INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI fiims
the text directly from the oribinal or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






A Study on Distributed Structures

by
Costas Busch
B.Sc.. University of Crete, Greece, 1992
M.Sc., University of Crete, Greece, 1995
M.Sc., Brown University, 1997

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 2000



UMI Number: 9987735

®

UMI

UMI Microform 9987735

Copyright 2000 by Bell & Howell Information and Leaming Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346



© Copyright 1998,1999,2000 by Costas Busch



This dissertation by Costas Busch is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date O Mﬁéf v U\/\/«\ k

Maurice Herlihy, Wtor

Recommended to the Graduate Council

}, ’ 7’ _/:/",‘ e i {
L/F el / ’7/( (/ / ; _"/\, //{/, ’/u//'w T~

Date ="~

Mark Tuttle, Reader
(Compaq Research)

e T 1000 U/M/

Eh U fal, Reader

Approved by the Graduate Council

Date g’/o /07) ¢Q¢/ 77 %

Pedell J. Estrup
Dean of the Graduate School and Research

iti



Vita

Costas Busch was born on November 2, 1969, in Annedal, Sweden. He spent the first 5 years
of his life in Sweden and Germany, and then he moved to Greece. In 1987 he was admitted
in the Computer Science Department of University of Crete. Greece, and graduated in
1992. In 1992 he entered the Master’s program in the same department and graduated in
1995. In 1995 he entered the Ph.D. program in the Computer Science Department of Brown

University.

iv



References

Refereed Journal Articles:

e W. Ajello, C. Busch, M. Herlihy, M. Mavronicolas, N. Shavit and D. Touitou, “Sup-
porting Increment and Decrement Operations in Balancing Networks,” to appear in the
Chicago Journal of Theoretical Computer Science. (A preliminary version appears in
STACS™99.)

Refereed Conference Articles:

e C. Busch, N. Demetriou, M. Herlihy and M. Mavronicolas, “A Combinatorial Charac-
terization of Properties Preserved by Antitokens,” to appear in the Furopean Conference
on Parallel Computing (Euro-Par 2000), Munich, Germany, August/September 2000.

e C. Busch. M. Herlihy and R. Wattenhofer, “Hard-Potato Routing,” to appear in the
32nd Annual ACM Symposium on Theory of Computing (STOC’00). Portland, Ore-
gon, May 2000.

e C. Busch, M. Herlihy, and R. Wattenhofer, “Randomized Greedy Hot-Potato Routing,”
in Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 00), pp. 458-466, San Francisco, California, January 2000.

e C. Busch, N. Demetriou, M. Herlihy and M. Mavronicolas. “Threshold Counters with
Increments and Decrements,” in Proceedings of the 6th International Colloquium on
Structural Information and Communication Complezity (SIROCCO’99), pp. 47-61,
Lacanau, France, July 1999.

e C. Busch and M. Herlihy, “Sorting and Counting Networks of Small Depth and Arbitrary
Width,” in Proceedings of the 11th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA’99), pp. 64-73, Saint-Malo, France, June 1999.



e C. Busch and M. Mavronicolas, “An Efficient Counting Network,” in Proceedings of
the 1st Merged International Parallel Processing Symposium and Symposium on Par-

allel and Distributed Processing (IPPS/SPDP’98), pp. 380-384, Orlando, Florida,
March/April 1998.

vi



Preface

In distributed and parallel computing environments, there are many computational prob-
lems that require efficient communication and coordination between the processes. For such
problems there have been proposed several distributed structures, each designed to solve a
particular problem or a class of problems. The distributed structures take into account the
particularities of the specific problems and provide efficient solutions for them.

In this work we study two distributed structures: counting networks and the mesh
network. Counting networks are used for implementing distributed counters; mesh is a
communication network. So far. counting networks have been used for increment opera-
tions only. We demonstrate that counting networks can be extended to support decrement
operations as well. Furthermore. we present new efficient counting network constructions.
For the mesh network we study the communication problem, known as hot-potato routing.
and we provide novel algorithms for the class of hot-potato algorithms known as “greedy.”

Although counting networks and the hot-potato routing in the mesh are used for different
purposes, their underlying distributed structures share a common characteristic: the basic
structural elements contain a very limited amount of memory. Specifically, in counting
networks each structural element contains either a single bit of information or a small
number of bits; in the mesh, with greedy hot-potato routing, each node doesn’t have any
amount of memory for storing communication packets in transit.

The present thesis is structured as follows. The first chapters are devoted to counting
networks; while the last ones to hot-potato routing in the mesh. In particular, in Chapters
1,2, 3, and 4 we study counting networks, and in Chapters 5, 6 and 7 we study hot-potato

routing in the mesh. We give our conclusions in Chapter 8.

vii



Acknowledgements

I would like to thank all people that have helped in the preparation of this thesis. Especially,
I would like to thank my advisor Maurice Herlihy for leading me into the world of research
and for spending countless hours with me during the quest of solving research problems. I
would also like to thank my thesis committee members. Mark Tuttle, and Eli Upfal, for their
invaluable comments and suggestions. I deeply thank Marios Mavronicolas for introducing
me to research in computer science and for helping me enter the Ph.D. program in the
States. I would also like to thank Roger Wattenhofer for giving me the opportunity to work
with him.

I would like to thank my peers in the computer science department at Brown University.
Especially, I would like to thank Vaso Chatzi for helping me overcome all the obstactles
that have appeared in my 5 years in the Ph.D. program. I would also like to thank my
former officemate Laurent Michel, and his advisor Pascal Van Hentenryck. for helping me
in crucial moments during my graduate studies. I would like to thank Manos Renieris
for his invaluable help as Tex wizard, and his help in the preparations of many talks. I
deeply thank the following people for their support: Mike Benjamin, Sharon Carabalo,
Jose Castanos, Dimitris Michailidis, Luis Ortiz, Gopal Pandurangan, Galina Shubina, and
Ioannis Tsochandaridis.

A special thank you goes to my friend and roommate Antonios Augoustakis, whose most
invaluable gift was living with him and sharing a friendship that has changed my life for
ever.

A big thank you to my parents Kalliopi and Nikos and my brother Lysandros for their

moral support and understanding. To them this thesis is dedicated.

viii



Contents

List of Tables xii
List of Figures xiii
1 Introduction to Counting Networks 1
1.1 The Counting Problem . . . . . ... ... ... ... ... ........ 1

1.2 Counting Networks . . . . . . . . . . ... .. ... ... 2

1.3 Conmtributions . . . . . . . . .. ... oo 6
1.3.1 Supporting Decrements . . . . . . . .. ... .. ... ..., 6

1.3.2 New Constructions . . . . . . . .. . . . ... ..., 6

1.4 Preliminaries for Sequences . . . . . ... .. ... ... ... oL, 6
1.4.1 Notations . . . . . . . . . . . L e e e e e 6

1.4.2 Properties . . . . . . . . . L L e e e e e e 7

1.5 Preliminaries for Balancing Networks . . . . . . . .. ... ... ....... 7
1.5.1 Notations . . . . . . . . . . . e e e e 8

1.5.2 Output Function . . .. ... ... ... ... . ... ........ 9

153 Families . . . . . . . . . ... L 10

1.5.4 A Construction Technique . . . . . . .. ... ... ... ....... 11

2 Decrements in Balancing Networks 15
2.1 Preliminaries . . . . . . . . . . . .o 17
2.1.1 Sequences . . . . . . . ..o e e e e e e e e e 17

2.1.2 Balancing Networks . . . . . ... ... .. ... ... ..., 17

2.1.3 FoolingPairs . . . . .. .. . ... ... ... e 18

2,14 NullSequences . . . . . . . . .. ... ... .. ... e 22

22 MainResult . . . . . .. .. 24
2.3 Applications. . . . . . . .. L e e e 26



24

2.3.1 Boundedness Properties . . . . . . .. ... ..........
2.3.2 Threshold Property . ... ... ... .. ... ........
Discussion . . . . . . . . . ... ... o

Counting Networks of Arbitrary Width

3.1

3.3

3.4
3.5

Preliminaries . . . . . . . ... ... .. ... ... ...
3.1.1 Sequences . . . . . ... ... ... e e
3.1.2 Balancing Networks . . . .. ... .. ... ..........
A Counting Network Construction Framework . . . . . . . ... . ..
321 A CountingNetwork . . . ... .. .. ... ..........
322 A Merger Network . . . ... ... ... ............
3.23 A Staircase-Merger . . . . .. ... .. ... ... ...,
3.2.4 A Two-Merger and a Bitonic-Converter . . . . .. ... ...
Specific Counting Network Constructions . . . . . . ... ... ...
3.3.1 The Counting Network X . . . . . ... ... .........
3.3.2 The Counting Network R(p.q) . . .. . . ... ... .....
3.3.3 The Counting Network £ . . . .. ... ... .........
Related Work . . . . . . . . . .. ... ... ... ...
Discussion . . . . . . . . . ..

Irregular Counting Networks

4.1

4.2
4.3
4.4
4.5
4.6

Preliminaries . . . . ... ... ... .. .. ... .. .......
4.1.1 Sequences . . . . . . . .. ... e
4.1.2 Balancing Networks . . . . . ... ... .. ..........
4.1.3 Contention . . . . . ... ...
The Counting Network C(w,t) . ... .. .. ... .. ........
The Difference Merging Network M(¢,8) . . . . . ... .. ... ...
Contention Analysisof C(w,¢t) . . . .. ... ... ... ........
Related Work . . . . . . . . . ... ... ... ... ... ...

Discussion . . . . . . . ... L e e e e

Introduction to Greedy Hot-Potato Routing in the Mesh

5.1
5.2

5.3

Greedy Hot-Potato Routing . . . . ... . ... ............
Contributions . . . . . . . .. ...
Preliminaries . . . . ... ... ... ... ... ... ........
53.1 Mesh. .. . ... ... e

31
33
33
33
34
36
37
39
44
47
47
48
50
51

52
54
54
57
59
63
68
73
75
76



5.3.2 Deflections . . . . . . . . . . e e e e e e e e e e e e e 80

533 Equations . . . . . . . . . . . ... e e 80

6 An One-Bend Greedy Hot-Potato Algorithm 82
6.1 Preliminaries . . . . . . . ... .. . e 83
6.2 The Algorithm . . . ... ... .. ... . . . 0oL 83
6.3 Time Analysis. . . . . . . . . . . . . . L e 86
6.3.1 SucceedinginaHomeRun . . .. .. ... ... ... ....... 88

6.3.2 Expected Case Analysis . . . .. . ... ... .. ........... 92

6.3.3 Analysis “with High Probability” . . . . . ... ... ... .. .... 93

6.4 Applications . . . . . . . . L L L e e e e e e e e 96
6.5 Related Work . . . . . . . . . . . e e e 98
6.6 Discussion . . . . . . . .. L L e e e e e e e e e e e 99

7 A Multi-Bend Greedy Hot-Potato Algorithm 100
7.1 Preliminaries . . . . . . . . . ... oL e e e e e e e 102
7.2 Algorithm . . . . . . .. .. 103
7.3 Time Analysis. . . . . . . . . . . . o L e e 106
7.3.1 The ExcitedState . . . . . . . . . ... ... ... ... 107

7.3.2 TheRunningState . . . . . ... ... ... ... ... ... ..., 107

733 OmnePacket .. . ... .. . . . .. ... e 110

734 AllPackets .. . ... . . . . . . . e 111

74 LowerBound . .. .. .. ... . ... oL 114
7.5 Related Work . . . . . . . . . . .. .. e 115
7.6 Discussion . . . . . . . L .o L e e e e e e e e e e e e e e e 116

8 Conclusions 117
A Counting Networks of Arbitrary Width 119
B Irregular Counting Networks 121
Bibliography 123

* Part of this thesis appears in {3, 15, 16, 18, 19, 20, 23].



List of Tables

4.1 Thecasea=0b . . . . . . @ @ @ i i i i i e e e e e e e e e e e e e e e e
4.2 Thecasea=b+1, k=1, 1=¢/2—-1 ... ... ... ... ... .....

x1i



List of Figures

1.1
1.2
1.3
1.4
1.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

5.1

6.1
6.2

A balancer and a counting network . . . . . . . . .
The input and output sequences . . . . . . . ...
Construction of a counting network . . . . . . . _ .
Construction of a merging network . . . . . . . ..

The bitonic network with input/output width 4 . .
Tokens and antitokens . . . . . ... ... .. ...

Counting network of width 15=3x5 . ... ...
Matrix arrangements . . . . . .. ... ... ...
Construction of counting network C. . . . . . . . .
Construction of merger network M . . . . . . . ..
Construction of staircase-merger network . . . . .
Optimizing the construction of the staircase-merger
Construction of two-merger network . . . . . . . .
Construction of bitonic-converter network . . . . .

Construction of width-pg counting network . . . .

The three parts of network C(w.t) . ... .. ...
The butterfly network . . . . ... ... ... ...
The counting network C(w,t) . . . ... ... ...
The difference merging network M(¢,2) . . . . ..
The difference merging network M(t,8) . . . . ..

Thenxnmeshnetwork . . . . ... ... .....

Packet States and Priority . . . . . . ... ... ..
A Home Run: column-first and row-first traversals

xiit

..............

11
13
13

16

32
34
36
37
40

45
46
48

53
58

68
69

78

84
84



NN NN
N O R

A “pathological” batch problem . . . . . . . .. .. ... ... 00000, 97

Packets with destinationsinaregion . . . . . . . . ... ... .. ... .. 101
The squares and bandsofanode . . . . . . .. .. ... ... ........ 102
Packet statesand priority . . . . . . . .. .. .. L. 103

Up: a deflected packet becomes ezcited. Down: a successful running path . 104



Chapter 1

Introduction to Counting Networks

1.1 The Counting Problem

Counting is a fundamental computational task in distributed, shared memory, multiproces-
sors. In the counting problem, there are many distributed processes that need to perform
an increment operation. Each increment operation returns a unique integer, so that if there
were m total increment operations performed, then each increment operation returns a
unique integer between 0,... ,mm — 1.

A simple solution to the counting problem is to use a single shared variable, e.g. v.
Each increment operation can be implemented by an atomic FetchéIncrement operation to
v. In the Fetch&Increment operation, a process first locks the variable v, then it reads its
contents. then increments v by one, and finally it unlocks v and returns the value it read.
Initially, the variable v contains the value 0.

Although the single shared variable solution is easy to implement, it suffers from two

major drawbacks:

e High contention. If there are n processes in the system then all the processes may
try to perform Fetch&Increment operations on v at the same time. In such a case,
all the processes will contend to getting access to v. As a consequence, a process may
have to wait until all the other processes finish their increment operations on v, which

is a sequential bottleneck.

e Starvation. A process which performs a Fetch&Increment operation may fail while
it has locked the variable v. In such a case, the failed process will not allow the rest
of the processes to access variable v, causing these processes to starve, since they are

unable to continue computations.



inputs outputs

inputs  outputs eoeo :I—«:‘ lo2 o llo @

@ @@ e 1 2 2 .2 e

) ®O® co@0 0|l ¢gte? I—Z © e

®® ®® N R 2 2o 0|
OOO® ® ¢ K
® ' Lie
® ! Lle
‘l 1 °

(4. 6)-balancer

counting network

Figure 1.1: A balancer and a counting network

Therefore, the centralized solution of the single variable is not adequate to solve efficiently

the counting problem: an alternative solution is needed.

1.2 Counting Networks

As an alternative solution to the counting problem, Aspnes, Herlihy and Shavit [6] have
introduced Counting networks. Counting networks are highly distributed data structures
which do not suffer from the problems of the centralized single shared variable. Namely,
counting networks exhibit low contention and are wait-free (processes don’t starve).

Counting networks are a subclass of balancing networks. A balancing network is con-
structed by connecting together elementary switches called balancers.! A (p.q)-balancer
has p input wires and g output wires (see Figure 1.1, where p = 4 and ¢ = 6). A balanc-
ing nefwork is an acyclic network of balancers where output wires of some balancers are
linked to input wires of others (see Figure 1.1). The network’s input wires are those wires
not connected to any of the balancer’s output wires, and similarly for the network’s output
wires. The number of input wires is the network’s input width and the number of output
wires is the network’s output width. We order the wires from top to bottom, so that for n
input wires the top wire is wire 0 and the bottom wire is wire n — 1. Similarly. we order
the output wires.

The distributed processes access a balancing network by issuing tokens. Each token

!Balancing networks are constructed in a similar way that comparator networks (e.g. sorting networks)
are constructed from comparators.



corresponds to the operation that the process wishes to perform in the balancing network
(for a counting network a token is an increment operation). A token enters the balancing
network from any of its input wires. Then, the token traverses the network by moving
from one balancer to the next balancer, following the interconnecting wires, until the token
reaches an output wire. The tokens traverse the network asynchronously, and usually there
can be many tokens in the network which are traversing it simultaneously.

Let us now examine how a balancer is traversed by tokens. A balancer is implemented as
a shared variable whose value corresponds to the state of the balancer. The state points to
an output wire of the balancer. namely, for a (p. g)-balancer the state is one of 0,... .q — 1.
Initially, the state is 0. Consider now a (p, q)-balancer, and as an example consider the
balancer of Figure 1.1 where the tokens are drawn with circles. A token accesses atomically
the balancer and performs the following operations. The token first locks the balancer. If
the current state of the balancer is s, then the token reads the state s and increases the
state by one so that the next state is (s +1) mod ¢ (notice that if the current state is g— 1
then the next state is 0). The token, then, unlocks the balancer and exits the balancer
from output wire s. This process is repeated for every token. Since a balancer is accessed
atomically by the tokens, there is a sequential order imposed on the tokens of the balancer.
In the example balancer of Figure 1.1, this sequential order of the tokens is drawn as a
number inside each token’s circle.

Let’s assume now that the (p, g)-balancer has reached a quiescent configuration, in which
all the tokens that have ever entered the balancer have left it, so that there are no more
tokens traversing the balancer. The distribution of the tokens on the output wires of
the balancer is almost uniform (see Figure 1.1). Namely, the number of tokens on each
output wire is the same, and any excess tokens appear on the top wires. We say that the
distribution of the tokens on the output wires of the balancer satisfies the step property.
Formally speaking, let Y = yp,...,y,—1 be a sequence such that y; is equal to the total
number of tokens that exit from the output wire i of the balancer. We call Y the output
sequence of the balancer. Similarly, we define the input sequence of the balancer. In any
quiescent configuration and for any input sequence, the output sequence Y of the balancer

b satisfies the step property:
0<yi—y; <1, forall0<i<j<gq.

In Figure 1.1 we write on each wire the total number of tokens that appear on the wire.
We can generalize the above definitions for balancing networks. For instance, consider a

balancing network of output width w. We say that the balancing network is in a quiescent



configuration if there are no more tokens traversing the network, that is, all the tokens that
have entered the network have left it. In any quiescent configuration, the input and output
sequences are defined in the same way as for the balancers. Namely, in the output sequence
Y = yo,... ,yw—~1, the element y; is equal to the total number of tokens that exit from
output wire ¢ of the network (and similarly for the input sequence).

A counting network is a balancing network whose output sequence satisfies the step
property in any quiescent configuration and for any input sequence. In particular, consider
a counting network of output width w which is in a quiescent configuration and has output
sequence Y = yo,,... ,yw—1- Then for any input sequence, the output sequence Y satisfies
the step property:

0<Lyi—yj <1l forall0<i<j<uw.

The balancing network of Figure 1.1 is a counting network. In the same figure above, we
write on each wire of the network the total number of tokens that appear on that wire.

We describe now the way a counting network solves the counting problem. Each token
corresponds to an increment operation issued by some process. Let’s assume that we are
given a counting network C with output width w. With each output wire i of the network
C we associate a corresponding output shared variable v;. Initially, each output variable
v; contains the value ;. Whenever a process needs to perform an increment operation, it
issues a token which traverses the network until it reaches an output wire. The token, then,
returns the value that reads from the corresponding output variable of the output wire. In
detail. consider the actions of a token when it exits from the output wire i of the network.
The token first locks the variable v;, so that the token accesses the variable atomically, in
case other tokens exit from the same wire. If the current value of the variable v; is a then
the token reads the value a. Then, the token increases the value of the variable v; by w,
the output width, so that the next time the variable will contain a + w. Then, the token
unlocks the variable and returns the value a. This way. each token performs an increment
operation of some process.

The step property of the counting network guarantees that the increment operations are
performed correctly. Namely, if there are m total tokens accessing the network, then each
such token will return a unique integer in the range 0,... ,m» — 1. As an example, consider
a counting network of Figure 1.1 with width w = 8 which is accessed by a total of m = 12
tokens. Each token should return a unique value in the range 0,...,11. Because of the
step property, from each of the top four output wires exit two tokens, and from each of the

bottom four output wires exits one token. From wire 0, one token returns 0 and the other



8. From wire 1, one token returns 1 and the other 9. Similarly, for the rest of the four top
wires. From wire 4, the token returns 4. From wire 5, the token returns 5. Likewise, for
the rest bottom wires. Obviously, each token returns a unique value in the range 0, ... , 11,
and therefore the counting is correct.

Similar to counting networks, there are other families of balancing networks which are
used to solve other kinds of distributed problems. These balancing network families are
distinguished by the properties their output sequences satisfy. Two such well known families
of balancing networks are the smoothing networks and the threshold networks. Smoothing
networks are used to solve load balancing problems. and threshold networks solve barrier
synchronization problems.

All the above families of balancing networks do not suffer from the problems of central-
ized schemes. This is because balancing networks are highly distributed, since there are
many shared variables, the balancers and the output variables, among which the processes
are dispersed. As a consequence, the contention in the variables of a balancing network is
small, since it is less likely for the processes to meet at the same variable at the same time.
Moreover, balancing networks are wait-free: if one of the processes fails in one of the shared
variables of the network, then the rest of the processes in the other variables can continue
uninterrupted.

There are two important factors that determine the good performance of balancing

networks:

e Depth. The depth of a balancing network is the maximum number of balancers a
token has to traverse from an input wire to an output wire. For example, the network
of Figure 1.1 has depth 3. The depth of a network determines its latency: the higher

the depth the more the time a token spends in the network.

e Contention. The contention of a counting network determines its throughput: the
smaller the contention the higher the number of processes that can access the counting

network simultaneously.

Therefore, it is desirable to construct balancing networks which have both small depth and

small contention.
We proceed as follows. In Section 1.3, we present our contributions, and in Sections 1.4

and 1.5 we give some necessary preliminaries on sequences and balancing networks, which

are common to the subsequent chapters.



1.3 Contributions

1.3.1 Supporting Decrements

So far. counting networks have been used for increment operations only. Some distributed
computing applications require the use of decrement operations as well. In Chapter 2, we
show that counting networks, and in general a broad class of balancing networks, can be
used to support decrement operations together with increment operations. In particular,
we show that if we know that a balancing network “works correctly” for increments, then
it will also work correctly for decrements. This makes balancing networks suitable for a

broader range of applications.

1.3.2 New Constructions

Most of the previously known counting networks have equal input and output width and this
width is a power of 2. It was an open question whether we can construct counting networks
with arbitrary widths that have also small depth. In Chapter 3, we present a novel small-
depth counting network construction, with equal input and output width. whose width is
an arbitrary integer.

In Chapter 4. we present a novel counting network construction which improves in
terms of contention over the previously known counting network constructions. In this
construction. the output width is bigger or equal to the input width. and by increasing the
output width we can increase the number of balancers in the network without increasing the
depth. By having more balancers the contention decreases, since processes are less likely to

meet in the same balancers.

1.4 Preliminaries for Sequences

1.4.1 Notations

We consider sequences of integers. We denote sequences in upper case and elements of a
sequence in lower case. For example, consider the sequence X = zg.... ,z4,—1. The length
(or width) of sequence X is [X| = w. Often, we denote the length of X with a superscript
as X(¥). The sum of the elements of X is £(X) =zg+ -+ + Ty_1.



1.4.2 Properties

We say that a sequence X (%) has the step property whenever
0<z;i—z;<1, forall0<i<j<w.

Alternatively, we say that X(®) is a step sequence. If X(*) has the step property then its
step point is the unique index i such that z; < z;_;. If all z; are equal then the step point
can be defined to be either O or w, and we will explicitly specify this in the subsequent
chapters, where we use the step points. The following equality holds for any element z; of

a step sequence X (¥),

oo [ w] , (L1)
w

We immediately have the following observation.
Observation 1.4.1 Any subsequence of a step sequence has the step property.

We say that a sequence X () has the k-smoothing property. for some k > 1, whenever
|zi —zj| <k, forall0 <i,5 < w.

Alternatively, we say that the sequence X is a k-smooth sequence. The elements of a k-
smooth sequence take values in a range a.a + 1,... ,a + k, for some value a. Notice that
any step sequence is also 1-smooth.

We say that a sequence X (%) has the threshold property whenever

=
Ty =|—]|.

w

Alternatively, we say that sequence X(*) js a threshold sequence. Notice that any step

sequence is also threshold.

1.5 Preliminaries for Balancing Networks

Henceforth (unless otherwise stated), for the rest of this chapter and the other chapters, we
consider balancers and balancing networks in quiescent configurations, where all the tokens
that have ever entered the balancing network have left it. We do this, because we want to

reason about the distributions of the tokens on the output wires in quiescent configurations.



Input Output
Sequence Sequence
Io — Yo
I — U1
Balancer Balancer
z2 Y2
or X® oy or Ly Y@
: | Balancing | : p Balancing | 9
To—o Network | - Network
p—2 ‘ :
Ip—1 — E
—— Yq-2
F—— Yg—1

Figure 1.2: The input and output sequences

1.5.1 Notations

Often. for convenience, we draw balancers and balancing networks with boxes as shown in
Figure 1.2. Consider now a (p. q)-balancer with input sequence X(P) and output sequence
Y®). We draw the input and output sequences of the balancer as shown in Figure 1.2,
where there are two alternative representations: one representation where all the elements
of the sequence are drawn with wires and the other representation where the whole sequence
is drawn with a single wire. In the same way we draw the input and output sequences for
balancing networks.

Any balancing network with input sequence X(*) and output sequence Y ®) satisfies the

sum preservation property:

T(X®) = z(Y®).

The depth of a balancing network B, is denoted by depth(B). Any balancing network
can be decomposed into smaller components connected in series which are called layers,
where each layer has depth 1. For example, the network of Figure 1.1 consists from three
layers, and going from the input wires to the output wires, the first layer consists from
two (2, 2)-balancers, the second layer from two (2,4)-balancers, and the last layer by four

(2, 2)-balancers.



1.5.2 Output Function

Consider a (p, g)-balancer b, with input sequence X and output sequence Y@. By the
definition of the balancer, the output sequence Y(?) satisfies the step property for any input
sequence XP). By equation 1.1, and by the sum preservation property of the balancer, we

[E(X(P))—i]
yi=| —m| .

have

q

This equation implies that the output sequence of the balancer is determined by the input
sequence, so that each input sequence has only one respective output sequence. Therefore,
the output sequence is a function of the input sequence. We can think of the balancer b as
a function which maps input sequences to output sequences. Sometimes, for convenience,
we write b(XP)) = Y@,

We can generalize the above observation from balancers to balancing networks, and we

show in the next lemma that any balancing network is a function from input sequences to

output sequences.

Lemma 1.5.1 A balancing network B is a function from input sequences to output se-

quences, so that each input sequence has only one respective output sequence.

Proof: Let d be the depth of the network B. We prove the result by induction on the
depth d.

First, we consider the base case. where d = 1. In this case, the network consists from a
single layer of balancers. The input sequence of the network is distributed and fed to the
input sequences of the balancers, and the output sequence of the network is the combination
of the output sequences of the balancers. Each balancer of the layer is a function from its
input sequence to its respective output sequence. Combining the balancers, we have that
the output sequence of the network is a function of the input sequence of the network.

For the induction step, let’s assume that the result holds for all the networks with depths
up to d — 1. We split the network B into to two smaller networks B’ and B”, each with
depth smaller or equal to d — 1, in such way that B is formed by connecting in series B’ and
B". The input sequence of network B is the input sequence of network B’ and the output
sequence of B’ is the input sequence of network B”. By the induction hypothesis, each of
the networks B’ and B” is a function from input sequences to output sequences, since each
has depth smaller or equal to d — 1. The output sequence of network B is produced by the

composition of the functions of networks B’ and B”. Since the composition of two functions



10

is a function, we have that the network B is a function from input sequences to output

sequences. a

From the above lemma we have that a balancing network B is a function from input
to output sequences. Let w be the input width of the network and ¢ the output width.
Let X(®) be the input sequence and Y(*) the respective output sequence. Sometimes, for
convenience, we write B(X®)) = y(t),

When we construct a balancing network. we take advantage of the functional behavior
of the network. For example, we build a counting network by combining smaller counting
networks (see Section 1.5.4). We can easily prove the correctness of the counting network

by analyzing the functional behavior of the smaller networks.

1.5.3 Families

As we have seen in Section 1.2, a counting network is any balancing network whose output
sequence satisfies the step property, on any input sequence. In a similar way, we define
other families of balancing networks, according to what kind of properties their output se-
quences satisfy. These balancing networks are used for solving different kinds of distributed
computing problems.

A k-smoothing network [2, 6] is a balancing network whose output sequence satisfies
the k-smoothing property, for any input sequence. In a smoothing network, the tokens are
distributed in the output wires in such a way that the number of tokens on any two output
wires differ by at most k. Smoothing networks are used for load balancing applications
[36]. where jobs need to be distributed in different processors in a balanced way so that
all processors perform approximately an equal amount of work. Furthermore, smoothing
networks are used as structural components for building counting networks [39].

A threshold network [6, 22] is any balancing network whose output sequence satisfies
the threshold property, for any input sequence. Threshold networks can be used for a weak
form of counting, where the only output wire of the network that counts is the bottom
wire. The output variable v of the bottom output wire holds a value which corresponds
to the “approximate” total number of tokens that entered the network. If the output
width of the network is w, then the variable v counts chunks of w tokens that traverse the
network. Namely, for every w tokens, one of these tokens leaves from the bottom output
wire. Furthermore, threshold networks can be used for barrier synchronization. If the are
w processes to be synchronized in the barrier, then the first w — 1 processes that entered

the network wait until the last process exits from the bottom wire. Threshold networks are



11

Counting Network C(w)

_ Z§!?
/) Counting
0 Co(%)
Merging )
X Yyw
(w/2) M(’LU) :
Z
(w/2) Counting
X Ci(%)

Figure 1.3: Construction of a counting network

interesting because they can be implemented more efficiently than counting networks (see

[6])-

1.5.4 A Construction Technique

In this section we present a simple technique for constructing counting networks. In par-
ticular, we show how to construct a counting network inductively, by first building smaller
counting networks and then merging the outputs of the smaller networks, as shown in Figure
1.3. The counting network constructions of Chapters 3 and 4, are based on this construction
technique.

The technique of constructing networks inductively was first introduced by Batcher (9],
who used it to construct sorting networks. Sorting networks look like counting networks?
and are used for parallel sorting. Using the inductive technique, Batcher constructed the
bitonic sorting network and the odd-even sorting network. (For more information about
sorting networks look in [40].) Aspnes et al. [6], showed that the same inductive technique
can be used to construct counting networks. They showed that the isomorphic balancing
network of the bitonic sorting network, is a counting network too. To demonstrate the

inductive construction technique, we present here the construction of the bitonic counting

*In sorting networks the number of input and output wires of the network is the same.



network.

We will construct the bitonic counting network C of input and output width w, where
w is some power of 2 (see Figure 1.3). We denote the network as C(w).® Let X(¥) be the
input sequence and Y (¥) the corresponding output sequence of the network.

The construction is by induction on the width w. For the base case, where w = 2, the
network is simply a (2, 2)-balancer. Let’s assume that we have constructed the network
C(w/2). We will construct now the network C(w). We take two copies of the network
C(w/2) (given by induction hypothesis), which we denote Co(w/2) and Cy(w/2). We split
the input sequence X(*) into two sequences each of width w/2. which we denote Xé'"/ 2)
and X{*/?). We feed the sequence X((,'”/ 2) to network Co(w/2) and the sequence Xfw/ ) to
network C;(w/2). Let Z((,'”/ ) and Z{w/ ?) denote the respective output sequences of these
two networks. By the induction hypothesis, we have that each of the sequences Z{*/?) and
Z{w/ %) satisfies the step property.

Next, we use a merging network, which receives two input sequences with the step
property. merges these sequences, and produces one output sequence which has the step
property. Let M(w) be the merging network of our construction. The network M(w)
accepts on its inputs the step sequences Zé"’/ ) and Zf'”/ %) merges these sequences, and
produces the final output sequence Y (%), which has the step property.

The merging network is also constructed by induction on w. as shown in Figure 1.4. For
the base case where w = 2, the merging network is simply a (2, 2)-balancer. Let’s assume
now that we have constructed the merging network M(w/2). We will construct the merging
network M(w).

The network M(w) accepts the two input sequences Zéw/ %) and Z{w/ 2. We take two
copies of the network M(w/2) (given by induction hypothesis), which we denote Mg(w/2)
and M;(w/2). We split the sequence Z((,w/ %) into its even and odd subsequences, where the
even subsequence contains the elements with even index 0.2..... and the odd subsequence
contains the elements with odd index 1,3,.... Similarly, we split the sequence Zf“’/ ?) into
its even and odd subsequences. The two input sequences of network Mgo(w/2) are the even
subsequence of Zéw/ 2) and the odd subsequence of Zf'”/ 2). The two input sequences of
M;i(w/2) is the odd subsequence of Z((,w/ %) and the even subsequence of wa/ 2,

Since the sequences Z((,w/ ) and Z{/? have the step property, by Observation 1.4.1, their
even and odd subsequences will also have the step properties. Subsequently, the merging
networks Mo(w/2) and M;(w/2) will merge step sequences, and thus their respective

3This notation should not be confused with the function notation of Section 1.5.2.




13

Merging Network M (w)

Final Merging
4
— - = 4
Z((,'”/z) — Merging |
Mo(9) | —
S ®— :
Y (w)
— *-
Merging o
7o — )
Mi(3)

Figure 1.4: Construction of a merging network
T11
I &

Figure 1.5: The bitonic network with input/output width 4

output sequences will have the step property too (by the induction hypothesis).

Consider now the sequence Zéw/ %) From the step property of sequence Zéw/ 2), it is easy
to observe that the sums of the elements of the even subsequence differ by at most one from
the sums of the elements of the odd subsequence. A similar observation holds for sequence
Z{w/ A Combining these two observations, it is easy to infer that the respective sums of the
output sequences of the two merging networks, Mo(w/2) and M;(w/2), differ by at most
one. Therefore, on the outputs of the two merging networks we obtain two step sequences
whose sums differ by at most one. Because of this small difference, We can easily merge
these two sequences with a single layer of balancers, denoted as “final merging” network in
Figure 1.4, and the produced output sequence Y (%) has the step property.

We can easily see that the depth of the inductive construction depends on the depth of



14

the “final merging” network. In the bitonic network, the “final merging” network has depth
1 (it is just one layer of balancers). As a consequence, the depth of the merging network
M(w) is O(log w), since there are O(log w) induction steps and in each induction step the
depth increases by only 1 (the depth of the “final merging” network). Furthermore, the
depth of the counting network C(w) will be O(log?w), since there are O(logw) induction
steps and in each induction step the depth increases by at most O(log w), the depth of the
merging network. As a small example, for w = 4, we obtain the bitonic counting network
C(4) which is depicted in Figure 1.5, and has depth 3.

In general, we want to build counting networks with small depth. In order to achieve
this, when we construct counting networks using the inductive technique, we want the “final
merging” network to have a constant depth c. This way, the total depth of the network is
at most O(clog? w) = O(log? w). By increasing the depth of the “final merging” network
we obtain networks with worse depths.

The constructions we present in Chapters 3 and 4 are variations of the inductive con-
struction of the bitonic network. In particular, in Chapter 3 we modify the inductive
construction so that the input and output width of the network is an arbitrary integer.
and not only a power of 2. To achieve this, we use more than two copies of the smaller
counting networks (given by the induction hypothesis) in the inductive construction of the
counting network. Similarly, the merging network is made from more than two copies of the
smaller merging networks (given by the induction hypothesis). In that construction, the
“final merging” network has constant depth, which gives a total network depth O(log® w).
The construction of Chapter 4, modifies the inductive construction of the bitonic network so
that it handles a different number of input and output wires. The “final merging” network

there has depth 1. and the total network depth is again O(log? w).



Chapter 2
Decrements in Balancing Networks

A limitation of balancing networks is that they are accessed by tokens only. In a balancing
network, a token performs “increment” operations to the balancers it accesses (it increases
the state of the balancer). By using tokens only, the capabilities of balancing networks
are limited to solving distributed problems based on increment operations. However, many
distributed problems require, the ability to perform “decrement” operations. For example.
the classical synchronization constructs of semaphores [24], critical regions [34], and moni-
tors [31] all rely on applying both increment and decrement operations on shared counters
(see, e.g., [50, Chapter 6]).

In order to solve such kinds of problems Shavit and Touitou {48] invented the antitoken,
the complementary entity of a token which corresponds to a “decrement” operation. As we
have seen in Chapter 1, a token traverses a balancer by reading first the state of the balancer
and then increasing the state by one. On the other hand, an antitoken first decreases the
state of a balancer by one and then reads the state and exits from the corresponding wire.
Informally, an antitoken “cancels” the effect of the most recent token on the balancer’s state,
and vice versa. Furthermore, when an antitoken and a token meet while they traverse a
network they can “eliminate” each other without needing to traverse the rest of the network.

We can think of a token and an antitoken as having complementary algebraic values so
that a token corresponds to the quantity +1, and an antitoken to the quantity -1. As an
example, tokens and antitokens are depicted in Figure 2.1, where an antitoken is drawn with
an empty circle and a token is drawn with a full circle. On each wire we see the algebraic sum
of tokens and antitokens that appear on that wire. Each element of the output sequence of
a balancing network is now equal to the algebraic sum of tokens and antitokens that appear

on the corresponding output wire. Subsequently, each element of the output sequence can

15



16

@O0 O 0 ¢! L o
.1|o '1$ L o
®0® o0 000 1 ¢2¢! I‘ooooo
OJOXOJO) 0o o 342 1 L @0 ®
® O -0 Io.o
-1
4@@ 40 0
OXOXO), L 0
0 0

Figure 2.1: Tokens and antitokens

be either positive or negative, depending on whether the tokens or antitokens are of excess
on the corresponding output wire. (Similarly for the input sequences.) This sum is shown
on each wire of Figure 2.1.

For a specific kind of counting networks, which have the form of a binary tree, Shavit
and Touitou [48] showed that these networks count correctly even when they are traversed
by both tokens and antitokens. Namely, they showed that the output sequence of any such
network satisfies the step property even when the antitokens are introduced.

For simplicity, we say that a network satisfies a property if its output sequence satisfies
that property. Here, we answer the more general question: which properties of balancing
networks are preserved by the introduction of antitokens? We give a new characterization
of balancing network properties: properties closed under the nullity of a balancing network.
We show that if a balancing network satisfies a property for tokens only and this property
is closed under the nullity of the balancing network, then the network will still satisfy the
same property under the introduction of antitokens.!

We show that all the known properties, namely, the step property, the k-smoothing
property, and the threshold property, are all closed under the nullity of a balancing network.
Subsequently, all these properties are preserved under the introduction of antitokens. As
a result, for all the known counting, k-smoothing, and threshold network constructions
which we know they satisfy their properties with tokens only, we can immediately infer that
they can also support antitokens, namely, these networks will satisfy their corresponding
properties with both tokens and antitokens. As an example, we know from Chapter 4 that

the network in Figure 2.1 is a counting network with tokens. From what we show here, we

"The work of this chapter was first presented in (3, 16, 15].






