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Preface

In distributed and parallel computing environments, there are many computational prob-
lems that require efficient communication and coordination between the processes. For such
problems there have been proposed several distributed structures, each designed to solve a
particular problem or a class of problems. The distributed structures take into account the
particularities of the specific problems and provide efficient solutions for them.

In this work we study two distributed structures: counting networks and the mesh
network. Counting networks are used for implementing distributed counters; mesh is a
communication network. So far. counting networks have been used for increment opera-
tions only. We demonstrate that counting networks can be extended to support decrement
operations as well. Furthermore. we present new efficient counting network constructions.
For the mesh network we study the communication problem, known as hot-potato routing.
and we provide novel algorithms for the class of hot-potato algorithms known as “greedy.”

Although counting networks and the hot-potato routing in the mesh are used for different
purposes, their underlying distributed structures share a common characteristic: the basic
structural elements contain a very limited amount of memory. Specifically, in counting
networks each structural element contains either a single bit of information or a small
number of bits; in the mesh, with greedy hot-potato routing, each node doesn’t have any
amount of memory for storing communication packets in transit.

The present thesis is structured as follows. The first chapters are devoted to counting
networks; while the last ones to hot-potato routing in the mesh. In particular, in Chapters
1,2, 3, and 4 we study counting networks, and in Chapters 5, 6 and 7 we study hot-potato

routing in the mesh. We give our conclusions in Chapter 8.
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Chapter 1

Introduction to Counting Networks

1.1 The Counting Problem

Counting is a fundamental computational task in distributed, shared memory, multiproces-
sors. In the counting problem, there are many distributed processes that need to perform
an increment operation. Each increment operation returns a unique integer, so that if there
were m total increment operations performed, then each increment operation returns a
unique integer between 0,... ,mm — 1.

A simple solution to the counting problem is to use a single shared variable, e.g. v.
Each increment operation can be implemented by an atomic FetchéIncrement operation to
v. In the Fetch&Increment operation, a process first locks the variable v, then it reads its
contents. then increments v by one, and finally it unlocks v and returns the value it read.
Initially, the variable v contains the value 0.

Although the single shared variable solution is easy to implement, it suffers from two

major drawbacks:

e High contention. If there are n processes in the system then all the processes may
try to perform Fetch&Increment operations on v at the same time. In such a case,
all the processes will contend to getting access to v. As a consequence, a process may
have to wait until all the other processes finish their increment operations on v, which

is a sequential bottleneck.

e Starvation. A process which performs a Fetch&Increment operation may fail while
it has locked the variable v. In such a case, the failed process will not allow the rest
of the processes to access variable v, causing these processes to starve, since they are

unable to continue computations.
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Figure 1.1: A balancer and a counting network

Therefore, the centralized solution of the single variable is not adequate to solve efficiently

the counting problem: an alternative solution is needed.

1.2 Counting Networks

As an alternative solution to the counting problem, Aspnes, Herlihy and Shavit [6] have
introduced Counting networks. Counting networks are highly distributed data structures
which do not suffer from the problems of the centralized single shared variable. Namely,
counting networks exhibit low contention and are wait-free (processes don’t starve).

Counting networks are a subclass of balancing networks. A balancing network is con-
structed by connecting together elementary switches called balancers.! A (p.q)-balancer
has p input wires and g output wires (see Figure 1.1, where p = 4 and ¢ = 6). A balanc-
ing nefwork is an acyclic network of balancers where output wires of some balancers are
linked to input wires of others (see Figure 1.1). The network’s input wires are those wires
not connected to any of the balancer’s output wires, and similarly for the network’s output
wires. The number of input wires is the network’s input width and the number of output
wires is the network’s output width. We order the wires from top to bottom, so that for n
input wires the top wire is wire 0 and the bottom wire is wire n — 1. Similarly. we order
the output wires.

The distributed processes access a balancing network by issuing tokens. Each token

!Balancing networks are constructed in a similar way that comparator networks (e.g. sorting networks)
are constructed from comparators.



corresponds to the operation that the process wishes to perform in the balancing network
(for a counting network a token is an increment operation). A token enters the balancing
network from any of its input wires. Then, the token traverses the network by moving
from one balancer to the next balancer, following the interconnecting wires, until the token
reaches an output wire. The tokens traverse the network asynchronously, and usually there
can be many tokens in the network which are traversing it simultaneously.

Let us now examine how a balancer is traversed by tokens. A balancer is implemented as
a shared variable whose value corresponds to the state of the balancer. The state points to
an output wire of the balancer. namely, for a (p. g)-balancer the state is one of 0,... .q — 1.
Initially, the state is 0. Consider now a (p, q)-balancer, and as an example consider the
balancer of Figure 1.1 where the tokens are drawn with circles. A token accesses atomically
the balancer and performs the following operations. The token first locks the balancer. If
the current state of the balancer is s, then the token reads the state s and increases the
state by one so that the next state is (s +1) mod ¢ (notice that if the current state is g— 1
then the next state is 0). The token, then, unlocks the balancer and exits the balancer
from output wire s. This process is repeated for every token. Since a balancer is accessed
atomically by the tokens, there is a sequential order imposed on the tokens of the balancer.
In the example balancer of Figure 1.1, this sequential order of the tokens is drawn as a
number inside each token’s circle.

Let’s assume now that the (p, g)-balancer has reached a quiescent configuration, in which
all the tokens that have ever entered the balancer have left it, so that there are no more
tokens traversing the balancer. The distribution of the tokens on the output wires of
the balancer is almost uniform (see Figure 1.1). Namely, the number of tokens on each
output wire is the same, and any excess tokens appear on the top wires. We say that the
distribution of the tokens on the output wires of the balancer satisfies the step property.
Formally speaking, let Y = yp,...,y,—1 be a sequence such that y; is equal to the total
number of tokens that exit from the output wire i of the balancer. We call Y the output
sequence of the balancer. Similarly, we define the input sequence of the balancer. In any
quiescent configuration and for any input sequence, the output sequence Y of the balancer

b satisfies the step property:
0<yi—y; <1, forall0<i<j<gq.

In Figure 1.1 we write on each wire the total number of tokens that appear on the wire.
We can generalize the above definitions for balancing networks. For instance, consider a

balancing network of output width w. We say that the balancing network is in a quiescent



configuration if there are no more tokens traversing the network, that is, all the tokens that
have entered the network have left it. In any quiescent configuration, the input and output
sequences are defined in the same way as for the balancers. Namely, in the output sequence
Y = yo,... ,yw—~1, the element y; is equal to the total number of tokens that exit from
output wire ¢ of the network (and similarly for the input sequence).

A counting network is a balancing network whose output sequence satisfies the step
property in any quiescent configuration and for any input sequence. In particular, consider
a counting network of output width w which is in a quiescent configuration and has output
sequence Y = yo,,... ,yw—1- Then for any input sequence, the output sequence Y satisfies
the step property:

0<Lyi—yj <1l forall0<i<j<uw.

The balancing network of Figure 1.1 is a counting network. In the same figure above, we
write on each wire of the network the total number of tokens that appear on that wire.

We describe now the way a counting network solves the counting problem. Each token
corresponds to an increment operation issued by some process. Let’s assume that we are
given a counting network C with output width w. With each output wire i of the network
C we associate a corresponding output shared variable v;. Initially, each output variable
v; contains the value ;. Whenever a process needs to perform an increment operation, it
issues a token which traverses the network until it reaches an output wire. The token, then,
returns the value that reads from the corresponding output variable of the output wire. In
detail. consider the actions of a token when it exits from the output wire i of the network.
The token first locks the variable v;, so that the token accesses the variable atomically, in
case other tokens exit from the same wire. If the current value of the variable v; is a then
the token reads the value a. Then, the token increases the value of the variable v; by w,
the output width, so that the next time the variable will contain a + w. Then, the token
unlocks the variable and returns the value a. This way. each token performs an increment
operation of some process.

The step property of the counting network guarantees that the increment operations are
performed correctly. Namely, if there are m total tokens accessing the network, then each
such token will return a unique integer in the range 0,... ,m» — 1. As an example, consider
a counting network of Figure 1.1 with width w = 8 which is accessed by a total of m = 12
tokens. Each token should return a unique value in the range 0,...,11. Because of the
step property, from each of the top four output wires exit two tokens, and from each of the

bottom four output wires exits one token. From wire 0, one token returns 0 and the other



8. From wire 1, one token returns 1 and the other 9. Similarly, for the rest of the four top
wires. From wire 4, the token returns 4. From wire 5, the token returns 5. Likewise, for
the rest bottom wires. Obviously, each token returns a unique value in the range 0, ... , 11,
and therefore the counting is correct.

Similar to counting networks, there are other families of balancing networks which are
used to solve other kinds of distributed problems. These balancing network families are
distinguished by the properties their output sequences satisfy. Two such well known families
of balancing networks are the smoothing networks and the threshold networks. Smoothing
networks are used to solve load balancing problems. and threshold networks solve barrier
synchronization problems.

All the above families of balancing networks do not suffer from the problems of central-
ized schemes. This is because balancing networks are highly distributed, since there are
many shared variables, the balancers and the output variables, among which the processes
are dispersed. As a consequence, the contention in the variables of a balancing network is
small, since it is less likely for the processes to meet at the same variable at the same time.
Moreover, balancing networks are wait-free: if one of the processes fails in one of the shared
variables of the network, then the rest of the processes in the other variables can continue
uninterrupted.

There are two important factors that determine the good performance of balancing

networks:

e Depth. The depth of a balancing network is the maximum number of balancers a
token has to traverse from an input wire to an output wire. For example, the network
of Figure 1.1 has depth 3. The depth of a network determines its latency: the higher

the depth the more the time a token spends in the network.

e Contention. The contention of a counting network determines its throughput: the
smaller the contention the higher the number of processes that can access the counting

network simultaneously.

Therefore, it is desirable to construct balancing networks which have both small depth and

small contention.
We proceed as follows. In Section 1.3, we present our contributions, and in Sections 1.4

and 1.5 we give some necessary preliminaries on sequences and balancing networks, which

are common to the subsequent chapters.



1.3 Contributions

1.3.1 Supporting Decrements

So far. counting networks have been used for increment operations only. Some distributed
computing applications require the use of decrement operations as well. In Chapter 2, we
show that counting networks, and in general a broad class of balancing networks, can be
used to support decrement operations together with increment operations. In particular,
we show that if we know that a balancing network “works correctly” for increments, then
it will also work correctly for decrements. This makes balancing networks suitable for a

broader range of applications.

1.3.2 New Constructions

Most of the previously known counting networks have equal input and output width and this
width is a power of 2. It was an open question whether we can construct counting networks
with arbitrary widths that have also small depth. In Chapter 3, we present a novel small-
depth counting network construction, with equal input and output width. whose width is
an arbitrary integer.

In Chapter 4. we present a novel counting network construction which improves in
terms of contention over the previously known counting network constructions. In this
construction. the output width is bigger or equal to the input width. and by increasing the
output width we can increase the number of balancers in the network without increasing the
depth. By having more balancers the contention decreases, since processes are less likely to

meet in the same balancers.

1.4 Preliminaries for Sequences

1.4.1 Notations

We consider sequences of integers. We denote sequences in upper case and elements of a
sequence in lower case. For example, consider the sequence X = zg.... ,z4,—1. The length
(or width) of sequence X is [X| = w. Often, we denote the length of X with a superscript
as X(¥). The sum of the elements of X is £(X) =zg+ -+ + Ty_1.



1.4.2 Properties

We say that a sequence X (%) has the step property whenever
0<z;i—z;<1, forall0<i<j<w.

Alternatively, we say that X(®) is a step sequence. If X(*) has the step property then its
step point is the unique index i such that z; < z;_;. If all z; are equal then the step point
can be defined to be either O or w, and we will explicitly specify this in the subsequent
chapters, where we use the step points. The following equality holds for any element z; of

a step sequence X (¥),

oo [ w] , (L1)
w

We immediately have the following observation.
Observation 1.4.1 Any subsequence of a step sequence has the step property.

We say that a sequence X () has the k-smoothing property. for some k > 1, whenever
|zi —zj| <k, forall0 <i,5 < w.

Alternatively, we say that the sequence X is a k-smooth sequence. The elements of a k-
smooth sequence take values in a range a.a + 1,... ,a + k, for some value a. Notice that
any step sequence is also 1-smooth.

We say that a sequence X (%) has the threshold property whenever

=
Ty =|—]|.

w

Alternatively, we say that sequence X(*) js a threshold sequence. Notice that any step

sequence is also threshold.

1.5 Preliminaries for Balancing Networks

Henceforth (unless otherwise stated), for the rest of this chapter and the other chapters, we
consider balancers and balancing networks in quiescent configurations, where all the tokens
that have ever entered the balancing network have left it. We do this, because we want to

reason about the distributions of the tokens on the output wires in quiescent configurations.
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Figure 1.2: The input and output sequences

1.5.1 Notations

Often. for convenience, we draw balancers and balancing networks with boxes as shown in
Figure 1.2. Consider now a (p. q)-balancer with input sequence X(P) and output sequence
Y®). We draw the input and output sequences of the balancer as shown in Figure 1.2,
where there are two alternative representations: one representation where all the elements
of the sequence are drawn with wires and the other representation where the whole sequence
is drawn with a single wire. In the same way we draw the input and output sequences for
balancing networks.

Any balancing network with input sequence X(*) and output sequence Y ®) satisfies the

sum preservation property:

T(X®) = z(Y®).

The depth of a balancing network B, is denoted by depth(B). Any balancing network
can be decomposed into smaller components connected in series which are called layers,
where each layer has depth 1. For example, the network of Figure 1.1 consists from three
layers, and going from the input wires to the output wires, the first layer consists from
two (2, 2)-balancers, the second layer from two (2,4)-balancers, and the last layer by four

(2, 2)-balancers.



1.5.2 Output Function

Consider a (p, g)-balancer b, with input sequence X and output sequence Y@. By the
definition of the balancer, the output sequence Y(?) satisfies the step property for any input
sequence XP). By equation 1.1, and by the sum preservation property of the balancer, we

[E(X(P))—i]
yi=| —m| .

have

q

This equation implies that the output sequence of the balancer is determined by the input
sequence, so that each input sequence has only one respective output sequence. Therefore,
the output sequence is a function of the input sequence. We can think of the balancer b as
a function which maps input sequences to output sequences. Sometimes, for convenience,
we write b(XP)) = Y@,

We can generalize the above observation from balancers to balancing networks, and we

show in the next lemma that any balancing network is a function from input sequences to

output sequences.

Lemma 1.5.1 A balancing network B is a function from input sequences to output se-

quences, so that each input sequence has only one respective output sequence.

Proof: Let d be the depth of the network B. We prove the result by induction on the
depth d.

First, we consider the base case. where d = 1. In this case, the network consists from a
single layer of balancers. The input sequence of the network is distributed and fed to the
input sequences of the balancers, and the output sequence of the network is the combination
of the output sequences of the balancers. Each balancer of the layer is a function from its
input sequence to its respective output sequence. Combining the balancers, we have that
the output sequence of the network is a function of the input sequence of the network.

For the induction step, let’s assume that the result holds for all the networks with depths
up to d — 1. We split the network B into to two smaller networks B’ and B”, each with
depth smaller or equal to d — 1, in such way that B is formed by connecting in series B’ and
B". The input sequence of network B is the input sequence of network B’ and the output
sequence of B’ is the input sequence of network B”. By the induction hypothesis, each of
the networks B’ and B” is a function from input sequences to output sequences, since each
has depth smaller or equal to d — 1. The output sequence of network B is produced by the

composition of the functions of networks B’ and B”. Since the composition of two functions
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is a function, we have that the network B is a function from input sequences to output

sequences. a

From the above lemma we have that a balancing network B is a function from input
to output sequences. Let w be the input width of the network and ¢ the output width.
Let X(®) be the input sequence and Y(*) the respective output sequence. Sometimes, for
convenience, we write B(X®)) = y(t),

When we construct a balancing network. we take advantage of the functional behavior
of the network. For example, we build a counting network by combining smaller counting
networks (see Section 1.5.4). We can easily prove the correctness of the counting network

by analyzing the functional behavior of the smaller networks.

1.5.3 Families

As we have seen in Section 1.2, a counting network is any balancing network whose output
sequence satisfies the step property, on any input sequence. In a similar way, we define
other families of balancing networks, according to what kind of properties their output se-
quences satisfy. These balancing networks are used for solving different kinds of distributed
computing problems.

A k-smoothing network [2, 6] is a balancing network whose output sequence satisfies
the k-smoothing property, for any input sequence. In a smoothing network, the tokens are
distributed in the output wires in such a way that the number of tokens on any two output
wires differ by at most k. Smoothing networks are used for load balancing applications
[36]. where jobs need to be distributed in different processors in a balanced way so that
all processors perform approximately an equal amount of work. Furthermore, smoothing
networks are used as structural components for building counting networks [39].

A threshold network [6, 22] is any balancing network whose output sequence satisfies
the threshold property, for any input sequence. Threshold networks can be used for a weak
form of counting, where the only output wire of the network that counts is the bottom
wire. The output variable v of the bottom output wire holds a value which corresponds
to the “approximate” total number of tokens that entered the network. If the output
width of the network is w, then the variable v counts chunks of w tokens that traverse the
network. Namely, for every w tokens, one of these tokens leaves from the bottom output
wire. Furthermore, threshold networks can be used for barrier synchronization. If the are
w processes to be synchronized in the barrier, then the first w — 1 processes that entered

the network wait until the last process exits from the bottom wire. Threshold networks are
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Figure 1.3: Construction of a counting network

interesting because they can be implemented more efficiently than counting networks (see

[6])-

1.5.4 A Construction Technique

In this section we present a simple technique for constructing counting networks. In par-
ticular, we show how to construct a counting network inductively, by first building smaller
counting networks and then merging the outputs of the smaller networks, as shown in Figure
1.3. The counting network constructions of Chapters 3 and 4, are based on this construction
technique.

The technique of constructing networks inductively was first introduced by Batcher (9],
who used it to construct sorting networks. Sorting networks look like counting networks?
and are used for parallel sorting. Using the inductive technique, Batcher constructed the
bitonic sorting network and the odd-even sorting network. (For more information about
sorting networks look in [40].) Aspnes et al. [6], showed that the same inductive technique
can be used to construct counting networks. They showed that the isomorphic balancing
network of the bitonic sorting network, is a counting network too. To demonstrate the

inductive construction technique, we present here the construction of the bitonic counting

*In sorting networks the number of input and output wires of the network is the same.



network.

We will construct the bitonic counting network C of input and output width w, where
w is some power of 2 (see Figure 1.3). We denote the network as C(w).® Let X(¥) be the
input sequence and Y (¥) the corresponding output sequence of the network.

The construction is by induction on the width w. For the base case, where w = 2, the
network is simply a (2, 2)-balancer. Let’s assume that we have constructed the network
C(w/2). We will construct now the network C(w). We take two copies of the network
C(w/2) (given by induction hypothesis), which we denote Co(w/2) and Cy(w/2). We split
the input sequence X(*) into two sequences each of width w/2. which we denote Xé'"/ 2)
and X{*/?). We feed the sequence X((,'”/ 2) to network Co(w/2) and the sequence Xfw/ ) to
network C;(w/2). Let Z((,'”/ ) and Z{w/ ?) denote the respective output sequences of these
two networks. By the induction hypothesis, we have that each of the sequences Z{*/?) and
Z{w/ %) satisfies the step property.

Next, we use a merging network, which receives two input sequences with the step
property. merges these sequences, and produces one output sequence which has the step
property. Let M(w) be the merging network of our construction. The network M(w)
accepts on its inputs the step sequences Zé"’/ ) and Zf'”/ %) merges these sequences, and
produces the final output sequence Y (%), which has the step property.

The merging network is also constructed by induction on w. as shown in Figure 1.4. For
the base case where w = 2, the merging network is simply a (2, 2)-balancer. Let’s assume
now that we have constructed the merging network M(w/2). We will construct the merging
network M(w).

The network M(w) accepts the two input sequences Zéw/ %) and Z{w/ 2. We take two
copies of the network M(w/2) (given by induction hypothesis), which we denote Mg(w/2)
and M;(w/2). We split the sequence Z((,w/ %) into its even and odd subsequences, where the
even subsequence contains the elements with even index 0.2..... and the odd subsequence
contains the elements with odd index 1,3,.... Similarly, we split the sequence Zf“’/ ?) into
its even and odd subsequences. The two input sequences of network Mgo(w/2) are the even
subsequence of Zéw/ 2) and the odd subsequence of Zf'”/ 2). The two input sequences of
M;i(w/2) is the odd subsequence of Z((,w/ %) and the even subsequence of wa/ 2,

Since the sequences Z((,w/ ) and Z{/? have the step property, by Observation 1.4.1, their
even and odd subsequences will also have the step properties. Subsequently, the merging
networks Mo(w/2) and M;(w/2) will merge step sequences, and thus their respective

3This notation should not be confused with the function notation of Section 1.5.2.
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Figure 1.5: The bitonic network with input/output width 4

output sequences will have the step property too (by the induction hypothesis).

Consider now the sequence Zéw/ %) From the step property of sequence Zéw/ 2), it is easy
to observe that the sums of the elements of the even subsequence differ by at most one from
the sums of the elements of the odd subsequence. A similar observation holds for sequence
Z{w/ A Combining these two observations, it is easy to infer that the respective sums of the
output sequences of the two merging networks, Mo(w/2) and M;(w/2), differ by at most
one. Therefore, on the outputs of the two merging networks we obtain two step sequences
whose sums differ by at most one. Because of this small difference, We can easily merge
these two sequences with a single layer of balancers, denoted as “final merging” network in
Figure 1.4, and the produced output sequence Y (%) has the step property.

We can easily see that the depth of the inductive construction depends on the depth of
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the “final merging” network. In the bitonic network, the “final merging” network has depth
1 (it is just one layer of balancers). As a consequence, the depth of the merging network
M(w) is O(log w), since there are O(log w) induction steps and in each induction step the
depth increases by only 1 (the depth of the “final merging” network). Furthermore, the
depth of the counting network C(w) will be O(log?w), since there are O(logw) induction
steps and in each induction step the depth increases by at most O(log w), the depth of the
merging network. As a small example, for w = 4, we obtain the bitonic counting network
C(4) which is depicted in Figure 1.5, and has depth 3.

In general, we want to build counting networks with small depth. In order to achieve
this, when we construct counting networks using the inductive technique, we want the “final
merging” network to have a constant depth c. This way, the total depth of the network is
at most O(clog? w) = O(log? w). By increasing the depth of the “final merging” network
we obtain networks with worse depths.

The constructions we present in Chapters 3 and 4 are variations of the inductive con-
struction of the bitonic network. In particular, in Chapter 3 we modify the inductive
construction so that the input and output width of the network is an arbitrary integer.
and not only a power of 2. To achieve this, we use more than two copies of the smaller
counting networks (given by the induction hypothesis) in the inductive construction of the
counting network. Similarly, the merging network is made from more than two copies of the
smaller merging networks (given by the induction hypothesis). In that construction, the
“final merging” network has constant depth, which gives a total network depth O(log® w).
The construction of Chapter 4, modifies the inductive construction of the bitonic network so
that it handles a different number of input and output wires. The “final merging” network

there has depth 1. and the total network depth is again O(log? w).



Chapter 2
Decrements in Balancing Networks

A limitation of balancing networks is that they are accessed by tokens only. In a balancing
network, a token performs “increment” operations to the balancers it accesses (it increases
the state of the balancer). By using tokens only, the capabilities of balancing networks
are limited to solving distributed problems based on increment operations. However, many
distributed problems require, the ability to perform “decrement” operations. For example.
the classical synchronization constructs of semaphores [24], critical regions [34], and moni-
tors [31] all rely on applying both increment and decrement operations on shared counters
(see, e.g., [50, Chapter 6]).

In order to solve such kinds of problems Shavit and Touitou {48] invented the antitoken,
the complementary entity of a token which corresponds to a “decrement” operation. As we
have seen in Chapter 1, a token traverses a balancer by reading first the state of the balancer
and then increasing the state by one. On the other hand, an antitoken first decreases the
state of a balancer by one and then reads the state and exits from the corresponding wire.
Informally, an antitoken “cancels” the effect of the most recent token on the balancer’s state,
and vice versa. Furthermore, when an antitoken and a token meet while they traverse a
network they can “eliminate” each other without needing to traverse the rest of the network.

We can think of a token and an antitoken as having complementary algebraic values so
that a token corresponds to the quantity +1, and an antitoken to the quantity -1. As an
example, tokens and antitokens are depicted in Figure 2.1, where an antitoken is drawn with
an empty circle and a token is drawn with a full circle. On each wire we see the algebraic sum
of tokens and antitokens that appear on that wire. Each element of the output sequence of
a balancing network is now equal to the algebraic sum of tokens and antitokens that appear

on the corresponding output wire. Subsequently, each element of the output sequence can

15
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Figure 2.1: Tokens and antitokens

be either positive or negative, depending on whether the tokens or antitokens are of excess
on the corresponding output wire. (Similarly for the input sequences.) This sum is shown
on each wire of Figure 2.1.

For a specific kind of counting networks, which have the form of a binary tree, Shavit
and Touitou [48] showed that these networks count correctly even when they are traversed
by both tokens and antitokens. Namely, they showed that the output sequence of any such
network satisfies the step property even when the antitokens are introduced.

For simplicity, we say that a network satisfies a property if its output sequence satisfies
that property. Here, we answer the more general question: which properties of balancing
networks are preserved by the introduction of antitokens? We give a new characterization
of balancing network properties: properties closed under the nullity of a balancing network.
We show that if a balancing network satisfies a property for tokens only and this property
is closed under the nullity of the balancing network, then the network will still satisfy the
same property under the introduction of antitokens.!

We show that all the known properties, namely, the step property, the k-smoothing
property, and the threshold property, are all closed under the nullity of a balancing network.
Subsequently, all these properties are preserved under the introduction of antitokens. As
a result, for all the known counting, k-smoothing, and threshold network constructions
which we know they satisfy their properties with tokens only, we can immediately infer that
they can also support antitokens, namely, these networks will satisfy their corresponding
properties with both tokens and antitokens. As an example, we know from Chapter 4 that

the network in Figure 2.1 is a counting network with tokens. From what we show here, we

"The work of this chapter was first presented in (3, 16, 15].
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can immediately infer that the step property of this network is still preserved even when
antitokens are introduced.

We proceed as follows. In Section 2.1 we give necessary preliminaries. In Section 2.2 we
prove our main result about properties closed under the nullity of a network. In Section 2.3
we apply our main result to the known properties of balancing networks. Finally, in Section

2.4 we give a discussion. (There is no related work other than the one mentioned above.)

2.1 Preliminaries

2.1.1 Sequences

We treat sequences as vectors, and we define the operations of addition and multiplication
on sequences in the same way that are defined for vectors.

We use 0(9) to denote the sequence 0(9) = 0,0.... .0, a sequence with g zero entries.
Similarly. we use 1(9) to denote 19) = 1,1.... .1. a sequence with ¢ unit entries. A constant
sequence is any sequence of the form c- 1(9), for any constant c.

A non-negative sequence, is any sequence whose entries are non-negative integers.

2.1.2 Balancing Networks

Since, a balancing network may be traversed now by both tokens and antitokens, we con-
sider balancing networks in quiescent configurations in which no tokens or antitokens are
traversing the network (that is, all the tokens and antitokens that have entered the network
have left it).

If a balancing network is traversed by tokens only and we are given the input sequence,
then we can infer how many tokens have entered on each input wire: the number of tokens
on the wire is equal to the value of the corresponding element in the input sequence. With
both tokens and antitokens, knowing the input sequence doesn’t necessarily mean that we
know the number of tokens and antitokens that have entered from a specific input wire.
This is because on an input wire of the network, there are infinite combinations of tokens
and antitokens that can produce the same algebraic sum in the corresponding element of the
input sequence. A similar observation holds for the output sequence. Here, we consider only
algebraic sums on each input/output wire, and the corresponding input/output sequences,
because these characterize the properties of the balancing networks.

It is easy to see that the output sequence of a balancer still has the step property even

when antitokens are introduced. Furthermore, we can easily extend the observations and
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results of section 1.5.2, about the functional behaviors of balancing networks, to hold even
when antitokens are introduced. In particular, a balancer can be thought of as function
from input to output sequences, and similarly, a balancing network can be thought of as a
function from input to output sequences. Consider a balancing network B of input width w,
and output width t. Let X(*) be an input sequence and Y(t) be the corresponding output
sequence. We write B(X(®)) = Y(8). Trivially, B(0(®)) = 0(),

The sum preservation property still holds in any balancing network, even though some
tokens and antitokens may be eliminated in the network’s balancers. That is, for any input

sequence X (¥},
S(B(X®))) = (x®@)).

In Section 1.2, we have defined the state of the balancer to always point to an output
wire. so that if a token arrives, then the token will exit from that wire. Here, we keep the
same definition even when antitokens are introduced. We can easily see that in quiescent
configurations the state of the balancer is uniquely determined by the algebraic sum of all
the elements in the input sequence. For any (p, q)-balancer b with input sequence X}, we
denote the state of the balancer as state,(X()). Furthermore. we have

statey(XP)) = £(X®)) mod q.
We immediately obtain the following “linearity” lemma for the state of a balancer.
Lemma 2.1.1 For any two input sequences X{p) and Xép) of a (p,q)-balancer b,
statey(XP) + XP) = (statey(XP) + statey( X)) mod q.

We generalize the definition of the state to balancing networks. For any balancing
network B of input width w, and any input sequence X (%), we define the state of the network,
denoted by statez(X(®)), to be the collection of the states of its individual balancers after
the specific input sequence. The initial state of the balancing network is stateg(0(®)).
(Initially, when the network started operating, it hasn’t received any input sequence, which

corresponds to the input sequence 0(*).)

2.1.3 Fooling Pairs

For any balancing network B, with input width w, we say that two input sequences X((,w)

and X {w) are a fooling pair to network B if

states(Xéw)) = stateg(X"*)).
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Roughly speaking, a fooling pair “drives” all balancers of the network to identical states.
We continue by showing a “linearity” result for fooling pairs. First we show the“linearity”

result for balancers, and then for balancing networks.

Lemma 2.1.2 Consider a (p, q)-balancer b. Take any input sequences X {p ) and Xg’ ) that

are a fooling pair to balancer b. Then, for any input sequence X‘P),

(1) the input sequences X{p) + X(P) gnd Xép) + X(P) agre a fooling pair to balancer b:
(2) B(XP + XxP) — b(XP) = b(XP + xP) — p(XP).

Proof: We first show (1). Clearly, by Lemma 2.1.1,

stateb(X(p) + X®) = (stateb(X(p)) + state, (X)) mod g,
1 1

and
stateb(Xép) + X®) = (stateb(Xép)) + statey(X®)) mod q.

Since X fp ) and Xép ) are a fooling pair to b, state,(X {p )) = sta.teb(X.f,p )), it follows that
stateb(Xfp) + X(p)) = stateb(xg’) + X(P));

thus, X{p) + X®) and Xép) + X® are a fooling pair to b, as needed.
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We continue to show (2). By Equation 1.1, for each ¢, 0 < i < g.

(X P + XP) — b(XP)));
_ [5x® + xo) -i" _ I’z(xf"’) —i]
q q
_ [5x®) + s(x@) - i’l _ [2(){9”) - i]
q q
[(=(x{P) div q) - ¢ + (S(X??) mod q) + Z(XP) — i]
q
_ [(2(X§"’> div g) - ¢ + (S(X{) mod q) - i]

q
(=(XP) mod q) + B(XP)) — i]
q
(E(X{) mod q) — i]
q

_ [(2(,\’{"’) mod g) + Z(X®)) —i-l _ [(z(xfp’) mod q) —i]

= (S(X{P) div q) + [

—(Z(XP) div ¢) - [

q q

stateb(Xl(p)) +3(XP)y ~4 _ stateb(Xfp)) -1
q q
(by definition of the state).

Similarly, we can show that

stateb(Xép)) + E(X(P)) - i] . [stateb(Xép)) - i]
q q '

(b(X5” + XP) - b(X{)); = [
Since X i” ) and Xép ) are a fooling pair to b, statey(X {p )) = sta.teb(Xép )). It follows that
b(X[” + X®) - b(X{?) = b(X{ + XP) - b(X{).

as needed. a

Proposition 2.1.3 Consider a balancing network B, of input width w. Take any input
sequences X {w) and Xéw) that are a fooling pair to network B. Then, for any input sequence
X(w)

(1) the input sequences X{w) + X)) qnd Xéw) + X®) are a fooling pair to network B;

(2) BX{™ + X)) — B(X{™) = B(X{¥ + X)) - B(X{™).
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Proof: Let d be the depth of network B. The proof is by induction on the depth d. For the
basis case, where d = 1, B is a single layer of balancers, and the claim follows immediately
by applying Lemma 2.1.2 to each of the balancers in the layer.

Let’s assume inductively that the claim holds for all networks of depth at most d — 1.
For the induction step, let B = B’'B”, where B’, and B” are networks of depth at most d —1:
that is, B is the “cascade” of B’ and B’.

For the induction step. we start by showing (1). Since the input sequences X{w) and
Xéw) are a fooling pair to B, it follows that they are a fooling pair to B'. Thus, by induction
hypothesis (1) for B’, for any input sequence X(¥), the input sequences X fw) + X} and
X§*) + X(®) are a fooling pair to B'. It remains to show that the sequences B'(X{"™) + x ()
and B’(Xéw) + X)) are a fooling pair to B”.

By induction hypothesis (2) for B’,

B(X{™ + X)) = B(X{*)+B(X{” + X®) - B'(X{),
and

B(X{ + Xx®) = B'(X§)+ B (X" + X®) - B (X{*).
Furthermore, by induction hypothesis (2) for B’,

B’(Xéw) + X(w)) _ B'(Xéw)) — B'(X{w) + X(w)) _ B'(Xfw)) ,

while, by assumption, B’(X§w)) and B’(X._(Zw)) are a fooling pair for B”. We apply induction
hypothesis (1) to B”, taking B/(X{*)) for X{*), B'(X{*") for X{*), and B'(X{*) + X)) —
B’(Xéw)) = B’(Xf'") + X(why — B’(X{w)) for X(*); it implies that the input sequences

B'(X™) + B/(x{™ + x) - B(x{*) = B (X" + xw),
and
B(X{) + B(X{) + XxW) - B'(X(™) = B(X{ +Xx®)

are a fooling pair to B”, as needed.
We continue to show (2). Since the input sequences X{"’) and Xéw) are a fooling pair

to B, it follows that they are a fooling pair to B’. So, by induction hypothesis (2) for B,

B(X™ + x)y = B(Xx™)+B(x{™ + x®) — B/(X{™).
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Thus,

B(X{™ + X)) — B(x{*)
= B"(B'(X{™ + X)) - B"(B'(X{"))
= B"(B'(X{")) + B (X{ + X)) - B/(x{)) - B"(B'(X{")).

Since the input sequences X fw) and X.gw) are a fooling pair to B, it follows that the se-
quences B'(X fw)) and B’ (X._(zw)) are a fooling pair to B”. Thus, we apply induction hypothesis
(2) for B” by taking B'(X{™") for X{*, B (X{*?) for X{*’, and B'(X{" + X))y — B'(X{")
for X(¥) to obtain that

B"(B'(X{")) + B(X{” + X)) — B(X{") ~ B"(B(x{*"))
= B'(B(X) + BX + X)) - B(X3™) - B'(B'(XS))
B"(B'(X5”) + X)) - B"(B'(X{™)))
= B(X™ + X)) — B(x{).

It follows that B(X{"”) + X®) — B(x{*)) = B(X{*) + X)) — B(X{"), which completes
the proof of (2). [ ]

2.1.4 Null Sequences

For any balancing network B, with input width w, we say that an input sequence X{*) is a
null sequence to network B if the input sequences X (®) and 0(*) are a fooling pair to B.
Intuitively, a null sequence leaves the network to its initial state. By the definition of
the null sequence, if in a fooling pair one sequence is null then the other sequence must be
null too.
Let’s assume that the output width of network B is t. Since B(0(®)) = 0(), from
Proposition 2.1.3, by taking Z(*) for X{w) and 0¥ for Xéw), we obtain the following

“linearity” corollary for a null sequence.

Corollary 2.1.4 Consider a balancing network B, of input width w. Take any null input

sequence Z(W). Then, for any input sequence X ™),
(1) the input sequences X(®) and X(®) 4+ Z() gre a fooling pair to network B;

(2) B(X™ + ZW)y = B(X)) + B(Z™)).

We continue by showing various lemmas for null sequences.
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Lemma 2.1.5 Consider a balancing network B of input width w. Take any input sequence
X) that is null to B. Then, for any integer k > 0,

(1) kX is a null sequence to B;
(2) BkX®)) = kB(X)).

Proof: We proceed by induction on k. For the basis case where £ = 0, the claim holds
trivially.

Let’s assume inductively that the claim holds for all integers k¥’ such that ¥ < k — 1.
For the induction step consider the integer ..

We start by showing (1). Clearly,
kX = X 4 (k — 1) X @),

By the induction hypothesis, (k—1)X{*) is a null sequence. We apply Corollary 2.1.4(1) by
taking X for X and (k - 1) X™) for Z(*). We get that X(®) and X + (k — 1) X ()
are a fooling pair. Since, X(*) is a null sequence, £ X(%) is a null sequence too, as needed.

We continue by showing (2). We apply Corollary 2.1.4(2) by taking X(*) for X(*) and
(k - 1)X®) for Z(®) to obtain

B(kX®)) = B(X® 4+ (k-1)Xx®)
= B(X™)+ B((k-1)X®)
= B(X™)+ (k-1)B(X™))
(by induction hypothesis)
= kB(X™),

as needed. .

For any balancing network B, denote by P(B), the product of the fan-outs of balancers
of B. The next claim establishes a sufficient condition involving P(B) for a sequence to be
null to B.

Proposition 2.1.6 Consider a balancing network B of input width w. Take an input se-
quence X such that each of its elements is a non-negative multiple of P(B). Then, X

s a null sequence to B.
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Proof: We prove the claim by induction on the depth d of B. For the basis case where
d = 1, B is a single layer. Take any single (p, g)-balancer b of the layer. By definition, P(B)
is a non-negative multiple of q. It follows that the restriction of input sequence X(%) to
balancer b is a null sequence to b. Since b was chosen arbitrarily, this implies that X(®) is
a null sequence to the layer B, as needed.

Let’s assume inductively that the claim holds for all balancing networks of depth at
most d — 1. Write B = B'B”, where each of B’ and B” is a balancing network of depth at
most d — 1.

We only need to show that X(%) is a null sequence to network B’. and B'(X(®)) is a null
sequence to network B”.

By definition, P(B) = P(B')P(B"). Since, each element of X(*) is a non-negative
multiple of P(B’), by induction hypothesis for network B’. we have that X(¥) js a null
sequence to network B’'.

It remains to show that B/(X(®)) is a null sequence to network B”. The sequence X (%)
can be rewritten as the product X() = P(B")G(*), where each element of the sequence
G'*) is a non-negative multiple of P(B’). By induction hypothesis for network B’, we have

that G) is a null sequence to network B’. By Lemma 2.1.5(2) we have
B'(x™) = B'(P(B")G™)) = P(B")B'(G™)).

Therefore, each element of B'(X (%)) is a non-negative multiple of P(B"). Thus, by induction

hypothesis for network B”, B'(X (%)) is a null sequence to network B”, which completes the

proof. |

2.2 Main Result

In this section, we present a necessary condition of properties of balancing networks that
are preserved under the introduction of antitokens.

A property II is a predicate on finite integer sequences. For a sequence X we denote
X € II if X satisfies property II. For example, II could be either the step property, the
k-smoothing property, or the threshold property.

For any balancing network B of input width w, we say that B satisfies property Il on
input sequence X, if simply B(X(®)) € II. Namely, a network satisfies a property on an
input sequence if the corresponding output sequence satisfies that property.

We give the following characterization for properties.
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Definition 2.2.1 Consider a balancing network B of input width w. and a property II.
We say that a property Il is closed under the nullity of network B, if for any non-negative
input sequence X(), and for any non-negative null input sequence Z*) to B, it holds that
whenever B(X(W)) € I then B(XW)) £ B(Z(®)) e II.

In the next claim, we will establish that if a network satisfies a property when it is
accessed by tokens only then it will also satisfy the same property when it is accessed by
both tokens and antitokens. When a network is accessed by tokens only then all the possible
input sequences are non-negative. If a network is accessed by both tokens and antitokens an
input sequence may contain entries which are negative (in case the algebraic sum of tokens
and antitokens on the corresponding wires is negative). Therefore, if a network satisfies
a property on all non-negative input sequences then we will prove that this network will
satisfy the same property on any input sequence (that may contain negative entries). This
claim will hold for any property that is closed under the nullity of the network. (Notice

that Definition 2.2.1, has to do only with non-negative input sequences.)

Theorem 2.2.1 Consider any balancing network B that satisfies a property II on all non-
negative input sequences. If Il is closed under the nullity of B. then network B satisfies

property Il on any input sequence (that may contain negative entries).

Proof: Consider any arbitrary input sequence X (%) (with either positive or negative en-
tries). We will show that B(X®)) e II.

Construct from X(*) an non-negative input sequence Z(*) such that for each index i,
0 £ 7 < w. z; is the least non-negative multiple of P(B) so that 0 < z; + z;.

Obviously. X(¥) + Z() is a non-negative input sequence, and thus
B(X™ + zw)y e 1.

Since each element of Z{%) is a non-negative multiple of P(B), it follows by Proposition 2.1.6,
that Z(®) is a null sequence of B. Furthermore, Z(*) is a non-negative null input sequence,

since all the entries in this sequence are non-negative.
Since the property II is closed under the nullity of B, we have by Definition 2.2.1 that

B(X™ + zW) - B(Zz™) e IL.
Since Z(*) is a null sequence, from Lemma 2.1.4(2) we have

B(Xx™)) = B(x®) + z)) — B(Zz™).



Subsequently,
B(X™)) e,

as needed.

2.3 Applications

In this section we consider most of the known kinds of balancing networks, namely. counting
networks, smoothing networks. and threshold networks. We prove that whenever such
a balancing network satisfies a property with tokens alone, it will still satisfy the same
property for both tokens and antitokens.

The respective properties satisfied by the counting, smoothing, and threshold networks.
when these networks are accessed by tokens alone, are the step property, k-smoothing
property, and threshold property. In order to show that the above properties are preserved
with the introduction of antitokens. we use theorem 2.2.1. According to this theorem.
we only need to show that all of the above properties are closed under the nullity of the
respective balancing networks.

We proceed as follows. We first show that the step property and the k-smoothing
property are closed under the nullity of a network. In fact, we show the stronger result that
a broader class of properties, which we call boundedness properties, are closed under the
nullity of a network. Then we continue by showing that the threshold property is closed

under the nullity of a network.

2.3.1 Boundedness Properties

A k-boundedness property, for some integer k > 1, is any property that is A-smooth, and is
also closed under the addition (or subtraction) with a constant sequence.

Clearly, there are infinitely many boundedness properties. Obviously, the k-smoothing
property is a k-boundedness property.

For step sequences we have the following observation.

Observation 2.3.1 The addition (or subtraction) of a step sequence with a constant se-

gquence gives a step sequence.

The step property is a 1-boundedness property, since any step sequence is l-smooth,
and, by Observation 2.3.1, the step property is closed under the addition (or subtraction)

with a constant sequence.
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Now, we show that if a balancing network satisfies a boundedness property, then for any

non-negative null input sequence the corresponding output sequence is constant.

Lemma 2.3.1 Consider a balancing network B of input width w, that satisfies a k-boundedness
property Il on all non-negative input sequences. Then, for any non-negative null input se-

quence Z¥) the corresponding output sequence B(Z(™)) is constant.

Proof: Let’s assume that the output width of B is t. Consider the non-negative null input
sequence Z(®) to B. We will show that the sequence B(Z(®)) is constant.

Let Y{t) = B(Z("®)). Let’s assume, by way of contradiction, that Y is not a constant
sequence. Then, there exist entries y; and y; of Y® such that y; # yj- Thus. clearly,

ly; —yxl| 2> 1.
Since Z(*) is a null sequence to network B, it follows by Proposition 2.1.5(2),

B((k+1)Z2M™) = (k + 1)B(Z™) = (k +1)Y®.

Since the input sequence (k+ 1)Z(®) is a non-negative input sequence, the output sequence
(k +1)Y(®) satisfies the k-boundedness property II. Subsequently, the sequence (k + 1)Y ()
satisfies the k-smoothing property. The i-th entry of sequence (k+1)Y () is equal to (k+1)y;
and the j-th entry is equal to (k + 1)y;. By the k-smoothing property we have

I(k + Dyi — (K + Dy;| <k,
and thus
(k+ Dlyi —y;il <k,
which implies that |y; — y;| = 0. a contradiction. Therefore, Y(*) is a constant sequence, as

needed. -

We are now ready to show that any k-boundedness property is closed under the nullity

of a network.

Theorem 2.3.2 If a network B satisfies a k-boundedness property Il on all non-negative

input sequences, then Il is closed under the nullity of network B.

Proof: Let’s assume that the input width of B is w. Let X(*) be any non-negative input
sequence. Clearly, B(X(*)) € II. Let Z(*) be any non-negative null input sequence to B.
By Lemma 2.3.1, we have that B(Z(*)) is a constant sequence. Since the property Il is a
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k-boundedness property, the property Il is closed under the addition (or subtraction) with

a constant vector and we immediately have
B(X") £ B(Zz™) e 1.

Therefore, by Definition 2.2.1, the property II is closed under the nullity of network B, as
needed. ]

Subsequently, if we know that a network satisfies a boundedness property for tokens only.
then we can immediately infer that it will satisfy the same property even when antitokens
are introduced. Therefore, any network that we know it is a smoothing or counting network
for tokens only, then this network will remain smoothing or counting with both tokens and

antitokens.

2.3.2 Threshold Property

We will show that the threshold property is closed under the nullity of a balancing network.
The threshold property is not a boundedness property because any threshold sequence does
not necessarily satisfy the k-smoothing property. for any & > 1. Therefore, we cannot apply
the result of the previous section.

To show the desired result we use similar techniques to the previous section. We use
a special kind of sequences called saturated sequences. A saturated sequence X (%) is any

sequence such that
( X(w))

w

Ty-1=

Remember that z,,-; must be an integer all the times. Clearly, any saturated vector is a
threshold vector, but not vice versa.
We have the following lemma that combines a threshold an a saturated sequence.

Lemma 2.3.3 If X(®) is a threshold sequence and Y*) is a saturated sequence, then the
sequence X(®) + Y(®) s threshold.

Proof: Since X(*) is threshold, we have

==
Ty-1= | —| -

w

Since Y(*) is saturated, we have

(Y )
=

Yw—1 =
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Adding the two above terms, and since y,,—) is integer, we get

(X))

ZTy-1 X Yw-1 = ” j

(w)
L S

w

E(X@) z:(y<w>)J

w w

_ Z(X("’) :ty(W))J

w

as needed. a

Now, we show that for any threshold network and for any non-negative null input

sequence the corresponding output sequence is a saturated sequence.

Lemma 2.3.4 Consider a balancing network B of input width w that satisfies the threshold
property on all non-negative input sequences. Then. for any non-negative null input sequence

ZW)  the output sequence B(Z")) is saturated.

Proof: Let’s assume that the output width of B is t. Consider the non-negative null

sequence Z). We will show that B(Z(*)) is saturated.
Let Y = B(Z®). Since Z(*) is a null sequence to network B, it follows by Proposi-

tion 2.1.5(2),
B(tZ™)) = tB(Z(*")) = ty®,

Clearly. the sequence tZ(*) is non-negative and thus the sequence tY(!) satisfies the threshold
property. The (t — 1)th entry of sequence tY () is equal to ty,_,. By the threshold property

of tY(!) we have
(Y ® tT(Y(®
typ— = [‘—_( 7 )J = [——(t ) = E(Y(t))
and subsequently y,_; = Z(Y(8))/t. Therefore, Y is saturated, as needed. e

We are now ready to show that the threshold property is closed under the nullity of a

network.

Theorem 2.3.5 If a network B satisfies the threshold property on all non-negative input
sequences, then the threshold property is closed under the nullity of network B.

Proof: Let’s assume that the input width of B is w. Let X(*) be any non-negative input
sequence. Clearly, B(X(®)) is a threshold sequence. Let Z(¥) be any non-negative null
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sequence to B. By Lemma 2.3.4, we have that B(Z(*)) is a saturated sequence. Furthermore,
since B(X(®)) is threshold and B(Z()) is saturated, by Lemma 2.3.3, we have that the

sequence

B(X™) + B(Zz™))

is threshold. By Definition 2.2.1, we have that the threshold property is closed under the
nullity of network B, as needed. [ ]

Subsequently, if we know that a network is threshold for tokens only, then we can imme-

diately infer that it will remain a threshold network even when antitokens are introduced.

2.4 Discussion

We have shown that any balancing network that satisfies some property on all non-negative
input sequences, then the network will also satisfy the same property for any arbitrary
input sequence (with either negative or positive entries), if this property is closed under the
nullity of the network. Interesting examples of such properties are the step property, the
k-smoothing property, and the threshold property. A significant consequence of our result
is that for all known (deterministic) constructions of counting. smoothing, and threshold
networks (see (2, 4, 6, 17, 23, 28, 32, 38, 39, 49], and the constructions of Chapters 3 and
4) which already are proven to work correctly for tokens only, they will work correctly with
both tokens and antitokens.

Aiello et al. [4] present an interesting construction of a randomized counting network;
they use randomized balancers, which distribute tokens on output wires according to some
random permutation. Does this network operate correctly when it is simultaneously tra-
versed by both tokens and antitokens? It seems that the randomized balancers need to
somehow “remember” the entire history of the random permutations in order for antito-

kens to trace back the paths of tokens.



Chapter 3

Counting Networks of Arbitrary
Width

The design of a counting network is a trade-off between balancer width and network depth.
Wider balancers produce shallower networks (with smaller depth) where the contention-
related delay may increase as tokens queue up in the same balancer. Deeper networks
produce more latency.

We present a new counting network construction that illuminates how network width,
depth, and balancer widths can be traded off in counting networks.! Our network has the
same input and output width. that we simply call the network’s width, and it is built from
balancers with the same input and output width, that we simply call the balancer’s width.

More specifically. we present the first network construction of arbitrary width w that
requires both small depth and has small constant factors in the depth expression. In detail,
let w be the product w = pg - - - po—_1, whose factors are not necessarily prime. We construct
a network of width w and depth O(n?) = O(log® w), using balancers of width at most
max(p;). This construction is practical in the sense that the asymptotic notation does not
hide any large constants. As an example, our counting network for width 15 = 3 x 5 is
depicted in Figure 3.1, built from balancers of widths 3 and 5.

An interesting aspect of this construction is that it establishes a family of counting
networks of width w. one family for each distinct factorization of w. A factorization in which
max(p;) is large and n is small yields a network that trades small depth for large balancers,
and a factorization where max(p;) is small and n is large makes the opposite trade-off. For

example, consider the width w = 60. We have a factorization w = 2-2-3 -5 which gives

!The work of this chapter was first presented in [18].

31
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Figure 3.1: Counting network of width 15 =3 x 5

a network with depth 105 and uses balancers of maximum width 5. Another factorization
is w = 4 - 15 which gives a network with depth 28 and uses balancers of maximum width
15. This flexibility may be useful in practice, since experimental evidence [28] suggests that
for shared-memory implementations of counting networks, optimal performance for a fixed
w is achieved by balancers of intermediate width. (Each distinct ordering of a fixed set of
factors also yields a different counting network, but all such networks have the same depth.)

We proceed as follows. In Section 3.1 we present necessary preliminaries for our con-
structions. In Section 3.2 we give a top-down description of the framework of a counting
network construction. Using this description, we present our counting network construc-
tion in Section 3.3. In Section 3.4 we present related work and we conclude in Section 3.5
by giving a discussion. During our presentation, we focus on the modular decomposition
of the network. Where alternative constructions exist, we focus on the simplest, adding
descriptions of more complicated optimizations. Readers are encouraged to consult the

illustrations.
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3.1 Preliminaries

3.1.1 Sequences

For any sequence X, the subsequence X[i, p] is the sequence z;, Tiip, Zit2p,--.. By Obser-
vation 1.4.1, if X has the step property then all the sequences X i, p] have the step property
too.

For any step sequence X, the step point is defined as in Section 1.4, where now if all z;
are equal then the step point is equal to 0.

In any sequence X we say that there is a transition between two consecutive elements
z; and z;4 if their values are different. We say that a sequence X has the bitonic property
whenever it is 1-smooth and has at most two transitions.

We say that the sequences Xj, ... .X,_; have the k-staircase property whenever
OSE(X,')—Z(XJ')S’C, forall0<i<j<w.

It is often convenient to express a sequence X of length rc as an r x ¢ matrix. There

are four ways to arrange the elements of X in a matrix. as shown by the following table.

z; goes to row column

row major [£] i mod ¢

reverse row major | r — [%J -1 c—(imodc) -1
column major tmodr [_i_[

reverse col. major [ r—(imodr)—1 c¢— BJ -1

As an example, these arrangements are illustrated in Figure 3.2, for a sequence that has
the step property. In all figures, the dark region labeled “1” represents the subsequence of
higher values, and the light region labeled “0” the lower values.

3.1.2 Balancing Networks

For simplicity, we denote a (p, p)-balancer as a p-balancer, for any p.

We consider the following balancing network families.

e A counting network C(pg,... .pn-1) has input and output sequence of length w =

Po - - -pn—1- The output sequence has the step property.

e A merger network M(po, - .. ,pn-1) has input sequences Xo, ... ,X,,_,_1, where each
|Xil = po---pn—2. and output sequence of length po---pn—1. If each X; satisfies the

step property, so does the output sequence.
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row major reverse row major

column major reverse column major

Figure 3.2: Matrix arrangements

e A staircase-merger network S(r.p,q) has input sequences Xo,... ,X,_1. where each
| X¢| = rp. and output sequence of length rpq. If each X; satisfies the step property, and
the sequences Xp, ..., X,_1 satisfy the p-staircase property, then the output sequence

satisfies the step property.

e A two-merger network 7 (p,qgo,q1) has input sequences Xy and X, where | Xy| = pqo
and |X1| = pq1, and output sequence of length p(qgo + q1). If Xy and X each satisfies

the step property, so does the output sequence.

e A bitonic-converter network D(p, q) has input and output sequence of length pq. If
the input sequence satisfies the bitonic property then the output sequence satisfies

the step property.

We use C to refer to the family C(po,... ,pn—1), when the exact values of the p; are unim-

portant, and similarly for the other balancing network families.

3.2 A Counting Network Construction Framework

Let w =pg---pn-1, and w; =pg---p;, for 0 < i < n, where p; > 2 and n > 2.
In this section, we give the construction of a counting network C(po, ... ,pn-1) of width

w. This network will serve as the framework for the desired counting network construction
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L. presented in Section 3.3.3, which has width w and is built from balancers of width at
most max(p;).

The construction of the network C uses the same principles as the inductive construc-
tion of the bitonic network presented in Section 1.5.4. In particular, the counting network
C is built inductively by using smaller counting networks. Then, the outputs of the smaller
networks are merged by using a merger network M, as shown in Figure 3.3. The merger
network is also built recursively, as shown in Figure 3.4. In the induction of the merger net-
work, we use a staircase-merger network S. (The staircase-merger network S, corresponds
to the “final merging” network in the construction of the bitonic network in Section 1.5.4.)

Since the construction of network C is inductive, we need an induction basis case. In
this section, we will not provide the basis case of the construction, and we will assume for
the moment that we are given the network C(p;,p;) of the basis case. We will also assume
that the depth of network C(p;, pj) is fixed and at most d.

By unfolding the inductive construction of C. we show in Proposition 3.2.1, that the
depth of the network C depends on two parameters. the depth d, and the depth(S), so that
depth(C) = O(nd + n? - depth(S)). Using the network C(p;,p;), we construct in Section
3.2.3 the staircase-merger S, with depth that depends on d, so that depth(S) = O(d).
Subsequently, we get depth(C) = O(n2d).

Our goal is to obtain a counting network with depth O(n?). In order to achieve this, we
must construct a network C(p, q) which has depth d equal to a constant, since depth(C) =
O(n2d). In the same time, we want the network C(p;, pj) to be constructed from balancers
of width at most max(p;, p;), so that the whole network construction is made from balancers
of width at most max(p;).

To achieve our goal, we do the following in Section 3.3. In Section 3.3.1, we substitute
in C every instance of the network C(p;, p;) with a single p; - p;-balancer, which trivially has
depth d = 1. and we obtain the counting network X of width w and depth O(n?). made from
balancers of width at most max(p; - pj). Using the network ', we build in Section 3.3.2, the
novel counting network R(p;, p;), which has constant depth and is made from balancers of
width at most max(p;, p;). When we substitute in C every instance of the network C(p;, p;)
with the R(p;, pj) network, which has constant depth, we obtain in Section 3.3.3, the desired
counting network £ of width w and depth O(n2?), made from balancers of width at most

max(p;).
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Figure 3.3: Construction of counting network C

3.2.1 A Counting Network

For the construction of C(po,--. ,pPn—1). we argue by induction on n, the length of the
factorization. For the base case, where n = 2, the network C(pg,p1) is given by assumption.

Let n > 2, and C(po,-.- ,pn—2) the counting network guaranteed by the induction
hypothesis. Our construction relies on the merger network M(po,... .pn—1) constructed
below in Section 3.2.2 (see Figure 3.3). Take p,_; copies of C(po,--- ,pn-2), denoted
Co.... ,Cp,_,-1- Split the input sequence X of length w into subsequences Xo.,... , X, _ 1,
each of length wn,_». Direct each X; to C;, and let Y; be the corresponding output sequence.
Each Y; has the step property. Direct the Yp,... ,Yp,_,—1to M(po..-. .pn—1). The resulting
output has the step property.

Next, we compute the depth of C in terms of the depth of the staircase-merger S,

presented in Section 3.2.3, and the depth d of C(pg,p1)-

Proposition 3.2.1

depth(C(po.--- ,pn-1)) =(n—1)d + (%. - 3?'1 + 1) - depth(S).
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Figure 3.4: Construction of merger network M

Proof: From the inductive construction of C(pg,... ,pn~1) we have:

depth(C(po., - .. .pn-1))
= depth(C(po. ---. ,pn—2)) + depth(M(po,.-. .pn-1))
= depth(C(po,--- ,Pn-3)) + depth(M(py, ... .pn—2))
+depth(M(po. - .. ,pn-1))

= depth(C(po, p1)) + depth(M(po,p1,p2)) +---
+depth(M(po; - - - ,Prn-1))
= d+ (d+ (3 -2)-depth(S)) +---
+(d + (n — 2) - depth(S))
(by Proposition 3.2.3)
= (n—=1)d+((3+---+n)—2(n—2)) - depth(S)
= (n—1)d+ ((M—3) —2(n—2)> - depth(S)

2
2
= (n-1)d+ (1‘2— - 37" + 1) - depth(S).
o
3.2.2 A Merger Network
We now show how to construct the merger network M(py,... ,pn-1). This construction

relies on the staircase-merger network S constructed below in Section 3.2.3.
We argue by induction on n. For the base case, where n = 2, the network M(pg, pn—1)

is the network C(po, pn—-1) (given by assumption).
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Let Xp,..., Xp,_,—1 be the input sequences and let’s assume that each satisfies the step
property. Using the induction hypothesis, construct the merger network M(pg, ... ,Pn—3,Pn-1)-
Take pn—2 copies of this network, denoted My,... , M, _,_1. Each M; has p,_, input se-
quences Xo[t,pn_2),.-. , Xp._,-1[t, Pn—2]. Each of these sequences satisfies the step property
since it is a subsequence of a sequence that satisfies the step property. Denote the output
sequence of M; by Y;. Each Y; has the step property. Now direct each Y; to the staircase-
merger S(wWn—3.Pn—1.Pn—2)- The final output sequence satisfies the step property. See
Figure 3.4.

For the correctness of network M we need only show that the input sequences to the

staircase-merger S satisfy the p,_,-staircase property.
Proposition 3.2.2 The sequences Y;, for 0 < i < p,_a2, satisfy the p,_,-staircase property.
Proof: Since each X; has the step property, for 0 < j < k < pp—2,
0 < Z(X:[j, pn-2]) — B(Xi[k, pn—2j) < 1.
By construction,
E(Y:) = Z(Xo[i, pn—2]) + - -+ + E(Xp,_;-1[t; Pn-2])-
[t follows that for 0 < i < j < pp—_2

E(Y:) - Z(Y;) = Z(Xo[i,pn-2]) = E(Xolj. pn-2]) +---
+2(Xpn_x—1{ivpn—2]) - Z(Xpn_l—l[jvpn—2])

< Pn-1-

Similarly, 3(Y;) — X(Y;) > 0. Subsequently, the Y; satisfy the p,_;-staircase property, as
needed. [ ]

Next, we compute the depth of M in terms of the depth of the staircase-merger S. and
the depth d of C(pg.pn-1)-

Proposition 3.2.3 depth(M(po,.-. ,pn-1)) =d + (n — 2) - depth(S).
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Proof: From the inductive construction of M(py,... ,pn—1) we have:

depth(M(po. --. ,pn-1))
= depth(M(pq.... ,pn—3.pn-1)) + depth(S)
depth(M(po, ... . pn—4,Pn—1)) + depth(S) + depth(S)

= depth(M(po.... .pn—k,Pn-1)) + (k — 2) - depth(S)

depth(M(po, pr-1)) + (n — 2) - depth(S)
= depth(C(po.pn-1)) + (n — 2) - depth(S)
= d+ (n—2)-depth(S).

3.2.3 A Staircase-Merger

We now show how to construct the staircase-merger network S(r,p,q), whose depends on
the depth d of network C(p, q) (given by assumption), where r,p,q > 2. This construction
relies on the two-merger network 7. with depth 2, constructed below in Section 3.2.4.

Let Xg,...,Xq—1 be the input sequences and let’s assume that they satisfy the p-
staircase property and each satisfies the step property. Let A be the rp x g matrix such
that column ¢ is the sequence X;. for all 0 < 7 < q. Because the X; satisfy the p-staircase
property, the step points of the columns of A lie within p of one another, modulo rp since
the step points can be at the top or bottom part of A (Figure 3.5 (a)).

The dirty region of A is the smallest rectangle region of A such that if it this region
has the step property in row-major form then the whole matrix A has the step property
in row-major form. Initially, in the worst case, the dirty region of matrix A spans all the
step points of the columns and has size at most p x q. We want to find the dirty region
and correct it (make it have the step property in row-major form). Since we do not know
the exact location of the dirty region, we try to approximate its location and correct it by
breaking matrix A into smaller pieces as described below.

Partition A into p x ¢ consecutive and disjoint submatrices Ag,... ,A,_1 (Ao is on the
top and A,_; on the bottom). The column step points all lie within two adjacent A; and
A(it+1)modr, for some 0 < ¢ < r (Figure 3.5 (b)). If the step points all lie within two
consecutive A; and A;41, for 0 <i < r—1, then it is easy to see that the combination of the
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Figure 3.5: Construction of staircase-merger network
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input sequences is 1-smooth, and the dirty region lies within these two matrices. (The case
of Figure 3.5 (b)). If all the step points lie within 49 and A,_; then the combination of the
input sequences is 2-smooth and there are three possible values in array A, namely @, a +1
and a + 2. The elements of Ag take values a + 2 and a + 1. the elements of Ay,... ,A,.2
all take values a + 1 and the elements of A._; take values a + 1 and a. Subsequently, the
dirty region lies within matrices Ag and A,_;.

Use C(p, q) (given by assumption) to give each A; the step property (see Figure 3.5 (c),
where the sequences A; are drawn in row major order). Notice that the dirty region still
lies within two A; and A(;i41)modr. Dut now it can easily be corrected my merging the two
matrices, as described next.

Use a layer of two-mergers 7 (p,q,q) to merge each A2; and Aj;y; (Figure 3.5 (d)),
and a second layer of 7(p,q,q) to merge each As;+) and A(2i42)modr (Figure 3.5 (e)), for
0 < ¢ < |r/2]. The first layer corrects the dirty region that is within two A; and A(j¢1)modr
when j is even, and the second layer when j is odd. If r is odd we also need a third layer
with one T (p, q,q) to merge Ap and A,_,. After the layers with the two-mergers, the dirty
region is corrected and the resulting matrix A has the step property in row major order,
and this is the output sequence of the staircase-merger S.

Since each two-merger T has depth two (see Section 3.2.4). and the depth of C(p, q)
is equal to d we have that depth(S) < d + 6. The two-mergers use balancers of width 2¢q
and p. When we need to use balancers of width at most max(p, ¢), we can substitute each
2g-balancer with a two-merger 7 (g, 1,1) (the input sequence of the 2g-balancer consists of
two smaller step sequences of length g) which uses balancers of width 2 and ¢, yielding
depth(S) < d+9.

Optimizations

We can improve the depth of S by replacing the two-mergers with the following construction
(see Figure 3.6).

The construction is the same with the one described earlier until after the point where
we apply the network C(p, q) to each of the A;. As we mentioned before, after the C(p, q)
networks, each A; has the step property and the dirty region lies within two A; and A;41modr,
for some:, 0 <i<r.

We split each resulting A; into two equal sized upper and lower parts. We use a layer
of 2-balancers, which trivially have with depth 1, to connect the lower and upper part,
respectively, of every two adjacent A; and A(i;1)modr (see Figure 3.6). This moves the
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dirty region into a single A;, for some i, 0 < i < r, where now it has the form of a bitonic
sequence. A final layer of C(p, q) counting networks corrects the dirty region in the A;. This
construction gives depth(S) = 2d + 1. Alternatively, instead of the final layer of C(p, q),
we can use the bitonic-converter D(p, q), described in section 3.2.4. This construction gives
depth(S) = d + 3. Below we give a more detailed description of the construction.

In detail, after the first layer of C(p, q) networks, we split each A; into two subsequences
AY and A? each of length s = |pg/2], such that they contain the first s and last s elements.
respectively, of A; (see Figure 3.6). Since the A; have the step property, each of these
subsequences has the step property too. A layer £ of 2-balancers connects the sequences A?
and Az‘i+1)modr, for all 7, 0 < i < r. Specifically, a 2-balancer connects the jth element of
A¢ with the (s — 1 — j)th element of A¥ 4 1ymodr for all j, 0 < j < s, such that the first
output of each 2-balancer is directed to north, with respect to matrix A.

For the correctness of the construction we only need to show that after layer £ the dirty

region lies within only one A; and each A; has the bitonic property.

Proposition 3.2.4 After layer £, the dirty region lies within only one A;, for some i,
0 < i <r, and this A; satisfies the bitonic property.

Proof: Before layer €, each A; has the step property and the dirty region lies within two
A; and A(i;1ymodr- for some 0 < i <r.

First, we consider the case ¢ # r — 1, where the dirty region lies within two consecutive
A; and A;;, (the other case is described below). These A; and A;;; are l-smooth and for
simplicity. we assume that their elements take values 0 and 1 (the case with higher values is
similar). Denote by z; and o; the number of elements of A; with value 0 and 1. respectively.
Note that z; + 0; = pq. By construction we have o; > 0;4+1. There are two possible cases:
(a) 0 < 0; + 0i+1 < pq. and (b) pq < 0; + 0141 < 2pq.

In case (a) (shown in Figure 3.6), we have 0;;; < s and z; > 0;4+1. All the 0;4; 1s of
Ai41 are in A}, and at least as many Os are in A¢. Subsequently, the layer of 2-balancers
¢, that connects the A¢ and AY,,, moves all the 1s from AY,, to A}. The AY and AY
remain unaffected. The result is that A;,; contains only Os, and A; contains o; 1s followed
by z; — 0;41 Os followed by 0;4; 1s, and thus A; is bitcnic. Therefore, the dirty region has
moved to A; with the form of a bitonic sequence.

In case (b), we have z; < s and 0;41 > z;. All the z; Os of A; are in A¢ and at least as
many ls are in AY, ;. Subsequently, the layer of 2-balancers ¢, that connects the A¢ and
Af,,. moves all the Os from A{ to AY,,. The A} and A¢,, remain unaffected. The result is

that A; contains only 1s, and A;;; contains z; 0s followed by o0;,1 — z; 1s followed by z;;;
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0Os, and thus A;;, is bitonic. Therefore, the dirty region has moved to A;;; with the form
of a bitonic sequence.

Next, consider the case : = r — 1, where the dirty region before layer ¢ lies within the Ag
and A,_;. In this case, the combination of Ag and A,_; is 2-smooth and each A9 and A,_;
is 1-smooth. For simplicity, we assume that the elements of these sequences take values 0.
1, and 2 (the case for higher values is similar). Specifically, the elements of Ag take values
2 and 1 and the elements of A,_; take values 0 and 1. Denote by oy and ¢{g the number of
elements of Ag with value 1 and 2, respectively, and by z,_; and o,_; the number of elements
of A,_; with value O and 1, respectively. Note that og + o = pq and z,_; + 0o,_; = pq. It
is easy to observe that o._; > tg (since when the matrix A was originally constructed, each
column had the step property). Again, there are two possible cases: (a) 0 < tg +o0,-1 < pg.
and (b) pq < to +0r-1 < 2pg.

In case (a) we have tg < s and z._; > tg. All the ¢o 2s of Ay are in A and at least as
many Os are in A;‘._l. Subsequently, the layer of 2-balancers ¢, that connects the Aj and
Ad_,, transforms the 2s of AY to 1s and the same number of Os of A2_; to 1s. The A3 and
AY_, remain unaffected. The result is that A contains only 1s, and 4,_, contains o, 1s
followed by zr_1 — tg Os followed by tq 1s, and thus A,_; is bitonic. Therefore. the dirty
region has moved to A,_; with the form of a bitonic sequence.

In case (b). we have z,_; < s and ¢g > z,_;. All the 2._; Os of A,_; are in A,‘.’_1 and
at least as many 2s are in A§. Subsequently, the layer of 2-balancers ¢, that connects the
A} and AY_,, transforms the Os of A_; to 1s and the same number of 2s of A} to 1s. The
Ag and A!_, remain unaffected. The result is that A,_, contains only 1s, and Ay contains
zr—1 ls followed by to — z-_; 2s followed by og 1s, and thus A; is bitonic. Therefore. the

dirty region has moved to Ay with the form of a bitonic sequence. ]

3.2.4 A Two-Merger and a Bitonic-Converter

First, we construct the two-merger network 7 (p. qo, ¢1) of depth two from (qg+¢; )-balancers
and p-balancers, where p > 2 and ¢g,q; > 1.

Let Xo and X be the input sequences with respective lengths pgo and pq;. As illustrated
in Figure 3.7, arrange Xy as a p X go matrix in column-major form, X; as a p x q; matrix in
reverse column major form, and align the two matrices side by side. If we place a (go + q1)-
balancer across each row only one column is 1-smooth. If we then place a p-balancer across
each column, the result has the step property (as a matrix in column-major form). More

precisely, we have the following.
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Figure 3.7: Construction of two-merger network

Proposition 3.2.5 The network T (p.qo.q1) ts a two-merger.

Proof: let Xy assume values ag and ag + 1, and let (rg,cq) be the step point’s row and
column in the p x go matrix. Define a; and (r;,c;) similarly for X;. Suppose ro < r,
(the case of Figure 3.7, the other case is similar). Consider the row sums for the combined

p % (go + q1) matrix. Let s, be the sum of the elements of row r, for 0 < r < p—1. We have

row r l sum s,
r<rg goao + (co +1) + qua1 +
ro <7 <71 | goao +co+qra1 + ¢
m<r qoao +co + q1a; + (¢ +1).
The sequence sg, ... ,Sp—1 is 1-smooth. Therefore, after the first (horizontal) layer of bal-

ancers, all the step points of the balancers will appear in at most two consecutive columns
(modulo qo + ¢1). As a result, the matrix has a single column ¢ such that all elements of
columns to the left have some value d + 1, all elements to the right have value d, and all
elements of column ¢ are 1-smooth with values d or d+1. After the second (vertical) layer of
balancers, columns to the left and right are unaffected, but column ¢ has the step property.

and so does the resulting matrix. ]
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Figure 3.8: Construction of bitonic-converter network

Next, we construct the bitonic-converter network D(p, q) of depth two from g-balancers
and p-balancers, where p,q > 2.

Let X be the input sequence with the bitonic property. As illustrated in Figure 3.8,
arrange X as a p X ¢ matrix in column-major form. If we place a g-balancer across each
row only one column is 1-smooth. If we then place a p-balancer across each column, the
result has the step property (as a matrix in column-major form). More precisely, we have

the following.
Proposition 3.2.6 The network D(p.q) is a bitonic-converter.

Proof: Since X is bitonic it is 1-smooth and has at most two transitions. Let X assume
values a and a + 1. We consider the case where X has two transitions (the case with one
transition can be treated similarly). Furthermore, in sequence X let’s assume that the
transitions occur such that the first elements take value a, then the first transition occurs
and the next elements take value a + 1, then the second transition occurs and the rest
elements take value a. (The other case, where the elements of X take first values a + 1 then
a and then a + 1, is similar.)

Let’s assume that the first transition occurs between elements z, and z,4; and the
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second between elements z,._; and z;. Denote by (r,.c,) the row and column position of a
in the array of X. Similarly define (ry,cp) for b. Suppose r, > ry (the case of Figure 3.8,
the other case is similar). Consider the row sums for the matrix. Let s, be the sum of the

elements of row r, for 0 < r < p—1. We have

row r ’ sum s,

r<ry ga+(cp —ca—1)+1
o ST <1 | qa+(cy—cg—1)
re <r qa+ (cp —ca— 1)+ 1.
The sequence sg,...,Sp—1 is 1-smooth. Therefore, after the first (horizontal) layer of bal-

ancers, all the step points of the balancers will appear in at most two consecutive columns
(modulo q). As a result, the matrix has a single column ¢ such that all elements of columns
to the left have value a + 1, all elements to the right have value a, and all elements of
column c are 1-smooth with values a or a + 1. After the second (vertical) layer of balancers,
columns to the left and right are unaffected. but column ¢ has the step property, and so

does the resulting matrix. ]

3.3 Specific Counting Network Constructions

3.3.1 The Counting Network X

We construct K(pg, - - - ,Pn—1), the counting network of depth O(n2) from balancers of width
at most max(p;p;), for 0 < 1,5 < n, where p; > 2 and n > 2.

The construction is the same with the construction of C described in Section 3.2, where
in place of each instance of C(p;,p;) we use a balancer of width p;p; with d = 1. For
the staircase-merger S we use the optimization described in Section 3.2.3 with depth(S) =

2d + 1 = 3, and we get for the depth of :

Proposition 3.3.1 depth(K(po,--. ,pn_1)) = 1.5n> — 3.5n + 2.
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Figure 3.9: Construction of width-pg counting network

Proof:

depth(K(po,--- ,Pn—-1))
= depth(C(po,--- ,Pn-1))

= (n—-1)d+ (_ng". - %Ti + 1) - depth(S)

(by Proposition 3.2.1)
n? 3n
= (n—-1)1+ (5-—74-1)3

= 15n%—3.5n+2.

3.3.2 The Counting Network R(p.q)

Let w = pq, where p,q > 2. We now construct a constant-depth counting network R(p, q)
of width w from balancers of width at most max(p, g). We rely on two subsidiary networks:

the two-merger network 7 described in Section 3.2.4, and the counting network K described

in Section 3.3.1.
Let p = |/p}, and p = p — p%. Similarly, we define § and g. The following inequalities
hold (for a proof look in Appendix A):

max(p,§)? < max(p,q) (3.1)

wax(p,9) [Z2PD| < max(p,g) (32)
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lmax2(ﬁ,§)J [maxz(ﬁya)'l < max(p,q) (3.3)

Let X be the input sequence to R(p, q). Because | X| = pg, we can arrange X asapx q
matrix in arbitrary order. Divide X into four quadrants: A encompasses the first 5% rows
and ¢® columns, B the first p? rows and remaining § columns, C the remaining 5 rows and
first G columns, and D the remaining p rows and § columns. These divisions are shown as
thick lines in Figure 3.9.

Area A is a sequence of length ppgG. We can use the constant-depth counting net-
work KC(p.p.q.q), constructed from balancers of width at most max(5?, §%. p¢) < max(p, q)
(Equation 3.1). to transform A into a sequence A’ satisfying the step property.

Let §, = |g/2) and §, = [q/2]. Partition B into disjoint submatrices By and B; of
respective dimensions % x g, and p% xg,. (These divisions are shown as dotted lines in Figure
3.9.) We use the constant-depth counting network X(gq,p,p) and K(g,.p.p). constructed
from balancers of width at most max(p?, pgy) and max(5?, 5g, ). that respectively transform
By and B, into sequences By and Bj satisfying the step property. By Equations 3.1 and 3.2,
each of these networks is constructed from balancers of width at most max(p,q). Finally,
the constant-depth two-merger network 7(52, Gy, q,;) merges B} and B to a single sequence
B’ satisfying the step property. This two-merger is constructed from balancers of width p?
and §. each less than or equal to max(p, q) (Equation 3.1). In exactly the same way, C can
be transformed to C’ satisfying the step property.

Partition D into disjoint submatrices Dy, Dy, Do, D3, and D4, with respective dimen-
sions Py X Gg. Po X g, Py X gy P1 X g, and P x 1. (See Figure 3.9.) Each of these regions
can be given the step property by a single balancer of width less than or equal to max(p, q)
(Equation 3.3). The resulting sequences can then be merged in constant depth using several
copies of the two-merger network 7 to a sequence D’ satisfying the step property. These
two-mergers are constructed with balancers of width less than max(p,q). Notice that D,
exists only if gy # @,, otherwise we do not include it in the above construction and we use
the two-mergers accordingly.

We have shown that A, B, C, and D can be transformed to A’, B’, C’, and D’ satisfy-
ing the step property by counting networks constructed from balancers of width less than
max(p,q). In the same way, two-merger networks can merge A’ and B’, and (in parallel)
C’ and D'. Finally, a two-merger network can merge their results. These two-mergers are
constructed with balancers of width less than or equal to max(p, g).

The depth of the construction of R is dominated by the depth of the counting network
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of A plus the final two layers of two-mergers that each has depth 2. We have:
depth(R(p.q)) = depth(K(p,p.q,q)) +2- depth(T)
= 15-42-35-4+2+2-2
(by Proposition 3.3.1)

= 16.
Some of the variables p,p.Dy,... may take the extreme values 0 or 1. In these cases,
for each of the affected A, B, By,... we either do not use any network or we use a single

balancer, and then we use the two-mergers accordingly. Alternatively, we can combine two
or more of the above areas. These extreme cases can give us a network that has depth
smaller than 16. For example, consider the R(3,5) network. We have p=3.p=1.p = 2
and ¢=5,§=2,G=1. The areas A, B, C and D havesizes 1 x4,1x1,2x4,and 2 x 1.
By combining areas A and B and areas C and D and by using 5-balancers and two-mergers
accordingly, we get the network of Figure 3.1 with depth 5.

Therefore,. taking into consideration all the cases, we have depth(R(p.q)) < 16.

3.3.3 The Counting Network £

Finally, we construct L(po,--. ,pPn—1), the desired counting network of depth O(n?) from
balancers of width at most max(p;), for 0 < i < n, where p; > 2 and n > 2.

The construction is the same with the construction of C described in Section 3.2, where in
place of each instance of network C(p;,p;) we use the counting network R(p;.p;), described
in Section 3.3.2 with d = depth(R(pi,p;)) < 16. For the staircase-merger & we use the
optimization described in Section 3.2.3 with depth(S) = d + 3 < 19, and we get for the
depth of L:

Theorem 3.3.2 depth(L(po, ... ,Pn-1)) < 9.5n% — 12.5n + 3.
Proof:

depth(C(po, s 7pn—l))

= depth(C(po,-.. ,Pn-1))
n2 3n

= (n-1d+ (7 -5+ 1) - depth(S)

(by Proposition 3.2.1)

2
< (n—1)16+(%——§21—1+1) 19

= 9.5n%—-125n+ 3.
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3.4 Related Work

The first counting network constructions [6] used 2-balancers, yielding networks of width
2" and depth O(n?). Aharonson and Attiya [2] constructed a counting network of width
w = p2* and depth O(lg3(w/p)) from balancers of width 2 and p. They also construct
networks of arbitrary width by taking a standard counting network and linking the excess
output wires to the excess input wires, resulting in a cyclic network (our is acyclic). Busch,
Hardavellas, and Mavronicolas [17] give a construction of w = p2*¥ and depth O(lg*(w/p))
using balancers of width 2 and p. Felten, LaMarca, and Ladner [28] give a construction of
width w = 2¥ from balancers of width 2¢, where the depth ranges from O(1) to O(log? w)
depending on the value of {, as well as a construction of width w = p2*. Klugerman [38] gives
a construction of arbitrary width w and depth O((lg w) lglg w) from p-balancers. where p
ranges over the prime factors of w. This construction is based on the AKS sorting network

(5], and it is impractical in the sense that the constant factors are enormous.

3.5 Discussion

We presented a new construction for a family of counting networks of width w = pg - - - pn_1,
and depth at most 9.5n> — 12.5n + 3, from balancers of width at most max(p;). This is the
first arbitrary-width construction without enormous constant factors.

The overall network structure (Figure 3.3) is similar but not identical to that of the
bitonic counting network [6, 9]. The bitonic network, however, has smaller depth by a
constant factor, suggesting that further improvement in our constant terms may be possible.
It remains an open problem whether the asymptotic O(n2) depth can be improved without
introducing very large constants.

An interesting open question concerns the timing constraints necessary for counting

networks built in this way to be linearizable (c.f., [41, 43, 44]).



Chapter 4
Irregular Counting Networks

Most of the known counting network constructions have the same input and output width,
and are built from balancers with the same input and output width [2, 6, 17, 18, 28]. An
example of such a well studied counting network is the bitonic counting network [6, 9],
which has input and output width w = 2¥, for some & > 0, and is built from (2,2)-
balancers (see Section 1.5.4). The depth of the bitonic network is O(lg? w). Another well
known construction is the periodic counting network [6, 25].

Here, we deviate from the “standard” approach of building counting networks with
the same input and output width and we present a novel “irregular” counting network
construction C(w,t) where the input width w is smaller or equal than the output width ¢.1
Specifically, w = 2F, t = p2!, for some k,[,p > 0, and w < t. Our network is constructed
from (2,2)-balancers and (2, 2t/w)-balancers. The depth of the network depends only on
the input width w and it is O(lg? w). As an example, the network presented in Figure 1.1
is the counting network C(4, 8).

Because of its structure, our network provides more flexibility in terms of contention than
other networks. As a measurement of a network’s contention Dwork et al. [26] introduced
the amortized contention. In a balancer, every time step a token has to wait for another
token then a stall step incurs. The amortized contention measures the number of stalls that
any token experiences while it traverses the counting network. For any network B, which
is accessed by n concurrent processes, we denote the amortized contention by cont(B,n).

In the other known networks the contention depends only on two parameters: the in-
put/output width w and the concurrency n. For example, the amortized contention of the

bitonic network is O(nlg? w/w) (see [26]), and the amortized contention of the periodic

!The work of this chapter was first presented in [23].
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Figure 4.1: The three parts of network C(w, t)

network is O(n lg® w/w) (see [26]). In our network, the amortized contention is determined
by one more parameter: the output width £. Specifically, the contention in our network is

given by the expression

12 13
i A 4 w+lg2w).

nlgw
cont(C(w,t),n) = 0( ” + ; ;

Since the contention of our network is determined by three parameters, we have more
flexibility in choosing the right network parameters for the specific needs of a counting
problem.

To demonstrate the flexibility of our network and to compare it to the other network
constructions, we fix the input width w, we take n > lgw, and we adjust the output
width . When w = ¢ we obtain a new “standard” counting network that has the same
input and output width. This network has similar characteristics with the bitonic network.
That is. both networks have input/output width w, exactly same depth O(lg®w), and
contention O(n lg? w/w). By increasing the output width ¢ the contention of network C (w, t)
decreases while the depth remains the same. Specifically, by taking ¢t = w lg w the amortized
contention becomes O(nlgw/w), which is better by a logarithmic factor of w over the
contention of the bitonic counting networks with the same input width and depth. Since
the contention decreases, in our network we expect a higher throughput for the same latency,
while in the other networks no such option is available.

The flexibility of our network is a result of its unique structure. When we look inside

its structure we can identify three parts, as shown in Figure 4.1:

e Part A has input and output width w, depth Igw — 1, and it is build from (2,2)-

balancers.
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e Part B has input width w, output width ¢, depth 1, and it is build from (2, 2¢t/w)-

balancers. This part serves as the transition from parts A to C.

e Part C has input and output width ¢, depth O(lg?w), and is build from (2,2)-

balancers.

The most significant part, in terms of depth, is part C. The tokens spend most of their time
in this part and therefore the contention depends heavily on it. By increasing the output
width ¢, part C becomes wider with more balancers, and thus the tokens have less chance to
contend for the same balancer. Therefore, as ¢ increases the contention of part C decreases,
and subsequently the contention of the whole network decreases. By increasing arbitrarily
t the contention of this part goes to 0. However, for fixed w, as t becomes large, part A
remains the same, and thus this part will determine the network’s contention when w << ¢.
Nevertheless, since the depth of part A is only O(lgw) it cannot affect the performance of
the network very much, and thus the low contention is preserved.

Since by increasing the output width ¢ the number of balancers in the network increases
(balancers of part C), we may have difficulties to implement this network in a real system.
Therefore, there is an implementation tradeoff between the two extreme cases w = t and
w << t, which depends on the particular needs of the counting problem we try to solve. A
compromise where ¢t = wlgw seems to be a logical solution.

We proceed as follows. In Section 4.1 we give some necessary preliminaries. In Section
4.2 we give a top down description of the counting network construction. This network uses
as a building block the novel difference merging network which we describe in Section 4.3.
In Section 4.4 we compute the amortized contention of our counting network. In Section

4.5 we present related work and we conclude in Section 4.6 with a discussion.

4.1 Preliminaries

4.1.1 Sequences

For any step sequence X (*), the step point is defined as in Section 1.4, where now if all z;
are equal the step point is equal to w. Notice that now a step point cannot be zero in any
case.

For any sequence, the highest value is the maximum value of any of its elements. Simi-
larly, we define the lowest value.

For sequence X (w) the even subsequence is Xe(w/ D - Tg,T2,..., and the odd subse-

quence is Xc(,w/ 2= 1, I3,.... We immediately have the following observation.
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Observation 4.1.1 If the sequence X*), where w > 2, has the step property then
0 < B(X{M) —B(x /D) < 1.
We continue by showing some useful lemmas.

Lemma 4.1.1 If X™) and Y®), where w > 2, are two step sequences with highest values

a and b, respectively, such that
0<S(X®)—2(Y®) <d
then
d
0<a-b< l—J + 1.
w
Proof: Since a and b represent the highest values of the step sequences X(¥) and Y(®),

respectively, we have

w(a — 1) < S(X™) < wa. and
w(b—1) < T(Y™)) < wb.

By subtracting the two inequalities we get
wla—->b-1) <S(X®) —-(Yr®) < w(a-b+1).

By inequality
0< (XMW —(YW) <d

we get:
w(a—b—1) <d, and
wa—-—b+1)>0.
Since w > 2, we get
d
a—-b< —+1, and
w
a—b>-1.
Since a and b are integers, we get

0<a-b< liJ+1’
w

as needed. =
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By a simple case analysis we can show the following. (For a proof look in Appendix B.)

Lemma 4.1.2 If X®) and Y}, where w > 2, are step sequences with highest values a

and b, respectively, and step points k and [, respectively, such that

0<S(XW)—_(Yy®) <2

then either a = b and
0<k-1<2,

ora=b+1 and

l=wand 1<k <2, or

l=w-~1and k=1.
We continue by showing a lemma about the even and odd subsequences of step sequences.
Lemma 4.1.3 If X™) and Y, where w > 2, are step sequences such that
0 < B(X®™) -5(r™) <4,

where d is even, then

0 < Z(X{/) - (YD) <

o
)
U

V]| O

0 < (X)) — S(Y{e/P) <

Proof: Denote
A = (X)) — g(Y /2y, and
B = Z(X§"/?) - (y{*/?).

We need to show that 0 < A <é/2and 0 < B <4/2.
We have

S(X®)) = (x?) + £(x{#/?), and
S(Y™) = B + r?).
By assumption, we have 0 < £(X®)) - £(Y®)) < § and thus

0 < (Z(X/2) + (X)) — (B(YD)y + (YD) < 6 =
0<A+B<4



57

By observation 4.1.1 we have

0 < (X)) - o(X¥/?)< 1, and
0 < Z(Y/?) — (Y{#/?) < 1.

By subtracting the above inequalities we get

—1 < (B(XEA) - Yy — (Z(X#D) - DY)y <1 =
~-1<A-B<1.

By adding the inequalities

0<A+B<4, and

~-1<A-B<1,
we get
1 6 1
-5 < As g+ 3 and
1 6 1
T3sBs3ty
Since A and B are integers we get
)
é
as needed. a

4.1.2 Balancing Networks
We consider the following balancing network families

e A counting network C(w.t) has input sequence of length w and output sequence of

length ¢. For any input, the output sequence satisfies the step property.

o A difference merging network M(w,d) has two input sequences, where the first input
sequence is X(*/2) and the second is Y(*/2), and output sequence of length w. If both
X ®/2) and Y(®/2) satisfy the step property and 0 < £(X(¥/2)) — £5(Y(#/2)) < § then
the output sequence satisfies the step property. That is, a difference merging network
merges two step sequences when their sums differ by at most § (and the sum of the

first sequence is bigger or equal to the sum of the second sequence).
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D(w)

D(8)

Do(w/2)

Di(w/2)

Figure 4.2: The butterfly network

A balancing network of interest, that will be useful when we calculate the contention of
our counting network, is the butterfly balancing network D(w) that we describe next.

The butterfly balancing network D(w) has input and output width w, where w = 2*,
k > 1. and is constructed by induction on w from (2,2)-balancers (See Figure 4.2). For
w = 2, D(w) is simply a (2, 2)-balancer. Let’s assume that we have constructed D(w') for
all 2 < w' < w, we will construct D(w). Take two copies of D(w/2), denoted Dy(w/2)
and D;(w/2), with respective output sequences X(¥/2) and Y(*/2), The input sequences to
Dy(w) and D;(w) are the first and the second half, respectively, of the input sequence to
D(w). Take w/2 copies of the (2,2)-balancer, denoted by, ... , b, /2. The first and second
input wires of b; are connected to elements z; and y;, respectively, for all 0 < ¢ < w/2. Let
Z() be the output sequence of D(w). We have that the first and second output wires of
balancer b;, are connected to the elements z; and Ziy+w/2, Tespectively, for all 0 <1 < w/2.

By the construction of the butterfly network we immediately have that depth(D(w)) =
lgw. We can show the following smoothing property for a butterfly.

Lemma 4.1.4 The output sequence of the butterfly network D(w) has the lg w-smooth prop-
erty.

Proof: The proof is by induction of w. For the base case w = 2, the network is just a
(2,2)-balancer that trivially has the 1-smooth property. Let’s assume that the claim holds
for all 2 < w' < w, we will show that it holds for w. From the inductive construction
of D(w), described above, we have that each of Dg(w/2) and D;(w/2) has the lg(w/2)-
smooth property. Let ¢o and dy be the smallest and biggest values of the output sequence
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of Do(w/2). Similarly, define c¢; and d; for D) (w/2).

By the Ig(w/2)-smooth property we have dy — ¢, < lg(w/2), and similarly for c; and d;.
Each balancer b; at the final layer of D(w) receives one input from Dg(w/2) and the other
from D, (w/2). The balancer will output the smallest value when it receives the smallest
values in its inputs which are cg and c¢;. In this case the smallest value on the output of the
balancer will appear on the bottom output wire and is ¢ = [(cg + ¢; — 1)/2]. Similarly, the
highest value is d = [(dg + d1)/2]. We have:

_ ’do +d;
d = —?‘]

[ co + 1 +2lg%]

2
[co +
= |2 cfl +lg

w
2 2"
Furthermore,
l'co +cf| 3 |'co+c1 - 1] <1
2 2 -
Therefore,
d—cSl-’rlg%:lgw.
as needed. [ ]

4.1.3 Contention

In this section, we first give formal definitions for contention, then we give a general formula
for computing the amortized contention of any layer of a balancing network. and finally we
use this formula to compute the contention of the butterfly network. Parts of the following
discussion are adapted from Section 3.2 of [26].

Each time a token passes through a balancer, it incurs a stall step to all other tokens
pending at this balancer, or equivalently, every time step a token has to wait for another
token a stall step incurs. The number of stall steps has been introduced by Dwork et al.
[26] as a measurement for contention. The contention incurred by the traversal of m tokens
through the network B at concurrency n, denoted cont(B,n.m), is the maximum number
of stalls, over all possible executions, induced by an adversary scheduler. The amortized
contention of the network B at concurrency n, denoted cont(B,n), is the limit supremum
of cont(B,n,m) divided by m, as m goes to infinity.

The amortized contention is a simple measure of stalls that any token experiences while

it traverses the counting network. Dwork et al. [26] compute the amortized contention of a
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network as follows: they partition the tokens into equally sized groups and they count the
average number of stalls that occur between any two groups; then they simply divide this
number of stalls by the size of the groups. This measurement is simple and practical in the
sense that the only parameters required for its computation are the number of concurrent
processes n and the width of the network. Furthermore, it doesn’t require any timing
information for the arrival and departure time of tokens., as more complicated queueing
theory models do.

Let { be a layer of a balancing network B. Let’s assume that layer ! is made of balancers
of output width at most q. Denote by w the output width of [. Let’s also assume that at
any quiescent state the output of [ has the k-smooth property. Let the concurrency of B be
n.

We will compute the amortized contention cont(l,n) of layer {. In order to do so, we will
partition the tokens arriving at layer [, over the lifetime of the system, into generations of
size w. We will show that as a group, each generation of tokens at layer [ causes O(qn +gkw)
stalls to other tokens. It then follows that an average generation receives O(gn+ gkw) stalls.
(If 10 people each throw 5 balls into the air, and all the balls are caught then the average
person catches 5 balls.) Dividing by the number of tokens in a generation, it follows that
the average token passing through [ receives (or causes) O(qn/w + qk) stalls.

Let b be a balancer of | with output width r, where 2 < r < q. We say that a token
belongs to the gth generation of tokens arriving at b if it is one of the ((¢g — 1)r + 1)th,
....((g = 1)r + r)th tokens to arrive at b. Note that the gth generation of b has r tokens.
The gth generation of { is the set of gth generation tokens of the balancers at layer . Note
that the gth generation of | has w tokens. We say that by time ¢, the gth generation has
completed its arrival at | if for each balancer in [ all the tokens of the gth generation have
already arrived by that time. Finally, we say that at time t there are f tokens of the gth
generation missing at layer ! if by time ¢ exactly w — f tokens of generation g have arrived

at [.

Lemma 4.1.5 Let B be in a quiescent state, and let g be the mazimum generation such that
some balancer b in layer | has received at least one generation g token. Then all balancers

in | have received at least one generation g — k token.

Proof: Since balancer b has received a generation g token the highest value in the output
sequence of b is at least g. We will assume for contradiction that there is a balancer ' that
hasn’t received any generation g — k token. The highest value on the output sequence of ¥’

is at most g — k — 1. Therefore there is an output wire of b and an output wire of ' with
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difference at least g — (9 —k— 1) = K+ 1. This is a contradiction. since the output sequence
of [ is k-smooth. ]

Lemma 4.1.6 Let t be the time at which the first gth generation token arrives at l. Then
the number of tokens of generations strictly less than g — k stuck at l. plus the number of

tokens of generations strictly less than g — k still missing from layer l, is at most n.

Proof: Run the network B to quiescence from its state at time ¢. Let ¢’ be the maximum
generation such that some balancer in layer [ has received at least one generation g’ token.
Clearly ¢ > g. By Lemma 4.1.5, every balancer has received at least one token from
generation ¢’ —k > g — k. Thus, the lemma follows from the fact that at most n tokens (the
maximum number of tokens in B at any time) were involved in moving B to a quiescent

state. »

Recall that when a token passes through a balancer it causes stalls to all tokens that are
waiting at this balancer. By stalls caused at layer | by generation g to generation g’ we refer
to stalls incurred by tokens of generation g’ when they are waiting at some balancer of layer
[ and some token of generation g passes. By stalls caused at layer | between generation g

and generation g' we refer to stalls caused by generation g to generation ¢’, and vice versa.

Lemma 4.1.7 Consider the gth generation passing through layer |. The mazimal number
of stalls caused between this generation and generations less than or equal to g at this layer

15 at most gn + q(k + 1)w.

Proof: Consider the first token of generation g to arrive at [. Say it arrives at time ¢t. A

generation g token can encounter (and hence cause a stall to or be stalled by)

(1) tokens of generation strictly less than g — £,

(2) generation g — k,... ,g tokens.

By Lemma 4.1.6, the total number of tokens of generation strictly less than g — k stuck at
l or missing from [ is at most n. Therefore, the type (1) tokens are at most n. The tokens
of type (2) are at most (k + 1)w, since each generation has w tokens.

The number of stalls occurring between each token of generation g and tokens of gener-
ation less than or equal to g are at most the number of tokens of these generations that this
token encounters at its balancer. Each token of generation less than or equal to g can be
encountered by at most g tokens of generation g (since q is the maximum balancer width
in l). Therefore, we get gn stalls of type (1) and gq(k + 1)w stalls of type (2). Summing, we
get gn + q(k + 1)w stalls. [
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Since there are w tokens at any generation g, we have by Lemma 4.1.7 that the amortized
contention endured by a token at layer [ is at most (gn + q(k + 1)w)/w. Subsequently, we
have the following corollary.

Corollary 4.1.8 The amortized contention of layer | with concurrency n is at most
cont(l,n) < % +q(k+1).

As an application of the previous discussion, we will compute the contention of the

butterfly network that was described in Section 4.1.2.

Lemma 4.1.9 The amortized contention of the butterfly network D(w) with concurrency
n is at most

2nlgw

cont(D(w),n) < +1g?w + 3lgw.

Proof: Denote by [(w) the final layer of D(w). From the inductive construction of the
network D(w) (see Section 4.1.2) we have that a token first traverses one of the two Dg(w/2)
or Dy(w/2) and then the layer {(w). The concurrency of each Dy(w/2) or D, (w/2) is equal
to n/2, since each input wire accepts at most n/w processes. Furthermore, the concurrency
of layer {(w) is n, since all processes traverse this layer. Therefore, the amortized contention

incurred by any token is equal to
cont(D(w),n) = cont (’D (%) , %) + cont({(w).n).

By Lemma 4.1.4, the output sequence of layer | has the lg w-smooth property. Since layer
[ is made from (2, 2)-balancers, and the total output width of the layer is w, we have from

Corollary 4.1.8 that
n n
— 2 et — o
cont(l(w),n) $2w +2(lgw +1) 2(w +l°w+1) .

For the base case w = 2, the network D(2) is just a (2, 2)-balancer with concurrency 2n/w,

which trivially has amortized contention at most 2n/w.
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Let £ = Igw. We have

cont(D(w),n) = cont 'D(%) 2) + cont(l(w),n)
< cont('D(%),g-)+2(;+k+l)
= cont(’D(;U—z),é%)+cont(1(1—;}-),2)+‘2(2+k+1)
< cout(v(%%),%) +°("§2+(L-1)+1) +°(—+k+1)
= cont (D(zﬂz) 2"—2) +2(2E+2k—1+2)

1
< cont(’D(g])—.) 2i)+2(_7—+]k Zz+])
i=1
_ n n 72 =35
= cont(D(5).55) +2 (i +ik -5
n
< cont('D T 1) 2—[_—1)
:—1)2 —3(k -1
2((k—1)—+(k—1)k—(" 1)° — 3 ))
w 2
2 — 2k —3(k —
< 2£+2((k—1)£+(k2—k)—(k k+§)) 3( 1))
w w 2
(since cont(D(2), 2¢) < Z2)
= 2%> k24 3k—4
w
< 2k 4 k2 4 3K,
w
as needed. .

4.2 The Counting Network C(w,t)

In this Section, we present the construction of a counting network C(w, t), where w = 2k,
t=p2l.p>land1<k<l

The construction of network C(w,t) is inductive, and has a similar structure as the
bitonic network construction of Section 1.5.4. In the construction, we use two smaller
counting networks and then we merge their outputs using the difference merging network of
Section 4.3, as shown in Figure 4.3. As we will show in Section 4.3, the depth of the difference
merging network depends only on the difference of the sums of the output sequences of the

small counting networks. We can bound this difference by using a layer of balancers in the
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Figure 4.3: The counting network C(w, t)

inputs of the small counting networks (see Figure 4.3), so that the difference is at most w/2.
Subsequently, the depth of the merging network M will depend only on the input width w,
and therefore, the depth of the whole counting network will depend only on w.

In detail, let X(*) and Y{¥ denote the input and output sequences, respectively, of
C(w.t). The construction of C(w,t) is by induction on w. For the base case w = 2 the
network C(2,t) is just a (2, t)-balancer. For the inductive case, we assume that we are given
the networks C(w', t'), for all 2 < w’ < w and any #'. The network C(w, t) is constructed as
follows (see Figure 4.3). We take w/2 (2.2)-balancers by, ... ,b,/2—1- The first and second
input wires of balancer b; are connected to z; and z;4,,2, respectively, for all 0 < i < w/2.
Next, we take two copies of C(w/2.t/2), given by the induction hypothesis, denoted as
Co(w/2,t/2) and Ci(w/2,t/2). Denote by E(®/2) and G(¢/2) the respective input and output
sequences of network Co(w/2, t/2). and by F(¥/2) and H(t/2) the respective input and output
sequences of network Cy(w/2,t/2). The first output wire of balancer b; is connected to the
tth input wire e; of Co(w/2,t/2) and the second output wire to the ith input wire f; of
network C;(w/2,t/2), for all 0 < i < w/2. Next, we take a copy of the difference merging
network M(¢,w/2) described below in Section 4.3. The first input sequence of network
M(t,w/2) is the output sequence G*/2) of Cy(w/2,t/2), and the second input sequence is
the output sequence H(*/2) of C;(w/2,t/2). The output sequence of M(t, w/2) is the output
sequence Y{*) of network C(w.t). This completes the construction.

We continue by showing the correctuness of C(w, t).
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Theorem 4.2.1 The network C(w,t) is a counting network.

Proof: We will show that for any input sequence X(*) to network C(w,t) the output
sequence Y'(t) satisfies the step property.

As described earlier, the construction of C(w, t) is by induction on w. For the base case
w = 2, the network C(2,t) is just a (2,t)-balancer, whose correctness is guaranteed by its
definition. Therefore, we only need to show that the network C(w,t) is a counting network
for w > 2.

For w > 2 the network C(w, t) consists of a layer of balancers, followed by the networks
Co(w/2.¢/2) and Ci(w/2,t/2). By the induction hypothesis, we have that the respective
outputs Gt/2) and H®/?) of Co(w/2.t/2) and Cy(w/2,t/2), satisfy the step property. These
sequences are fed to the inputs of the network M(t,w/2) whose output is the sequence
Y. Since by Proposition 4.3.2 the network M(t,w/2) is a difference merging network,
the sequence Y(t) will have the step property if 0 < Z(G(/2)) — T(H(/2)) < w/2.

We only need to show that 0 < £(G(¢/2)) — ©(H(/?)) < w/2. By the sum preserva-
tion property of networks Cp(w/2,t/2) and Ci(w/2,t/2), we have for their respective input
sequences E(¥/2) and F(w/2)

S(E®@/?)y = £(G¥/¥), and
g(p(w/L’)) = 2(H(t/2)),

and thus we only need to show that 0 < L(E®/2)) — S(F(®/2)) < w/2.

The sequences E(¥/2) and F(*/2) are connected to the outputs of the (2,2)-balancers
bo....by 21 so that the first output wire of b; is connected to e; and the second to f;, for
all 0 €7 < w/2 — 1. Since the outputs of balancer b; have the step property for any input
sequence X (%), we have that 0 < e; — f; < 1, for all 0 < i < w/2. By summing these

inequalities for all the w/2 balancers we have

w
O<(eo+--+ews) = (fot - +fupa)<5=
0< g(E(Wﬂ)) - E(F('”/z)) < %
Subsequently, the sequence Y(*) has the step property, as needed. [ ]

Next, we calculate the depth of C(w, t). We show that the depth of this network depends
only on the input width w. This is because, as we will show in the next section, the depth
of the difference merging network M(t,w/2) depends only on the difference between the
sums of the two sequences it merges, which is at most w/2, and thus the depth depends

only on w.
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Theorem 4.2.2
lg?w+lgw

depth(C(w, t)) = 3

Proof: As described earlier, the construction of C(w, t) is by induction on w. For the base
case w = 2, the network C(2,t) consists of a single (2, t)-balancer and thus its depth is 1.
For the general case w > 2, the network C(w,t) consists of a layer of (2, 2)-balancers with
depth 1, followed by two “parallel” copies of network C(w/2.t/2), followed by the network
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M(t, w/2) whose depth is given in Proposition 4.3.3. Therefore, we have the recurrence:

depth(C(w, t))

as needed.

w t w

1 + depth (C (E, 5)) + depth (M (t, -5))
w t w

1 + depth (C (E. 5)) +lg§

(since by Proposition 4.3.3 depth(M(¢, %)) =lg 5)

t t w
1+ (1 + depth (c (% Z)) + depth (M (5, Z))) +1g-’;i

w t w w
1+ (1+depth (C (-Z, Z)) +lg:1-) +lg72-

(since by Proposition 4.3.3 depth(M($, ¥)) =1g ¥

w t w

w t w
k + depth (C (27,-7 +Zlg§'-

%)e
lg_l ~

k + depth (C (

k + depth (C (

(?_' o~
+
o
iy
g
|

w
k + depth (C (2—[

w ¢
lgw — 1 + depth (C (zlgw—l' olgw—l)) +(lgw—1)lgw

(lgw—-1)2 lgw-—1
R 2

‘)
lgw — 1 + depth (C (2, ";t)) +1g%w—lgw

_lgzw—2lgw+1 _ lgw—1

2 2
2 —
(since depth(C(2, %)) =1)
g8 w+lgw

2 A



68

M(t,2)
Zo <0
Yo =1
I =2
Y1 =3
I3 4

*~—
T
t {
~
| ]
(XN

Yes2-2
Te/2-1
Yes2-1 St—-1

Figure 4.4: The difference merging network M(t.2)

4.3 The Difference Merging Network M(¢,d)

In this section we present the construction of a difference merging network AM(¢,d). where
t=p2, 6 =2 p>1land1 <k <!l Let X2 and Y/ denote the first and second
input sequences, respectively, of M(t,d) and let Z(!) denote its output sequence.

The construction is by induction on 4. For the base case § = 2, the network M(¢t,2)
consists of a single layer of t/2 (2,2)-balancers by, ... ,b,/2_; (see Figure 4.4). For 1 <i <
t/2. the first and second input wires of balancer b; are connected to y;_; and z;, respectively.
and the first and second output wires are connected to z;;—; and zs;, respectively. For
balancer by, the first and second input wires are connected to rg and y,/»_,;, respectively,
the first and second output wires are connected to 2o and z,_;, respectively.

For the inductive case § > 2, we assume that we have constructed the networks M(t', '),
for all 2 < ¢’ < 4 and any t’. The network M(t,d) is constructed as follows (see Figure 4.5).
We take two copies of the network M(t/2,5/2) denoted as Mo(t/2.6/2) and M;(t/2,48/2),
that are given by the induction hypothesis. The first input sequence of My(t/2,6/2), is
the even subsequence of X(/2), namely X /%) and the second input sequence is the even
subsequence of Y(¢/2) namely /%) The first input sequence of M, is the odd subsequence
of X2 namely X{/*), and the second input sequence is the odd subsequence of Y(¢/2)
namely Y{/Y . Let G(/2) and H(*/?) denote the output sequences of networks Mo(/2.5/2)
and M;(t/2,4/2), respectively. Next, we take a copy of the network M(t,2) which is
given by the induction base. The first input sequence of M(t,2) is the output sequence
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M(t,d)
b CL Mo(t/2,6/2)
- M(t,2
yw M (t/2.6/2)

Figure 4.5: The difference merging network M(¢, )

G/2) of Mg(t/2,6/2) and the second input sequence is the output sequence H(/?) of
M1(t/2,6/2). Finally, the output sequence of M(t, 2) is the output sequence Z(*) of M(t. ).
This completes the description of the construction.

We continue by showing the correctness of M(t,d). We start by showing the correctness

of M(¢,2).
Proposition 4.3.1 The network M(t,2) is a difference merging network.

Proof: Let’s assume that each of the input sequences X(/2) and Y (¢/2) of network M(t.2)
satisfies the step property and 0 < (X (t/2)) - 5(Y(¢/2)) < 2. We will show that the output
sequence Z() satisfies the step property.

Denote by a and b the highest value of the elements of sequence X(/2) and Y /2,
respectively. Let k and [ be the step points of sequences X(t/2) and Y (/) respectively.
By Lemma 4.1.1, since /2 > 2, we have 0 < a — b < 1. Next, we continue by considering
separately the cases a = band a = b + 1.

First, consider the case a = b. By Lemma 4.1.2, we have 0 < k — ! < 2. There are three
cases: Kk =1, k=101+1and k = [ + 2. For each of these cases, we see in Table 4.1 the
input and output values of all the balancers b;, for 0 < i < t/2, for input and output wires
0 and 1. (In the table we assume that 1 < k and { < t/2. The analysis for k=1 or{ =1¢/2
is similar.) Consider now the case k = . According to the table, since the outputs of the

balancers form the output sequence Z(t), the first 2k elements of sequence Z{*) will have



connections k=1 k=101+1 k=1+2

input wire input value input value input value
Balancer b; 0 1 0 1 0 1 0 1
1=0 To Yejo-1 || @ a—1}{a a—-1|a a-1
1<i<k-1 Yi—1 T; a a a a a a
i=k-1 Yk—2 | Th-1 a a a a a—1}|a
i=k Yk—1 | Tk a a-1ljla-1|la—-1fa—-1|a-1
k+1<i<t/2]yi-1 |z a—1lja—-1lf{a-1}la—1}a—-1]a-1

output wire | output value || output value || output value
Balancer b; 0 1 0 1 0 1 0 1
i=0 Zo Ze—y a a—1ia a—1}a a—1
1<i<k-1 Zoi—1 | 22i a a a a a a
t=hk-—-1 Zok—3 | zZ2k-2 || a a a a a a-1
i=k Zok—1 | 29k a a—1fla—1ja—-1flaea—-1]a-1
k+1<i<t/2]| 20i—1 | 2o a-1l|la—-1|la-1|la—-1}a—1jia—-1

Table 4.1: The casea = b

connections values

input wire input
Balancer b; 0 1 0 1
1=0 To Yo—1 || @ a—2
1Sl<t/2 Yi-1 x; a—1|a-1

output wire output
Balancer b; 0 1 0 1
1=0 Zg Zi—1 a—1|a-1
1<i<t/2 ] z0i-1 | 20 a—1|a-1

Table 4.2: Thecasea=b+1,k=1,1=1¢/2—-1

value a and the rest will have value a — 1. Therefore, the sequence Z(!) satisfies the step
property. In a similar way. we can show for the rest of the cases that the output sequence
Z®) satisfies the step property.

Next, consider the case a = b+ 1. By Lemma 4.1.2, either { =¢t/2and 1 <k < 2, or
l=1t/2—1and k =1. If | =t/2 there are two possibilities: k = 1 or k = 2. By doing an
analysis similar to the case where a = b and £k =1 + 1 or k = | + 2, described above, we
have that the output sequence Z(!) satisfies the step property. If | = ¢t/2 —~1 and k = 1,
the inputs and outputs of balancers b;, 0 < i < t/2, are shown in Table 4.2. According to
the table, the outputs of all the balancers have values equal to a — 1, and subsequently the
output sequence Z() satisfies the step property.
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Therefore, in all cases the output sequence Z(?) satisfies the step property, as needed. ®
We continue by showing the correctness of network M(¢,4d), for any 4.
Proposition 4.3.2 The network M(w,d) is a difference merging network.

Proof: Let’s assume that each of the input sequences X(¢/2) and Y(¢/2) of network M(t, )
satisfies the step property and 0 < (X ®/2)) —~ £(Y(#/?)) < §. We will show that the output
sequence Z(t) satisfies the step property.

As described earlier, the construction of M(¢t,d) is by induction on §. By Proposition
4.3.1, for the base case § = 2 the network M(t, 2) is a difference merging network. Therefore,
we only need to show that the network M(¢,d) is a merging network for any 6 > 2.

For § > 2, the network M(t, d) consists of the networks M(¢/2,4/2) and M,(t/2,4/2),
whose correctness is guaranteed by the induction hypothesis, and from the network M(t,2)
whose correctness was given in Proposition 4.3.1. The respective outputs of Mgy(t/2,4/2)
and M, (t/2,8/2), denoted G(*/2) and H(/2)  are fed to the inputs of the network M(t,2).
Since Z(®) is the output sequence of M(t, 2) and this network is a difference merging network,
the sequence Z(t) will have the step property if each of G(/2) and H(#/?) satisfy the step
property and 0 < S(G{#/?) — £(H{/2) < 2.

First we show that the sequence G(*/2), satisfies the step property. The input sequences
of network Mo(t/2,6/2) are the even subsequences of X(/2) and Y(¢/2), namely x4
and Y{?. Since network Mp(t/2,8/2) is a difference merging network, the sequence
G/? has the step property if each of .St/ Y and Y;(t/ " have the step property and 0 <
S8y — 5(vdYy < 5/2. Since we assumed that X(®/2) and Y(t/2) satisfy the step
property, we have by Observation 1.4.1 that each of the subsequences ét/ ) and Yew R
have the step property. Furthermore, since we assumed that 0 < (X #/?)) - Z(Y(¢/2)) < §,
we have by Lemma 4.1.3 that 0 < Z(Xét“)) - E(Y.-_.(t/‘”) < §/2. Subsequently, the sequence
G/?) satisfies the step property. In a similar way, we can show that the sequence H(/2?)
satisfies the step property too.

Now we show that 0 < £(G(*/?)) — L(H(t/2)) < 2. By the sum preservation property of
networks Mo(t/2,4/2) and M,(t/2,6/2) we have

Gy = (X /M) + (YY), and
SHD) = 5(X{Y) + £(YHY),
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By Observation 4.1.1 we have

0 < (X)) - (x{/Vy <1, and
0 < S(YHM) — (v <1

Adding these two inequalities we get

0 < (S(XHD) + (YY) - (B(XHV) + (YY) <2 =
0< E(G('/z)) - g(H(t/2)) <2.

Since each of G(*/?) and H(*/2) satisfy the step property and 0 < Z(G(/2) —T(H(/2)) <

2. the output sequence Z(t) satisfies the step property. as needed. ]

We continue by calculating the depth of network M(¢,). We show that the depth
depends only on the difference 4.

Proposition 4.3.3 depth(M(t,6)) = Igé.

Proof: As described above, the construction of M (¢, d) is by induction on 4. For the base
case § = 2, the network M(t,2) consists of a single layer of balancers and thus its depth
is 1. For the general case § > 2, the network M(t.d) consists of two “parallel” copies of

network M(t/2,4/2), connected in series with the network M(t.2). Therefore, we have the
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4.4 Contention Analysis of C(w,t)
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In this section we compute the amortized contention of the counting network C(w,t), de-
scribed in Section 4.1.3. When we unfold the construction of the network C(w.t) we see
that it consists of three parts A, B and C, as shown in Figure 4.1. Part A has input and
output width w and it consists of lgw — 1 layers of (2, 2)-balancers. Part B has input width
w, output width ¢, and is a single layer of (2, 2¢t/w)-balancers. Finally, part C has input and
output width ¢ and it consists of depth(C(w, t)) — lg w = O(lg® w) layers of (2. 2)-balancers.

Let

We first show that the output sequence of part B has the s-smooth property.

Lemma 4.4.1 The output sequence of part B has the s-smooth property.
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Proof: To show this, replace temporarily each (2,2t/w)-balancer of part B with a (2, 2)-
balancer. Now, we can easily see that the combination of parts A and B gives us a net-
work that is isomorphic to the butterfly network D(w), described in Section 4.1.2. By
Lemma 4.1.4, the output sequence of part B has the log w-smooth property. Denote by
bo. ... ,by/2-1 the (2,2)-balancers of part B. Let X,-(z) denote the output sequence of
balancer b;. Since the output of part B has the logw-smooth property, we have that
=Xy — (X)) < 21gw, for any 0 < i.j < w/2 (the factor 2 in lgw comes from the

fact each balancer has two output wires).

Now, restore the old (2,2t/w)-balancers to part B. Denote by by, ... ,8!,_,/'_)_1 these
balancers and by Xéﬁ/ w), ceey Xl(f/tzlf{ their respective output sequences. For any balancer

b;, the only change from b; is the number of output wires. Therefore, the total sum of tokens
that leave from any balancer in both cases is the same. That is. Z(X,-(z)) = Z(X,-(zt/ w)).
Subsequently. |E(X§2‘/w)) — E(Xj(zt/w))l < 2lgw for any two balancers b; and 13j. By
Lemma 4.1.1, the maximum values on any two output wires, one wire from balancer 5;
and the other from balancer 5_,-, will differ by at most | (2lgw)/(2t/w)| + 1. Therefore, the
maximum difference between any two output wires is |wlgw/t] + 2 = s. and subsequently

the output sequence of part B has the s-smooth property. as needed. [ ]
Next, we compute the contention of the network C(w,t).

Theorem 4.4.2 The contention of network C(w,t) with concurrency n is at most

2 Ig®
< nlgw+nlg2w+wg w

cont(C(w, t),n) < ; ; +41g® w + 3lgw.

Proof: Let AB denote the combined network of parts A and B. By the construction of
C(w, t) we have
cont(C(w, t),n) = cont(AB,n) + cont(C,n).
As we did in the proof of Lemma 4.4.1, we first replace the balancers of part B with
2,2)-balancers. The resulting AB network is isomorphic to the butterfly network D(w).
Subsequently, by Lemma 4.1.9,

2nlgw

cont(AB,n) < + lg2 w+3lgw.

w

This contention remains the same when we restore the original (2, 2t/w)-balancers to part
B (since until the layer of B, and in the layer of B, a token can’t see any difference in the

number of stalls it incurs).



75

Now, consider part C. Trivially, the concurrency for every layer of C is n. By Lemma
4.4.1 the input sequence to part C has the s-smooth property. It is easy to observe that,
since the input sequence of part C has the s-smooth property, the output sequence of each
layer of part C will also have the s-smooth property. Therefore, by corollary 4.1.8, every
layer of C has amortized contention at most 2n/t +2(s+1). By Theorem 4.2.2, the number
of layers of part C is

depth(C(w. t)) ~ lgw = E‘z—“’—;-li"i.

The total contention of part C is equal to the contention of a layer multiplied by the number
of layers. Subsequently, we have

lg?w—lgw
=

cont(C,n) < (2%+2(s+1))

nlg?w

< +slg2w + 1g%w
nlg?w  wigdw

t t

< +3lg%w

Adding the contentions from parts AB and C we have,

cont(AB.n) + cont(C, n)
nlgw

cont(C(w.t),n)
) 103 ,
+1w+3lgw + nlgt'w +Z bt Y 4318w

IN

2nl 2 3
= ngw+nlgtw+wlgt w+4lg2w+3lgw.
w

as needed. [ ]

4.5 Related Work

There are only two other known counting network constructions with different input and
output width. The first construction is given by Shavit and Zemach [49] and is has the form
of a binary tree with 1 input wire and w output wires, and depth lgw. built from (1, 2)-
balancers. The second construction is given by Aiello et al. [4] and it has input width w,
output width wlgw, depth O(lg w), and is build from (2, 2)-balancers and (1, 2)-balancers.
However. this construction uses as a building block the AKS sorting network and it is of no

practical use.
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4.6 Discussion

We presented a counting network construction with w input wires and ¢ output wires. where
w = 2% ¢t = p2', and w < ¢t. This is one of a very few constructions known whose output
width is not a power of two.

Several interesting questions remain. Is it possible to extend our construction to ar-
bitrary input and output widths, other than multiples of a power of two? It follows from
impossibility results in [2, 21] that appropriate balancer sizes would have to be used for such
extension. Using such larger balancers is often expected to cause a reduction in depth. as
in the construction of Chapter 3. What would be a trade-off between depth and contention

in this situation?



Chapter 5

Introduction to Greedy Hot-Potato
Routing in the Mesh

5.1 Greedy Hot-Potato Routing

Routing is essential in parallel multiprocessors: the parallel processors need to exchange
messages while they solve a computational problem. The messages are sent in packets.
where each packet has a header, with necessary routing information, and a message body.
The packets have to be routed from their source to their destination processor through an
underlying network that connects the processors. It is desirable that the packets arrive at
their destinations as fast as possible.

One of the simplest networks for parallel multiprocessors is the 2-dimensional mesh
network, which is the network we consider here. The mesh network is an n x n array of
nodes, where each node correspends to a processor. As shown in Figure 5.1, each node is
connected to its adjacent nodes by a link (except of the nodes at the edges). We model
the network so that the time is discrete and the nodes are synchronized: at each time step
each node receives packets from its adjacent nodes, then makes routing decisions, and then
forwards packets to its adjacent nodes according to the routing decisions. At each time
step, a node is allowed to send at most one packet per link.

In traditional store-and-forward routing algorithms, the nodes of the network have
buffers. Usually, the packets follow prespecified paths and a packet may wait in the buffer
of a node until the link it wishes to follow is free.

Here, we study another kind of routing algorithms that we call hot-potato routing algo-

rithms. In hot-potato routing the nodes have no buffers to store messages in transit: any
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n

Figure 5.1: The n x n mesh network

packet that arrives at a node other than its destination must immediately be forwarded to
another adjacent node. Namely, a packet is treated by the nodes like a “hot potato,” which
is too hot to keep. Hot-potato routing was first proposed by Baran [8].

Hot-potato routing algorithms are interesting because they have been observed to work
well in practice: hot-potato routing algorithms have been used in parallel machines such
as the HEP multiprocessor [51], the Connection machine [33], and the Caltech Mosaic C
[47]. as well as high speed communication networks [45]. Hot-potato routing algorithms
are well-suited for optical networks [1, 29, 45, 53, 54] because it is difficult to buffer optical
messages.

A special kind of hot-potato routing algorithms, that we consider here, are the so called
greedy algorithms [8, 12]. In greedy hot-potato routing, the packets simply try to get closer
to the destinations. In particular, at any time step in a node, a packet always tries to follow
any link that brings it closer to its destination. In case the packet cannot follow any such
a link, because other advancing packets will occupy these links, then it is forced to follow
some other link that takes it further away from its destination, in which case we say that
the packet is deflected.

Greedy hot-potato algorithms are particularly attractive because they tend to be simple,
admitting efficient hardware implementations. Greedy algorithms are also adaptive, namely,
when contention is low, packets follow the shortest routes t2 their destinations. Further-
more, it has been observed that greedy hot-potato algorithms perform extremely well in
practice [45] (their performance is close to the traditional store-and-forward algorithms with
buffers).
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5.2 Contributions

Although greedy hot-potato algorithms have been observed to perform very well in practice,
there has been no adequate formal analysis that could explain this good behavior. Ben-Dor

et al. [12. Section 1.1] remark:

Although fairly simple greedy hot-potato algorithms perform very well in prac-
tice, they resist formal analysis attacks.

Here, we give new greedy hot-potato algorithms, with improved theoretical bounds, which
give the first formal explanation of the good behavior of greedy algorithms.

We analyze our algorithms for a specific class of routing problems known as batch routing
problems. In a batch routing problem every node in the mesh is the source of exactly one
packet at time zerc. The question that we want to answer for batch problems is: how much
time is needed until all the n? packets reach their destinations?

There are three interesting batch routing problems, which are distinguished by the

distribution of the packet destinations.

e Permutation Problem: every node is the source and destination of exactly one

packet.

e Random Destinations Problem: every packet chooses its destination uniformly

and at random at time zero.

e General Problem: the destinations are chosen arbitrarily. General batch routing
problems are sometimes called “many-to-one” in the sense that a node may be the

destination of multiple packets.

In Chapter 6 we present a new greedy hot-potato algorithm that is tuned for the permu-
tation and random destinations problems. The time achieved by this algorithm is O(n log n),
and it is an improvement from the previously known bound of O(n?).

In Chapter 7 we modify the previous algorithm so that it solves general batch problems.
As it is explained in that chapter, for any instance I of the general batch problem there is
a trivial lower bound LB;. If LBy is at least 2(n), then our algorithm solves this batch
problem in time O(LBy - log3n). This is the first hot-potato algorithm (greedy or non-
greedy), and one of the few known routing algorithms (with or without buffers), which is
competitive to the lower bound.

Before we proceed in presenting the above results, we present in Section 5.3 some nec-

essary preliminaries which are common to the subsequent chapters.
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5.3 Preliminaries

5.3.1 Mesh

In the n x n mesh network, each node has coordinates (z.y), for 0 < z.y < n, wherez is a
column and y a row. The lower-left corner has coordinates (0,0) and the upper-right corner
has coordinates (n — 1.n — 1).

Each node (except at the edge of the mesh) is connected to its neighbors by four links,
denoted up, down, left and right. The links are bidirectional, namely. at each time step and
at each link direction at most o.ie packet is allowed.

The distance between nodes v = (z,y) and v’ = (z, y), denoted dist(v, v') is the quantity
dist(v,v') = [z = z'| + |y — V.

This distance measures how long it takes for an undeflected packet to travel from node v
to v'. This distance is sometimes called the Manhattan metric or Ly norm.

The algorithms we will describe in the next chapters also apply to the n x n torus, which
is the same with the mesh with the only difference that each node (i.n — 1) has a link to
the node (Z.0), and each node (n — 1,7) has a link to the node (0.7), for all 0 < i < n.
For brevity. we will focus here on the mesh, postponing discussion about the torus to the

corresponding discussion sections.

5.3.2 Deflections

The analysis of our algorithms is based on estimating how many times a packet is deflected
in the network. Knowing the number of deflections, we can easily compute the total number

of time steps that the packet is in the network, as the following lemma shows.

Lemma 5.3.1 If a packet w is deflected in total x times, then it will reach its destination

tn at most 2x + 2n — 2 time steps.

Proof: Initially, the distance from 7 to its destination is no more than 2n — 2. Each time
7 is deflected, the distance increases by one, and each time it follows a link closer to its
destination the distance decreases by one. The total number of time steps is equal to the
total number of links that the packet follows. a

5.3.3 Equations

We make use of the following inequalities.



For all n, t, such that n > 1 and [t| < n,

t2 t\"
e‘(l——)5(1+—) < et
n n

Forall p, k,suchthat 0 < p<land k> 1,

l—pS(l—%)k.
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Chapter 6

An One-Bend Greedy Hot-Potato
Algorithm

We present a new randomized greedy hot-potato routing algorithm for the n x n mesh. !
Like some earlier algorithms [12, 30]. we assign priorities to packets. Each packet is divided
into an immutable message part, and a mutable header containing the packet’s priority
(three bits suffice).

A novel aspect of our algorithm is the way it exploits randomization to adjust priorities.
Each time a packet is deflected. there is a small probability it will attempt a home run: it
increases its priority and attempts to travel by a one-bend path directly to its destination
(see Figure 6.2). As we show in the analysis, when a packet attempts a home run it has a
good chance to reach its destination, without interruptions from other high priority packets.

Both the home run technique and its analysis are novel. For any permutation or random
destinations batch problem, the analysis ensures that each packet reaches its destination
in asymptotically optimal expected O(n) steps, and all packets reach their destinations in
O(nlogn) steps with high probability (1 —1/n), an improvement over the previously-known
deterministic upper bound of O(n?), for greedy algorithms [12].

Our algorithm is not restricted to the permutation and the random destinations prob-
lems, it also considers general batch problems. In particular, the time complexity of our
algorithm depends on the maximum number m of packets that have destination in any row
or column. For any general batch problem instance, our algorithm routes all the packets to
their destinations in time O(mlogn). If, for example, the distribution of the destinations

is uniform (as in the permutation or random destinations problem) then m = O(n) and the

'The work of this chapter was first presented in [20].

82



83

time to our algorithm is O(nlogn). If in a general batch problem instance the distribution
of the packet destinations to the nodes of the network is uniform, then our algorithm solves
this problem instance in time which is log n-competitive to the lower bound. However, there
are some “pathological” problem instances for which the time of our algorithm is far from
the optimal, and for these problems the algorithm of Chapter 7 is needed.

We continue as follows. In Section 6.1 we give some necessary preliminaries. In Section
6.2 we describe our algorithm. In Section 6.3 we analyze the timing behavior of our algo-
rithm. In Section 6.4 we describe how our algorithm can be applied to solve specific batch

routing problems. Finally, we conclude in Section 6.6 with a discussion and open problems.

6.1 Preliminaries

We say that a packet is restricted if it is on the same row or column as its destination node.
A good link for a packet is one that brings it closer to its destination, and a bad link is one
that does not. Good row links and column links are defined in the obvious way.

A packet is deflected if it is forwarded along a bad link. A node that receives a packet
can tell whether the packet was just deflected by comparing the packet’s destination and
the link the packet came from.

6.2 The Algorithm

In our algorithm the packets use priorities: each node routes higher-priority packets before
routing lower-priority packets. As a result, a packet is deflected only if its good links are
already taken by advancing packets of greater or equal priority.

We start with a highly simplified, informal overview of our algorithm. Initially, all
packets are routed greedily with equal (low) priority. Each time a packet is deflected,
however, in the node that the deflected packet is received, there is a small probability that
the deflected packet will change its state and will become ezcited, causing its priority to
jump higher. When a packet becomes ezcited, it tries to take one of the two shortest “one-
bend” paths to its destination, a strategy we call a home run (see Figure 6.2). The home
run succeeds if the packet arrives at its destination without interruptions by other high
priority packets. As the analysis will show, an essential aspect of our algorithm is that any
packet that attempts a home run will succeed with constant probability (that is, probability
independent of n). We exploit this property to analyze both the expected and “with high
probability” behavior of the algorithm.
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Figure 6.2: A Home Run: column-first and row-first traversals
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In detail, the algorithm assigns every packet one or more preferred links, and tries to
forward each packet along a preferred link. A preferred link is always a good link (taking
the packet closer to its destination), but not every good link is preferred. Consider a packet
m. At any time step, the packet m occupies only one of the following states, where each

state corresponds to a priority (see Figures 6.1 and 6.2).

e normai: The packet m starts out in the normal state. In this state, the good links
are preferred: each node forwards a normal packet along one of its good links, unless
those links are already occupied by other advancing packets. Initially, all the packets

are in the normal state.

e ezcited: Let’s assume that the normal packet m was deflected at the previous time
step so that at the current time step appears in a node v, one link further away from
its destination (since the packet was deflected, it followed a bad link). At node v, the
packet 7 enters the ezcited state with probability p (given below), and otherwise it
remains normal with probability 1 —p. When a packet becomes ezcited, it tries to fol-
low a one-bend path to its destination (a home run). It flips an equal probability coin
to choose whether to traverse the row or the column first, and this choice determines

its preferred link.

e running: If the excited packet 7 succeeds in following its preferred link, then the next
time step it appears in a node one link closer to its destination. In this node the packet
changes its state once more and it becomes a running packet, and it will remain a
running packet for the first part of the home run (until the bend). In particular, If
the packet w, when it started its home run, has chosen to traverse the column first,
then it is in the running_ state on the column part of its one-bend path. In this state,
the good column link is preferred. If the packet w. when it started its home run, has
chosen to traverse the row first, then the packet is in the running, state on the row,
and the good row link is preferred. (Notice, that a packet stays in the ezcited state

for at most one time step.)

e turning: When the running packet w, reaches its destination row or column, in the
node that it turns, the packet changes its state and it becomes a turning packet.
In particular, if packet 7, when it started its home run, has chosen to traverse the
column first, then it enters the turning, state when it reaches its destination row, and
its preferred link is along the row. If the packet =, when it started its home run, has

chosen to traverse the row first, then it enters the turming. state, and its preferred
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link is along the column. The packet stays in the turning state for at most one time

step.

e walking: In the next node after the bend of the home run, the turning packet 7
changes its state again and it becomes a walking packet. In particular, if packet ,
when it started its home run, has chosen to traverse the column first, then it is in the
walking,. state as it traverses the destination row, and the preferred link is the good
row link. If the packet w, when it started its home run. has chosen to traverse the
row first. then it is in the walking_ state as it traverses the column,. and the preferred

link is the good column link.

If a restricted packet becomes ezcited, it enters the walking, or walking,. state directly.
We use running to denote either the running. or running, states when the distinction is
unimportant, and similarly for the other dual states.

If. at any time step in a node v, a packet is unable to follow its one-bend path, because
its preferred links are taken by packets of the same or higher priority packets which are
advancing. it re-enters immediately (in the same time step) the normal state. In this case.
node v attempts to forward the packet as a normal packet by sending to any available good
link (which is not occupied by advancing packets).

At each step, a node greedily routes up to four arriving packets. If the node receives a
packet which was deflected in the previous time step, then the deflected packet is marked
ercited with probability p. The node then routes each of the packets in priority order. If the
packet can take its preferred link, it is forwarded along that link. Otherwise, the packet’s
priority is either reduced to normal, or if it is already normal, it is forwarded along any
unoccupied link. This algorithm is greedy because a packet fails to follow any of its good
links only if other packets (that move forward) are traversing these links.

Two packets with the same preferred link are said to conflict. Conflicts between packets
in the same states are resolved arbitrarily. In conflicts between packets of different priorities,
the higher priority packets always win. Note that some states never conflict: for example,
a packet in the running, state will never conflict with a packet in the running,_ state. For a
packet which attempts a home run, we say that it travels uninterrupted to its destination,

if during the home run it wins over all the conflicts that it encounters.

6.3 Time Analysis

In this section, we give the time analysis of our algorithm.
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Every randomized algorithm needs an adversary who attempts to frustrate the algo-
rithm’s goals. In our network model, the adversary can control any of the following outcomes

in the algorithm’s execution:

e The initial distribution of the destinations.
e The resolution of conflicts between packets with the same priorities.

e The choice of the link that a normal packet will follow (at any step, there may be

more than one alternative links).

In our algorithm, we assume that the adversary has the full power to control any of the
above outcomes in the most malicious way, in order to disrupt the fast delivery of the
packets. Therefore, the analysis of our algorithm corresponds to the worst case scenario,
produced by any adversary.

A key term in the analysis of our algorithm is the maximum number of packets addressed

to any single row or column. More precisely,

Definition 6.3.1 Given a batch routing problem, let m, and m. be respectively the maxzi-

mum number of packets targeted to any row or column. Define
m := max(n, min(m,, m.)).

Notice that n < m < n2?. Many of our complexity results are expressed in terms of m (and
n). The value m is a rough reflection of a problem’s inherent difficulty: high values of m
imply high levels of congestion in the rows or columns, and vice-versa.

As will be explained in Section 6.4, the parameter m is related to the permutation and
random destinations batch problems (actually, in these problems m = n). Moreover, the
parameter m is related to the general batch problem, and we show that our algorithm can
be used to solve efficiently some instances of the general batch problem.

For any batch problem, our algorithm guarantees that all packets reach their destination
nodes in at most O(mlnn) steps, with high probability. Even though the complexity
analysis depends on m, the value m is not known to the algorithm.

Our algorithm is parameterized by p, the probability that a deflected packet becomes
excited. Different values of p yield different behaviors. In Section 6.3.1, we compute the
probability for a packet to succeed in its home run, leaving p unbound. In Section 6.3.2,
we compute the expected time needed for a single packet to reach its destination. With a
proper choice of p, we can achieve an O(n) expected time. In Section 6.3.3, we turn our
attention to the time needed to solve a batch problem. With a proper (time-dependent)

choice of p, we can achieve O(mInn) time with high probability.
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6.3.1 Succeeding in a Home Run

We now analyze the probability that a packet = will successfully complete a home run
by reaching its destination. When analyzing the behavior of =, we give full power to the
adversary. In particular, each time the packet = becomes ezcited, the adversary is allowed
to place the other packets at nodes in the mesh, and to choose their destinations, subject
only to the constraint that no more than m, or m. packets can have destinations in the
same row or column as w. The probability that an ezcited packet will complete a home run
against such an adversary is a lower bound for that probability in any actual execution.
Without loss of generality, let’s assume that the packet’s destination is down and left
from the packet’s current position. Furthermore, without loss of generality, we assume that
in the home run the packet chooses to follow the column first. The case where the packet is
restricted (already on its destination row or column) is considered below as a special case.
Recall that a deflected packet becomes ezcited with probability p. We will derive lower
bounds on the probability for “good things” happening in terms of p, and then use these

bounds to motivate our choice for p.

Lemma 6.3.1 The probability that a particular node contains no excited packet is at least
’ 4
p':=(1-p)'.

Proof: A packet becomes ezcited only if it was deflected in the preceding step, with
probability p. It will fail to become ezcited with probability at least 1 — p. Since a node
contains at most four packets, all four will fail to become ezcited with probability at least
(1-p)t. s

Lemma 6.3.2 An excited packet follows its preferred link and enters the running state with

probability at least (1 — p)*".

Proof: Consider an ezcited packet = at node (z,y) at time ¢£. Our priority assignment
guarantees that an ezcited packet can be interrupted only by another conflicting ezcited or

running packet.

e By Lemma 6.3.1, the probability that node (z,y) has no ezcited packet at time ¢ is at
least p’. Therefore, with at least this probability there is no other conflicting ezcited
packet.

e Recall that we assume (without loss of generality) that the packet’s = preferred link

is in the down direction. In order for a conflicting packet to be in the running, state
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at time ¢ and at node (z,y). it must have become ezcited at some node (z,y + d) at
time ¢t —d, where 1 <d < n—y—1. There are at most n — 1 such possible nodes. By
Lemma 6.3.1, the probability that no packet became ezcited at any of those nodes and
times is at least p’"_l. Therefore. with at least this probability there is no conflicting

running,. packet.
In total, the probability the packet = will enter the running state is at least

-1
pp" T =1-p)"

Lemma 6.3.3 A packet in the running state will always proceed along its preferred link.

Proof: Our priority rules ensure that a packet in the running state can be interrupted
only by another packet in the running state. Any running packet whose preferred link is
(say) down, must have arrived from the up link. At most one packet could have arrived
from the up link, so at most one running packet prefers to exit on the down link. and no

conflict can occur. [ |

Lemma 6.3.4 A packet in the turning state successfully enters the walking state with prob-

ability at least (1 — p)in+mr,

Proof: Consider a turning packet 7 at node (z,y) at time t. Let’s assume (without loss of
generality) the packet arrived from the up link, and prefers the left link. Our priority rules
ensure that this packet can be interrupted only by either: an ezcited packet, or a running,
packet arriving from the right link, or a walking, packet arriving from the right link, or by

a turning, packet arriving from the down link.

e By Lemma 6.3.1, there is no ezcited packet at node (z,y) at time ¢ with probability

at least p'.

e A conflicting packet in the running, state must have become ezcited at node (z +d, y)
at time ¢ — d for it to be in the running, state at node (z,y) and time ¢, for 1 < d <
n —z — 1. As in the proof of Lemma 6.3.2 the adversary will fail to excite all such

n—1

packets with probability at least p’

e Suppose now that some packet o conflicts with = at time ¢, while o is in either the

turning, or walking, states. Packet o must have been deflected at some time t —~d—1.
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then became ezcifed at time t —d, and traversed d links to collide with =, all without
being deflected. After the packet o becomes ezcited, it is always in “phase” with
packet 7, namely, at each time step they are at the same distance from node (z.y),

in order to collide at this node.

The key observation is that if o failed to become ezcited at a deflection that could
bring it in “phase” With 7, then o will never catch up to 7 in time to interrupt 7 in
node (z,y). There is at most one deflection that could bring o in “phase” with .
From the adversary's point of view, o had only one chance to become ezcited in a
way that can threaten m, and this chance is given with probability p. Subsequently,
o is not a threat to m with probability at least 1 — p. Because 7 is already on its
destination row, the number of packets like o that could be a possible threat to = are

at most m, — 1, the number of the rest packets that have destinations in the same
row. Therefore, with probability at least
(1=p)™t2(1-p™,
there is no conflicting packet in either the turning, or walking, state at node (z,y) at
time ¢.
In total, the probability that the turning packet w will not be interrupted, and successfully
become walking in the next step. is at least

pop" T (L= p)™ = (1 =)t

The symmetric lemma holds for mc.

Lemma 6.3.5 A packet in the walking state arrives at its destination with probability at
least (1 — p)in.
Proof: Consider a walking packet 7 in node v at time ¢. Let’s assume (without loss of

generality) that the packet’s preferred link is the left link. Our priority rules imply that the
packet can be interrupted (and thus deflected) only by a packet in the walking, running, or

ezcited states.
e Since packet m arrives at node v from the right link and prefers to exit on the left, a
conflicting packet in the running or walking state must also have come from the right
link and prefers to exit on the left, which cannot happen. Therefore, the packet will

not conflict with another running or walking packet.
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e By Lemma 6.3.2, there is no ezcited packet at node v at time ¢t with probability at

least p’.

Therefore, packet w will not be interrupted in node v with probability at least p’. The
packet will remain in the walking state for at most n —2 nodes before reaching its destination
node. Therefore, packet 7 will not be interrupted in any of these nodes, and it will complete

a home run successfully, with probability at least
m—2 in
p " >(1-p)"".

Lemma 6.3.6 If an ezcited packet chooses to follow its good column link, it will complete

a home run to its destination with probability at least (1 — p)!27+mr,

Proof: The result follows from combining Lemmas 6.3.2, 6.3.3, 6.3.4, and 6.3.5:

(1—-p)'"-1-(1 —p)*"*™ - (1 - p)*" = (1 —p)t*+mr,

The symmetric lemma holds for m..
If a packet is restricted (already in its destination row or column) when it becomes
ercited, it immediately tries to enter the next step the walking state. The proof of the next

Lemma follows from the proof of Lemma 6.3.2.

Lemma 6.3.7 If a restricted packet becomes ezcited, it succeeds in following the good col-

umn (or row) link and entering the walking state with probability at least (1 — p)i".
Finally, we can compute the probability that a packet succeeds in a home run.

Theorem 6.3.8 An ezcited packet will complete its home run with probability at least %(1—
p)12n+m‘

Proof: For unrestricted packets, the proof follows directiy from Lemma 6.3.6, and the
fact that the packet chooses each alternative home run (row-first or column-first) with
probability 1/2. For restricted packets, it follows from Lemmas 6.3.5 and 6.3.7. [ |
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6.3.2 Expected Case Analysis

In this section, we analyze the expected number of steps for a specific packet = to arrive at
its destination. Here, we will assume that the expected number of packets with the same
destination row or column is n, and thus m = n. This assumption applies, for example, to
the permutation problem. (In the random destinations problem we have m = O(n) with
high probability.)

We will prove that the expected time needed for a single packet to reach its destination
is O(n). This time is optimal, since there are batch problem instances where a packet may
originate at distance §2(n) from its destination.

We now consider the behavior of the algorithm when the probability p. of becoming

excited after a deflection, is

Lemma 6.3.9 An ezcited packet will complete its home run with probability at least 1/4e.

Proof: By Theorem 6.3.8, the probability of completing a home run is at least %(1 -

pj*?"*™. With p = 1/13n and m = n, and by applying Equation 5.1, we have

1 12n4+m  __ 1 1 t3n
5(1-7) = 3\ 1,
110 1
- 2e 13n
11
>
- 22

Lemma 6.3.10 Each time a packet is deflected, it becomes ezcited and the completes a

home run to its destination with probability at least 1/52en.

Proof: Let m be a deflected packet that gets ezcited with probability p. According to
Lemma 6.3.9, after packet m becomes ezcited, it will complete a home run with probability
at least 1/4e. Therefore, the probability for completing a home run after a deflection is at

least

Here, we prove the main result for the expected case analysis.
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Theorem 6.3.11 The ezpected number of steps for a packet to arrive at its destination is
bounded from above by O(n).

Proof: Let ¢ = 1/52en be the lower bound on the probability to do a successful home
run after a deflection, such as calculated in Lemma 6.3.10. Each deflection can be thought
of as a Bernoulli trial with probability of success at least q. for reaching the destination.
Therefore, the expected number of deflections until the packet reaches the destination is
bounded from above by 1/q = 52en. Subsequently, by Lemma 5.3.1. we have that the
expected number of time steps until the packet reaches its destination is bounded from
above by 2(52en) + 2n — 2 = O(n). [ |

6.3.3 Analysis “with High Probability”

In this section we show that with a proper choice of p, all packets will be delivered within
time O(mlnn) with high probability (meaning with probability at least 1 — 1/n). The
challenge here is that we assume that nodes do not know m, the instance-specific measure
of congestion. The key technique here is to allow p to vary with time, ensuring that p lies
within the “right” range sufficiently long to guarantee timely delivery. If the value of m
were known to the algorithm, p could be constant (and approximately 1/m).

We will use the following constants.
= 48e d =13 3c
to=cmlnn+2n t; =3c’mlnn

Let the probability p that a deflected normal packet becomes ezcited be the following

function of time:
cint
p(t) := T

Notice that when ¢ lies in the range tg to t;, the value of p(t) is approximately 1/m. the

desired value.

Lemma 6.3.12 If a packet m becomes ezcited at time t > tg, then the probatility of com-

pleting a home run is at least 1/4e.

Proof: Any packet conflicting with 7 must have started its home run attempt at most 2n
steps before . The probability that such a packet became ezcited was at most

cln(dmlnn)

= p(tg — =
p = p(to — 2n) Iiinn



94

By Theorem 6.3.8, the probability of a home run is at least 3(1—p)!?*+™. Sincen < m < n?,
by taking n to be sufficiently large, such that 4¢'Inn < n, and by applying Equation 5.1 we

get
1 12n4m 1 cln(dmlnn)\ ™
2(1 — > (1=
(1= = 3 cmlnn
1 3clnn \ ™
> 2 (1-2X22
2 cdminn
13m
> M-
- 2 13m
> 1/ b
- 2e 13m
11
Z 33

Lemma 6.3.13 Each time t (with tg < t < t1) a packet is deflected, it will complete a

home run with probability at least
c

12e¢m’

Proof: Whenever a packet is deflected with probability at least p(¢;1) it becomes ezcited.
Since n < m, the probability of getting ezcited is at least

cIln(3cdmiInn)

pltr) = 3Idminn
clan

3dminn
c

>

3dm’
The probability of completing a home run when getting ezcited is, according to Lemma
6.3.12, at least 1/4e. Therefore. the probability of attempting a home run, and completing
it, when being deflected is at least

) F = o n
P de =~ 3cdm 4e
c

12ecdm’
[ ]

Lemma 6.3.14 With probability at least 1 — 1/n3, a packet will reach its destination in t;

steps.
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Proof: By Lemma 6.3.13, each time that a packet 7 is deflected in the time interval
to < t < t;, packet w will complete a home run with probability at least

—_ <
9= 12ecdm”

Since, we always consider the most powerful adversary, which produces the worst case
scenario for interrupting the home run of packet =, successive probabilities of succeeding in
a home run after a deflection are independent. By Lemma 5.3.1, the number of deflections

that can fit in the time interval tg < ¢ < ¢; is at least

t)_—to—?‘n

T = 2
_ (@d =d)mlnn—4n
- 2
= Jdmlnn - 2n.

Since n < m,
z = mlnn—-2n
1
> c'mlnn—:l-c'mlnn
3

= Zc’m Inn.

Packet 7 will fail to reach its destination after z deflections with probability at most (1—gq)*.

By Equation 5.1, we get

) z < ] c %c’mlnn
1-9q)7 < ( _12ec'm)
3 %dmlnn
3c’m
< e-—3lnn
_ 1
= 3

Finally, we obtain the desired result for all packets.

Theorem 6.3.15 With high probability (at least 1 —1/n), all packets reach their destination

nodes in at most O(mlnn) steps.
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Proof: By Lemma 6.3.14, a packet will arrive at its destination in ¢; steps with probability
at least 1 —1/n3,

Since we have made a worst case analysis for each packet by assuming that the adversary
produces the worst case scenario for a packet to reach its destination, we can safely assume
that the packets are independent of each other in the analysis.

Therefore, the probability that all packets (at most n2) will arrive at their destinations
within ¢; steps is at least {by applying Equation 5.2)

2 2
1\" 1/n\" 1
—_— = _— >1--.

6.4 Applications

For the batch permutation problem, m = n, and for the random destinations problem, it
can be easily shown that m = O(n), with high probability. From Theorem 6.3.15, we have
the following corollary.

Corollary 6.4.1 For the batch permutation or random destinations problem, with high

probability, all packets reach their destination nodes in at most O(nlnn) steps.

We can also apply our algorithm for general batch problem instances. For example,
consider the following rectangle routing problem. There are n? packets whose destinations
are distributed uniformly within a w x h rectangle, and all packets originate outside the
rectangle. Uniform distribution means that every node within the rectangle is the destina-
tion of ©(n?/wh) packets. Let’s assume (without loss of generality) that w > h. In this
case, the parameter m is

m=h- n_2 = n_2
wh w
Theorem 6.3.15 says that our algorithm finishes in

o ( n_2 -In n)
w
steps, with high probability.
Mansour and Patt-Shamir [42] have noted that there is a trivial lower bound for problems
of this kind: Q(dmaz + W), where dpoz is the maximum initial distance any packet must
traverse, and W is the network bandwidth lower bound. The bandwidth lower bound W
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Figure 6.3: A “pathological” batch problem

has to do with regions of nodes (see Figure 7.1). Let S be any region in the network. Let
z be the number of incoming links in the region’s perimeter, and let £ be the number of
packets with destinations in this region, where all these packets originate from outside the
region. At each time step, at most z packets can enter the region S. Therefore at least k/z
time steps are needed for all the packets to reach their destinations, this is the bandwidth
lower bound for S. Taking the maximum bandwidth lower bound over all possible regions
in the network we obtain the bandwidth lower bound W for any instance of a general batch
problem.
For our w x h size rectangle routing problem,

e (2)
2w+ 2h w
Thus, with high probability our algorithm is O(lnn)-competitive with the trivial lower
bound for this class of problems. Therefore, our algorithm is away by only a O(Inn) factor
from the optimal for these problems.

However, there are general batch problem instances for which our algorithm finishes in
time which worse than the trivial lower bound. For example, consider the “pathological”
batch problem of Figure 6.3. In this problem the destinations of the packets are distributed
as follows: in the top row only the leftmost node is the destination for n packets, then the
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next node is the row at distance /n is the destination for n packets, and so on, until the
last node in the row (the rest nodes of the row aren’t destinations). The destinations are
distributed in the same way for the next (lower) row at distance /i, and so on until the
lowest row (all the rest rows contain no destinations).

In this “pathological” problem m = n./n, since there are intersecting rows and columns
with that many destinations. The time performance of our algorithm for this problem is
O(ny/n-lnn). It easy to see that the bandwidth lower bound for this problem is W = 6(n).
Our algorithm is far from the lower bound by a factor of \/n - Inn. The reason of this
divergence from the lower bound is that when the packets attempt their home runs they
meet in the highly congested rows and columns. In order to lighten up the congestion, when
a packet attempts a home run it should be allowed to go to random intermediate nodes,
and thus follew a multi-bend home run path. This is what the algorithm of Chapter 7 does,
and that algorithm is O(In® n)-competitive with the trivial lower bound.

6.5 Related Work

There are several results for the mesh and torus networks for greedy and non-greedy hot-
potato routing algorithms.

For greedy hot-potato routing, Ben-Dor et al. [12] give a potential function analysis
and they provide a simple algorithm for the 2-dimensional n x n mesh with O(nvk) steps,
where k is the total number of packets to be routed. They generalized their techniques
for the d-dimensional mesh to obtain O(e?n?-1k'/9) steps. Borodin et al. [13] present a
complicated deterministic greedy hot-potato routing algorithm for the d-dimensional mesh
and the 2-dimensional torus where any packet p finishes in at most dist(p) + 2(k — 1) steps,
where dist(p) is the initial distance of p from its destination (they also present a simple non-
greedy algorithm with similar results). For the 2-dimensional mesh and torus this algorithm
preserves the O(n!-®) bound given by Bar-Noy et al. [7]. For the 2-dimensional case a similar
result was independently obtained by Ben-Aroya et al. [10]. For a single destination or a
small set of destinations Ben-Aroya et al. [11] present a randomized algorithm on the
d-dimensional mesh that finishes in O(k/d) steps, with high probability.

For non-greedy hot-potato routing, Feige and Raghavan [27] present an algorithm for
the n x n torus that routes any random destinations problem in 2n+O(Inn) steps with high
probability. They also give an alternative algorithm that routes any permutation problem
in 9n steps with high probability. Newman and Schuster [46] give a deterministic algorithm

for permutation routing on the n x n mesh that finishes in 7n + o(n) steps and is based on
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sorting. This result was improved by Kaufmann et al. [37] to 3.5n+ o(n) steps. Kaklamanis
et al. [35] present an algorithm that routes most of the permutations in the d-dimensional
torus in dn/2+O(In? n) steps and in the 2-dimensional mesh in 2n+O(In? n) steps. Bar-Noy
et al. [7] present a simple deterministic algorithm for the n x n mesh and torus that routes
any permutation problem in O(n!-®) steps. Specifically, their algorithm routes any batch
problem in O(n\/m_) steps where m, is the maximum number of packets destined to any
column. They also give a more complicated algorithm that runs in O(n'*¢) steps for every
constant € > 0. Spirakis and Triantafillou [52] describe a routing algorithm for the random
destinations problem on the two-dimensional mesh. In this algorithm, the average time to
deliver all packets, where the average is taken over all possible destination assignments, is
O(nlogn). Broder and Upfal [14] give a dynamic analysis of a non-greedy algorithm for

the torus.

6.6 Discussion

Our results apply almost verbatim to the n x n torus. The only difference is that distances
are smaller on a torus: any two nodes are at most n links apart instead of 2nn. As a result,
some of the constants are smaller for the torus, reducing the complexity measures by a
constant factor.

One important open problem is how to analyze dynamic problems, where packets are
inserted into the network at a steady rate (not just at time zero). We think that techniques
similar to those proposed by Broder and Upfal [14] are promising.



Chapter 7

A Multi-Bend Greedy Hot-Potato
Algorithm

We present a new randomized greedy hot-potato routing algorithm for the n x n mesh,
which solves efficiently general batch problems.!

As discussed in Section 6.4, Mansour and Patt-Shamir [42] have noted that there is
a trivial lower bound for problems of this kind. If a packet’s source and destination are
separated by distance d, then no routing algorithm can deliver that packet in fewer than d
steps. The maximum such distance a packet must traverse in a routing problem I is called
the distance lower bound, denoted D;. Consider now the case where A packets have their
destinations inside some region of the network and these packets originate from outside
the region (see Figure 7.1). All these packets must enter the region. If the region has z
incoming links in its perimeter, then at each time step at most z packets can enter the
region, and thus, no routing algorithm can deliver those k packets in fewer than k/z steps.
The maximum value of this ratio, taken over all the regions in the network, for a problem
instance I yields the bandwidth lower bound, denoted W;. The lower bound for problem
instance I, which we denote by LBy, is just Q(D; + Wy).

A family of routing problems is hard if the trivial lower bound for each of its members
is Q(n). Our hot-potato routing algorithm solves any hard batch routing problem I with
high probability (at least 1 — %) in time O(LBy - log®n). This algorithm is the first hot-
potato algorithm (greedy or non-greedy) whose performance, with high probability, lies
within a polylogarithmic factor of optimal for a non-trivial class of batch routing problems.
Furthermore, it is one of the few known routing algorithms (with of without buffers) that

'The work of this chapter was first presented in [19].

100
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Figure 7.1: Packets with destinations in a region

solves problems of this kind.

Our algorithm is distributed: each node makes routing decisions based on its local
state. independently of the other nodes. Moreover, nodes know nothing about the initial
distribution of destinations (including the values of D;, Wy, and LBy).

At the heart of our algorithm is a new technique based on multi-bend paths, a departure
from the paths using a constant number of bends used in most other hot-potato algorithms.
Each time a packet is deflected (unable to advance toward its destination), it may, with
a certain probability, become ezcited, increasing its priority over non-excited packets. An
excited packet attempts to converge on its target by choosing a logarithmic number of
random intermediate destinations (see Figures 7.2 and 7.4) in a sequence of squares of
decreasing size. As we will show in the analysis, a packet during its multi-bend path
has a good chance not to be interrupted by other high-priority packets, and therefore, to
successfully reach its destination.

We proceed as follows. In Section 7.1 we give some necessary preliminaries. We present
our algorithm in Section 7.2 and in Section 7.3 we give its time analysis. We describe
the performance of our algorithm in terms of the trivial lower bound in Section 7.4. In
Section 7.5 we present related work. We conclude in Section 7.6 with a discussion and open

problems.



102

vertical band-4

¢ & 9 8 6 & & s e ° " e & e

“.\ll‘l...ltl.ll'

.
.
.
.
.
.
Ll
L4
.
-
.
.
-
.
o
F

Figure 7.2: The squares and bands of a node

7.1 Preliminaries

In the n x n mesh, we denote a rectangle with lower leftmost node v and upper rightmost
node v’ as [v,v']. When necessary we distinguish between the binary logarithm lg and the
natural logarithm In.

Take a node v = (z,y) and a number z = 2*¥, where £ = 0,... ,lgn — 1. Consider the
sub-mesh that is up and right from v. The square-z of v is the z x z square whose lower
leftmost node is

vV=(z+z-1l,y+z-1),

as shown in Figure 7.2. If the square-z does not fit entirely into the mesh, it is truncated
at the mesh boundary. Note that square-1 is the node v itself. The korizontal band-z of v

is the rectangle
[(z+22-1y+z-1),(n—-1,y+2z—1)].

The vertical band-z of v is the rectangle
(z+z—-1y+22-1),(z+2z—-1,n—1)].

Note that all square-z, horizontal band-z, vertical band-z, for z =2 and k = 0,... , lgn—1,
partition the sub-mesh that is up and right from v (say, the rectangle [v,(n — 1,n — 1)]).
That is, every node in that sub-mesh can be assigned to exactly one square or band. By



103

Packet States Priority

running highest
ezxcited
normal lowest

Figure 7.3: Packet states and priority

symmetry, we define the squares and bands of v in the other three sub-meshes. Similarly,

we define the squares and bands for any node in the network.

7.2 Algorithm

Our algorithm is greedy: in a node, a packet always tries to follow any link that brings it
closer to its destination. When two or more packets are competing in a node for the same
link we say that there is a conflict.

In our algorithm there are three states for a packet: normal, excited, running. A packet
is in only one of these states. Each packet state corresponds to a priority and the running
packets have the highest priority and the normal packets have the lowest (see Figure 7.3).
The priorities determine how the conflicts are resolved in the nodes, namely, the higher
priority packets win over the lower priority packets. Conflicts between packets of the same
priority are resolved in an arbitrary way (except for the packets in the running state for
which we describe below how the conflicts are resolved). For implementation purposes, each
packet can be divided into an immutable message part, and a mutable header containing
the packet’s priority (two bits suffice).

Initially, all the packets are in the normal state. A packet in the normal state simply
tries to follow any of the available links that brings it closer to its destination. A normal
packet is deflected whenever other normal or higher priority packets (which move forward
to their destinations) have already taken all the links that could bring it closer to the
destination.

Consider now a normal packet = which in the previous time step was deflected from some
node at distance d — 1 from its destination, so that in the current time step it appears at
node v at distance d from its destination (see Figure 7.4). The deflected packet m becomes
ezcited at node v with probability p, and otherwise, it remains normal with probability
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1 — p. The probability p changes over time and it is given by the function

cint
p(t) = P

where c is a constant we will specify later. To avoid notational clutter, we use p to denote
p(t), when t is clear from context. Similarly, any packet becomes ezcited with probability
p whenever it is deflected.

Let’s assume now that packet = becomes ezcited in node v, and that, without loss of
generality, packet m has its destination node lower and left from v. The algorithm assigns
each ezcited packet a preferred link that brings it closer to its destination. If the node v is
in a horizontal band-z of packet 7’s destination node, the packet 7 prefers to take the left
link first (see Figure 7.4). If the node v is in a vertical band-z or in a square-z of packet 7’s
destination node, the ezcited packet m prefers to take the down link first.

The ezcited packet m will try to follow its preferred link. There are only two cases that
the ezcited packet 7w will not be able to follow its preferred link. The first case is when the
ezcited packet 7 conflicts in node v with other excited packets that wish to follow the same
preferred link. Such a conflict is resolved in an arbitrary way and packet = may lose. The
second case is when packet 7 conflicts with a running packet, which has higher priority.
The running packets have also a preferred link. If the ezcited packet m conflicts with a
running packet for the same preferred link then packet 7 always loses. In both cases, if
packet 7 loses then it loses its high priority and it enters immediately (the same time step)
the normal state, and it will be treated in node v as a normal packet.

If the ezcited packet 7 succeeds in taking its preferred link, then in the new node, one
link closer to its destination, the packet 7 changes its state again and it becomes a running
packet. (Notice that packet 7 stays in the ezcited state for at most one time step.) Similar
to the ezcited packets, any running packet has a preferred link that brings it closer to its
destination. As long as the running packet succeeds in following its preferred link it remains
in the running state until it reaches its destination, in which case the packet 7 is absorbed.
If in some node the running packet is unable to follow its preferred link, because of conflicts
with other running packets with the same preferred link, then it enters immediately the
normal state. The preferred links for a running packet are chosen as follows (see Figure
7.4).

o If the running packet m was ezcited in a node v in the horizontal band-z of its desti-
nation, then it will go directly to a random node (1 of z) on the same row in square-z
by following the left links repeatedly. This is the case of Figure 7.4. (From horizontal
band-1, the packet tries to go directly to its destination.)
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o If the running packet m was ezcited in a vertical band-z it will go to a random node
in square-z/2 by following a one-bend path. The first part of a one-bend path has
direction down and the second part has direction left. (From vertical band-1, the

packet tries to go directly to its destination.)

o If the node v is in a square-z of packet #n’s destination node, it will go to a random

node in square-z/2 by following a one-bend path, first down then left.

This procedure is repeated for squares z/2,z/4,... until the running packet reaches its
destination node (that is, z = 1).

A running packet turns whenever the link it exits a node is not opposite to the link
the packet has entered the node. Note that a running packet can conflict in a node with
another running packet, with the same preferred link, only when it turns. In such a case we
specify that a turning packet loses to a non-turning packet. There are no conflicts between
non-turning packets, and conflicts between turning packets are resolved in an arbitrary
way. For convenience, let us call a running packet before its first turn a runningA packet;

a running packet on or after its first turn is called a runningB packet.

7.3 Time Analysis

In this section we give the time analysis of our algorithm. We assume the same powerful

adversary described in Section 6.3.
A key term in the analysis is the parameter m which for any batch problem instance

has to do with the distribution of the destinations in square regions of the network.

Definition 7.3.1 Let S be a square subregion of the mesh, and let dest(S) be the number
of packets with destinations in S. The parameter m is defined as the marimum number so

that no k x k square has more than mk destination packets. Ezplicitly,

1
n
™ 1= max ;- - max dest(S)

as S ranges over all k x k square subsets of the mesh.
The parameter m is related to the bandwidth lower bound and this relationship is explored
in Section 7.4. Although our complexity analysis depends on m, the value of m is not known

to the routing algorithm.
We immediately obtain the following lemma.

Lemma 7.3.1 n <m < n2.
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Proof: There are n? packets to route, so the maximum possible value of dest(S) is n?.

Taking S to be the entire mesh,

m> dest(S) —n
n

Taking S to be a single node,

w

We continue in this section as follows. First we prove in Sections 7.3.1 and 7.3.2 that
the probability there will be an ezcited or running packet at a given node and time is small.
In Section 7.3.3 we will see that a deflected packet has a good chance to be ezcited and
running to its destination without any interruptions. Finally, in Section 7.3.4 we prove that
with high probability each packet will have arrived at its destination after the promised

time.

7.3.1 The Excited State

To avoid notational clutter in this section and in Sections 7.3.2 and 7.3.3, we will assume
that all events are happening after time o, where the exact value of ¢, will be specified
in Section 7.3.4. Furthermore, we will assume that the probability of becoming excited at
time tg — 2n is p. and thus, after time ¢, — 2n a packet becomes ezcited with probability at

most p (since this probability decreases with time).

Lemma 7.3.2 The probability that a particular node contains no ezcited packet is at least

(1-p)t.

Proof: A deflected packet becomes ezcited with probability at most p only if it was
deflected in the preceding time step. It will fail to become ezcited with probability at least
1 — p. Since at any time step a node contains at most four packets, all four will fail to

become ezcited with probability at least (1 — p)*. -

7.3.2 The Running State

Lemma 7.3.3 The probability that at node v and time t there is no runningA packet is at
least (1 — p)8n—8,
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Proof: Let’s assume that at a node v = (z,y) at time ¢ there is a runningA packet .
Packet # must have become ezcited at some node v’ in the same row or column at time
t' =t—dist(v,v'),fort—t' =1,... ,n—1. From Lemma 7.3.2, node v’ will not contain any
excited packet at time t' with probability at least (1 — p(¢'))* > (1 — p)*. All the nodes v’
(there are at most 2n — 2) will contain no ezcited packets at the corresponding time steps
t' with probability at least

(1 — p)ien=2) — (] — p)3n-8.

A runningB packet 7 can always be considered as being on a one-bend path from

square-z to square-z/2; we say that the packet =« is a runningB(z) packet.

Lemma 7.3.4 A runningB(z) packet m chooses a particular row or column with probability

at most 2/z.

Proof: If the runningB(z) packet 7 is on the first part of the one-bend path (thus the
preferred link is a column link), then it has chosen randomly one of z columns. If the
runningB(z) packet 7 is on the second part of the one-bend path (thus the preferred link

is a row link), then it has chosen randomly one of z/2 rows. a

For the rest of this section, we will assume that the packets have destinations down and

left.

Lemma 7.3.5 A runningB(z) packet m at node v = (z,y) has its destination inside the

square
z z
S = [(:1:—2z+‘2.y—22+2).(1:—§+l,y—;+1)].

Proof: The current position v of packet m must be somewhere in the square S’ = [v’. v"],
with v being the lower left corner of square-z/2 and v” being the upper right corner of
square-z of packet w's destination. If v coincides with node v’ then the destination has

I - * 1 - '* 1 .

If v coincides with node v” then the destination has coordinates
(r—-2z2+4+2,y—22+2).

Subsequently, the destination of packet 7 is inside the square S. (]
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Let m be a packet in the runningB(z) state. We say that m might arrive at node v if

there is some execution in which 7 arrives at v in the runningB(z) state.

Lemma 7.3.6 The number of runningB(z) packets that might arrive at node v is at most

3/2 -mz.

Proof: With Lemma 7.3.5 only packets with destination inside square S can be runningB(z)

packets at node v. The size of this square is smaller than

3z 3z
— X —.

2 2

By Definition 7.3.1 the square S cannot have more than m - 3z/2 destination packets. =

Lemma 7.3.7 A node v contains no runningB(z) packet at time t with probability at least

95\ 3m:
(1 — “T) ;

Proof: Consider a runningB(z) packet = that is at a node v at time ¢. Packet 7 has at
most one chance to get ezcited and appear in v at time t. This chance is given to packet =
at some time ¢’ < t and at a node v’ with distance ¢t — ¢’ from v. Packet 7 must have been
deflected at time ¢’ — 1 and at time ¢’ in node v’ it becomes ezcited and follows a running
path to node v. If packet 7 loses this chance and becomes ezcited in a subsequent deflection
then it will fail to arrive at node v at time ¢ and it will arrive there some time after ¢, since
any subsequent deflection takes packet 7 further from node v by a link.

The probability of 7 getting ezcited at v’ is at most p(t') < p(t). If the runningB(z)
packet m enters node v when it is in the column part of its path from square-z to square-z/2,
then from LLemma 7.3.4 it chooses the column of node v with probability at most 2/z, and
similarly for the row part. Subsequently, the probability that packet w appears in v at time
t is at most 2p/z and the probability that it doesn’t appear in v at all is at least

_2
z
According to Lemma 7.3.6, the number of possible packets like w is at most 3/2 - mz.

Therefore, none of them will be in node v and time ¢ with probability at least

as needed. [ ]
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Lemma 7.3.8 The probability that at a node v there is no runningB packet at time t is at

least (1 — p)3mgn—1)

Proof: A runningB packet can be a runningB(z) packet, with z = 2¥ and & is one of
1,... .lgn —1. Considering all the values of z, by Lemma 7.3.7 and applying Equation 5.2,
we have that there will be no runningB packet at node v and time t with probability at

least
Ign-1 2 %.m.zk lgn—-1 p 3m.2k—1
IT (1-3 = II (1 - :_)L_—l)
k=1 k=1
lgn-1

> J[ a-p®"
k=1
— (1 _p)3m(lg n—l)-

7.3.3 One Packet

Lemma 7.3.9 At a node v at time t there is no ezcited or running packet with probability

at least (1 — p)l2mlgn,

Proof: The probability that no ezcited or running (runningA or runningB) packet is at
node v and time ¢ is the product of the probabilities that each of them is not at node v and

time ¢.
e By Lemma 7.3.2, there is no ezcited packet at node v and time t with probability at
least (1 — p)i.
e By Lemma 7.3.3, there is no runningA packet at node v and time ¢ with probability

at least (1 — p)3n~8.

e By Lemma 7.3.8, there is no runningB packet with destination down and left at node
v and time ¢ with probability at least (1 —p)3™(87-1)_ Since there are four symmetric

cases, the probability to have no runningB packet at all is at least (1 — p)i2m(gn—~1)

From Lemma 7.3.1 we know that m > n. Therefore we can bound the product (for the sake

of simplicity)

(1 _p)4 . (1 _p)Sn—-S -(1 _p)l2m(lgn—l) > (1 _p)l2mlgn.
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We say that an ezcited packet travels uninterrupted to its destination if it becomes

running and reaches its destination without encountering any conflicts.

Theorem 7.3.10 When a packet becomes ezcited it will travel uninterrupted to its desti-

nation with probability at least (1 — p)24mig’n

Proof: By Lemma 7.3.9 there is no other ezcited or running packet at any specific node

v and time ¢ with probability at least
q:= (1 _p)12mlgn.

After a packet m becomes ezcited it will become running and it will turn at most 2(lgn — 1)
times before arriving at the destination. Each of those turns, and the single transition from
ercited to running. will be successful with probability at least g, since with at least this
probability it will not conflict with other packets. Whenever the running packet 7 is not
turning, it will successfully take its preferred link since it is the only packet entering from
the opposite link. Therefore, an ezcited packet will succeed to reach its destination with

probability at least
q- q2(lgn—l) > (1 _ p)24mlg2n-

7.3.4 All Packets

Our algorithm satisfies some interesting properties with high probability (at least 1 — 1/n).

We use the following constants and time steps.

c = 24e ¢ =3 24clg’e

to=cmlndn+2n ti =3cmlndn

Recall that the probability of becoming excited is

clnt

p(t) = ——-

If the value of m were known to the algorithm, then p would not need to vary with time.

Lemma 7.3.11 If packet @ becomes ezcited at time t > tg, then the probability of reaching

its destination is at least 1/2e.
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Proof: Any packet conflicting with packet = must have been ezcited at most 2n steps
before 7. The probability that such a packet became ezcited was at most
cln(dmin3n)

dmin®n
By Theorem 7.3.10, packet m will reach its destination with probability at least (1 —
p)im 16’7 Since m < n? (Lemma 7.3.1), by taking n to be sufficiently large, such that

dIn®n < n (thus dmln®n < n?), and by Equation 5.1 we get

(1 _ cln(c’rnln"’n))umlgz"

p=p(to —2n) =

(1 - p)24m Ig3n

cdmindn
3clnn 24mlg?n
2 (-58)
cdmln’n
1 24mig®n
= )
( 24mlg2n>
2 ()
- e 2dmlg°n
> =
- 2

Lemma 7.3.12 Each time t (with to <t < t)) a packet is deflected, it will arrivz uninter-

rupted at its destination with probability at least
c
6ec’min®n’
Proof: Whenever a packet is deflected with probability at least p(t;) it becomes ezcited.

Since n < m (Lemma 7.3.1), we get

cln(3¢mIndn)

3¢mlin®n
clnn

3¢mln®n
c

3d¢mn’n’
The probability of a packet arriving at its destination without interruptions when becoming
ezcited is according to Lemma 7.3.11 at least 1/2e. Therefore, the probability of the packet

arriving at its destination without interruptions when being deflected is at least

p(t1)

>

(t).i - ¢ 1
P 3¢ T 3¢min’n 2
c

6edmlin®n’
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Lemma 7.3.13 If a packet m is deflected x times, then it will reach its destination in at

most 2z + 2n — 2 steps.

Proof: Initially, the distance of 7’s source to its destination is no more than 2n — 2. Each
time 7 is deflected the distance increases by a link, and each time it follows a link closer to

its destination the distance decreases. [ ]

Lemma 7.3.14 With probability at least 1 — 1/n3. a packet will reach its destination in t;

steps.

Proof: By Lemma 7.3.12, each time that a packet m is deflected in the time interval
to <t < t;, packet m will arrive at its destination without interruptions with probability at
least

N c
1= 6edmin®n’

Since. we always consider the most powerful adversary. which produces the worst case
scenario for interrupting the running path of packet =, successive probabilities of successfully
reaching the destination aftei a deflecticn are independent. By Lemma 7.3.13, the number

of deflections of packet m that can fit in the time interval tg < t < t; is at least
t; — to —-2n
2
(3¢ —)mIn®n — 4n
‘)

= cmin®n—2n.

r =

Since n < m (Lemma 7.3.1), we obtain
z = dmin®n—2n

1
> dmindn - Zc'm In3n

3
Zc’m Inn.

Packet 7 will fail to reach its destination after = deflections with probability at most (1—q)*.

%c’mln:’n
z C
(1-¢g)* < (1 —-—)

By Equation 5.1, we get

" 6edmln’n
%c’mlnsn
3inn
= l = 35—
i¢min’n
e—3lnn
1

n3’
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Theorem 7.3.15 For any batch problem instance, with high probability (at least 1 —1/n),

all packets reach their destination nodes in at most O(mIn®n) steps.

Proof: By Lemma 7.3.14, a packet will arrive at its destination in ¢; steps with probability
at least 1 — 1/n3.

Since we have made a worst case analysis for each packet by assuming that the adversary
produces the worst case scenario for a packet to reach its destination. we can safely assume
that the packets are independent of each other in the analysis.

Therefore, the probability that all n? packets will arrive at their destinations within ¢;

steps is at least (applying Equation 5.2)

7.4 Lower Bound
In this section, we show how our algorithm relates to the trivial lower bound
LBy = Q(D[ + Wr).

Recall that for any batch problem instance / the bandwidth lower bound W; for a region S
is defined by taking the number of packets s; with origins outside S and destinations inside

S. divided by the perimeter of S, the number of links leading into S.

Definition 7.4.1 For any instance I of a routing problem. and any region S of the mesh,
let dest(S) be the number of packets in I with destinations in S (independently of their
origins), perim(S) the perimeter of S, and M[(S) = dest(S)/perim(S).

M; = max(M;(S)) where S ranges over all regions S.

It is immediate that m/4 < M, since m/4 is the maximum M taken over square regions

only (see Definition 7.3.1).
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For any region S, let sg be the number of packets in I with sources within S, and s; be
the number of packets with sources outside S.

So + )
perim(S)
S0 S1
perim(S) + perim(S)
S0
= perim(z) * 1)
< n+ W((S).

M;(S)

Subsequently,
M <n+W;.

It follows that m/4 differs from W, by an additive term of at most n.
If the problem I is hard then LBy is Q(n), so Wy = Q(n) or Dy = Q(n). If W; = Q(n),
then
QM;) < Qn + Wy) = QW) < QLBy).

If D; = Q(n), then
QM) < Q(n+ Wi) = QD + Wr) = Q(LBy).
In either case,
Q(m) < QM) < QLBy).
Substituting in Theorem 7.3.15, we obtain our main result.

Corollary 7.4.1 For any instance I of a hard batch problem, with high probability, all

packets reach their destination nodes in at most O(LB; - In® n) steps.

7.5 Related Work

For mesh-like networks, there are many hot-potato algorithms tuned for the batch permu-
tation and random destinations routing problems [20, 27, 35, 37, 46, 52] (see also Chapter
6).

In the more general setting of arbitrary many-to-one batch routing problems, there are
several known hot-potato algorithms. Using potential function analysis, Ben-Dor et al. [12]
provide a simple algorithm for the 2-dimensional n x n mesh with O(nvk) steps, where

k is the total number of packets to be routed. They generalized their techniques for the
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d-dimensional mesh to obtain O(e?n?-1k/¢) steps. Borodin et al. [13] present a hot-potato
routing algorithm for the d-dimensional mesh with Dy + 2(k — 1) steps, where Dy is the
distance lower bound for any routing problem instance /. Similarly. Ben-Aroya et al. [10]
give an algorithm that finishes in D; +2(k—1) steps in the two-dimensional mesh. For single
target problems, Ben-Aroya et al. [11] give a randomized algorithm for the d-dimensional
mesh that finishes in O(k/d) steps, with high probability.

For the problems we consider here, in which there are n2? packets to be routed, all these
algorithms require O(n?) steps, which can be achieved by a naive solution. The algorithm
presented here is the first that does better.

Solving arbitrary routing problems is difficult even for the traditional store-and-forward
routing algorithms. The best store-and-forward algorithm is due to Mansour and Patt-
Shamir [42]. and performs within a factor of log(Dy) of the lower bound LB; for any routing
problem instance I. In their algorithm the nodes have buffers of size log(Dy). There was
no known similar result for hot-potato algorithms. It was surprising to find that for hard
routing problems, in which Dy is Q(n), our hot-potato algorithm matches this bound within

a polylogarithmic factor even though it uses no buffers.

7.6 Discussion

Our algorithm carries over to the torus with a slight (constant-factor) improvement in the
time bounds. because all worst-case distances are shorter.

This algorithm raises a number of open problems. The most obvious concerns “easy”
batch problems with sub-linear lower bounds. We do not know whether the class of easy
routing problems would yield to the same (or similar) algorithm with a more refined com-
plexity analysis, or whether a different algorithm is needed. It would also be interesting
to consider whether this kind of multi-bend algorithm could be adapted to networks of
dimension higher than two, or to networks with a different topological structures. (Note

that the distance and bandwidth lower bounds apply to arbitrary networks.)



Chapter 8

Conclusions

In this thesis, we studied two distributed structures: counting networks and the mesh
network. Counting networks are used for implementing distributed counters; mesh is a
communication network.

So far, counting networks have been used to solve distributed computing problems that
required increment operations only, and these operations are realized by accessing the net-
work with tokens. However, several distributed computing problems, like the semaphores,
critical regions, and monitors, all rely on applying both increment and decrement opera-
tions. In counting networks. decrement operations can be realized with the use of antitokens.
In Chapter 2, we show that counting networks can support simultaneously increment and
decrement operations. In other words. we show that if a balancing network satisfies the
step property with tokens only. then it will still satisfy the step property even when antito-
kens are introduced. We generalize this result to a wide class of balancing networks, which
includes the smoothing networks and threshold networks, and we show that these networks
preserve their respective properties, of their output sequences, even when antitokens are
introduced.

In the two subsequent chapters, we presented new counting network constructions. It
was an open question whether we could construct a counting network with arbitrary in-
put/output width w that simultaneously has a small depth, and the depth expression doesn’t
hide any large constants. In Chapter 3, we presented the construction of an arbitrary-width
counting network which has depth O(log? w), and this depth expression doesn’t hide any
large constants. Given any factorization of the width w (to prime factors or not), we build
our counting network with balancers of input/output widths smaller or equal to the biggest
factor in the factorization. By choosing the right factorization, we can trade-off balancer

117
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widths and the depth of the network.

In Chapter 4, we presented a novel counting network construction which has input
width smaller or equal to the output width. In this construction, we can fix the input
width of the network and we can increase the output width arbitrarily. The depth of the
network depends only on the input width, and while we increase the output width the
network depth remains the same. Increasing the output width, the number of balancers in
each layer of the network increases. As a consequence, the network contention decreases.
since by having more balancers in the network the chance that the tokens meet in the
same balancer decreases. Simultaneously, the network latency remains low, since the depth
remains the same. By choosing the right output width, we can optimize the latency and
contention of the network.

For the mesh network, we presented new greedy hot-potato communication algorithms.
Greedy hot-potato routing algorithms have been observed to perform extremely well in
practice. However, these algorithms are very hard to analyze, and so far, there had been
no formal analysis that could explain their good behavior, observed in practice. In Chapter
6, we presented a new greedy hot-potato algorithm. which we analyzed for batch routing
problems. We showed that for the n x n mesh this algorithm routes any permutation and
random destinations batch problem in time O(nlogn), with high probability. This bound
is a significant improvement over the previously known bound of O(n?).

In Chapter 7, we studied the general batch problem in the n xn mesh, where destinations
of packets are chosen arbitrarily. Any such routing problem has a lower bound L, which
is a lower bound on the time needed for all the packets to be routed, for any routing
algorithm. In the same chapter we presented a new greedy hot-potato routing algorithm
which solves such kinds of problems. If L = Q(n), the time bound obtained by our algorithm
is O(L - log®>n), with high probability. This is the first hot-potato algorithm which is

competitive to the lower bound L.



Appendix A

Counting Networks of Arbitrary
Width

We prove Equations 3.1, 3.2, and 3.3 of Section 3.3.2.

Take any two integers p,q > 2. Let p = |\/p|, P = p — p°. and similarly define § and §
for q. Let also m = max(p, q), r = max(p, §). and s = max(p.§).

Obviously, if m = p then r = p. and if m = q then r = §. Since p? < p and §* < q, we
have r2 < m and thus Equation 3.1 holds.

We continue by showing the inequality:
s < 2p-—1 (A.1)

Proof: Since p = |/p] > /P — 1, we have

a2

p = p—p
< p—(vp-1)?
= 2/p—1.

and thus p < 2p — 1. Similarly, § < 2¢q — 1.
Since 7 < 2,/p— 1 and p < m we have p < 2\/m — 1. Similarly, § < 2y/m — 1. Since
s = max(p,q), we have s < 2y/m — 1 as needed. ]

Next, we show the correctness of Equation 3.2 which can be written as:

rl—;l < m (A.2)
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Proof: By Equation A.1, we have s/2 < /m — 1/2. Subsequently, [s/2] < [\/m —1/2],
and r[s/2] < r[/m — 1/2]. We only need to show that r[\/m — 1/2] < m.

First, we examine the case /m—r < 1/2. We have [\/m—1/2] =r,and r[{/m—1/2] =
r2. Since r < \/m, we have r2 < m. Therefore, r[\/m — 1/2] < m, as needed.

Next, we examine the case /m —r > 1/2. We have [(/m —1/2] =r +1, and r[/m —
1/2] =r? +r. Since r < y/m — 1/2, we have

2
1
Per < (vm-g) +vm-g
- 4
< m.
Therefore, r[/m — 1/2] < m, as needed. [ ]

Finally, we show the correctness of Equation 3.3 which can be written as:

5150 < a9

Proof: By Equation A.2 we only need to show that |s/2] < r. By Equation A.1, we have
that s/2 < /m — 1/2. Therefore, |s/2] < |/m — 1/2]. Since |/m —1/2] < r, we have
Ls/2] < r, as needed. a



Appendix B
Irregular Counting Networks

Lemma 4.1.2 If X and Y®), where w > 2. are step sequences with highest values a

and b. respectively, and step points & and [, respectively, such that
0<Z(X®Y Y@y <2

then either a = b and
0<k-1<2,
ora=b+1and
l=wand 1 <k <2. or
l=w-—1and k =1.
Proof: By Lemma 4.1.1 we have 0 < a — b < 1. Therefore we have only two cases: a = b

ora=b+1.
Consider the case @ = b. We will show that 0 < k —[ < 2. We have

S(X®™) = ka+ (w—k)a-1), and
S(Y®)y = +(w-0)0B-1)
= la+ (w—1{)(a-1).

Subsequently,

X)) —S(Y™) = ka+(w—k)a—1)—la—(w—1)(a—1)
= k-1

Since 0 < Z(X®)) — (Y(®)) < 2, we have 0 < k — ! < 2, as needed.
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Next, consider the case a = b+ 1. We will show that either l = wand 1 < k < 2, or
l=w-—1and k =1. We have

o(X®Y = ka+ (w—k)a—1), and
(Y @) b+ (w-10)0b-1)
= lla—1)+(w—1)(a—-2).

Subsequently.

SXE) —2(Y®) = ka+(w—k)a—-1)=Il(a—1)— (w—1)(a—2)
= k—-Il4+w.

Since 0 < (X (@) ~Z(Y®) <2 wehave 0 < k—I{+w < 2. Ifl = w then k < 2, and since
k is a step point we have £ > 1 and thus 1 < k < 2, as needed. Otherwise, if [ < w from
inequality k —{ +w < 2, we get k+ 1 < 2. Since k > 1, we must have & = 1. Furthermore,
from inequality A —{ + w < 2 we get [ > w — 1. Since | < w. we have |l = w — 1, as needed.
]
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