O(log n) time, where the answer authentication information is of size

O(log n) and the answer verification time is O(log n).

(4) Since a path property has constant size, the hash path accumulator occupies O(n)

space.

(5) Since the signed digest of the data set representing path p is simply a hash value and,

after any update operation on the path hash accumulator, 1 (concatenate) or 2 (split) digests

are signed by the source and sent to the responder, the update authentication information

has constant size.

(6) Besides, the update operations can be implemented in O(log n) time using the fol-

lowing primitive update operations on trees (see, e.g., [134]): create root (given two trees,

create a root that merges them into one), delete root (delete the root of a tree to create two

new trees) and rotate (left or right rotation performed at a tree node). Observe that for

36

all these operations path properties can be computed and accordingly updated in constant

time by applying the concatenation function F . Thus, operation concatenate(p, q) involves

updating the hash path accumulation for p and q, performing a create root operation and

then rebalancing the tree through rotations. Operation split involves performing rotations

so that a delete root operation creates the necessary target trees, then rebalancing the trees

through rotations and finally updating the path hash accumulations of the trees. Note that

for both operations, updating the path hash accumulations correspond to tracing at most

two leaf-to-root paths and updating the hash labels stored in the visited nodes.

(Security) Considering the security provided by the hash path accumulator scheme, we

note that we achieve the desired security results by reducing any attack from the responder

against the user to a collision on the cryptographic hash function h or a successful attack

against the signature scheme in use by the source and the user. With respect to the

discussion on the security requirement in Section 2.2.3, we easily see that the hashing

scheme of our path hash accumulator is well-defined with respect to path property queries,

that is, it securely expresses these relations are these structural properties that are needed

for verifying answer correctness: (1) path-related structural dependencies of elements of a

path are expressed through the tree-based hashing scheme, and (2) the association of node

and path properties with the corresponding subpaths is expressed through the inclusion of

these properties in the hashing scheme. In particular, for every query, the answer consists

of the set of properties stored at the set of allocation nodes A(p̄) of a subpath p̄ of p. Any

attack against the validity of the answer corresponds to forging set A(p̄), i.e., providing

the properties stored at a different set A′(p̄) of allocation nodes, which, of course, may

not correspond to any subpath of p. An attack against soundness corresponds to including

at least one node w /∈ A(p̄) in A′(p̄) and an attack against completeness corresponds to

omitting at least one node w ∈ A(p̄) from A′(p̄). Since for every subpath p̄ we have that

head(p̄) ∈ P(p̄) and tail(p̄) ∈ P(p̄) and by the path hash accumulator hashing scheme that

takes into account the left-right relation of siblings in T (p) and path properties, we have

that both soundness and completeness are achieved. Thus, if the set of allocation nodes

that corresponds to the answer given to the user is not the correct one, for the user to

accept the incorrect answer as correct, either an attack against the signature scheme or at

least one collision on h must be computed by the responder.

The path hash accumulator can be viewed as a generalization of the Merkle’s hash tree.

That is, it provides a tree-based authentication scheme capable in authenticating more

sophisticated queries than membership queries and it also, as we will see in the next two

37

sections, a general framework for building more complex authenticated data structures. We

end this section with a useful remarks concerning Lemma 2.3.1.

Remark 2.3.2. Path property P(u) of subpath p(u) is a sequence of constant size of path at-

tributes. In Equation (2.2), P(u) participates in the hashing operation as the concatenation

of a well-defined binary representation of the corresponding path attributes. That is, if P(u)

consists of path attributes a1, . . . , ak that are related to path p(u), then, choosing to imple-

ment the hash of a sequence of values as the hash of their concatenation (see Section 2.2.1),

Equation (2.2) reads L(u) = h(a1‖ . . . ‖ak‖L(z1)‖L(z2)). Similarly, in Equation (2.1), any

node property N (w) participates in the hashing operation as the concatenation of a well-

defined binary representation of the corresponding node attributes of node w.

Remark 2.3.3. For some specific applications, the path hash accumulator can be defined

using a slightly different hashing scheme. In particular, we can hash the path property stored

at a node of the tree before this is included in the label computation through hashing. That is,

in the definition of the hashing scheme, we can replace the hash operation in Equation (2.2)

with the operation

L(u) = h(h(P(u)), L(z1), L(z2)). (2.4)

This hashing scheme is more suitable in terms of performance in cases where the path

property does not have constant size, but instead, it has size that is linear on the size of

the path. We will encounter such a case for an specific type of queries in Section 2.4.

We define the hash h(P(u)) of the hash property of subpath p(u) to be (as in one of the

examples in Section 2.2.1) the hash of the concatenation of the hashes of a well-defined

binary representation of the path attributes in P. That is, if a1, . . . , ak, where k is some

constant, are the path attributes in P(u), then the hash of path property P(u) is h(P(u)) =

h(a1, . . . , ak) , h(h(a1), . . . , h(ak)). We note that the only changes that this modification of

the hashing scheme brings to the results of Lemma 2.3.1 are: (1) the answer authentication

information is now slightly different, but still of logarithmic size, namely, Equation 2.3 now

reads

sj = (L(ūj), h(P(ūj))), (2.5)

and (2) according to the basic construction above, in the case where the path property has size

that is proportional to the size of the path, the storage of the path hash accumulator becomes

O(n log n). However, by introducing a special type of pointers into the data structure, a

technique known with the name threading, we can actually reduce the storage needs of the

data structure back to O(n).

38

2.4 Authenticated Graph Queries

In this section, we consider authenticated data structures for graph searching problems. We

wish to authenticate search queries on graphs, like queries that ask for a path connecting

two nodes in a graph (if any), or for some information associated with this path, e.g., the size

of the connecting path, and queries that ask structural information about the graph, e.g.,

queries about the connectivity between two nodes. Such data structures have applications

to the authentication of network management systems.

Given the path hash accumulator authentication scheme described in the previous sec-

tion, we follow a bottom-up approach in presenting our new authenticated data structures.

We first develop a generic authenticated data structure for a forest, that is, a collection

of trees. The forest is dynamic, evolving through update operations that create, destroy,

merge or separate trees. Trees store data items and querying information about these data

items can be expressed by path property queries for paths in the trees of the forest and some

path property that satisfies the concatenation criterion. Path hash accumulators are used

as the primitive building blocks of this authenticated data structure. This new authentica-

tion structure for answering path properties queries on forests is then used to support more

sophisticated queries on forests by appropriately defining the path property in use. Finally,

we consider general graphs and use our forest related structures to authenticate searching

queries on them.

2.4.1 Hierarchy of Paths

We start the construction of our authentication schemes by extending the use of path hash

accumulators in collections of paths. In particular, we use the path hash accumulator

authentication scheme over a dynamic collection Π of paths, that is maintained through

the update operations on paths split and concatenate. At a high-level point of view, Π is

organized by means of a rooted tree T of paths, meaning that each node of T corresponds

to a path in Π. Neighboring paths in T are generally interconnected and share information.

This is achieved by the definition of suitable node attributes and properties.

A tree of paths T is considered to be directed; the direction of an edge is from a child

to a parent. Let µ be a node of T , let µ1, . . . , µk be its children in T and let p be the path

that corresponds to node µ. A node attribute N(v) of a node v of p is extended so that

it depends not only on v but possibly also on some path properties of the paths p1, . . . , pk

that correspond to nodes µ1, . . . , µk of T . We say that path p is the parent path of paths

p1, . . . , pk and these paths are the children paths of p. This extension of the semantics of a

39

node attribute, i.e., allowing node attributes of a node of a path p to be related to the path

properties of p’s children paths, eventually allows the path property P(p) of path p that

correspond to node µ to include information about paths in the subtree of T having as root

node µ. As always, we consider path properties that satisfy the concatenation criterion.

In general, the idea above can be further extended by using a directed acyclic graph

(instead a tree) as the high level graph for the organization of a path collection Π. In fact,

using such a graph, we introduce a hierarchy over paths in Π, where, accordingly, path

properties are extended to include information (expressed by path properties) about other

paths subject to the hierarchy induced by the graph.

2.4.2 Path Properties in a Forest

We now develop an efficient and fully dynamic authenticated data structure that supports

path property queries in a forest, where the forest is realized as a hierarchy of paths. The

data structure has fast, update, query, and validation times.

Let N be any node property and P be any path property. We assume that P satisfies the

concatenation criterion. Let F be a forest, a collection of trees. F is associated with a data

set by storing at each tree node u some information as node attributes, or equivalently as

node property N (u). Additionally, using the framework presented in Section 2.3, any path

p in a tree of F is associated with some path property P(p). We study the implementation

of the authenticated query operation property(u, v)– return the path property P of the path

from u to v in F , if such a path exists– while the following update operations over trees in

F are performed:

• destroyTree(w)– destroys the tree with root w;

• newTree()– creates a new tree in F that consists of a new, single, node;

• link(u, v)– merges two trees into one by adding an edge between the root u of some

tree to a leaf v of another tree;

• cut(u)– separates a tree to two new trees by removing the edge between non-root node

u and its parent.

Note that any tree can be assembled or disassembled using these operations.

Our data structure is based on dynamic trees [134] introduced by Sleator and Tarjan.

Conceptually, a dynamic tree T is a rooted tree whose edges are classified (according to

some criteria) as being either solid or dashed, with the property that any internal node of

40

T has at most one child connected by a solid edge. This edge classification partitions the

tree into solid paths, i.e., consecutive nodes connected with each other through solid edges,

whereas these solid paths are connected with each other by dashed edges (see Figure 2.2(a)).

Using the framework of Section 2.3, we view every solid path of a dynamic tree as a path,

i.e., a sequence of nodes, directed towards the root of T , that is, the predecessor of any

node that is not the tail of the path is its parent node.

Moreover, by definition, every non-leaf node v of a dynamic tree T has at most one child

u0 such that a solid edge connects them. Assume that v has more children and consider all

these children, say nodes u1, . . . , uk in T (connected with v through dashed edges). Using

again the framework of Section 2.3, we define the dashed path d(v) of node v to be a path,

i.e., a sequence of nodes of length k, such that there is a one-to-one correspondence between

edges (ui, v) in T and path nodes of d(v). The ordering of the nodes in d(v) is thus in

accordance with the ordering of nodes u1, . . . , uk, which in turn can be arbitrary.

Having at hand the solid and dash paths defined in a dynamic tree, we now consider

the trees of the forest F to be dynamic trees, which allows us to perform a transformation

of trees into solid and dash paths. In particular, let T1, . . . , Tm be the trees in F . We

view all these trees as dynamic trees. Let Π(Ti) be the collection of all solid and dashed

paths defined for tree Ti of F as explained above. Using the concept of hierarchies of paths

discussed in Section 2.4.1, we can associate Π(Ti) with a directed tree Ti of paths. This is

performed as follows:

• each path p (solid or dashed) in Π(Ti) corresponds to a vertex µp of Ti;

• if p is solid, for each node v of p that has only one child u in Ti such that u is node of

path p′ in Π(Ti) and p 6= p′ (and v is connected with u through a dashed edge), the

directed edge (µp′ ,µp) is an edge of Ti;

• if p′ = d(v) is dashed with length k, that is, p′ corresponds to the dashed edges

of a node v in Ti, let p be the solid path that v belongs to, let u1, . . . , uk be the

corresponding children of v in Ti, and let p1, . . . , pk be the solid paths containing

these children; then, directed edges (µp′ ,µp) and (µpi
,µp′), 1 ≤ i ≤ k, are edges of Ti.

Finally, given the directed trees of paths Ti, i = 1, ..., m, we add a new root vertex ω

which is the parent of all the roots of trees Ti, thus, obtaining a new tree F4. All the newly

added edges are directed towards ω. We consider one last root path π(ω) that corresponds

4Root vertex ω is a fictitious node, used only as an intermediate tool to define a special root path on top
of the trees Ti.

41

to the root vertex ω. The nodes of this path correspond to trees Tis of F , where any node

ordering in π(ω) can be used. Our final graph is a tree of solid and dash paths rooted at a

special root path.

Consider the collection Π(F) of paths (solid, dash, root) associated with the nodes of

tree F . The children of the root path π(ω) are solid paths. The children of a solid path are

either solid of dashed paths. The children of a dashed path are solid paths. Figure 2.2(b)

shows such a tree F .

T1 T2

solid

dashed

rootF
T1 T2

(a) (b)

Figure 2.2: (a) The partition of trees into solid paths. (b) Trees of paths and final tree F .

Using this tree of paths, we implement our data structure as follows. Each path (root,

solid or dashed) is implemented through the path hash accumulator authentication scheme

(Section 2.3), where the individual data structure that implements each path hash accumu-

lator is chosen to be a biased binary tree [6].

A path property P of our interest, i.e., a collection of path attributes, that satisfies the

concatenation criterion is defined. By the implicit path interconnection, through the idea

of setting a path property of a path to be a node attribute of another, neighboring, path,

P(p) includes information about the children paths of p and, in general, about all of its

descendant paths. We include path attributes in node properties, as follows. If v is a node

of path p and L(p) denotes the path hash accumulation of path p, then:

1. if p is root path or dashed path, then L(p′) and tail(p′) are included in N (v), where

p′ is the child solid path of p corresponding to node v;

2. if p is solid path, then L(p′) and tail(p′) are included in N (v), if v corresponds to a

solid child path p′, or L(p′) is included in N (v), if v corresponds to a dashed child

path p′.

The above scheme of inclusions of path attributes and path properties of a path as a

42

node attribute in the node property of a node of the parent path corresponds to connecting

the individual hashing schemes of the path hash accumulators implementing paths in F
and composing them into one hashing scheme G for the entire data structure. This hashing

scheme G yields a digest for data stored in the forest F , namely, the path hash accumulation

of the root path π(ω) of F . Next, we present our first theorem, which fills in the details

of the entire authenticated data structure that supports update and query operations on

forest F , analyze its performance and prove its efficiency.

Theorem 2.4.1. Let F be a forest of trees with n nodes. There exists a fully dynamic

authenticated data structure that supports query operations property on paths in dynamic

forest F that evolves through update operations destroyTree, newTree, link and cut having

the following performance:

1. query operation property takes O(log n) time;

2. for query operation property the answer authentication information has size O(log n);

3. for query operation property the answer verification time is O(log n);

4. the total space used is O(n);

5. for every update operation the update authentication information has size O(1);

6. update operations destroyTree and newTree take each O(1) time; update operations link

and cut take each O(log n) time.

Proof. (Data Structure) We first complete the description of the data structure. As we

already have seen, the entire forest F is represented as a collection of paths Π(F), which

is organized using the hierarchy induced by the tree F of paths in Π(F). Recall that the

solid paths in Π(F) are defined by considering each tree Ti of F to be a dynamic tree and

by using a partition of edges into solid and dashed. In any tree Ti, let size(v) denote the

number of nodes in the subtree defined by v and let u the parent node of v. Edge e = (u, v)

is called heavy if size(u) > size(v)/2. The edge labeling of dynamic tree Ti of mi nodes with

root w, such that an edge is labeled solid only if it is heavy, has the following important

property [134]: for any node u of Ti there are at most log mi dashed edges on the path from

u to w. We use this edge labeling to partition each tree Ti into solid paths.

Consider all the paths that correspond to the final tree F (after the dashed paths and

the root path have been added). Each path p of F is represented using the path hash

43

accumulator authentication scheme5 of Section 2.3, with only one exception. Path p is

represented by a binary tree T (p), but T (p) is implemented as a biased binary tree T (p)

(see [6]), thus, it is not necessarily balanced6.

In a biased binary tree, each leaf node is associated with a weight, each non-leaf node is

associated with the sum of the weights of its children, (consequently) tree’s root r carries

the sum W of the weights of the leaves and any node v lies at depth O(log W
w(v)). For us,

node weights are defined using function size(), and we consider weight w(v) of node v to be

an additional node or path attribute (depending on whether v is a leaf node in T (p) or not).

If p is a path having no child path (µp is a leaf in F), then w(v) = size(v). Otherwise (µp

is not a leaf in F), w(v) = w(u1) + w(u2), if v is internal node of T (p) with children u1, u2.

Otherwise, v is a node of path p. If v = head(p) and p is solid, then w(v) = w(u1) + w(u2),

where u1,u2 are the children of v in T (through dashed edges). If v 6= head(p) and p is

solid, then w(v) = w(u) + 1, where u is the unique dashed child of v and w(u) = 0, if no

such child exists. If p is dashed, w(v) = w(u) + 1, where u is the node connected with v

with the corresponding dashed edge. If p is root path, again w(v) = w(u) + 1, where u is

the root of the corresponding tree root.

To complete the description of the authenticated data structure, we note that the hashing

scheme of the entire data structure is defined through the individual path hash accumulator

hashing schemes of the paths in F . All these hashing schemes compose a hashing scheme

for the entire forest F and the date structure as a whole, where the path hash accumulation

of a path p is included in the computation of the path hash accumulation of p’s parent path

in F .

(Efficiency) Consider any tree Ti in F , any two nodes u and v of Ti and the path puv

in Ti that connects u and v. Our data structure represents Ti implicitly through the path

collection Π(Ti), where each path in Π(Ti) is implemented as a (biased) binary tree. For

answering queries regarding properties of path puv, we first consider a multipath πuv, that is,

a path of paths in Ti, that connects the paths in Π(Ti) where u and v belong, and using this

multipath, we then consider a (different of puv) path Puv: the path that virtually connects

u and v in Ti through the binary trees that implement the paths of Π(Ti). Path Puv is a

connecting path of nodes u and v in the hashing scheme of the entire data structure, when

no edge directions are taken into consideration. These three types of paths puv, πuv and

5Recall that using this term we refer in an indistinguishable way to both the data structure implementing
the tree and the corresponding hashing scheme.

6Note that this fact does not affect the corresponding hashing scheme; the path hash accumulation
L(T (p)) of p is still well-defined.

44

Puv are described in Figure 2.3.

puv

T1

v

u

πuv

u v

T1

Puv

(a) (b)

Figure 2.3: (a) Path puv in tree T1 (grey nodes), connecting nodes u and v. (b) Multipath
(path of paths) πuv in Ti (indicated by dark arrows), connecting the paths containing u and
v and path Puv (indicated by dashed line) in the data structure, connecting nodes u and
v through the binary trees implementing paths in Π(Ti). Triangles denote biased binary
trees, not necessary balanced. Path Puv is also a path in the hashing scheme G of the
entire data structure. Observe that Puv defines (visits) allocation nodes in binary trees
implementing solid paths in Ti, which allocation nodes correspond to subpaths of puv and
store path properties that constitute path property P(puv). Puv has logarithmic on the size
of T1 length.

Observe that path Puv passes through nodes of the binary trees implementing solid

paths in Ti that have as children, tree nodes defining subtrees whose leaves are subpaths

of puv, that is, nodes that are allocation nodes of subpaths of path puv. This is exactly

what is needed: in authenticating a path property of puv, we will use the path properties

stored at nodes (of the biased binary trees) related to path Puv that, given the fact that the

path property in study satisfies the concatenation criterion, completely describe the path

property of puv. Accordingly, the above considerations are also valid for paths in the data

structure that connect nodes u and v of different trees in F : in this case, a multipath in

F that passes through the root path π(ω) connecting the paths in Π(F) of nodes u and v

exists and the corresponding path Puv, connecting u and v in the hashing scheme of the

data structure, passes through the binary tree implementing the root path π(ω).

Using of the previously described biasing in our data structure, it can be shown that,

when considered through the individual biased binary trees that implement paths in F , any

path Puv in the data structure in tree Ti of size mi has length log mi and any leaf-to-root

path in the data structure representing F has length O(log n). The proof is based on the

analysis in [134] . Consequently, for any nodes u, v in F , path Puv in our data structure

45

has length O(log n).

(1) − (3) Consider query property(u, v). Although this query is defined for nodes in

forest F , to cover the most general case, we do not require that query nodes u and v

necessarily exist in F . So, we first determine whether nodes u and v are in forest F using

any authenticated data structure that supports containment queries (e.g., [52]) in O(log n)

time with authenticated responses of size O(log n). If one of the two nodes are not in F ,

a negative answer is given, along with a proof that verifies the negative containment. If u

and v are in F , the path property query is performed by accessing three multipaths in F
(see Figure 2.4).

u v

πω

ℓ
T2

πu πv

rF

πℓ

Tℓ

Pℓr

Pvℓ

Puℓ

Figure 2.4: The answer and proof for property(u, v) query are computed by visiting paths
πuℓ, πvℓ and πℓr in the data structure and by accessing information stored at nodes related
to these paths.

In particular, assume first that u and v belong to the same tree Ti of size mi in F , i.e.,

there exists a connecting path puv in F . Let πu and πv be the paths in F that contain u and v

and let πℓ be the least common ancestor πu and πv in F (πl may overlap with πu and/or πv).

Let πuℓ, πvℓ be the multipaths from πu, πv to πℓ and πℓr be the multipath from πl to the root

path π(ω) of F . Multipaths πuℓ, πvℓ and πℓr, when considered through the binary trees used

to implement paths in F , define paths Puℓ, Pvℓ and Pℓr, respectively, in the data structure.

Specifically, paths Puℓ and Pvℓ are connected at node ℓ of the binary tree implementing path

πℓ (node ℓ is the least common ancestor of u and v in the data structure). The answer A(u, v)

given to the user is computed by following paths πuℓ and πvℓ, finding, at each traversed

path hash accumulators that implement a solid path in F , the allocation nodes whose

subtrees correspond to subpaths of puv and, finally, reporting the path properties stored

46

at these allocation nodes. Similarly, the proof given to the user is collected by providing

path property proofs (i.e., collection of appropriate hash values and path properties as in

Section 2.3 and in the proof of Lemma 2.3.1) proof(πuℓ), proof(πvℓ), each corresponding

to a traversed multipath to πell and consisting of subproofs: a subproof for each path hash

accumulator that is visited. To compute the proof, following path Pℓr up to the root r of the

binary tree implementing path π(ω), we compute the multipath verification sequence V(ℓ),

a collection of hash values and path properties (similar to the verification sequence in the

proof of Lemma 2.3.1) that allows the user to recalculate the signed hash value (hash path

accumulation of π(ω)) given A(u, v), proof(πuℓ) and proof(πvℓ). By the biased scheme used

over F , the set of allocation nodes of path puv has size O(log mi) and also paths πuℓ, πvℓ

and πℓr have each O(log n) size. Since path properties have constant size and for each node

of these paths visited in the data structure a constant amount of information is included

in the proof and a constant amount of work is performed , the answer A(u, v) has O(log n)

size, the proof (V(ℓ), proof(π(u)), proof(π(v))) has also size O(log n) and path properties

queries are answered in O(log n) time. Accordingly, clearly the verification time is also

O(log n).

Similarly, in the special case7 where no path connecting u and v exists in F (u and v

belong in different trees), a negative answer is given to the user, indicating that no path

connecting the query nodes exists in F) and the previous approach is used to provide proof

of this fact: proofs corresponding to paths Puℓ, Pvℓ and Pℓr verify the nonexistence of path

puv, since the least common ancestor ℓ of u and v in the data structure is node of the binary

tree implementing root path π(ω).

(4) Since a path property has constant size, the hash path accumulator occupies O(n)

space.

(5) Since the signed digest of the entire data structure is simply a hash value, the

path hash accumulation of the root path in F , the update authentication information has

constant size.

(6) All update operations correspond to accessing and modifying multipaths through

the primitive path operations split and concatenate. In particular, operations link and cut

can be implemented in O(log n) time by modifying only O(log n) path hash accumulators

and by examining, modifying and restructuring only O(log n) nodes in total. Restructuring

7This case is included in the proof only for completeness, since, by definition, a path property query
returns the path property of existing in F paths. Our used approach is similar with the one used in
Section 2.4.3 for the authentication of higher-level path and connectivity queries: the nonexistence of a
path in F is authenticated by the existence of a path in F passing through the root path π(ω).

47

means connecting a node to new children. Our scheme works by, every time a node v is

restructured, recalculating L(v), which can be done in O(1) time, since the values of the

children, parent or neighbors of v are known. Consequently, our update operations can be

performed in O(log n) time.

(Security) Hashing scheme G is based on the path hash accumulator. By allowing

neighboring (in F) paths to share information (properties) we achieve the desired security

results based on the security of path hash accumulator authentication scheme (proof of

Lemma 2.3.1): any attack to our data structure can be reduced to an attack on the secu-

rity of the path hash accumulator, thus, in turn to a collision on the cryptographic hash

function h.

2.4.3 Path, Connectivity and Type Queries on Forests

Theorem 2.4.1 supports the basis for an authenticated data structure that efficiently answers

and authenticate the following queries on a dynamic forest F :

• path(u, v): reports the path, if any, between nodes u and v in F ;

• pathLength(u, v): reports the length of the path, if any, between nodes u and v in F ;

• areConnected(u, v): reports whether there is a path between nodes u and v in F (i.e.,

whether u and v are nodes of the same tree);

• type(u, v): reports whether there is a node of a given type8 in a path, if any, between

nodes u and v in F .

Our results are obtained by appropriately defining a path property that expresses each one

of the above queries. In other words, each new query is answered as a path property query,

as in Section 2.4.2, for a specially defined path property, which, of course, satisfies the

concatenation criterion. Each specific query corresponds to a specially chosen individual

path attribute that is included in the path property in use. The next theorem presents the

details of these results.

Theorem 2.4.2. Let F be a forest of trees with n nodes. There exists a fully dynamic

authenticated data structure that supports query operations path, pathLength, areConnected

and type on paths in dynamic forest F that evolves through update operations destroyTree,

8We assume that the type of a node is a well-defined notion and that the type of a node can be checked
in constant time.

48

newTree, link and cut having the following performance, where k is the length of the path

returned by operation path:

1. query operations pathLength, type and areConnected

• each take O(log n) time;

• each have answer authentication information of size O(log n);

• each have O(log n) answer verification time;

2. query operation path

• takes O(log n + k) time;

• has responder-to-user communication cost9 of size O(log n+k), where the answer

has size O(k) and the answer authentication information has size O(log n);

• has O(log n + k) answer verification time;

3. the total space used is O(n);

4. for every update operation the update authentication information is O(1);

5. update operations destroyTree and newTree take each O(1) time; update operations link

and cut take each O(log n) time.

Proof. (Data Structure) It is essentially the same data structure as the one of Theorem 2.4.1,

except one main difference with respect to the support of query path and the exact hashing

scheme of the data structure that is explained in detail in what follows10. The path property

P in use – except, by definition, from (the ids of) the head and the tail nodes of the

corresponding path – includes four specially chosen path attributes a1, a2, a3 and a4 one

for each of the supporting query operations, respectively, path, pathLength, areConnected

and type. In this way, path property P contains information for all supported queries and,

more importantly, it has size that is linear on the size of the corresponding path.

Because of this, we use the implementation of the hashing operation of Equation 2.4 in

defining the hashing scheme of our data structure (see Remark 2.3.3). In our implementa-

tion, the hashing operation over a path property is accordingly designed (see Section 2.2.1

9Since the answer size in this case is not constant, we analyze the responder-to-user communication cost
and accordingly distinguish the costs of the answer and the answer authentication information.

10However, an alternative implementation of our data structure could be as follows. The data structure
simply consists of the aggregation of four different hashing schemes, one for each supported query
operation. That is, each query operation corresponds to a property query for a specially defined path
property.

49

and Remark 2.3.3) so that more efficiency is achieved. In particular, the path property P
is viewed as a sequence of path attributes a1, a2, a3, a4 and, accordingly, its hash value is

computed as

h(P) = h(h(a1), h(a2), h(a3), h(a4)). (2.6)

That is, the hash of a path property is the hash of the concatenation of the hash values

of the attributes that it consists of. The time complexity in computing this hash value is

linear on the size of the path.

Overall, this choice for implementing the hashing operation used in the definition of the

hashing scheme affects has two important consequences. First, the answer authentication

information is still logarithmic in the size of the forest (regardless the fact that the path

property has size proportional to the path). Second, query operations can be answered

separately, where path attributes are treated not as a whole but as individual pieces of

information, and not a single path property query of Theorem 2.4.1. That is, attribute a1

of a path can be authenticated without the authenticating or revealing any of the other

attributes. In essence, using this hashing scheme, a path property query can be answered

as in Theorem 2.4.1 but only with respect to a specific path attribute.

Moreover, regarding the concatenation function F of property P, it is simply defined as

a per attribute application of function F . That is, if p = p′‖p′′, P(p′) = (a′1, a
′
2, a

′
3, a

′
4) and

P(p′′) = (a′′1, a
′′
2, a

′′
3, a

′′
4), then

P(p) = F((a′1, a
′
2, a

′
3, a

′
4), (a

′′
1, a

′′
2, a

′′
3, a

′′
4)) = (F(a′1, a

′′
1),F(a′2, a

′′
2),F(a′3, a

′′
3),F(a′4, a

′′
4)).

Additionally, since the path property is not of constant size, the concatenation function F
operated in time proportional to the path property.

In what follows, we define the path attributes, discuss their concatenation function F
and any relevant to our authenticated data structure complexity issues.

(1) Query operation areConnected corresponds to the existence of a node of the root

path π(ω) in the path Puv connecting nodes u and v in the data structure representing

forest F (or tree F). Note that path Puv always exists. That is, the answer to the query

is negative if such a node exists in Puv and positive if no node of the root path π(ω) exists

in Puv. This property is expressed by assigning a unique id value to every path in the tree

of paths F . Thus, attribute a3 of a path p in the tree of paths F and accordingly in our

data structure is defined to take on one of the following two values: root-path-true, if p is a

subpath of π(ω), or root-path-false. Concatenation function F operates in constant time as

the OR boolean function on these two values of a3.

50

A similar idea is applied for query operation type. A node attribute corresponding to

path attribute a1 (or path attribute a4 of path of size 1) takes on two values: either type-true

or type-false, depending on whether on not the corresponding node is of the type of interest

(that the query operation asks about). Again, the concatenation function operates as the

boolean function OR.

For query operation pathLength, we define the path attribute a2 of a path to be simply

the size of the path and the concatenation function is the addition function.

The complexity for all these three query operations is similar to the complexity of the

path property query operations of Theorem 2.4.1. Although, path attribute a1 has size

that is proportional to the size of the corresponding path, because of the hashing scheme,

which hashes individually the path properties in producing the hash of a path property

(Equation 2.6), no path attribute a1 is included in the answer or in the answer authentication

information (see Remark 2.3.3, Equation 2.5).

(2) Query operation path is answered by first performing a query areConnected. If there

is a path between nodes u and v, it can be found by answering a path property query with

respect to path attribute a1, where attribute a1 of path p includes all the (ids of the) nodes

of path p, that is, the path itself! To this end, we need a slightly different definition for

the path attribute, namely, a path attribute can be of any size (not necessarily constant).

Since |a1| = O(|p|), the introduced complexity is O(log n + k), where k is the length of the

path from u to v. In particular, both the query time and the answer verification time are

O(log n + k), since the answer itself is of size O(k) and both computations need to spend

time proportional to the answer (to compute and process the answer respectively). The

logarithmic term is due to the complexity carried from Theorem 2.4.1. On the other hand,

the answer authentication information is still logarithmic, since our hashing scheme applies

an extra hashing of the path property, before the hashing of the sibling hash labels (see

Equation 2.4).

(3) Although, according to the construction in Section 2.3 the path hash accumulator for

a path property of linear size has O(n log n) storage, using threads in our data structure, we

can reduce the storage needs to O(n). The idea is to store path attribute a1 of path p, the

one corresponding to the subtree defined by internal node u, at the leaves of this subtree

(that is, at the path p itself), rather than storing it at node u. Then, we add a special

pointer from node u to head(p) and a special pointer from tail(p) up to node u and pointers

for every node in solid path towards its successor node in the path (if any). These pointers,

called threads, can be used to traverse path p in O(|p|) time and compute (retrieve) the

path attribute a1. Thus, storage can still be kept linear, even with the presence of a path

51

property of non linear size.

(4), (5) & (Security) They follow directly from Theorem 2.4.1.

In the rest of the section, we show how this result can be extended to give us authenti-

cated schemes for more advanced graph queries. All these results have applications to the

authentication of network management systems.

2.4.4 Path and Connectivity Queries on Graphs

We now move our attention to graphs rather than forests. Suppose we want to authenti-

cate path and connectivity queries on a general graph G. That is, as before, we want to

authenticate the answers to the following queries on G:

• path(u, v): report the path, if any, between nodes u and v in G;

• areConnected(u, v): report whether there is a path between nodes u and v in G (i.e.,

whether u and v are nodes of the connected component in G).

We can immediately apply Theorem 2.4.2 to design an authenticated data structure for

path and connectivity queries in a graph G that evolves through vertex and edge insertions.

In particular, graph G is maintained through update operations:

• makeVertex(v): create a new vertex v in G;

• insertEdge(u, v, e): add edge e between vertices u and v in G.

The new data structure has similar performance bounds with the one in Theorem 2.4.2.

The main idea is our data structure to maintain a spanning forest F of the graph G. We

note that for embedded planar graphs our data structure can actually be extended to also

support deletions of vertices and edges, through new update operations:

• destroyEdge(e): destroy edge e in G; and

• destroyVertex(u): destroy isolated vertex u in G.

The idea is to use techniques similar to the data structure described in [39].

Theorem 2.4.3. Let G be a general graph with n nodes. There exists a semi-dynamic

authenticated data structure that supports query operations path, and areConnected on pairs

of nodes in graph G that evolves through update operations makeVertex and insertEdge having

the following performance, where k is the length of the path returned by operation path:

52

1. query operation areConnected takes O(log n) time and query operation path takes

O(log n + k) time;

2. for query operation areConnected the answer authentication information is of O(log n)

size, and for query operation path the responder-to-user communication cost is of

O(log n + k) size, where the answer has size O(k) and the answer authentication

information has size O(log n);

3. for query operation areConnected the answer verification time is O(log n); for query

operation path the answer verification time is O(log n + k);

4. the total space used is O(n);

5. for every update operation the update authentication information is O(1);

6. update operations makeVertex and insertEdge take O(1) and O(log n) time, respectively;

7. if G is an embedded planar graph, additional update operations destroyEdge and de-

stroyVertex are supported in O(log n) and O(1) time, respectively.

Proof. (Data Structure) The idea is to use the data structure of Theorem 2.4.2 to maintain

a spanning forest of graph G. That is, we maintain a forest F that spans through the

entire graph, meaning that all nodes in G are nodes of F as well and that each connected

component of G corresponds to a tree of F . Data structure of Theorem 2.4.2 allows us to

authenticate answers to path and connectivity queries. Note the correctness of the data

structure: if two nodes are connected in G, they are connected in F as well, for they belong

to the same connected component of G, thus to the same tree in F , and in this case, the

path connecting them in this tree is obviously a path connecting them in G as well.

Update operations are handled as follows. For general graphs, where only vertex and

edge insertions are supported, each new vertex corresponds to a new connected component

of G, thus, to simply a new tree in F and a newTree update operation, whereas each new

edge either corresponds to no action, when it connects nodes of the same tree (connected

component in G) in F , or it corresponds to a link operation, when it connects nodes of

different trees (connected components in G) in F . Testing whether or not an edge connects

nodes of the same tree in F can be performed by assigning unique ids to all trees in F and

checking whether or not the two nodes belong in trees with the same id. The last operation

can be done by simply storing at each node of F the corresponding tree id (or even by

accordingly defining a path attribute).

53

Update operations for embedded planar graphs, which include not only edge and vertex

insertions but also deletions, are a bit trickier to handle. First, any insertion of an edge

connecting nodes of the same tree needs to be stored. After any deletion of an edge or a

vertex, the set of stored edges that are not edges in F and, thus, not explicitly stored in the

data structure representing F , is processed to decide whether or not this deletion results in

a connected component destruction in G. Using the data structure described in [39], one

can decide on whether a new connected component is created or, instead, the connected

component stays the same but with a different spanning tree this time. Both this decision

and the update of the component can be done in logarithmic on the size of the graph time,

using the fact that edges admit efficient representation because of the planarity property of

the graph G. The use the data structure in [39] is an orthogonal issue in our data structure,

meaning that it is not connected with the operation of the authenticated data structure,

but rather, it supports the maintenance of the forest F . Once forest F is updated – always

through the update operations that the data structure supports – the hashing scheme is

accordingly updated and the new digest is computed.

(1)− (7) & (Security) They follow immediately from Theorem 2.4.2.

In the next two subsections we use the results of Theorem 2.4.1 for connectivity queries

for general graphs that evolve through edge and vertex insertions. We use known techniques

(data structures) that support these type of queries for regular (non-authenticated) data

structures and apply our authentication framework of Section 2.3, which is based on paths

and their properties, on these data structures by appropriately authenticating path prop-

erties that are related to the connectivity queries that we study. In other words, here, we

have the first applications of our authentication framework of the path hash accumulator

to the authentication of queries that are not directly related to paths.

2.4.5 Biconnectivity Queries on Graphs

As before, let G be a general graph that is maintained through update operations makeVertex

and insertEdge. We are interested in authenticating the query operation

• areBiconnected(u, v): determines whether u and v are in the same biconnected com-

ponent of G,

which we call a biconnectivity query. Theorem 2.4.1 can be used to support an authenticated

data structure that answers biconnectivity queries.

54

Theorem 2.4.4. Let G be a general graph with n nodes. There exists a semi-dynamic

authenticated data structure that supports query operation areBiconnected on pairs of nodes

in graph G that evolves through update operations makeVertex and insertEdge having the

following performance:

1. query operation areBiconnected takes O(log n) time; for this query operation, the an-

swer authentication information has size O(log n) and the answer verification time is

O(log n);

2. the total space used is O(n);

3. for every update operation the update authentication information is O(1);

4. update operation makeVertex takes O(1) time, and update operation insertEdge takes

O(log n) amortized time.

Proof. (Data Structure) We extend the data structure of [146]. We maintain the block-cut-

vertex forest B of G. Each tree T in B corresponds to a connected component of G. There

are two types of nodes in T : block nodes that correspond to blocks (biconnected components)

of G and vertex nodes that correspond to vertices of G. Each edge of T connects a vertex

node to a block node. The block node associated with a block B is adjacent to the vertex

nodes associated with the vertices of B. We have that two vertices u and v of G are in the

same biconnected component if and only if there is a path between the vertex nodes of B
associated with u and v and this path has length 2. Thus, operation areBiconnected in G

is reduced to performing operation pathLength in B and certifying that the returned path

length equals 2.

(1)−(4) & (Security) They follow immediately from Theorem 2.4.2. The time complexity

for edge insertions is amortized, because these are the guarantees for the data structure

in [146].

2.4.6 Triconnectivity Queries on Graphs

Finally, we show how to authenticate the following query operation:

• areTriconnected(u, v): determine whether u and v are in the same triconnected com-

ponent G,

which we call a triconnectivity query, in a general graph G maintained through edge and

vertex insertions as before. Again, we use the results of Theorem 2.4.1 to construct an

authenticated data structure that answers triconnectivity queries.

55

Theorem 2.4.5. Let G be a general graph with n nodes. There exists a semi-dynamic

authenticated data structure that supports query operation areTriconnected on pairs of nodes

in graph G that evolves through update operations makeVertex and insertEdge having the

following performance:

1. query operation areTriconnected takes O(log n) time; for this query operation, the an-

swer authentication information has size O(log n) and the answer verification time is

O(log n);

2. the total space used is O(n);

3. for every update operation the update authentication information is O(1);

4. update operation makeVertex takes O(log n) time; update operation insertEdge takes

O(log n) amortized time.

Proof. (Data Structure) We extend the data structure of [37], where a biconnected graph (or

component) G is associated with an SPQR tree T that represents a recursive decomposition

of G by means of separation pairs of vertices. Each S-, P-, and R-node of T is associated

with a triconnected component C of G and stores a separation pair (s, t), where vertices s

and t are called the poles of C. A Q-node of T is associated with an edge of G. Each vertex

v of G is allocated at several nodes of T and has a unique proper allocation node in T .

Our authenticated data structure augments tree T with V-nodes associated with the

vertices of G and connects the V-node of a vertex v to the proper allocation node of v in T .

Also, it uses node attributes to store the type (S, P, Q, R, or V) of a node of T and its poles.

In this setting, operation areTriconnected can be reduced to a small number of pathLength

and type queries on the augmented SPQR tree.

(1)− (4) & (Security) They follow immediately from Theorem 2.4.2 and the complexity

bounds of the data structure in [37].

2.5 Authenticated Geometric Searching

In this section, we consider authenticated data structures for geometric searching problems.

Such data structures have applications to the authentication of geographic information

systems.

56

2.5.1 Fractional Cascading

Fractional cascading, originally presented in [23], is a general algorithmic technique used

in a broad class of geometric search problems. In fact, fractional cascading is an efficient

strategy for solving the iterative search problem which is described in the sequel.

Let U be an ordered universe and C= {C1, C2, ..., Ck} a collection of k catalogs, where

each catalog Ci is an ordered collection of ni elements chosen from U . For any element

x ∈ U , the successor of x in Ci is defined to be the smallest element in Ci that is equal or

greater than x. We say that we locate x in Ci when we find the successor of x in Ci. In the

iterative search problem, given an element x ∈ U , we want to locate x in each catalog in C.
Let n =

∑k
i=1 ni be the total number of stored elements. The straightforward solution is

to perform k separate searches: the search in catalog Ci can be performed in time O(log ni)

by binary search. The total time needed is O(k log n). An alternative approach is to merge

the k catalogs into a master catalog M and keep a correspondence dictionary between

positions in M and positions in each Ci. Using binary search on this merged catalog, we

solve the problem in O(k + log n) time, but we pay the overhead of increasing the storage

from O(n) to O(kn).

Fractional cascading succeeds in achieving an O(k + log n) time complexity for iterative

search, while keeping the storage linear. In comparison with the straightforward solution,

we can see that if, for instance, all catalogs have the same size and k = O(
√

n) or, even

k = O(log n), we have a time improvement of O(log n). The key point is how the catalog

correlation—that guides the search between incident catalogs—is designed and still the

storage is kept linear.

We now present the fractional cascading framework as it usually appears in applications.

The original work in [23] covers a more general model which is mostly interesting from a

theoretical point of view.

Given a collection C of catalogs, we consider a one-to-one correspondence between the

catalogs in C and the nodes of a graph G. Let G be a single source directed acyclic graph,

without multiple edges, that has bounded degree, i.e., each node of G has both in-degree

and out-degree bounded by a constant d. Each node v of G is associated with a catalog Cv.

G is called a catalog graph. Given a catalog graph G, we define Q(G) to be the family of

all connected subgraphs Q = (V, E) of G that contain s but do not contain any other node

(except s) having zero in-degree in Q. The iterative search problem for the catalog graph

G can then be restated as: given an element x ∈ U and a member Q = (V, E) of Q(G),

locate x in Cv for all v ∈ V . We refer to Q as the query graph.

57

Let k be the number of vertices of G and let n be the total number of elements in the

catalogs of G. In [23], it is showed that, using the fractional cascading technique, we can

build a data structure over G in O(n) time, using O(n) space, and solve the iterative search

problem in time O(k+log n). We briefly describe the data structure used and the fractional

cascading technique.

The Fractional Cascading Data Structure. Each catalog Cv is augmented to a catalog

Av by storing some extra elements. In Av, elements in Cv are called proper and the other

(extra) elements are called non-proper. Augmented catalogs that correspond to adjacent

nodes of G are connected via bridges. Let e = (u, v) be an edge of G. A bridge connecting

Au and Av is a pair (y, z) associating two non-proper elements y and z, where y ∈ Au,

z ∈ Av and y = z. Elements y and z have references to each other. Each non-proper

element y belongs to exactly one bridge. Two neighboring catalogs Au and Av are connected

through at least two extreme bridges that correspond to non-proper elements +∞ and −∞
respectively.

vu

B

−∞

+∞

x

z

z′
|B| = 7

y

y′

proper(y)

non-proper

proper

Au Av

us

xBv

Bu

Bw
Bs

w v

H

T

(a) (b)

Figure 2.5: (a) The fractional cascading data structure over a path. Squares and dots
represent non-proper and proper elements respectively. Edge (u, v) has three blocks. (b)
Inter-block hashing: DAG H defines the second level hashing. For any query element x,
any query graph Q and any traversal of Q, the target blocks define a tree T .

Each pair of neighboring bridges (y, z), (y′, z′) of edge (u, v) defines a block B which

contains all elements of Au and Av lying between the two bridges. If y′ ≤ y, then bridges

(y, z) and (y′, z′) are respectively called the higher and the lower bridge of B. The size |B|
of a block B is the number of the elements (both proper and non-proper) that it contains.

58

Block sizes constitute a crucial parameter for the performance of the data structure. If n

is the total size of the original catalogs, i.e., the total number of proper elements, then,

as shown in [23], the total number of non-proper elements is O(n) only if block sizes are

proportional to the bounded degree d of G. Thus, in fractional cascading blocks are chosen

to have bounded size both from above and below: for each block B, α ≤ |B| ≤ β, where α

and β are some constants proportional to d. Each non-proper element z ∈ Av is associated

(by storing a reference) to its next proper element proper(z) in Av, i.e., its successor in the

original catalog Cv. Given z, proper(z) can be retrieved in constant time (e.g., z points to

proper(z)). If z is a proper element, then we define proper(z) = z. Figure 2.5(a) describes

the data structure built over a path G. We, finally, describe how this data structure is used

to locate query elements.

The Location Process. Suppose that we know the successor, say l, of query element x

in an augmented catalog Au. In O(1) time, we can locate x in the corresponding original

catalog Cu, by just retrieving proper(l). Moreover, if e = (u, v) ∈ E, we can locate x in Av

as follows: starting from l, we traverse Au moving to higher elements until a bridge, say

(y, z), is reached that connects to Av, we then follow that bridge and finally traverse Av

moving to smaller elements until x has been located. Bridge (y, z) is called the entrance

bridge of catalog Au. In this way, the search is propagated to a neighboring new node by

means of a block B (whose higher bridge is (y, z)) in time O(|B|) = O(d) = O(1). Thus,

having located x in an original catalog, we can locate x in an adjacent original catalog in

constant time.

Given the query value x and a query graph Q, we initially perform a binary search to

locate x at the augmented catalog As, where s is the root of G, in time O(log n). Recall

that the query graph Q always contains the root s. Starting from node s, we traverse Q and

visit all of its nodes once. Given Q, such a traversal of Q can be performed by considering

any topological order of Q. A move from a node u to an adjacent one v, corresponds to

the procedure described above: having located x in Cu, we locate x in Cv in constant time.

That is, we traverse edge (u, v) by moving through the entrance bridge of Av. By traversing

the query graph Q in this a way, we solve the iterative search problem in O(kd + log n),

where k is the number of vertices of Q, n is the total number of proper elements in the

catalogs of G and d is the bounded degree of G (a constant).

59

2.5.2 Authentication Scheme for Fractional Cascading

We now move to the authentication of the iterative search problem that is solved using the

fractional cascading data structure. The idea is to construct a hashing scheme over the

data structure, so that a digest is computed and signed by the source, and short answer

authentication information is provided for any iterative search query for the catalog graph G.

We next describe our authenticated data structure D for fractional cascading.

Let h be a cryptographic collision-resistant hash function. We assume that a set of rules

have been defined, so that h can operate on elements of catalogs, nodes of graph G and

previously computed hash values. The hashing scheme can be viewed as a two level hashing

structure, built using the path hash accumulator scheme: intra-block hashing is performed

within each block defined in the data structure, and inter-block hashing is performed through

all blocks of the data structure. We next describe these hashing structures.

Intra-block Hashing. Consider any edge (u, v) of G, i.e., u is one of the parents of v.

Also, consider any two neighboring bridges (y′, z′) and (y, z) that define block B, where

y, y′ ∈ Au and z, z′ ∈ Av. We define P to be the sequence of elements of B that exist

in Av plus the non-proper elements of the corresponding bridges that lie in Av. That is,

P = {p1, p2, ..., pt} is an increasing sequence, where, if z′ ≤ z, p1 = z′ and pt = z. We

refer to P as the hash side of B. Using the path hash accumulator scheme, we compute the

digest D(P) of sequence P . For each element pi, we set N (pi) = {pi, proper(pi), v}, and, in

this way, the path hash accumulator can support authenticated membership queries (and

authenticated path property queries: here, one property of P is the corresponding node v).

We iterate the process for all blocks defined in the data structure: for each block B

having a hash side P in Av, HB is the hash path accumulation D(P) of sequence P . We

also define Bs to be a fictitious block, the augmented catalog As. The hash side of Bs is

the whole block itself, so HBs is well defined. All the used path hash accumulators define

the first level hashing structure.

Inter-block Hashing. The second level hashing structure is defined through a directed

acyclic graph H that is defined over blocks. That is, nodes of H are blocks of the data

structure. Suppose that w is a parent of u and u is a parent of v in G. If B is a block of

edge (u, v), then we add to the set of edges of H all the directed edges (B, B′), where B′ is

a block of edge (w, u) that shares elements from Au with B. Additionally, if v is a child of

the root s in G, then for all blocks B that correspond to edge (s, v), we add to the set of

60

edges of H the directed edge (B, Bs). This completes the construction of graph H. Bs is

the unique root of H. Figure 2.5(b) shows the graph H that corresponds to a catalog path.

Each block (node) B of H is associated with a label L(B). If B is a source node (leaf)

in H, then L(B) = HB. If B is the parent of blocks B1, . . . , Bt in H, listed in some

fixed order, then L(B) equals the path hash accumulation over sequence B1, . . . , Bt using

N (Bi) = {L(Bi), HB}. Here, the path hash accumulator is used simply for authenticating

membership in a set (like a Merkle tree; thus, no path property is used). This hashing

scheme over H corresponds to the second level hashing structure. Finally, we set D(D)=

L(Bs) to be the digest of the entire data structure D (which is signed by the data source).

2.5.3 Answer Authentication Information

Given a query x and a query graph Q, we describe now what is the authentication infor-

mation given to the user. If v is a node of Q, let sv be the successor of x in Cv. In the

location process, to locate x in Av, we find two consecutive elements y and z of Av such

that y ≤ x < z, where each of y and z may be either proper or non-proper. They are both

elements of a block B such that the entrance bridge of Av is the higher bridge of B. Observe

that z is the successor of x in Av and that sv = proper(y) when y = x, or sv = proper(z)

when y < x. We call z and B, the target element and the target block of Av, respectively.

Two useful observations are that: (1) in the location process, the traversal of the query

graph Q is chosen so that each node of Q is visited once, and (2) any two target blocks

visited by the location process that correspond to incident edges in Q share elements of

the common augmented catalog, and, thus, are adjacent in graph H. It follows that all the

target blocks define a subgraph T of H. T consists of the all target blocks and the edges of

H that connect neighboring target blocks (Figure 2.5(b)).

Lemma 2.5.1. For any query graph Q, graph T is a tree.

Proof. Consider the topological order used to define the traversal of the query graph Q. This

topological order defines a directed subtree TQ of Q. There is an one-to-one correspondence

between edges of TQ and target blocks, i.e., between edges of TQ and nodes of T .

For any node v of Q, let zv be the target element of Av and Bv the target block of Av.

The answer authentication information consists of:

1. Intra-block: for each node v of Q, the target element zv of Av and a verification

sequence pv from zv up to the path hash accumulation of the hash side of Bv, and

61

2. Inter-block: for every node (or target block) Bv of T that is not a leaf, the verification

sequences from every child of Bv in T up to the path hash accumulation L(Bv).

Lemma 2.5.2. If n is the total number of proper elements in the catalogs of C and d is

the bounded degree of G, then for any query graph Q of k nodes, the size of the answer

authentication information is O(log n + k log d) = O(log n + k).

Proof. The hash side of Bs has size |As| = O(n) and the hash side of any other target

block has size O(d). Thus, the intra-block answer authentication information consists of k

verification sequences, k−1 of length O(log d) and one of length O(log n), and, thus, has size

O(log n + k log d) = O(log n + k). For the inter-block answer authentication information,

recall that G and, thus, both Q and TQ, have out-degree bounded by d and that every target

block can share elements with at most O(d) other target blocks. Thus, H and T have in-

degree bounded by O(d). Now, all, but L(Bs), the second level path hash accumulations

are built over sequences of length O(d). L(Bs) is built over at most dn blocks that share

elements with As. Observe that there is a one-to-one correspondence between inter-block

verification sequences and edges in T . It follows that the inter-block answer authentication

information consists of k− 2 verification sequences of size O(log d) and one of size O(log n),

thus, has O(log n + k log d) size. In total, since d is a constant, the answer authentication

information is of size O(log n + k).

2.5.4 Verification of an Answer

For a given query element x and query graph Q = (V, E), we assume that the answer given

to the user is a set A = {(av, v) : v ∈ V }, where av is claimed to be the successor of x in

Cv. The answer authentication information consists of two verification sequences for each

node (target block) of tree T : one intra-block and one inter-block. These sequences form a

hash tree in our two-level hashing scheme. The verification process is defined by this hash

tree. Intuitively, an intra-block verification sequence of a target block Bv provides a local

proof that av is the successor of x in Cv, and then, all these local proofs are accumulated

through inter-block verification sequences into the signed digest.

Given elements x, y, y′, z, z′ and a node v of Q, consider the predicates: (1) y ≤ x < z,

(2) y and z are consecutive elements in Av, (3) y = x and y′ = proper(y) in Av and (4)

y < x and z′ = proper(z) in Av. If (1), (2) and (3) hold simultaneously, then they constitute

a proof that the successor of x in Cv is y′, whereas if (1), (2) and (4) hold simultaneously,

they constitute a proof that the successor of x in Cv is z′. Such a proof must be provided

for every v of Q.

62

Given A, x and the answer authentication information, the user first checks if there is

any inconsistency between values av and zv for every v of Q with respect to the two possible

proofs above. Observe that, by the answer authentication information, the user knows for

each node v of Q the target element zv and the corresponding element yv, such that yv < zv

and yv and zv are consecutive elements in Av. If there is at least one inconsistency, the user

rejects the answer. Otherwise, all that is needed is to verify the signed digest D(D) of the

data structure. Observe, that the user possesses all the data needed for the computation of

the signed digest. If the digest is verified, based on the collision-resistance property of the

hash function used in the scheme, the user has a proof that the answer is correct.

Lemma 2.5.3. If n is the total number of proper elements in the catalogs of C, then for any

query graph Q of k nodes, the answer verification time is O(log n + k log d) = O(log n + k),

where d is the bounded degree of G.

Proof. Recall that the verification time of a path hash accumulator is proportional to the

size of the verification sequence.

If the digest is verified, then based on the collision-resistance property of the hash

function h, and, in particular, the security of the path hash accumulator, the user has a

proof that the answer is correct: for each v of Q, the user can verify all the three conditions

previously discussed. A faulty answer can lead to a forged proof only if some collisions of h

have been found: the responder needs to break the security of the path hash accumulator

in authenticating membership queries, which is further reduced to finding collisions of the

cryptographic hash function h in use.

Lemma 2.5.4. For any catalog graph G of k nodes and of total size n, both intra-block and

inter-block hashing schemes can be computed in O(n) time using O(n) storage.

Proof. G has bounded in-degree by d = O(1) and every target block can share elements

with at most β = O(1) other blocks. Moreover, the path hash accumulation of a sequence

of length m can be computed in O(m) time and space.

We have thus proved the following theorem.

Theorem 2.5.1. Let G be the catalog graph for a collection C of t catalogs and n be the

total number of elements stored in C, where t ≤ n. If G is of bounded degree, then the

authenticated fractional cascading data structure D for G solves the authenticated iterative

search problem for G, achieving the following performance:

63

1. D can be constructed in O(n) time and uses O(n) storage;

2. given a query element x and a query graph Q with k ≤ t vertices, x can be located in

every catalog of Q in O(log n + k) time;

3. the answer authentication information has size O(log n+k) and the answer verification

time is O(log n + k).

2.5.5 Applications

Our authenticated fractional cascading scheme can be used to design authenticated data

structures for various fundamental two-dimensional geometric search problems, where it-

erative search is implicitly performed (see [24]). In all of these problems, the underlying

catalog graph has degree bounded by a small constant, and, typically, the graph itself has a

tree structure. We next describe how the authentication of the iterative search problem can

be extended to provide authentication of this broad class of queries that involves searching

in multi-catalogs that are organized in a tree structure.

Authentication scheme. The idea, here, is to extend the hashing scheme of the frac-

tional cascading data structure over the graph structure in which catalogs are organized.

In essence, what we need to additionally authenticate is that the correct subdigraph of the

catalog graph is accessed by the responder and used to generate the answer. That is, so far

(for the iterative search only) we assumed that this catalog subgraph is part of the query

(query graph Q). In the applications of the fractional cascading data structure, however,

this subgraph is not known in advance, but it is rather generated on-the-fly as the answer

is being produced. Accordingly, in order to verify the answer, the user needs first to au-

thenticate that the correct (authentic) subgraph is generated by the responder and that the

final answer corresponds to this correct subgraph of catalogs. Given that in our authen-

tication schemes verification is performed in a bottom-up fashion, the user essentially will

first authenticate the iterative search (as described in the previous subsections), and then

he will authenticate that the subgraph that corresponds to the iterative search is authentic

(all nodes that should have been included in the graph have been included, but no extra

nodes are included). This second verification step (subgraph authentication) can be easily

performed as follows.

The catalog graph is accessed by some search algorithm. The key property that we wish

our authentication scheme to satisfy is to authenticate this search procedure. This is done

by hashing over the graph structure (bottom-up hashing over the graph) as follows. Let v

64

be a node of the catalog graph G—recall, G is a directed acyclic graph—that has u1, . . . , uℓ

successor nodes, where ℓ is a constant (because the catalog graph G is of bounded degree).

Let dv be the data that is used by the search algorithm to advance the search from node

v to one or more successor nodes. Typically (essentially for catalogs organized as trees)

search is performed over an ordered data set, and, in this case, d is a sequence of ℓ (or ℓ−1)

keys (members of the set) that are used along with the search items (defined by the query)

to decide in which node(s) to advance the search. Node v is then associated with a hash

value hv, defined as

hv = h(hu1 , . . . , huℓ
, h(dv)).

Thus, we have a recursive definition of the digest of the hashing scheme at the source of

G. Depending on exact format of data dv, additional improvements (up to some constant)

may be considered in producing the hash value (digest) h(dv). Given, a traversed subgraph

of G, now, the answer authentication information additionally contains the hash values and

search information (i.e., keys) that are needed to recompute the final data digest. Given

this authentication scheme, the verification of the answer first involves the verification of

iterative search problem, as described earlier in the chapter, and then the verification of

the search subgraph of catalogs (depending on the exact query problem, the order may be

swapped). The connection of the two individual hashing schemes can be easily performed

at the root of the entire hashing structure: simply by hashing together the two individual

digests to generate the digest of the entire hashing scheme.

Given this extra layer of hashing and this extension of our authentication scheme, we

obtain authenticated versions of any data structure that uses iterative search over set of

catalogs organized as nodes of a DAG. The following results are obtained by using the results

in [24] and our the authentication schemes of this section, where n denotes the problem size.

Corollary 2.5.1. There is an authenticated data structure for answering line-intersection

queries on a polygon with n vertices that can be constructed in O(n log n) time and uses

O(n log n) storage. Denoting with k the output size, queries are answered in O(log n + k)

time; the answer authentication information has size O((k + 1) log n
k+1); and the answer

verification time is O((k + 1) log n
k+1).

Corollary 2.5.2. There are authenticated data structures for answering ray shooting and

point location queries on a planar subdivision with n vertices that can be constructed in

O(log n) time and use O(n log n) storage. Queries are answered in O(log n) time; the answer

authentication information has size O(log n); and the answer verification time is O(log n).

65

Corollary 2.5.3. There are authenticated data structures for answering orthogonal range

search, orthogonal point enclosure and orthogonal intersection queries that can be con-

structed in O(n log n) time and use O(n log n) storage, where n is the problem size. Denoting

with k the output size, queries are answered in O(log n+k) time; the answer authentication

information has size O(log n + k); and the answer verification time is O(log n + k).

2.6 Conclusions

In this chapter, we have examined the problem of designing efficient authenticated data

structures for broad classes of queries. We have developed the path hash accumulator, a

new authentication scheme for general decomposable queries over sequences of data elements

and, in particular, queries about properties of subsequences that involve any associate oper-

ation applied over their elements. Using this authentication scheme, we then design new au-

thenticated data structures for graph queries (e.g., path and connectivity queries) or search

problems over two-dimensional geometric objects (e.g., point location and range search).

Authentication of graph queries is performed by authenticating certain path properties in

some tree graphs that are specially designed for the graph in question. Authentication of

geometric search problems is performed by authenticating the general fractional cascad-

ing framework that solves the iterative search problem. Our authentication techniques are

efficient and introduce asymptotically no extra overhead to the underlying search structure.

An interesting open problem is the design of dynamic versions of our authenticated data

structures based on fractional cascading.

Much of the technical content of this chapter appears in publication [59].

Chapter 3

Authentication of Set-Membership

Queries

3.1 Introduction, Contributions and Previous Work

Deriving lower bounds on the complexity of computational problems is an important, often

difficult, task. On one hand, lower bounds put limits on the efficiency that one can hope

for, on the other hand, when lower bounds asymptotically match upper bounds derived by

known algorithmic constructions, one proves the optimality of these algorithms. In this

case, exact analysis and the study of constant factors often replace asymptotic analysis

for the need to explore the best possible algorithmic efficiency for the problem in study.

Finally, lower bounds proofs can often provide a characterization of the problem and give

an explanation of the computational difficulty that is intrinsic in it.

In this chapter, we walk along these lines. We present a unified analysis and design

of algorithms and data structures for two important, and seemingly unrelated, algorithmic

problems in the area of information security: (i) data authentication through cryptographic

hashing, i.e., the authentication of membership queries in the presence of data replication

at untrusted directories, and (ii) multicast key distribution using key-graphs, i.e., the distri-

bution of cryptographic keys by the controller of a dynamic multicast group. We provide

logarithmic lower bounds on various time and space cost measures for these problems. In

view of these lower bounds, we develop new efficient data structures for these problems and

give an accurate analysis of their performance, taking into account constant factors in the

leading asymptotic term.

66

67

Our unified approach is based on the definition of an abstract and generic class of com-

putational problems, where a directed acyclic graph (DAG) describes the computation of a

collection of output values from an input set of n elements. In particular, we introduce hier-

archical data processing (HDP) problems and study their computational bounds. An HDP

problem is related to maintaining, in a systematic way, a dynamic collection of elements

along with an associated set of values. Updates of elements generally result in updates of the

associated values and queries on elements return subsets of the associated values. In either

case, for a problem of this type, the computations that are carried out after an update or

a query are all performed sequentially, according to an associated hierarchy, which in turn

is expressed by means of a DAG. Accordingly, various cost measures related with the time

or space complexity of these computations depend on certain structural properties of the

underlying DAG. We define several cost measures for subgraphs of a DAG that characterize

the time and space complexity of queries and update operations in an HDP problem. We

prove Ω(log n) lower bounds on these cost measures using a reduction from the problem of

searching by comparisons in an ordered set. Furthermore, in view of these logarithmic lower

bounds, we design a new randomized DAG scheme for HDP problems that is based on a

variation of the skip-list. Our new DAG scheme achieves computational efficiency which is

very close to the optimal with respect to the leading logarithmic terms.

We motivate the study of the class of HDP problems by two seemingly different algorith-

mic problems related with applications in the area of information security. Both problems

share the property that the involved computations are performed according to the hierar-

chy induced by a DAG, that is, they involve some type of hierarchy-based data processing.

The first application is the model of hash-based authenticated data structures that has been

recently proposed for data authentication in distributed and untrusted environments. In

this model, queries on a data set are answered by untrusted entities and not by the source

and owner of the data set, in a way where each answer contains information that can been

used to provide an cryptographic proof about the validity of the answer. We focus on

authenticated dictionaries, where membership queries are asked about a set, and consider

the case where authentication is achieved by hierarchically applying cryptographic hashing

over the data set. The second application is the problem of multicast key distribution using

key-graphs. Here, a dynamic group of users share a set of keys so that they can securely

implement multicast transmissions by means of private-key encryption. Using key-graphs,

any update in the group memberships results in changing and securely redistributing to the

users some subset of the keys.

We obtain new results for these two information security problems by first showing that

68

they can be modeled by a HDP problem and by appropriately applying to their domain

the general lower bounds and our new DAG scheme. For data authentication through

cryptographic hashing, we model (the design of) any authenticated dictionary as an HDP

problem where only various costs related to authentication, the authentication overhead, are

considered. Using our framework, we prove that any hash-based authenticated dictionary

incurs logarithmic on its size authentication cost in the worst case and we present a new

authenticated dictionary with authentication cost closer to the theoretical optimal. Simi-

larly, we show that a broad class of multicast key distribution protocols can be viewed as

HDP problems and we thus prove that any such protocol has a logarithmic on the size of

the group time or communication complexity in the worst case.

Interestingly, the proof of our lower bounds is based on a reduction from the problem

of searching by comparison in an ordered set of size n to an HDP problem of the same size,

which establishes a relationship between these two types of problems. This relationship

further characterize the computational difficulty of the security problems that we study.

Additionally, through this reduction, our new DAG scheme provides us with a new skip-list

version where searches have expected cost that is closer to the theoretically optimal. Our

study of HDP not only offers a unified treatment of the two information security problems

in consideration, but also provides an new interesting theoretical framework in problem

analysis and algorithm and data structure design. Indeed, the class of HDP problems can

in principle be used to model any hierarchy-based data processing problem in terms of lower

bounds and efficient constructions.

In the rest of the section we briefly describe the class of problems that we study, we

summarize our contributions in the analysis of the complexity of HDP problems and in data

structure design and we present an overview of the new results that we get by applying our

framework in the two algorithmic problems in the domain of information security. We also

review previous work.

3.1.1 Hierarchical Data Processing

We introduce an abstract and generic class of problems, the hierarchical data processing

(HDP) problems. This class of problems models computations over a dynamic set of n

elements, where all computations are lead by the hierarchy induced by a directed acyclic

graph (DAG), so that various costs depend on certain structural properties of this underlying

DAG. These problems share the following characteristics. Associated with the elements is

a structured collection of values, organized according to the DAG. As elements change over

69

time, the values are accordingly updated. Additionally, queries on elements are issued,

where typically the answer of a query is a subset of the associated values.

More specifically, in an HDP problem a dynamic collection of elements, maintained by

update operations, is associated with a set of values, which in turn is organized by means

of a DAG. Data processing involves the computation and update of the set of values after

every update in the elements. In addition, queries on elements are answered, again, by

accessing and processing data values through traversals of the DAG. All operations on

elements and associated values involve processing of data according to the hierarchy that

the DAG induces. Additionally, the complexity of all computations and all costs parameters

related to the problem depend on specific properties and the structure of the DAG in use.

Previous Work. We are not aware of any previous systematic study of the class of HDP

problems.

Our Results. We define several cost measures for subgraphs of a DAG that characterize

the space and time complexity of queries and update operations in an HDP problem. For

a problem of size n, we relate each of these cost measures to the number of comparisons

performed in the search of an element in an ordered set of size n. Through this reduction,

we prove an Ω(log n) lower bound on the space and time complexity of query and update

operations in any HDP problem. We also show that for this class of problems trees are

optimal DAG structures compared with general DAGs. In view of the logarithmic lower

bound and the optimality of tree DAGs for HDP problems, we also design a new randomized

DAG, called multi-way skip-list DAG scheme, which is based on a variation the skip-list data

structure. We give a detailed analysis of the cost measures of our DAG scheme taking into

account the constant factor on the leading asymptotic term and we show that it achieves

structural properties that are close to optimal. Accordingly, we get that multi-way skip-

lists, when used to lead the computations of any HDP problem, achieve efficiency in terms

of time and space complexities.

Hierarchical data processing problems and their computational bounds are presented in

Section 3.2. In Section 3.3, we present and analyze our multi-way skip-list DAG scheme.

3.1.2 Data Authentication and Authenticated Data Structures

Data structures are designed to organize a collection of data, so that searching in the collec-

tion and answering queries about the data are performed efficiently. Implicitly, the owner

and the user of the data structure are assumed to be the same entity. An important security

problem arises when this assumption is abandoned. For instance, with the advent of Web

70

services and pervasive computing, a data structure can be controlled by an entity different

than the owner or the user of the data. Additionally, data replication applications achieve

computational efficiency by caching data at servers near users, but they present a major

security challenge. Namely, how can a user verify that the data items replicated at a server

(e.g., the answer to a query) are the same as the original ones generated by the data source?

The naive approach of directly applying traditional message authentication techniques (like

digital signatures or message authentication codes) in this data authentication problem ei-

ther fails or lacks efficiency and scalability. For instance, digitally signing the answer to any

query of a data structure is not viable for the set of possible answers can be unbounded,

especially for dynamic data sets that evolve over time.

Authenticated data structures (ADSs) capture exactly this, non-conventional (and closer

to today Internet’s reality) new data structuring paradigm. A data structure is controlled

by an entity that is not the creator of the data. That is, not the data source but rather an

entity not trusted to a user issuing queries answers these queries. ADSs solve the security

problem of data authentication in these untrusted distributed environments and receive

more and more attention. They support authenticated queries: they allow the user to verify

the validity of the answer, i.e., either accept the answer as authentic or reject it.

In particular, an ADS is a distributed model of computation where a directory answers

queries on a data structure on behalf of a trusted source and provides to the user a crypto-

graphic proof of the validity of the answer. The source signs a digest (i.e., a cryptographic

summary) of the content of the data structure and sends it to the directory. Ideally, the

digest has O(1) size. This signed digest is forwarded by the directory to the user together

with the proof of the answer to a query. To verify the validity of answer, the user computes

the digest of the data from the answer and the proof, and compares this computed digest

against the original digest signed by the source.

Cost parameters for an ADS include the space used (for the source and directory), the

update time (for the source and directory), the query time (for the directory), the digest

size, the proof size and the verification time (for the user). In the important class of hash-

based authenticated data structures, the digest of the data set is computed by hierarchical

hashing, i.e., by hierarchically applying a cryptographic hash function over the data set.

Previous Work. Early work on ADSs was motivated by the certificate revocation problem

in public key infrastructure and focused on authenticated dictionaries, on which membership

queries are issued. The hash tree scheme introduced by Merkle [95] can be used to implement

a static authenticated dictionary. A hash tree T for a set S stores cryptographic hashes

of the elements of S at the leaves of T and a value at each internal node, which is the

71

result of computing a cryptographic hash function on the values of its children. The hash

tree uses linear space and has O(log n) proof size, query time and verification time. A

dynamic authenticated dictionary based on hash trees that achieves O(log n) update time

is described in [103]. A dynamic authenticated dictionary that uses a hierarchical hashing

technique over skip-lists is presented in [52]. This data structure also achieves O(log n) proof

size, query time, update time and verification time. Other schemes based on variations of

hash trees have been proposed in [17, 46, 72]. The software architecture and implementation

of an authenticated dictionary based on skip-lists is presented in [58]. A distributed system

realizing an authenticated dictionary and an empirical analysis of its performance in various

deployment scenarios are described in [54]. The authentication of distributed data using web

services and XML signatures is investigated in [118] and prooflets, a scalable architecture

for authenticating web content based on authenticated dictionaries, are introduced in [21].

An alternative approach to the design of authenticated dictionary, based on the RSA

accumulator, is presented in [57]. This technique achieves constant proof size and verification

time and provides a tradeoff between the query and update times. For example, one can

achieve O(
√

n) query time and update time. In [2], the notion of a persistent authenticated

dictionary is introduced, where the user can issue historical queries of the type “was element

e in set S at time t”. A first step towards the design of more general ADSs (beyond

dictionaries) is made in [34] with the authentication of relational database operations and

multidimensional orthogonal range queries. In [86], a general method for designing ADSs

using hierarchical hashing over a search graph is presented. This technique is applied to the

design of static ADSs for pattern matching in tries and for orthogonal range searching in a

multidimensional set of points. Efficient ADSs supporting a variety of fundamental search

problems on graphs (e.g., path queries and biconnectivity queries) and geometric objects

(e.g., point location queries and segment intersection queries) are presented in [59]. This

paper also provides a general technique for the design of ADSs that follow the fractional

cascading paradigm. Work related to ADSs includes [18, 32, 55, 83, 84]. Related to ADSs

is also recent work on zero knowledge sets and consistency proofs [98, 108] that model data

authentication in a more adversarial environment, where the data source is not considered

trusted per se. These schemes use significantly more computational resources than ADSs.

No previous study on the cost of ADSs has been made. As we will see later, from

our study we get the following. The computational overhead incurred by an ADS over a

non-authenticated data structure consists of: (1) the additional space used to store authen-

tication information (e.g., signatures and hash values) in the data structure and in the proof

of the answer, and (2) the additional time spent performing authentication computations

72

(e.g., computing signatures and cryptographic hashes) in query, update and verification op-

erations. Since cryptographic operations such as signatures and hashes are orders of magni-

tude slower than comparisons and a single hash value is relatively long, the authentication

overhead dominates the performance of an ADS. All the existing hash-based authenticated

dictionaries have logarithmic query, update and verification cost and logarithmic proof size.

We thus address the following question: can the authenticated version of a data struc-

ture (i.e., authenticating membership queries) be more efficient then the non-authenticated

one (i.e., answering membership queries)1? Considering only dictionaries, the existence of

tree-based schemes, schemes with logarithmic authentication costs (proof size, verification

time, update/query time) where hashing is performed according to the search tree (data

structure) (e.g., [103, 52]), shows that answering authenticated membership queries is at

most as expensive as answering non-authenticated membership queries using search trees.

But can we do better? Already in the introduction of authenticated dictionaries, Naor

and Nissim [103] posed as an open problem the question of whether one can achieve sub-

logarithmic authentication overhead for dictionaries. We answer this question negatively

for hash-based ADSs.

Our Results. We present the first study on the cost of ADSs, focusing on dictionaries.

We model a hash-based dictionary ADS as an HDP problem. We consider a very general

authentication technique where hashing is performed over the data set in any possible way

and where more than one digests of the data structure are digitally signed by the source.

Applying our results from Section 3.2 in this domain, we prove the first nontrivial lower

bound on the authentication cost for dictionaries. In particular, we show that in any hash-

based authenticated dictionary of size n where the source signs k digests of the data set, any

of the authentication costs (update/query time, proof size or verification time) is Ω(log n
k)

in the worst case. Thus, the optimal trade-off between signature cost and hashing cost is

achieved with O(1) signature cost and Ω(log n) hashing cost. In this case, we show that

hash-based authenticated dictionaries of size n incur Θ(log n) complexity.2 We also show

that among all DAGs, trees are optimal when used for hashing. Also, our skip-list structure

from Section 3.3 can be used to implement an efficient authenticated dictionary, where

certain cost parameters are reduced with respect to previous constructions. Our results on

1Clearly, for the question to make sense, we completely separate the notions of authenticating and an-
swering membership queries.

2Interestingly, the use of a different cryptographic technique, namely the use of one-way accumulators
in [57], achieves constant proof size and verification time, but involves more expensive update costs
and more expensive primitive operations (exponentiations) with respect to the efficient cryptographic
hashing.

73

authenticated dictionaries are described in Section 3.4.

3.1.3 Multicast Key Distribution

Multicast key distribution (or multicast encryption) is a model for realizing secrecy in mul-

ticast communications among a dynamic group of n users. To achieve secrecy, one needs

to extend the conventional point-to-point encryption schemes to the multicast transmission

setting. Namely, the users share a common secret key, called group-key, and encrypt mul-

ticast messages with this key, using a secret-key (symmetric) encryption scheme. When

changes in the multicast group occur (through additions/deletions of users), in order to

preserve (forward and backward) security, the group-key needs to be securely updated.

In general, a group controller (physical or logical entity) is responsible for distributing

an initial set of keys to the users. Each user possesses his own secret-key (known only to

the controller), the group-key and a subset of other keys. Upon the insertion/removal of

a user into/from the group, a subset of the keys of the users are updated. Namely, new

keys are encrypted by some of the existing keys so that only legitimate users in the updated

group can decrypt them. The main cost associated with this problem is the number of

messages that need to be transmitted after an update. Additional costs are related to the

computational time spent for encrypting and decrypting the keys.

Previous Work. Many schemes have been developed for multicast key distribution. We

focus on the widely studied key-graph scheme, introduced in [143, 147], where constructions

are presented for key-graphs realized by balanced binary trees such that O(log n) messages

are transmitted after an update, where n is the current number of users. Further work has

been done on key-graphs based on specific classes of binary trees, such as AVL trees, 2-3

trees and dynamic trees. See, e.g., [60, 56, 127]. In [19], the first lower bounds are given for

a restricted class of key distribution protocols, where group members have limited memory

or the key distribution scheme has a certain structure-preserving property. In [135], an

amortized logarithmic lower bound is presented on the number of messages needed after an

update. The authors prove the existence of a series of 2n update operations that cause the

transmission of Ω(n log n) messages. Recently, a similar amortized logarithmic lower bound

has been shown in [99] for a more general class of key distribution protocols, where one can

employ a pseudorandom generator to extract (in a one-way fashion) two new keys from one

key and one can perform multiple nested key encryptions. Pseudorandom generators for

this problem were first described in [20], where the number of messages are decreased from

2 log n to log n.

74

Our Results. We show that the multicast key distribution problem using key-graphs

is an HDP problem. Applying our results from Sections 3.2 and 3.3 to this domain: (i)

we perform the first study of general key-graphs (other than trees) and show that trees

are optimal structures; (ii) we prove an exact worst-case logarithmic lower bound on both

the communication cost (number of messages) and the computational cost (cost due to

encryption/decryption) of any update operation, the first of this type; and (iii) we present

a new scheme (tree DAG) that achieves costs closer to the theoretical optimal. Note that

we give the first lower bounds on the encryption/decryption costs and that our lower bound

proof is more generic since it depends on no certain series of update operations. In essence,

we present the first exact, worst case logarithmic lower bound for the communication cost

of the multicast key distribution problem. All of the previously known lower bounds are

amortized, i.e., they prove the existence of a sequence of updates that include an expensive

(of at least logarithmic cost) one. In contrast, we prove the existence of a single update

of at least ⌊log n⌋ communication cost for any instance of the problem. Our lower bound

holds also for protocols that use pseudorandom generators or multiple encryption, as in the

model studied in [99]. These results are described in Section 3.5.

3.1.4 Skip-Lists

The skip-list, introduced in [120, 121], is an efficient randomized data structure for dictio-

naries. It is well known that skip-lists correspond to some tree (search) structure, so they

constitute an optimal DAG structure for HDP problems.

Previous Work. In [120, 121] it is shown that the expected number of comparisons for

a search in a skip-list is (log2 n)/(p log2
1
p) + O(1), where p is a probability parameter. In

the same work, an improved – in terms of number of comparisons – skip-list version gives
1−p2

p log2
1
p

log2 n + O(1) expected comparisons for a search. We are not aware of any improved

skip-list based scheme with better logarithmic constant.

Our Results. Through the relation between HDP and searching by comparison we

obtain a new version of skip-lists, where the expected number of comparisons in a search is

1.25 log2 n + O(1), which is closer to the theoretically optimal up to an additive constant

term. In particular, for p being the probability parameter of the skip-list, our skip-list

version reduces the expected number of comparisons down to (1−p)(1+p2)

p log2
1
p

log2 n + O(1) 3.

Details for the new multi-way skip-list DAG and the corresponding new skip-list version

3For p = 1
2
, the logarithmic constant of the expected number of comparisons for a search drops from 1.5

to 1.25.

75

are presented in Section 3.6.

3.1.5 Chapter Structure

The chapter is organized as follows. In Section 3.2, we introduce the problems of hierarchical

data processing, study their complexity, prove lower bounds on various associated costs and

show that tree DAGs are optimal when used for HDP problems. In view of these results, we

focus on tree DAGs and in Section 3.3 we design and analyze our new multi-way skip-list

DAG scheme for HDP problems that is based on skip-lists and achieves performance close

to optimal. In Section 3.4 we apply our results to data authentication problem through

hashing and in Section 3.5 to the problem of multicast key distribution using key-graphs.

Finally, in Section 3.6 we present the new improved skip-list version. We conclude and

discuss open problems in Section 3.7.

3.2 Hierarchical Data Processing and its Theoretical Limits

In this section, we define several structural cost measures for subgraphs of a DAG and

prove lower bounds them. Such cost measures are related to the computational complexity

of operations in a class of problems that we call hierarchical data processing problems. Our

lower bounds are naturally translated to complexity results of this type of problems.

3.2.1 DAG Scheme

Before we introduce our new concepts, we define some graph notation. Let G = (V, E) be

a directed acyclic graph. For each node v of G, indeg(v) denotes the in-degree of v, i.e.,

the number of incoming edges of v, and similarly, outdeg(v) denotes the out-degree of v,

i.e., the number of outgoing edges of v. A source of G is a node v such that indeg(v) = 0.

A sink of G is a node v such that outdeg(v) = 0. We denote with Vsource ⊂ V the set of

source nodes of G and with Vsink ⊂ V the set of sink nodes of G. For any edge e = (u, v)

in E, node u is a predecessor of v and node v is a successor of u. A directed path in G

connecting node u to some other node is called trivial, if every node in the path other than

u has in-degree 1. A subgraph H of G is said to be weakly connected, if it is connected

when one ignores edge directions, non-trivial, if it contains no trivial paths, and complete4,

if all edges in G connecting nodes of H are edges of H. An edge in G connecting nodes of

H that is not an edge of H is called a missing edge of H and by H̄ we denote the complete

4The used term is not confusing: cliques are not defined for DAGs.

76

graph that we take if we add in H all of its missing edges. For any node v in a DAG G, Gv

denotes the subgraph in G whose nodes are connected with v through directed paths that

start at v, i.e., they are successor nodes of v in the transitive closure of G and whose edges

belong in these directed paths. We say that subgraph Gv is reachable from node v. Note

that for any node v, graph Gv is a complete graph (having no missing edges).

Definition 3.2.1 (DAG scheme). A DAG scheme Γ is a quadruple (G, S, n, k), where

G = (V, E) is a directed acyclic graph without parallel edges, S ⊂ V is a set of special nodes

and n and k are integers such that: (i) |Vsource| = n; (ii) |V | is bounded by a polynomial in

n; and (iii) |S| = k, S ⊃ Vsink and S ∩ Vsource = ∅.

That is, G has n source nodes and poly(n) nodes in total; G contains a subset of k

non-source nodes, called special nodes, that includes all the sink nodes of G.

3.2.2 Cost Measures of a DAG Scheme

We first define three structural cost measures for any weakly connected subgraph of a DAG.

Definition 3.2.2 (Structural cost measures for subgraphs). Let H = (VH , EH) be a weakly

connected subgraph of a DAG G. We define the following with respect to G:

1. The node size size(H) of H is the number of nodes in H, that is, size(H) = |VH |;

2. the degree size indeg(H) of H is the sum of the in-degrees (with respect to G) of the

nodes of H, that is, indeg(H) =
∑

v∈H indeg(v);

3. the combined size comb(H) of H is the sum of its node and degree sizes, that is,

comb(H) = size(H) + indeg(H);

4. the boundary size bnd(H) of H is the number of edges of G that enter nodes of H but

are not in H.

Whenever it is not clear from the context with respect to which DAG G a structural cost

measure is defined, we use subscripts; e.g., indegH(·) denotes the degree size with respect

to graph H.

Using the above structural cost measures of subgraphs of DAGs, we define three cost

measures for a DAG scheme Γ.

Definition 3.2.3 (Cost measures of DAG scheme). Let Γ = (G, S, n, k) be a DAG scheme,

let s be a source node of G. Let P t
s denote the set of directed paths connecting node s to

77

node t in G. The associated path πs of s is a directed path in Gs that starts at s, ends at

a node of S and has the minimum combined size among all such paths, i.e., comb(πs) =

minu∈S,p∈P u
s

comb(p). We define the following cost measures for Γ:

1. update cost U(Γ) of Γ: U(Γ) = maxs∈Vsource comb(Gs), i.e., the maximum, over all

source nodes in Vsource, combined size of the subgraph Gs reachable from s;

2. query cost Q(Γ) of Γ: Q(Γ) = maxs∈Vsource comb(πs) = maxs minu∈S,p∈P u
s

comb(p),

i.e., the maximum, over all source nodes in Vsource, combined size of the associated

path πs of s;

3. sibling cost S(Γ) of Γ: S(Γ) = maxs∈Vsource bnd(πs), i.e., the maximum, over all

source nodes in Vsource, boundary size of the associated path πs of s.

Note that the associated path of a source node s (which is not necessarily unique) is

generally not the minimum boundary size path from s to a node in S, because for general

graphs minimum combined size does not imply minimum boundary size. In our study,

sibling costs defined as above are thus linked to query costs; we justify this choice at the

end of the section. For trees, this asymmetry disappears.

The following lemma states some useful facts about the structural cost measures of

subgraphs of a DAG and the cost measures of a DAG scheme.

Lemma 3.2.1. Let Γ = (G, S, n, k) be any DAG scheme with update cost U(Γ), query cost

Q(Γ) and sibling cost S(Γ) , H be any weakly connected subgraph of G, H̄ be the complete

subgraph that corresponds to H and p be any directed path. We have:

1. comb(H) =
∑

v∈H(1 + indeg(v)) and bnd(p) = 1 + indeg(p)− size(p);

2. bnd(H̄) ≤ bnd(H) and bnd(H̄) ≤ indeg(H)− size(H) + k;

3. comb(H) > indeg(H) ≥ size(H)− 1 and indeg(H) ≥ bnd(H);

4. U(Γ) ≥ Q(Γ) > S(Γ).

Proof. (1) Both expressions are derived by inspecting the definition of degree and boundary

sizes.

(2) Clearly bnd(H̄) ≤ bnd(H), because the missing edges of H contribute to its boundary

size. Let now pred(H, v) denote the number of predecessors of node v in G that are not

nodes of H and pred(H, v) denote the number of predecessors of v in H (i.e., the in-degree

of v in H). Since H̄ is a complete subgraph and VH̄ = VH , we have that bnd(H̄) =

78

∑

v∈VH
pred(H, v) =

∑

v∈VH
[indeg(v)− pred(H, v)] = indeg(H̄)−∑

v∈VH
pred(H, v)]. But

indeg(H̄) = indeg(H) and, if V H
Sink denotes the set of sink nodes in subgraph H with

respect to their out-degree in H, then
∑

v∈VH
≥ size(H̄) + V H̄

Sink, since each non-sink

node in H̄ contributes one in the sum: the edge that connects it to a successor node of

H̄. Since size(H̄) = size(H) and V H̄
Sink = V H

Sink ≤ k, we finally have that bnd(H̄) ≤
indeg(H)− size(H) + k.

(3) By definition and since size(H) > 0 we have that comb(H) > indeg(H). Also,

consider any spanning tree of the weakly connected subgraph H; all of its size(H)−1 edges

belong in H when they are appropriately given a direction. Thus, indeg(H) ≥ size(H)− 1.

(This implies that comb(H) ≥ size(H), although by definition for weakly connected graphs

we take that comb(H) > size(H).) Also note that indeg(H) = bnd(H) + |EH | for any

subgraph H in G and |EH | ≥ 0.

(4) Note that the associated path πs of any source node of G is a subgraph of the

subgraph Gs of G that is reachable from s. Thus, comb(Gs) ≥ comb(πs) for any source

node s of G and accordingly, U(Γ) ≥ Q(Γ). Similarly, since for any subgraph H of G

we have from (3) that comb(H) > bnd(H), we take that for any s ∈ Vsource it holds that

comb(πs) > bnd(πs). Thus, if s∗ is the source node in G with the associated path πs of

maximum boundary size, we have that Q(Γ) ≥ comb(πs∗) > bnd(πs∗) = S(Γ).

Note that, by the above lemma, for any DAG scheme, the update cost is no less than

the query cost and the query cost is no less than the sibling cost. This fact will be used

for the lower bound derivation: it suffices to focus only on the smallest of the costs of a

DAG scheme, i.e., its sibling cost. Note that from Lemma 3.2.1 and in the worst case,

the combined, degree and boundary sizes of the associated paths of source nodes of DAG

scheme Γ = (G, S, n, k), but also of the subgraphs reachable from the source nodes of G,

are each lower bounded by cost measure S(Γ) of Γ.

3.2.3 Hierarchical Data Processing Problems

Our motivation for introducing DAG schemes is that they model an abstract class of com-

putational problem where a DAG G holds a collection of n input elements (stored at source

nodes) and a collection of output values of size that is bounded by a polynomial on n (stored

at non-source nodes) that are computed using the DAG. Query operations on elements re-

turn a collection of values. Update operations modify the DAG G and the input elements,

causing corresponding changes to the set of values. Computations are performed sequen-

tially and hierarchically, according to the hierarchy induced by the underlying DAG G. The

79

computational cost (time, space, or communication complexity) of query and update oper-

ations can be expressed as the combined, degree or boundary size of a subgraph (usually

Gs or πs, for a source node s of G), where every node v in the subgraph contributes to the

cost an amount proportional to indeg(v). Generally, any computational cost measure for a

problem in this class is completely characterized by structural cost measures of subgraphs of

DAG G. We refer to such problems as hierarchical data processing (HDP) problems. More

formally:

Definition 3.2.4 (Hierarchical Data Processing problems). The class of hierarchical data

processing problems contain computational problems Π with the following characteristics.

1. The input of Π is a set of elements E = {el1, ..., eln} of size n.

2. The output of Π is a collection of values V = {val1, ..., valt} where t is bounded by a

polynomial on n.

3. Associated with Π is a DAG scheme (G, S, n, k), such that elements in E and values

in V are stored at source and respectively non-source nodes of G.

4. Given a subset E ′ ⊆ E of elements, problem Π involves a computation CE ′ that per-

forms some type of data processing. Computations in Π are triggered by some op-

eration: either an update of an element in E or a query about a subset E ′ ⊆ E of

elements.

5. Any computation C in Π is fully characterized by an associated subgraph H of G. In

particular:

• The associated subgraph H of computation CE ′ depends on the elements in E ′,
graph G and the set of special nodes of G. In particular, H is a weakly connected

and complete subgraph of G that includes the source nodes hosting elements in

E ′ and at least one of the nodes in S (special nodes of G).

• Computation C is performed sequentially at steps, where each node v of H cor-

responds to a step of C, and hierarchically according to the hierarchy induced

by H, where a step corresponding to node v can be executed only after all steps

corresponding to the predecessor nodes of v have been executed.

• The execution of any step of computation C corresponding to node v of H con-

tributes to its computational cost an amount proportional to indeg(v). That is, a

step at node v has time, space or communication complexity cost of Θ(indeg(v)).

80

• Computations in Π involve one (or more) of the following types of data processing

of the collection V ′ ⊆ V of values stored at the nodes of the associated subgraph

H, where data processing is performed sequentially and hierarchically according

to DAG H: (i) the update of values in V ′, (ii) the output of values in V ′ or of

values in a subset V ′′ ⊂ V ′ of them or (iii) the evaluation of a function on values

in V ′ or evaluations of functions on the values in V ′ or on the values in V ′′ ⊂ V ′.

We note that the DAG scheme that is associated with an HDP problem is not part

of the input of the problem. That is, it is not given in advance. The DAG scheme is

part of the algorithmic and data structuring technique that is used for the solution of the

problem. Naturally, we ask which particular DAG scheme or DAG schemes of which type

achieve optimal performance in terms of the complexity of the computations performed. By

definition, any computation in an HDP problem is performed sequentially and hierarchically

according to an associated subgraph of DAG G. Additionally, any such computation incurs

computational costs that are fully described by the structural cost measures of the associated

subgraph H. Thus, the cost measures of the DAG scheme associated to a HDP problem

capture the intrinsic worst case computational complexity of this problem.

In the rest of the section we derive results that reveal the inherent computational limits

that exist in any HDP problem and, furthermore, that characterize the optimal DAG scheme

structure for these problems.

3.2.4 Sibling Cost and Search by Comparisons

We first show that the cost measures for a tree-based DAG scheme are related to the

number of comparisons in a search tree derived from the scheme. By the above discussion

and Lemma 3.2.1, focusing on the sibling cost suffices. For completeness, we first give some

definitions.

Definition 3.2.5 (Directed Trees). A directed tree is a DAG resulting from a rooted tree

when its edges are assigned directions towards the root of the tree. Then, parent-child

relation is defined among neighboring nodes, leaves correspond to source nodes and internal

nodes correspond to non-source nodes.

Definition 3.2.6 (Search Trees). Let (X,�) be a totally ordered set of size n, drawing

values from universe U , where � is a binary relation, referred in this chapter as greater or

equal.

81

• Given any element y ∈ U , we say that we locate y in X if we find the predecessor

(element) pr(y) of y in X, if it exists, defined to be pr(y) = {max� x|x ∈ X ∧x � y},
i.e., the maximum (with respect to relation �) element x ∈ X such that x � y.

Locating an existing element of X in X corresponds to finding the element itself.

• A leaf-based search tree for (X,�) is a rooted tree such that: (i) the tree has exactly

|X| = n leaves, each storing an element in X, and the internal tree nodes are assigned

with n− 1 elements from X, (ii) given any element y ∈ U , pr(y) ∈ X can be located

by searching in the tree, where at each tree node the search is lead by comparisons,

i.e., evaluations of relation � on pairs of elements consisting of y and an element that

is assigned at this tree node.

Lemma 3.2.2. Let (X,�) be a totally ordered set with n elements drawn from universe U

and let ∆ = (T, S, n, 1) be a DAG scheme, where T is a directed tree. We can build from T

a search tree T ′ for X by storing the elements of X at the leaves of T and assigning tuples

of elements in X to internal tree nodes of T , such that using T ′ any element y ∈ U can be

located with bnd(πs) comparisons, with s being the source node of T where the search ends.

Accordingly, element x ∈ X stored at source node s of T can be found in X using T ′ with

bnd(πs) comparisons �.

Proof. Assume that tree T is non-trivial. For each internal node of tree T , we fix a left-right

ordering of its children. Using this ordering, we consider the topological order of T that

corresponds to a postorder traversal of tree T and traverse the nodes of T according to

this topological order. That is, any node in T is visited after all of its children nodes have

been visited and according to the left-right ordering (with respect to the visit of its siblings

in T). As we encounter leaves of T we store at them elements of X, one element at each

leaf, selecting elements from X in increasing order. Next, we perform the following element

assignment for each internal node in T , using again the topological order. Each non-source

node v with predecessor nodes u1, . . . , uℓ, listed according to the corresponding left-right

node ordering, is assigned the ordered (ℓ− 1)-tuple of elements xv
1, . . . , x

v
ℓ−1 ∈ X, where for

1 ≤ i ≤ ℓ− 1, xv
i is the maximum element with respect to relation � that has been stored

at the source nodes of the subtree in T having as root node ui.

Tree T along with the elements stored at leaves and the assigned elements at internal

tree nodes is a leaf-based search tree T ′ for set X. First, it is easy to see, using induction,

that the number of assigned elements to internal nodes of T is n − 1 (only the maximum

according to � relation element in X is not assigned to any node). Suppose we search for

element y in the universe U where elements of X are drawn from. Observe that, while being

82

at non-source node v, elements xv
1, . . . , x

v
ℓ−1 can be used to decide to which node, among

nodes u1, . . . , uℓ, to advance our search as follows. For relation ≻ being the complement of

relation �, we advance the search at node u1 if y � xv
1, at node uℓ if y ≻ xv

ℓ−1, or otherwise

at node ui, where i is the unique integer value 1 ≤ i ≤ ℓ− 2 such that y ≻ xv
i and y � xv

i+1.

While visiting a source node s storing element xs, we simply report as the predecessor of y

in X element xs. Besides, with respect to the correctness of the above searching procedure,

we see that because of the way elements in X are stored at leaves and assigned to internal

nodes of T , T ′ satisfies the following desired (search tree) property: at any node, elements

stored in subtrees of children nodes that are to the right in the left-to-right ordering are

larger (with respect to relation � on elements in X) than elements stored in subtrees of

children nodes that are to the left in this left-to-right ordering. Moving to new node ui+1,

we correctly reduce the search space to the ordered subset of X {suc(xv
i), . . . , x

v
i+1}, where

suc(x) denotes the successor of x in X (defined to be the unique element x′ in X such that

x = pr(x′)). Note that if a search to locate y ends at a source node s storing element xs, xs

is the predecessor of y, and if y ≻ xs, then y and xs are the same elements. That is, with

one additional comparison at a leaf node we can test equality (whether the predecessor of

the located element is the element itself).

Consider the search path ps, when searching for an element y ∈ U , that ends at source

node s in T ′, that is the path connecting the root of T ′ to node s. Since for DAG scheme

∆ = (T, S, n, 1), k (the number of special nodes) equals one, the root of T is the special node

and thus ps is the unique associated path πs of s, i.e., ps = πs. Let v be a non-source node of

this path. We have that by performing indeg(v)− 1 comparisons at node v we can advance

our search to the correct node among the children of v. When we enter a source node, not

comparison is needed. Thus, the total number of comparisons � performed when searching

to locate y in X is equal to
∑

v∈πs|indeg(v)>0(indeg(v) − 1) = 1 +
∑

v∈πs
(indeg(v) − 1) =

1 + indeg(πs) − size(πs) = bnd(πs). Accordingly, since locating an existing element in X

corresponds to finding the element itself, we can find element xs ∈ X stored at source node

s of T using search tree T ′ by performing bnd(πs) comparisons.

If T contains trivial paths, the proof is as above with only one difference with respect

to any nodes with in-degree 1. At every node w with in-degree 1, we assign the element

assigned to its child and when searching in the tree we perform no comparison � at w, but

rather immediately advance our search at the child node. (That is, at a node v assigned

with only one search key, we perform a comparison only when indeg(v) = 2.) The number

of comparisons is again bnd(πs).

83

Lemma 3.2.2 draws a direct analogy between the sibling cost of any tree-based DAG

scheme and the number of comparisons performed in a search tree corresponding to the DAG

scheme. We use this analogy as the basis for a reduction from searching by comparisons to

any computational procedure of a HDP problem with cost that is expressed by the sibling

cost of a tree-based DAG scheme.

Theorem 3.2.1. Any DAG scheme ∆ = (T, S, n, 1) such that T is a directed tree has

Ω(log n) update, query and sibling costs.

Proof. It follows from Lemma 3.2.2 and the well-known Ω(log n) lower bound on search-

ing for an element in an ordered sequence in the comparison model (see for instance [71]).

Namely, this fundamental result states that any algorithm for finding an element x in a list

of n entries, by comparing x to list entries, must perform at least ⌊log n⌋+1 comparisons for

some input x. Comparisons are simply evaluations of binary relations on pair of elements.

Obviously the above statement applies also to any search tree built for a totally ordered

set X of size n using binary relation � on the elements of X. To see why, observe that a

search tree can be viewed as an index structure for searching an ordered list of n elements,

represented as the leaves of the search tree according to postorder tree traversal; addition-

ally, any search path to an element of X in the tree completely describes the sequence of

comparisons performed in order to locate this element. Consequently, applying the above

to the search tree T ′ of Lemma 3.2.2, we get that for any DAG scheme (T, S, n, 1), T being

a directed tree, there exists a source node s such that the boundary size bnd(πs) of the as-

sociated path πs of s is at least ⌊log n⌋, thus there exists a source node s such that bnd(πs)

is Ω(log n). Then by definition, we get that for any DAG scheme ∆ = (T, S, n, 1) it holds

that S(∆) is Ω(log n). We finish the proof, by noting that from Lemma 3.2.1, for any DAG

scheme ∆ = (T, S, n, 1) we have that S(∆) < Q(∆) ≤ U(∆) and that, since T is a directed

tree its query cost Q(∆) is equal to its update cost U(∆). Thus, Q(∆) = U(∆) and both

are Ω(log n).

Remark 3.2.1. In any DAG scheme (T, S, n, 1), where T a directed tree, there is a unique

path connecting source node s to the unique special node in S (the root of T). Thus, the

associated path πs is also the minimum boundary size path from s to the root.

3.2.5 Optimality of Tree Structures

Next, we show that trees have optimal cost measures among all possible DAG schemes. We

start by showing that for DAG schemes (G, S, n, 1) having one special node, optimal costs

84

are achieved when G is a directed tree.

Theorem 3.2.2. Let Γ = (G, S, n, 1) be a DAG scheme. There exists a DAG scheme

∆ = (T, S, n, 1) such that T is a directed tree and U(∆) ≤ U(Γ), Q(∆) ≤ Q(Γ), and

S(∆) ≤ S(Γ).

Proof. DAG scheme Γ has only one special node, the unique sink node of G, so associated

paths of the source nodes of G are paths from a source node to the sink node of G. we

fix a topological order t(G) of G. We define DAG T to be the union of all minimum

combined cost directed paths πs for all source nodes in G, where ties in computing paths

πs are broken using a consistent rule according to the topological order t(G). It is easy

to see that the union is a directed tree: if two paths πs1 and πs2 from source nodes s1

and s2 cross at node v and meet again at node u (u may be the sink node of G), this

contradicts either the fact that each path has minimum combined cost or the tie breaking

rule. For instance, if subpath pv,u(s2) of πs2 does not coincide subpath pv,u(s1) of πs2 ,

either comb(pv,u(s1)) 6= comb(pv,u(s2)), in which case, one of the two paths πs1 and πs2 is

not optimal (it is not of minimum combined cost), or comb(pv,u(s1)) = comb(pv,u(s2)), in

which case, the tie breaking rule was violated.

By definition, it holds that U(∆) ≤ U(Γ), since for any source node s the reachable from

s subgraph Ts in T (which is simply the corresponding leaf-to-root path in T) is a subgraph

of the reachable from s subgraph Gs in G. With respect to query and sibling cost, it is easy

to see that, since for any source node s the associated path πs stays the same in graphs G

and T but |EG| ≥ |ET |, it holds that indegT (πs) ≤ indegG(πs). Thus, Q(∆) ≤ Q(Γ), and

S(∆) ≤ S(Γ), as stated.

Remark 3.2.2. The directed tree T in the proof above, by construction, consists of min-

imum combined size paths from source nodes in G to the unique special node and thus T

is an optimal tree with respect to the structural cost measure of combined size. However

T is not necessarily optimal with respect to the structural cost measure of boundary size,

because, for general graphs, minimum combined cost does not imply minimum boundary

cost. Thus, although tree T is a minimum combined size tree in G and it is a tree such

that S(∆) ≤ S(Γ), T may not be a minimum boundary size tree in G. In other words, the

minimum combined size and minimum boundary size trees in G do not necessarily coincide.

This does not affect any of our results.

Finally, we examine how allowing more than one special nodes in a DAG scheme affects

its cost measures. We have that a DAG scheme Γ with k special nodes achieve minimum

85

cost measures when the roots of at most k distinct trees are the only special nodes in Γ.

Lemma 3.2.3. Let Γ = (G, SG, n, k) be a DAG scheme. There exists a DAG scheme

Φ = (F, SF , n, ℓ) such that F is a forest of ℓ ≤ k directed trees, SF ⊆ SG and additionally

U(Φ) ≤ U(Γ), Q(Φ) ≤ Q(Γ), and S(Φ) ≤ S(Γ).

Proof. The proof is similar to the proof of Theorem 3.2.2. Consider the union F of the

minimum combined size paths π1, . . . , πn in G from source nodes s1, . . . , sn to a special node,

where ties break according to a well-defined and consistent rule (e.g., using a topological

order of G). The resulting subgraph F of G is a forest: two paths never cross, but they

only meet to same special node, and additionally, no path connecting two distinct special

nodes exists in F . As in the proof of Theorem 3.2.2, since (i) for any source node s the

reachable from s subgraph Fs in F is a subgraph of the reachable from s subgraph Gs in

G, (ii) |EF | ≤ |EG|, and (iii) the minimum combined size paths (from source nodes to

special nodes) are the same in G and F , we have that U(Φ) ≤ U(Γ), Q(Φ) ≤ Q(Γ), and

S(Φ) ≤ S(Γ), as desired.

3.2.6 Lower Bounds for Hierarchical Data Processing

The following theorem summarizes the results of this section with respect to the cost mea-

sures of any DAG scheme.

Theorem 3.2.3. Any DAG scheme Γ = (G, S, n, k) has Ω(log n
k) update, query and sibling

costs.

Proof. It follows directly from Theorems 3.2.1 and 3.2.2 and Lemma 3.2.3. First, by

Lemma 3.2.3 and Theorem 3.2.2 we get that the best (lowest) cost measures of DAG scheme

Γ are achieved when G is a forest F of at most k trees. In this case, since these trees are

minimum combined cost trees, the update, query and sibling cost of G are defined by

the tree T ∗ ∈ F having the maximum complexity in terms of the cost measure of sibling

cost. Moreover, this cost measure depends of the number of source nodes Vsource(T
∗) of

T ∗. We know that |Vsource(T
∗)| is Ω(n

k). If Φ = (F, SF , n, ℓ), ℓ ≤ k, is the DAG scheme

of Lemma 3.2.3 and ∆ = (T ∗, S, |Vsource(T
∗)|, 1) is the DAG scheme that corresponds to

tree T ∗, we have that S(Γ) ≥ S(Φ) = S(∆), which from Theorem 3.2.1 is Ω(log n
k). By

Lemma 3.2.1 we get also that U(Γ) is Ω(log n
k) and that Q(Γ) is Ω(log n

k).

The above results form the basis for a reduction from searching by comparisons to any

computation of an HDP problem. Essentially, we draw an analogy between searching by

86

comparisons and the sibling cost of any DAG scheme. The above theorem can be directly

combined with the definition of the class of HDP problems to give the following general

result about the complexity of any problem in the class.

Theorem 3.2.4. All computations of any hierarchical data processing problem Π associated

with DAG scheme Γ = (G, S, n, k) have Ω(log n
k) worst case time, space or communication

complexity.

Proof. By definition, an HDP problem Π involves computations that correspond to asso-

ciated subgraphs of G. Recall that a computation C is associated to a subgraph H of G

and involves some type of data processing and is performed sequentially and hierarchically

according to graph H, such that: (i) computations are performed in steps, one step per

node of H and steps are executed one after the other, (ii) computational step corresponding

to node u of H can be executed only when the computational steps corresponding to all

predecessor nodes of u in H has been executed and (iii) the computational step correspond-

ing to node u of H has time, space or communication complexity that is proportional to

indeg(u), that is, the complexity is Θ(indeg(u)). Also recall that computation (and graph

H) depends on a subset E ′ of the input elements E . Namely, graph H is the complete

subgraph of G that contains the source nodes storing elements in E ′ and at least one special

node.

Let CE ′ be any computation of problem Π that depends on subset E ′, with H being its as-

sociated subgraph of G. Given the above setting with respect to the computational model for

HDP problems, it follows that computation C has time, space or communication complexity

CH proportional to
∑

v∈VH
Θ(indeg(v)), thus CH = Θ(

∑

v∈VH
indeg(v)) = Θ(indeg(H))).

Accordingly CH = Ω(bnd(H)), since indeg(H) ≥ bnd(H) for any H (Lemma 3.2.1). We

have concluded that any computation CE ′ with associated graph H has time, space or com-

munication complexity CH = Ω(bnd(H)). To complete the proof, simply consider E ′ = xs∗ ,

where xs∗ is the input element stored at the source node s∗ that defines the sibling cost

S(Γ) of DAG scheme Γ, i.e., the source node for which the minimum combined cost path

to a special node usp is the maximum over all other source nodes, and let H contain only

this special node usp ∈ S. The associated path πs∗ of s∗ is then a subgraph of H. Thus,

bnd(H) ≥ bnd(πs∗) = S(Γ) and from Theorem 3.2.3 S(Γ) is Ω(log n
k), so CH = Ω(log n

k).

It follows that for any HDP problem Π associated with DAG scheme Γ, there exists a

computation with Ω(log n
k) time, space or communication complexity.

Remark 3.2.3. Regarding the definition of the sibling cost of a DAG scheme Γ with respect

to the minimum combined size associated paths, we note that this choice is twofold. First,

87

we have seen that S(Γ) serves our purposes, since it strictly bounds the query and update

costs of Γ and provides us with worst case lower bounds for the computational costs of the

update and query operations in any HDP problem. Second, in the case where the cost of a

computation in an HDP problem is characterized by the boundary size of some source-to-

special node path, this path typically corresponds to a minimum combined cost path. We

will see such a case in Section 3.4.

We have established logarithmic lower bounds for the complexity of computations related

to HDP problems, where we have further characterized the tree-based DAG schemes as the

optimal structures for these problems. The connection between problems in this class and

DAG schemes is illustrated in Sections 3.4 and 3.5, where we model two information security

problems as HDP problems and translate the above results to their domain.

3.3 A New DAG Scheme Based on Skip-Lists

In view of the logarithmic lower bounds and the optimality of tree structures for HDP

problems, in this section, we describe a new tree-based DAG scheme ∆ = (T, S, n, 1), which

we call multi-way skip-list DAG scheme, that is based on and defined with respect to skip-

lists [120, 121], which are randomized data structures, equivalent to balanced trees, upon

which dictionaries can be built. We study the performance of ∆ in terms of the node size

size(·), the degree size indeg(·) and also the boundary size bnd(·), where we show that all

these cost measures have low expected values.

3.3.1 Skip-Lists and Bridges

We briefly describe the notation that we will use. A skip-list with probability parameter p is

a set of lists L1, ..., Lh, where L1 stores all the element of a totally ordered set (X,�) of size

n, sorted according to �, where elements are drawn from universe U , and, for each i, each

of the elements of list Li is independently chosen to be contained in Li+1 with probability

p. Lists are viewed as levels and we consider all elements of the same value that are stored

in different levels to form a tower. That is, a tower consists of nodes of lists that store the

same copied element. The level of a tower is the highest level of the tower (or the level of

its top element). Each node of a tower has a forward pointer to the successor element in

the corresponding list and pointer to the element one level below it. A header tower that

stores sentinel element −∞, representing the minimum with respect to � value in U , is

included in the skip-list as the left-most tower of level one more than the maximum level

88

in the skip-list. A node of the skip-list is a plateau node if it is the top node of its tower.

Furthermore, we introduce the notion of a bridge and also define relative concepts.

Definition 3.3.1 (Skip-List Notation). In a skip-list:

• a bridge b is a sequence of towers of the same level, where no higher tower is interfering

them and the plateau nodes of the towers are all reachable in a sequence using forward

pointers;

• the bridge size |b| of bridge b is the number of towers in the bridge (i.e., the size of the

sequence); the bridge size of a tower is the size of the bridge that the tower belongs

to;

• a child bridge of b is a bridge that is contained under b and to which a tower of b is

connected through forward pointers;

• the plateau towers of a tower t are the towers whose plateau nodes can be reached by

t using one forward pointer.

3.3.2 Construction of New Directed Tree

We now describe the new DAG scheme (T, S, n, 1), the skip-list DAG, where T is a directed

tree with n leaves (source nodes) and one special node, the root r of T , thus S = r. For

simplicity, we use the term skip-list DAG to refer to both the DAG scheme (T, r, n, 1) and

the directed tree T . The skip-list DAG is defined with respect to a skip-list with probability

parameter p. In what follows, by list node we refer to a node of the skip-list and by DAG

node to a node of skip-list DAG T . Any edge (v, u) in T is assumed to be directed from node

v to node u. To facilitate our description we define an operation on DAG nodes, which,

given existing DAG nodes in T , creates new nodes and edges in T : if v, v1, . . . , vl are nodes

in T , then operation New(v, v1, . . . , vl) creates in T new nodes u1, . . . , ul and new edges

(v1, u2), . . . , (vl−1, ul), (vl, v) and (u1, u2), (u2, u3), . . . , (ul−1, ul), (ul, v), where DAG node u1

is a source node in T . So, operation New(·), in fact, creates and appropriately connects it

in T a directed path from source node u1 to the existing in T node v, where existing nodes

in T v1, . . . , vl are sibling nodes in the path. Finally, to better understand the connection

between the skip-list DAG and the skip-list and also for our analysis, we consider that each

DAG node is attached to some list node in the skip-list.

The notion of a bridge is essential in skip-list DAG. For each bridge b in the skip-list,

a corresponding node v(b) is created in T . We call v(b) the DAG node of b. In essence,

89

v(b) is connected in T with the DAG nodes of all the child bridges of b. This allows us to

define DAG T with respect to a skip-list in a recursive way: first all bridges in the skip-list

are identified and the DAG node for the outer bridge, corresponding to the header tower of

the skip list, is created, then, given that the DAG node v(b) of a bridge b is created, using

operation New(·), it is connected with paths in T to the newly created DAG nodes of the

child bridges of b (see Figure 3.1). We next explain how this connection is performed.

First, suppose that the size of b is one, i.e., b is simply a tower t (see Figure 3.1(a)). Let

t1, ..., tl be the plateau towers of t in increasing order with respect to their level. Note that

the level of tl is less than the level of t. If plateau tower ti belongs in bridge bi, then let

v(b1), ..., v(bl) be the corresponding DAG nodes of the bridges. Then we perform operation

New(v(b), v(b1), . . . , v(bl)) where v(b) is the DAG node of b. We attach the new nodes of

T created from this operation as follows: source node u1 is attached to the lowest list node

of the tower, node ui, 2 ≤ i ≤ l, is attached to the list node of t at the level of bridge

bi−1 and the DAG node v(b) of b is attached to the list node of t at the level of bridge

bl. Note that DAG node u1 is the basis in the recursion. If the size of b is more than

one, say k, then, let t1, . . . , tk be the towers of b (see Figure 3.1(b)). First, for each such

tower ti, we create a new DAG node v(ti), 1 ≤ i ≤ k. For tower tk, we consider its, say

l, plateau towers tk1, . . . , tkl and perform operation New(v(tk), v(bk1), . . . , v(bkl)), where

bk1, . . . , bkl are the child bridges of b that plateau towers ti1, ..., til belong in and where the

new source node u1 created by this operation corresponds to the element that is stored in

tower tk. Moreover, for each tower ti, i < k, of, say l + 1, plateau towers, we consider its l

lowest plateau towers ti1, . . . , til, that is, for i < k, tower ti+1 is omitted from this sequence

(only in this case, ti+1 is not considered to be a plateau tower of ti). Let bi1, . . . , bil be

the child bridges b that plateau towers ti1, ..., til belong in. Then for tower ti, i < k, we

perform operation New(v(ti), v(bi1), . . . , v(bil)), where the new source node u1 created by

this operation corresponds to the element that is stored in tower ti. Finally, we add the

following k new edges in T : edge (v(ti), v(b)) for 1 ≤ i ≤ k. Newly created nodes are

attached to list nodes in a similar way as before. We attach the DAG nodes created when

considering tower ti, 1 ≤ i ≤ k, to the list nodes of the tower at the level of the bridge they

are connected to, source nodes to the corresponding lowest-level list nodes and DAG node

v(b) of bridge b to the top left-most list node of b.

By this recursive definition, it is easy to see that, indeed, T is a directed tree; the root

and unique sink node of T corresponds to the first created DAG node r for the highest

bridge of the skip-list, the one consisting of the left-most header tower. The leaves and

source nodes of T correspond to the lowest-level list where n elements of set X are stored in

90

the skip-list. Thus, skip-list DAG is a (T, r, n, 1) DAG scheme (see also Figure 3.2). Note

that since our new DAG scheme is defined with respect to a skip-list, it is a randomized

DAG scheme.

t2 t3t1

v(b3)
v(b)

v(b1)

v(b2)

t

b

u1
t31t22t12t11 t21

v(b21)v(b11)

v(b12)
v(b31)

v(t1)
v(t2)

v(t3)

t1 t2 t3t13

v(b)
b

v(b22)
v(b13)

(a) (b)

Figure 3.1: Multi-way skip-list scheme ∆, where circle nodes are DAG nodes (bridge DAG
nodes are solid) and square nodes are nodes of the skip-list. DAG node v(b) of bridge b is
recursively connected to the DAG nodes of the child bridges depending on the bridge size:
(a) |b| = 1 and (b) |b| > 1. A DAG node is attached to the list node in which it is contained.

DAG T
r

Figure 3.2: A multi-way skip-list DAG scheme ∆ = (T, S, n, 1). T is a directed tree.

3.3.3 Cost Measures of Skip-List DAG

We now analyze the cost measures of the DAG scheme ∆ = (T, r, n, 1) according to the

definitions in Section 3.2.2. From Theorem 3.2.2 and Lemma 3.2.3, it suffices to study only

the case where there is only one special node in T , the root of T . Also, we know that for

the update , query and sibling cost measures of ∆ it holds U(∆) = Q(∆) > S(∆) and

that all are lower bounded log n. Accordingly, it suffices to concentrate our analysis to the

associated path πs of a source node s in T . This path is not only the minimum combined

size path from s to the root but also the minimum boundary size path of s. Since ∆ is a

randomized DAG scheme, we study its expected cost measures, and since these measures

can be expressed using the structural metrics node size size(·), degree size indeg(·) and

boundary size bnd(·) (see Lemma 3.2.1), we are interested in studying the expected node

91

size E(size(πs)), the expected degree size E(indeg(πs)) of path πs and the expected boundary

size E(bnd(πs)) of path πs, i.e., the expected number of nodes in the path, the expected

total number of the predecessor nodes of nodes in the path and the expected total number

of sibling nodes in the path πs.

In the next Theorem we prove that our new DAG scheme achieves cost measures that

are close to the theoretical optimal value of ⌊log n⌋+1. Note that this value is theoretically

optimal also for randomized DAG schemes, since Lemma 3.2.2 holds true for any DAG

scheme, even randomized, because only its structural properties matter for the definition of

the corresponding search tree.

Theorem 3.3.1. With respect to a skip-list with probability parameter p, the skip-list DAG

scheme ∆ = (T, r, n, 1), for any fixed source node s of T and the corresponding source to

root path πs, has the following expected performance:

1. E[size(πs)] ≤ 2(1− p) log 1
p

n + O(1);

2. E[indeg(πs)] ≤ (1− p) (1+p)2

p log 1
p

n + O(1);

3. E[bnd(πs)] ≤ (1−p)(1+p2)
p log 1

p
n + O(1) and

4. E[size(T)] ≤ (1 + pq2 + pq + p
q(2−pq2)

)n, where q = 1− p.

Proof. In the proof, we use a worst case scenario, assuming that the skip-list has infinite

size to the left or to the right, that is, it is unbounded to one direction. This allows us

to actually compute upper bounds of expected values of random variables related to our

analysis.

We first compute the expected size of a bridge b in the skip-list. Consider the left-most

tower t of b and its top skip-list node u. Assuming an infinite to the right skip-list, u has

a forward pointer to the skip-list node v, the next node in list of u. With probability 1− p

node v is the top node of its tower tv, thus tv belongs in b and with probability p tower

tv is of higher level, thus tv is not a tower of b. If |b| denotes the size of bridge b, then

|b| = 1 + Y , where Y is a geometrically distributed random variable with parameter p,

which counts the number of failures before the success occurs, where Pr[success] = p. Thus,

E[|b|] = 1 + 1−p
p = 1

p and on average 1/p towers are consecutive having the same height.

(1), (2) & (3) We use a backward analysis as in [120, 121]. Given a skip-list, we consider

the corresponding skip-list data structure storing a totally ordered set X of size n, where

elements in X can be found by traversing the list nodes of the skip-list. We consider

traveling backwards on the search path π in the skip-list data structure for element x

92

stored at source node s. It is easy to see, that, given the way with which DAG nodes of

T are assigned to list nodes of the skip-list, path πs in T , the leaf-to-root path in T from

source node s of T , is contained in path π. Consequently, as we travel backwards (starting

from s) along the search path π, we compute the structural metrics size(πs), indeg(πs)

and bnd(πs) of path πs in T . Assuming a worst case analysis, where π reaches level log 1
p

n,

we split π in two parts: subpath π1 and subpath π2. Path π1 takes us to level log 1
p

n and

path π2 completes the backward search up to the first skip-list node of π. Accordingly, in

our analysis we partition πs into subpaths πs1 and πs2 corresponding to subpaths π1 and

respectively π2 of π. Obviously, since πs = πs1 ∪ πs2 , size(πs) = size(πs1) + size(πs2),

indeg(πs) = indeg(πs1) + indeg(πs2) and bnd(πs) = bnd(πs1) + bnd(πs2).

The node, degree and boundary sizes of πs2 are all on average constant, E[size(πs2)] =

O(1), E[indeg(πs2)] = O(1) and E[bnd(πs2)] = O(1), because the skip-list size above level

log 1
p

n is on average (and with high probability) constant. Indeed, subpath π2 can be further

partitioned into the set L of nodes that we reach in our backward traversal moving leftward

and the set U of nodes that we reach moving upward. We have that |L| ≤ Y , where Y

is a random variable counting the number of towers in the skip list with level log 1
p

n or

higher and that Y ∼ Bin(n, 1
np), since with probability p

(log 1
p

n)−1
= 1

np a tower has level

log 1
p

n or higher. So, E[L] ≤ 1
p = O(1). Also, we have that |U | ≤ Z, where Z is the size

of the highest skip-list tower above level log 1
p

n and that Z ∼ G(1 − p), i.e., geometrically

distributed with parameter 1 − p (where we use the memoryless property of geometric

distribution). So E[U] ≤ p
1−p = O(1). We conclude that the size of π2 is on average at most

E[L] + E[U] = O(1). Since every node in πs2 has constant in-degree (2 or E[|b|] = O(1) for

a bridge b), we conclude that the node, degree and boundary sizes of πs2 are all O(1).

(1) For the node size of πs1 , we assume an infinite skip-list to the left, that is, no

header tower is present (and thus a worst case analysis is in place). Let Ck(t) be a random

variable counting the node size size(π) counted so far when k upwards moves remain to

be taken in part π1 of path π and we are performing the t-th step. Then if we move up

Ct
k = XU + Ct+1

k−1, otherwise Ct
k = XL + Ct+1

k , where XU , XL are 0-1 random variables

that count if a DAG-node is encountered when moving up or left respectively. Then we

have that Pr[XU = 1] = p(1− p), because with probability 1− p the node that the forward

pointer points to is a plateau node and with probability p the node that we move to is not

a plateau node (i.e., we count a DAG-node created by applying operation New(·)). Also

we have that Pr[XL = 1] = p + p(1 − p), because with probability p we left a bridge and

with probability (1− p) the bridge has size more that one (i.e., we count a node created by

93

operation New(·) and possibly a bridge DAG node). Observe that we count DAG nodes

of bridges of size 1 when moving up. Since we have an infinite skip list, Ct
k ∼ Ct+i

k ∼ Ck

for any i > 0, where Ck is a random variable distributed as Ct
k. Thus, using conditional

expectation

E[Ck] = E[E[Ck|move]]

= E[Pr[up]Ck|up + Pr[left]Ck|left]
= E[p(XU + Ck−1) + (1− p)(XL + Ck)]

= p(E[XU] + E[Ck−1]) + (1− p)(E[XL] + E[Ck])

= p(p(1− p) + E[Ck−1]) + (1− p)(p + p(1− p) + E[Ck]),

which gives E[Ck] = E[Ck−1] + 2(1 − p), and finally we get that E[Ck] = 2(1 − p)k. So,

E[size(πs)] ≤ E[Ck] = 2(1− p) log 1
p

n + O(1).

(2) Similarly, regarding the degree size of πs1 and, again, assuming an infinite skip-list

to the left, let Ck(t) be a random variable counting the degree size indeg(π) counted so far

when k upwards moves remain to be taken and we are performing the t-th step. Then if we

move up Ct
k = XU+Ct+1

k−1, otherwise Ct
k = XL+Ct+1

k . Here XU and XL are random variables

that count the number of predecessor DAG nodes that we have to add when moving up or

left respectively. We have that E[XU] = 2p(1−p) because with probability p(1−p) we count

two predecessors after moving up (a node created by operation New(·) has in-degree two).

Also E[XL] = p(2+ 1−p2

p), because with probability p we have just left a bridge moving left

and, thus, we count 2 + Y predecessors. I.e., a node created by operation New(·) has two

predecessors and Y is a random variable counting the in-degree of a possible bridge DAG

node that must be encountered. Observe that Y = 0 unless the bridge has size at least 2 and

we compute E[Y] = (1 − p)(2 + 1−p
p) = 1−p2

p . Using conditional expectation as above, we

finally get E[indeg(πs)] ≤ (1−p)(2p+2+ 1−p2

p) log 1
p

n+O(1) = (1−p) (1+p)2

p log 1
p

n+O(1).

(3) For the boundary size of πs1 and assuming an infinite skip-list to the left, let Ck(t)

be a random variable counting the degree size bnd(π) counted so far when k upwards

moves remain to be taken and we are performing the t-th step. As before, if we move up

Ct
k = XU + Ct+1

k−1, otherwise Ct
k = XL + Ct+1

k , where XU and XL are random variables

that count the number of sibling DAG nodes in πs1 that we have to add when moving up

or left respectively. We have that E[XU] = p(1 − p) because with probability p(1 − p) we

count one sibling DAG node after moving up (a node created by operation New(·) has

in-degree two: one node is in ps and one is a sibling node). Also E[XL] = p(1 + 1−p
p) = 1,

because with probability p we have just left a bridge moving left and, thus, we count 1 + Y

94

sibling nodes, one sibling of the node created by operation New(·) and Y siblings (a random

variable) corresponding to the possible bridge DAG node that we just left. We have that

E[Y] = (1 − p)(1 + 1−p
p) = 1−p

p . Using conditional expectation as before, we finally get

E[bnd(πs)] ≤ (1− p)(1+p2

p) log 1
p

n + O(1).

(4) By construction, VT = Vsource(T)∪B∪N , where Vsource(T) is the set of the n source

nodes in T , B the set of bridge DAG nodes and N the set of the non-source, non-bridge,

DAG nodes (created by operation New(·) or being predecessors of a DAG node of a bridge).

Let B1 denote the set of DAG nodes in B that are assigned to list-nodes of level 1 and let

B>1 = B − B1. Similarly, let N1 denote the set of DAG nodes in N that are assigned to

list-nodes of level 1 and let N>1 = N−N1. We can compute that E[|B1|] ≤ p(1−p)2n using

the union bound, since with probability p(1− p)2 the lowest plateau tower of a tower is the

left most tower of a bridge of level 1 and of size at least two. Similarly, we can compute that

E[|N1|] ≤ p(1− p)n, again by applying the union bound and noticing that with probability

p(1−p) a non-source DAG node is created by operation New(·). Now, let M denote the set

of list nodes in the skip-list that have not been assigned a DAG node, which we call empty

nodes, then for the set K>1 of list nodes in the skip-list of level 2 or more, we have that

K>1 = M ∪B>1∪N>1, where in this formula DAG nodes are treated like the list nodes they

are assigned to. We next pair up DAG nodes in B>1∪N>1 to distinct empty list nodes in M .

Nodes in B>1 are paired up with probability 1. Consider any node u in B>1 corresponding

to bridge b, with |b| ≥ 2. Node u can be paired with any of the empty list nodes of the

top level of b. Any DAG node u in B>1 corresponding to bridge b, with |b| = 1, can be

paired with the empty list node one level up in its tower. Any DAG node u in N>1 can be

paired up with the empty list node l(u) on its left, if it not paired with a node in B>1. The

probability that u can not be paired up with l(u) is λ = p(1−p)2 (l(u) is the top-right node

of a bridge of size 2), an independent event from any other node in N>1 not being paired up

with its empty node of the left. Thus, we have that, if M = M1 ∪M2 ∪M3, where M1, M2,

M3 are disjoint sets containing the empty nodes paired up with nodes in B>1, in N>1 and

respectively with no DAG nodes, then E[|M1|] = E[|B>1|] and E[|M2| = (1− λ)E[|N>1|]].
Using this, we get that E[|K>1|] = 2E[|B>1|] + (2 − λ)E[|N>1|] + E[|M3|] and the bound

E[|B>1|] + E[|N>1|] ≤ E[K>1]
2−λ . Putting all together, we finally get the upper bound for

E[size(T)] = E[|VT |]. Note that E[size(T)] < n
1−p , the expected size of a skip-list.

95

Figure 3.3: The DAG scheme ∆ that corresponds to an improved version (with respect to
the expected number of comparisons) of the standard skip list [121].

3.3.4 Comparison with other DAG Schemes

We now compare our multi-way skip-list with red-black trees and the standard skip-list in

terms of the cost measures of the underlying search DAGs. Figure 3.3 shows that search

DAG that corresponds to an improved version of the standard skip-list appeared in [121].

For these trees and for any fixed element stored at a source node s and the corresponding to

path πs in DAG T , we compare the corresponding expected values for the node size size(πs),

degree size indeg(πs) and boundary size bnd(πs) of path πs and the node size size(T) of T .

Note that by Lemma 3.2.2, comb(πs) corresponds to the number of comparisons performed

in the search structure and that size(T) corresponds to the total number of decision nodes

in search tree T .

E[size(πs)] E[indeg(πs)] E[bnd(πs)] E[size(T)]

red-black tree log n 2 log n log n 2n

standard skip-list 1.5 log n 3 log n 1.5 log n 2n

multi-way skip-list log n 2.25 log n 1.25 log n 1.9n

Table 3.1: Comparison of three tree DAG schemes in terms of structural metrics size(πs),
indeg(πs), comb(πs) and size(T). Numbers correspond to expected values of the corre-
sponding cost parameters: for red-black trees, expectation corresponds to the average search
paths, which has size c log n for a constant c very close to 1 (see [131]); for skip-lists, p = 0.5.
Note that comb(πs) corresponds to the number of comparisons performed in the search path
πs and that size(T) corresponds to the total number of decision nodes in search tree T .

Table 3.1 summarizes the comparison results. For red-black trees, expectation corre-

sponds to the average search path, which has size c log n for a constant c which is very

close to 1 (see [131]), whereas for skip-lists it corresponds to the random skip-list struc-

ture. To simplify the comparison, we choose parameter p = 1
2 for the two skip-lists. The

multi-way skip-list DAG has better performance (achieves lower constants) when compared

with the standard skip-list. On the other hand, we observe an interesting trade-off on the

96

performance that red-black tree and multi-way skip-lists achieve: in multi-way skip-lists the

combined and boundary sizes are larger but the node size of the tree is less.

3.4 Data Authentication Through Hashing

In this section, we apply our results of Sections 3.2 and 3.3 in hash-based data authentication,

that is data authentication based on cryptographic hashing. We focus on authenticated dic-

tionaries, where membership queries on sets are authenticated. We show that this problem

is a hierarchical data processing problem. Applying our results to authenticated dictionar-

ies, we get a logarithmic lower bound on the authentication cost for any authentication

scheme that uses cryptographic hashes and a new authenticated dictionary based on skip

lists with authentication cost closer to optimal.

3.4.1 Authenticated Data Structures

Authenticated data structures provide a model of computation where an untrusted directory

can answer queries issued by a user on a data structure on behalf of a trusted source but

provide a proof of the validity of the answer to the user. The data source ideally signs

only a single digest of the data. For data authentication through hashing a hash function is

systematically used to produce this digest. On a query, along with the answer, the signed

digest and some information that relates the answer to this digest are also given to the user

and these are used for the answer verification.

In particular, the model involves a structured collection X of objects, the source, the

directory, and the user. A repertoire of query operations and optional update operations are

assumed to be defined over X. The role of each party is as follows. The source holds the

original version of X. Whenever an update is performed on X, the source produces update

authentication information, which consists of a signed time-stamped statement about the

current version of X. The directory maintains a copy of X. It interacts with the source

by receiving from the source the updates performed on X together with the associated

update authentication information. The directory also interacts with the user by answering

queries on X posed by the user. In addition to the answer to a query, the directory returns

answer authentication information, which consists of (i) the latest update authentication

information issued by the source; and (ii) a proof of the answer. The user poses queries

on X, but instead of contacting the source directly, it contacts the directory. However, the

user trusts the source and not the directory about X. Hence, it verifies the answer from

the directory using the associated answer authentication information. The data structures

97

used by the source and the directory to store collection X, together with the algorithms for

queries, updates, and verifications executed by the various parties, form what is called an

authenticated data structure.

Authenticated Dictionary. We focus on the dictionary problem where we want to an-

swer membership queries about a set of objects in the previous authentication model. Let X

be a data set owned by the source that evolves through update operations insert and delete.

Membership queries exists are issued on X. A (multivariate extension of a) cryptographic

hash function h is used to produce a digest of set X, which is signed by the source. In our

study, we actually consider a more general model where more than one digests are produced

and signed by the source. These digests are computed through a hashing scheme over a

directed acyclic graph (DAG) that has k signature nodes t1, . . . , tk and stores the elements

of X at the source nodes (see [59]). Each node u of G stores a label or hash value L(u) such

that if u is a source of G, then L(u) = h(e1, . . . , ep), where e1, . . . , ep are elements of X, else

(u is not a source of G) L(u) = h(L(w1), . . . , L(wl), e1, . . . , eq), where (w1, u), . . . , (wl, u)

are edges of G and e1, . . . , eq are elements of X (p, q and l are some constant integers). We

view the labels L(ti) of the sink nodes ti of G as the digests of X, which are computed via

the above DAG G.

The authentication technique is based on the following general approach. The source

and the directory store identical copies of the data structure for X and maintain the same

hashing scheme on X. The source periodically signs the digests of X together with a time-

stamp and sends the signed time-stamped digests to the directory. When updates occur

on X, they are sent to the directory together with the new signed time-stamped digests.

In this setting, the update authentication information has O(k) size. When the user poses

a query, the directory returns to the user (1) a signed time-stamped digest of X, (2) the

answer to the query and (3) a proof consisting of a small collection of labels from the hashing

scheme (or of data elements if needed) that allows the recomputation of the digest. The

user validates the answer by recomputing the digest, checking that it is equal to the signed

one and verifying the signature of the digest; the total time spent for this process is called

the answer verification time. Security (against the possibility that the user verifies a, forged

by the directory, proof for a non-authentic answer), typically follows from the properties of

the signature scheme and the hash function.

Authentication Overhead. Now we study the performance overhead of computations

related to authentication in an authenticated dictionary based on a hashing scheme (the

98

analysis is valid for any ADS). This overhead, called authentication overhead, consists of

time overhead for the (i) maintenance of the hashing scheme after updates, (ii) generation

of the answer authentication information in queries, and (iii) verification of the proof of

the answer; communication overhead, defined as the size of the answer authentication infor-

mation; storage overhead, given by the number of hash values used by the authentication

scheme; and signature overhead, defined as the number of signing operations performed at

the source (and thus the number of signatures sent by the source). Even with the most effi-

cient implementations, the time for computing a hash function is a few orders of magnitude

larger than the time for comparing two basic numerical types (e.g., integers or floating-point

numbers). Thus, the rehashing overhead dominates the update time and the practical per-

formance of an ADS is characterized by the authentication overhead, which depends on

the hash function h in use and the mechanism used to realize a multivariate hash function

from h.

3.4.2 Cryptographic Hash Functions

The basic cryptographic primitive for an ADS is a collision-resistant hash function h(x)

that maps a bit string x of arbitrary length to a hash value of fixed length (e.g., 128 or

160 bits), such that collisions (i.e., distinct inputs that hash to same value) are hard to

find. We refer to h simply as hash function. Generic constructions of hash functions, the

Merkle-Damg̊ard constructions [30, 95], are modeled by iterative computations (see, e.g.,

[137]) based on a compression function f(z, y) that maps a string z of N bits and a string y

of B bits to an output string of N bits. The input string x is preprocessed (using a padding

rule) into a string y whose length is a multiple of B. Let y = y1‖y2‖...‖yk, where each yi has

length B and let z0 be a public initial value of N bits. Then h(x) = zk, where zk is given

by the following iterative application of function f : z1 = f(z0, y1), z2 = f(z1, y2), . . . , zk =

f(zk−1, yk).

Lemma 3.4.1. There exist constants c1 and c2 such that, given an input string x of size

ℓ, the iterative computation of a hash function h(x) takes time T (ℓ) = c1ℓ + c2.

Note that the constants in Lemma 3.4.1 depend on the compression function in use

and, thus, they may depend on some security parameter k. Still, the dependency of the

hashing time on the input length is linear. This is a very general assumption that holds

for any collision resistant function. For instance, for hash functions based on block ciphers

or on algebraic structures and modular arithmetic (e.g. based on discrete logarithm using

Pedersen’s commitment scheme [113]) or custom designed hash function (e.g, SHA-1).

99

Multivariate Hash Functions. Let h(x) be a hash function. In order to realize a

hashing scheme, we extend h to a multivariate function using string concatenation. Namely,

we define hC(x1, ..., xd) = h(x1‖...‖xd). There exist alternative realizations of a multivariate

hash function. For example, one may use hC for d = 2 and use a binary hash tree for d > 2.

The following lemma states that, without loss of generality, we can restrict our analysis to

the concatenation hash function hC .

Lemma 3.4.2. Any realization of a d-variate function h(x1, ..., xd) can be expressed by

iterative applications of hC expressed through a hashing scheme G.

3.4.3 Cost of Data Authentication Through Hashing

Let G be any hashing scheme used to implement an hash-based authenticated dictionary

for set X of size n, where the hash values stored in k nodes of G have been digitally signed

by the source. A node with signed hash value is called a signature node. Hashing scheme G

along with the k signature nodes can be viewed as a DAG scheme Γ = (G, S, n, k), where S

is the set of k signatures nodes in G and there are exactly n source nodes in G corresponding

to elements in X. Each cost parameter of the authentication overhead, (update, query or

verification time overhead and storage overhead), is expressed as some structural metric of a

subgraph H of the hashing scheme G. In general, the node size size(H) corresponds to the

number of hash operations that are performed at some of the three parties (source, directory

or user) and the degree size indeg(H) corresponds to the total number of hash values that

participate as operands in these hash operations. In particular, each cost parameter of the

authentication overhead depends linearly on size(H) and indeg(H) for some subgraph H

of G.

We have for any authenticated dictionary implemented in the model of data authenti-

cation through hashing.

Lemma 3.4.3. Let Γ = (G, S, n, k) be any hashing scheme used to implement a hash-based

authenticated dictionary for set X, where special nodes are signature nodes. Let s be a

source node of G storing element x ∈ X, Gs be the subgraph of G that is reachable from s,

and πs the associated path of s. We have:

1. an update operation on x has update time overhead that is bounded by comb(Gs);

2. a query operation on x has communication overhead that is lower bounded by bnd(πs)

and verification time overhead that is lower bounded by comb(πs);

100

3. the storage overhead is size(G);

4. all involved computations are performed sequentially and hierarchically according to

the hierarchy induced by G, where at any node v of G computations have time or space

or communication complexity proportional to indeg(v).

Proof. For an update operation (insert or delete) on an element at source node s in G,

the hash values stored in the nodes of the reachable from s subgraph Gs of G need to be

updated. Updating the hash value of node u of Gs using the concatenation multivariate

hash function (Lemma 3.4.2 justifies this choice) takes time c1indeg(u)+ c2 (Lemma 3.4.1),

thus the update operation is performed hierarchically in time c1indeg(Gs) + c2size(Gs),

which is Ω(comb(Gs)) . For a query operation exists the query element is first located in

X and suppose it is found in X 5. Providing the proof to the user involves collecting a

set of hash values that can be used to recompute a data digest. For this reason, a path

of minimum authentication cost from source node s storing the query element is found

and this path is exactly the associated path πs of s, the minimum combined size path

from s to a signature node. Regarding the size of proof that is sent to the user, we note

that in order the user to compute the hash value that is stored at node u of G, exactly

indeg(u) − 1 hash values need to be sent by the directory. Thus the proof consists of

bnd(πs) labels and the communication overhead is Ω(bnd(πs)). In addition, the user verifies

this proof by hierarchically hashing the hash values of the proof along path πs in time

c1indeg(πs) + c2size(πs), which is Ω(comb(Gs)). Finally, for the storage overhead, clearly

size(G) hash values are stored in the data structure at the source and the directory.

Thus, hash-based authentication of membership queries is a hierarchical data processing

problem, where operations insert/delete are related to the update cost and operation exists

to the query cost of the hashing scheme in use. Theorems 3.2.1, 3.2.2 and 3.2.3 suggest

that, for the dictionary problem, signing more than one hash values does not help and tree

hashing structures are optimal. Finally, these theorems and the fact that signature nodes

are signed periodically also translate to the following.

Theorem 3.4.1. In the data authentication model through hashing, any hashing scheme

with k signature nodes that implements an authenticated dictionary of size n has

• Ω(log n
k) worst-case update and verification time overheads;

5Without loss of generality we consider only positive answers. Standard techniques to authenticate
negative answers have similar authentication overhead.

101

• Ω(log n
k) worst-case communication overhead; and

• Ω(k) signature overhead.

Finally, Lemma 3.4.3 suggests the use of our skip-list DAG to implement an authenti-

cated dictionary.

Theorem 3.4.2. There exists a skip-list authenticated dictionary of size n and proba-

bility parameter p that achieves the following expected performance. For any fixed ele-

ment in the skip-list and constants c1 and c2 that depend on the hash function h in use,

the expected hashing overhead of an update or verification operation is upper bounded by

(1 − p)(2c2 + (1+p)2

p c1) log 1
p

n + O(1), the expected communication cost is upper bounded

by (1 − p)(1+p2

p) log 1
p

n + O(1) and the expected storage overhead is upper bounded by

(1 + pq2 + pq + p
q(2−pq2)

)n, where q = 1− p.

In particular, by our experimental value of 1.41n, when p = 1
2 , for the node size size(G)

of the skip-list DAG G, such an implementation benefits low storage cost: on average only

1.41n hash values are stored.

3.5 Multicast Key Distribution Using Key-Graphs

In this section, we apply results from Sections 3.2 and 3.3 in multicast key distribution

using key-graphs. We prove that key-trees are optimal compared to general key-graphs and

derive logarithmic lower bounds for involved computational and communication costs. In

contrast to previous amortized logarithmic lower bounds on the communication cost that

any protocol requires [135, 99], we proof exact worst case lower bounds and our proof is

more general, since it does not depend on any series of update operations. Even though

general graphs were initially defined for this model [147], only tree DAGs have been studied.

We prove the optimality of tree DAGs.

3.5.1 Multicast Key Distribution

The problem refers to the confidentiality security problem in multicast groups. A group

consists of a set of n users and a group key controller. Private key cryptography is used to

transmit encrypted multicast messages to all the users of the group. These messages are

encrypted using a group key available to all the current users of the group. The security

problem arises when updates on the group are performed, i.e., when users are added or

removed from the group. The goal is to achieve non-group confidentiality, i.e., only members

102

of the group can decrypt the multicast messages, and forward (backward) secrecy, i.e., users

deleted from (added in) the group can not decrypt messages transmitted in the future

(past). No collusion between users should break any of the above requirements.

3.5.2 Communication Complexity for Key-Graphs

In this model, the group controller, a trusted authority and, conventionally, not member of

the group, is responsible for distributing secret keys to the users and replacing (updating)

them appropriately after user updates (additions/removals) in the group. The idea is that

a set of keys, known to the controller, is distributed to the users, so that a key is possessed

by more than one user and a user possesses more than one keys. In particular, any user is

required to have a secret key that no other user knows and all users possess a group key,

which is used for secure (encrypted) transmissions. In this model, on any user update, a

subset of the keys needs to be updated to preserve the security requirements. Some keys

are used for securely changing the group key as needed and for updating previous keys that

have to be replaced. That is, new keys are encrypted with existing valid keys or with other

previously distributed new keys.

Two extreme, trivial and inefficient solutions in this model are the following: each user

possesses only one secret to other users key, where on any user removal from the group n−1

messages must be transmitted; alternatively, one key for all possible subsets of group users

is used, but now the number of keys grows exponentially. Key-graphs [143, 147] provide a

framework to implement this idea. A key-graph models the possession of keys by users and

the computations (for key encryption at the controller and key decryption at the users) and

message transmissions that need to be performed after any update. A key-graph is a single-

sink DAG G that the group controller and users know and that facilitates group updates.

Source nodes in G correspond to users and store their individual secret keys and all non

source nodes correspond to keys that can be shared among many users. A user possesses

all and only the keys that correspond to the subgraph Gs of G that is reachable from its

source node s. On any update of the user corresponding to s, these keys have to change

(the group key at the root is always among them) to achieve forward and backward secrecy.

A new keys is distributed by being sent encrypted by an old or previously distributed key.

Cost parameters. The cost parameters associated with key distribution using key-graphs

after an update are: (i) the computational cost at the controller, the encryption cost,

for encrypting all new keys and thus producing the messages for transmission, and the

computational cost at a user, the decryption cost, for decrypting received messages and

103

updating her keys, (ii) the communication cost, the number of transmitted messages, and

(iii) the total number of keys stored at the key controller or a user. We can view a key-

graph G as DAG scheme Γ = (G, S, n, 1), where S consists of the unique sink node of

G, called group node and n source nodes correspond to the users. Each cost parameter

of key distribution is expressed as some structural metric of a subgraph of G. The node

size corresponds to keys stored at users and also to key generations and the degree size

corresponds to the number of encryptions and decryption performed during the update.

In particular, each cost parameter depends linearly on size(H) and indeg(H) for some

subgraph H of G.

Definition 3.5.1 (Reduced Key-graphs). Let Γ = (G, S, n, 1) be a key-graph scheme and

let v be a node in G. The support Sup(v) of v is the set of source nodes of G that can

reach v through directed paths, i.e., the set of users that possess the key stored at v. Note

that s ∈ Sup(v) if and only if v ∈ Gs. Let U = {u1, ..., uk} be a set of nodes of G and let

T ⊆ Vsource be a set of source nodes of G. We say that set U spans set T if

⋃

1≤i≤k

Sup(ui) = T.

A node v is said to be safe if v is a source node or if indeg(v) > 1 and any node set that

spans Sup(v) and does not include v has size at least indeg(v). Key-graph scheme Γ is said

to be reduced, if all nodes in G are safe.

Lemma 3.5.1. Let Γ = (G, S, n, 1) be a reduced key-graph scheme used for the multicast

group management problem. Then we have:

1. an update operation on a user that corresponds to a source node s has communication

cost at least indeg(Gs) and encryption cost at least comb(Gs);

2. the key-graph stores size(G) keys in total; and

3. all involved computations are performed sequentially and hierarchically according to

the hierarchy induced by G, where at any node v of G computations have time or space

or communication complexity proportional to indeg(v);

Proof. (1) By the definition of a key-graph scheme, all the keys stored at nodes of Gs (i.e.,

size(Gs) keys) need to be updated. Consider the key stored at a node v ∈ Gs. We now

show that at least ℓ = indeg(v) messages must be broadcasted by the controller in order

for this key to be updated. Either ℓ = 0 or ℓ ≥ 2. If ℓ = 0, then v is a source node and

104

we need no broadcast message to update its key. If ℓ ≥ 2, then all and only the users that

correspond to nodes of Sup(v) need to be able to decrypt the broadcasted messages of the

encrypted new key of v. Suppose that fewer than ℓ messages suffice in updating the key

of v. This implies that there exists a set of nodes U = {u1, ..., uk} of G such that:

• U spans Sup(v);

• U does not contain v; and

• k < ℓ.

This is a contradiction since Γ is reduced and thus v is safe, i.e., Sup(v) cannot be spanned

by a set not containing v of size less than ℓ. In particular, we have that Sup(u) is spanned

by the set of predecessor nodes w1, ..., wℓ of v. Thus, in order to update all the nodes of Gs,

the controller needs to broadcast at least indeg(Gs) messages. Additionally, when sending

t messages to update the key of a node v, the encryption cost is proportional to 1+ t, since,

one (new) key generation and t encryptions of this key are performed in order to create the

messages. It follows that the encryption cost is lower bounded by comb(Gs).

(2) By the definition of a key-graph scheme, size(G) keys are stored.

Thus, multicast key distribution using reduced key-graphs is a HDP problem, where the

overhead of an update in the group is related to the update cost of the underlying DAG

scheme. By studying more carefully reduced key-graph schemes and using Theorems 3.2.1

and 3.2.2, we now prove the main result of the section.

Theorem 3.5.1. For a multicast key distribution problem of size n using key-graphs, in

the worst case, an update operation in the group requires at least ⌊log n⌋+1 communication

cost and Ω(log n) encryption and decryption costs. Also, key-tree structures are optimal

over general key-graphs.

Proof. We describe a transformation Rv(·) on key-graphs that given a non-safe node v in

G performs changes on G (edge deletions and possibly node deletions occur). Let Γ =

(G, S, n, 1) be a key-graph scheme. Transformation Rv can be applied to G only if v is

a non-safe node of G such that all nodes in Gv other than v are safe in G. (Recall that

Gv is the subgraph of G that is reachable from node v through directed paths.) Let v be

a non-safe node in G satisfying the above property. Let W = {w1, ..., wd} be the set of

predecessor nodes of v, where d = indegG(v), d > 0. Transformation Rv is defined as a

series of steps; we consider the following two cases, depending on the in-degree d of v.

105

Case I (replacement) d ≥ 2

1. since v is not safe, we can find a minimum-size set of nodes U = {u1, ..., uℓ} such

that U spans Sup(v), U does not contain v, and ℓ < d; note that set U may

contain one or more predecessor nodes of v;

2. edges (w1, v), ..., (wd, v) are removed from G (this step may cause some prede-

cessors of v to become sink nodes);

3. edges (u1, v), ..., (uℓ, v) are added to G (note that edges removed by the previous

step may be reinserted by this step);

4. while G has a sink node z distinct from the special node (the unique node of set

S), remove z and its incoming edges.

Case II (contraction) d = 1

1. let w be the predecessor of v and let z1, ..., zm be the successor nodes of v;

2. if m > 0, then edges (v, z1), ..., (v, zm) are removed from G and, additionally,

edges (w, z1), ..., (w, zm) are added to G;

3. edge (w, v) and node v are removed from G.

Note that, in case I, Rv possibly makes node v safe (if ℓ > 1) and that, in case II, Rv deletes

node v. Also no cycle is introduced in step 3 of case I since node v cannot reach any node ui

through a directed path, or otherwise, ui, a node of Gv, is not safe, a contradiction regarding

the precondition in applying Rv on G. Obviously, no cycle is introduced in case II.

Let G′ = Rv(G) be the graph that results from applying transformation Rv to graph G.

We have the following:

• the set of nodes of G′ is included in the set of nodes of G, and thus the number of

nodes of G is greater than or equal to the number of node of G′;

• the set of source nodes of G′ is the same as the set of source nodes of G, and thus

both G and G′ have n source nodes;

• Rv deletes at least one edge, thus G′ has fewer edges than G;

• in case I, v is not deleted and SupG(v) = SupG′(v); in case II, v is deleted and

SupG(v) = SupG′(w).

106

Let Γ′ = (G′, S, n, 1) be the corresponding transformed scheme after transformation

Rv has taken place. Given any key-update algorithm A for scheme Γ, we now derive a

corresponding transformed key-update algorithm A′ for scheme Γ′. Transformed algorithm

A′ is defined as follows.

• To update the key of a node z of G′ that is distinct from v, algorithm A′ mimics

algorithm A. Namely, it performs exactly what A performs when it updates the key

of node z in G.

• Regarding node v, algorithm A′ either broadcasts ℓ = indegG′(v) > 0 messages (case

I), encrypting the new key for node v using the keys stored at the predecessor nodes

u1, ..., uℓ of v in G′, or it broadcasts no message if v is not a node of G′ (case II). Note

that v is not a source node, otherwise, since any source node is safe, transformation

Rv would not have been applied.

We now show that for any source node s, the communication cost of algorithm A for

updating s in Γ is greater than or equal to the communication cost of algorithm A′ for

updating s in Γ′, i.e., the number of messages sent by A is greater than or equal to the

number of messages sent by A′. We consider the following two cases.

• If s /∈ SupG(v), then Gs = G′
s, so algorithms A and A′ have exactly the same execu-

tions and send the same number of messages.

• If s ∈ SupG(v), then,

– for case I, G′
s has fewer edges than Gs since transformation Rv reduces the in-

degree of v, i.e., indegG′(v) < indegG(v). Also, we have indeg(G′
s) < indeg(Gs)

and size(G′
s) ≤ size(Gs), i.e., G′

s has no more nodes than Gs. Algorithm A sends

at least as many messages as algorithm A′ does. Let k be the number of messages

that algorithm A sends to update the key at v and k′ be the number of messages

that algorithm A′ sends for the same task. We have k′ = indegG′(u) = ℓ and

k ≥ ℓ, or otherwise, if k < ℓ, then there would be a set of nodes of size smaller

than ℓ in G that spans SupG(v) = SupG′(v) and thus, transformation Rv was

not performed correctly, a contradiction.

– for case II, G′
s has fewer edges than Gs since transformation Rv deletes one edge.

We also have indeg(G′
s) < indeg(Gs) and size(G′

s) < size(Gs), i.e., G′
s has

fewer nodes than Gs, since v is deleted. Algorithm A sends more messages than

algorithm A′ does: A sends at least one message to update the key of v, but A′

sends no message.

107

Starting with key-graph scheme Γ = (G, S, n, 1), while the current graph has non-

safe vertices, we apply the above transformation repeatedly, yielding a series of graphs

G = G0, G1, G2, . . . and corresponding schemes Γ = Γ0, Γ1, Γ2, . . ., where Gi+1 = Rvi
(Gi),

for some vertex vi of Gi for which transformation Rvi
is applicable on Gi. That is, vi is

a non-safe node of Gi such that all nodes in (Gi)vi
other than vi are safe in Gi. Recall

that (Gi)vi
is the subgraph of Gi that is reachable from node vi through directed paths.

Since each transformation reduces the number of edges and does not add any new nodes

and never makes a safe node non-safe, there exists a finite sequence of q transformations,

indexed by nodes v0, ..., vq−1, resulting in a scheme Γq whose graph Gq is reduced (i.e., it

has no non-safe nodes).

Given a key management algorithm A for Γ, let A0 = A and, for i = 0, . . . , q − 1, let

Ai+1 be the algorithm for Γi+1 obtained by transforming algorithm Ai for Γi. By repeating

the argument above, we have that, given a source node s, for i = 0, . . . , q−1, for the update

of s, algorithm Ai in Γi has communication cost greater than or equal to the communication

cost of algorithm Ai+1 in Γi+1.

Let s∗ be a source node whose update has largest communication cost for algorithm Aq

in Γq. For i = 0, . . . , q, we define ci to be the communication cost of algorithm Ai for Γi

in the update of node s∗. We have that ci ≥ ci+1 for i = 0, . . . , q − 1. Also, since graph

Gq is reduced, by Lemma 3.5.1 and Theorem 3.2.1, we have that cq ≥ ⌊log n⌋ + 1. Thus,

we obtain that c0 ≥ ⌊log n⌋+ 1. We conclude that for any key-management algorithm for a

scheme Γ = (G, S, n, 1), there is an update whose communication cost is at least ⌊log n⌋+1.

Recall that the encryption and decryption costs are each lower bounded by the commu-

nication cost, thus, we get that for any instance of the multicast key distribution problem of

size n using key graphs, there exists an update that has Ω(log n) encryption and decryption

costs. Finally, Theorem 3.2.2 implies that the best reduced key-graphs are the key-trees.

We observe that by the proof of Theorem 3.5.1, we can view the multicast key distribu-

tion problem as a HDP problem.

3.6 A New Skip-List Version

From Lemma 3.2.2 and Theorem 3.3.1, we have a version of the skip-list data structure

for searching in a totally ordered set (X,�) with expected number of comparisons � close

to the theoretical optimal ⌊log n⌋ + 1, up to an additive constant term. Our DAG scheme

and the new skip-list version can be viewed as a multi-way extension of the skip-list data

108

structure, in the same way multi-way trees (e.g., B-trees, 2-4 trees) are extension to binary

search trees. We call the new skip-list version multi-way skip-list.

Theorem 3.6.1. There is a multi-way version of a skip-list for set X of size n and proba-

bility parameter p, where the expected number of comparisons performed while searching in

X for any fixed element is at most (1−p)(1+p2)

p log2
1
p

log2 n+O(1), or 1.25 log2 n+O(1) for p = 1
2 .

Proof. It follows from Lemma 3.2.2 and Theorem 3.3.1. Since for DAG scheme ∆ =

(T, r, n, 1), T is a directed tree, from Lemma 3.2.2 we get a transformation of T into a

search tree T ′ for set X, where interior nodes of T ′ are assigned with elements from X. It

follows that every element xs in X stored at source node s of T ′ can be located with bnd(πs)

comparisons, which completes the proof.

Regarding the above new skip-list version, the idea is to use our skip-list DAG scheme

to create a search tree structure in the skip-list for searching elements of X. The multi-

way skip-list data structure is a appropriately modified version of the regular skip-list data

structure, such that the search tree T ′ of Theorem 3.6.1 is implicitly represented in the

skip-list and searches are performed according to search tree T ′. That is, we can keep the

simplicity in creating and updating a skip-list, but we can save element comparisons by

using our skip-list DAG. Note that for bridges of size k ≥ 2, by keeping the appropriate

elements that advance the search in this bridge, k−1 (instead of k) comparisons are needed.

Skipping most of the details, to implement this skip-list version, elements that are used in a

bridge b to advance the search in a child bridge of b must be stored in the entrance (top-left)

list node of the bridge. Elements are inserted and deleted as in the regular skip-list data

structure. The update operations should only maintain the appropriate elements at the

entrance list nodes of the bridges traversed by the update; this can be easily achieved but

appropriately modifying the search procedures.

We note that also in the regular skip-list any search corresponds to a path in a search

tree. This tree-like interpretation of skip-lists is known in the literature (e.g., see [101]).

Our result provides a new tree-like interpretation of skip-list with closer to optimal search

performance. In particular, with respect to the expected number of comparison in a search,

the multi-way skip-list version achieves the best known performance for a skip-list. Indeed,

in [120, 121] it is shown that the expected number of comparisons for a search in a skip-list

with probability parameter p is (log2 n)/(p log2
1
p) + O(1). In the same work, an improved

– in terms of number of comparisons – skip-list version gives 1−p2

p log2
1
p

log2 n + O(1) expected

comparisons for a search. We are not aware of any improved skip-list based scheme with

109

better (smaller) logarithmic constant. Our multi-way skip-list version reduces the expected

number of comparisons down to (1−p)(1+p2)

p log2
1
p

log2 n+O(1). For instance, when p = 1
2 , the ex-

pected number of comparisons when searching in the (improved) standard skip-list achieves

is 1.5 log n+O(1), whereas, using the new multi-way skip-list the expected number of com-

parisons for searching an element is 1.25 log n + O(1), that is, the logarithmic constant of

the expected number of comparisons for a search drops from 1.5 to 1.25. Interestingly,

multi-way skip-lists have a more explicit tree structure than standard skip-lists, thus in

fact, they constitute a new randomized search tree (see, e.g.,[3, 87]).

3.7 Conclusions

In this chapter, we introduced the concept of hierarchical data processing. This concept

defines a new class of problems which models computations on elements and associated

values that share certain properties. Computations are carried out hierarchically, according

to the structure of an associated with the problem directed acyclic graph. Moreover, all costs

that are related to the computations are fully characterized by the associated DAG, where in

principle these costs depend on certain structural properties of the graph. Hierarchical data

processing constitutes an interesting new theoretical framework for analyzing computational

problems and designing efficient data structuring techniques.

We have proved logarithmic lower bounds for several cost measures related to hierar-

chical data processing, by studying structural measures of any DAG and by relating these

measures to the number of comparison performed in a search structure. Overall, we have

drawn an analogy between hierarchical data processing problems and searching by com-

parison. This connection not only serves as the basis for our theoretical results on the

complexity of hierarchical data processing problems, but also provides us with an interest-

ing and useful explanation of the computational difficulty that is intrinsic in them. We also

proved the optimality of tree structures for any hierarchical data processing problem.

In view of the logarithmic lower bounds and the optimality of trees, we have also designed

and analyzed a new randomized tree-like DAG. This DAG enjoys certain nice properties

with respect to the cost measures related to the complexity of hierarchical data processing

problems. Through the computational equivalence between hierarchical data processing

and searching by comparison, we also get a new version of skip-list, where the expected

number of comparisons of a search if closer to the theoretical optimal. This skip-list version

improves the performance of previous versions.

110

We further apply our framework of hierarchical data processing to model two infor-

mation security problems. We prove logarithmic lower bounds and efficient constructions

for authenticated dictionaries in the model of data authentication through cryptographic

hashing as well as for multicast key distribution using key-graphs. We show how these

problems involve hierarchical data processing and accordingly get new results. We believe

that more applications and more problems can be modeled as hierarchical data processing

problems. Our framework not only provides a unified treatment of two interesting and seem-

ingly unrelated problems, but also provides a general tool in studying other computational

problems.

An interesting open problem is the derivation of non-trivial bounds on new cost measures

of DAG schemes that characterize the complexity of different class of problems and, in

particular, the derivation of lower bounds on the complexity of other problems related to

data authentication. Also, it is interesting to further explore hierarchical data processing

in modeling and analyzing different classes of problems. Finally, the trade-off between

two important computational measures related to hierarchical data processing which was

observed for two basic data structures, suggest that it is worth to further investigate the

possibility of designing authentication structures that have performance closer to optimal.

An extended abstract of the results discussed in this chapter appears in [142].

Chapter 4

Authentication of Data Streams

4.1 Introduction

The authentication of multicast transmissions of data streams is a central problem in infor-

mation and network security. Data transmission in a multicast setting involves a sender—

the source of the data—sending data to a large set of receivers, where data is transmitted as

a stream of packets over an underlying network. The authentication problem that arises is

the verification of the received stream being authentic, that is, being (part of) the original

stream sent by the data source. A large and still growing set of Internet’s applications

that are based on multicast data transmissions justify the importance of this problem. Dis-

tributed information and data management systems, systems built on top of peer-to-peer

networks, digital broadcasts and public subscription systems typically include extensive

multicast of information. Additionally, numerous data-driven and multicast-group applica-

tions involve large-scale stream-based dissemination of high volumes of data from one source

to many users; examples include content-based networks, online data-processing financial

applications, data-monitoring systems over sensor networks and various data-flow-oriented

systems for Web services. Of course, the problem also includes, as a simpler case, the

point-to-point transmission of data streams and, thus, captures numerous stream-based

client-server applications over the Internet.

Technically, the problem of multicast authentication is a challenging one and has at-

tracted a great amount of interest during the last years. One of the distinguishing properties

of multicast data-stream transmissions is certainly the fact that, since data is unstructured

and flat, for the majority of the applications packet losses are tolerated and, consequently,

data transmission does not need to be reliable. For instance, IP multicast is implemented

111

112

with a best-effort delivery mechanism over the UDP transport protocol and packets can

be lost due to failures. Thus, in principle, the stream that reaches a receiver may differ

from the transmitted one. As a result, any authentication scheme for multicast streams

should verify as many as possible of the received packets without assuming the availability

of the entire original stream. In addition, it should resist against any type of attack by an

adversary, even when the adversary completely controls the underlying network. Although

what happens more often in practice is that packets get lost because of errors, what authen-

tication dictates is protection against an adversarial network behavior. Indeed, the main

characteristic of the problem is by definition the existence of an entity acting maliciously in

between the sender and an honest receiver. In practice, the role of the adversary may play

any of the parts of the underlying network, such as ISPs, routers or malicious users. It is

essential that the adversary is modeled as an entity of great power and that no assumptions

about the network that limit adversary’s behavior exist. Finally, any authentication scheme

should be efficient, scalable and lightweight with respect to the final application.

Therefore, in the multicast authentication problem, we wish to authenticate a packet

stream transmitted over a network that may adversarially drop packets, arbitrarily rear-

range the order of the packets, and inject new packets into the stream. The authentication

mechanism should be as general as possible and should not depend on any specific assump-

tions about the underlying network. Although this problem has been extensively studied,

no formal definition has been given for it for this general version. Prior work on the subject

has focused on a network model where either all the received packets are valid (authentic) or

packets are lost according to some predefined random patterns (e.g., [51, 100, 116, 136]) or

no packet injections occur (e.g., [110, 111]), or relatively strong and hard to meet conditions

are assumed about the network behavior (e.g., [115, 116]). Thus, most of the previously

proposed schemes rely on less general network models, tolerate only erroneous network

behavior and are not resilient against an adversarial behavior of the network.

Of course, if each packet were signed by the sender, then the only damage the adver-

sarial network could inflict is packet loss, as the receiver would simply reject packets whose

signature is not verified. However, this simple “sign-all” solution is undesirable because of

the repeated use by the sender of the critical and computationally expensive sign primitive

for each transmitted packet and the heavy communication overhead caused by the addition

of a signature to each packet. Additionally, this solution suffers by a simple denial-of-service

attack at the receiver; one signature verification must be performed for each received packet,

valid or not.

In this chapter, we formally define a general model for multicast authentication where

113

an adversary can perform various attacks on the transmitted streams. In this model, two

parameters of the network, the survival rate and the flood rate, characterize the power of

the adversary. Using this network model, we formally define the authentication problem

for multicast transmissions and describe the notions of correctness and security that any

authentication scheme should respect. We describe an efficient authentication scheme for

this model that gives almost the same security guarantees as if each packet were individu-

ally signed, but requires only one signature operation for the entire stream and adds only

a constant size authentication overhead per packet. Our technique uses a novel combina-

tion of Reed-Solomon error-correcting codes with standard cryptographic primitives, such

as collision-resistant hashing and digital signatures. The use of error-correcting codes for

multicast authentication was inspired by the previous use of erasure codes, as in [110, 111],

for this problem. We essentially design authenticated error-correcting codes that constitute

a new general-purpose authentication tool. Moreover, enhanced with cryptographic primi-

tives, our error-correcting encoding derives an interesting connection between cryptography

and coding theory.

In the rest of this section, we introduce our model, summarize our contributions and

present previous work on multicast authentication.

4.1.1 Model and Contributions

We consider the problem of authenticating a stream of packets transmitted over a fully

adversarial network. Namely, the network is controlled by an adversary who can destroy

packets of her choice, arbitrarily rearrange the order of the packets, and inject new, arbi-

trarily constructed, packets. We limit the power of the adversary to modify a stream of

n packets transmitted by the sender by introducing two parameters of the network, the

survival rate α, 0 < α ≤ 1, and the flood rate β, β ≥ 1, which are assumed to be constants.

A network with these two parameters, which we call an (α, β)-network, guarantees that

despite the presence of the adversary, at least αn packets in the received stream are valid

and the received stream contains at most βn packets.

The model is formally described in Section 4.3. For now, we note that the survival

and flood rates are only used to model the adversary’s behavior; not to limit it. An au-

thentication scheme should operate correctly and securely for any values of α and β, even

non-constants. We briefly justify the introduction of these network parameters—and, in

essence, our choice to be constants—with the following observations. If too many packets

are dropped or corrupted by the adversary, then the main problem is the loss of data, as

114

the small number of valid packets received may be useless even if authenticated. On the

other hand, if the adversary can inject a very large number of packets, then we have a

denial-of-service attack. In both cases, as α gets smaller or β gets larger, the authentication

problem degenerates to data loss and denial-of-service attack. No need for authentication

really exists in both of these extreme cases.

The contributions of our work can be summarized as follows:

• We provide a formal definition of multicast authentication over an (α, β)-network,

where arbitrary packets are lost, injected, and rearranged, subject to a given survival

rate α and flood rate β. We also give the requirements for an authentication scheme

to be correct and secure.

• We present the first efficient and scalable multicast authentication scheme for an

(α, β)-network. Our scheme is based on digital signatures, cryptographic hash func-

tions and Reed-Solomon error-correcting codes. In essence, we design an authenticated

Reed-Solomon error-correcting code that constitutes a new, powerful and general-

purpose authentication tool. This last feature of our scheme provides a new interest-

ing connection between coding theory and security. In particular, we show how, in the

public-key model and the bounded computational model for communication channels,

list-decoding can be transformed into unambiguous decoding.

• We prove the correctness and security of our scheme, analyze its performance in terms

of various cost parameters, discuss design and implementation choices, and compare

it with previous approaches. In particular, we show that our scheme adds to each

transmitted packet only a small amount of authentication information, proportional

to β/α2, and that all the valid packets received are recognized, while all the invalid

packets are rejected.

The only prior approaches that provide security in our adversarial model is (i) the ineffi-

cient “sign every packet” solution, which consists of either singing each packet individually

or using a Merkle hash tree as in the scheme proposed by Wong and Lam [148] and (ii) a

recently proposed scheme [68] by Karlof et al. that uses signature dispersal and a Merkle

hash tree. The trivial solution of signing each packet individually is not viable due to heavy

computational operations at both the sender and the receiver, but also because secret-key

operations are expensive in terms of the security architecture as well. Our scheme, by amor-

tizing one signature per a stream of size n, suffers from no such problem. On the other

hand, the Merkle-tree-based authentication schemes [68, 148] have the drawback that the

115

per-packet communication overhead grows logarithmically with the number of packets sent.

Indeed, each packet of a stream of size n carries authentication information of size O(log n).

In contrast, our scheme achieves per-packet communication overhead independent of n and,

thus, more efficiency and scalability.

4.1.2 Prior and Related Work

Previous work on multicast authentication considers both unconditionally secure and com-

putationally secure authentication. Approaches based on the information theoretic model

(see, e.g., [31, 132]) tend to be less practical. In the rest of this section, we overview

approaches that use computationally secure authentication. We do so, by appropriately

categorizing previous work according to the underlying authentication technique in use.

MAC-Based Approaches. Various approaches use secret-key cryptography and mes-

sage authentication codes (MACs). The trivial solution here is having the multicast group

members (i.e., all the receivers) sharing a secret key and including a MAC into every packet

sent, but this scheme is not secure, as any user can spoof packets. In another MAC-based

trivial solution, each receiver has her own secret key and the sender possesses all such keys.

To authenticate a stream, the sender adds to each packet a MAC for every receiver. This

approach is not scalable because of the high communication cost.

Canetti et al. [20] described a MAC-based scheme that is secure with high probability

against any coalition of w corrupted users, where O(w) MACs are appended to each packet.

This scheme is not fully scalable due to its communication overhead. Perrig et al. [115, 116]

presented another MAC-based scheme, TESLA, where a MAC is appended to every packet

and the key of the MAC is provided in some subsequent packet. To tolerate packet losses,

the keys are generated by means of a hash chain. This approach has low communication

overhead. However, it requires time synchronization between the parties. Two MAC-based

schemes that make explicit use of the topology of a multicast tree were proposed in [149]

by Xu and Sandhu. Both schemes are similar in concept to [115] and take denial-of-service

and access control into consideration (namely, a corrupted packet is filtered out as soon as

possible in the multicast tree and only legitimate group subscribers can authenticate the

multicast packets). Both schemes assume the existence of secure and trusted routers at

the nodes of the tree. In addition, the first scheme uses clock synchronization, whereas the

second scheme relies on the existence of secure channels between the source and each of the

receivers.

Boneh et al. [11] generalized MACs to a multicast setting by defining a new primitive

116

for multicast authentication called Multicast MAC (MMAC). A MMAC is a triplet of

algorithms (key − gen,mac − gen,mac − ver) where: key − gen produces secret key sk

for the sender and secret keys rs1, . . . , rsn for the receivers; mac − gen(M, sk) computes

an authentication tag τ for message M and mac − ver(M, τ, rki) returns a “yes” or “no”,

checking whether τ is an authentication tag of message M . A MMAC must satisfy certain

correctness and security constraints. In their work, Boneh et al. studied the existence of

efficient MMACs, i.e., MMACs with short tag τ . They showed that any MMAC scheme

can be transformed into a digital signature scheme of almost the same efficiency. Thus,

any multicast authentication scheme not relying on additional assumptions on the network

(such as synchronization, trusted routers, or secure channels) may as well use a signature

scheme, which brings us to signature amortization. The result was also extended to the case

where the adversary possesses a limited number of the receivers’ keys and a lower bound on

the length of the authentication tag was derived. The construction by Canetti et al. in [20]

meets this bound, whereas TESLA by Perrig et al. in [115, 116], using time synchronization

and one digital signature for bootstrapping, is not an exact MMAC scheme.

In view of the previous result, research efforts also focused on building faster signature

schemes for signing every packet separately. Work on this direction includes (i) the use of

one-time digital signatures by Gennaro and Rohatgi in [47] for on-line data stream multicast

transmission but only in reliable communication channels, (ii) the use of k-time digital

signatures by Rohatgi in [128] to speed up the signing rate with relatively short signature

sizes and (iii) Perrig’s BiBa one-time broadcast protocol [114].

Signature Amortization. Many approaches use the technique of signature amortiza-

tion, where a single digital signature is used for the authentication of multiple packets. A

first scheme that uses signature amortization over a hash chain appeared by Gennaro and

Rohatgi in [47]. Each packet pi is augmented with authentication information ai, which is

recursively defined as the hash of pi+1◦ai+1 (◦ denotes concatenation). Also, the augmented

first packet p1◦a1 is digitally signed. This scheme has constant authentication overhead per

packet but does not tolerate packets losses. In [148], a Merkle hash tree was used by Wong

and Lam to amortize a signature over n packets. Namely, a hash tree is built on top of the

hashes of the packets and the root hash value is digitally signed. Each packet is augmented

with authentication information that consists of the signed root hash and the hashes of the

siblings of the nodes on the path between the root and the leaf associated with the packet.

The scheme tolerates packet losses but has logarithmic communication overhead per packet.

In contrast, our approach, which also uses signature amortization, has constant per-packet

117

communication overhead.

Graph-Based Authentication. Graph-based authentication [51, 100, 116, 136] gener-

alizes the idea of amortizing a signature over a hash chain in such a way as to tolerate

packet losses. A single-sink directed acyclic graph (DAG) G is defined, where each vertex

corresponds to a packet. A directed edge from packet pi to packet pj indicates that the

authentication information aj of packet pj includes the hash of pi ◦ai. Also, the augmented

packet p1 ◦a1 of the sink of the DAG is digitally signed. The validation of packets proceeds

backward along the edges of the graph. Namely, if packet pj has been validated and edge

(pi, pj) exists in G, then the validity of packet pi can be determined using the authentication

information aj of pj . Graph-based authentication schemes offer probabilistic security guar-

antees provided packet losses occur randomly (i.e., they are not adversarially selected). In

particular, they require that the signature packet will reach the receiver intact. Two packet

loss patterns have been studied: the uniform model, where each packet is lost with a fixed

probability and independently of other packets being lost, and the bursty model, where a

packet is lost with a fixed probability and then a given number of successive packets are

also lost.

In [116], Perrig et al. selected G to be an augmented-chain graph, consisting of a path

plus additional edges that connect vertices at various distances. Golle and Modadugu in [51]

proposed the use of another augmented-chain graph which is designed specifically to tolerate

bursty packet losses. Random graphs and a new scheme that is resilient to multiple bursty

losses were studied by Minner and Staddon in [100]. Finally, in [136], expander graphs were

used by Song et al. The efficiency of graph-based authentication schemes was analyzed in

[22] by Chan and experimentally studied in [28] by Cucinotta et al.

Erasure Codes. Park et al. [111] and Pannetrat and Molva [110] employed the use of

erasure codes (e.g., [80, 81, 122]) for multicast authentication to tolerate adversarially-

chosen packet losses and disperse one signature over a group of packets. In particular,

information sufficient—if reconstructed at the receiver—to authenticate the received packets

is encoded using an erasure code so that delivery of a constant fraction of packets guarantee

the successful decoding of this information. The constructions are efficient in terms of

communication cost and similar in principle. The two schemes only differ in that in [110],

encoding is performed twice to reduce the size of the authentication information. The idea

here is that a significant portion of the encoded information reaches the receiver for free

through the valid packets. Both schemes are, however, vulnerable to a very simple attack:

118

a single injected packet can compromise the correctness of the decoding procedure at the

receiver.

In [112], Park et al. identified a special case of this problem, where packets are altered,

as a denial-of-service attack. They suggest the use of distributed fingerprints [76] (which,

in turn, are based on error-correcting encoding) to tolerate a small number of symbol

modifications (through packet alterations) of the erasure-encoded information. However,

the proposed scheme lacks efficiency, since distributed fingerprints are used on top of the

erasure encoding, and, more importantly, collapses for a specific packet-injection type of

attack, where more than one packets (symbols) claim to be a specific packet (symbol). We

note that our adversarial model includes this type of attack: many injected packets may

pretend to be a specific original packet.

Recently, Karlof et al. [68] proposed a solution to the packet-injection problem that

the erasure-based schemes have. They referred to this problem as packet pollution and

introduced the notion of distillation codes, codes that tolerate both erasure and pollution

of symbols. They realized a distillation code by using an erasure code and a one-way

accumulator. Symbols are erasure encoded as usual, but also appended by a witness of

set inclusion in the set of pre-encoded symbols. At the receiver, the idea is to partition

the received symbols into groups of symbols so that received symbols of the same group

belong in the same group of transmitted (not necessarily authentic) pre-encoded packets.

Partitioning is feasible relying on the set inclusion properties of the one-way accumulator

and, consequently, each group can be decoded and then examined to be authentic. Built

on the scheme [112] by Park et al. and using Merkle’s hash tree as a (weaker version of)

one-way accumulator, this approach leads to a multicast authentication scheme, where both

packet injections and packet erasure is tolerated. However, this scheme achieves not constant

per-packet communication overhead, since each packet carries information of size O(log n)

as witness (because of the use of Merkle tree), and suffers from the cumbersome decoding

procedure with respect to the processing of packets at the receiver: the partition operation

adds a considerable amount of computation and hashing and a considerable number of

erasure decodings.

Recently Gunter et al. [61] have used erasure codes to tolerate packet injections but

only random packet losses. In particular, in a less general network model, the adversary

shares the transmission channel with the sender and is allowed to inject packets up to

a certain transmission rate. The scheme involves the use of three different streams: (i)

the data stream where packets only contain data, (ii) the hash and parity stream, which

consists respectively of hash packets and encoded packets and (iii) the signature stream.

119

Signatures are verified selectively and injected packets are filtered out by processing all

received packets in an exhausting way. The scheme achieves only probabilistic guarantees

about the authentication of received packets. Obviously, no adversarially chosen packets

are tolerated.

Related Work. In a recent related work [77], Krohn et al. have used erasure encod-

ing techniques in combination with homomorphic hashing for the on-the-fly verification

of erasure-encoded blocks. Applications involve peer-to-peer content distribution but also

multicast transfers. However, their scheme relies on the following strong assumption: the

receiver knows in advance the cryptographic hashes of the transmitted shares.

Techniques similar to ours have been recently used by Micali et al. [97] to study error

correction in the bounded computational model.

4.1.3 Chapter Structure

The organization of the rest of the chapter is as follows. The cryptographic primitives and

error-correcting codes used in this chapter are reviewed in Section 4.2. In Section 4.3, we

describe in detail our adversarial network model and multicast authentication framework.

Section 4.4 describes the construction of our authenticated error-correcting code and mul-

ticast authentication scheme and gives proofs of correctness and security. In Section 4.7 we

analyze the performance of our scheme and compare it with various other proposed schemes

in terms of security assumptions, underlying network model, resilience to packet loss and

injection, computational effort at the sender and receiver, and communication overhead.

We conclude in Section 4.8.

4.2 Preliminaries

In this section, we introduce some notation and define the cryptographic and coding prim-

itives that we use in our construction.

4.2.1 Notation

Let A be an algorithm. By A(·) we denote that A has one input (resp., by A(·, . . . , ·) we

denote that A has several inputs). By y ← A(x), we denote that y was obtained by running

A on input x. If A is deterministic, then this y is unique; if A is probabilistic, then y is a

random variable. If S is a finite set, then y ← S denotes that y was chosen from S uniformly

at random. By y ∈ A(x) we mean that the probability that y is output by A(x) is positive.

120

By AO(·), we denote an algorithm that makes queries to an oracle O. I.e., this algorithm

(Turing machine) will have an additional (read/write-once) query tape, on which it will write

its queries in binary; once it is done writing a query, it inserts a special symbol “#”. By

external means, once the symbol “#” appears on the query tape, oracle O is invoked and its

answer appears on the query tape adjacent to the “#” symbol. By Q = Q(AO(x))← AO(x)

we denote the contents of the query tape once A terminates, with oracle O and input x.

By (q, a) ∈ Q we denote the event that q was a query issued by A, and a was the answer

received from oracle O.

Let b be a boolean function. By (y ← A(x) : b(y)), we denote the event that b(y)

is TRUE after y was generated by running A on input x. The statement Pr[{xi ←
Ai(yi)}1≤i≤n : b(xn)] = α means that the probability that b(xn) is TRUE after the

value xn was obtained by running algorithms A1, . . . , An on inputs y1, . . . , yn, is α, where

the probability is over the random choices of the probabilistic algorithms involved.

4.2.2 Cryptographic Primitives

The following definition is due to Goldwasser, Micali, and Rivest [50], and has become the

standard definition of security for signature schemes. Schemes that satisfy it are also known

as signature schemes secure against adaptive chosen-message attack.

Definition 4.2.1 (Signature scheme). The triplet of probabilistic polynomial-time algo-

rithms (G(·), Sign(·)(·), Verify(·)(·, ·)), where G is the key generation algorithm producing a

pair (PK, SK) of public and secret keys on input a security parameter k, Sign the signature

algorithm, and Verify the verification algorithm, constitute a digital signature scheme for a

family (indexed by the public key PK) of message spaces M(·) if the following two hold:

Correctness If a message m is in the message space for a given public key PK, and SK

is the corresponding secret key, then the output of SignSK(m) will always be accepted

by the verification algorithm VerifyPK . More formally, for all values m and k:

Pr[(PK,SK)← G(1k); σ ← SignSK(m) : m←MPK ∧ ¬VerifyPK(m, σ)] = 0.

Security Even if an adversary has oracle access to the signing algorithm that provides

signatures on messages of the adversary’s choice, the adversary cannot create a valid

121

signature on a message not explicitly queried. More formally, for all families of prob-

abilistic polynomial-time oracle Turing machines {A(·)
k }, there exists a negligible func-

tion1 ν(k) such that

Pr[(PK,SK)← G(1k); (Q, m, σ)← A
SignSK(·)
k (1k) :

VerifyPK(m, σ) = 1 ∧ ¬(∃σ′ | (m, σ′) ∈ Q)] = ν(k).

For completeness, we give a standard definition of a family of collision-resistant hash

functions.

Definition 4.2.2 (Collision-resistant Hash Function). Let H be a probabilistic polynomial-

time algorithm that, on input 1k, outputs an algorithm H : {0, 1}∗ 7→ {0, 1}k. Then H
defines a family of collision-resistant hash functions if:

Efficiency For all H ∈ H(1k), for all x ∈ {0, 1}∗, it takes polynomial time in k + |x| to
compute H(x).

Collision-resistance For all families of probabilistic polynomial-time Turing machines

{Ak}, there exists a negligible function ν(k) such that

Pr[H ← H(1k); (x1, x2)← Ak(H) : x1 6= x2 ∧H(x1) = H(x2)] = ν(k).

4.2.3 Error-Correcting Codes

Error-correcting codes allow recovering a message that is transmitted over a noisy channel.

Let q ≥ 2 be the size of alphabet [q] = {1, 2, ..., q}. An error-correcting code [n, k]q, k < n,

is a function2 C : [q]k → [q]n that takes as input a k-length message x over [q] and outputs

a longer n-length codeword C(x) over the same alphabet. That is, an error-correcting code

processes k characters (symbols) in [q] and adds redundancy to form n characters. If only

redundancy is added by a code C such that the k first symbols of C(x) form word x, then

the code is called systematic.

The processing and the added redundancy help correcting up to e errors of the codeword

C(x); that is, given a received word y ∈ [q]n such that y and C(x) differ in at most e

characters of the alphabet, one can unambiguously correct (decode) y to C(x). The value

1A function ν : N → R is negligible if for every positive polynomial p(·) and for sufficiently large k,
ν(k) < 1

p(k)
.

2There are more than one possible definitions. Here we choose to define an error-correcting code as a
function.

122

e depends on the exact choice of the code C. In particular, for unambiguous decoding, e

is always bounded from above by d/2, i.e., e < d/2, where d is the diameter of the code,

defined as follows. The distance of two codewords of C is the number of positions where

their symbols differ and the distance of code C is the minimum distance of two codewords

of C, measured over all pairs of codewords.

List-decoding allows to correct a number of errors that is beyond the bound above.

Handling even more errors comes at a price, though. In fact, one can ambiguously correct

beyond this bound. That is, given that C(x) is received as word y ∈ [q]n and C(x) and y

differ in at most e positions with e ≥ d/2, list-decoding provides a list of candidate initial

messages in [q]k, such that x belongs in this list. In general, as e grows, the size of the

output list grows as well and, typically, we put an upper bound on e so that list-decoding is

efficient (i.e., is performed in polynomial time) and the list size is reasonable to work with.

Reed-Solomon codes [125] are a family of codes that are based on properties of univariate

polynomials over finite fields. An [n, k + 1]q Reed-Solomon code, k < n ≤ q, has diameter

d = n− k and, as long as the number of errors e is at most (d− 1)/2 = (n− k − 1)/2, one

can unambiguously decode in quadratic time [145]. If e > (n− k− 1)/2, then list-decoding

is considered to be feasible [49] (i.e., it can be performed in polynomial time) as long as

e ≤ n−
√

nk.

We next define the [n, k + 1]q Reed-Solomon code, where n, k and q are positive integers

and parameters of the code, with k < n ≤ q,3 and where list-decoding is considered. We

present here a slightly modified definition of Reed-Solomon codes than the one commonly

used in the literature, so that, by definition, Reed-Solomon codes considered in this chapter

are systematic. This property is not necessary for the correctness of our scheme, but offers

an extra desired property in our construction, discussed in Section 4.7 and requires no extra

computational effort at the encoder.

Definition 4.2.3 (Reed-Solomon code). A [n, k + 1]q Reed-Solomon code consists of the

following components:

Alphabet The alphabet is a finite field Fq of size q ≥ n, with q being a prime power.

Encoder The code is a function C : F
k+1
q → F

n
q , where n > k. In more detail, the encoder:

1. takes as input the parameters n and k, and k + 1 points (i, yi), i ∈ Fq, yi ∈ Fq,

1 ≤ i ≤ k + 1,

3For simplicity, in this definition we require that k < n rather than k + 1 < n, allowing thus the extreme
case, where, for k = n − 1, the code adds no redundancy at all.

123

2. finds a unique univariate polynomial p ∈ Fq[x] over elements of Fq and of degree

at most k, such that p(i) = yi, 1 ≤ i ≤ k + 1, and

3. outputs points (i, p(i)), for 1 ≤ i ≤ n. The ratio k
n < 1 is called the rate of the

code.4

We have that C is a systematic code.

Decoder Let 0 < ǫ < 1 be a parameter that controls the performance of the decoder. The

decoder takes as input parameters n and k, the maximum number of errors e that may

occur, and n points (xi, yi), 1 ≤ i ≤ n, and list-decodes, i.e., it outputs a list of all

univariate polynomials p ∈ Fq[x] of degree at most k such that yi 6= p(xi) for less than

e values of i, 1 ≤ i ≤ n.

For an [n, k + 1]q Reed-Solomon code, we use a decoder that runs in polynomial time

and is due to Guruswami and Sudan [62, 63]. The maximum number of errors that can

be tolerated by the list-decoding procedure matches the theoretical bound of n −
√

kn.

However, the decoding algorithm is prohibitively expensive (e.g., O(n12)) when the exact

bound is met. By reducing this upper bound of the maximum number of errors to

n−
√

(1 + ǫ)kn, ǫ ∈ (0, 1),

a quadratic decoding algorithm exists [63]. We refer to this decoder as GS-Decoder. For

this decoder, parameter ǫ controls how far away from the bound of n −
√

kn list-decoding

operates (in the worst case). We will use the following result.

Theorem 4.2.1 (Guruswami-Sudan). Consider a [n, k + 1]q Reed-Solomon code. For any

ǫ ∈ (0, 1), given n points with at most e = n −
√

(1 + ǫ)kn errors, GS-Decoder outputs a

list of size O(ǫ−1
√

n/k) in O(n2ǫ−5 log2 q logO(1) log q) time, performing O(n2ǫ−5 log q) field

operations.

We view ǫ as a parameter of the GS-Decoder, 0 < ǫ < 1, and we also make use of

the notation GSDecodeǫ(n, k, e, {(xi, yi)|1 ≤ i ≤ n}) to denote that GS-Decoder runs with

parameter ǫ having as input parameters the integers n, k, e and the points (xi, yi), 1 ≤ i ≤ n.

In practice, codes with constant expansion are used, where k = ρn for some constant

ρ < 1, with ρ being the rate of the code in use. In particular, our construction makes use

of a [n, ρn + 1]q Reed-Solomon code, with ρ < 1, over some large alphabet of size q = 2c for

4For convenience, we note that in fact the rate of an [n, k + 1]q code is k+1
n

, but for simplicity we adopt
the ratio k

n
as being the rate.

124

some constant c. From Theorem 4.2.1 we have the following, where by Õ(·) we denote that

some logarithmic factors are omitted.

Corollary 4.2.1. For any [n, ρn + 1]q Reed-Solomon code, for any constants ǫ ∈ (0, 1) and

ρ < 1 such that
√

(1 + ǫ)ρ ≤ 1, on an input with at most e = (1 −
√

(1 + ǫ)ρ)n errors,

GS-Decoder outputs a list of O(1) size in Õ(n2) time, performing Õ(n2) field operations.

Proof. It follows directly from Theorem 4.2.1 for k = ρn, ρ < 1 and using the Õ(·) notation

to hide constants and logarithmic on q factors. We need
√

(1 + ǫ)ρ ≤ 1 such that e ≥ 0.

GS-Decoder is based on an algorithm that solves the polynomial reconstruction problem:

given k, t, and n points {(xi, yi), 1 ≤ i ≤ n}, where xi, yi ∈ Fq, find a list that contains all

univariate polynomials p ∈ Fq[x] of degree at most k such that yi = p(xi) for at least t values

of i, 1 ≤ i ≤ n. Parameter t is usually referred as agreement. Polynomial reconstruction

and Reed-Solomon list-decoding are equivalent problems [62]. In particular, the following

corollary is equivalent to Corollary 4.2.1.

Corollary 4.2.2. For any constants ǫ ∈ (0, 1) and ρ < 1 such that
√

(1 + ǫ)ρ ≤ 1, poly-

nomial reconstruction on input ρn, t, and n points in Fq × Fq can be solved in Õ(n2) time,

provided t ≥
√

(1 + ǫ)ρn, where Õ(n2) field operations are performed and the output list

has O(1) size.

Proof. It follows immediately from Corollary 4.2.1 by considering the equivalence between

the two problems. The upper bound e of the number of errors guarantees agreement t of

at least n − e =
√

(1 + ǫ)ρn. We need
√

(1 + ǫ)ρ ≤ 1 in order to be consistent with the

requirement that t ≤ n.

4.3 Network Model and Multicast Authentication Frame-

work

Considering data transmission in a multicast setting, a sender, the source of the data,

transmits a data stream over an underlying “best-effort” network. Data packets are received

by a large set of receivers. Without loss of generality, we focus our attention to one such

receiver, such that the two honest parties of the authentication protocol are the sender and

the receiver. No guarantees about the delivery of the packets exist in general. Furthermore,

the network is an adversary of great—yet not unlimited—power, acting in the bounded

computational model. In our model, packets may be adversarially lost, altered, delayed,

125

or injected. However, this adversary is not given complete freedom—if it were, then no

messages (data) would ever get delivered, and so our task would be hopeless.

Conventionally and without loss of generality, we consider data streams consisting of n

packets, that is, at the sender, the data for transmission is arranged in groups of size n.

Each group of n packets is identified by a—unique per distinct group—group identification

tag GID . That is, packets of a group are marked with the corresponding GID . Note

that the existence of tag GID adds no new assumption about the transmitted stream. It

corresponds to a means by which the packets can be grouped together and in practice it

can be provided by any network-layer transmission protocol in use. In our framework, the

GID is used as an abstract quantity of constant size; in practice, it is a string of some small

constant size, e.g., the size of a hash value (20 bytes for SHA-1).

4.3.1 The (α, β)-Network Model

We model the network as an adversarial entity, i.e., an entity that can simultaneously inflict

any possible type of attack to the transmitted data stream. The repertoire of attacks consists

of packet losses, injections, alterations and rearrangements. These modifications of the data

stream are adversarially chosen so that the adversary can cause the loss of any selected

packets. The ability to tolerate packet losses has been widely considered an important

property of multicast authentication schemes [51, 100, 111, 116, 136, 148]. However, only

a few previous schemes [68, 111, 148] tolerate adversarial losses, i.e., the capability by the

adversary to choose which packets are dropped and which survive. The adversarial loss

model is the strongest, and also the most realistic one, since it makes the least assumptions

on how the traffic is routed.

Also, the adversary can inject packets of random or malicious structure into the stream.

This type of network failure has not been studied as widely in the context of multicast

authentication. In contrast, we develop robust techniques for dealing with it. In their

recent paper [68], Karlof et al., in studying the pollution attack by an adversary when

an erasure-code-based authentication scheme is in use, they in essence consider packets

injections as well.

Finally the adversary can arbitrarily modify, delay or rearrange packets. Note that

changing a packet corresponds to destroying (losing) it and injecting a new packet.

An adversarial network modeled with the above capabilities in terms of how the adver-

sary is acting is what we call a fully adversarial network.

Definition 4.3.1 (Fully adversarial network). A fully adversarial network is a network

126

that is used for the transmission of a data stream and is controlled by a computationally

bounded (i.e., probabilistic polynomial-time) adversary. In particular, the adversary can:

• cause packets of her choice to be lost;

• inject packets (either random ones or with a specific malicious structure); and

• arbitrarily alter, delay or rearrange packets.

It is realistic to assume that even if an adversary controls part of the network, there

are still some honest routers and at least a fraction of the data packets goes through them.

Thus, we expect some reliability from the network. Namely, the network will faithfully

deliver at least a constant fraction, α, of all the packets of a given stream. This assumption

is also justified by the fact that if fewer than a constant fraction of the packets survive,

then it is unlikely that meaningful information can be extracted from the surviving packets.

Also, in modeling the ability of the adversary to maliciously inject invalid packets, we take

the following into consideration: if the adversary injects packets at too high a rate, this will

result in a denial-of-service attack. In this case, the receiver’s primary concern is unlikely

to be authentication. Thus, we assume that authentication is useful when the stream is

expanded by no more than a constant factor β through adversarial packet injections.

Our two assumptions about the power of the adversary to modify a stream of n packets

transmitted by the sender are expressed by two parameters of the adversarial network:

the survival rate α and the flood rate β. In this chapter, both rates are considered to be

constants. In a network with survival rate α, 0 < α ≤ 1, if a stream of n packets is sent,

at least αn packets of this stream will arrive at the receiver intact. In a network with flood

rate β, β ≥ 1, if a stream of n packets is sent, then the received stream will have at most

βn packets.

Definition 4.3.2 (Network parameters). Consider an adversarial network through which

a stream of n packets is transmitted by the sender. With respect to any particular receiver:

• The survival rate α, 0 < α ≤ 1, is the minimum fraction of the packets that are

guaranteed to reach the receiver unmodified. Namely, at least αn packets in the received

stream are valid.

• The flood rate β, β ≥ 1, indicates the maximum factor by which the size of the stream

that reaches the receiver may exceed the size of the transmitted stream. Namely, at

most βn packets are in the received stream.

127

We claim that the survival and flood rates of a network are reasonable parameters that

better characterize the adversary’s ability to modify the transmitted stream. In particular,

the network’s reliability, expressed by means of α and β, is not an assumption that affects

the generality or the strength of our model; in contrast, it successfully emphasizes some

intrinsic characteristics of the authentication problem we study. Indeed, the extreme cases

where too few packets survive or too many packets are injected are both degenerate cases

of the multicast authentication problem: at the receiver, no need for authentication really

exists when α → 0 or β → ∞. At the same time, our scheme presented in Section 4.4 is

parameterized by the two rates α and β; that is, it operates for any values of these two

network parameters.

A network with the above characteristics in terms of adversarial behavior and relia-

bility is what we call an (α, β)-network and is the basis for our multicast authentication

framework. Although our discussion focuses on one particular receiver, for generality and

completeness, in the following definition we require that the network provides the same level

of reliability (expressed by rates α and β) to any of the receivers5.

Definition 4.3.3 ((α, β)-network). An (α, β)-network is a fully adversarial network with

survival rate α and flood rate β with respect to any receiver.

4.3.2 Authentication Framework

We describe a new multicast authentication framework that is based on the (α, β)-network

model. Our definition of a multicast authentication scheme essentially mimics the classical

definition of security for signatures [50]. This is not surprising since in [11] it is shown that

the two problems are equivalent. A signature scheme consists of key generation, signature,

and verification algorithms (see Definition 4.2.1). Similarly, we have key generation, au-

thentication, and decoding algorithms, specified below. Working in the public-key model,

the key generation algorithm is run in advance to produce the private and public keys used

by the involved parties, the sender and the receiver. The other two algorithms, authenti-

cator Auth and decoder Decode, are executed by the sender and the receiver respectively.

The sender runs Auth to process data packets and create the authenticated packets. The

receiver runs Decode to decode the received packets and recognize the valid ones.

Key generation The key generation algorithm KeyGen is a probabilistic polynomial-time

algorithm that takes as input the security parameter 1k and outputs the key pair

5This does not, of course, mean that the same data packets, i.e., the same stream, reaches all the receivers.

128

(PK,SK). We write (PK,SK) ← KeyGen(1k). We assume that the sender knows

both the public key PK and the secret key SK and that the receiver knows the public

key PK.

Authenticator The authenticator algorithm Auth takes as input:

• (SK,PK): the secret key and the public key.

• GID : the group identification tag of the data stream.

• n: the size of the data stream, i.e., the number of packets that need to be

authenticated.

• α: the survival rate that determines what fraction of the packets are guaranteed

to reach the receiver intact, 0 < α ≤ 1.

• β: the flood rate that determines an upper bound of the packets that reach the

receiver; namely, the received stream consists of at most βn packets that claim

to belong to a given GID , β ≥ 1.

• DP = {p1, . . . , pn}: the data packets, i.e., the data stream that needs to be

authenticated.

The output of the authenticator algorithm is the set AP of authenticated packets, with

AP = {a1, . . . , an}. We write: AP ← Auth(SK,PK,GID , n, α, β,DP).

Decoder The decoder algorithm Decode takes as input:

• PK: the public key.

• GID : the group identification tag of the data stream.

• n: the number of the original data packets.

• α: the survival rate.

• β: the flood rate.

• RP = {r1, . . . , rm}: the received packets.

The decoder either rejects the input (when less than αn of the received packets are

valid, or more than (β − α)n packets are injected by the adversary6), or produces

the output packets OP = {p′1, . . . , p′n}. Some of these packets may be empty—an

empty output packet is denoted by ∅, and corresponds to the event that the decoder

6Note that both, of course, cannot be true for an (α, β)-network.

129

did not receive the corresponding authenticated packet. We write: {OP , reject} ←
Decode(PK,GID , n, α, β,RP).

A signature scheme has two requirements: correctness and security. We have similar re-

quirements for a multicast authentication scheme.

A multicast authentication scheme is (α, β)-correct if, whenever at least αn correct

authenticated packets are received among βn total packets, all and only the valid received

packets will be decoded correctly, i.e., the corresponding data packets will be among the

output packets.

A multicast authentication scheme is secure if, even if the adversary is allowed to query

the authenticator on any number of chosen inputs, the adversary cannot make the decoder

output a non-authenticated set of packets.

Definition 4.3.4 (Multicast Authentication Scheme). Probabilistic polynomial-time algo-

rithms (KeyGen, Auth, Decode) constitute an (α, β)-correct and secure multicast authenti-

cation scheme if no probabilistic polynomial-time adversary A can win non-negligibly often

in the following game:

1. A key pair is generated:

(PK,SK)← KeyGen(1k).

2. The adversary A is given:

• The public key PK as input.

• Oracle access to the authenticator, i.e., for 1 ≤ i ≤ poly(k), where poly(·) is a

polynomial, the adversary can specify the values (GIDi, ni, αi, βi,DP i) and obtain

AP i ← Auth(SK,PK,GIDi, ni, αi, βi,DP i). However, the adversary cannot is-

sue more than one query with the same group identification tag. That is to say,

for all i 6= j, GIDi 6= GIDj.

3. At the end, A outputs a group identification tag, GID, the values n, α and β, and a

set of packets, RP.

The adversary wins the game if one of the following violations occurs:

Violation of the (α, β)-correctness property: The adversary did manage to construct

RP in such a way that even though it contains αini packets of some authenticated

packet set AP i for group identification tag GIDi = GID, the decoder still failed at

identifying all the correct packets. Namely, the adversary wins if all of the following

hold:

130

• For some i, the adversary’s query i contained GIDi = GID, ni = n, αi = α and

βi = β. Let DP i = {p1, . . . , pn} = DP be the data packets associated with that

query, and let AP i = {a1, . . . , an} = AP be the response of the authenticator.

• At least αn of the authenticated packets (a1, . . . , an) are included in the received

packets RP, i.e., |RP ∩AP | ≥ αn.

• The number of received packets is at most βn, i.e., |RP | ≤ βn.

• For some 1 ≤ j ≤ n, pj is the j’th packet in the original set of data pack-

ets DP, such that the corresponding authenticated packet aj was received, i.e.,

aj ∈ RP ∩ AP, and yet was not decoded correctly. Namely, let (p′1, . . . , p
′
n) ←

Decode(PK,GID, n, α, β,RP). For pj it holds that pj 6= p′j.

Violation of the security property: The adversary did manage to construct RP in such

a way that the decoder will output packets OP = {p′1, . . . , p′n} that were never authen-

ticated by the authenticator algorithm for the group identification tag GID. More

precisely, the adversary wins if one of the following happens:

• The authenticator was never queried with group identification tag GID and the

size n, and yet the decoder algorithm does not reject. In particular, it holds that

Decode(PK,GID, n, α, β,RP) 6= reject but Decode(PK,GID, n, α, β,RP) = OP.

• The authenticator was queried with the group identification tag GID, the values

n, α and β, and the data packets DP = {p1, . . . , pn}. However, the decoder

algorithm does not reject and some output packet p′j 6= ∅ is different from the

corresponding data packet pj, where OP = {p′1, . . . , p′n}.

4.4 Multicast Authentication Scheme AuthECC

In this section we describe a multicast authentication scheme (KeyGen,Auth, Decode) that

meets the definitions of the previous section. In the sequel, we denote with ǫ, 0 < ǫ < 1, the

tolerance parameter of the decoder, which controls a trade-off between the error-tolerance

ability of the decoder and its performance. Both the authenticator and the decoder know

and use the value of this parameter. Recall that this parameter expresses how far away

from the ultimate bound for efficient list-decoding the encoding is performed. The higher

the ǫ the further away from the bound the encoding is performed, thus, the higher the

communication overhead is, but the faster (up to constant factors) the list decoder operates.

Similarly, values of ǫ that are closer to zero reduce the communication overhead at the cost

131

of increasing (by constant factors) the decoding time. We will discuss in detail this trade-off

when we will perform the efficiency analysis. By ◦, we denote concatenation and by ∅ we

appropriately denote either a packet that is empty or the empty string. We also often omit

the floor and ceiling notation in order to avoid notational overload.

4.4.1 Key Generation and Authenticator

On input the security parameter 1k, a signature scheme (G(·), Sign(·)(·), Verify(·)(·, ·)) and a

family H of collision-resistant hash functions (see Definitions 4.2.1 and 4.2.2), the key-

generation algorithm KeyGen operates simply by initializing a signature scheme and a

collision-resistant function using the security parameter. If (PKs,SKs)← G(1k) and H ←
H(1k), KeyGen sets PK = (PKs, H) and SK = SKs, i.e., ((PKs, H),SKs)← KeyGen(1k)

(see Algorithm 1).

Algorithm 1 Key Generation KeyGen

Input: Security parameter 1k, signature scheme (G(·), Sign(·)(·), Verify(·)(·, ·)) and collision-
resistant hash-function family H.

Output: Secret key SK and public key PK.

Algorithm:

1. Let (PKs,SKs)← G(1k) and H ← H(1k).

2. Set PK = (PKs, H) and SK = SKs.

We now describe the authenticator Auth that uses the tolerance parameter ǫ of the

decoder (see Algorithm 2). The idea is as follows. The data packets are each hashed using

the collision-resistant hash function and these n packet hashes h1, . . . , hn (along with the

group identifier) are digitally signed to produce signature σ. String S = h1 ◦ . . . ◦ hn ◦ σ is

called the authentication information. We want to guarantee that, even if only an α fraction

of the packets survive, and a large number of packets (β−α)n are injected, the receiver still

gets (is able to reconstruct) all the authentication information. To that end, we encode S

using an [n, ρn + 1]q Reed-Solomon code in a manner that is tolerant to packet losses and

insertions, subject to the network parameters. The encoded authentication information is

then appropriately dispersed and appended in the data packets to form the authenticated

packets.

In Algorithm 2, we note that q is in fact a function of n, α and β, thus it does not

need be transmitted to the receiver (observe that |S| is a function of n). Also, we assume

132

Algorithm 2 Authenticator Auth

Input: Secret key SK, public key PK, group identification tag GID , data-stream size n,
parameters α and β of the network and data packets DP = {p1, . . . , pn}.

Output: Authenticated packets AP = {a1, . . . , an}.

Algorithm:

1. For 1 ≤ i ≤ n, compute the hash value hi = H(pi). The concatenation of all the
hash values, together with the value GID , is digitally signed:

σ ← SignSK(GID ◦ h1 ◦ . . . ◦ hn).

2. Let [n, ρn + 1]q be a Reed-Solomon error-correcting code and set its rate to be

ρ =
α2

(1 + ǫ)β
,

where α and β are the survival and flood rates of the network, and ǫ is the
tolerance parameter of the decoder. (Note that since α ≤ 1, β ≥ 1 and 0 < ǫ < 1,
we have ρ < 1.)

3. Split S into ρn + 1 substrings of size
⌈

|S|
ρn+1

⌉

, where each substring is viewed as

a value of Fq, with q = 2

l

|S|
ρn+1

m

. If S is not an exact multiple of ρn + 1, pad S
with ℓ 0’s, such that |S ◦ 0ℓ| mod ρn + 1 ≡ 0.

4. Treat the resulting set of ρn + 1 field elements as an input to the Reed-Solomon
encoder (see Definition 4.2.3). Compute the corresponding codeword C(S) using
the [n, ρn + 1]q Reed-Solomon code of Step 2. C(S) consists of n elements of Fq,
denoted as (s1, . . . , sn).

5. Let AP = {a1, . . . , an}, where for 1 ≤ i ≤ n, we have ai = GID ◦ i ◦ pi ◦ si.

that the value of ǫ is known also to the encoder; thus, in fact C(S) = Cǫ(S). Finally, we

implicitly assume that the size of the problem n along with the parameters of the network α

and β are such that ρn+1 < n, or equivalently, α2

(1+ǫ)β + 1
n < 1, so that the used [n, ρn+1]q

Reed-Solomon code does not degenerate. This last technical requirement is easily satisfied

as n and β get larger and α gets smaller.

4.4.2 Decoder

Our decoder Decode uses a modification of the GS-Decoder (see Definition 4.2.3 and The-

orem 4.2.1) as a subroutine. The standard GS-Decoder expects to receive, as input, n

pairs (xi, yi), and outputs a list L of all the polynomials of degree at most k such that

133

every p ∈ L has the property that for at least
√

(1 + ǫ)kn of the i’s, p(xi) = yi. We write

L ← GSDecodeǫ(n, k,
√

(1 + ǫ)kn, {(xi, yi)|1 ≤ i ≤ n}). The modified decoder is specified

by parameters that are slightly different: it takes as input up to βn points (xi, yi) and finds

a list of candidate inputs (set of points) that can be encoded by polynomials of degree at

most ρn (with ρ = α2

(1+ǫ)β) such that each polynomial agrees with at least αn of the input

points (see Corollary 4.2.2).

What is important is that the modified GS-Decoder operates even in the presence of an

adversarially chosen set of (xi, yi) pairs. In other words, the modified decoder corresponds

to the alphabet and encoder of the Reed-Solomon code described in Definition 4.2.3 (the

encoder is used in the Auth algorithm above), but now, the set of points (xi, yi) that

constitute the input of the decoder is in principle different than the set of valid output points

of the encoder; this corresponds to the various attacks by the adversary. For instance, this

set may not include some of the original points, may be larger since some new points are

added and may even contain points that are vertically aligned, i.e., some of the xi’s are not

distinct. The modified decoder is obtained by adapting the original GS-Decoder, as follows

(see Algorithm 3).

Algorithm 3 Modified GS-Decoder MGSDecoderǫ

Input: n, α, β, and m points (xi, yi), 1 ≤ i ≤ m.

Output: List of all computed candidates {c1, . . . , cℓ} or reject.

Algorithm:

1. If m > βn, reject.

2. Else, if there are fewer than αn distinct values of xi, reject.

3. Else, run the GS-Decoder, that is, let L ← GSDecodeǫ(m, ρn, αn, {(xi, yi)|1 ≤
i ≤ m}), where ρ = α2

(1+ǫ)β . If L is empty, reject.

4. Process L = {Q1(i), . . . , Qℓ(i)} as follows: for each Qj(i) ∈ L, 1 ≤ j ≤ ℓ, evaluate
Qj(i) for 1 ≤ i ≤ ρn + 1 and let the string Qj(1) ◦ Qj(2) ◦ · · · ◦ Qj(ρn + 1) be
candidate cj .

For this decoder, operating on input points subject to constraints that are in accordance

with our (α, β)-network, we have the following.

Lemma 4.4.1. When at least αn out of at most βn input points are valid, MGSDecoderǫ

does not reject, runs in time Õ(n2), where Õ(n2) field operations are involved, and outputs

the constant-size list of all candidate inputs that are consistent with αn of the received points.

134

Proof. MGSDecoderǫ does not reject in Steps 1 and 2 of the algorithm. All claims follow

considering Step 3, Theorem 4.2.1, Corollary 4.2.2 and the fact that GS-Decoder operates

even when the xi’s are not distinct (see Guruswami and Sudan [63]). Corollary 4.2.2 holds,

since, if m = γn, α ≤ γ ≤ β, then ρn = ρ
γ m, thus, we consider the polynomial reconstruction

problem on inputs ρ
γ m, t, m points and for ρ = α2

(1+ǫ)β we have that

t ≥ αn ≥
√

γ

β
αn =

√

(1 + ǫ)ρnm =

√

(1 + ǫ)
ρ

γ
m,

as needed. Of course, Õ(m2) = Õ(n2) for m = γn and γ a constant. Finally, we have

that
√

(1 + ǫ) ρ
γ =

√

α2

βγ ≤ 1 as required. Note that the correct answer (candidate input) is

guaranteed to be contained in the output list, since it is a polynomial of degree at most ρn

that is consistent with αn points. Thus, MGSDecoderǫ does not reject in Steps 3 either.

Now, we are ready to describe our decoder. The idea is simple: we resist every attack by

the adversary by treating injected, altered and lost packets as errors, essentially, in a crypto-

enhanced list-decoder (see Algorithm 4). What matters is only the achieved agreement, i.e.,

the valid packets. Note that the decoder is parameterized by the tolerance parameter ǫ

(that is, Decode is in fact Decodeǫ).

For this decoder we have the following.

Lemma 4.4.2. When operating on a stream of packets encoded by authenticator Auth and

transmitted through an (α, β)-network, algorithm Decode does not reject.

Proof. From the properties of the (α, β)-network, the algorithm does not reject in Steps 3

and 5. Since at least αn packets are valid, from Lemma 4.4.1 we have that the correct

codeword (authentication information) is among the candidates of the output list of Step 5.

Thus, the corresponding signature verification in Step 6 excludes the rejection in Step 7.

We postpone the analysis of the running time of the algorithms KeyGen, Auth and

Decode of our scheme until the next section.

4.4.3 Correctness and Security Proofs

Let us show that the authentication scheme (KeyGen,Auth, Decode) described in subsec-

tions 4.4.1 and 4.4.2 satisfies Definition 4.3.4. Suppose that we have an adversary A who

manages to break the (α, β)-correctness or security of our scheme with (non-negligible)

probability π(k). Then one of the following is true:

135

Algorithm 4 Decoder Decode

Input: Public key PK, group identification tag GID , n, parameters α and β and received
packets RP = {r1, . . . , rm}.

Output: OP = {p′1, . . . , p′n} or reject.

Algorithm:

1. View packets in RP as ri = GID i ◦ ji ◦ pi ◦ si.

2. Discard all non-conforming packets, i.e., all packets for which GID i 6= GID or
packets with ji /∈ [1..n]. Let (r1, . . . , rm′) be the remaining packets in RP . Each
of them is viewed as ri = GID ◦ ji ◦ pi ◦ si, such that ji ∈ [1..n].

3. If m′ < αn or m′ > βn, then reject.

4. For 1 ≤ i ≤ m′, set (xi, yi) = (ji, si).

5. Run algorithm MGSDecoderǫ with input parameters n, α, β and the m′ points
(xi, yi), 1 ≤ i ≤ m′. If MGSDecoderǫ rejects, reject; otherwise, obtain the candi-
date codewords {c1, . . . , cℓ}.

6. For 1 ≤ i ≤ n, set hi = ∅. Let j = 1. While j ≤ ℓ:

• Parse the codeword cj as string hj
1 ◦ . . . ◦ hj

n ◦ σ.

• If VerifyPKs
(GID ◦ hj

1 ◦ . . . ◦ hj
n, σ) = 1, then set hi = hj

i for 1 ≤ i ≤ n and
break out of the loop; otherwise, increment j.

7. If (h1, . . . , hn) = (∅, . . . , ∅), reject. Else, compute the output packets OP as
follows:

• Initialize OP = {p′1, . . . , p′n}: for each 1 ≤ i ≤ n, set p′i = ∅.

• For 1 ≤ i ≤ m′:

– view ri as ri = GID ◦ j ◦ pj ◦ sj , such that j ∈ [1..n].

– if H(pj) = hj , set p′j = pj .

8. Let OP = {p′1, . . . , p′n}.

• With probability (at least) π(k)/2, the adversary A violates the (α, β) correctness

property.

• With probability (at least) π(k)/2, the adversary A violates the security property.

Let us show that a non-negligible probability of either event contradicts the security

properties of the underlying signature scheme and hash function.

Claim 4.5. If a polynomial-time adversary A violates the (α, β)-correctness property of our

scheme, then the underlying signature scheme is not secure, or the underlying hash function

is not collision-resistant.

136

Proof. Let us prove the claim by exhibiting a reduction which transforms an attack that

violates the correctness of our scheme, into an attack on the underlying signature scheme.

Reduction. The input to the reduction is the public key PKs of the signature scheme.

Our reduction is also given oracle access to the corresponding signer SignSKs
(= SignSK).

The reduction sets up the public key PK = (PKs, H). Our reduction does not know the

corresponding secret key. Our reduction invokes the adversary A on input PK. It now

needs to be able to answer the adversary’s queries to the authenticator Auth. In order

to respond to a query (GID i, ni, αi, βi,DP i), run the algorithm Auth with the following

modification: in Step 1, at the beginning of the algorithm Auth, instead of computing the

signature σi, obtain it by querying the signature oracle SignSK . Everything else is carried

out as prescribed by the algorithm Auth.

It is clear that the view of the adversary in this reduction will be identical to the view

that the adversary obtains in real life. Therefore, with the same probability as in real life,

the adversary violates the correctness property. Namely, it outputs values GID , n, α, β

and the set of received packets RP , such that all of the following hold:

1. GID = GID i, n = ni, α = αi, and β = βi for some i. Let DP i = {p1, . . . , pn} be the

data packets associated with that query, and let AP be the response that we gave to

the adversary. In particular, let σi be the signature associated with this query, that

is, σi ← SignSK(GID ◦H(p1) ◦ . . . ◦H(pn)).

2. |RP ∩AP | ≥ αn and |RP | ≤ βn.

3. For some j such that rj ∈ RP , it is the case that pj 6= p′j , where (p′1, . . . , p
′
n) ←

Decode(PK,GID , n, α, β,RP) and rj is a packet that corresponds to packet pj ∈ DP i.

(Note that from 2 and Lemma 4.4.2, it follows that algorithm Decode does not reject.)

Case 1. Suppose that p′j 6= ∅. From 3, we get that either H(pj) 6= H(p′j), or it is easy

to find a collision to the hash function. By definition of Decode, if rj ∈ RP and p′j 6= ∅,

then, in Step 6, the algorithm Decode processes a candidate c = h1 ◦ . . . ◦ hn ◦ σ such that

VerifyPKs
(GID ◦ h1 ◦ . . . ◦ hn, σ) = 1. We must argue that our signature oracle was never

queried on input (GID ◦ h1 ◦ . . . ◦ hn). Note that the only time it was queried with this

GID , it was when we obtained σi on input (GID ◦H(p1)◦ . . .◦H(pn)). Moreover, in Step 7,

Decode includes p′j into OP if and only if H(p′j) = hj . Therefore, hj 6= H(pj), and so our

signature oracle was never queried with (GID ◦ h1 ◦ . . . ◦ hn), and yet our adversary has

137

caused us to compute a signature σ such that VerifyPKs
(GID ◦ h1 ◦ . . . ◦ hn, σ) = 1. Thus,

the underlying signature scheme is insecure.

Case 2. So, suppose that p′j = ∅. From 1 and 2, we know that αn of the original

authenticated packets were received, among the total of βn packets. Then, by the properties

of MGSDecoderǫ (Lemma 4.4.1), Step 5 of the algorithm Decode includes the candidate value

c = H(p1) ◦ . . . ◦H(pn) ◦ σi. Then, by construction, it cannot be the case that in Step 7,

(h1, . . . , hn) = (∅, . . . , ∅). If (h1, . . . , hn) = (H(p1), . . . , H(pn)), then by construction of

Decode, if (as is the case according to 3) rj ∈ RP , then p′j 6= ∅, because p′j is set to pj

when the packet rj is considered in Step 7. Therefore, (h1, . . . , hn) 6= (H(p1), . . . , H(pn)),

and yet VerifyPKs
(GID ◦ h1 ◦ . . . ◦ hn, σ) = 1. But the only query with GID that we ever

issued to the signer was for the message (GID ◦H(p1) ◦ . . . ◦H(pn)) 6= (GID ◦h1 ◦ . . . ◦hn).

Thus σ is a successful forgery.

Claim 4.6. If a polynomial-time adversary A violates the security property of our scheme,

then the underlying signature scheme is not secure, or the underlying hash function is not

collision-resistant.

Proof. Let us set up the reduction in exactly the same way as in the proof of Claim 4.5.

Again, the adversary’s view in the reduction is the same as in real life. So, just as often as

in real life, the adversary will violate the security property of our scheme, namely, one of

the following will hold:

1. The authenticator was never queried with group identification tag GID and size

n, and yet the decoder algorithm does not reject. That is, it holds that reject 6=
Decode(PK,GID , n, α, β,RP) = OP .

2. The authenticator was queried with the group identification tag GID , with the values

n, α and β, and data packets DP = {p1, . . . , pn}. However, the decoder algorithm

does not reject and some output packet p′j 6= ∅ is different from the corresponding

data packet pj , where OP = {p′1, . . . , p′n}.

Suppose 1 holds. Then, from the description of the decoder, we know that the only way

that it will produce some non-empty set of output packets is if, in Step 6, it sees a string c

and a signature σ such that VerifyPKs
(GID ◦ c, σ) = 1. Since the signature oracle was never

queried for this GID and n, σ is a successful forgery.

138

So, suppose that 2 holds. This is exactly the same situation as Case 1 of the proof of

Claim 4.5, and we obtain either a successful forgery or a hash-function collision in the same

manner.

4.6.1 Authenticated Reed-Solomon Error-Correcting Code

Our authentication scheme consists of probabilistic algorithms (KeyGen,Auth, Decode) de-

scribed in subsections 4.4.1 and 4.4.2. We note that essentially our scheme uses an authen-

ticated Reed-Solomon error-correcting code. Using this term we refer to the fact that, by al-

lowing the use of cryptographic primitives in the data that is encoded, list-decoding succeeds

in operating (even) in the presence of adversarial behavior of the “transmission channel” (a

network in our case). In general, depending on this adversarial behavior, our authenticated

decoder either rejects or correctly and securely reconstructs the original codeword that was

sent (authentication information in our case). For an (α, β)-network, Lemma 4.4.2 and

Claim 4.5 guarantee that the correct reconstruction is produced and Claim 4.6 guarantees

that the authenticated Reed-Solomon error-correcting code is secure. For this reason, we

refer to our multicast authentication scheme as AuthECC.

Definition 4.6.1 (Authenticated ECC). AuthECC is the multicast authentication scheme

consisting of the triplet of probabilistic algorithms (KeyGen,Auth, Decode) described above,

which, in turn, realize an authenticated Reed-Solomon error-correcting code.

We have, thus, proved the following result.

Theorem 4.6.1. Multicast authentication scheme AuthECC is (α, β)-correct and secure for

any (α, β)-network.

We note that our authenticated error-correcting code AuthECC constitutes a general-

purpose authentication tool for data streams or other unstructured data formats.

Finally, from the above result we immediately get the following corollary, which draws

an interesting connection between coding theory and cryptography.

Corollary 4.6.1. In the public-key model and the bounded computational model for com-

munication channels, list-decoding can be transformed into unambiguous decoding.

4.7 Analysis

We now analyze our scheme in terms of the various cost parameters. Recall that:

139

• α is the survival rate of the network, where 0 < α ≤ 1;

• β is the flood rate of the network, where β ≥ 1;

• ǫ is the tolerance parameter of the list-decoder, where 0 < ǫ < 1; and

• ρ is the rate of the encoder, where ρ = α2

(1+ǫ)β and ρ < 1.

We start by discussing the complexity of our authentication scheme AuthECC in terms

of computational and communication costs and introduced delay, we then examine how our

scheme can be tuned and extended and, finally, we finish the section by comparing our

scheme with various previous proposed schemes. In the sequel, by h we denote the size of

a hash value and by s the size of a digital signature.

Computational Cost. The sender and the receiver execute algorithms Auth and Decode,

respectively. Both algorithms involve field operations (additions and multiplications) over

finite field Fq of size q = 2

l

nh+s
ρn+1

m

≃ 2
h
ρ . Both operations take O

(

h
ρ logO(1) h

ρ

)

time [62].

Setting N = h
ρ , both operations take O(N logO(1) N) time. Note that N is independent of

n.

Authenticator: The cost to encode n packets is as follows. First, n hashes are computed

and one signature operation is performed over the hashes. Then, a Reed-Solomon

code is applied on the authentication information, which consists of a polynomial

interpolation on ρn + 1 positions and a polynomial evaluation in n − ρn − 1 posi-

tions. These tasks require O(n log n) field operations or O(n log n N logO(1) N) time,

since both polynomial evaluation and interpolation for polynomials of degree at most

n can be solved using O(n log n) field operations (thus, Reed-Solomon encoding re-

quires a quasi-linear O(n log n) number of field operations). Observe that the use of

a systematic Reed-Solomon code adds no extra computational cost.

Decoder: From Theorem 4.2.1 and Lemma 4.4.1, we have that O(β2n2N) = Õ(n2) field

operations are required and thus O(β2n2N2 logO(1) N) = Õ(n2) time is needed for the

decoder to run. Also, for each of O(1) candidate polynomials, we perform a polynomial

evaluation at ρn+1 positions, thus O(n log n) field operations in O(n log nN logO(1) N)

time, and one signature verification. In total, we have O(n2N2 logO(1) N) = Õ(n2)

processing time and O(1) signature verifications. Finally, O(n) hash values are com-

puted.

140

Communication Cost. The size of the authentication information is n
ρn+1(s+hn). That

is, we have constant communication overhead per packet

s + hn

ρn + 1
<

h

ρ
+

s

ρn
=

h

ρ
+ o(1).

We see that 1/ρ hash values are included in each packet, with ρ = α2

(1+ǫ)β < 1. The larger

the value of ρ the smaller the authentication overhead.

Delay. As delay, we count the number of packets that the authenticator or decoder algo-

rithm has to buffer. Of course, by definition, any authentication scheme according to our

model needs to process n packets. However, delay is a cost parameter that is useful even

in our model, since it captures the ability of the authenticator or the decoder to process

packets in an on-line fashion. In our scheme the sender processes n packets and the re-

ceiver processes βn packets in the worst case. However, the receiver can invoke an decoding

procedure only after ρn + 1 or αn packets have been received.

In particular, the receiver can try to compute the authentication information exactly

after ρn + 1 packets are received: the used code is systematic and the first ρn + 1 symbols

of E(S) equal S (where S is the authentication information). Of course, we need no packet

loss to occur among these packets. If the correct polynomial is computed (and verified) from

the first ρn + 1 packets, the authentication information is computed without any decoding

overhead. Similarly, the receiver can try to compute the authentication information after

αn packets are received: this time the decoder runs completely, but computation is a

less expensive, and if the correct authentication information is computed, no attack is in

process and the delay is αn. Otherwise, if no polynomial can be verified, the receiver is

under attack and βn delay is required in the worst case. In other words, our scheme can

distinguish between the less expensive detection of an attack by an adversary from the more

expensive verification of the valid received packets. We believe that this feature is desirable,

for less computational effort is spent when no adversary acts.

We can summarize the performance of our scheme as follows.

Theorem 4.7.1. For any (α, β)-network, the multicast authentication scheme AuthECC

achieves the following performance in authenticating n packets.

• The sender performs one signature operation, n hash computations and O(n log n)

field operations.

• The receiver performs O(1) signature verifications, βn hash computations and Õ(n2)

field operations.

141

• The communication overhead is constant per packet, proportional to β
α2 .

AuthECC introduces a delay of n packets at the sender and a delay of at most βn packets

at the receiver. Also, it allows the receiver to detect an attack after α2

(1+ǫ)β n + 1 (which is

less than n) packets have been received, where ǫ is the tolerance parameter of the decoder.

4.7.1 Tuning and Extensions

Given specific values of the survival rate α and flood rate β of the network, the parameter

ρ, which controls the communication overhead, can be tuned by the tolerance parameter ǫ.

This gives one degree of freedom in implementing the exact encoding-decoding procedures.

Namely, bandwidth consumption can be decreased at the cost of increasing by a constant

factor the time complexity and vise versa. A realistic deployment of our scheme can consider

α and β as an additional degree of freedom: early packet streams (groups of packets) are

encoded for bigger values of α and smaller values of β. Depending on the observed network’s

behavior, the network parameters can be later adjusted to a new desired level of security.

Table 4.1 shows the communication overhead per packet for specific values of α, β and ǫ.

α β ǫ 1/ρ cost c (bytes) α β ǫ 1/ρ cost c (bytes)

0.33 1.5 0.1 15.15 303 0.5 1 0.01 4.04 81
0.5 1.5 0.1 6.6 132 0.5 2 0.01 8.08 162

0.75 1.5 0.1 2.93 59 0.5 3 0.01 12.12 243
0.33 1.5 0.5 20.66 414 0.5 1 0.1 4.4 88
0.5 1.5 0.5 9 180 0.5 2 0.1 8.8 176

0.75 1.5 0.5 4 80 0.5 3 0.1 13.2 264

Table 4.1: Communication cost c per packet for various values of the survival rate α, flood
rate β and tolerance parameter ǫ. We assume the use of the SHA-1 hashing algorithm,
that is, h = 20 bytes. The communication cost should be compared with the size s of the
signature in use (e.g., an RSA signature with s = 256 bytes). Recall that ρ = α2

(1+ǫ)β is the

rate of the code in use and that c = h
ρ = β(1+ǫ)

α2 h.

Independently of the choice of parameters, our scheme can be further modified in two

ways, achieving different trade-offs between communication cost and computational effi-

ciency. First, we can decrease the communication overhead, by applying the technique

of [110]. The idea is that, since (at least) αn packets are guaranteed to be received intact, a

significant portion of the authentication information is obtained by the decoder for free and

without decoding: the (at least) αn hash values of the valid packets. Thus, less authentica-

tion information can be used and less redundancy is added to packets. To implement this

idea, one has to encode the n hash values appropriately and, thus, Reed-Solomon codes are

142

applied twice. Interestingly, as opposed to the case of erasure codes [110], in our case where

Reed-Solomon error-correcting codes are used, the decrease of the communication overhead

occurs only for appropriate ranges of values for the network parameters α and β.

In particular, let {X, X ′} ← C[n, k + 1]q(X) denote the application of systematic Reed-

Solomon code [n, k + 1]q on word X, where X ′ is the added redundancy. Also let H =

h1 ◦ . . . ◦ hn be the hash values of the n packets. We get the modified scheme by encoding

{H, H ′} ← C[γn, n + 1]q1(H)

and then

{A, A′} ← C[n, ρn + 1]q2(A),

where

A = H ′ ◦ SignSK(H), γ = 1− α +
√

(1 + ǫ)β, q1 = 2h, ρ =
α2

(1 + ǫ)β
, q2 = 2

l

|A|
ρn+1

m

.

As in our basic scheme, A ◦ A′ is split in n equal shares Ai and packet pi corresponds to

authenticated packet ai = GID ◦ i ◦ pi ◦ Ai. At the decoder, by the network reliability (at

least αn packets will be valid) it is guaranteed that a constant size list of candidate strings

for H ′ ◦SignSK(H) is produced; also, list-decoding is transformed to unambiguous decoding

by verifying a constant number of signatures. Furthermore, the receiver is always capable

to list-decode the packet hashes H. If in total δn packets reach the receiver, δ ≤ β, then

Corollary 4.2.2 holds, since, t ≥ αn+(γ−1)n ≥
√

(1 + ǫ)δn. The per-packet communication

overhead of this scheme is (γ−1)h
ρ . When γ < 2, with this scheme we save in communication

overhead. That is, for network parameters α and β in appropriate ranges so that β < (α+1)2

1+ǫ

we can decrease the communication cost by the constant factor γ at the cost of increasing

the computational cost by roughly a factor of 2, since two applications of Reed-Solomon

codes are required.

Also, by decreasing the field size, we can reduce the cost of performing field operations.

For instance, we could split the authentication information into γρn + 1 substrings of size

ℓ, γ > 1 (e.g., γ = 10), consider each substring as a field element in Fq, with q = 2ℓ,

encode with a [γn, γρn + 1]q Reed-Solomon code, and split the augmented authentication

information into n pieces (each of γ field elements). In this way, the communication cost

stays the same, but field operations become faster. The number of field operations at the

encoder or decoder is increased by only a constant factor. Depending on the hardware

architecture, this modification may be useful. A drawback here is that one injected packet

by the adversary is now affecting the decoding algorithm by a factor γ.

143

4.7.2 Comparison with Other Schemes

We compare our schemes with various classes of proposed multicast-authentication schemes.

Sign-All and Merkle Tree Schemes. The sign-all and Merkle-tree [148] authentication

schemes are resilient to fully adversarial networks. The sign-all scheme involves one signa-

ture (resp. verification) operation per packet and a communication overhead that is equal

to the signature size. Depending on the specific signature scheme in use, the parameters of

our scheme or the architecture, both communication and computational costs of our scheme

are comparable to the corresponding costs of the sign-all scheme.

Very short signature schemes have recently been proposed [13]. While the length of a

signature can be as low as 160 bits, the security of this signature scheme is only proven in the

random oracle model, and only under a strong assumption (Diffie-Hellman assumption in

gap-DH groups, see Boneh and Franklin [12] for more on these groups). Signing every packet

with this short signature, therefore, has a communication advantage over our construction,

but loses in provable security. On the other hand, signing every packet with a provably

secure signature scheme, such as the Cramer-Shoup [27] signature scheme or its modification

due to Fischlin [43], will add about 500 bytes to each packet—which is more than what we

have for reasonable α and β.

Additionally, signing every packet is undesirable in practice. Indeed, by signing every

packet separately we lose both in efficiency and in architecture design since the secret key

operations are computationally expensive and require extra need of security. Invoking a

signature operation involves fetching the private key and temporarily storing it in the main

memory of the system. When secret-key operations are performed at high rates, the secret

key resides almost exclusively in the memory of the system increasing the danger of the key

being compromised to other running processes in the system. Special-purpose hardware

can be used to overcome this problem, but of course at a higher cost. In terms of secure

architecture design costs, and also for provable security or efficiency reasons, the sign-all

approach is inferior to ours.

Finally, since one signature verification must be performed for each received packet,

valid or not, the sign-all solution suffers by the following denial-of-service attack at the

receiver: by injecting invalid packets an adversary can increase the computation resources

spent at the receiver for signature verifications. In our scheme, where signature dispersal is

used, no such attack is possible.

On the other hand, the Merkle-tree scheme [148] has better time complexity than our

144

scheme. For a group of packets of size n, only 2n hash computations and one signature

computation (resp. verification) are performed at the sender (resp. receiver). However, the

Merkle-tree scheme has communication cost that grows with the number of packets, thus,

this scheme is not scalable. Our scheme is efficient in terms of communication cost: packets

have constant authentication overhead.

Another drawback for the Merkle-tree scheme operating in a fully adversarial network

is the signature flooding attack, identified and described in [68]: in a way similar to the

denial-of-service attack against the “sign-all” scheme, injected packets cause a signature

verification at the receiver for the Merkle-tree scheme as well. Of course, we have to note

that at the receiver, by appropriately caching hash values, we can significantly resist against

the signature flooding attack: once the first valid packet is verified, its (authenticated)

hashes are stored and subsequent packets need only be verified with respect to the hashes

they carry and not with respect to the signature they carry. Because of that, injected

packets that are received afterwards do not cause signature verifications. Although this

kind of attack is thus terminated after the first correct signature verification, still, in a fully

adversarial network with packets rearrangements, injected packets will precede the valid

ones. In our (α, β)-network model, the Merkle-tree scheme [148] needs (β − α)n signature

verifications. Instead, our scheme performs only a constant number of signature verifications

at the receiver.

Graph-Based Schemes. These schemes [51, 100, 116, 136] assume the reliable receipt of

a signature packet. However, a fully adversarial network will capture the signature packet

and invalidate the scheme. Even if the signature packet is assumed to arrive intact, any ef-

ficient scheme in terms of communication overhead (i.e., with constant overhead for packet)

will have the undesirable property that O(1) critical packets can be adversarially chosen to

disconnect from the authentication chain the signature node (packet). In the piggybacking

scheme in [100], this number of critical packets can be O(n) at the expense of a commu-

nication overhead of O(n) per packet. Our scheme does not have these drawbacks since

the signature is dispersed among all the packets. As opposed to graph-based authentication

where the authentication of a packet crucially depends on other packets (with packets closer

to the signature packet being more important), our scheme is symmetric in this context:

all packets share the authentication information.

Erasure-Code Schemes. The first two erasure-code based proposed schemes [110, 111]

make use of erasure codes to tolerate packet losses, up to a constant fraction. However,

145

no packet injections are tolerated: a single injected packet suffices to fail the decoding

procedure. For networks where packets get only lost, they perform slightly better than our

scheme in terms of communication cost and time complexity. This is due to the fact that

erasure codes are more efficient than error-correcting codes in terms of time complexity

and space requirement. Moreover, erasure codes can tolerate more symbol deletions than

the theoretical limit d/2 for error-correcting codes (d is the diameter of the code). In our

authentication scheme, tolerating injected packets comes at this small price of having slightly

worse performance than erasure-code schemes.

In [68], Karlof et al. using distillation codes address the vulnerability to packet in-

jections that any scheme based on erasure-codes has, but their proposed scheme has high

communication overhead and is thus less scalable, because a Merkle hash tree is used to

“filter out” the injected packets (and thus the communication cost is O(log n)). For such

a logarithmic communication overhead, the scheme by Wong and Lam [148] may be actu-

ally preferable since it has both lower time complexity and better resiliency to adversarial

network behavior. In terms of computational effort at the sender and receiver this scheme

is similar to our scheme except from the following two points regarding the computational

effort at the receiver. In [68], partitioning the packets into groups introduces an extra com-

putational overhead and the total number of hashing values computed is by a logarithmic

factor larger. In our scheme, the constants involved in the quadratic decoding process are

higher than in the scheme by Karlof et al.

Finally, in [61], the shared channel model that is used does not tolerate adversarially

chosen packet losses.

Other Schemes. TESLA [115, 116] and the scheme by Xu and Sandhu [149] have very

different assumptions from our model. They are both based on MACs and on strong time-

synchronization requirements about the nodes of the networks that do not fit our model.

For instance, in [149], the routers of the networks are considered trusted entities.

Tables 4.2 and 4.3 summarize the above discussion, where selected schemes are compared

with our scheme AuthECC. In particular, Table 4.2 compares our scheme with the sign-all so-

lution and various selected schemes that are not (α, β)-correct and secure. We consider two

graph-based authentication schemes, one of constant degree (expander construction [136])

and one of O(n) degree (piggybacking scheme with parameterized performance [100], where

we assume a constant number of classes), and one erasure scheme (optimized in terms of

communication scheme [110]). Table 4.3 compares our scheme with the only two (α, β)-

correct and secure previous approaches, namely the schemes by Wong and Lam [148] and

146

Sign-all GB [136] GB [100] Erasure [110] AuthECC

Delay (Sender) 1 n n n n

Computation (Sender)
Sign n 1 1 1 1
hash — O(n) O(n2) n n
field op — — — O(n log n) O(n log n)

Communication sn O(hn) O(hn2) 1−α
α hn β(1+ǫ)

α2 hn

Delay (Receiver) 1 n n n βn

Computation (Receiver)
Verify n 1 1 1 O(1)
hash — O(n) O(n2) n βn

field op — — — O(n2) Õ(n2)

Secret key protection — • • • •
Resiliency

Chosen packet loss • — • • •
Chosen packet injection • • • — •
Signature dispersal • — — • •

Table 4.2: Comparison of selected multicast authentication approaches, no (α, β)-correct
and secure, with respect to various aspects of efficiency, security and resiliency. By Sign,
we denote a signature operation, Verify denotes a signature verification, hash denotes the
total hashing cost, where we consider that the complexity of hashing a string is a linear
function of the string size. Also, we use the following notation: n is the number of packets
in the data stream, s is the signature size and h is the hash size. Both the communication
overhead and the computational costs refer to n packets.

Karlof et al. [68].

4.8 Conclusions

In this chapter, we propose a new general framework for the multicast authentication prob-

lem, where the network is controlled by a computationally bounded adversary that has

great power in modifying the transmitted stream. Our model is realistic in terms the of ad-

versarial behavior. The limitations on the adversary’s power, characterized by the survival

and flood rates, exclude from consideration only degenerate cases, where the authentication

problem actually disappears.

Our work establishes a new direction in data-stream authentication by going beyond

erroneous networks and addressing fully adversarial networks. Based on a novel combination

of primitives from coding theory and cryptography, our authentication technique realizes an

147

Merkle [148] Distillation Code [68] AuthECC

Delay (Sender) n n n

Computation (Sender)
Sign 1 1 1
hash 2n 3n n
field op — O(n log n) O(n log n)

Communication (s + h log n)n (1
α + log n)hn β(1+ǫ)

α2 hn

Delay (Receiver) 1 βn βn

Computation (Receiver)

Verify (β − α)n β
α O(1)

hash 2n βn βn

field op — O(n2) Õ(n2)

Secret key protection • • •
Resiliency

Chosen packet loss • • •
Chosen packet injection • • •
Signature dispersal • • •

Table 4.3: Comparison of the three (α, β)-correct and secure multicast authentication
schemes with respect to various aspects of efficiency, security and resiliency. Again, both
the communication overhead and the computational costs refer to a group of n packets.

authenticated error-correcting code that constitutes a new general-purpose authentication

tool. Our scheme is efficient and practical. It is as secure as the “sign-all” solution, but

more efficient in both computational effort and communication overhead. Its constant

communication overhead makes it scalable and preferable to the other approaches [68, 148].

When compared with the Merkle-tree based scheme, the O(n2) time complexity of our

scheme at the receiver is a shortcoming; however, it is possible that in practice this may not

be a serious concern. Additionally, our scheme can be tuned by the network parameters α

and β and distinguishes between the less expensive detection of an attack by the adversary

and the more expensive task of verification.

Remaining open problems are as follows. First, it is worth investigating the practical

performance of our authentication approach by implementing it and conducting an exper-

imental study. Also, a natural question to explore is whether the decoding procedure can

be simplified and whether the time complexity can be improved. One other question is

whether other classes of error-correcting codes can be employed in our framework.

Moreover, in this chapter we showed a connection between coding theory and cryptog-

raphy. In particular, we employed cryptographic primitives to unambiguously list-decode

148

an error-correcting code. It would be very interesting to study whether there are other con-

nections between the two areas. Finally, it is interesting to explore the use of our technique

in other data authentication problems.

A preliminary version of the results of this chapter appears in publication [82].

Chapter 5

Authentication of Distributed Data

5.1 Introduction

The problem of data authentication is a fundamental one from both theoretical and practical

aspect. From a theoretical point of view, data authentication introduces new dimensions

in both algorithm design and cryptography. On one hand, known data management and

data structuring techniques often need to be reexamined, in the new data dissemination

settings, where the data distributor and the data owner are different entities. On the other

hand, directly applying traditional and well-studied message authentication techniques for

data authentication—where data cannot be treated as a whole—is often inadequate to

provide efficient solutions. From a practical point of view, more and more in distributed and

pervasive computing environments, information is delivered through untrusted computing

entities, raising crucial security threats with respect to data authenticity. An important and

very popular paradigm for implementing data dissemination in distributed environments is

through the use of peer-to-peer networks.

Peer-to-peer (p2p) networks provide the basis for the design of fully decentralized dis-

tributed systems, where data and computing resources are shared among participating peers.

Properties of such systems include scalability, self-stabilization, data availability, load bal-

ancing, and efficient searching. As p2p networks become more mature and established, a

growing number of new applications emerge for them, with an increasing need for assuring

security.

In this chapter, we study data authentication in p2p networks, where data originated

at a trusted source is shared and dispersed over remote and untrusted network nodes and

queried and retrieved by end-users through network’s API. We focus our study on p2p

149

150

systems realizing a distributed hash table (DHT), which supports the basic put-get func-

tionality over distributively stored data objects. We are interested in guarding users of p2p

systems against misbehaving or malicious network nodes that falsify their actions after put

operations or their responses to get operations.

However, current authentication techniques for contents of DHTs are static, centralized

and, more importantly, often insecure. For instance, existing DHTs that support data

authentication use signatures on a per-object basis. This can not guarantee full protection

against malicious network nodes, since replay attacks can be easily launched, where old,

invalid objects are still incorrectly verifiable. Moreover, there is currently no distributed

implementation of the widely-used Merkle’s authentication tree [95].

We introduce a new model for distributed data authentication in p2p networks that is

based on DHTs, thus advancing previous client-server models for data authentication, and

present an efficient implementation in this model of an authentication scheme for securely

performing dictionary operations, thus, presenting the first efficient distributed authenticated

dictionary. In essence, we present a generic technique for efficiently building an authen-

tication structure on top of a broad class of DHTs, that extends their functionality to

authenticated operations put, get and remove, thus providing a transparent security layer

for target applications. By using only the basic functionality of object location, our scheme

achieves generality and is easily applicable to existing DHT implementations. Our authenti-

cation scheme is based on the design of an efficient distributed Merkle tree (DMT)—the first

distributed version of an authentication tree—that can be also used as a general-purpose

distributed tree or verification structure. Our distributed authentication schemes can be

used for authenticating contents, more generally, in any overlay network.

Towards achieving general results on distributed data authentication, we additionally

study the problem of data authentication from a new perspective. In particular, we study

the problem of authenticating general queries over structured data in the RAM model of

computation. We formally define the problem in its general form and put forward a new

framework for data authentication, where the answer validity rather than the querying

process is actually authenticated, and we show that our approach achieves generality. We

introduce the notion of reducibility of query authentication primitives and show that the

authentication of any query type that can be answered based on the evaluation of relations

over the data elements, is reduced to the authentication of membership queries. Using

this, we prove general possibility results for the data authentication problem, under general

assumptions, as well as, characterization theorems about the use of cryptographic techniques

for this problem. Our authentication framework enjoys important properties and certain

151

advantages over previous approaches, including: generality, expressiveness and sufficient

conditions for the design of new efficient, or super-efficient, authenticated data structures.

An important consequence of our results is that, for any query problem, there exists a

distributed authenticated data structure in the new model introduced in this chapter.

5.1.1 Perspective and Motivation

Data storage and retrieval are essential tasks in p2p systems, where large data collections

(e.g., documents, media files, database records) are shared over a network among participat-

ing peers, that is, machines in general owned by unknown, and thus untrusted, individuals.

In this highly distributed setting, ensuring correct and trustworthy system functionality, in

the presence of faulty or malicious network nodes actively seeking to disrupt the system, is

an important and challenging task, especially because p2p systems impose no restrictions

on who may become a member.

In this setting, data authentication is a fundamental security problem, where we are

interested in securely and efficiently authenticating contents stored in a p2p system. For

instance, adversarial network nodes may wish to degrade the performance of a p2p storage

system by providing false responses to data queries; e.g., they may respond with data that

appears to be a file of interest, such as a video of a scientific lecture or a financial data

file, but is instead of degraded quality, incorrect or virus infected. We wish to ensure

the integrity of shared data and to provide cryptographically sound techniques that allow

someone to verify that data retrieved from the system is authentic, unaltered in any possible

way. Moreover, in a dynamic setting, where contents evolve over time through updates, we

want to also ensure that data items retrieved by queries have the most up-to-date versions.

We consider the standard query model in p2p storage systems, where a DHT stores

key-value pairs of the type (k, x) (keys are unique identifiers and values are associated with

keys) and supports operation put(k, x) (which inserts a new pair in the system) and query

get(k) (which returns the value associated with key k). Despite its basic functionality, this

is an important distributed data structure and various efficient implementations of DHTs

(e.g., [124, 138]) provide the core framework for designing and implementing more complex

distributed applications (e.g., [29, 65, 126]). As systems based on DHTs gain popularity

and grow in scale and complexity, the demand of security for them increases. Thus, we also

wish to achieve high information assurance at the application level, by designing efficient

and easily usable cryptographic techniques over DHTs that will guarantee the integrity of

stored data and the authenticity of retrieved data.

152

A straightforward approach to the authentication of queries is to individually sign each

data item stored in the DHT: when data source S wishes to add (k, x), it computes the

signature σ of pair (k, x) using its private key and inserts (k, (σ, x)) into the data structure,

and a query for key k now returns the pair (σ, x), where signature σ allows one to verify

whether x is the valid answer.

However, this “sign-all” approach introduces significant storage overhead and is vul-

nerable to replay attacks for old values, because it does not provide any mechanism for

invalidating old signatures on currently invalid pairs (that have been expired or removed

from the DHT or whose value has been modified). Therefore, in response to a get(k) op-

eration, a malicious network node can return an invalid (old or out-of-date) value that is

still verifiable—since it carries a signature by the data source! This is a serious attack

that is easy to perform (e.g., by caching and never deleting old pairs) and compromises

security, by allowing the authentication of falsified queries. Note that, by definition and

also for efficiency reasons, DHTs support no explicit item deletion, but only keep a soft

state in the system, where old inserted data items are expired after a time interval and

removed from the system, and to maintain these items, one has to essentially reinsert them.

Nevertheless, even when some form of item deletion is supported, replay attacks are still

possible: invalid signed pairs can simply be cached and never be deleted. In general, we

need a mechanism which ensures that only recent signatures are used to validate answers to

queries and which authenticates that—in addition to item insertions and retrievals—item

deletions are correctly handled by the system.

Replay attacks can be prevented by introducing time-stamps in the signed values and

a validity period, called time quantum, so that only verifiable signatures of the most recent

time quantum are accepted. Even with this extension, “sign-all” solutions incur a significant

computational overhead: after each time quantum, each of all the valid pairs that currently

reside in the system need to be retrieved, resigned and reinserted in the DHT by the source.

On the other hand, it is preferable to maintain at all times a global, correct authenti-

cation state of the system, that includes only the currently valid data items and essentially

authenticates that data is properly updated. This is achieved by signature amortization,

the state-of-the-art technique for dynamic data authentication, where a data source S signs

only one digest (short cryptographic description) of the entire collection of (valid) stored

data items owned by S. The canonical method for amortizing one signature over a large

data set is Merkle’s authentication tree [95]; however, there is currently no distributed

implementation of this scheme.

Unfortunately, existing p2p storage systems and DHT implementations that support an

153

authentication service for the stored data are all using “sign-all” techniques. Thus, replay

attacks are feasible and, if time-stamps are used to solve the problem, this leads to inefficient

and impractical authentication schemes due to the need for signature refreshing.

5.1.2 Previous and Related Work

We next review previous work on distributed data authentication.

Authentication trees. The Merkle tree [95] is a simple, and widely-used in security

applications, cryptographic construction for efficiently certifying set membership. The idea

is to use a tree and a cryptographic collision-resistant hash function (e.g., SHA-1) to produce

a short cryptographic description of a large data set. Elements of the set are stored at the

leaves of the tree and internal nodes store the result of applying the hash function to the

concatenation of the values stored at the children nodes. The root value is signed and,

when verified, the collision-resistant property propagates authentication from the root to

the leaves. Certifying that an element is in the set is performed by using a verification path,

which consists (of the hash values) of the siblings of the nodes on the path from the leaf

associated with the element to the root, to recompute the authentic root value. Updates in

the Merkle tree are handled with complexity proportional to the height of the tree [103]. An

extension to the symmetric-key setting is given in [64], where it is shown that verification

along a path can be performed in parallel. No distributed implementation for Merkle trees

currently exists.

Authenticated data structures. These authentication structures provide a client-server

model (e.g., [103, 141]) for authenticating data that is queried not from the trusted data

source, but from different, untrusted, entities (e.g., remote servers). This model augments a

data structure such that along with an answer to a query, a cryptographic proof is provided

that can be used to verify the answer authenticity. The technique of signature amortization

is used, similarly to the Merkle tree, but specially designed according to the supported

query type. A significant body of work has been done on developing efficient authenticated

data structures for various type of queries (e.g., [7, 32, 34, 59, 83, 86]). The related model of

outsourced database systems studies the special case where SQL queries (essentially, range

queries over indexes) are issued over databases published at remote sites (e.g., [78, 102, 106]).

Both models involve untrusted hosts each maintaining the entire data set, thus, they cannot

capture the needs of data authentication over p2p networks, where data is shared and

distributed on a per-item basis. Also, our work provides a useful framework for the design

154

of new efficient (distributed) authenticated data structures of any query type. Finally,

multiple-source extensions of authenticated data structures are studied in [55, 107].

DHTs and p2p storage systems. There is a large and growing literature on p2p net-

works. One popular class of such networks is that of DHTs, fundamental distributed struc-

tures that make use of consistent hashing to efficiently support queries for exact matches

with data keys (e.g., Chord [138], Koorde [67], Pastry [129], Symphony [85] and [124]).

Searching these structures is based on randomized distributed routing techniques and, for

a broad class of them, an object is located with O(log n) expected communication steps,

where n is the number of participating nodes. With advances in distributed object search-

ing and the development of DHTs, several practical distributed storage systems over p2p

networks have been designed and implemented that support efficient data retrieval (e.g.,

PAST [38], CAN [124], CFS [29], PIER [65] and OpenDHT [126]).

Trees over DHTs. The development of DHTs was followed by the design of various

search trees and aggregation trees built over DHTs or other type of distributed trees (e.g.,

[26, 44, 66, 79, 123, 150]). However, these trees can not be used to implement a distributed

Merkle tree, since most of these constructions are static (they do not support dynamic

updates) and they are either search trees or special-purpose trees that are actually not

appropriate to realize an authentication tree—which is sensitive to node losses or structural

changes because of the use of the cryptographic hash function. BATON tree [66], although

dynamic, can not be used for our purposes (e.g., is not built on DHTs and also, based on

AVL trees, is not appropriate for our design goals).

Security in p2p systems. Some security issues related to p2p systems are discussed

in [133], where the authentication problem is treated simply using per-item signatures.

Although with respect to routing and searching, numerous DHTs have been shown to

tolerate significant network-node failures—random (e.g., [67, 124, 129, 138]) or malicious

(e.g., [40, 41, 74, 130])—data authentication has not been systematically studied on p2p

networks. Existing p2p storage systems (e.g., [29, 38, 117, 124, 126]) support an elementary

authentication service for retrieved data which is of the “sign-all” type, where stored con-

tents are individually signed by their source. Often, authentication involves the so-called

self-certified data [45], where large data items (e.g., a file system) get partitioned into blocks,

which are stored as separate objects in the system and are bound together using collision-

resistant hashing in some tree-like hierarchy, and where the root-block is signed. Although

155

this technique resembles a Merkle tree, it only implements signature amortization among

a large item and not among all data items owned by a source, which are still separately

signed. Additionally, this authentication structure is static (no updates are supported) and,

generally, unbalanced (e.g., file systems are usually flat). Overall, currently used authen-

tication solutions are vulnerable to replay attacks (even if item removal is supported, as,

e.g., in [126]) and lack efficiency for supporting signature refreshing and updates.

5.1.3 Authentication Model and Contributions

We introduce a new model for distributed data authentication, where data is stored and

queried in a totally distributed fashion and retrieved data is accompanied by proofs that

verify its authenticity. Our model captures the security requirements for data authentication

that arise in p2p distributed storage systems and extends previous authentication models

that are based on the client-server computing paradigm. In particular, our authentication

model consists of:

• A data source S maintaining a (structured) data set D;

• A distributed p2p network N that stores set D on behalf of source S and supports au-

thenticated queries about D, providing both answers to queries and proofs of answers’

validity; D is dynamic and evolves in time through updates submitted by source S to

network N .

• Users who issue queries about D by accessing network N and verify the answers using

the proof.

We are interested in designing secure distributed authentication schemes that involve

totally decentralized data management and impose low computational, communication and

storage overhead to the participating parties and the underlying network. Informally, an

authentication scheme is secure, if for any query issued by a user to network N , it is

computationally infeasible for any malicious party controlling N to succeed in causing a

user to accept (verify as correct) an incorrect answer. Also, cost parameters we try to

minimize are: (1) storage cost, the amount of information stored at S, N and a user; (2)

update cost, the computational and communication costs incurred at S and N when updates

to data set D occur; (3) query cost, the computational and communication costs incurred

by N to answer queries; (4) verification cost, the computational cost incurred by a user to

verify the correctness of an answer.

Our model drastically differs from those of authenticated data structures (ADS) and

outsourced databases (ODB) (see Figure 5.1) in that distribution of data and authentication

156

information over a network is performed on a data-item basis, not on a data-set one. Also,

the users and the source do not have access to the structure of the network and interact with

it only through its interface. Thus, we extend the client-server model of data authentication

to a distributed authentication model that operates over a p2p network.

S

D

D

D

U1

U2

U3

U4

R1

R2

R3

U1

U2

U4

D1

D2

U3

D3

D5

D4

NS

(a) (b)

Figure 5.1: (a) Authenticated data structure (ADS): responder-servers Ri store set D and answer
queries by users on behalf of source S. (b) Authentication over p2p networks: data and authentication
information are dispersed in network N ; updates and queries are performed by N after contacting
any node of it.

In our work, we consider the underlying p2p network to be any DHT. By designing

our distributed authentication schemes using this popular and widely accepted distributed

data structure, we allow this to leverage a broad class of existing p2p architectures, thus

providing p2p systems with a transparent secure layer at the application level. We achieve

generality by building our authentication scheme over the primitive (and common to all

DHTs) search operation locate, which returns the network node corresponding to a given

abstract object identifier. Since our constructions do not depend on the details of the

DHT implementation, we gain simplicity, extensibility and usability; for instance, we can

strengthen the resilience against malicious nodes by using a DHT that authenticates routing

information, and our scheme can secure existing applications, providing an easily installed

content authentication service.

Note that our scheme inherits the following properties shared by most DHT implemen-

tations: (1) a DHT with n network nodes uses O(log n) storage per node and performs a

locate operation (also, put and get) in O(log n) network hops (node-to-node communication

steps) with high probability; (2) node additions, deletions, and failures are handled dynam-

ically through a distributed algorithm that incrementally updates the routing information;

(3) some form of redundancy is used, which replicates data objects to a constant number of

neighboring nodes so that node failures are tolerated also with respect to the data stored

at them; and (4) caching techniques are used to improve data retrieval.

157

We next summarize our contributions in this model. We present the first efficient scheme

for implementing a distributed Merkle tree (DMT), using only the object-location function-

ality exported by a DHT. Our scheme has certain properties that allows its efficient distribu-

tion over a p2p network and is specially designed to support locality for answer verification

and facilitate the use of caching, thus achieving extra efficiency and resilience against mali-

cious nodes. We analyze its performance and compare it with naive implementations. Our

tree construction, designed for both bottom-up and top-down access, constitutes a new,

general-purpose, dynamic and efficient distributed tree.

We present an efficient authenticated distributed hash table (ADHT), which extends

(non-authenticated) DHTs in various ways. In particular, using our DMT, we present an

authentication structure that provides authenticated and efficient versions of operations get,

put, and also operation remove, supporting authenticated deletions, the first of this type.

Our ADHT provides efficient distributed storage, secure against replay attacks. We compare

ADHT with the “sign-all” solution with respect to various costs.

Finally, we present a secure and efficient distributed authentication scheme for dictio-

nary operations. In particular, using our ADHT we implement the first efficient distributed

authenticated dictionary. In a totally distributed setting over a p2p network with n nodes

and using only the basic object-location operation, we show how one can efficiently authen-

ticate membership queries in a fully dynamic set of m data elements in O(log n log m) time

using O(m log m) storage, with similar complexities for supporting updates.

Overall, we summarize how our work is qualitatively compared with other existing au-

thentication methods (authenticated data structures and outsourced databases) with re-

spect to distributed data authentication in Table 5.1. Our methods are the first to provide

secure and efficient data authentication in totally decentralized environments over p2p net-

works, capturing the security and computing needs of numerous real-life applications.

Decentralized Replay Safe

“Sign-all” DHTs •
ADS, ODB •
Our results • •

Table 5.1: Qualitative comparison of our methods with existing data authentication models.

Additionally, we generalize our results on (distributed) data authentication to hold for

any type of query. In particular, we show that for any query problem there exists a dis-

tributed authenticated data structure that authenticates answers to these queries. We

158

achieve this result by showing the following important (and of independent interest) result:

the authentication of general queries can be reduced to the authentication of set membership

queries.

5.1.4 Chapter Structure

In Section 5.2 we present our first main result, the implementation of a fully dynamic dis-

tributed Merkle tree over a p2p network and we analyze its performance. In Section 5.3 we

show how our distributed Merkle tree can be used to realize an authenticated distributed

hash table, which in turn can support a more general data authentication scheme for mem-

bership queries. Also, Section 5.4 describes another implementation of a distributed Merkle

tree that achieves load-balance. Finally, Section 5.5 describes in detail our results on au-

thentication of general queries and, in particular, a new framework for designing efficient

authentication schemes which also proves that the authentication of any query can be re-

duced to the authentication of set-membership queries. We conclude and discuss open

problems in Section 5.6.

5.2 Distributed Merkle Tree

We now present a distributed Merkle tree (DMT), that is, an efficient distributed imple-

mentation of a Merkle tree built over a p2p network realizing a DHT. Numerous security

protocols and cryptographic constructions are based on Merkle trees, thus a DMT yields

distributed versions of such protocols and constructions. Our design goals are as follows:

the tree must be balanced and efficiently maintainable and verification paths (membership

proofs) should be located and updates should be implemented in a distributed way. Addi-

tionally, the cost parameters we wish to minimize are: the path location cost, the cost for

constructing (locating in the network) a verification path (proof), the update cost, the cost

for maintaining the authentication structure after updates on the data set, and the storage

cost. Both the location and update costs each consists of (1) processing cost, i.e., compu-

tational cost for the participating nodes in the system, and (2) communication cost, i.e.,

cost of location operations or direct communications between nodes. We are particularly

interested in facilitating the location (and creation) of the verification paths of our tree.

We wish to use only the locate operation provided by the underlying DHT; with n network

nodes, this operation takes O(log n) time.

We first describe some simple and inefficient solutions that still give us an insight of

what an efficient scheme should achieve, assuming a basic scenario, where each network

159

node i has an object xi and we wish to distribute a balanced Merkle tree built on top of

data set {x1, . . . , xn}.

1st approach: Tree replication. The first approach is to build a regular hash (Merkle)

tree on top of xi’s and then store the hash values of the tree as new “regular” objects in the

system. The first problem to consider is how the hash values are indexed, i.e., with which

keys they are stored in the system. The hash value is a value that is unknown to network

nodes, thus the value itself cannot be used as a key. A straightforward solution to overcome

this problem is to replicate the tree structure to all involved network nodes and then to use

unique identifiers (according to some fixed encoding) for storing hash values in the DHT.

So, if nodes have a view of the current hash tree, then we have a functional DMT. The

cost to construct a verification path is O(log n) locate operations, that is O(log2 n) time

and communication cost. However, the cost to maintain the tree, after updates, at each

network node is high: an update triggers information of O(log n) size to reach each network

node, which requires the existence of a flooding-type broadcast capability over the DHT

and O(n log n) communication cost. Also, the O(n2) total storage is prohibitive.

2nd approach: Path replication. Each node stores the entire verification path of the

object it stores. Thus, the path location cost is O(1), but now the update cost amounts to

O(n) locate operations (each new hash value must reach n−1 other nodes) or O(n log n) time

and communication complexity. There are extra difficulties, such as how a new hash value is

computed and by whom; this involves some specific communication protocol between nodes

(e.g., Merkle tree traversal techniques). The total storage cost is O(n log n).

Our approach: Route distribution. We design an efficient dynamic DMT using route

distribution. The idea is as follows. Let T be a balanced binary tree defined on top of

elements x1, . . . , xn. Each tree node u has a tree id id(u). Tree T is used also as a hashing

structure (i.e., as a Merkle tree). That is, a cryptographic hash function is used to label each

tree node u with a hash value L(u) (the value that we get by applying the hash function

to the labels of its children). Hash values (tree node labels) are stored in the DHT as

regular values keyed by the corresponding tree id; i.e., label L(u) of tree node u is stored

at the network node U corresponding to tree id id(u). We also store at U the labels of

the children of u. Consider element x stored at leaf node w and let p = (w, u1, . . . , uk, r)

be the path from w to the root r of T . The node of the network storing element x is

storing information related to path p of tree T . The stored information at w includes: (1)

160

the structural information of path p, i.e., left-right relation of nodes in the path p; (2) the

balancing information of nodes in path p, i.e., information that is used for restructuring

the tree and maintaining its balance; and (3) sufficient information for locating the hash

values of p, namely ids id(u1), . . . , id(uk), id(r). Note that the verification path is completely

accessible by this information, which does not include any hash values (tree labels).

This authentication structure allows queried nodes to report immediately the O(log n)

tree nodes storing the hash values in the path. Then the user has to contact O(log n) nodes,

by performing O(log n) locate operations; or alternatively, the queried network node collects

the proof, not the user. In any case, the path location cost is O(log2 n). We emphasize

that using route distribution, that is, maintaining the invariance that each network node

in the system knows the route for its verification path, we can achieve extra efficiency,

as we will discuss at the end of this section. The authentication structure uses O(n log n)

total storage, thus it is space-optimal, since the O(log n) storage per-network node overhead

matches the per-node storage overhead of the DHT itself (for keeping routing information).

Regarding updates of hash values (e.g., after element xi changes value), new hash values

along the corresponding verification path p can be computed using O(log2 n) communication

cost (O(log n) location operations suffice in updating O(log n) hash values). Regarding the

update of the tree itself (e.g., structural updates for balancing purposes), note that using

its balancing information a node can locally compute the new tree structure in O(log n)

time, but then it has to accordingly advertise the changes to all other involved nodes, a

seemingly very expensive task. However, we note that although all hash values in p change

after every update, not every node of p change balancing or structural information and

we take advantage of this fact. Only nodes that need restructuring must be updated and

their changes must be advertised. Using BB[α] trees, which are weight-balanced trees

enjoying important balancing properties, we can actually achieve that on average O(1)

rotations occur after an update and they occur more often at nodes closer to leaves than

at nodes higher in the tree. Each such rotation involves communication cost proportional

to O(k log k), where k is the size of the subtree rooted at the place where the rotation

took place. We thus expect on average a very good performance in an amortized sense,

since expensive reconstructions happen rarely. We next give the detailed description of our

scheme and its complete analysis.

161

5.2.1 An Efficient Distributed Merkle Tree

We consider the more general case, where an authentication structure over m ≤ n data

items is built over a DHT and we design our DMT using the primitive locate operation

over a p2p network. We consider the basic case where m data items owned by a source are

stored in the network and, without loss of generality, we assume that objects are stored at

distinct network nodes. Our results generalize to the cases where more than one data items

are stored at nodes and also where more than one sources produce these items.

(a) (b)

Figure 5.2: (a) Balanced hash tree T over data items x1, . . . , xm: tree node u, stor-
ing label Lu, is identified by idu and mapped to network node U ; leaf node w corre-
sponding to data item x3 with verification path p is mapped to network node W . (b)
Tree distribution over the network: network node U corresponding to tree node u stores
{idr, idu, idw, idw′ , Lu, Lw, Lw′} and local structural information about u; network node W
corresponding to w stores {x3, idp} and structural and balancing information about p.

Our scheme is described as follows (see Figure 5.2). For convenience, tree nodes are

denoted by lower case letters and network nodes by capital ones. Let T be a balanced binary

tree build over a dynamic data set of m data items x1, . . . , xm and let h be a cryptographic

hash function. Tree T is used as a hashing structure in the standard way: each tree node

u in T has a unique id id(u) (drawn from some space) and is associated with (or stores,

conceptually) a label L(u), which equals to hash h(L(v1)‖L(v2)) of the hash values that are

associated with (stored at) its children v1 and v2, and each leaf stores the hash value h(xi)

of the corresponding object xi. We augment the hashing structure as follows: we require

that internal tree node u with children v1 and v2 also stores the hash values of v1 and v2.

Each tree node u is mapped to a network node U = f(u) through a function f . Node U

stores the (three) hash values associated with node u, the tree node ids of the parent tree

node and the children of u and local structural information about node u. Moreover, a leaf

node wi, corresponding to object xi, is also mapped to a network node Wi = g(xi) through

function g.1 Node Wi stores the following information: the object xi, and information

1We impose no restrictions on functions f(·) and g(·). In general, f = g; these are known functions used
by the underlying p2p network to map objects to network nodes (many DHTs use the SHA-1 function).

162

related to (verification) path pi in T from wi to the root r of T ; in particular:

• the ids of the tree nodes of path p, denoted as idp;

• the structural and balancing information of tree nodes in p, that is, for each tree

node u in p with children v1 and v2, Wi stores: (1) whether v1 or v2 belongs in p;

(2) the balancing information of node u, which is basically a pair (b1, b2) of balancing

information related to subtrees defined by v1 and v2 respectively (for BB[α] trees,

this is information related to tree-weights).

Our scheme distributes tree nodes and verification paths over a p2p network, correctly

implementing a DMT at only logarithmic per-node storage overhead. Our tree is designed

mainly for bottom-up use, which is appropriate for most security-related and cryptographic

applications (although it can be easily extended to support also top-down traversal, as a

search tree). Accordingly, our tree is accessed very efficiently: given a data item, the cor-

responding verification path is distributively retrieved using O(log m) location operations.

Finally, we choose our tree T to be a weight-balanced tree and, in particular, a BB[α]

tree. Our choice is related to the efficiency of the scheme with respect to the update costs

incurred after changes in the tree occur due to updates in our data set (items are inserted

or deleted or change value). We consider two types: structural updates (due to re-balancing

changes) and hash updates (due to rehashing).

We now discuss the scheme correctness, i.e., we show that the above scheme implements

a distributed Merkle tree. We describe how the tree is efficiently accessed, how it is main-

tainable after updates and also the associated computational, communication and storage

costs. First, regarding the storage efficiency, we can easily see that our scheme requires

O(m log m) storage. Indeed, internal tree nodes are stored in the network each using O(1)

information and m leaf nodes are represented each using O(log m) information, since T is

balanced. Now, assume that a tree T built over X = {x1, . . . , xn} is distributed over a

network N and consider the task of accessing or locating the verification hash path corre-

sponding to data item xi ∈ X and path pi, initiated by network node M . Node M first

locates the network node Wi that stores xi (through mapping g(·)), then Wi reports to M

(through a direct connection) the ids of the tree nodes in the corresponding path pi of T .

Then M can locate the O(log m) network nodes storing hashing information related to the

verification path of xi; the mapping f(·) have to be used first to map tree ids to network

We use distinct functions to denote the possibility that more efficient schemes can be designed by having
f and g satisfying some relation.

163

nodes. After contacting O(log m) nodes, node M has retrieved all the verification informa-

tion. Note that once a network node is located and contacted, not only the corresponding

hash value of the tree node is retrieved but also the hash values of the children nodes.

Thus, overall, retrieving the verification hashing path of an item takes O(log n log m) cost.

In particular, it involves O(log m) location operations and O(log m) communication cost

(through direct network connections).

Next, consider the problem of maintaining the tree balanced after an update in the hash

tree. The simplest update corresponds to simply changing an object xi to a new object x′
i,

where g(xi) = g(x′
i), that is when the storage location of xi does not change 2. We call

these updates hash updates, since only the hash values are updated. It is easy to see that

only O(log m) hash values need to recomputed, whereas the structure of the tree stays the

same. This can be done by node N = g(xi) (or any other node that initiates the update,

locates N and contacts N) locating and contacting the network node U corresponding to

the lowest in T node u in pi and notifying it about the change; then through O(log m)

node locations and contacts every node in pi updates the hash value it stores and notifies

the network node storing its parent in T about the update. Thus, the update cost for this

particular type of update is O(log n log m), since locating a network node takes O(log n)

communication cost. Now consider the general case of an update, that is, an operation

of the type insert(·) or delete(·) on the tree T . (Note that a replace(·) operation when

g(xi) 6= g(x′
i) corresponds a series of two such operations.) Then, not only O(log m) hash

values need to be updated, but also the tree T needs structural update, due to re-balancing

operations. The distributed update process is as follows. Network node Wi responsible

for the update on data item xi performs gradually the update and in a bottom-up fashion,

according to its corresponding path pi. That is, a leaf node is deleted or created and the path

is checked using a bottom-up traversal of it, for any necessary restructuring operations (i.e.,

rotations). Note that all necessary information is available at node Wi for this check (the

balancing information of pi is stored at Wi). Node Wi traverses path pi and if no rotation

is needed while examining tree node u, then the network node U = f(v) corresponding to u

is contacted (after it is first located) so that its hash value is recomputed. If additionally a

rotation is needed at node u, then node U is notified appropriately by Wi and f(v) executes

the rotation by contacting (after first locating) the appropriate nodes among its neighboring

in T network nodes. Node Wi is notified about the structural change, i.e., it learns the ids

and the balancing information of the new nodes in p′i. (Alternatively, once the rotation

2This is not an extreme special case, but rather of typical that often occurs when for instance data objects
are actually key-value pairs and only the value is being updated.

164

is complete, node Wi updates the balancing information of the affected by the rotation

nodes by contacting them.) Then node Wi goes on to the node higher in pi. Thus, the

new path p′i can be computed completely after O(log m) location operations and O(log m)

communications between network nodes, that is, the cost for updating the verification path

pi to the new path p′i is O(log n log m). However, since verification paths are distributed

over the network N and if path pi structurally changed to p′i then it must be advertised to

the network nodes which leaf nodes in T that belong in subtrees affected by the rotations

are mapped to through g(·). We refer to this cost as structural update cost. Note that

for general trees T the structural update cost can be of order O(m log m), involving O(m)

network node locations: indeed, a rotation at level k of T requires O(2k) location operations,

proportional to the size of the affected subtree of T . This is because, the change due to

a rotation must be distributed to the appropriate nodes of network in a top-down fashion

by a series of node locations and communications. However, recall that our scheme uses a

weight-balanced BB[α] tree as T , where the weight of a tree node is the number of leaves

in the subtree defined by this node and α is a balance parameter. Our choice is justified by

the following lemma. Over a linear number of update operations, our scheme requires only

a logarithmic number of node locations.

Lemma 5.2.1. For a series of O(m) update operations on an initially empty data set,

the above DMT T based on a weight-balanced BB[α] tree, with α ∈ (1
4 , 1 −

√
2

2), has

O(log n log m) amortized structural update cost. In particular, during this series of tree

updates, structural updates at level k of T with cost O(2k) occur with frequency O(1
2k).

Proof. The proof is based on the update technique in our scheme and the properties of BB[α]

trees (e.g., see analysis in [89]). If path pi is structurally updated to p′i, let u∗ be the node of

pi where a rotation took place and no other rotation occurred at an ancestor node of u. Let

T ∗
u be the subtree in T defined by u∗. Then all network nodes L∗

u corresponding to leaf nodes

in T ∗
u must update their paths, because for all these paths at least one tree node has changed

(due to the rotation at u∗). The update should also propagate to the neighboring tree nodes

of u∗. This update in T can be done (once for all, for the entire update due to all rotations)

by distributing the updates to nodes in L∗
u through network nodes corresponding to subtree

T ∗
u . The distribution occurs in a top-down fashion and by network nodes locating the nodes

corresponding to their children and communicating to them the relevant updates 3. The

whole process is complete by using O(|T ∗
u |) node locations and O(|T ∗

u |) communication.

3Alternatively, this can be done by threading the tree T such that leaf nodes are connected, that is, node
Wi corresponding to leaf xi storing the tree ids of the neighboring leaf nodes in T .

165

Thus, overall we have that the structural update cost is O(log n × (log m + |T ∗|)), where

|T ∗| is the size of the maximum subtree in T affected by the update. Again, the log n factor

is due to location operations. Since T is a weight-balanced BB[α] tree 4 with parameter

α in an appropriate range and a rotation at node u in T incurs O(|Tu|) node locations,

using the analysis in [89], we get that the total node locations for updating all verification

paths in our hash tree, for a sequence of t update operations (insertions or deletions) on

an initially empty hash tree, is O(t log t). Thus, for the same series of update operations,

the total structural update cost is O(log n × t × log t). Then, for t = O(m), we get that

the amortized overall structural update cost is O(log n log m) over a sequence of operations

of size linear on m. Moreover, using the additional property shown in [89], namely that

costly rotations at levels close to the root occur rarely, (in fact with frequency inversely

proportional to the corresponding subtree size), the proof is completed.

Using Lemma 5.2.1, the following summarizes the efficiency of our scheme and our main

result. We call a network optimal if location operations take O(log n), where n the network

size.

Theorem 5.2.1. There exists a scheme for implementing a distributed Merkle tree T over

a peer-to-peer network N with the following properties. If m is the size of the set over which

tree T is built and n is the total number of nodes in the network N , with m ≤ n, then:

1. The distributed Merkle tree uses space O(m log m), distributed over O(m) network

nodes, and incurs O(log m) storage overhead per network node.

2. A verification path has size O(log m) and can be accessed with O(log m) locate opera-

tions; thus, for an optimal network N , the expected computational and communication

cost for accessing a verification path is O(log n log m).

3. A hash update on the distributed Merkle tree involves O(log m) location operations;

thus, for an optimal network N , the expected computational and communication cost

of a hash update is O(log n log m).

4. A structural update on the distributed Merkle tree involves O(m log m) location oper-

ations, amortized over a series of O(m) structural updates on an initially empty tree;

thus, for an optimal network N , the expected amortized computational and communi-

cation cost of a structural update is O(log n log m).

4Actually, the distributed Merkle tree is an augmented such tree where rotations at node u cost O(|Tu|).

166

Improvement through caching. We now discuss a simple extension that under a rea-

sonable assumption can improve the costs for path location and updates of our scheme. This

improvement is applicable because of the design of our DMT based on route distribution.

Namely, assuming that network-node failures occur less often than queries and updates on

the DMT, we can improve the efficiency of our scheme as follows. The goal is to transform

the multiplicative O(log n) factor (introduced due to locate operations for retrieving or up-

dating hash values) into an additive term in the complexity of our scheme. This is easily

achieved by caching network node ids: the idea is to have each network node corresponding

to a leaf of the tree to cache in its memory the O(log m) network node ids that store the

hash values of its corresponding verification path. That is, once such network node is first

contacted, its id is remembered. Of course, since network nodes can fail or go down, it is

possible that cached nodes are no longer nodes of the network. In this case, we have a cache

miss which will trigger a location operation. Although we can still use some techniques to

avoid this overhead (e.g., by contacting or also caching neighboring nodes storing the same

information due to redundancy), we observe that when the rate of network node failures

is sufficiently small then we can actually amortize the O(log n) factor due to occasional

location operations (cache misses) in the cost for operating on the tree. In particular, if

network nodes fail independently with probability O(1
log m) during the time interval of a

tree traversal, then the expected number of network node failures that occur during a path

location or update is O(1). Thus, using caching the expected complexity for path location

and updates on the tree is O(log n + log m).

storage path location hash update structural update

tree replication O(m2) O(log n log m)∗ O(log n log m)∗ O(m log n)∗

path replication O(m log m) O(1) O(m log n)∗ O(m log n)∗

route distribution O(m log m) O(log n log m)∗ O(log n log m)∗ O(log n log m)∗∗

w/ caching O(m log m) O(log n)∗ O(log n)∗ O(log n)∗∗

Table 5.2: Efficiency comparison of various schemes for realizing a DMT for a data set of
size m over a p2p network of size n ≥ m. We denote expected complexity using ∗ and
amortized expected complexity using ∗∗.

Table 5.2 summarizes the comparison between the various schemes for implementing

a DMT. We see that our scheme provides an very efficient solution that, using caching

and under reasonable assumptions, can be asymptotically optimal in an amortized sense.

Finally, we note that, when m > n, we can appropriate extend our scheme by having each

network node maintaining an additional data structure (for locating the stored elements),

167

and also that our scheme supports authentication of data collections of one data source; we

can support multiple data sources simply by using multiple instantiations of our DMT.

5.3 Authenticated Distributed Hash Table

We now focus on the design of distributed authentication schemes in our authentication

model. We first use our DMT to authenticate the basic operations of any DHTs and design

an efficient authenticated distributed hash table (ADHT).

Consider a data source S that produces m data items and stores them in a DHT that

supports the basic put-get functionality. We use our DMT to augment the functionality of

a DHT and provide higher information assurance. We wish our new system to support the

following operations:

• Authenticated put: any key-value pair can be inserted in the DHT by source S in a

way that both the system authenticates S’s identity and source S is assured about

the correctness of the performed insertion.

• Authenticated get: any user of the system can retrieve the value that corresponds to

an existing (stored in the system) given key in an authenticated way, receiving from

the DHT a proof that is used for verification.

• Authenticated remove: a previously inserted in the system key-value pair can be re-

moved from the DHT by source S in a way that both the system authenticates S’s

identity and source S is assured about the correctness of the performed data item

deletion.

Implementation. We implement an authenticated distributed hash table ADHT using

the following standard authentication technique. Signature amortization is achieved by the

use of a Merkle tree (using a cryptographic collision-resistant hash function h) built on top

the data items owned by the S. The hash of the tree root serves as the data digest and

is signed by the data source. A data item is verified to be owned by S if the signed root

hash value is verified to be authentic (signed by the source) and a verification path binds

the item with the digest. The security of the technique follows for the security properties

of the signature scheme in use and hash function h. A non-trivial part of the above design

is the fact that now the system is a DHT over a p2p network. We make use of the DMT to

compute the digest of the data set of S and to realize signature amortization and compute

only one signature over m data items. We need to add an additional level of hashing in

168

the tree: the leaf node corresponding to (k, x) now stores the hash value h(h(k)‖h(x)).

We assume that the source S keeps a copy of the signed digest of its data and that, using

bootstrapping techniques, both S and the users have access (through direct connection) to

an active network node of the underlying p2p network. We now briefly describe some of

the details in authenticating operations put, get and remove.

Updates. Updates are performed by the source S by first contacting a network node and

issuing an update request. The system then reports to S the verification path of the leaf

node of the DMT that is related to the update, which further allows S to compute the new

signed digest. We augment our DMT in two ways to achieve this. To make the path retrieval

possible for put operations, we extend the DMT to also serve as a search tree, thus allowing

top-down access. To implement the digest update securely, we augment the hashing scheme

over the tree such that verification paths now contain all the additional information needed

by S in order to locally execute the hash and structural update and compute the correct

new root hash of the DMT. This is feasible because both hash updates and structural

tree adjustments only happen along a path in a bottom-up fashion. The verification path is

used by S to check that the received information is consistent with the current digest stored

by S. Once the new digest is computed, S signs it and returns a copy to the network node.

Then a regular hash-tree update is performed by the system to execute the put or remove

operation. By this interaction, S needs only to keep O(1) authentication information, the

current signed digest. Asymptotically, no additional computational or communication cost

is introduced by this extra interaction between the system and the source.

Queries. A user contacts a network node and requests the value of a key. A path retrieval

query is executed over the tree by the system and what is returned to the user is: (1)

the corresponding value, (2) the verification path (collection of hash values and relative

information for computing the root hash) and (3) the signed digest. The user accepts the

answer (value) if and only if the signed digest is valid and hashing over the value and the

verification path results in a hash value that equals the root hash.

Note that in a way, the source updates the data set by effectively first querying it in a

similar way that a user would do. Using Theorem 5.2.1, we can prove the following.

Theorem 5.3.1. There exists an authenticated distributed hash table over an optimal peer-

to-peer network of n nodes that supports authenticated operations put, get and remove on a

data set of size m ≤ n, such that:

1. The distributed authentication scheme is secure.

169

2. The storage at the source is O(1); the storage at the network is O(m log m).

3. The query cost is O(log m), that is, O(log m) locate operations; or, equivalently, the

expected time and communication complexity to answer a query is O(log n log m).

4. The amortized update cost is O(log m), that is, O(log m) locate operations; or, equiv-

alently, the amortized expected time and communication complexity of an update is

O(log n log m).

Security. We briefly discuss the security of ADHT. This follows using standard reductions

to the security of the underlying cryptographic primitives that are used in our authentication

scheme, under standard hardness assumptions. That is, by using a family of collision-

resistant hash functions and a signature scheme secure against adaptive chosen-message

attacks, we can prove the security of ADHT. Note that as described above, the security

of the source against adversarial behavior by the DHT (or the underlying network) is still

captured, since the interaction between the source and the DHT is treated as a special type

of querying.

Discussion. Existing data authentication approaches in DHTs use the “sign all” method

for verifying contents stored by the same data source. Although some systems use signature

amortization through hashing, this is performed within a large data item itself, e.g., a large

file or an entire file system, not for the entire data collection that a source stores in the

system. Thus, our scheme is the first to amortize one signature over any large collection of

data items. DHTs typically do not support an explicit operation for item deletions (with

some exceptions, e.g., OpenDHT [126]), but, instead, they often introduce a time-to-live

(TTL) mechanism, so that old stored items expire and then they are automatically deleted.

In this TTL-based approach, if the source needs to renew the stored data, it needs to insert

it and thus to sign it again. Independently of whether or not items are expired or deleted

by the system, the issue of data freshness is critical and is related to replay attacks. An old

signed value may not be valid anymore with respect to the application that uses it and a

signed statement may be copied and be forgotten even when it is not valid anymore. Thus,

any valid signed statement should be a freshly signed statement. This can be done by signing

time-stamped data or data that carries the time when its validity expires and requiring that

not only a signature is verified but also it is fresh. In a system storing m data items where

O(m) signatures are used, the signing cost for updating them and maintaining an up-to-date

state of valid items is also O(m). Signing typically involves expensive computations, thus

the introduced computational overhead is high. Instead, in our scheme only one statement

170

(the root hash) must be resigned. The signing cost is O(1), at only the cost of increasing

the query and update complexity by a logarithmic factor on m. Table 5.3 summarizes the

comparison of our ADHT with the existing data authentication schemes.

storage sign cost query cost update cost replay safe

“sign-all” O(m) O(m) O(log n)∗ O(log n)∗ no

ADHT O(m log m) O(1) O(log n log m)∗ O(log n log m)∗∗ yes

ADHT-c O(m log m) O(1) O(log n + log m)∗ O(log n + log m)∗∗ yes

Table 5.3: Comparison of ADHT (plain scheme and scheme with caching) with “sign-all”
schemes for authenticating queries on data set of size m over a network of size n, m ≤ n.
We denote expected complexity using ∗ and amortized expected complexity using ∗∗.

Data Authentication in Peer-to-Peer Systems. An immediate application of our

ADHT is a distributed authenticated dictionary, where membership queries on a data set

are authenticated. Suppose that keys are drawn from a totally ordered universe. Our

DMT is built on top of key-value pairs in a sorted sequence according to their keys and it is

appropriately extended to also serve as a search tree (with top-down traversal). Additionally,

to support authentication of negative answers, the source inserts in the system pairs of key-

value pairs such that the keys are consecutive in the ordering used in the Merkle tree.

This scheme has asymptotically the same performance as the ADHT described above, given

by Theorem 5.3.1. Note that our distributed tree can be used in other (not necessarily

security-related) applications.

Load-balance issues. Although our authentication structure achieves load balance with

respect to data distribution over the p2p network (this is guaranteed by the properties of

the underlying DHT), as described, it does not achieve load balance with respect to net-

work access. For instance, network nodes that store the tree root are accessed much more

often than other network nodes. This turns out to be an important issue that appears

to hold in general: all existing techniques for achieving authentication over DHTs that

use signature amortization, including our technique or techniques based on self-certified

data, introduce congestion at certain network nodes. The problem is challenging, since

load-balancing and efficient content authentication in p2p systems correspond to contradic-

tory design goals: signature amortization introduces heavily accessed points in the system,

whereas for load-balancing we wish network nodes to be accessed with uniform, rather than

skewed, distribution.

171

However, we propose the following simple solution for load-balance in an amortized

sense: after any update in the structure, we choose new tree node ids for all nodes in the

corresponding verification path. New ids are chosen according to a random but specified

way, such that no significant communication overhead is introduced in the structure. Ef-

fectively, over time, we expect to achieve smoother (closer to uniform) access patterns for

network nodes.

The next section present an authentication structure that inherently (i.e., by construc-

tion) achieves load-balance.

5.4 Load-Balanced Distributed Authentication

In this section, we study the problem of authenticating content stored in peer-to-peer net-

works, thus ensuring that data storage and retrieval are secure and trustworthy. As before,

we are interested in authenticating content distributively stored in network nodes forming

an overlay network, e.g., through the use of any distributed hash table (DHT). That is, we

would like to prove that data files claimed to have been added by the source were really put

in the p2p network by the source and have not been modified.

We consider a standard query model where an underlying DHT stores key-value pairs of

the type (k, x), each added through operation proper(k, x), where keys are unique identifiers

and values are associated with keys. The DHT supports query get(k), which returns the

value associated with key k. The authentication problem that arises in this case is data

integrity, simply ensuring that any query returns the correct, authentic corresponding value.

So, if (k, x) is the currently valid pair that has been inserted in the system, in terms of

security and information assurance, the property that (at least) must be satisfied is that

any query on key k must return the correct corresponding value x.

A straightforward approach to the authentication of queries is to individually sign each

item stored in the data structure. Namely, when data source S wishes to add (k, x), it

computes the signature σ of the pair (k, x) using its private key and inserts (k, (σ, x)) into

the data structure. A query for key k now returns the pair (σ, x), where the signature σ

allows one (that knows the corresponding public key) to verify whether x is the valid answer.

Unfortunately, this “sign-all” approach introduces significant performance overhead and it

allows for replay attacks for old values. Indeed, this approach does not provide a mechanism

for invalidating old signatures on pairs that have been removed from the DHT or whose

value has been modified. Therefore, we end up with the following crucial security threat: a

malicious network node can easily perform a “replay” attack, by simply reporting on a get

172

operation an invalid, still verifiable value, that corresponds to a old (expired or out-of-date)

key-value pair.

In general, we need to provide signature freshness, that is, of mechanism that ensures

that only recent, valid signatures are used to validate answers to queries. This can be easily

achieved by introducing time-stamps in the signed values, so that only recent (up to a

convention) valid signatures are accepted by the verification algorithm. Still, even with this

extension, the signature refreshing cost is linear in the number of the current items in the

DHT: if m items exist in the system, at any fixed time quantum, the signature refreshing

cost is O(m), since all valid pairs need to be resigned. Signature amortization, the technique

of signing only one, specially designed for the authentication purposes, digest of the entire

collection of stored data items, owned by the same source, seem to be the right avenue

for achieving efficiency with respect to the overheads due to signature-refreshing. At the

same time, we wish our solutions to achieve load balancing, that is, to evenly distribute

the workload related to authentication across the network nodes. Note that the “sign-all”

naive solution does not achieve signature freshness and amortization; however, although

inefficient, it achieves load-balancing in a trivial way.

Achieving both load balancing and efficiency in content authentication in p2p systems

turns out to be a challenging problem since these two requirements seem to imply contra-

dictory design goals. The primary technique used for achieving efficient authentication is

signature amortization, where the data source signs a digest of the entire data set that is

computed using a hierarchical hashing structure (e.g., a Merkle tree). However, signature

amortization leads to authentication information that is heavily centralized, meaning that

the nodes of hashing structure close to the root and the signature over the digest are accessed

more often for answer verification. At the same time, p2p systems should achieve network-

traffic load-balancing, 5 meaning that data should be accessed without creating hot-spots,

i.e., network nodes accessed with skewed, rather than uniform, distribution. Thus, realizing

efficient authentication schemes for p2p networks that preserve load-balancing is a particu-

larly challenging task. Note that the “sign-all” naive solution, although inefficient, achieves

load-balancing in a trivial way.

In the rest of this section, we present a new, efficient, load-balanced distributed au-

thentication scheme for a DHT with n network nodes. Our scheme is built on top of the

basic DHT operation locate(k), which returns the network node (id) storing the given key

k (object identifier). For typical DHT implementations, operation locate takes O(log n)

5Load-balance with respect to (uniform) data distribution is another desired property (that is satisfied
by the use of a DHT).

173

time. Our scheme extends the underlying DHT by supporting authenticated versions of

operations proper and get while preserving efficiency and load balancing.

For simplicity, in the following discussion, we assume that a single data source is inserting

items in the system. For more data sources, we simply make use of multiple invocations

of our scheme (it is easy to see, this is a simple extension). We only require that the

public key of each data source storing data in the DHT is known to any entity querying

the DHT. Additionally, following the public parameter model used in the cryptographic

literature, we assume the existence of some public information that is associated to each

data source and that can be easily accessed and updated independently of the underlying

DHT structure. More importantly, the size of this information is only logarithmic in the

number of data items stored by the source in the system. Note that this public information

imposes no limitations in our construction. For instance, in practice this assumption is

easily and efficiently implementable through a web service that posts a small amount of

data regarding a data source to a web-site.

The performance and security properties of our scheme can be summarized as follows.

Given a distributed hash table H with n network nodes such that H supports object location

in O(log n) time using O(log n) storage overhead per-network node, we can build over H a

distributed authentication structure for storing m data items such that:

• The answer to a query can be authenticated with O(log n log m) expected time com-

plexity and O(log m) space complexity.

• The insertion of new data items has O(log n log m) expected amortized time complex-

ity.

• The public information has size O(log n).

• The signature refreshing cost is O(log m).

• The system is secure against replay attacks.

5.4.1 Hashing Scheme

We next present our new scheme for realizing a distributed authentication structure having

two main design goals: signature amortization, which will incur low signature refreshing

cost, and load-balancing, which will not create any hot spots in the underlying p2p network.

The main idea is to use Merkle trees and additionally a technique that uses redundancy

such that accessing the Merkle tree can be done in many different ways. By choosing the

174

particular verification path in a randomized fashion we effectively achieve destroying any

hot spots. Naturally enough though, the redundancy used by the new structure slightly

increases the storage needs and the computational overhead due to updates (both only by a

logarithmic factor). Although our static and semi-dynamic structure achieves optimal space-

complexity trade-offs, we still discuss techniques that allows us to make it fully dynamic in

reasonable ways.

Our data structure achieves signature amortization by applying a hashing scheme over

the data items stored in the DHT. The main idea in our construction is to use a hashing

scheme G of high expansion rate (using a structure that resembles the FFT computation

graph or a butterfly network), such that for any data element, there exist many equivalent

verification paths. We distribute DAG G to the network nodes of the underlying DHT by

appropriately indexing the digests and storing them as special data items. We preserve

the structure of the hashing scheme G in the DHT as follows: each network node storing

the digest of node v in G also stores the keys that can be used to retrieve the digests

of the immediate successors and predecessors of v. We then randomize the generation of

verification paths to achieve a uniform coverage of the network nodes. Thus, we implement

signature amortization and at the same time provide load-balancing.

We build a hashing scheme over m in total data items and distribute this structure to

the n network nodes of the underlying DHT. Instead of using a tree for authenticating a

data set, we now essentially use m trees that share m log m tree nodes. In essence, we use

a graph structure rather than a tree structure to store (distribute) the data digest.

We now describe our hashing scheme G for m data items and its embedding into a DHT

with n network nodes (see Figure 5.3(a)). Let us assume for simplicity (and without loss of

generality, as we will see), that m = 2k. The nodes of G are partitioned into k + 1 levels,

where each level has m nodes. The nodes at level 0 are sources, each associated with a data

item. The nodes of the remaining levels have each two predecessors nodes at the previous

level. The parent-child relation is defined such that the nodes at level k are the roots of m

perfect binary trees over the data set. To formally define the edges of DAG G, let us number

the nodes on each level and denote with vi,j the j-th node of G on level i, i = 0, . . . , k,

j = 0, . . . , m − 1. For i > 0, node vi,j has two incoming edges from nodes vi−1,j and

vi−1,j+δ(i,j), where δ(i, j) = (−1)⌊j/2i−1⌋2i−1. Let h be a cryptographic collision-resistant

hash function. For i = 0, d(vi,j) = h(k||x), where (k, x) is the data item associated with vi,j .

For i > 0, we have d(vi,j) = h(d(vi−1,j) || d(vi−1,j+δ(i,j))). By symmetry, the nodes of G at

level i store 2k−i distinct digests. The data source signs the single digest stored at nodes of

level k and makes it available as public information. Each node is indexed by a unique id,

175

where node v0,j that is associated with item (k, x) is indexed by k, and is inserted in the

DHT using as the key this id and as the value the digest and ids of the predecessors and

successors (constant-size information).

Level 3

Level 2

Level 1

Level 0
v0,0 v0,1 v0,2 v0,3 v0,4 v0,5 v0,6 v0,7

v3,1 v3,2 v3,3 v3,4 v3,5

vi,j

v3,7v3,6v3,0

· · · h0

hk

h2 h1

hk−1

Bk Bk−1 B2 B1 B0

(a) (b)

Figure 5.3: (a) The static hashing scheme yielding a single digest of the collection of data
items, stored at the top nodes. (b) Dynamization of the hashing scheme, where the static
scheme is separately applied to blocks that form a partition of the data items.

5.4.2 Query and Verification

We now describe how get operations are handled. We begin by performing a query according

to the underlying DHT structure (e.g., as discussed in previous sections). Given that

data element (k, x) stored at network node W is located by the DHT, node W initiates a

randomized process for generating a verification path for (k, x). Namely, W flips a coin to

determine which of its two parents at level 1 (next node in the path) to contact next (through

a location operation, first). In general, a network node V at level j randomly chooses the

next network node (to be contacted while forming the verification path) independently and

with probability 1
2 . Thus, any query results in a verification path of length O(log m), using

O(log m) location operations, resulting in O(log m log n) computation and communication

costs. Through the randomized search process, every verification path for a fixed data

element is actually an independent and identically distributed random variable and no hot-

spots are created while accessing the authentication structure. The verification path is

returned by the DHT and given this, one can authenticate the answer of operation get by

processing the digests contained in the path, verifying the publicly available signed digest

and checking their consistency. The total storage required is O(m log m); that is, assuming

perfect mapping functions from keys to network nodes (usually through a cryptographic

hash function), the storage is logarithmic in n per network node, when m = O(n)—i.e., still

optimal, since most DHTs use routing tables of logarithmic size. Using a caching technique

176

as in Section 5.2, we can further improve the creation of the verification paths.

5.4.3 Updates

The data structure described in the previous section is static. To support updates, we

modify it using a dynamization technique due to Overmars [109], which allows to transform

a static data structure into a corresponding dynamic structure. The idea is to partition a

data set of size m into sequence of O(log m) blocks, where the size of each block is twice the

size of the previous block, and to completely rebuilt blocks after updates, as necessary. We

apply this technique to support insertions of data items with new keys.

Let D be a set of m data items and let (bk, bk−1, . . . , b1, b0)2 be number m written in

binary, with bk = 1. Note that items in D are not assumed to be sorted. 6. We partition

D into ⌊log m⌋ + 1 blocks B0, B1, . . . , Bk, each a subset of D, according to the weights

of the bits of m, i.e., |Bi| = bi · 2i. Let then G(i), 0 ≤ i ≤ k, denote the hashing DAG

described in previous section that is built for the elements of block Bi. DAG G(i) has

bi ·2i · i nodes. DAGs G(0), G(1), . . . , G(k) are used separately as authentication structures:

that is, for i = 0, . . . , k, if bi = 1, the source signs the top-level digest hi of DAG G(i)

(see Figure 5.3(b)) and each G(i) is distributed over the network nodes as before. For any

queried data item in block Bi, the corresponding verification path in G(i) is retrieved using

O(i) location operations. Accordingly, O(log m) signed time-stamped digests (one for each

block) are made available as public information.

We perform insertions of data items through operations proper as follows. Let i be

the smallest i such that bi = 0 or i = k + 1 if no such i exists. To insert an item x

into D, we merge DAGs G(0), G(1), . . . , G(i − 1) to create DAG G(i) for the new block

Bi = B0 ∪ . . . ∪ Bi−1 ∪ x. Note that |Bi| = 1 +
∑i−1

j=0 2j = 2i. Omitting details, we have

that the insertion of a data item into a set of size m stored into a DHT of size n takes

O(log m log n) expected amortized time. Accordingly, we update the public information:

the data source creates new fresh time-stamps and re-signs the publicly available digests.

This occurs for all blocks after every update of a block, independently of whether or not

the corresponding block structure has been altered in the most recent update. Thus, at

any point in time, we maintain O(log m) fresh signed digests as public information. At

asymptotically no additional cost and using similar ideas with the verification of queries,

the data source can verify the correctness of an operation proper performed by the DHT: any

6Recall that any element is located using a particular mapping (usually a hash function). Thus, ordering
is not needed for locating an existing element.

177

change in the hashing scheme is checked for consistency with the O(log m) signed digests.

We can also support delayed deletions, defined in our context as item removals that do

not actually occur on-line, but instead occur at some future time and during the insertion

of new items. Asymptotically, these deletions incur no additional communication or com-

putational cost. In particular, we schedule the deletion of an item in block Bi during the

construction phase of a new DAG G(j), j > i, where j depends on the exact state of the

authentication structure. This deletion procedure requires minor modifications to the above

insertion algorithm. Replay attacks are eliminated by having the data source S performing

controlled delayed deletions of items before they are replaced by new items in the system.

Moreover, using delayed deletions, our structure supports data item expiration and content

revocation: we remove expired or revoked items during the construction of some particu-

lar new DAG G(j). In this case, our structure has the following important self-correction

property that limits the window of opportunity for replay attacks: any expired or revoked

item is automatically removed from the structure the first time that the corresponding

block containing the item is restructured (rebuilt). Thus, the system supports item expira-

tion/revocation in the sense that no old item can stay forever in the system; in particular,

no item can be more than m/2 steps old, where m is the current number of items, and

depending in the exact application, items can be scheduled to leave the storage system

such that no replay-attacks can be launched by the DHT. In conclusion, our authentication

structure is efficient and load-balanced and mitigates replay attacks, thus outperforming

the “sign-all” insecure solution.

Also, if we allow the insertion of new data items that replace old, then we can work

around the replay attack by introducing time-stamps at the data item level, that is as an

extra field in the data item. But still, we have the following property: the system naturally

supports item expiration in the sense that no item can be more than m/2 steps old.

Lemma 5.4.1. An insertion of a data item in a dynamic graph authentication structure G

of size m distributed over a network of size n takes O(log m log n) expected amortized time.

Proof. We do not exactly destroy the graph structures of the blocks that we need to discard

after an update, but rather we compose them into the new graph structure G(j). It is easy

to see that we need only O(2j) location operations 7 to update the graph distribution of

the graph structure over the network. To facilitate the new block creation, we encode in

7If instead we used the naive method to rebuild the new structure from scratch, then we would need
O(j2j) location operations, resulting in O(log2 m log n) total cost.

178

the hash keys information about the block that they correspond to, and also their level

and position in the blocks. Using analysis as in [109], we get that for a structure of size

m = O(2k+1), the total number of location operations due to insertions is bounded by
∑k

i=0 2k−iO(2i) = O(k2k) = O(m log m), which gives an amortized per insertion location

cost of O(log m). A location operation in the underlying DHT takes O(log n) expected time

to perform.

Overall, we have the following result with respect to our distributed authentication

structure. We call optimal a distributed hash table over n network nodes where objects are

located in O(log n) time at O(log n) per-network node storage overhead.

Theorem 5.4.1. There exists a distributed authentication structure for storing m data

items over any optimal distributed hash table of size n, such that:

• Stored content is authenticated with O(log n log m) expected time complexity and using

O(log m) space complexity.

• New data items can be inserted at O(log n log m) expected amortized time complexity.

• The public information has size O(log n).

• The signature freshness cost is O(log m).

• The system is secure against replay attacks.

5.5 Authentication of General Queries

Motivated by the our goal, namely to extend the results that we have seen in this chapter

to general queries, in this section we study the problem of data authentication from a totally

new perspective.

In particular, we study data authentication over structured data—where data is dis-

seminated by issuing queries—from a theoretical point of view. Aiming to general results,

we use a very general computational model, the RAM model, and a very general data type

and query model, where data is organized according to the relational data model, slightly

modified to fit the RAM model. We provide a formal definitional framework for the prob-

lem of authenticating answers to queries, identify its inherent relationship with the concept

of answer certification and put forward a new approach for solving the problem. Central

idea in our work is the following: in contrast to previous general approaches, where the

179

algorithm that answers a query is essentially being authenticated, we propose an answer-

based approach, where, instead, the information necessary for the answer verification is

being authenticated. Interestingly, this new approach has connections with certifying algo-

rithms [90], which have been extensively researched. We introduce the related concept of

certification data structures, structures that are able to provide answer certification, and we

prove a direct connection between them and authenticated data structures, structures that

provide authenticated queries but in the bounded computational model. We show that any

certification data structure has a corresponding and of the same complexity authenticated

data structure. This way, we can exploit the computational gap that has been observed

between answering a query or solving a problem and checking or certifying the correctness

of the answer or of the computation.

More importantly, we introduce the important concept of (query) problem reducibility

in data authentication. Informally, this means that a query of type A is authenticated

reduced to query of type B, when an authenticated data structure for B leads to an au-

thenticated data structure for A. We show an important reduction: any query problem in

our query model is authenticated reduced to the fundamental set membership problem8.

This reduction is important as an independent result, since it gives us general possibility

results for the design of authenticated data structures. However, this also has an important

consequence with respect to the problem of distributed data authentication; overall, we have

that for any query problem there exists an efficient distributed authentication structure in

the new model introduced in this chapter.

Our results on the design of general authenticated data structures, which are of inde-

pendent interest, are summarized as follows. We define certification data structures, which

extend the concept of certifying algorithms to data structures. We provide a rigorous cryp-

tographic framework for the analysis of authenticated data structures by defining query

authentication schemes. Also, we define reductions between query authentication schemes.

We present a method for constructing an authenticated data structure from a certifica-

tion data structure that preserves super-efficient verification. Namely, a certification data

structure with verification time asymptotically less than query time yields an authenticated

data structure with the same property. We finally show that the authentication of general

queries can be reduced to the authentication of set membership queries.

The section is organized as follows. Section 5.5.1 reviews some previous and related work

8This is a non-trivial reduction, meaning that efficiency is preserved in our reduction. A trivial reduction
authenticates the answer to a query by authenticating all possible query-answer pairs, which for most
query problems is a set of infinite cardinality.

180

on the subject. Section 5.5.2 provides definitions about our query model, Section 5.5.3 de-

scribes certification data structures and their properties and Section 5.5.5 provides our

definitional framework, introducing query authentication schemes and their security re-

quirements. In Section 5.5.6 we introduce the reducibility among authentication schemes

and prove our second main result, namely, that the authentication of any query problem is

reduced to the authentication of set-membership problem.

5.5.1 Previous and Related Work

We review some previous and related work on the subject of this section, i.e., authentication

over structured data.

General Authentication Techniques. There has been also substantial progress in the

design of generic authentication techniques, that is, development of general authentication

frameworks that can be used for the design of authenticated data structures for authenticat-

ing concrete queries, or design of general authentication patterns that authenticate classes

of queries. Work of this type is as follows. In [86] it is described how by hashing over the

search structure of data structures in a specific class a broad class we can get authenticated

versions of these data structures. The class of data structures is such that (i) the links of

the structure form a directed acyclic graph G of bounded degree and with a single source

node; and (ii) queries on the data structure correspond to a traversal of a subdigraph of

G starting at the source. The results hold for the pointer machine model of computation,

where essentially the entire search algorithm is authenticated. This way, an answer carries a

proof that is proportional to the search time spent for generating the answer itself, and the

answer verification has analogous time complexity. The method only handles static prob-

lems. In [59], it is shown how extensions of hash trees can be used to authenticate abstract

properties of data that is organized as paths, where the properties are decomposable, i.e.,

the properties of two subpaths can be combined to give the property of the resulting path.

Also the authentication of the general fractional cascading data-structuring technique [23] is

presented. This technique can lead to authentication of data structures that involve iterative

searches over catalogs. The underlying model is same as before, i.e., the pointer machine

model. Although, the techniques do not explicitly authenticate the corresponding search

algorithm, the complexity of the resulted authenticated data structures is of the same order

of magnitude as the searching algorithm. Finally, in [108] a general technique is described

for designing consistency proofs for committed databases—a different problem than data

authentication. However, the technique can be extended to provide a general framework for

181

designing static authenticated data structures (that actually enjoy additional properties).

The authentication technique is similar to the one in [86]: the searching algorithm that is

used to produce the answer is authenticated. Also, the used model is the pointer machine;

the RAM model can be captured at a O(log M) overhead, where M is the total memory

used. Our results operate on the RAM model, thus, they include a broader class of both

static and dynamic query problems and can lead to more efficient constructions, where the

answer validity and not the algorithm is verified. Finally, in [142] it is shown that for the

dictionary problem and hash-based data authentication, the querying problem and the au-

thentication problem are equivalent. That is, for authenticated dictionaries of size n, all

costs related to authentication are at least logarithmic in n in the worst case.

Consistency Proofs and Privacy. Recently, the study of an additional security prop-

erty related to authenticated data structures has been initiated. Assuming a more adversar-

ial for the user setting, one can consider the case where the data source can act unreliably.

The new requirement is then data consistency, namely, the inability of the data source

to provide different, i.e., contradictory, verifiable answers to the same query. Buldas et

al. [17] study this issue for hash trees and show how to enforce data consistency by aug-

menting hash trees. In [98] zero-knowledge sets are introduced, where a prover commits to

a value for a set and membership queries can be verified by a verifier consistently (and in

zero-knowledge). In [108] consistency proofs are extended to range queries and where also

sufficient conditions are given for schemes to achieve consistency. The works in [98, 108]

provide privacy-preserving verification but involve computationally more expensive opera-

tions.

Certifying Algorithms and Checking Primitives. Extensive work on certifying al-

gorithms [16, 14, 42, 91, 93, 88] model a computational gap between the computation of

a program and the verification of this correctness. This is related with the idea behind

our authentication framework. Our methodology to decouple the searching algorithm from

the answer verification is modeled through a certification data structure, defined in Sec-

tion 5.5.3, which can be viewed as an extension of methodology of the certifying algorithms

for data structures. Related also work appears in [8, 9, 53, 104].

5.5.2 Preliminaries

We start by defining our data querying model, which is based on the RAM model of com-

putation.

182

Definition 5.5.1 (Structured Data Set). A structured data set (or, simply, a data set)

S = (E ,R) consists of: (i) a collection E = {E1, . . . , Et} of sets of data elements such that,

for 1 ≤ i ≤ t, set Ei is a subset of a universe Ui, and (ii) a collection R = {R1, . . . , Rk}
of indexed sequences of tuples of data elements such that, for 1 ≤ i ≤ k, sequence Ri =

(Ri[1], . . . , Ri[mi]) consists of mi distinct pi-tuples from Ej1 × . . . × Ejpi
, where 1 ≤ j1 ≤

. . . ≤ jpi
≤ t and pi < p for some integers p, mi. The size n of data set S = (E ,R) is

defined as n =
∑t

i=1 |Ei|. Also, we assume that t, k and p are constants (with respect to n).

Our definition shares concepts from the relational data model for databases (see, e.g.,

[73]). A relation, mathematically defined as a subset of the Cartesian product of sets, is

typically viewed as a set of tuples of elements of these sets. Our model uses instead indexed

sequences of tuples. Namely, each member Ri of R is an array of tuples, where each tuple

can be indexed by an integer. In this way, our model achieves generality: on one hand,

we can express very general data organization paradigms, on the other hand, we capture

algorithms and data structures in the RAM model of computation. For instance, a graph

G = (V, E) may correspond to data set SG = (E ,R), where E = V and R consists of a

single sequence of indexed pairs representing relation E (edges in G). More complex graphs,

e.g., with edge directions, weights, costs or associated data elements, can be represented by

appropriately including new primitive data-element sets in E and corresponding sequences

in R describing data elements’ structure and various relations among them.

Definition 5.5.2 (Querying Model). Let S = (E ,R) be a structured data set. A query

operation QS on S is a computable function QS : Q → AS, where Q is the query space

(the set of all possible queries q of specific type that can be issued about S) and AS is the

answer space (the set of all possible answers to queries on S drawn from Q). The answer

of a query q ∈ Q under QS is QS(q) ∈ AS. An element a ∈ AS of the answer space is the

correct answer for query q if and only if QS(q) = a.

Observe that the above definitions capture general query operations9 on data sets that

are based on relations. The only requirement is that any query in the query space is

mapped to a unique answer in the answer space and that any answer corresponds to some

query10. For instance, if SG = (E ,R) represents a monotone subdivision of the plane into

9Alternatively but less conveniently, query operation QS can be defined independently of the data set S,
such that the answer to query q is Q(S, q). In this case, the query and answer spaces are also independent
of S.

10Unique answers are used without loss of generality. Of course, there are query problems for which QS

is a mapping not a function. That is, more that one answers can exist for a given query. For instance, a
path query on a graph, given two vertices asks for any connecting path, if it exists. We can appropriately

183

the polygons induced by the vertices and edges of a planar graph G, the point location

query operation maps a point in the plane (query) to the unique region of the subdivision

(answer) containing it. Regarding the complexity of query answering, we only require that

query operation QS is efficiently computable. Typically, function QS is evaluated on query

q ∈ Q by a query answering algorithm that operates over S through an appropriate for the

type of queries in Q query data structure.

Definition 5.5.3 (Query Data Structure). A query data structure D(QS) for query oper-

ation QS : Q → AS on data set S = (E ,R) consists of a structured data set (EQ,RQ), such

that E ⊂ EQ and R ⊂ RQ and an algorithm Answer, which on input a query q ∈ Q and

data set (EQ,RQ) returns QS(q) ∈ AS in time polynomial in n and |q| by accessing and

processing tuples in R.11 We write D(QS) = (EQ,RQ, Answer).

On input query q, algorithm Answer operates over S through the use of D(QS): by pro-

cessing relations in RQ, Answer accesses relations in R, evaluates conditions over elements

in S and produces the answer. For instance, for a point location algorithm that is based on

segment trees and operates on planar subdivision SG = (E ,R), data set (EQ,RQ) represents

a two-level search structure locating points in logarithmic time; here, data set SG includes

information about the regions defined by the edges of graph G.

A data set S is static if it stays the same over time and dynamic if it evolves over time

through update operations performed on S. An update operation US for S is a function

that given an update y ∈ Y, where Y is the set of all possible updates, results in changing

one or more data elements in E and accordingly one or more tuples in R. If S is static

(resp. dynamic), data set (EQ,RQ) can be constructed (resp. updated) by some algorithm

ConstrQ (resp. UpdateQ) that runs on input S (resp. S and y ∈ Y) in polynomial time in n.

Our data querying model achieves generality by combining the expressiveness of rela-

tional databases with the power of the RAM computation model. By using index-annotated

relations, complex data organizations are easily represented and accessed. For instance, in-

direct addressing is supported by treating indexes as a distinct data type which is included

in E , thus our model strictly contains the pointer machine model.

We next review the cryptographic primitives that we will use beyond signatures and

hash functions (for these see, e.g., Section 4.2).

augment the query space for this type of queries to include the index of the answer (according to some
fixed ordering) that we wish to obtain.

11By Definition 5.5.1, for any data set (E ,R) of size n, the total number of relations that exist in R (and
thus can be possibly accessed by Answer) is O(np) = poly(n). This implies that the storage needed for
data set (E ,R) is related to its size according to a polynomial.

184

The following cryptographic primitive is based on the Merkle hash tree [95].

Definition 5.5.4 (Hash Tree). For a set of n elements a hash tree is a binary tree, where

each node stores a hash value computed using a collision-resistant hash function. At leaf

nodes the hash of the corresponding element is stored; at internal nodes the hash of the

concatenation of the hash values of the children nodes.

Finally, we review dynamic accumulators. We here use a standard definition similar to

the one in [18].

Definition 5.5.5 ((One-way) Dynamic Accumulator). An accumulator for a family of

inputs {Xk} is a family of families of functions G = {Fk} with the following properties.

Efficient Generation There is an efficient algorithm Gen that on input 1κ generates a

random element f of Fk, an auxiliary information auxf and a trapdoor information

trdf . Both auxf and trdf have sizes that are linear in k.

Efficient Evaluation Function f is a computable function f : Af × Xk, where Af , a set

of accumulation values that can be efficiently sampled and Xk, the proposed set of ele-

ments to be accumulated, constitute the input domain of f . Function f is polynomial-

time computable given the auxiliary information auxf .

Quasi-Commutativity For all f ∈ Fk, a ∈ Af and x1, x2 ∈ Xk, it holds that

f(f(a, x1), x2) = f(f(a, x2), x1).

Witnesses Let a ∈ Af and x ∈ Xk. A value w ∈ Af is called a witness for x in a, under

f , if a = f(w, x).

Updates Let X ⊂ Xk, x ∈ X, a0, aX , w ∈ Af , such that f(a0, X) = f(w, x) = aX . Let

OP = {insert, delete} be the set of update operations on set X, such that insert(x̄) =

X ∪ {x̄}, x̄ ∈ Xk −X and delete(x̄) = X − {x̄}, x̄ ∈ X. An one-way accumulator is

dynamic if there exist efficient algorithms Uop, Wop, op ∈ OP , such that:

• Uop(trpf , aX , x̄) = aX̄ ∈ Af such that aX̄ = f(a0, op(x̄)), that is aX̄ = aX∪x̄ or

aX̄ = aX−x̄,

• Wop(f, auxf , aX , aX̄ , x, x̄) = w′ ∈ Ak such that aX̄ is as above and aX̄ = f(w′, x).

Security An accumulator is one-way (secure) if the following holds true. Let A′
f × X ′

k

denote the domains for which the computational procedure for function f ∈ Fk is

185

defined. That is, in principle, A′
f ⊇ Af and X ′

k ⊇ Xk. For all probabilistic polynomial-

time adversaries Advk

Pr[f ← Gen(1k); a0 ← Af ; (x, w, X)← Advk(f, auxf ,Af , a0) :

X ⊂ Xk; w ∈ A′
f ; x ∈ X ′

k; x /∈ X; f(w, x) = f(a0, X)] = ν(k).

5.5.3 Certification Data Structures

In this section, we explore the decoupling of query answering and answer validation (and,

accordingly, answer verification). We start by defining the notion of answer testability,

formally expressed through a certification data structure. Intuitively, this notion captures

the following important property in data querying: query operations on any data set return

validated answers, that is, answers that can be tested to be correct given a (minimal)

subset of specially selected relations over elements of the data set. In essence, queries are

certified to return valid answers; actually this holds in a safe way (i.e., cheating is effectively

disallowed).

Definition 5.5.6 (Certification Data Structure). Let D(QS) = (EQ,RQ, Answer) be a query

data structure for query operation QS : Q → AS on data set S = (E ,R) of size n. A

certification data structure for S with respect to query data structure D(QS) is a triplet

C(QS) = ((EC ,RC), Certify, Verify), where (EC ,RC), called the certification image of S, is

a structured data set and Certify and Verify are algorithms such that:

Answer tests: On input query q ∈ Q and data sets (EQ,RQ) and (EC ,RC), algorithm

Certify returns answer a = QS(q) and an answer test τ , which is a sequence of pairs

(i, j), each indexing a tuple Ri[j] of RC . Answer test τ defines a subset RC(τ) ⊆ RC ,

called the certification support of answer a.

Answer testability: On input query q ∈ Q, data set (EC ,RC), answer a ∈ AS and answer

test τ , algorithm Verify accesses and processes only relations in RC(τ) and returns

either 0 (rejects) or 1 (accepts).

Completeness: For all queries q ∈ Q, it holds that

Verify(q,RC , Certify(q, (EQ,RQ), (EC ,RC))) = 1.

Soundness: For all queries q ∈ Q, answers a, answer tests τ , when Verify(q,RC , a, τ) = 1,

a = QS(q).

186

Regarding complexity measures for certification data structure C(QS), we say:

• C(QS) is answer-efficient if the time complexity TC(n) of Certify is asymptotically at

most the time complexity TA(n) of Answer, i.e., TC(n) is O(TA(n));

• C(QS) is time-efficient (resp. time super-efficient) if the time complexity TV (n) of

Verify is asymptotically at most (resp. less than) the time complexity TA(n) of Answer,

i.e., TV (n) is O(TA(n)) (resp. o(TA(n))); and analogously,

• C(QS) is space-efficient (resp. space super-efficient) if the space requirement SC(n)

of (EC ,RC) is asymptotically at most (resp. less than) the space requirement SQ(n) of

(EQ,RQ), i.e., SC(n) is O(SQ(n)) (resp. o(SQ(n))). If S is static, data set (EC ,RC)

can be constructed by some algorithm ConstrC that runs on input S in polynomial time

in n.

For simplicity, the above definition corresponds to the static case. The dynamic case can

be treated analogously. Informally, an update algorithm UpdateC is responsible to handle

updates in data set S by accordingly updating C(QS); that is, it produces the updated

set (E ′C ,R′
C) and, in particular, the set of tuples where R′

C and RC differ at. Algorithm

UpdateC additionally produces an update test (as the answer test above, a set of indices for

tuples in RC) that validates the performed changes. Similarly, an update testing algorithm

Updtest, on input an update y ∈ Y, set RC , a set of tuples (changes in RC) and an

update test, accepts if and only if the tuples correspond to the correct, according to y,

new or deleted tuples in RC . Similarly, we can define update efficiency and update-testing

(super-)efficiency for C(QS), with respect to the time complexity of UpdateC and Updtest

respectively, as they asymptotically compare to UpdateQ.

Certification data structures introduce a general framework for studying data querying

with respect to the answer validation and correctness verification. They support certification

of queries in a computational setting where the notions of query answering and answer

validation are conceptually and algorithmically separated in a clean way. In particular,

answer validation is based merely on the certification image (EC ,RC) of data set S = (E ,R);

the two data sets are related by sharing tuples, possibly, through a subset relation. Also,

query certification depends only on the certification support of the answer, i.e., subsetR(τ).

Our first result shows that for every query structure there is an efficient certification

structure, that is, a completeness result showing that all queries can be certified without

loss of efficiency.

187

Lemma 5.5.1. Any query data structure for any query operation on any structured data

set admits an answer-, time-, update-, update-testing- and space-efficient certification data

structure.

Proof. We first discuss the static case. Let S = (E ,R) be a structured data set of size

n and QS : Q → AS be a query operation on S. Let D(QS) = (EQ,RQ, Answer) be a

query data structure for QS . We now describe a certification data structure C(QS) =

((EC ,RC), Certify, Verify) for S with respect to query data structure D(QS). First we set

(EC ,RC) = (EQ,RQ). Algorithm Certify is an augmented version of Answer. Given a query

q ∈ Q and sets (EC ,RC), (EQ,RQ), Certify creates an empty sequence τ of indices of tuples

in RC and then it runs Answer on input (q, (EQ,RQ)) to produce the answer QS(q). Also,

any time algorithm Answer accesses a tuple Ri[j] in RQ, algorithm Certify adds (i, j) to

the end of sequence τ . When Answer terminates, so does Certify, and returns the output

a = QS(q) produced by Answer and sequence τ as the corresponding answer test.

We define algorithm Verify as an augmentation of Answer operating as follows. On

input a query q ∈ Q, set (EC ,RC), an answer a and a sequence τ , algorithm Verify starts

executing algorithm Answer on input (q, (EQ,RQ)) and checks the execution of Answer

subject to sequence τ . That is, each time Answer retrieves a tuple Ri[j] in (EQ,RQ),

Verify removes the first element of τ and compares it to (i, j), rejecting the input if the

comparison fails. When Answer terminates, the answer computed by Answer is compared

with the answer provided as input: if the two answers agree (are equal) then Verify accepts

its input, otherwise it rejects.

We now show that the completeness and soundness conditions are satisfied. Complete-

ness is easily seen to hold, since the tuple-access trail of the same—correctly implementing

query operation QS—algorithm Answer on executions of the same input is tested by algo-

rithm Verify. Thus, we are guaranteed that Certify reports the correct for its input query

answer and an answer test that when feeds the computation of Verify does not lead to re-

jection. With respect to soundness, we easily see that this requirement also holds: when

algorithm Verify accepts on input (q,RC , a, ·), then it is always the case that a = QS(q).

Indeed, when operating on the valid data set and on input q, algorithm Answer returns

the unique, correct answer for q. Finally, it is easy to see that our certification data struc-

ture is answer-, time- and space-efficient. This follows from the fact that for any inputs

Certify and Verify do a total amount of work that is only by a constant factor more than

the work of Answer, thus TC(n) = O(TA(n)) and TV (n) = O(TA(n)), and the fact that

(EC ,RC) = (EQ,RQ), thus SC(n) = O(SQ(n)). Observe that each pair (i, j) in the answer

188

test τ is accessed in constant time.

The dynamic case is treated analogously. This time instead of the query answering

algorithm Answer, we augment the update algorithm UpdateQ of the query data structure

to define the update and the update testing algorithms, UpdateC and Updtest respectively, of

certification data structure C(QS). The completeness, soundness and complexity properties

hold in a similar way as in the static case.

In addition to showing that Definition 5.5.6 is meaningful, this result proves the general-

ity and feasibility of answer testability for any computable query in a very general querying

and computational model (relation-based data queried on RAM machines) . We believe

that this offers a new characterization of data querying algorithms and a useful framework

for the design and analysis of such algorithms. Moreover, a certification data structure nat-

urally finds application in the Server-Client model of computation, extending data querying

in the following setting. A server maintains a data set S = (E ,R) and a client issues queries

about S, where the server (prover) cooperates with the client (verifier) and the certification

structure merely allows the client to validate the answer computed by the server. By allow-

ing the client to maintain the certification image of S and considering a dynamic setting,

we achieve an extension where the client also checks the validity of updates. For instance,

one application of the above functionalities is database outsourcing, where the client owns

data set S and checks the consistency of S by maintaining only the certification image of S.

Relation to Certifying Algorithms. Our certification data structures are related to,

and inspired by, certified algorithms (see, e.g., [75, 90]). Both model the property of answer

testability (of a program or an algorithm for a data structure) as distinct from algorithm

execution. The main difference, though, is that here we model the intrinsic property of

a data structure to provide proof of correctness for verification (and authentication, as

we will see) purposes. Certifying algorithms are designed to guard against an erroneous

implementation of an algorithm. Thus, we can view Definition 5.5.6 as an extension of the

theory of certifying algorithms for data structures. Indeed, certifying algorithms for data

structures use the implementation of a data structure as a black box and add a wrapper

data structure to catch errors. Instead, in Definition 5.5.6, the data structure is augmented

to facilitate the certification process.

189

5.5.4 Time Super-Efficient Certification Data Structures

In this section, we describe examples of time super-efficient certification data structures,

further justifying the importance of the notion of answer testability. For time super-efficient

certification structures, although the certification image may be as large as the query struc-

ture, the certification support of the answer to any query has size asymptotically less than

the “searching trail” of the query answering algorithm Answer. In this case, a super-efficient

certification data structure exploits this gap in certifying queries.

A very simple case is the dictionary problem, where S = (E ,R) is an ordered key-

value set of size n: E is a set K of n key elements with a totally ordering and a set V

of n values, and R consists of two indexed relations, the key-value relation RKV and the

successor relation RS over keys. The query operation QS has query space the universe

that key elements are drawn from and answer space the set of all possible key-value pairs;

to any query (key) q, QS maps the answer (key-value pair) (k, v) if q = k, q ∈ K and

(k, v) ∈ RKV (v is the value of k), or the answer ⊥ (denoting negative membership answer)

if no such condition is satisfied. Consider any search tree that implements the dictionary

query data structure. Then the set (EQ,RQ) of a query data structure is an augmentation of

(E ,R), for instance EQ now includes tree nodes and pointers, or RQ now includes the node-

data and parent-child relations. There exists a time super-efficient (and space-efficient)

certification data structure for the dictionary problem. Set (EC ,RC) is simply (E ,R). On

input a query q, algorithm Certify returns as an answer test the indices in RC of two

tuples: if q ∈ K, the indices of tuple < q, suc(q) > of the successor relation RS and of

tuple < q, v > of the key-value relation RKV are returned, otherwise, the indices of tuples

< x, suc(x) >, < y, suc(y) >∈ RS , such that x is the maximum element and y is the

minimum element satisfying x < q < y, according to the total order of K. Algorithm

Verify, accesses these tuples and accepts or rejects accordingly. For instance, if a = ⊥ and

the indices of two tuples < x, suc(x) >, < y, suc(y) > of the successor relation are in answer

test τ , then it accepts if x < q < y and suc(x) = y; Verify rejects in all other cases. It is easy

to see that the completeness and soundness conditions hold. We note that the soundness

property depends on both the answer testing algorithm Verify and on the certification image

(EC ,RC). For instance, although a different (than the successor) relation could satisfy the

completeness property, this choice may not satisfy soundness. For instance, the “odd-

rank-difference” relation (two keys have ranks in the sorted set E with odd difference),

which includes the successor relation, satisfies only the completeness condition. Note that

TV (n) = O(1) although TA(n) = O(log n); also SC(n) = O(SQ(n)) = O(n). The dynamic

190

extension of this certification data structure is straightforward. We note that the successor

relation can be used to support in a very similar way a time super-efficient certification data

structure for one-dimensional range searching.

Also, consider the point location problem, where we ask to find the region of a planar

subdivision of size n containing a given query point. Using existing efficient point-location

algorithms (e.g., [119]), point location queries can be answered in time O(log n). A time

super-efficient certification data structure stores the trapezoidal decomposition of the sub-

division. Each trapezoid is expressed as a tuple of five data elements: two vertices (defining

the top and bottom sides), two edges (defining the left and right sides), and a region (con-

taining the trapezoid). The answer test is the index of the trapezoid containing the query

point, which can be computed by a simple modification of the query algorithm. The in-

clusion of the answer point in the answer test trapezoid is tested in O(1) time. That is,

again, TV (n) = O(1) although TA(n) = O(log n). This certification data structure has

also a dynamic extension. Additional examples include data structures for other geometric

problems (e.g., convex hull).

5.5.5 Authenticated Data Structures

In this section, we formally describe a general model for data authentication in untrusted

and adversarial environments by introducing query authentication schemes, cryptographic

primitives (algorithms that use cryptography to satisfy certain properties) for the authen-

tication of general queries over collections of structured data. Conceptually, query authen-

tication schemes extend certification structures in that answer validation is not performed

in a collaborative setting; instead, the prover may be adversarial and answer verification

is now achieved in the bounded computational model. In particular, we examine data au-

thentication in a non-conventional setting, where the creator (or owner) of a data set is not

the same entity with the one answering queries about the set and, in particular, the data

owner does not control the corresponding data structure that is used to answer a query. In

this setting, an intermediate, untrusted party answers the queries about the data set that

are issued by an end-user. We formally define this model of data querying.

Definition 5.5.7 (Three-Party Data Querying Model). A three-party data querying model

consists of a source S, a responder R and a user U , where:

1. Source S creates (and owns) a dynamic data set S, which is maintained by query data

structure D(QS) for query operation QS : Q → AS on S.

191

2. Responder R stores S, by maintaining a copy of D(QS) and some auxiliary informa-

tion aux(S) for S.

3. User U issues queries about S to responder R by sending to R a query q ∈ Q.

4. On a query q ∈ Q issued by U , R computes answer a = QS(q) and sends a to U .

5. On an update y ∈ Y for S issued by the source, S and D(QS) are appropriately updated

by S and R.

The model achieves generality and has many practical applications. Regarding data

authentication, we wish that the user can verify the validity of the answer given to him

by the responder. For this verification process, we wish that the responder, along with

the answer, gives to the user a proof that can be used in the verification. To capture this

verification feature, we define the notion of a query authentication scheme.

Definition 5.5.8 (Query Authentication Scheme). A query authentication scheme for

query operation QS : Q → AS on structured data set S is a quadruple of PPT algorithms

(KeyG, Auth, Res, Ver) such that:

Key generation The key generation algorithm KeyG takes as input a security parameter

1κ, and outputs a key pair (PK,SK). We write (PK,SK)← KeyG(1κ).

Authenticator The authenticator algorithm Auth takes as input the secret and public key

(SK,PK), the query space Q (or an encoding of the query type) and data set S of

size n and outputs an authentication string α and a verification structure V, that is

(α,V)← Auth(SK,PK,Q, S), where α,V ∈ {0, 1}∗.

Responder The responder algorithm Res takes as input a query q ∈ Q, a data set S

of size n and a verification structure V ∈ {0, 1}∗ and outputs an answer-proof pair

(a, p)← Res(q, S, V), where a ∈ AS and p ∈ {0, 1}∗.

Verifier The verifier algorithm Ver takes as input the public key PK, a query q ∈ Q,

an answer-proof pair (a, p) ∈ AS × {0, 1}∗ and an authentication string α ∈ {0, 1}∗

and either accepts the input, returns 1, or rejects, returns 0, that is, we have that

{0, 1} ← Ver(PK, q, (a, p), α).

Updates For the dynamic case, we additionally require the existence of an update algorithm

AuthU that complements algorithm Auth and handles updates. In particular, AuthU

given update y ∈ Y, it updates the authentication string and the verification structure:

(α′, V′)← AuthU (SK,PK,Q, S, y, α,V).

192

We now define the first requirement for a query authentication scheme, which is correct-

ness. Intuitively, we wish the verification algorithm to accept answer-proof pairs generated

by the responder algorithm and these answers always to be correct. We also discuss the

security requirement of any query authentication scheme. Starting from the basis that in

our three-party data querying model, the user U trusts the data source S but not the re-

sponder R, it is the responder that can act adversarially. We first assume that R always

participates in the three-party protocol, i.e., it communicates with S and U , as the protocol

dictates. Thus, we do not consider denial-of-service attacks; they do not form an authen-

tication attack but rather a data communication threat. However, R can adversarially try

to cheat, by not providing the correct answer to a query and forging a false proof for this

answer. Accordingly, the security requirement is that given any query issued by U , no

computationally bounded R can reply with a pair of answer and an associated proof, such

that both the answer is not correct and U verifies the authenticity of the answer and, thus,

accepts it. The above requirements are expressed as the following two conditions for query

authentication structures.

Definition 5.5.9 (Correctness). A query authentication scheme (KeyG, Auth, Res, Ver) is

correct if for all queries q ∈ Q, if (α,V) ← Auth(SK,PK,Q, S) and additionally (a, p) ←
Res(q, S, V), then with overwhelming probability it holds that 1 ← Ver(PK, q, (a, p), α) and

QS(q) = a.

A query authentication scheme (KeyG, Auth, Res, Ver) for query operation QS : Q → AS

on structured data set S is said to be secure, if no probabilistic polynomial-time adversary

A, given any query q ∈ Q, the public key PK and oracle access to the authenticator

algorithm Auth, can output an authentication string α, an answer a′ and a proof p′, such

that a′ is an incorrect answer that passes the verification test, that is, a′ 6= QS(q) and

1← Ver(PK, q, (a′, p′), α). More formally:

Definition 5.5.10 (Security). A query authentication scheme (KeyG, Auth, Res, Ver) is se-

cure if no probabilistic polynomial-time adversary A can win non-negligibly often in the

following game:

1. A key pair is generated:

(PK,SK)← KeyG(1κ).

2. The adversary A is given:

• The public key PK as input.

193

• Oracle access to the authenticator, i.e., for 1 ≤ i ≤ poly(k), where poly(·) is

a polynomial, the adversary can specify a structured data set Si of size n and

obtain (αi, Vi) ← Auth(SK,PK,Q, Si). However, the adversary cannot issue

more than one query with the data set Si. That is, for all i 6= j, Si 6= Sj.

• A query q ∈ Q.

3. At the end, A outputs an authentication string α, an answer a′ and a proof p.

The adversary wins the game if the following violation occurs:

Violation of the security property: The adversary did manage to construct an authen-

tication string α in such a way, that given a query q ∈ Q, the adversary outputs an

incorrect answer-proof pair (a′, p′) that passes the verification test. Namely, the ad-

versary wins if one of the following hold:

• The authenticator was never queried with S and yet the verification algorithm

does not reject, i.e., 1← Ver(PK, q, (a′, p′), α).

• The authenticator was queried with S and yet a′ 6= QS(q) and the verification

algorithm accepts, i.e., 1← Ver(PK, q, (a′, p′), α).

Definition 5.5.11 (Authenticated Data Structure). An authenticated data structure for

queries in query space Q on a data set S is a correct and secure query authentication scheme

(KeyG, Auth, Res, Ver), or, as it is implied, a scheme where, given an authentication string

α, for algorithm Ver it holds that, for all queries q ∈ Q, with all but negligible probability

(measured over the probability space of the responder algorithm):

QS(q) = a if and only if there exists p s.t. 1← Ver(PK, q, (a, p), α).

5.5.6 Authentication Reductions and General Authentication Results

We are now ready to use the definitional framework of the previous sections and describe

and prove the main results of our work. The road map is as follows. First we introduce the

notion of reducibility in data authentication, namely by defining reductions between query

authentication schemes. We then prove, using our framework of certification data structures,

that the authentication of any query in our model is reduced to the authentication of set

membership queries. In fact, we need to authenticate only positive answers—that is, relation

∈ and not /∈ needs to be authenticated. We then present implications of this result, in terms

of concrete constructions. Using certification structures, we provide a general methodology

194

for constructing correct and secure query authentication schemes and we show that any

search structure for any query type in our querying model can be transformed into an

authenticated data structure. Also, based on super-efficient query certification, we develop

a new approach for data authentication, where only the information necessary for the answer

verification is authenticated, and not the entire information used by search algorithm, which

leads to a powerful framework for the design of authentication structures with super-efficient

verification.

Let QAS(QS , S) denote a query authentication scheme (or QAS) for query operation

QS and data set S. Intuitively, authenticated reductions among QASs allow the design of a

QAS using no other cryptographic tools but what another QAS provides and in a way that

preserves correctness and security.

Definition 5.5.12 (Reductions of Query Authentication Schemes). Let S and S′ be data

sets, QS : Q → AS, Q′
S : Q′ → A′

S be query operations on S and S′ respectively, and

QAS(QS , S) = (KeyG, Auth, Res, Ver), QAS(Q′
S , S′) = (KeyG′, Auth′, Res′, Ver′) be query

authentication schemes for QS on S and Q′
S on S′ respectively. We say that QAS(QS , S)

is authenticated reduced to QAS(Q′
S , S′), if key generation algorithms KeyG and KeyG′ are

identical, QAS(QS , S) uses the public and secret keys generated by KeyG never explicitly,

but only implicitly through black-box invocations of algorithms Auth′, Res′ and Ver′, and

QAS(QS , S) is correct and secure whenever QAS(Q′
S , S′) is correct and secure.

A general query authentication scheme. Let S = (E ,R) be a structured data set

and QS : Q → AS be any query operation. Let D(QS) = (EQ,RQ, Answer) be a query data

structure for QS . By Lemma 5.5.1, we know that there exists a certification data structure

C(QS) = ((EC ,RC), Certify, Verify) for S with respect to QS . Let Q∈ : Q(RC) → {yes, no}
be the set-membership query operation, where the query space Q(RC) is the indexed tu-

ples that exist in RC . Assuming the existence of a secure and correct QAS(Q∈,RC) =

(KeyG′, Auth′, Res′, Ver′), we next construct QAS(QS , S) = (KeyG, Auth, Res, Ver). We note

that, in essence, our construction is parameterized by (KeyG′, Auth′, Res′, Ver′), an QAS for

set membership queries. We define our query authentication scheme (KeyG, Auth, Res, Ver)

for QS and S as follows.

(A) Key-generation algorithm. By definition it is the same as KeyG′, thus, SK = SK ′

and PK = PK ′.

195

(B) Authenticator. The authenticator algorithm Auth using S and ConstrC computes

the structured data set SC = (EC ,RC) of the corresponding certification structure C(QS) =

((EC ,RC), Certify, Verify). Then Auth runs algorithm Auth′ on input SK ′, PK ′, Q∈ andRC .

That is, algorithm Auth computes the pair (α′, V′) ← Auth′(SK ′,PK ′, Q∈,RC), and then

Auth outputs (α′, V′).

(C) Responder. The responder algorithm Res first computes the structured data sets

SQ = (EQ,RQ) and SC = (EC ,RC) using S and algorithms ConstrQ and ConstrC . Then, on

input q, SQ and SC it simply runs algorithm Certify to produce its pair (a, τ). Then Res

constructs the certification support RC(τ) of answer a by accessing set RC with the use of

indices in τ . For every tuple < t > in RC , algorithm Res runs the responder algorithm Res′

on inputs < t >, RC and V′ to get (a′(t), p′(t))← Res′(< t >,RC , V′) and, if (t1, . . . , t|τ |) is

the sequence of tuples accessed in total, Res creates sequence p′ = (p′(t1), . . . , p′(t|τ |)), sets

p = (τ,RC(τ), p′) and finally outputs (a, p).

(D) Verifier. The verifier algorithm Ver first checks if the proof p and answer a are

both well-formed and, if not, it rejects. Otherwise, by appropriately processing the proof

p, algorithm Ver runs algorithm Verify on inputs q, RC(τ), a and τ . Whenever algorithm

Verify needs to access and process a tuple < ti >, where < ti > is the i-th tuple accessed

by Verify, algorithm Ver runs algorithm Ver′ on inputs PK ′, < ti >, (yes, p′(ti)) and α′ and

if 0 ← Ver′(PK ′, < ti >, (yes, p′(ti)), α′), algorithm Ver rejects. Otherwise, Ver continues

with the computation. Finally, Ver accepts if and only if Verify accepts, i.e., if and only if

1← Verify(q,RC(τ), a, τ).

We have thus constructed QAS(QS , S), where QS is a general query operation of set S,

parameterized by QAS(Q∈,RC), where Q∈ is the set membership query operation and RC

is the certification image of S with respect to the certification data structure in use. We

can show the following results.

Theorem 5.5.1. Let QAS(Q∈,RC) be any query authentication structure for set member-

ship queries and QAS(QS , S) our query authentication scheme constructed above. For any

query operation QS and any data set S, QAS(QS , S) is correct and secure if QAS(Q∈,RC)

is correct and secure.

Proof. We start by first discussing the correctness property. Suppose that query authentica-

tion scheme (KeyG′, Auth′, Res′, Ver′) is correct. We want to show that (KeyG, Auth, Res, Ver)

is correct. This easily follows from checking that the verifier Ver does not reject when given

196

an answer-proof pair from the responder Res, for any query issued in Q. Indeed, from the

completeness property of the certification data structure the answer testing algorithm Verify

does not reject, and additionally the correctness of (KeyG′, Auth′, Res′, Ver′) guarantee that

Ver does not reject because of a rejection by Ver′.

For the security we argue as follows. Suppose that (KeyG′, Auth′, Res′, Ver′) is secure.

Assume that (KeyG, Auth, Res, Ver) is not secure, then with overwhelming probability re-

sponder Res responds to a query q ∈ Q incorrectly but still the verifier Ver fails to reject

its input. Based on the soundness property of the certification data structure in use, we

must admit that it is not algorithm Certify that cheats the verifier, that is, it is not the

indices in sequence τ that cause the problem, but rather the fact that algorithm Verify

runs on incorrect data. Then there must be at least one tuple in RC that although it was

verified to be a member of RC it is not authentic, meaning that its index is correct but

one or more of the data elements in the tuple have been (maliciously) altered. We thus

conclude that for at least one query the verification algorithm Ver′ of query authentication

scheme (KeyG′, Auth′, Res′, Ver′) failed to reject on an invalid query-answer pair. This is a

contradiction, since this scheme is assumed to be secure.

Theorem 5.5.2. For any query operation QS on any structured data set S, there exists a

secure and correct query authentication structure QAS(QS , S) based on a certification data

structure C(QS). Moreover, QAS(QS , S) is authenticated reduced to any secure and correct

query authentication structure QAS(Q∈,RC) for the set membership query operation Q∈

on some certification image RC of C(QS).

Proof. The result follows by our construction QAS(QS , S) and the fact that there exist

secure query authentication schemes QAS(Q∈, ·) for membership queries on any data set:

in particular, digital signatures, Merkle’s hash tree and one-way accumulators provide a

correct and secure implementation of QAS(Q∈, ·).

We now show what are the implications of Theorems 5.5.1 and Theorem 5.5.2 in terms

of time and space complexity. First, let us define the cost measures that are of inter-

est in a query authentication scheme QAS(QS , S) = (KeyG, Auth, Res, Ver) for a set of

size n. Let Ta(n), Tr(n), Tv(n) denote the time complexity of algorithms Auth, Res

and Ver respectively, Sa(n), Sr(n) denote the space complexity of Auth, Res. Also for

QAS(Q∈,RC) = (KeyG′, Auth′, Res′, Ver′), let T ′
a(n), T ′

r(n), T ′
v(n) denote the time com-

plexity of algorithms Auth′, Res′ and Ver′ respectively, S′
a(n), S′

r(n) denote the space

complexity of Auth′, Res′. Recall from Section 5.5.3 that for certification data structure

197

C(QS) = ((EC ,RC), Certify, Verify), TA(n), TC(n), TV (n), SQ(n) and SC(n) denote various

time and space complexity measures. Also let p(n) denote the proof size in QAS(QS , S)

and p′(n) the proof size in QAS(Q∈,RC). We have the following.

Lemma 5.5.2. Let S be a structured data set and C(QS) = ((EC ,RC), Certify, Verify) be

a certification data structure for S. Let n be the size of S. Additionally, let m(n) =

|RC | denote the size of the certification image and s(n) = |RC(τ)| the size of the cer-

tification support of an answer. For any query operation QS, the query authentication

scheme QAS(QS , S) = (KeyG, Auth, Res, Ver) that is based on query authentication scheme

QAS(Q∈,RC) = (KeyG′, Auth′, Res′, Ver′) and uses certification data structure C(QS) has

the following performance.

1. With respect to time complexity, it is Ta(n) = O(T ′
a(n)), Tr(n) = O(s(n)T ′

r(n) +

TC(n)), Tv(n) = O(s(n)T ′
v(n) + TV (n));

2. With respect to space complexity, it is Sa(n) = O(S′
a(n)+n+m(n)), Sr(n) = O(S′

r(n)+

SQ(n) + m(n));

3. With respect to the proof size, it is p(n) = O(s(n)p′(n)).

Proof. It follows directly by the construction of QAS(QS , S) and the use of QAS(Q∈,RC)

and C(QS) = (EC ,RC , Certify, Verify).

We can now use the above lemma to have general complexity results in terms of our

parameterized query authentication scheme QAS(QS , S). By appropriately choosing known

(secure and correct) constructions for authenticating set membership queries we can achieve

trade-offs on the efficiency of general query authentication schemes. Here, we are interested

only in asymptotic analysis, omitting improvements of constant factors. So, we only study

the related costs with respect to the set size n and not the exact implementation of the

cryptographic primitives.

Theorem 5.5.3. Let S be a structured data set and C(QS) = (EC ,RC , Certify, Verify) be

a certification data structure for S. Let n be the size of S. Additionally, let m(n) =

|RC | denote the size of the certification image and s(n) = |RC(τ)| the size of the cer-

tification support of an answer. For any query operation QS, the query authentication

scheme QAS(QS , S) = (KeyG, Auth, Res, Ver) that is based on query authentication scheme

QAS(Q∈,RC) = (KeyG′, Auth′, Res′, Ver′) and uses certification data structure C(QS) has

the following performance.

198

Static Case Using only signatures, we have the following performance:

With respect to time complexity, we have that Ta(n) is O(m(n)), Tr(n) is O(s(n)+TC(n)),

Tv(n) is O(s(n) + TV (n)); with respect to space complexity, Sa(n) is O(n + m(n)),

Sr(n) is O(SQ(n) + m(n)); with respect to the proof size, p(n) is O(s(n)).

Dynamic Case Using signature amortization, we have the following performance:

Hash Tree With respect to time complexity, we have that Ta(n) is O(m(n)), Tr(n)

is O(s(n) log n + TC(n)), Tv(n) is O(s(n) log n + TV (n)); with respect to space

complexity, Sa(n) is O(n + m(n)), Sr(n) is O(n + SQ(n) + m(n)); with respect

to the proof size, p(n) is O(s(n) log n); when k tuples are updated, these can be

handled in O(k log n) time.

Dynamic Accumulator With respect to time complexity, we have that Ta(n) is

O(m(n)), Tr(n) is O(s(n)
√

n + TC(n)), Tv(n) is O(s(n) + TV (n)); with respect

to space complexity, Sa(n) is O(n + m(n)), Sr(n) is O(n + SQ(n) + m(n)); with

respect to the proof size, p(n) is s(n); when k tuples are updated, these can be

handled in O(k
√

n) time.

Proof. For the static case, simply the use of signatures provides a satisfactory time-space

trade-off. That is, every indexed tuple in the certification image RC is signed. The query

authentication scheme QAS(Q∈,RC) in this case is very simple: Auth signs all tuples in

RC and sets α to be all these signatures with V = ⊥; Res, along with the (positive) answer

to an ∈ query, returns the corresponding tuples in RC(τ) and the corresponding signature;

and Ver simply verifies a number of signatures.

For the dynamic case, the extensive use of signatures is not an efficient solution, since

because of the updates on the set S, after every update all signatures have to be updated.

Alternatively, signature amortization can be used, where only one digest of set RC is signed

(incurring O(1) update (signing) cost). Two alternative options for computing the digest

of set RC are: (i) the use of a hash tree and (ii) the use of an accumulator. The con-

struction of QAS(Q∈,RC) is straightforward and we omit here the details. Hash trees have

linear storage needs, logarithmic access, update and verification times and logarithmic proof

size. Dynamic accumulators, on the other hand, have linear storage needs, constant time

verification and constant proof, at an increased cost to support updates and processes (of

witnesses). Note that the use of the trapdoor information can only be used by algorithm

Auth and not by algorithm Res for it would destroy the security of the scheme. In [57] some

199

interesting trade-offs between the update and process times costs are discussed (e.g., one

can achieve a
√

n trade-off).

By Theorem 5.5.2, all query operations can be authenticated in the three-party authenti-

cation model. Theorem 5.5.3 gives a detailed complexity analysis of the authenticated data

structures derived by the corresponding query authentication schemes. Still, the above de-

scription depends on the complexity of the certification data structure used. Our results

hold for the RAM model of computation, which strictly includes the pointer machine model.

By Lemma 5.5.1, all query problems that have a query data structure have a certification

data structure and thus our results generalize previous known results. Indeed, we can show

the following meta-theorem regarding the design of authenticated data structures.

Theorem 5.5.4. Let S be a structured data set and Qs be a query operation on S. If there

exists a time (space) super-efficient certification data structure for QS, then there exists a

time (space) super-efficient authenticated data structure for QS.

Finally, we note that Theorems 5.2.1 and 5.5.2 can be combined to give a general pos-

sibility result for the design of distributed authenticated data structures. In particular, we

have seen that the authentication of any type of query is reduced to the authentication of

set-membership queries. Also, we have seen a distributed implementation of an authenti-

cation tree that allows the authentication of set-membership queries. Accordingly, we get

that there exist distributed authenticated data structures for any type of queries.

5.6 Conclusions

We consider the problem of data authentication in p2p storage networks. We introduce a

new model for authenticating data in totally decentralized computing environments that

extends the model of authenticated data structures and better captures the security needs of

existing distributed systems. We design the first efficient implementations of a distributed

Merkle tree (DMT). We identify inefficiencies and security problems in the authentication

techniques that are currently used by existing distributed storage systems and we show

how our DMT can be used in combination with any distributed hash table (DHT) to

implement an efficient authenticated DHT (ADHT). Using an ADHT, we obtain the first

efficient distributed authenticated dictionary. Finally, we present a new framework for the

problem of data authentication in a very general data query model, prove general results

on the design of efficient authentication data structures, characterize sufficient conditions

for super-efficient data verification and prove that the authentication of general queries is

200

reduced to the authentication of set-membership queries. This last result, combined with

our construction of a distributed dictionary, provides a new general result for distributed

data authentication, namely, that for any data query problem there exists a distributed

authentication data structure for authenticating the queries over a peer-to-peer storage

network.

Open problems include the explicit design of authenticated distributed data structures

for general queries (beyond dictionaries) and the study of additional security issues in this

new model (e.g., Byzantine behavior).

Parts of the material presented in this chapter were developed in collaboration with

Roberto Tamassia and Michael T. Goodrich.

Chapter 6

Conclusions

6.1 Summary of Results

In this dissertation, we present an extensive study on the problem of data authentication

that seeks for techniques that securely and efficiently verify information disseminated in

distributed untrusted or adversarial environments. In particular, the data authentication

problem studies the following question: when the distributor of the data is not the source of

the data, and thus is not trusted by the end user, how can data received be proven authentic?

This question captures the security needs of many computing applications that exchange and

use sensitive information in hostile distributed environments and its importance increases

given the current trend in modern system design towards decentralized architectures with

minimal trust assumptions. Moreover, solutions should not only be provably secure, but

efficient and easily implementable.

With this dissertation, we contribute results on the data authentication problem in

various directions.

For the case where data is structured and is being retrieved through queries, we design

new efficient authenticated data structures for two broad classes of queries over graphs and

geometric objects. Our main construction is the path hash accumulator, an extension of the

Merkle authentication tree for authenticating decomposable queries over sequences of data

elements. Using this construction, we provide efficient authenticated data structures for

queries over paths in graphs and also for the iterative search problem, i.e., set-membership

queries executed over many distinct dictionaries that are organized as a graph. Using these

intermediate structures, new efficient authenticated data structures for path and connectiv-

ity queries in graphs and search problems in collections of two-dimensional geometric objects

201

202

are finally obtained. Our authentication structures are efficient, asymptotically introducing

no additional cost to the query data structure.

We also study the complexity of the problem of designing efficient authenticated data

structures, focusing on the communication and computational overhead that is inherently

incurred in data authentication. We prove the first lower bound for authenticated dictionar-

ies, that is, for the case where we want to verify answers to the set-membership problem. In

particular, we show that, when only digital signatures and cryptographic hashing are used,

the authentication of membership queries in a set of size n requires Ω(log n) communication

and computational costs in the worst case. This answers an open question posed by Naor

and Nissim in [103]. The result is of interest since set-membership is the fundamental type

of queries that we wish to authenticate. In view of this lower bounds, we design a new

authenticated dictionary that is very close to the theoretically optimal construction.

For the case where data is unstructured and is transmitted over an adversarial network

as a stream (in packets), we present a powerful authentication construction that authen-

ticates received packets at asymptotically no extra communication overhead. We use a

novel combination of error-correcting codes with cryptographic primitives (signatures and

collision-resistant hashing), the first of this kind. Our construction essentially introduces

authenticated error-correcting codes and finds applications to the problem of multicast au-

thentication. In a network that can adversarially inject, remove or alter packets, we show

that multicast streams can be efficiently authenticated so that any receiver can correctly

distinguish valid packets from invalid ones.

We also study distributed data authentication, that is, the data authentication problem

in the case where data is shared among remote network nodes that participate in a dis-

tributed overlay storage network (e.g., a peer-to-peer network). We effectively extend the

client-server model of authenticated data structures to a totally decentralized data query-

ing setting, where data is retrieved through any distributed object location system (e.g., a

distributed hash table). We present the first distributed implementation of a Merkle tree,

the fundamental authentication technique for verifying set membership. We also present an

implementation that by construction achieves load-balance of the computational overhead

for accessing the network that is introduced by the authentication structure. Both of our

constructions are efficient and space optimal: at a logarithmic (per network node) storage

cost, membership queries in a set of size m are authenticated over a network of size n with

O(log n log m) communication and computational overhead. Overall, we obtain an efficient

authenticated version of a distributed hash table.

We finally develop a new framework for the design of authenticated data structures that

203

focuses on the following principle: the answer verification task should be separated from

the answer generation procedure. In a very general computational model (RAM model), we

show that every type of query admits such formulation. Overall we get two main results.

First, we derive sufficient conditions for the design of authenticated data structures that

have super-efficient answer verification—that is, the answer is verified in asymptotically less

time than the time spent to produce it. Second, we prove that the authentication of any

type of query is reduced to the authentication of set-membership queries. This last result, in

combination with our distributed authenticated dictionary, allows us to design distributed

authenticated data structures for any querying problem.

6.2 Future Directions

Data authentication is an exciting new dimension of data management that is well worth

further exploration. Future research directions related to the subject of this dissertation

include the following.

Cryptographic primitives. For efficiency, expressiveness and added security, it is very

interesting to extend known and develop new cryptographic primitives that better satisfy

the requirements of the problem of data authentication. Known cryptographic techniques,

like signatures and cryptographic hashing, can only provide some elementary functionality,

namely to authenticate message integrity and the set inclusion property. This dissertation

studies hash-based data authentication and the case where signature amortization is used.

That is, only one digest (or a collection of digests) of the data are signed and then all queries

or other data elements are authenticated with respect to that digest(s) using collision-

resistant hashing. It may well be the case, though, that this authentication technique has

inherent limitations in terms of efficiency. Indeed, the results of Chapter 3 indicate that

the “hash and sign” paradigm have some limitations for the set-membership problem.

This suggests that maybe new cryptographic constructions can be more appropriate

and more efficient for the problem in study. For instance, consider (new) cryptographic

primitives that authenticate complicated relations over data elements; in this case, we

could get more expressive authenticated data structures and more compact constructions.

Also, consider dynamic accumulator [18, 57], which have been shown to allow very efficient

answer verification for positive set-membership queries. It is interesting to explore their

other properties or uses in data authentication and to advance their functionality to more

general data querying problems.

204

Data privacy. Data privacy, although orthogonal to data authentication, is certainly an

additive desirable feature. For authenticated data structures, for instance, we can ask for the

property that the proof of an answer to a query does not reveal any information about the

data set not implied by the answer. In many applications this extra property may actually

be very important, since privacy is often a crucial requirement. The works in [98, 108] study

privacy issues in a related model where the data source commits to the data set and then a

user that is querying the data set validates the answers and checks their consistency subject

to the committed value. It is worth exploring practical and efficient privacy-preserving

data-authentication techniques, e.g., non-interactive techniques for general queries.

Data Consistency. Another property of the works in [98, 108] is data consistency, namely

the inability of the source to provide two contradictory, but verifiable, answers to the same

query. It is very interesting to study this property in the context of authenticated data

structures. We can consider for instance the extension of the model of authenticated data

structures, where the data source does not itself constitute a completely trusted by the user

entity. In this scenario, we wish at any time the user (possibly in collaboration with the

data distributor) to be able to check that data received is consistent with the data set that is

queried. This model would have many applications in information assurance in distributed

systems.

Authentication of computation. Finally, we could consider another generalization of

the problem that this dissertation studies. Data authentication verifies data and essentially

the result of a query to a data structure. A natural extension is to consider authentication of

the result of an entire computation. That is, consider many users submitting their individual

inputs to an untrusted party that performs a computation over these inputs and, then, they

collectively wish to authenticate that the returned to them result is correct (valid). Can we

use techniques similar to data authentication and concepts related to authenticated data

structures so that the users can authenticate a computation off-line? In a way, this problem

is antisymmetric to multi-party computation, where parties jointly compute a function of

their inputs, as this was computed by a trusted third party.

Bibliography

[1] William Aiello, Sachin Lodha, and Rafail Ostrovsky. Fast digital identity revocation.

In Advances in Cryptology – CRYPTO ’ 98, LNCS, pages 137–152. Springer-Verlag,

1998.

[2] Aris Anagnostopoulos, Michael T. Goodrich, and Roberto Tamassia. Persistent au-

thenticated dictionaries and their applications. In Proceedings of Information Security

Conference (ISC 2001), volume 2200 of LNCS, pages 379–393. Springer-Verlag, 2001.

[3] C. Aragon and R. Seidel. Randomized search trees. In Proceedings of 30th Annual

IEEE Symposium on Foundations of Computer Science, pages 540–545, 1989.

[4] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature

schemes without trees. In Walter Fumy, editor, Advances in Cryptology — EURO-

CRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 480–494.

Springer Verlag, 1997.

[5] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized al-

ternative to digital signatures. In Tor Helleseth, editor, Advances in Cryptology —

EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science, pages 274–285.

Springer-Verlag, 1994.

[6] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased search trees. SIAM Journal of

Computing, 14:545–568, 1985.

[7] Elisa Bertino, Barbara Carminati, Elena Ferrari, Bhavani M. Thuraisingham, and

Amar Gupta. Selective and authentic third-party distribution of XML documents.

IEEE Transactions on Knowledge and Data Engineering, 16(6):1263–1278, 2004.

[8] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness

of memories. Algorithmica, 12(2/3):225–244, 1994.

205

206

[9] M. Blum and H. Wasserman. Program result-checking: A theory of testing meets a

test of theory. In Proceedings of 35th Annual Symposium on Foundations of Computer

Science, pages 382–393, 1994.

[10] Manuel Blum and Sampath Kannan. Designing programs that check their work.

Journal of the ACM, 42(1):269–291, January 1995.

[11] Dan Boneh, Glenn Durfee, and Matt Franklin. Lower bounds for multicast message

authentication. In Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT

2001, volume 2045 of Lecture Notes in Computer Science, pages 437–452. Springer

Verlag, 2001.

[12] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing.

SIAM Journal on Computing, 32(3):586–615, 2003.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pair-

ing. In Advances in Cryptology, ASIACRYPT 2001, volume 2248 of Lecture Notes in

Computer Science, pages 514–532. Springer-Verlag, 2001.

[14] J. D. Bright and G. Sullivan. Checking mergeable priority queues. In Digest of

the 24th Symposium on Fault-Tolerant Computing, pages 144–153. IEEE Computer

Society Press, 1994.

[15] J. D. Bright and G. Sullivan. On-line error monitoring for several data structures.

In Digest of the 25th Symposium on Fault-Tolerant Computing, pages 392–401. IEEE

Computer Society Press, 1995.

[16] J. D. Bright, G. Sullivan, and G. M. Masson. Checking the integrity of trees. In

Digest of the 25th Symposium on Fault-Tolerant Computing, pages 402–411. IEEE

Computer Society Press, 1995.

[17] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate management

using undeniable attestations. In Proceedings of ACM Conference on Computer and

Communications Security, pages 9–18. ACM Press, 2000.

[18] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to

efficient revocation of anonymous credentials. In Moti Yung, editor, Advances in

Cryptology — CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,

pages 61–76. Springer Verlag, 2002.

207

[19] R. Canetti, T. Malkin, and K. Nissim. Efficient communication - storage tradeoffs

for multicast encryption. In Advances in cryptology (EUROCRYPT’99), LNCS 1592,

pages 459–474, 1999.

[20] Ran Canetti, Juan Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny

Pinkas. Multicast security: A taxonomy and some efficient constructions. In Proceed-

ings of IEEE INFOCOM, pages 708–716, 1999.

[21] Sean Cannella, Michael Shin, Christian Straub, Roberto Tamassia, and Daniel J.

Polivy. Secure visualization of authentication information: A case study. In Proceed-

ings of IEEE Symposium on Visual Languages and Human-Centric Computing, pages

35–37, 2004.

[22] Adlar C-F Chan. A graph-theoretical analysis of multicast authentication. In Proceed-

ings of 23rd International Conference on Distributed Computing Systems – ICDCS,

pages 155–162, 2003.

[23] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring

technique. Algorithmica, 1(3):133–162, 1986.

[24] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. Applications.

Algorithmica, 1:163–191, 1986.

[25] Robert F. Cohen and Roberto Tamassia. Combine and conquer. Algorithmica, 18:342–

362, 1997.

[26] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmugasun-

daram. Querying peer-to-peer networks using P-trees. In Proceedings of Seventh

International Workshop on the Web and Databases WebDB 2004, pages 25–30, 2004.

[27] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA as-

sumption. ACM Transactions on Information and System Security, 3(3):161–185,

2000.

[28] T. Cucinotta, Gabriele Cecchetti, and Gianluca Ferraro. Adopting redundancy tech-

niques for multicast stream authentication. In Proceedings of 9th IEEE International

Workshop on Future Trends of Distributed Computing Systems (FTDCS 2003), pages

189–201, 2003.

208

[29] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Wide-area cooperative storage with CFS. In Proceedings of 18th ACM Symposium

on Operating Systems Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada,

October 2001.

[30] Ivan Bjerre Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,

Advances in Cryptology — CRYPTO ’89, volume 435 of Lecture Notes in Computer

Science, pages 416–427, 1990.

[31] Yvo Desmedt, Yair Frankel, and Moti Yung. Multi-receiver/multi-sender network

security: Efficient authenticated multicast/feedback. In Proceedings of IEEE Confer-

ence on Computer Communications — INFOCOM ’92, pages 2045–2054. IEEE-Press,

1992.

[32] Premkumar Devanbu, Michael Gertz, April Kwong, Chip Martel, Glen Nuckolls, and

Stuart Stubblebine. Flexible authentication of XML documents. In Proceedings of

ACM Conference on Computer and Communications Security, pages 136–145, 2001.

[33] Premkumar Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stubblebine. Au-

thentic third-party data publication. In Proceedings of Fourteenth IFIP 11.3 Confer-

ence on Database Security, 2000.

[34] Premkumar Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stubblebine. Au-

thentic data publication over the Internet. Journal of Computer Security, 11(3):291–

314, 2003.

[35] Olivier Devillers, Giuseppe Liotta, Franco P. Preparata, and Roberto Tamassia.

Checking the convexity of polytopes and the planarity of subdivisions. Computa-

tional Geometry: Theory and Applications, 11:187–208, 1998.

[36] G. Di Battista and G. Liotta. Upward planarity checking: “Faces are more than

polygons”. In S. H. Whitesides, editor, Proceedings of Graph Drawing, volume 1547

of LNCS, pages 72–86. Springer-Verlag, 1998.

[37] G. Di Battista and R. Tamassia. On-line maintenance of triconnected components

with SPQR-trees. Algorithmica, 15:302–318, 1996.

[38] Peter Druschel and Antony Rowstron. Past: A large-scale, persistent peer-to-peer

storage utility. In HOTOS ’01: Proceedings of Eighth Workshop on Hot Topics in

Operating Systems, page 75, Washington, DC, USA, 2001. IEEE Computer Society.

209

[39] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung.

Maintenance of a minimum spanning forest in a dynamic plane graph. Journal of

Algorithms, 13(1):33–54, 1992.

[40] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content addressable

networks. In Proceedings of Thirteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 94–103, 2002.

[41] Amos Fiat, Jared Saia, and Maxwell Young. Making Chord robust to byzantine

attacks. In Proceedings of European Symposium on Agorithms, pages 803–814, 2005.

[42] U. Finkler and K. Mehlhorn. Checking priority queues. In Proceedings of 10th ACM-

SIAM Symposium on Discrete Algorithms, pages S901–S902, 1999.

[43] Marc Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In Yvo

Desmedt, editor, Proceedings of Public Key Cryptography - PKC 2003, volume 2567

of Lecture Notes in Computer Science, pages 116–129. Springer-Verlag, 2003.

[44] Michael J. Freedman and Radek Vingralek. Efficient peer-to-peer lookup based on

a distributed TRIE. In Proceedings of 1st International Workshop on Peer-to-Peer

Systems (IPTPS02), Cambridge, MA, March 2002.

[45] Kevin Fu, M. Frans Kaashoek, and David Mazieres. Fast and secure distributed

read-only file system. Computer Systems, 20(1):1–24, 2002.

[46] Irene Gassko, Peter S. Gemmell, and Philip MacKenzie. Efficient and fresh certifica-

tion. In Proceedings of International Workshop on Practice and Theory in Public Key

Cryptography (PKC ’2000), volume 1751 of LNCS, pages 342–353. Springer-Verlag,

2000.

[47] Rosario Gennaro and Pankaj Rohatgi. How to sign digital streams. In Burt Kaliski,

editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of Lecture Notes in

Computer Science, pages 180–197. Springer Verlag, 1997.

[48] Oded Goldreich. Foundations of Cryptography, volume II: Basic Applications. Cam-

bridge University Press, 2004.

[49] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with

queries: The highly noisy case. SIAM Journal on Discrete Mathematics, 13(4):535–

570, November 2000.

210

[50] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure

against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–

308, April 1988.

[51] Philippe Golle and Nagendra Modadugu. Authenticating streamed data in the pres-

ence of random packet loss. In Proceedings of Network and Distributed System Security

Symposium —NDSS ’01, pages 13–22, 2001.

[52] M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip

lists and commutative hashing. Technical report, Johns Hopkins Information Secu-

rity Institute, 2000. Available from http://www.cs.brown.edu/cgc/stms/papers/

hashskip.pdf.

[53] Michael T. Goodrich, Mikhail J. Atallah, and Roberto Tamassia. Indexing informa-

tion for data forensics. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors,

Proceedings of International Conference on Applied Cryptography and Network Secu-

rity (ACNS), volume 3531 of LNCS, pages 206–221. Springer-Verlag, 2005.

[54] Michael T. Goodrich, James Lentini, Michael Shin, Roberto Tamassia, and Robert

Cohen. Design and implementation of a distributed authenticated dictionary and its

applications. Technical report, Center for Geometric Computing, Brown University,

2002. Available from http://www.cs.brown.edu/cgc/stms/papers/stms.pdf.

[55] Michael T. Goodrich, Michael Shin, Roberto Tamassia, and William H. Winsborough.

Authenticated dictionaries for fresh attribute credentials. In Proceedings of Trust

Management Conference, volume 2692 of LNCS, pages 332–347. Springer, 2003.

[56] Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia. Efficient tree-based

revocation in groups of low-state devices. In M. Franklin, editor, Advances in Cryptol-

ogy – CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 511–527.

Springer-Verlag, 2004.

[57] Michael T. Goodrich, Roberto Tamassia, and Jasminka Hasic. An efficient dynamic

and distributed cryptographic accumulator. In Proceedings of Information Security

Conference (ISC), volume 2433 of LNCS, pages 372–388. Springer-Verlag, 2002.

[58] Michael T. Goodrich, Roberto Tamassia, and Andrew Schwerin. Implementation of an

authenticated dictionary with skip lists and commutative hashing. In Proceedings of

211

2001 DARPA Information Survivability Conference and Exposition, volume 2, pages

68–82, 2001.

[59] Michael T. Goodrich, Roberto Tamassia, Nikos Triandopoulos, and Robert Cohen.

Authenticated data structures for graph and geometric searching. In Proceedings

of RSA Conference—Cryptographers’ Track, volume 2612 of LNCS, pages 295–313.

Springer, 2003.

[60] Justin Goshi and Richard E. Ladner. Algorithms for dynamic multicast key distri-

bution trees. In Proceedings of twenty-second Annual Symposium on Principles of

Distributed Computing (PODC 2003), pages 243–251. ACM, 2003.

[61] Carl Gunter, Sanjeev Khanna, Kaijun Tan, and Santosh Venkatesh. DoS protection

for reliably authenticated broadcast. In Proceedings of Eleventh Annual Network and

Distributed Systems Security Symposium — NDSS ’04, 2004.

[62] Venkatesan Guruswami. List Decoding of Error-correcting Codes. PhD thesis, Mas-

sachusetts Institute of Technology, Boston, MA, 2001.

[63] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon

and algebraic-geometric codes. In IEEE Transactions on Information Theory, pages

45:1757–1767, 1999.

[64] Eric Hall and Charanjit S. Julta. Parallelizable authentication trees. In Cryptology

ePrint Archive, December 2002.

[65] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe, S. Shenker,

I. Stoica, and A. Yumerefendi. The architecture of PIER: an internet-scale query

processor. In Proceedings of 2nd Conference on Innovative Data Systems Research

(CIDR), pages 28–43, 2005.

[66] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton: a balanced tree struc-

ture for peer-to-peer networks. In VLDB ’05: Proceedings of the 31st international

conference on Very large data bases, pages 661–672. VLDB Endowment, 2005.

[67] Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal distributed

hash table. In Proceedings of 2nd International Workshop on Peer-to-Peer Systems,

2003.

212

[68] Chris Karlof, Naveen Sastry, Yaping Li, Adrian Perrig, and J.D. Tygar. Distillation

codes & applications to DoS resistant multicast authentication. In Proceedings of

Eleventh Annual Network and Distributed Systems Security Symposium —NDSS ’04,

2004.

[69] Charles Kaufman, Radia Perlman, and Michael Speciner. Network Security: Private

Communication in a Public World. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[70] Valerie King. A simpler minimum spanning tree verification algorithm. In Proceedings

of Workshop on Algorithms and Data Structures, pages 440–448, 1995.

[71] D. Knuth. The art of computer programming. Addison-Wesley, 1973.

[72] P. C. Kocher. On certificate revocation and validation. In Proceedings of Interna-

tional Conference on Financial Cryptography, volume 1465 of LNCS, pages 172–177.

Springer-Verlag, 1998.

[73] Henry F. Korth and Abraham Silberschatz. Database system concepts. McGraw-Hill,

Inc., New York, NY, USA, 1986.

[74] K. Kothapalli and C. Scheideler. Supervised peer-to-peer systems. In Proceedings of

2005 International Symposium on Parallel Architectures, Algorithms, and Networks

(I-SPAN), page 6, 2005.

[75] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy P. Spinrad. Certi-

fying algorithms for recognizing interval graphs and permutation graphs. In SODA

’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete al-

gorithms, pages 158–167, Philadelphia, PA, USA, 2003. Society for Industrial and

Applied Mathematics.

[76] Hugo Krawczyk. Distributed fingerprints and secure information dispersal. In Proceed-

ings of 13th ACM Symposium on Principles of Distributed Computing, pages 207–218.

ACM, 1993.

[77] Maxwell Krohn, Michael Freedman, and David Mazieres. On-the-fly verification of

rateless erasure codes for efficient content distribution. In Proceedings of IEEE Sym-

posium on Security and Privacy, pages 226–240, May 2004.

[78] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index

structures for outsourced databases. In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 121–132, 2006.

213

[79] Ji Li, Karen Sollins, and Dah-Yoh Lim. Implementing aggregation and broadcast

over distributed hash tables. ACM SIGCOMM Computer Communication Review,

35(1):81–92, 2005.

[80] M. Luby. LT codes. In Proceedings of 43rd Annual IEEE Symposium on Foundations

of Computer Science (FOCS ’02), pages 271–280, 2002.

[81] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spiel-

man. Efficient erasure correcting codes. IEEE Transactions on Information Theory,

47(2):569–584, February 2001.

[82] Anna Lysyanskaya, Roberto Tamassia, and Nikos Triandopoulos. Multicast authenti-

cation in fully adversarial networks. In Proceedings of IEEE Symposium on Security

and Privacy, pages 241–255, May 2004.

[83] Petros Maniatis and Mary Baker. Enabling the archival storage of signed documents.

In Proceedings of USENIX Conference on File and Storage Technologies (FAST 2002),

page 3, Monterey, CA, USA, 2002.

[84] Petros Maniatis and Mary Baker. Secure history preservation through timeline en-

tanglement. In Proceedings of USENIX Security Symposium, pages 297–312, 2002.

[85] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Symphony: Dis-

tributed hashing in a small world. In Proceedings of 4th USENIX Symposium on

Internet Technologies and Systems, pages 127–140, 2003.

[86] Chip Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April Kwong, and

Stuart G. Stubblebine. A general model for authenticated data structures. Algorith-

mica, 39(1):21–41, 2004.

[87] Conrado Mart́ınez and Salvador Roura. Randomized binary search trees. Journal of

the ACM, 45(2):288–323, 1998.

[88] K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Check-

ing geometric programs or verification of geometric structures. Computational Geom-

etry: Theory and Applications, 12(1–2):85–103, 1999.

[89] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, volume 1 of

EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg,

Germany, 1984.

214

[90] Kurt Mehlhorn, Arno Eigenwillig, Kanela Kanegossi, Dieter Kratsch, Ross McConnel,

Uli Meyer, and Jeremy Spinrad. Certifying algorithms (A paper under construc-

tion). Manuscript, 2005. Available at http://www.mpi-sb.mpg.de/∼mehlhorn/ftp/

CertifyingAlgorithms.pdf.

[91] Kurt Mehlhorn and Stefan Näher. Checking Geometric Structures, December 1996.

Program Documentation.

[92] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geo-

metric Computing. Cambridge University Press, Cambridge, UK, 2000.

[93] Kurt Mehlhorn, Stefan Näher, Thomas Schilz, Stefan Schirra, Michael Seel, Raimund

Seidel, and Christian Uhrig. Checking geometric programs or verification of geomet-

ric structures. In Proceedings of 12th Annual ACM Symposium on Computational

Geometry, pages 159–165, 1996.

[94] R. C. Merkle. Protocols for public key cryptosystems. In Proceedings of Symposium

on Security and Privacy, pages 122–134. IEEE Computer Society Press, 1980.

[95] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Proceedings

CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer-Verlag, 1989.

[96] Silvio Micali. Efficient certificate revocation. Technical Report TM-542b, MIT Lab-

oratory for Computer Science, 1996.

[97] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error

correction against computationally bounded noise. In Proceedings of 2nd Theory of

Cryptography Conference (TCC), pages 1–16, 2005.

[98] Silvio Micali, Michael Rabin, and Joe Kilian. Zero-ksnowledge sets. In Proceedings of

44th IEEE Symposium on Foundations of Computer Science (FOCS), pages 80–91,

2003.

[99] Daniele Micciancio and Saurabh Panjwani. Optimal communication complexity of

generic multicast key distribution. In Advances in Cryptology — EUROCRYPT 2004,

volume 3027 of Lecture Notes in Computer Science, pages 153–170. Springer Verlag,

2004.

[100] Sara Miner and Jessica Staddon. Graph-based authentication of digital streams. In

Proceedings of IEEE Symposium on Security and Privacy, pages 232–246, 2001.

215

[101] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

New York, NY, 1995.

[102] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and integrity

in outsourced databases. In Proceeding of Network and Distributed System Security

(NDSS), 2004.

[103] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. In Pro-

ceedings of 7th USENIX Security Symposium, pages 217–228, Berkeley, 1998.

[104] Moni Naor and Guy N. Rothblum. The complexity of online memory checking. In

Proceedings of 46th IEEE Symposium on Foundations of Computer Science (FOCS),

pages 573–584, 2005.

[105] Lan Nguyen. Accumulators from bilinear pairings and applications. In Proceed-

ings of CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages 275–292.

Springer-Verlag, 2005.

[106] Glen Nuckolls. Verified query results from hybrid authentication trees. In Proceedings

of Database Security 05, pages 84–98, 2005.

[107] Glen Nuckolls, Chip Martel, and Stuart Stubblebine. Certifying data from multiple

sources [extended abstract]. In Proceedings of the 4th ACM conference on Electronic

commerce, pages 210–211, New York, NY, USA, 2003. ACM Press.

[108] Rafail Ostrovsky, Charles Rackoff, and Adam Smith. Efficient consistency proofs for

generalized queries on a committed database. In Proceedings of 31st International

Colloquium on Automata, Languages and Programming (ICALP), pages 1041–1053,

2004.

[109] M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture

Notes in Computer Science. Springer-Verlag, Heidelberg, West Germany, 1983.

[110] Alain Pannetrat and Refik Molva. Efficient multicast packet authentication. In Pro-

ceedings of Network and Distributed System Security Symposium — NDSS ’03, 2003.

[111] Jung Min Park, Edwin K. P. Chong, and Howard Jay Siegel. Efficient multicast packet

authentication using signature amortization. In Proceedings of IEEE Symposium on

Security and Privacy, pages 227–240, 2002.

216

[112] Jung Min Park, Edwin K. P. Chong, and Howard Jay Siegel. Efficient multicast packet

authentication using erasure codes. ACM Transactions on Information and System

Security, pages 6(2):258–285, May 2003.

[113] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable

secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91,

volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer Verlag,

1992.

[114] A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In

Proceedings of 8th ACM Conference on Computer and Communication Security, pages

28–37, November 2001.

[115] Adrian Perrig, Ran Canetti, Dawn Song, and J.D. Tygar. Efficient and secure source

authentication for multicast. In Proceedings of Network and Distributed System Se-

curity Symposium – NDSS ’01, 2001.

[116] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. Efficient authentication and

signing of multicast stream over lossy channels. In Proceedings of IEEE Symposium

on Security and Privacy, pages 56–73, 2000.

[117] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby

copies of replicated objects in a distributed environment. In Proceedings of ACM

Symposium on Parallel Algorithms and Architectures, pages 311–320, June 1997.

[118] Daniel J. Polivy and Roberto Tamassia. Authenticating distributed data using Web

services and XML signatures. In Proceedings of ACM Workshop on XML Security,

pages 80–89, 2002.

[119] F. P. Preparata. A new approach to planar point location. SIAM Journal on Com-

puting, 10(3):473–482, 1981.

[120] W. Pugh. Skip list cookbook. Technical Report CS-TR-2286, Department of Com-

puter Science, University of Maryland, College Park, MD, July 1989.

[121] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications

of the ACM, 33(6):668–676, 1990.

[122] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and

fault tolerance. Journal of ACM, 36(2):335–348, 1989.

217

[123] Sriram Ramabhadran, Joseph Hellerstein, Sylvia Ratnasamy, and Scott Shenker. Pre-

fix hash tree - an indexing data structure over distributed hash tables. In Proceedings

of ACM symposium on Principles of distributed computing, pages 368–368, 2004.

[124] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott Shenker.

A scalable content-addressable network. In Proceedings of SIGCOMM, pages 161–172,

2001.

[125] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. SIAM Journal

of Applied Mathematics, 8(2):300–304, 1960.

[126] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott

Shenker, Ion Stoica, and Harlan Yu. OpenDHT: A public DHT service and its uses.

In Proceedings of 2005 ACM SIGCOMM Conference, pages 73–84, 2005.

[127] Ohad Rodeh, Kenneth P. Birman, and Danny Dolev. Using AVL trees for fault

tolerant group key management. International Journal on Information Security, pages

84–99, 2001.

[128] Pankaj Rohatgi. A compact and fast hybrid signature scheme for multicast packet

authentication. In Proceedings of 6th ACM Conference on Computer and Communi-

cations Security, pages 93–100. ACM, 1999.

[129] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM Inter-

national Conference on Distributed Systems Platforms Heidelberg, LNCS 2218:329,

2001.

[130] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically fault-tolerant

content addressable networks. In Proceedings of 1st International Workshop on Peer-

to-Peer Systems, MIT Cambridge, MA, pages 270–279, 2002.

[131] R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, MA, 1992.

[132] Gustavus J. Simmons. Authentication theory/coding theory. In Proceedings of the

Conference on Advances in Cryptology (CRYPTO’84, Santa Barbara,CA), LNCS 196,

Springer-Verlag, pages 411–431, 1984.

[133] E. Sit and R. Morris. Security considerations for peer-to-peer distributed hash tables.

In Proceedings of International Workshop on P2P Systems, pages 261–269, 2002.

218

[134] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of

Computer Systems Science, 26(3):362–381, 1983.

[135] Jack Snoeyink, Subhash Suri, and George Varghese. A lower bound for multicast key

distribution. In Proceedings of INFOCOMM, pages 422–431, 2001.

[136] Dawn Song, David Zuckerman, and J. D. Tygar. Expander graphs for digital stream

authentication and robust overlay networks. In Proceedings of IEEE Symposium on

Security and Privacy, pages 258–27, 2002.

[137] Douglas R. Stinson. Cryptography: Theory and Practice, Second Edition. CRC Press

Series, 2002.

[138] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable Peer-To-Peer lookup service for internet applications. In Proceed-

ings of 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

[139] G. F. Sullivan and G. M. Masson. Certification trails for data structures. In Digest

of the 21st Symposium on Fault-Tolerant Computing, pages 240–247. IEEE Computer

Society Press, 1991.

[140] G. F. Sullivan, D. S. Wilson, and G. M. Masson. Certification of computational

results. IEEE Trans. Comput., 44(7):833–847, 1995.

[141] Roberto Tamassia. Authenticated data structures. In Proceedings of European Sym-

posium on Algorithms, volume 2832 of Lecture Notes in Computer Science, pages 2–5.

Springer-Verlag, 2003.

[142] Roberto Tamassia and Nikos Triandopoulos. Computational bounds on hierarchical

data processing with applications to information security. In Proceedings of Interna-

tional Colloquium on Automata, Languages and Programming (ICALP), volume 3580

of LNCS, pages 153–165. Springer-Verlag, 2005.

[143] D. M. Wallner, E. G. Harder, and R. C. Agee. RFC 2627 – Key management for

multicast: issues and architecture, September 1998.

[144] Mark Weiser. Some computer science issues in ubiquitous computing. Communica-

tions of the ACM, 36(7):75–84, 1993.

[145] L. Welch and E. Berlekamp. Error correction of algebraic block codes. U.S. Patent

Number 4,633,470, issued December 1986.

219

[146] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and biconnected com-

ponents on-line. Algorithmica, 7:433–464, 1992.

[147] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key

graphs. IEEE/ACM Transactions on Networking, 8(1):16–30, 2000.

[148] Chung Kei Wong and Simon S. Lam. Digital signatures for flows and multicasts.

IEEE/ACM Transactions on Networking, 7(4):502–513, August 1999.

[149] Shouhuai Xu and Ravi Sandhu. Authenticated multicast immune to denial-of-service

attack. In Proceedings of ACM Symposium on Applied Computing, pages 196–200,

Madrid, Spain, March 2002.

[150] C. Zhang, A. Krishnamurthy, and R. Wang. Brushwood: Distributed trees in peer-to-

peer systems. In Proceedings of 4th International Workshop on Peer-to-Peer Systems

(IPTPS05), 2005.

