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This dissertation presents a computational framework ritegrating measured data —
such as medical images, tracked motion, and anatomy-bamklkdge — into the predic-
tive modeling of anatomical joints. The framework is data«eh in the sense that it uses
sampled motion data to infer soft-tissue geometry and hehakhe framework allows the
generation of adaptable, quantifiable, predictive modedssimulations of complex joints,
surpassing current measuring limitations.

| instantiate the framework in a collection of tools: 1) a suixel accurate method
for tracking bone-motion from sequences of medical imag¢s,omputational tools for
estimating soft-tissue geometry and contact; and 3) a twalhfe visual and quantitative
exploration of joint biomechanics. The first tool attaing@acy improvements of more
than 74% over current tracking methods, when compared tgrivend truth computed
from marked data; the accuracy improvement enables thegsasaif soft-tissue defor-
mation with motion in live individuals. The second tool efesbus to overcome current
soft-tissuen vivoimaging limitations. The third tool facilitates the quaative and visual
analysis of joint models and simulations.

The resulting computational models are somewhat unusutdeim hybridization of
data representations. Each representation has streogtrerious aspects of the modeling
and | combine them in unique ways to achieve simple, elegathtacurate estimations of
biologically relevant measurements.

| demonstrate the application of this framework to the humast and forearm. The re-
sults generated through this framework have already ineplamtthopedists’ understanding
of the many diseases afflicting human joints. With such aebeihderstanding, improve-

ments in treatment for injuries are possible as well as g in injuries.
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Chapter 1

| ntroduction

1.1 Motivation

20% of all computer users damages their wrists due to exeelsgiing [84]. How do these
injuries occur, and why does treatment work only for certadividuals? Subject-specific,
computational models of anatomical joints can help answeln sjuestions. However, de-
veloping such models poses significant computational ehgds — for example, what
level of modeling detail is necessary in order to generaigically significant measure-
ments, while keeping the resulting models efficient to satef

Developing such models also requires interdisciplinatiaboration between computer
scientists and life scientists. Interdisciplinary resédike the one described in this disser-
tation is a meeting place for experts in different fields. Wholur overarching goal is
gaining insight into how anatomical joints work, the focdseach field is in general on
different domains (Fig. 1.1). For example, doctors anddgsts target in general appli-
cations, bioengineers emphasize data acquisition andagaln, while computer scientists
focus on developing computational modeling and analysilstoA research project at the
intersection of the data acquisition, computational taoidgl application domains is, for
example, developing an image-based automated systenaddirtg small animal motion.

This dissertation focuses on modeling anatomical joinechnically, the correct term

is diarthrodial joints, joints that move freely — examples of such joints e knee and
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Figure 1.1: Inter-disciplinary research is a meeting plioreexperts in different fields.

The focus of each field, however, is on a different domaines@mple, doctors and biolo-
gists target in general applications, bioengineers empddsta acquisition and validation,
while computer scientists focus on developing computaliomodeling and analysis tools.

the elbow (Fig. 1.2). Diarthrodial joints are the structiteat allow us to move. They occur
wherever two or more bones adjoin and move against each; stinreounding soft-tissues
stabilize the joint and protect the bones from motion-eglatamage.

From the application point of view, our goal is to developlsaibat can generate joint
models which have: 1) subject-specific capabilities, tlee, models are adaptable to dif-
ferences between individuals; 2) quantifiable capalsljitiee., the models allow users to
evaluate not only whether, for example, an injured joinfedd from a normal joint, but
also how much; and 3) predictive capabilities, in predgtiar example the outcome of
surgical interventions or therapy.

The impact of obtaining subject-specific, quantifiable dprtve models would be tre-
mendous. For example, such models of joints could predyctafgiven individual, how
joint motion would be altered after a simulated surgicatiméntion or after therapy, and
therefore help doctors plan their procedures. Second, maciels would allow the design
of higher-performance robots and orthopedic implants. E§jshows a state of the art wrist
implant [6]; attempts at total wrist replacement have histdly been fraught with com-
plications, most commonly prosthetic dislocation and éosg [6, 39]. Subject-specific
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Figure 1.2: Diarthrodial joints are joints that move free€dych joints are formed wherever
two or more bones adjoin and move against each other.

wrist models able to predict contact within the wrist couddidhus design more performant
prosthetics, tailored to specific individuals. Lastly, ongputer animation the same models
would generate more realistic character motion than cuemealytical or highly simplified
musculoskeletal models. For examples of current animaigemerated without the help of
a large team of skilled artistic animators, $ep://www.theseisgame.caonii the released
clips, note in particular the unrealistic shoulder motiSnbject-specific, motion predictive
joint models would certainly help animators.

When modeling diarthrodial joints, the computer science afeexpertise is the de-
velopment of computational modeling, visualization andlgsis tools that take as input
individual-specific medical measurements, and generatiels@nd simulations that can
provide insight into specific applications. In Fig. 1.4, ta# side corresponds to the data-
acquisition domain, and the right side to the applicatiom®ain; computer scientists con-
tribute primarily to the computational and analysis tootengin. The view shown here
is computer science-centric; however, the flow among theetidlomains is by no means
uni-directional. For example, applications generate bypses; hypotheses influence the
type of data acquired, and thus the development of data sitiquitechniques, but also
how much we model and at what level of detail.



Figure 1.3: State of the art orthopedic wrist implant; atiésmat total wrist replacement
have historically been fraught with complications, mostneaonly prosthetic dislocation

and loosening.
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Figure 1.4: When modeling diarthrodial joints, our goal asipater scientists is to develop
computational modeling, visualization and analysis taoé can take individual-specific
medical measurements and generate models and simuldt@ansain provide insight into

specific applications.



1.2 Anatomy Background

The anatomy of a diarthrodial joint comprises several layErg. 1.5). The first and most
superficial layer is (1) skin and fat, followed by (2) the nexascular system layer (shown
in Fig. 1.5 as brightly colored threads). Blood vessels rstutiie joint tissues, and nerves
act as sensors and controls.

The next layer is formed by (3) muscles, active bundles dftssue that attach to bones
through tough cords called tendons (in Fig. 1.5, muscleslaoen in red, and tendons in
white-pink). Muscles flex and relax as commanded by nenfesflexing and relaxation
processes modify the length of muscle bundles, and thus tiselss through their tendons
apply forces to the joint.

The interesting observation at this point is that, if we reenthe top three layers, a
joint will still hold together and move appropriately wheordées are applied to it. This
observation — made thanks to clinical studies on cadaver dats frequently used as a
simplifying assumption in biomechanical modeling [32,.58¢cording to this assumption,
and depending on the specific application, the top two lagadstheir influence on the
joint can be neglected, and muscles and their actions cagpoesented as external forces
applied to a joint at tendon insertion sites.

The deeper layers that hold a joint together are: (4) ligam€b) cartilage, and (6)
bones. Ligaments are tough, passive bands of soft-tisgugecting bones. Their role is
to stabilize the joint during motion. While the anatomicaidering in Fig. 1.5 shows li-
gaments (in grey) as separate bands of tissue, in realéynkmts are inter-connected and
form a sac; individual ligaments can be described as thiokgsrof the sac. The shapes and
mechanical properties of individual ligaments are in gahpoorly documented; clinical
studies indicate large variation among individuals, andmgriigaments of the same indi-
vidual. The sac itself contains synovial fluid; the fluid'der@s to lubricate the joint and
thus reduce friction during motion.

Articular cartilage (shown in white in Fig. 1.5) is a compléxing tissue that lines the
bony surface of joints. Its function is to provide a low fi@t surface cushioning the joint
bones through the range of motion. In other words, artictdatilage is a very thin shock

absorber. It is organized into five distinct layers, withtekyer having different structural



5 i

i
Interactive Hand 2000 © 2000 Primal Pictures Interactive Han
Ltd.

4 . i # . gl ¢

S | J - A
Interactive Hand 2000 © 2000 Primal Pictures Interactive Hand 2000 © 2000 Primal Pictures Interactive Hand 2000 © 2000 Primal Pictures
Ltd.

Figure 1.5: Layers in the anatomy of a human wrist — from leftight: skin and fat,
neurovascular system, muscles, a subset of wrist ligameatslage, bones with muscle
and a few ligament insertion sites.

and biochemical properties. Erosion of this protectiveefagsults in osteoarthritis. Carti-
lage is extremely slippery — 100 times more slippery thanasea result, cartilage contact
during motion is practically frictionless.

Bones are organs with a complex internal and external steitiat allows them to be
lightweight yet strong and hard. The hard outer layer of Bdeecalled compact (aror-
tical) bone tissue due to its minimal gaps or spaces. This tisstes piones their smooth,
white, and solid appearance, and accounts for 80% of theldotee mass. Filling the in-
terior of the bone is a spongy (trabecula) bone tissue which makes the overall bone
lighter and allows room for blood vessels and marrow. Spdrmye accounts for the re-
maining 20% of total bone mass, but has nearly ten times tii@cguarea of compact bone.
While bone is essentially brittle, it does have a significaegrde of elasticity. However,
in the context of motion analysis and considering the laggdiguration changes normally
occurring in a joint during motion, bones in human diarthabgbints can be considered

rigid; in contrast, bones in bat wings are believed to benthdulight [104].
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Figure 1.6: Diagram of the computational modeling process

1.3 Computational Background and Challenges

In theory, we could build diarthrodial joint models from tim®lecular level up to full motor
function. Constructing such a model would require accuvegdi;defined inputs, including
complete digital anatomical models of all joint componettie material properties for all
components, and a detailed understanding of the appliedgoOnce the model geometry
is constructed and the forces defined, algorithms and reptasons must be implemented
to computationally model and then simulate the interasti@mong joint components and
finally the behavior of the joint (Fig. 1.6).

However, building such models from the molecular level up take a long time, and
simulating them will be enormously slow. In practice, stighess accurate but faster
models of anatomy in which we treat bones, for instance,g@d bodies, and tendons as
inelastic bands, could serve to advance life science indheesvay that the development
of rigid body physics — while failing to take into account raoular forces and relativistic
effects — has helped advance physical science and engigder 150 years. The first
challenge here is choosing what we need to model at what ¢é\ddtail, and developing
appropriate representations and approximations so thatbteen biologically significant
measurements while keeping the models simulatable.

The second challenge is that many of the inputs we need td imatlels of diarthrodial
joints are not measurable in live individuals. Somevivo measuring restrictions come

from current limitations of imaging technology. For examphe are still unable to image



non-invasively small structures (under 0.5mm thicknesshsas wrist cartilage or liga-
ments in live individuals: there just aren’t enough imagiagabilities to generate models
of such structures. In time, progress in imaging technel®gnay overcome such limita-
tions. Other measuring limitations are, however, inhdydimked to in vivo investigation:
detailed subject-specific material properties and undeg¢drgeometry cannot be acquired
without invasively disrupting the joint and thus altering kinematics. For example, we
may never be able to determine the rest-length and elgstitia specific ligament of a
specific individual without removing the ligament from timelividual’s joint. Input entities
which are not measurable directly become, in fact, latentles in our models. Latent
variables are variables that are not directly observed feutaher inferred from other ob-
servable variables. These variables — such as cartilagenss and location, or ligament

rest-lengths — need to be inferred from directly measurdate.

1.4 Stateof the Art in Diarthrodial Joint Modeling

Approaches to modeling diarthrodial joints can be classifefour categories, according
to the type of data they take as input and the representati@ysuse: 1) the ‘stick-and-

wire’, 2) the analytical, 3) the rigid bodies, and 4) the dafable-rigid hybrid approach.

The resulting models of diarthrodial joints include onlyekkal tissues: bone, ligaments,
cartilage, and muscle-tendon units.

In the ‘stick-and-wire’ approach, researchers build ptgismodels of joints from ma-
terials such as wood, nails, wire, or epoxy-resin. The resrganedical measurements are
in general acquired by dissecting the joint. For examplepbd&t al. built a physical model
of a human wrist from joints dissectauvitro [52]. Epoxy-resin casts were generated from
silicon-latex molds in which the exact form of the cartilag@faces was preserved. Li-
gaments were modeled with stout threads and attached aidatdns observed during
vitro dissection; material-property differences observed ajepecimens were ignored.

Historically, the ‘stick-and-wire’ approach has genedaggtremely useful anatomical
knowledge and a wealth of diarthrodial joint models. Neweless, in this approach we

destroy the biological joint in order to study it. This limihe applicability of this approach



to cadaver subjects. Furthermore, even in the cadaver tasdifficult to generate and
compare subject-specific models. Since in general invasivdies alter joint kinematics
and material properties, models generated through thek-atd-wire’ approach are also
difficult to validate.

The analytical approach generates simulatable, but greiatiplified and often heuris-
tically defined models of diarthrodial joints. The only inpwsed in this approach are
the bone lengths and the joint range-of-motion. For exaniplee joints are modeled as
hinges, and wrists as ball-and-socket devices. The raguttiodels are often used in com-
puter graphics; such models can roughly replicate the rafigeotion observed in live
individuals. However, the analytical approach has redagzkal to medical applications
and realistic computer animation. Such applications mequi general detailed models
tailored to subject-specific data.

In the rigid-bodies approach, joints are modeled as catiestof interacting rigid bo-
dies. The inputs here are individual-specific medical mesamants of bone surfaces, and
anatomy-book knowledge. Bones are modeled in general as 3DBaself modeled at all,
soft tissues are represented as springs or rigid shellgusuting the bones [95, 32, 51, 98].
Some bones are rigidly connected; soft-tissue wrappingdaidrmation are in general
discounted. However, some of the resulting models may be alol restricted ranges of
motion, to correctly predict some bone kinematics. For eanmBlankevoort et al. [18]
built a rigid-body model of the knee with motion-predictioapabilities. The model was
generated from medical images of the bones and anatomy baeié&dge such as tendon
insertion sites and material properties; bones were aingtl to not inter-penetrate during
motion. We note that, in general, deformable contact withejoint is not modeled in the
rigid-body approach.

The most sophisticated approach to date to modeling datidlrjoints is the hybrid
deformable-rigid approach. The inputs in this case arenagan-invasive individual-
specific medical measurements and anatomy book knowleddkislapproach, bones are
considered to be rigid bodies and the other tissues aredsresi to be deformable. How-

ever, the geometrical representations and propertiesfofrdable tissues vary depending
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on the complexity of the model and the medical measuremenaitahble as input. For ex-
ample, the geometry of knee ligaments can be acquired throagnetic resonance ima-
ging, and thus can subsequently be modeled through accsoat@sticated representations
such as finite element methods. The most recent and sopltestilmodels are capable of
predicting strain through entire ligamentous [41] andilzginous structures [113, 33, 75]
using advanced finite element analysis. In contrast, thengag of individual-specific an-
kle ligaments cannot be currently acquitadivo, and thus ankle ligaments are commonly
represented as non-wrapping, line spring elements.

With the notable exception of the knee — a relatively largetjof high clinical interest,
current rigid-deformable models for most diarthrodiahjsiare either relatively crude or
model only a few components in high detail. They typicallydabthe ligaments as line
springs, don’t include cartilage, or include only a few bane

The most sophisticated hybrid model to date of a complex juas been developed by
Carrigan et al. [24]. They created a simplified 3-D finite elabmaodel of the carpus, in
which hollowed bones were modeled through finite elementetiog, then their articu-
lated surfaces were extruded to mimic cartilage. In thisehsdveral pairs of bones were
fused into single rigid bodies, and ligaments were modetedaa-wrapping line springs.
Material-property parameters were specified at the inpatvéver, for unclear reasons, the
resulting model was not stable. In the end, bone motion wstscted artificially to certain
directions through non-physiological constraints in orteprevent the carpus from col-
lapsing under applied loads. | speculate the instability tmave been due to insufficient
modeling detail; in particular, this dissertation demaoaists wrapping soft-tissues play an
important role in stabilizing the carpal joint.

Important additional limitations of the models generateugh the approaches sur-
veyed in this section are the lack of kinematic validatiotagand the inability to perform
comparisons between subject-specific models.

When we consider the space described by models generatedjthttee four approa-
ches described above, an interesting trend becomes appd@ienmore complex a joint,
the fewer models for it exist, and the fewer predictive cdapas these models have. For

example, knee models (3 bones, 4 ligaments) range from hirggels able to roughly
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replicate the range of motion to models able to compute coatad strains in live indivi-
duals [118]. In contrast, wrist models (8 bones, dozengjahtients) are far fewer and have
far simpler capabilities; the same holds true for most hujoents, from shoulder to ankle
joints.

While the knee commands particular clinical interest, ttiesinot quite explain the
paucity of models of more complex joints. A first observatiothat joint complexity in-
fluences simulation efficiency — computing accurate cordaming 100 deformable com-
ponents is certainly more expensive than computing com@iacing 3 components. This
observation ties into the first computational challenge —prapriate representations for
efficient simulations — identified in section 1.3. The secandre interesting observation
is that, in general, complex joints have smaller componéerie smaller the components,
the fewer direct medical measurements are available. timfately, we cannot accurately
simulate soft-tissue behavior when soft-tissue measurtsrage not available. In fact,
what we see is the impact of measuring limitations and heaceity of morphological
data on the model space. The more complex a joint is, the fed@rant data are available,
and hence the fewer and weaker models we have. This secordvatisn ties into the
second computational challenge — measuring limitations hickwwe also identified in
section 1.3.

1.5 A Data-Driven Framework

The thesis of this dissertation is that a data-driven madedipproach, when tightly cou-
pled with visualization and analysis tools, can generatptable, quantifiable, predictive
models of diarthrodial joints. In the computer science didin, a data-driven approach
estimates a hitherto unknown mapping (or dependency) leetasystem’s inputs and out-
puts from the available data [76].
| present in this dissertation a data-driven framework far predictive modeling of

diarthrodial joints. The framework allows for the genewatiof adaptable, quantifiable,
predictive models of complex joints, in spite of current si@ang limitations. The resulting

computational models are somewhat unusual in their hytaidin of data representations.
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Figure 1.7: Data-driven framework for modeling diarth@doints: (1) in a first step, we
extract bone surfaces and motion from sequences of methealgs (Chapter 2). (2) Next,
we use this data and anatomy-book knowledge to infer and insodee of the missing data
— such as soft-tissue geometry and behavior (Chapter 3 and€gp (+) We assemble
the measured and inferred data into a predictive model gbthe(Chapter 5). (3) Finally,
we propose quantitative measures and use them to analyzasdiselated joint behavior
(Chapter 6). We call the framework ‘data-driven’ becausetep $2) above, in which we
use sampled data to infer soft-tissue geometry and behavior
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Each representation has strengths for various aspects ofdabeling and we combine them
in unique ways to achieve simple, elegant and accurate &stins of biologically relevant
measurements.

The key idea behind the framework is to use sampled dataeo umknown data. The
framework uses as input currently available subject-$igegiedical measurements and
anatomy-book knowledge; but it uses more than one instainggch measurements. In a
first step, we augment data acquired through medical imagirsgich as bone geometry —
with motion information. The idea here is that motion inf@ton can provide insight into
soft-tissue properties: for example, wider ranges of nmotan be associated with laxer
soft-tissues, while narrower ranges of motion can be astatiwith stiffer soft-tissues.
Next, we use this augmented data and anatomy-book knowtedigier and model some of
the missing data — such as soft-tissue geometry and beh&Veassemble the measured
and inferred data into a model of a joint. Finally, we propgsantitative measures and use
them to analyze disease-related joint behavior.

Figure 1.7 shows the flow among the different framework comepds. The framework
is data-drivenbecause in step two we infer soft-tissue geometry and behfnogm sampled
motion data.

In this work we model only the skeletal tissue of a joint: bsneartilage, and liga-
ments. Muscles are represented as external forces, pdolidthe user. As a simplifying
assumption, in several instances we approximate tissuavimehfor example, we model
articular cartilage as a single layer, not five. Incorpogexplicitly the external anatomi-
cal layers — muscles, neurovascular system, skin and fatd+adeling tissue behavior
in more detail are beyond the scope of this dissertation candtitute directions of future

work.

1.5.1 Framework Instantiation and Dissertation Overview

The framework instantiation described in this dissertatises as input computed tomo-
graphy (CT) volume images of a joint. Computed-tomographygimgcan be thought of
as X-ray imaging in 3D: in the resulting grayscale volumegesair shows in black, bony

material in bright intensities, and soft-tissues in shawfagrey. When imaging joints, we
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prefer CT technology over other modalities — such as magnesicnance imaging — be-
cause CT offers superior resolution and spatial accuracye Barfaces are extracted from
such a reference volume image.

Next, we recover motion for each joint bone. This itself isitiallt problem: we
cannot use sensors on the skin surface to recover bone mbé&oause there is significant
relative motion between skin and the bones underneatheddstve first CT-image the joint
in a few poses, sampling the space of joint kinematics. We tlteek the bones across the
sequence of volume images through object registration (€hap. By tracking we mean
here recovering the rigid transform that takes each boma @me sample pose to another.
Tracking accuracy is paramount when analyzing joint kinireabecause even small er-
rors — errors commensurate with the voxel size — can restalse bone inter-penetration
during motion. Preserving inter-bone spacing is importeaause cartilaginous soft-tissue
is, in fact, located in this spacing.

Note that the motion tracking tool we describe in Chapter 2ccba replaced by other
tracking tools, using perhaps different input data, suchase surfaces and series of 2D
images of the moving joint. The only condition here is th&gative instantiations of this
first framework component should generate similarly adeurasults. To the best of my
knowledge, currently there are no similarly accurate a#gve tracking tools.

Next, we use the acquired bone-surfaces, sampled joienkatics and anatomy-book
knowledge to infer and model ligamentous (Chapter 3) andlagirious tissue (Chapter
4). This second component could be modified to incorporatxtly measured geometry,
if available.

We assemble bones, ligaments, and cartilages and infer gbtine model parameters
by imposing joint equilibrium at the sampled kinematic po@&hapter 5).

The last component of our system is an automated tool for th&sesubject analysis
and visualization of anatomical joints (Chapter 6). We use ¢bmponent to explore and
measure the influence of injury on joint kinematics. Thegsialtool could also be replaced
by alternative, for example manually-aided, cross-patariztion techniques.

Applications of this framework instantiation are preserteChapter 3 (forearm malu-

nion), Chapter 5 (wrist close-pack pose) and Chapter 6 (seéplon-union).
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Chapter 7 discusses the contributions of this work and pexpdgections of future

research. Orthopedics terminology is briefly reviewed impé&pdix A.

1.5.2 Contributions Overview

This dissertation presents novel representations, catipoal modeling, visualization and
analysis tools that are needed to integrate subject-spdeiia with the predictive modeling
process of diarthrodial joints.

The data-driven framework presented in this dissertatiowhite having certain limi-
tations as discussed in Chapter 7 — allows for the developof@amplex, automatically-
tuned subject-specific models that have predictive caipabil

| instantiate the framework in a collection of tools: 1) a suixel accurate method
for tracking bone-motion from sequences of medical imag¢ssomputational tools for
estimating soft-tissue geometry and contact; and 3) a twalhfe visual and quantitative
exploration of joint biomechanics.

The results generated through this framework instantidiewve already affected ortho-
pedists’ understanding of the many diseases afflicting imjoats [29]. With such a better
understanding, improvements in treatment for injuriespassible as well as reductions in
injuries.

In addition to providing specific insight into joint mechasj the developed tools and
resulting databases should be applicable to the study @blmay and injuries, inclu-
ding arthritis, ligament tears, bone fractures, and safgeconstructions. The tools and
methodologies | demonstrate on forearm and wrist data wilgenerally useful for the
study of bone, cartilage and ligament interactions in otimenplex multi-articular joints,
including the foot and spine, as well as in other joints suctha knee, elbow, and human
shoulder. The tools will also be applicable to animal stedia basic biology research.
Ultimately, this work has the potential to create a modedéipgroach that will more simply
and efficiently explain and predict the underlying biometba of musculoskeletal sys-

tems.



Chapter 2

Extracting Joint Kinematics from

Medical | mages

2.1 Introduction

As research areas that employ image registration techsifgaas on ever-smaller features,
they require higher registration accurady.vivo kinematic analysis of small joints, such
as the wrist, exemplifies the need for highly-accurate iatraject, same-modality registra-
tion. A common way to analyze joint kinematics is by CT-imapiihe joint bones in several
different positions and registering them across all volimmeges. While early studies have
focused on retrieving bone pose and orientation, receaarel focuses on measuring how
more subtle features like inter-bone spacing change wittilamo In the first case, errors
on par with the image sampling step-size, like those intceduby existing tracking sys-
tems, may be acceptable, while in the latter case errors aé&s0.5 mm can compromise
the study by introducing inter-bone collisions. At the satinge, decreasing the image
sampling-step results in increased imaging cost and time.n®éd a subvoxel-accurate
method for registering features whose size is on par withnttage sampling step.

We describe in this chapter an automated intra-subject-saotlity registration me-
thod that attains subvoxel-accuracy. The method is ofasteio any registration applica-
tions involving datasets where the image sampling stepgetahan features of interest.

16
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Figure 2.1: Our registration method works in three stepsegister an object across two
volume images, we first extract the object surface from orernve; we generate through
tissue classification a localized distance field from eadbomae; we then use the object
surface and the distance fields to track the object.

2.2 Registration Method

2.2.1 Overview

The registration method works in three steps on a seriedom@images. First, we extract
the surface of the object to be registered from an arbiyr@elected reference image. Next,
in order to obtain an accurate localized distance field fgistering the object, we classify
the tissues in each volume image using a probabilistic ampro_ast, we register the object
by automatically adjusting its position and orientatidrereby minimizing a distance-field
derived cost function (Fig. 2.1).

In the case of multi-object structures (e.g., joints in toenn body) we infer from the
distance field an object hierarchy that expands the capamgerof our procedure beyond
the capabilities of previous registration methods. Theuw&prange represents the range
of positions from which a registration algorithm can comgeto the correct minimum or
maximum.

We validate our method using CT data from a cadaver with eaterarkers, arnn
vivo volunteer, and forty subjects participating in a wrist-mantstudy. We compare the
performance of our method against a manually aided segtiemtaased method as well

as a standard grey-value-registration method.
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2.2.2 Object Surface Extraction

Through manual segmentation, thresholding, and useraictien, we extract in this first
step an object surface from a reference CT volume image [28hnSarizing this reference,
the contours defining the outer cortical bone surfaces di eagect are extracted using
thresholding and image algebra processes with a 3-D imagifiggare package (Analyze
AVW 2.5; Biomedical Imaging Resource, Mayo Foundation, Rohes8/N). Each con-
tour is then assigned to the appropriate object using Matistom code, which designates
contours based on the contiguity of their centroids. Conliaes are output as collections
of discrete points, which are distributed densely alongheammtour and sparsely between
different contours.

2.2.3 Localized Distance Fields

In the second step of our method, we classify the tissuesah €3 volume image pro-
babilistically in order to generate a localized distancifi©ur tissue classifier uses the
partial-volume technique described by Laidlaw et al.[63}is method identifies distances
from material boundaries and creates distance fields faridwal materials. The technique
assumes that, due to partial-volume effects or blurringeigcan contain more than one
material, e.g., both cortical bone and soft tissue. EacleMsxassumed to contain either a
pure material or two pure materials separated by a bouné&agyZ.2).

We treat each voxel as a region, by subdividing it into 8 subi&) and evaluating the
image intensity and its derivative at the center of each axglv The intensity is interpo-
lated from the discrete data using a tricubic B-spline bdsas approximates a Gaussian.
Thus, intensity and derivative evaluations can be made nigtat sample locations, but
anywhere between samples as well. From this intensity andatige information we in-
fer a histogram of each voxel, accumulating the contrimgirom all subvoxels. This
gives us a more refined histogram than we would obtain by atialy only the intensity
values at the same number of points. Histograms are next fiabig functions, each basis

function corresponding to either one material or a mixturevo materials.



19

Voxel region Voxel histogram

Frequency

CT intensity

fit basis-function
to histogram

output '
distance

f_boundary

Two-material data Distance-classified data

S Mostly B
0

‘C“‘T irztensit):<
Voxel basis-function family

Figure 2.2: The classification algorithm computes distarfican sample points to material
boundaries. Point®, and P, lie inside regions of a single material, either A or B. Pdifgt
lies near the boundary between A and B. We treat each voxel egi@r by subdividing
it into 8 subvoxels, and taking into account informationnfrmeighboring voxels. We
evaluate the image intensity and its derivative at the ceriteach subvoxel. The resulting
voxel histogram is then fit to a family of basis functiohd6undary, whose shapes reflect
the estimated distancéto the material boundary. The best-fit basis instance ictwzle
through a maximum likelihood process £ —0.6 fits best the histogram of poiit). The
result is a localized distance field, that specifies, at eadft,ghe signed distance from the
point to the material boundary.

Pure material basis-functions are Gaussians whose paenst the mean CT grey-
scale value and standard deviation for that material. Mextasis functions have an ad-
ditional parametel, describing the distance from the center of the voxel to thendary
between materials. As the distance parameter changeshape ®f the basis function
changes (Fig. 2.2). The basis-function shape that bestiits mixture voxel histogram is
chosen through a maximum-likelihood process. The deawadif the basis-function for-
mulas and the description of the optimization process agsgmted in detail in [63]. We
repeat the fitting procedure for each material, and seleatiditerial basis function that fits

each voxel histogram best.
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For each tissue type, the sole input required by our tisaassiier is an initial estimate
of its CT grey-scale value’s mean and standard deviation. Stimate these measures from
sets of approximately one hundred voxel samples, one sdigsee type. We consider
three distinct pure materials: air, soft-tissue, and b@wt-tissue is present both outside
bones and inside bones (as bone marrow). Material sam@eohlected only once, from
the samen vivo dataset. We consider two instances of the mixture basigiimcone
modeling mixtures along air and soft-tissue boundariespther modeling mixtures along
soft-tissue and bone boundaries. We initialize the bagistion parameters to the same
values throughout all the datasets, includingitheitro datasets.

Through this basis-function tissue-classification prec@ge generate a localized dis-
tance field. The distance field is a scalar 3D grid that spsc#tegridpoints the distance
to the closest boundary between two materials. The distégldds local in the sense that
the distance estimate is specified only as far as gridpaotgéd within a five voxels band
around the material boundary. Distances between gridp@ireg approximated through
tricubic interpolation.

The classification of a wrist volume image produces one wicgtdield per material
type. We use the distance field corresponding to bone mb{Eiga 2.3) in the tracking

stage of our registration method.

2.2.4 Tracking Procedure

In the third step of our method, we register an object throagiequence of CT volume
images classified using the process described in secti@GnHbr each bone, we recover
the rigid body transformation between the reference imhgedenerated the geometrical
model and a target image. The rigid body transform is expreas a rotation around the
bone’s center of mass, and translation.

An object’s geometric model is registered with a target iemafjthe object when its
signature in the reference distance fielti;, is most similar with its signature in the tar-
get distance fieldD;. We measure this similarity with a sum-of-squared-dififexes cost
function that takes into account the reference and targamte-field values of the vertices

in the geometric model. The sum is weighed by the number dicesrthat are still inside
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Figure 2.3: Tissue-classified distance-fields quantifydiséance from the center of each
voxel to the closest boundary. (a) One slice from a low-ngsmh (0.9 x 0.9 mm) wrist CT
volume image. (b) Localized distance field correspondingdoe material. Dark pixels
have been classified as either pure soft-tissue, pure agfttissue and air mixture. The
area of interest in the box crosses two bony boundaries ametagled on the right. Each
voxel in the field codifies the distance from the voxel centethe closest bony boundary;
the lighter the grey, the closer to a bone boundary the vexelc) Plot of the distance
values along the strip on top. Note the two dips in the plotesponding to the two bone
boundaries. In this particular case the bone cortex is \eny(iL voxel wide); consequen-
tially there are no samples inside the bone cortex to be etedaownith negative (‘inside’)
distance values; hence the distance function D(v) doesaketriegative values.

the target distance field after applying the current tramsfio the model. The cost function
is thus:

F = 3 (Dalny) — Dep)), @)

wherep; are points in the geometric modgl, are the 3D points obtained by applying the
current translation and rotation g, n is the number of points in the geometric model, and
V' is the number of points that are still insidkg- after rotation and translation. Whenew;r

is outsideDr, Dr(p;) returns an approximation of the distance frphto the Dy volume,
obtained by projecting’; on the closest face of the volume. This expands the costiamc
gradient outside the volume to register, in order to accodatepartially-scanned bones.
Note that, by incorporatingy in the cost function, we compensate for the small errors
in boundary-point location that occur occasionally dursggmentation of the geometric
model. Because this cost function attempts to match disthelcesignatures, geometric
model vertices that diverge slightly from the true bone lotarg due to segmentation-errors

will be off by the same amount in the registered image.
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Figure 2.4: 2D illustration of the tracking procedure. listbxample we search for the
optimal location of the 2D boundary of a bone (shown in whitejng a 2D bone and
soft-tissue distance field (shown in grey). (Left) In a hyghhlikely neighborhood the
cost function F has a high value; the bone boundary may bet@pgeed in local minima.
(Center) In the neighborhood of the solution the cost fumckidas a lower value, as some
boundary points overlap with lower distance field valuese @istance field serves as a
local gradient: F decreases smoothly as the location aedtation of the white boundary
approaches the correct solution. (Right) At the correcttlonaand orientation the cost
function F should be close to zero.

Our tracking procedure searches for the position and @tiemt of each bone that re-
sults in maximal distance-field similarity at registratiom., the rotation and translation
that minimizes F (Fig. 2.4). We use a quasi-Newton algoritbrsolve the optimization
problem [1]. The distance volume serves as a smooth locdigrafield, which leads to
rapid convergence when the search starts from a point whkyasid a few geometric model
vertices are within the capture region of the localizedadist field. In practice, we begin
by applying to all the bones a rough alignment translafigy,,. The translation aligns the
center of mass of the bony points in the first five slices of tistadce field with the center
of mass of the five most proximal contours that define the arddrcal bones in the joint
(see Section 2.2.2). For example, the alignment transforpre-register a human wrist
would use the first five slices of a wrist distance field and the rinost proximal contours
of the ulna and radius bones. This approximation sufficessaaech start point.

The quasi-Newton method is fast and robust; however, liketraptimization proce-
dures, it is susceptible to being confined to sub-optimadligolutions. Consequentially,
we use 64 perturbed start positions for each bone and chbesolution that yields the
smallest value of the error function. Multiple searcheslpmre can be performed in pa-

rallel. The optimization procedure is stable with respegpérturbations in the space of
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possible rotations. This is consistent with the fact th&tions around a spherical object’s
center of mass are not likely to change the object’s origiagkure region. The perturbed
start positions were therefore generated by sampling theespf possible initial transla-
tions on three concentric spheres of radius 2, 4, and 8 voagtectively. In our experience,
the majority of the repeated optimizations per bone retlithe same minimum. The al-
ternative local minima were at least one order of magnitudbédr (expressed in squared

millimeters).

2.2.5 Hierarchical Approach

The distance field formulation allows us to apply the tragkprocedure hierarchically,
expanding the capture range of our method. We derive a blgraampirically, based
on a trial-and-error analysis of the start values of the dasttion F' on a few separate
sequences of volume images. For a complex structure likauh®an wrist (Fig. 2.5), we
use threen vivosequences of volume images. Each sequence consists offezardiwrist
poses, each of which corresponds to a different human subjipossible tree hierarchies
starting from the radius and ulna and branching towards thacarpals were considered,;
we chose the one which generated best start values of thieiooibn across all sequences.

We run the optimization procedure on successive layerseoftist bones, starting with
the forearm bones, as shown in Fig. 2.6. We iterate througlke$iconce we detect the mo-
tion of boneb; through cost function optimizatioroptimizationtransform), we propagate
the motion to all the bones that hakgas an ancestor in the tree hierarcpyopagation
transform), then we move on to the next bone. Optimizatiah@epagation transforma-
tions are accumulated for each bone.

The hierarchical approach ensures that we always start amingtion step from a
reasonable neighborhood, thereby boosting the captuge m@frthe registration procedure
from less than Srotational pose increments to a full range of wrist motidooa 180), as

shown in Fig. 2.7.
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Figure 2.5: The human wrist is a complex structure compyisire distal end of the two
forearm bones, and eight small, tightly packed carpal hoheshis X-ray view the five
metacarpals are also included. Figure reproduced withigsiom from [89].
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Figure 2.6: Wrist hierarchy induced from distance field infation. We consider four la-
yers in ascending order from the forearahna andradius; lunate andscaphoid; pisiform,
triquetrum,hamate,capitate andirapezium; metecarpals andrapezod. During a propa-
gation step the motion of a bomgis propagated to all bones in ascending levels that have
b; as an ancestor. The hierarchy indicatesrtiadius andscaphoid may be governing the
motion of the other bones.
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Figure 2.7: Imaged wrist-poses do not necessarily come all gnotion increments. The
images show the same geometric wrist model, after registrain two different poses.
The orthogonal greyscale planes correspond to verticaharidontal sections through the
CT volume images (darker grey areas correspond to softetigsighter areas to bones).
Note the significant differences in bone posture, orieotatand overall wrist location in
the scan volume. As shown here, two subsequent instandes sdine wrist can be outside
each other’s capture region.
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Data- | Type Number of Size Voxel size

set images (mm?)
(subjects x poses)

A in vitro 1x4 512 x 512 x 141 0.31°x1

B in vitro 1x4 171x171x 141 0.94°x1

C in vivo 1x2 180 x 180 x 60| 0.782x 1

D in vivo 80x12 100 x 100 x 80| 0.94°>x 1

Table 2.1: Datasets used in validation experiments

2.3 Validation Method

In this section we describe a series of experiments wherm#thod was used to register
wrist intra-subject CT images. In order to compare our méghperformance with earlier
results reported in the literature, we begin by evaluatingroethod’s accuracy on high-
resolution, markedh vitro data. We then examine our method’s robustness with respect t
practical issues such as image-resolution and perturigirothe registration start-point.
We take validation one step further by examining our meth@&rformance om Vvivo,
unmarked data. Finally, we evaluate our method’s robustndth typicalin vivo factors

such as variation in image subject and object pose.

2.3.1 DataAcquisition

Four different datasets (Table I) were used in our experimehll datasets were acquired
using CT technology (Hispeed Advantage, General Electridibé System, scan parame-
ters: 80kV, 80mA). All images consist of axial slices, wittet: axis oriented horizontally
right to left, they axis horizontally front to back, and theaxis vertically up, such that
the image resolution is lowest in thedirection. The geometric-model point clouds have
between 2000 and 8000 points, depending on the size of thee bon
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2.3.2 Experiments
In vitro accuracy and robustness experiment

In this experiment we evaluate vitro accuracy against the ground truth yielded by external
marker registration. We further compare auwitro results with those generated by grey-
value registration, implemented as described furthenielo

To enable comparison with earlier results reported in ttegdture, we use the high-
resolution dataset A, consisting of four CT images of a fixeztgpen (separated forearm
and hand) in different poses. Both components — the foreadrttemhand — were en-
cased in plastic resin to prevent relative bone motion. Ttebeeflect than vivo scanning
protocol the phantom forearm bones were only partiallyuded in the scan field-of-view
for three poses. Seven markers (ceramic spheres of vaiighitdierance diameters) were
rigidly glued to each specimen component, allowing us tatgish the registration ground
truthin vitro. Marker contours were extracted from each volume image i@stiolding at
600 Hounsfield units. The contour images were then procesghd 3D imaging soft-
ware package (Analyze AVW 2.5). The centroids of the sevérespal markers (one set
per specimen component) were used to calculate rigid-bastjomby a method of least
squares [79].

In both the tissue-classification method and the grey-vate¢éhod, the optimization
procedure is initialized with the ground truth. The resigtregistration transforms should
deviate from the given true transform due to each methoal'sstation and rotation error. In
both methods we compute for each registered bone the efativecto the true transform.
We report the relative error (mean and standard error odxdiiry cross-registration of the
four images in dataset A) as a translation and rotatiohelical axis of motionHAM)
coordinates [82]; HAM coordinates express rigid-body miotas pairs{, t) of rotations
around and translations along a unique helical axis.

Next, we examine our method’s robustness with image rasalusince in practice
our in vivo data’s resolution was limited by the large number of sulj@etrticipating in
motion studies and the large number of images acquired pgFctu To this end, we repeat

the accuracy experiment on dataset B. Dataset B, designechtdase lower resolution
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data, was obtained by smoothing and subsampling the imdgiedaset A.

Last, we examine the impact of initialization on the tragkprocedure. We note that
true transform data, as yielded by external markers, isllysoat availablein vivo. To
simulate this situationn vitro, we perform in this experiment a perturbation study, in
which the optimization procedure is restarted repeatadiymfthe ground truth yielded by
external-marker registration, plus a small random rigidhptransformation. We perform
a set of five trials, with a translational perturbation of 2r{epprox. 2 voxels in image
space) in a random direction, followed by a second set of fiaést with a translational
perturbation of 5mm in a random direction. Again, we reporberelative to the ground
truth transform, mean and standard error obtained by ceagstration of the four images
in dataset B, for both our method and grey-value registration

Grey-value registration implementati@rey-value registration is a voxel-property re-

gistration method that has been successfully used to t@ok fnotion from sequences
of volume images. Given two or more volume images and a seinfiacdel of the joint
bones, grey-value registration attempts to find the optinmoation of each bone across
the volume images. The method operates directly on the irgegevalues, via different
paradigms such as cross-correlation or Fourier analysise¥xample, Snel et al. [99] use
chamfer matching and texture characteristics to track 3iBtwrotion across sequences of
CT volume images.

Grey-value registration was implemented as in Snel et &, [@ith several modifi-
cations to increase accuracy. First, all the points, as sgghdo a random 10%, with a
greyscale value greater than 600 Hounsfield units of eachemaeere used in the calcula-
tion of the root-mean-square cost function; the values ahearget image were obtained
by tricubic interpolation. We used a high-performancedilgrimplementation [2], as op-
posed to a custom implementation, of the downhill simplexhoé of Nelder and Mead,
with a maximum deviation from the initial transform valuds/ = 6 voxels per axis and
Af = 7. To further boost this method’s ability to deal with parfacanned bones, the
original cost function was also slightly modified to approaite distance to the target vo-
lume whenever the model’s points were outside the targegendaring matching (Section
2.2.3).



29

In vivo accuracy experiment

Because it is technically impossible to know the ground tmithivo, we evaluate our me-
thod’s accuracy by comparing results with the mean answsewral manual registration
trials (described further below), and with the results gatesl by grey-value registration.
In this experiment we use dataset C, consisting of two lowtmti®n CT images of the
samein vivo left wrist, one with the wrist in a neutral pose (targeted susally aligning
the back of the hand with the back of the forearm and the thiethoarpal with the long
axis of the forearm) and one with the wrist extended.

Note that in this experiment we enhance the grey-value ndethth the hierarchical
approach described in Section 2.2.5. Without the hieraatl@nhancement, the capture-
range capabilities of the grey-value method are surpasgégelrange of joint-motion in
dataset C, rendering the method inapplicable. Results frbthrale methods — tissue-
classification, manual, and grey-value are further veriiigidg the following visualization
method.

Visual validation is performed by superimposing the registi bone geometric wire-
frame models with vertical and horizontal slices of the woduimage. Two sliders con-
trol the vertical and horizontal slice displayed. The regison results are automatically
checked for potential erroneous collisions between objiet coexist in the same image,
at the cost of further geometrical processing. To this e dU&BS surface is fit to each
object geometry (Raindrop GeoMagic, Research Triangle PR, a level-set distance
field representation is then generated from the NURBS repiasam [73], and the inter-
object distance is evaluated accurately for each verteeoNURBS surface with respect
to all neighboring objects [67]. The generated NURBS surféee® typically on the or-
der of 103 to 10* points. Collisions are indicated by negative inter-objdstahces and
reported to the user. When collisions happen, each objefetcguis further color-mapped
and iso-contoured according to the inter-object distaimcerder to create an informative
visualization (see Section 2.4). Registration results @ @valuated numerically, by ex-
amining the final-fit cost function values. Results are viguakpected in cases where fit
values were abnormally high, i.e. above 0.01.



30

Validation experiment Datasets | Results compared against

in vitro accuracy and robustness A, B grey-value registration

(image resol. and start-point

perturbation)

in vivo accuracy C grey-value registration
segmentation-based registration
visual inspection (collision detection)

in vivorobustness D visual inspection

(image subject and object pose) numerical analysis

Table 2.2: Validation experiments

Segmentation-based registratiBime medical school students, all familiar with the seg-

mentation procedure and the anatomy of the wrist, manuagjynented the wrist from each
of the two volume images in dataset C. Each segmenter tookadeuas through the pro-
cedure, for a total of twelve runs. Registration of the calpmies between two volume
images was subsequently accomplished with an inertiahmagenethod [27]. Finally, re-

lative motion to the radius was reported for each bone andStatistics on the registration
results (rotation and translation mean and standard dewjgber bone) were collected,;

note that these statistics include intra-observer vanati

I n vivo robustness experiment

Finally, we evaluate our methodis vivorobustness with respect to object pose and human
subject data (dataset D). Dataset D consists of CT wrist isiaggquired from forty human
subjects. Ten to twelve low-resolution volume images ohbwtists were acquired per
human subject, spanning a full range of wrist poses. The &gt left wrists were subse-
guently split into separate volumes, for a total of 900 wisiume images. Registration
results are validated both visually and numerically wité thethod earlier described.

Table Il summarizes the datasets and validation methodkfaseach experiment.
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2.4 Results

1) In vitro accuracy and robustness experiment

In the in vitro accuracy experiment our tissue-classification registnathethod demon-
strated super-resolution accuracy, and generally hadenti@nslational errors than grey-
value registration. For all registrations the mean tissassification translational error
was less than 0.3mm, compared to a mean grey-value tramsherror of 0.5mm. The
mean rotational error was less than 0id both methods (Fig. 2.8). The grey-value regi-
stration results are consistent with those reported by &nall [99]. A one-sample t-test
(o = 0.05) on the difference between the mean results produced byvihnenethods con-
firmed the tissue-classification translational accuragyovement was statistically signif-
icant (p = 0.007).

Decreased image resolution affected the accuracy of ouradé¢ss than the accuracy
of the grey-value registration method (Fig. 2.8). Our mdtimiroduced a mean transla-
tional error of less than 0.4 mm (a3Qranslation accuracy decrease when image resolution
drops to one third), compared to 0.9mm translation erronéngrey-value method (a 80
accuracy decrease when image resolution drops to one.thiftg mean rotational error
increased to 0.6in the tissue-classification method, and Qiid the grey-value method,
respectively. A one-sample t-test & 0.05) on the difference between the mean results
produced by the two methods confirmed the tissue-classificanslational accuracy im-
provement was statistically significant € 0.001).

The last part of thén vitro experiment showed that the tissue-classification registra
method maintains super-resolution accuracy with pertiobsiin the optimization start po-
sition (Fig. 2.9). The tissue-classification method wasfically insensitive to perturbation
(less than 0.4mm, 0%Gmean error, & degradation with perturbation), while the grey-value
method’s mean rotational error doubled (0.8mm,°},.%s shown in Fig. 2.9, middle col-
umn. A one-sample t-testv(= 0.05) on the 2mm perturbation results confirmed that the
tissue-classification accuracy improvement was stadi$gisignificant, with respect to both

translationp = 0.01) and rotation = 0.007). Increasing the amount of perturbation from
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Figure 2.8: The accuracy of tissue-classification and gedye registration, and the influ-
ence of image resolution on both methods. For each reso|wie plot the mean and stan-
dard error obtained by registering ten carpal bones acoags/blume images. The tissue-
classification method introduces smaller translationadrerthan grey-value registration.
Tissue-classification accuracy degrades more gracetudly the accuracy of grey-value
registration.

2mm to 5mm did not further impact the results of either metfteid. 2.9). When distor-
tions as small as 2 voxels are present in the optimizatiohg@dant, the tissue-classification
method significantly outperforms grey-value registratioith an average combined (trans-

lation and rotation) accuracy improvement of over 74% (Bi@0).

2) In vivo accuracy experiment

Thein vivo accuracy experiment showed good correlation between sudtsaeturned by

the three methods tested: tissue-classification, grayeyand segmentation-based (Fig.



33

- - ~tissue—classif
% grey value

o
[ee]
—o—|

o
~
——t
|
|
|
|
I
|
T
|
|
|
I
I
I
——

translation error (mm)
o
(*2)

o
N

2
start—point perturbation (mm)

rotation error (deg)
H

2
start—point perturbation (mm)

Figure 2.9: The influence of start-point perturbation osuesclassification and grey-value
registration accuracy. The amount of perturbation inaeam the horizontal axis from

Omm to 5mm. At each point, we plot the mean and standard ebtaireed by registering

ten carpal bones across four volume images, in five periorbtials. The tissue classifi-

cation method is stable with perturbation, while grey-eatagistration is not. Increasing
the amount of perturbation from 2mm to 5mm doesn’t impadhterthe accuracy of either
method.
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Figure 2.101n vitro tissue-classification registration error and grey-vaegstration error
with a 2mm random perturbation in the optimization starnpfiop — translation, bottom
— rotation). We register each bone across four volume imageash registration is per-
formed five times, each trial corresponding to a differentahtranslational perturbation
of 2mm in a random direction. For each bone, we plot the medrstandard error thus
obtained.
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2.11). Since the ground truth is not availalatevivo, this consistency with the expert
segmentation-based results, along with visual inspecti@ne the best indications of ac-
curacy available. The visual inspection of the grey-vakgstration results revealed colli-
sions between several pairs of bones. Figure 2.12 illestratcollision detected between
the radius and scaphoid bones. No collisions were detentéki results generated us-
ing the tissue-classification method. These results iteliteat the accuracy of grey-value

registration is insufficient when measuring small featwash as inter-bone spacing.

3) In vivo robustness experiment

In thein vivo robustness experiment more than 13,500 bones were regidtaough the
tissue-classification method. Visual and numerical vailslashowed that the method was
stable with both object poses and human subjects. In lessGH& of cases (8 bone
instances) numerical validation indicated suspiciousdities. For each of these cases,
further visual inspection revealed that the abnormal fit®alresulted from errors in the
scanning procedure, wherein the respective bone was ortiglpaincluded in the target
scan. With occasionally as much as half of a bone missing frenvolume image, visual
verification showed that the bone was still being registedectly using the information

available.

2.5 Discussion

Our results indicate that tissue-classification regigtratonsistently attains subvoxel accu-
racy. The method maintains subvoxel accuracy despite @giagimage resolution, and is
stable with perturbations in the initial optimization s$tposition. Furthermore, visual and
numerical validation during clinical applicatiom(vivo robustness experiments) shows that
the method is robust with varying object poses and subjects.

Tissue-classification should be given credit for our met¥hadcuracy, because the ob-
ject boundary estimated through tissue classification bpsrsresolution accuracy. The
comparison with grey-value registration shows that witltbe super-resolution boundary
estimate, the matching process is effectively reduceditguxel-wide estimates, which
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Figure 2.11: Tissue-classification registration resuissMs segmentation-based registra-
tion and grey-value registration results. For each boneplethe mean and standard
deviation obtained by manual registration in a total of tx@eluns, the tissue-classification
registration result, and the grey-value registration ltesBoth tissue-classification and
grey-value registration results are generally within ara@dard deviation of the mean ex-
pert segmentation-based registration results.
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Inter-bone distance

Figure 2.12: Visual inspection shows collisions betweendsaegistered using grey-value
registration. (Left)n vivo grey-value registration of the radio-scaphoid joint vergught)
tissue-classification registration of the same joint frastedet C. Bones are color mapped
and contoured according to the distance between bonesgmistration. The saturation
of color on bone surfaces represents the distance to thesigaint on the opposite bone.
Contour lines are drawn at 1mm intervals. (Top) Bones in thairect anatomical context
— note the two registration methods yield similar bone po¢Bsttom) Bones rotated to
show articulated surfaces more clearly. Blue correspondsgative inter-bone distances,
indicating collision in the grey-value registration resul
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results in lower accuracy. The resulting distance fieldes@ntation further ensures that
registration results converge to the same value, regardlgserturbations in the start po-
sition. The distance field acts as a gradient guiding thechetar the global minimum.
Without this gradient, the search can easily be trappeddal loearby minima, as oun
vitro perturbation-stability experiments with grey-value sgition show.

The comparison with grey-value registration reveals wesute-classification maintains
subvoxel-accuracy with decreasing image resolution. Whensampling step is suffi-
ciently small with respect to the desired features, the ralurae image often offers rich
information: object texture-patterns can be implicithemdified and used in the matching
process. In this casenoreraw information can béetter However, as the features of
interest become smaller, imaging noise effectively bltes informational content of in-
dividual voxels (Fig. 2.13). In this casquality processed information — like accurate
boundary-estimates obtained through unsupervised tearri begins to matter. As long
as we guarantee super-resolution boundary estimatestreggin accuracy stays within the
subvoxel range.

In the process of developing our super-resolution accuegfistration method, we have
proposed new computational methods that are applicableroealer scope of medical im-
age processing. Our technique uses neighborhood infarmé#troughout a volume to
generate localized distance fields directly from sampldds#ds. No feature points need
to be pre-segmented per scan or subject in order to genbmtistance fields. Distance
fields have been used before to expedite registration pesg410], however no previ-
ous work has generated these distance fields with supdtHiesoaccuracy. Recovering
material boundaries from sampled datasets, as well asaergedistance fields once geo-
metric models have been extracted, is a research topic eradields [19, 115, 73]. We
build on the work of Laidlaw et al.[62], who use Bayesian ptabty theory to classify
accurately tissues in medical volume images. We are noteawofaother work in gener-
ating super-resolution accurate distance fields directdynfsampled datasets. Although
we limited the distance field computation in our experimeata five-voxel band around
material boundaries, this distance computation could tieeeperformed or propagated

beyond this threshold [73]. However, we showed that theahodtical approach described
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Figure 2.13: Image resolution impacts voxel informati@ue: as resolution decreases,
‘more’ raw grey-values may deliver less information thaewer’ information-enhanced
voxels. From left to right: one slice from a high-resolutiém image (0.3 x 0.3 mm), and
two slices from a low-resolution CT image (same wrist, 0.99¢0Om). Each area of interest
is detailed in the bottom row. Inter-bone distances thahareow in high-resolution images
(Box 1) become a mere voxel wide in low-resolution images (BpxB®xes 2 and 4, note
the differences in bone tissue texture; high-resolutioages reveal a distinctive texture
pattern (Box 2), while detail is lost in low-resolution imag@ox 4). Box 5, note how
boundaries are blurred due to partial volume effects, and@mote the soft or diffused
bone boundary. As shown in oir vitro experiments, accurate boundary estimates based
on information throughout the scan contribute more infdramathan such collections of
unprocessed grey-values.
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in section 111.C can overcome potential capture region titions without the additional
cost of extended distance computations.

Our matching procedure employs a new similarity measutte tindike chamfer match-
ing or iterative closest point measures, incorporatesudcs field knowledge from both the
reference and target images. The measure also accounirf@allp-scanned objects. We
believe this measure can improve the stability of otherstegiion procedures with respect
to errors introduced both by geometric model segmentatahpartially scanned objects.
While in recent literature a large number of sophisticatedilarity measures have been
proposed [114], we note these measures were developedyrfaiimtermodality registra-
tion, and likely do not have strong advantages over sunsjoéred-differences or root-
mean-square matching when applied to images obtainedghitbe same modality. In our
tissue-classification registration approach, sum-ofsegrdifferences is in fact the natural
similarity choice, since the reference and target distdigte intensities corresponding to
registered points stand, by construction, in an identitgti@nship.

The tissue-classified distance field approach helped usiiglammotion-directed multi-
object hierarchy in the wrist-joint case. The potential gbiogical implications of this hi-
erarchy are beyond the scope of this chapter but the higrartdbled our registration me-
thod to trace motion between wrist poses that were not weatch other’s capture region.
A similar approach is likely to boost the capture-range bdjpes of other local-search
registration methods.

While accurate, our tissue classification method poses ctatipoal challenges. Re-
gistering a series of twelve wrist volume images (fifteereoty per pose) takes twenty
minutes on a multi-node 686 cluster running Linux (AMhlon™ XP 2700+). We
emphasize however that the focus of our work is boostingracguand not minimizing
running time. As no user interaction beyond the initial segtation and potential final
visual validation is required, the registration is, aftiérrain off-line.

While our approach addresses successfully some commoreprsiibund in medical
image processing, it also relies on several assumptionsti€3ue-classification procedure
assumes a simple tissue-structure, in which hand softdiss assimilated with marrow-

tissue. While modeling a more complex structure (for exarngate that would distinguish
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between trabecular and cortical bone) would likely furtingorove our method’s accuracy,
our results indicate the simple model suffices for subvaxelrate registration. In the
validation phase, we assume implicitly thatvitro accuracy is an indicator ah vivo
accuracy. We note that, in fact, in aarvitro experiments the tissue-classifier misclassified
several voxels. These misclassifications can be attribiatéde differences between the
material composition of a fixed specimen encased in resimaliisoft tissue removed, and
thein vivo tissue model we assumed. While the inability to determinarthevo ground
truth makes it difficult to compari@ vivo andin vitro accuracy, it is reasonable to assume
that errors in the classification process reflected nedgtorethe registration results. We
speculate in this view that oum vivo results, in fact, surpass the accuracy of wuvitro
results. Last, but not least, we note that we interpretsiohis or the lack of collisions in
our in vivo experiments not as a method validation measure, but as aaiodthat error
size matters.

The accuracy results we obtained challenge opinions wikdelgt about the superiority
of voxel-property-based over segmentation-based ratjistrmethods [66]. Segmentation-
based registration aligns structures such as featurespgircipal axes, moments, curves,
or surfaces. Segmentation-based methods may use defermablels, in which case an
extracted structure from one image is elastically deformeefit the second image. They
may also use rigid models, in which case the same structueesx#racted from any im-
ages to be registered. In contrast, voxel-property-basgdtration methods operate di-
rectly on the image grey values, without prior data reduchip the user or segmentation:
the full image content is used, via different paradigms sasmeighborhood statistics,
cross-correlation, Fourier analysis, optic flow, througthive registration process. Voxel
property-based methods integrate segmentation andreg@stand are thus likely to gene-
rate accurate results; these methods have been able t@atgenre accurate results than
segmentation-based methods in several instances [66].

Our tissue-classification registration can be regarded ladgad method, combining
the strengths of the two approaches — voxel-property ancheetation-based. While

our matching procedure evaluates the correlation betwagrcs and target volume image
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values, without explicitly extracting the target objecubdary (like voxel-property meth-
ods do), through tissue-classification we neverthelessadighe original volume data that
doesn’t convey object-boundary information (like mostreegtation-based methods do).
The recovered object boundary can be thought of as havireg-gapolution, in that through
our approach boundaries are detected with higher accunacyan image’s resolution al-
lows. Nevertheless, due to image noise and modeling asgmapthis boundary is not
perfect. Should one be able to recover more accurate obpectdary information, gene-
rate a distance field from that boundary, then perform destefireld matching as described
in Section 2.2, registration accuracy would only increagtis suggests that, contrary
to current knowledge, in the long run segmentation-basetthads have the potential to

surpass the accuracy of voxel-property methods.

2.6 Conclusion

We presented in this chapter a novel intra-subject methoglilovoxel-accurate registration
of objects from CT volume images. Results show average agcumgrovements of 7%
over grey-value registration. The method is of particutaeriest to applications where
collections of tightly packed, small objects need to begsteged. To this end, we showed
in a wrist data application that earlier registration mefhoan introduce false inter-object
collisions, while the new method does not.

The tissue-classification registration method maintaitiwsxel accuracy with decreas-
ing image resolution, and is stable with perturbations @itfitial optimization start posi-
tion. The method is also stable with respect to partiallgrsed objects, and with varying
object pose and subject. Our approach should be of interasiytregistration applications

where super-resolution accuracy is desired.



Chapter 3

Modeling Ligament Tissue from Bone

Surfaces and Motion

3.1 Introduction

We propose a method for modeling inter-bone joint spacesaaad ligament paths in ar-
ticulations. Inter-bone joint space areas define the @rsiarface where bones articulate
with each other. Modifications in inter-bone joint spaceaarand ligaments correlate with
numerous joint-related post-trauma disabilities andoteridegenerative diseases, yet little
information about the nature of these modifications is aulyevailable. Most articulation
and soft tissue studies are performed eithetitro or during clinical interventions, and thus
reveal little information on potential modifications of sb$sue biomechanics due to injury
or diseaseln vitro specimens illustrating a specific trauma or disease arty/ravailable;
invasive studies alter inevitably joint kinematics andshatroduce false modifications.
Althoughin vivo 3-D techniques for studying the structure and kinematiciot were
recently introduced [79, 35, 38, 111], they do not attemptapture more subtle details
such as potential soft-tissue constraints or modificatioraticulation. Our method suc-
cessfully identifies and highlights vivo and non-invasively potential focal (i.e., localized
and well-defined) changes and soft-tissue constraintdicuéations.

In our approach, the structure and kinematics of an articulaare determined from

43
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segmented CT volume images. Bones in the joint are modeldukfuipbth implicitly, as
scalar distance fieldsand parametrically, amanifold surfacesThese two types of repre-
sentation have complementary strengths for differentdygdecalculations. Manifold sur-
faces provide an accurate, smooth, and locally contr@ledpresentation of the bones [47].
Distance fields on the other hand, have important advanfagegometric computations
such as fast distance calculation, collision detectiod,iaside-outside tests [40]. Distance
fields computed from the parametric representation pratelsupport for estimating inter-
bone joint space areas. Once inter-bone joint space areasiaulated, focal changes in
the articulation are evaluated by comparing the area aradittof the bony contact.

We assess potential soft-tissue constraints by calcglaie minimum ‘length’ of li-
gaments as a function of bone kinematics. Ligament pathalacemodeled based on
the distance field representation. We model ligaments atesti@aths between ligament
insertion points — the points at which a ligament is anchdeetdones; these paths are
constrained to avoid bone penetration, and can be simitangtrained to avoid cartilage
penetration. Our model takes into account the ligament bibentation, the location of
the ligament insertion points, and the locations of adjabemes. The ligament model
reported here is based solely on joint geometry.

We demonstrate our method by applying it to data collectethfboth forearms of a
volunteer diagnosed with a malunited distal radius fractarone forearm. The distal ra-
dioulnar joint (DRUJ), a complex joint involved in forearratation, comprises the two
forearm bones (radius and ulna — Fig. 3.1) and a number ofniége and cartilaginous
complexes. Forearm injuries involving the DRUJ often resuh significantly decreased
range of rotational motion, decreased grip strength, assl & wrist motion. The symp-
toms can be disabling, especially in physically activevidiials or when the pathology
affects a work-related activity.

Altered soft tissues and focal changes in the DRUJ articudiathay be responsible
for the abnormal functioning of the forearm in the absencevident bone damage, as a
recent study suggests [77]. We show that our contact-athgament-length model gives
unexpected insight into the biomechanics of the forearm amate importantly, reveals

significant differences between uninjured and injuredcaléitions at the DRUJ. Results
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Figure 3.1: The DRUJ comprises the two forearm bones — rg@yusnd ulna (U). The
wrist is at the upper extremity of the drawing. During foreaotation the DRUJ goes from
supination (left) to pronation (right).

indicate that our method could be useful in the study of thenabanatomy and kinematics
of complex joints like the wrist and may also have appliaagito the study of other joints

like the knee or the elbow.

3.2 Reated Work

Several approaches to modeling joint surfaces are knownplate splines [20], B-splines
[9, 10], and piecewise patches [92] are among them. Theskoaetsuffer from prob-
lems such as lack of generality, lack@# continuity, and difficulty in enforcing boundary
constraints. Our parametric model for bone surfaces iscbasenanifolds [48].

Distance fields have been used in robotics [55, 65] and canguaphics [40, 44, 21,
87, 49]. Although for the results reported in this chaptemsed a brute force approach to
generate distance cuboids from the manifold representdtster techniques such as level
set-based methods [81, 96, 97] are available.

Searching for shortest paths in spaces with obstacles &saichl problem in robotics.
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A survey of the substantial literature on the shortest-patiblem can be found in [117].
Solutions are based on computational geometry methods8®125, 11], graph search
based algorithms [57], and differential geometry and hytechniques [56, 15], depending
primarily on the assumed structure of the search spacel{edigl or continuous surfaces).
Our technique belongs to the differential geometry and idytategory. In general, meth-
ods in this class generate shortest paths on surfaces. metkeds assume a continuous
representation of surfaces and are therefore more accattiteugh they yield paths that
are only locally optimal. Our work extends this approach Bbspaces with continuous
surface obstacles.

The two scalar data visualization techniques we use, codppimg and isocontouring,
are well known scientific visualization techniques [72].

Studies of distal radioulnar ligaments are performed inegainon cadaver uninjured
wrists [36, 5, 94]. A clinicain vivo study involving surgery was performed by Kleinman et
al. in 1998 [58]. To our knowledge, rin vivo noninvasive studies of the distal radioulnar

ligaments have been done.

3.3 Materialsand Methods

Figure 3.2 depicts our method pipeline. In the first phasegenvolumes of the wrists in
multiple poses are acquired with a CT scanner (section 3.81Dm these images bones
are manually segmented and further modeled as distance éistimanifold surfaces (sec-
tion 3.3.2). Kinematic information is recovered via sudaegistration of the bones (sec-
tion 3.3.3). Inter-bone joint space areas and ligamentspath estimated using both bone
representations (sections 3.3.4 and 3.3.5). We repeabtitaat-area and minimum-path
computation over all joint poses for a given volunteer. Fynanter-bone joint space areas
and ligaments of the injured and uninjured forearm of thaintder are compared (sec-
tion 3.3.6).
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Figure 3.2: Method pipeline for measurement of inter-bametjspace areas and ligament
paths in joints. Point clouds corresponding to bone susface segmented from CT vo-
lume images. Bones are further modeled as both distance &altisnanifold surfaces.
From the ligament-path and contact-area models we extreirtnation characterizing the
articulation that is further analyzed and presented to f&e.u

3.3.1 DataAcquisition

CT volume images of both wrists were obtained simultaneowstlty a GE HiSpeed Ad-
vantage CT scanner. Scout and reference scans were perfaitheéble forearm and wrist
in the neutral position. Additional scans were performethuhe forearm at 30, 60, and
90 degrees of both pronation (i.e., forearm with the palnmtadownwards) and supina-
tion (i.e., forearm with the palm facing upwards). In theelmm with limited mobility
(decreased range of pronosupination), scans were made @d36e intervals (above),
and then at the maximum rotation that could be comfortabhyeaed. Approximately 45
1.0mm CT slices were acquired at each position.
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Figure 3.3: Manifold surface representation of bones. :L&fgmented point cloud corre-
sponding to the ulna. Right: parametric (manifold) modehef same bone.

3.3.2 Bone Segmentation and Modeling

Points corresponding to the outer bone cortex were mansedjsnented from each CT slice
and grouped to form a separate 3D point cloud for each bonee¥dmstruct a bone surface
by fitting a manifold surface to the corresponding cloud of@ints [47] (Fig. 3.3); the re-
sult is a smooth, locally parameterizéd, continuous surface. The overlapped structure of
the manifold-surface representation, which is esseytiadipired by differential geometry,
has several advantages including flexibility in shape dnfjasts without costly constraints,
and smooth transitions and uniformity among patches.

The manifold model addresses difficulties introduced byGhescanning process, such
as dense sampling along sparse contours and noise [47]. @&héold model is analytic
and can therefore by sampled at any resolution to producetbnaistance maps. High-
resolution smooth distance maps are necessary in orderiltbligament paths, as dis-
cussed in Section 3.3.5.

By convention, we reflect left forearm data in order to dinectbmpare it with right
forearm data. The mirroring operation is purely mathenaatied does not affect the data;
it merely allows easier comparisons.

Modeling inter-bone joint space areas and ligament patisines bone-to-bone dis-
tance information (sections 3.3.4 and 3.3.5). The manifaldaces provide accurate,

smooth but computationally expensive distance infornmatisVe combine the manifold
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representation with interpolated distance fields, whiehsdightly less accurate but more
intuitive and much faster.

Distance fields for each bone are computed using the recatetrmanifold bone mod-
els. A distance field is a scalar field that specifies the sigh&dnce from a point to the
bone surface (Fig. 3.4). Numerical sign is used to distisigtine inside from the outside
of the bone: negative values are inside the bone, positivesare outside the bone, zero
values are on the bone surface.

The distance field is computed from the manifold represemtas follows: given a
point P in space, the closest point Q on the manifold has tbpepty that the surface
normal at Q points in the direction P-Q. We find an approxingatess for the point Q by
finding the closest point Q on the manifold mesh, then perfargnadient descent to find
the Q that meets the above criteria. The inside-outsidestesily involves counting the
number of intersections with the manifold mesh of any rayfi® [8].

In order to increase the speed of lookup operations, thardistfields are sampled on a
regular grid. We call the resultdistance cuboidThe distance cuboid can be regarded as a
scalar data set sampled over a regular 3D grid surroundegdhe. Distances to the bone
surface are known exactly at grid nodes. Within a grid ceditashces to the bone surface
are obtained via tricubic B-spline interpolation of the diste values at grid nodes.

The double bone representation — manifold surfaces andmistcuboids — enables
us to perform further joint-related computations, such a@sutation of inter-bone joint

space areas (section 3.3.4) and estimation of ligamens gseiation 3.3.5).

3.3.3 Recovery of Bone Kinematics

Recovering the bone kinematics enables us to analyze owthate joint space area and
ligament measurements as functions of wrist motion. Motibtne radius with respect to
the ulna was determined for each scanned wrist rotatiortiposiFirst the ulna bone was
registered with respect to its neutral position to accoangfobal changes in forearm posi-
tioning. Next, the relative motion of the radius with respgeche ulna was calculated. The
forearm data modeled and analysed in these experimentsoNasted and preprocessed
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Figure 3.4: Distance field representation of bones: hot&d®@D section through a signed
distance field (ulna). The contour corresponds to the baynafathe bone. Sign distin-
guishes the inside from the outside of the bone: negativesgadre inside the bone, positive
values are outside the bone, zero values are on the boneesuftae dark area is the inside
of the bone.

several years before the development of the motion trackiathod described in Chap-
ter 2. Therefore in the experiments reported in this chagigstration was accomplished
via a manually-aided surface-distance-minimization athm [77]. Bone kinematics were
reported in a standard anatomic coordinate system defirtee iistal ulna as follows: the
x-axis was directed proximally along the shaft of the ulna agftheéd by the centroids of
the ulnar bone cross-sections, thaxis was in a palmar direction and defined to be per-
pendicular to a plane that passed throughxtagis and the tip of the ulnar styloid, and the
y-axis was constructed perpendicular to bothxh@&ndz-axes. The origin of the coordinate
system was defined by the intersection of xkexis with the (ulnocarpal) articular surface
of the head of the ulna (Fig. 3.5).

3.3.4 Inter-Bone Joint Space Area Calculation

The inter-bone joint space area is defined as the corticldcarea on the bone that is
less than a prescribed threshold distance (typically 5 niomhfthe cortical surface of a
neighboring bone. Estimating inter-bone joint space aregsires computation of inter-
bone distances within the joint.

Once distance cuboids are generated, we calculate thacksieom an arbitrary point,
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Figure 3.5: Anatomic coordinate system defined on the ulh&. |®cation and orientation
of the x-axis were generated from the cross-section centroids afltiee while thez-axis
was defined to be perpendicular to a plane that passed thtbagkaxis and the tip of the
ulnar styloid. They-axis was constructed perpendicular to bothxhandz-axes.

p, and a bone surfacé, as follows. Each bone surface has a surrounding distarimsctu
f»- We remind the reader that a distance cuboid can be regasdeskeanpled dataset stored
over a regular 3D grid; distance values are known exactlyidtrgpdes, and computed via
interpolation inside grid cells.

The pointp can be inside or outside the distance cubfjidWe make sure that areas
of interest (i.e., articulated surfaces) are well withie thistance cuboid. For simplicity,

Figure 3.6 illustrates the procedure in 2D. We evaluate tages to find the distance:

pisinside f,: we look upf;, for p

p isoutside f,: we first find the distance to the nearest pgihbn the boundary
of f,. We then add it to the distance value acquired by lookingiufor p'. Since
points outside the distance cuboid are of little interest (they are far away from

articulated surfaces), this distance sum is an acceptapl®xdmation.

With this procedure we find distances from every vertex insindace model of one bone
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Figure 3.6: 2D illustration for obtaining distances fromrmisp; andp, to boneb. f, is the
distance cuboid for bon Shortest distance values to bdnat the grid intersections are
known. We use tricubic interpolation to determine distavadaes within the grid. Sincg,

is inside the cuboid, the distance frgmto b is equal tof,(p;) = d;. Forp,, we first find
the distance to the closest pojitin the distance cuboid and then the distance betwgen
andb is approximated ag, + f,(py) = dj + d.

to neighbors of interest.

Using the inter-bone distance we compute isocontours ornntiee-bone joint space
area, each contour showing where the distance map is egaatdastant distance. For
efficient computation, we assume that the distance mapaariaver the triangular faces
that comprise the surface of the bone and thus the equahdestaontours are straight line
segments over each triangle. If the distance value of a aofgawithin the range of the
distance values at the vertices, a contour line segmentergted over the triangle.

Figure 3.7 shows typical inter-bone joint space areas irDR&J; the joint was ex-
ploded to show the articulated surfaces more clearly. Thar om bone surfaces codifies
the distance to the nearest point on the opposite bone;da&diens are closer.

We characterize the inter-bone joint space area by its sidebg the location of its
centroid. The size is the area of the surface triangles mitte 5 mm contour. The location
of the centroid is described in cylindrical coordinateshwiéspect to the same standard
coordinate system used to report bone kinematics.

It is important to note that the articular contact calcudatere is an estimate of joint
contact based upon the distance between cortical bonecsarf@€artilage thickness, bone

and cartilage deformation and stresses in the tissues wemnsidered in this study.
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Figure 3.7: inter-bone joint space areas in the DRUJ. Bones@or-mapped and con-

toured. The color saturation on bone surfaces indicatedisii@nce to the nearest point on
the opposite bone; darker regions are closer. The jointptoded to show the articulated

surfaces more clearly. The maximum distance visualizedns, contour lines are drawn

at 1 mm intervals.

3.3.5 Ligament Path Estimation

We can also use the double bone representation to consigachdnt paths. We use
anatomical landmarks to manually identify the insertiom(the points where the lig-
ament is anchored to the bone) of a given ligament on the borface. We generate
plausible ligament paths as shortest paths between imsgutiints, constrained to avoid
bone penetration.

We build shortest paths via an optimization approach thptoés the distance field
representation of the bones. Unlike graph-based minimamgth path approaches, this
technique deals effectively with a large number of bone rheedices without requiring
expensive restructuring — in terms of memory and time — ofséerch space. The result-
ing paths are also more accurate than those generatedafopé, by graph approximation
algorithms, as the method allows a large number of path abombints and recovers grace-
fully from obstacle penetration. We begin the descriptibtihe algorithm with a simplified
2D example, shown in Fig. 3.8. Here we are required to find atesiopath between two
pointsp, andp,, that does not penetrate the 2D obstacle on the right.

We start by attaching a local 2D coordinate system to theachestso that the origin
of the system is gty and thex axis is the line defined by, andp,. We considemn — 1

points in addition tg, andp,, equally spaced on thep, segment. We reformulate our
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Figure 3.8: Shortest path between two poimfsndp, (2D case); the path must not pen-
etrate the 2D obstacle on the right. Following the optimaratpproach, the poinfs to

p, — 1, initially equally distributed on thg,p,, segment, increase their y coordinate so that
the nonpenetration constraint is satisfied.

problem in the following terms: “Find the coordinates of the 1 points so that the length
of the pathpypip-...p,, is minimum and the height of each point with respect to theauts
surface is nonnegative.” If we fix thecoordinates of the points so that they are initially
equally spaced on thgyp, segment, our problem amounts to minimizing the Euclidean

length of the path over thg coordinates of the points:

argminYiZ?z_Ol (i1 — )2 + (Vi1 — ¥i)* =

= argminy, ¥/ \/ const + (Y41 — ;)2 (3.1)

subject tofy,(z;,y;) > 0,1 =0..n — 1
wherez;,; — x; = const, i = 0.n — 1
The formulation described above extends to 3D, where wenigeiover both thg and

z coordinates of the points:

argminy, , Y7 /const + (Y1 — vi)? + (201 — 2i)? (3.2)

subject tofy,(z;, yi, 2;) > 0,i=0:n—1

The extension of the algorithm to any number of obstaclesasghtforward.
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dorsal

Figure 3.9: Insertion point location: insertion points eéln@sen manually, based on anatom-
ical information. Points are randomly distributed on thdate of the bones within a circu-
lar area with a diameter of 4 mm. Left: insertion site on theaulRight: dorsal and palmar
insertion sites on the radius.

We use a sequential quadratic programming method [3] tesbk optimization prob-
lem. The sequential quadratic programming method is fadtrabust and handles both
nonlinear objective functions and nonlinear constraidtéhough it is a general concern
that nonlinear optimizations can become trapped in sutmgbtiocal solutions, in our ex-
perience this has not been a problem. We have found thai@ualiiterations of the opti-
mization process with significantly different start pamits converge to the same solution.

We are currently using three different start solutions:

1. points on the straighip,, line;
2. points on a randomly displaced path;

3. points generated by the procedure in the previous prgmstion position.

The optimization procedure converges to the same solutiati ihree cases. This outcome
is justified by the smooth structure and fine resolution ofsth&rch space generated by the
distance field representation.

We considered several plausible insertion points for esament, as precise infor-
mation on insertion point location was not available. Theemion points were generated
by randomly distributing points around a manually chosenltaark on the surface of the
bones, within a circular area with a diameter of 4 mm (Fig).3®he insertions were de-

fined on the ulna at the base of the styloid for both ligaments @ the radius at the
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Figure 3.10: Shortest paths (dark gray lines) generatetidiigament model.

dorsal and palmar prominences of the sigmoid notch, resspéct The locations of the
insertion sites and the area of insertion were derived froatanical descriptions in the
literature [36, 5, 94, 58]. The results of the insertion peindy are presented in section 3.4.

We tried several values for the number of pointdn the DRUJ case, asapproaches
40 the total length of the path converges to a stable value tif®value ofn the length
of each mini-segment in the path drops below 0.2 mm, whickiges sufficient accuracy
to detect deflection of the ligament by the bone. Figure 3Hdwvs two shortest paths
generated with our algorithm.

We characterize the ligament paths by their lengths and ‘theflection’. Lengths are
normalized with respect to the uninjured length in neutrahpsupination. Deflection is
defined as the maximum distance across all path points tarhigls line defined by the
two ligament insertion points.

The ligament-length model reported here is based solelpioh geometry. Structural
and material properties of the ligaments were not takenaotmunt in this study. While
the paths we generate are not actual ligament paths, theyagigeful lower bound on the
length of these ligaments and thus help identify potertiakjmobility constraints imposed
by ligaments.

3.3.6 Visualization and Analysis of Results

The software package we have developed for visualizingdbelts of our technique con-
sists of C++ and Open Inventor code and runs on the SUN UltraSpal Windows plat-

forms.
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We visualize inter-bone joint space areas using color nmgpand contouring. Color
maps are generated for each bone so that distance valuesfadespoints are mapped
to varying color saturations (more saturated colors regeshorter distances). Distances
larger than the contact threshold value (5 mm) are neithlered nor contoured and are
shown as white surfaces. Contours and ligament paths aralizist as polylines.

We also analyze the results quantitatively by comparingnfignt length, ligament de-
flection, inter-bone joint space area size, and inter-boim gpace area centroid location
between the injured — malunited distal radius fracture — anthjured forearm of the

same volunteer.

3.4 Resaultsand Discussion

Generating inter-bone joint space areas over differemlion rotation positions yields se-
guences like those in Fig. 3.11. The decreased size anédlaitation of the inter-bone
joint space area in the injured case is noticeable, espetoalards pronation.

Figure 3.12 quantifies the size of the ulnar inter-bone aradlaeshold of 5 mm for the
volunteer’s uninjured and injured forearm. For the unieglwrist, inter-bone joint space
area was positive for a 3mm threshold as well. For the injuvadt, there were several
poses, mostly pronated, in which the 3 mm inter-bone joiatemrea was absent. Together
with the 5 mm inter-bone joint space area changes, this stgjge increased gap between
the bones in the injured case.

We measured inter-bone joint space area as a region on taesurface close to the
radius; an analogous measure on the surface of the radiusls@abe defined. We found
that the area measure was somewhat larger (20)y,20ut followed the same trends as the
ulnar inter-bone area. The size difference is consistetit thie concave inter-bone joint
space area on the radius, which is larger because it is fdrthma the center of curvature
than the corresponding area on the ulna. Measures base@ aintdr area are reported
because they reside in the ulnar coordinate system; theatoadinate system was chosen
because it is stationary during pronosupination.

Figure 3.13 shows the cylindrical coordinates of the ulnéribone area centroid for
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Figure 3.11: Proximal and exploded lateral views of an wwgyg and an injured radioulnar
joint at six rotation positions. Bones are colored accordmthe distance between them
(the closer they are, the more intense the color). The idjared non-injured views are
matched as closely as possible. Note the shift in the lotatidhe inter-bone joint space
areas between the uninjured and the injured forearm.
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Figure 3.12: Size of the ulnar inter-bone area (5 mm thregHok both the injured and
uninjured forearm of the same volunteer. Areas are nore@lizy the neutral uninjured
area. Pronosupination angles are shown ornxtaeis. Note the difference in size between
the injured and uninjured forearm.

the uninjured and injured forearm. The increased heightdinate in the injured forearm

confirms a shift of the inter-bone joint space area in the iprekdirection. The increased
distance from the ulnar axis is due to the shift of the int@nd joint space area on the
surface of the ulna to a region of the ulna further from thes.aXhe angle coordinate plot
correlates with the limited range of motion in the injuredelarm. The proximal shift in

the location of the centroid of the inter-bone joint spacsaas consistent with the initial

diagnosis of radial shortening.

Figure 3.14 shows distal ligament paths generated for foeeith and uninjured fore-
arms of the same volunteer. The lengths generated by ouoagipmare similar to those
reported inin vitro studies; ndn vivo information is currently available, to the best of our
knowledge. Note that the injured forearm presents ligarfbene impingement for both the
dorsal and the palmar ligament. No deflection of the ligasbgtthe bone is present in the
uninjured forearm in any of the rotation positions. Figur&s3shows the dorsal radioulnar
ligament length and deflection corresponding to the entiomgsupination sequence for

the injured forearm. We also show the corresponding lengplasdeflection computed for
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Figure 3.13: Cylindrical coordinates (height, distancej angle) of the ulnar inter-bone
area centroid for the injured and uninjured forearms of tbkineer. Heights are nor-
malized by the neutral uninjured height. Pronosupinatiogies are shown on theaxis.
Note the difference in height and distance between theedj@iorearm ligament and the
uninjured forearm.

the matching uninjured forearm — note the difference behtbe two plots. Ligament im-
pingement (measured by the deflection parameter) corsalath ligament path increased
length. No ligament deflection is present in the uninjureddom. The dorsal ligament
results generated by displacing the insertion points withé insertion site are plotted in

Fig. 3.17. Note that perturbations in the ligament attaafirfeeations do not affect trends
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Injured

Figure 3.14: Distal radioulnar ligament paths in the inflif@rearm (left) and in the match-
ing uninjured forearm (right) of the same volunteer. Botrefoms are in neutral prono-
supination (° rotation angle). Note the ligament-bone impingement inrtheged forearm:
both ligaments are deflected by the head of the ulna.

in the comparison measures between the injured and unihfarearms.

Figure 3.16 shows plots of the palmar radioulnar ligamengtle and deflection. Al-
though the palmar ligament length plot shows no differeretgben the injured and unin-
jured forearm, we note the impingement (deflection) in tiered forearm, lacking in the
uninjured case. The palmar ligament results generated tiyrpang the insertion points
within the 4 mm diameter insertion sites are plotted in Fig83 Note again that perturba-
tions in the ligament attachment locations do not affectdsein the comparison measures
between the injured and uninjured forearms.

The change in the dorsal radioulnar ligament length, butimahe palmar radioul-
nar ligament length, is consistent with the original matum{radius tilted dorsally). The
change in ligament length and the ligament-bone impingémeary be one mechanism for
the limitation of forearm mobility.

While a single example cannot distinguish between normatoamaal variation and
pathological variation, clinical studies on larger setpafients may establish or refute a
correlation between the differences we found here and fbeyirSuch studies are beyond

the scope of this chapter, but have been published as [29].
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Figure 3.15: Length (top) and maximum deflection (bottoma aforsal ligament for the
injured and uninjured forearms of a volunteer. Lengths arenalized by the neutral unin-
jured length. Pronosupination angles are shown orx{es. Note the increased ligament
length in the injured forearm. Note also that no deflectigoresent in the uninjured fore-
arm.

3.5 Conclusion

We have demonstrated @&mvivo, noninvasive technique for modeling the length of liga-
ments and joint inter-bone joint space areas from bone kitiesmand surfaces. Our me-
thod uses an implicit model as well as a parametric surfaaehfor each bone. The two

types of representation have complementary strengthsiffereht types of calculations.
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Palmar ligament length (percentage of neutral uninjured)
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Figure 3.16: Length (top) and maximum deflection (bottoma glalmar ligament for the
injured and uninjured forearms of a volunteer. Lengths amenalized by the neutral un-
injured length. Pronosupination angles are shown onxtlves. Note that no deflection is
present in the uninjured forearm.
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Figure 3.17: The effect of insertion point perturbation loa length (top) and maximum de-
flection (bottom) of a dorsal ligament for the injured andnjuied forearms of a volunteer
(mean and standard deviation calculated over 64 measutemen

The double representation enables us to model secondaey tfpinformation from CT
data, such as joint inter-bone joint space areas, intra-listances, and plausible ligament
paths. Our current ligament model could be enriched by denisig other intrinsic and
extrinsic ligament factors like tissue composition, madorces, and joint compression.

In a demonstration on the DRUJ, our approach highlightslsubodifications, other-
wise unnoted, in injured wrist kinematics. Although a poes kinematic study [77] on the
same data we analyze in this chapter found no significargréifices in rigid body kine-
matics between the injured and uninjured wrist, our metlediified potential soft tissue
constraints and focal changes in the articulation. The austipresented have the potential
to document changes in the joint mechanics that may influlemgeterm clinical outcome.

Our technique may have applications to the study of wrisirdisrs such as rheumatoid
arthritis, intercarpal ligament tear or attenuation, aagal-tunnel syndrome. Results sug-
gest that our technique could also be useful in the study whabanatomy and kinematics
of other joints.
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Figure 3.18: The effect of insertion point perturbation ba tength (top) and maximum
deflection (bottom) of a palmar ligament for both the injused! uninjured forearm of a
volunteer (mean and standard deviation calculated overdéasarements).



Chapter 4

Modeling Articular Cartilage from Bone

Surfaces and Motion

4.1 Introduction

Articular cartilage — the living tissue that lines the bomyface of joints — plays an im-
portant role in diarthrodial joint motion. Its function ie provide a low friction surface
cushioning the joint bones through the range of motion. heptvords, articular cartilage
is a very thin, slippery shock absorber. Factors such asitnghct twisting injuries, abnor-
mal joint anatomy, joint instability, inadequate musclesgth or endurance, and medical
or genetic factors can damage the articular cartilagedinWe wish to be able to inves-
tigate articular cartilage and to track potential damaggmssion non-invasively, in live
individuals.

However, because it is very thin, articular cartilage maydificult to image in live
individuals and small animals. For example, human wridtilege on several of the carpal
bones averages 0.5mm in thickness. To generate highlyletketanloaded wrist-cartilage
geometry, we currently need to extract the bone from the,je@move all soft-tissue except
for cartilage and perhaps ligament insertions, immersbahne in contrast dye for 24 hours,
thenuCT-image the bone. In the resultipg T slices, such as the one in Fig. 4.1, cartilage

shows as a soft-grey layer surrounding the bone outline.

66
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Figure 4.1: 2D slice through aCT-volume image of a scaphoid bone and articular carti-
lage. The imaged cartilage (bone tissue shown in whiteilagetin soft grey surrounding
the bone outline) can be represented as a height-field oupgpoding bony surface. The
height-field is defined as a collection of base points on theelsurface, the bone surface
normal at that point, and the height along the normal at wkikehnormal intersects the
cartilage external envelope.

Because current measuring procedures like the one desaiioe® are invasive, their
applicability is limited toin vitro data. In this chapter | describe a data-driven, subject-
specific cartilage modeling approach that allows for theagpion of its functional role
non-invasivelyjn vivo. | present a method for estimating subject-specific cgeilmaps —
location and thickness — directly from vivo kinematic data and computed tomography
(CT) volume images. | also introduce a novel algorithm for patmg cartilage surface de-
formations. The resulting cartilage model, a meshlessmmessible height-field, captures
the physical properties important for estimating the shapatact area, and deformation

magnitude of cartilage at each articulation.

4.2 Related Work

There are two known approaches to generating articulalaggtgeometry when direct
measurements — in terms of cartilage location and thickreswse not available. Both
approaches allow for the estimation of articular contactivo.

In the first approach (e.g., Thoomukuntla et al. [107]), izge is generated as a thin



68

shell of constant thickness surrounding the bones. Thoamtigket al. [107] model carpal
cartilage as a uniform 1mm-thick shell wrapping articularfaces in the human wrist.
However, there is no clear clinical evidence that cartitags surfaces have in general
constant thickness, nor that 1mm would be a good estimalesahickness in carpal bones,
regardless of the individual bone size. Validation agamsitro data showed discrepancies
between the computed articular contact and contact estthnesing pressure-sensitive film.

In the second approach (e.g., Carrigan et al. [24]), artictdatiiage geometry is de-
termined from the bone-spacing in one pose. Carrigan et 4).déow cartilage by half
the inter-bone distance in one reference pose, in the direof the bone surface normal.
However, the cartilage map thus generated is localizedetmy areas that are close one
to another in that particular pose. Two adjacent poses nsayganerate different versions
of the map over the same section of the articular surfacealligirthis approach does not
account for potential cartilage default deformation in théerence pose. The resulting
articular contact was not validated.

Once the cartilage geometry has been either measuredlyliceaenerated through
one of the approaches above, it can be represented as eitbefr body, a parameterized
surface, or a deformable solid. Rigid body and parametesnefdce representations [61,
107] allow only for computation of pseudo-deformable cohtdn these approaches the
nature of the objects being modeled is ignored — for exam&yme preservation is
not accounted for, and physical contact surfaces are appated based on the overlap or
interpenetration of the two modeled bodies.

In contrast, the deformable solid representation attemgpéecount for characteristic
properties of soft-tissue deformation, such as elastanityiscosity. Instantiations of this
representation are mass-spring systems, generalized@aytstems, finite differences and
finite element models, and mesh-free models. Early work ysigllly-based deformable
models is surveyed in detail by Gibson and Mirtich [45].

We note that, in general, mass-spring systems can be diffecfit to physical data and
do not preserve volume; they can also be over or under-detedn Generalized particle
systems include additional spring forces to prevent shebending, and additional non-

spring forces to enforce volume preservation. Both massgpsystems and generalized
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particle systems use rough approximations of physicalrdedtion, but are relatively fast
to simulate.

In contrast, finite difference and finite element methodsMlFiEse a sound deriva-
tion of deformation from continuum mechanics. These apgrea are appropriate choices
for accurately modeling deformations, stresses and stiainomplex materials like soft-
tissues [108, 41]. However, both finite approaches are ctatipoally expensive. In par-
ticular, we note that modeling through FEM simultaneoudilege contact among many
articulated surfaces in order to predict, for example, tydst motion is currently compu-
tationally infeasible.

Recent work in deformable solid representations exploresiepgid contact through
simpler, local, analytical models. The key idea in this aagh is that small deformations
can be modeled with sufficient accuracy and less computdtexpense than through finite
difference or finite element approaches. For example, Retudy. [86] use an approxima-
tion to linear elasticity in order to preserve the volume aiesh-free representation. Their
approach is similar to ours in the use of a mesh-free, pooudckurface representation,
and the computation of a local response through a surfaggradtformulation. The advan-
tage of using a mesh-free representation is that contaoteean be modeled efficiently
and a unique contact surface can be defined without the neeetfmngulation. Because
Pauly et al. use a linear complementarity formulation toosgvolume preservation, their
approach can simulate, in principle, effects that are milgndictated by contact, such as
friction. The linear complementarity formulation comeswever, with a higher compu-
tational cost. While our approach lacks sophisticated aépab such as explicit friction
integration, it is easier to implement and faster to compwtele it generates sufficiently

accurate contact measurements.

4.3 Methods

Our computational approach proceeds in four steps. Firstagquire and segment CT
volume images of a given subject’s joint in different joindses, then recover through

registration the bone kinematics. Next, we use the recavaoee surfaces and kinematics



70

to compute the space between bones during motion. We useatitidoone space measure
to define cartilage map location and thickness. Finally, veelehthe cartilage map as a
deformable height field, and use this model to compute egditontact. We describe each
step below.

4.3.1 Data Acquisition and Recovery of Kinematics

Our data is generated by CT-imaging a joint in seven diffepaises. The volume images
were acquired with a Hispeed Advantage scanner, Generetri€l®ledical System, scan
parameters: 80kV, 80mA, image resolution 0.94 x 0.94 x m¥ext, bones are registered
across all volume-images. Each CT volume-image corresgoratsarticulation pose, thus
sampling the space of articulation kinematics. An addéldngher-resolution scan (0.31
x 0.31 x 1 mn) is acquired in a reference neutral pose, allowing us to segtie bone
surfaces with higher accuracy.

Through manual segmentation, thresholding, and useraictien, bone surfaces are
extracted from the high-resolution reference CT volume ieng&8]. Bone surfaces are
further modeled as NURBS surfaces using the Geomagic sofpveanieage [43]. The re-
sulting triangular meshes have each approximately 50,86€sf Next, each bone surface
is tracked with sub-voxel accuracy through the sequencermaming CT volume images,
as described in Chapter 2. The tracking procedure repogtvebone-motion from one
articulation pose to another. The resulting dataset ctgisis of the articular-joint ge-
ometry and its sampled kinematics. Fig. 4.2 shows two reeavposes of a volunteer’s

wrist.

4.3.2 Inter-Bone Joint-Space M odeling

Using the bone geometry and kinematics recovered as dedcaibove, we compute the
inter-bone joint-space across motion, as described in @h&ot The inter-bone joint-
spacing defines the cortical surface where bones articokde each other; it is defined
as the cortical surface area on the bone that is less tharxaniyp thresholdp distance

from the cortical surface of a neighboring bone. The protrthiresholdp is iteratively
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Figure 4.2: Modeling inter-bone joint-spacing from bone&aces and motion: two differ-
ent poses recovered through CT-imaging, segmentation gmstregion of the same wrist
joint (eight carpal, two forearm, and five metacarpal bonBenes are color-mapped and
contoured. The color saturation on bone surfaces indithgedistance to the nearest point
on the opposite bone; darker regions are closer. Bone sarfalcere the inter-bone dis-
tances are larger than a proximity threshgldZmm here) are shown in white. We trace
these minimum-distance regions across multiple posesderdo estimate cartilage-map
location and thickness.

determined, as described in the following section 4.3.3.

The key idea here is that, because cartilage coats bonycearfaherever the bones
articulate with each other during motion, the inter-boriatigspace should correlate with
cartilage location. That is, cartilage should be locateeénster two bony surfaces are
in close proximity during motion. In Fig. 4.2 inter-bonenbispacing areas are shown
using color mapping and contouring. Color maps are genefatedach bone so that
distance values of surface points are mapped to varying sakoirations; more saturated
colors represent shorter distances. Distances largethiegroximity threshold valugare
neither colored nor contoured and are shown as white s fdod~ig. 4.2, note the shift
in the location of red areas on the trapezoid bone (Fig. 28y&en one pose and another.
We hypothesize that the cartilage location is given by themof bony red areas across
motion.

Modeling the inter-bone joint spacing requires corticai&@ado-bone distance informa-
tion for multiple poses. We compute distance fields for eamfelfrom the reconstructed

NURBS bone models using a level-set approach. We use the ClBeggt Transform
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(CPT) level-set software package [73] to generate the distheld representation from the
surface representation. We use the distance fields to findafth pose, distances from ev-
ery vertex in the surface model of one bone to its neighbosindJthe inter-bone distance
we also compute, for each pose, isocontours on the colimad- surface. Each contour
shows where the distance map is equal to a constant distéheenter-bone joint-spacing

in a given pose is then the area of the surface trianglesmiitigip contour for that pose.

4.3.3 Inferringthe Cartilage Map L ocation and Thickness

We infer the cartilage map location and thickness in a tistep-procedure. In the first step,
we compute the cartilage map location. To compute the aggdimap location, we need to
first select a value for the proximity parameteiVe then compute, across poses, the union
of contact areas for the selectedalue.

In the last two steps, we compute the cartilage map thicknégs note that at each
instant, any two points on the two bones that are approxisnate each other’s normal
vectors must have the property that the cartilage thickae#isose points sums up to no
more than the distance between them. We hypothesize thatdorartiage maps in con-
tact A and B cartilage thickness is distributed evenly betwaap A and map B. According
to this hypothesis, to find the cartilage map thickness attdage map vertex we can ex-
trudev by half the minimum distance across poses between A and Baplupercentage,
in the direction of the bone surface normal at that vertex

Theth parameter is an extra-thickness measure of the cartilgge lzecause we expect
that at each pose the cartilage map is already somewhataedoAccordingly, we need to
first select a value for théh parameter, and then proceed with the extrusion operatioa. T
collection of bone surface pointg, their oriented normals;, and their extrusion heights
h;, defines the height-field representation of the cartilage.map

Let nbones be the number of bones in the joinfyoses the number of joint poses avail-
able, andRT;; the joint pose (rotation and translation) associated withel in posej.
Let distance(RT;;(v), RT};(b;)) be the minimum distance from vertexof boned; to the
neighboring bonesg; in posej. We use anatomy-book knowledge and an iterative proce-

dure to determine the values pandth and generate the cartilage maps, as follows:



procedur e estimatecartilage
in: bone surfaces;, i = 1 : nbones;
sampled bone kinemati¢$7),;, j = 1 : nposes;
initial estimates fop andth: po, tho;
out: cartilage maps’; = Uy1.cy| (Vik, ik, har);
/[1. estimate cartilage location
for i = 1tonbones
Ci— 0
repeat
P<Po
foreach vertexv € i,
for j = 1 tonposes
dist(v, j) « distance(RT;;(v), RT};(bi))
d(v) = min;dist(v, j)
if d(v) < pthen
h =d(v)/2;
n = normal(v);
C; — C;U(v,n, h);
endif;
increase
until (C; overlapsC; anatomy—book)
/lend step 1.
/12. inferth parameter
th «— estimateth (C, b, thg)

/13. estimate cartilage total thickness
for i =1 tonbones
foreach (vi,, ng, hy) € C;
hi = (1 +th)hy
/lend step 3.

73
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In our experimentsgy was initialized to 1 mm, and increased in 0.1mm increments.

In the experiments described in this chapter, the overlapden the computed cartilage
map and the anatomy-book cartilage map was evaluated NisUabr example, for the
scaphoid bone shown in Fig. 4.3, increasing phiareshold above 2mm causes certain
features like the diagonal palmar strip to disappear, wdelereasing thg threshold below
2mm introduces holes in the cartilage map. However, thelayearvaluation step could be
automated using the cross-parameterization techniqueeided in Chapter 6.

Technically, the most complex and delicate step ineiemate_cartilage procedure is
inferring the extra-thickness parametér We assumeh has the same value across the
collection of joint bones. We calibrate this value based on anatomy-book knowledge as

follows:

procedur e estimateth

in: bone surfaces;, i = 1 : nbones;
copy of current cartilage mag;;
initial ¢h estimateith,

out: th;

th «— thg

select special-case bongs

repeat
foreach b}

foreach (v,n,h) € Cf
h = (14 th)h;

resolvecollisiong C*);
computecontactC*);
decrease th;

until (contact w/in special-case anatomy book range);

In the experiments reported in this chaptér,was initialized to 10% and gradually
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In vivo cartilage In vitro cartilage
(kinem.-generated) (PrimalPictures)

palmar view

dorsal view

Figure 4.3:In vivo scaphoid cartilage map generated through our kinematictimgdap-
proach (left) versus an anatomy-book scaphoid cartilageestimated through dissection
in vitro (right). Bone is shown in blue, cartilage in tan (light-greygrayscale reproduc-
tions); top: palmar view, bottom: dorsal view. Note the gaflg similar location-on-bone
of thein vivo andin vitro cartilage-map. Despite subtle anatomical differences/det
thein vivoandin vitro bone-shape, note the diagonal strip cutting through egsiin both
palmar views, and the sliver-cut extending towards thedboih both dorsal viewdn vitro
data depicted on the right courtesy of Primal Pictures Litdyjitro data does not include
cartilage-map thickness.
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decreased in 1% decrements. Tiesolve_collisions andcompute_contact steps are pre-
sented in section 4.3.4.

In the procedure above, the special-case refers to suldfdmeies for which anatomy-
book data reporting contact-size results exist. Becaugemyabook studies use pressure-
sensitive film to compute contact-size between bones, sudies in general are performed
only for joint bones that have at least one flat surface and tiamm accommodate the flat
pressure-sensitive film. For example, Patterson and Vigigseport the contact surface
defined by the scaphoid and lunate bones on the radius flatWwbad increasing loads are
applied to the wrist joint.

Note that, for each pose and pair of articulating bones wp kdest of the height-field
points whose original cortical-surface support verticad B minimum distance below
These lists are used to speed up the computation of cartdagedeformation.

4.3.4 Cartilage Contact Simulation

Our cartilage model is a meshless, incompressible, detdertzeight-field whose initial
conditions are determined as described in section 4.3.3leWartilage is a compressible
material, the computational requirements for a multieatir model necessitate some sim-
plifications. Given the small deformations likely to takag in unloaded joints, assuming
cartilage is incompressible but deformable is reasondbtammpressibility is achieved by
transferring volume from compressed locations to locatioot in contact.

Since we anticipate articular cartilage deformations terball, our deformation model
is based on the physics of linear elasticity. We represatitaige geometry as unstructured
point clouds, i.e., sets of point primitives that sample plosition and normal of the un-
derlying surface. For each cartilage surface point we sterkeight with respect to the
underlying bone surface along the cartilage surface nor@aattilage points are allowed to
move along this cartilage normal direction.

We resolve cartilage collisionsdsolve_collisions) iteratively through repeated:
e collision detection,

¢ negative displacement in the direction of the normabf colliding pointsv;
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¢ volume preservation: positive displacement in the dicecof the normak,, of the

non-colliding pointsy, € the collision neighborhood,

for all the objects involved in collisions.

The size of the collision neighborhood correlates withitzagé viscosity and is defined
by the proximity thresholgh determined in section 4.3.3. The neighborhood consists of
vertices which are closer thanto the colliding bone. Cartilage volume is preserved by
constraining each height-field response such that theraitegall displacements over the
height-field is zero. In our experiments, cartilage contead usually resolved within under
100 iterations. The height-field points in contact afteohagg all collisions defines the
cartilage contact areagmpute_contact).

Figure 4.4 illustrates the cartilage deformation proce&. In this example we model
the contact between two flexible objects: a computer-geeefiexible semicircle of radius
50 units was placed so that it collided with a horizontal téxiine-segment of length 300
units. The maximum collision depth was 10 units at the sewi&iSouth tip. Semicircle
and line points were assumed to have variable materialiegk semicircle thickness
was maximum at the South tip and tapered off towards the eguiate-segment thickness
was also maximum in the middle of the segment and taperedonfirds the segment
ends. The semicircle and line were iteratively deformedeolve the collision while
attempting to preserve object area by constraining theiatef all displacements over
each object surface to be zero. Non-colliding points weferdeed proportionally to their
material thickness. Although material thickness is onlyrexp for cartilage properties,
note each object’s response is qualitatively appropriatéh objects retract in the collision
area and bulge sideways to compensate for the loss of volusdricurred. Note that the
amount of interpenetration modeled in this example — and&éme resulting deformation
(approximately 20% of the object thickness) — is an oveingste of the cartilage map

deformations we expect in the human wrist.
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flexible object 1 in contact with flexible object 2
100 T T T

80

60

rigid base obj.1

rigid base obj.2

— — — undeformed surf. obj.1
— — — undeformed surf. obj.2
deformed surf. obj.1 |
deformed surf. obj.2

-100 . .
-100 -50 0 50 100

arbitrary units

Figure 4.4: 2D illustration of our algorithm for predictimgntact deformation of flexible

objects with a rigid skeleton (not shown) in 2D. Although eral thickness is only a

proxy for cartilage properties, note each object’s respagsigualitatively appropriate: both
objects retract in the collision area and bulge sidewaystopensate for the loss of volume
thus incurred.

4.4 Validation and Results

We validate againsh vitro data the location of our kinematically-generated carélagaps,

their thickness, and the computed cartilage contact areas.

Cartilage location

In Fig. 4.3 we compare the location of te vivo cartilage map we generated through
our method for the scaphoid bone (live male individual, 2&rgeold, 7 poses) against a
similar cartilage map reportead vitro (unknown gender and agg vitro data courtesy of
Primal Pictures Ltd., London, UK). In this experiment théeimed value for the proximity
thresholdp was 2mm. Note the generally similar location-on-bone ofithgivo andin
vitro cartilage-map. Despite subtle anatomical differencesden thein vivo andin vitro
bone-shape, note the diagonal strip cutting through egsiin both palmar views, and the

bottom sliver-cut in both dorsal views.
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Figure 4.5:In vivo trapezoid cartilage map generated through our kinematibetmg ap-
proach (left) versus a trapezoid cartilage map estimateai¢h dissectiom vitro (right).
Bone is shown in blue, cartilage in tan (light-grey in graysa@productions). Note the
similar location-on-bone of thie vivo andin vitro cartilage-map (tennis-shoe shape), de-
spite slight anatomical differences betweenitheivo andin vitro subject.In vitro data de-
picted on the right courtesy of Primal Pictures Lid.yitro data does not include cartilage-
map thickness.

Fig. 4.5 shows a similar comparison between the locatioh®iit vivo generated car-
tilage map for the trapezoid bone (live male individual, 2585 old, 7 poses) against
a trapezoid cartilage map reportadvitro (Primal Pictures Ltd.). The value inferred
through calibration was again 2mm. Again, we note the sindleation-on-bone of tha
vivo andin vitro cartilage-map — tennis-shoe shape, despite slight ane#btifferences

between thén vivo andin vitro subject.

Cartilage thickness

In a first experiment, to validate the thickness of our cagl model, we use the trapezoid
bone from the left wrist of an unembalmed cadaver upper extygfemale, age 66 years)
and the trapezoid bone of a live individual (male, age 25 s)eafhe volar fragment of
the cadaver trapezoid was immersed in contrast dye, and ad@tine image was made
of the contrast-surrounded bone using a deskiGp scanner(CT 20, Scanco Medical).
This technique yielded high-resolution segmentable imageere the cartilage was clearly
distinguishable from the surrounding contrast dye and ftbenunderlying bone tissue.
The thickness of the cartilage in the 1mm section of tragkegaluated in this study was
relatively uniform, with an average thickness of 0660.14 mm (min. 0.22 mm, max.
1.07 mm).



80

Table 4.1: Trapezoid cartilage thickness

Trapezoid cartilage In vitro, invasively | In vivo, non-invasively
thickness (uCT-imaged) (kinem.-generated)
Mean+ Std.dev. | 0.66mm+ 0.14mm| 0.64mm=+ 0.19mm
Min 0.22mm 0.147mm
Max 1.07mm 1.049mm

We used the kinematics-based method presented in secBom generate the cartilage
map for the trapezoid bone of the live individual. The rdasgltvalue of the thickness
parameterth was 1%. The thickness of tha vivo cartilage model was determined by
computing the average height of the kinematically-gemertapezoid undeformed height-
field. The thickness of our model was also relatively unifowith an average thickness of
0.64+0.19 mm. The results reported in Table 4.1 show remarkabteletion between the
in vivo andin vitro measurements. However, note that in this first thicknessraxgnt we
compardn vivo data andn vitro data collected from different individuals.

In our second thickness experiment, we useitro data collected from the same in-
dividual. A cadaver wrist was CT-imaged in 12 poses, spanthiegwrist range of mo-
tion. The wrist bones were segmented and their motion tchekeurately. We used the
kinematics-based method to ‘grow’ the cartilage map forsttegohoid bone. The proximity
p and thicknessh values resulting after calibration were 2mm and 5% respelgti We
computed the average, standard deviation, minimum andmamithickness for the radius
facet of the resulting scaphoid cartilage map.

Following CT-imaging, the wrist was dissected. All soft tisexcept cartilage and lig-
ament insertion sites were removed from the scaphoid bdmebdne itself was immersed
in contrast dye for 24 hours, therCT-imaged at a 60 micron resolution. The resulting
1CT-imaged bone surface and cartilage map was reconstructedthe volume image
using the Geomagic software package [43]. Ti@&T-ed bone surface and cartilage map
surrounding it were aligned with the CT bone surface acqupremt to dissection. Finally,
the anatomist interactively selected the radius facetefi@T scaphoid cartilage map. We

computed the average, standard deviation, minimum andmuemithickness for theCT
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Table 4.2: Scaphoid cartilage thickness

Scaphoid cartilage In vitro, invasively | In vitro, non-invasively
thickness (uCT-imaged) (kinem.-generated)
radial facet
Mean+ Std.dev. | 0.601mnm+ 0.21mm| 0.596mm+ 0.20mm
Min 0.275mm 0.276mm
Max 1.21mm 1.05mm

cartilage facet.
Table 4.2 shows the invasiyeCT thickness measurements and the non-invasive, kine-
matically generated thickness estimates; note the rerbi@karrelation between the two
columns. The difference between the measured and estimearanum thickness value
(1.21mm measured, 1.05mm estimated) appears to be due @oditental inclusion of a
ligament insertion site vertex in theCT cartilage map during the interactive facet selection

phase.

Cartilage contact

We compare the cartilage contact areas geneiatenvo through our method against the
in vitro pressure-film results reported by Patterson and Viegad¢8Hje radius-scaphoid-
lunate joint. Although our results are generated for an anéal joint while Patterson and
Viegas report (lightly) loaded joint results, we expect oesults to extrapolate the loaded
results in the direction of the lowest loads. In Fig. 4.6 wevslthe cartilage contact gener-
ated through our method on the radius distal surface by thetéuand scaphoid bones, in
two different poses — neutral and extension. As in [85], thetact areas were localized
and accounted for a relatively small fraction of the jointface (approximately 24%). The
scaphoid-radius contact-area shifted from a palmar logdt a distal location as the wrist
moved from the neutral pose to the extension pose, consistdnthein vitro findings of
Patterson and Viegas. Tlwvivoradius contact area was 75 rhin the neutral pose and
49 mn? in the extended pose, again in agreement withinthétro results reported in [85].

In this experiment we used cartilage maps generated witleatra-thickness parameter
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Figure 4.6:In vivo contact area between the distal radius bone (shown) andrlagel and
scaphoid bones (not shown) in a normal unloaded wrist, aeptysse and an extension
pose. Bone is shown in blue, cartilage in tan, cartilage abimaed (largest area depicted
corresponds to the scaphoid-radius contact). The conteasare localized and account
for a relatively small fraction of the joint surface. NoteetBcaphoid-radius contact-area
shift from a palmar location to a distal location as the wnigives from the neutral pose
(left) to the extension pose (right).

value of 1%. Note that in théh calibration phase described in section 4.3.3, increasing
the 1% value generated in general contact areas close to &80 such numbers would
contradict then vitro measurements of Patterson and Viegas [85], who found thbtdds

under 23 pounds these areas stay under 108.mm

4.5 Discussion

The validation experiments show good correlation betwagnrovivo kinematically gen-
erated cartilage maps amd vitro-observed cartilage maps. Interestingly, our cartilage
thickness experiment seems to indicate that ‘growing’ilege by half the inter-bone dis-
tance (as previously done by Carrigan et al. [24]) is a redderagproach when modeling
the wrist joint — larger bones in the wrist like the scaphoiagymot grow thicker cartilage.
The remarkable thickness correlation between the eldertyafe dataset and the young
male dataset reported in our first thickness experimentates joint size may not influ-
ence cartilage thickness. In other words, thickness measents performeuh vitro could
be transferred ton vivo data, regardless of differences in the bone size.

Our cartilage map generation method uses two parameterpraiximity thresholdg,

and the extra-thickness parameter The 2mm threshold value resulting in most of our
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experiments seems to indicate that modeling carpal cgetdeas a uniform 1mm-thick shell
wrapping articular surfaces — as previously done by Thoamtl& et al [107] — is a rea-
sonable approach for at least certain bones like the tragheaithough our measurements
for other carpal bones indicate non-uniform thicknesses.

Similarly, the resulting extra-thickness value of 1% to 5% may indicate that unloaded
cartilage is minimally compressed during motion. Intaregy, this observation ties in
with the results of an earlier study by Herberhold et al. [69}thein situ measurement of
articular cartilage deformation in intact knee joints unsiatic loading. Herberhold et al.
found that patellar cartilage deforms minimally during firet minute of static loading
(3% absolute deformation). These findings suggest thagleveryday motion, articular
cartilage deforms minimally even in bodyweight-bearingis like the knee.

Our cartilage-map generation method has certain liminati®nlike real cartilage, the
cartilage maps we generate do not recede towards the bgquofdthe map. This limitation
could be addressed by progressively decreasing the hdigf onap as we approach the
location boundary.

We also require the acquisition of poses spanning the wipaleesof joint kinematics.
However, since our cartilage model deforms locally, migsiartilage areas are not likely to
influence the contacts we compute. The correlation betwaemmum inter-bone distance
during motion and cartilage location may have in itself sgydiological implications.

When extruding cartilage-location vertices according ® ithter-bone distance, our
current implementation assumes an implicit correlatiotwken the direction of the sur-
face normal and the inter-bone distance; while this cotimelas present in our data, a
sounder approach would be an iterative small vertex disph@nt in the normal direction
and reevaluation of the distance until the opposed disglaugace collide.

Another limitation of our model is that we assume cartilag@compressible; given the
small deformations we expect to find in the unloaded wristrdumotion, assuming that
cartilage is incompressible but deformable is reasonables assumption may not hold
true in other anatomical joints. We note that for staticdieposes our model can be cou-
pled with finite element analysis to enable more sophigtettabmputations of deformation

and stress throughout the material.
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4.6 Conclusion

We presented in this chapter a method for estimating astictdrtilage geometrin vivo,
directly from CT-imaged bone geometry and joint kinemati€se resultingin vivo car-
tilage maps match welh vitro cartilage maps. We augmented the cartilage maps with a
novel height-field computational model of cartilage defation, and showed the resulting
contact areas replicate carpal cartilage contact obsénvuatio.

The results reported in this chapter indicate that artrccéatilage deforms minimally
during normal motion. The implication is that rigid or alnhogid, fast-to-calculate rep-
resentations of cartilage are acceptable building blodksniconstructing fully-predictive,

dynamic models of diarthrodial joints.



Chapter 5

Predictive Simulation of Diarthrodial

Joints

5.1 Introduction

Diarthrodial joints are arguably some of the most complexcstires in the human body;
they combine in unique and ingenious ways hard-tissue aftdissue to allow for ev-
eryday motion and athletic activities. A thorough underdtag of diarthrodial joint mo-
tor function in live individuals is essential in the treatm@f injuries and degenerative
diseases like osteoarthritis, and also in the design obpedic implants. However, cur-
rently there is no satisfactory explanation for the motiattgrns observed in most complex
joints [14, 98, 34], nor for the motion differences obseraatbng different live individuals.

In this chapter we present a medical-image based methodfmtricting and simu-
lating joint models, using data collected from live indivals. The method uses as input
medical volume images of the joint bones, tracked motionaratomy-book knowledge.
The resulting models and simulations are adaptable toishaaV differences and have pre-
dictive capabilities in terms of predicting soft-tissuentact within the joint, and under-
standing the kinetic response of the joint.

The aim of this chapter is to demonstrate that data obtamed,o through medical

85
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Figure 5.1: Soft-tissues in the human wrist interactingctiy with the scaphoid bone (data
courtesy of Primal Pictures). Left: a six-bone subset oftthman wrist showcasing the
bones (white) and articular cartilage (yellow) interagtatirectly with the scaphoid bone.
This six-bone structure includes nine pairwise articoladiand fifteen ligaments that may
impact scaphoid kinematics. Center: palmar wrist ligamérad) interacting with the

scaphoid bone. Right: dorsal wrist ligaments (red) inténgatith the scaphoid bone. The
human wrist presents a predictive modeling opportunitymuscles insert on the scaphoid
bone. Scaphoid motion is defined solely by bone shapes, itaylations, and ligaments.

imaging can be combined with numerical simulation to depel@redictive tool for under-
standing the role of soft-tissues in the functioning of §sin

We demonstrate our model and simulation on the human wrike jdint-subset we
use throughout our experiments includes nine pairwiseldatiions and fifteen ligaments
that may affect the kinematics of the scaphoid bone (Fig. 3'he scaphoid bone and its
surrounding articulations are of significant clinical irgst: the bone is frequently subject to
fractures, and its connecting ligaments are often subgetetars and surgical intervention.
Notably, there are no muscle insertions on the scaphoid.bidnis lack of muscle insertions
provides an excellent modeling opportunity: we can studypboid kinematics without

having to specify external muscle forces.
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5.2 Reated Work

Dynamic joint simulations can be divided into two types,dzhapon the input and output
variables [103]: (1) inverse-dynamics simulations, and¢2wvard-dynamics simulations.
In inverse-dynamics simulations the input variables aeekihematics of the bones, which
also define the end-conditions of deformable soft-tissaled,the output variables are the
corresponding forces and torques acting on the joint. Framedictive point of view, in-
verse simulations have been used not only to compute joimients, but also to estimate
muscle forces, contact and stresses in the joint [41, 34, [8ch simulations have pre-
dictive capabilities in the sense that they can forecasgxample, which component of a
joint may break down due to excessive or repetitive stress.

While inverse dynamic simulations are useful for analyzixgezimental data, forward
dynamics may be used to perform simulated experiments. rimafa dynamics the inde-
pendent variables are the forces and torques acting onititegad the output variables are
the joint motion. The advantage of forward simulations is s-akeady stated — that they
can be used to perform simulated experiments. For examipkn g set of muscle forces
and external forces, a forward-dynamics model of a joinidg@uedict how joint motion
would be altered after a simulated tear of a ligament or afteone fracture.

The forces and torques resulting by solving inverse-dynamioblems could be used
in a forward-dynamics formulation to yield the complete &ébr of a joint, in terms of
computed contact, stresses, and motion [13]. However,dahgimulations require not
only accurate digital models of the geometry of all the otgdorming the joint, but also
detailed knowledge of the material properties of each deéde object, and of the ex-
ternal forces applied. As discussed in Chapter 1, thesesrgmeat not readily available.
Currently, forward-modeled joints use material properéied forces specified by the user,
based in general om vitro studies; the values observedvitro may well be different
from individual-specificin vivo values, due to either anatomical variability or specimen
preparation. In addition, accurately modeling deformaiolietact is often costly [45].

The combined challenges of missing inputs and simulatitoierficy lead to a pattern
in predictive joint modeling: small-scale, highly detaile vivo subject-specific models

have inverse predictive capabilities (contact and stgssehile highly simplifiedin vitro
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models may have limited forward predictive capabilitie®{ion). The motion-prediction
capabilities ofin vitro forward-models are in general difficult to validate, and thedels
themselves currently discount individual differences.

Current models of diarthrodial joints include only skelgiakues: bone, ligaments,
cartilage, and muscle-tendon units.

We also note that current forward models generate motidiacin through quasi-static
analysis, and not dynamic analysis. A quasi-static aralgsbne where the governing
equations are those of statics; however, quasi-statigysisatan be applied to joints in
motion as long as inertial forces are negligible. The achgatof quasi-static analyses is
that they do not require the input of parameters such as nmak#artia properties, or
damping properties for which data are rarely available end@halysis of musculoskeletal
structures.

In the remainder of this section we briefly review predicimeerse and forward joint
models, and current procedures for validating joint priseBacapabilities. Work in physi-

cally based simulation is surveyed in detail by Pauly et&8].[

Predictive | nver se Joint Models

Inverse models exist for a variety of joint substructures.cd®¢ work by Gardiner and
Weiss [41] can predidn vivo strain through one entire knee ligament. Similar work by
Warner et al. [113], Donahue et al. [33], or Meakin et al. [¢&h predictin vivo stress
through one cartilaginous structure. In general, theseoaghes model through finite ele-
ment methods one deformable component at a time.

A few inverse models also exist for simple joints — joints twé few components.
The inverse knee model developed by Zhu et al. [118] usesrldigidual motion capture
and the bone geometry to compute menisci contact and sre@ssle joint. Similarly,
the temporomandibular joint developed by Donzelli et a4] [8ses tracked motion and the
joint geometry to predict contact and stresses in the jainboth studies ([118] and [34]),
neither articular cartilage or soft-tissue wrapping wesled.

Joints more complex than the knee or the jaw have provenuiffic model due to the
number of bodies involved and complexity of the soft tissueraction [24]. With respect
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to modeling complex joints, Carrigan et al. [24] created apdifted 3-D finite element
model of the wrist. In this model 3D solid finite element meshepresenting the bones
were hollowed by eliminating all elements that did not reduoh external mesh surface
in order to reduce the number of nodes and elements in the,rmadhthereby improve
model efficiency. The articulated bony surfaces were exlttd mimic cartilage. Several
pairs of bones were fused into single rigid bodies, and liggais1 were modeled as line
springs. Only one static pose was modeled. In this model bwt®n had to be restricted
artificially to certain directions through non-physiologi constraints in order to prevent
the wrist from collapsing under the applied load.

Wrapping soft-tissues may play an important role in staibigjzhe joints during mo-
tion. However, current inverse models provide almost nighisnto the role of soft-tissues
in the functioning of joints. In particular, none of the imge models attempting to predict
contact surveyed in this section takes into account ssfti& wrapping.

The paucity of inverse models for complex joints can be tldueck to a general lack of
soft-tissue morphological data and to simulation efficjedallenges, as argued in Chap-
ter 1. We show that the data-driven approach introducedenetirlier chapters of this
dissertation can overcome such limitations.

Predictive Forward Joint Models

In current forward models, the bones are modeled as rigidebaahd the soft tissues are
modeled as tensile and compressive springs, usingro-determined values. In order to
simulate the movement of the joint, forces are applied atdannsertion sites and the el-
ements of the model move in such a way as to solve the equatidasetic equilibrium.
For example, then vitro forward knee model developed by Blankevoort et al. [18] can
replicate knee-motion measuradvitro. However, it is essential that the physical prop-
erties and dimensions of the structures used in the modapgoied correctly in order to
obtain meaningful results. Despite repeated attemptse tisecurrently no single model
that can be applied to anticipate the movement patternsimjonore complex than the
knee. In the case of the wrist, it has been suggested thatastoriwvard model cannot be
determined [37].
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Circumventing the lack of wrist soft-tissue data, Sirketale{98] have built a forward
model of the wrist that uses as input only the morphology efltbnes. The hypothesis
behind the model is that soft tissues play a secondary raiewerning the movements of
the wrist bones, and that the morphology of the bones is wiktdtds their behavior. The
premise is that biological structures are formed using temum of materials necessary
to provide adequate function. In the case of joints, thiscisieved by maximizing con-
tact area through the use of conforming joint surfaces. Oara Mmited range of motion
wrist kinematics were correctly predicted for several lmndowever outside this narrow
range the model did not match kinematics observed witro andin vivo studies — e.g.,
bone rolling during wrist flexion. With respect to the cortataximization hypothesis, it
is worth noting that zoologists believe that adjacent baagsnot reach maximum congru-
ence at all poses [90]. The classical zoology interpretatidhat the position where all the
bones reach maximum contact has particular mechanicafisarce, most likely that this

is the configuration the bones take at maximum load transfer.

Validation of Predictive Capabilities

Validating the predictive capabilities of both inverse dodvard models poses signifi-
cant challenges. In general, contact and strain predictipabilities can only be validated
againstin vitro data. However, evem vitro data has certain limitations. For example, to
measure joint contadn vitro, researchers typically insert pressure-sensitive filnwbenh
two articulating bones, apply a load to the joint, then reenthe film and estimate the size
and location of the resulting print [85, 107]. Because onlydlafaces can accommodate
pressure-sensitive film, such measurements have beerneepoly for bone pairs that in-
clude at least one bone with a flat articulating surface. Hewmhore, studies performed
on different individuals may lead to different measuremeaities. Evenn vitro reported
values do not always agree; there is large variation in therted mechanical properties of
specimens: for example, for whole scapholunate ligamesdispens, Mayfield [74] reports
a stiffness of 250N/mm (S.D. 90N/mm) at a displacement r&&omm/min, while John-

ston et al. [54] reports 66N/mm (S.D. 29N/mm) at 60mm/min.céwingly, in general,
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validation of predictive capabilities with respect to caettand tissue mechanical proper-
ties tries to match a range of values reporiteditro, and occasionally even extrapolate
from availablein vitro measurements. Oftentimes validation is performed throuspnl
observation, for example, observing whether in a given posgecific ligament is taut or
relaxed [36, 5].

Motion-prediction capabilities are in general validategiast sampled data, oftén
vitro motion data [61]. In general, it is essential that the pralgicoperties and dimensions
of the structures used in the model — for example, musclefre are applied correctly in
order to obtain meaningful results. Unfortunately, oftees multiple force combinations
can result in the same meaningful result.

In this sense, the human wrist offers a unique opportunityaiidating motion predic-
tions. The wrist is a uniquely passive joint, consisting ighé small, complexly shaped
bones interposed between the distal radius and metacanpasbThere is only one muscle
that has minor insertions on the wrist. Accordingly, motafrthe bones is defined solely
by the complex, semi-congruent bone shapes, intricate aditylations, and the network
of ligaments that spans the wrist. This frees a potentialehbdm being limited by the
accuracy of the estimates of the applied muscle forces. Wedstrate our model and

simulation using wrist data.

5.3 Methods

The joint model we build integrates CT-acquired bone gegmeticked kinematics, and
computational models of articular cartilage and ligameriitke model does not include
more superficial layers like skin, fat and the neurovascsyatem, sincén vitro studies
indicate that these layers play a relatively small role imtjonotion [18, 52]. We also
do not model muscles, which may influence indirectly thetjtiyn compressing the sac
of synovial fluid surrounding the joint, nor the synovial seelf. Again,in vitro studies
indicate these last two components play a secondary roleeirkinematics of the wrist
joint [18, 52].
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5.3.1 DataAcquisition

Our data was generated by CT-imaging the wrist bones of a noddmteer in seven dif-
ferent poses. The volume images were acquired by using aétispdvantage scanner,
General Electric Medical System, scan parameters: 80kvi/A80mage resolution 0.94 x
0.94 x 1 mni. Each CT volume-image corresponds to an articulation phse,gampling
the space of articulation kinematics. An additional higre=olution scan (0.31x0.31x 1
mm?) was acquired in a reference neutral pose, allowing us tmeagthe bone surfaces
with higher accuracy.

Through manual segmentation, thresholding, and useraictien, bone surfaces are
extracted from the high-resolution reference CT volume ieng8]. Bone surfaces are
further modeled as NURBS surfaces using the Geomagic softpanieage [43]. Next,
each bone surface is tracked with sub-voxel accuracy thrtlg sequence of remaining
CT volume images, as described in Chapter 2. The tracking guoeeeports relative bone-
motion from one articulation pose to another. The motionaaihewrist bone is reported in

coordinates relative to the fixed forearm.

5.3.2 Moded Construction

The model of the wrist includes three-dimensional geormelfata of the eight carpal bones,
two forearm bones, and five metacarpals. We use the bone ¢ryaand sampled kinemat-
ics to generate cartilage maps and ligament fibers.

We generate cartilage maps from the fifteen bone surfaceshandkinematics, as
described in Chapter 4 (2mm proximity threshold, 1% commessickness).

We manually identify ligament insertion sites based on @matal expert knowledge
[100]. We define three to four equally spaced fibers per ligarbendle to account for the
band-like structure of ligaments. For each fiber and joirggyave automatically generate
minimum-length paths constrained to avoid bone penetraas described in Chapter 3.
An example ligament fiber interacting with multiple bonesh®wn in Fig. 5.2.

For each ligament fiber we compute and report the minimumlpatith. The resulting

fiber paths are visually validated against the anatomy-lotam.
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Figure 5.2: Ligament fiber interacting with multiple bon&he computed minimum-length
path is shown in red, the straight line between the two irmedites is shown in blue. Note
the significant deflection of the generated path from thegittdine.

In the experiments presented in this chapter we do not magkehknt-cartilage in-
teractions. Ligament paths are generated over bone, nilagarsurfaces, primarily due
to a boundary-related limitation in our cartilage map gatien method, as discussed in
Section 5.5.

5.3.3 Simulation
| nver se Simulation

In our inverse-dynamics experiments, we assemble boniagarand the ligament fibers
resulting for each joint pose. When simulating the joint, wakmthe following simplifying

assumptions:

e bones are rigid; bone deformations are ignored becauseattgeyelatively small

compared to the displacements in the joint;

¢ the friction between cartilaginous contact surfaces i®igd; due to the synovial
fluid, the friction coefficient between cartilage surfacegary low (100 times smaller

than the coefficient for ice);

e for simplicity, the viscoelastic properties of ligamentsdacartilage are approxi-

mated;
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e bone-mass is considered to be uniformly distributed, afgaisimplicity.

Cartilage maps are characterized by their location, thisgknand stiffness coefficient.
They are modeled and simulated as incompressible, deféenmaight fields. For each
joint pose and pair of articulated bones we compute and teperlocation and size of
the articular cartilage contact. The resulting contactakdated againsin vitro data as
described in Chapter 4.

In this study, the description of deformable articular emnis based on the simplified
theory of contact from Blankevoort et al. [18] for thin layefdsotropic, linear-elastic ma-
terial bonded to a rigid foundation. This implies three asggtions for the cartilage layer.
First, the size of the contact area is assumed to be larg#vecta the cartilage thickness.
Second, the cartilage layer is considered to be an isotrbpear-elastic material. Third,
the underlying bone is considered to be rigid. Deformabiewdar contact is used merely
as afirst order approximation of the behavior of the articodentact. The simplified contact
description is then a first-order approximation of the iefabetween the normal surface

stressr,, and the surface displacementnormalized by the surface thickness
On = S(un/tn) (51)

with

(1-v)E
(1+v)(1—2v)
whereF is the elastic modulus andis Poisson’s ratio. This description of articular contact

S:

(5.2)

deformation is strictly linear and will only be valid for sthaurface displacements. The
stiffness parametes' is also known as the confined compression modulus or the gajgre
modulus [78].

Following Blankevoort et al. [18], in the present model, whexo bodies are in con-
tact, the material properties of the cartilage on both mdre assumed to be equal. The
parametett, is then equal to the total thickness of the undeformed eagsillayer. The
surface displacement, is the relative displacement of the height-field envelopeictvis
obtained after resolving cartilage penetration as desdribh Chapter 4.
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The compressive cartilage contact force and moment araatea by integration of the

contact stresses over the surface

fcartilage = _//Qo-nn ds2 (53)

Meartilage = — / ,/Q onC X 1 df) (54)

wherec is the relative position vector of the cartilage contactwispect to the center of
mass, anah the direction of the normal.

Because we generated the cartilage height-field representat extruding the bone
triangular mesh representation (Chapter 4), we use the biangular grid to compute the
support area of contact point and evaluate numericallyrttegyrals in the cartilage contact
force and moment formulas.

Ligaments are simulated as collections of elastic fibersaddtarized by their rest length
and elasticity coefficient. Invasive studies on the humasekshow that ligaments tear
when stretched above 10% of their rest length [30]. Thiscatgis that the ligament rest
length should be above 90.9% of the fiber length when maxynsatetched. To estimate
the ligament rest length, we compute the maximum functiteradth of our fibers across
the range of motion. Because the range of motion we use as impulikely to stretch
ligaments to their maximum length, we estimate the fiberlezgth should be around 95%
of the computed maximum length. We then evaluate fiber lengtiy across poses with
respect to the estimated rest length. We consider a ligatodra lax in the poses in which
its functional length is less than its estimated rest length

Ligament contact forces and moments are computed sepaf@atéljament-bone con-
tact due to ligament insertions and ligament-bone contaettd ligament wrapping. Let
m be the total number of ligament fibers modeled, andhe number of insertions for
ligamentj. The ligament insertion contact force and moment are coeaptdllowing
Blankevoort et al.[18] as:

m_ 9j I — 1. \?2
flig.ins. = Z Z Klig (%) Vi (5-5)
j=1i=1 Jo

m  Oj

Myig.ins. = Z Z Sji X flig.ins.ji (56)

j=1i=1
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wherel;, is the rest length of ligament v;; is the ligament direction at the insertion site
i, ands;; the relative position vector of the ligament insertion witispect to the center of
mass.

Similarly, the ligament wrapping contact force and momeata@mputed as:

m L—1\
flig.wrap = Z ZKlig < ! I ]0> Q45 Pji (57)
j=1i=1 Jo
Myiig.wrap = Z Z Sji X flig.wrapjz‘ (58)
j=1i=1

wheren; is the number of points at which ligameptontacts the bone surface through
wrapping, l;, is the rest length of ligament, p;; is the sum of the ligament directions
left and right of the contact poirit «;; sums the projections of the left and right ligament
directions in thep;; direction (i.e., the directional sum of forces passing dhegiside of
the point), ands;; is the relative position vector of the ligament contact paeiith respect
to the center of mass.

We use anatomy-book values 6y,,, the cartilage stiffness parametés,,, the liga-
ment elasticity coefficient, and the scaphoid mass (Takilg[®8, 98, 107]. In the absence
of stiffness and elasticity constants for the human wristtenal parameters representative
of the human knee were used for the wrist cartilage and liggsneAll ligaments were
assumed to have the same elasticity coefficient.

Because each volume image of the joint is acquired in a quatéc-pose, the net force

and moment acting on a bone at each pose are:
fnet = fcartilage + flig.ins. + flig.wrap + fexternal (59)

Mpet = Meartilage + Myig.ins. + Myig.wrap + Megternal (510)

wheref. ,icrna @aNAdmziernq are the external force and momentum.

Because there are no muscle insertions on the scaphoid li@sshasampled pose the
values off,,,iiage + fiig.ins. + fiig.wrap @NAMeartitage + Miig.ins. + Miig.wrap rESUItING for the
scaphoid bone when using the anatomy-book parameters e 3dbshould be reasonably
small — the same order of magnitude with the gravity on th@lscal bone. We use this
(fret, myer) balance observation to ascertain the plausibility of tree@my-book parameter
values in Table 5.1.
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Table 5.1: Material properties used when simulating thetyoint

parameter value
Seart 4M Pa
Kiig 10°N/m?
Scaphoid mass 3g

Forward Simulation

Unlike the load bearing joints of the hip and knee, where ttiewdar cartilage is relatively
thick, cartilage depth on the carpal surfaces involvedeyttesent study is typically around
0.7mm. Assuming maximum deformation of the cartilage is ©%% of its thickness, as
determined in Chapter 4, then this equates to a maximum dmviat the surface shape
of only around 0.007mm to 0.035mm, which is small in compariso the size of the
bones and is likely to be within the bounds of experimentedreror this reason, it was
considered a reasonable simplification to employ non-dedibie surfaces when modeling
cartilage contact in the forward simulation of the joint.

Since the articular surfaces were non-deformable, angseairegions separated by less
than 0.01mm during the simulation were deemed to be in contae lower bound on the
proximity limit was introduced because we found that mudtipmall intersection regions
occurred as a consequence of surface irregularities whemowe surfaces were brought
closer together than 0.01mm, causing the bone to bouncatezje

During the simulation, ligaments are allowed to deform ud®% of their estimated
rest-length (see Section 5.3.3). After this threshold,reatligament-bone contact as rigid.

In our forward simulations, the start conditions are givgrtte joint configuration in
a given pose. All the bones except for the scaphoid bone aed;fithe scaphoid bone
is free to move under the influence of contact forces and gyrawVe use the explicit
forward Euler method to integrate the scaphoid state thrdinge (0.01s time-step), and
the penalty-method (0.005 penalty factor) to resolve iptmetrations [12].

The goal of the forward experiments described in the rengaind this section is to
clarify the role played by ligaments in stabilizing the Seayl bone. To this end, we first
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Figure 5.3: Coordinate system defined on the wrist. The ongthe coordinate system is
the center of mass of the scaphoid bone; the axes of the cabedystem are aligned with
the axes of the CT-scanner coordinate system.

validate the anatomy-book parameter values in Table 5.Vélyating(f,..;, m,.;) at each
sample joint pose. We then simulate the motion of the scapbhone under the action of
contact forces and gravity, when all the other bones are fixad start conditions of each
simulation are given by a sample joint pose.

In order to test the stability of the joint, in each simulatlmelow we specify a different
direction for the gravitational force. We use the local dioate system shown in Fig. 5.3
to describe the direction of this force.

We run two sets of forward experiments, each set using ardiffesample joint pose as
start conditions. The first set uses as start conditions trst i the neutral pose. In this set
of experiments we remove all ligamentous constraintst,Fis® simulations are run, with
the gravitational force acting in they plane. In the first simulation the gravitational force
pushes the scaphoid bone against the surrounding, fixedsHddirection: [—1,+1, 0]).

In the second simulation, the gravitational force pushestaphoid bone outside the joint
(direction:[+1, —1, 0]). For each simulation we report the total HAM motion — traatisin
and rotation — of the scaphoid bone.

The second set of experiments uses as start conditions teeinvan extended pose.

We run two simulations with all ligamentous constraints ogad, one simulation with the
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gravitational force pushing the scaphoid bone towardsdim {direction:[—1, —1, 0]), the
other with the gravitational force pushing the scaphoidebountside the joint (direction:
[+1,41,0]). We repeat the last simulation, this time taking into actdigament-related

constraints. For each simulation we report the total scajiotion.

54 Resaults

The Functional Role of Wrist Ligaments

In this experiment we generated ligament-fiber paths forgbent bundles in the human
wrist. We computed the lengths of these paths across the &ngrist motion.

Four computed ligament-fiber paths with their lengths amwshin Fig. 5.4; note the
fibers wrapping around the bone at the top insertion siteo Atste that the resulting li-
gament fibers run more or less parallel to each other, jusgifthe band-like aspect of the
ligament bundle.

Table 5.2 shows the resulting minimum and maximum fiber-featgth across the range
of motion for each of the 15 ligament bundles modeled. Thietalso shows the number of
poses, for each bundle, at which the fiber length was abovedd®¢ computed maximum
length.

Evaluation of the computed fiber lengths across the rangeotibm(Table 5.2) indi-
cates that most ligament fibers — 10 out of 15 bundles — argeaittionly a few poses.
That is, for most ligaments the computed fiber-length was/@l8b% of the maximum
length in only a few poses (between 1 and 3 poses, out of 7 potsds In contrast, note
that fibers computed for the palmar mid-carpal scaphoid leuzuad the dorsal mid-carpal
bundle have almost constant length across the range of m@d@5mm to 10.9mm, 3.8%
relative elongation, and respectively 32.0mm to 33.1m#f/3elative elongation).

Wrist Close-Pack Pose

In this experiment we evaluated the size of articular cardamss the wrist range of mo-

tion. The aim of the experiment was to determine whetheretlieione pose (or more
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Figure 5.4: Four fibers in the same ligament bundle of the muwwi@st. Top: an artist’'s
rendering of the palmar radial-scaphoid ligament bundéedadaver wrist (left, Primal Pic-
tures; ligament in red, bones in white, cartilage in yello@)sus palmar radial-scaphoid li-
gament fibers generated computationally usimgvo bone surfaces and kinematics (right;
ligament in red, bones in blue, cartilage in yellow). Thetynied cadaver pose and thre
vivo pose are slightly different; however, note the generallanity between the ligament
geometry estimated invasively (left) and the ligament getynestimated non-invasively
(right). In particular, note the fiber wrapping around th@®at the top insertion site. Bot-
tom: the length of the computational ligament fibers acreses joint poses. Thg-axis

in this plot covers the whole range of fiber lengths acrossgesrient bundles.



Table 5.2: Wrist ligament fiber lengths across the range ofanot

Ligament bundle

Minimum length

Maximum length

Active poses

across fibers across fibers total poses
Dorsal 15.0+ 0.3mm 16.6+ 0.6mm 217
inter-carpal
Scapho-lunate 2.6+ 0.4mm 3.0+ 0.4mm 1/7
inter-dorsal
Scapho-lunate 3.5+ 0.2mm 4.0+ 0.2mm 1/7
inter-volar
Scapho-lunate 2.5+ 0.2mm 3.3+ 0.4mm 1/7
inter-median
Palmar scapho- 3.2+ 0.2mm 10.0+ 0.9mm 1/7
trapezium
Palmar mid-carpal 10.54+ 0.7mm | 10.94+ 0.8mm 717
scaphoid
Radio-carpal 147+ 1.2mm | 18.3+ 1.8mm 1/7
colateral
Radio-scapho- 4.7+ 0.5mm 10.4+ 0.4mm 1/7
lunate
Radio-scapho- 23.1+ 2.6mm 27.44+ 2.2mm 3/7
capitate
Dorsal mid-carpal| 32.0+ 0.1mm | 33.1+ 0.2mm 717
Dorsal mid-carpal| 32.8+ 0.3mm | 37.6+ 0.3mm 3/7
trapezoid
Dorsal mid-carpal| 37.4+0.7mm | 41.94+ 1.1mm a/7
trapezium
Dorsal 2454 3.8mm | 31.7+ 2.4mm 1/7
radio-carpal
Flexor retinum 33.6£0.9mm | 36.7+ 1.9mm a/7
trapezium
Flexor retinum 29.6+ 1.1mm | 32.9+ 0.7mm a/7

scaphoid
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Table 5.3: Wrist articular contact size across 7 posas?)

Bone/Pose 1 2 3 4 5 6 7
cap 59.35 152 | 51.43| 37.69| 8.36| 76.27| 126.29
lun 43.46| 169.32| 18.48| 42.62| 6.97|105.35| 93.23
rad 124.17| 123.91| 70.28| 6.62| 0.25| 65.03| 54.49
sca 120.04| 250.3| 87.78| 30.29| 8.11| 52.04| 284.01
tpd 24.74| 77.69| 17.98| 39.49| 68.15| 77.98| 81.76
tpm 6.04| 75.47| 0.00| 31.05| 62.33]| 24.19| 62.43
| Total | 377.80| 848.69| 245.95| 187.76| 154.17| 400.85| 702.20|

max
contact
pose

Figure 5.5: Wrist maximum contact pose. The wrist pose thatlt®in maximum contact
among bones (left; shown here palm facing) correspondd § alnar deviation from the
neutral pose (right).

poses) across the range of motion in which the joint bonasattaximum articular con-
tact. Maximum-contact poses are also knowrclase-packposes — poses in which the
joint bones are closely packed.

Table 5.3 shows the size of articular contact across 7 pbk#e.that pose 2 maximizes
the contact among bones (total contact: 848.68). Pose 2 roughly corresponds td %
ulnar deviation from the neutral pose (Fig. 5.5).

Note that pose 7 also results in a significantly large valuetaf articular contact (total
contact: 702.2im?, 75% larger than the next largest value). Interestinglyhbmse 2
and pose 7 fall within the radial-ulnar deviation range fdnet the contact-maximization
approach of Sirkett et al. [98] predicted bone motion cdlyec
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Scaphoid Dislocation

To verify the plausibility of the parameter values in Tablé,5ve evaluated the values of
feartitage + frigins. + fligwrap ANAMegrtitage + Miig.ins. + Myigwrap fOr the scaphoid bone,
at each one of the sampled joint poses. The resulting vaidsN + 0.09N force,
0.74Nm =+ 0.51Nm torque) were reasonably small, comparable with tagity on the
scaphoid bone (0.03N, ONm).

Next, we simulated the motion of the scaphoid bone when #re@inditions are given
by the neutral pose. All bones except the scaphoid were firddigament-related con-
straints were not taken into account. In each simulatiosta@hoid remained stable, inside
the joint. The total scaphoid motion when the gravitatidoade pushed the scaphoid bone
towards the joint was (-0.56mm,41°). The total motion when the gravitational force
pushed the scaphoid bone outside the joint was (1.41m55). The simulations were
stopped after 6s simulated time. These results indicaterthiae neutral pose the scaphoid
bone is locked in place by the surrounding bones.

Next, we simulated the motion of the scaphoid bone when tag sbnditions are
given by an extended pose (pose 6 in Table 5.3). All bonespéxbe scaphoid bone
were fixed. Initially, ligament-related constraints wei taken into account. The to-
tal scaphoid motion when the gravitational force pushedsttephoid bone towards the
joint was (-0.07mm3.16°); the bone remained inside the joint. When the gravitational
force pushed the bone outside the joint, the scaphoid @#dcfrom the joint and con-
tinued to slide away from the joint, in the direction of thexgtational force (direction:
[+1,41,0]). The simulation was stopped after 15s. The total recordeghoid motion
was (-5.28mm;-2.45°).

We repeated the extended-pose dislocation experimestfithe taking into account
ligament-related constraints. At the start of the simualative recorded five active ligament
bundles. As the simulation progressed, three of these bgémwere stretched to the maxi-
mum length, two became inactive, and one additional ligdamwes activated. Notably, two
of the maximally-stretched ligaments wrap around the sgoi@phone: the radio-scapho-
capitate ligament and the palmar mid-carpal scaphoid leggmThe constraints imposed
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by ligament-bone contact through ligament insertion goartd wrapping points were suf-
ficient to prevent the scaphoid from becoming dislocatechftbe joint. The simulation
was stopped after 6s; the total recorded motion was (-0.99A245°).

Each simulation was computed in under 2 minutes on an AMDo&tBY X2 processor,
2 GHz.

5.5 Discussion

This study has successfully coupled data obtaimedivo with numerical simulation to

develop a predictive tool for understanding the role of-¢isfues in the functioning of
the wrist joint. In particular, our results predict sofidue contact within the joint, the
existence of a close-pack wrist pose, and show that wriairignts play an important role
in stabilizing the joint.

In our experiments, evaluation of fiber lengthening acrbesange of motion indicated
that ligament fibers are relaxed in most poses. The intagesgtiplication is that, in any
given pose, only a few ligaments are active. Subsequent\aigm of anin vitro dissected
specimen confirms this finding: wrist ligaments appearedetdal’s in most poses. Our
collaborators in the Department of Orthopedics expectttiafposes in which ligaments
become active will indicate the functional role of specifgaiments.

We also found in our experiments that in the close-pack postact among the bones
was maximized. Because the contact is maximized, loadseapgithe wrist in this pose
get distributed on a larger contact area. The existence oigue close-pack pose indicates
therefore that there is a joint configuration in which the lammvrist can sustain impact
most effectively. This observation has interesting po#ajpplications to athletic training
and therapy planning.

The close-pack pose finding is difficult to validate otheentisan through visual exam-
ination of medical images of the bone configuration at eadepélowever, we note that
certain primates such as chimpanzees use a similar posewdtieing on four limbs [90].
This suggests that the close-pack pose can indeed susadmddfectively.

Our scaphoid dislocation predictions remain to be validakeough invasive studies.
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However, we note that our results are consistent with eastedies on scaphoid mo-
tion [24], in which, in the absence of ligament wrapping, sftaphoid motion had to be
artificially constrained to a plane to avoid joint collapse.

We used several modeling simplifications in our approach. dels do not include
the top layers of a joint — muscles, the neurovascular sysfatrand skin. Ligament
interconnectivity is not modeled, nor are the synovial sad #uid. We approximate the
viscoelastic properties of ligaments and cartilage. Bonespproximated as rigid bodies
and bone-mass is assumed to be uniformly distributed. Thaelsave generate could be
enriched by considering intrinsic and extrinsic factorstsas soft tissue composition, bone
tissue composition, muscle forces, and joint compression.

When we estimate ligament rest-lengths, we assume thagathknts are stretched to
95% of their maximum length in some of the sample joint po3é®re are no guarantees
that this sampling assumption is true in general: some legggsmmay be lax in all the
sampled poses. In theory, this issue could be addressedjoyriag a larger number of
samples. Furthermore, we extrapolate knee anatomy-booklkdge to the wrist when
we assume that ligaments tear when stretched above 10%iofekelength; the 10%
threshold may not be correct. We also assume that wrist bgésrare characterized by the
same elasticity coefficient. When more data about the elpstjgerties of wrist ligaments
becomes available, the models we generate may need to beedpda

Although our contact model is capable of processing ligareartilage interaction, in
the experiments presented in this chapter this type ofantem is not modeled. Liga-
ment paths are generated over bone, not cartilage surfagesrily due to a boundary-
related limitation in our cartilage map generation meth@idual analysis of the resulting
wrist simulation indicates that during normal motion tagaments collide merely with
the boundaries of cartilage maps. In anatomical data agetimaps should recede towards
their boundary — an aspect our kinematically-generatetlage maps do not capture.
However, the non-collision observation may not hold in tasecof injured kinematics.

Our forward simulation implementation uses the forwardeEuttegration method and
the penalty-method contact model. More intricate techescgkist; such techniques involve

subdividing time to find the exact moment of collisions andrttapplying impulses or
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resting forces as needed. Such methods provide in general accuracy and stability,

although simulation stability has not been an issue in opegrients so far.

5.6 Conclusion

We presented in this chapter a medical-image based methodrstructing and simulating
complex joint models. The method uses as input medical velumages of the joint bones,
tracked motion and anatomy-book knowledge.

The resulting models and simulations are adaptable toioha differences: we use as
input individual-specific bone surfaces and kinematics, subbsequently customize carti-
lage maps and ligament fibers according to the input infaonafhe models we generate
have predictive capabilities in terms of predicting segstie contact within the joint and
understanding the kinetic response of the joint.

The results presented in this chapter prove it is possibleotplein vivo data with
numerical simulation to predict and understand the roleoftttsssues in the functioning
of the wrist joint. Only one bone was allowed to move freelpur forward experiments,
while the other bones were fixed. A natural next step is toyafif@ actual kinematics to

some of the bones in the model and concentrate predictivet®fin one bone at a time.



Chapter 6

Diarthrodial Joint Markerless
Cross-Parameterization and

Biomechanical Visualization

6.1 Overview

Orthopedists invest significant amounts of effort and tingeng to understand the biome-
chanics of diarthrodial joints. While new image acquisiteond processing methods cur-
rently generate richer-than-ever geometry and kinematiasits that are individual spe-
cific, the computational and visualization tools needednaboée the comparative analysis
and exploration of these datasets lag behind.

In this chapter, | present a framework that enables the atatsset visual exploration
and analysis of diarthrodial joint biomechanics. Centrabtw approach is a computer-
vision inspired markerless method for establishing paendorrespondences between in-
dividual specific geometry. Manifold models are subseduat@fined and deformed from
one individual specific geometry to another such that thekerbss correspondences are
preserved while minimizing model distortion. The resultedtually-consistent paramete-
rization and visualization allow the users to explore tingilgirities and differences between

two datasets, and to define meaningful quantitative megasure
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| present two applications of this framework to human wriatad articular cartilage
transfer from cadaver data to in vivo data, and cross-datasematics analysis. The
method allows our users to combine complementary geometyyiiged through differ-
ent modalities, and thus overcome current imaging linotegi Results demonstrate the
technique useful in the study of normal and injured anatondy/kanematics of diarthrodial
joints.

In principle, the pairwise cross-parameterization methpplies to all spherical topol-
ogy data from the same class, and should be particularlyficeailan instances where

identifying salient object features is a nontrivial task.

6.2 Introduction

Diarthrodial joints are the structures that allow us to makrey are formed when two bones
come together and move against each other without gettintagad. There are many
different types of joints in the human body, and some of theenramarkably complex;
for example, the human wrist involves contact among fiftaéarént bones. Furthermore,
the relationships among joint-bones change with motioe, @gdisease. As new image
acquisition and processing methods generate richerglaandiarthrodial joint datasets,
the inherent complexity of these data motivates a varietynofleling and visualization
techniques designed to assist orthopedics researchérsirmbalysis.

In the context of diarthrodial joint data, particular emgisafalls on the comparative
analysis and exploration of individual-specific datasets. example, orthopedic surgeons
often compare the injured joint of an individual with the etahg uninjured joint of the
same individual. In a different application, our collakiora in the Bioengineering Depart-
ment are studying the effect of in vivo motion on articulartitage in the human wrist.
In vivo motion can only be measured in live human subjects. On ther didind, highly-
detailed, unloaded wrist-cartilage geometry can curyemtly be measured invasively)
vitro. The invasive procedure involves extracting the bones artdage from the joint, im-
mersing them in contrast dye for 24 hours, th&iT-imaging them. The imaged cartilage

can be represented as a height-field on the suppartivigro bony surfaces (Fig. 6.1). Our
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Figure 6.1: 2D slice through aCT-volume image of bone and articular cartilage. The
imaged cartilage (bone tissue shown in white, cartilagefhgrey surrounding the bone
outline) can be represented as a height-field on the supgdsbny surface. The height-
field is defined as a collection of base points on the bone &rthe bone surface normal
at that point, and the height along the normal at which thenabintersects the cartilage
external envelope.

collaborators would like to be able to transfer this heigéldfi without folding or tearing
it, on the correspondingn vivo bony surfaces; then apply to the resulted geometryrthe
vivo-measured kinematics in order to estimate how cartilagerdef with motion. Both
applications — comparative analysis andivo - in vitro data fusion — require establish-
ing a pairwise correspondence between datasets.

Unfortunately, diarthrodial bones like the ones in the iwairsankle are difficult to set in
correspondence, due to their round and smooth everywhetat@plike) shape, with rare
clear salient features to aid the matching process. In génee note that while a number
of techniques are available for modeling, visualizing, amihnating articular-joint data
acquired from a given human individual, the computatiomal @sualization tools needed
to comparatively analyze or combine these datasets aretmi

In this chapter, we present a framework that enables thes-cataset visual explo-
ration and analysis of diarthrodial joint biomechanicsr €y contribution is a markerless
method for establishing pairwise correspondence betwesinidual-specific diarthrodial
joint datasets. The method is markerless in the sense thiatuimvents the need to iden-
tify corresponding salient geometry featuresafker3. Based on the markerless dataset

correspondence, we then propose modeling and visualizegainniques for exploring and
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analyzing cross-dataset variation. We demonstrate ooreinsork on human wrist data,
with two applications: transfer of surface-detail (suclsafi-tissue insertion sites and car-

tilage location) from cadaver data to in vivo data; and cidesset kinematics analysis.

6.3 Reated Work

A key step in either the comparative analysis or the mergingeometric datasets is es-
tablishing pairwise correspondence between shape bdesdar surfaces. In standard
biomechanics practice, two similar surfaces are oftendinmbin correspondence by first
aligning them through a method like the Iterative CloseshP@CP) transform [17], and
then projecting the source surface on the target surfaceauBecthis approach does not
explicitly use shape information, the source surface mtneefold or tear during the pro-
jection phase. Alternatively, the problem of pairwise espondence can be posed as that
of establishing a common parameterization between the twfaces. The advantage of
cross-parameterization over ICP followed by projectionhatt a) it can be constrained
to avoid surface folding and tearing; and b) it provides avearent common frame of
reference when quantitatively analyzing the differencsvben two datasets.

Pairwise correspondence for cross-parameterization. While several cross parame-
terization techniques exist, they require in general thetemce of an initial pairwise cor-
respondence among several points on the shapes. If thesshage clear salient features
(e.g., extreme curvature points, or characteristic mexia), the pairwise correspondence
process can be automated [106, 112, 102]. In the absencdiaitdaatures, pairwise
correspondence is often established using user-definedhkuks [26, 23]; however, the
landmarking operation is time-consuming, error-prone sugjective even in 2D. In 3D,
manual landmarking can become impractical.

Golland et al. [46] avoid 3D manual landmarking by alignif@gges so that the ob-
ject volume and the center of gravity of a distance transfierthe same for all example
shapes. This approach does not guarantee anatomicafeatuespondence, although the
resulting alignment is sufficient for shape classificationgoses.

Brechbuhler et al [22] automate the pairwise correspondenoeess by assigning a
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correspondence of each individual shape to the sphere (BRHAThe correspondence of
SPHARM is determined by aligning the parameterization stthearidges of the first order
ellipsoid coincide; inherently, the correspondence ooty with rotational symmetry in
the first order ellipsoid is ambiguously defined. The metisatus not applicable to potato-
like shapes with symmetry about a main axis like the diadtaicshapes discussed in this
chapter. In fact, a comparative study [101] on femoral datgd that, in case of rotational
symmetry in the first order ellipsoid, independent of thehkigorder terms, the SPHARM
correspondence is inappropriate; the correspondenced ocotilbe significantly improved
using statistical methods like the minimum descriptiorgkér{31] or DetCov [59].

In contrast, the markerless pairwise correspondence mgttoposed in this chapter is
automated, works on objects of spherical topology whick kEadient features, and is not
susceptible to object rotational symmetry in the first orlépsoid.

Our correspondence approach is inspired by work in compigern [16, 53], where
2D representations have been used in the context of sametabrognition and object-
pose recovery. Global-shape 2D histograms appear oftesnipater vision literature, but
in general they are targeted at same-object recognitionleAfhcomputer vision applica-
tions the focus is on selecting just a few strong correspoceethat are also geometrically
consistent with a rigid-body transform, we introduce newahsaselection criteria that al-
low for non-rigid shape variation. We have briefly descriliegse match-selection criteria
before in [71].

Cross-parameterization. A number of statistical methods produce cross parameteriza
tions across training sets of shapes [26, 46, 31, 59]. Irethpproaches, a statistical model
of shape variation is learned from a training database. dbesfof the present chapter is,
however, theairwisecross-parameterization of shapes, when a training dagabag not
be available.

Previous approaches [88, 60, 93] to consistent pairwisgnpaterization of meshes use
mesh simplification to create a base mesh, align the base widsleach data set, then
re-mesh to establish correspondences. The correspondeperds heavily on the assign-
ment of the base mesh triangles to patches on the surfacesir Bhape-correspondence

approach we avoid both the patch creation and re-meshipg bieonly pinning a subset
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of points and using an analytical domain.

Exploratory Visualization of Diarthrodial Joints. Cross-individual diarthrodial joint
datasets that combine geometry and kinematic informatienedatively new in orthope-
dics, due to the recent development of technologies fokitngdn vivo joint kinematics.
Previous attempts at the visual exploration of in vivo jdamechanics have therefore
been aimed mostly at understanding individual-specifietkiatics [28, 99], mainly by
presenting to the user animations of a specific joint. Thk tHcsalient features makes
finding correspondences in diarthrodial joint geometr{icift. In consequence, previous
kinematic analysis attempts in general disconnect kiniendatta from the geometry, and
guantify kinematic differences across datasets by comgarumerically joint-angle se-
ries. In contrast, our approach allows the users to explamthdodial joint kinematics in
the context of joint geometry.

The two scalar data visualization techniques we use, codqmpuimg and iso-contouring,

are well known scientific visualization techniques [72].

6.4 Methods

Figure 6.2 summarizes our framework. We use computed-toapbg (CT) individual-
specific datasets; the data is first processed in order taatttre articulation-joint geom-
etry and the corresponding joint kinematics. Next, given such datasets, we set their
geometry in correspondence using a computer-vision ameréeiftial-geometry based ap-
proach. We further process the resulting geometry and katiemin order to explore the
similarities and differences between datasets, and toaafganingful quantitative mea-

Ssures.

6.4.1 Data Acquisition and Preprocessing

Our data is generated by CT-imaging the articulation boneswaflunteer in up to twelve
different positions, followed by registration of the boresoss all volume-images. Each
CT volume-image corresponds to an articulation pose, thupkag the space of the phys-

iological range of motion.
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Figure 6.2: Biomechanics visual analytics framework. Scigpecific CT-datasets are first
processed in order to extract the relevant joint geometthykamematics. Two such datasets
are then set automatically in correspondence. We use thespamdence to further explore
and analyze dataset differences.

Through manual segmentation, thresholding, and useaictien, bone surface points
are extracted from an arbitrarily-designated reference @timre image [28]. Each bone
is then tracked accurately through the sequence of rengaidinvolume images (Chap-
ter 2). The tracking procedure reports relative bone-moafiom one articulation pose to
another. Each resulting dataset is thus individual-spe@hd consists of the diarthrodial
joint geometry and its sampled kinematics.

Bones in the joint are modeled further both implicitly, ssalar distance fieldsand
parametrically, alNURBS surfacesThese two types of representation have complemen-
tary strengths for different types of calculations. NURBSfates provide an accurate,
smooth, and locally controllable representation of thedsoriWe use the Geomagic soft-
ware package [43] to generate parametric bone models frerasggmented bone surface
points. Distance fields on the other hand, have importararstdges for geometric com-
putations such as fast distance calculation. A distance iseh scalar field that specifies
the signed distance from a point to the bone surface. Nualesign is used to distinguish
the inside from the outside of the bone: negative valuesreside the bone, positive val-
ues are outside the bone, zero values are on the bone subistence fields surrounding

each bone are computed from the parametric representdi@se distance fields provide
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Figure 6.3: Markerless correspondence pipeline. Corraipgrbone instances S and T
are first normalized and resampled. For each surface poepreject the bone instance
on a local 2D subspace and we generate a 2D histogram (faolsdatethe project and bin
operation, see Fig. 6.4). We evaluate all possible matokteseen all the points on S and all
the points on T, and keep only bipartite matches. Finallyfilkex out weaker matches from
the neighborhood of stronger matches, generating a Pediskmlistribution of pin-points
on the surface of each mesh.

the support for evaluating kinematic changes in the aditah. We use the Closest Point
Transform (CPT) level-set software package [73] to gendhetelistance field representa-
tion from the surface representation. A validation studygened on CT-imaged phantom
data [109] — in which the distance between two spheres waguatad through the CPT
software — has shown average errors of under% of the actual inter-sphere distance.

6.4.2 Bone Surface Correspondence

Let S and T be the source and target geometry we wish to setriespmndence. We
begin by generating a set of pin-points on S and T; the cooresgnce is markerless in
the sense that a pin-point doesn’t necessarily mark a geioailgt-salient feature. The
corresponding pin-points are generated using global sindgenation.

Next, we fit a manifold surface to the geometry of S, then defttre manifold to match
the geometry of T while preserving the pin-point correspmu. Essentially, the mani-

fold deformation extends the pin-point correspondenchledcentire surface. The pin-point
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correspondence helps prevent manifold folds and selfsattions during the matching
process. The manifold correspondence allows us to defirg@stent parameterizations be-
tween datasets — a bijection (i.e., a one-to-one and ont@img@pbetween the geometry
of each surface and the abstract manifold representation.

We describe the markerless-correspondence and maniébdoirdation steps below.

Pairwise Markerless Correspondence

Figure 6.3 summarizes the markerless corresponding puoeetlVe begin by resampling
the bone surfaces of S and T such that they have approximatlyame number of ver-
tices. The resampling operation is embedded in the Georpagjprocessing software [43].
Corresponding bone surfaces are then normalized with regpscale and translated so
that their centers of mass are aligned. If the two shapesignéisantly far apart, the
surface-alignment is further refined using an ICP transfdrij. |

The fundamental shape element we use to generate pin-poiespondences is an ori-
ented point, a 3D vertex with an associated direction [58]lowing Johnson and Hebert,
we define an oriented point on the surface of an object usimguiface positiop and the
surface normahk at that position. For each oriented point in a mesh we contliggangent
plane throughp and the line parallel ta throughp. The tangent plane and the line define
a local coordinate system. All the verticesn the mesh can be mapped on this coordinate

system using cylindrical coordinates as follows:

flv) =n-(v—p) (6.1)

a(v) = /(v =p)- (v —p) - B)? (6.2)

For each poinp on the surface of a bone instance from dataset S, we comparte 3
coordinates for all the vertices in the mesh. Next, we binvééréices based on theje, 3)
coordinates into a 2D histogram, with the bin size equal éortfedian edge length in the
mesh (Fig. 6.4). We found that ¥85 such bins cover in general all vertices in our models.
The result of this step is a collection of 2D histograms, amesfich point in the bone mesh.

We repeat the procedure for the corresponding bone in datase
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Figure 6.4: Project and bin operation. For each ppiah the mesh, we consider the local
coordinate system defined by the plane tangeptdod the surface normal at that point.
All other verticesy in the mesh are cylindrically-projected on this local systeve compute
the o and§ cylindrical coordinates (see text for details) of each eertProjected points
are finally binned in a 2D histogram.

Because each 2D histogram encodes the coordinatdstbe points on the surface of
an object with respect to the local,(3) basis, itis a local description of the global shape of
the object. Since each 3D point has associated such a destrige can apply techniques
from 2D image matching to the problem of surface correspooele

Potential pin-point correspondences between the S anddibsetances are established
by evaluating the value of all possible matches betweentgoim the S model and points
on the T model. We define the value of a match between paant S and point on T as
a combination of the image-correlation index between thénBlbgrams constructed at
andt and the Euclidean distance between the 3D space coordofatesdi:

1
Katen(8,t) = Keorrer(hist(s), hist(t)) + H (6.3)
b

(s) = p(®)]l

where K, (hist(s), hist(t)) is the 2D correlation coefficient between the histogram at
s and the histogram at This value function favors matches that have a strong image
correlation index and were generated from points with singpace coordinates.

For each surface point we retain the strongest matched pdim the other instance,
i.e., the pointt that generated the highekt,,....(s,t) score. The resulting strongest cor-
respondences may not be in a bipartite relationship; i@ntp;’s strongest match may
be pointt,, while ¢;’s strongest match may not e, but some other poind;. In a first

filtering stage, we only keep correspondences that defingaatlie match.
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Figure 6.5: Two wrist bones belonging to different humanecis and their corresponding
pin-points. Pin-points in correspondence are shown in #mescolor. Right: the 2D-
histograms generated by the two pink corresponding pintpain the left are remarkably
similar, indicating good shape correlation at these poidtg markerless method generated
this bipartite set of 25 Poisson-disk distributed corresjnces in only a few minutes.

Next, bipartite correspondences are ordered accordingeto X ,,,.;.,, value. Begin-
ning with the highesk,,...,, value, we filter out weaker correspondences through a greedy
programming approach, as follows: for each bipartite gpoadence, in the order of
Koaten, We remove all other bipartite correspondences which argecltob than 10x [,
wherel is the median edge length across S and T. The result is a Redéslodistribution of
pin-points on the surface of each model. Note that the psotesugh which we generate
a set of pairwise corresponding pin-points is determiauisti

Corresponding pin-points generated on two wrist bones girthis markerless method
are shown in Fig. 6.5. The pairwise markerless corresparedarethod is implemented in

less than 2,000 lines of Matlab code.

M anifold Defor mation

To align the surfaces we begin by fitting a default manifoldae to the source geom-
etry S, as described in [47, 48]. Our manifolds are smoottallp parameterized( >
continuous surfaces [47]. The overlapped structure of theifold-surface representation,
which is inspired by differential geometry, has severalaadages including flexibility in
shape adjustments without costly constraints, and smaantkitions and uniformity among
patches.

The default manifold we fit to S is roughly the shape of the gikene. Summarizing

the [47] reference, the fitting process essentially “shvin&ps” the default manifold around
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deformed
tofitT

Figure 6.6: Manifold deformation: default manifold surafitted to S with pin-points
(left), the original mesh T with corresponding pin-pointsiddle), and the original mesh
T overimposed with the result of deforming the S manifold tarfwhile preserving the
pin-point correspondence (right); in the right image, tiregmoints of T and the deformed
manifold are overlapped. The resulted T manifold is freeadiimtersections/folds. The
manifold defines a mutually-consistent parameterizatiemvben the S surface and the T
surface.

the specific data set. Specifically, we alternate betwegpgiing the S data set points onto
the manifold and solving a least-squares problem to adjgsparametric surface control
points. Once the manifold surface is fit to S, we project theérSppints onto the fitted
manifold.

Next, we deform the S manifold such that it fits the target getoynT. This time, we
introduce additional constraints into the least-squareklpm that pull the S manifold pin-
points to the 3D pin points of T. Although we cannot formallyagantee no folding or self-
intersections during manifold fitting, the use of filteringdeof a sufficiently-close starting
position as provided by the pin-point correspondence hedpavoid folding problems in
practice.

Figure 6.6 shows a default manifold surface fitted to S, togrewith its pin-points, the
original mesh T with pin-points, and the original mesh T avgrosed with the result of
deforming the S manifold to fit T while preserving the pin{pocorrespondence. Note
that the resulted T manifold is free of self-intersectiéolgls. The manifold deformation

defines a mutually consistent parameterization betwee8 theface and the T surface.
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6.4.3 Exploratory Visualization and Analysis

Given two datasets, the markerless correspondence me#sodiloed earlier allows us to
build a mutually-consistent surface parameterizatiomwbeh the dataset geometries. This
mutually-consistent parameterization enables the eaptor of dataset differences.

In order to contrast the kinematics of two datasets, we jacekinematics on the bone
surfaces, as described in [67]. Summarizing this refereioceeach bone and joint pose,
we compute at each bone vertex the distance to neighboringsbdVe use the distance
field representation to find distances from every vertex enstlirface model of one bone to
its neighbor.

Because joint kinematics influence how close two bones cogetdtier, and where they
articulate with each other, we can use the inter-bone jpiats as a measure of kinematics.
For each bone and space, we define the inter-bone joint spaise eortical surface area on
the bone that is less than a prescribed threshold distayyiedlly 5mm) from the cortical
surface of a neighboring bone. As two bones move relatively @ another, tracking
through time the location and size of the inter-bone joirgcgpprovides insight into the
joint kinematics.

We also compute isocontours on the contact area, each cahtowing where the inter-
bone joint space is equal to a constant distance. The arde d@fter-bone joint space is
the total area of the surface triangles within the 5mm cant@e characterize the inter-
bone joint-space by its area and by the location of its ce&htyo the cross-parameterized
surface. These measures and the common parameterizdtonaair users to compare
guantitatively two datasets.

We visualize inter-bone joint-spaces using color mappimgd) @ntouring. Color maps
are generated for each bone so that distance values of syntéats are mapped to vary-
ing color saturations (more saturated colors represemteshadistances). Distances larger
than the contact threshold value are neither colored naoooed and are shown as white

surfaces (Fig. 6.7).
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Figure 6.7: A normal scapholunate joint. Bones are color redpmd contoured. The
saturation of red (darker region in black and white) on baéases represents the distance
to the nearest point on the opposite bone. Redder regionbae.cThe maximum distance
visualized is 5 mm. Contour lines are drawn at 0.5 mm intenfalsBones in their correct
anatomical context. (b) Bones rotated to show articulatefdseis more clearly.

6.5 Resaults

6.5.1 Validation

Pairwise markerless correspondence. We applied our markerless correspondence tech-
nique to wrist bone instances collected from 11 individ@lbamate bones, and 4 lunate
bones). For each pair of bones from the same class, 13 to 2&fspairwise pin-points
were automatically generated through our method. Becausedical imaging the cor-
respondence ground truth is only known for synthetic anchfiira data, the correctness
of each pin-point pair was visually examined by an expert.u88.7% of the more than
700 pin-point correspondences generated were judged torbect (within human expert
accuracy). The bottom orange pin-points shown in Fig. 6e6aar example of inaccurate
correspondence.

For each pair of bone instances (approx. 250 vertices esets)pf pairwise pin-points
were generated in under two minutes, a tenfold speedup aechpa the human expert
performance. We note however that the focus of our work isggon of user interaction,
and not minimizing running time.

Manifold deformation. Two separate pairs of bone instances (one hamate pair col-
lected from two different individuals, and one lunate patlected from the same indi-

vidual, left and right arm) were cross-parameterized uttiegmarkerless correspondence
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followed by manifold surface deformation. The resultedapagterizations were success-
fully verified for no self-intersections and folds.

For the two surface pairs described above we also compaeedutivature of the re-
sulted dense surface correspondence. The similaritydstssgpe comparison uses the cor-
respondence between the objects being compared, and asripet similarity between
corresponding points. The correspondence can be compotadghirs of pin points on the
objects. The similarity is measured as the difference betveeshape representation called
the Curvature Map [42]. The curvature map is based on thecudiarvature over a region
around a point, and is represented as a 1-D function of therdis to the point. The radius
of the region around the point determines the maximum distawver which the curvature
map can be compared; however, more localized comparisonbecgenerated by taking
the difference over a subset of this maximum distance. Trhéasity values — described
in detail in [42] — are associated with a color map in orderltd pimilarity on the surface
of the object (Fig 6.8). By controlling the range of valuesoassted with the color map,
different ranges of values can be emphasized to indicatenre@f similarity or the most
significant differences between corresponding locationthe shapes.

Because the two datasets featured in this experiment welectsa from the same
volunteer (left and right arm), we expect curvature diskinties due to anatomical shape
variation to be minimal. Figure 6.8 shows that the manifaldface maps regions on S
to regions on T of similar curvature, a good indication that method attains anatomical
feature correspondence. The small areas of dissimilaatwne appear to correlate with
actual anatomical shape variation between the S and T datasknifold models were
created and deformed in under 30 minutes per dataset.

Exploratory visualization and analysis. Our visualization and analysis technique was
recently applied in a clinical study to 18 forearm datas2®j,[normal and matching in-
jured forearm data collected from 9 individuals. In thisdstunote that the common frame
of reference was defined manually. The approach providegpaoted insight into the
biomechanics of the forearm: although an earlier numejmat-angle study had con-
cluded kinematics were not altered significantly by injungual exploration of the very

first individual highlighted localized, well-defined chasgin the articulation at the distal
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Figure 6.8: Curvature comparison of source and target mdrsiarfaces: deforming the
manifold surface from Lunate 1 (L1) to Lunate 2 (L2) mapsoegion L1 to similar curva-
ture regions on L2. The small areas of dissimilar curvatygear to correlate with actual
anatomical shape variation between the L1 and L2 datasets.

radioulnar joint and potential soft-tissue constrainge(€hapter 3). Further numerical
analysis of the location and size of inter-bone joint spawmesss the 9 individuals showed
these changes were statistically significant [29].

In this study, distance fields and inter-bone joint-spacesevprecomputed in under 1

minute per bone. Joint visualizations are displayed on the fl

6.5.2 Applications

We demonstrate our framework on two applications: boneasarfletail transfer, and
cross-dataset kinematic analysis.

Surface detail transfer. In the first application, our goal is to combine information
collected from different individuals. Limitations in cemt imaging technology enable
collection of wrist soft-tissue data only for cadavers. @a bther hand, wrist motion is
measured in live human subjects. Combining the two typesfofrmation — soft tissue
and motion — is important when studying wrist biomechanics.

We use our framework to transfer soft-tissue detail likeutngent insertion sites and
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Figure 6.9: Surface detail transfer (ligament insertida)dbetween the two hamate bone
instances shown in Fig. 6.5. The mutually-consistent patarization between the two
bone instances results in no folds or tears during transfer.

Figure 6.10: Cartilage transfer between two lunate bonese®shown in pink, cartilage
in tan). The consistent parameterization between the tnatés results in no folds and no
tears in the cartilage map during transfer.

articular cartilage from one individual to another. In F&9, the blue areas represent
synthetically-defined ligament insertion sites. The itiearsite originally defined on the
pink hamate bone instance is automatically transferreddavhite hamate bone instance.
In Fig. 6.10, the cartilage originally defined on the leffesbone instance is automatically
transferred to the right-side bone instance (lunate bdm@srsin pink, cartilage in tan). In
both examples, the mutually-consistent parameterizdt&ween the two bone instances
results in no folds or tears during transfer.

Our Bioengineering Department collaborators are quiter@sted in using this tech-
nigue to combineuCT-imaging cadaver soft-tissue data with in vivo bone s@$aand
kinematic data.

Exploratory kinematic analysis. In our second application we explore the differences
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between normal and injured¢aphoid non-unioykinematics in the wrists of a human sub-
ject. Our data was collected from the injured and uninjuregte of the same individual.
Figure 6.11 shows a subset of three wrist bones in their coamatomical context; note
the fractured bone in the right image. In such cases, hamggsns usually reconstruct the
fractured bone by inserting a screw through the two fragmeXiternatively, they may not
intervene at all, or they may remove completely the bottaagrment from the joint [7].
For a given individual, we wish to understand which appraatche most appropriate.

We trace the inter-bone joint-spacing area with motion @@iftjposes) and compare
location and size using the mutually-consistent paranzetgon (Fig. 6.12). Visual anal-
ysis of the lunate bone with respect to the scapho-lunaieuation shows no significant
differences between the uninjured and injured joint (Fig3Girst two columns). This sug-
gests that, for this individual, despite injury, the injdiseaphoid and lunate bones continue
articulating correctly. Under these circumstances, retrantion of the scaphoid bone may
appear unnecessary.

However, further analysis of the lunate bone with respettteégadio-lunate articulation
highlights differences between the uninjured and injucaatj(Fig. 6.13 last two columns).
The lunate-radius distance appears to increase in thesthjwrist: note that the inner-
most iso-contour in the top images disappears in the bottoages. Also note the distal
(upwards) shift of concentric iso-contours in the injuredsivcompared to the uninjured
wrist. Numerical analysis using the common cross-pararzaten on the location of the
centroid of concentric iso-contours indicates a distdit gliimore than 2 mm. These sur-
prising differences indicate that scaphoid injuries mayimgpact the articulation nearest
to the scaphoid (scapho-lunate), but the next articulgt@dio-lunate).

Of course, one can not draw sweeping conclusions from thioetpry analysis of a
single individual. Our orthopedist collaborators areliegted in running this type of anal-
ysis on several individuals with the same type of injury aallecting statistical evidence.
For the time being, they are interested in the exploratoalyais of all the wrist bones of

this injured individual.
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scaphoid
non-union

Figure 6.11: Right-wrist and left-wrist radioscapholun@iats from the same individual.

Following injury, the left-wrist scaphoid bone has beerctfuaed in two. Bones are color-
mapped and contoured. The color saturation on bone surifadieates the distance to the
nearest point on the opposite bone or bone-fragment; deegeins are closer.

@

J

Figure 6.12: Pin-point and manifold deformation betweeanl#ft and right lunate bones
in Fig. 6.11. Left-wrist lunate (injured joint) with pin-fpats (left), right-wrist lunate with
corresponding pin-points (middle), and the original rigiitst lunate overimposed with the
result of deforming a manifold from the left-wrist lunatetke right-wrist lunate(right); in
the right image, the pin-points on the two surfaces are appdd. The manifold defines a
mutually-consistent parameterization between the S seidad the T surface.
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scapho-lunate facet _ radio-lunate facet

frame 7 frame 1

Figure 6.13: Kinematic analysis of the radioscapholunatet jshown in Fig. 6.11 (top
row: lunate bone in the uninjured joint, bottom: lunate bam¢he injured joint). The
first two columns show the lunate facet articulating with #taphoid bone; tracing the
inter-bone joint-spacing area on the lunate shows similaerkatics between the injured
and uninjured scapho-lunate. The last two columns showutiaté facet articulating with
the radius bone. This time, note that the innermost contotine top images disappears
in the bottom images; the centroid of the concentric isck@ars also shifts upwards in
the bottom images. This indicates that scaphoid injurieg nwd impact the articulation
nearest to the scaphoid, but the next articulation.
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6.6 Discussion

Our dataset-correspondence method has certain limigatidfirst, the geometry of the

datasets needs to be fairly similar. Second, we need to leetalstesample the geome-
tries into similar distributions of points. These requimarts are satisfied in the case of
diarthrodial-joint bones.

When establishing pairwise pin-point correspondences,sgatcorrelation coefficient
measure. The correlation coefficient is a standard, rolusgé similarity measure. Al-
though more sophisticated measures have been proposequefoalscases where imaging
scale, rotation, and perspective distortions are pres@stnot clear that the use of such
alternative measures would be beneficial in our case.

When further filtering pin-point correspondences, we useegdy programming ap-
proach. Such an approach is not guaranteed to generateadlglglitimal set of pin-points,
in terms of correlation across the set. The selected setroésfmondences could be im-
proved by using a global optimization approach instead eédy programming. We note
that summing thes,,.;., values of all the surviving pin-point corresponding for aeyi
S-T pair yields an implicit shape-similarity score betw&eand T. In our experiments, the
higher this score, the more visually similar the shapes afiSTaappear to be.

When fitting manifold surfaces we rely on projection to deteerthe correspondence
between the data points and the domain. Problems with fpldan arise if projection
gives the incorrect correspondence, for example, if th&irgurface is poorly aligned with
the data. We greatly reduce these problems by using anlisitiéace which is roughly
the right shape and slightly bigger than the data set, andniglaying an extra set of
smoothing constraints to the control shape when fitting.s€hsmoothing constraints are
gradually relaxed as the fit is finalized. The addition of poinps also greatly reduces the
chance of folding because the pins pull the surface to theecbarea without relying on

projection.



128

6.7 Conclusion

| presented in this chapter a framework for the cross-dateseal exploration and analy-

sis of diarthrodial joint biomechanics. Central to our apmtois a markerless method for
establishing pairwise correspondences between indivghecific datasets. The resulted
correspondence allows the users to combine complementamyefry acquired through

different modalities, and thus overcome current imagingtitions. The pairwise cor-

respondence also enables the analysis of kinematic sitieitaand differences between
datasets.

The approach presented is fully automated and works on tsbggcspherical topol-
ogy which lack salient features. Unlike previous approadboepairwise correspondence,
the method is not susceptible to rotational symmetry in tts¢ dirder ellipsoid. In conse-
guence, our method is applicable to diarthrodial joints like human wrist or the ankle.
Results demonstrate the technique useful in the study ofaland injured anatomy and
kinematics of diarthrodial joints.

In principle, the method applies to all spherical topologyadfrom the same class, and
should be particularly beneficial in instances where idginty salient object features is a
nontrivial task.

Understanding and quantifying differences across grofipsiman subjects is impor-
tant in the study of injury mechanisms and prevention, a$ agefor the design of ortho-
pedic implants. Although many statistical methods for gmnialg 3D shape variation exist,
they generally require good pairwise correspondence legtviee different input shape
samples. In the case of diarthrodial-joint data, the chgkeresides in establishing corre-
spondence between inter-individual bone instances wigresponding features are diffi-
cult to identify without a high level of expertise, due to graooth, bean-like nature of the
diarthrodial geometry. Our markerless geometry corredpooe method successfully ad-
dresses this challenge. The method should be useful asrpesping step in the statistical

shape analysis of wrist and ankle data.



Chapter 7

Conclusion

This dissertation presents a data-driven framework foptldictive modeling of diarthro-
dial joints. We have shown that the data-driven approaawallus to generate subject-
specific, quantifiable, predictive models of complex jointsspite of current measuring
limitations. The resulting computational models use a tdyBata representation, combin-
ing volumetric, meshless point-based, and manifold-basatbonents. Each component
representation has strengths for various aspects of thelimgdand we combine them
to achieve relatively simple and sufficiently accuratereations of biologically relevant
measurements.

We instantiated the framework in a system consisting of kecttbn of computational
modeling, analysis and visualization tools. These toofslEmaused to predictively model
and understand the anatomy and dynamics of joints, with engiat positive impact on
medical diagnosis and treatment of pathology and injury.

The system we developed takes as input medical images ohtagond generates a
model and simulation of the joint. The model is adaptablenttividual differences: it
uses individual-specific bone shapes extracted from thdaaleithages, and customizes
cartilage maps and ligament fibers according to the indalidpecific bone geometry and
motion. For example, should the individual develop arih(grosion of articular cartilage),
the disease would impact inter-bone spacing measurensmtsherefore the thickness of
the cartilage maps we generate and ultimately the simutatgn of the joint. Similarly,
should the individual undergo athletic training, trainioguld alter the sampled range of
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motion, and be reflected in the length of the soft-tissue $ibex generate.

The resulting models and simulations are quantifiable, énsétnse that they quantify

the difference between two individuals, or the differenoesveen a normal and an injured

joint. The models also have predictive capabilities, im&of predicting soft-tissue contact

within the joint.

Specific contributions of this work include:

¢ a framework for the data-driven modeling of anatomicalgithe resulting models
are adaptable to individual differences, are quantificdohel, have predictive capabi-

lities;

an instantiation of the framework in a system for the prexdtciodeling of joints;
the models can compute end-conditions for deformabledsssu cartilage contact

and ligament function — as a function of joint motion;

a sub-voxel accurate method for tracking bone-motion frequences of CT scans.
Accuracy improvements of more than 74% over the previoug-&ththe-art tech-

nique, when compared to the ground-truth motion computewch fmarked cadaver
data, enables the analysis of soft-tissue deformation mitkion. The method has
also lead to the creation of a wrist motion database of umpleated detail; the
database spans multiple species, including humans anahsbo

a novel computational model of ligament fibers that modefstssue wrapping on
bones and the afferent motion constraints. The model regais sole input bone

geometries and kinematics, surpassing current imagiritplilons;

a novel computational volume-preserving height-field madeartilage maps that
only requires CT-imaged bone geometries and joint kinersatiis model allows us

to overcome current imaging technology limitations;

a hybrid representation of diarthrodial joints, combinuajumetric, meshless point-
based, and manifold-based components. Each representatsostrengths for vari-
ous aspects of the modeling and we combine them in unique tvachieve estima-

tions of biologically relevant measurements;
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a markerless method for cross-individual dataset analyldi® method also allows

users to combine vitro andin vivo joint data;

interactive tools for the exploratory analysis of jointatat

guantitative metrics for characterizing joint kinematics

application to several clinical cases: distal radioulmantj malunion, wrist close-

pack pose, scaphoid non-union.

There are limitations to our work, some due to the data ctlyewailable, and some
due to our computational approach. From the complex anatdrayoint, we model only
the bones, cartilages, and ligaments. Muscle-tendon cottkl be easily incorporated in
our model. However, the forces these units exercise caneaulrently inferred auto-
matically from the data; these external forces would haveetgpecified as an input, just
like in other joint modeling systems. We do not model skin, e neurovascular system,
or the sac of synovial fluid surrounding the joints. There lanits to the accuracy and
applicability of our tracking procedure, as discussed inpi#a2; the method could be
further improved by modeling a more complex tissue strctdyr for example, one that
would distinguish between trabecular and cortical boneer&lare further limitations in
our computational modeling of soft-tissues as discussethiapters 3 and 4. Someday,
more sophisticated and accurate deformation models basexdmple on finite element
modeling techniques may replace our deformation apprqgashlike progress in imaging
technology may supersede our kinematics-based estimbtastdissue geometry. We
made several further assumptions in our dynamics simulgdi® detailed in Chapter 5.

In terms of directions of future work, we note that the idéally-predictive joint model
described in Chapter 1 still does not exist. That ideal moaeildvallow doctors to simulate
sophisticated surgical procedures and therapies, andatonsnto generate automatically-
tuned, convincing character animations.

A natural next phase is trying to develop bone-cartilagasient models that can be
simulated dynamically. Our dynamics experiment in Chapteh&ws it is possible to
simulate the motion of one bone under the action of gravitgxtNmotion interpolated

between two nearby sampled poses could be applied to albtiestbut one; the free bone
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should also interpolate the sampled poses. Next, we sheuéble to replicate the effect
of wrist injury on bone kinematics. For example, we coulduaily fracture the scaphoid
in the healthy scapho-lunate joint of Chapter 6 and validagerésulting simulation by
comparing it with the sampled motion of the matching injusedpho-lunate joint, also
shown in Chapter 6.

The development of fully-predictive joint models openglier research directions. For
example, what level of anatomical realism is necessary efulsvhen we design ortho-
pedic implants and robotic arms, versus animating Pixardharacters? To perform such
comparisons, it would be necessary to first integrate irggdimt model the superior layers
— muscles, fat and skin. Validation and quantitative evadmatools will be increasingly
necessary. A step further, we investigate biological systef increasing complexity. Such
systems have multiple interacting subsystems — from @lhol the full multi-level virtual
human [4]— and are currently developed independently [1@6, 118]. To interface such
subsystems, modeling and simulation standards will habe foroposed and developed.

The collection of tools presented in this dissertation eslsignificant challenges in the
process of integrating measured data into the predictiveetimgy of diarthrodial joints. The
developed tools and applications should be beneficial istiidy of pathology and injuries,
including arthritis, ligament tears, bone fractures, amgji€al reconstructions. The tools
and methodologies we demonstrate on forearms and wridtbevijenerally useful for the
study of bone, cartilage and ligament interactions in otmenplex multi-articular joints,
including the foot and spine, as well as in simpler jointshsas the knee, elbow, and
human shoulder. The tools are also applicable to animalestpich basic biology research.
Ultimately, this work creates a modeling approach that hagbtential to more simply and

efficiently explain and predict the underlying biomecharot musculoskeletal systems.



Appendix A
Orthopedics Ter minology

orthopedicsalsoorthopaedicsthe field of medicine and surgery that deals with the ingirie

and other disorders of the musculoskeletal system;
musculoskeletal of, relating to, or involving both musculature and skeleton

diarthrodial joints  also known as diarthroses or synovial joints (freely mogatsticula-
tions). This class includes the greater number of the jamttse body; the other two classes
are: synarthroses or immovable joints, and amphiarthrossightly movable joints. In
a diarthrodial joint the contiguous bony surfaces are avavith articular cartilage, and
connected by ligaments;

soft tissue tissues that connect, support, or surround other strigtamd organs of the
body. Soft tissue includes muscles, tendons, fibrous ssd$ak blood vessels, nerves, and

synovial tissues. In this dissertation, soft-tissue dematticular cartilage and ligaments;

articular cartilage  hydrated soft tissue covering the surfaces of bones at ihie Artic-
ular cartilage is multi-layered. A thin superficial layeppides a smooth surface for bones
to slide against each other. Deeper than that are interteeldigers, which are mechan-
ically designed to absorb shocks and distribute the loadiefiily. The deepest layer is
highly calcified, and anchors the articular cartilage tolibee;
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ligament in its most common use, a band of tough fibrous connectivedissmposed

mainly of long, stringy collagen fibres. Ligaments connemds to other bones to form a
joint and provide joint stability. (They do not connect migscto bones; that is the function
of tendons.) Some ligaments limit the mobility of articidais, or prevent certain move-

ments altogether. The whole of a diarthrosis is contained loyamentous sac;

synovial fluid  a thick, stringy fluid found in the cavities of diarthrod{glynovial)joints.
With its egg-like consistencysynovialcomes from Latin for "egg”), synovial fluid reduces
friction between the articular cartilage and other tissngsints to lubricate and cushion

them during movement;

trabecular tissue also known as spongy bone; a type of osseous tissue with adositgl

and strength but very high surface area, that fills the inaeitg of bones;

cortical tissue also known as compact bone; one of two main types of ossessiss.
Cortical bone is dense and forms the surface of bones, catitrp80% of the weight of
a human skeleton. It is extremely hard, formed of multipbeckeéd layers with few gaps.

The other major type of bone tissue is trabecular tissue;

focal changes localized (as opposed to whole) joint changes. For exaragteal lesion
in cartilage is a defect that is well defined, localized, sasla small hole punched through
the cartilage. Changes in the location of the contact araadeet articulating bones may
indicate potential focal damage;

invitro  outside the living body and in an artificial environment;

invivo inside the living body;

carpus wrist; the bones of the wrist;



135

carpal of or relating to the carpus;

scaphoid one of the eight wristdqarpal) bones;

lunate one of the eight wristdarpal) bones;

radius one of the two forearm bones;

radial  of or relating to the radius;

ulna one of the two forearm bones;

ulnar  of or relating to the ulna;

metacarpals a bone of the part of the hand or forefoot between the carpaisrenpha-

langes that typically contains five more or less elongatetkbavhen all the digits are

present;

patellar relating to thepatella a thick flat triangular movable bone that forms the ante-

rior point of the knee and protects the front of the joint Hexhklso kneecap;

temporomandibular of, relating to, being, or affecting the joint between theperal

bone and the mandible (jaw) that allows for the movement@htlandible;

meniscus a fibrous cartilage within a joint especially of the knee;

distal situated away from the point of attachment or origin or a @ mtoint, especially
of the body;



136

proximal nextto or nearest the point of attachment or origin, a céptiat, or the point

of view; especially: located toward the center of the body;

volar relating to the palm of the hand or the sole of the foot; speadifi: located on the
same side as the palm of the hand;

palmar of, relating to, or involving the palm of the hand;

dorsal of, relating to, or involving the back of the hand;

neutral the default, rest position of a joint;

pronation rotation of the forearm so that the palm faces backwards wndards;

supination rotation of the forearm and hand so that the palm faces farwaupward,

pronosupination rotation of the forearm and hand, starting with the palmrfgdack-

wards or downwards and ending with the palm facing forwardpward,;
flexion a bending movement around a joint in a limb (as the knee omglitioat de-
creases the angle between the bones of the limb at the j&8ot; aaforward raising of the

arm or leg by a movement at the shoulder or hip joint;

extension an unbending movement around a joint in a limb (as the knedbong that

increases the angle between the bones of the limb at the joint

arthritis  inflammation of joints due to infectious, metabolic, or ditmsional causes;

also : a specific arthritic condition;

osteoarthritis  arthritis marked by degeneration of the cartilage and bdjards.
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