INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

LOCALIZER A Modeling Language for Local Search

by
Laurent Michel

Candidatures en Sciences Economiques et de Gestion,
Facultés Universitaires Notre-Dame de la Paix, 1990
Licence et Maitrise en Informatique,
Facultés Universitaires Notre-Dame de la Paix, 1993
Sc. M., Brown University, 1996

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 1999

UMI Number: 9932449

UMI Microform 9932449
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

© Copyright 1997,1998,1999 by Laurent Michel

This dissertation by Laurent Michel is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Péal Van Hentenryck, Director

Recommended to the Graduate Council

o 18/22/75 Py aa

,Steven P. Reiss, Reader

Date 10 /27/98 W/ pW

Leslie Pack. Kaebling, Reader

Date /0/27/90‘) W/A/V\

/ John Hooker, Reader
Carnegie Mellon University

Approved by the Graduate Council

Date ////9 / % 7/%‘/ /J ’ ?%;

P@r J. Estrup /
Dean of the Graduate School and Resedrch

Vita

Name
Born
Education

Book

Laurent D. Michel

July 17, 1970 in Dinant, Belgium
Brown University, Providence, RI
Ph.D. in Computer Science, May 1999.

Brouwn University, Providence, RI

M.Sc. in Computer Science, May 1996.

Facultés Universitaires Notre-Dame de la Paiz, Namur, Belgium

Licence et Maitrise en Informatique, 1994.

Facultés Universitaires Notre-Dame de la Paiz, Namur, Belgium

Candidature en sciences Economiques et de Gestion, 1991.

P. Van Hentenryck, L. Michel, Y. Deville Numerica: A Modeling
Language for Global Optimization MIT Press, Cambridge, London

Acknowledgements

This thesis is the result of four years of effort, learning and the collaboration with my
advisor, Pascal Van Hentenryck. I am extremely grateful for the opportunity Pascal gave
me to come to Brown and work with him. Pascal made me discover and appreciate many
aspects of computer science and research. His sense of humor, cheerful disposition, guidance,
availability, and encouragement are invaluable to me. QOur long conversations in the fifth
floor kitchen are famed and will not be forgotten. I just wish all graduate students share
similar experiences with their advisor.

I would like to specially thank Steve Reiss, Leslie Kaebling and John Hooker for being on
my thesis committee and reviewing this work. I was particularly lucky to get so many com-
plementary comments and suggestions that helped to improve the thesis. Steve and Leslie
made sure the thesis would reflect all aspects of the work and include chapters addressing
semantic and modeling issues. John’s early involvement, enthusiasm and comments on this
project contributed to many improvements throughout all chapters. I also want to thank
John for coming to Brown to attend the defense.

Two early influences on my grad school career were Paris Kanellakis and Baudouin Le
Charlier. The atmosphere of the constraint lunches and Paris’s teaching in general are vivid
memories. I appreciate his influence since the thesis originates from comments he made on
the usefulness of studying local search in the context of constraint programming. Baudouin
is responsible for important parts of my college education, for triggering my interest in
research, and introducing me to Pascal.

My stay at Brown would not have been so enjoyable without the friendship of many
fellow graduate students. My officemates Sharon Carabello, Costas Busch and Gopal Pan-
durangan together with Vasiliki Chatzi, Jose Castanios, Manos Renieris, Luis Ortiz, Hagit
Shatkay, Dimitrios Michailidis, Galina Shubina ard Kostadis Roussos, to name a few, were
quite often involved in work related or social activities that made the department such a

lively, productive environment.

iv

I am also thankful for the support of my family. I thank my parents for giving me the
opportunity to go to college and to our relatives for their support and vote of confidence.
Finally, many thanks to my wife Valérie for her endless patience, support, understanding

and love throughout these years.

Contents

List of Tables
List of Figures

1 Introduction

1.1 Combinatorial Optimization
1.2 Languages for Combinatorial Optimization
1.3 LOCALIZERt i it it it e e e e e e e e e e e e e e e e e e e
1.4 Organization« « v it vt et e e e e e e e e e e e e e e e e

2 A Brief Overview of Local Search

2.1 Informal Presentation 0.
2.2 Formalization L L L L e e e e e e
2.3 DesignDecisions @ i i i i e e e e
2.3.1 Design Choices for the Neighborhood
2.3.2 Design Choices for the Objective Function
2.3.3 Design Choices for the Acceptance Criterion
2.3.4 Design Choices for the Search Procedure.
2.4 Overview of some Traditional Approaches.
241 LocalImprovement e
2.4.2 Threshold Algorithms,
243 TabuSearch
2.5 Beyond Classic Techniques

3 A Tour of LOCALIZER
3.1 The Computation Model -
3.2 The Structure of LOCALIZER Statements

E:

AW N e

© © 0 O O

10
11
12
12
12
13
14
16

3.3
34
3.5

3.6

The
4.1

4.2

4.3

4.4
4.5

4.6

4.7

4.8
49

The Running Example o .. 19
Invariants L . o e e e e e e e e e e e e e e e e 20
The Neighborhood 23
3.5.1 Neighborhood Specifications 23
3.5.2 The Acceptance Criteria 25
Incrementality Issues Lo Lol 28
Language 34
Data Types . - . . o o v i i e 34
4.1.1 Primitive Data Types, 34
4.1.2 Primitive Type Constructors 35
The TypeSection ittt 35
The Constant Sectiono il 36
4.3.1 Inline Imitializations i 37
43.2 Offfine Initialization 37
433 GenericData i e e e e e 38
434 ComputedData 38
The Variable Section i e 39
The Invariant Section & o o o L L i i i e e e e e e 40
4.5.1 ArithmeticInvariants L oo oo 40
452 SetInvariants L oLttt e e e e e 43
453 Set Dependent Invariants 44
454 BuiltinInvariants oo oo Lo oL 44
4.5.5 Invariant Declaration Syntax 45
4.56 Current Limitation o o .. 45
The Operator Section 45
46.1 Functions L . . i i e e e e e e e e e e e e 46
4.6.2 Control Structureso i e 46
Neighborhood - L e 47
4.7.1 The Transformation Component 48
4.7.2 The Neighborhood Component 48
4.7.3 The Acceptance Criterion 51
4.74 Thetry Composition 52
The Objective Function Section, 54
Termination Criteria o e e 54

4.10 The Parameter Section & v & o v i i v e e e e e e e e e e e e e e e e 55

4.11 Advanced Support . . - L. oL L e e e e e e 56
4.11.1 Abstract Builtin Data Types 56
4.11.2 GraphInvariants oo 59

A Denotational Semantics of LOCALIZER 63

51 LITTLE LOCALIZER . - . . . « &« &t i i it it e e et e et e e e e e et 63

5.2 Notations and Conventionsttt 65

5.3 Semantic Algebras e 66

54 TheSemantics - . . o i i it it it e e e e e 71
541 EXPressions -« ot i it ittt e e e e e e e e e e 71
5.4.2 Statements i i et e e e e e e e e e e e 72
543 Declarations. L e 73
5.4.4 Invariants maintenance 74
54.5 Neighborhood L o L 75
546 Program L L e e e e 78

Implementation 80

6.1 Normalization o i i e e e e e e e e e e e 81

6.2 StaticInvariants 81
6.2.1 The PlanningPhase, 82
6.2.2 The Execution Phase, 83
6.2.3 Propagating theInvariants 83
6.24 CoIrectness o c . v it ittt e e e e e e e e e 85

6.3 DynamicInvariantsttt e e 90
6.3.1 Motivation e e e e 91
6.3.2 Overviewofthe Approach 92
6.3.3 Formalization e e e 92
6.3.4 The Execution Algorithm 94

6.4 SetInvariants L L ... e e e e e e e 94
6.4.1 Extensional and Intentional Set Invariants 94
6.4.2 Sets as Abstract Data Types 95
6.4.3 Extensional Sets e 96
6.4.4 Semi-Intentional Sets. oL oo 99
6.4.5 Fully Intentional Sets 103

646 Openstructures 105

6.5 SUmMmATy -« . ot i e i e 106
Applications 107
7.1 Boolean Satisfiability . . . - L oL 107
711 TheProblem e 107
7.1.2 The Local Search Algorithm 108
7.1.3 A Simple LOCALIZER Statement 108
714 Extensions - o i ittt e e e e e e e e e e 111
715 Experimental Results, 112
72 Graph Coloring« .t i i e e e e e e e e e e 113
721 TheProblem 114
7.2.2 The Local Search Algorithm 114
7.2.3 A Simple Model for Graph Coloring 114
7.2.4 A More Incremental Statement 116
7.2.5 Experimental Results, 117
7.3 Graph Partitioning o 120
731 TheProblem 120
7.3.2 The Local Search Algorithm 120
7.3.3 The LOCALIZER Statement 121
7.3.4 Experimental Results 121
74 Job-Shop Scheduling e 125
741 TheProblem 126
7.4.2 The Local Search Algorithm 127
7.4.3 A Simulation Statement 128
7.4.4 The LOCALIZER Statement Based on a Makespan Approximation . . 131
7.4.5 A Higher-Level Localizer Model 131
7.4.6 Experimental Results 135
7.5 The Vehicle Routing Problem, 136
751 TheProblem 137
7.5.2 The Local Search Algorithm 138
7.5.3 The LOCALIZER Statement 141
7.54 A More Advanced Algorithm: A—interchange 146
7.5.5 The LOCALIZER Statement 146
7.5.6 Experimental Results 150

8 Modeling in LOCALIZER 155

8.1 Incrementality @ @i i it i e e e e e e 155
8.1.1 Simulation Versus Differentiation 155

8.1.2 Exploiting Invariants for More Incrementality 158

8.1.3 SUMMATY . - - -« ¢« t i e . 160

8.2 Complexity Analysisof Invariants. 162
8.2.1 PropagationCost. e 162

822 Global Cost o o i it e e e e e e 163

823 Globallnvariants o oL 165

8.3 Comstant Factors i i i i it e e e e 166
8.4 Database Techniques o i i e 167

9 Related Work 168
9.1 Constraint Programming Languages 168
9.2 Modeling Languages ittt ittt e 169
9.3 Graphical Constraint Systemso, 170
9.4 Finite Differencing L. L e e 170
9.5 Programming with Invariants 171
9.6 INC: An Incremental Programming Language 172
9.7 Incremental Algorithms 0o oL 173

10 Conclusion 175
A LOCALIZER Syntax 178
Bibliography 184

* Parts of Chapter 3,5,6 and 7 were published in Principles and Practice of Constraint
Programming (CP’97), INFORMS Journal on Computing and CONSTRAINTS An In-
ternational Journal in 1997, 1998 and 1999 by Laurent Michel and Professor Pascal Van
Hentenryck.

List of Tables

4.1 Precedence ofoperators. L oL 41
4.2 Programming Interfacefor Path 58
4.3 Programming Interface for Circuit 59
4.4 Graph e e e e e e e e e e e e e e e e e e e 60
6.1 Space and time Complexity Bounds for Static Invariants 85
7.1 GSAT: Experimental Results. 113
7.2 Graph Coloring: Quality of the Solutions. 119
7.3 Graph Coloring: Efficiency of LOCALIZER. 120
7.4 Graph Partitioning: Experimental Results. 124
7.5 Graph Partitioning: Comparison Results. 125
7.6 Job-Shop Scheduling: Experimental Results. 136
7.7 Description of 2-interchange moves., 148
7.8 Imsertion neighborhood for VRP. 152
7.9 Modern VRP Implementations 152
7.10 2-Interchange Neighborhood 152

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3

The Algorithmic Template for Local Improvement. 7
The Impact of Limiting Tabu Status., 15
The Computation Model of Localizer for Decision Problems 18
The Computation Model of Localizer for Maximization Problems 18
The Structure of LOCALIZER Statements 19
A Local Improvement statement for Boolean Satisfiability 21
A GSAT-based Statement for Boolean Satisfiability 27
A Simulated Annealing Statement for SAT 29
A Tabu Search Statement for Boolean Satisfiability 30
An Incremental Statement for GSAT 33
Primitive Functions. . . - L e e 38
A try Combination for the Traveling Salesman Problem.. 54
Syntactic categories and Syntax for LITTLE LOCALIZER. 64
Encoding for Various Notations 67
The Execution Phase for Static Invariants. 84
Propagation routine for the summation elementary invariant. 84
The Execution Algorithm for Dynamic Invariants 94
Propagation Routines for Extensional Sets. 98
Propagation Procedures for Semi-intentional Sets. 101
Propagation Procedure for Fully-intentional Sets 105
The GSAT Algorithm of Selmanetal. 108
A Local Improvement statement for Boolean Satisfiability. 109
A More Incremental Statement of GSAT. 110

7.4 A LOCALIZER Statement for Graph Coloring. 115
7.5 A More Incremental Neighborhood for Graph Coloring. 118
7.6 A Graph Partitioning Statement.00 122
7.7 A More Incremental Graph Partitioning Statement. 123
7.8 Swapping vertices v and w in a Job-shop schedule. 128
7.9 A First Job-shop Scheduling Statement. 129
7.10 An Approximation Based Job-shop Scheduling Statement. 132
7.11 A Higher-Level Job-shop Scheduling Model. 133
7.12 A Higher-Level Job-shop Scheduling Model (continued). 134
7.13 Detour tovisitclient 2. . . . - Lo Lo 139
7.14 Vehicle routing model. Insertion neighbhorhood, Part One. 144
7.15 Vehicle routing model. Insertion neighbhorhood, Part Two. 145
7.16 Moves allowed by a 2-interchange. 147
7.17 Arc-arc exchange validity. 149
7.18 Invariants for the 2-interchange VRP model. 153
7.19 Neighborhood for the 2-interchange VRP model. 154
8.1 Moving vertex i fromclass jtoclass k.. 157
8.2 A Statement for Graph Coloring Based on Differentiation. 159
8.3 Maintaining Connectivity Information Incrementally. 161
A.1 Grammar Fragment for Typed Declarations. 178
A2 Grammar Fragment for Record Type Definition. 179
A.3 Grammar Fragment for the Syntax of Expressions. 180
A.4 Grammar Fragment for the Constant Section. 181
A5 Grammar Fragment for the Variable Section. 181
A.6 Grammar Fragment for the Invariant Section. 181
A.7 Grammar Fragment for the Syntax of Statements. 182
A.8 Grammar Fragment for the Operator Section. 182
A.9 The Syntax of move Instructions. 183
A.10 Grammar Fragment for the Acceptance Criterion.. 183

Chapter 1

Introduction

1.1 Combinatorial Optimization

Combinatorial optimization problems are ubiquitous in real life applications. Typical ex-
amples include scheduling and resource allocation problems, vehicle routing, network design
and various type of planning applications. These problems often consist of finding a so-
lution that optimizes an objective function in a finite, but extremely large, search space.
Many of these problems are computationally challenging: They are NP-hard or worse and
it is generally believed that there exists no polynomial algorithm to solve them. Traditional
approaches to tackle these problems can be divided into three categories: global search,
local search, and approximation algorithms!.

These approaches implement different trade-offs between computation time and quality
of the solutions.

Global search includes techniques such as branch and bound, constraint satisfaction,
and dynamic programming. The basic idea in global search is to decompose a problem into
sub-problems until the sub-problems are easy to solve. Global search algorithms are guar-
anteed to find optimal solutions and their main design issue is to find appropriate pruning
techniques to explore only a fraction of the search space. Local search approaches often
sacrifice optimality for computation speed. The basic idea in a local search is to move from
configurations (e.g., a candidate solution) to configurations in the hope of improving the
quality of the solutions. These approaches are not, in general, guaranteed to find the op-

timal solution but can often produce “good” solutions quickly. Approximation algorithms

1Some approaches are in fact a combination of these.

also sacrifice optimality for computation speed but they do so in a way that provides guar-
antees on the quality of the solution. For instance, there exists an approximation algorithm
for the symmetric traveling salesman problem that is guaranteed to be no worse than twice
the optimal value.

Solving a combinatorial optimization problem is often a difficult task requiring creativ-
ity and, possibly, considerable development time and experimentation. After decades of
research, this process remains an art, although significant insights have been obtained.

1.2 Languages for Combinatorial Optimization

This inherent difficulty was a primary motivation to develop better tools to solve combina-
torial optimization problems. Almost all of the research in this area has focused on global
search and much effort has been spent on providing tools that can simplify the design and
implementation of global search algorithms. Global search is now supported by a variety
of tools including constraint programming languages such as CHIP [15], Ilog Solver [49],
Crp(R) [27], PROLOG IV and Oz [26] and modeling languages such as AMPL [19], GAMS
[5], LINDO [65] and NUMERICA [80].

Constraint languages support the global search paradigm in several ways. First, they
provide a declarative component to describe the search space: constraints. These con-
straints specify what properties must be satisfied by the solutions and the underlying con-
straint solver uses them to prune the search space. Second, these languages provide suitable
abstractions (e.g., non-determinism) to implement search procedures. As a consequence,

solving a combinatorial optimization problem with these languages consists of

1. finding a set of constraints that define the solutions while pruning the search space

effectively,
2. defining a search procedure to explore the search space in an “informed” way.

Constraint programming languages supporting the global search paradigm are now widely
used in industry to solve combinatorial optimization problems. They are generally compet-
itive with specialized implementations of similar algorithms, but they provide substantial
reduction in development and maintenance effort.

Modeling languages generally focus on specifying the constraints in a high level alge-
braic notation. These languages are generally tailored for mathematical programming (e.g.,

linear and integer programming) and support very high-level data modeling constructs and

aggregate operators that considerably simplify the statements of these problems. Model-
ing languages generally do not support the specification of search procedures. A notable
exception is the modeling language OPL [79].

In contrast, little attention has been devoted to the support of local search algorithms
although practitioners frequently use these algorithms and they are more effective than
global search approaches for some classes of problems. It should not be concluded however
that local search algorithms are easy to design and implement. In fact, these algorithms
often require much experimental work to determine a good trade-off between the quality
of the solution and the running time. In addition, a careful examination of local search
algorithms indicates that good implementations often require maintaining complex data
structures incrementally to minimize the cost of moving from configuration to configuration.

Designing and implementing these incremental algorithms is often tedious and error-prone.

1.3 LOCALIZER

This thesis originated as an attempt to determine whether a high-level constraint/modeling
language could support local search. Its main contribution is to show that this is indeed pos-
sible: the thesis presents,a proof of concept, LOCALIZER [36],[35], [37] a modeling language
for local search.

LOCALIZER supports the design and implementation of local search algorithms by pro-
viding abstractions of the most tedious and error-prone aspects of local search algorithms.
Probably, the main abstraction is the concept of invariant that relieves users from the need
of maintaining complex data structures incrementally. Invariants can be used to specify, in
a declarative and high-level way, data structures that are maintained incrementally. These
data structures can then be used to define neighborhood concisely and effectively. As a con-
sequence, invariants, by focusing on what has to be maintained and not how to maintain it,
relieves the programmer from the most tedious and error-prone aspects of local search algo-
rithms. Invariants, in conjunction with other abstractions to support exploration strategies,
may significantly reduce the development time of local search algorithms.

The second contribution of the thesis is to show that LOCALIZER can be implemented
to compare well with special purpose implementations of local search algorithms. The im-
plementation of LOCALIZER generalizes the planning/execution model found in constraint-
based graphics systems and the finite differencing techniques used in the programming
language community. The main novelty here is the ability to deal with dynamic invari-

ants, whose inter-relationships cannot be determined statically. These dynamic invariants

4

are critical to solve many combinatorial optimizati;)n problems efficiently (e.g., job-shop
scheduling and vehicle routing).

The last contribution of this thesis is to demonstrate LOCALIZER on a variety of combina-
torial optimization problems. These problems include Boolean satisfiability, graph coloring,
graph partitioning, scheduling and routing. LOCALIZER is shown to compare well with
specific implementations.

It is important to stress at this point that LOCALIZER is a proof of concept. It shows
that local search algorithms can be supported by a high-level modeling language, reducing
the development time while exhibiting good performance. This thesis should not be viewed
as the final specification of LOCALIZER. There are many extensions of the language that are
being contemplated and many implementation techniques to be investigated. Nevertheless,
this thesis opens, what we believe is, an interesting avenue for simplifying local search
algorithms. It is also useful to mention that LOCALIZER differs from traditional modeling
languages in a fundamental aspect. Traditional modeling languages (e.g., AMPL) focus on
specifying the constraints of the problem. They are mostly independent from the underlying
algorithms used to solve these constraints. In contrast, a LOCALIZER statement specifies a
local search algorithm. It is thus not surprising that LOCALIZER contains both declarative

and procedural components.

1.4 Organization

The rest of the thesis presents LOCALIZER in full detail after a brief overview of local search
(Chapter 2) to fix the concepts and the notation. Chapter 3 is a gentle introduction to
LOCALIZER and its computation model. It presents the various constructs of the language
using Boolean satisfiability as a running example. Chapter 4 presents the language in detail
and covers all the constructs (and their syntax) available in LOCALIZER at this point. The
presentation is informal to ease readability. Chapter 5 presents a denotational semantics of a
subset of LOCALIZER, called LITTLE LOCALIZER. The goal of the chapter is to complement
the informal description of the previous chapters and to remove possible ambiguities. Only
a subset of LOCALIZER is considered since it simplifies the presentation while preserving the
most important concepts. Chapter 6 describes the implementation of the invariarcts that
are the core of LOCALIZER. Chapter 7 applies LOCALIZER to a variety of combinatorial
optimization problems to demonstrate that it reduces the development time significantly
while preserving most of the efficiency of specific implementations. The problems include

Boolean satisfiability, graph coloring, graph partitioning, job-shop scheduling and, finally,

vehicle routing. Chapter 8 discusses modeling issues in LOCALIZER. It addresses mostly
the efficiency of LOCALIZER by discussing the complexity of invariants in space and time.
Chapter 9 discusses related work and future directions. It covers constraint and modeling
languages, finite differencing, invariants, and incremental algorithms. Chapter 10 concludes
the thesis.

Chapter 2

A Brief Overview of Local Search

This chapter is a brief overview of local search. Its aim is mainly to review the major
local search techniques supported in LOCALIZER. The chapter does not attempt to be
comprehensive. Readers interested in a detailed presentation of local search should consult
for instance [47], [30] and [1].

The chapter is organized as follows: Section 2.1 informally introduces local search and
illustrates its use with a simple example. Section 2.2 formally defines local search and
Section 2.3 discusses several design issues. Finally, Section 2.4 describes the instantiation

of the framework to specific strategies.

2.1 Informal Presentation

Combinatorial optimization problems generally aim at finding a computation state (e.g.,
an assignment of values to variables) that satisfies a set of constraints and optimizes an
objective function. Many combinatorial optimization problems are NP-complete, which
makes them unlikely to be solvable in polynomial time.

Traditional approaches sacrifice either time (e.g., branch and bound algorithms) or the
quality of the solution (e.g., local search). The main idea behind local search is to start
from a state and to move to an adjacent state that slightly differs from the current one.
Local search can thus be viewed as the exploration of the space of states through these
neighborhood structures. Many issues arise in designing local search such as the choice of
neighborhood structure and the choice of neighbor to move to.

Local improvement is probably the simplest local search technique. Its basic idea is to
move to neighbors that improve the value of the objective function. A simple schema for
local improvement is described in figure 2.1. In the schema, f is the objective function, and

6

neighborhood(s) defines states adjacent to s.

procedure LOCAL IMPROVEMENT

begin

1 s := startState();

2 for search :=1 to MaxSearches do
3 for trial := 1 to MaxTrials do
4 if satisfiable(s) then

5 if f(s) > bestBound then
6 bestBound := f{s);

7 best := s;

8 select n in neighborhood(s);

9 if f(n) > f(s) then

10 s :=n;

11 s := restartState(s);

12return best;

end

Figure 2.1: The Algorithmic Template for Local Improvement.

Most local search algorithms, including local improvement, enhance the basic skeleton
by wrapping it in a multiple starting point strategy implemented with the outer loop of the

model and the restarting sub routine.

Graph Partitioning To illustrate these ideas, consider the graph partitioning problem.
The problem consists of finding a balanced partition of the node set of a graph that mini-
mizes the number of edges with one endpoint in each partition. More formally, a balanced
partition of a graph G(V, E) is a pair (V},V3) such that V, CV, ViNnVa =0,inVa =V
and |[V;] = [V2|. The cost of a partition is |Cp| where Cp = {{a,b) € Ela € V1 Ab € V2}.
The set S of solutions to the graph partitioning problem is the set of balanced partitions.
The set of optimal solutions S* C S is defined as {s € S : |Cs| = min;es |Ci|}-

To instantiate the template, it is necessary to define a neighborhood, an objective func-
tion, and a selection strategy. A simple local search algorithm for this problem starts from
a balanced partition and moves to adjacent partitions of lesser cost. Given a balanced par-
tition, its adjacent partitions can be obtained by swapping two nodes. More formally, the
neighborhood N(s) of a solution s is defined as

N((V,V2) = {s' = (V{,V3) : V] =i\ {a}U {0} AVr = V2\ {B}U{a}} VaeW,beV?

It is interesting to review this example to observe the numerous degrees of freedom in
local search algorithms.

First, the above local search algorithm only considers states that are solutions. This is
not a requirement and many local search algorithms consider states that are not solutions.
They use a different objective function to guide the search towards a solution of optimal
value. Section 7.3 presents such an algorithm for graph partitioning.

Second, there may be many neighbors that can be chosen at any time. A local search al-
gorithm may choose the best neighbor or any neighbor that improves the objective function.
It may even consider random moves and/or moves that decrease the value of the objective
function. Of course, the neighborhood choice is crucial to achieve a good trade-off between
computing time and quality of the resulting solutions.

2.2 Formalization

This section introduces a framework for local search and formalizes essential concepts that
help in the design process of a specific algorithm.

We consider a combinatorial optimization problem & of the form

min f(Z) subject to
Ci(Z)

Cn(Z)
where z is a vector (Jz| = n) of discrete decision variables for the problem, f is a mapping
f : ™ — A that associates a variable assignment with a performance measure and C;
through C,, are Boolean functions defining the solution space. A solution to a combinatorial
optimization problem is a variables assignment £ that satisfies {C1(&),...,Cn(£)}. Let Z»
be the set of all solutions for a given problem. The set of optimal solutions to a problem is
then defined as ™ C Z» such that

Zo" = {s € Zolf(s) = min F()}

Definition 1 The search space for a combinatorial optimization problem &2 is a set :?:”;
such that ¥ C Z» C A4 ™. Elements of the set Z» often satisfy a relaxation (i.e., a
subset) of {C1,...,Cn}-

Definition 2 A Neighborhood is a pair (.%,N } where % is a search space and N is a
mapping N : .@; — 23:'; that defines, for each solution s, the set of adjacent solutions
N(s) C P». Whenever the relation s € N(j) @ j€ N (s) holds, the neighborhood is said
to be symmetric.

Definition 3 The Transition graph G(%,N) associated to a neighborhood (.%,N) is
the graph where nodes, called computation state, are elements of % and arcs of the form
a — b exists in G for all @ and b such that b € N(a).

Definition 4 A solution s in Z» is locally optimal with respect to NV if f(s) <
min;en(s) f(7)- The set of locally optimal solutions with respect to N is denoted Lo,
Note that local optimality is defined with respect to a specific neighborhood function.

Definition 5 The acceptance is a function A : 22 — 2%2 that filters a set of elements

of the search space, i.e., A(f2) C where 2 is an element of .@;

Definition 6 A selection rule S is a function S : 2% — .% that picks an element s from
its input set according to some strategy, i.e., s = S(§2) €)

Definition 7 A local search algorithm is an iterative process that produces a sequence of

computation states si, s9, ..., s that satisfy the property
si+1 = S(A(N(s1))) (1<i<k)

The hope is to produce a final computation state s, that belongs to .#» ™ (with respect to
a given neighborhood function V), or even better,to Z»"*.

For convenience, the rest of the thesis abuses language and uses the terms transition
graph and neighborhood interchangeably. The rest of this section further assumes, without

loss of generality, that all problems are expressed as minimization.

2.3 Design Decisions

The discussion and the formalization of a local search algorithm clearly indicate that there
are many degrees of freedom in the design of a local search algorithm. At the very least, it
is necessary to choose the functions NV,f,A and S in order to produce a specific algorithm.
This section investigates some of the choices that influence the design of these four functions.

2.3.1 Design Choices for the Neighborhood

Designing a neighborhood is a big decision in any local search algorithm. This remains es-
sentially an art, although substantial research is devoted to understanding what constitutes

a good neighborhood. We now review some properties of interest.

10

Connectivity is an important property of neighborhoods, since it is a necessary condition
to prove asymptotic convergence results. The neighborhood (:S,;ﬂ;v, N) is said to be connected
whenever there is at least one node s* in .#»* that belongs to .Z»* and, for any node
s in % there is a path from s to s* in G(.?;,N). Section 7.4 presents a connected
neighborhood for job-shop scheduling.

Second, the size of N(s) for any s in .Zp is a key parameter in the design of N.
Large neighborhoods are, in general, more expensive to explore but tend to produce better
solutions. Smaller neighborhoods are cheaper to explore, but the small size damages the
chances to have a connected neighborhood.

Third, we characterized .2’9 as satisfying Yo C % C #". When Zp = .@;,
the neighborhood always produces solutions to the instance 42 and the algorithm remains
simple. The other extreme option is to choose Lo = N™. The difficulty is to choose a good
objective function that reflects both solutions quality and the satisfaction of the constraint
set {C1,...,Cr}. The advantage of the approach is the increased flexibility. Indeed, it
is always possible to design a connected neighborhood. The downmside is that it is also
necessary to superimpose, on the local search algorithm that explores N(s), mechanisms to
guide the algorithm towards computation state that represents solutions in Ze.

2.3.2 Design Choices for the Objective Function

The choice of objective function is intimately related to the choice of search space and
neighborhood. The objective function can be used in the actual definition of the functions
N,A and S. Its role is to guide the algorithm to the optimal solution. It can be designed
so that local minima correspond to actual solutions, i.e., all local minima s of f belong
to 2; and also to #s. This property proves extremely useful to facilitate a local search
design with a search space .?,; D Z» where some constraints have been relaxed. Indeed,
the search for a local minimum of f also indirectly searches for an actual solution to the
problem &?. Section 7.2 illustrates this idea with a simulated annealing algorithm for graph
coloring.

Ideally, the objective function f ought to have few local minima, hence few global min-
ima. To effectively guide the algorithm, the ideal f should discriminate between solutions
(“flat” functions offer little guidance), especially when the solutions are adjacent, hence
only slightly different.

Guided Local Search is a subclass of local search algorithms that exploit f by dynamically
adapting it to offer better guidance when the algorithm gets trapped in local minima. The

11

idea behind those algorithms is to parameterize f to alter the shape of the function and
eliminate the local minima.

2.3.3 Design Choices for the Acceptance Criterion

The acceptance criterion embodied by the function A is a major component of a local search

algorithm. Entire classes of algorithms can be captured with the specification of A.

Local Improvement Local improvement uses the definition
A:2%7 L 2%e st AQ)={neQ|fn) < f(s)}

where s; is the it? (2 < k) computation state in the sequence sy, $2, . - -, S¢ produced by the
algorithm So Ao N.

Threshold Algorithms Threshold algorithms use a different function A. Intuitively,
they always accept improving moves and may accept worsening ones. Before defining A, it

is useful to define a computation trace for a threshold algorithm as the pair of sequences

81,525---,8k

€2,C2,--.,Ck

where the sequence si,...,s; is a local search sequence (i.e., a sequence of computation
state that satisfies s;; = S(A(IN(s:))) for all 1 < ¢ < k) and ¢;,¢2,...,ck is a sequence
of real valued constants satisfying 0 < cx41 < ¢ and limg_.oo ¢ = 0. The definition of A

follows as
A:2%% L2972 st AQ) ={neQ|f(n)— f(s:) < &}

where s; is once again the i** computation state in the sequence sy, - .., S¢ produced by the
algorithm So Ao N.

Tabu The acceptance criterion for tabu search algorithms takes yet another form. Intu-
itively, tabu algorithms use special purpose data structures to identify computation states
that have undesirable properties. These data structures are highly problem dependent. Let
us assume that the structure takes the form of a Boolean function 1" : .’ZT; —+ Boolean that

answers the question “Is this state tabu ?”. The acceptance function is then defined as

A:2%e L 2%s st AQ) = {neQ|-T(n)}

2.3.4 Design Choices for the Search Procedure

The selection of a specific search procedure is captured by the choice of function for S.

Three classic choices are available: best, first and random.

Best Strategy The idea is to select the new computation state from a set based on a

local optimality condition. S is thus defined as
5:2%% . 2, st 5(Q) e{neQ|f(n) = min /(5)}-

Ties are resolved with randomization in which case S returns any element of the optimal
subset with equal probability.

First Strategy This strategy has an inherent operational semantics. The idea is to
impose an ordering on the set 2 that is passed as input to S. S then proceeds by returning

as its output the very first element of 2.

Random Strategy This last option simply defines S as
S: 23’; — P2 st. S(Q) =random()

where random is a function that picks an element from its input set at random with a
uniform probability, i.e.,

1
Pr{n = random(2)] = [l Vse.

2.4 Overview of some Traditional Approaches.

A Local Search algorithm is captured with the composition S o Ao N of the search, accep-
tance, and neighborhood functions, all relying on the objective function f. Each function
can be picked independently and the composition leads to a specific local search algorithm.
This sections reviews some of the classic composition for S and A. We assume that N and

f are fixed since those are problem dependent.

2.4.1 Local Improvement

Local improvement was first introduced with a 2-exchange neighborhood for TSP known as
2-opt. The original idea behind local improvement is to accept transition to states that are
strictly better with respect to the function f. Actual algorithms are obtained by picking a

specific function for S.

13

Random Walk Random walk picks an n in A(IV(s)) at random. The stochastic compo-
nent plays an important role in the overall performance of the algorithm. If it incorporates
knowledge about which part of the neighborhood is likely to contain “good” neighbors, it
can guide the algorithm in this direction. The approach has a modest computational cost,
since a transition reduces to the generation of a single element from A(N(s)).

Random walk cannot, in general, determine local optimality. Instead, the termination
condition relies on a probabilistic criterion. As the number of failed transitions grows larger
than |N(s)|, the probability that s is locally optimal converges to 1. Random walk also
generally limits the number of transitions.

Best Improvement In the best improvement variant, the selection function S picks the
best acceptable element of N(s). From a computational standpoint, an inconvenient of this
greedy strategy is the necessity to scan the whole neighborhood to find the best transition.
If all the elements in N(s) have a performance measure worse than the current solution s,
the solution s is locally optimal and the algorithm terminates. As for random walk, it is

also possible to limit the number of transitions.

First Improvement First improvement is a compromise between random walk and best
improvement. Here, the algorithm scans N(s) until it finds a neighbor n that yields a better
f(n). This algorithm determines local optimality when there is no neighbor in N(s) that
leads to an improvement.

Note that all the strategies described above can be combined with the more permissive

acceptance criterion
A:2%7 2% st AQ)={neQ|f(n)< f(s:)}

Instead of restricting valid transitions to transitions that improve the value of f, it is
restricted to transitions that do not degrade the value of f. This rule allows the algorithm

to transform the current solution in presence of a status quo with respect to the function

f-

2.4.2 Threshold Algorithms

It is sometimes too restrictive to require an improvement. This is due to the fact that
specific combinations of N and f can lead to situations where it is not possible to find a
sequence of computation states s1, s, . . . , S that have a monotonically decreasing sequence

f(s1), f(s2),.-., f(sk) long enough to get a good final state sg.

14

An alternative is to further relax the acceptance rule and allow transitions that lead to
worse neighbors. Threshold algorithms form a class of algorithmic solutions following this
idea. Classic threshold algorithms often combine the acceptance criterion described in the
previous section with a best search strategy.

Intuitively, if, at any iteration, the selected neighbor n improves on s, then f(n)— f(s) <
0 and the transition is accepted since ¢ > 0 for all k. If n is worse than s, f(n)—f(s) > 0 and
the acceptance of the transition is now conditional to the magnitude of the worsening since
the criterion is ¢ > f(n) — f(s). Because the sequence of ¢, is monotonically decreasing,
the more time passes, the more the algorithm behaves like a best local improvement.

Simulated annealing [34], [31], is a special case of threshold algorithms where the con-
stants ¢ are replaced by random variables ar and the search strategy is random. The

requirement on the sequence of ¢, is replaced by
0 < flak+1] £ Elax] VE> O

i.e., the expected value of a at iteration k + 1 should be less than the expected value of
o at iteration k. The original definition of Kirkpatrick, Gelatt & Vecchi [31], relies on an
exponential distribution for the random variable ax. The distribution is parameterized by
the distance f(n) — f(s) and a real valued parameter ¢y that monotonically decreases with
the number of iterations, or, more precisely

Prisccept n] = 4 * s 121G
6— ’:k = iff(n) >f(3)

The mechanism responsible for determining f; as a function of the iteration number &
is called the cooling schedule. The quality of the schedule directly affects the quality of
solutions produced and the time requirements for the algorithm.

An additional challenge when designing threshold algorithms, or even simulated anneal-
ing algorithms, is to come up with “good” thresholds or “good” cooling schedules.

2.4.3 Tabu Search

Classic tabu search algorithms [22], [23] are based on an acceptance criterion
A@) = {n € Q| ~T(s)}

and a best search strategy. The role of the Boolean function T'i.e., the tabu structures is

to filter the neighborhood to eliminate undesirable computation states.

15

N(s) Optimal N(s) Optimal
s - ————
ﬂ o ﬂ no
Start s Start ;/
. >‘~. :' ..°.

. W N O

g g
f(n1) < f(s) A f(n1) < f(no)

Figure 2.2: The Impact of Limiting Tabu Status.

The permissiveness of the search strategy has a negative impact. The algorithm can
cycle, especially with symmetric neighborhoods. The Boolean function T° answers this

problem by marking some states as undesirable.

Tabu Structures Tabu algorithms use memory structures to store attributes of states
visited in the recent past. A first attempt is to set aside the whole state and define T'(n)
as n € M where M is the memory storing the previously seen states. However, this proves
too limiting. Consider, for instance, the left transition graph of Figure 2.2. Permanently
marking all states tabu prevents the algorithm from visiting node s twice and therefore
from exploring a path leading to an optimal solution. If instead, the algorithm chooses to
mark transition as tabu, the pitfall of the left schema can be avoided. However, the right
schema reveals that it is still possible for the algorithm to miss the path leading to the
global optima.

To overcome the difficulty, a tabu status of a transition is limited in time, so that other

transitions from a given state get a chance to be followed.

Tabu Approximation Storing the whole state, or a specific transition has a prohibitive
memory cost. A realistic tabu algorithm prefers to store generic transitions. Instead of
marking the transition s ~» n as tabu, it stores the characteristics of the transition itself,
independently of the rest of the move. To make the idea more concrete, a tabu algorithm
for graph partitioning could store the pair of vertices exchanged as tabu, not the pair of
states. Consequently, the approximation of a specific transition s ~» n with the parameters

of the transition filters similar transitions.

16

Tabu Aspiration Suppose a neighbor n of the current state s has an outstanding cost
f(n), much smaller than f(s), or even better than the current best. Further assume that the
state n is currently tabu because it exhibits a characteristic shared by another state visited
in the recent past. State n could possibly be mis-diagnosed as tabu because of the tabu
approximations. It is thus desirable to overrule the tabu status and accept the transition
towards state n when such exceptional conditions occur. This idea is referred to as the

aspiration level and can be modeled as a refinement of the function T'.

Diversification and Intensification A potential limitation for all local search algo-
rithms is to keep on exploring the same part of the search space. If the algorithm gets
a better chance at visiting different regions of the search space, it has better chances at
finding a good solution. The opposite observation can also be made. Some regions of the
search space may appear promising and forcing the algorithm to remain in that region can
be profitable.

Both considerations can be seen as a form of Guided Local Search. In the tabu search
community, they are referred to as diversification and intensification. Diversification and
intensification can be obtained with dynamic alterations to the function f and appropriate

restarting strategies.

2.5 Beyond Classic Techniques

Local search also encompasses other techniques. Genetic algorithms and neural networks
are probably the two most important classes of local search algorithms with the techniques
described above. Genetic algorithms are based on an evolutionary metaphor and work with
sets of solutions called populations. These techniques mix the features of different individual
solutions of the population and introduces perturbations called mutation. Good solutions
are retained with a selection process reminiscent of natural selection. These last two classes
of algorithms are not within the scope of this thesis, however the core ideas embedded in

genetic algorithm are good candidates for future work.

Chapter 3

A Tour of LOCALIZER

This chapter gives a brief overview of the main concepts of LOCALIZER. It starts by review-
ing the computational model of LOCALIZER and the general form of LOCALIZER statements.
It then considers the two main building blocks of LOCALIZER: invariants and neighborhoods.

3.1 The Computation Model

To understand LOCALIZER, it is best to review its underlying computational model first.
Figure 3.1 depicts the computational model of LOCALIZER for decision problems. This model
captures the essence of most local search algorithms. The algorithm performs a number of
local searches (up to MaxSearches and while a global condition is satisfied). Each local
search cousists of a number of iterations (up to MaxTrials and while a local condition is
satisfied). For each iteration, the algorithm first tests if the state is satisfiable, in which
case a solution has been found. Otherwise, it selects a candidate in the neighborhood and
moves to this new state if this is acceptable. If no solution is found after MaxTrials or
when the local condition is false, the algorithm restarts a new local iteration in the state
restartState(s). The computation model for optimization problems is depicted in Figure 3.2
for the case of a maximization. The main difference is the need in lines 6 to 10 to update

the best solution so far when necessary.

3.2 The Structure of LOCALIZER Statements

LOCALIZER statements specify, for the problem at hand, the instance data, the state, and
the generic parts of the computation model (e.g., the neighborhood and the acceptance

criterion). They consist of a number of sections as depicted in Figure 3.3. The instance

17

18

procedure LOCALIZER

begin

1 s := startState();

2 for search := 1 to MaxSearches while Global Condition do
3 for trial :=1 to MaxTrials while Local Condition do
4 if satisfiable(s) then

5 return s;

6 select n in neighborhood(s);

7 if acceptable(n) then

8 s :=n;

9 s := restartState(s);

end

Figure 3.1: The Computation Model of Localizer for Decision Problems

procedure LOCALIZER

begin

1 bestBound := —c0;

2 s := startState();

3 for search := 1 to MaxSearches while Global Condition do

4 for trial :=1 to MaxTrials while Local Condition do
5 if satisfiable(s) then

6 if value(s) > bestBound then

7 bestBound := value(s);

8 best := s;

9 select n in neighborhood(s);

10 if acceptable(n) then

11 s :=n;

12 s := restartState(s);
13 return best;
end

Figure 3.2: The Computation Model of Localizer for Maximization Problems

data is defined by the Type, Constant, and Init sections, using traditional data structures
from programming languages. The state is defined as the values of the variables. The
neighborhood is defined in the Neighborhood section, using objects from previous sections.
The acceptance criterion is part of the definition of the neighborhood. The initial state
is defined in section Start. The restarting states are defined in section Restart, the
parameters (e.g. MaxTrials) are given in the Parameter section, and the global and
local conditions are given in sections Global Condition and Local Condition. Note
that all the identifiers in boldface in the description of computation model (e.g., search

and trial) are in fact keywords of LOCALIZER.

19

(Model) ::= [solve | optimize]
[Type)]
[(Constant)]
(Variable)
[(Invariant)]
[(Operator)]
(Satisfaction)
[(Objective Function})]
zNeighborhood) -
[(Start)]
[(Restart})]
[(Parameter)]
[(Global Condition)]
I (Local Condition)l‘
[(Init)]

Figure 3.3: The Structure of LOCALIZER Statements

As mentioned previously, the most original aspects of LOCALIZER are in the specifications
of the neighborhood and the acceptance criterion. Of course, some of the notations are
reminiscent of languages such as AMPL and Claire at the syntactical level but the underlying
concepts are fundamentally different. In the rest of this chapter, we describe the most
original aspects of LOCALIZER without trying to be comprehensive.

3.3 The Running Example

This overview mostly uses Boolean satisfiability to illustrate the concepts of LOCALIZER. A
Boolean satisfiability problem amounts to finding a truth assignment for a Boolean formula
expressed in conjunctive normal form. The input is given as a set of clauses, each clause
consisting of a number of literals. As is traditional, a literal is simply an atom (positive
atom) or the negation of an atom (negative atom). A clause is satisfied as soon as at least
one of its positive atoms is true or at least one of its negative atoms is false. The local
search statement considered for Boolean satisfiability is based on the GSAT algorithm by
Selman et al. in [68], where a local search move consist of flipping the truth value of an
atom.

A local improvement statement for Boolean satisfiability is described in Figure 3.4. In
the statement, atoms are represented by integers 1 to m and a clause is represented by
two sets: the set of its positive atoms p and the set of its negative atoms n. This data

representation is specified in the Type section. A problem instance is specified by an array

20

of m clauses over n variables. The instance data is declared in the Constant section and
initialized in the Init section which is not shown. The state is specified by the truth values
of the atoms and is captured in the array a of variables in the Variable section. Variable
ali] represents the truth value of atom i. The Invariant section is the key component of
all LOCALIZER statements: it describes, in a declarative way, the data structures which
must be maintained incrementally. Invariants are reviewed in detail in Section 3.4. In the
statement depicted in Figure 3.4, they maintain the number of true literals nbtl[c] in each
clause c and the number of satisfied clauses nbClauseSat. The Satisfiable section describes
when the state is a solution (all clauses are satisfied), while the Objective Function
section describes the objective function (maximize the number of satisfied clauses) used to
drive the search. The Neighborhood section describes the actual neighborhood and the
acceptance criterion. The neighborhood consists of all the states which can be obtained by
flipping the truth value of an atom and a move is accepted if it improves the value of the
objective function. The Neighborhood section is another important part of LOCALIZER
and is reviewed in more detail in Section 3.5. The Start and Restart sections describe
how to generate an initial state and a new state when restarting a search. They both use
a simple random generation in the statement.

It is interesting at this point to stress the simplicity of the statement of Figure 3.4, since

it is difficult to imagine a more concise formal statement of the algorithm.

3.4 Invariants

Invariants are probably the most important tool offered by LOCALIZER to support the design
of local search algorithms. They make it possible to specify what needs to be maintained
incrementally without considering how to do so. Informally speaking, an invariant is an
expression of the form v : ¢ = ezp and LOCALIZER guarantees that, at any time during the
computation, the value of variable v of type ¢ is the value of the expression ezp (also of type

t). For instance, the invariant

nbtl : array[i in 1..m] of int = sum(j in cl[i].p) a[j] + sum(j in clfi].n) la[j};

in the Boolean satisfiability statement specifies that nbtl[c] is equal to the sum of all true
positive atoms and all false negative atoms in clause ¢, for all clauses in 1..n. LOCALIZER
uses efficient incremental algorithms to maintain these invariants during the computation,
automating one of the tedious and time-consuming tasks of local search algorithms. For

instance, whenever a value a[k] is changed, nbtl[c| is updated in constant time.

21

Solve
Type:
clause = record
p: {int};
n : {int};
end;
Constant:
m: int = ._;
n: int = ..;
ck array([l..m| of clause = ...;
Variable:
a: array(l..n| of boolean;
Invariant:
nbtl: array| ¢ in 1..m] of int = sum(i in cl[i].p) a[j] + sum(j in cl[i].n) la[j];
nbClauseSat : int = sum(z in 1..m) (nbtl[i] >0);
Satisfiable:
nbClauseSat = m;
Objective Function:
maximize nbClauseSat;
Neighborhood:
move ali] := lafi]
where ¢ from {1..n}
accept when improvement;
Start:
forall(i in 1..n) afi] := random({true,false});
Restart:
forall(i in 1..n) a[i] := random({true,false});

Figure 3.4: A Local Improvement statement for Boolean Satisfiability

LOCALIZER allows a wide variety of invariants over complex data structures. The in-
variant (also from the Boolean satisfiability statement)

nbClauseSat : int = sum(Z in 1..m) (nbtl[i] >0);

illustrates the use of relations inside an invariant. A relation, when used inside an expression,
is considered a 0-1 integer, i.e., the relation evaluated to 1 when true and 0 otherwise. The

excerpt

22

o : arrayfl..n] of int = distribute(z,1..n,1..n);

Empty : {int} = { 7 : int | select i from 1..n where size(C[i]) = 0};
NEmtpy : {int} = { 7 : int | select i from 1..n where size(C[i]) > 0};
unused : int = minof(Empty);

Candidates : {int} = NEmpty union unused;

B : arraylk in 1..n] of {edge} = {(i,7) : edge | select i from C[k]

select j from C[k]
where A[, j]};
f : int = sum(i in 1..n) (2xsize(Cli])xsize(Bl[i]) - size(C[i])?)
countB : int = sum(i in 1..n) size(B([i]);

is taken from a graph-coloring statement implementing an algorithm in [29]. The graph-
coloring problem amounts to finding the smallest number of colors to label a graph such
that adjacent vertices have different colors. Let us review some of the main ideas behind
the algorithm before discussing the invariants. For a graph with n vertices, the algorithm
considers m colors that are the integers between 1 and n. Color class C;j is the set of all
vertices colored with ¢ and the bad edges of C;, denoted by B;, are the edges whose vertices
are both colored with . The main idea of the algorithm is to minimize the objective function
S 1 2|B;l|Cs| — |C:|? whose local minima are valid colorings. To minimize the function,
the algorithm chooses a vertex and chooses a color whose color class is non-empty or one of
the unused colors. It is important to consider only one of the unused colors to avoid a bias
towards unused colors.

The invariant

B: array[k in 1..n] of {edge} = {(i,7) : edge | select i from C[k]
select j from C[k]
where A[z,7] };

expresses that B[k| is the set of bad edges obtained by selecting two adjacent vertices in
color class k. It illustrates that LOCALIZER can maintain queries over sets varying in time

(since C[k] evolves during the local search). The invariant

C: array[l..n] of int = distribute(z,1..n,1..n);

is equivalent to, but more efficient than,

C: array[i in 1..n] of int = { j : int | select ¢ from 1..n where z[j] =1 };

This function is provided as a primitive in LOCALIZER, since it is useful in a large variety

of applications. The invariant

NEmtpy : {int} = {7 : int | select 7 from 1..n where size(C[i]) >0};

23

defines the non-empty classes. Note that here the set 1..n does not vary but the condition
size(C[i])> 0 evolves over time.

Once again, it is important to emphasize the significant support provided by LOCALIZER
with invariants. These invariants maintain complex data structures incrementally, but users

only have to specify them in a declarative way.

3.5 The Neighborhood

As discussed in Chapter 1, many strategies such as local improvement, simulated annealing,
and tabu search have been proposed in the last decades for local search algorithms. This
section reviews how they are modeled in the Neighborhood section, the other fundamental
conceptual tool provided by LOCALIZER. We start by reviewing the structure of neighbor-

hood specifications before presenting how traditional meta-heuristics can be expressed.

3.5.1 Neighborhood Specifications

Neighborhoods are specified in LOCALIZER by instructions based on the skeleton:

move op(Z1,-..,Zn)
where

z; from Sj;

z, from S,
[accept when (AcceptanceCriterion) 1

The move instruction uses both declarative and procedural components. The first part of
the statement specifies, with the imperative code op(z, ...,), the transformation of the
current state into one of its neighbors. op is an operator or a sequence of instructions using
traditional programming language constructs. Assuming that 7 is the current configuration
and Post(T,1) represents the configuration obtained by executing ¢ in 7, the instruction
defines the neighborhood

{POSt(Ta op(:r:l,...,:z:n)) | T1 € Sl & ... & In eSﬂ.}r

selects one of its elements, and checks if it satisfies the acceptance criterion (if any). The
modeling effort is primarily devoted to the definition of the sets S; and the invariants they

are based on. The sets in the where statement can be defined inline, can refer to constant

24

or invariants and are possibly augmented with filtering clauses. The details on the syntax
are provided in Chapter 4.
Neighborhoods in LOCALIZER are also defined by instructions based on the skeleton:

best move op(z1,.--,Zn)
where
z; from Si;

T, from S,

[accept when (AcceptanceCriterion) |

The instruction defines the same neighborhood as before but selects the move m with the
best value of the objective function in Post(r,m). More formally, the objective function
can be viewed as the definition of a mapping f : 7 — R from computation states to real
numbers and the addition of the keyword best specifies to select an element from the set
B(1) defined as

N(1) = {Post(r,op(z15---1Zn)) | T1E€S1 & ... &z, € Sn}
B(r) = {7 eN(7) | f(r') = mazsen(r) f(s)}

for a maximization problem and to submit it to the acceptance criterion. Note that, in this
case too, the acceptance criterion is applied last. It is also important to mention the concept
of difference between the values of the objective function in states 7 and 7. The difference,
which is used in most of the strategies, is computed automatically by LOCALIZER and can
be accessed directly (using the keyword delta) or indirectly (using acceptance criteria such
as improvement).

The ability to specify complex set expressions in the where clause makes it possible to

develop complex neighborhoods. For instance, a move instruction of the form

move

qfi] ==
where

1 from Conflicts;

v from {1..n} minimizing

sizeof({ j : integer | select j from 1..n where
gljl=vor qjl]=v+i—jor ¢[jl=v+j—1i})

accept when ...

illustrates how the min-conflict heuristics of [38] can be expressed in LOCALIZER.
Finally, LOCALIZER also allows neighborhoods to be composed. For instance, the neigh-
borhood

25

try
Pr(0.1):
move
afi] = la[i]
where
i from OccurInUnsatClause
accept when always .. ;
default:
best move
ali] := lali]
where
i from {1..n}
accept when noDecrease;
end

implements the random walk/noise strategy of GSAT. Here, LOCALIZER flips an arbitrary
variable in an unsatisfied clause with a probability of 0.1 and applies the standard strategy
with a probability of 0.9. Note that LOCALIZER simply goes to the next iteration if the

selected neighborhood is empty, since other neighborhoods may be non-empty.

3.5.2 The Acceptance Criteria

This section provides some overview of the acceptance criteria and it shows how they can
be used to specify traditional local search strategies.

3.5.2.1 Local Improvement

Local improvement, and its variations, can be implemented in various ways in LOCALIZER.

Stochastic Local Improvement The statement depicted in Figure 3.4 uses a stochastic

local improvement approach. The neighborhood section

Neighborhood:
move afi] := lafi]
where 7 from {1..n}
accept when improvement;

specifies the following strategy: randomly select a value i in 1..n (i.e., select an atom), flip
a[i], and take the move if the resulting state improves the value of the objective function.
If the state does not improve the value of the objective function, the move is not taken
and LOCALIZER proceeds to the next iteration of the innermost loop in the computational
model. Note that the keyword improvement is an abbreviation of the condition delta > 0.

26

Greedy Local Improvement The stochastic local improvement strategy can be made
greedy by adding the keyword best in front of the move instruction, as in

Neighborhood:
best move afi] := la[f]
where i from {1..n}
accept when improvement;

This excerpt specifies the following strategy: consider each value 7 in 1..n, select the one
with the best value of the objective function, and accept the move if it is an improvement. If
the move is not an improvement, LOCALIZER terminates the innermost loop, since the next
iteration will produce the same result. Note that this strategy explores the neighborhood
N(1) in a systematic way, while the previous strategy was selecting a random move and

testing it for improvement.

Deterministic Local Improvement The neighborhood section

Neighborhood:
first move ali] := la[]
where i from {1..n}
accept when improvement;

is another approach that explores the neighborhood systematically until a move improving
the value of the objective function is found. More precisely, the exploration scans N (7) until
it finds an acceptable move. If no such move exists, LOCALIZER terminates the innermost

loop of the computation model, since the next iteration will produce the same result.

Non degradation Sometimes it is important to allow more flexibility in the local search

and to allow moves which may not improve the objective function. The neighborhood

Neighborhood:
best move ali] := la[i]
where 7 from {1..n}
accept when noDecrease;

accepts the best move which does not decrease the value of the objective function. The
resulting model, depicted in Figure 3.5, captures the essence of GSAT. The keyword noDe-

crease is an abbreviation for the condition delta > 0.

3.5.2.2 Simulated Annealing

A simulated annealing strategy for the Boolean satisfiability problem is easily expressed by
the LOCALIZER neighborhood

27

Solve
Type:
clause = record
p: {int};
n : {int};
end;
Constant:
m: int = ...;
n: int = ..
¢l array[l..m] of clause = ..,;
Variable:
a: array[l..n] of boolean;
Invariant:
nbtl: array[i in 1..m| of int = sum(i in cl[i].p) a[j] + sum(j in clfi].n) lafj];
nbClauseSat : int = sum(i in 1..m) (nbtl[i] >0);
Satisfiable:
nbClauseSat = m;
Objective Function:
maximize nbClauseSat;
Neighborhood:
best move afi] := lafi]
where i from {1..n}
accept when noDecrease;
Start:
forall(z in 1..n) a[i] := random({true,false});
Restart:
forall(z in 1..n) a[i] := random({true,false});

Figure 3.5: A GSAT-based Statement for Boolean Satisfiability

Neighborhood:
move a[i] = lali]
where i from {1..n}
accept

when improvement — ch++;
cor noDecrease;
cor Pr(exp(-delta/t)) : always — ch++;

The key novelty here is that the accept statement may have a number of acceptance condi-
tions that are tried in sequence until one succeeds or all fail. In addition, each acceptance
condition can be associated with an action. The simulated annealing neighborhood spec-
ifies that a move is accepted when it improves the objective function, when it does not
decrease the objective function, or with the standard probability of simulated annealing,
that depends on a temperature parameter and the variation delta of the objective function.
Note that the variable ch is incremented when there is an improvement or a decrease in the

objective function.

28

The complete statement for a simulated annealing approach to Boolean satisfiability is
shown in Figure 3.6. The statement illustrates also several new features of LOCALIZER. The
Operator section describes two procedures which are used subsequently in the Start and
Restart sections. Operators in LOCALIZER uses traditional constructs from imperative
programming languagss (e.g., loops and conditions) as well as some new primitives for
randomization. These features are once again described in more detail in Chapter 4. Note
also the variables ¢ (the temperature) and ch (the change counter) which are used in various

places in the statement.

3.5.2.3 Tabu Search

We now show how a tabu search strategy can be implemented in LOCALIZER for the Boolean

satisfiability problem. There are many ways to implement a tabu search and this sections

simply presents one of the possibilities. See Chapter 7 for another discussion of this topic.
The neighborhood

Neighborhood:
best move a[i] := lafi]
where i from {1..n} such that !tabu(z)
accept when always — t[v] := trial;

is an excerpt from a simple tabu search for Boolean satisfiability. The tabu search keeps
track of when an atom was last flipped by using the keyword trial that gives access to the
current iteration number for the innermost loop of the computation model. An atom is

tabu if it has been flipped recently, which can be expressed as

boolean tabu(idz : int)

return tfidz] > trial —tl;

where ¢/ is a parameter specifying the time an atom stays on the tabu list. Only atom that
are not tabu are considered in the neighborhood. The complete statement is described in
Figure 3.7. Of course, more complicated tabu search algorithms (e.g., using aspiration cri-
teria to overwrite the tabu status or a tabu list whose size varies over time or diversification

and intensification techniques) can be implemented easily.

3.6 Incrementality Issues

Incrementality is a fundamental issue in local search and it is thus appropriate to discuss
it in some detail in this chapter. It will be a frequent theme of this thesis.

Solve
Type:
clause = record
p: {int};
n : {int};
end;
Constant:
m: int = ..
n: int = ..
cl: array[l..m] of clause = ..;
Variable:
a: array[l..n] of boolean;
t: real;
ch: int;
Invariant:

nbtl : array| i in 1..m] of int = sum(i in clfi].p) a[j] + sum(j in cl[i].n) la[j];

nbClauseSat : int = sum(z in 1..m) (nbtl[i] >0);
Operator:
void genState() {
forall(i in 1..n) z[i] := random({true,false});

t := 2.0;
ch :=0;
}
void lowTemp() {
t:=1¢*0.95;
ch == 0;
Satisfiable:

nbClauseSat = m;
Objective Function:
maximize nbClauseSat;

Neighborhood:
move afi] := laff]
where ¢ from {1..n}
accept

when improvement — ch++;
cor noDecrease
cor Pr(exp(-delta/t)) : always — ch++;
Start: genState();
Restart: lowTemp();
local condition: ch < n

Figure 3.6: A Simulated Annealing Statement for SAT

29

Solve
Type:
clause = record
p: {int};
n : {int};
end;
Constant:
m: int = ...;
n: int = __;
tl: int= 10;
ck array{l..m] of clause = ..;
Variable:
a: array[l..n] of boolean;
t: array[l..n] of int;
Invariant:
nbtl : array{ i in 1..m] of int = sum(? in cl[i].p) a[j] + sum(j in cl[i].n) la[j];
nbClauseSat : int = sum(: in 1..m) (nbtl[i] >0);
Operator:
void genState() {
forall(i in 1..n) z[f] := random({true,false});
forall(i in 1..n) t[i] := -tl;
}
boolean tabu(idz : int) {
return tfidz] > trial — ¢/;

Satisfiable:
nbClauseSat = m;
Objective Function:
maximize nbClauseSat;
Neighborhood:
best move alfi] := lafi]
where i from {1..n} such that !tabu(7)
accept when always — t[v] := trial;
Start:
genState();
Restart:
genState();

Figure 3.7: A Tabu Search Statement for Boolean Satisfiability

30

31

In the statements presented so far, LOCALIZER simulates the move to find out how the
objective function evolves. This simulation can become very expensive when few moves
are accepted. In practice, local search implementations often try to evaluate the impact
of the move in the current state. LOCALIZER supports this practice by allowing to specify
acceptance criteria that are evaluated in the current state. For instance, the neighborhood
definition

Neighborhood:
first move ali] := lafi]
where ¢ from {1..n}
accept when in current state
gainfi] >= 0;

evaluates the condition gain[i] > 0 in the current computation state to determine whether
to take the move. Of course, this requires to generalize the invariants to maintain gain(i}

incrementally. The invariants now become

Invariant:
nbtl: array[i in 1..m] of int = sum(i in d[i].p) a[j] + sum(j in cl[i].n) lafj];
g01: array(i in 1..n] of int = sum(j in po[i]) (nbti[j] = 0) - sum(j in nofi]) (nbtl[j] = 1);
g10: array(i in 1..n] of int = sum(j in noli]) (nbtl[j] = 0) - sum(j in po(i]) (nbtl[j] = 1);
gain : array[i in 1..n] of int = if a[i] then g10[i] else g01[i];
nbClauseSat - int = sum(: in 1..m) (nbtli] > 0);

It is worth spending some time understanding these invariants. The informal meaning is
the following. gO1[:] represents the change in the number of satisfied clauses when changing
the value of atom i from false to true, assuming that atom ¢ is currently false. Obviously,
the flip produces a gain for all unsatisfied clauses where atom ¢ appears positively. It also
produces a loss for all clauses where 7 appears negatively and is the only atom responsible
for the satisfaction of the clause. gl0[i] represents the change in satisfied clauses when
changing the value of atom 7 from true to false, assuming that atom 7 is currently true. It
is computed in a way similar to g01. gain[i] represents the change in satisfied clauses when
changing the value of atom 7. It is implemented using a conditional expression in terms of
gO01fi], g10[i], and the current value of atom i. No simulation is necessary in the resulting
statement.

The GSAT statement can be made even more incremental. Since GSAT only selects
the move with the best objective value, it is possible to maintain these candidate moves

incrementally. The only change is to add the two invariants

mazGain : int = max(¢ in 1..n) gain[i];
Candidates : {int} =
{i : int | select ¢ from 1..n where gain[i] = mazGain and gainfi] > 0 };

32

Here mazGain is simply the maximum of all gains and Candidates describes the set of
flipping candidates as the set of atoms whose gain is positive and maximal. Once the
invariants have been described, the neighborhood is defined by flipping one of the candidates.
There is no need to use the keyword best or a noDecrease acceptance criteria, since they
are already enforced by the invariants. The complete statement is depicted in Figure 3.8. Of
course, the same transformation can be performed for the tabu search statement. As shown
in the experimental section for GSAT in Chapter 7, the benefits of using the incremental

statement are substantial.

Solve

Data Type:
clause = record
p: {int};
n : {int};
end;
Constant:
m: int = ..
n: int = ..
cl: array{l..m] of clause = ...;
po: array| 7 in 1..n] of {int} :=
{ c: int | select ¢ from 1..m where 7 in cl[c].p };
no: array| ¢ in 1..n] of {int} :=
{ ¢: int | select ¢ from 1..m where i in cl[c].n };
Variable:
a: array(l..n] of boolean;
Invariant:
nbtl: array(i in 1..m] of int = sum(i in cl[i].p) a[j] + sum(j in cli].n) la[j];
g01: array[i in 1..n] of int = sum(j in pol[i]) (nbtl[j] = 0) - sum(j in nofi]) (nbtl[j] = 1);
g10: array[: in 1..n] of int = sum(j in nolfi]) (nbt{[j] = 0) - sum(j in po[i]) (nbti[j] = 1);
gain: array[i in 1..n] of int = if a[i] then g10[i] else g01[i];
mazGain : int = max(i in 1..n) gain[i|;
Candidates : {int} =
{i : int | select 7 from 1..n where gain[i] = mazGain and gainfi] > 0 };
nbClauseSat : int = sum(7 in 1..m) (nbti] > 0);
Satisfiable:
nbClauseSat = m;
Neighborhood:
move aft] := lafi]
where i from Candidates;
Start:
forall(z in 1..n)
random(a[i]);
Restart:
forall(i in 1..n)
random/(al]);

Figure 3.8: An Incremental Statement for GSAT

33

Chapter 4

The Language

This chapter describes LOCALIZER in detail. The presentation is mostly organized along
the textual order of the sections in a statement. The following grammatical conventions
are used throughout the text. Keywords appear in boldface as in symbol, non terminals
of the language are noted (symbol). Optional segments in rules are enclosed in brackets
as in [(symbol)] and iterative fragments are enclosed in curly braces as in { (symbol)
i. Grammatical symbols like pairs of brackets and curly braces are underlined to easily
distinguish them from the same terminals in LOCALIZER. Valid identifiers in the language
must start with a letter and are composed of any number of alphanumeric characters and

the '’ symbol.

4.1 Data Types

We first review the primitive data types, type constructors, and then introduce user defined

types.

4.1.1 Primitive Data Types

The basic data types are int (i.e., values in between —23! + 1 and 23! — 1), float (ie.,
double precision floating points) and boolean which contains the values true and false. In
addition to the scalar types mentioned, LOCALIZER supports abstract data types for graph

theoretic concepts. Those are discussed in Section 4.11.

34

35

4.1.2 Primitive Type Constructors

It is possible to use type constructors together with the scalar types of the system to build
more complex data structures. The two elementary type constructors are the array and the

set.

Arrays LOCALIZER supports multi-dimensional arrays of arbitrary types. The declara-

tions

array({l..5] of int;

defines a one-dimensional array of integers. The declaration

array(1..5,1..5] of int;

declares a matrix of integers. The array dimensions are defined with sets of values. In the
above example, the range 1..5 is interpreted as the set {1,2,3,4,5} and any value in this
set denotes a distinct element in the array. Note that LOCALIZER does not support arrays
of arrays but prefers multi-dimensional arrays instead. Also note that sets of records can
be used to define dimensions.

Sets LOCALIZER supports sets of scalars and user defined types (records). For instance,
the fragment

{int}

declares the type “set of integers”. In general object declaration can use the grammar

fragment of Figure A.l to construct complex types.

4.2 The Type Section

The Type section of LOCALIZER is used to define record types. Records within LOCALIZER
are identical to records found in conventional imperative languages like Pascal or C. They
aggregate a number of named fields, possibly of different types.

The declaration

Edge = record
o : int;
d : int;
end;

36

declares a record type Edge consisting of two integers (the origin and destination nodes),

while the excerpt

clause = record
pl: {int};
ol : {int};
end;

declares a record type clause with the two fields pl and nl of type “sets of integers”. User-
defined types can be combined with the type constructor exactly like builtin types. For
instance the fragment

Type:
E = record
o : int;
d : int;
end;

T = record
a : array[l..5] of int;
b : array[l..5] of {int};
end;

defines a record type E as a pair of integers and a record type 1" consisting of two fields a
and b while the fragment

array({l1..3] of E;
array([1..5] of T}

{T}

list declarations of an array of E, an array of T" and a set of T'. Figure A.2 depicts the

syntax of the type section.

4.3 The Constant Section

The Constant section declares the input data and, possibly, some derived data which are
useful in stating the problem. All constants are typed, read only (i.e., they cannot be
modified by assignments), and initialized. There are various ways to initialize data in
LOCALIZER. Initialization can be done inline (i.e., together with the declaration) or offline
to separate the statement of the model from the instance data. The initialization can also be
generic or computed. This section introduces the different form of constant initializations.

Each constant object is stated in LOCALIZER with a declaration statement that asso-
ciates an identifier with a type, i.e., Name : Type. The actual nature of the initialization
is dictated by the syntax that follows the declaration.

37

4.3.1 Inline Initializations

Constants can be initialized inline with a literal value. A literal can be an integer, a Boolean
(true or false), a floating point, a vector of scalar, or a list of scalars. The excerpt

N: int = 6;

S: {int} ={1,2,3,4,5,6,7,8,9,10};

C: E = <10,11>;

D:T = <[11,12,13,14,15},[{1},{2},{3},{4},{5}]>
F: {T} = {<[11,12,13,14,15],[{1},{2},{3}.{4}.{5}]>,

<[111,112,113,114,115],[{6},{7},{8},{9},{10}]>,
<[116,117,118,119,120],{{1,2,8,7},{}.{3.4,5},{}.{}I>}
G: array[l..5] of E = [<1,2>,<2,3>,<3,4>,<4,5>,<5,6>];

gives several constant declarations that make use of the types described earlier.

4.3.2 Offline Initialization

Constants can also be initialized offline in the Init section to separate the model from the

instance data, which is usually a good practice. The excerpt

f : float = ..

declares a float f whose initialization is given in the Init section. The Init section consists
of a set of pairs (identifier,value) and, of course, the type of the initialization must match
the type of the declaration. Off-line initializations can be used for arbitrary types. For

instance, the Boolean satisfiability statement may contain an initialization section of the

form
Init:
n = 6;
m=9;

c = [<{1,2,3}.{}>,<{4,5:6},{}>,
<{6},{1,2}>,<{1,3},{4}>,<{6},{2,3}>,
<{2},{4,5}>,<{1},{4,6}>,<{4}.{5.6}>];

Here, cl is initialized with a vector of 9 tuples. Each tuple is a pair of sets. The first set

of each pair is associated with the first field of the record of type clause and denotes the

set of positive literals in that clause. The second set is matched with the second field of

the record and denotes the negative atoms of the clause. Note that a tuple is compatible
with a record type if it has the same number of fields and the type of each entry in the
tuple is compatible with the type of the corresponding field in the record. Additionally,
this example illustrates the initialization of sets of integers (the set of positive and negative

atoms) with a list of integers.

38

4.3.3 Generic Data

LOCALIZER also supports the concept of generic data that was introduced in NUMERICA
[80]. The basic idea here is to initialize the data using an expression which may depend
on parameters of the declaration. Genericity is especially attractive to define derived data
which are then used to simplify the statement. In the case of the fully incremental version
of GSAT (see Figure 3.8), it is important to know the clauses where an atom ¢ appears
positively (and negatively). This information is derived from the data cl using the generic

declarations

Constant:
po: array[i in 1..n] of {int} := {c : int | select ¢ from 1..m where ¢ in cl[c|.p};
no: array[i in 1..n] of {int} := {c : int | select ¢ from 1..m where 7 in cl[c].n};

There are a couple of important points to stress here. First, the declarations use parameters
that range over the index sets of the array. For instance, parameter 7 ranges over l..n, i.e.,
the set of atoms. Second, these parameters are used in the expression defined on the right-
hand side of := to specify the value of the array at the given position. Third, an object
can be used in the definition of some other constant only after it is defined. In a sense,
LOCALIZER follows a convention similar to Pascal. In the GSAT example, poli] is defined
as the set of clauses where atom i appears positively. The expressions allowed for the right-
hand side are very general and their syntax is given in Figure A.3. Figure A.4 gives the
syntax for the Constant section. Figure 4.1 completes the discussion with the signatures of

the primitive functions, that have the obvious meanings.

Arithmetic | Set related | Output
min(int,int) —int size({T})—int | print(...)—void
max(int,int) —int random({T})—T | println(...)—void

min(real,real) —real | minof ({T})—T | time()—int
min(real,real) —real
floor (float)—int
ceil(float)—int
round(float) —int
exp(float) —float

Figure 4.1: Primitive Functions.

4.3.4 Computed Data

When the initialization of a constant cannot be expressed by a generic expression, LOCAL-

IZER offers the option of initializing data using an init statement that contains imperative

39

code.

The excerpt

W : array[l..5] of int = [2,1,6,3,7];
P : array[l..5] of int = [4,2,3,5,6];
D : array[0..5,0..20] of int init {
forall(c in 0..20) D[0,c] :=0;
forall(z in 1..5) D[¢,0] := 0;
forall(i in 1..5) {
forall(c in 0..20) {
ifc—-W[E]>=0
then D[i,c] := max(D[i — 1,¢ — W[i]] + P[i], D[i — 1,])
else D[i,c] := D[i - 1,]
endif;
}
}
b

declares two arrays P (Profits) and W (Weights) and computes a constant tableau D storing
the solution of the sub-problems related to the knapsack defined on P and W. Note that

the computation of D is carried out in a dynamic programming fashion.

4.4 The Variable Section

Variables are fundamental in LOCALIZER since they define the state of the computation.
It is important to fix the terminology. LOCALIZER supports two kinds of variables. The
variables declared in the Variable section are the state wariables of the statement, i.e.,
the variables that can be directly altered by a user. The Invariant section also declares
variables. However, the invariant variables cannot appear on the left hand side of any
assignment operator or any other destructive operation. The runtime system is responsible
for updating them and preserving a consistent computation state. In the rest of this thesis,
we feel free to use the term wvariable for both of them when the context does not require a
distinction.

Variables are declared in the same way as constants, albeit without an initialization.
They are generally given an initial value in the Start section and they are modified in the
Neighborhood and Restart sections. As should be clear from the examples, LOCALIZER
has an assignment operator, whose right-hand side is an expression. Variables can assume
the following types int, boolean, real, path, circuit, array, record, and graph.
Sets cannot appear directly, or indirectly, in a variable declaration. Figure A.5 gives the

syntax for this section.

40

4.5 The Invariant Section

The Invariant section lists all the invariants defined in a statement. The invariants can be
declared in any order and can reference each other. Note that circular references can only
appear at the syntactic level. At the semantic level, LOCALIZER requires that, at all time
any variable does not depend on itself, directly or indirectly. If this condition is violated, the
runtime system produces an execution error. This restrictions makes it possible to maintain

the invariants efficiently.

4.5.1 Arithmetic Invariants

Simple Expressions The simplest arithmetic invariant maintains a direct functional
dependence between the variables that appear in the expression and the variable it defines.

For instance, assume that =,y and z are integer variables, than the invariant

a:int:=z*xy+z/2;

defines a as an integer variable and constraints a to have the value denoted by the expression
on the left hand side of the assignment. Arithmetic expressions can use all the conventional
arithmetic operators, with the addition of the aggregates max,min,argmax,argmin,sumand

prod. These aggregates have a natural semantics

m: N:=min(:in S) e(7) & m= Igéige(i)
M: N =max(iin S)e(7)) & M =t§1ea§ce(i)
a:T:=argmin(iin S) e(z7) < ac{i€eS|e@) = rjpéigle(j)}
A:T:=argmax(iin S)e(?r) & ac{ieS|e(i)= g;eeagce(j)}
s: N:=sum(iin S) e(?) & s= Ze(i)
p: N:=prod(iin S)e(r) & s= Ee(i)
ies

where IV is a numeric type, i.e. either int or float and T is the type of the element in
S, i.e., S is of type {T'}. Notice that the definition of argmin and argmax only specifies
that the return value should belong to the set of minimal (respectively maximal) elements.
In case of ties, (|{z € S| e(i) = minjese(j)}| > 1) the implementation randomly picks an
element from the set with a probability of 1/|{i € S| e(¢) = minjese(j)}|. Note that e(%)

is a parametric expression that is of type V.

41

LOCALIZER enforces the usual conventions for arithmetic expressions. All operators are
associative to the left, except the exponentiation operator. The precedence of the operators

are given in table 4.1. Note that the expressions

a : int := sum(i in 1..n) zi] + y[i];
b : int := sum(: in 1..n) z[i] x y[i];

must be interpreted as

a : int := (sum(i in 1..n) z[i])+y[i];
b : int := (sum(Z in 1..n) z[{] x y[i]);

The invariant a is incorrect since the 7 in y[i] is out of scope, hence undefined. Since the

precedence of the product operator is higher, the definition of b is correct.

Class | Operator | Precedence
Logical or 0
Logical and 1
Relational =,#,<,>,<,>, in 2
Binary —,+, union 3
Aggregate | sum , argmin, argmax , min , max, union 4
Binary x,/+% 5
Aggregate prod 6
Binary . 7
Unary not , —, +,++, —~— (prefixed and suffixed) 8
Binary 20,0 9

Table 4.1: Precedence of operators.

Array Expressions Often, many invariant expressions assume the same generic form
and the difference can be captured in terms of an assignment to parameters. For instance,
consider the example of the nbtl invariant from the GSAT statement. The GSAT algorithm
maintains for each clause 7 in {1..m} of a boolean formula the number of true literals. Given

that the state is represented with an array = of booleans, the natural definition is

nbtl : array[i in 1..m] of int := sum(j in F[i].p) z[i] + sum(j in F[i].n) not z{i];

where F' is the constant array of clauses. Each entry of the nbt! array is mapped to the
left hand side expression that is partially evaluated with respect to the corresponding i.
The expressions also use the Boolean operator not that returns the negation of a-Boolean

expression.

42

Referencing Arrays One of the interesting feature of LOCALIZER is the ability to index
arrays with variables. Many models, including the job-shop scheduling model presented

later on in the thesis, make use of this facility. For instance, the invariant

a:int :=blz+1]*y;

maintains the value of a, when b or y changes but also when variable z changes. The

mechanism actually generalizes to arbitrary expressions as shown in

a:int :=bcf2*xz] +1] % y;

where both b and c are arrays of variables.

Relations Boolean relations are part of the expressions supported by LOCALIZER. The
relational operators {<, >, <, >, #,=, €} can be used and their result is typed as a Boolean.
Naturally, Boolean invariants can be defined with Boolean expressions. In addition, Lo-
CALIZER allows meta expressions. A meta expression uses the result of a relation expression
and interprets that value as the integer 1 in case the relation holds and 0 otherwise. This
gives the opportunity to define invariants that count the number of Boolean relations that

are satisfied. For instance, the invariant

nb : int : sum(i in 1..n) (z[{]%2 = 0);

where z is an array of integers, defines nb as the number of even integers in the array z.

Recurrence Relations It is interesting to realize that LOCALIZER supports the definition
of recurrence relation with invariants. Several models in the application chapter make use

of this feature. To illustrate what is possible, consider the excerpt

Fact : arrayfi in 0..n] of int := if ¢ = 0 then 1 else 7 * Fact[i — 1];

It defines Fact as an array of integers that stores the values of i! for all 7 in {0..n}. Note
that the expressions defining Fact makes use of Fact itself. In this specific case, Fact[0] is

the basic case but in fact the recurrence can be arbitrary as illustrated by the examples

F : array[i in 0..6] of int := if i = 6 then 720 else F[i + 1]/(+ 1);
G : arrayfi in 0..N] of int := if i = 3 then 6
elseifi <3 then G[i +1]/(: + 1)
else G[i — 1] = ¢;

43

that both define factorial. It is important to keep in mind that the expressions above remain
invariants. If, for instance, the base case 0 was replaced by an expression depending upon
another variable z, any change to = would trigger a re-computation of the entries of the
Fact array affected by this change.

4.5.2 Set Invariants
Maintaining complex sets is ubiquitous in many local search algorithms and LOCALIZER

provides a rich collection of set invariants.

Extensional sets The first category is composed of extensional sets that can be defined

in two different ways. The simplest form is as a list of expressions. The invariant

s: {int} :={a+b,axb2 b};

defines s as a set of integers that contains the values of the expressions appearing on the
left hand side of the definition. LOCALIZER does not maintain multi-sets. Assuming that,
in some computation state, a = 2 and b = 1, s is equal to {3,2, 1}. If the variable b changes
from 1 to 3, s becomes {5, 6,2, 3}.

Extensional sets can also use generic mechanisms. When all the expressions appearing
in the list are similar, i.e., only differ in the assignment of values to some parameters,
LOCALIZER offers a compact definition of the form

z: {T}={¢t: T | select t from S where P(t)}
z: {T}:={(vi,.-.,vn) : T | select v; from S; where P;(v;)

select v; from S; where P;(vy,...,v;))

select v, from S, where P,(v1,...,vn))};
where the sets S,S),...,S, are all defined as constants or invariants and the Boolean
expressions P(t), P,(v1), ..., Pa(v1,-..,vn) can refer to variables.

The excerpt

s: {int} := { i : int | select i from 1..n where a[i]%2 = 1};

defines s as a subset of {1..n} that satisfies the condition a[i]%2 = 1. Note that a could be
a constant or a variable. Several select statements can be chained to join sets and each

select can have its own where filter as in

s: {int} := { i : int | select 7 from 1..N where i%2 =1
select j from 1..N where z[i] = j};

where z is once again an array of variables. Nested select statements are also used to
build sets of tuples as in

sl: {int} :={a, b, c};
s2: {int} :={d, e, c};
s3 : {Pair} := {(a,b) : Pair | select a from sl
select b from s2};
s4 : {Pair} := {(a,b) : Pair | select a from sl
select b from s2 where (a + b)%2 = 0};

where a,b,c,d, e are all variables. s3 maintains the cross product of sl and s2 while s4
maintains the subset of s3 satisfying the condition (a + b)%2 = 0.

4.5.3 Set Dependent Invariants

Sets can serve many purposes in a statement. It is possible to query the size of a set, check
whether it contains a specific element, or even to aggregate some other data. Consider the

statement

s: {int} := { i : int | select i from Z where z[i|%2 = 0};
t : int ;= sum(: in s) y[i];

where z and y are two arrays of variables (or constants) and Z is a set (variable or constant
too). Given that the definition of s relies on the array z, a value change for any element of
z can modify s. However, it does not impede the definition of ¢ as the sum of the elements
of y referred to by s. Indeed, a modification to an entry of y that ¢ depends on forces ¢ to
be updated. Similarly, when elements appear or disappear from s, ¢ is updated to reflect
the change.

4.5.4 Builtin Invariants

In addition to the standard expressions, invariants can also be defined in terms of distribute
and dcount. They take as input a one-dimensional array of integer variables A and two
sets I and O. I must be a subset of the index set of A. The result type of a distribute
expression is a one-dimensional array B, of variables of type set of integer, whose index set
is O.i.e., B: array[O] of {int}. The result type of a dcount expression is one-dimensional

array of integer variables whose index set is O. Their meanings are given by the following

45

equivalences:

B = distribute(A,I,0) <« Bli]={j € I|A[j]=i} Vi€ O
B =dcount(A,I,0) <« Bli| =size({j € I|A[j] =i}) Vi€ O

For instance, the excerpt

Variable:
truck : array(l..nbC] of int;
Invariant:
trip : array[0..nbC + 1] of int := distribute(truck,{1..nbC},{0..nbC + 1});

from the VRP statement defines truck as an array of variables of type integer that associate
with each client identifier in 1..nbC the number of the truck in charge of its delivery. The
invariant trip defines an array (from 0 to nbC + 1) of sets of integers. An entry trip; stores
the set of client identifiers assigned to truck k.

These expressions were introduced because of their ubiquity in practical applications.

4.5.5 Invariant Declaration Syntax

The left-hand side of any invariant obeys the syntax of expressions give in Figure A.3. The
invariant section itself obeys the syntax shown in Figure A.6.

4.5.6 Current Limitation

The current implementation imposes one restriction on set definitions. The fragment

A : array[i in 1..n] of {int} := {7 : int | select ...};
Z : {int} := A[b];

where A is an array of set variables and b is a an integer variable is invalid. LOCALIZER
currently does not allow an array of sets to be indexed by a variable. Note that the
restriction holds even if the set is encapsulated within a record. Generally speaking an
expression pattern A[E]B is invalid if the pattern A[E]B is supposed to denote a set and

FE refers to a variable.

4.6 The Operator Section

The Operator section is devoted to the definition of traditional functions that can be used
in several other sections such as the Neighborhood, Start and Restart sections. The body

of these operators are constructed from statements whose syntax is depicted in Figure A.7.

46

4.6.1 Functions

Functions in LOCALIZER are essentially similar to functions in C and use traditional assign-
ment, conditional, and iterative statements, as well as recursion. Functions can take any
number of arguments and can have a return type. Each argument is typed and the return
type is restricted to scalars plus void to signal the absence of a return value. All scalar
parameters are passed by value, others are passed by reference. Scalar variables are also
passed by value. Complex object variables (e.g., an array of int defined in the invariant
section) cannot be passed as argument. This last point is not a restriction in itself, since
variables are globally accessible.

A simple recursive procedure like factorial can be implemented as

int factorial(z : int) {
if i=0
then return 1
else return ¢ * factorial(i — 1)
endif;
}

A function can also declare local variables as in traditional languages. Their scope is the

function definition. Once declared, a local variable can be assigned to, and passed as
argument to other functions. It is possible to declare local variables of complex type like
arrays or sets or any combination thereof. LOCALIZER also accepts an initialization together

with the declaration. For instance the statements

: array[i in 1.N] of int :=1i + 1;

: array[l..NJ;

: int := sum(? in 1..N) ali];

: {int} := {7 : int | select i from 1..N where z[i]%2 =0 };

an o

are all valid local declarations. It is important however to remember that none of {a, b, ¢, d}
are invariants. If an z[i] changes, the change will not affect the content of d. Local variables
behave like conventional variables in imperative languages.

The entire state, including constants and variables, are accessible to functions. However,
only state variables and locals can be modified by assignments. Figure A.8 gives the syntax

for function declarations.

4.6.2 Control Structures

In addition to the standard control structure, LOCALIZER provides constructs which are
useful for local search algorithms. We start by briefly reviewing the standard constructs

and then move to the special purpose control structures.

47

Standard control All traditional control structures are available in the language. The
iterative statement while-do, and the branching statement if-then-else are sufficient to
construct any imperative procedure. The return instruction is used for operators that
have a return value. The expression syntax available for imperative code is identical to the
expression syntax in effect in the Constant section and the Invariant section.
Additionally, pre and post increment/decrement operators are available. The pre-
increment and the pre-decrement operators first modify the operand and return the result
while the post-operators first use the value of the operand and carry out the operation once

the expression is evaluated.

The Forall Instruction The forall instruction provides a convenient way of iterating
over the elements of a set. The instruction automatically declares an argument with a
scope restricted to the forall instruction itself. The type of the argument is the type of
the elements in the set. If the set is a simple range of integers, successive iteration produce
the values in ascending order. If the set is more complex, the order in which values are

produced is implementation dependent.

The Choose Instruction The choose instruction can be used to select an element from
a set in a nondeterministic way. It is possible to filter elements of the given set or to select
an element optimizing a function. The following examples illustrate the various forms of

choose statements:

choose i from (Set Expr);

choose 7 from (Set Expr) minimizing (arexr);
choose 7 from (Set Expr) maximizing (arexr);
choose i from (Set Expr) such that (arexr);

The first form non-deterministically picks an element from the set. The second and third
version filters the set and non-deterministically pick an element from the subset of min-
imal/maximal ones. The last form selects an element from the subset that satisfies the

condition.

4.7 Neighborhood

The neighborhood is specified in LOCALIZER with a move instruction whose syntax is given
in Figure A.9. The move instruction uses both declarative and imperative statements. The
move instruction assumes multiple roles. First, the instruction is responsible for specify-

ing the procedure that transforms the computation state to produce a neighboring state.

48

Second, it is responsible for specifying the set of computation states that constitute the
neighborhood. Finally, it is responsible for specifying which neighbors in N(7) are deemed
acceptable.

Consequently, the move instruction contains three parts. The first part specifies the
state transformation procedure, the second specifies the neighborhood itself while the third

part defines the acceptance criterion. Each component is now reviewed in detail.

4.7.1 The Transformation Component

The transformation is encoded with a fragment of procedural code. This fragment uses a
number of parameters that specify which neighbor is to be produced. The parameters are
discussed in the next section. The code fragment can use any imperative code, including
calls to user defined operators. As usual, the whole computation state is directly accessible
and the modification ought to alter the state variables only. The code fragment must appear
directly after the move keyword.

4.7.2 The Neighborhood Component

Remember that the skeleton of a move instruction is:(the detailed syntax can be found in
Figure A.9)

move op(zi,...,Zn)
where

z; from Si;

Ty, from S,

[accept when (AcceptanceCriterion) |

Assuming that the transformation code is abstracted as the procedure op, and that Post(T, i)
represents the computation state obtained by executing 7 in 7, the neighborhood of the

computation state T is defined as

N(7) = {Post(r,op(z1,--.,2zn)) | T1ES1 & ... & z, € Sp}.

4.7.2.1 Parameter Specification

The purpose of where clause is to construct the set of tuples that parameterize the operation
op. Intuitively, the clause extracts tuples {(zi,...,z,) from the cross product S; X ... x Sp.

In its simplest form, each statement in the clause picks a value in a set S; and assigns it to

49

the corresponding z;. Because one can easily conceive neighborhoods where some of the sets
S; reduces to singleton, LOCALIZER also authorizes statements of the form z; = e; where e;
is an expression.

Each set S; can denote a constant set or an invariant set. It is possible to define S;

inline as shown in the hypothetical neighborhood definition for graph coloring

move z[i] :=j

where 7 from {1..N} minimizing size(C[x[i]])
j from NE such that z{i] <> j

accept ...

where a vertex is picked from the smallest color class while the target color class j, chosen
from the set NFE, is constrained to be different from the color class of 1.

So far, the move instruction contributed to a static description of the neighborhood, or,
more precisely, of the search space of the algorithm. Its role is also to specify the search
procedure that explores this space.

4.7.2.2 Search Rule

Search algorithms can choose between different strategies to explore N(7). Some algorithm
explore N(7) exhaustively looking for the best transition while others settle for the first

improving transition encountered.

Any Mode With the addition of the keyword any in front of the move instruction, Lo-
CALIZER is instructed to use a random walk exploration strategy. As a consequence, LO-
CALIZER select an element from N(7) at random. More precisely, the state 7’ is selected
with a probability 1/|N(T)|.

Best Mode With the addition of the keyword best in front of the move instruction,
LOCALIZER takes advantage of the objective function to compute B(7) C N(7) defined as

follows
B(r) = {r" € N(7) | f(7') = mazsen) f(s)}

LOCALIZER is then bound to select, at random, a state 7/ from B(7). The state 7/ then

constitutes the output of the move.

50

First Mode With the addition of the keyword first in front of the move instruction,
LOCALIZER is instructed to explore N(7) by producing its elements one by one until an
element 7’ satisfies the acceptance criterion. It is important to realize that all the strategies
referred to above rely on the simulation mechanism of LOCALIZER since they must produce
elements of N (7). If the statement does not rely on simulation but is incremental instead, no

modality keyword is required and LOCALIZER defaults to a randomized exploration strategy.

4.7.2.3 Differentiation and Best Heuristic

In certain circumstances, it might be appropriate to use a best search strategy even though
it is difficult to come up with an invariant based specification of the optimal move. How-
ever, the cost of simulation can be prohibitive, especially when compared to the cost of a
differential approach. In order to avoid simulation and still iterate through all of N(7),
LOCALIZER provides two additional statements minimizing and maximizing that can be
used in the where component. Generally speaking, LOCALIZER allows move instructions of

the form

move 0p(Zi,-..,ZTn)
where
z; from Sy;

zi, from S;;
optimizing f(z1,..-,Z#);
Tiy+1 ﬁ'om Si1+1;

l‘ij from S,‘J.;
optimizing fj(zly LR x‘ij)
[accept when .. |

where optimizing stands for minimizing or maximizing and the optimizing statement

can appear more than once. In this case, LOCALIZER produces the sets

NI(T) = {<$17'--1$‘i1>!fl(:vl:“-,zh): max fl(e)}

e€S1 X...X Sy
N2(T) = {($17“‘7$i2> lf2(x11"':$i2) =

fa(e)}

max
eEN1(T) X Siy +1X.-.XSiy

Nj(7)

fi(e)}

T1y---3T%; i\L1y...-,T4;) = max
{(1, ’ ‘lJ)IfJ(1,) 1_1) eGNj_l(‘r)XSij_1+1X---XS;'j

and defines N(7) as N;j(7). N(7) can thereafter be explored with the technique discussed
earlier. This facility encodes the selection of the neighbors that are optimal with respect to

the functions f; through f; without the help of simulation or invariants. The example

51

move zfi] := lz[i]

where ¢ from {1.N};
maximizing gaini]

accept in current state ...

illustrates the idea on the Boolean satisfiability neighborhood of GSAT. The move instruc-
tion does not use the keyword best and does not rely on simulation. Yet, the maximizing
instruction is going to pick an 7 at random from the subset N;(7) of {1..N} that maximizes
the gain value gain[i]. The downside of this formulation is that this optimal subset is not

maintained incrementaly and must be recomputed from scratch at each transition.

4.7.3 The Acceptance Criterion

The acceptance criterion is instrumental in the definition of search strategies. Variations
of local improvement and simulated annealing algorithms rely on this mechanism. The
keywords improvement,noDecrease and delta offer the necessary support. The accep-
tance criterion is used as follows; Once an element of the neighborhood has been selected,
LOCALIZER must determine if it is an appropriate move. The acceptance criterion lists
Boolean conditions that must be tried in sequence. As soon as the state satisfies one of the
conditions, it is accepted and the state transformation is performed. The criterion is build

according to the syntax in Figure A.10.

Evaluation state Acceptance criteria are, by default, evaluated in the new state. This
evaluation requires the generation of the state (or, at least, part of it). This may turn too
expensive, since all the invariants may need to be propagated. Therefore, it is also possible
to specify that the acceptance criterion should be evaluated in the current state by using
the keywords in current state. Using the current state to evaluate moves may produce
significant improvements in efficiency. The addition of the in current state keywords ren-
ders the keywords improvement,noDecrease and delta meaningless. The responsibility
to evaluate the relative quality of the move is placed on the modeler. Nevertheless, the

acceptance criterion remains useful to state the conditions for acceptance.

Multiple conditions It is possible to define several distinct conditions that lead to the
acceptance of a move. Each condition can be associated with an acceptance statement.
Statements based on simulated annealing for instance, must be able to react differently de-
pending on the reason for accepting the move. A simulated annealing procedure often uses

statistics about the type of moves recently accepted to implement the termination criterion.

92

A typical choice is to compute the frequencies of good moves, plateau moves or uphill moves.
If the frequency of good moves falls below a fixed threshold, the algorithm predicts that it
is not likely to make progress and stops the computation. Whenever distinctions are super-
fluous, a standard disjunction between all the acceptance conditions is appropriate. The
cor construction can be used to discriminate between the conditions leading to acceptance.

A statement can be associated with each cor disjunct. The excerpt

move z[i] :=Iz[i];
where i from {l.n};
myD = IT[i]| — EX[i] +(if z[¢] then ~4 « IM B + 4 else 4 « IM B + 4)*alpha;
accept when in current state
myD < 0.0 — {
if IMB =0 and OBJ < bound
then fc:=0;
endif;
ch:=ch+1;
}
cor myD = 0.0
cor Pr(exp(—myD/t)) : always — ch :=ch +1;

from the simulated annealing statement for graph partitioning illustrates this point.

4.7.4 The try Composition

Probabilistic composition The try combinator is used to combine several neighbor-
hoods. The simplest example is probably the random noise strategy introduced in [66] for
GSAT. The idea is to take either the best possible improving move or any move, regardless of
its impact on the objective function. The two neighborhoods are blended in a probabilistic
strategy where each type of move is selected according to a stream of events generated
by a random variable that obeys a specific probability distribution. This strategy can be
expressed as

53

try
Pr(0.1):
move
afi] := lafi]
where
1 from OccurInUnsatClause
accept when always ..
default:
best move
ali] := lafi]
where
i from {1..n}
accept when noDecrease;
end

Conditional composition A second use for the try combinator arise from the necessity
to enable and disable certain neighborhoods when circumstances dictates it. It is convenient
to use invariants to keep track of the property at all time and enable the specific neighbor-
hood only when the Boolean invariant holds. Imagine, for instance, a problem statement
that defines two sets A and B as invariants. When the set A is not empty, it is possible to
setup a neighborhood based on A. When the set is empty, it is preferable to use a second
neighborhood based on B. If B is empty too, a default move might be specified as last
resort. Such a neighborhood might look like

try
when size(A4)> 0 : move ...
when size(B)> 0 : move ...
default: move ...
end

Sequential composition A third applicaticn permits the chaining of neighborhoods. It
is easy to imagine a problem where several different neighborhoods of increasing complexity
and cost can apply. It is possible to try them in sequence, until an improving move is found
or all else fail. Consider for instance, the traveling salesman problem. The try combinator
can be used to blend the 2-opt, Or-opt, and 3-opt neighborhoods. Naturally, 2-opt should
be listed first. If 2-Opt cannot find an improvement, Or-opt or even 3-opt can then be used.

Figure 4.2 illustrates a try instruction that, for brevity, combines only two neighbor-
hoods: a 2-opt and a 3-opt with reversal. Note that the LOCALIZER statement for this TSP

model uses a circuit to represent the tour.

54

try

best move {
p.noarc(a, b);p.noarc(d, ¢);
p.reverse(b, d);
p-arc(b, c);p.arc(a, d);

} where
a from {l..n};
b = p.succ(a);
¢ from OV[b] such that (¢ <> ¢ and p.pred(c)<> b) smaller than Dista, b];
d = p.pred(c);
perf = Dist[a,d] + Dist[b, ¢| — Dist{a,b] — Dist[c,d];
minimizing perf;

accept when in current state perf <0

best move {
p-noarc(a, b);p.noarc(c, d);p.noarc(e, f);
p.reverse(b, c);p.reverse(d, e);
p.arc(b, e);p.arc(a, c);p-arc(d, f);

} where
a from {1..n};
b = p.succ(a);
¢ from OV{a] such that (¢ <> p.pred(p.pred(a)) and

¢ <> p.pred(a) and ¢ <> b)
smaller than Dist[a, b];

d = p.succ(c);
ss2 = p.subSequence(d,p.pred(a));
e from OV [b] such that (e in s52);
f = p.succ(e);
perf = Dist[a, c] + Dist[b, €] + Dist[d, f] — Dist[a,b] — Distlc,d] — Distle, f;
minimizing perf;

accept when in current state perf <0

end

Figure 4.2: A try Combination for the Traveling Salesman Problem.

4.8 The Objective Function Section

The objective function is stated in a separate section and is used to assess the “quality”
of a given state. Note that the objective function is optional and is only used when the

acceptance criteria are evaluated in the resulting state.

4.9 Termination Criteria

Termination is handled via several sections and depends on the nature of the problem. Each
model starts with a keyword that is either solve or optimize to specify either a decision

or an optimization problem.

55

The Satisfiable Section The (optional) Satisfiable section is used to specify whether
a state is a solution. In decision problems, LOCALIZER terminates whenever this is the
case. In optimization problems, LOCALIZER updates the best solution whenever the state
is a solution that improves the best bound found so far. When the section is omitted,

LOCALIZER assumes that every state is a solution.

The Local and Global Conditions These optional sections, specify Boolean predicates
that are used to control the innermost and outermost loops of the computation model.
For instance, a simulated annealing model can use the local condition to implement a
cutOff strategy that terminates the innermost loop and drops the temperature whenever

the evaluation function has been updated sufficiently many times. The excerpt

local condition: ch < NC;
global condition: fc < MFC;

comes from graph partitioning and collaborates with the neighborhood to terminate the
algorithm.

The variable ch keeps track of the number of improving or degrading changes. When its
value exceeds the threshold NC, the innermost loop of the computation model terminates
and the Restart instruction is executed (in this case, the restart lowers the temperature).
The freeze count variable fc keeps track of the number of times the temperature has been
lowered without resulting in an improvement. If it reaches the threshold M F'C, the outer

loop of the computation model terminates.

4.10 The Parameter Section

This section, also optional, is used to override the default values of some parameters of the
system. In the current implementation, two parameters can be modified. The variables
maxSearches and maxTrials that appear in the computation model can be assigned the

result of any arithmetic expression. The excerpt

parameter: mazTrials ;= sf * n;

defines maxTrials as the product of two constants sf and n initialized in the Init section

of the model.

56

4.11 Advanced Support

LOCALIZER also offers several additional abstract data types. The purpose of the new types
is to offer support for ubiquitous objects in modeling. The support is graph-oriented and
provides concepts such as arcs, paths, circuits and graphs. The new types are not strictly
necessary, since they can be implemented in terms of the standard structures offered in
LocALIZER. However, their use significantly clarifies the statements, automates classic
invariants on such structures, allow users to work at a higher level of abstraction and offer

the opportunity to support special purpose incremental algorithms.

4.11.1 Abstract Builtin Data Types

Several new basic data types are introduced to represent and manipulate graph-related

structures.

Arc The Arc type is used to encapsulate the notion of directed link between two nodes,
represented as integers. An arc has a source and a destination. From the user perspective,
it is similar to a record. Two accessors are provided to gain access to the source s and the

destination ¢. The excerpt

constant:
a: {Arc} = {<1,4>,<2,3>,<3,4>,<2,1>};
b: {Arc} := { p: Arc| select p from a where a.s <= 2};

declares a as a constant set of arcs. Each arc is initialized with a tuple that must be
compatible with the arc type, i.e., the tuple must be a pair of integers. The first element of
the pair is the source of the arc while the second is the target. The constant b is a generic

set of arcs defined as the subset of a where the source of the arc is less than or equal to 2.

Path The Path abstract data type is a directed sequence of nodes. It is defined on a set
of integers that represents the nodes. At any time, the path uses a subset of the node set.
Path cannot contain cycles and each node appearing in the path must have a degree one or
two. The nodes with degree one are the endpoints of the path while the degree two nodes

are internal to the path. More formally, a path is sequence of n nodes

(0'01a11‘°' 7a11)

drawn from a set N with [N| > n, that can also be interpreted as the set of arcs

LYS

{{ao, a1), (@1, a2), (a2,a3), - --,{an-1,an)}-

Path is a data type that extends the type system of LOCALIZER. As a consequence, a
path declaration uses the familiar syntax. The declaration of a Path requires an additional
parameter of type {int} denoting NV, the set of integers the path is defined upon. Note that
the node set the path refers to is a constant range of integers.

Path can be used for many different purposes. A typical application is to encode an
ordering, thereby indicating precedence relationships among the nodes. In the current
implementation, path can be defined in the constant and in the variable section and can be

the object of builtin invariants. The excerpt

constant:

SJ : array[l..nbJobs| of Path(¥N) = ...;
variable:

SM : array[l.nbMach] of Path(N);

from a job-shop scheduling application illustrates the use of paths to encode the precedence
relationship imposed on the various tasks. An array of constant path is used for the static
job precedences, while an array of variables is used for the machines ordering. The initial-
ization of the path SJ is postponed to the Init section. Since the ordering information is

significant, a path is initialized with a sequence of values in between parenthesis as in

init:
SJ = [(0,1,2,3,4,5,51),

(0,46,47,48,49,50,51)];

Table 4.2 provides the interface for the Path abstract data type. Both Accessors and

modifiers are provided to operates on the arc set.

Circuit The Circuit abstract data type is a directed path that can be cyclic. More

formally, a circuit is an infinite sequence of nodes

(a07a17"'7a‘n7a07a1'--)

drawn from a set N with |N| > n, that can also be interpreted as the set of arcs

{{ao, a1), {a1,a2), (a2, a3}, - - -, (@Gn—1,an), {@n,a0) }-

58

Operation Type Description

arc(i,j) int X int | Creates an arc from node ¢ to node j.

noarc(i, j) int X int | Removes the arc ¢ — j from the path.

swapp(i) int Swaps node ¢ with its predecessor along the path. If
p(?) and s(7) denote, respectively the predecessor and
the successor of node 1, this is equivalent to removing
the arcs (p(i),4), (i,s(3)), (p(p(?)),p(é)} and adding
(p(p(2)), %), (2, p(8)), (P(2),s(2))

swapn(i) int Swaps node 7 with its successor along the path. If
p(%) and s(¢) denote, respectively the predecessor and
the successor of node i, this is equivalent to removing
the arcs (p(4),4), (i,s(9), (s(9),s(s(?))) and adding
(p(1), s(2)), (s(2),%); (5, 5(s(2)))

moveBefore(t,5) int X int | Moves vertex i before vertex j along the path.

toFront(i) int Moves vertex 1 in the first position in the path

toBack(%) int Moves vertex 7 in last position in the path

revall() Reverses the order of the nodes in the path. This
corresponds to changing the path direction.

reverse(t, j) int x int | Reverses a section of the path starting at node 7 and
ending at node j. The rest of the path is left un-
touched.

ord(i) int Returns the rank of node 7 in the path. The rank is
the distance from the front node.

at(z) int Returns the vertex identifier of the node that sits
nodes away from the front node of the path. Natu-
rally, the identities at(ord(z)) = ¢ and ord(at(i)) =<
always hold.

pred(z) int Returns a variable that denotes the predecessor of
node 7 on the path.

succ(?) int Returns a variable that denotes the successor of node
7 on the path.

head() Returns a variable that denotes the first node of the
path.

tail() Returns a variable that denotes the last node of the
path.

arcs() Returns a variable that denotes the set of arcs that
are part of the path.

Table 4.2: Programming Interface for Path

59

All the nodes appearing in the circuit must have degree two. Aside from the different
semantics, the Circuit abstract data type supports the same interface as Path. Note
that some operations, e.g., toFront,toBack,head,tail,ord,at do not make sense in the

context of circuits and were removed. Table 4.3 gives the revised interface.

Operation Type Description

arc(i,) int X int | Creates an arc from node ¢ to node j.

noarc(i, j) int X int | Removes the arc i — j from the circuit.

swapp(i) int Swaps node ¢ with its predecessor along the circuit.

If p(:) and s(i) denote, the predecessor and the suc-
cessor of node i respectively, this is equivalent to re-
moving the arcs (p(i),), (i, (@), (p(p(d)),p(i)) and
adding (p(p()),1), (4,p(2)), (p(2), s())

swapn(1) int Swaps node 7 with its successor along the circuit. If
p(2) and s(i) denote, the predecessor and the succes-
sor of node i respectively, this is equivalent to re-
moving the arcs {p(i),1), (i,s(?)), (s(i),s(s(2))) and
adding (p(3), s(3)), (s(i), %), (i, s(s(2)))
moveBefore(,5) int X int | Moves vertex i before vertex j along the circuit.
subSequence(,) | int x int | Returns the set of nodes that appear between node ¢
and node j in the circuit.

pred(z) int Returns a variable that denotes the predecessor of
node 7 on the circuit.

succ(z) int Returns a variable that denotes the successor of node
¢ on the circuit.

arcs() Returns a variable that denotes the set of arcs that

are part of the circuit.

Table 4.3: Programming Interface for Circuit

Graph The Graph abstract data type is used to represent and manipulate general purpose
directed graphs G(V, A). There are no particular restriction on graphs, it is possible to
describe cyclic and acyclic graphs, nodes can have a degree ranging from 0 to n where
n = |V|. The only limitations is that for any given pair (¢, 7) with 7, j € V, there is at most
one arc from 7 to j. Table 4.4 list the interface of the graph abstract data type.

4.11.2 Graph Invariants

The structure provided by the abstract data types is used, not only as a convenient short-

hand, but more importantly, as a foundation to build invariants.

60

Operation Type Description

arc(i, 7) int X int | Creates an arc from node 7 to node j.

noarc(i, §) int X tnt | Removes the arc ¢ — 7 from the circuit.

pred(z) int Returns a variable that denotes the set of predecessors
of node 7 in the graph.

succ(z) int Returns a variable that denotes the set of successors
of node ¢ in the graph.

arcs() Returns a variable that denotes the set of arcs that
are part of the graph.

Table 4.4: Graph

Direct Reference A first use is through the accessor methods that return variables such
as pred, succ or arcs. The variables returned can be part of the definition of other invari-
ants. The changes on the abstract data types are reflected on the internal representations

and on the interface variables returned by those methods. The recurrence relation

R() = { ‘(’)namjepred(-;)R(j) + D; 1 < (; <N+1
1=

from a job-shop scheduling model illustrates the need for accessing the set of predecessors
of a node in a graph in order to compute R, the longest path from node 0 to any node in
the directed acyclic graph.

The recurrence can be expressed in many different ways. Since the precedence graph is com-
posed of job precedences and machine precedences, it is possible to encode the reccurence
with several arrays of integers. The job precedence are encoded in a constant array PJ and

the machine precedence in an array of variable PM. These choice result in the statement

R : array{ ¢ in 0..N + 1] of int := if i=0
then 0
else max(R{PJ[i]]+D[PJ[i]], R[PM][i]]+D[PMIi]]);

If, instead, the model uses two arrays of paths to encode the same concept, where a path

encode the sequence to follow, the statement becomes

R: array[i in 0..N]of int :=ifi=0
then 0
else max(R[SJ[JB[i]].pred(z)] +D[SJ[JBli]].pred(z)] ,
R[SM[MCi]].pred(s)] + DISM[MC[i]].pred(i)]);

The gain in clarity is mostly in the implementation of the procedure that alters the machine

sequences. Note that the pred interface for paths returns an integer since any node in a

61

path can have a single predecessor. If a node does not have a predecessor, the system
returns the conventional value NaN.
A direct encoding based on a graph structure allows the fragment

R : array[i in 0..N] of int := if{ =0
then 0
else max(j in g.pred(i)) (R[j] + Dlj])

that is already remarkably easier to read and closer to the formal description. Note that,
since a node can have multiple predecessor in a graph, the pred interface returns a (variable)

set of integers.

Builtin Invariants on Graphs A number of standard invariants can be supported au-
tomatically in LOCALIZER by introducing builtins for them. The longest or shortest path
in a graph is a typical example. In its current implementation LOCALIZER supports the
following builtins:

Pli] = {j:{j,i) € A} where G(V, A) is a directed graph
B[i] = mazjcpyBlj]+ D4 1]

Sl = {j:(i,j) € A} where G(V, A) is a directed graph
Bli] = mazjesyBli] + DI, Jl

B = weight(P, D) & B = }_; ssep D[i, j] where P is either a path, a circuit or a graph

B =longest(G,D,k,I) &

B =longest(G,D, I, k) <

The first invariant offers the possibility to maintain, in a graph G, the longest path with
respect to a distance matrix D between a fixed vertex k and any vertex in /. The second
takes care of the symmetric case where the source of the path can be any vertex and the
sink is vertex k. The third invariant maintains the weight of a path P with respect to a
weight matrix D. The weight is simply defined as the sum of the weight of the individuals
arcs that compose the path.

It is important to realize that all the global invariants presented here could be expressed
directly in terms of the basic blocks of LOCALIZER. However, the propagation cost associ-
ated to a global invariant is often substantially better then the cost for the corresponding
encoding in terms of basic construction. For instance, a short path can be defined with
a recurrence relation and therefore, directly supported within the language. However, the
global propagation cost associated to the maintenance of this invariant (see Chapter 8 for
a discussion of the global propagation cost) is O(nédlogé). Ramalingam and Reps [53] pro-
posed an incremental algorithm for shortest path computation that executes in O(6 log6)

where ¢ is the size of the variation in input and output. This better bound can only be

62

obtained if the structure and semantics of the problem are exploited. Global invariants thus
offer the opportunity to make better incremental algorithm directly available to the system

user.

Chapter 5

A Denotational Semantics of

LOCALIZER

This chapter describes a denotational semantics for a subset of LOCALIZER called LITTLE
LocALIZER. The chapter is organized as follows. Section 5.1 introduces LITTLE LOCAL-
IZER, Section 5.2 describes the notations used throughout the chapter, and Section 5.3
introduces the semantic algebras that support the semantic equations. Section 5.4 con-
cludes the chapter with the presentation of the valuation functions for all the syntactic
constructions.

This chapter can be skipped in a first reading without loss of continuity. Its main purpose
is to clarify the concepts described informally in the previous chapters. Introductions to

denotational semantics can be found in [64] and [70].

5.1 LIiTTLE LOCALIZER

LITTLE LOCALIZER is a subset of LOCALIZER that was chosen to simplify the presentation
while preserving the main novel aspects of the language. The restrictions can be summarized
as follows: All variables and invariants are integers, arrays are one-dimensional, their index
set is the set of integers and their elements are assumed to be initialized to zero, expressions
are restricted to the four basic arithmetic operators plus the summation aggregate, and the
move instruction of the neighborhood is restricted to three most common variations. The
abstract syntax and abstract categories of LITTLE LOCALIZER are given in Figure 5.1.

A LiTTLE LOCALIZER statement is a sequence of sections as in LOCALIZER. The

Constant section lists the literal and computed constants of the statement. The Variable

63

v bwlt

D
I

B
E
S

€ Program V € Identifiers N € Numerals

€ Expressions I € Invariants Identifiers B € Boolean expressions
€ Statements A € Array Identifiers M € Move instructions
€ Declarations C € Constant Identifiers

::= Constant: Ds;
Variable:Ds;
Invariant:7;

Local Condition: Bj;
Global Condition: Bs;
Satisfiable: Bj;
Objective Function: Ey;
Start: 51;

Restart: Ss;
Neighborhood: M

w= Dy ; Da | A[’U1 in El..EQ]I=E3I C:=E l |4
u=I ;I | I[vy in Ey..Ep):=E3 | I .= FE
::=Bl and 32 I 31 OrBz l notB[E1=E2;
= Ey + Ep|E} — E3|Ey * Ea|Ey [ER|V|C|I|Nltrue|false|a|F]|sum(v in E;..E;) Ej;
u=81;82 | V:=FE | A[E,]:= E; | while Bdo S | forall V in E|..E> do S |
if B then S; else S,

M ::= move S where V in E;..E, accept when B |

best move S where V in F;..E; accept when B |
move S where V in E;..E; accept in current state when B

Figure 5.1: Syntactic categories and Syntax for LITTLE LOCALIZER.

64

65

section defines the state variables. The Invariant section defines the invariant variables and
the expressions that give them their values. The Local Condition and Global Condition
sections specify the conditions that drive the inner and outer loops of the computation
model. The Satisfiable section is used to specify a boolean expression that test the
satisfiability of a computation state. The Objective Function section defines an inte-
ger expression that is used to evaluate the quality of a computation state. The Start and
Restart sections contain imperative code responsible for setting up the initial starting point
and the restart point for multi-start strategies. Finally the Neighborhood section defines
the neighborhood, the acceptance and the search functions.
There are three move instructions in LITTLE LOCALIZER. The instruction

move S where v in E;..E; accept when B

corresponds to random walk. Note that v is a parameter and E;..F> denotes an integer

range. The instruction

best move S where v in F;..E; accept when B

implements a greedy strategy. Both instructions are based on a simulation approach. The

last move instruction
move S where v in F)..Fy accept in current state when B

is a random walk based on a differentiation approach. Finally, note that LITTLE LOCALIZER

only considers decision problems.

5.2 Notations and Conventions

The basic idea of denotational semantics is to associate a function with each syntactic
construct and data types of the language. It is a common practice to use the lambda
calculus to define these functions. This chapter uses the lambda calculus as well, but we
make use of a number of shorthands to improve clarity. For instance, when an integer value
appears in a semantic object, it must be interpreted as the lambda expression that encodes
the corresponding integer. Similar conventions apply to booleans, arithmetic and logical

operators. As a result, a semantic expression

2+3

66

is understood as a convenient shorthand for
Az Ay (zs)y23

where s stands for the natural successor function (An.Af.\y.f(nfy)). Conditionals can be
easily expressed with the functions encoding truth values and we use f; — f20 f3 to express
a function that returns fo if f; is true and f3 otherwise. It is often necessary to chain
conditionals as in f; — foOfs — f4Ofs — ... fn with the obvious meaning. To highlight

the case analysis, the expression is enclosed between the two keywords case and end as in

case
fi— f2
O fz—fa

o fn—l - fn
end

Quite often, it is necessary to alter the mapping of a function for a given value in its domain.
The expression [fi — fa2]f3, which takes as argument fi, f2, f3, produces a function that
behaves like f3 in all its domain except for f; that is now mapped to fo. Whenever the
equality symbol appears in a semantic expression, it must be interpreted as the equality
between the mappings of the two functions!.

Finally, the semantic equations make use of the fixpoint operator fiz known in lambda
calculus as the Y combinator. Table 5.2 shows a possible encoding for the various notational

shorthands.

5.3 Semantic Algebras

Semantic algebras are the data structures for defining the meaning of programs. A semantic
algebra is best described as an abstract data types that supports a variety of operations.
Semantic algebras offer a convenient mechanism to abstract away details that would oth-
erwise clutter the semantic equations. Note that some of the algebras make use of domain
products. A domain D = A x B defined as the product of A and B is the set of pairs (a, b)
with a € A and b € B.

1The two functions must have the same domain and, for all values in the domain, the associated values in the
codomain must be equal.

67

0 S Ay

o A
1 = s0=Af-(fy)

)y A
2 2 s122f0pf(fy)

n times

A /—_
n = Ay f(F(f---(Fy)--2)
true 2 AZAY.T)
false = Az Y.y

A
s = AnAfAy.f(nfy)
Az Ay.z + vy = Az Ay (zs)y
a—bdc 2 adbAcabe
[z — ylf 2 Az Ay AfAz(z=1z) — yOfz

Figure 5.2: Encoding for Various Notations

The semantics of LITTLE LOCALIZER is defined in terms of the following algebras for
Boolean values, natural numbers, arrays, stores, and environments.

The truth value domain contains two constant functions to encode truth and falsity.
The conventional boolean operators are also provided. The Boolean domain is necessary to

correctly define conditionals.

Truth values Domain : B

Operations :
true : B
false : B

A : B—B— B
A : B—-B—B
- : B— B

The domain Nat is used to represent natural numbers. As is usual, Nat makes use of
constant functions to encode all the naturals. In addition, it supports curried functions for
the traditional arithmetic operators.

68

Naturals Domain : Nat

Operations :
0 : Nat
1 : Nat

+ : Nat — Nat — Nat
- : Nat — Nat — Nat
* : Nat — Nat — Nat
/ : Nat — Nat — Nat

The Array domain is used to represent arrays that are viewed as functions mapping natural
numbers to natural numbers. The first operation supported by the domain is the array
constructor anew that creates a trivial mapping (all inputs are mapped to 0). The function
aset can be used to alter the content of an array. It takes as input two naturals n,v, and
an array a, and it produces a new array identical to a in all its entries but n that is mapped
to v. Since a itself is encoded as a function Nat — Nat obtaining the value associated to a
particular natural is a simple function application. For instance, the expression (a 3) where
a is an element of the Array domain is a function application and its result denotes the

value associated with 3 in a.

Array Domain : a € Array : Nat — Nat
Operations :
anew : Array = Ai.0

aset : Nat — Nat — Array — Nat —Nat = An.)wv.)a.[n — v]a

The SStore domain is similar to the Array domain. Its elements encode a mapping from
identifiers to naturals. It is being used to associate identifiers of constants, variables and
invariants to their value in a store. Since LITTLE LOCALIZER supports naturals and arrays
of naturals, the SStore domain specializes in the mapping of identifiers to scalars. As
a consequence, the SStore constructor simply creates an empty mapping (all identifiers
are mapped to 0) and the set functions creates a new store where the specified identifier
is mapped with the prescribed scalar. Again, accessing the store reduces to a function

application with an element from the identifier domain.

69

SStore Domain : o € SStore : Id — Nat

Operations :
new : SStore = Ai.0
set : Id — Nat — SStore — SStore = Ai.Av.Ao.[i — v]o

The AStore domain is another mapping that associates identifiers with arrays. Its role is
complementary to the SStore domain. Its behavior is identical to the previous domain,

however, it must be duplicated in order to avoid typing conflicts in the semantics.

AStore Domain : @ € AStore : Id — Array

Operations :
new : AStore) = Ai.A\j.0
set :Id — Array — AStore — AStore = Ai.Av.Aa.[i — v]a

The Store domain reduces to pairs (SStore,AStore). The purpose of a Store is to keep track
of a computation state. As such, it keeps all the scalar and array mappings declared in the
applications. Because a store is defined with a product of domains, accessors are provided

for elements of each sub domain.

Store Domain : T € Store : SStore x AStore
Operations :
new : Store = Ao, a).(new ,new)
sset : Id — Nat — Store — Store = M. \w.A(o, a).(f — v]o, @)
aset : Id — Array — Store — Store = M.\ A(o,@).(0, [t — v]a)
sget : Id — Store — Nat = Ai.\(0,)01
aget : Id — Store — Array = M.A\(o,a).at

The Env domain is an essential component of LITTLE LOCALIZER’s semantics. Informally,
an element from Fnv is a tuple (I, g, s,0,7) of five functions. The function [is responsible
for evaluating the local condition of the computation model. The function g plays the same
role for the global condition. The satisfiability takes the form of a Boolean function s and is
a necessary and sufficient condition to assert that a state is indeed a solution. The Objective
function o is devoted to the evaluation of a computation state quality. The function r is

responsible for generating a new starting point for the algorithm.

70

In a sense, an environment is also a store that memorizes functions that can be in-
voked later on. An environment is the product of five domains. The modifier functions
(SETL,SETG,SETS,SET0,SETR) can be used to “install” the local condition, the global con-
dition, the satisfiability criteria, the objective function and the restart operator in the
environment. If no function is given, the environment provides defaults with its construc-
tor. The last five accessors provide high level functionalities. The function SAT is used to
decide whether a computation store is satisfiable, LGO and GGO are used to determine the
local and global conditions. The innermost loop can enter a new iteration if the local, global
and the negation of the satisfiability condition simultaneously hold. The outermost loop
can enter a new iteration if the local condition and the satisfiability do not hold while the
global condition does. The RST function is in charge of the restart. Finally, EVAL provides

a mechanism to evaluate the performance measure of a computation store.

Environment

Domain = e € Env :(Store— B)x(Store— B) x(Store—B)x
(Store— Nat) x (Store— Store)

Operations =

ENEW: Env =J)e.(A7.true, At.true, At.true, An.0, At.T)

SETL : (Store — B) — Env — Env =Af.\(,9,s,0,7).(f,9,s,0,T)
SETG : (Store —+ B) — Env — Env =Af.\(,g,s,0,7).(, f,s,0,7)
SETS : (Store — B) — Env — Env =Af.\(,g,s,0,7).(L,9, f,0,T)
SETO : (Store — Nat) — Env — Env =Af.\(,g,s,0,7).(L,9,8, f,T)
SETR : (Store — Store) — Env — Env =\f.\(l,g,s,0,7).(1,9, 5,0, f)

SAT : Env — Store — B =A(l,g,8,0,T).AT.ST

LGO : Env — Store — B =X, 9,s8,0,7).AT.(IT) A (g7) A (—sT)
GGO : Env — Store — B =X, 9,s,0,7).AT.(=lT) A (gT) A (—sT)
RST : Env — Store — Store =A(,g,8,0,7).AT.TT

EVAL : Env — Store — Nat =M(,g,s,0,7).AT.0T

Note that several domains use the same function name to define similar operations. This
choice is motivated by the desire to keep the valuation function readable. When one of the
function name appears in a function definition, the exact function invoked should be clear
from the context, i.e, the types of the surrounding expressions.

71

5.4 The Semantics

This section gives the semantic equations for each syntactic construction of LITTLE Lo-
CALIZER. For clarity, the discussion starts with the description of the valuation functions
for expressions. As we progress, more and more complex equations are introduced, with
the valuation function for P € £? presented last.

5.4.1 Expressions

LirTLE LOCALIZER manipulates Boolean and Natural expressions. All expressions are
functions that take as input a store and return either a boolean or a natural.

The denotational semantics for a Boolean expression B is given by a function % that
maps expressions to computation stores to truth functions. The first two functions simply
deal with Boolean constants while the last four are responsible for the usual operators and

the basic equality relation.

Valuation Function %: Expression — Store — B

Bltrue] = Ar.true
PBlfalse] = A7.false
B[B; and By = A1.B[Bi]r A B[Ba]t
B[By or By = Ar.B[Bi]rV B[Bs]T
HBlnot B] = Ar-ZB[B]|r
B[EL = B3] = Ar.E&[Ei]r = E[EL]T

The denotational semantics of integer expressions is given by a semantic function & that
takes as input a computation store and returns a natural number. The semantic equations
for literals are straightforward. The equations for variables (v), invariants variables (z) and
constants (c), lookup the object in the computation store 7. The next two functions deal
with array dereferencing by first looking up the array in the store and then passing to the
array the value of the index to get to the element. The equations for the binary operators
are traditional in the sense that they simply compose the semantics of the operands with

the appropriate function.

Valuation Function &: Expression — Store — Nat

72

In the following equations, the lower case letters m,v,%,c,a are elements of the classes

N,V,I,C, A. n stands for an integer while v, 7, ¢, and a are specific identifiers.

En] = Arn

Ev] = Arsgetv T
&) = ArsgetiT
Ele] = ArsgetcT

Ela[E1]] = Ar.(aget a T)(E[EL]T)
ELEL]] = Mr(aget i T)(E[EL]T)
ElEL+ E2] = A (€[EM]7)+ (F]E2]T)
E[EL ~E2] = M (€[E:]7) — (€[EalT)
E[EL * Ex] = At (E[Er]T) * (€[E2]T)
E[E1/Ea] = Ar(E[E]7)/(E[E=]7)

u
&[sum(v in E;..Ex)E3] = Ar.let | = &[Ei]r in Zé’[[Eg]] (sset v k)
u = &[E]r k=t

5.4.2 Statements

We now turn to the semantic function % for statements. & is a function that maps
statements to semantic functions that transform computation stores. This function is of

signature Statement — Store — Store and is defined as follows:

Valuation Function .¥°: Statement — Store — Store

FLS1:52] = ArFL[S](F[S1]7)
Flv:=F] = Arssetv (S[E]T)T
FalEr) :=FE3] = Ar.let | =&[E]r
v=&[E:]T

d=aset lvageta T

in asetad T
S[if B then S else So] = (ZB[B]r) — (Z[Si1]7)O(S[S2]7)
S[while Bdo S] = fiz (\f.Ar.B[B]r — f(&[S]r)ar)

73

Sfforall v in E)..E3 do S] = Ar.let 19 = sset v (E[E1]7)T
F =\f.Ar.(sgetv 7) < (E[E:]T) —
f (sset v ((sget v) + 1)(S#[S]r))Or

in fizc F 1o

The first equation expresses the chaining rule. The next two equations define the meaning
of the assignment operator to a scalar variable and to an element in an array of scalars. The
last three equations are responsible for defining the meaning of branching and of two forms
of iterative statements. The novelty in the equations is the use of the fix-point operator to

define iterative statements as the least fix-point of an auxiliary function.

5.4.3 Declarations

The valuation function presented in this section is responsible for building the store con-

structor. 2 is responsible for the meaning of the constant and variables declarations.

Valuation Function 2: Declaration — Store — Store

P[D1; Da] = Ar.9[D:J(2[D1]r)
Dc:=E] = Ar.sset (c)(E[E]T)T
PD(a[v in E1..Ey] := E3] = Ar. let 1o=sset v ([Ei]r)T
F=MAfAr. let u =&[E:]T
a; =agetaT
r = &[E]T
as =asetvra
in sget v <u— f (sset v ((sget v 7) + 1)
(aset aaoT))OT
in fiz F 7o
9[v] = Ar.ssetvOrT

The role of 2 is to build a store transformer. Again, the first equation defines the chaining
of two declarations. The second equation takes care of a scalar constant declaration. It
produces a function that alters its input (a store) to associate the evaluation of E with
the identifier ¢. The next equation fulfills the same objective for an array, it must use a
fixpoint operator to produce the mapping for the whole array a. The last equation declares

a variable by associating the identifier v to the value 0 in the modified store.

74

The function .# is responsible for producing a function that alters the computation store
by adding new mappings for all the invariants.

Valuation Function .#: Invariants — Store — Store

fIII]_; Ig]] = AT.J[IIg]](fIIIIHT)
Fli:=FE] = Ar.ssetiOr

Fli[v in E;..Ey] := E3] = Ar.aset ianew T

The maintenance of invariants is discussed in the next section.

5.4.4 Invariants maintenance

The denotational semantics presented in this section abstracts away the details of maintain-
ing the invariants, which are discussed at length in the next chapter, in a function propagate
whose signature is {Invariant Declarations} — Store — Store. The purpose of propagate is
to compute a new store with the updated values of the invariants declared in the statement.
Here we only provide a (non-executable) specification of the function.

The function propagate returns a new store 7/ where the variables associated to element
in ¥ are unchanged and variables associated to .# are modified in order to verify all the
invariant identities in I. It uses a validity function ¥ to check that the evaluation of an
invariant in a given store is satisfied. ¥ is thus a valuation function of signature Invariant
Identifier — Store — B that takes as input an invariant declaration and a store and returns
a Boolean. More formally,

propagate I T =1’

where
VieV:rj = 15
VieI: €7 = true

with

Cli:=E] = Ar.((sgetiT)=&[E]T) — trueOfalse

75

Fifv in Ey..Eo] := E3] = Ar. let 19 = sset v (§[EL]T)T

F=AfAr. let ny =sgetvr
ng = (sget v 7) +1
vy = E[Es]r
vp = (aget i T)ny

in (v = v — (n1 < (E[EL]T)) —

f (ssetvny 1)
Otrue
Ofalse

in fiz F'rg

The first equation of ¥ is used for scalar invariants. It returns true if and only if the
evaluation of the expression F in the store is equal to the value associated with the identifier
7 in the same store. The second equation follows the same principle with the additional

complexity coming from the inspection of all the entries in the array.

5.4.5 Neighborhood

This section focuses on the valuation functions for the three types of move instructions
supported by LITTLE LOCALIZER. The function .# is responsible for creating a function
with signature Env — Store — Store from a move statement. Recall that Env denotes the

environment, i.e., a store of functions used to query and manipulate a computation store.

Valuation Function .#: Move — Env — Store — Store
We first consider

4 [best move S where v in E;..E2 accept when B] = fiz F

76

where

F =MAfAe)Ar.case SAT eT — T
GGO eT — let s = &[searches]T+1

Ty = sset searches s (RST e 1)
T = sset trials 07y
in femn
LGO et —letl =&[E]7
u = E[E]r

71 = sset trials ((&[trials]t) + 1)
2 = F[Sl(ssetvkt!) I<k<u
72 = propagate I T2
p =argmaz <x<u(EVAL e 1)
7% = sset delta (EVALe T — EVAL e 7p)7p
in B[B]rt — fertar
end

The meaning of a move instruction is defined as the fixpoint of F'. F’ itself defines the core
of LITTLE LOCALIZER. It is a template for a function that takes as input an environment
and a store and returns a new store. F' represents one step of the computation, i.e., one
transition in the neighborhood. The whole computation is obtained by computing the least
fixpoint of F. To understand F' itself, it is necessary to look at the various cases. When
the store passed to the function is satisfiable, F' simply returns the store itself. A new
store is produced as the result of the restart operation and the setting of searches and
trials whenever the store satisfies the global condition?. F is then called recursively with
this new store. The core of LITTLE LOCALIZER appears in the local case. Intuitively, the
function produces all the stores that result from assigning a value k in the range l..u to v
and propagating the invariants I. The function then selects the store 7, that has the best
performance. The acceptance condition is finally evaluated with respect to a store ¥ that
differs from 73, in the assignment of the keyword delta to the actual gain. If the move is
acceptable, the function is called recursively with the new store, otherwise it simply returns
T since the best move is not acceptable.

The two other variants of .# are organized around the same skeleton and the intuitive

meaning should be clear. Their formal definitions follow.

#[move S where v in E,;..Ey accept when B] = fiz Fy

2See the Environment algebra for a definition of the meaning for the global condition.

77

A [move S where v in E;..Es accept in current state when B] = fiz Fb

where

Fy=M\f.)deAr.case SAT eT — 7
GGOer—letm =RSTert

s = &[searches]r +1
79 = sset searches sT
73 = sset trials 0™

in fers

LGO et — let k = random (S[E1]T) (E[E-]T)
1! = sset trials ((&trials]t) + 1)7
2 = F[S](sset v k 1)

3 = propagate I T2

r+ = sset delta (EVAL et — EVAL e 73)73

in B[B]rt — fertOfer!

T

end

Fy = \f.\e.AT.case SAT et — T
GGOer —lety =RSTerT
s = &[searches]m +1

T9 = sset searches smn
T3 = sset trials 0
in fers

LGO et — let k = random (E[E1]T) (€[E:]T)
1! = sset trials ((&[trials]T) + 1)7
2 = [S](sset v k T1)
3 = propagate I T2
in B[B]T — fer®0Of er!

end

The last two valuation function make use of the expression random. This expression can be
seen as a function that takes two natural numbers. Its output is another natural number that
is drawn at random from the range defined by its arguments. Additionally, the sequence of
values obtained by subsequent application of random to the same interval must be uniformly
distributed over the interval.

78

5.4.6 Program

The definition of the valuation function for a program is now simple.

Valuation Function &?: Program — Store

ZIP] = let 1 = 9[D](Z2[D1]new)
n =251
e. = SETS B[B3](SETG B[B2](SETL B[B,]enew))
es = SETR Z[S:](SETO E[Eas]er)

T3 = sset trials 0 1o
74 = sset searches 013
Ts = propagate I T3
in #[Mi]es 15
where
P := Constant: Dq;
Variable: Do;

Invariant: I;

Local Condition: Bj;
Global Condition: Bs;
Satisfiable: Bjs;
Objective Function: FEjy;
Start: Sy;

Restart: Ss;
Neighborhood: Mj;

The last function &2 gives the semantics for a LITTLE LOCALIZER statement. The equation
constructs the store and the environment with the help of the auxiliary functions 2, .#,&
and then uses the function .# to produce the output state.

A denotational semantics for a complete version of LOCALIZER is possible. Extending
L1TTLE LOCALIZER semantics does not raises major difficulties. The extensions consist of
introducing new semantic domains for the additional data types supported by LOCALIZER
such as tuples, sets, paths and graphs. Some of the valuation functions, in particular those
related to expressions, must be extended to cover these new cases. Finally, a complete se-

mantics must also cover all possible elementary move instructions. New valuation functions

79

can be added for the first strategy and variants can be introduced for the optimization
based model together with modification to the environment semantic domain to keep track

of the best known solution.

Chapter 6

Implementation

This chapter reviews the implementation of invariants which are the cornerstone of LOCAL-
1ZER. Informally speaking, invariants are implemented using a planning/execution model.
The planning phase generates a specific order for propagating the invariants, while the exe-
cution phase actually performs the propagation. This model makes it possible to propagate
only differences between two states and mimics, to a certain extent, the way specific local
search algorithms are implemented.

The planning/execution model imposes some restrictions on the invariants. Intuitively,
these restrictions make sure that there is an order in which the invariants can be propa-
gated so that a pair (variable,invariant) is considered at most once. Various such restrictions
can be imposed. Static invariants can be ordered at compile time and are thus especially
efficient. However, static invariants rule out some interesting models for scheduling and
resource allocation problems. Dynamic invariants still make it possible to produce an or-
dering so that a pair (variable,invariant) is considered at most once. However, they require
to interleave the planning and execution phases. Dynamic invariants seem to be a good
compromise between efficiency and expressiveness.

The rest of this chapter is organized as follows. The algorithms use normalized invariants
that correspond to a simpler internal representation of the high level invariants and Section
6.1 reviews the normalization process. Section 6.2 describes static invariants (i.e., invari-
ants that can be completely planned at compile time) and their implementation. Section
6.3 describes dynamic invariants, (i.e., the planning and the execution phases must be inter-
leaved) and their implementation. These two sections restrict their attention to arithmetic
invariants and should give readers a preliminary understanding of the implementation. Sec-

tions 6.4.3, 6.4.4, 6.4.5 and Section 6.4.6 revisit static and dynamic invariants to support a

80

81

variety of set invariants.

6.1 Normalization

The invariants of LOCALIZER are rewritten into primitive invariants by flattening expressions

and arrays. The primitive invariants are of the form:

T:=c¢
T=y&z (y #2)
T = H(I]_,.-.,l’n) (z: ?éxj)
z := element(e, z1,...,Tn) (z:i # z5)
where cis a constant, T, y, z, Z1, - - . , T, are variables (e.g., state variables, invariant variables

or even intermediate variables), @ is an arithmetic operator such as + and * or an arithmetic
relation such as >,> and =, and J] is an aggregate operator such as sum, prod, max,

min, argmax, and argmin. Relations return 1 when true and 0 otherwise. An invariant
:= element(e, z1,...,ZTn)

assigns to z the element in position e in the list [z1,...,Z,]. This last invariant is useful
for arrays which are indexed by expressions containing variables.

At any given time, LOCALIZER maintains a set of invariants Z over variables V. Given
an invariant I € T of the form z := e (where e is an expression), def(I) denotes z while
ezp(Il) denotes e. Given a set of invariants 7 over V and z € V, invariants(z,Z) returns
the subset of invariants {I;} C Z such that z occurs in exp(l;). The set of variables
{def(I)[I C I} are the invariant variables and cannot be directly modified. The set of
variables V \ {def(I)|[I C I} are the state variables appearing in the system of invariants.
These variables only can be modified in the neighborhood definitions. Note also that an
invariant variable z can be defined by at most one invariant, i.e., there exists at most one
I C 7 such that def(I) = z.

6.2 Static Invariants

The basic assumption behind LOCALIZER implementation is that invariants only change
marginally when moving from one state ¢ to a neighboring state in A(N(z)). Consequently,
the goal of the implementation is to run in time proportional to the amount of changes. More

precisely, the implementation makes sure that a pair (z, I) where z occurs in the definition of

82

the invariants I is considered at most once, i.e., when the variable z is updated, the invariant
I is propagated and the variable def(I) is updated but it will never be reconsidered again
because of variable z.

To achieve this goal, the implementation uses a planning/execution model where the
planning phase determines an ordering for the updates and the execution phase actually
performs them. The existence of a suitable ordering is guaranteed by the restrictions im-
posed on the invariants by the system. Note also that planning/execution models are often
in graphical constraint systems (e.g., [6]) in techniques such as finite differencing (e.g., [46])
and in techniques based on attribute grammars (e.g., [56],[54],[55],[4])-

This section describes static invariants that impose a static restriction (i.e. a restriction
at compile time). Although this restriction may seem strong, it accommodates many models
for applications such as satisfiability and graph coloring to name a few. The main practical
limitation is that elements of arrays cannot depend on other elements in the same array.
This restriction is lifted by dynamic invariants. Note, however, that static invariants have

the nice property that the planning phase can be entirely performed at compile time.

6.2.1 The Planning Phase

The basic idea behind static invariants is to require the existence of a topological ordering
on the variables (and thus on the invariants). This topological ordering is obtained by
associating a topological number t(z) with each variable z. The topological number of an
invariant I is simply t(def(I)). The topological numbers are obtained from constraints

derived from the invariants.

Definition 8 The topological constraints I are defined inductively using the following rules:

te(z == c) = {t(z) =0}

te(z =y @ 2) = {t(z) = maz(t(y), £(z)) + 1}

te(z == [I(z1,---,Zn) = {t(z) = maz(t(z1),--.,t(za)) + 1}

te(z = element(e, z1,-.-,2zn)) = {t(z) =maz(t(e),t(z1),---,t(zn)) + 1}

Definition 9 The topological constraints of a set of invariants Z, denoted by tc(Z), is
U te(l).

IeT

Definition 10 A set of invariants Z over ¢ is static if there exists an assignment ¢t : V — A
such that ¢ satisfies tc(Z).

83

The planning phase for static invariants consists of finding the topological assignment.
The planning phase can be performed at compile time since the topological constraints
do not depend on the values of the variables in a given state. Indeed, each topological
constraints express relationships among variables and never use the computation state in
their definition. The independence from the computation state is a direct consequence of

the choice of topological constraint for the element invariant
te(z = element(e, z1, - - - , Zn)) = {t(z) = maz(t(e), t(z1),---,t(zn)) + 1}

which states that #(z) depends on t(e) and all the topological values t(z),-..,t(z,). This
formalization captures the union of all possible dependencies between z and the z; irrespec-
tive of the value of e. Note that the existence of a topological assignment is conditional to
the absence of cycles in the topological graph.

6.2.2 The Execution Phase

The execution phase is given a set of variables M which have been updated and a topological
assignment ¢. It then propagates the changes according to the topological ordering. The
algorithm uses a queue which contains pairs of the form (z,I). Intuitively, such a pair
means that invariant I must be reconsidered because variable £ has been updated. The
main step of the algorithm consists of popping the pair (z,I) with the smallest ¢(I) and to
propagate the change, possibly adding new elements to the queue. The algorithm is shown
in Figure 6.1.

6.2.3 Propagating the Invariants

To complete the description of the implementation of static invariants, it remains to describe
how to propagate the invariants themselves. The basic idea here is to associate two values
z° and z€ with each variable z. The value z° represents the value of variable = at the
beginning of the execution phase, while the value z¢ represents the current value of z. At
the beginning of the execution phase z° = z°. By keeping these two values, it is possible to
compute how much a variable has changed and to update the invariants accordingly. For

instance, the propagation of the invariant
z := sum(zy,...,Zn)

is performed by the procedure shown in Figure 6.2.

procedure execute(Z,M,t)
begin
1 Q:={(z,I) |z € M AI €invariants(z,T)}
2 while Q #0 do
1 :=ming r)eQ t([z);
W = {(z,) € Qlt(l1) = i}
Q:=Q\W;
while W # 0 do
(z,I) == POP(W t);
propagate(z,.I,.Z,Q");
W= W\ {(z,)}
10 Q:=QuUQj;
11 endwhile
12 endwhile
end;

© o0~ U W

function POP(Q,t)
Pre: Q is not empty
Post: {z,I) € Q such that ¥(z/,I') € Q : t(I") > t(d)

Figure 6.1: The Execution Phase for Static Invariants.

procedure propagate(z;,z := sum(zy,.--,Zn).Z,Q)
begin
z€ 1=z + (zf — z?);
if ¢ # z° then
Q := invariants(Z, z);
end

Figure 6.2: Propagation routine for the summation elementary invariant.

85

The procedure updates z¢€ according to the change of z;. Note that, because of the topolog-
ical ordering, z§ has reached its final value. Note also that z° is not necessarily final after
this update, because other pairs (z;, z := sum(zy, ..., Tn)) may need to be propagated. Fi-
nally, note that the static elementary invariants described here obey the complexity bounds
reported in Table 6.1.

Invariant | Time | Space
T:=c o(1) O(1)
T=y®hz o(1) o(1)
z:=min(Z in {1.n})z; O(logn) | ©(n)
z:=max(i in {1.n})z; O(logn) | ©(n)
z := argmin(i in {1.n})z; | O(logn) | ©(n)
z := argmax(i in {1.n})z; | O(logn) | ©(n)
z:=sum(z in {1..n})z; o(1) O(n)
z :=pred(i in {1..n})z; o) O(n)

Table 6.1: Space and time Complexity Bounds for Static Invariants

6.2.4 Correctness

Intuitively, the correctness of the propagation scheme is proved by induction on the topo-
logical order of the constraint graph. The idea is to show that the invariants hold before the
propagation with respect to the old computation state and, by the end of the propagation,
the invariants hold with respect to the new computation state. The propagation routine of
Figure 6.1 considers the invariants in steps. Step ¢ is responsible for the propagation of all
the invariants with topological number :.

First, it is useful to introduce several notations. A computation state T is an assignment
of values to the variables of the program. Let S denote the set of state variables, i.e.,
S =V \ {def()|I € I}. A restricted invariant set Z; is the subset of Z whose elements
have topological values no greater than ¢, i.e., Z; = {I € Z|t(def(I)) < i}. The complement
of a restricted set of invariant Z{ is defined as Z \ Z;. The wvaluation of an expression e
with respect to a store 7 is denoted by 7(e) and represents the evaluation of e when all the

variables are substituted by their values in 7. Let 7(Z) denote the relation
N\ T(def(I)) = T(ezp(I))-
IeT

Intuitively, 7(Z) holds if and only if the valuation of all invariants I € Z with respect to 7
is equal to the value associated to def(I) in 7. In the rest of this section, we will assume

86

that 7{ denotes the new computation state at the beginning of step 7 and that n denotes
the total number of steps. Therefore, 7] is the initial computation state and 7;,,, is the
final computation state after the propagation of step n.

Formally, proving the correctness of the global propagation algorithm shown in Figure

6.1 amounts to showing that the properties

() THZi1) holds
(@) Q = {{z,)|I €I{ | Az € exp(I) ATi_i(z) # ()}
(1i7) Ti(y) = 7(y) Vye{zeV|izedef(I)NT €If }

hold each time the algorithm reaches the program point (4). The first property indicates
that the computation state 77 is consistent with respect to all the invariants that appear in
steps strictly earlier than i. The second condition indicates that the queue contains pairs
for all the invariants appearing in future steps for which there is a change in one of the
parameter variables. The third one indicates that variables appearing in future steps are
left unchanged by the propagation of all the steps up to i. The proof establishes that, if
the conditions hold at the beginning of step 7, they will also hold at the end of step Z, hence
at the beginning of step i + 1. Once the last step is finished, condition (i) alone establishes
the correctness of the overall algorithm.

It is necessary to specify the procedure propagate to prove these properties. Informally
speaking, the specification says that propagating the changes on the variables of the invari-
ants restore the invariant relation while leaving everything else unchanged. It also says that
the order of propagation has no importance. The following notations are used throughout
the rest of this section. Let the function G (which can be viewed as a store) be defined as

ny) « WHeWw
) < HHEW
G is a mapping from a pair of stores, a queue, and an invariant to a store. Intuitively,

G behaves like 1 when the queue W is “full” and like 72 when W is empty. In between,

the values of the variables depend on whether or not they are in W. In the specification,

G(T11T2,WI) = Ay~ {

71 will be the initial store and 7o will be the current store. Let z9 be an abbreviation
for G(r,1;,, W, I)(z). Let the property P(r,7/,7",W,I) where I is z := E(y1,...,¥n), be
defined as

™(z) = BE(G(r, ™, W,)(31), - - -, G(1, 7', W, I)(n))-

Intuitively, P holds when the evaluation of E(y1,...,¥n) in G(r,7/, W, I) is equal to the

value associated to z in 7”.

87

Definition 11 Let 7 and 7/ be computation states, and W U {(yx,)} (I is z :=
E(y1,---,yn)) be a queue such that P(r, 7,7/, W U {{yx,I)},I) holds. The propagation
routine

propagate(ylh z:= E(yh ey yn):I) Q)

is locally consistent if it produces a store 7;,; that satisfies the postconditions

(pl) P(T1 7-1{1 7-1{-{-11 VV;I)

(P2) AzéV\{:z:} T‘L{+I(Z) = 1’{(2)
(73) Q={<2J>|J ETATE exp(J) ATlyy(z) # T(x)}

Intuitively, the precondition requires that the value of z in 7] be consistent with the evalu-
ation of I in G(7, 7/, W U {{yk,I)}, I): a store where yi is bound to its old value. The post
condition p; states that, after the propagation the value of z in 7, ; is consistent with the
evaluation of I in a computation store that takes into account the new value of yx. Post
condition py indicates that 7/, ; and 7] are identical for all entries but z. Post condition p3
states that the output argument @ contains the set of pairs (z,J) where J is an invariant
that depends on the modified variable z.

Lemma 1 The loop in Figure 6.1 ranging from line (6) to (11) has the following properties
1. it terminates;

2. the precondition of local consistency is verified at each iteration provided that it starts
with a pair of stores 7 and 7 satisfying P(7, 7y, T, W, I) for all I in {I{(z,I) € W};

3. If T;ch (Zx—1) bolds at the entry of iteration j, then 7','¢J,+1(Ik_1) holds at the exit of
iteration 5 (0 < j < |W).

Proof Each iteration of the loop removes a pair from W. No pairs are added to W during
this round hence the loop terminates. Let us now show, by induction on W, that the

precondition of local consistency remains true at each iteration of the loop.

1. Base: On entry of the loop we know by hypothesis that P(r, 7, 7¢,, WU {(z,)}, I)
holds for all combinations of (z,I) in W and I in {I|(z,I) € W}.

2. Induction: Let us assume that P(r,7;_, 7, W U {(z,1)},I) holds at iteration j. Let
us further assume that "'}I;,- (Zj-1) holds at the beginning of the iteration. Given that
propagate is locally consistent, the propagation of (z, I') yields a store 'r,’cj+ , satisfying

the three properties of local consistency. Instruction (9) removes the propagated pair

88
(z,I) from W, hence P(r, T,’cj R "7:,-“ , W, I) is identical to P(r, 7',{,1,“, 'r,’cj_H , W, I) because
of property ps. Furthermore, t(def(I)) > k, and this change cannot affect P for any J
in {I|(z,I) € W}. Given that the two stores are identical for all variables but def(I),
we can safely conclude that ‘7',21_+1 (Zx—1) also holds since all the invariants in Z;_; use
variables with topological value strictly smaller than k. Therefore, point (2) and (3)
are proven. At each iteration the queue produced by propagate contains all the pair
(z,I) for which z has changed and appears in ezp(I) and is merged back into the

main queue, thus enforcing the correctness of property (ii).

Theorem 1 The algorithm in Figure 6.1 is correct, i.e., given a subset of modified variables
M C S and a pair of computation states 7 and 7’ satisfying

(z) # 7(z) VreM
(z) = 7(z) VzeV\M
(Z) holds

it produces a new computation state 7 satisfying

() = () VzeM
' (T) holds

Proof The induction proof must shows that the execution of lines 5 to 11 establishes
properties (i), (ii) and (iil) when the execution reaches program point (4). First, let us
establish that the properties hold true the first time the algorithm reaches (4).

1. Base: Since, for all the variables z € S, t(z) = 0, the initialization pushes onto @ the
set {(z,)|z € MAI € invariants(z,Z)}. Without loss of generality, we can assume
that ¢ = 1 at program point (4) since a non-empty queue implies that an invariant
variable depends on a state variable of topological rank 0. Clearly, Z)g is an empty set
and property (i) trivially holds. Since Zjp = @, we have that Ip=1 and the queue
initialization enforces property (ii) since M is the set of modified variables. Finally
property (iii) also holds, since 7q is 7.

2. Induction: Assume that all three properties hold for step £ — 1. Let us show that,
once the program reaches the program point (4) again, the properties hold for step k.
Step k consists of the propagation of all the pairs (z,y := e) in Q with ¢(y) = k. The

89

instruction at line (4) builds W as the subset of @ with ¢(I) = k. The instructions (6)
to (11) are responsible for computing step k. Since conditions (ii) and (iii) hold, we
know that the hypothesis of Lemma 1 are satisfied. Indeed, W contains all the pairs
(z,I) with t(I) = k, and hence the function G within P selects 7(z) (the old value)
for z and the invariants are automatically consistent (we evaluate everything in the
old state).

Therefore, by Lemma 1, the loop terminates, maintains the precondition of local
consistency throughout and makes sure that property (¢) holds on exit of the loop
since it holds on entry. Once W is empty, P(7,7;, 7, ,,,, I) holds for all I in step

k. Given that

+17

I = Tr-1 U {I € Ilt(def(I)) =k},

P(r, T’kﬁ,r'an, @,I) holds, and

T1.(Zx~1) holds,
we have established that 7 (Zi) holds. By choosing 7z, ; = 7%, at the end of
step k, the property (i) holds again. Note that condition (ii) is trivially satisfied by
definition of Q' and property ps of Lemma 1. Property (ii7) is satisfied as a direct

consequence of ps.

Once Q is empty, the last computation state produced is simply 7"’ and, since the induction

hypothesis states that 7x4+1(Z) holds, the theorem follows. O

For completeness, it is necessary to prove that the implementation of each elementary in-
variant satisfies the local consistency properties defined earlier. The next lemma establishes

this fact for the summation aggregate. Other invariants can be proven correct similarly.
Lemma 2 The routine in Figure 6.2 is locally consistent for the elementary invariant

T = sum(y1, - - -, Yn)

Given a queue W U (z, I) for some z in {1, ...y} and a pair of stores T, 7¢, it produces a
store 7, satisfying

(z) = sum(G(r, 7, WUz, I),)(y1),---,G(1, 7%, WU (2,I),I)(yn))
Te41(Z) = sum(G(r, 7%, W, I)(w1), - - -, G(7, T, W, I)(wn))

Proof Let z¢ denote 77(z) and 2° denote 7(z) in the propagation routine. The input to a

call is a pair {z,I) and the routine computes 2¢ — 2° to add it to z°. By definition of G we

90

have

G, WUz I),I)(2) = 7(2)
G, W I)(z) = 7i(2)

Before the assignment z€ is 7(z) (by hypothesis), hence after the assignment z° becomes

Glrm, WuUulz,),)(y1) + ...+
Grnm,Wul(z,I),)(z)+...+
G(T7 Tllc: wu (Z, I)1 I)(yn) + TI::(Z) - T(z)‘
By the commutativity and associativity laws of addition this expression simplifies to
G(r, T, WU (2, 1), D) (1) + - - - + Tk(2) + .. + G(7, 74, WU (2, I}, I) (yn)
which is identical to
G WUz,), D(y1) + ... + G, 7, W,) (2) + - .. + G(T, T}, W U {2, I}, I)(yn)-

Since for all terms of the form G(r, 7, W U (2,I),I)(yx) we have yr # z (by definition
of sum), it follows that G(r, 7, W U (z,I),I)(yx) = G(7, 7%, W, I)(yx). Thus, z¢ can be

rewritten as
G, W, I)(y1) + ... + G(1, 75, W, I)(2) + ... + G(7, 71, W, I) (yn)-

It is now easy to set ¢, (z) to z¢ and 14 ,(y) = 7% (y) for all y # z. The lemma follows.
a

6.3 Dynamic Invariants

Static invariants are attractive since the planning phase can be performed entirely at compile
time. However, there are interesting applications in the areas of scheduling and resource
allocation where sets of invariants are not static. This section introduces dynamic invariants
to broaden the class of invariants accepted by LOCALIZER. Dynamic invariants are updated
by a series of planning/execution phases where the planning phase takes place at execution

time. As a consequence, they generalize the technique of finite differencing proposed in [45].

91

6.3.1 Motivation

The main restriction of static invariants comes from the invariant
z = element(e,y1,---,Yn)-
The static topological constraint for this invariant is
t(z) = maz(t(e), t(y1), - - -, t(¥n)) +1

and it prevents LOCALIZER from accepting expressions where some elements of an array
may depend on some other elements of the same array. This constraint is strong, because
the value of e is not known at compile time. In fact, it may not even be known before the
start of the execution phase since some invariants may updaste it.

However, there are many applications in scheduling or resource allocation where such
invariants occur naturally. For instance, a scheduling application may be modeled in terms

of an invariant
start[3] == maz(end[prec(3]], end[disj[3]]);

where start[i] represents the starting date of task %, prec|i] represents the predecessor of the
task in the job and disj[i] represents the predecessor of task 7 in the disjunction. Variable
disj[i] is typically updated during the local search and the above invariant is normalized

into a set of the form:

starty = maz(p,d)
p = element(precs,endy,...,end,)
d := element(disjs,ends,...,end,)

Of course, such an application has also invariants of the form

endy := start) + duration,
ends := starts + durations
end, := starty+ duration,

implying that the resulting set of invariants is not static.

92

6.3.2 Overview of the Approach

The basic idea behind dynamic invariants is to evaluate the invariants by levels. Each
invariant is associated with one level and, inside one level, the invariants are static. Once a
level is completed, planning of the next level can take place using the values of the previous
level since lower levels are never reconsidered. With this computation model in mind, the

topological constraint associated with an invariant
z = element(e,y1,---,Yn)

can be reconsidered. The basic idea is to require that e be evaluated before z (i.e., the level
of z is the level of e + 1). Once e is updated, then it is easy to find a weaker topological

constraint since the value of e is known. The invariant can be simplified to
T = Yec

and z only depends on one element in {y1,--.,yn}- The planning phase is thus divided in
two steps. A first step, which can be carried out at compile time, partitions the invariants
in levels. The second step, which is executed at runtime, topologically sorts the invariants

within each level whenever the invariants at the lower level have been propagated.

6.3.3 Formalization

The basic intuition is formalized in terms of two assignments ! : V — N and t: V — N and

their sets of topological constraints.

Definition 12 The level constraints associated with an invariant I, and denoted by lc(1),

are defined as follows:

le(z :=c) = {l(z) =0}

le(z =y @ 2) = {l(z) = maz(l(y),1(2))}

le(z = TI(z1s - - - Zn) = {i(z) = maz(lz1),---,l(zn))}

le(z := element(e,z1,-.-,zn)) = {l(z) =maz(l(e) +1,l(z1),...,{(zn))}

The level constraints are not strong except for the invariant element where the level of x
is strictly greater than the level of e. Informally, it means that e must be evaluated in an

earlier phase than z.

Definition 13 The level constraints associated with a set of invariants 7 and denoted by
I(Z) is simply U le(I).
ret

93

Definition 14 A set of invariants 7 is serializable if there exists an assignment [: V — N
satisfying lc(Z).

A serializable set of invariants can be partitioned into a sequence < Iy, ...,Z, > such the
invariants in Z; have level i. This serialization can be performed at compile-time. Note
that the serialization ! : ¥ — A4 of a set of invariants Z is unique (if it exists). Indeed,
by definition a variable z cannot appear in def(I;) and def(I;) for i # j, hence its level
assignment is functionally dependent on the right hand side of the topological constraint.
Note that a state variables = is assigned a level [(z) = O since it odes not depend on
anything. The second step consists of ordering the invariants inside each partition. This
ordering can only take place at runtime, since it is necessary to know the values of some

invariants to simplify the element invariants.

Definition 15 Let 7 be a computation state and let 7(z) denote the value of z in 7. The
topological constraints associated with an invariant I with respect to T, denoted tc(I, 7), is
defined as follows:

te(z :=c, 1) = {t(z) =0}

)
te(z =y ®271) = {t(z) = maz(i(y), t(z)) + 1}
te(z == [[{z1,---+Zn), T) = {t(z) = maz(t(z1),...,t(zn)) + 1}
te(z = element(e, z1,...,zn),7) = {t(x) =t(z()) + 1}

Definition 16 The topological constraints associated with a set of invariants Z with respect

to to a state T, denoted by te(Z,), is simply U te(Z, 7).
IeT

Definition 17 A set of invariants Z is static with respect to a state 7 if there exists an

assignment ¢ : V — N satisfying t¢(Z, 7).

The main novelty of course is in the invariant element where the topological constraint
can ignore e since its value is known. In addition, since the final value of e is known, the
topological constraints can be made precise since the element y.c that z depends upon is

known.

Definition 18 Let 19 be a computation state. A set of invariants 7 is dynamic with respect

to 79 if
1. T is serializable and can be partitioned into a sequence < Zy,...,Z, >;

2. I; is static with respect to 7z where 7; (i > 0) is the state obtained by propagating

the invariants Z;_; in 73—1.

94

procedure execute(Z,M)
begin
< Ty, ..-,Ip > := serialize(Z);
for(i:=0; 1 <=p; i++) do
t := plan(Z;);
execute(Z;, M, t);
endfor
end

Figure 6.3: The Execution Algorithm for Dynamic Invariants

Of course, dynamic invariants cannot be recognized at compile-time and may produce an
execution error at runtime when LOCALIZER is planning a level. Note that the propagation

of a dynamic invariant like element requires ©(1) in time and space.

6.3.4 The Execution Algorithm

The new execution algorithm is a simple generalization of the static algorithm and is shown
in Figure 6.3. Note the planning step that is called for each level. Note that the correctness
of this algorithm is a direct consequence of the correctness of the static algorithm since each

level is considered in sequence, independently of the subsequent levels.

6.4 Set Invariants

As should be clear from previous chapters, LOCALIZER offers rich set invariants and this
section reviews their implementation in detail. Set invariants are implemented differently
according to their complexity and our implementation classifies sets in three categories:
extensional, semi-intentional and fully-intentional. The rest of this section is organized
along this classification. Section 6.4.1 reviews preliminaries. Section 6.4.2 presents the
basic set operations. Sections 6.4.3, 6.4.4 and 6.4.5 describe the implementation of set

invariants for the three categories.

6.4.1 Extensional and Intentional Set Invariants

In this section, we mainly consider set invariants of the form

z: {T} = {e1,...,en};

and

95

x:{T}:={v: T|select v from S where E};

Invariants based on nested selection can be handled with chains of cross products and
are discussed after the basic case. As mentioned, set invariants are classified as: extensional,

semi-intentional and fully intentional. Invariants of the form

z: {T} = {e1,-..,en};

are always extensional. Extensional set invariants select their elements from a constant set;
semi-intentional set invariants select their elements from a set invariant and filter them with
a constant expression; and fully-intentional sets select their elements from a set invariant

and filter them with an expression defined in terms of at least one variable.

Definition 19 A set invariant = : {T'} := {v : T'|select vfrom Swhere E} is extensional
if vars(S) =0 .

Definition 20 A set invariant z : {T} := {v : T | select v from S where FE} is semi-
intentional if vars(S) # @ A vars(E) = 0.

Definition 21 A set invariant = : {T} := {v : T | select vfrom S where E} is fully
intentional if vars(S) # 0 A vars(E) # 0.

6.4.2 Sets as Abstract Data Types

In the LOCALIZER implementation, sets can be viewed as abstract data types supporting

the following operations

INSERT(S,e) : Destructively assigns S to SU{e}. The operation executes in O(1) average

time.

REMOVE(S,e) : Destructively assigns S to S\ {e}. The operation executes in O(1)

average time.

UNION(S},S2) : Destructively assigns S; to S; U Ss. The operation executes in O(]S2|)

average time.

UNION(S}, -..,8,) : Destructively assigns S1 to Ujeq1.n}Si- The operation executes in
O(Liin{1.n} |Si]) average time.

In addition, it is convenient to assume the existence of a non-primitive operation

96

APPLY (S,A) : Destructively update S by applying all the operations that appear in the
list A. Each operation is represented as a tuple (o,) where a denotes an opera-
tion and is drawn from {INSERT,REMOVE,UNION} and f is the second operand of the

operation. More formally
S = APPLY(S, ({d1,€1),---,{0n,en))) where
Tp = S
i = 61(To.e1)

S = é‘11.(11 -1: en.)

APPLY executes on average, in a time proportional to O(3_s,ca £(d;)) where A is the difference
list and ¢(9;) is the time it takes to execute operation d;, i.e., O(1) for insertions or removals
and O(|S;]) for unions.

As was the case for traditional invariants, the variable z associated with a set invariant
maintains two values z¢ and z° that represent its current value and its value at the end
of last propagation stage. Once again, ¢ = z° at the beginning of a propagation and z¢
incorporates the changes that occur in the propagation algorithm. It is useful to assume

the existence of an operation DIFF(z) that returns the set of operations A such that

z¢ = APPLY(z°, A).

6.4.3 Extensional Sets
We now consider the implementation of extensional set invariants. As before, the imple-
mentation is presented in terms of the normalization, the planning phase and the execution
phase.
6.4.3.1 Normalization
An invariant of the form
z:= {617"'7%};
is normalized into the set of elementary invariants

z := UNION(s1,---,5n)
§1 == SINGLETUN(.’ZZI)

Sp = SINGLETON(z,)

97

assuming that the zi,...,z, are variables, i.e., the innermost expressions have been nor-
malized already. The obvious strategy to normalize a set in extension is thus to normalize
the expressions e; (1 < 7 < n) first to obtain auxiliary variables zy, ..., z, and to apply the
above transformation.

The normalization of an invariant
z = {v|select v from{ey,...,e,} where E}

consists of normalizing E[v/e;],-. ., E[v/e,] to obtain by,...,b, and of generating the set

of invariants

z := UNION(S1,---,Sn),
b1 = E[v/el]; 81 == CSINGLETUN(bl, 61)

bp := El[v/en]; sp := CSINGLETON(by, e,)

where CSINGLETON(b, v) returns {v} when b is true and) when b is false. This set can be

turned into a set of elementary invariants by normalizing Flv/e;] (1 < 7 < n).

6.4.3.2 Planning

The planning phase can be extended to take into account the new elementary invariants.
The UNION invariant does not need any special treatment and obeys the same set of static

and level constraints as the other operations covered by [].

Definition 22 The level constraints associated with an invariant I and denoted by lc(I)
are defined as follows:

le(z := SINGLETON(y)) = {l(z) =l(y)}
lc(z := CSINGLETON(b,y)) = {l(z) = maz(l(b),I(y))}

Definition 23 Let 7 be a computation state and let 7(z) denote the value of z in 7. The
topological constraint associated with an invariant I with respect to 7, denoted tc(Z, 7), is
defined as follows:

te(z := SINGLETON(y), 7) = {t(z) =t(y) + 1}
te(z := CSINGLETON(b,y),7) = {t(z) =maz(t(b),t(y)) + 1}

98

procedure propagate(y,z :=SINGLETON(y),Z,Q)
begin
REMOVE(z¢, y°);
INSERT(z°, ¥°);
Q :=invariants(Z,);
end

procedure propagate(b,z :=CSINGLETON(b, €),Z,Q)
begin
if b¢ then INSERT(z¢, e);
else REMOVE(z¢, e);
Q = invariants(T,z);
end

procedure propagate(y;,z :=UNION(y1,---,¥n).Z,@)
begin
APPLY (z°,DIFF(v:));
if |[DIFF(z)| > O then
Q = invariants(Z, z);
end

Figure 6.4: Propagation Routines for Extensional Sets.

6.4.3.3 Execution

The propagation of the new elementary invariants is similar to what has been described in
the context of arithmetic invariants. The propagation procedure is scheduled in accordance
to the topological and the level assignments that satisfy lc and ¢c. This guarantees that a
given pair (variable, invariant) is propagated at most once. Figure 6.4 shows the definition
of the propagation rules for these invariants. Note that the propagation SINGLETON and
CSINGLETON require O(1) in time given that both the insertion and the removal of an
element is done in O(1) and at most two operations (insertion or removal) is executed in
the propagation. They also both occupy ©(1) in space given that the invariant does not
need extra memory. Each propagation of the UNION invariant costs O(|DIFF(y;)|) in time
given that the incremental complexity of union is the complexity of APPLY and the space

requirement is ©(n) since the invariants must keep references to the n sets y1,...,¥n-

6.4.3.4 Dealing with Sets of Tuples

Sets of tuples do not raise any particular difficulty. The only requirement is to unfold the
sequence of primitive select expressions and to recombine the outputs of each elementary

invariant with cross products. More details on this process are given in the context of

99

semi-intentional sets.

6.4.4 Semi-Intentional Sets

Semi-intentional sets are defined by invariants of the form

z = {v | select v from S where E}

where S contains variables and F is a variable free expression. Once again, the objective
is to devise a planning/execution model that leads to an effective implementation. Ideally,
the algorithm should to be linear in the size of the minimal changes on the output or, more
precisely, in the minimal number of tuples added to, and removed from, the destination set.

6.4.4.1 Normalization

Sets of scalars: Consider first an invariant
z = {v |select v from S where E}

The normalization process described for static sets does not apply, since S is not known
when the invariants are normalized. As a consequence, it is necessary to introduce another

elementary invariant
z := FILTER(y, F).

The elementary invariant FILTER expects a set as first argument and a function F' : T' — bool
as second argument, where T is the type of the elements of y. It returns the set of elements
v in y such that F(v) holds.

The normalization of a semi-intentional set invariant consists of normalizing S to obtain
a variable y, to transform the expression E into a partial function F, and to generate the

set of elementary invariants

{y := S;z :=FILTER(y, F)}.

Sets of Tuples: The normalization of an invariant of the form

z={(v1,..-,vn) | selectw; fromSjwhere E)

select v, from S, where E,}

100

is based on a sequence of simple semi intentional invariants interleaved with a sequence of

cross products. This transformation leads to the set

y1=351; o=y o1 := FILTER(dy, F1);
y2 = S2; &2 := CROSS(01,¥2); o9 := FILTER(d2, F5);

Yn = Sn; On := CROSS(0n—1,¥n); Z := FILTER(O,, Fy)

where each function F; is derived from the expression P;(vy, - .., v;) and the y; are normalized
from the corresponding S;. This normalization introduces a new elementary invariant CROSS

that takes two sets as input, and produces the Cartesian product of its inputs.

6.4.4.2 Planning

The definition for the lc set is extended as follows

Definition 24 The level constraints associated with an invariant I, and denoted by lc(I),
are defined as follows:

le(z :==CROSS(y,2)) = {l(z) =maz(l(y),l(2))}
le(z :=FILTER(y, F)) = {l(z) =1(y)}

The topological constraints are also extended in the obvious way.

Definition 25 Let 7 be a computation state and let 7(z) denote the value of z in 7. The
topological constraints associated with an invariant I with respect to 7, denoted tc(I,), is
defined as follows:

te(z := CROSS(y, 2),7) = {t(z) = maz(t(y),t(z)) + 1}
te(z := FILTER(y, F),7) = {t(z) =t(y) + 1}

6.4.4.3 Execution

The propagation of the new elementary invariants is based upon the differential structure
and the pair of values z¢ and z°. The propagation procedure for z :=FILTER(y,F') loops
through all the differences for the set variable y. In case of an element removal, the operation
in applied to £ without further ado. In case of an element insertion, the insertion in z is
conditional to the result of F'(e) where e is the operand of the insertion.

The implementation for z :=CR0SS(y,z) obtains the list of differences for the set variable

responsible for the propagation. It then performs, for each difference, the corresponding

101

operation on all the partial tuples resulting from the cross product between the value and the
second operand of CROSS. Note that, depending on the nature of the operation, the operand
of the cross product is either the current value of z or the old one. In the event z changes, the
propagation procedure has a symmetric counterpart. Finally, note that if the two operands
y and z of CROSS change, the two pairs (y,z := CROSS(y, z)), (z,z := CROSS(y, z)) are
propagated in any order. The complexity of this procedure for the propagation of the pair
(y.z := CROSS(y, 2)) is O(|DIFF(y)|.]z]). Figure 6.5 depicts the implementation of the two

procedures.

procedure propagate(y,z :=FILTER(y, F),Z,Q)
begin
forall((d,e) eDIFF(y)) do
switch(4) do
case REMOVE: z¢ :=REMOVE(zS, e);
case INSERT: if F(e) then z° :=INSERT(z,e);
if |DIFF(z)| > 0 then
Q := tnvariants(Z, z);
end

procedure propagate(y,z :=CR0SS(y, z),Z,Q)
begin
forall (d,e) € DIFF(y) do
forall o € 29 do
z¢ = §(z% (e,));
if |DIFF(z)| > 0 then
Q := invariants(Z, z);
end

Figure 6.5: Propagation Procedures for Semi-intentional Sets.

6.4.4.4 Correctness

To show that the propagation routines for FILTER and CROSS are correct, it is necessary
to demonstrate that the implementation verifies the local consistency conditions described
earlier. Remember that 7 is the computation state before the step starts, 7’ is identical to
7 but for the a subset M of the input variables to the invariant that are modified and 7’

is the output state.

Lemma 3 The routine for FILTER shown in Figure 6.5 is locally consistent for the elemen-
tary invariant z := FILTER(y, F).

102

Proof Before the propagation start, we know that 7(z) = {e € 7(y)|F(e)}. The routine
can be called at most once since y is the only variable involved. The procedure iterates over
the difference list of y. Since the difference list can be expressed as AU D where A is the
set of elements added to 7(y) and D is the set of elements removed from 7(y) (AN D = 0),
the final computation state 7{(z) stores 7(z) \ DU {e € A|F(e)}. Since the procedure does
not modify any other element in the store, the other properties of local consistency are

automatically enforced. O

Lemma 4 The routine for CROSS shown in Figure 6.5 is locally consistent for the elementary
invariant z := CROSS(y, z).

Proof Without loss of generality, let us assume that ¢(z) = k. Before the propagation,
.(z) = {{e, f) € T(¥) x G(, 7, W U {{y,I)},I)(2)}. Let us prove local consistency for
the propagation of the pair (y,I) where I is £ := CROSS(y,z)). Let us denote by 7,
the computation state after the propagation. When y changes, the computation state 77(y)
contain the new value for y. It is easy to relate the two states as 7(y) = 77.(y) \ AyUDy where
Ay is the set of additions to y and D, is the set of deletion from y. By the distributivity of

cross product over set union and difference, we can rewrite 7(z) as

(@) = {(&f) € () x G(r,i, WU {{y,)}, I)(2)} U
{(61 f) € Dy X G(T,T]L, WU {(y1I)}!I)(z)} \
{(e, f) € 4y x G(r, i, WU {{y, D}, I)(2)}

and hence

T (z) = T(2)\
{{e, fY € Dy x G(1, 7, WU {(y,)}, I)(2)} U
{{e, f) € Ay x G(r, ., WU {(y,)}, I)(2)}.

This last expression is the result of the computation carried out by the routine. Indeed,
the routine echoes the operation (addition or deletion) and uses as a store z9 defined as
G(r, 7, W U {{y,I)},I)(z). Therefore, if the pair (z,I) was already propagated, it does
not belong to W, hence G(r,7, W U {{y,I)},I)(z) is 7;.(2). If the pair is still in W,
G(r,m,, W U {{y,I)}, I)(z) is 7(z) and the behavior is correct. Local consistency follows
since the procedure does not modify anything besides 7/(z). O

103

6.4.5 Fully Intentional Sets

The third and last category of sets deals with fully intentional set expressions. Consider a

set invariant
z = {v |select v from S where E}.

Variables can appear both in S and in the filter expression E. The implementation of the
semi-intentional sets cannot be adapted easily to the context. The difficulty arises from
the presence of variables in the filter that makes the insertion or the deletion of an element
contingent to the values of these variables.

6.4.5.1 Normalization

To formalize the normalization, it is important to recognize that the function F' to be used
as an argument of the invariant is no longer a function of the parameter v, but also of all
variables appearing in E. As a consequence, assuming that vars(F) = {y1,--.,¥n} and

that the types of these variables are 17, ...,T, respectively, the function has the signature
F:(Th x...xT,)— T — bool

In the rest of this section we use the following conventions and notations. If vars(E) =
{y1.---,yn} then F°(v) = F(y%,...,y7)(v) and F¢(v) = F(yf,...,y;)(v)- Additionally, y

denotes the set variable resulting from the normalization of the expression S.

Set of Scalars Fully-intentional set are implemented through a new elementary invariant

z := DFILTER(y, F')

where y is the result of the normalization of S and F' is the partial function described above.

The normalization of a set
z = {v | select v from S where E}

then reduces to the normalization of S into a variable y, the transformation of E into a

function F' : (T1 X ... x T,) — T — bool and the creation of a set of elementary invariants

{y := S,z := DFILTER(y, F)}.

104

Sets of Tuples The normalization of an invariant of the form

z = {{v1,...,vn) | selectv; from S; where E;

select v, from S, where E,}

is based on a sequence of simple intentional invariants interleaved with a sequence of cross

products. This transformation leads to the set

=351, 01:=u, o := DFILTER(d1, F1),
ya =S89, &g := CROSS(o1,¥2), o9 := DFILTER(d2, FY),

Yn := Sp, On := CROSS(0n-1,Yn), < :=DFILTER(dy, Fr)

6.4.5.2 Planning

The definition for the Ic set is extended as follows

Definition 26 The level constraints associated with an invariant I and denoted by lc(I),
are defined as follows:

le(z := DFILTER(y, F)) = {l(z) =mu(l(y),ueﬁggg},)l(v))}

The topological constraints are also extended in the obvious way.

Definition 27 Let T be a computation state and let 7(z) denote the value of z in 7. The
topological constraint associated with an invariant I wrt to 7, denoted tc(Z, 7), is defined

as follows:

te(z := DFILTER(y, F)) = {t(z) = maz(t(y), ueﬂfs}%F) t(v)) +1}

6.4.5.3 Execution

This last section gives the definition of the propagation procedure for new elementary invari-
ant z :=DFILTER(y,F). The skeleton of DFILTER proceeds by scanning the three following

sets

1. The stable elements of ¥y whose boolean conditions have changed are noted DIFF(F)
and defined as
{vey*ny® | F(v) # F°(v)}-

105

2. The new elements of y whose boolean condition are true {v € y*\ y° | F¢(v)}-

3. The old elements of y whose boolean condition were true {v € y° \ y¢ | F°(v)}.

procedure propagate(y,z :=DFILTER(y, F),Z,Q)
begin
forall e € {s € y*Ny° | F°(s) # F°(s)} do
if F¢(e) then
x¢ :=INSERT(z¢, e);
else x¢ :=REMOVE(z¢, e);
foralle € {s e y*\y° | F°(s)} do
x¢ :=INSERT(z%,e);
foralle € {s e y° \y°| F°(s)} do
x¢ :=REMOVE(zS, e);
if |DIFF(z)| > 0 then
Q = tnvariants(Z, z);
end

Figure 6.6: Propagation Procedure for Fully-intentional Sets

In our implementation, the procedure described in Figure 6.6 is linear in

IDIFF ()| + [{s € y* N y° | F°(s) # F(s)}-
More precisely, the work accomplished by the procedure is proportional to the amount of
change in the input, either directly through y, or induced through 7. This time complexity
follows from the fact that DFILTER maintains the set {v € y*Ny° | F(v) # F°(v)}
incrementally. The complexity bound directly follows from the procedure since it scans this

set in the first loop and the set DIFF(y) in the two other loops while performing a constant

time operation at each iteration.

6.4.6 Open structures

The DFILTER invariant introduced in the previous section is a member of a more general
class of elementary invariants. For instance, consider the excerpt of a LOCALIZER statement

for vehicle routing

aas: Arc := {{q, w) : Arc| select (¢, w) from AP where aazv|q, w] and notTabu[g]};
aa: Arc := argmin(a in aas) aaza.s,a.t];
aag: real := - (min(a in aas) aaza.s, a.t]);

This fragment has the peculiarity to use the builtins argmin and min with an input set aas
itself defined as an invariant. The z := [[(z3, ..., Zn) elementary invariant cannot deal with

this statement since the list z1, ...,z is not known at compile time.

106

However, the infrastructure offered by DFILTER can be reused and an elementary invari-
ant = := DMIN(y, F') can easily accomodate such a statement. Indeed, it is easy to define
a partial function F : vars(E) — T — R that maps any element of type vars(E) T and
a value y to a performance measure. With the assistance of that partial function, a prop-
agate procedure similar to DFILTER can be designed to maintain the minimum in a time

proportional to
O((IDIFF ()| + [{s € §°N S° | F(s) # F(s)}) log(|y]))

All static elementary invariants covered by [] do have a dynamic counterpart.

6.5 Summary

This Chapter introduced a complete set of elementary invariants that correspond to the
internal representation of high level invariants in LOCALIZER. The Chapter focused on the
properties of each elementary invariant and on the incremental algorithms based on finite
differencing that are used to update the invariant variables. The Chapter also presented
the overall propagation routine that enforces a necessary topological ordering of the pairs

{z,I) to propagate.

Chapter 7

Applications

This chapter illustrates the use of LOCALIZER on a number of applications. The appli-
cations considered are Boolean satisfiability, graph coloring, graph partitioning, Job-shop
scheduling and vehicle routing. Boolean satisfiability is the simplest application (from a
modeling standpoint) while vehicle routing is the most involved. For each application, one,
or several, LOCALIZER statements are presented and compared with existing implementa-
tions. As a consequence, after this chapter, readers should have some reasonable idea of the

expressiveness and efficiency of LOCALIZER.

7.1 Boolean Satisfiability

The first application is Boolean satisfiability (the first NP-complete problem) that has
attracted much attention in the artificial intelligence community in recent years. We present
very concise models of a greedy stochastic procedure called GSAT and proposed in [68]. Note

that these models only use static invariants.

7.1.1 The Problem

Boolean satisfiability problems are described in terms of a number of clauses, each clause
consisting of a number of literals. As is traditional, a literal is simply an atom (positive
atom) or the negation of an atom (negative atom). The goal is to find an assignment of
Boolean values to the atoms such that all clauses are satisfied, a clause being satisfied if

one of its positive atoms is true or one of its negative atoms is false.

107

108

7.1.2 The Local Search Algorithm

The local search algorithm considered for Boolean satisfiability is GSAT, a greedy local
search procedure. The basic idea is to start from a random assignment of Boolean values
and to select the atom which, when its value is inverted, produces a state with the largest
number of satisfied clauses. A transition is acceptable if it improves the number of satisfied
clauses, or at the very least does not degrade that number. The algorithm described in the
original paper can be found in Figure 7.1.

procedure GSAT
input: a set of clauses F', maxFlips , mazTries
output: a satisfying truth assignment of F, if found
begin
fori:=1 to mazTries do
T := a randomly generated truth assignment
for j :=1 to mazFlips do
if T satisfies F then
return 7T';
Let & be the variable which, when flipped, leads to the
largest increase in the number of satisfied clauses. If there
is a tie, break randomly
T := T with the truth assignment of k reversed
end
end
return “No satisfying assignment found”;
end

Figure 7.1: The GSAT Algorithm of Selman et al.

7.1.3 A Simple LOCALIZER Statement

Instance Representation In the statement, atoms are represented by integers from 1
to n and a clause is represented by two sets: the set of its positive atoms p and the set of

its negative atoms n. A SAT problem is simply an array of m clauses.

State Definition The state is specified by the truth values of the atoms and is captured

in the array a, where a[i] represents the truth value of atom i.

Neighborhood The neighborhood is defined as the set of boolean assignments differing

from the current assignment in the value of a single atom.

Solve
Type:
clause = record
p: {int};
n : {int};
end;
Constant:
m: int = ...;
n: int = ._;
ct array(l..m] of clause = ...;
Variable:
a: array[l..n] of boolean;
Invariant:
nbtl: array[i in 1..m] of int = sum(i in clfi].p) a[j] + sum(j in clfi].n) la[j];
nbClauseSat : int = sum(é in 1..m) (nbtl[i] >0);
Satisfiable:
nbClauseSat = m;
Objective Function:
maximize nbClauseSat;
Neighborhood:
move ali] := lafi]
where i from {1..n}
accept when improvement;
Start:
forall(i in 1..n) a[i] := random({true,false});
Restart:
forall(i in 1..n) a[f] ;= random({true,false});

Figure 7.2: A Local Improvement statement for Boolean Satisfiability.

instance data is described in the Init section which is not shown.

Several sections of the statement differ from the simple version of GSAT.

109

LocCALIZER Statements The simple statement shown in Figure 7.2 is incremental in the
computation of the invariants but it does not maintain the set of candidates for flipping
incrementally: the candidates are obtained by evaluating the number of clauses satisfied
in the new state obtained by flipping each variable. The statement shown in Figure 7.3 is
completely incremental and maintains the set of candidates for flipping at any computation
step. This new statement is significantly faster than the simple one, while remaining easy to
design. Note that LOCALIZER cannot in general deduce such optimizations automatically,
given the fact that operators may be arbitrarily complex and that some problems are not
easily amenable to such optimizations. The interest of the statement for this chapter lies in

the illustration of several interesting features, which we now describe. Note that the actual

110

Constant section The Constant section contains two additional sets: po[i] represents the
set of clauses in which atom ¢ appears positively, while noli] represents the set of clauses in

which atom ¢ appears negatively.

Solve

Data Type:
clause = record
p: {int};
n : {int};
end;
Constant:
m: int = ._;
n: int = ..;
cl: array[l..m] of clause = ...;
po: array| i in 1..n] of {int} := {c: int | select ¢ from 1..m where i in dl{c]|.p};
no: array[7 in 1..n] of {int} := {c: int | select ¢ from 1..m where i in cl{c|.n};
Variable:
a: array[l..n] of boolean;
Invariant:
nbtl[i in 1..m] : int = sum(i in cl[i].p) a[j] + sum(j in cfi].n) la{j];
g01[z in 1..n] : int = sum(j in po[i]) (nbtl[j] = 0) - sum(j in nofi]) (nbtl[j] = 1);
g10[z in 1..n] : int = sum(j in nofi]) (nbtl[j] = 0) - sum(j in pofi]) (nbtl[j] = 1);
gain[i in 1..n] : int = if afi] then g10[i] else g01[i];
mazGain : int = max(i in 1..n) gain[i;
Candidates : {int} =
{i : int | select i from 1..n where gain[i] = mazGain and gain[i] > 0};
nbClauseSat : int = sum(i in 1..m) (nbtl[i] > 0);
Satisfiable:
nbClauseSat = m;
Neighborhood:
move afi] := laf]
where i from Candidates;
Start:
forall(z in 1..n)
random(ali});
Restart:
forall(i in 1..n)
random/(a[z]);

Figure 7.3: A More Incremental Statement of GSAT.

The Invariant section The invariants are more involved in this model and they main-
tain incrementally the set of candidates which can be selected for a flip. The traditional
invariants nbtl and nbClauseSat maintain the number of true literal in a clause and the

number of satisfied clauses. nbtl[i] is computed by counting the number of positive atoms

111

and the negation of the negative atoms.

The informal meanings of the new invariants are the following. g01[:] represents the
change in satisfied clauses when changing the value of atom ¢ from false to true, assuming
that atom i is currently false. Obviously, the flip produces a gain for all unsatisfied clauses
where atom i appears positively. It also produces a loss for all clauses where ¢ appears neg-
atively and is the only atom responsible for the satisfaction of the clause. g10{i] represents
the change in satisfied clauses when changing the value of atom 7 from true to false, assum-
ing that atom 17 is currently true. It is computed in a way similar to g01. gain[i] represents
the change in satisfied clauses when changing the value of atom 7. It is implemented using a
conditional expression in terms of g01[¢], g10[i], and the current value of atom i. mazGain
is simply the maximum of all gains. Finally, Candidates describes the set of candidates for

flipping. It is defined as the set of atoms whose gain is positive and maximal.

The Neighborhood section Once the invariants have been described, the neighborhood
is defined by flipping one of the candidates. There is no need to specify an optimization
qualifier, since this information is already expressed in the invariants. Note that some
invariants in this model involve sets, conditional expressions, and aggregation operators
which are maintained incrementally. They clearly illustrate the significant support provided
by LocALizeR. Users can focus on describing the data needed for their application, while
LOCALIZER takes care of maintaining these data efficiently.

7.1.4 Extensions

Adding Weights References [66],[67] propose to handle the special structure of some SAT
problems by associating weights to the clauses and updating these weights each time a new
local search is initiated. We now show how easy it is to integrate this feature. The changes
consist in introducing weight variables w[i] in the state, in modifying the computations of

the invariants for g01 and for g10 by multiplying the appropriate terms by the weights, i.e.,

g01[i in 1..n] : int := sum(j in po[i]) w(j]x(e[j] =0) -
sum(j in nold]) wlj]x(alj] = 1);

gl0[Z in 1..n] : int := sum(j in no[i]) wij]x(alj] =0) -
sum(j in pofi]) wlj]x(a[j] = 1);

and in updating the weights after each local search by changing the restarting section to

112

Restart:
forall(z in 1..m)
wli] := wli] + (nbtii] =0);
foralil(z in 1..n)
random(afi]);

The rest of the statement remains exactly the same, showing the ease of modification of

LOCALIZER statements.

Random walk/noise The same reference [66] also proposes a more extensive usage of
randomization to escape from local minima. The proposal is to allow from time to time a
variable flip regardless of its impact on the objective function. The frequency of this event
is itself driven by a simple probability distribution such as: in 90% of the cases, proceed
normally, in the other 10%, flip a variable at random. The next excerpt demonstrates how
to express the strategy.

try
Pr(0.1):
move
ali] == la[z]
where
i from OccurInUnsatClause
accept when always ..;
default:
best move
ali] := lali]
where
i from {1..n}
accept when noDecrease;

end

7.1.5 Experimental Results

GSAT is generally recognized as a fast and very well implemented system. The experimental
results were carried out as specified in [68]. Table 7.1 gives the number of variables (V'), the
number of clauses (C), and MaxTrials (I) for each size of benchmarks as well as the CPU
times in seconds of LOCALIZER (L), the CPU times in seconds of GSAT (G) as reported
in [68], and the ratio L/G. The times of GSAT are given on a SGI Challenge with a 70
MHz MIPS R4400 processor. The times of LOCALIZER were obtained on a SUN SPARC-10
40MHz and scaled up by a factor 1.5 to account for the speed difference between the two
machines. LOCALIZER times are for the incremental model. Note that this comparison is
not perfect (e.g., the randomization may be different) but it is sufficient for showing that

LOCALIZER can be implemented efficiently.

113

The class of formula used for the experiment correspond to hard instances where the
ratio of %e— is about 4.3. It is well known that whenever the actual ratio becomes much
smaller or much larger, the instance becomes extremely easy to solve. For formulas with less
than 200 variables, 100 benchmarks were generated. For larger formulas, 10 benchmarks
were generated. The results reported in the table aggregates over 10 runs for each formula

for a total of 1000 runs (100 for large formulas).

TV ¢ [JL ¢ L/
100 | 430 500 19.54 6.00 3.26
120 | 516 600 40.73 14.00 2.91
140 | 602 700 54.64 14.00 3.90
150 | 645 1500 | 154.68 45.00 3.44
200 | 860 2000 | 873.11 168.00 | 5.20
250 | 1062 | 2500 | 823.06 246.00 | 3.35
300 | 1275 | 6000 | 1173.78 | 720.00 | 1.63

N OO N

Table 7.1: GSAT: Experimental Results.

As can be seen, the distribution of ratios L/G is uniform over the range of benchmarks.
This indicates that the LOCALIZER statement scales in the same way than GSAT. The gap
between the two systems is about one machine generation (i.e., on modern workstations,
LOCALIZER runs as efficiently as GSAT on machines of three years ago), which is really
acceptable given the preliminary nature of our (unoptimized) implementation.

7.2 Graph Coloring

This section considers the graph-coloring problem, i.e., the problem of finding the smallest
number of colors to label a graph such that two adjacent vertices have a different color. It
shows how a simulated annealing algorithm proposed in [29] can be expressed in LOCALIZER.
Of particular interest is once again the close similarity between the problem description and
the statement. In addition, graph coloring makes it possible to discuss some interesting
issues about the tradeoff between expressiveness and efficiency. Note finally that graph
coloring could be expressed as an instance of SAT as could any NP-Complete problem.
However, it is often desirable to specialize the local search to the problem at hand and

LOCALIZER makes it possible to exploit the special structure of each problem.

114

7.2.1 The Problem

The problem consists of finding the chromatic number of a graph,i.e., the smallest number
of colors needed to color each vertex so that no two adjacent vertices are given the same
color. For a graph with n vertices, the algorithm considers n colors which are the integers
between 1 and n. The objective is to find a coloring (assignment of colors to vertices) that
is valid (no two adjacent vertices in the same color class) and minimal (uses as few colors

as possible).

7.2.2 The Local Search Algorithm

This section considers a local search algorithm proposed in [29]. The first idea is to consider
both valid and invalid colorings (a coloring is valid if no two adjacent vertices are given the
same colors). The algorithm classifies the vertices in color classes and keeps track of the
bad edges in these classes. Color class C; is the set of all vertices colored with ¢ and the
bad edges of C;, denoted by B;, are the edges whose vertices are both colored with z.

The second idea of the algorithm is to minimize the objective function } 1., 2|B;||Ci| —
|C;|?. This function is interesting since its local minima are valid colorings. To minimize
the function, the algorithm chooses a vertex and chooses a color that comes either from a
non-empty color class or one of the unused colors. It is important to consider only one of the
unused colors to avoid a bias towards unused colors. A move is accepted if it improves or
does not degrade the value of the objective function or, if not, with a standard probability
of simulated annealing algorithms?.

7.2.3 A Simple Model for Graph Coloring

Figure 7.4 depicts the simulated annealing statement for graph coloring. The statement

closely follows the above description.

Instance data The instance data is described by the number of vertices n (each vertex
being a number between 1 and n), the set of edges FE between vertices, and the annealing
parameters cutOff, chPerc, mazFreeze that are described subsequently. The adjacency
matrix A is computed automatically from the edges.

! As a consequence the Markov chain associated with the process has a unique stationary distribution, and, therefore,
there exist a finite sequence of transitions that transforms i into j for any pair of state i, 7. This guarantees that the
algorithm converges asymptotically to the optimal solution.

Optimize

Data Type:

edge = record s : int; ¢ : int; end;
Constant:

n sint = ..

E : {edge} = ..;

cutOff :real = .

chPerc :real = .

maxkFreeze: real = ._;

A : array(i in 1..n,j in 1..n] of boolean := (i, j) in E;
Variable:

z : array[l..n] of int;

t : int;

fec: int;

ch : int;
Invariant:

C: array[i in 1..n] of {int} := distribute(z,{1..n},{1..n});
Empty : {int} = { i : int | select i from 1..n where size(C[i]) = 0};
NEmtpy : {int} = { i : int | select ¢ from 1..n where size(C[i]) > 0};
unused : int = minof(Empty);
Candidates : {int} = NEmpty union unused;
B : arrayk in 1..n] : {edge} = {(i,]) : edge | select i from C[k]
select j from C[k] where A[i, j] };
f: int = sum(i in 1..n) (2xsize(C[i]) xsize(B[i]) - size(C[i])?)
countB : int = sum(i in 1..n) size(B[i]);
Satisfiable:
countB = 0;
Objective Function:
minimize f;

Neighborhood:
move zi] :=c¢
where
i from {1..n};

¢ from Candidates
accept when
improvement — { if countB = 0 then fc = 0 endif; ch:=ch+1; }
cor noDecrease
cor Pr(e—delta/t) : always — ch:=ch+1;
Start:
T := initTemp; fc:=0;ch:=0;forall(i in 1..n) random(z[i]);
Restart:
T := factor x T'; if ch/trial < chPerc then fc:=fc+1 endif;
Parameter: MaxTrials := 90 * sf * n;
Local Condition: ch <round(cutOff * n);
Global Condition: fc < mazxFreeze;

Figure 7.4: A LOCALIZER Statement for Graph Coloring.

115

116

State representation The state is represented by the variables z[i] that represent the
colors of vertices, by the temperature ¢, and by two other annealing parameters fc and ch
that are used to control the local and global conditions.

The Invariant section The invariants describe the sets C;, B;, and the objective func-
tion. The invariant distribute(z,{1..n},{1..n}) computes the sets C;. The “unused” color
is obtained by taking the smallest unused color. The set of candidate colors are thus all the
“used” colors together with the selected “unused” color. The bad edges are maintained for
each color class by considering adjacent vertices in the color class. The total number of bad
edges (countB) is also maintained to decide satisfiability.

The Neighborhood section The neighborhood is described by choosing a vertex and a

candidate color. Acceptance obeys the standard simulated annealing criterion.

Termination The stopping criteria are directly derived from the algorithm description in
[29]. The inner local search can only perform round(cutOff * n) variations of the objective
function and the variable ch maintains the number of variations by incrementing ch in the
acceptance actions. The motivation behind this choice is to control the search when the
temperature is high. The global iteration is stopped when fc > mazFreeze. The intuition
here is that fc represents the number of local searches without significant progress. fc is
reset to 0 whenever there is an improvement. It is incremented each time the local search

is restarted and there was no significant change in the previous local search.

7.2.4 A More Incremental Statement

The above statement uses the resulting state in the acceptance criterion. This means
that, in order to evaluate if a move is acceptable, it is necessary to simulate the move,
e.g., to update all the invariants and to undo the changes if the move is not acceptable.
As mentioned previously, although the algorithms in LOCALIZER are incremental, such a
simulation may become the most consuming part of the algorithm at low temperatures
when many candidate moves are discarded.

Figure 7.5 depicts a new, more incremental, statement. The key insight here is that it
is possible to evaluate the impact of the move in the current state by simply looking at the
bad edges in color classes C[z[i]] and C|c] and deducing the variation d of the objective
function. In particular, the old class color of vertex 1, i.e., z[i], decreases by one in size,

while its number of bad edges decreases by

117

sum(j in Clz[i]]) A[s, j]-

Similarly, the new class color ¢ of vertex 7 increases by one in size and its number of bad

edges increases by
sum(j in C[c]) A[z, 7]

The variation d of the objective function is computed in the neighborhood definition and,
in the acceptance criterion, keywords improvement, noDecrease, and delta are replaced
by d < 0, d = 0, and d respectively. The performance gain on this problem is significant

(about a factor of 5 on large instances (500 vertices)).

7.2.5 Experimental Results

Graph coloring was the object of an extensive experimental evaluation in [29] and this section
reports on experimental results along the same lines. The experiments were conducted on
graphs of densities 10, 50, and 90 and of sizes 125, 250, and 500. They were also conducted
on so-called “cooked” graphs. Cooked graphs have a well-known optimal coloring. A cooked

graph with n vertices and with a chromatic number x is constructed as follows:
1. Randomly assign the vertices with equal probability to x color classes.

2. For each pair (u,v) of vertices in different color classes, place an edge to connect them

with a probability Q:T')'
3. Pick x vertices, one from each class, and make sure they form a clique in G.

Because of the nature of the experimental results reported in [29], it is not easy to compare
the efficiency of LOCALIZER to the efficiency of their algorithm. As a consequence, we
decided to build a very efficient C implementation of their algorithm from scratch and to
compare it with LOCALIZER. This implementation was performed by a graduate student not
connected to the LOCALIZER project. This student was closely supervised to obtain a very
efficient incremental algorithm. As far as we can judge, the timings and the quality of this
algorithm seem consistent with those in [29]. In the following, we discuss the development
time of the two implementations, the quality of the solutions obtained (to make sure that
the algorithms are comparable in quality), and the efficiency.

Development Time The C implementation of the algorithm is about 1500 lines long
and required a full week. This should be compared with the concise model presented earlier

in this chapter.

Optimize
Data Type:
edge = record s : int; ¢ : int; end;
Constant:
n :int = ..
E : {edge} = ...;

cutOff :real=.
chPerc :real = ...
mazFreeze: real = ..
A : array[z in 1..n,j in 1..n] of boolean := (i, j) in E;
Variable:
z : array[l..n] of int;
t : int;
fe: int;
ch : int;
Invariant:
C: array[t in 1..n] of {int} := distribute(z,{1..n},{1..n});
Empty : {int} = { i : int | select i from 1..n where size(Cl[i]) = 0};
NEmtpy : {int} = { 7 : int | select ¢ from 1..n where size(C[i]) > 0};
unused : int = minof(Empty);
Candidates : {int} = NEmpty union unused;
B : array(k in 1..n] : {edge} = {(3,7) : edge | select i from CI[k]
select j from C[k] where A[i, j] };
f: int = sum(i in 1..n) (2xsize(C[i]) xsize(Bl[i]) - size(C[i])?)
countB : int = sum(z in 1..n) size(B[i]);
Operator:
int £(C : int,S : int) { return 2 * C * S - C?;}
int diff(i : int,dc : int,ds : int) {
return f(size(C[i])+de,size(Bi])+ds) - f(size(C[i]),size(B{i])); }
Satisfiable:
countB = 0;
Objective Function:
minimize f;
Neighborhood:
move zfi] :=c
where
i from {1..n};
c from Candidates;
nb = sum(j in Clc]) A[, j);
ob = sum(j in Clz(i]]) A3, J};
d = diff(x[i],-1,-ob) + diff(c,1,nb)
accept when in current state
d < 0 — { if countB = 0 then fc = 0 endif; ch:=ch+1; }
cor d=0
cor Pr(e~%*): always — ch:=ch+1;

Figure 7.5: A More Incremental Neighborhood for Graph Coloring.

118

119

Data Set Color Ranges Frequencies

|v | D} SF LOCALIZER | C
random | 125 | 50 3 191 20 92| 8 87 | 13
random | 250 | 50 4| -32) 33} 34| 35 9143 (44| 4 6141150 3
random | 500 | 50 4 55| 56| 57| 58— 4154141 | 1 8148|136 | 8
random { 125 | 10 1 6 7 8 -1 48 | 52 - -] 43 54| 3| -
random | 250 | 10 1 9| 10| 11 -1 27|70 3 -1 29170} 1 -
random | 500 | 10 2 15| 16| 17 - 1179120 - 318611 -
random | 125 { 90 1| 44| 45| 46 | 47- 7130130} 33] 153226 |27
random | 250 | 90 1| -78| 79| 80| 81- 4]15|35] 46 4119|2552
random | 500 | 90 1| -143 | 144 | 145 { 146—| 30 (22 |16 {32 | 15} 11 | 38 | 36
cooked | 125 4 9 - - - | 100 - - - | 100 - - -
cooked | 250 1 15 - - - | 100 - - - 1100 - - -
cooked | 500 2 25 | 26— 711 29 65 | 35

Table 7.2: Graph Coloring: Quality of the Solutions.

Quality of the Solutions Table 7.2 describes the quality of the coloring found by Lo-
CALIZER. These results agree with those of the C implementation and with those reported
in [29]. Each set of rows corresponds to a class of graphs and to 100 executions of LOCAL-
IZER on 10 graphs from this class (a total of 1000 runs). Each row describe a benchmarks
in terms of its class, the number of vertices (V'), the edge density (D) and the size factor
parameter (SF). A row also reports on the various values found by LOCALIZER on these
graphs and their frequencies. For instance, the first row reports that, on graphs of 125
vertices and density of 50%, 92% of the executions led to a coloring with 19 colors and 8%
of the executions led to a coloring with 20 colors. The results are given both for random
and cooked graphs and the frequencies are similar for both LOCALIZER and the C imple-
mentation. The last column C reports the frequencies for the C implementation. Note that
LOCALIZER and the C implementation were compared on the same problem instances and

only the random seed did change from one run to the next.

Efficiency Table 7.3 compares the efficiency of LOCALIZER with the C implementation on
the same problems. Each row reports the average time of the two implementations for the
100 graphs in each class and computes the slowdown of LOCALIZER. The experiments were
performed on a SUN Sparc Ultra-1 running Solaris 5.5.1 and the standard C++ compiler.
The minimum and maximum slowdowns are respectively 3.56 and 5.54. On these problems,
the slowdown is in general slightly higher than a machine generation but it remains rea-
sonable given the preliminary nature of the implementation. This slowdown should alsc be

contrasted with the substantial reduction in development time.

120

{ | V] DJSF | LocaLizer (L) | CImpl. (C) | L/C |

random | 125 | 50 3 78.3 18.9 | 4.50
random | 250 | 50 4 82.8 18.4 | 4.50
random | 500 | 50 4 633.7 123.4 | 5.10
random | 125 | 10 1 22.5 4.8 | 4.60
random | 250 { 10 1 109.2 22.02 | 4.96
random | 500 { 10 2 159.8 28.8 | 5.50
random | 125 | 90 1 16.18 453 | 3.56
random | 250 | 90 1 49.32 8.89 | 5.54
random | 500 | 90 1 162.7 29.6 | 4.88
cooked | 125 4 22.09 4.18 | 5.28
cooked | 250 1 37.22 7.79 | 4.77
cooked | 500 2 240.3 49.9 | 4.80

Table 7.3: Graph Coloring: Efficiency of LOCALIZER.

7.3 Graph Partitioning

This section considers graph-partitioning, the typical application used to illustrate local
search in textbooks.

7.3.1 The Problem

The graph-partitioning problem consists of finding a partition of the vertices of a graph into

two sets of equal size which minimizes the number of edges connecting the two sets.

7.3.2 The Local Search Algorithm

A Traditional local search algorithm for graph partitioning [47] maintains two sets of equal
size and swaps vertices between these two sets. The local search algorithm considered here is
based on a simulated annealing approach presented in [28]. This algorithm relaxes the idea
of maintaining a feasible solution and a move consists of selecting a vertex and moving it to
the other set. The objective function combines the objective of minimizing the connections

between the two sets with the desire to favor balanced solutions. It is given as
SB + alpha * IMB?

where SB is the number of connections, IMB is the imbalance between the two sets, and

alpha is a parameter of the algorithm.

121

7.3.3 The LOCALIZER Statement

The Instance Data The LOCALIZER statement is depicted in Figure 7.6. The instance
data is described by the number of vertices n (each vertex being a number between 1 and
n), the set of edges E between vertices, and the annealing parameters (which we will not
describe for this statement since they are again taken directly from [28]). The adjacency
matrix A is computed automatically from the edges.

The State Representation The state is represented by the variables z{i] and some
annealing variables. Variable z[i] is true if ¢ belongs to set Sy and false otherwise. The
invariants P0S and P1S maintain the size of the sets Sy and Sj respectively. Invariants
EX[i] and IT[i] represent the traditional internal and external costs of a vertex. The
external cost of a vertex is the number of edges connecting the vertex to vertices in the
other set, while the internal cost of a vertex is the number of edges connecting the vertex
to vertices in the same set. IMB is the imbalance between the two sets and OBJ is the

objective function mentioned earlier.

The Neighborhood section The neighborhood is essentially similar to the neighborhood
of the graph-coloring problem, except that here a candidate move consists of flipping the
value of a variable.

Once again, there is a small distance between the algorithm and its statement in Lo-
CALIZER. As was true for graph coloring, it is easy to find a more incremental version of
the model by evaluating the variation of the objective function in the current state using
the variations on the internal and external costs. The reader can find the changes in the

statement in Figure 7.7.

7.3.4 Experimental Results

The problem has been studied experimentally in [28] and, once again, the experiments
reported here are based on a similar setting. Two classes of graphs are considered: randomly
generated graphs of various density and so-called geometric graphs. Geometric graphs are
constructed as follows. Pick 2n numbers between 0 and 1. Interpret these numbers as the
coordinates of vertices lying inside a unit square. Define an edge (i, j) between vertex 7 and
7 if the Euclidean distance between vertex ¢ and j is less than or equal to a constant d. The
average degree of vertices not too close to the boundary of the unit square have an average

degree equal to nmwd?. The instance used in the experiment are generated by choosing a

Optimize
Type:
edge = record s : int; ¢ : int; end;
Constant:
n:int =..;
E: {edge} = ..
alpha : real = ...;
cutOff : real = ._;
sf: int = ..
chPerc : int = ...
A : arrayfi in 1..n] of {int} := {j : int | select j from 1..n
where (i, j) in F or (j,1) in E};
Variable:
z: array{l..n] of boolean;
t: real;
fe: int;
ch : int;
Invariant:
P0S : int = sum(¢ in 1..n) z[i];
P15 :int = n - POS;
EX : array[i in 1..n]of int = sum(k in A[Z]) (z[k] <> z[i]);
IT :array[i in 1..n] : of int = sum(k in A[z]) (z[k] = z[i]);
SB : int = (sum(i in 1..n) EX[i])/2;
IMB : int = P0S — P1S;
OBJ : real = SB + alpha * IM B?;
Satisfiable: IMB=0;
Objective Function: minimize OBJ;
Neighborhood:
move zl[i] :=lz{i]
where i from {1..n};
accept when improvement — ch:=ch+1
cor noDecrease
cor Pr(e~de*?/t) : always — ch:=ch+1;
Start:
t:=10; fc:=0;ch:=0;
forall(i in 1..n) z[i] := random({true,false});

Restart:
t:=1t* 0.95;
if ch * 100/trial < chPerc then fc:= fc+ 1 endif;
ch:=0;

Parameter: MaxTrials := sf* n;
Local Condition: ch <cutOff * n;
Global Condition: fc < 5;

Figure 7.6: A Graph Partitioning Statement.

122

Optimize
Type:
edge = record s : int; ¢ : int; end;
Constant:
n:int = ..;
E : {edge} = ...;
alpha : real = ...;
cutOff : real = ..;
sf:int = ..
chPerc : int = ...;
A : arrayfi in 1..n] of {int} := {j : int | select j from 1..n
where (i,7) in E or (j,%) in E};
Variable:
z : array{l..n] of boolean;
t: real;
fc : int;
ch : int;
Invariant:
POS : int = sum(i in 1..n) z[i];
P1S: int = n - POS,
EX : arrayli in 1..n]of int = sum(k in A[i]) (z[k] <> z[i]);
IT : array[i in 1..n}of int = sum(k in A[3]) (z[k] = z[i]);
SB: int = (sum(i in 1..n) EXT[i])/2;
IMB : int = P0S - P18S;
OBJ : real = SB + alpha * IM B?;
Satisfiable: IMB=0;
Objective Function: minimize OBJ,
Neighborhood:
move z[i] :=!zi]
where 7 from {1..n};
D = IT[i] — EX[i] + (if z[i] then —4xIMB+4 else 4xIMB+4) * alpha
accept when D < 0 — ch:=ch+1
cor D=0
cor Pr(e~P/t) : always — ch:=ch+1;
Start:
t:=10; fe:=0;ch:=0;
forall(i in 1..n) z[i] := random({true,false});

Restart:
t:=t*0.95;
if ch = 100/trial < chPerc then fc:= fc+ 1 endif;
ch :=0;

Parameter: MaxTrials := sf* n;
Local Condition: ch <cutOff * n;
Global Condition: fe < 5;

Figure 7.7: A More Incremental Graph Partitioning Statement.

123

value n, and a value for nnd=?.

Graph Results (T=10,TF=0.95,SF=16,chPerc=2%,Cutoff=10%)
Class 12 D Ranges | Frequencies | LOCAL.
random | 124 2 11-13 14-16 17-19 3338129 2.22
random 4 55-59 60-65 66-77 30 | 34| 36 2.40
random 8 159-174 175-190 191 23 [53| 24 3.24
random 16 481-560 561-640 641— 36 |45 | 19 4.05
random | 250 1 20-24 25-29 30-35 19122 | 59 4.68
random 2 92-106 107-121 122-131 12 1 42 | 36 5.10
random 4 324-343 344-363 364-380 | 38 |43 (19 6.50
random 8 828-877 878-927 928- 37 | 40 | 23 9.98
random | 500 0.5 48-54 55-59 60-66 15 | 43 | 42 10.08
random 1 219-231 232-244 245-256 17 {621 31 10.76
random 2 637-661 662-686 686-718 10115} 75 14.44
random 4 1661-1701 | 1702-1741 | 1742-1824 | 22 | 58 | 20 20.67
random | 1000 | 0.25 90-103 104-118 119-126 |41 |52 7 19.99
random 0.5 439-455 456475 476-503 | 36 | 43 | 21 22.62
random 1 1326-1357 | 1358-1397 | 1398-1427 | 33 [51 | 16 29.97
random 2 3253-3319 | 3320-3394 | 3394-3466 | 11 | 37 | 52 40.10
Class \4 nwd® Ranges Fregquencies | LOCAL.
geom. 500 5 4-13 14-23 24-37 7 (58] 35 8.26
geom. 10 35-59 60-84 85-123 19 | 42 | 39 9.50
geom. 20 148-246 247-346 347-450 41 | 44 | 15 11.40
geom. 40 441-840 841-1240 | 1241-3400 | 47 | 20 | 33 14.50
geom. | 1000 | 5 2443 44-63 64-78 |37 |57] 6 18.70
geom. 10 65-114 115-164 165-205 | 16 | 54 | 30 21.20
geom. 20 196-399 400-599 600-816 | 32|60 | 8 23.84
geom. 40 537-1099 | 1100-1599 | 1600-5829 | 28 | 49 | 23 28.56

Table 7.4: Graph Partitioning: Experimental Results.

124

Quality of the Solutions Table 7.4 depicts the experimental results of LOCALIZER.
The first row gives the setting of our parameters: T is the starting temperature, T'F’ is the

percentage of reduction of the temperature, SF' is the size factor, and the remaining two

parameters were described previously. The table reports both the quality of the results and

their distribution, as well as the performance of LOCALIZER on these problems. Once again,
each row of the table reports the result for 100 executions of LOCALIZER. The columns under

Ranges give ranges for the solutions produced by LOCALIZER and the column LOCAL gives

the running time for LOCALIZER in seconds. For a given benchmarks, all ranges have the

same width, the lower bound of the first range is the best solution found. The upper bound

of the last range, when present, gives the worst solution ever returned. If absent, it means

that LOCALIZER produced at least one solution that would not fit in the range.

125

Graph Results (T=10,TF=0.95,SF=16,chPerc=2%,Cutoff=10%)
Class |4 D | L.Best | LTime | J.Best | JTime Ratio
random | 124 2 11 2.22 13 85.4 38.5
4 55 2.4 63 82.2 34.3
8 159 3.24 178 78.1 24.1
16 481 4.05 449 104.8 25.9
random | 250 1 20 4.68 29 190.6 40.7
2 92 5.1 114 163.7 32.1
4 324 6.5 357 186.8 28.7
8 828 9.98 828 223.3 22.4
random | 500 0.5 47 10.08 52 379.8 37.7
1 219 10.76 219 308.9 28.7
2 635 14.44 628 341.5 23.6
4 1661 20.67 1744 432.9 20.9
random | 1000 | 0.25 90 19.99 102 729.9 36.5
0.5 439 22.62 451 661.2 29.2
1 1326 29.97 1367 734.5 24.5
2 3253 40.01 3389 853.7 21.3

Table 7.5: Graph Partitioning: Comparison Results.

Efficiency Table 7.5 compares LOCALIZER with the results reported in {28]. It is impor-
tant to mention that [28] explicitly writes that their results are very hard to reproduce,
since they chose the temperature of the annealing algorithm according to some preliminary
observation of its behavior on each class of graphs. LOCALIZER, in contrast, is always ex-
ecuted with the given parameters. In addition, the relevant results are only given for the
random graphs in [28]. The times for LOCALIZER are given on a SUN Sparc Ultra-1 running
Solaris 5.5.1 and the standard C++ compiler, while the results in [28] are given for a slow
VAX-750. In general, the quality of the results produced by LOCALIZER is slightly better
than the quality in [28]. Once again, the performance results indicate that LOCALIZER

behaves well on these problems.

7.4 Job-Shop Scheduling

Scheduling applications are ubiquitous in industry and have been the topic of extensive
research in recent years [20], [84], [3], [33], [13], [76] and [77]. This section illustrates how
LOCALIZER can be used to implement a tabu search procedure proposed in [33] for job-shop
scheduling.

126

7.4.1 The Problem

A job-shop scheduling problem consists of a set of jobs. Each job is a sequence of tasks
(e.g., the first task in a job must precede the second task and so on) and each task executes
on a given machine. Tasks executing on the same machine cannot overlap in time. The
job-shop scheduling problem amounts to finding an assignment of starting dates to the tasks
satisfying the precedence and non-overlapping constraints and minimizing the makespan,
i.e., the maximum duration of all jobs.

It is well-known that solving a job-shop problem mostly consists of determining an
optimal ordering for the tasks on the various machines. Once an optimal ordering has
been found, the problem can be solved by a PERT algorithm on the graph induced by the
precedence constraints and the ordering.

We also assume for convenience that the graph contains a source vertex that precedes
the first task of every job and a sink vertex that follows the last task of every job. Such
a graph is called a solution graph and its arcs are of two types: the precedence arcs that
are static and express the precedence constraints within a job and the machine arcs that
express the precedence constraints induced by the chosen ordering. The weight of an arc is
simply the duration of the task corresponding to the source of the arc (with the convention
that the sink and the source have durations zero). Typically, a PERT algorithm computes,
among other things, the earliest starting dates for each task. These earliest starting dates
provide a solution to the job-shop scheduling problem.

The local search algorithm described later in this section applies local transformations to
solution graphs. It is thus useful to review a number of notations and concepts on solution
graphs. These notations assume that the source and the sink execute (first and last) on
all machines and are the first and the last tasks of all jobs, which is not restrictive, since
they have duration zero. The duration of task ¢ is denoted by d(t) and we assume that
the problem has N tasks (IV + 2 when the source and the sink are included). Tasks are
identified by integers and the source and the sink are numbered 0 and N + 1 respectively.

Every task ¢t in a solution graph (except the sink and the source) has two predecessors:
a predecessor for the job, denoted by pj(t), and a predecessor for the machine, denoted
by pm(t). Similarly, every task ¢ (except the source and the sink) has two successors: a
successor for the job, denoted by sj(t), and a successor for the task, denoted by sm(j). The
release date of a task ¢, denoted by r(t), is the longest path from the source to t. The tail
of a task ¢, denoted by g(t), is the longest path from ¢ to the sink. Intuitively, the tail of a

task represents what remains to be done, once t is released. The release dates and the tails

127

can be computed by simple recurrences:

=0 =0
maz(r(pj(t)) + d(pj(t)), r(pm(t)) + d(pm(t))) otherwise
010 = N41
1 maz(q(si() + d(t), g(sm(t)) + d(t)) otherwise

Of course, the release date of the sink is the makespan of the solution. Critical arcs play a
fundamental role in the local search algorithm. An arc is critical if it belongs to a critical
path. More precisely, an arc (¢,u) is critical if 7(¢) + d(¢) = r(u) and if r(t) + ¢(t) is equal
to the makespan.

7.4.2 The Local Search Algorithm

This section describes a local search algorithm for the job-shop scheduling based on a
neighborhood known as NI and a tabu-search strategy. This local search algorithm is
the essence of the procedure proposed in [33]. Other neighborhoods and strategies have
been proposed and it is not difficult to generalize the results presented here to these other
algorithms.

The Neighborhood As mentioned, a solution to the job-shop scheduling problem mostly
consists of ordering the tasks of the various machines. The idea underlying neighborhood
N1 is to consider all critical arcs (u,v) and to swap the two tasks u and v in the ordering
of their machine. In the following, we often abuse language and talk about swapping an
arc. Note however that such a swap in fact consists of removing and adding three arcs (see
Figure 7.8. If p (resp. s) is the predecessor (resp. successor) of u (resp. v) on the machine,
then the arcs (p, u), (u,v), and (v, s) are removed from, and the arcs (p, v), (v, u), and (u, s)
are added to, the solution graph. Neighborhood N1 has a number of interesting properties:
it preserves feasibility, it is connected (i.e., there exists a sequence of moves from any given
state to the optimal solution), and it is minimal in the sense that swapping non-critical arcs

cannot improve the makespan.

The Exploration Strategy The exploration strategy is based on tabu search, which
appears to be successful for job-shop scheduling. It consists of selecting the swap that results
in the state with the best makespan (which, in fact, may be worse that the makespan of
the current state). A tabu-list also keeps the inverse of the swaps performed recently (e.g.,

128

sm(w)

Figure 7.8: Swapping vertices v and w in a Job-shop schedule.

if (u,v) is swapped, then (v,u) is marked as tabu). The length of the tabu-list varies over

time. It decreases (resp. increases) when the makespan decreases (resp. increases).

Incrementality Because running a PERT algorithm to evaluate the makespan of every
possible move is relatively expensive, it is generally proposed to approximate its value by
considering the paths going through the swapped vertices only. This approximation is of
course a lower bound on the actual makespan but it can be computed in constant time.

Indeed, for a swap (v, w), it is sufficient to compute
maz(r'(v) + ¢'(v), 7’ (w) + ¢'(w))
where

r'(v) = maz(r(pj(v)) + d(pj(v)), 7' (w) + d(w)))

7 (v) = maz(d(v) + q(sj(v)), d(v) + q(sm(w))))

r'(w) = maz(r(pj(w)) + d(pj(w)), r(pm(v)) + d(pm(v)))
¢ (w) = maz(d(w) + q(sj(w)),d(w) + ¢'(v))

7.4.3 A Simulation Statement
Figure 7.9 describes a LOCALIZER statement for job-shop scheduling based on a simulation

approach.

The Constant Section The data in this model specifies the number of jobs nbJ, the
number of machines nbM, the total number of tasks N (excluding the source and the sink),

Optimize
Constant:

nbJ :int=..;

nbM :int = .

N : int := nbJ x nbM;

d : array[0.N + 1] of int = .._;
m : arrray([l.N] of int = ..;

sj : array[i in 1.N]of int = ...;
pJ : array[i in 1.N] of int = .. _;
F : {int} = ...;

L : {int} =...;

minLen: int = ...;
mazLen: int = ...

Variable:
pm : array[l..N] of int;
sm : array[l..N] of int;
tabu : array[l..N,1..N] of int;
tabuLen: int = ...;

Invariant:

r: array[i in 0..N] of int :=
if i=0 then 0 else max(r[pj[i]] + d[pj[i]], rlom[é]] + dlpm[i]]);
g : array(i in 1..N+1] of int:=
if i=N+1 then 0 else max(d[i] + g[s7[z]], d[i] + q[sm[]]);
p : array(i in 1..N] of int:= rfi] + q[i];
makespan : int := max(¢ in L) pli];
Ca: {int} := { i : int | select 7 in 1..N where p[i| = makespan and
rlpm[d]] + d[pm[i]] = r[i] and
pmfi] #0};
Operator:
void swap(Z : int, j : int) {
smj : int := smlj};
smli] := smlj]; sm[j] := i; sm[pm]i]] := 7;
pm[j] := pmli]; pmli] := j; pm[smj] := i;

Objective Function:
minimize makespan
Neighborhood:
best move swap(pm[u],u)
where u from Ca
such that tabu[PM [u], u] + tabuLen < trials
accept when
improvement — {tabuLen := max(tebulLen-1,minLen); tabulu, pmlu]] := trials;}}
always — {tabuLen := min(tabuLen+1,mazLen); tabufu, pm[u]] := trials;};

Figure 7.9: A First Job-shop Scheduling Statement.

129

130

the duration d of the tasks, the machines m assigned to each task, the job successors sj
and the job predecessors pj of the tasks, the set of tasks F' starting the jobs, and the set
of tasks L finishing the jobs. The integers minLen and mazLen also specify bounds on the
length of the tabu list.

The State The state is described by specifying the machine predecessor and the machine
successor of each task, as well as the tabu list and its length. The tabu list is represented
by a matrix that associates with each move (i-e., a pair of tasks) the last “time” its inverse
was performed. Note that the “time” is simply the value of the parameter trials in the

computation model.

Invariants The invariants in this model essentially express the concepts introduced in
Section 7.4.2: the release dates, the tails, the makespan, and the critical arcs. The release

dates and the tails are maintained by the invariants

r: array[i in 0..N] of int :=

if i=0 then 0 else max(r[pj[i]] + d[pj[il], r[pm[i]] + dpm[i]]);
g : array(i in 1..N-+1] of int:=

if i=N+1 then 0 else max(d[i] + g[sj[?]], d[i] + q[sm[i]]};

that directly encode the recurrence relations presented earlier. These invariants are much
more difficult to maintain than the invariants occurring in applications such as GSAT and
graph-coloring. On the one hand, they are expressed recursively. On the other hand,
they use variables as indices of invariants (e.g., r[pj [i]1]), which complicates incremental

algorithms since the data dependencies vary over time. The invariant

p : array[i in 1..N] of int:= rfi] + qfi];

maintains the length of the longest path between the source and the sink going through

task i, while the invariant

makespan : int := max(¢ in L) p[};

maintains the makespan as the longest path going through all final tasks. Finally, the

critical arcs are represented as the sets of their targets

Ca: {int} := { i : int | select i in 1..N where p[i] = makespan and
rlpml[i]] + dlpm[i]] = rfi] and
pm[i] # 0}

i.e., Ca is the sets of tasks ¢ such that (pml[i],) is critical. Once again, the invariant mostly

follows the definition given earlier.

131

The Neighborhood The neighborhood is defined in terms of the critical arcs and it
expresses that an arc (pmfu],u) must be considered for a swap unless it is tabu. The best
such move is selected as the next state. Procedure swap performs the move and the move
is tabu if its inverse was executed in the last tabuLen iterations. Note also that the tabu

list and its length are updated in the acceptance clause.

7.4.4 The LOCALIZER Statement Based on a Makespan Approximation

The model can be modified to include the approximation of the makespan discussed in
Section 7.4.2 and a “reasonable” starting point. Figure 7.10 depicts the new statement,
with the constant section omitted for brevity.

The key idea is to compute the approximation using a simple function and to choose
the move minimizing the approximation. The acceptance criteria is also evaluated in the
current state, using the current makespan and the approximation.

Also, it is important in job-shop scheduling to start from a reasonable solution. Our
model uses a greedy procedure based on procedural constructs over sets and arrays to find
a starting point. It maintains a frontier which consists of the first unscheduled task of each
job and it selects the task with the shortest duration first. More advanced procedures such
as Bidir proposed by Dell’Amico et al. in [33] can be implemented without difficulty, since
LOCALIZER includes a complete programming language.

7.4.5 A Higher-Level Localizer Model

The previous section presented a model for job-shop scheduling using only simple data
structures such as sets and arrays. This section presents a LOCALIZER model based on the

graph-theoretic concepts available in LOCALIZER and is depicted in Figures 7.11 and 7.12.

The Constant Section The constant section remains mostly unchanged. However, the
model introduces a node for each task (these nodes are used later to specify the graph) and

represents jobs as paths of tasks.

The Variable Section The state in this model is described as an array of paths, one for

each machine. These paths represent how tasks using the same machine are ordered.

The Invariant Section The invariants are of course most interesting. They define a

directed graph G whose nodes are the tasks and whose arcs are the precedence arcs (which

Optimize
Constant: // omitted
Variable:
pm : array[l..N] of int;
sm : array[l..N] of int;
tabu : array[l..N,1..N] of int;
tabuLen: int = .. .;
Invariant:
r: arrayft in 0..N] of int :=
if i=0 then 0 else max(r[pj[i]] + d{pj[i]], rlpm[i]] + d[pm/[i]]);
g : array[i in 1..N+1] of int:=
if i=N+1 then 0 else max(d[i] + g[sj[i]], d[z] + g[sm[i]]);
p : array[i in 1..N] of int:= rfi] + qi};
makespan : int := max(: in L) p[i];
Ca: {int} := { i : int | select ¢ in 1..N where p[i] = makespan and
ripm{il] + dlpmfi]] = rfi] and
pml[i] # 0};
Operator:
void swap(i : int, 7 : int) {
smj : int := sm[j];
smli] := sm[j]; sm[j] := ¢; sm[pm[i]] := j;
pm[j] := pm[i]; pm[i] := j; pm[smj] :=3;

int appMekeSpan(v : int,w : int) {

rpw: int := max(r(pjw]] + dpj[w]], rlpm[v]] + dlpm(v]]);
rpv : int := max(r[pj[v]] + d[pj[v]], rpw + d{w]);

gpv : int := max(d[v] + g[sj[v]], d[v] + ¢[sm[w]);

gpw: int := max(d[w] + g[sj[w]], d[w] + qpv);

res : int := max(rpw + tpw, rpv + tpv);

return res;
}
Objective Function: minimize makespan;
move swap(pm[u],u)
where u from Ca;
a = appMakespan(pm[u], u)
such that tabu[pm[u], u] + tabuLen < trials
minimizing a
accept in current state when
makespan - a > 0 — {tabulen := max(tabulen-1,minLen); tabulu, pm(u]] := trials;};
always — {tabuLen := min(tabuLen+1,mazLen); tabufu, pmu]] := trials;};

Figure 7.10: An Approximation Based Job-shop Scheduling Statement.

132

133

Optimize
Constant:

nbJ :iInt=_;

nbM :int = ..;

N : Int := nbJ x nbM;

d : array{0.N +1] of int = ...;
m : arrray[l..N] of int = ...;

F : {int} =...;

L : {int} =...;

minLen: int = .. _;

mazLen: int = ...;

JB : array[i in 0.N +1] =...;
seqj : array[i in 1..J] of Path(Nodes) := ...
Aresj : {Arc} := union(i in 1..J) seqj[i].ares();
Variable:
seqgm : array[l..nbM] of Path(Nodes);
tabu : array[l..N,1..N] of int;
tabuLen: int = .. .;
Operator:
void greedy() {
F : {int};
LM : array[i in 1..M] of int := 0;
RR : int := N;
forall(t in F'O) insert(F,t);
while RR—— >0do {
choose OP from F minimizing D{OP];
remove(F, OP);
segqm[m[OP]].arc(LM[m[OP]], OP);
LM[m[OP]] := OP;
if (seqj[JB[OP]].succ(OP) <> N +1)
then insert(F, seqj[JB[OP]].succ(OP))
endif;
h
forall(t in 1..M) segm|t].arc(LM[t], N +1);
tlen := IT;
forall(i in 0..N)
forall(j in 0..V) {
tabuli, j] := —tlen;freq(i, 7] := 0;
h

}

Figure 7.11: A Higher-Level Job-shop Scheduling Model.

134

Invariant:
Arcsm : {Arc} := union(i in 1..M) seqgm[t].arcs();
Arcs : {Arc} := Arcsm union Arcsj;
G: Graph := Graph(Nodes, Arcs);
T : array[i in 0..N + 1] of int := longest(G, d,0, i);
g : array[i in 0..N + 1] of int := longest(G, d,, N + 1);
makespan : int := [N +1];
Ca : {Arc} := {(s,t) : Arc | select < s,t> in Arcsm
where r[t] + ¢[t] = makespan and
r(s] +d[s] =rt] and
s #0};
Objective Function: minimize makespan;
Neighborhood:
move segm[m[s]].swap((s,t))
where (s,t) from Ca;
a = appMakespan(s,t)
such that tabuls,t] + tabuLen < trials
minimizing a
accept in current state when
makespan - a > 0 — {tabuLen := max(tabulen-1,minLen);
tabuft, s] := trials;};
always — {tabuLen := min(tabuLen+1,mazLen); tabult, s] := trials;};

Figure 7.12: A Higher-Level Job-shop Scheduling Model (continued).

are static) and the machine arcs (which are dynamic). The release dates and the tails can
now be specified directly on the graphs as longest paths between nodes, i.e.,

r: array[: in 0..N + 1] of int := longest(G, d,0, 7);
q : array[i in 0..N + 1] of int := longest(G,d,%, N + 1);

Note also that r and g are now defined for the source and the sink, making the model more
uniform. The makespan is simply the release date of the sink. The critical arcs can be

specified directly by manipulating arcs, i.e.,

Ca: Arc({int}) := { <s,t > : Arc(int) | select < s,t > in Arcsm
where rft] + ¢q[t] = makespan and
(s} + d[s] =r[t] and
s # 0}

The Neighborhood Section The neighborhood section remains mostly unchanged but

it now manipulates arcs directly.

Comparing the Models It is useful to step back and study the benefits of this new
model. First, the model is closer to the informal description of the algorithm and it manip-

ulates the underlying concepts directly. Second, the new description is much more flexible

135

and extensible. It is easy to generalize to non-pure job-shop scheduling problems, e.g.,
problems with additional precedence or distance constraints. No change to the invariants
is necessary, since they are expressed directly in terms of the graph. The first model in
contrast, would require changing the precedence relation, making the model less compact
and less natural. Note also that these extensions do not induce any overhead. LOCALIZER
essentially compiles these high-level invariants in terms of traditional invariants over sets

and arrays.

7.4.6 Experimental Results

This section reports some preliminary experimental results of LOCALIZER on a set of classic
benchmarks. The goal of this section is to provide evidence that LOCALIZER is a viable
tool to implement scheduling algorithms too. We do not aim at comparing local and global
search algorithms (which have different functionalities). Similarly, we did not try to produce
the fastest implementation possible but rather to demonstrate the potential of LOCALIZER.
The experiments were based on the parameters reported in [33]: the maximal number of
searches (maxSearches) is 1, the maximal number of iterations for the inner loop (maxTrials)
is 12000, the tabu list has a varying length constrained in between 5 and 30 and its length is
updated according to the rule of [33]. Contrary to [33], our model does not use a restarting
strategy.

Table 7.6 reports the preliminary results on a Sun Sparc Ultra 1 for the graph model
(the first model is about 15% slower in the average). The table reports a coarse histogram
that summarizes the frequencies of the solutions (i.e., the value of their makespan). Loc
is the CPU time in seconds to run until completion, while LO is the time to run to com-
pletion or to a known optimal solution (this is the time measure used in [33]). Column
Avg. gives the average makespan, while column %O gives the average distance to the op-
timum in percent. Results in italics indicates that the optimal solution is not known (as of
1993). The results indicate that the LOCALIZER statement obtains near-optimal solutions
quickly. For problems where the optimum is known, the solutions are always within 6%
of the optimum. In fact, the model finds optimal solutions for 14 benchmarks. The table
indicates that these results are also obtained quickly: from 20 seconds to 90 seconds. These
results cannot be really compared with the results of [33], since his neighborhood is an
extension of the neighborhood presented here and the results are not directly comparable.
But a rough comparison suggests that the difference between LOCALIZER and a specialized

implementation is once again of the order of a machine generation.

136

Benchmark Results (MD=12000,MS=1,Neighborhood=N1)

Name{ J/M | Opt Ranges | Fregq. [Loc | LO | Aug. | %0
LA06 15/5 926 926 926 926 926 100 0 0 0 | 221 0.8 926.0 | O
LAO7 15/5 890 890 890 890 890 100 | O 0 0 | 245 3.1 8900 | O
LAOS8 15/5 863 863 863 863 863 100] 0 0 0 | 23.7 1.5 863.0 | O
LA09 15/5 951 951 951 951 951 100 0 0 0} 22.7 1.2 951.0 | O
LA10 15/5 958 958 958 958 958 100 { O 0 0 | 21.9 1.1 958.0 { O
LAll 20/5 1222 | 1222 | 1222 | 1222 | 1222 | 100 0 o 0 25.2 36 | 12220 | O
LA12 20/5 1039 | 1039 | 1039 | 1039 | 1039 | 100 0 0 0 24.0 3.1} 1039.0 { O
LA13 20/5 1150 | 1150 | 1150 | 1150 | 1150 | 100 0 0 0 24.0 6.8 | 1150.0 { O
LAl4 20/5 1292 | 1292 | 1202 | 1292 | 1292 { 100 | O 0 0 | 22.8 24 | 12920 | O
LA1S 20/5 1207 } 1207 | 1207 | 1207 | 1207 | 100 0 0 0 274 55 | 12070 | O
LA16 10/10 945 947 961 975 988 1 11 | 21 | 67 | 354 | 35.2 975.1 | 3
LA17 10/10 784 784 790 796 801 17 74| 8 1 | 36.1 | 34.2 7864 | O
LA18 10/10 848 848 857 866 873 1 31 56 | 12 | 364 | 35.9 860.1 | 1
LA19 10/10 842 843 850 857 864 1 25 149 { 25 | 37.0 | 36.5 8539 | 1
LA20 10/10 902 902 908 914 918 13 24 1 59] 4 | 36.7 | 33.1 909.5 | 1
LA21 15/10 | 1048 | 1060 | 1078 | 1096 | 1114 1 27 | 57 | 15 | 48.4 | 49.0 | 10849 | &
LA22 15/10 927 935 948 961 974 1 28 | 56 | 15 | 47.2 | 47.9 9529 | 3
LA23 15/10 | 1032 | 1032 | 1033 | 1034 | 1034 99 0 1 0 | 49.2 | 220} 10320 | O
LA24 15/10 935 945 959 973 985 2 22 | 67| 9 | 472 | 47.8 964.3 | 3
LA25 15/10 977 989 1010 | 1031 | 1051 1 39 | 51 9 | 46.0 | 46.7 | 1015.1 | 4
ABZ5 | 10/10 | 1234 | 1236 | 1246 | 1256 | 1264 3 34 | 54| 9 36.8 | 384 | 12488 | 1
ABZ6 | 10/10 943 943 948 953 958 13 69 | 16 | 2 | 374 | 374 946.9 | O
ABZ7 | 20/15 667 686 723 760 797 1 58 | 39 2 79.3 | 84.7 721.5 | &
ABZ8 | 20/15 678 688 724 760 796 1 6 70 | 23 | 83.3 | 80.7 T47.7 | 10
ABZ9 | 20/15 692 715 735 755 774 2 50 | 43 5 93.9 | 88.9 735.2 | 6
MT6 6/6 55 55 55 55 55 100 0 0 0 13.2 1.0 55.0 | 0
MT10 | 10/10 930 941 959 977 941 1 35 |1 43| 0 | 36.6 | 23.6 966.1 | 4
MT20 20/5 1165 | 1173 | 1194 | 1215 | 1173 8 67 | 23 | 0 | 29.8 | 18.7 | 1186.1 | 2
ORB1 | 10/10 1059 1073 | 1095 | 1117 | 1160 1 2 25 | 721 36.2 | 364 | 11246 | 6
ORB2 | 10/10 888 889 896 903 917 3 33 | 42 | 22 | 36.1 | 36.3 899.6 | 1
ORB3 | 10/10 | 1005 | 1021 | 1081 | 1141 | 1261 2 89 8 1 | 374 | 376 | 10605 | 6
ORB4 | 10/10 | 1005 | 1019 | 103L | 1043 | 1064 1 30 | 44 | 25 | 33.8 | 34.1 | 10373 | 3
ORBS5 | 10/10 887 899 911 923 947 1 29 1 40 | 30 | 37.5 | 37.7 918.7 | 4
ORB6 | 10/10 | 1010 | 1022 | 1034 | 1046 | 1069 2 26 42 | 30 | 35.8 | 36.1 | 1041.8 | 3
ORB7 | 10/10 397 397 403 409 420 1 5 47 | 47 § 38.5 | 38.3 409.5 | 3
ORBS | 10/10 899 914 932 950 986 1 9 54 | 36 | 37.5 | 37.8 947.8 | 5
ORB9 | 10/10 934 934 945 956 976 1 3 35 | 61 | 324 | 32.7 959.8 | 3
ORB10| 10/10 944 944 956 968 992 2 24 | 48 | 26 | 37.0 | 36.6 963.5 | 2

Table 7.6: Job-Shop Scheduling: Experimental Results.

7.5 The Vehicle Routing Problem

The vehicle routing problem (VRP) is central to transportation applications and is exten-
sively studied in [73], [57], [32], [74], [24]. The traveling salesman problem is the subject of
intensive research and has contributed heuristics to the VRP. The effort to express modern

local search algorithms for VRP within LOCALIZER is important to demonstrate its poten-

tial on increasingly complicated problems. The algorithms implemented here as LOCALIZER

statement are based on a generalization of the insertion heuristics of Clark-Wright [11], [69]

and on a A—interchange neighborhood identical to the work of Osman [43].

137

7.5.1 The Problem

The VRP considered in this section can be described as follows. A company must deliver
goods to a number of clients using an unlimited number of trucks of a given capacity. Each
truck should start from, and return to, the company’s depot. Each client must be visited
exactly once. The problem is to find tours for the trucks minimizing the total travel cost,
while satisfying the capacity constraints.

More formally, a VRP instance is defined as a tuple (G, D, R,vC). G(V,A) is the
connection graph where V' = {vg,v1,...,vs} with vg representing the depot shared by all
the tours and {vi,...,Un} representing the clients. A is the set of arcs {(v;,v;) : vi,vj €
V,1 # j} that denotes the existing inter-client links. D is a non-negative distance matrix
that indicates the cost for going from client ¢ to client j. Whenever DT = D, the problem is
said to be symmetric. R is a vector of integers denoting the amount of goods requested by
each client. vC is an integer denoting the maximal truck capacity. A tour T; is an ordered
sequence (vVg, Uiy, - - - » Vi, » Vo) Where v;; # vg forall j in 1..m and each client appears at most

once. A solution is a set of tours
{1, T,..., Tk}
that has the following properties
Unique visit Each client is visited at most once, i.e., V3,7 in 1..k: T;NT; = {vo}
Covering All clients are visited at least once, i.e., UL T; =V

Capacity Each truck carries less than its capacity, i.e., Vi in 1.k: 3" cq, 4y Bo < vC

The objective is to find a set of tours that minimizes the total distance traveled by the
trucks. This VRP has been extensively studied in the context of local search.

The VRP inherits the experience drawn from the traveling salesman problem. Most,
if not all, algorithms rely on neighborhoods that transform tours. The simplest type of
heuristics for TSP e.g. vertex insertion or vertex displacement, are also used in VRP
neighborhoods. Similarly, VRP neighborhoods often preserve satisfiability, i.e., the solution
is always a set of tours that share the depot only.

The rest of the section is organized as follows: Section 7.5.2 introduces a standard
algorithm used to solve the VRP with local search. Section 7.5.3 presents the LOCALIZER

statement based on this neighborhood. Section 7.5.4 introduces an advanced neighborhood

138

for VRP that is used in “state of the art” implementations. Section 7.5.5 gives the statement
for this second algorithm. Finally, Section 7.5.6 reports on the experimental results.

7.5.2 The Local Search Algorithm

Classic algorithms for VRP are often based on a neighborhood structure that preserves
satisfiability. Consequently, these algorithms try to achieve two different goals. On one
hand, the transformation itself must be rich enough to avoid poor local minima. On the
other hand, the algorithm must assess within reasonable resource bounds the quality and
the satisfiability of a potential neighbor. This section discusses a simple transformation,
the criterion used to assess the cost of a solution, and techniques to focus on satisfiable

neighbors.

Notations Let argmin and argmaz denote extension to the min and max function be
defined as

m = argminesF(i) ¢ any m € {i € S| F(i) = min F(5)}
M = argmax;cgF (i) ©@anym e {i€S|F(i)= r;_lgch(j)}

The Insertion Neighborhood A solution to the VRP is a set of tours that satisfy the
three constraints described in the previous section. The insertion neighborhood is defined as
the set of solutions that differ from the current solution in the location of a client. A solution
So is a neighbor of S; if S5 was obtained from S; by applying an insertion transformation.

The insertion transformation selects a client ¢ and relocates it on the same tour, or on
a different one. The transformation thus simply removes i from its present location and
inserts it between two adjacent clients at some other location if the new solution does not
violate any constraint, i.e., the solution remains feasible. Figure 7.13 depicts this idea where
client 7 is relocated between client 7 and s(j). The dashed arcs are deleted, while the dotted

arcs are inserted in the new solution.

The Quality Measurement The objective of the algorithm is to minimize the distance
traveled. The quality of a solution is thus defined as the sum of the weights of each tour in
the solution. The weight of a tour is the traditional weight used in the TSP, i.e., the sum

of the distances connecting the vertices. More formally,

139

Y

y
B

E '..'_

Y

Y

Figure 7.13: Detour to visit client 2.

k
Cost = Z Z Dj s

i=1 jET;

where s(j) denotes the successor of vertex j in a tour.

Satisfiability The transformation described above guarantees that the first two sets of
constraints, i.e., unique visit and covering are automatically satisfied. Indeed, the only
constraint that could be violated as a result of moving client 7 is the capacity constraint. If
client ¢ is moved to a tour handled by a different truck, the addition of i’s request to this
truck might cause an overload (removing 7 from its present site can only reduce the total

quantity of goods carried by #’s truck).

Incremental Evaluation of the Cost The quality of an insertion can be computed
incrementally. The saving associated to a transition is the sum of the saving for bypassing
client 7 on the current tour and the cost for the detour initiated at client j to visit .
More formally, the saving S(7) obtained when client ¢ is bypassed (i.e., when the truck goes
directly from p(7) to s(%). is simply

S(i) = Dlp(?), 1] + D[, s(3)] — Dlp(2), s()]-
The cost C(4,) incurred when client 7 is inserted after client j is simply
C(i,5) = D[j,il + D[, s(5)] — Dl s(7)]-
For a given 1, it is easy to identify B(z), a minimal cost insertion point, as

B(i) = argmin, ey C(%, p)

140

where V is the vertex set of the graph, i.e., the set of clients. Once an ideal insertion point
is known, all that is left to define is the ideal %z to relocate. The ideal value for 7 noted b is
defined as

b = argmax;eyS(3) — C(i, B(i))

The overall gain g associated to b simply is S(b) — C(b, B(b))

Preserving The Satisfiability As we have seen before, only the capacity constraints
need to be verified. Each truck has a fixed maximal capacity, and a solution is invalid when
the actual truck load exceeds the maximal capacity. The constraint can be easily verified

when the set of clients that are part of the tour is available. Remember that a solution is
{leT2: ey Tk}

where the T} are tours, i.e., sequences of clients. Clearly, each tour in the solution is assigned
to a single truck. Let Cl; denote the set of clients that appear in the tour 7T; and let F} be
the truck identifier assigned to client k. Then Cl; is defined as

Cl; = {k € V|F, = i}.

It is now possible to define the load of a truck by summing up the requests of all the clients
assigned to this truck. Let L;, the load of truck i, be defined as

Li= Y R
keCl;
If Fleet denotes the set of trucks used in the solution,i.e., the set of trucks delivering goods
to at least one client, checking the capacity constraint for all the operational trucks reduces
to verifying that the Boolean relation
Capacity £ Z (Li >vC) =0
i€Fleet
holds. Consequently, the insertion neighborhood for the VRP can be defined as the set of

feasible solutions that differ from the current solution in the placement of a single client.

More formally,
N(s) = {s' € & : s = move(s,1,5) Vi,j € V,i+# j s.t. Capacity(s')}

where & is the set of solutions to the problem and move(s,,5) denotes the relocation of 7

after client j in solution s.

141

7.5.3 The LoCALIZER Statement

We now illustrate how the local search algorithm described in the previous section can be

expressed in LOCALIZER.

The Constant section The set of clients is given by an array C. Each element of C is a
tuple that stores the client number, its Cartesian coordinates in the plane, and its product

request. The record type is defined as

type: Customer = record
id : int;
T : real;
y : real;
d : int;

end;

The section is also responsible for pre-computing data structures used throughout the state-
ment. The matrix D and the vector R are computed from the client array C. We simply
assume that distances are Euclidean distances in the plane in this model but this is not
restrictive of course. In addition to D, the constant section also computes two sets of arcs
AP and AS. AP stores the set of all arcs (7, 7) verifying 7 < ¢ where Z and j are clients.
AS stores the set of all arcs.

AP = {(i,5)|47€[1,nbClAj < i}
AS = {(i.)l4.7 € [1,nbCI A # 5}

Finally, the constant array Cli associates with any arc (7, j), a valid client number, i.e., a
number between 1 and nbC. The need for Cli arises from the presence of arcs of the form
(0,17) that encode the first arc of a tour. Cli associates with such arcs the endpoint 7 that
denotes either a valid client number of N + 1. For the other arcs the value of Cli[(z, 7)] is,

by convention, the endpoint of the arc (j).

The State Representation The natural choice for the state variables is an array of
Path instances where each path represents a tour. An auxiliary array of variables is useful
to keep track of which truck is assigned to each client. This array plays an essential role in
the definition of the satisfiability. The variables of the statement are

tours : array[l..nbC| of Path(Nodes);
truck : array[l..nbC + 1] of int;

142

where Nodes denotes the set of all clients. For convenience, nodes 0 and nbC <1 respectively
correspond to the starting and ending point of any tour. This convention proves useful to
record the fact that a truck does not leave the depot (the corresponding path is (0, nbC+1)).
Note that truck[nbC + 1] contains the identifier of an empty truck and is used when a new
tour is created by inserting a client between node 0 and nbC + 1.

The Invariant section In order to describe the neighborhood, it is important to restrict
the search to the pairs of clients yielding a solution. A solution is said to be satisfiable if
and only if no vehicle is overloaded and the set of tours is node and arc disjoint with respect
to the set of clients (they obviously share the depot nodes, i.e., 0 and nbC + 1).

The first step is to define the set of clients visited by each truck, the load of each truck
and the set of empty trucks. This can be expressed by the invariants

trip : array[0..nbC + 1] := distribute(truck,{1..nbC},{0..nbC + 1});
load : array[i in 0..nbC + 1] of int := sum(j in tripi]) C[j].d;

et : {int} := { ¢ :int | select i from 0..nbC + 1 where size(trip[i])= 0};
fe : int := minof(et);

The invariants fe that selects an empty truck is useful since it may be necessary to create
a new tour by inserting a client on the arc (0,nbC + 1). The truck load definition is
complemented with the definition of the total cost for all tours. This is required by the
objective function of the statement. It is defined in terms of the set of arcs that are part of

the tours.

ta: {Arc} := union(z in 1..nbC) tours[i].arcs();
totalCost : real := sum(a in ra) Dfa.s,a.t];

From the tours array it is also convenient to define the predecessor and the successor for
each client. Note that the arrays s and p could be avoided at the expense of a less readable

statement.

p: arrayfi in 1..nbC] of int := tours{truck(i]].pred(i);
s : array[i in 0..nbC + 1] of int := if ¢ in {1..nbC} then tours|truck[i]].succ(z) else 0;

Once these invariants are defined, it is possible to spell out the properties that guarantee
the satisfiability of a move. Intuitively, moving client ¢ after client j is valid if 7 # 7 and
1 # s(j) and the capacity of the truck visiting j can take the additional demand of client 1.
Given that, for each client, the truck variable denotes the truck assigned to that client, it is
possible to check whether the truck assigned to client j can accommodate the new request.

This is achieved in LOCALIZER with the invariant

143

val :array[: in 1..nbC] of {Arc} := {a : Arc | select a from ra
where load[truck[Cli[a]]] + R[i] < vC and a.t #i and a.s # i};

Finally, the equations defining B(Z) and b can be adapted to obtain the invariants

bi : array(i in 1..nbC] of Arc := argmin(k in valli]) D(k.s,%] + D[i, k.t] — D[k.s, k.t];
cbi array[i in 1..nbC] of real := min(k in val[]) Dlk.s,i] + D[t,k.t] — Dlk.s, k.t];
canMove : {int} := {i : int | select i from 1..nbC where size(val[i]) >0 };

gt int := argmax(i in canMove) D(p[i],i] + D[z, s[Z]] — D{p[i], s[i]] — cjStar[i];
g : real := max(i in canMove) D(p[é],] + DI, s[z]] — D[p[i], s[i]] — cjStar[i];

A Tabu Search Heuristic for the Insertion Neighborhood The statement is almost
complete since only the transformation procedure and the strategy itself are missing. The
search heuristic is easy to define since most of the burden is now in the invariant section.
Indeed, the strategy of choice is tabu search and this is a greedy procedure. Tabu prescribes
the selection of the best non tabu element of the neighborhood. The invariants are already
defined to maintain incrementally this best element. All that is required is the addition
in the definition of canMove of a conjunct that filters tabu moves. The following excerpt

shows the new and affected invariants

notTabu : array[i in 1..nbC] of boolean := trials > tabu[i] and
Sfregq[i] * 100/ (trials + 1) < 10;
canMove : {int} := {i : int | select ¢ from 1..nbC
where size(val[i]) > 0 and notTabuli]};

A client is not considered tabu in this context whenever it has not moved recently and when
it has not moved more than 10% of the time. Whenever a client actually moves from one
location to another, its tabu number is set to trials + tabuLen and thus prevents the client
from moving for the next tabuLen iterations. The accept statement of the neighborhood is
also used to vary the length of the tabu list. Whenever the algorithm performs improving
moves, it shortens the tabu list. On the contrary, when the algorithm is in a local minima,
it increases the length of the tabu list. tabuLen is bounded from above and below. Figures
7.14 and 7.15 give the complete LOCALIZER statement.

Starting Point The last component of the model is the initialization routine. The objec-
tive of the starting point is twofold. On one hand, the routine must support diversification
for the search procedure. Several restarts should be initiated from different points. On the
other hand, the routine should attempt to find a satisfiable, and reasonably good, starting

point. At one extreme, one can initialize the search with a set of |V/| tours, each of them

constant:
nbC :int = ..
opt :real=_;
vC :int = .
c : array[0..nbC] of Customer = ...;
Nodes : Node := {0..nbC + 1};
D : array[z in 0..nbC+1,j in 0..nbC+1] of real := sqrt((C[i].z — C[j].z)2+

(Clily - Clilv)?):
AP : {Arc} := {{z1,22) : Arc | select z1 from 1..nbC select 22 from 1..z1 — 1}
AS : {Arc} := {{(z1,22) : Arc | select z1 from 1..nbC select 22 from 1..nbC};
Cli : array[a in AS] of int := if a.s = 0 then a.t else a.s;
tmaz : int = 10;
tmin : int = 1;
variable:
tours : array(l..nbC| of Path(Nodes);
truck : array[l..nbC + 1] of int;
tabu : array(l..nbC] of int;
freg : array[l..nbC] of int;
tabuLen : int;
operator:
void initSol() {
tabuLen := tmin;
forall(i in 1..nbC) { tabuli] := —1;freq[i] := 0;};
F: {int} = {1.nbC};MW: int := 0;{ : int := O;R : int := 1;
while size(F) > 0 do {
choose V1 from F;
MW = C[V1].d;
tours[R].arc(0, V'1);
truck[V1] := Rl := V1;
remove(F,V1);
while size(F) > 0 and MW < vC do {
choose V from F' minimizing Dist{l, V];
MW := MW + C[V1].d;
if MW < vC then
tours[R].arc(l,V);
truck[V] :== Ryl :=V;
remove(F,V);
} endif;

tours[R].arc(l,nbC + 1);
R+ +;

b
truck[nbC + 1] := R;
while R < nbC + 1 do tour(R + +].arc(0, nbC + 1);

}

Figure 7.14: Vehicle routing model. Insertion neighbhorhood, Part One.

144

void insertion(i : int,a : Arc){

r: int := Cli[a];

tours(truckl[i]].noarc(pl], 2);

tours[truckli]].noarc(z, s[i]);

toursftruck[r]].noarc(a.s, a.t);

tours(truckli]].arc(p[], s[i]);

tours(truck{r]].arc(a.s, 7);

toursftruckfr]].arc(i, a.t);

truck(i] := trucklr};

truck[nbC + 1] := fe;
}

Invariant:
ta : {Arc} := tours.ares();
totalCost : real := sum(a in ra) Dla.s,a.t];
trip : array[0..nbC + 1] := distribute(truck,{1..nbC},{0..nbC + 1});
load : array{: in 0..nbC + 1] of int := sum(j in trip[i]) C[j].d;
val :arrayfi in 1..nbC] of {Arc} := {a : Arc | select a from ra
where load[truck[Cli[a]]] + R[i] < vC and a.t # 7 and a.s # i};
p : array[i in 1..nbC] of int := tours(truck(i]].pred(z);
s : array[i in 0..nbC+1] of int := if i in {1..nbC} then toursftruck(i]].succ(i) else 0;
cbi: array[i in 1..nbC] of real:= min(k in val[i]) D[k.s,i| + D[i, k.t] — D[k.s, k.t];
bi : arrayfi in 1..nbC] of Arc:=argmin(k in val[i]) Dlk.s,i] + D[i, k.t] — D[k.s, k.t};
notTabu : array[i in 1..nbC] of boolean := trials > tabu[i] and
freq[i] * 100/(trials + 1) < 10;
canMove : {int} := {i : int | select 7 from 1..nbC
where size(val[i]) > 0 and notTabu(]};

g% int := argmax(i in canMove) D|pfi],] + D[, s[i]] — D[pfz], s[]] — cbili};
g: real := max(Z in canMove) Dip[i],] + D}, sli]] — Dip[i], s[i]] — cbifi};
neighborhood:

try when size(canMove)> 0:
move insertion(gi, bi[gi])
accept when in current state always — {
if ¢ < 0 and tabuLen > tmin then tabuLen — — endif;
if g >= 0 and tabuLen < tmaz then tabuLen + + endif;
tabulgi] := trials + tabuLen;
freglgi] + +;

end

Figure 7.15: Vehicle routing model. Insertion neighbhorhood, Part Two.

145

146

with a single client. At the other extreme, a greedy approach can attempt to keep the
inter-client distances to a minimum while not overloading any truck. A trade-off between
starting point quality and randomization needs to be found.

The model described here relies on the operator initSol which computes a random,
and reasonably good starting point. The procedure first initializes the arrays tabu and freq
used for the tabu search. The second portion builds tours as long as un-routed customers
exist. To build a tour, the procedure randomly selects a client ¢ from the set F' of un-routed
clients and creates a tour that starts with client i. The subsequent clients are then added
in a greedy fashion until the truck is filled at which point the tour is closed and the next

tour is initiated.

7.5.4 A More Advanced Algorithm: A—interchange

This section presents a more sophisticated neighborhood based on A—interchange.

The Minterchange introduced by Osman in [42] is described as the exchange of two
segments extracted from the set of tours. Each segment consists of a sequence of zero
to A clients. The two segments must be node-disjoint. It is possible to extract the two
segments from the same tour or from different tours. The neighborhood N, induced by A-
interchange is endowed with a wealthier collection of moves than the previous neighborhood.
The insertion neighborhood described earlier is just a special case when an empty segment
starting at a given client is exchanged against a segment of length 1.

The size of N is quickly prohibitive since it is O(n2(zg\:01 i(¢ — 1))), where n is the
number of clients. For computational reasons, most algorithms for VRP use A = 2. Still, a
2-interchange neighborhood contains 5 types of moves depicted in Figure 7.16 and described

in Table 7.7.

7.5.5 The LOCALIZER Statement

The constant section and the variable section are identical to those used in the insertion
based statement. The Invariant section is naturally more involved for A—interchange.

This section presents the statement for A—interchanges.

The Neighborhood section To implement such an algorithm in LOCALIZER, it is neces-
sary to use the try instruction. Each type of move is carried out by a specific neighborhood.

The neighborhood supposed to execute a given transition is selected with a when clause.

(i) i s(z) ss(z)
='-f--""":,? =--f"'""":,?'
Arc-Arc
. N Ty
16)) J s(7) 55(7)
p(%) i s(%) ss(?)
;‘:_’—-_"j_?:_j """"" 4 >
Vertex-Vertex
—T e N N -
p(7) J s(7) ss(7)
p(%) 3 s(7) ss(z)
I TTTT Ty =TTt T
Vertex-Arc
- —- ——————— - N >y—-———>
p(7) J s(7) ss(7)
(1) 1 s(3) ss(4)
——— -) : ——————— --V
Arc insertion
- i - —— - J———»
p(7) J s(7) ss(7)
p(3) i s(3) ss(i)
LTI i SO 4 >
Vertex insertion “
: R —-ﬁ -
p(7) J s(7) ss(7)

Figure 7.16: Moves allowed by a 2-interchange.

147

148

Operation | Description

Arc-Arc A pair of consecutive clients is exchanged against another pair coming
from the same tour or from a different one. Thus, Ny subsumes the
familiar 2-opt moves of TSP.

Vertex-Vertex A single client site is exchanged against another client.

Arc-Vertex A pair of consecutive clients is exchanged against a single client site.
The length of the two tours involved is thus modified. It is also
possible to perform this type of relocation with a single tour.

Arc Insertion A pair of consecutive clients is extracted from its present location
and inserted on some other tour.

Vertex Insertion | This move is the neighborhood transformation introduced at the be-

ginning of the section.

Table 7.7: Description of 2-interchange moves.

New invariants must also be defined to assess the feasibility of each transition for the various
type of moves together with the related gains. Finally, a last invariant defines the largest
possible gain among all five types of moves. The condition that appears in the when clause
reduces to a test of the best gain for this type of move against the best overall gain. If they
match, the corresponding neighborhood is selected and the transition is performed.

The Revised Invariant section The invariants related to the insertion based neigh-
borhood can be directly recycled in this new model. The new moves are all supported
with invariants based on the same skeleton. Consider, for instance, the arc-arc exchange
invariants.

A validity matrix first establishes for all (7, j) the validity of the move given that 7 and
7 are the first clients of the two segments of the lambda exchange.

aazv : array[i in 1.nbC,j in 1..nbC] of boolean := if 7 >=1 then false else
s[i] <> nbC +1 and s{j] <> nbC + 1 and
j <> s[i] and p[j] <> s[i] and 7 <> s[j] and p[i] <> s[j] and
load[truck[i]] — C[i].d — C[s[i]].d + C[j].d + C[s[j]].d <=vC and
load[truck(j]] — C[j].d — C[s[j]].d + C[i].d + C[s[i]].d <= vC;

Since a move is symmetric, the values of the validity matrix are restricted to the lower
triangle of aazv. Given that the relocated clients are i, s(2), j and s(4), neither s(7) nor
5(7) can denote the depot. When the clients involved in a move belong to the same tour, it

is illegal to have

i = s()
p(j) = s()

149

s i)
A valid move . = el AR SV AATES =2l \\
______>z, _____________ - u, i ‘—>
p(?) s(s(@) p(5) s(s(7))
ST i=p0) s(@) =7 s(5) = s(s(2))
e A TS —T
A wrong move ¢ \\
—N, . A -..->—>
pGy T T (s(7))
i s(i) = p(y) f=s(s(@) s()
, SRR 4 S
A wrong move / e - e \\
———)-l., —— ’ :_'_‘:-'.'_':_- L . _}———>
p(a) e e s(s(7)

Figure 7.17: Arc-arc exchange validity.

since it would make the exchange ill-fated as demonstrated in Figure 7.17. Naturally, the
symmetric situation holds true. The last two components of the predicate make sure that the
exchange does not violate the vehicle capacity constraint and their definitions immediately
follow from the truck load and the requests of the clients.

A second matrix aaz defines for all (z,7) the gain for the move. Its definition follows

from the arcs removed and the arcs inserted back in the tours.

aaz : array[i in 1.nbC,j in 1..nbC] of real := if j = 7 then 10000000.0 else
DIp[j], 4] + D[sld], ss[s]] + Dlplil, 51 + Dls[s], ss[zl] -
(Dlpli], i} + DIs(il, ss[i]] + D[pljl, 51 + D[sls], ss{sll);

The last two invariants define the maximal gain over all the valid moves and identify a

responsible pair.

aas : Arc := {{(q,w) : Arc|select (q,w) from AP

where aazv(q, w] and notTabulqg]};
aa : Arc := argmin(a in aas) aazfa.s,a.t];
aag : real := - (min(a in aas) aaz{a.s, a.t]);

The aeas invariant maintains the set of arc-arc exchanges that are valid and non-tabu, i.e.

result in a satisfiable solution. Finally, aa and aag identify the best arc-arc exchange and its

150

saving. The definitions are straightforward since all that is left to do is pickup the maximal
element in the aaz matrix among the valid entries, i.e. those that belong to aas.

Each type of move, results in a set of invariant similar to those described for the arc-
arc exchange. Figure 7.18 gives all the new invariants while Figure 7.19 illustrates the
neighborhood section for this statement. The complete description of the statement is
augmented with the operators that appear in Figure 7.19 and are responsible for performing
each type of move. Each operator is similar to the insertion routine presented in the previous
models and copes with the arcs insertions, arcs removal and truck assignment. Figure 7.16
gives a concise specification of each operator where the dotted arrows are the new arcs while

the dashed arrows are the deleted arcs.

7.5.6 Experimental Results

This section reports some experimental results obtained for the capacitated VRP on several
standard instances in the literatures. The objective is to demonstrate that even on complex
problems such as the VRP, LOCALIZER can be competitive with special purpose implemen-
tations. The values reported here are for 15 benchmarks from Christofides, Mingozzi &
Toth [10] (C series), Fisher [17] (£ series) and Taillard [73] (tai series). Table 7.8 reports
the result for the insertion neighborhood discussed above, while 7.10 reports the results for
the more advanced 2-interchange neighborhood. Both tables use the same format. The first
three columns list the average, worst and best solution found in 100 consecutive identical
executions. The next three column list the average, maximum and minimum running time
on an Ultra Sparc 1 running Solaris 2.6. The B.K. column gives the best solution reported
in the literature and the last column gives the distance (as a percentage) of the best solution
produced by LOCALIZER to the best-known solution. Both series of runs were conducted
with the same parameter settings for Tabu search. The number of iteration is capped at
2000 and the tabu list can vary in length from 1 to 10.

Table 7.8 gives surprisingly good results especially when the running time is taken
into account and compared to the running time for the 2-interchange neighborhood. It is
important to notice that the tabu search with insertion neighborhood is a quasi-deterministic
algorithm. The only sources of randomization are the tie-breaking mechanisms when several
moves are equally appealing and the randomized starting point. We noticed that ties happen
very infrequently, therefore the diversification introduced with starting points is essential
to get good results.

151

Finally, note that the statement for the insertion neighborhood is slightly more re-
strictive than necessary. Indeed, the description of the neighborhood indicates that the
relocation of a client 7 after some client j is valid even when j belongs to the same route.

The definition of the invariant val

val :array[i in 1..nbC] of {Arc} := {a : Arc | select a from ra
where load[truck[Cli[a]]] + R[i] < vC and a.t #1 and a.s # i};

eliminates some move of this type since the relocation of 7 after client j is always condi-
tional to load[truck[Cli[a]]] + R[{] < vC even when i and j are on the same tour. This
apparent oddity was the result of a modeling error but was preserved for a simple reason:

the algorithm does a lot worse, quality wise, when the definition

val : array(i in 1..nbC] of {Arc} := {a : Arc | select a from ra
where (truck[i] = truck[Cli[a]] or
load[truck[Cli[a]]] + R[] < vC)
and a.t #17 and a.s #1i};

is used, the results significantly degrades. This phenomenon is explained by the presence of
many moves that slightly improve the objective function. The presence of these moves over-
rides other transitions that appear worse but have the advantage to create major changes
in solutions thereby introducing a good diversification mechanism. Indeed, a modification
of val, to explicitly eliminate all client relocation within a tour, with the definition

val : array[i in 1..nbC] of {Arc} := {a : Arc | select a from ra
where (truck[i] <> truck[Cli[a]] and
load[truck[Cli[a]]] + R[i] < vC
and a.t #1 and a.s #i};

gives results similar to what is reported in this thesis.

We are not aware of any other experimental results for the insertion neighborhood. The
Clark-Wright procedure that was generalized to obtain the insertion neighborhood is often
used to compute starting points but was not considered on its own. Competitive imple-
mentations for the capacitated VRP where realized by Osman [43] and Gendreau, Hertz
and Laporte [21]. These implementations are based on the more intricate 2-interchange
neighborhood. The BA variant of Osman’s algorithm looks for the best possible move in
the 2-interchange neighborhood, while the FBA variant attempts to cut on exploration
costs by settling for the first improving move. The results reported in Table 7.9 are the best

solutions ever found by those algorithms over a range of parameters and executions.

Ins. T Avg | Max | Min Avg | Max | Min | B.K. | %
C50 541.63 504.24 52502 | 66.93 | 71.80 | 61.30 524.61 | 0.002
C75 870.49 912.57 844.97 | 97.11 | 196.00 | 61.80 835.26 | 0.012
F71 269.07 301.37 242.22 | 73.36 | 106.20 | 56.50 241.97 | 0.001
TAI75¢ 133261 | 1544.53 | 1179.19 | 94.89 | 111.60 | 70.10 | 1291.01 | -0.087
TAI75d 137403 | 149895 | 1289.50 | 72.18 | 88.10 { 57.40 | 1365.42 | -0.056
C100 878.07 965.62 835.51 | 173.96 | 213.40 | 111.70 826.14 | o0.011
C100b 881.03 | 1043.07 827.96 | 127.75 | 176.20 | 92.10 819.56 | 0.010
C120 1129.86 | 1328.56 | 1075.43 | 190.47 | 289.20 | 61.50 | 1042.11 | 0.032
C150 1137.50 | 1214.85 | 1058.30 | 266.78 | 329.70 | 179.40 | 1028.42 | 0.029
C199 1450.72 | 1571.56 | 1370.50 | 377.59 | 488.50 | 262.10 | 1291.45 | 0.061
F134 13213.53 | 14896.40 | 11999.70 | 237.82 | 350.10 | 134.90 | 11629.90 | 0.032
TAI100a | 2241.12 | 2554.67 | 2115.71 | 136.10 | 166.10 | 112.80 | 2047.90 | 0.033
TAII00b | 2071.74 | 2224.78 | 1972.61 | 133.14 | 163.90 | 91.80 | 1940.61 | 0.016
TAI100c | 1540.02 | 1745.35 | 1456.48 | 155.56 | 174.40 | 130.50 | 1407.44 | 0.035
TAII00d | 173195 | 1908.70 | 1632.48 | 152.48 | 183.80 | 115.10 | 1581.25 | 0.032
Table 7.8: Insertion neighborhood for VRP.
Osman BA* Osman FBA?® Taburoute* Taillard®
Q | T Q | T Q| T QLT
C50 524.61 67.2 524.61 114 524.61 360 524.61 -
C75 844 70.8 844 50.3 835.77 | 3228 835.26 -
C100 835 675 838 1543 829.45 | 1104 826.14 -
C100b 819.59 407.5 819.59 892.2 819.56 960 819.56 -
C120 | 1042.11 | 1398.4 1043 | 1445.4 | 1073.47 | 1332 | 1042.11 | -
C150 1052 3075 | 1044.35 | 3560.0 | 1036.16 | 3528 | 1028.42 -
C199 1354 | 1972.7 | 1334.55 3246 | 1322.65 | 5454 | 1298.79 -
Table 7.9: Modern VRP Implementations
Ins. [Avg | Max | Min | Avg | Max | Min] BK | % _
C50 549.86 | 1422.30 | 52683 | 379.05 | 408.10 | 244.50 | 524.61 | 0.004
C75 999.86 | 14336.10 | 837.66 | 859.94 | 1223.80 | 141.90 | 835.26 | 0.003
F71 269.26 311.54 | 244.92 | 850.00 | 1302.20 | 451.40 | 241.97 | 0.012
TAI75c | 1428.55 | 1558.04 | 1353.19 | 811.68 | 1395.70 | 525.50 | 1291.01 | 0.048
TAI75d | 1439.56 | 1520.07 | 1384.55 | 729.63 | 1080.20 | 508.60 | 1365.42 | 0.014
C100 878.43 950.06 | 839.50 | 2474.74 | 3766.80 | 1511.60 | 826.14 | 0.016
C100b 864.73 | 1033.08 | 828.51 | 2592.59 | 3654.70 | 1368.20 | 819.56 | 0.011
C120 1119.00 | 1219.89 | 1082.71 | 2724.79 | 4506.10 | 1568.80 | 1042.11 | 0.039

Table 7.10: 2-Interchange Neighborhood

152

153

ss: array[i in 1.nbC] of int:= s[s[]];

aazv: arrayl[i in 1..nbC,j in 1..nbC] of boolean := if j >=1 then false else
s[i} <> nbC + 1 and sfj] <> nbC + 1 and
load[truck[i]] — Cli].d — C[s[Z]].d + C[].d + C|[s[j]].d <=vC and
load[truck[j]] — Clj].d — C[s[j]].d + C[i].d 4 C[sli]].d <=vC and
j <> s[i] and p[j] <> s[i] and i <> s[j] and pfi] <> s[j];
aaz : arrayl[i in 1..nbC,j in 1..nbC] of real := if j = 7 then 10000000.0 else
Dipljl,] + Disld, ss(jl] + Diplil, 3] + Dislj, sslil] -
(Dlpldl, il + Dls{dl, ssfill + Diplil, 31 + Dlstal, ss(ils
aas : Arc := {(g,w) : Arc| select (g, w) from AP where aazv(g, w] and notTabulq]};
aa : Arc := argmin(a in aas) aaz(a.s,a.t];
aag : real := - (min(a in aas) aaz(a.s,a.t]);

vvzv: array(: in 1..nbC,j in 1..nbC] of boolean := if j >=1i then false else
loadftruckli]] — C[i].d + C[j].d <=vC and
loadftruck[j]] — C[jl.d + C[i].d <=vC and
j <> s[i] and pfi] <> j;
vuz : array[i in 1..nbC,j in 1..nbC] of real := if § >= 1 then 100000000.0 else
(DIglil,] + DI, slill + Dlplsl, 41 + D sGl);
ws : Arc := {{g,w) : Arc | select (g, w) from AP where vvzv(q, w| and notTabulq]}
v : Arc := argmin(a in vvs) vvz{a.s,a.t];
vug : real := - (min(a in vvs) vvz[a.s, a.t]);

avzv: arraylfi in 1..nbC,j in 1..nbC] of boolean := if j = i then false else
s[j] <> nbC + 1 and j <> s[i] and p[i] <> j and p[i] <> sj] and
load[truckli]] — C[i].d + C[j].d + C[s[j]].d <= vC and
load[truck(j]] — C[j].d — C[s{j]].d + C[i].d <= vC;
avz : arrayl[i in 1..nbC,j in 1..nbC| of real := if j = 7 then 10000000.0 else
DIplj],1] + D[i, ss[j]] + D[s[j], s[i]] + Dlpls], j]
—(DIplil,il + Dfi, sil] + Dlp1, 41 + Dlsls], ss[ill);
avs : Arc := {(e,1) : Arc| select (e,r) from AS where avzvle,r] and notTabule]};
av : Arc := argmin(a in avs) avza.s,a.t];
avg : real := - (min(a inavs) avz[a.s, a.t]);

atv : array[i in 1..nbC,j in 1..nbC] of boolean := if j = i then false else
load[trucklj]] + Cfi].d + C[s[i]].d <= vC and
j <> s[i] and p[i] <> j and sfi] <> nbC +1;
ai : array[t in 1..nbC,j in 1..nbC] of real := if j = ¢ then 100000000.0 else
DI,4] + DIsfil, 1] + Dlpil, ssfill — (Dlpldl, il + Dsfi, ssfil] + Dl sLil);
ais : Arc := {(g,w) : Arc] select (g, w) from AS where aiv[g, w] and notTabu(q]};
ai : Arc := argmin(a in ais) aia.s, a.t];
aig : real := - (min(e in ais) aifa.s,a.t]);
besti: real := maxd(aag,maxd(vvg,maxd(avg,maxd(aig, g))));

Figure 7.18: Invariants for the 2-interchange VRP model.

operator:
void markTabu(al : int,a2 : int,0Best : real) {

if tt < oBest and tabuLen > tmin then tabuLen — — endif;
if tt >= oBest and tabulLen < tmazx then tabulen + 4+ endif;
tabulal] := trials + tabuLen;
tabula2] := trials + tabuLen;
freglal] + +;
fregla2] + +;

neighborhood:
try
when size(aas)> 0 and besti = aag:
move lambda2(al, a2)
where al = aa.s;
a2 = aa.t;
oBest = tt;
accept when in current state always — markTabu(al, a2, oBest);
when size(vvs)> 0 and besti = vvg:
move lambdal(al, a2)
where al = vvu.s;
a2 =vv.t;
oBest = tt;
accept when in current state always — markTabu(al, a2, 0Best);
when size(avs)> 0 and besti = avg:
move lambdal2(al, a2)
where al = av.s;
a2 = au.t;
oBest = tt;
accept when in current state always — markTaby(al, a2, o0Best);
when size(ais)> 0 and besti = aig:
move insertion2(al, a2)
where al = ai.s;
a2 = ai.t;
oBest = tt;
accept when in current state always — markTabu(al, a2, 0Best);
when size(canM ove)> 0:
move insertion(t, jStar([i])
where i = ig;
oBest = tt;
accept when in current state always — {
if tt < oBest and tabuLen > tmin then tabulen — — endif;
if tt >= oBest and tabuLen < tmazx then tabuLen + + endif;
tabuli] := trials + tabuLen; fregfi] + +;

end

Figure 7.19: Neighborhood for the 2-interchange VRP model.

154

Chapter 8

Modeling in LOCALIZER

The purpose of this chapter is to investigate a number of modeling issues that arise in
implementing local search algorithms in LOCALIZER. It discusses various ways of exploit-
ing incrementality in the neighborhood and in the invariants and illustrates how simple
complexity analysis can be performed to choose between different LOCALIZER statements.

This chapter only discusses implementation issues relevant to LOCALIZER. It does not
discuss the design of local search algorithms. This topic deserves a full treatment on its own,
since it involves numerous tradeoffs between the quality of the solutions and the efficiency
of the algorithms. Interested readers should consult [1] for more information on this topic.

The chapter is organized as follow: Section 8.1 discusses incrementality issues that are
central to the development of efficient LOCALIZER models. Section 8.2 shows how space and
time analysis can be used to choose between different LOCALIZER statements. Section 8.3
discusses the impact of a formulation on the constant factors hidden in the big O notation.

Section 8.4 reviews how standard database techniques apply in LOCALIZER.

8.1 Incrementality

Incrementality is a critical issue to obtain efficient LOCALIZER statements. This section
reviews a number of techniques available in LOCALIZER and analyzes them in this respect.

8.1.1 Simulation Versus Differentiation

The basic step of a local search consists of moving to an element in the neighborhood.
The choice of which neighbor to select is, in general, guided by the objective function of
LoOCALIZER that can be viewed as a function f : 7 — R, mapping a computation state into

155

156

a real value.

Typical exploration strategies (e.g. local improvement, tabu search, or simulated an-
nealing) need to consider various neighbors and evaluate the objective function for each of
them. Consider, for instance, a local improvement strategy. If T is the current state and v/
is the state associated with a neighbor, the difference A = f(1) — f(7’) is used to determine
whether to take the move. This decision requires either an explicit computation of 7’ from
which A can be easily computed or a way to evaluate A in the current state. The former
technique is called simulation, while the latter is called differentiation. We review both of

them in some detail.

8.1.1.1 Simulation

Simulation evaluates the objective function in a neighboring state. It suffices to use the
Objective Function section to define the function f and the type of optimization problem
considered. The expression defining f can refer to any constant, variable, or invariant
defined in the statement. Whenever a neighbor is considered by the move instruction, the
computation state 7/ is produced and the function f(7’) is evaluated. The value A = f(7)—
f(7') is available through a variety of keywords (e.g. delta,improvement,noDecrease)
that can be used in the acceptance criterion and many strategies such as local improvement
and simulated annealing can be implemented easily. Greedy strategies such as tabu search
use the value f(7/) and simply choose the best one. They are implemented using the keyword
best in the neighborhood definition.

Simulation is the default technique in LOCALIZER and is especially useful early in the
design of local search algorithms where experimentation plays a major role. When a given
neighborhood is chosen, it may be useful to consider differentiation to improve efficiency.
Indeed, the cost of evaluating a new state may be significant, since it amounts to updating

all the invariants.

8.1.1.2 Differentiation

Differentiation consists of deriving an expression or a piece of code that computes the same
quantity A but in the current state 7 (not through simulation). For instance, consider the
graph coloring application. The variation in the objective function is induced by a single
assignment of a value k to an integer variable z;. In this application, the objective function
is defined as

157

Figure 8.1: Moving vertex 7 from class j to class .

F(r) =Y _QIB:Ci| — [C:?)
i=1

where C; is the set of vertices colored with color 7 and B; is the set of edges connecting two
vertices in the class z.

The color change for vertex 7 from j to k& implies changing both C and B. More
specifically, the color class C; loses one vertex while Cr gains one (as long as j # k).
Additionally, the sets B; and By are also affected. When vertex 7 moves, the edges that
connect 7 to other vertices in the class j lose their bad-edge status. On the other hand, all
the edges that connect vertex ¢ to vertices in class k become bad edges as depicted in Figure
8.1. More formally, the cardinality nb; of the set of edges connecting vertex i to vertices in
class k and the cardinality ob; of the set of edges connecting vertex ¢ to vertices in class j

may be defined as follows:

ob; = [{(a,b)la =iAbe Cj}|
nb; = |{{a,b)la =iAbe Cr}|
The assignment of k to z; implies the following identities
(G = (Gl -1
T (ICk|) T(|Ckl) +1
T(1B;5l) 7(|Bjl) — ob;
T(IBel) = 7(Bkl) + nb;

where 7/ is the computation state resulting from the assignment. From the definition of the
objective function, it is now easy to see that only two terms of the summation get affected,

i.e., the terms j and k. The variation for é; and J; are

158

& = 27(Bjl) —ob)(r(IC;]) — 1) — (7(IC;l) — 1) — 2r(|B;)7(IC5]) + 7(IC;)?
S = 2(r(IBel) — nbi)(r(ICk]) + 1) — (7(ICk]) +1)% — 2r(IBel)T(ICkl) + T(ICk])?

and A simply becomes §;-+0;. With this manual differentiation approach, the graph coloring
statement shown in Figure 8.2 turns almost completely incremental.

The savings of this approach are significant since the cost of propagating all the invari-
ants of the model is replaced by an expression that computes A in a time proportional to
O(|Cj| + |Ck|). The savings also come indirectly, since LOCALIZER no longer needs to save
and restore the old state 7. The extra effort in modeling is more than balanced by the
effectiveness of the new formulation. In practice, the new statement is about an order of
magnitude faster than its simulated counterpart.

It would be nice to automatically derive this statement from the simulation approach.
However, it is hard to do so in general, since an effective derivation may need semantic

information (e.g. a matrix is symmetric). It is certainly a promising research topic.

8.1.2 Exploiting Invariants for More Incrementality

In a differentiation approach, it is useful to consider how to compute the difference A in the
current state. It can be computed either by an expression in the neighborhood definition or
as part of the invariants definition. This may seem insignificant but, in practice, it can make
a substantial difference for at least two reasons. First, in typical local search algorithms,
neighbors are close and the updating of invariants is, in general, proportional to how close
they are. Second, even in strategies that do not require to scan the whole neighborhood
(e.g., simulated annealing), a significant number of neighbors may still need to be explored
when the quality of the solution improves. As a consequence, it is often useful to exploit
invariants to compute this difference. We illustrate how this can be performed on the graph
coloring application.

In graph coloring, the impact on the objective function was expressed in terms of the
two numbers nb; and ob; defined in the previous section. There are only two alternatives to
compute these numbers directly. The first possibility is to walk down the adjacency list of
vertex ¢ and count the number of vertices that lie in class 5 or class k. The second option
is to iterate on classes j and k themselves and check whether an edge (%,b) belongs to the
edge set of the graph for any vertex b in these classes. The worst case performance of the
first approach is O(n) where n is the number of vertices in the graph, while the second
approach costs O(|Cj| + |Ck|) which can be significantly smaller. This approach was used

Optimize
Data Type: edge = record s : int; ¢ : int; end;
Constant:
n int =
E : {edge} = ..;
cutOff :real=..;
chPerc : real = ..;
mazFreeze: real = ..
A : array[t in 1..n,j in 1..n] of boolean := (3, j) in E;
Variable:
z : array{l..n] of int;
t : int;
fe: int;
ch: int;
Invariant:
C : array[l..n] of {int} := distribute(z,{1..n},{1..n});
Empty : {int} = {7 : int | select ¢ from 1..n where size(C[i]) = 0};
NEmtpy : {int} = { ¢ : int | select i from 1..n where size(C[i]) > 0};
unused : int = minof{Empty);

Candidates : {int} = NEmpty union unused;
B : arraylk imof.{elige} = {(i,j) : edge | select i from C[k]
select j from C[k] where A[z,j] };

Obj : int = sum(i in 1..n) (2xsize(C[i]) xsize(Bl[i]) - size(C[i])?)
countB : int = sum(? in 1..n) size(B[d]);
Operator:

int f(C : int,S : int) { return 2% C xS — C%}
int diff(¢ : int,dec : int,ds : int){
return f(size(C[i])+dec,size(B[i])+ds) - f(size(C[i]),size(B[i])); }
void lowerTemp() { ¢t := ¢ * 0.95;ch := 0;fc := fc+ (ch/trials < mp);}
Satisfiable: cb = 0;
Objective Function: minimize Obj;
Neighborhood: move zfi] :=¢
where i from {1..n};
¢ from Candidates;
nb = sum(j in Clc]) Az, j];
ob = sum(j in C[z[i]]) Alz,J];
d = if z[i]<> k then diff(x[i],—1,—0ob) + diff(c,1,nd) else 0;
accept
d < 0 — { if countB = 0 then fc = 0 endif; ch:=ch+1; }
cor d=0
cor Pr(e~4/t): always — ch:=ch+1;
Start: genState();
Restart: lowerTemp();
Parameter: mazTrials := round(sf * chest x n);
Local Condition: ch < NC;
Global Condition: fe < 5;

Figure 8.2: A Statement for Graph Coloring Based on Differentiation.

159

160

in the statement shown in the previous section. We now discuss how the implement the
former.

The key observation underlying the first approach is that the move of vertex ¢ from class
j to class k only affects the class connectivity of few other vertices. The values nb, and ob,
for any vertex v not directly connected to vertex i are left unaffected by the assignment of
z;. Hence it is possible and desirable to maintain incrementally the set of edges connecting

a vertex ¢ to any class k. If
CCi = |[{{a,b)|a =i A b€ Ci}

denotes the cardinality of the set of edges connecting vertex 7 to class &, then nb; = CCixi
and ob; = CCj;. The matrix CC is easily defined as an array of arrays with the dcount

global invariant

CC : array[i in 1..n] := dcount(z,AL[i],{1..n});

where AL[7] is a constant denoting the set of vertices adjacent to vertex .

The potential gain in efficiency in this case comes from the fact that CCj;. can be updated
in time proportional to the size of AL[i] (in the worst case) and that the evaluation of nb;
and ob; reduces to a lookup in the CC matrix.The assessment of the quality of a neighbor
becomes a O(1) time operation. Even though this seems more expensive than the direct
model of the previous section, the technique brings about 20% in savings. To understand
why, it is useful to remember that the search strategy is simulated annealing. A move is
accepted unconditionally when it leads to an improvement. It is also accepted if it degrades
the current solution, with a probability that decreases as time passes. As a result, simulated
annealing tends to accept many moves early on and rejects most of the moves later on. The
slight loss in performance for updating CC is thus amortized over the number of moves
considered, but not accepted, since a rejected move now only costs ©(1) to be evaluated.

The final statement is shown in Figure 8.3.

8.1.3 Summary

It is useful to summarize the issues related to incrementality. In general it is recommended to
use a simulation approach to study the neighborhood to understand the trade-offs between
their sizes and the quality of solution produced. When a given neighborhood and strategy
is chosen, it is useful to study whether it can use a differentiation approach and whether

the invariants can be used to increase efficiency further. In general, we found out that using

Optimize
Data Type: edge = record s : int; ¢ : int; end;
Constant:
n pint = ..
E : {edge} = ..;

cutOff :real=.
chPerc : real=..;
mazFreeze: real = ...;
A : array(i in 1..n,j in 1..n] of boolean := (i,7) in E;
AL: array[i in 1..n] of {int}:={j : int | select j
from 1..n where A[i, j] or Alj,i]};

Variable:
z : array[l..n] of int;
t : int;
fe: int;
ch : int;
invariant:
C : array[l..n] of {int} := distribute(z,{1..n},{1..n});
cc : array(i in 1..n| := dcount(z,AL[i],{1..n});
Empty : {int} = {i: int | select i from 1..n where size(Ci]) = 0};
NEmtpy : {int} = {i: int | select i from 1..n where size(C[i]) > 0};
unused : int = minof(Empty);

Candidates : {int} = NEmpty union unused;
B : array(k iofl{edge} = {(i,j) : edge | select i from C[k]
select j from C[k] where A[i, j] };

Obj : int = sum(i in 1..n) (2xsize(C[i]) xsize(Bli]) - size(C[i])?)
countB : int = sum(i in 1..n) size(B([i]);
Operator:

int f(C : int,S : int) { return 2x C * S — C?;}
int diff(z : int,de : int,ds : int){
return f(size(Cli])+dc,size(B[i])+ds) - f(size(C[i]),size(B[i])); }
void lowerTemp() { t := t % 0.95;ch := 0;fc := fc+ (ch/trials < mp);}
Satisfiable: cb = 0;
Objective Function: minimize Obj;
Neighborhood: move z[i] :=c¢
where
i from {1..n};
¢ from Candidates;
nb = CCli,c];
ob = CCIi, z[i]);

d = if z[ti]<> k then diff(x[i],—1,—ob) + diff(c,1,nb) else 0;

accept

d < 0 — { if countB = 0 then fc = 0 endif; ch:=ch+1; }

cor d=0
cor Pr(e~%%): always — ch:=ch+1;

Figure 8.3: Maintaining Connectivity Information Incrementally.

161

162

invariants as much as possible is a good strategy but more experimental work needs to be
done before reaching a conclusion. Note also that sometimes it may not be possible to move
from a simulation to a differentiation approach. In these cases, it may be helpful to consider

approximations of the evaluation function as shown in the scheduling application.

8.2 Complexity Analysis of Invariants

To write more effective statements in LOCALIZER, it is important to understand their cost
structure in terms of time and space. The computation of this cost depends on both the
complexity of propagation for elementary invariants and on the number and the nature of

the elementary invariants. This section reviews both aspects.

8.2.1 Propagation Cost

The propagation cost is associated with a pair (z,y := I), where z is the variable triggering
the propagation and y := I is the invariant to be updated. Remember that an invariant
y := I is reconsidered at most once for any particular but might have to be reconsidered
several times due to different variables. We now quickly review the propagation cost of

various invariants described in Chapter 6.
Arithmetic Invariants Invariants of the form z := y @ 2z are updated in constant time.

Aggregate Invariants Summations and products are all updated in constant time, in-
cluding the dynamic versions DSUM and DPROD. The MAX ,MIN, ARGMAX, and ARGMIN invariants,
together with their dynamic equivalents, are updated in O(logn) in the worst case, where
n is the size of the set they are defined upon. This bound can be obtained easily by using

a heap to maintain the set of pair (i, e(i)) for all elements 7 in the set.

Set Invariants The FILTER,SINGLETON, and CSINGLETON invariants are all updated in
constant time. The CROSS invariant is a bit more expensive and is updated in O(|Al{y|),
where A is the list of changes for the operand triggering the propagation and y is the other
operand. Finally, x:=DFILTER(y,F) has an update cost proportional to the size of the
difference list A associated with y and the size of the difference list for the boolean function
F, giving O(|A| + |DIFF(F)|) overall worst case performance.

163

8.2.2 Global Cost

Invariants depend on each other, since a variable z can occur in the definition of another
invariant y := I. Global Cost analyzes the complexity of a set of invariants. It is necessary
to consider the set of elementary invariants that result from the normalization phase. These
elementary invariants expose the memory and computing costs more clearly.

For instance, aggregates are rewritten as y := Il(z1,. .., zn) showing the space required
by the invariants is ©(n) and that the number of propagation is O(n) in the worst case.
Note that the expected number of propagations is often much smaller than O(n) due to
locality. Similarly, a static set

z = {v | select v from{ey,...,e,} where E}

is replaced by the set of elementary invariants

z := UNION(s1,.--,Sn)
by = E[v/el],sl = CSINGLETUN(b]_, 61)

bn, := Elv/epn), sn := CSINGLETON(b,, €n)

Once again, the normalization makes the memory and time requirements more explicit. The
UNION invariant may need to be propagated up to n times and uses ©(n) space. Moreover,
there are 2n auxiliary invariants introduced to define the intermediate variables b; and s;.
The number of propagations for UNION is O(n) and ©(1) for CSINGLETON in the worst case.

The number of propagation for an arithmetic invariant such as
b; := Ev/e]
is also related to the normalization. Elementary invariants are binary relations of the form
r:=yd=z
hence, the normalization transforms an arbitrary expression
z:=a+b+cxd+e

in a set of binary invariants

cp = a+b
oy = cxd
o3 = 01 +09

r = o03+e

164

The cardinality of the set obtained is equal to n, the number of variable occurrences in
the normalized expression. The space requirement follows as ©(n) and the number of
propagation is O(n) in the worst case.

Let us now illustrate how the propagation and the global cost can help us to choose
between several statements on graph coloring problems. More precisely, let us examine two
ways of defining the bad edges and study the space requirements and the time necessary to
update these invariants when a variable z is given a new color.

The first approach defines each B; as a static set subject to the rewriting rules mentioned

above.

B : array[k in 1..n] of Edge := {(i, j) : Edge]| select (i,j) from E
where z{i] = k A z[j]= k};

It implies that each B creates ©(n?) (exactly 4n?) elementary invariants since the edge
set E is constant and of cardinality n? = |E| where n is the number of vertices in the graph.

For a given Bj and each tuple (z,j) in F, the normalization produces the set of elementary

invariants
o = zlil =k
ok =zl =k
SEi g =
O3 = Or1N0oOg2
Ors := CSINGLETON(os, (Z,7))

Let SE; be the set of elementary invariants produced by a given B, i.e.,

SEx= |J SEkuj-
G.HeE
The analysis of SEj reveals that, out of the 4n? elementary invariants, only 2n of them
contain a reference to variable z[i]. In turn, this implies that assigning z[i] to a new value
triggers the propagation of ©(n) invariants in each set SEj. Since there are exactly n entries
in the array, B has a space complexity of ©(n3) and a time complexity of O(n?2).

Consider now the invariant

B : array[k in 1..n] of Edge := {(i,]) : Edge]| select i from C[k]
select j from C[k]
where Afi,j] };

where C is an array of sets denoting the color classes of the graph. Assume that all C[k]
are updated in constant time when a given variable z[7] is updated thanks to the global

invariant distribute. The next section shows how to obtain this result.

165

This second formulation is also subject to rewrite rules. Clearly, the definition of an
invariant By falls in the semi-dynamic set category because C is an array of variable and
A is a constant matrix. The space complexity is ©(n) since the result of the rewrite phase

for a single By, is spelled out as

o = {(}

SE, = ora := CROSS(ok1,C[k])
or3 = CROSS(oke,C [k])
B, := FILTER(og3, F)

Consider now the time complexity. The definition of SEj clearly indicates that only 2
elementary invariants link C[k] and B[k]. This implies that, whenever a set C[k] changes,
a constant number of invariants are propagated to update the associated B[k]. Moreover,
changing the color of a vertex i moves that vertex from class C; to class C>. This change
implies that the classes C; and C5 are both modified. The conclusion is that only a constant
number of invariants (6 to be precise) are propagated to update the array B when z[i] is
assigned a new value. As a consequence, the overall time complexity is O(n).
Consequently, the latter formulation produces two orders of improvement in space and

one order of magnitude in time complexity over the former and is clearly preferable.

8.2.3 Global Invariants

Note that the availability of distribute is critical to achieve the time complexity. A direct
definition

C : array[k in 1..n] of int := {i: int | select i from 1..n where z[i] = k};

based on the semantics of distribute
distribute(z,I,0) & B; = {i € Ilz[i] = j} Vi € O

gives much poorer bounds. In this definition, each C; would be normalized into the set of

invariants SO

50 = | §0;;.
jeo

where

SO = ol = z[i]=3
T = -
? or2 = CSINGLETON(o1,1)

166

The analysis of the set SO reveals that each z[z] appears in a total of ©(n) invariants which
would lead to a ©(n?) space complexity and a ©(n) time complexity. The constant time
implementation for distribute is based on the following observation. With the definition

distribute(z,I,0) & B; ={i € I|z[i] =j} V7€ O

when a variable z[i] changes value from z[i]° to z[¢]¢, it is sufficient to remove the value ¢
from the set B;o and insert the value 7 in the set B;(jc. Both operations can be carried

out in constant time. Note that distribute introduces a topological constraint
te(B = distribute(z,I,0)) = {t(Bg) = méarx(t(:z:i)) +1VkeO}
1

that relates B and all the variables in the array z, resulting in a space requirement of O(|I|).

8.3 Constant Factors

The design of a model at a high level of abstraction often encourages conceptual structures

that prove too powerful for the task at hand. Consider, for instance, the invariants

: {int} := {i: int| select i from 1..n where z[i]};

: {int} := {7 : int| select i from 1..n where not z[i]};

: int := size(P) - size(N);

: {Edge} := {(a,b) : Edge | select (a,b) from E where z[a] <> z[b]};
: int = size(C) + 0.2x [= I;

caQa~zh

from a graph partitioning statement. P and IV denote the set of vertices in each partition,
I denotes the imbalance between the partitions and C is the cut set, i.e. the set of edges
with one endpoint in each partition. Finally O is the objective function.

The first point to notice is the use of sets for the definition of P and N. The sets are
maintained for one purpose only: obtain their sizes. In this case, it is far better to adopt a
counting strategy instead. It does not change the asymptotic time and space complexities,
but it does greatly reduce the constant factor and avoid the bookkeeping for the sets. The
definitions

P : int := sum(i from 1..n) z[i];
N : int := sum(i from 1..n) not z[i];

are thus preferable. The same holds true for C and a better choice is

C : int := sum(i from FE) (z[i.a] <> z[i.b]);

167

Finally, it is wise to exploit the symmetry of the problem to eliminate N altogether and
define I as

[:int:=2% P-n;

since P+ N =n.

8.4 Database Techniques

All the techniques used in relational algebra for optimizing queries also apply in the context
of sets. For instance, it is desirable to push the filtering expressions as early as possible
in the set definition since they reduce the sizes of the intermediate sets. For instance, the
definition

Constant:
AP : {Arc} := { a : Arc | select a.s from 1..n select a.t from 1..a};
Invariant:
ok : array[i in 1..n] of {Arc} := { (a,b) :Arc | select (a,b) from AP
where tabu[a] < trials};

with a space complexity of O(n?) is worse than

Invariant:
ok : arrayfi in 1..n] of {Arc} := {{(a,d) :Arc | select a from 1..n
where tabula]< trials
select b from 1..a};

since the latter uses only O(Mn) in space where M is the number of non-tabu elements in

a.

Chapter 9

Related Work

This chapter reviews related research in constraint programming, modeling languages, pro-

gramming languages and incremental algorithms. It also discusses directions for future work

when appropriate.

9.1 Constraint Programming Languages

Many constraints programming languages have been defined in the last 15 years to support
the solving of combinatorial optimization problems. Well-known representatives include
CHip, Ilog Solver [49], CLP(R) [27], ProLOG III [12] and Oz [26] and they are based on
various programming paradigms (e.g. logic programming, functional programming, object-
oriented programming). Almost all these languages support the global search paradigm
(e.g. branch and bound or constraint satisfaction). More precisely, a program in these
languages can be seen as a high-level specification of a global search algorithm. These
specifications genera.liy consist of two parts: a declarative component that specifies the set of
constraints to be satisfied and an algorithmic component that searches for solutions.! These
constraint programming languages generally use “logical variables”, i.e., variables that can
be assigned once, and the purpose of a constraint program is generally to find values for
the variables. Finally, at the core of these languages lie constraint-solving algorithms that
may be rather sophisticated and include linear and non-linear programming algorithms as
well as constraint satisfaction algorithms.

LocaLIzER differs fundamentally from these languages in that it supports the local
search paradigm. LOCALIZER is the first language to support the local search paradigm.

!Note that the algorithmic component may itself be declarative as in constraint logic programming.

168

169

There have been attempts (e.g., [71]) to embed local search algorithms into constraint lan-
guages but LOCALIZER is the first language that supports users in defining their own local
search algorithms. A statement in LOCALIZER is a high-level specification of a local search
algorithm and LOCALIZER also has declarative and algorithmic components. The declar-
ative component specifies the invariants that must be maintained, while the algorithmic
component modifies the value of some of the variables to move from neighbors to neighbors.
Note that variables in LOCALIZER are closer to variables in imperative languages and that
the core of a LOCALIZER statement is a collection of incremental algorithms to maintain
invariants. These differences with traditional constraint programming languages are in no
way artificial but reflect the fundamentally different way of organizing global and local
search algorithms.

Note finally that CLAIRE [8] is a language that provides tools for implementing global
search algorithms (e.g. deduction rules and non-determinism). However, since CLAIRE is
based on traditional variables, it can also be used to implement local search algorithms by
enhancing its functionality with invariants.

9.2 Modeling Languages

Modeling languages such as AMPL [19], GAMS [5], LINDO [65] and NUMERICA [80] have been
proposed to simplify the design of mathematical programming problems. These modeling
languages focus on stating the problem constraints and support high-level algebraic and
set notations to express these constraints from the data. They are mostly independent
from the underlying solving algorithms (e.g., linear programming solvers), although they
may give access to some of the solver’s parameters and options. These modeling languages
do not support the search component of traditional constraint programming languages but
they have rich data modeling features that make them accessible to a wide audience. An
exception is the optimization programming language OPL [79], a recent addition in the
field of modeling languages. OPL in fact allows both the specification of constraints as in
traditional modeling languages and the definition of search procedures.

LOCALIZER shares with these languages the idea of supporting high-level algebraic and
set notations to simplify problem statements. However, there is a fundamental difference
between LOCALIZER and these languages: a LOCALIZER statement describes a local search
algorithm, not a set of constraints or a global search algorithm.

It is also useful to point out that the scripting languages provided by some modeling lan-
guages such as AMPL aims at specifying algorithms in terms of models. Their contributions

170

take place at another level and are orthogonal to LOCALIZER.

9.3 Graphical Constraint Systems

Historically, constraints were first used in graphical systems such as Sketchpad [72] and
Thinglab [6]. Many of the available constraint-based graphical packages containing con-
straints in fact support one-way constraints [39], [40] that can be viewed as invariants.
LOCALIZER was in fact inspired by these systems and originated in our desire to determine
if this approach could provide adequate support for local search algorithms. LOCALIZER,
of course, goes far beyond typical one-way constraints found in graphical systems, both in
terms of the expressiveness of its invariants and in terms of its implementation technology.
LOCALIZER invariants may contain arrays (indexed by variables), sets, graphs and other
higher-level data structures. The basic planning/execution model also had to be general-
ized to interleave the planning and the execution phases to support dynamic invariants.
Much recent work in constraint-based graphics has been concerned with multi-way con-
straints [58], [59], [62], [61], [81], [41] and constraint hierarchies [7], [82], [60]. In graphical
systems, one is often interested in specifying relationships between graphical objects and
one-way constraints are not always the best vehicle to support these relations. Multiway
constraints specify how to maintain a relationship and constraint hierarchies are used to
decide how to choose between different solutions. These functionalities are not needed in
LOCALIZER, since invariants are used to build data structures incrementally, not to maintain
relationships incrementally. Interested readers should consult [78] for a survey of constraint

programming.

9.4 Finite Differencing

Finite differencing [46] is a technique used in optimizing compilers to improve efficiency. To

review finite differencing, it is useful to start with a simple example. Consider the program

for (i:=0;i < n;i++) {
=f+ixc
}

The time-consuming part in this program is the multiplication ¢ * c. The basic idea behind

finite differencing is to abstract this expensive component into a new variable, say 7, and

to update the variable whenever the subcomponents ¢ and ¢ are modified. An optimizing

171

component can then generate the appropriate code for each of these modifications. For the

above example, the compiler may be able to generate the program

=0
for (i:=0;i < n;i++) {

f=f+1;
i =i +c

}

where multiplications are replaced by additions.

More generally, the fundamental idea behind finite differencing is to abstract expensive
computations by abstract data types that maintain a state and whose operations (called
derivatives) specify how to update this state when one of the subcomponents of the ab-
straction is modified. This idea applies of course to numerical expressions and Paige [44]
showed how it could be generalized to complex data structures. It is also useful to realize
that techniques like Rete networks [18] fall in this category and can be helpful to implement
incremental set operations.

The implementation of invariants can be viewed as a generalization of the finite differ-
encing approach. The finite differencing approaches that we are aware of correspond to our
static invariants. This comes from the fact that these techniques were used in the context
of optimizing compilers and thus it was necessary to perform the transformations at com-
pile time. LOCALIZER generalizes this approach to dynamic invariants that are critical for
many-local search algorithms. As mentioned, dynamic invariants require to interleave the

planning (or compilation in this context) and execution phases.

9.5 Programming with Invariants

Finite differencing was also used by Paige [45] to propose a new syntactic construct called
invariant.? The motivation behind the paper was the recognition that a number of efficient,
but involved, programs are in fact incremental versions of much simpler algorithms. For
instance, heap sort can be viewed as a version of selection sort where the minimum element
is maintained incrementally. The paper then suggests using invariants to maintain these
data structures incrementally. Here, an invariant is a syntactic construct that defines a
state and whose operations are derivatives that specify how to update the state when some

other variables are modified. In other words, Paige’s invariants are abstractions to construct

2We became aware of the work of Paige after completion of the first implementation but it is interesting to observe
that the same name was used for two different, but related, concepts.

172

what we called invariants in LOCALIZER. A pre-processor then rewrites these invariants into
traditional code through successive transformation.

It is interesting to observe that LOCALIZER shares the same motivations and address the
same issues with related concepts. There are however some important differences. First,
at the conceptual level, LOCALIZER supports a rich set of invariants without requiring user
intervention. Our basic motivation here is that the definition of these invariants is difficult
and should be automated as much as possible. Second, at the implementation level, Paige’s
invariants are static (they are rewritten into conventional code at compile time) and dynamic
invariants are not supported. As mentioned, dynamic invariants are critical for achieving
good performance on a variety of local search algorithms.

The idea of letting users define their own invariants is however very appealing, since it
may make the language more extensible. It is particularly attractive if the techniques of
LOCALIZER are integrated in an object-oriented library. It is an interesting open issue to

determine how this can be achieved for dynamic invariants.

9.6 INC: An Incremental Programming Language

Another related research, once again from the programming language field, is INC [83], a
language for incremental computations. INC is a language that allows writing non-recursive
functions in the style of functional programming. These functions are transformed by the
INC compiler into an incremental algorithm which, given a variation of the input, produces
a new output. As mentioned, INC uses functional notation and its primitives (e.g., FILTER,
TUPLIFY, EQUIJOIN) are closely related to our normalized invariants. This is of course not
surprising since bags and tuples are used as the main data structures. The implementation
of these operations is based on finite differencing [44, 46].

Once again, there are fundamental differences between INC and LOCALIZER. At the
conceptual level, there are three main differences. First, invariants in LOCALIZER are at a
much higher level of abstraction than INC functions. Invariants are generally close the data
used in informal descriptions of local search algorithms. INC functions, on the other hand,
are roughly at the level of our elementary invariants. Since our goal is to provide high-level
abstractions for local search, the transformation from invariants to normalized invariants is
best left to the compiler, especially since this translation can be performed effectively. Sec-
ond, and equally important, INC has no counterpart for our elementary invariants DFILTER

and element. This is an important limitation since these invariants are fundamental in

173

practical applications. Third, INC has no support to define recursively defined data struc-
tures as in the job-shop and vehicle routing applications. It is of course possible to extend
INC to remedy these limitations. High-order functions could be introduced to support dy-
namic invariants and a fixpoint operator can be added to support recursively defined data
structures. However, it is not clear that the INC compiler could recover enough of the struc-
ture of the application to obtain the same efficiency as LOCALIZER. Also, implementing
these extensions in full generality may be challenging and not needed in practice. At the
implementation level, of course, INC supports only static invariants. As far as we know, no
experimental results were reported on significant applications.

In summary, invariants seem to provide a much better expressiveness/efficiency trade-
off® than INC functions to support local search algorithms and extensions of INC are likely
to be too general and thus probably inefficient or ad-hoc.

9.7 Incremental Algorithms

Finally, it is useful to link our research to the large body of research on incremental algo-
rithms. It is not our goal to review this research in full detail but rather to explain what
we mean by efficient incremental algorithms in this thesis.

The traditional online analysis of an algorithm uses, as a complexity parameter, the size
of the input. The worst case analysis of an algorithm, either batch or incremental, gives an
upper bound to the running time O(f(|input|)). The analysis of the problem complexity
itself leads to a lower bound (g(Jinput|)). Combining the lower and the upper bound
is the best way to determine whether it is actually possible to improve upon the given
algorithm or if it is optimal. This approach can be inadequate. Indeed, the analysis can
report that a batch algorithm is asymptotically optimal even for an incremental problem.
Several techniques have been proposed to overcome this inadequacy. Among them are
micro-analysis [9], average case or expected case analysis [16],[50], amortized analysis [14],
[75] and analysis based on input and output sizes as a complexity parameter [2], [53],[51],
[52].

The analysis of algorithms in this thesis is in the spirit of the work of Ramalingam and
Reps [53] and is expressed in terms of the size of the variations in input and output. Our
basic motivation in analyzing algorithms in this way comes from the fact that this analysis is
much more informative in this context than a traditional worst-case online analysis. Indeed,
the objective of incremental algorithms in LOCALIZER is to compute a new output for a,

3Note that INC has as transitive closure operator that is an extension that is being implemented in LOCALIZER

174

generally small, variation in the input. However, sometimes a small variation in the input
may induce a dramatic variation in the output so that an analysis taking into account only
the input will not be informative, even in an amortized sense. Note that, with this in
mind, an incremental algorithm that turns out to be linear in the input/output variations
is optimal since all the new bits in the input must be seen and at least all the new bits in the
output must be written. The elementary invariants SUM, SUMD , PROD , PRODD,FILTER,CROSS
and FILTERD all have optimal implementations in this sense in the current implementation
of LOCALIZER. Similarly, high-level invariants such as distribute and dcount are optimal.

It is also interesting to discuss more global analysis as we did in Chapter 8. A global
analysis of the model for the simple job-shop scheduling statement shows that LOCALIZER
is running in time O(§) where § is the size of the change in input and output. This is the
same bound as the incremental algorithm for single source shortest path proposed in {53].
The same result would not hold when the vertices have an unbounded degree. This is one of
the primary motivations to consider global invariants. Global invariants not only increase
the expressiveness of the language but also make it possible to obtain better incremental
behaviour. We expect that research on global invariants will be as important as research

on global constraints in constraint programming.

Chapter 10

Conclusion

This thesis was motivated by our desire to support local search in a modeling language in
order to reduce development time significantly while preserving most of the efficiency of
specialized algorithms. Local search is one of the main optimization techniques for com-
binatorial optimization and designing local search algorithms remains an art that requires
considerable expertise and implementation skills.

This thesis is a proof of concept. Its main contribution is to present LOCALIZER, a
modeling language for local search. LOCALIZER enables concise descriptions of local search
algorithms that, when executed by the LOCALIZER interpreter, compare well with special-
ized programs. As far as we know, LOCALIZER is the first modeling or constraint language
to support local search. LOCALIZER obviously needs to be applied to even more complex
problems but we believe that this thesis provides enough evidence that this approach is
viable.

It is however important to step back and analyze LOCALIZER’s technical contributions
in more detail to determine what has been learned and what is likely to be present in
future such languages. The main conceptual contribution of LOCALIZER is the concept of
invariants. Invariants provide a declarative specification of incremental data structures,
automating one of the most tedious and error-prone aspects of local search algorithms. We
believe that invariants will play a fundamental role in any language supporting local search.
As this thesis shows, they allow for very compact statements, while making sure that they
can be implemented by efficient incremental algorithms. Further evidence of their usefulness
comes from the fact that they generalize the finite differencing approach. The LOCALIZER
invariants are likely to evolve and to be generalized and they provide a suitable platform
from which to start building. The main technical contribution of LOCALIZER is the concept

175

176

of dynamic invariants that generalizes the finite differencing techniques. As discussed several
times in this thesis, dynamic invariants are critical to obtain good performance on many
combinatorial optimization problems. Once again, dynamic invariants are likely to evolve
and to be generalized but they will also be part, we believe, of any implementation of
invariants. Their implementation techniques make it possible to implement sophisticated
incremental algorithms.

In the rest of this conclusion, we mention some of the research directions that we find

particularly promising for the future.

Invariants Global invariants, i.e., invariants over more complex data structure such as
graphs, are likely to be an important research topic in the future. Global invariants are able
to exploit additional structure and will lead to better incremental algorithms. We strongly
believe that global invariants will be as important for local search as global constraints
for global search. To illustrate this idea, recall that a problem like “single source shortest
path” has an incremental algorithm with a complexity bound of O(élogd) while a direct
statement of the recurrence that defines it lead to a weaker result of O(62logn) where n is
the size of the input and ¢ is the size of the variation in input and output. Clearly, many
incremental algorithms could become part of LOCALIZER through global invariants such as
longest.

It is also interesting to extend LOCALIZER to support a transitive closure operator,
as mentioned earlier. Concepts like connected components in graphs or Kempe chains in
graph coloring can be expressed naturally as transitive closures. The problem of maintaining
transitive closures incrementally has been studied in the past [83].

Finally, the invariant construct of [45] would increase the extensibility of the language

and its generalization to dynamic invariants should be studied.

Neighborhood and Parallelism Parallel explorations of neighborhood [63] provide an
interesting alternative to differentiation approach. A parallel exploration of a neighbor-
hood based on simulation may approach the efficiency of a sequential exploration based on
differentiation while keeping the model simpler. Results with the Mob heuristic in graph-
partitioning lead to excellent results both in term of time and quality. Similarly, Hamadi et
al. in [25] implemented parallel hardware to explore the simple flip neighborhood of GSAT
and obtained results that were similar to the fully incremental statement discussed here.
We have seen how easy it is to express the corresponding simple GSAT algorithm. Conse-

quently, it would be advantageous to provide both alternatives, i.e. a simple statement with

177

a parallel exploration of the neighborhood, and a fully incremental statement leading to a
sequential exploration. Additionally, it might be interesting to investigate the potential of

a parallel propagation algorithm for the invariants themselves.

Other Classes of Local Search Algorithms Genetic algorithms form a different class
of local searches based on populations of solutions. Genetic algorithms generate new so-
lutions via reproductions and mutations. Clearly, each individual solution could also be
characterized in terms of state variables and invariant variables. In that respect, the in-
frastructure provided by LOCALIZER could be reused to support this class of algorithms.
Additionally, genetic algorithms strongly encourage the use of parallel techniques to produce

the successive generations of the population (iterations of the algorithm).

Specification of the Neighborhood In most of the statements presented in this thesis,
neighborhoods are presented globally by the properties that they must satisfy. There are
algorithms where the neighborhood is described locally, i.e., the algorithm specifies how to
move from a neighbor to another without describing the properties of the states explicitly.
An example of local specification is the 2-opt local search of the traveling salesman. An
initial circuit is constructed and the search moves from one circuit to another without
representing explicitly that a circuit is needed.

Specifying neighborhoods locally can easily be done in LOCALIZER using procedural
constructs. An interesting research avenue is to determine whether there exist more declar-
ative ways of specifying these local neighborhoods and a restricted form of first-order logic
may be appropriate. Constraints, that are discussed in the next paragraph, are another

possibility.

A Unified Framework Finally, the integration of global search with local search is a
fundamental topic that needs to be addressed since many state-of-the-art algorithms (e.g.,
in scheduling applications) combines local and global search. Early proposals include [71]
and [48] but much remains to be done. Traditional constraint languages may prove useful
to specify the neighborhood declaratively and traditional constraint algorithms may help
exploring the potential candidates effectively (as in [48]). This is likely to be a fundamental

topic in coming years.

Appendix A

LOCALIZER Syntax

(scalarType) = int
= boolean
::= float
(basicType) = (scalarType)
;== void
(setElemType) ::= (type Identifier)
:= (scalarType)
(arrayElemType) ::= (type Identifier)
:= (scalarType)
:= (setType)
:= (abstractType)
(arrayType) := array[(dimList)] of(arrayElemType)
(setType) ::= { (setElemType) }
(abstractType) = Arc

::= Path((identifier))

::= Sequence((identifier))

:z= Circuit((identifier))

= Graph/((identifier))

{dimList) = (dimension) {{dimension)}
(dimension) = [(identifier) m] (expr)

n= [(1dent1ﬁer) m] (expr)..{expr)
{type Identifier)
(scalarType)
(arrayType)
(setType)
(abstractType)
(declaration) := (identifier) : (declType)

{(declType)

ll Il ll II ll

Figure A.1: Grammar Fragment for Typed Declarations.

178

179

{typeSection) u= type: {(typeDecl)}
(typeDecl) u= (type Identifier) = (recordType} ;
(recFieldType) u= (type Identifier)

1= (scalarType)

:= (setType)
(recordType) := record (field);{(field);}end
(field) := (identifier) : (recFieldType)

Figure A.2: Grammar Fragment for Record Type Definition.

(bool Expr)

{expr)

(relOperator)
(arexpr)

(binOperator)
{operand)

(Set Expr)
(Set Body)

(index)
{tuple)

(query)
(select)

(select Expr)

(actuals)
(range)

i (IR IR T '||' i

ITEET
.i -I- DRI T B S SR S S S TSR S I N TR S

(bool Expr) and (bool Expr)
{(bool Expr) or (bool Expr)
(expr)

(arexpr) (relOperator) {arexpr)
if (expr) then (expr) else (expr)

[<[>] =l<=]>=]|<>]|in]
(operand) (binOperator) {operand)
+ (arexpr)
- (arexpr)
(operand)

sum((identifier) in (Set Body)) (arexpr)

;:= prod((identifier) in (Set Body)) (arexpr)
::= min((identifier) in (Set Body)) (arexpr)
= max((identifier) in (Set Body)) (arexpr)

argmin((identifier) in (Set Body)) (arexpr)

= argmax((identifier) in (Set Body)) (arexpr)

((bool Expr))
[+1-1*]/]7]union]

(integer literal)

(boolean literal)

(float literal)

(identifier)

(array identifier) [(actuals)]

(function identifier) ((actuals))

(Set Expr)

{ (Set Body) }

(expr) .. (expr)

(bool Expr) {,(bool Expr)}

(identifier) : (type identifier) | (query) (index)
(tuple) : (type identifier) | (query) (index)
{operand)

= [index by (arexpr)]

== < (identifier) {,(identifier) } >
= { (select) } -
select (select Expr) from (range) [where (bool Expr)]
= select (select Expr) from (operand) [where (bool Expr)]
::= (identifier)

(tuple)

z (bool Expr) {,(bool Expr)}

(expr) .. (expr)

Figure A.3: Grammar Fragment for the Syntax of Expressions.

180

(constantSect) == constant : {(constant);}
{constant) ::= (identifier) : (declType) = (literal)

::= (identifier) : (declType) := (bool Expr)
(identifier) : (declType) := (arexpr)
::= (identifier) : (deciType) := (Set Expr)
== (identifier) : (declType) init (statement)
== (identifier) : (declType) = ...
(int literal)
(float literal)
(boolean literal)
[literal {,(literal)}]
{ literal {,(literal)}}
(literal {,(literal)})
(literal {,(literal)})

(literal)

WO N i

Figure A.4: Grammar Fragment for the Constant Section.

(variableSect) ::= variable : {(varDecl);}

(varDecl) ::= (identifier) : (scalarType)
2= (identifier) : (arrayType)
== (identifier) : (abstactType)
::= (identifier) : (type Identifier)

Figure A.5: Grammar Fragment for the Variable Section.

(invSect)
(invariant)

invariant : {(invariant);}

(identifier) : (declType) := (bool Expr)

(identifier) : (declType) := (arexpr)

= (identifier) : (declType) := (Set Expr)

= (identifier) : distribute((arexpr),(Set Expr),(SetExpr))
::= (identifier) : dcount({arexpr},(Set Expr),(SetExpr))

Wi

Figure A.6: Grammar Fragment for the Invariant Section.

181

182

(statement) ::= (statement) ; (statement)
::= (identifier) : (type)
::= (identifier) : {type) := (expr)
:= (lvalue) := (expr)
:= if (expr) then (statement) [else (statement) | endif
:= forall((identifier) in (Set Body)) (statement)
= while (expr) do (statement)
::= return {expr)
== choose (identifier) from (expr) [(optClause)]
(lvalue) ::= 4+ (reference)
::= —— (reference)
= (reference) [+-+]
(reference) [——]
(reference) [(actuals)]
(reference) ({actuals))
(reference).(identifier)
(array identifier)
(function identifier)
::= (identifier)
(optClause) :x= minimizing (expr)
::= maximizing (expr)
::= smaller than (expr)
= larger than (expr)
::= such that (expr) [minimizing (expr) [with (letBlock)]|

::= such that (expr) [max1m1zmg (expr) [w1th (letBlock) |]

(letBlock) ::= { (identifier;) = (expr;) ; ... ; (identifier,) = (exprn) }

(reference)

'|i W

Figure A.7: Grammar Fragment for the Syntax of Statements.

(function) = (retType) (identifier) () (statement)
:= (retType) (identifier) ({formals)) (statement)
(formals) := (formal) {,(formal)}
(formal) := (identifier) :(declTypr)
(retType) ::= (basicType)

Figure A.8: Grammar Fragment for the Operator Section.

(neighorhoood) := try { (transformation) } end
::= (transformation) B
(transformation) ::= Pr({expr)) : {(movelnstr)
u= default : (movelnstr)
:= when (bool Expr) : {movelnstr)
:= (movelnstr)
(movelnstr) := (method) move op(z1,...,Zn)
where (letExpr;)

(letExpry,)
[accept when (AcceptanceCriterion)]
(method) ::= first

::= best
= any
(letExpr) ::= (identifier) from {(Set Body)} [{(optClause)]
::= (identifier) from {(expry), .. ,{expr,)} [(optC ause)]
= (identifier) from {(identifier) : (type) | (select;)...(select,)} [{(optClause)]
::= (identifier) from (lvalue) [(optClause)] i)
:= (identifier) = (expr)) B
:= maximizing (expr)
:= minimizing (expr)
Figure A.9: The Syntax of move Instructions.
(AcceptCriterion) ::= (AcceptStatement) {cor (AcceptStatement)}
= in resulting state (AcceptStatement) {cor (AcceptStatement) }
= in current state (AcceptStatement) {cor (AcceptStatement)}
(AcceptStatement) := (AcceptCondition)
:= (AcceptCondition) —{Statement)
:= Pr((expr)): (AcceptCondition) — (Statement)
== default : (AcceptCondition) — (Statement)
(AcceptCondition) always
improvement
noDecrease
(expr)

(AcceptCondition) and (AcceptCondition)
(AcceptCondition}) or (AcceptCondition)
not (AcceptCondition)

[T R]

Figure A.10: Grammar Fragment for the Acceptance Criterion.

183

Bibliography

[1] E. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons
Ltd, England, 1997.

[2] Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F. Sweeney, and F. Kenneth
Zadeck. Incremental evaluation of computational circuits. In Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 32—42, San Francisco,
California, 22—24 January 1990.

[3] D. Applegate and W. Cook. A Computational Study of the Job Shop Scheduling
Problem. ORSA J. of Comp., 3(2):149-156, 1991.

[4] L. Barford and B. Vander Zanden. Attribute grammars in constraint-based graphics
system. Software Practice and Ezperience, 19(4):309-328, April 1989.

[5] J. Bisschop and A. Meeraus. On the Development of a General Algebraic Modeling
System in a Strategic Planning Environment. Mathematical Programming Study, 20:1—
29, 1982.

[6] A. Borning. The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laboratory. ACM Transaction on Programming Languages and Systems,
3(4):353-387, 1981.

[7] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies. Lisp and

Symbolic Computation, 5(3):223-270, September 1992.

[8] Y. Caseau and F. Laburthe. Claire: a brief overview. Technical report, LIENS, Ecole

normale supérieure, 1995.

[9] G.A. Cheston. Incremental algorithms in graph theory. PhD thesis, Department of
Computer Science, University of Toronto, Toronto, Canada, March 1976.
184

185

[10] N. Christofides, A. Mingozzi, and P. Toth. Combinatorial Optimization, chapter The
vehicle routing problem. Wiley, Chichester, 1979.

[11] G. Clarke and J.W. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[12] A. Colmerauer. An Introduction to Prolog III. Commun. ACM, 28(4):412-418, 1990.

[13] Y. Colombani. Constraint Programming: An Efficient and Practical Approach to
Solving the Job-Shop Problem. In Second International Conference on Principles and
Practice of Constraint Programming (CP’96), Cambridge, MA, August 1996. Springer
Verlag.

(14] T.H. Cormen, C.E. Leiserson, and R.L Rivest. Introduction to Algorithms. MIT Press,
Cambridge, 1990.

[15] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The
Constraint Logic Programming Language CHIP. In Proceedings of the International
Conference on Fifth Generation Computer Systems, Tokyo, Japan, December 1988.

[16] S. Even and H. Gazit. Updating distances in dynamic graphs. In P. Brucker and
R. Pauly, editors, IX Symposium on Operations Research, volume 49 of Methods of
Operations Research. Verlag Anton Hain, 1985.

[17] Fisher. Optimal solutions of vehicle routing problems using minimum K-trees. Opera-
tions Research, 42:626—642, 1994.

[18] C.L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. Artificial Intelligence, 19:17-37, 1982.

{19] R. Fourer, D. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Mathemat-
ical Programming.. The Scientific Press, San Francisco, CA, 1993.

[20] M.S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. Technical
Report CMU-CS-83-161, Carnegie-Mellon University, December 1983.

[21] M. Gendreau, A. Hertz, and G. Laporte. A Tabu Search Heuristic for the Vehicle
Routing Problem. Management Science, 40:1276-1290, 1994.

[22] F. Glover. Tabu Search—Part I. ORSA Journal on Computing, 1(3):190-206, 1989.

[23]

[24]

[25]

[26]

[27]

28]

[30]

(31]

[32]

[33]

186

F. Glover. Tabu Search—Part II. ORSA Journal on Computing, 2(1):4-32, Winter
1990.

Bruce L. Golden, G. Laporte, and Eric D. Taillard. An adaptative memory heuristic
for a class of vehicle routing problems with minmax objective. Technical report, Centre
de recherche sur les transports, November 1995.

Y. Hamadi and D. Merceron. Reconfigurable architectures: A new vision for optimiza-
tion problems. In Gert Smolka, editor, Principle and Practice of Constraint Program-
ming - CP97, Lecture Notes in Computer Science, pages 209-221. Springer, October
1997.

M. Henz, G. Smolka, and J. Wiirtz. Oz—a programming language for multi-agent
systems. In Ruzena Bajcsy, editor, 13th International Joint Conference on Artificial
Intelligence, volume 1, pages 404-409, Chambéry, France, 30 August-3 September
1993. Morgan Kaufmann Publishers.

J. Jaffar, S. Michaylov, P.J. Stuckey, and R. Yap. The CLP(R) language and system.
ACM Trans. on Programming Languages and Systems, 14(3):339-395, 1992.

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by Simulated
Annealing: An Experimental Evaluation; Part I, Graph Partitioning. Operations Re-
search, 37(6):865—-893, 1989.

D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by Simulated
Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Parti-
tioning. Operations Research, 39(3):378-406, 1991.

D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search ?
Journal of Computer and System Sciences, 37:79-100, 1988.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated Annealing. Sci-
ence, 220:671-680, 1983.

G. Laporte. The Vehicle Routing Problem: An overview of exact and approximate
algorithms. Furopean Journal of Operational Research, 59:345-358, 1992.

Dell’Amico M. and Trubian M. Applying Tabu Search to the Job-Shop Scheduling
Problem. Annals of Operations Research, 41:231-252, 1993.

187

[34] N. Metropolis, A.-W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. J. Chem. Phys., 21(6):1087-1092,
1953.

[35] L. Michel and Van Hentenryck P. Localizer: A Modeling Language for Local Search

and its Implementation. Constraints, 1998.

[36] L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search.
In Second International Conference on Principles and Practice of Constraint Program-
ming (CP’97), Linz, Austria, October 1997. (Extended Version invited to the special
of Constraints on CP’97).

[37] L. Michel and P. Van Hentenryck. Localizer: A Modeling Language for Local Search.
INFORMS, 1998.

[38] S. Minton, M.D. Johnston, and A.B. Philips. Solving Large-Scale Constraint Satisfac-
tion and Scheduling Problems using a Heuristic Repair Method. In AAAI-90, August
1990.

[39] B. Myers. The garnet user interface development environment; a proposal. Techni-
cal Report CMU-CS-88-153, Carnegie Mellon University, Carnegie Mellon University,
Pittsburgh, PA 15213, September 1988.

[40] B. Myers. Comprehensive support for graphical, highly-interactive user interface: The

garnet user interface development environment. [EEE Computer, 1990.

[41] B. Myers, D. Giuse, A. Mickish, and D. Kosbie. Making structured graphics and
constraints practical for large-scale applications. Technical Report CMU-CS-94-150,
Carnegie Mellon University, Carnegie Mellon University, Pittsburgh, PA 15213, May
1994.

[42] I.H. Osman. Metastrategy Simulated Annealing and Tabu Search for Combinatorial
Optimization Problems. PhD thesis, The Management School, Imperial College of
Science and Medicine, University of London, London, 1991.

[43] I.H. Osman. Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problem. Annals of Operations Research, 41:421-451, 1993.

[44] R. Paige. Formal Differentiation. PhD thesis, Dept. Of Computer Science, New York
University, New York, N.Y., June 79 1981.

188

[45] R. Paige. Programming with invariants. IEEE Software, pages 5669, January 1986.

[46] R. Paige and S. Koenig. Finite differencing of computable expressions. ACM Trans-
actions on Programming Languages and Systems, 4(3):402-454, July 1982.

[47] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complezity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[48] G. Pesant, M. Gendreau, and J.M. Rousseau. Genius-cp: A generic single-vehicle rout-
ing algorithm. In Gert Smolka, editor, Principle and Practice of Constraint Program-
ming - CP97, Lecture Notes in Computer Science, pages 420-434. Springer, October
1997.

[49] J.F. Puget. A C++ Implementation of CLP. In Proceedings of SPICIS, November
1994.

[50] W.W. Pugh. Incremental computation and the incremental evaluation of functional
programs. PhD thesis, Department of computer science, Cornell University, Ithaca,
NY, August 1988.

[51] G. Ramalingam. Bounded Incremental Computation. PhD thesis, University of
Wisconsin-Madison, 1993.

[52] G. Ramalingam and T. Reps. On competitive on-line algorithms for the dynamic
priority-ordering problem. Information Processing Letters, 51:155-161, 1994.

(53] G. Ramalingam and Reps T. On the computational complexity of incremental algo-
rithms. Technical report, University of Wisconsin-Madison, August 1991.

[54] T. Reps. Generating Language-based Environments. MIT Press, Cambridge, Ma, 1984.

[55] T.Reps and A. Demers. Sublinear-space evaluation algorithms for attribute grammars.
ACM Transactions on Programming Languages and Systems, 9(3), July 87.

[56] T. Reps, T. Teitelbaum, and A. Demers. Incremental Context-Dependent Analysis for
Language-based Editors. ACM Transactions on Programming Languages and Systems,
5(3):449-477, July 83.

[57] Y. Rochat and D. Eric. Taillard. Probabilistic Diversification and Intensification in
Local Search for Vehicle Routing. Journal of heuristics, 1:147-167, 1995.

189

[68] M. Sannela and A. Borning. Multi-garnet: Integrating multi-way constraints with
garnet. Technical Report 92-07-01, University of Washington, 92.

(59] M. Sannela, J. Maloney, B. Freeman-Benson, and A. Borning. Multi-way versus one-
way constraints in user interfaces: Experience with the deltablue algorithm. Software
Practice and Ezperience, 23(5):529-566, May 1992.

[60] M. Sannella. Analysing and Debugging Hierarchies of Multi-Way Local Propagation
Constraints. In A. Borning, editor, Principles and Practice of Constraint Programming.

Lecture Notes in Computer Science 874, Springer Verlag, 1994.

[61] M. Sannella. The SkyBlue Constraint Solver and its Applications. In V. Saraswat and
P. Van Hentenryck, editors, Principles and Practice of Constraint Programming. The
MIT Press, Cambridge, Massachussetts, 1995.

[62] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Borning. Multi-way versus One-
way Constraints in User Interfaces: Experience with the DeltaBlue Algorithm. Software
Practice and Ezperience, 23(5), May 1993.

[63] J.E. Savage and Markus G. Wloka. Parallelism in Graph-Partitioning. Journal of
Parallel and Disitributed Computing, 13:257-272, 1991.

[64] D. Schmidt. Denotational Semantics. Wm. C. Brown Publishers, Dubuque, Iowa, 1988.

[65] Linus E. Lindo Schrage. Optimization Modeling with LINDO. Duxbury, 5% edition,
February 1997.

[66] B. Selman and H. Kautz. An Empirical Study of Greedy Local Search for Satisfiability
Testing. In AAAI-93, pages 46-51, 1993.

[67] B. Selman and H. Kautz. Domain-Independent Extensions to GSAT: Solving Large
Structured Satisfiability Problems. In Proceedings of IJCAI-93, 1993.

[68] B. Selman, H. Levesque, and D. Mitchell. A New Method for Solving Hard Satisfiability
Problems. In AAAI-92, pages 440-446, 1992.

[69] Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research, 35(2):254-265, April 1987.

[70] J. Stoy. Denotational Semantics: The Scott-Stratchey Approach to Programming Lan-
guage Theory . MIT Press, Cambridge Mass., 1977.

[71]

[72]

(73]

[76]

[77]

[79]

[80]

(81]

[82]

(83]

190

P. Stuckey and V. Tam. Models for Using Stochastic Constraint Solvers in Constraint
Logic Programming. In PLILP-96, Aachen, August 1996.

IL.E. Sutherland. SKETCHPAD: a Man-Machine Graphical Communication System.
Cambridge, MA, MIT Lincoln Labs, 1963.

Eric D. Taillard. Parallel, Iterative Search Methods for Vehicle Routing Problem.
Networks, 23:661-676, 1993.

Eric D. Taillard, G. Laporte, and M. Gendreau. Vehicle routing with multiple use of
vehicles. Technical Report 964, Centre de recherche sur les transports, March 1995.

R.E. Tarjan. Amortized Computational Complexity. SIAM Journal of Algebraic Dis-
crete Methods, 6:306-318, 1985.

R.J.M. Vaessens. Generalized Job Shop Scheduling: Complezity and Local Search. PhD
thesis, Eindhoven University of Technology, September 1995.

R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling by local search.
INFORMS Journal on Computing, 8(3):302-317, 1996.

P. Van Hentenryck. Constraint Programming. Encyclopedia of Computer Science and
Technology, 36(21):35-71, 1997.

P. Van Hentenryck. OPL: The Optimization Programming Language. The MIT Press,
Cambridge, Mass., 1998.

P. Van Hentenryck, L. Michel, and Y. Deville. Numerice: a Modeling Language for
Global Optimization. The MIT Press, Cambridge, Mass., 1997.

B. Vander Zanden. An incremental algorithm for satisfying hierarchies of multi-way,
dataflow constraints. ACM Transactions on Programming Languages and Systems,
18(1):30-72, Jan 1996.

Molly Ann. Wilson. Hierarchical Constraint Logic Programming. PhD thesis, Depart-
ment of Computer Science and Engineering, University of Washington, April 1993.

D.M. Yellin and Strom R.E. INC: A Language for Incremental Computations. In Pro-
ceedings of the ACM SIGPLAN’88 Conference on Programming Language Design and
Implementation (PLDI), pages 115-124, Atlanta, Georgia, 22-24 June 1988. SIGPLAN
Notices 23(7), July 1988.

191

[84] J. Zhou. A Constraint Program for Solving the Job-Shop Problem. In Second Inter-
national Conference on Principles and Practice of Constraint Programming (CP’96),
Cambridge, MA, August 1996. Springer Verlag.

IMAGE EVALUATION
TEST TARGET (QA-23)

7
‘O
AP
\\.\ /// .,A._.A_\A%\MA@
EIEEED SRS
/\ e A\o \\t//&,
////4 \\\ ///0
2 \°
A
//o.
BEE m ,
w__lml_n m_u“u._gm ng m % W____m_m_ﬂu.___mm_ m
 E T
— = PAE_ 7
m o

